os_solaris.cpp revision 13213:4358b7205556
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_solaris.hpp"
40#include "os_solaris.inline.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "runtime/vm_version.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/macros.hpp"
72#include "utilities/vmError.hpp"
73
74// put OS-includes here
75# include <dlfcn.h>
76# include <errno.h>
77# include <exception>
78# include <link.h>
79# include <poll.h>
80# include <pthread.h>
81# include <schedctl.h>
82# include <setjmp.h>
83# include <signal.h>
84# include <stdio.h>
85# include <alloca.h>
86# include <sys/filio.h>
87# include <sys/ipc.h>
88# include <sys/lwp.h>
89# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
90# include <sys/mman.h>
91# include <sys/processor.h>
92# include <sys/procset.h>
93# include <sys/pset.h>
94# include <sys/resource.h>
95# include <sys/shm.h>
96# include <sys/socket.h>
97# include <sys/stat.h>
98# include <sys/systeminfo.h>
99# include <sys/time.h>
100# include <sys/times.h>
101# include <sys/types.h>
102# include <sys/wait.h>
103# include <sys/utsname.h>
104# include <thread.h>
105# include <unistd.h>
106# include <sys/priocntl.h>
107# include <sys/rtpriocntl.h>
108# include <sys/tspriocntl.h>
109# include <sys/iapriocntl.h>
110# include <sys/fxpriocntl.h>
111# include <sys/loadavg.h>
112# include <string.h>
113# include <stdio.h>
114
115# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
116# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
117
118#define MAX_PATH (2 * K)
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123
124// Here are some liblgrp types from sys/lgrp_user.h to be able to
125// compile on older systems without this header file.
126
127#ifndef MADV_ACCESS_LWP
128  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
129#endif
130#ifndef MADV_ACCESS_MANY
131  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
132#endif
133
134#ifndef LGRP_RSRC_CPU
135  #define LGRP_RSRC_CPU      0       /* CPU resources */
136#endif
137#ifndef LGRP_RSRC_MEM
138  #define LGRP_RSRC_MEM      1       /* memory resources */
139#endif
140
141// Values for ThreadPriorityPolicy == 1
142int prio_policy1[CriticalPriority+1] = {
143  -99999,  0, 16,  32,  48,  64,
144          80, 96, 112, 124, 127, 127 };
145
146// System parameters used internally
147static clock_t clock_tics_per_sec = 100;
148
149// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
150static bool enabled_extended_FILE_stdio = false;
151
152// For diagnostics to print a message once. see run_periodic_checks
153static bool check_addr0_done = false;
154static sigset_t check_signal_done;
155static bool check_signals = true;
156
157address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
158address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
159
160address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
161
162os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
163
164// "default" initializers for missing libc APIs
165extern "C" {
166  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
167  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
168
169  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
170  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
171}
172
173// "default" initializers for pthread-based synchronization
174extern "C" {
175  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
176  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
177}
178
179static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
180
181static inline size_t adjust_stack_size(address base, size_t size) {
182  if ((ssize_t)size < 0) {
183    // 4759953: Compensate for ridiculous stack size.
184    size = max_intx;
185  }
186  if (size > (size_t)base) {
187    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
188    size = (size_t)base;
189  }
190  return size;
191}
192
193static inline stack_t get_stack_info() {
194  stack_t st;
195  int retval = thr_stksegment(&st);
196  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
197  assert(retval == 0, "incorrect return value from thr_stksegment");
198  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
199  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
200  return st;
201}
202
203address os::current_stack_base() {
204  int r = thr_main();
205  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
206  bool is_primordial_thread = r;
207
208  // Workaround 4352906, avoid calls to thr_stksegment by
209  // thr_main after the first one (it looks like we trash
210  // some data, causing the value for ss_sp to be incorrect).
211  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
212    stack_t st = get_stack_info();
213    if (is_primordial_thread) {
214      // cache initial value of stack base
215      os::Solaris::_main_stack_base = (address)st.ss_sp;
216    }
217    return (address)st.ss_sp;
218  } else {
219    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
220    return os::Solaris::_main_stack_base;
221  }
222}
223
224size_t os::current_stack_size() {
225  size_t size;
226
227  int r = thr_main();
228  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
229  if (!r) {
230    size = get_stack_info().ss_size;
231  } else {
232    struct rlimit limits;
233    getrlimit(RLIMIT_STACK, &limits);
234    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
235  }
236  // base may not be page aligned
237  address base = current_stack_base();
238  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
239  return (size_t)(base - bottom);
240}
241
242struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
243  return localtime_r(clock, res);
244}
245
246void os::Solaris::try_enable_extended_io() {
247  typedef int (*enable_extended_FILE_stdio_t)(int, int);
248
249  if (!UseExtendedFileIO) {
250    return;
251  }
252
253  enable_extended_FILE_stdio_t enabler =
254    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
255                                         "enable_extended_FILE_stdio");
256  if (enabler) {
257    enabler(-1, -1);
258  }
259}
260
261static int _processors_online = 0;
262
263jint os::Solaris::_os_thread_limit = 0;
264volatile jint os::Solaris::_os_thread_count = 0;
265
266julong os::available_memory() {
267  return Solaris::available_memory();
268}
269
270julong os::Solaris::available_memory() {
271  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
272}
273
274julong os::Solaris::_physical_memory = 0;
275
276julong os::physical_memory() {
277  return Solaris::physical_memory();
278}
279
280static hrtime_t first_hrtime = 0;
281static const hrtime_t hrtime_hz = 1000*1000*1000;
282static volatile hrtime_t max_hrtime = 0;
283
284
285void os::Solaris::initialize_system_info() {
286  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
287  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
288  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
289                                     (julong)sysconf(_SC_PAGESIZE);
290}
291
292int os::active_processor_count() {
293  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
294  pid_t pid = getpid();
295  psetid_t pset = PS_NONE;
296  // Are we running in a processor set or is there any processor set around?
297  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
298    uint_t pset_cpus;
299    // Query the number of cpus available to us.
300    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
301      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
302      _processors_online = pset_cpus;
303      return pset_cpus;
304    }
305  }
306  // Otherwise return number of online cpus
307  return online_cpus;
308}
309
310static bool find_processors_in_pset(psetid_t        pset,
311                                    processorid_t** id_array,
312                                    uint_t*         id_length) {
313  bool result = false;
314  // Find the number of processors in the processor set.
315  if (pset_info(pset, NULL, id_length, NULL) == 0) {
316    // Make up an array to hold their ids.
317    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
318    // Fill in the array with their processor ids.
319    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
320      result = true;
321    }
322  }
323  return result;
324}
325
326// Callers of find_processors_online() must tolerate imprecise results --
327// the system configuration can change asynchronously because of DR
328// or explicit psradm operations.
329//
330// We also need to take care that the loop (below) terminates as the
331// number of processors online can change between the _SC_NPROCESSORS_ONLN
332// request and the loop that builds the list of processor ids.   Unfortunately
333// there's no reliable way to determine the maximum valid processor id,
334// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
335// man pages, which claim the processor id set is "sparse, but
336// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
337// exit the loop.
338//
339// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
340// not available on S8.0.
341
342static bool find_processors_online(processorid_t** id_array,
343                                   uint*           id_length) {
344  const processorid_t MAX_PROCESSOR_ID = 100000;
345  // Find the number of processors online.
346  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
347  // Make up an array to hold their ids.
348  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
349  // Processors need not be numbered consecutively.
350  long found = 0;
351  processorid_t next = 0;
352  while (found < *id_length && next < MAX_PROCESSOR_ID) {
353    processor_info_t info;
354    if (processor_info(next, &info) == 0) {
355      // NB, PI_NOINTR processors are effectively online ...
356      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
357        (*id_array)[found] = next;
358        found += 1;
359      }
360    }
361    next += 1;
362  }
363  if (found < *id_length) {
364    // The loop above didn't identify the expected number of processors.
365    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
366    // and re-running the loop, above, but there's no guarantee of progress
367    // if the system configuration is in flux.  Instead, we just return what
368    // we've got.  Note that in the worst case find_processors_online() could
369    // return an empty set.  (As a fall-back in the case of the empty set we
370    // could just return the ID of the current processor).
371    *id_length = found;
372  }
373
374  return true;
375}
376
377static bool assign_distribution(processorid_t* id_array,
378                                uint           id_length,
379                                uint*          distribution,
380                                uint           distribution_length) {
381  // We assume we can assign processorid_t's to uint's.
382  assert(sizeof(processorid_t) == sizeof(uint),
383         "can't convert processorid_t to uint");
384  // Quick check to see if we won't succeed.
385  if (id_length < distribution_length) {
386    return false;
387  }
388  // Assign processor ids to the distribution.
389  // Try to shuffle processors to distribute work across boards,
390  // assuming 4 processors per board.
391  const uint processors_per_board = ProcessDistributionStride;
392  // Find the maximum processor id.
393  processorid_t max_id = 0;
394  for (uint m = 0; m < id_length; m += 1) {
395    max_id = MAX2(max_id, id_array[m]);
396  }
397  // The next id, to limit loops.
398  const processorid_t limit_id = max_id + 1;
399  // Make up markers for available processors.
400  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
401  for (uint c = 0; c < limit_id; c += 1) {
402    available_id[c] = false;
403  }
404  for (uint a = 0; a < id_length; a += 1) {
405    available_id[id_array[a]] = true;
406  }
407  // Step by "boards", then by "slot", copying to "assigned".
408  // NEEDS_CLEANUP: The assignment of processors should be stateful,
409  //                remembering which processors have been assigned by
410  //                previous calls, etc., so as to distribute several
411  //                independent calls of this method.  What we'd like is
412  //                It would be nice to have an API that let us ask
413  //                how many processes are bound to a processor,
414  //                but we don't have that, either.
415  //                In the short term, "board" is static so that
416  //                subsequent distributions don't all start at board 0.
417  static uint board = 0;
418  uint assigned = 0;
419  // Until we've found enough processors ....
420  while (assigned < distribution_length) {
421    // ... find the next available processor in the board.
422    for (uint slot = 0; slot < processors_per_board; slot += 1) {
423      uint try_id = board * processors_per_board + slot;
424      if ((try_id < limit_id) && (available_id[try_id] == true)) {
425        distribution[assigned] = try_id;
426        available_id[try_id] = false;
427        assigned += 1;
428        break;
429      }
430    }
431    board += 1;
432    if (board * processors_per_board + 0 >= limit_id) {
433      board = 0;
434    }
435  }
436  if (available_id != NULL) {
437    FREE_C_HEAP_ARRAY(bool, available_id);
438  }
439  return true;
440}
441
442void os::set_native_thread_name(const char *name) {
443  if (Solaris::_pthread_setname_np != NULL) {
444    // Only the first 31 bytes of 'name' are processed by pthread_setname_np
445    // but we explicitly copy into a size-limited buffer to avoid any
446    // possible overflow.
447    char buf[32];
448    snprintf(buf, sizeof(buf), "%s", name);
449    buf[sizeof(buf) - 1] = '\0';
450    Solaris::_pthread_setname_np(pthread_self(), buf);
451  }
452}
453
454bool os::distribute_processes(uint length, uint* distribution) {
455  bool result = false;
456  // Find the processor id's of all the available CPUs.
457  processorid_t* id_array  = NULL;
458  uint           id_length = 0;
459  // There are some races between querying information and using it,
460  // since processor sets can change dynamically.
461  psetid_t pset = PS_NONE;
462  // Are we running in a processor set?
463  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
464    result = find_processors_in_pset(pset, &id_array, &id_length);
465  } else {
466    result = find_processors_online(&id_array, &id_length);
467  }
468  if (result == true) {
469    if (id_length >= length) {
470      result = assign_distribution(id_array, id_length, distribution, length);
471    } else {
472      result = false;
473    }
474  }
475  if (id_array != NULL) {
476    FREE_C_HEAP_ARRAY(processorid_t, id_array);
477  }
478  return result;
479}
480
481bool os::bind_to_processor(uint processor_id) {
482  // We assume that a processorid_t can be stored in a uint.
483  assert(sizeof(uint) == sizeof(processorid_t),
484         "can't convert uint to processorid_t");
485  int bind_result =
486    processor_bind(P_LWPID,                       // bind LWP.
487                   P_MYID,                        // bind current LWP.
488                   (processorid_t) processor_id,  // id.
489                   NULL);                         // don't return old binding.
490  return (bind_result == 0);
491}
492
493// Return true if user is running as root.
494
495bool os::have_special_privileges() {
496  static bool init = false;
497  static bool privileges = false;
498  if (!init) {
499    privileges = (getuid() != geteuid()) || (getgid() != getegid());
500    init = true;
501  }
502  return privileges;
503}
504
505
506void os::init_system_properties_values() {
507  // The next steps are taken in the product version:
508  //
509  // Obtain the JAVA_HOME value from the location of libjvm.so.
510  // This library should be located at:
511  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
512  //
513  // If "/jre/lib/" appears at the right place in the path, then we
514  // assume libjvm.so is installed in a JDK and we use this path.
515  //
516  // Otherwise exit with message: "Could not create the Java virtual machine."
517  //
518  // The following extra steps are taken in the debugging version:
519  //
520  // If "/jre/lib/" does NOT appear at the right place in the path
521  // instead of exit check for $JAVA_HOME environment variable.
522  //
523  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
524  // then we append a fake suffix "hotspot/libjvm.so" to this path so
525  // it looks like libjvm.so is installed there
526  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
527  //
528  // Otherwise exit.
529  //
530  // Important note: if the location of libjvm.so changes this
531  // code needs to be changed accordingly.
532
533// Base path of extensions installed on the system.
534#define SYS_EXT_DIR     "/usr/jdk/packages"
535#define EXTENSIONS_DIR  "/lib/ext"
536
537  // Buffer that fits several sprintfs.
538  // Note that the space for the colon and the trailing null are provided
539  // by the nulls included by the sizeof operator.
540  const size_t bufsize =
541    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
542         sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
543         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
544  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
545
546  // sysclasspath, java_home, dll_dir
547  {
548    char *pslash;
549    os::jvm_path(buf, bufsize);
550
551    // Found the full path to libjvm.so.
552    // Now cut the path to <java_home>/jre if we can.
553    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
554    pslash = strrchr(buf, '/');
555    if (pslash != NULL) {
556      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
557    }
558    Arguments::set_dll_dir(buf);
559
560    if (pslash != NULL) {
561      pslash = strrchr(buf, '/');
562      if (pslash != NULL) {
563        *pslash = '\0';        // Get rid of /lib.
564      }
565    }
566    Arguments::set_java_home(buf);
567    set_boot_path('/', ':');
568  }
569
570  // Where to look for native libraries.
571  {
572    // Use dlinfo() to determine the correct java.library.path.
573    //
574    // If we're launched by the Java launcher, and the user
575    // does not set java.library.path explicitly on the commandline,
576    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
577    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
578    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
579    // /usr/lib), which is exactly what we want.
580    //
581    // If the user does set java.library.path, it completely
582    // overwrites this setting, and always has.
583    //
584    // If we're not launched by the Java launcher, we may
585    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
586    // settings.  Again, dlinfo does exactly what we want.
587
588    Dl_serinfo     info_sz, *info = &info_sz;
589    Dl_serpath     *path;
590    char           *library_path;
591    char           *common_path = buf;
592
593    // Determine search path count and required buffer size.
594    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
595      FREE_C_HEAP_ARRAY(char, buf);
596      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
597    }
598
599    // Allocate new buffer and initialize.
600    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
601    info->dls_size = info_sz.dls_size;
602    info->dls_cnt = info_sz.dls_cnt;
603
604    // Obtain search path information.
605    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
606      FREE_C_HEAP_ARRAY(char, buf);
607      FREE_C_HEAP_ARRAY(char, info);
608      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
609    }
610
611    path = &info->dls_serpath[0];
612
613    // Note: Due to a legacy implementation, most of the library path
614    // is set in the launcher. This was to accomodate linking restrictions
615    // on legacy Solaris implementations (which are no longer supported).
616    // Eventually, all the library path setting will be done here.
617    //
618    // However, to prevent the proliferation of improperly built native
619    // libraries, the new path component /usr/jdk/packages is added here.
620
621    // Construct the invariant part of ld_library_path.
622    sprintf(common_path, SYS_EXT_DIR "/lib");
623
624    // Struct size is more than sufficient for the path components obtained
625    // through the dlinfo() call, so only add additional space for the path
626    // components explicitly added here.
627    size_t library_path_size = info->dls_size + strlen(common_path);
628    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
629    library_path[0] = '\0';
630
631    // Construct the desired Java library path from the linker's library
632    // search path.
633    //
634    // For compatibility, it is optimal that we insert the additional path
635    // components specific to the Java VM after those components specified
636    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
637    // infrastructure.
638    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
639      strcpy(library_path, common_path);
640    } else {
641      int inserted = 0;
642      int i;
643      for (i = 0; i < info->dls_cnt; i++, path++) {
644        uint_t flags = path->dls_flags & LA_SER_MASK;
645        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
646          strcat(library_path, common_path);
647          strcat(library_path, os::path_separator());
648          inserted = 1;
649        }
650        strcat(library_path, path->dls_name);
651        strcat(library_path, os::path_separator());
652      }
653      // Eliminate trailing path separator.
654      library_path[strlen(library_path)-1] = '\0';
655    }
656
657    // happens before argument parsing - can't use a trace flag
658    // tty->print_raw("init_system_properties_values: native lib path: ");
659    // tty->print_raw_cr(library_path);
660
661    // Callee copies into its own buffer.
662    Arguments::set_library_path(library_path);
663
664    FREE_C_HEAP_ARRAY(char, library_path);
665    FREE_C_HEAP_ARRAY(char, info);
666  }
667
668  // Extensions directories.
669  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
670  Arguments::set_ext_dirs(buf);
671
672  FREE_C_HEAP_ARRAY(char, buf);
673
674#undef SYS_EXT_DIR
675#undef EXTENSIONS_DIR
676}
677
678void os::breakpoint() {
679  BREAKPOINT;
680}
681
682bool os::obsolete_option(const JavaVMOption *option) {
683  if (!strncmp(option->optionString, "-Xt", 3)) {
684    return true;
685  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
686    return true;
687  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
688    return true;
689  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
690    return true;
691  }
692  return false;
693}
694
695bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
696  address  stackStart  = (address)thread->stack_base();
697  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
698  if (sp < stackStart && sp >= stackEnd) return true;
699  return false;
700}
701
702extern "C" void breakpoint() {
703  // use debugger to set breakpoint here
704}
705
706static thread_t main_thread;
707
708// Thread start routine for all newly created threads
709extern "C" void* thread_native_entry(void* thread_addr) {
710  // Try to randomize the cache line index of hot stack frames.
711  // This helps when threads of the same stack traces evict each other's
712  // cache lines. The threads can be either from the same JVM instance, or
713  // from different JVM instances. The benefit is especially true for
714  // processors with hyperthreading technology.
715  static int counter = 0;
716  int pid = os::current_process_id();
717  alloca(((pid ^ counter++) & 7) * 128);
718
719  int prio;
720  Thread* thread = (Thread*)thread_addr;
721
722  thread->initialize_thread_current();
723
724  OSThread* osthr = thread->osthread();
725
726  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
727  thread->_schedctl = (void *) schedctl_init();
728
729  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
730    os::current_thread_id());
731
732  if (UseNUMA) {
733    int lgrp_id = os::numa_get_group_id();
734    if (lgrp_id != -1) {
735      thread->set_lgrp_id(lgrp_id);
736    }
737  }
738
739  // Our priority was set when we were created, and stored in the
740  // osthread, but couldn't be passed through to our LWP until now.
741  // So read back the priority and set it again.
742
743  if (osthr->thread_id() != -1) {
744    if (UseThreadPriorities) {
745      int prio = osthr->native_priority();
746      if (ThreadPriorityVerbose) {
747        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
748                      INTPTR_FORMAT ", setting priority: %d\n",
749                      osthr->thread_id(), osthr->lwp_id(), prio);
750      }
751      os::set_native_priority(thread, prio);
752    }
753  } else if (ThreadPriorityVerbose) {
754    warning("Can't set priority in _start routine, thread id hasn't been set\n");
755  }
756
757  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
758
759  // initialize signal mask for this thread
760  os::Solaris::hotspot_sigmask(thread);
761
762  thread->run();
763
764  // One less thread is executing
765  // When the VMThread gets here, the main thread may have already exited
766  // which frees the CodeHeap containing the Atomic::dec code
767  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
768    Atomic::dec(&os::Solaris::_os_thread_count);
769  }
770
771  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
772
773  // If a thread has not deleted itself ("delete this") as part of its
774  // termination sequence, we have to ensure thread-local-storage is
775  // cleared before we actually terminate. No threads should ever be
776  // deleted asynchronously with respect to their termination.
777  if (Thread::current_or_null_safe() != NULL) {
778    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
779    thread->clear_thread_current();
780  }
781
782  if (UseDetachedThreads) {
783    thr_exit(NULL);
784    ShouldNotReachHere();
785  }
786  return NULL;
787}
788
789static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
790  // Allocate the OSThread object
791  OSThread* osthread = new OSThread(NULL, NULL);
792  if (osthread == NULL) return NULL;
793
794  // Store info on the Solaris thread into the OSThread
795  osthread->set_thread_id(thread_id);
796  osthread->set_lwp_id(_lwp_self());
797  thread->_schedctl = (void *) schedctl_init();
798
799  if (UseNUMA) {
800    int lgrp_id = os::numa_get_group_id();
801    if (lgrp_id != -1) {
802      thread->set_lgrp_id(lgrp_id);
803    }
804  }
805
806  if (ThreadPriorityVerbose) {
807    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
808                  osthread->thread_id(), osthread->lwp_id());
809  }
810
811  // Initial thread state is INITIALIZED, not SUSPENDED
812  osthread->set_state(INITIALIZED);
813
814  return osthread;
815}
816
817void os::Solaris::hotspot_sigmask(Thread* thread) {
818  //Save caller's signal mask
819  sigset_t sigmask;
820  pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
821  OSThread *osthread = thread->osthread();
822  osthread->set_caller_sigmask(sigmask);
823
824  pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
825  if (!ReduceSignalUsage) {
826    if (thread->is_VM_thread()) {
827      // Only the VM thread handles BREAK_SIGNAL ...
828      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
829    } else {
830      // ... all other threads block BREAK_SIGNAL
831      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
832      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
833    }
834  }
835}
836
837bool os::create_attached_thread(JavaThread* thread) {
838#ifdef ASSERT
839  thread->verify_not_published();
840#endif
841  OSThread* osthread = create_os_thread(thread, thr_self());
842  if (osthread == NULL) {
843    return false;
844  }
845
846  // Initial thread state is RUNNABLE
847  osthread->set_state(RUNNABLE);
848  thread->set_osthread(osthread);
849
850  // initialize signal mask for this thread
851  // and save the caller's signal mask
852  os::Solaris::hotspot_sigmask(thread);
853
854  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
855    os::current_thread_id());
856
857  return true;
858}
859
860bool os::create_main_thread(JavaThread* thread) {
861#ifdef ASSERT
862  thread->verify_not_published();
863#endif
864  if (_starting_thread == NULL) {
865    _starting_thread = create_os_thread(thread, main_thread);
866    if (_starting_thread == NULL) {
867      return false;
868    }
869  }
870
871  // The primodial thread is runnable from the start
872  _starting_thread->set_state(RUNNABLE);
873
874  thread->set_osthread(_starting_thread);
875
876  // initialize signal mask for this thread
877  // and save the caller's signal mask
878  os::Solaris::hotspot_sigmask(thread);
879
880  return true;
881}
882
883// Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
884static char* describe_thr_create_attributes(char* buf, size_t buflen,
885                                            size_t stacksize, long flags) {
886  stringStream ss(buf, buflen);
887  ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
888  ss.print("flags: ");
889  #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
890  #define ALL(X) \
891    X(THR_SUSPENDED) \
892    X(THR_DETACHED) \
893    X(THR_BOUND) \
894    X(THR_NEW_LWP) \
895    X(THR_DAEMON)
896  ALL(PRINT_FLAG)
897  #undef ALL
898  #undef PRINT_FLAG
899  return buf;
900}
901
902// return default stack size for thr_type
903size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
904  // default stack size when not specified by caller is 1M (2M for LP64)
905  size_t s = (BytesPerWord >> 2) * K * K;
906  return s;
907}
908
909bool os::create_thread(Thread* thread, ThreadType thr_type,
910                       size_t req_stack_size) {
911  // Allocate the OSThread object
912  OSThread* osthread = new OSThread(NULL, NULL);
913  if (osthread == NULL) {
914    return false;
915  }
916
917  if (ThreadPriorityVerbose) {
918    char *thrtyp;
919    switch (thr_type) {
920    case vm_thread:
921      thrtyp = (char *)"vm";
922      break;
923    case cgc_thread:
924      thrtyp = (char *)"cgc";
925      break;
926    case pgc_thread:
927      thrtyp = (char *)"pgc";
928      break;
929    case java_thread:
930      thrtyp = (char *)"java";
931      break;
932    case compiler_thread:
933      thrtyp = (char *)"compiler";
934      break;
935    case watcher_thread:
936      thrtyp = (char *)"watcher";
937      break;
938    default:
939      thrtyp = (char *)"unknown";
940      break;
941    }
942    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
943  }
944
945  // calculate stack size if it's not specified by caller
946  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
947
948  // Initial state is ALLOCATED but not INITIALIZED
949  osthread->set_state(ALLOCATED);
950
951  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
952    // We got lots of threads. Check if we still have some address space left.
953    // Need to be at least 5Mb of unreserved address space. We do check by
954    // trying to reserve some.
955    const size_t VirtualMemoryBangSize = 20*K*K;
956    char* mem = os::reserve_memory(VirtualMemoryBangSize);
957    if (mem == NULL) {
958      delete osthread;
959      return false;
960    } else {
961      // Release the memory again
962      os::release_memory(mem, VirtualMemoryBangSize);
963    }
964  }
965
966  // Setup osthread because the child thread may need it.
967  thread->set_osthread(osthread);
968
969  // Create the Solaris thread
970  thread_t tid = 0;
971  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
972  int      status;
973
974  // Mark that we don't have an lwp or thread id yet.
975  // In case we attempt to set the priority before the thread starts.
976  osthread->set_lwp_id(-1);
977  osthread->set_thread_id(-1);
978
979  status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
980
981  char buf[64];
982  if (status == 0) {
983    log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
984      (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
985  } else {
986    log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
987      os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
988  }
989
990  if (status != 0) {
991    thread->set_osthread(NULL);
992    // Need to clean up stuff we've allocated so far
993    delete osthread;
994    return false;
995  }
996
997  Atomic::inc(&os::Solaris::_os_thread_count);
998
999  // Store info on the Solaris thread into the OSThread
1000  osthread->set_thread_id(tid);
1001
1002  // Remember that we created this thread so we can set priority on it
1003  osthread->set_vm_created();
1004
1005  // Most thread types will set an explicit priority before starting the thread,
1006  // but for those that don't we need a valid value to read back in thread_native_entry.
1007  osthread->set_native_priority(NormPriority);
1008
1009  // Initial thread state is INITIALIZED, not SUSPENDED
1010  osthread->set_state(INITIALIZED);
1011
1012  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1013  return true;
1014}
1015
1016debug_only(static bool signal_sets_initialized = false);
1017static sigset_t unblocked_sigs, vm_sigs;
1018
1019bool os::Solaris::is_sig_ignored(int sig) {
1020  struct sigaction oact;
1021  sigaction(sig, (struct sigaction*)NULL, &oact);
1022  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1023                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1024  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1025    return true;
1026  } else {
1027    return false;
1028  }
1029}
1030
1031void os::Solaris::signal_sets_init() {
1032  // Should also have an assertion stating we are still single-threaded.
1033  assert(!signal_sets_initialized, "Already initialized");
1034  // Fill in signals that are necessarily unblocked for all threads in
1035  // the VM. Currently, we unblock the following signals:
1036  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1037  //                         by -Xrs (=ReduceSignalUsage));
1038  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1039  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1040  // the dispositions or masks wrt these signals.
1041  // Programs embedding the VM that want to use the above signals for their
1042  // own purposes must, at this time, use the "-Xrs" option to prevent
1043  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1044  // (See bug 4345157, and other related bugs).
1045  // In reality, though, unblocking these signals is really a nop, since
1046  // these signals are not blocked by default.
1047  sigemptyset(&unblocked_sigs);
1048  sigaddset(&unblocked_sigs, SIGILL);
1049  sigaddset(&unblocked_sigs, SIGSEGV);
1050  sigaddset(&unblocked_sigs, SIGBUS);
1051  sigaddset(&unblocked_sigs, SIGFPE);
1052  sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
1053
1054  if (!ReduceSignalUsage) {
1055    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1056      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1057    }
1058    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1059      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1060    }
1061    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1062      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1063    }
1064  }
1065  // Fill in signals that are blocked by all but the VM thread.
1066  sigemptyset(&vm_sigs);
1067  if (!ReduceSignalUsage) {
1068    sigaddset(&vm_sigs, BREAK_SIGNAL);
1069  }
1070  debug_only(signal_sets_initialized = true);
1071
1072  // For diagnostics only used in run_periodic_checks
1073  sigemptyset(&check_signal_done);
1074}
1075
1076// These are signals that are unblocked while a thread is running Java.
1077// (For some reason, they get blocked by default.)
1078sigset_t* os::Solaris::unblocked_signals() {
1079  assert(signal_sets_initialized, "Not initialized");
1080  return &unblocked_sigs;
1081}
1082
1083// These are the signals that are blocked while a (non-VM) thread is
1084// running Java. Only the VM thread handles these signals.
1085sigset_t* os::Solaris::vm_signals() {
1086  assert(signal_sets_initialized, "Not initialized");
1087  return &vm_sigs;
1088}
1089
1090void _handle_uncaught_cxx_exception() {
1091  VMError::report_and_die("An uncaught C++ exception");
1092}
1093
1094
1095// First crack at OS-specific initialization, from inside the new thread.
1096void os::initialize_thread(Thread* thr) {
1097  int r = thr_main();
1098  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1099  if (r) {
1100    JavaThread* jt = (JavaThread *)thr;
1101    assert(jt != NULL, "Sanity check");
1102    size_t stack_size;
1103    address base = jt->stack_base();
1104    if (Arguments::created_by_java_launcher()) {
1105      // Use 2MB to allow for Solaris 7 64 bit mode.
1106      stack_size = JavaThread::stack_size_at_create() == 0
1107        ? 2048*K : JavaThread::stack_size_at_create();
1108
1109      // There are rare cases when we may have already used more than
1110      // the basic stack size allotment before this method is invoked.
1111      // Attempt to allow for a normally sized java_stack.
1112      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1113      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1114    } else {
1115      // 6269555: If we were not created by a Java launcher, i.e. if we are
1116      // running embedded in a native application, treat the primordial thread
1117      // as much like a native attached thread as possible.  This means using
1118      // the current stack size from thr_stksegment(), unless it is too large
1119      // to reliably setup guard pages.  A reasonable max size is 8MB.
1120      size_t current_size = current_stack_size();
1121      // This should never happen, but just in case....
1122      if (current_size == 0) current_size = 2 * K * K;
1123      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1124    }
1125    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1126    stack_size = (size_t)(base - bottom);
1127
1128    assert(stack_size > 0, "Stack size calculation problem");
1129
1130    if (stack_size > jt->stack_size()) {
1131#ifndef PRODUCT
1132      struct rlimit limits;
1133      getrlimit(RLIMIT_STACK, &limits);
1134      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1135      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1136#endif
1137      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1138                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1139                    "See limit(1) to increase the stack size limit.",
1140                    stack_size / K, jt->stack_size() / K);
1141      vm_exit(1);
1142    }
1143    assert(jt->stack_size() >= stack_size,
1144           "Attempt to map more stack than was allocated");
1145    jt->set_stack_size(stack_size);
1146  }
1147
1148  // With the T2 libthread (T1 is no longer supported) threads are always bound
1149  // and we use stackbanging in all cases.
1150
1151  os::Solaris::init_thread_fpu_state();
1152  std::set_terminate(_handle_uncaught_cxx_exception);
1153}
1154
1155
1156
1157// Free Solaris resources related to the OSThread
1158void os::free_thread(OSThread* osthread) {
1159  assert(osthread != NULL, "os::free_thread but osthread not set");
1160
1161  // We are told to free resources of the argument thread,
1162  // but we can only really operate on the current thread.
1163  assert(Thread::current()->osthread() == osthread,
1164         "os::free_thread but not current thread");
1165
1166  // Restore caller's signal mask
1167  sigset_t sigmask = osthread->caller_sigmask();
1168  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1169
1170  delete osthread;
1171}
1172
1173void os::pd_start_thread(Thread* thread) {
1174  int status = thr_continue(thread->osthread()->thread_id());
1175  assert_status(status == 0, status, "thr_continue failed");
1176}
1177
1178
1179intx os::current_thread_id() {
1180  return (intx)thr_self();
1181}
1182
1183static pid_t _initial_pid = 0;
1184
1185int os::current_process_id() {
1186  return (int)(_initial_pid ? _initial_pid : getpid());
1187}
1188
1189// gethrtime() should be monotonic according to the documentation,
1190// but some virtualized platforms are known to break this guarantee.
1191// getTimeNanos() must be guaranteed not to move backwards, so we
1192// are forced to add a check here.
1193inline hrtime_t getTimeNanos() {
1194  const hrtime_t now = gethrtime();
1195  const hrtime_t prev = max_hrtime;
1196  if (now <= prev) {
1197    return prev;   // same or retrograde time;
1198  }
1199  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1200  assert(obsv >= prev, "invariant");   // Monotonicity
1201  // If the CAS succeeded then we're done and return "now".
1202  // If the CAS failed and the observed value "obsv" is >= now then
1203  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1204  // some other thread raced this thread and installed a new value, in which case
1205  // we could either (a) retry the entire operation, (b) retry trying to install now
1206  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1207  // we might discard a higher "now" value in deference to a slightly lower but freshly
1208  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1209  // to (a) or (b) -- and greatly reduces coherence traffic.
1210  // We might also condition (c) on the magnitude of the delta between obsv and now.
1211  // Avoiding excessive CAS operations to hot RW locations is critical.
1212  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1213  return (prev == obsv) ? now : obsv;
1214}
1215
1216// Time since start-up in seconds to a fine granularity.
1217// Used by VMSelfDestructTimer and the MemProfiler.
1218double os::elapsedTime() {
1219  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1220}
1221
1222jlong os::elapsed_counter() {
1223  return (jlong)(getTimeNanos() - first_hrtime);
1224}
1225
1226jlong os::elapsed_frequency() {
1227  return hrtime_hz;
1228}
1229
1230// Return the real, user, and system times in seconds from an
1231// arbitrary fixed point in the past.
1232bool os::getTimesSecs(double* process_real_time,
1233                      double* process_user_time,
1234                      double* process_system_time) {
1235  struct tms ticks;
1236  clock_t real_ticks = times(&ticks);
1237
1238  if (real_ticks == (clock_t) (-1)) {
1239    return false;
1240  } else {
1241    double ticks_per_second = (double) clock_tics_per_sec;
1242    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1243    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1244    // For consistency return the real time from getTimeNanos()
1245    // converted to seconds.
1246    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1247
1248    return true;
1249  }
1250}
1251
1252bool os::supports_vtime() { return true; }
1253bool os::enable_vtime() { return false; }
1254bool os::vtime_enabled() { return false; }
1255
1256double os::elapsedVTime() {
1257  return (double)gethrvtime() / (double)hrtime_hz;
1258}
1259
1260// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1261jlong os::javaTimeMillis() {
1262  timeval t;
1263  if (gettimeofday(&t, NULL) == -1) {
1264    fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1265  }
1266  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1267}
1268
1269// Must return seconds+nanos since Jan 1 1970. This must use the same
1270// time source as javaTimeMillis and can't use get_nsec_fromepoch as
1271// we need better than 1ms accuracy
1272void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1273  timeval t;
1274  if (gettimeofday(&t, NULL) == -1) {
1275    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1276  }
1277  seconds = jlong(t.tv_sec);
1278  nanos = jlong(t.tv_usec) * 1000;
1279}
1280
1281
1282jlong os::javaTimeNanos() {
1283  return (jlong)getTimeNanos();
1284}
1285
1286void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1287  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1288  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1289  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1290  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1291}
1292
1293char * os::local_time_string(char *buf, size_t buflen) {
1294  struct tm t;
1295  time_t long_time;
1296  time(&long_time);
1297  localtime_r(&long_time, &t);
1298  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1299               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1300               t.tm_hour, t.tm_min, t.tm_sec);
1301  return buf;
1302}
1303
1304// Note: os::shutdown() might be called very early during initialization, or
1305// called from signal handler. Before adding something to os::shutdown(), make
1306// sure it is async-safe and can handle partially initialized VM.
1307void os::shutdown() {
1308
1309  // allow PerfMemory to attempt cleanup of any persistent resources
1310  perfMemory_exit();
1311
1312  // needs to remove object in file system
1313  AttachListener::abort();
1314
1315  // flush buffered output, finish log files
1316  ostream_abort();
1317
1318  // Check for abort hook
1319  abort_hook_t abort_hook = Arguments::abort_hook();
1320  if (abort_hook != NULL) {
1321    abort_hook();
1322  }
1323}
1324
1325// Note: os::abort() might be called very early during initialization, or
1326// called from signal handler. Before adding something to os::abort(), make
1327// sure it is async-safe and can handle partially initialized VM.
1328void os::abort(bool dump_core, void* siginfo, const void* context) {
1329  os::shutdown();
1330  if (dump_core) {
1331#ifndef PRODUCT
1332    fdStream out(defaultStream::output_fd());
1333    out.print_raw("Current thread is ");
1334    char buf[16];
1335    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1336    out.print_raw_cr(buf);
1337    out.print_raw_cr("Dumping core ...");
1338#endif
1339    ::abort(); // dump core (for debugging)
1340  }
1341
1342  ::exit(1);
1343}
1344
1345// Die immediately, no exit hook, no abort hook, no cleanup.
1346void os::die() {
1347  ::abort(); // dump core (for debugging)
1348}
1349
1350// DLL functions
1351
1352const char* os::dll_file_extension() { return ".so"; }
1353
1354// This must be hard coded because it's the system's temporary
1355// directory not the java application's temp directory, ala java.io.tmpdir.
1356const char* os::get_temp_directory() { return "/tmp"; }
1357
1358static bool file_exists(const char* filename) {
1359  struct stat statbuf;
1360  if (filename == NULL || strlen(filename) == 0) {
1361    return false;
1362  }
1363  return os::stat(filename, &statbuf) == 0;
1364}
1365
1366bool os::dll_build_name(char* buffer, size_t buflen,
1367                        const char* pname, const char* fname) {
1368  bool retval = false;
1369  const size_t pnamelen = pname ? strlen(pname) : 0;
1370
1371  // Return error on buffer overflow.
1372  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1373    return retval;
1374  }
1375
1376  if (pnamelen == 0) {
1377    snprintf(buffer, buflen, "lib%s.so", fname);
1378    retval = true;
1379  } else if (strchr(pname, *os::path_separator()) != NULL) {
1380    int n;
1381    char** pelements = split_path(pname, &n);
1382    if (pelements == NULL) {
1383      return false;
1384    }
1385    for (int i = 0; i < n; i++) {
1386      // really shouldn't be NULL but what the heck, check can't hurt
1387      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1388        continue; // skip the empty path values
1389      }
1390      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1391      if (file_exists(buffer)) {
1392        retval = true;
1393        break;
1394      }
1395    }
1396    // release the storage
1397    for (int i = 0; i < n; i++) {
1398      if (pelements[i] != NULL) {
1399        FREE_C_HEAP_ARRAY(char, pelements[i]);
1400      }
1401    }
1402    if (pelements != NULL) {
1403      FREE_C_HEAP_ARRAY(char*, pelements);
1404    }
1405  } else {
1406    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1407    retval = true;
1408  }
1409  return retval;
1410}
1411
1412// check if addr is inside libjvm.so
1413bool os::address_is_in_vm(address addr) {
1414  static address libjvm_base_addr;
1415  Dl_info dlinfo;
1416
1417  if (libjvm_base_addr == NULL) {
1418    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1419      libjvm_base_addr = (address)dlinfo.dli_fbase;
1420    }
1421    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1422  }
1423
1424  if (dladdr((void *)addr, &dlinfo) != 0) {
1425    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1426  }
1427
1428  return false;
1429}
1430
1431typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1432static dladdr1_func_type dladdr1_func = NULL;
1433
1434bool os::dll_address_to_function_name(address addr, char *buf,
1435                                      int buflen, int * offset,
1436                                      bool demangle) {
1437  // buf is not optional, but offset is optional
1438  assert(buf != NULL, "sanity check");
1439
1440  Dl_info dlinfo;
1441
1442  // dladdr1_func was initialized in os::init()
1443  if (dladdr1_func != NULL) {
1444    // yes, we have dladdr1
1445
1446    // Support for dladdr1 is checked at runtime; it may be
1447    // available even if the vm is built on a machine that does
1448    // not have dladdr1 support.  Make sure there is a value for
1449    // RTLD_DL_SYMENT.
1450#ifndef RTLD_DL_SYMENT
1451  #define RTLD_DL_SYMENT 1
1452#endif
1453#ifdef _LP64
1454    Elf64_Sym * info;
1455#else
1456    Elf32_Sym * info;
1457#endif
1458    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1459                     RTLD_DL_SYMENT) != 0) {
1460      // see if we have a matching symbol that covers our address
1461      if (dlinfo.dli_saddr != NULL &&
1462          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1463        if (dlinfo.dli_sname != NULL) {
1464          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1465            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1466          }
1467          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1468          return true;
1469        }
1470      }
1471      // no matching symbol so try for just file info
1472      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1473        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1474                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1475          return true;
1476        }
1477      }
1478    }
1479    buf[0] = '\0';
1480    if (offset != NULL) *offset  = -1;
1481    return false;
1482  }
1483
1484  // no, only dladdr is available
1485  if (dladdr((void *)addr, &dlinfo) != 0) {
1486    // see if we have a matching symbol
1487    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1488      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1489        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1490      }
1491      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1492      return true;
1493    }
1494    // no matching symbol so try for just file info
1495    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1496      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1497                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1498        return true;
1499      }
1500    }
1501  }
1502  buf[0] = '\0';
1503  if (offset != NULL) *offset  = -1;
1504  return false;
1505}
1506
1507bool os::dll_address_to_library_name(address addr, char* buf,
1508                                     int buflen, int* offset) {
1509  // buf is not optional, but offset is optional
1510  assert(buf != NULL, "sanity check");
1511
1512  Dl_info dlinfo;
1513
1514  if (dladdr((void*)addr, &dlinfo) != 0) {
1515    if (dlinfo.dli_fname != NULL) {
1516      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1517    }
1518    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1519      *offset = addr - (address)dlinfo.dli_fbase;
1520    }
1521    return true;
1522  }
1523
1524  buf[0] = '\0';
1525  if (offset) *offset = -1;
1526  return false;
1527}
1528
1529int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1530  Dl_info dli;
1531  // Sanity check?
1532  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1533      dli.dli_fname == NULL) {
1534    return 1;
1535  }
1536
1537  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1538  if (handle == NULL) {
1539    return 1;
1540  }
1541
1542  Link_map *map;
1543  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1544  if (map == NULL) {
1545    dlclose(handle);
1546    return 1;
1547  }
1548
1549  while (map->l_prev != NULL) {
1550    map = map->l_prev;
1551  }
1552
1553  while (map != NULL) {
1554    // Iterate through all map entries and call callback with fields of interest
1555    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1556      dlclose(handle);
1557      return 1;
1558    }
1559    map = map->l_next;
1560  }
1561
1562  dlclose(handle);
1563  return 0;
1564}
1565
1566int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1567  outputStream * out = (outputStream *) param;
1568  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1569  return 0;
1570}
1571
1572void os::print_dll_info(outputStream * st) {
1573  st->print_cr("Dynamic libraries:"); st->flush();
1574  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1575    st->print_cr("Error: Cannot print dynamic libraries.");
1576  }
1577}
1578
1579// Loads .dll/.so and
1580// in case of error it checks if .dll/.so was built for the
1581// same architecture as Hotspot is running on
1582
1583void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1584  void * result= ::dlopen(filename, RTLD_LAZY);
1585  if (result != NULL) {
1586    // Successful loading
1587    return result;
1588  }
1589
1590  Elf32_Ehdr elf_head;
1591
1592  // Read system error message into ebuf
1593  // It may or may not be overwritten below
1594  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1595  ebuf[ebuflen-1]='\0';
1596  int diag_msg_max_length=ebuflen-strlen(ebuf);
1597  char* diag_msg_buf=ebuf+strlen(ebuf);
1598
1599  if (diag_msg_max_length==0) {
1600    // No more space in ebuf for additional diagnostics message
1601    return NULL;
1602  }
1603
1604
1605  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1606
1607  if (file_descriptor < 0) {
1608    // Can't open library, report dlerror() message
1609    return NULL;
1610  }
1611
1612  bool failed_to_read_elf_head=
1613    (sizeof(elf_head)!=
1614     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1615
1616  ::close(file_descriptor);
1617  if (failed_to_read_elf_head) {
1618    // file i/o error - report dlerror() msg
1619    return NULL;
1620  }
1621
1622  typedef struct {
1623    Elf32_Half  code;         // Actual value as defined in elf.h
1624    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1625    char        elf_class;    // 32 or 64 bit
1626    char        endianess;    // MSB or LSB
1627    char*       name;         // String representation
1628  } arch_t;
1629
1630  static const arch_t arch_array[]={
1631    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1632    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1633    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1634    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1635    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1636    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1637    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1638    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1639    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1640    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1641  };
1642
1643#if  (defined IA32)
1644  static  Elf32_Half running_arch_code=EM_386;
1645#elif   (defined AMD64)
1646  static  Elf32_Half running_arch_code=EM_X86_64;
1647#elif  (defined IA64)
1648  static  Elf32_Half running_arch_code=EM_IA_64;
1649#elif  (defined __sparc) && (defined _LP64)
1650  static  Elf32_Half running_arch_code=EM_SPARCV9;
1651#elif  (defined __sparc) && (!defined _LP64)
1652  static  Elf32_Half running_arch_code=EM_SPARC;
1653#elif  (defined __powerpc64__)
1654  static  Elf32_Half running_arch_code=EM_PPC64;
1655#elif  (defined __powerpc__)
1656  static  Elf32_Half running_arch_code=EM_PPC;
1657#elif (defined ARM)
1658  static  Elf32_Half running_arch_code=EM_ARM;
1659#else
1660  #error Method os::dll_load requires that one of following is defined:\
1661       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1662#endif
1663
1664  // Identify compatability class for VM's architecture and library's architecture
1665  // Obtain string descriptions for architectures
1666
1667  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1668  int running_arch_index=-1;
1669
1670  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1671    if (running_arch_code == arch_array[i].code) {
1672      running_arch_index    = i;
1673    }
1674    if (lib_arch.code == arch_array[i].code) {
1675      lib_arch.compat_class = arch_array[i].compat_class;
1676      lib_arch.name         = arch_array[i].name;
1677    }
1678  }
1679
1680  assert(running_arch_index != -1,
1681         "Didn't find running architecture code (running_arch_code) in arch_array");
1682  if (running_arch_index == -1) {
1683    // Even though running architecture detection failed
1684    // we may still continue with reporting dlerror() message
1685    return NULL;
1686  }
1687
1688  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1689    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1690    return NULL;
1691  }
1692
1693  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1694    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1695    return NULL;
1696  }
1697
1698  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1699    if (lib_arch.name!=NULL) {
1700      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1701                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1702                 lib_arch.name, arch_array[running_arch_index].name);
1703    } else {
1704      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1705                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1706                 lib_arch.code,
1707                 arch_array[running_arch_index].name);
1708    }
1709  }
1710
1711  return NULL;
1712}
1713
1714void* os::dll_lookup(void* handle, const char* name) {
1715  return dlsym(handle, name);
1716}
1717
1718void* os::get_default_process_handle() {
1719  return (void*)::dlopen(NULL, RTLD_LAZY);
1720}
1721
1722int os::stat(const char *path, struct stat *sbuf) {
1723  char pathbuf[MAX_PATH];
1724  if (strlen(path) > MAX_PATH - 1) {
1725    errno = ENAMETOOLONG;
1726    return -1;
1727  }
1728  os::native_path(strcpy(pathbuf, path));
1729  return ::stat(pathbuf, sbuf);
1730}
1731
1732static inline time_t get_mtime(const char* filename) {
1733  struct stat st;
1734  int ret = os::stat(filename, &st);
1735  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1736  return st.st_mtime;
1737}
1738
1739int os::compare_file_modified_times(const char* file1, const char* file2) {
1740  time_t t1 = get_mtime(file1);
1741  time_t t2 = get_mtime(file2);
1742  return t1 - t2;
1743}
1744
1745static bool _print_ascii_file(const char* filename, outputStream* st) {
1746  int fd = ::open(filename, O_RDONLY);
1747  if (fd == -1) {
1748    return false;
1749  }
1750
1751  char buf[32];
1752  int bytes;
1753  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1754    st->print_raw(buf, bytes);
1755  }
1756
1757  ::close(fd);
1758
1759  return true;
1760}
1761
1762void os::print_os_info_brief(outputStream* st) {
1763  os::Solaris::print_distro_info(st);
1764
1765  os::Posix::print_uname_info(st);
1766
1767  os::Solaris::print_libversion_info(st);
1768}
1769
1770void os::print_os_info(outputStream* st) {
1771  st->print("OS:");
1772
1773  os::Solaris::print_distro_info(st);
1774
1775  os::Posix::print_uname_info(st);
1776
1777  os::Solaris::print_libversion_info(st);
1778
1779  os::Posix::print_rlimit_info(st);
1780
1781  os::Posix::print_load_average(st);
1782}
1783
1784void os::Solaris::print_distro_info(outputStream* st) {
1785  if (!_print_ascii_file("/etc/release", st)) {
1786    st->print("Solaris");
1787  }
1788  st->cr();
1789}
1790
1791void os::get_summary_os_info(char* buf, size_t buflen) {
1792  strncpy(buf, "Solaris", buflen);  // default to plain solaris
1793  FILE* fp = fopen("/etc/release", "r");
1794  if (fp != NULL) {
1795    char tmp[256];
1796    // Only get the first line and chop out everything but the os name.
1797    if (fgets(tmp, sizeof(tmp), fp)) {
1798      char* ptr = tmp;
1799      // skip past whitespace characters
1800      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1801      if (*ptr != '\0') {
1802        char* nl = strchr(ptr, '\n');
1803        if (nl != NULL) *nl = '\0';
1804        strncpy(buf, ptr, buflen);
1805      }
1806    }
1807    fclose(fp);
1808  }
1809}
1810
1811void os::Solaris::print_libversion_info(outputStream* st) {
1812  st->print("  (T2 libthread)");
1813  st->cr();
1814}
1815
1816static bool check_addr0(outputStream* st) {
1817  jboolean status = false;
1818  const int read_chunk = 200;
1819  int ret = 0;
1820  int nmap = 0;
1821  int fd = ::open("/proc/self/map",O_RDONLY);
1822  if (fd >= 0) {
1823    prmap_t *p = NULL;
1824    char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1825    if (NULL == mbuff) {
1826      ::close(fd);
1827      return status;
1828    }
1829    while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1830      //check if read() has not read partial data
1831      if( 0 != ret % sizeof(prmap_t)){
1832        break;
1833      }
1834      nmap = ret / sizeof(prmap_t);
1835      p = (prmap_t *)mbuff;
1836      for(int i = 0; i < nmap; i++){
1837        if (p->pr_vaddr == 0x0) {
1838          st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1839          st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1840          st->print("Access: ");
1841          st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1842          st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1843          st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1844          st->cr();
1845          status = true;
1846        }
1847        p++;
1848      }
1849    }
1850    free(mbuff);
1851    ::close(fd);
1852  }
1853  return status;
1854}
1855
1856void os::get_summary_cpu_info(char* buf, size_t buflen) {
1857  // Get MHz with system call. We don't seem to already have this.
1858  processor_info_t stats;
1859  processorid_t id = getcpuid();
1860  int clock = 0;
1861  if (processor_info(id, &stats) != -1) {
1862    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1863  }
1864#ifdef AMD64
1865  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1866#else
1867  // must be sparc
1868  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1869#endif
1870}
1871
1872void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1873  // Nothing to do for now.
1874}
1875
1876void os::print_memory_info(outputStream* st) {
1877  st->print("Memory:");
1878  st->print(" %dk page", os::vm_page_size()>>10);
1879  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1880  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1881  st->cr();
1882  (void) check_addr0(st);
1883}
1884
1885// Moved from whole group, because we need them here for diagnostic
1886// prints.
1887static int Maxsignum = 0;
1888static int *ourSigFlags = NULL;
1889
1890int os::Solaris::get_our_sigflags(int sig) {
1891  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1892  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1893  return ourSigFlags[sig];
1894}
1895
1896void os::Solaris::set_our_sigflags(int sig, int flags) {
1897  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1898  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1899  ourSigFlags[sig] = flags;
1900}
1901
1902
1903static const char* get_signal_handler_name(address handler,
1904                                           char* buf, int buflen) {
1905  int offset;
1906  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1907  if (found) {
1908    // skip directory names
1909    const char *p1, *p2;
1910    p1 = buf;
1911    size_t len = strlen(os::file_separator());
1912    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1913    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1914  } else {
1915    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1916  }
1917  return buf;
1918}
1919
1920static void print_signal_handler(outputStream* st, int sig,
1921                                 char* buf, size_t buflen) {
1922  struct sigaction sa;
1923
1924  sigaction(sig, NULL, &sa);
1925
1926  st->print("%s: ", os::exception_name(sig, buf, buflen));
1927
1928  address handler = (sa.sa_flags & SA_SIGINFO)
1929                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1930                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
1931
1932  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1933    st->print("SIG_DFL");
1934  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1935    st->print("SIG_IGN");
1936  } else {
1937    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1938  }
1939
1940  st->print(", sa_mask[0]=");
1941  os::Posix::print_signal_set_short(st, &sa.sa_mask);
1942
1943  address rh = VMError::get_resetted_sighandler(sig);
1944  // May be, handler was resetted by VMError?
1945  if (rh != NULL) {
1946    handler = rh;
1947    sa.sa_flags = VMError::get_resetted_sigflags(sig);
1948  }
1949
1950  st->print(", sa_flags=");
1951  os::Posix::print_sa_flags(st, sa.sa_flags);
1952
1953  // Check: is it our handler?
1954  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1955    // It is our signal handler
1956    // check for flags
1957    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1958      st->print(
1959                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1960                os::Solaris::get_our_sigflags(sig));
1961    }
1962  }
1963  st->cr();
1964}
1965
1966void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1967  st->print_cr("Signal Handlers:");
1968  print_signal_handler(st, SIGSEGV, buf, buflen);
1969  print_signal_handler(st, SIGBUS , buf, buflen);
1970  print_signal_handler(st, SIGFPE , buf, buflen);
1971  print_signal_handler(st, SIGPIPE, buf, buflen);
1972  print_signal_handler(st, SIGXFSZ, buf, buflen);
1973  print_signal_handler(st, SIGILL , buf, buflen);
1974  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1975  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1976  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1977  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1978  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1979}
1980
1981static char saved_jvm_path[MAXPATHLEN] = { 0 };
1982
1983// Find the full path to the current module, libjvm.so
1984void os::jvm_path(char *buf, jint buflen) {
1985  // Error checking.
1986  if (buflen < MAXPATHLEN) {
1987    assert(false, "must use a large-enough buffer");
1988    buf[0] = '\0';
1989    return;
1990  }
1991  // Lazy resolve the path to current module.
1992  if (saved_jvm_path[0] != 0) {
1993    strcpy(buf, saved_jvm_path);
1994    return;
1995  }
1996
1997  Dl_info dlinfo;
1998  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1999  assert(ret != 0, "cannot locate libjvm");
2000  if (ret != 0 && dlinfo.dli_fname != NULL) {
2001    if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
2002      return;
2003    }
2004  } else {
2005    buf[0] = '\0';
2006    return;
2007  }
2008
2009  if (Arguments::sun_java_launcher_is_altjvm()) {
2010    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2011    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2012    // If "/jre/lib/" appears at the right place in the string, then
2013    // assume we are installed in a JDK and we're done.  Otherwise, check
2014    // for a JAVA_HOME environment variable and fix up the path so it
2015    // looks like libjvm.so is installed there (append a fake suffix
2016    // hotspot/libjvm.so).
2017    const char *p = buf + strlen(buf) - 1;
2018    for (int count = 0; p > buf && count < 5; ++count) {
2019      for (--p; p > buf && *p != '/'; --p)
2020        /* empty */ ;
2021    }
2022
2023    if (strncmp(p, "/jre/lib/", 9) != 0) {
2024      // Look for JAVA_HOME in the environment.
2025      char* java_home_var = ::getenv("JAVA_HOME");
2026      if (java_home_var != NULL && java_home_var[0] != 0) {
2027        char* jrelib_p;
2028        int   len;
2029
2030        // Check the current module name "libjvm.so".
2031        p = strrchr(buf, '/');
2032        assert(strstr(p, "/libjvm") == p, "invalid library name");
2033
2034        if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
2035          return;
2036        }
2037        // determine if this is a legacy image or modules image
2038        // modules image doesn't have "jre" subdirectory
2039        len = strlen(buf);
2040        assert(len < buflen, "Ran out of buffer space");
2041        jrelib_p = buf + len;
2042        snprintf(jrelib_p, buflen-len, "/jre/lib");
2043        if (0 != access(buf, F_OK)) {
2044          snprintf(jrelib_p, buflen-len, "/lib");
2045        }
2046
2047        if (0 == access(buf, F_OK)) {
2048          // Use current module name "libjvm.so"
2049          len = strlen(buf);
2050          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2051        } else {
2052          // Go back to path of .so
2053          if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
2054            return;
2055          }
2056        }
2057      }
2058    }
2059  }
2060
2061  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2062  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2063}
2064
2065
2066void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2067  // no prefix required, not even "_"
2068}
2069
2070
2071void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2072  // no suffix required
2073}
2074
2075// This method is a copy of JDK's sysGetLastErrorString
2076// from src/solaris/hpi/src/system_md.c
2077
2078size_t os::lasterror(char *buf, size_t len) {
2079  if (errno == 0)  return 0;
2080
2081  const char *s = os::strerror(errno);
2082  size_t n = ::strlen(s);
2083  if (n >= len) {
2084    n = len - 1;
2085  }
2086  ::strncpy(buf, s, n);
2087  buf[n] = '\0';
2088  return n;
2089}
2090
2091
2092// sun.misc.Signal
2093
2094extern "C" {
2095  static void UserHandler(int sig, void *siginfo, void *context) {
2096    // Ctrl-C is pressed during error reporting, likely because the error
2097    // handler fails to abort. Let VM die immediately.
2098    if (sig == SIGINT && VMError::is_error_reported()) {
2099      os::die();
2100    }
2101
2102    os::signal_notify(sig);
2103    // We do not need to reinstate the signal handler each time...
2104  }
2105}
2106
2107void* os::user_handler() {
2108  return CAST_FROM_FN_PTR(void*, UserHandler);
2109}
2110
2111struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2112  struct timespec ts;
2113  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2114
2115  return ts;
2116}
2117
2118extern "C" {
2119  typedef void (*sa_handler_t)(int);
2120  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2121}
2122
2123void* os::signal(int signal_number, void* handler) {
2124  struct sigaction sigAct, oldSigAct;
2125  sigfillset(&(sigAct.sa_mask));
2126  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2127  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2128
2129  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2130    // -1 means registration failed
2131    return (void *)-1;
2132  }
2133
2134  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2135}
2136
2137void os::signal_raise(int signal_number) {
2138  raise(signal_number);
2139}
2140
2141// The following code is moved from os.cpp for making this
2142// code platform specific, which it is by its very nature.
2143
2144// a counter for each possible signal value
2145static int Sigexit = 0;
2146static jint *pending_signals = NULL;
2147static int *preinstalled_sigs = NULL;
2148static struct sigaction *chainedsigactions = NULL;
2149static sema_t sig_sem;
2150typedef int (*version_getting_t)();
2151version_getting_t os::Solaris::get_libjsig_version = NULL;
2152
2153int os::sigexitnum_pd() {
2154  assert(Sigexit > 0, "signal memory not yet initialized");
2155  return Sigexit;
2156}
2157
2158void os::Solaris::init_signal_mem() {
2159  // Initialize signal structures
2160  Maxsignum = SIGRTMAX;
2161  Sigexit = Maxsignum+1;
2162  assert(Maxsignum >0, "Unable to obtain max signal number");
2163
2164  // pending_signals has one int per signal
2165  // The additional signal is for SIGEXIT - exit signal to signal_thread
2166  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2167  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2168
2169  if (UseSignalChaining) {
2170    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2171                                                   * (Maxsignum + 1), mtInternal);
2172    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2173    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2174    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2175  }
2176  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2177  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2178}
2179
2180void os::signal_init_pd() {
2181  int ret;
2182
2183  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2184  assert(ret == 0, "sema_init() failed");
2185}
2186
2187void os::signal_notify(int signal_number) {
2188  int ret;
2189
2190  Atomic::inc(&pending_signals[signal_number]);
2191  ret = ::sema_post(&sig_sem);
2192  assert(ret == 0, "sema_post() failed");
2193}
2194
2195static int check_pending_signals(bool wait_for_signal) {
2196  int ret;
2197  while (true) {
2198    for (int i = 0; i < Sigexit + 1; i++) {
2199      jint n = pending_signals[i];
2200      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2201        return i;
2202      }
2203    }
2204    if (!wait_for_signal) {
2205      return -1;
2206    }
2207    JavaThread *thread = JavaThread::current();
2208    ThreadBlockInVM tbivm(thread);
2209
2210    bool threadIsSuspended;
2211    do {
2212      thread->set_suspend_equivalent();
2213      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2214      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2215        ;
2216      assert(ret == 0, "sema_wait() failed");
2217
2218      // were we externally suspended while we were waiting?
2219      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2220      if (threadIsSuspended) {
2221        // The semaphore has been incremented, but while we were waiting
2222        // another thread suspended us. We don't want to continue running
2223        // while suspended because that would surprise the thread that
2224        // suspended us.
2225        ret = ::sema_post(&sig_sem);
2226        assert(ret == 0, "sema_post() failed");
2227
2228        thread->java_suspend_self();
2229      }
2230    } while (threadIsSuspended);
2231  }
2232}
2233
2234int os::signal_lookup() {
2235  return check_pending_signals(false);
2236}
2237
2238int os::signal_wait() {
2239  return check_pending_signals(true);
2240}
2241
2242////////////////////////////////////////////////////////////////////////////////
2243// Virtual Memory
2244
2245static int page_size = -1;
2246
2247// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2248// clear this var if support is not available.
2249static bool has_map_align = true;
2250
2251int os::vm_page_size() {
2252  assert(page_size != -1, "must call os::init");
2253  return page_size;
2254}
2255
2256// Solaris allocates memory by pages.
2257int os::vm_allocation_granularity() {
2258  assert(page_size != -1, "must call os::init");
2259  return page_size;
2260}
2261
2262static bool recoverable_mmap_error(int err) {
2263  // See if the error is one we can let the caller handle. This
2264  // list of errno values comes from the Solaris mmap(2) man page.
2265  switch (err) {
2266  case EBADF:
2267  case EINVAL:
2268  case ENOTSUP:
2269    // let the caller deal with these errors
2270    return true;
2271
2272  default:
2273    // Any remaining errors on this OS can cause our reserved mapping
2274    // to be lost. That can cause confusion where different data
2275    // structures think they have the same memory mapped. The worst
2276    // scenario is if both the VM and a library think they have the
2277    // same memory mapped.
2278    return false;
2279  }
2280}
2281
2282static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2283                                    int err) {
2284  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2285          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2286          os::strerror(err), err);
2287}
2288
2289static void warn_fail_commit_memory(char* addr, size_t bytes,
2290                                    size_t alignment_hint, bool exec,
2291                                    int err) {
2292  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2293          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2294          alignment_hint, exec, os::strerror(err), err);
2295}
2296
2297int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2298  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2299  size_t size = bytes;
2300  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2301  if (res != NULL) {
2302    if (UseNUMAInterleaving) {
2303      numa_make_global(addr, bytes);
2304    }
2305    return 0;
2306  }
2307
2308  int err = errno;  // save errno from mmap() call in mmap_chunk()
2309
2310  if (!recoverable_mmap_error(err)) {
2311    warn_fail_commit_memory(addr, bytes, exec, err);
2312    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2313  }
2314
2315  return err;
2316}
2317
2318bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2319  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2320}
2321
2322void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2323                                  const char* mesg) {
2324  assert(mesg != NULL, "mesg must be specified");
2325  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2326  if (err != 0) {
2327    // the caller wants all commit errors to exit with the specified mesg:
2328    warn_fail_commit_memory(addr, bytes, exec, err);
2329    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2330  }
2331}
2332
2333size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2334  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2335         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2336         alignment, (size_t) vm_page_size());
2337
2338  for (int i = 0; _page_sizes[i] != 0; i++) {
2339    if (is_size_aligned(alignment, _page_sizes[i])) {
2340      return _page_sizes[i];
2341    }
2342  }
2343
2344  return (size_t) vm_page_size();
2345}
2346
2347int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2348                                    size_t alignment_hint, bool exec) {
2349  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2350  if (err == 0 && UseLargePages && alignment_hint > 0) {
2351    assert(is_size_aligned(bytes, alignment_hint),
2352           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2353
2354    // The syscall memcntl requires an exact page size (see man memcntl for details).
2355    size_t page_size = page_size_for_alignment(alignment_hint);
2356    if (page_size > (size_t) vm_page_size()) {
2357      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2358    }
2359  }
2360  return err;
2361}
2362
2363bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2364                          bool exec) {
2365  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2366}
2367
2368void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2369                                  size_t alignment_hint, bool exec,
2370                                  const char* mesg) {
2371  assert(mesg != NULL, "mesg must be specified");
2372  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2373  if (err != 0) {
2374    // the caller wants all commit errors to exit with the specified mesg:
2375    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2376    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2377  }
2378}
2379
2380// Uncommit the pages in a specified region.
2381void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2382  if (madvise(addr, bytes, MADV_FREE) < 0) {
2383    debug_only(warning("MADV_FREE failed."));
2384    return;
2385  }
2386}
2387
2388bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2389  return os::commit_memory(addr, size, !ExecMem);
2390}
2391
2392bool os::remove_stack_guard_pages(char* addr, size_t size) {
2393  return os::uncommit_memory(addr, size);
2394}
2395
2396// Change the page size in a given range.
2397void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2398  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2399  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2400  if (UseLargePages) {
2401    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2402    if (page_size > (size_t) vm_page_size()) {
2403      Solaris::setup_large_pages(addr, bytes, page_size);
2404    }
2405  }
2406}
2407
2408// Tell the OS to make the range local to the first-touching LWP
2409void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2410  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2411  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2412    debug_only(warning("MADV_ACCESS_LWP failed."));
2413  }
2414}
2415
2416// Tell the OS that this range would be accessed from different LWPs.
2417void os::numa_make_global(char *addr, size_t bytes) {
2418  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2419  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2420    debug_only(warning("MADV_ACCESS_MANY failed."));
2421  }
2422}
2423
2424// Get the number of the locality groups.
2425size_t os::numa_get_groups_num() {
2426  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2427  return n != -1 ? n : 1;
2428}
2429
2430// Get a list of leaf locality groups. A leaf lgroup is group that
2431// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2432// board. An LWP is assigned to one of these groups upon creation.
2433size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2434  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2435    ids[0] = 0;
2436    return 1;
2437  }
2438  int result_size = 0, top = 1, bottom = 0, cur = 0;
2439  for (int k = 0; k < size; k++) {
2440    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2441                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2442    if (r == -1) {
2443      ids[0] = 0;
2444      return 1;
2445    }
2446    if (!r) {
2447      // That's a leaf node.
2448      assert(bottom <= cur, "Sanity check");
2449      // Check if the node has memory
2450      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2451                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2452        ids[bottom++] = ids[cur];
2453      }
2454    }
2455    top += r;
2456    cur++;
2457  }
2458  if (bottom == 0) {
2459    // Handle a situation, when the OS reports no memory available.
2460    // Assume UMA architecture.
2461    ids[0] = 0;
2462    return 1;
2463  }
2464  return bottom;
2465}
2466
2467// Detect the topology change. Typically happens during CPU plugging-unplugging.
2468bool os::numa_topology_changed() {
2469  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2470  if (is_stale != -1 && is_stale) {
2471    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2472    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2473    assert(c != 0, "Failure to initialize LGRP API");
2474    Solaris::set_lgrp_cookie(c);
2475    return true;
2476  }
2477  return false;
2478}
2479
2480// Get the group id of the current LWP.
2481int os::numa_get_group_id() {
2482  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2483  if (lgrp_id == -1) {
2484    return 0;
2485  }
2486  const int size = os::numa_get_groups_num();
2487  int *ids = (int*)alloca(size * sizeof(int));
2488
2489  // Get the ids of all lgroups with memory; r is the count.
2490  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2491                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2492  if (r <= 0) {
2493    return 0;
2494  }
2495  return ids[os::random() % r];
2496}
2497
2498// Request information about the page.
2499bool os::get_page_info(char *start, page_info* info) {
2500  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2501  uint64_t addr = (uintptr_t)start;
2502  uint64_t outdata[2];
2503  uint_t validity = 0;
2504
2505  if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2506    return false;
2507  }
2508
2509  info->size = 0;
2510  info->lgrp_id = -1;
2511
2512  if ((validity & 1) != 0) {
2513    if ((validity & 2) != 0) {
2514      info->lgrp_id = outdata[0];
2515    }
2516    if ((validity & 4) != 0) {
2517      info->size = outdata[1];
2518    }
2519    return true;
2520  }
2521  return false;
2522}
2523
2524// Scan the pages from start to end until a page different than
2525// the one described in the info parameter is encountered.
2526char *os::scan_pages(char *start, char* end, page_info* page_expected,
2527                     page_info* page_found) {
2528  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2529  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2530  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2531  uint_t validity[MAX_MEMINFO_CNT];
2532
2533  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2534  uint64_t p = (uint64_t)start;
2535  while (p < (uint64_t)end) {
2536    addrs[0] = p;
2537    size_t addrs_count = 1;
2538    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2539      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2540      addrs_count++;
2541    }
2542
2543    if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2544      return NULL;
2545    }
2546
2547    size_t i = 0;
2548    for (; i < addrs_count; i++) {
2549      if ((validity[i] & 1) != 0) {
2550        if ((validity[i] & 4) != 0) {
2551          if (outdata[types * i + 1] != page_expected->size) {
2552            break;
2553          }
2554        } else if (page_expected->size != 0) {
2555          break;
2556        }
2557
2558        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2559          if (outdata[types * i] != page_expected->lgrp_id) {
2560            break;
2561          }
2562        }
2563      } else {
2564        return NULL;
2565      }
2566    }
2567
2568    if (i < addrs_count) {
2569      if ((validity[i] & 2) != 0) {
2570        page_found->lgrp_id = outdata[types * i];
2571      } else {
2572        page_found->lgrp_id = -1;
2573      }
2574      if ((validity[i] & 4) != 0) {
2575        page_found->size = outdata[types * i + 1];
2576      } else {
2577        page_found->size = 0;
2578      }
2579      return (char*)addrs[i];
2580    }
2581
2582    p = addrs[addrs_count - 1] + page_size;
2583  }
2584  return end;
2585}
2586
2587bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2588  size_t size = bytes;
2589  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2590  // uncommitted page. Otherwise, the read/write might succeed if we
2591  // have enough swap space to back the physical page.
2592  return
2593    NULL != Solaris::mmap_chunk(addr, size,
2594                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2595                                PROT_NONE);
2596}
2597
2598char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2599  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2600
2601  if (b == MAP_FAILED) {
2602    return NULL;
2603  }
2604  return b;
2605}
2606
2607char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2608                             size_t alignment_hint, bool fixed) {
2609  char* addr = requested_addr;
2610  int flags = MAP_PRIVATE | MAP_NORESERVE;
2611
2612  assert(!(fixed && (alignment_hint > 0)),
2613         "alignment hint meaningless with fixed mmap");
2614
2615  if (fixed) {
2616    flags |= MAP_FIXED;
2617  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2618    flags |= MAP_ALIGN;
2619    addr = (char*) alignment_hint;
2620  }
2621
2622  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2623  // uncommitted page. Otherwise, the read/write might succeed if we
2624  // have enough swap space to back the physical page.
2625  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2626}
2627
2628char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2629                            size_t alignment_hint) {
2630  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2631                                  (requested_addr != NULL));
2632
2633  guarantee(requested_addr == NULL || requested_addr == addr,
2634            "OS failed to return requested mmap address.");
2635  return addr;
2636}
2637
2638// Reserve memory at an arbitrary address, only if that area is
2639// available (and not reserved for something else).
2640
2641char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2642  const int max_tries = 10;
2643  char* base[max_tries];
2644  size_t size[max_tries];
2645
2646  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2647  // is dependent on the requested size and the MMU.  Our initial gap
2648  // value here is just a guess and will be corrected later.
2649  bool had_top_overlap = false;
2650  bool have_adjusted_gap = false;
2651  size_t gap = 0x400000;
2652
2653  // Assert only that the size is a multiple of the page size, since
2654  // that's all that mmap requires, and since that's all we really know
2655  // about at this low abstraction level.  If we need higher alignment,
2656  // we can either pass an alignment to this method or verify alignment
2657  // in one of the methods further up the call chain.  See bug 5044738.
2658  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2659
2660  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2661  // Give it a try, if the kernel honors the hint we can return immediately.
2662  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2663
2664  volatile int err = errno;
2665  if (addr == requested_addr) {
2666    return addr;
2667  } else if (addr != NULL) {
2668    pd_unmap_memory(addr, bytes);
2669  }
2670
2671  if (log_is_enabled(Warning, os)) {
2672    char buf[256];
2673    buf[0] = '\0';
2674    if (addr == NULL) {
2675      jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2676    }
2677    log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2678            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2679            "%s", bytes, requested_addr, addr, buf);
2680  }
2681
2682  // Address hint method didn't work.  Fall back to the old method.
2683  // In theory, once SNV becomes our oldest supported platform, this
2684  // code will no longer be needed.
2685  //
2686  // Repeatedly allocate blocks until the block is allocated at the
2687  // right spot. Give up after max_tries.
2688  int i;
2689  for (i = 0; i < max_tries; ++i) {
2690    base[i] = reserve_memory(bytes);
2691
2692    if (base[i] != NULL) {
2693      // Is this the block we wanted?
2694      if (base[i] == requested_addr) {
2695        size[i] = bytes;
2696        break;
2697      }
2698
2699      // check that the gap value is right
2700      if (had_top_overlap && !have_adjusted_gap) {
2701        size_t actual_gap = base[i-1] - base[i] - bytes;
2702        if (gap != actual_gap) {
2703          // adjust the gap value and retry the last 2 allocations
2704          assert(i > 0, "gap adjustment code problem");
2705          have_adjusted_gap = true;  // adjust the gap only once, just in case
2706          gap = actual_gap;
2707          log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2708          unmap_memory(base[i], bytes);
2709          unmap_memory(base[i-1], size[i-1]);
2710          i-=2;
2711          continue;
2712        }
2713      }
2714
2715      // Does this overlap the block we wanted? Give back the overlapped
2716      // parts and try again.
2717      //
2718      // There is still a bug in this code: if top_overlap == bytes,
2719      // the overlap is offset from requested region by the value of gap.
2720      // In this case giving back the overlapped part will not work,
2721      // because we'll give back the entire block at base[i] and
2722      // therefore the subsequent allocation will not generate a new gap.
2723      // This could be fixed with a new algorithm that used larger
2724      // or variable size chunks to find the requested region -
2725      // but such a change would introduce additional complications.
2726      // It's rare enough that the planets align for this bug,
2727      // so we'll just wait for a fix for 6204603/5003415 which
2728      // will provide a mmap flag to allow us to avoid this business.
2729
2730      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2731      if (top_overlap >= 0 && top_overlap < bytes) {
2732        had_top_overlap = true;
2733        unmap_memory(base[i], top_overlap);
2734        base[i] += top_overlap;
2735        size[i] = bytes - top_overlap;
2736      } else {
2737        size_t bottom_overlap = base[i] + bytes - requested_addr;
2738        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2739          if (bottom_overlap == 0) {
2740            log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2741          }
2742          unmap_memory(requested_addr, bottom_overlap);
2743          size[i] = bytes - bottom_overlap;
2744        } else {
2745          size[i] = bytes;
2746        }
2747      }
2748    }
2749  }
2750
2751  // Give back the unused reserved pieces.
2752
2753  for (int j = 0; j < i; ++j) {
2754    if (base[j] != NULL) {
2755      unmap_memory(base[j], size[j]);
2756    }
2757  }
2758
2759  return (i < max_tries) ? requested_addr : NULL;
2760}
2761
2762bool os::pd_release_memory(char* addr, size_t bytes) {
2763  size_t size = bytes;
2764  return munmap(addr, size) == 0;
2765}
2766
2767static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2768  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2769         "addr must be page aligned");
2770  int retVal = mprotect(addr, bytes, prot);
2771  return retVal == 0;
2772}
2773
2774// Protect memory (Used to pass readonly pages through
2775// JNI GetArray<type>Elements with empty arrays.)
2776// Also, used for serialization page and for compressed oops null pointer
2777// checking.
2778bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2779                        bool is_committed) {
2780  unsigned int p = 0;
2781  switch (prot) {
2782  case MEM_PROT_NONE: p = PROT_NONE; break;
2783  case MEM_PROT_READ: p = PROT_READ; break;
2784  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2785  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2786  default:
2787    ShouldNotReachHere();
2788  }
2789  // is_committed is unused.
2790  return solaris_mprotect(addr, bytes, p);
2791}
2792
2793// guard_memory and unguard_memory only happens within stack guard pages.
2794// Since ISM pertains only to the heap, guard and unguard memory should not
2795/// happen with an ISM region.
2796bool os::guard_memory(char* addr, size_t bytes) {
2797  return solaris_mprotect(addr, bytes, PROT_NONE);
2798}
2799
2800bool os::unguard_memory(char* addr, size_t bytes) {
2801  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2802}
2803
2804// Large page support
2805static size_t _large_page_size = 0;
2806
2807// Insertion sort for small arrays (descending order).
2808static void insertion_sort_descending(size_t* array, int len) {
2809  for (int i = 0; i < len; i++) {
2810    size_t val = array[i];
2811    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2812      size_t tmp = array[key];
2813      array[key] = array[key - 1];
2814      array[key - 1] = tmp;
2815    }
2816  }
2817}
2818
2819bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2820  const unsigned int usable_count = VM_Version::page_size_count();
2821  if (usable_count == 1) {
2822    return false;
2823  }
2824
2825  // Find the right getpagesizes interface.  When solaris 11 is the minimum
2826  // build platform, getpagesizes() (without the '2') can be called directly.
2827  typedef int (*gps_t)(size_t[], int);
2828  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2829  if (gps_func == NULL) {
2830    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2831    if (gps_func == NULL) {
2832      if (warn) {
2833        warning("MPSS is not supported by the operating system.");
2834      }
2835      return false;
2836    }
2837  }
2838
2839  // Fill the array of page sizes.
2840  int n = (*gps_func)(_page_sizes, page_sizes_max);
2841  assert(n > 0, "Solaris bug?");
2842
2843  if (n == page_sizes_max) {
2844    // Add a sentinel value (necessary only if the array was completely filled
2845    // since it is static (zeroed at initialization)).
2846    _page_sizes[--n] = 0;
2847    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2848  }
2849  assert(_page_sizes[n] == 0, "missing sentinel");
2850  trace_page_sizes("available page sizes", _page_sizes, n);
2851
2852  if (n == 1) return false;     // Only one page size available.
2853
2854  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2855  // select up to usable_count elements.  First sort the array, find the first
2856  // acceptable value, then copy the usable sizes to the top of the array and
2857  // trim the rest.  Make sure to include the default page size :-).
2858  //
2859  // A better policy could get rid of the 4M limit by taking the sizes of the
2860  // important VM memory regions (java heap and possibly the code cache) into
2861  // account.
2862  insertion_sort_descending(_page_sizes, n);
2863  const size_t size_limit =
2864    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2865  int beg;
2866  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2867  const int end = MIN2((int)usable_count, n) - 1;
2868  for (int cur = 0; cur < end; ++cur, ++beg) {
2869    _page_sizes[cur] = _page_sizes[beg];
2870  }
2871  _page_sizes[end] = vm_page_size();
2872  _page_sizes[end + 1] = 0;
2873
2874  if (_page_sizes[end] > _page_sizes[end - 1]) {
2875    // Default page size is not the smallest; sort again.
2876    insertion_sort_descending(_page_sizes, end + 1);
2877  }
2878  *page_size = _page_sizes[0];
2879
2880  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2881  return true;
2882}
2883
2884void os::large_page_init() {
2885  if (UseLargePages) {
2886    // print a warning if any large page related flag is specified on command line
2887    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2888                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2889
2890    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2891  }
2892}
2893
2894bool os::Solaris::is_valid_page_size(size_t bytes) {
2895  for (int i = 0; _page_sizes[i] != 0; i++) {
2896    if (_page_sizes[i] == bytes) {
2897      return true;
2898    }
2899  }
2900  return false;
2901}
2902
2903bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2904  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2905  assert(is_ptr_aligned((void*) start, align),
2906         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2907  assert(is_size_aligned(bytes, align),
2908         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2909
2910  // Signal to OS that we want large pages for addresses
2911  // from addr, addr + bytes
2912  struct memcntl_mha mpss_struct;
2913  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2914  mpss_struct.mha_pagesize = align;
2915  mpss_struct.mha_flags = 0;
2916  // Upon successful completion, memcntl() returns 0
2917  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2918    debug_only(warning("Attempt to use MPSS failed."));
2919    return false;
2920  }
2921  return true;
2922}
2923
2924char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2925  fatal("os::reserve_memory_special should not be called on Solaris.");
2926  return NULL;
2927}
2928
2929bool os::release_memory_special(char* base, size_t bytes) {
2930  fatal("os::release_memory_special should not be called on Solaris.");
2931  return false;
2932}
2933
2934size_t os::large_page_size() {
2935  return _large_page_size;
2936}
2937
2938// MPSS allows application to commit large page memory on demand; with ISM
2939// the entire memory region must be allocated as shared memory.
2940bool os::can_commit_large_page_memory() {
2941  return true;
2942}
2943
2944bool os::can_execute_large_page_memory() {
2945  return true;
2946}
2947
2948// Read calls from inside the vm need to perform state transitions
2949size_t os::read(int fd, void *buf, unsigned int nBytes) {
2950  size_t res;
2951  JavaThread* thread = (JavaThread*)Thread::current();
2952  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2953  ThreadBlockInVM tbiv(thread);
2954  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2955  return res;
2956}
2957
2958size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2959  size_t res;
2960  JavaThread* thread = (JavaThread*)Thread::current();
2961  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2962  ThreadBlockInVM tbiv(thread);
2963  RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
2964  return res;
2965}
2966
2967size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
2968  size_t res;
2969  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
2970         "Assumed _thread_in_native");
2971  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2972  return res;
2973}
2974
2975void os::naked_short_sleep(jlong ms) {
2976  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2977
2978  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
2979  // Solaris requires -lrt for this.
2980  usleep((ms * 1000));
2981
2982  return;
2983}
2984
2985// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2986void os::infinite_sleep() {
2987  while (true) {    // sleep forever ...
2988    ::sleep(100);   // ... 100 seconds at a time
2989  }
2990}
2991
2992// Used to convert frequent JVM_Yield() to nops
2993bool os::dont_yield() {
2994  if (DontYieldALot) {
2995    static hrtime_t last_time = 0;
2996    hrtime_t diff = getTimeNanos() - last_time;
2997
2998    if (diff < DontYieldALotInterval * 1000000) {
2999      return true;
3000    }
3001
3002    last_time += diff;
3003
3004    return false;
3005  } else {
3006    return false;
3007  }
3008}
3009
3010// Note that yield semantics are defined by the scheduling class to which
3011// the thread currently belongs.  Typically, yield will _not yield to
3012// other equal or higher priority threads that reside on the dispatch queues
3013// of other CPUs.
3014
3015void os::naked_yield() {
3016  thr_yield();
3017}
3018
3019// Interface for setting lwp priorities.  We are using T2 libthread,
3020// which forces the use of bound threads, so all of our threads will
3021// be assigned to real lwp's.  Using the thr_setprio function is
3022// meaningless in this mode so we must adjust the real lwp's priority.
3023// The routines below implement the getting and setting of lwp priorities.
3024//
3025// Note: There are three priority scales used on Solaris.  Java priotities
3026//       which range from 1 to 10, libthread "thr_setprio" scale which range
3027//       from 0 to 127, and the current scheduling class of the process we
3028//       are running in.  This is typically from -60 to +60.
3029//       The setting of the lwp priorities in done after a call to thr_setprio
3030//       so Java priorities are mapped to libthread priorities and we map from
3031//       the latter to lwp priorities.  We don't keep priorities stored in
3032//       Java priorities since some of our worker threads want to set priorities
3033//       higher than all Java threads.
3034//
3035// For related information:
3036// (1)  man -s 2 priocntl
3037// (2)  man -s 4 priocntl
3038// (3)  man dispadmin
3039// =    librt.so
3040// =    libthread/common/rtsched.c - thrp_setlwpprio().
3041// =    ps -cL <pid> ... to validate priority.
3042// =    sched_get_priority_min and _max
3043//              pthread_create
3044//              sched_setparam
3045//              pthread_setschedparam
3046//
3047// Assumptions:
3048// +    We assume that all threads in the process belong to the same
3049//              scheduling class.   IE. an homogenous process.
3050// +    Must be root or in IA group to change change "interactive" attribute.
3051//              Priocntl() will fail silently.  The only indication of failure is when
3052//              we read-back the value and notice that it hasn't changed.
3053// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3054// +    For RT, change timeslice as well.  Invariant:
3055//              constant "priority integral"
3056//              Konst == TimeSlice * (60-Priority)
3057//              Given a priority, compute appropriate timeslice.
3058// +    Higher numerical values have higher priority.
3059
3060// sched class attributes
3061typedef struct {
3062  int   schedPolicy;              // classID
3063  int   maxPrio;
3064  int   minPrio;
3065} SchedInfo;
3066
3067
3068static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3069
3070#ifdef ASSERT
3071static int  ReadBackValidate = 1;
3072#endif
3073static int  myClass     = 0;
3074static int  myMin       = 0;
3075static int  myMax       = 0;
3076static int  myCur       = 0;
3077static bool priocntl_enable = false;
3078
3079static const int criticalPrio = FXCriticalPriority;
3080static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3081
3082
3083// lwp_priocntl_init
3084//
3085// Try to determine the priority scale for our process.
3086//
3087// Return errno or 0 if OK.
3088//
3089static int lwp_priocntl_init() {
3090  int rslt;
3091  pcinfo_t ClassInfo;
3092  pcparms_t ParmInfo;
3093  int i;
3094
3095  if (!UseThreadPriorities) return 0;
3096
3097  // If ThreadPriorityPolicy is 1, switch tables
3098  if (ThreadPriorityPolicy == 1) {
3099    for (i = 0; i < CriticalPriority+1; i++)
3100      os::java_to_os_priority[i] = prio_policy1[i];
3101  }
3102  if (UseCriticalJavaThreadPriority) {
3103    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3104    // See set_native_priority() and set_lwp_class_and_priority().
3105    // Save original MaxPriority mapping in case attempt to
3106    // use critical priority fails.
3107    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3108    // Set negative to distinguish from other priorities
3109    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3110  }
3111
3112  // Get IDs for a set of well-known scheduling classes.
3113  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3114  // the system.  We should have a loop that iterates over the
3115  // classID values, which are known to be "small" integers.
3116
3117  strcpy(ClassInfo.pc_clname, "TS");
3118  ClassInfo.pc_cid = -1;
3119  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3120  if (rslt < 0) return errno;
3121  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3122  tsLimits.schedPolicy = ClassInfo.pc_cid;
3123  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3124  tsLimits.minPrio = -tsLimits.maxPrio;
3125
3126  strcpy(ClassInfo.pc_clname, "IA");
3127  ClassInfo.pc_cid = -1;
3128  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3129  if (rslt < 0) return errno;
3130  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3131  iaLimits.schedPolicy = ClassInfo.pc_cid;
3132  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3133  iaLimits.minPrio = -iaLimits.maxPrio;
3134
3135  strcpy(ClassInfo.pc_clname, "RT");
3136  ClassInfo.pc_cid = -1;
3137  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3138  if (rslt < 0) return errno;
3139  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3140  rtLimits.schedPolicy = ClassInfo.pc_cid;
3141  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3142  rtLimits.minPrio = 0;
3143
3144  strcpy(ClassInfo.pc_clname, "FX");
3145  ClassInfo.pc_cid = -1;
3146  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3147  if (rslt < 0) return errno;
3148  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3149  fxLimits.schedPolicy = ClassInfo.pc_cid;
3150  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3151  fxLimits.minPrio = 0;
3152
3153  // Query our "current" scheduling class.
3154  // This will normally be IA, TS or, rarely, FX or RT.
3155  memset(&ParmInfo, 0, sizeof(ParmInfo));
3156  ParmInfo.pc_cid = PC_CLNULL;
3157  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3158  if (rslt < 0) return errno;
3159  myClass = ParmInfo.pc_cid;
3160
3161  // We now know our scheduling classId, get specific information
3162  // about the class.
3163  ClassInfo.pc_cid = myClass;
3164  ClassInfo.pc_clname[0] = 0;
3165  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3166  if (rslt < 0) return errno;
3167
3168  if (ThreadPriorityVerbose) {
3169    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3170  }
3171
3172  memset(&ParmInfo, 0, sizeof(pcparms_t));
3173  ParmInfo.pc_cid = PC_CLNULL;
3174  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3175  if (rslt < 0) return errno;
3176
3177  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3178    myMin = rtLimits.minPrio;
3179    myMax = rtLimits.maxPrio;
3180  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3181    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3182    myMin = iaLimits.minPrio;
3183    myMax = iaLimits.maxPrio;
3184    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3185  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3186    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3187    myMin = tsLimits.minPrio;
3188    myMax = tsLimits.maxPrio;
3189    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3190  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3191    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3192    myMin = fxLimits.minPrio;
3193    myMax = fxLimits.maxPrio;
3194    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3195  } else {
3196    // No clue - punt
3197    if (ThreadPriorityVerbose) {
3198      tty->print_cr("Unknown scheduling class: %s ... \n",
3199                    ClassInfo.pc_clname);
3200    }
3201    return EINVAL;      // no clue, punt
3202  }
3203
3204  if (ThreadPriorityVerbose) {
3205    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3206  }
3207
3208  priocntl_enable = true;  // Enable changing priorities
3209  return 0;
3210}
3211
3212#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3213#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3214#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3215#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3216
3217
3218// scale_to_lwp_priority
3219//
3220// Convert from the libthread "thr_setprio" scale to our current
3221// lwp scheduling class scale.
3222//
3223static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3224  int v;
3225
3226  if (x == 127) return rMax;            // avoid round-down
3227  v = (((x*(rMax-rMin)))/128)+rMin;
3228  return v;
3229}
3230
3231
3232// set_lwp_class_and_priority
3233int set_lwp_class_and_priority(int ThreadID, int lwpid,
3234                               int newPrio, int new_class, bool scale) {
3235  int rslt;
3236  int Actual, Expected, prv;
3237  pcparms_t ParmInfo;                   // for GET-SET
3238#ifdef ASSERT
3239  pcparms_t ReadBack;                   // for readback
3240#endif
3241
3242  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3243  // Query current values.
3244  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3245  // Cache "pcparms_t" in global ParmCache.
3246  // TODO: elide set-to-same-value
3247
3248  // If something went wrong on init, don't change priorities.
3249  if (!priocntl_enable) {
3250    if (ThreadPriorityVerbose) {
3251      tty->print_cr("Trying to set priority but init failed, ignoring");
3252    }
3253    return EINVAL;
3254  }
3255
3256  // If lwp hasn't started yet, just return
3257  // the _start routine will call us again.
3258  if (lwpid <= 0) {
3259    if (ThreadPriorityVerbose) {
3260      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3261                    INTPTR_FORMAT " to %d, lwpid not set",
3262                    ThreadID, newPrio);
3263    }
3264    return 0;
3265  }
3266
3267  if (ThreadPriorityVerbose) {
3268    tty->print_cr ("set_lwp_class_and_priority("
3269                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3270                   ThreadID, lwpid, newPrio);
3271  }
3272
3273  memset(&ParmInfo, 0, sizeof(pcparms_t));
3274  ParmInfo.pc_cid = PC_CLNULL;
3275  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3276  if (rslt < 0) return errno;
3277
3278  int cur_class = ParmInfo.pc_cid;
3279  ParmInfo.pc_cid = (id_t)new_class;
3280
3281  if (new_class == rtLimits.schedPolicy) {
3282    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3283    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3284                                                       rtLimits.maxPrio, newPrio)
3285                               : newPrio;
3286    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3287    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3288    if (ThreadPriorityVerbose) {
3289      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3290    }
3291  } else if (new_class == iaLimits.schedPolicy) {
3292    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3293    int maxClamped     = MIN2(iaLimits.maxPrio,
3294                              cur_class == new_class
3295                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3296    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3297                                                       maxClamped, newPrio)
3298                               : newPrio;
3299    iaInfo->ia_uprilim = cur_class == new_class
3300                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3301    iaInfo->ia_mode    = IA_NOCHANGE;
3302    if (ThreadPriorityVerbose) {
3303      tty->print_cr("IA: [%d...%d] %d->%d\n",
3304                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3305    }
3306  } else if (new_class == tsLimits.schedPolicy) {
3307    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3308    int maxClamped     = MIN2(tsLimits.maxPrio,
3309                              cur_class == new_class
3310                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3311    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3312                                                       maxClamped, newPrio)
3313                               : newPrio;
3314    tsInfo->ts_uprilim = cur_class == new_class
3315                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3316    if (ThreadPriorityVerbose) {
3317      tty->print_cr("TS: [%d...%d] %d->%d\n",
3318                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3319    }
3320  } else if (new_class == fxLimits.schedPolicy) {
3321    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3322    int maxClamped     = MIN2(fxLimits.maxPrio,
3323                              cur_class == new_class
3324                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3325    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3326                                                       maxClamped, newPrio)
3327                               : newPrio;
3328    fxInfo->fx_uprilim = cur_class == new_class
3329                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3330    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3331    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3332    if (ThreadPriorityVerbose) {
3333      tty->print_cr("FX: [%d...%d] %d->%d\n",
3334                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3335    }
3336  } else {
3337    if (ThreadPriorityVerbose) {
3338      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3339    }
3340    return EINVAL;    // no clue, punt
3341  }
3342
3343  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3344  if (ThreadPriorityVerbose && rslt) {
3345    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3346  }
3347  if (rslt < 0) return errno;
3348
3349#ifdef ASSERT
3350  // Sanity check: read back what we just attempted to set.
3351  // In theory it could have changed in the interim ...
3352  //
3353  // The priocntl system call is tricky.
3354  // Sometimes it'll validate the priority value argument and
3355  // return EINVAL if unhappy.  At other times it fails silently.
3356  // Readbacks are prudent.
3357
3358  if (!ReadBackValidate) return 0;
3359
3360  memset(&ReadBack, 0, sizeof(pcparms_t));
3361  ReadBack.pc_cid = PC_CLNULL;
3362  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3363  assert(rslt >= 0, "priocntl failed");
3364  Actual = Expected = 0xBAD;
3365  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3366  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3367    Actual   = RTPRI(ReadBack)->rt_pri;
3368    Expected = RTPRI(ParmInfo)->rt_pri;
3369  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3370    Actual   = IAPRI(ReadBack)->ia_upri;
3371    Expected = IAPRI(ParmInfo)->ia_upri;
3372  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3373    Actual   = TSPRI(ReadBack)->ts_upri;
3374    Expected = TSPRI(ParmInfo)->ts_upri;
3375  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3376    Actual   = FXPRI(ReadBack)->fx_upri;
3377    Expected = FXPRI(ParmInfo)->fx_upri;
3378  } else {
3379    if (ThreadPriorityVerbose) {
3380      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3381                    ParmInfo.pc_cid);
3382    }
3383  }
3384
3385  if (Actual != Expected) {
3386    if (ThreadPriorityVerbose) {
3387      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3388                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3389    }
3390  }
3391#endif
3392
3393  return 0;
3394}
3395
3396// Solaris only gives access to 128 real priorities at a time,
3397// so we expand Java's ten to fill this range.  This would be better
3398// if we dynamically adjusted relative priorities.
3399//
3400// The ThreadPriorityPolicy option allows us to select 2 different
3401// priority scales.
3402//
3403// ThreadPriorityPolicy=0
3404// Since the Solaris' default priority is MaximumPriority, we do not
3405// set a priority lower than Max unless a priority lower than
3406// NormPriority is requested.
3407//
3408// ThreadPriorityPolicy=1
3409// This mode causes the priority table to get filled with
3410// linear values.  NormPriority get's mapped to 50% of the
3411// Maximum priority an so on.  This will cause VM threads
3412// to get unfair treatment against other Solaris processes
3413// which do not explicitly alter their thread priorities.
3414
3415int os::java_to_os_priority[CriticalPriority + 1] = {
3416  -99999,         // 0 Entry should never be used
3417
3418  0,              // 1 MinPriority
3419  32,             // 2
3420  64,             // 3
3421
3422  96,             // 4
3423  127,            // 5 NormPriority
3424  127,            // 6
3425
3426  127,            // 7
3427  127,            // 8
3428  127,            // 9 NearMaxPriority
3429
3430  127,            // 10 MaxPriority
3431
3432  -criticalPrio   // 11 CriticalPriority
3433};
3434
3435OSReturn os::set_native_priority(Thread* thread, int newpri) {
3436  OSThread* osthread = thread->osthread();
3437
3438  // Save requested priority in case the thread hasn't been started
3439  osthread->set_native_priority(newpri);
3440
3441  // Check for critical priority request
3442  bool fxcritical = false;
3443  if (newpri == -criticalPrio) {
3444    fxcritical = true;
3445    newpri = criticalPrio;
3446  }
3447
3448  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3449  if (!UseThreadPriorities) return OS_OK;
3450
3451  int status = 0;
3452
3453  if (!fxcritical) {
3454    // Use thr_setprio only if we have a priority that thr_setprio understands
3455    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3456  }
3457
3458  int lwp_status =
3459          set_lwp_class_and_priority(osthread->thread_id(),
3460                                     osthread->lwp_id(),
3461                                     newpri,
3462                                     fxcritical ? fxLimits.schedPolicy : myClass,
3463                                     !fxcritical);
3464  if (lwp_status != 0 && fxcritical) {
3465    // Try again, this time without changing the scheduling class
3466    newpri = java_MaxPriority_to_os_priority;
3467    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3468                                            osthread->lwp_id(),
3469                                            newpri, myClass, false);
3470  }
3471  status |= lwp_status;
3472  return (status == 0) ? OS_OK : OS_ERR;
3473}
3474
3475
3476OSReturn os::get_native_priority(const Thread* const thread,
3477                                 int *priority_ptr) {
3478  int p;
3479  if (!UseThreadPriorities) {
3480    *priority_ptr = NormalPriority;
3481    return OS_OK;
3482  }
3483  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3484  if (status != 0) {
3485    return OS_ERR;
3486  }
3487  *priority_ptr = p;
3488  return OS_OK;
3489}
3490
3491
3492// Hint to the underlying OS that a task switch would not be good.
3493// Void return because it's a hint and can fail.
3494void os::hint_no_preempt() {
3495  schedctl_start(schedctl_init());
3496}
3497
3498static void resume_clear_context(OSThread *osthread) {
3499  osthread->set_ucontext(NULL);
3500}
3501
3502static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3503  osthread->set_ucontext(context);
3504}
3505
3506static PosixSemaphore sr_semaphore;
3507
3508void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3509  // Save and restore errno to avoid confusing native code with EINTR
3510  // after sigsuspend.
3511  int old_errno = errno;
3512
3513  OSThread* osthread = thread->osthread();
3514  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3515
3516  os::SuspendResume::State current = osthread->sr.state();
3517  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3518    suspend_save_context(osthread, uc);
3519
3520    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3521    os::SuspendResume::State state = osthread->sr.suspended();
3522    if (state == os::SuspendResume::SR_SUSPENDED) {
3523      sigset_t suspend_set;  // signals for sigsuspend()
3524
3525      // get current set of blocked signals and unblock resume signal
3526      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3527      sigdelset(&suspend_set, ASYNC_SIGNAL);
3528
3529      sr_semaphore.signal();
3530      // wait here until we are resumed
3531      while (1) {
3532        sigsuspend(&suspend_set);
3533
3534        os::SuspendResume::State result = osthread->sr.running();
3535        if (result == os::SuspendResume::SR_RUNNING) {
3536          sr_semaphore.signal();
3537          break;
3538        }
3539      }
3540
3541    } else if (state == os::SuspendResume::SR_RUNNING) {
3542      // request was cancelled, continue
3543    } else {
3544      ShouldNotReachHere();
3545    }
3546
3547    resume_clear_context(osthread);
3548  } else if (current == os::SuspendResume::SR_RUNNING) {
3549    // request was cancelled, continue
3550  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3551    // ignore
3552  } else {
3553    // ignore
3554  }
3555
3556  errno = old_errno;
3557}
3558
3559void os::print_statistics() {
3560}
3561
3562bool os::message_box(const char* title, const char* message) {
3563  int i;
3564  fdStream err(defaultStream::error_fd());
3565  for (i = 0; i < 78; i++) err.print_raw("=");
3566  err.cr();
3567  err.print_raw_cr(title);
3568  for (i = 0; i < 78; i++) err.print_raw("-");
3569  err.cr();
3570  err.print_raw_cr(message);
3571  for (i = 0; i < 78; i++) err.print_raw("=");
3572  err.cr();
3573
3574  char buf[16];
3575  // Prevent process from exiting upon "read error" without consuming all CPU
3576  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3577
3578  return buf[0] == 'y' || buf[0] == 'Y';
3579}
3580
3581static int sr_notify(OSThread* osthread) {
3582  int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3583  assert_status(status == 0, status, "thr_kill");
3584  return status;
3585}
3586
3587// "Randomly" selected value for how long we want to spin
3588// before bailing out on suspending a thread, also how often
3589// we send a signal to a thread we want to resume
3590static const int RANDOMLY_LARGE_INTEGER = 1000000;
3591static const int RANDOMLY_LARGE_INTEGER2 = 100;
3592
3593static bool do_suspend(OSThread* osthread) {
3594  assert(osthread->sr.is_running(), "thread should be running");
3595  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3596
3597  // mark as suspended and send signal
3598  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3599    // failed to switch, state wasn't running?
3600    ShouldNotReachHere();
3601    return false;
3602  }
3603
3604  if (sr_notify(osthread) != 0) {
3605    ShouldNotReachHere();
3606  }
3607
3608  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3609  while (true) {
3610    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3611      break;
3612    } else {
3613      // timeout
3614      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3615      if (cancelled == os::SuspendResume::SR_RUNNING) {
3616        return false;
3617      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3618        // make sure that we consume the signal on the semaphore as well
3619        sr_semaphore.wait();
3620        break;
3621      } else {
3622        ShouldNotReachHere();
3623        return false;
3624      }
3625    }
3626  }
3627
3628  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3629  return true;
3630}
3631
3632static void do_resume(OSThread* osthread) {
3633  assert(osthread->sr.is_suspended(), "thread should be suspended");
3634  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3635
3636  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3637    // failed to switch to WAKEUP_REQUEST
3638    ShouldNotReachHere();
3639    return;
3640  }
3641
3642  while (true) {
3643    if (sr_notify(osthread) == 0) {
3644      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3645        if (osthread->sr.is_running()) {
3646          return;
3647        }
3648      }
3649    } else {
3650      ShouldNotReachHere();
3651    }
3652  }
3653
3654  guarantee(osthread->sr.is_running(), "Must be running!");
3655}
3656
3657void os::SuspendedThreadTask::internal_do_task() {
3658  if (do_suspend(_thread->osthread())) {
3659    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3660    do_task(context);
3661    do_resume(_thread->osthread());
3662  }
3663}
3664
3665class PcFetcher : public os::SuspendedThreadTask {
3666 public:
3667  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3668  ExtendedPC result();
3669 protected:
3670  void do_task(const os::SuspendedThreadTaskContext& context);
3671 private:
3672  ExtendedPC _epc;
3673};
3674
3675ExtendedPC PcFetcher::result() {
3676  guarantee(is_done(), "task is not done yet.");
3677  return _epc;
3678}
3679
3680void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3681  Thread* thread = context.thread();
3682  OSThread* osthread = thread->osthread();
3683  if (osthread->ucontext() != NULL) {
3684    _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3685  } else {
3686    // NULL context is unexpected, double-check this is the VMThread
3687    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3688  }
3689}
3690
3691// A lightweight implementation that does not suspend the target thread and
3692// thus returns only a hint. Used for profiling only!
3693ExtendedPC os::get_thread_pc(Thread* thread) {
3694  // Make sure that it is called by the watcher and the Threads lock is owned.
3695  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3696  // For now, is only used to profile the VM Thread
3697  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3698  PcFetcher fetcher(thread);
3699  fetcher.run();
3700  return fetcher.result();
3701}
3702
3703
3704// This does not do anything on Solaris. This is basically a hook for being
3705// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3706void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3707                              const methodHandle& method, JavaCallArguments* args,
3708                              Thread* thread) {
3709  f(value, method, args, thread);
3710}
3711
3712// This routine may be used by user applications as a "hook" to catch signals.
3713// The user-defined signal handler must pass unrecognized signals to this
3714// routine, and if it returns true (non-zero), then the signal handler must
3715// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3716// routine will never retun false (zero), but instead will execute a VM panic
3717// routine kill the process.
3718//
3719// If this routine returns false, it is OK to call it again.  This allows
3720// the user-defined signal handler to perform checks either before or after
3721// the VM performs its own checks.  Naturally, the user code would be making
3722// a serious error if it tried to handle an exception (such as a null check
3723// or breakpoint) that the VM was generating for its own correct operation.
3724//
3725// This routine may recognize any of the following kinds of signals:
3726// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3727// ASYNC_SIGNAL.
3728// It should be consulted by handlers for any of those signals.
3729//
3730// The caller of this routine must pass in the three arguments supplied
3731// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3732// field of the structure passed to sigaction().  This routine assumes that
3733// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3734//
3735// Note that the VM will print warnings if it detects conflicting signal
3736// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3737//
3738extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3739                                                   siginfo_t* siginfo,
3740                                                   void* ucontext,
3741                                                   int abort_if_unrecognized);
3742
3743
3744void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3745  int orig_errno = errno;  // Preserve errno value over signal handler.
3746  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3747  errno = orig_errno;
3748}
3749
3750// This boolean allows users to forward their own non-matching signals
3751// to JVM_handle_solaris_signal, harmlessly.
3752bool os::Solaris::signal_handlers_are_installed = false;
3753
3754// For signal-chaining
3755bool os::Solaris::libjsig_is_loaded = false;
3756typedef struct sigaction *(*get_signal_t)(int);
3757get_signal_t os::Solaris::get_signal_action = NULL;
3758
3759struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3760  struct sigaction *actp = NULL;
3761
3762  if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3763    // Retrieve the old signal handler from libjsig
3764    actp = (*get_signal_action)(sig);
3765  }
3766  if (actp == NULL) {
3767    // Retrieve the preinstalled signal handler from jvm
3768    actp = get_preinstalled_handler(sig);
3769  }
3770
3771  return actp;
3772}
3773
3774static bool call_chained_handler(struct sigaction *actp, int sig,
3775                                 siginfo_t *siginfo, void *context) {
3776  // Call the old signal handler
3777  if (actp->sa_handler == SIG_DFL) {
3778    // It's more reasonable to let jvm treat it as an unexpected exception
3779    // instead of taking the default action.
3780    return false;
3781  } else if (actp->sa_handler != SIG_IGN) {
3782    if ((actp->sa_flags & SA_NODEFER) == 0) {
3783      // automaticlly block the signal
3784      sigaddset(&(actp->sa_mask), sig);
3785    }
3786
3787    sa_handler_t hand;
3788    sa_sigaction_t sa;
3789    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3790    // retrieve the chained handler
3791    if (siginfo_flag_set) {
3792      sa = actp->sa_sigaction;
3793    } else {
3794      hand = actp->sa_handler;
3795    }
3796
3797    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3798      actp->sa_handler = SIG_DFL;
3799    }
3800
3801    // try to honor the signal mask
3802    sigset_t oset;
3803    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3804
3805    // call into the chained handler
3806    if (siginfo_flag_set) {
3807      (*sa)(sig, siginfo, context);
3808    } else {
3809      (*hand)(sig);
3810    }
3811
3812    // restore the signal mask
3813    pthread_sigmask(SIG_SETMASK, &oset, 0);
3814  }
3815  // Tell jvm's signal handler the signal is taken care of.
3816  return true;
3817}
3818
3819bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3820  bool chained = false;
3821  // signal-chaining
3822  if (UseSignalChaining) {
3823    struct sigaction *actp = get_chained_signal_action(sig);
3824    if (actp != NULL) {
3825      chained = call_chained_handler(actp, sig, siginfo, context);
3826    }
3827  }
3828  return chained;
3829}
3830
3831struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3832  assert((chainedsigactions != (struct sigaction *)NULL) &&
3833         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3834  if (preinstalled_sigs[sig] != 0) {
3835    return &chainedsigactions[sig];
3836  }
3837  return NULL;
3838}
3839
3840void os::Solaris::save_preinstalled_handler(int sig,
3841                                            struct sigaction& oldAct) {
3842  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3843  assert((chainedsigactions != (struct sigaction *)NULL) &&
3844         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3845  chainedsigactions[sig] = oldAct;
3846  preinstalled_sigs[sig] = 1;
3847}
3848
3849void os::Solaris::set_signal_handler(int sig, bool set_installed,
3850                                     bool oktochain) {
3851  // Check for overwrite.
3852  struct sigaction oldAct;
3853  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3854  void* oldhand =
3855      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3856                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3857  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3858      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3859      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3860    if (AllowUserSignalHandlers || !set_installed) {
3861      // Do not overwrite; user takes responsibility to forward to us.
3862      return;
3863    } else if (UseSignalChaining) {
3864      if (oktochain) {
3865        // save the old handler in jvm
3866        save_preinstalled_handler(sig, oldAct);
3867      } else {
3868        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3869      }
3870      // libjsig also interposes the sigaction() call below and saves the
3871      // old sigaction on it own.
3872    } else {
3873      fatal("Encountered unexpected pre-existing sigaction handler "
3874            "%#lx for signal %d.", (long)oldhand, sig);
3875    }
3876  }
3877
3878  struct sigaction sigAct;
3879  sigfillset(&(sigAct.sa_mask));
3880  sigAct.sa_handler = SIG_DFL;
3881
3882  sigAct.sa_sigaction = signalHandler;
3883  // Handle SIGSEGV on alternate signal stack if
3884  // not using stack banging
3885  if (!UseStackBanging && sig == SIGSEGV) {
3886    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3887  } else {
3888    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3889  }
3890  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3891
3892  sigaction(sig, &sigAct, &oldAct);
3893
3894  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3895                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3896  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3897}
3898
3899
3900#define DO_SIGNAL_CHECK(sig)                      \
3901  do {                                            \
3902    if (!sigismember(&check_signal_done, sig)) {  \
3903      os::Solaris::check_signal_handler(sig);     \
3904    }                                             \
3905  } while (0)
3906
3907// This method is a periodic task to check for misbehaving JNI applications
3908// under CheckJNI, we can add any periodic checks here
3909
3910void os::run_periodic_checks() {
3911  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3912  // thereby preventing a NULL checks.
3913  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3914
3915  if (check_signals == false) return;
3916
3917  // SEGV and BUS if overridden could potentially prevent
3918  // generation of hs*.log in the event of a crash, debugging
3919  // such a case can be very challenging, so we absolutely
3920  // check for the following for a good measure:
3921  DO_SIGNAL_CHECK(SIGSEGV);
3922  DO_SIGNAL_CHECK(SIGILL);
3923  DO_SIGNAL_CHECK(SIGFPE);
3924  DO_SIGNAL_CHECK(SIGBUS);
3925  DO_SIGNAL_CHECK(SIGPIPE);
3926  DO_SIGNAL_CHECK(SIGXFSZ);
3927  DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3928
3929  // ReduceSignalUsage allows the user to override these handlers
3930  // see comments at the very top and jvm_solaris.h
3931  if (!ReduceSignalUsage) {
3932    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3933    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3934    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3935    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3936  }
3937}
3938
3939typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3940
3941static os_sigaction_t os_sigaction = NULL;
3942
3943void os::Solaris::check_signal_handler(int sig) {
3944  char buf[O_BUFLEN];
3945  address jvmHandler = NULL;
3946
3947  struct sigaction act;
3948  if (os_sigaction == NULL) {
3949    // only trust the default sigaction, in case it has been interposed
3950    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3951    if (os_sigaction == NULL) return;
3952  }
3953
3954  os_sigaction(sig, (struct sigaction*)NULL, &act);
3955
3956  address thisHandler = (act.sa_flags & SA_SIGINFO)
3957    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3958    : CAST_FROM_FN_PTR(address, act.sa_handler);
3959
3960
3961  switch (sig) {
3962  case SIGSEGV:
3963  case SIGBUS:
3964  case SIGFPE:
3965  case SIGPIPE:
3966  case SIGXFSZ:
3967  case SIGILL:
3968  case ASYNC_SIGNAL:
3969    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3970    break;
3971
3972  case SHUTDOWN1_SIGNAL:
3973  case SHUTDOWN2_SIGNAL:
3974  case SHUTDOWN3_SIGNAL:
3975  case BREAK_SIGNAL:
3976    jvmHandler = (address)user_handler();
3977    break;
3978
3979  default:
3980      return;
3981  }
3982
3983  if (thisHandler != jvmHandler) {
3984    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3985    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3986    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3987    // No need to check this sig any longer
3988    sigaddset(&check_signal_done, sig);
3989    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3990    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3991      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3992                    exception_name(sig, buf, O_BUFLEN));
3993    }
3994  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3995    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3996    tty->print("expected:");
3997    os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3998    tty->cr();
3999    tty->print("  found:");
4000    os::Posix::print_sa_flags(tty, act.sa_flags);
4001    tty->cr();
4002    // No need to check this sig any longer
4003    sigaddset(&check_signal_done, sig);
4004  }
4005
4006  // Print all the signal handler state
4007  if (sigismember(&check_signal_done, sig)) {
4008    print_signal_handlers(tty, buf, O_BUFLEN);
4009  }
4010
4011}
4012
4013void os::Solaris::install_signal_handlers() {
4014  signal_handlers_are_installed = true;
4015
4016  // signal-chaining
4017  typedef void (*signal_setting_t)();
4018  signal_setting_t begin_signal_setting = NULL;
4019  signal_setting_t end_signal_setting = NULL;
4020  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4021                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4022  if (begin_signal_setting != NULL) {
4023    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4024                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4025    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4026                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4027    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4028                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4029    libjsig_is_loaded = true;
4030    if (os::Solaris::get_libjsig_version != NULL) {
4031      int libjsigversion =  (*os::Solaris::get_libjsig_version)();
4032      assert(libjsigversion == JSIG_VERSION_1_4_1, "libjsig version mismatch");
4033    }
4034    assert(UseSignalChaining, "should enable signal-chaining");
4035  }
4036  if (libjsig_is_loaded) {
4037    // Tell libjsig jvm is setting signal handlers
4038    (*begin_signal_setting)();
4039  }
4040
4041  set_signal_handler(SIGSEGV, true, true);
4042  set_signal_handler(SIGPIPE, true, true);
4043  set_signal_handler(SIGXFSZ, true, true);
4044  set_signal_handler(SIGBUS, true, true);
4045  set_signal_handler(SIGILL, true, true);
4046  set_signal_handler(SIGFPE, true, true);
4047  set_signal_handler(ASYNC_SIGNAL, true, true);
4048
4049  if (libjsig_is_loaded) {
4050    // Tell libjsig jvm finishes setting signal handlers
4051    (*end_signal_setting)();
4052  }
4053
4054  // We don't activate signal checker if libjsig is in place, we trust ourselves
4055  // and if UserSignalHandler is installed all bets are off.
4056  // Log that signal checking is off only if -verbose:jni is specified.
4057  if (CheckJNICalls) {
4058    if (libjsig_is_loaded) {
4059      if (PrintJNIResolving) {
4060        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4061      }
4062      check_signals = false;
4063    }
4064    if (AllowUserSignalHandlers) {
4065      if (PrintJNIResolving) {
4066        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4067      }
4068      check_signals = false;
4069    }
4070  }
4071}
4072
4073
4074void report_error(const char* file_name, int line_no, const char* title,
4075                  const char* format, ...);
4076
4077// (Static) wrappers for the liblgrp API
4078os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4079os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4080os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4081os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4082os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4083os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4084os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4085os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4086os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4087
4088static address resolve_symbol_lazy(const char* name) {
4089  address addr = (address) dlsym(RTLD_DEFAULT, name);
4090  if (addr == NULL) {
4091    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4092    addr = (address) dlsym(RTLD_NEXT, name);
4093  }
4094  return addr;
4095}
4096
4097static address resolve_symbol(const char* name) {
4098  address addr = resolve_symbol_lazy(name);
4099  if (addr == NULL) {
4100    fatal(dlerror());
4101  }
4102  return addr;
4103}
4104
4105void os::Solaris::libthread_init() {
4106  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4107
4108  lwp_priocntl_init();
4109
4110  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4111  if (func == NULL) {
4112    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4113    // Guarantee that this VM is running on an new enough OS (5.6 or
4114    // later) that it will have a new enough libthread.so.
4115    guarantee(func != NULL, "libthread.so is too old.");
4116  }
4117
4118  int size;
4119  void (*handler_info_func)(address *, int *);
4120  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4121  handler_info_func(&handler_start, &size);
4122  handler_end = handler_start + size;
4123}
4124
4125
4126int_fnP_mutex_tP os::Solaris::_mutex_lock;
4127int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4128int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4129int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4130int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4131int os::Solaris::_mutex_scope = USYNC_THREAD;
4132
4133int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4134int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4135int_fnP_cond_tP os::Solaris::_cond_signal;
4136int_fnP_cond_tP os::Solaris::_cond_broadcast;
4137int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4138int_fnP_cond_tP os::Solaris::_cond_destroy;
4139int os::Solaris::_cond_scope = USYNC_THREAD;
4140
4141void os::Solaris::synchronization_init() {
4142  if (UseLWPSynchronization) {
4143    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4144    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4145    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4146    os::Solaris::set_mutex_init(lwp_mutex_init);
4147    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4148    os::Solaris::set_mutex_scope(USYNC_THREAD);
4149
4150    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4151    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4152    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4153    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4154    os::Solaris::set_cond_init(lwp_cond_init);
4155    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4156    os::Solaris::set_cond_scope(USYNC_THREAD);
4157  } else {
4158    os::Solaris::set_mutex_scope(USYNC_THREAD);
4159    os::Solaris::set_cond_scope(USYNC_THREAD);
4160
4161    if (UsePthreads) {
4162      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4163      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4164      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4165      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4166      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4167
4168      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4169      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4170      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4171      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4172      os::Solaris::set_cond_init(pthread_cond_default_init);
4173      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4174    } else {
4175      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4176      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4177      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4178      os::Solaris::set_mutex_init(::mutex_init);
4179      os::Solaris::set_mutex_destroy(::mutex_destroy);
4180
4181      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4182      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4183      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4184      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4185      os::Solaris::set_cond_init(::cond_init);
4186      os::Solaris::set_cond_destroy(::cond_destroy);
4187    }
4188  }
4189}
4190
4191bool os::Solaris::liblgrp_init() {
4192  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4193  if (handle != NULL) {
4194    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4195    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4196    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4197    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4198    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4199    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4200    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4201    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4202                                                      dlsym(handle, "lgrp_cookie_stale")));
4203
4204    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4205    set_lgrp_cookie(c);
4206    return true;
4207  }
4208  return false;
4209}
4210
4211// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4212typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4213static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4214
4215void init_pset_getloadavg_ptr(void) {
4216  pset_getloadavg_ptr =
4217    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4218  if (pset_getloadavg_ptr == NULL) {
4219    log_warning(os)("pset_getloadavg function not found");
4220  }
4221}
4222
4223int os::Solaris::_dev_zero_fd = -1;
4224
4225// this is called _before_ the global arguments have been parsed
4226void os::init(void) {
4227  _initial_pid = getpid();
4228
4229  max_hrtime = first_hrtime = gethrtime();
4230
4231  init_random(1234567);
4232
4233  page_size = sysconf(_SC_PAGESIZE);
4234  if (page_size == -1) {
4235    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4236  }
4237  init_page_sizes((size_t) page_size);
4238
4239  Solaris::initialize_system_info();
4240
4241  int fd = ::open("/dev/zero", O_RDWR);
4242  if (fd < 0) {
4243    fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4244  } else {
4245    Solaris::set_dev_zero_fd(fd);
4246
4247    // Close on exec, child won't inherit.
4248    fcntl(fd, F_SETFD, FD_CLOEXEC);
4249  }
4250
4251  clock_tics_per_sec = CLK_TCK;
4252
4253  // check if dladdr1() exists; dladdr1 can provide more information than
4254  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4255  // and is available on linker patches for 5.7 and 5.8.
4256  // libdl.so must have been loaded, this call is just an entry lookup
4257  void * hdl = dlopen("libdl.so", RTLD_NOW);
4258  if (hdl) {
4259    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4260  }
4261
4262  // (Solaris only) this switches to calls that actually do locking.
4263  ThreadCritical::initialize();
4264
4265  main_thread = thr_self();
4266
4267  // dynamic lookup of functions that may not be available in our lowest
4268  // supported Solaris release
4269  void * handle = dlopen("libc.so.1", RTLD_LAZY);
4270  if (handle != NULL) {
4271    Solaris::_pthread_setname_np =  // from 11.3
4272        (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4273  }
4274}
4275
4276// To install functions for atexit system call
4277extern "C" {
4278  static void perfMemory_exit_helper() {
4279    perfMemory_exit();
4280  }
4281}
4282
4283// this is called _after_ the global arguments have been parsed
4284jint os::init_2(void) {
4285  // try to enable extended file IO ASAP, see 6431278
4286  os::Solaris::try_enable_extended_io();
4287
4288  // Allocate a single page and mark it as readable for safepoint polling.  Also
4289  // use this first mmap call to check support for MAP_ALIGN.
4290  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4291                                                      page_size,
4292                                                      MAP_PRIVATE | MAP_ALIGN,
4293                                                      PROT_READ);
4294  if (polling_page == NULL) {
4295    has_map_align = false;
4296    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4297                                                PROT_READ);
4298  }
4299
4300  os::set_polling_page(polling_page);
4301  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4302
4303  if (!UseMembar) {
4304    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4305    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4306    os::set_memory_serialize_page(mem_serialize_page);
4307    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4308  }
4309
4310  // Check and sets minimum stack sizes against command line options
4311  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4312    return JNI_ERR;
4313  }
4314
4315  Solaris::libthread_init();
4316
4317  if (UseNUMA) {
4318    if (!Solaris::liblgrp_init()) {
4319      UseNUMA = false;
4320    } else {
4321      size_t lgrp_limit = os::numa_get_groups_num();
4322      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4323      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4324      FREE_C_HEAP_ARRAY(int, lgrp_ids);
4325      if (lgrp_num < 2) {
4326        // There's only one locality group, disable NUMA.
4327        UseNUMA = false;
4328      }
4329    }
4330    if (!UseNUMA && ForceNUMA) {
4331      UseNUMA = true;
4332    }
4333  }
4334
4335  Solaris::signal_sets_init();
4336  Solaris::init_signal_mem();
4337  Solaris::install_signal_handlers();
4338
4339  // initialize synchronization primitives to use either thread or
4340  // lwp synchronization (controlled by UseLWPSynchronization)
4341  Solaris::synchronization_init();
4342
4343  if (MaxFDLimit) {
4344    // set the number of file descriptors to max. print out error
4345    // if getrlimit/setrlimit fails but continue regardless.
4346    struct rlimit nbr_files;
4347    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4348    if (status != 0) {
4349      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4350    } else {
4351      nbr_files.rlim_cur = nbr_files.rlim_max;
4352      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4353      if (status != 0) {
4354        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4355      }
4356    }
4357  }
4358
4359  // Calculate theoretical max. size of Threads to guard gainst
4360  // artifical out-of-memory situations, where all available address-
4361  // space has been reserved by thread stacks. Default stack size is 1Mb.
4362  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4363    JavaThread::stack_size_at_create() : (1*K*K);
4364  assert(pre_thread_stack_size != 0, "Must have a stack");
4365  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4366  // we should start doing Virtual Memory banging. Currently when the threads will
4367  // have used all but 200Mb of space.
4368  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4369  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4370
4371  // at-exit methods are called in the reverse order of their registration.
4372  // In Solaris 7 and earlier, atexit functions are called on return from
4373  // main or as a result of a call to exit(3C). There can be only 32 of
4374  // these functions registered and atexit() does not set errno. In Solaris
4375  // 8 and later, there is no limit to the number of functions registered
4376  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4377  // functions are called upon dlclose(3DL) in addition to return from main
4378  // and exit(3C).
4379
4380  if (PerfAllowAtExitRegistration) {
4381    // only register atexit functions if PerfAllowAtExitRegistration is set.
4382    // atexit functions can be delayed until process exit time, which
4383    // can be problematic for embedded VM situations. Embedded VMs should
4384    // call DestroyJavaVM() to assure that VM resources are released.
4385
4386    // note: perfMemory_exit_helper atexit function may be removed in
4387    // the future if the appropriate cleanup code can be added to the
4388    // VM_Exit VMOperation's doit method.
4389    if (atexit(perfMemory_exit_helper) != 0) {
4390      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4391    }
4392  }
4393
4394  // Init pset_loadavg function pointer
4395  init_pset_getloadavg_ptr();
4396
4397  return JNI_OK;
4398}
4399
4400// Mark the polling page as unreadable
4401void os::make_polling_page_unreadable(void) {
4402  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4403    fatal("Could not disable polling page");
4404  }
4405}
4406
4407// Mark the polling page as readable
4408void os::make_polling_page_readable(void) {
4409  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4410    fatal("Could not enable polling page");
4411  }
4412}
4413
4414// Is a (classpath) directory empty?
4415bool os::dir_is_empty(const char* path) {
4416  DIR *dir = NULL;
4417  struct dirent *ptr;
4418
4419  dir = opendir(path);
4420  if (dir == NULL) return true;
4421
4422  // Scan the directory
4423  bool result = true;
4424  char buf[sizeof(struct dirent) + MAX_PATH];
4425  struct dirent *dbuf = (struct dirent *) buf;
4426  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4427    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4428      result = false;
4429    }
4430  }
4431  closedir(dir);
4432  return result;
4433}
4434
4435// This code originates from JDK's sysOpen and open64_w
4436// from src/solaris/hpi/src/system_md.c
4437
4438int os::open(const char *path, int oflag, int mode) {
4439  if (strlen(path) > MAX_PATH - 1) {
4440    errno = ENAMETOOLONG;
4441    return -1;
4442  }
4443  int fd;
4444
4445  fd = ::open64(path, oflag, mode);
4446  if (fd == -1) return -1;
4447
4448  // If the open succeeded, the file might still be a directory
4449  {
4450    struct stat64 buf64;
4451    int ret = ::fstat64(fd, &buf64);
4452    int st_mode = buf64.st_mode;
4453
4454    if (ret != -1) {
4455      if ((st_mode & S_IFMT) == S_IFDIR) {
4456        errno = EISDIR;
4457        ::close(fd);
4458        return -1;
4459      }
4460    } else {
4461      ::close(fd);
4462      return -1;
4463    }
4464  }
4465
4466  // 32-bit Solaris systems suffer from:
4467  //
4468  // - an historical default soft limit of 256 per-process file
4469  //   descriptors that is too low for many Java programs.
4470  //
4471  // - a design flaw where file descriptors created using stdio
4472  //   fopen must be less than 256, _even_ when the first limit above
4473  //   has been raised.  This can cause calls to fopen (but not calls to
4474  //   open, for example) to fail mysteriously, perhaps in 3rd party
4475  //   native code (although the JDK itself uses fopen).  One can hardly
4476  //   criticize them for using this most standard of all functions.
4477  //
4478  // We attempt to make everything work anyways by:
4479  //
4480  // - raising the soft limit on per-process file descriptors beyond
4481  //   256
4482  //
4483  // - As of Solaris 10u4, we can request that Solaris raise the 256
4484  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4485  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4486  //
4487  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4488  //   workaround the bug by remapping non-stdio file descriptors below
4489  //   256 to ones beyond 256, which is done below.
4490  //
4491  // See:
4492  // 1085341: 32-bit stdio routines should support file descriptors >255
4493  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4494  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4495  //          enable_extended_FILE_stdio() in VM initialisation
4496  // Giri Mandalika's blog
4497  // http://technopark02.blogspot.com/2005_05_01_archive.html
4498  //
4499#ifndef  _LP64
4500  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4501    int newfd = ::fcntl(fd, F_DUPFD, 256);
4502    if (newfd != -1) {
4503      ::close(fd);
4504      fd = newfd;
4505    }
4506  }
4507#endif // 32-bit Solaris
4508
4509  // All file descriptors that are opened in the JVM and not
4510  // specifically destined for a subprocess should have the
4511  // close-on-exec flag set.  If we don't set it, then careless 3rd
4512  // party native code might fork and exec without closing all
4513  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4514  // UNIXProcess.c), and this in turn might:
4515  //
4516  // - cause end-of-file to fail to be detected on some file
4517  //   descriptors, resulting in mysterious hangs, or
4518  //
4519  // - might cause an fopen in the subprocess to fail on a system
4520  //   suffering from bug 1085341.
4521  //
4522  // (Yes, the default setting of the close-on-exec flag is a Unix
4523  // design flaw)
4524  //
4525  // See:
4526  // 1085341: 32-bit stdio routines should support file descriptors >255
4527  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4528  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4529  //
4530#ifdef FD_CLOEXEC
4531  {
4532    int flags = ::fcntl(fd, F_GETFD);
4533    if (flags != -1) {
4534      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4535    }
4536  }
4537#endif
4538
4539  return fd;
4540}
4541
4542// create binary file, rewriting existing file if required
4543int os::create_binary_file(const char* path, bool rewrite_existing) {
4544  int oflags = O_WRONLY | O_CREAT;
4545  if (!rewrite_existing) {
4546    oflags |= O_EXCL;
4547  }
4548  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4549}
4550
4551// return current position of file pointer
4552jlong os::current_file_offset(int fd) {
4553  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4554}
4555
4556// move file pointer to the specified offset
4557jlong os::seek_to_file_offset(int fd, jlong offset) {
4558  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4559}
4560
4561jlong os::lseek(int fd, jlong offset, int whence) {
4562  return (jlong) ::lseek64(fd, offset, whence);
4563}
4564
4565char * os::native_path(char *path) {
4566  return path;
4567}
4568
4569int os::ftruncate(int fd, jlong length) {
4570  return ::ftruncate64(fd, length);
4571}
4572
4573int os::fsync(int fd)  {
4574  RESTARTABLE_RETURN_INT(::fsync(fd));
4575}
4576
4577int os::available(int fd, jlong *bytes) {
4578  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4579         "Assumed _thread_in_native");
4580  jlong cur, end;
4581  int mode;
4582  struct stat64 buf64;
4583
4584  if (::fstat64(fd, &buf64) >= 0) {
4585    mode = buf64.st_mode;
4586    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4587      int n,ioctl_return;
4588
4589      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4590      if (ioctl_return>= 0) {
4591        *bytes = n;
4592        return 1;
4593      }
4594    }
4595  }
4596  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4597    return 0;
4598  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4599    return 0;
4600  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4601    return 0;
4602  }
4603  *bytes = end - cur;
4604  return 1;
4605}
4606
4607// Map a block of memory.
4608char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4609                        char *addr, size_t bytes, bool read_only,
4610                        bool allow_exec) {
4611  int prot;
4612  int flags;
4613
4614  if (read_only) {
4615    prot = PROT_READ;
4616    flags = MAP_SHARED;
4617  } else {
4618    prot = PROT_READ | PROT_WRITE;
4619    flags = MAP_PRIVATE;
4620  }
4621
4622  if (allow_exec) {
4623    prot |= PROT_EXEC;
4624  }
4625
4626  if (addr != NULL) {
4627    flags |= MAP_FIXED;
4628  }
4629
4630  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4631                                     fd, file_offset);
4632  if (mapped_address == MAP_FAILED) {
4633    return NULL;
4634  }
4635  return mapped_address;
4636}
4637
4638
4639// Remap a block of memory.
4640char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4641                          char *addr, size_t bytes, bool read_only,
4642                          bool allow_exec) {
4643  // same as map_memory() on this OS
4644  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4645                        allow_exec);
4646}
4647
4648
4649// Unmap a block of memory.
4650bool os::pd_unmap_memory(char* addr, size_t bytes) {
4651  return munmap(addr, bytes) == 0;
4652}
4653
4654void os::pause() {
4655  char filename[MAX_PATH];
4656  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4657    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4658  } else {
4659    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4660  }
4661
4662  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4663  if (fd != -1) {
4664    struct stat buf;
4665    ::close(fd);
4666    while (::stat(filename, &buf) == 0) {
4667      (void)::poll(NULL, 0, 100);
4668    }
4669  } else {
4670    jio_fprintf(stderr,
4671                "Could not open pause file '%s', continuing immediately.\n", filename);
4672  }
4673}
4674
4675#ifndef PRODUCT
4676#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4677// Turn this on if you need to trace synch operations.
4678// Set RECORD_SYNCH_LIMIT to a large-enough value,
4679// and call record_synch_enable and record_synch_disable
4680// around the computation of interest.
4681
4682void record_synch(char* name, bool returning);  // defined below
4683
4684class RecordSynch {
4685  char* _name;
4686 public:
4687  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4688  ~RecordSynch()                       { record_synch(_name, true); }
4689};
4690
4691#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4692extern "C" ret name params {                                    \
4693  typedef ret name##_t params;                                  \
4694  static name##_t* implem = NULL;                               \
4695  static int callcount = 0;                                     \
4696  if (implem == NULL) {                                         \
4697    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4698    if (implem == NULL)  fatal(dlerror());                      \
4699  }                                                             \
4700  ++callcount;                                                  \
4701  RecordSynch _rs(#name);                                       \
4702  inner;                                                        \
4703  return implem args;                                           \
4704}
4705// in dbx, examine callcounts this way:
4706// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4707
4708#define CHECK_POINTER_OK(p) \
4709  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4710#define CHECK_MU \
4711  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4712#define CHECK_CV \
4713  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4714#define CHECK_P(p) \
4715  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4716
4717#define CHECK_MUTEX(mutex_op) \
4718  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4719
4720CHECK_MUTEX(   mutex_lock)
4721CHECK_MUTEX(  _mutex_lock)
4722CHECK_MUTEX( mutex_unlock)
4723CHECK_MUTEX(_mutex_unlock)
4724CHECK_MUTEX( mutex_trylock)
4725CHECK_MUTEX(_mutex_trylock)
4726
4727#define CHECK_COND(cond_op) \
4728  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4729
4730CHECK_COND( cond_wait);
4731CHECK_COND(_cond_wait);
4732CHECK_COND(_cond_wait_cancel);
4733
4734#define CHECK_COND2(cond_op) \
4735  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4736
4737CHECK_COND2( cond_timedwait);
4738CHECK_COND2(_cond_timedwait);
4739CHECK_COND2(_cond_timedwait_cancel);
4740
4741// do the _lwp_* versions too
4742#define mutex_t lwp_mutex_t
4743#define cond_t  lwp_cond_t
4744CHECK_MUTEX(  _lwp_mutex_lock)
4745CHECK_MUTEX(  _lwp_mutex_unlock)
4746CHECK_MUTEX(  _lwp_mutex_trylock)
4747CHECK_MUTEX( __lwp_mutex_lock)
4748CHECK_MUTEX( __lwp_mutex_unlock)
4749CHECK_MUTEX( __lwp_mutex_trylock)
4750CHECK_MUTEX(___lwp_mutex_lock)
4751CHECK_MUTEX(___lwp_mutex_unlock)
4752
4753CHECK_COND(  _lwp_cond_wait);
4754CHECK_COND( __lwp_cond_wait);
4755CHECK_COND(___lwp_cond_wait);
4756
4757CHECK_COND2(  _lwp_cond_timedwait);
4758CHECK_COND2( __lwp_cond_timedwait);
4759#undef mutex_t
4760#undef cond_t
4761
4762CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4763CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4764CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4765CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4766CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4767CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4768CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4769CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4770
4771
4772// recording machinery:
4773
4774enum { RECORD_SYNCH_LIMIT = 200 };
4775char* record_synch_name[RECORD_SYNCH_LIMIT];
4776void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4777bool record_synch_returning[RECORD_SYNCH_LIMIT];
4778thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4779int record_synch_count = 0;
4780bool record_synch_enabled = false;
4781
4782// in dbx, examine recorded data this way:
4783// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4784
4785void record_synch(char* name, bool returning) {
4786  if (record_synch_enabled) {
4787    if (record_synch_count < RECORD_SYNCH_LIMIT) {
4788      record_synch_name[record_synch_count] = name;
4789      record_synch_returning[record_synch_count] = returning;
4790      record_synch_thread[record_synch_count] = thr_self();
4791      record_synch_arg0ptr[record_synch_count] = &name;
4792      record_synch_count++;
4793    }
4794    // put more checking code here:
4795    // ...
4796  }
4797}
4798
4799void record_synch_enable() {
4800  // start collecting trace data, if not already doing so
4801  if (!record_synch_enabled)  record_synch_count = 0;
4802  record_synch_enabled = true;
4803}
4804
4805void record_synch_disable() {
4806  // stop collecting trace data
4807  record_synch_enabled = false;
4808}
4809
4810#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4811#endif // PRODUCT
4812
4813const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4814const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4815                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4816
4817
4818// JVMTI & JVM monitoring and management support
4819// The thread_cpu_time() and current_thread_cpu_time() are only
4820// supported if is_thread_cpu_time_supported() returns true.
4821// They are not supported on Solaris T1.
4822
4823// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4824// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4825// of a thread.
4826//
4827// current_thread_cpu_time() and thread_cpu_time(Thread *)
4828// returns the fast estimate available on the platform.
4829
4830// hrtime_t gethrvtime() return value includes
4831// user time but does not include system time
4832jlong os::current_thread_cpu_time() {
4833  return (jlong) gethrvtime();
4834}
4835
4836jlong os::thread_cpu_time(Thread *thread) {
4837  // return user level CPU time only to be consistent with
4838  // what current_thread_cpu_time returns.
4839  // thread_cpu_time_info() must be changed if this changes
4840  return os::thread_cpu_time(thread, false /* user time only */);
4841}
4842
4843jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4844  if (user_sys_cpu_time) {
4845    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4846  } else {
4847    return os::current_thread_cpu_time();
4848  }
4849}
4850
4851jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4852  char proc_name[64];
4853  int count;
4854  prusage_t prusage;
4855  jlong lwp_time;
4856  int fd;
4857
4858  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4859          getpid(),
4860          thread->osthread()->lwp_id());
4861  fd = ::open(proc_name, O_RDONLY);
4862  if (fd == -1) return -1;
4863
4864  do {
4865    count = ::pread(fd,
4866                    (void *)&prusage.pr_utime,
4867                    thr_time_size,
4868                    thr_time_off);
4869  } while (count < 0 && errno == EINTR);
4870  ::close(fd);
4871  if (count < 0) return -1;
4872
4873  if (user_sys_cpu_time) {
4874    // user + system CPU time
4875    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4876                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4877                 (jlong)prusage.pr_stime.tv_nsec +
4878                 (jlong)prusage.pr_utime.tv_nsec;
4879  } else {
4880    // user level CPU time only
4881    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4882                (jlong)prusage.pr_utime.tv_nsec;
4883  }
4884
4885  return (lwp_time);
4886}
4887
4888void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4889  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4890  info_ptr->may_skip_backward = false;    // elapsed time not wall time
4891  info_ptr->may_skip_forward = false;     // elapsed time not wall time
4892  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4893}
4894
4895void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4896  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4897  info_ptr->may_skip_backward = false;    // elapsed time not wall time
4898  info_ptr->may_skip_forward = false;     // elapsed time not wall time
4899  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4900}
4901
4902bool os::is_thread_cpu_time_supported() {
4903  return true;
4904}
4905
4906// System loadavg support.  Returns -1 if load average cannot be obtained.
4907// Return the load average for our processor set if the primitive exists
4908// (Solaris 9 and later).  Otherwise just return system wide loadavg.
4909int os::loadavg(double loadavg[], int nelem) {
4910  if (pset_getloadavg_ptr != NULL) {
4911    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4912  } else {
4913    return ::getloadavg(loadavg, nelem);
4914  }
4915}
4916
4917//---------------------------------------------------------------------------------
4918
4919bool os::find(address addr, outputStream* st) {
4920  Dl_info dlinfo;
4921  memset(&dlinfo, 0, sizeof(dlinfo));
4922  if (dladdr(addr, &dlinfo) != 0) {
4923    st->print(PTR_FORMAT ": ", addr);
4924    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4925      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4926    } else if (dlinfo.dli_fbase != NULL) {
4927      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4928    } else {
4929      st->print("<absolute address>");
4930    }
4931    if (dlinfo.dli_fname != NULL) {
4932      st->print(" in %s", dlinfo.dli_fname);
4933    }
4934    if (dlinfo.dli_fbase != NULL) {
4935      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4936    }
4937    st->cr();
4938
4939    if (Verbose) {
4940      // decode some bytes around the PC
4941      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4942      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4943      address       lowest = (address) dlinfo.dli_sname;
4944      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4945      if (begin < lowest)  begin = lowest;
4946      Dl_info dlinfo2;
4947      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4948          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4949        end = (address) dlinfo2.dli_saddr;
4950      }
4951      Disassembler::decode(begin, end, st);
4952    }
4953    return true;
4954  }
4955  return false;
4956}
4957
4958// Following function has been added to support HotSparc's libjvm.so running
4959// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4960// src/solaris/hpi/native_threads in the EVM codebase.
4961//
4962// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4963// libraries and should thus be removed. We will leave it behind for a while
4964// until we no longer want to able to run on top of 1.3.0 Solaris production
4965// JDK. See 4341971.
4966
4967#define STACK_SLACK 0x800
4968
4969extern "C" {
4970  intptr_t sysThreadAvailableStackWithSlack() {
4971    stack_t st;
4972    intptr_t retval, stack_top;
4973    retval = thr_stksegment(&st);
4974    assert(retval == 0, "incorrect return value from thr_stksegment");
4975    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4976    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4977    stack_top=(intptr_t)st.ss_sp-st.ss_size;
4978    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4979  }
4980}
4981
4982// ObjectMonitor park-unpark infrastructure ...
4983//
4984// We implement Solaris and Linux PlatformEvents with the
4985// obvious condvar-mutex-flag triple.
4986// Another alternative that works quite well is pipes:
4987// Each PlatformEvent consists of a pipe-pair.
4988// The thread associated with the PlatformEvent
4989// calls park(), which reads from the input end of the pipe.
4990// Unpark() writes into the other end of the pipe.
4991// The write-side of the pipe must be set NDELAY.
4992// Unfortunately pipes consume a large # of handles.
4993// Native solaris lwp_park() and lwp_unpark() work nicely, too.
4994// Using pipes for the 1st few threads might be workable, however.
4995//
4996// park() is permitted to return spuriously.
4997// Callers of park() should wrap the call to park() in
4998// an appropriate loop.  A litmus test for the correct
4999// usage of park is the following: if park() were modified
5000// to immediately return 0 your code should still work,
5001// albeit degenerating to a spin loop.
5002//
5003// In a sense, park()-unpark() just provides more polite spinning
5004// and polling with the key difference over naive spinning being
5005// that a parked thread needs to be explicitly unparked() in order
5006// to wake up and to poll the underlying condition.
5007//
5008// Assumption:
5009//    Only one parker can exist on an event, which is why we allocate
5010//    them per-thread. Multiple unparkers can coexist.
5011//
5012// _Event transitions in park()
5013//   -1 => -1 : illegal
5014//    1 =>  0 : pass - return immediately
5015//    0 => -1 : block; then set _Event to 0 before returning
5016//
5017// _Event transitions in unpark()
5018//    0 => 1 : just return
5019//    1 => 1 : just return
5020//   -1 => either 0 or 1; must signal target thread
5021//         That is, we can safely transition _Event from -1 to either
5022//         0 or 1.
5023//
5024// _Event serves as a restricted-range semaphore.
5025//   -1 : thread is blocked, i.e. there is a waiter
5026//    0 : neutral: thread is running or ready,
5027//        could have been signaled after a wait started
5028//    1 : signaled - thread is running or ready
5029//
5030// Another possible encoding of _Event would be with
5031// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5032//
5033// TODO-FIXME: add DTRACE probes for:
5034// 1.   Tx parks
5035// 2.   Ty unparks Tx
5036// 3.   Tx resumes from park
5037
5038
5039// value determined through experimentation
5040#define ROUNDINGFIX 11
5041
5042// utility to compute the abstime argument to timedwait.
5043// TODO-FIXME: switch from compute_abstime() to unpackTime().
5044
5045static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5046  // millis is the relative timeout time
5047  // abstime will be the absolute timeout time
5048  if (millis < 0)  millis = 0;
5049  struct timeval now;
5050  int status = gettimeofday(&now, NULL);
5051  assert(status == 0, "gettimeofday");
5052  jlong seconds = millis / 1000;
5053  jlong max_wait_period;
5054
5055  if (UseLWPSynchronization) {
5056    // forward port of fix for 4275818 (not sleeping long enough)
5057    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5058    // _lwp_cond_timedwait() used a round_down algorithm rather
5059    // than a round_up. For millis less than our roundfactor
5060    // it rounded down to 0 which doesn't meet the spec.
5061    // For millis > roundfactor we may return a bit sooner, but
5062    // since we can not accurately identify the patch level and
5063    // this has already been fixed in Solaris 9 and 8 we will
5064    // leave it alone rather than always rounding down.
5065
5066    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5067    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5068    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5069    max_wait_period = 21000000;
5070  } else {
5071    max_wait_period = 50000000;
5072  }
5073  millis %= 1000;
5074  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5075    seconds = max_wait_period;
5076  }
5077  abstime->tv_sec = now.tv_sec  + seconds;
5078  long       usec = now.tv_usec + millis * 1000;
5079  if (usec >= 1000000) {
5080    abstime->tv_sec += 1;
5081    usec -= 1000000;
5082  }
5083  abstime->tv_nsec = usec * 1000;
5084  return abstime;
5085}
5086
5087void os::PlatformEvent::park() {           // AKA: down()
5088  // Transitions for _Event:
5089  //   -1 => -1 : illegal
5090  //    1 =>  0 : pass - return immediately
5091  //    0 => -1 : block; then set _Event to 0 before returning
5092
5093  // Invariant: Only the thread associated with the Event/PlatformEvent
5094  // may call park().
5095  assert(_nParked == 0, "invariant");
5096
5097  int v;
5098  for (;;) {
5099    v = _Event;
5100    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5101  }
5102  guarantee(v >= 0, "invariant");
5103  if (v == 0) {
5104    // Do this the hard way by blocking ...
5105    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5106    int status = os::Solaris::mutex_lock(_mutex);
5107    assert_status(status == 0, status, "mutex_lock");
5108    guarantee(_nParked == 0, "invariant");
5109    ++_nParked;
5110    while (_Event < 0) {
5111      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5112      // Treat this the same as if the wait was interrupted
5113      // With usr/lib/lwp going to kernel, always handle ETIME
5114      status = os::Solaris::cond_wait(_cond, _mutex);
5115      if (status == ETIME) status = EINTR;
5116      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5117    }
5118    --_nParked;
5119    _Event = 0;
5120    status = os::Solaris::mutex_unlock(_mutex);
5121    assert_status(status == 0, status, "mutex_unlock");
5122    // Paranoia to ensure our locked and lock-free paths interact
5123    // correctly with each other.
5124    OrderAccess::fence();
5125  }
5126}
5127
5128int os::PlatformEvent::park(jlong millis) {
5129  // Transitions for _Event:
5130  //   -1 => -1 : illegal
5131  //    1 =>  0 : pass - return immediately
5132  //    0 => -1 : block; then set _Event to 0 before returning
5133
5134  guarantee(_nParked == 0, "invariant");
5135  int v;
5136  for (;;) {
5137    v = _Event;
5138    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5139  }
5140  guarantee(v >= 0, "invariant");
5141  if (v != 0) return OS_OK;
5142
5143  int ret = OS_TIMEOUT;
5144  timestruc_t abst;
5145  compute_abstime(&abst, millis);
5146
5147  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5148  int status = os::Solaris::mutex_lock(_mutex);
5149  assert_status(status == 0, status, "mutex_lock");
5150  guarantee(_nParked == 0, "invariant");
5151  ++_nParked;
5152  while (_Event < 0) {
5153    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5154    assert_status(status == 0 || status == EINTR ||
5155                  status == ETIME || status == ETIMEDOUT,
5156                  status, "cond_timedwait");
5157    if (!FilterSpuriousWakeups) break;                // previous semantics
5158    if (status == ETIME || status == ETIMEDOUT) break;
5159    // We consume and ignore EINTR and spurious wakeups.
5160  }
5161  --_nParked;
5162  if (_Event >= 0) ret = OS_OK;
5163  _Event = 0;
5164  status = os::Solaris::mutex_unlock(_mutex);
5165  assert_status(status == 0, status, "mutex_unlock");
5166  // Paranoia to ensure our locked and lock-free paths interact
5167  // correctly with each other.
5168  OrderAccess::fence();
5169  return ret;
5170}
5171
5172void os::PlatformEvent::unpark() {
5173  // Transitions for _Event:
5174  //    0 => 1 : just return
5175  //    1 => 1 : just return
5176  //   -1 => either 0 or 1; must signal target thread
5177  //         That is, we can safely transition _Event from -1 to either
5178  //         0 or 1.
5179  // See also: "Semaphores in Plan 9" by Mullender & Cox
5180  //
5181  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5182  // that it will take two back-to-back park() calls for the owning
5183  // thread to block. This has the benefit of forcing a spurious return
5184  // from the first park() call after an unpark() call which will help
5185  // shake out uses of park() and unpark() without condition variables.
5186
5187  if (Atomic::xchg(1, &_Event) >= 0) return;
5188
5189  // If the thread associated with the event was parked, wake it.
5190  // Wait for the thread assoc with the PlatformEvent to vacate.
5191  int status = os::Solaris::mutex_lock(_mutex);
5192  assert_status(status == 0, status, "mutex_lock");
5193  int AnyWaiters = _nParked;
5194  status = os::Solaris::mutex_unlock(_mutex);
5195  assert_status(status == 0, status, "mutex_unlock");
5196  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5197  if (AnyWaiters != 0) {
5198    // Note that we signal() *after* dropping the lock for "immortal" Events.
5199    // This is safe and avoids a common class of  futile wakeups.  In rare
5200    // circumstances this can cause a thread to return prematurely from
5201    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5202    // will simply re-test the condition and re-park itself.
5203    // This provides particular benefit if the underlying platform does not
5204    // provide wait morphing.
5205    status = os::Solaris::cond_signal(_cond);
5206    assert_status(status == 0, status, "cond_signal");
5207  }
5208}
5209
5210// JSR166
5211// -------------------------------------------------------
5212
5213// The solaris and linux implementations of park/unpark are fairly
5214// conservative for now, but can be improved. They currently use a
5215// mutex/condvar pair, plus _counter.
5216// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5217// sets count to 1 and signals condvar.  Only one thread ever waits
5218// on the condvar. Contention seen when trying to park implies that someone
5219// is unparking you, so don't wait. And spurious returns are fine, so there
5220// is no need to track notifications.
5221
5222#define MAX_SECS 100000000
5223
5224// This code is common to linux and solaris and will be moved to a
5225// common place in dolphin.
5226//
5227// The passed in time value is either a relative time in nanoseconds
5228// or an absolute time in milliseconds. Either way it has to be unpacked
5229// into suitable seconds and nanoseconds components and stored in the
5230// given timespec structure.
5231// Given time is a 64-bit value and the time_t used in the timespec is only
5232// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5233// overflow if times way in the future are given. Further on Solaris versions
5234// prior to 10 there is a restriction (see cond_timedwait) that the specified
5235// number of seconds, in abstime, is less than current_time  + 100,000,000.
5236// As it will be 28 years before "now + 100000000" will overflow we can
5237// ignore overflow and just impose a hard-limit on seconds using the value
5238// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5239// years from "now".
5240//
5241static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5242  assert(time > 0, "convertTime");
5243
5244  struct timeval now;
5245  int status = gettimeofday(&now, NULL);
5246  assert(status == 0, "gettimeofday");
5247
5248  time_t max_secs = now.tv_sec + MAX_SECS;
5249
5250  if (isAbsolute) {
5251    jlong secs = time / 1000;
5252    if (secs > max_secs) {
5253      absTime->tv_sec = max_secs;
5254    } else {
5255      absTime->tv_sec = secs;
5256    }
5257    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5258  } else {
5259    jlong secs = time / NANOSECS_PER_SEC;
5260    if (secs >= MAX_SECS) {
5261      absTime->tv_sec = max_secs;
5262      absTime->tv_nsec = 0;
5263    } else {
5264      absTime->tv_sec = now.tv_sec + secs;
5265      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5266      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5267        absTime->tv_nsec -= NANOSECS_PER_SEC;
5268        ++absTime->tv_sec; // note: this must be <= max_secs
5269      }
5270    }
5271  }
5272  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5273  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5274  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5275  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5276}
5277
5278void Parker::park(bool isAbsolute, jlong time) {
5279  // Ideally we'd do something useful while spinning, such
5280  // as calling unpackTime().
5281
5282  // Optional fast-path check:
5283  // Return immediately if a permit is available.
5284  // We depend on Atomic::xchg() having full barrier semantics
5285  // since we are doing a lock-free update to _counter.
5286  if (Atomic::xchg(0, &_counter) > 0) return;
5287
5288  // Optional fast-exit: Check interrupt before trying to wait
5289  Thread* thread = Thread::current();
5290  assert(thread->is_Java_thread(), "Must be JavaThread");
5291  JavaThread *jt = (JavaThread *)thread;
5292  if (Thread::is_interrupted(thread, false)) {
5293    return;
5294  }
5295
5296  // First, demultiplex/decode time arguments
5297  timespec absTime;
5298  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5299    return;
5300  }
5301  if (time > 0) {
5302    // Warning: this code might be exposed to the old Solaris time
5303    // round-down bugs.  Grep "roundingFix" for details.
5304    unpackTime(&absTime, isAbsolute, time);
5305  }
5306
5307  // Enter safepoint region
5308  // Beware of deadlocks such as 6317397.
5309  // The per-thread Parker:: _mutex is a classic leaf-lock.
5310  // In particular a thread must never block on the Threads_lock while
5311  // holding the Parker:: mutex.  If safepoints are pending both the
5312  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5313  ThreadBlockInVM tbivm(jt);
5314
5315  // Don't wait if cannot get lock since interference arises from
5316  // unblocking.  Also. check interrupt before trying wait
5317  if (Thread::is_interrupted(thread, false) ||
5318      os::Solaris::mutex_trylock(_mutex) != 0) {
5319    return;
5320  }
5321
5322  int status;
5323
5324  if (_counter > 0)  { // no wait needed
5325    _counter = 0;
5326    status = os::Solaris::mutex_unlock(_mutex);
5327    assert(status == 0, "invariant");
5328    // Paranoia to ensure our locked and lock-free paths interact
5329    // correctly with each other and Java-level accesses.
5330    OrderAccess::fence();
5331    return;
5332  }
5333
5334  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5335  jt->set_suspend_equivalent();
5336  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5337
5338  // Do this the hard way by blocking ...
5339  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5340  if (time == 0) {
5341    status = os::Solaris::cond_wait(_cond, _mutex);
5342  } else {
5343    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5344  }
5345  // Note that an untimed cond_wait() can sometimes return ETIME on older
5346  // versions of the Solaris.
5347  assert_status(status == 0 || status == EINTR ||
5348                status == ETIME || status == ETIMEDOUT,
5349                status, "cond_timedwait");
5350
5351  _counter = 0;
5352  status = os::Solaris::mutex_unlock(_mutex);
5353  assert_status(status == 0, status, "mutex_unlock");
5354  // Paranoia to ensure our locked and lock-free paths interact
5355  // correctly with each other and Java-level accesses.
5356  OrderAccess::fence();
5357
5358  // If externally suspended while waiting, re-suspend
5359  if (jt->handle_special_suspend_equivalent_condition()) {
5360    jt->java_suspend_self();
5361  }
5362}
5363
5364void Parker::unpark() {
5365  int status = os::Solaris::mutex_lock(_mutex);
5366  assert(status == 0, "invariant");
5367  const int s = _counter;
5368  _counter = 1;
5369  status = os::Solaris::mutex_unlock(_mutex);
5370  assert(status == 0, "invariant");
5371
5372  if (s < 1) {
5373    status = os::Solaris::cond_signal(_cond);
5374    assert(status == 0, "invariant");
5375  }
5376}
5377
5378extern char** environ;
5379
5380// Run the specified command in a separate process. Return its exit value,
5381// or -1 on failure (e.g. can't fork a new process).
5382// Unlike system(), this function can be called from signal handler. It
5383// doesn't block SIGINT et al.
5384int os::fork_and_exec(char* cmd) {
5385  char * argv[4];
5386  argv[0] = (char *)"sh";
5387  argv[1] = (char *)"-c";
5388  argv[2] = cmd;
5389  argv[3] = NULL;
5390
5391  // fork is async-safe, fork1 is not so can't use in signal handler
5392  pid_t pid;
5393  Thread* t = Thread::current_or_null_safe();
5394  if (t != NULL && t->is_inside_signal_handler()) {
5395    pid = fork();
5396  } else {
5397    pid = fork1();
5398  }
5399
5400  if (pid < 0) {
5401    // fork failed
5402    warning("fork failed: %s", os::strerror(errno));
5403    return -1;
5404
5405  } else if (pid == 0) {
5406    // child process
5407
5408    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5409    execve("/usr/bin/sh", argv, environ);
5410
5411    // execve failed
5412    _exit(-1);
5413
5414  } else  {
5415    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5416    // care about the actual exit code, for now.
5417
5418    int status;
5419
5420    // Wait for the child process to exit.  This returns immediately if
5421    // the child has already exited. */
5422    while (waitpid(pid, &status, 0) < 0) {
5423      switch (errno) {
5424      case ECHILD: return 0;
5425      case EINTR: break;
5426      default: return -1;
5427      }
5428    }
5429
5430    if (WIFEXITED(status)) {
5431      // The child exited normally; get its exit code.
5432      return WEXITSTATUS(status);
5433    } else if (WIFSIGNALED(status)) {
5434      // The child exited because of a signal
5435      // The best value to return is 0x80 + signal number,
5436      // because that is what all Unix shells do, and because
5437      // it allows callers to distinguish between process exit and
5438      // process death by signal.
5439      return 0x80 + WTERMSIG(status);
5440    } else {
5441      // Unknown exit code; pass it through
5442      return status;
5443    }
5444  }
5445}
5446
5447// is_headless_jre()
5448//
5449// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5450// in order to report if we are running in a headless jre
5451//
5452// Since JDK8 xawt/libmawt.so was moved into the same directory
5453// as libawt.so, and renamed libawt_xawt.so
5454//
5455bool os::is_headless_jre() {
5456  struct stat statbuf;
5457  char buf[MAXPATHLEN];
5458  char libmawtpath[MAXPATHLEN];
5459  const char *xawtstr  = "/xawt/libmawt.so";
5460  const char *new_xawtstr = "/libawt_xawt.so";
5461  char *p;
5462
5463  // Get path to libjvm.so
5464  os::jvm_path(buf, sizeof(buf));
5465
5466  // Get rid of libjvm.so
5467  p = strrchr(buf, '/');
5468  if (p == NULL) {
5469    return false;
5470  } else {
5471    *p = '\0';
5472  }
5473
5474  // Get rid of client or server
5475  p = strrchr(buf, '/');
5476  if (p == NULL) {
5477    return false;
5478  } else {
5479    *p = '\0';
5480  }
5481
5482  // check xawt/libmawt.so
5483  strcpy(libmawtpath, buf);
5484  strcat(libmawtpath, xawtstr);
5485  if (::stat(libmawtpath, &statbuf) == 0) return false;
5486
5487  // check libawt_xawt.so
5488  strcpy(libmawtpath, buf);
5489  strcat(libmawtpath, new_xawtstr);
5490  if (::stat(libmawtpath, &statbuf) == 0) return false;
5491
5492  return true;
5493}
5494
5495size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5496  size_t res;
5497  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5498  return res;
5499}
5500
5501int os::close(int fd) {
5502  return ::close(fd);
5503}
5504
5505int os::socket_close(int fd) {
5506  return ::close(fd);
5507}
5508
5509int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5510  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5511         "Assumed _thread_in_native");
5512  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5513}
5514
5515int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5516  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5517         "Assumed _thread_in_native");
5518  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5519}
5520
5521int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5522  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5523}
5524
5525// As both poll and select can be interrupted by signals, we have to be
5526// prepared to restart the system call after updating the timeout, unless
5527// a poll() is done with timeout == -1, in which case we repeat with this
5528// "wait forever" value.
5529
5530int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5531  int _result;
5532  _result = ::connect(fd, him, len);
5533
5534  // On Solaris, when a connect() call is interrupted, the connection
5535  // can be established asynchronously (see 6343810). Subsequent calls
5536  // to connect() must check the errno value which has the semantic
5537  // described below (copied from the connect() man page). Handling
5538  // of asynchronously established connections is required for both
5539  // blocking and non-blocking sockets.
5540  //     EINTR            The  connection  attempt  was   interrupted
5541  //                      before  any data arrived by the delivery of
5542  //                      a signal. The connection, however, will  be
5543  //                      established asynchronously.
5544  //
5545  //     EINPROGRESS      The socket is non-blocking, and the connec-
5546  //                      tion  cannot  be completed immediately.
5547  //
5548  //     EALREADY         The socket is non-blocking,  and a previous
5549  //                      connection  attempt  has  not yet been com-
5550  //                      pleted.
5551  //
5552  //     EISCONN          The socket is already connected.
5553  if (_result == OS_ERR && errno == EINTR) {
5554    // restarting a connect() changes its errno semantics
5555    RESTARTABLE(::connect(fd, him, len), _result);
5556    // undo these changes
5557    if (_result == OS_ERR) {
5558      if (errno == EALREADY) {
5559        errno = EINPROGRESS; // fall through
5560      } else if (errno == EISCONN) {
5561        errno = 0;
5562        return OS_OK;
5563      }
5564    }
5565  }
5566  return _result;
5567}
5568
5569// Get the default path to the core file
5570// Returns the length of the string
5571int os::get_core_path(char* buffer, size_t bufferSize) {
5572  const char* p = get_current_directory(buffer, bufferSize);
5573
5574  if (p == NULL) {
5575    assert(p != NULL, "failed to get current directory");
5576    return 0;
5577  }
5578
5579  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5580                                              p, current_process_id());
5581
5582  return strlen(buffer);
5583}
5584
5585#ifndef PRODUCT
5586void TestReserveMemorySpecial_test() {
5587  // No tests available for this platform
5588}
5589#endif
5590
5591bool os::start_debugging(char *buf, int buflen) {
5592  int len = (int)strlen(buf);
5593  char *p = &buf[len];
5594
5595  jio_snprintf(p, buflen-len,
5596               "\n\n"
5597               "Do you want to debug the problem?\n\n"
5598               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5599               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5600               "Otherwise, press RETURN to abort...",
5601               os::current_process_id(), os::current_thread_id());
5602
5603  bool yes = os::message_box("Unexpected Error", buf);
5604
5605  if (yes) {
5606    // yes, user asked VM to launch debugger
5607    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5608
5609    os::fork_and_exec(buf);
5610    yes = false;
5611  }
5612  return yes;
5613}
5614