os_solaris.cpp revision 10870:5bc83f454d50
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_solaris.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_solaris.hpp"
41#include "os_solaris.inline.hpp"
42#include "prims/jniFastGetField.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "runtime/vm_version.hpp"
64#include "semaphore_posix.hpp"
65#include "services/attachListener.hpp"
66#include "services/memTracker.hpp"
67#include "services/runtimeService.hpp"
68#include "utilities/decoder.hpp"
69#include "utilities/defaultStream.hpp"
70#include "utilities/events.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <dlfcn.h>
77# include <errno.h>
78# include <exception>
79# include <link.h>
80# include <poll.h>
81# include <pthread.h>
82# include <pwd.h>
83# include <schedctl.h>
84# include <setjmp.h>
85# include <signal.h>
86# include <stdio.h>
87# include <alloca.h>
88# include <sys/filio.h>
89# include <sys/ipc.h>
90# include <sys/lwp.h>
91# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
92# include <sys/mman.h>
93# include <sys/processor.h>
94# include <sys/procset.h>
95# include <sys/pset.h>
96# include <sys/resource.h>
97# include <sys/shm.h>
98# include <sys/socket.h>
99# include <sys/stat.h>
100# include <sys/systeminfo.h>
101# include <sys/time.h>
102# include <sys/times.h>
103# include <sys/types.h>
104# include <sys/wait.h>
105# include <sys/utsname.h>
106# include <thread.h>
107# include <unistd.h>
108# include <sys/priocntl.h>
109# include <sys/rtpriocntl.h>
110# include <sys/tspriocntl.h>
111# include <sys/iapriocntl.h>
112# include <sys/fxpriocntl.h>
113# include <sys/loadavg.h>
114# include <string.h>
115# include <stdio.h>
116
117# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
118# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
119
120#define MAX_PATH (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124
125
126// Here are some liblgrp types from sys/lgrp_user.h to be able to
127// compile on older systems without this header file.
128
129#ifndef MADV_ACCESS_LWP
130  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
131#endif
132#ifndef MADV_ACCESS_MANY
133  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
134#endif
135
136#ifndef LGRP_RSRC_CPU
137  #define LGRP_RSRC_CPU      0       /* CPU resources */
138#endif
139#ifndef LGRP_RSRC_MEM
140  #define LGRP_RSRC_MEM      1       /* memory resources */
141#endif
142
143// Values for ThreadPriorityPolicy == 1
144int prio_policy1[CriticalPriority+1] = {
145  -99999,  0, 16,  32,  48,  64,
146          80, 96, 112, 124, 127, 127 };
147
148// System parameters used internally
149static clock_t clock_tics_per_sec = 100;
150
151// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
152static bool enabled_extended_FILE_stdio = false;
153
154// For diagnostics to print a message once. see run_periodic_checks
155static bool check_addr0_done = false;
156static sigset_t check_signal_done;
157static bool check_signals = true;
158
159address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
160address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
161
162address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
163
164os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
165
166// "default" initializers for missing libc APIs
167extern "C" {
168  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
169  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
170
171  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
172  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
173}
174
175// "default" initializers for pthread-based synchronization
176extern "C" {
177  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
178  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
179}
180
181static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
182
183static inline size_t adjust_stack_size(address base, size_t size) {
184  if ((ssize_t)size < 0) {
185    // 4759953: Compensate for ridiculous stack size.
186    size = max_intx;
187  }
188  if (size > (size_t)base) {
189    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
190    size = (size_t)base;
191  }
192  return size;
193}
194
195static inline stack_t get_stack_info() {
196  stack_t st;
197  int retval = thr_stksegment(&st);
198  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
199  assert(retval == 0, "incorrect return value from thr_stksegment");
200  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
201  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
202  return st;
203}
204
205address os::current_stack_base() {
206  int r = thr_main();
207  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
208  bool is_primordial_thread = r;
209
210  // Workaround 4352906, avoid calls to thr_stksegment by
211  // thr_main after the first one (it looks like we trash
212  // some data, causing the value for ss_sp to be incorrect).
213  if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
214    stack_t st = get_stack_info();
215    if (is_primordial_thread) {
216      // cache initial value of stack base
217      os::Solaris::_main_stack_base = (address)st.ss_sp;
218    }
219    return (address)st.ss_sp;
220  } else {
221    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
222    return os::Solaris::_main_stack_base;
223  }
224}
225
226size_t os::current_stack_size() {
227  size_t size;
228
229  int r = thr_main();
230  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
231  if (!r) {
232    size = get_stack_info().ss_size;
233  } else {
234    struct rlimit limits;
235    getrlimit(RLIMIT_STACK, &limits);
236    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
237  }
238  // base may not be page aligned
239  address base = current_stack_base();
240  address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
241  return (size_t)(base - bottom);
242}
243
244struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
245  return localtime_r(clock, res);
246}
247
248void os::Solaris::try_enable_extended_io() {
249  typedef int (*enable_extended_FILE_stdio_t)(int, int);
250
251  if (!UseExtendedFileIO) {
252    return;
253  }
254
255  enable_extended_FILE_stdio_t enabler =
256    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
257                                         "enable_extended_FILE_stdio");
258  if (enabler) {
259    enabler(-1, -1);
260  }
261}
262
263static int _processors_online = 0;
264
265jint os::Solaris::_os_thread_limit = 0;
266volatile jint os::Solaris::_os_thread_count = 0;
267
268julong os::available_memory() {
269  return Solaris::available_memory();
270}
271
272julong os::Solaris::available_memory() {
273  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
274}
275
276julong os::Solaris::_physical_memory = 0;
277
278julong os::physical_memory() {
279  return Solaris::physical_memory();
280}
281
282static hrtime_t first_hrtime = 0;
283static const hrtime_t hrtime_hz = 1000*1000*1000;
284static volatile hrtime_t max_hrtime = 0;
285
286
287void os::Solaris::initialize_system_info() {
288  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
289  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
290  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
291                                     (julong)sysconf(_SC_PAGESIZE);
292}
293
294int os::active_processor_count() {
295  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
296  pid_t pid = getpid();
297  psetid_t pset = PS_NONE;
298  // Are we running in a processor set or is there any processor set around?
299  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
300    uint_t pset_cpus;
301    // Query the number of cpus available to us.
302    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
303      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
304      _processors_online = pset_cpus;
305      return pset_cpus;
306    }
307  }
308  // Otherwise return number of online cpus
309  return online_cpus;
310}
311
312static bool find_processors_in_pset(psetid_t        pset,
313                                    processorid_t** id_array,
314                                    uint_t*         id_length) {
315  bool result = false;
316  // Find the number of processors in the processor set.
317  if (pset_info(pset, NULL, id_length, NULL) == 0) {
318    // Make up an array to hold their ids.
319    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
320    // Fill in the array with their processor ids.
321    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
322      result = true;
323    }
324  }
325  return result;
326}
327
328// Callers of find_processors_online() must tolerate imprecise results --
329// the system configuration can change asynchronously because of DR
330// or explicit psradm operations.
331//
332// We also need to take care that the loop (below) terminates as the
333// number of processors online can change between the _SC_NPROCESSORS_ONLN
334// request and the loop that builds the list of processor ids.   Unfortunately
335// there's no reliable way to determine the maximum valid processor id,
336// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
337// man pages, which claim the processor id set is "sparse, but
338// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
339// exit the loop.
340//
341// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
342// not available on S8.0.
343
344static bool find_processors_online(processorid_t** id_array,
345                                   uint*           id_length) {
346  const processorid_t MAX_PROCESSOR_ID = 100000;
347  // Find the number of processors online.
348  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
349  // Make up an array to hold their ids.
350  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
351  // Processors need not be numbered consecutively.
352  long found = 0;
353  processorid_t next = 0;
354  while (found < *id_length && next < MAX_PROCESSOR_ID) {
355    processor_info_t info;
356    if (processor_info(next, &info) == 0) {
357      // NB, PI_NOINTR processors are effectively online ...
358      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
359        (*id_array)[found] = next;
360        found += 1;
361      }
362    }
363    next += 1;
364  }
365  if (found < *id_length) {
366    // The loop above didn't identify the expected number of processors.
367    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
368    // and re-running the loop, above, but there's no guarantee of progress
369    // if the system configuration is in flux.  Instead, we just return what
370    // we've got.  Note that in the worst case find_processors_online() could
371    // return an empty set.  (As a fall-back in the case of the empty set we
372    // could just return the ID of the current processor).
373    *id_length = found;
374  }
375
376  return true;
377}
378
379static bool assign_distribution(processorid_t* id_array,
380                                uint           id_length,
381                                uint*          distribution,
382                                uint           distribution_length) {
383  // We assume we can assign processorid_t's to uint's.
384  assert(sizeof(processorid_t) == sizeof(uint),
385         "can't convert processorid_t to uint");
386  // Quick check to see if we won't succeed.
387  if (id_length < distribution_length) {
388    return false;
389  }
390  // Assign processor ids to the distribution.
391  // Try to shuffle processors to distribute work across boards,
392  // assuming 4 processors per board.
393  const uint processors_per_board = ProcessDistributionStride;
394  // Find the maximum processor id.
395  processorid_t max_id = 0;
396  for (uint m = 0; m < id_length; m += 1) {
397    max_id = MAX2(max_id, id_array[m]);
398  }
399  // The next id, to limit loops.
400  const processorid_t limit_id = max_id + 1;
401  // Make up markers for available processors.
402  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
403  for (uint c = 0; c < limit_id; c += 1) {
404    available_id[c] = false;
405  }
406  for (uint a = 0; a < id_length; a += 1) {
407    available_id[id_array[a]] = true;
408  }
409  // Step by "boards", then by "slot", copying to "assigned".
410  // NEEDS_CLEANUP: The assignment of processors should be stateful,
411  //                remembering which processors have been assigned by
412  //                previous calls, etc., so as to distribute several
413  //                independent calls of this method.  What we'd like is
414  //                It would be nice to have an API that let us ask
415  //                how many processes are bound to a processor,
416  //                but we don't have that, either.
417  //                In the short term, "board" is static so that
418  //                subsequent distributions don't all start at board 0.
419  static uint board = 0;
420  uint assigned = 0;
421  // Until we've found enough processors ....
422  while (assigned < distribution_length) {
423    // ... find the next available processor in the board.
424    for (uint slot = 0; slot < processors_per_board; slot += 1) {
425      uint try_id = board * processors_per_board + slot;
426      if ((try_id < limit_id) && (available_id[try_id] == true)) {
427        distribution[assigned] = try_id;
428        available_id[try_id] = false;
429        assigned += 1;
430        break;
431      }
432    }
433    board += 1;
434    if (board * processors_per_board + 0 >= limit_id) {
435      board = 0;
436    }
437  }
438  if (available_id != NULL) {
439    FREE_C_HEAP_ARRAY(bool, available_id);
440  }
441  return true;
442}
443
444void os::set_native_thread_name(const char *name) {
445  if (Solaris::_pthread_setname_np != NULL) {
446    // Only the first 31 bytes of 'name' are processed by pthread_setname_np
447    // but we explicitly copy into a size-limited buffer to avoid any
448    // possible overflow.
449    char buf[32];
450    snprintf(buf, sizeof(buf), "%s", name);
451    buf[sizeof(buf) - 1] = '\0';
452    Solaris::_pthread_setname_np(pthread_self(), buf);
453  }
454}
455
456bool os::distribute_processes(uint length, uint* distribution) {
457  bool result = false;
458  // Find the processor id's of all the available CPUs.
459  processorid_t* id_array  = NULL;
460  uint           id_length = 0;
461  // There are some races between querying information and using it,
462  // since processor sets can change dynamically.
463  psetid_t pset = PS_NONE;
464  // Are we running in a processor set?
465  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
466    result = find_processors_in_pset(pset, &id_array, &id_length);
467  } else {
468    result = find_processors_online(&id_array, &id_length);
469  }
470  if (result == true) {
471    if (id_length >= length) {
472      result = assign_distribution(id_array, id_length, distribution, length);
473    } else {
474      result = false;
475    }
476  }
477  if (id_array != NULL) {
478    FREE_C_HEAP_ARRAY(processorid_t, id_array);
479  }
480  return result;
481}
482
483bool os::bind_to_processor(uint processor_id) {
484  // We assume that a processorid_t can be stored in a uint.
485  assert(sizeof(uint) == sizeof(processorid_t),
486         "can't convert uint to processorid_t");
487  int bind_result =
488    processor_bind(P_LWPID,                       // bind LWP.
489                   P_MYID,                        // bind current LWP.
490                   (processorid_t) processor_id,  // id.
491                   NULL);                         // don't return old binding.
492  return (bind_result == 0);
493}
494
495// Return true if user is running as root.
496
497bool os::have_special_privileges() {
498  static bool init = false;
499  static bool privileges = false;
500  if (!init) {
501    privileges = (getuid() != geteuid()) || (getgid() != getegid());
502    init = true;
503  }
504  return privileges;
505}
506
507
508void os::init_system_properties_values() {
509  // The next steps are taken in the product version:
510  //
511  // Obtain the JAVA_HOME value from the location of libjvm.so.
512  // This library should be located at:
513  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
514  //
515  // If "/jre/lib/" appears at the right place in the path, then we
516  // assume libjvm.so is installed in a JDK and we use this path.
517  //
518  // Otherwise exit with message: "Could not create the Java virtual machine."
519  //
520  // The following extra steps are taken in the debugging version:
521  //
522  // If "/jre/lib/" does NOT appear at the right place in the path
523  // instead of exit check for $JAVA_HOME environment variable.
524  //
525  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
526  // then we append a fake suffix "hotspot/libjvm.so" to this path so
527  // it looks like libjvm.so is installed there
528  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
529  //
530  // Otherwise exit.
531  //
532  // Important note: if the location of libjvm.so changes this
533  // code needs to be changed accordingly.
534
535// Base path of extensions installed on the system.
536#define SYS_EXT_DIR     "/usr/jdk/packages"
537#define EXTENSIONS_DIR  "/lib/ext"
538
539  char cpu_arch[12];
540  // Buffer that fits several sprintfs.
541  // Note that the space for the colon and the trailing null are provided
542  // by the nulls included by the sizeof operator.
543  const size_t bufsize =
544    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
545         sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
546         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
547  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
548
549  // sysclasspath, java_home, dll_dir
550  {
551    char *pslash;
552    os::jvm_path(buf, bufsize);
553
554    // Found the full path to libjvm.so.
555    // Now cut the path to <java_home>/jre if we can.
556    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
557    pslash = strrchr(buf, '/');
558    if (pslash != NULL) {
559      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
560    }
561    Arguments::set_dll_dir(buf);
562
563    if (pslash != NULL) {
564      pslash = strrchr(buf, '/');
565      if (pslash != NULL) {
566        *pslash = '\0';          // Get rid of /<arch>.
567        pslash = strrchr(buf, '/');
568        if (pslash != NULL) {
569          *pslash = '\0';        // Get rid of /lib.
570        }
571      }
572    }
573    Arguments::set_java_home(buf);
574    set_boot_path('/', ':');
575  }
576
577  // Where to look for native libraries.
578  {
579    // Use dlinfo() to determine the correct java.library.path.
580    //
581    // If we're launched by the Java launcher, and the user
582    // does not set java.library.path explicitly on the commandline,
583    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
584    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
585    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
586    // /usr/lib), which is exactly what we want.
587    //
588    // If the user does set java.library.path, it completely
589    // overwrites this setting, and always has.
590    //
591    // If we're not launched by the Java launcher, we may
592    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
593    // settings.  Again, dlinfo does exactly what we want.
594
595    Dl_serinfo     info_sz, *info = &info_sz;
596    Dl_serpath     *path;
597    char           *library_path;
598    char           *common_path = buf;
599
600    // Determine search path count and required buffer size.
601    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
602      FREE_C_HEAP_ARRAY(char, buf);
603      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
604    }
605
606    // Allocate new buffer and initialize.
607    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
608    info->dls_size = info_sz.dls_size;
609    info->dls_cnt = info_sz.dls_cnt;
610
611    // Obtain search path information.
612    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
613      FREE_C_HEAP_ARRAY(char, buf);
614      FREE_C_HEAP_ARRAY(char, info);
615      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
616    }
617
618    path = &info->dls_serpath[0];
619
620    // Note: Due to a legacy implementation, most of the library path
621    // is set in the launcher. This was to accomodate linking restrictions
622    // on legacy Solaris implementations (which are no longer supported).
623    // Eventually, all the library path setting will be done here.
624    //
625    // However, to prevent the proliferation of improperly built native
626    // libraries, the new path component /usr/jdk/packages is added here.
627
628    // Determine the actual CPU architecture.
629    sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
630#ifdef _LP64
631    // If we are a 64-bit vm, perform the following translations:
632    //   sparc   -> sparcv9
633    //   i386    -> amd64
634    if (strcmp(cpu_arch, "sparc") == 0) {
635      strcat(cpu_arch, "v9");
636    } else if (strcmp(cpu_arch, "i386") == 0) {
637      strcpy(cpu_arch, "amd64");
638    }
639#endif
640
641    // Construct the invariant part of ld_library_path.
642    sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
643
644    // Struct size is more than sufficient for the path components obtained
645    // through the dlinfo() call, so only add additional space for the path
646    // components explicitly added here.
647    size_t library_path_size = info->dls_size + strlen(common_path);
648    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
649    library_path[0] = '\0';
650
651    // Construct the desired Java library path from the linker's library
652    // search path.
653    //
654    // For compatibility, it is optimal that we insert the additional path
655    // components specific to the Java VM after those components specified
656    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
657    // infrastructure.
658    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
659      strcpy(library_path, common_path);
660    } else {
661      int inserted = 0;
662      int i;
663      for (i = 0; i < info->dls_cnt; i++, path++) {
664        uint_t flags = path->dls_flags & LA_SER_MASK;
665        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
666          strcat(library_path, common_path);
667          strcat(library_path, os::path_separator());
668          inserted = 1;
669        }
670        strcat(library_path, path->dls_name);
671        strcat(library_path, os::path_separator());
672      }
673      // Eliminate trailing path separator.
674      library_path[strlen(library_path)-1] = '\0';
675    }
676
677    // happens before argument parsing - can't use a trace flag
678    // tty->print_raw("init_system_properties_values: native lib path: ");
679    // tty->print_raw_cr(library_path);
680
681    // Callee copies into its own buffer.
682    Arguments::set_library_path(library_path);
683
684    FREE_C_HEAP_ARRAY(char, library_path);
685    FREE_C_HEAP_ARRAY(char, info);
686  }
687
688  // Extensions directories.
689  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
690  Arguments::set_ext_dirs(buf);
691
692  FREE_C_HEAP_ARRAY(char, buf);
693
694#undef SYS_EXT_DIR
695#undef EXTENSIONS_DIR
696}
697
698void os::breakpoint() {
699  BREAKPOINT;
700}
701
702bool os::obsolete_option(const JavaVMOption *option) {
703  if (!strncmp(option->optionString, "-Xt", 3)) {
704    return true;
705  } else if (!strncmp(option->optionString, "-Xtm", 4)) {
706    return true;
707  } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
708    return true;
709  } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
710    return true;
711  }
712  return false;
713}
714
715bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
716  address  stackStart  = (address)thread->stack_base();
717  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
718  if (sp < stackStart && sp >= stackEnd) return true;
719  return false;
720}
721
722extern "C" void breakpoint() {
723  // use debugger to set breakpoint here
724}
725
726static thread_t main_thread;
727
728// Thread start routine for all new Java threads
729extern "C" void* java_start(void* thread_addr) {
730  // Try to randomize the cache line index of hot stack frames.
731  // This helps when threads of the same stack traces evict each other's
732  // cache lines. The threads can be either from the same JVM instance, or
733  // from different JVM instances. The benefit is especially true for
734  // processors with hyperthreading technology.
735  static int counter = 0;
736  int pid = os::current_process_id();
737  alloca(((pid ^ counter++) & 7) * 128);
738
739  int prio;
740  Thread* thread = (Thread*)thread_addr;
741
742  thread->initialize_thread_current();
743
744  OSThread* osthr = thread->osthread();
745
746  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
747  thread->_schedctl = (void *) schedctl_init();
748
749  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
750    os::current_thread_id());
751
752  if (UseNUMA) {
753    int lgrp_id = os::numa_get_group_id();
754    if (lgrp_id != -1) {
755      thread->set_lgrp_id(lgrp_id);
756    }
757  }
758
759  // If the creator called set priority before we started,
760  // we need to call set_native_priority now that we have an lwp.
761  // We used to get the priority from thr_getprio (we called
762  // thr_setprio way back in create_thread) and pass it to
763  // set_native_priority, but Solaris scales the priority
764  // in java_to_os_priority, so when we read it back here,
765  // we pass trash to set_native_priority instead of what's
766  // in java_to_os_priority. So we save the native priority
767  // in the osThread and recall it here.
768
769  if (osthr->thread_id() != -1) {
770    if (UseThreadPriorities) {
771      int prio = osthr->native_priority();
772      if (ThreadPriorityVerbose) {
773        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
774                      INTPTR_FORMAT ", setting priority: %d\n",
775                      osthr->thread_id(), osthr->lwp_id(), prio);
776      }
777      os::set_native_priority(thread, prio);
778    }
779  } else if (ThreadPriorityVerbose) {
780    warning("Can't set priority in _start routine, thread id hasn't been set\n");
781  }
782
783  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
784
785  // initialize signal mask for this thread
786  os::Solaris::hotspot_sigmask(thread);
787
788  thread->run();
789
790  // One less thread is executing
791  // When the VMThread gets here, the main thread may have already exited
792  // which frees the CodeHeap containing the Atomic::dec code
793  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
794    Atomic::dec(&os::Solaris::_os_thread_count);
795  }
796
797  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
798
799  if (UseDetachedThreads) {
800    thr_exit(NULL);
801    ShouldNotReachHere();
802  }
803  return NULL;
804}
805
806static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
807  // Allocate the OSThread object
808  OSThread* osthread = new OSThread(NULL, NULL);
809  if (osthread == NULL) return NULL;
810
811  // Store info on the Solaris thread into the OSThread
812  osthread->set_thread_id(thread_id);
813  osthread->set_lwp_id(_lwp_self());
814  thread->_schedctl = (void *) schedctl_init();
815
816  if (UseNUMA) {
817    int lgrp_id = os::numa_get_group_id();
818    if (lgrp_id != -1) {
819      thread->set_lgrp_id(lgrp_id);
820    }
821  }
822
823  if (ThreadPriorityVerbose) {
824    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
825                  osthread->thread_id(), osthread->lwp_id());
826  }
827
828  // Initial thread state is INITIALIZED, not SUSPENDED
829  osthread->set_state(INITIALIZED);
830
831  return osthread;
832}
833
834void os::Solaris::hotspot_sigmask(Thread* thread) {
835  //Save caller's signal mask
836  sigset_t sigmask;
837  pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
838  OSThread *osthread = thread->osthread();
839  osthread->set_caller_sigmask(sigmask);
840
841  pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
842  if (!ReduceSignalUsage) {
843    if (thread->is_VM_thread()) {
844      // Only the VM thread handles BREAK_SIGNAL ...
845      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
846    } else {
847      // ... all other threads block BREAK_SIGNAL
848      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
849      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
850    }
851  }
852}
853
854bool os::create_attached_thread(JavaThread* thread) {
855#ifdef ASSERT
856  thread->verify_not_published();
857#endif
858  OSThread* osthread = create_os_thread(thread, thr_self());
859  if (osthread == NULL) {
860    return false;
861  }
862
863  // Initial thread state is RUNNABLE
864  osthread->set_state(RUNNABLE);
865  thread->set_osthread(osthread);
866
867  // initialize signal mask for this thread
868  // and save the caller's signal mask
869  os::Solaris::hotspot_sigmask(thread);
870
871  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
872    os::current_thread_id());
873
874  return true;
875}
876
877bool os::create_main_thread(JavaThread* thread) {
878#ifdef ASSERT
879  thread->verify_not_published();
880#endif
881  if (_starting_thread == NULL) {
882    _starting_thread = create_os_thread(thread, main_thread);
883    if (_starting_thread == NULL) {
884      return false;
885    }
886  }
887
888  // The primodial thread is runnable from the start
889  _starting_thread->set_state(RUNNABLE);
890
891  thread->set_osthread(_starting_thread);
892
893  // initialize signal mask for this thread
894  // and save the caller's signal mask
895  os::Solaris::hotspot_sigmask(thread);
896
897  return true;
898}
899
900// Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
901static char* describe_thr_create_attributes(char* buf, size_t buflen,
902                                            size_t stacksize, long flags) {
903  stringStream ss(buf, buflen);
904  ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
905  ss.print("flags: ");
906  #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
907  #define ALL(X) \
908    X(THR_SUSPENDED) \
909    X(THR_DETACHED) \
910    X(THR_BOUND) \
911    X(THR_NEW_LWP) \
912    X(THR_DAEMON)
913  ALL(PRINT_FLAG)
914  #undef ALL
915  #undef PRINT_FLAG
916  return buf;
917}
918
919bool os::create_thread(Thread* thread, ThreadType thr_type,
920                       size_t stack_size) {
921  // Allocate the OSThread object
922  OSThread* osthread = new OSThread(NULL, NULL);
923  if (osthread == NULL) {
924    return false;
925  }
926
927  if (ThreadPriorityVerbose) {
928    char *thrtyp;
929    switch (thr_type) {
930    case vm_thread:
931      thrtyp = (char *)"vm";
932      break;
933    case cgc_thread:
934      thrtyp = (char *)"cgc";
935      break;
936    case pgc_thread:
937      thrtyp = (char *)"pgc";
938      break;
939    case java_thread:
940      thrtyp = (char *)"java";
941      break;
942    case compiler_thread:
943      thrtyp = (char *)"compiler";
944      break;
945    case watcher_thread:
946      thrtyp = (char *)"watcher";
947      break;
948    default:
949      thrtyp = (char *)"unknown";
950      break;
951    }
952    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
953  }
954
955  // Calculate stack size if it's not specified by caller.
956  if (stack_size == 0) {
957    // The default stack size 1M (2M for LP64).
958    stack_size = (BytesPerWord >> 2) * K * K;
959
960    switch (thr_type) {
961    case os::java_thread:
962      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
963      if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
964      break;
965    case os::compiler_thread:
966      if (CompilerThreadStackSize > 0) {
967        stack_size = (size_t)(CompilerThreadStackSize * K);
968        break;
969      } // else fall through:
970        // use VMThreadStackSize if CompilerThreadStackSize is not defined
971    case os::vm_thread:
972    case os::pgc_thread:
973    case os::cgc_thread:
974    case os::watcher_thread:
975      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
976      break;
977    }
978  }
979  stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
980
981  // Initial state is ALLOCATED but not INITIALIZED
982  osthread->set_state(ALLOCATED);
983
984  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
985    // We got lots of threads. Check if we still have some address space left.
986    // Need to be at least 5Mb of unreserved address space. We do check by
987    // trying to reserve some.
988    const size_t VirtualMemoryBangSize = 20*K*K;
989    char* mem = os::reserve_memory(VirtualMemoryBangSize);
990    if (mem == NULL) {
991      delete osthread;
992      return false;
993    } else {
994      // Release the memory again
995      os::release_memory(mem, VirtualMemoryBangSize);
996    }
997  }
998
999  // Setup osthread because the child thread may need it.
1000  thread->set_osthread(osthread);
1001
1002  // Create the Solaris thread
1003  thread_t tid = 0;
1004  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1005  int      status;
1006
1007  // Mark that we don't have an lwp or thread id yet.
1008  // In case we attempt to set the priority before the thread starts.
1009  osthread->set_lwp_id(-1);
1010  osthread->set_thread_id(-1);
1011
1012  status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1013
1014  char buf[64];
1015  if (status == 0) {
1016    log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
1017      (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1018  } else {
1019    log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
1020      os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1021  }
1022
1023  if (status != 0) {
1024    thread->set_osthread(NULL);
1025    // Need to clean up stuff we've allocated so far
1026    delete osthread;
1027    return false;
1028  }
1029
1030  Atomic::inc(&os::Solaris::_os_thread_count);
1031
1032  // Store info on the Solaris thread into the OSThread
1033  osthread->set_thread_id(tid);
1034
1035  // Remember that we created this thread so we can set priority on it
1036  osthread->set_vm_created();
1037
1038  // Initial thread state is INITIALIZED, not SUSPENDED
1039  osthread->set_state(INITIALIZED);
1040
1041  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1042  return true;
1043}
1044
1045// defined for >= Solaris 10. This allows builds on earlier versions
1046// of Solaris to take advantage of the newly reserved Solaris JVM signals.
1047// With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1048// was SIGJVM1.
1049//
1050#if !defined(SIGJVM1)
1051  #define SIGJVM1 39
1052  #define SIGJVM2 40
1053#endif
1054
1055debug_only(static bool signal_sets_initialized = false);
1056static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1057
1058int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1059
1060bool os::Solaris::is_sig_ignored(int sig) {
1061  struct sigaction oact;
1062  sigaction(sig, (struct sigaction*)NULL, &oact);
1063  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1064                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1065  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1066    return true;
1067  } else {
1068    return false;
1069  }
1070}
1071
1072// Note: SIGRTMIN is a macro that calls sysconf() so it will
1073// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1074static bool isJVM1available() {
1075  return SIGJVM1 < SIGRTMIN;
1076}
1077
1078void os::Solaris::signal_sets_init() {
1079  // Should also have an assertion stating we are still single-threaded.
1080  assert(!signal_sets_initialized, "Already initialized");
1081  // Fill in signals that are necessarily unblocked for all threads in
1082  // the VM. Currently, we unblock the following signals:
1083  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1084  //                         by -Xrs (=ReduceSignalUsage));
1085  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1086  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1087  // the dispositions or masks wrt these signals.
1088  // Programs embedding the VM that want to use the above signals for their
1089  // own purposes must, at this time, use the "-Xrs" option to prevent
1090  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1091  // (See bug 4345157, and other related bugs).
1092  // In reality, though, unblocking these signals is really a nop, since
1093  // these signals are not blocked by default.
1094  sigemptyset(&unblocked_sigs);
1095  sigemptyset(&allowdebug_blocked_sigs);
1096  sigaddset(&unblocked_sigs, SIGILL);
1097  sigaddset(&unblocked_sigs, SIGSEGV);
1098  sigaddset(&unblocked_sigs, SIGBUS);
1099  sigaddset(&unblocked_sigs, SIGFPE);
1100
1101  // Always true on Solaris 10+
1102  guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1103  os::Solaris::set_SIGasync(SIGJVM2);
1104
1105  sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1106
1107  if (!ReduceSignalUsage) {
1108    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1109      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1110      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1111    }
1112    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1113      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1114      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1115    }
1116    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1117      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1118      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1119    }
1120  }
1121  // Fill in signals that are blocked by all but the VM thread.
1122  sigemptyset(&vm_sigs);
1123  if (!ReduceSignalUsage) {
1124    sigaddset(&vm_sigs, BREAK_SIGNAL);
1125  }
1126  debug_only(signal_sets_initialized = true);
1127
1128  // For diagnostics only used in run_periodic_checks
1129  sigemptyset(&check_signal_done);
1130}
1131
1132// These are signals that are unblocked while a thread is running Java.
1133// (For some reason, they get blocked by default.)
1134sigset_t* os::Solaris::unblocked_signals() {
1135  assert(signal_sets_initialized, "Not initialized");
1136  return &unblocked_sigs;
1137}
1138
1139// These are the signals that are blocked while a (non-VM) thread is
1140// running Java. Only the VM thread handles these signals.
1141sigset_t* os::Solaris::vm_signals() {
1142  assert(signal_sets_initialized, "Not initialized");
1143  return &vm_sigs;
1144}
1145
1146// These are signals that are blocked during cond_wait to allow debugger in
1147sigset_t* os::Solaris::allowdebug_blocked_signals() {
1148  assert(signal_sets_initialized, "Not initialized");
1149  return &allowdebug_blocked_sigs;
1150}
1151
1152
1153void _handle_uncaught_cxx_exception() {
1154  VMError::report_and_die("An uncaught C++ exception");
1155}
1156
1157
1158// First crack at OS-specific initialization, from inside the new thread.
1159void os::initialize_thread(Thread* thr) {
1160  int r = thr_main();
1161  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1162  if (r) {
1163    JavaThread* jt = (JavaThread *)thr;
1164    assert(jt != NULL, "Sanity check");
1165    size_t stack_size;
1166    address base = jt->stack_base();
1167    if (Arguments::created_by_java_launcher()) {
1168      // Use 2MB to allow for Solaris 7 64 bit mode.
1169      stack_size = JavaThread::stack_size_at_create() == 0
1170        ? 2048*K : JavaThread::stack_size_at_create();
1171
1172      // There are rare cases when we may have already used more than
1173      // the basic stack size allotment before this method is invoked.
1174      // Attempt to allow for a normally sized java_stack.
1175      size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1176      stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1177    } else {
1178      // 6269555: If we were not created by a Java launcher, i.e. if we are
1179      // running embedded in a native application, treat the primordial thread
1180      // as much like a native attached thread as possible.  This means using
1181      // the current stack size from thr_stksegment(), unless it is too large
1182      // to reliably setup guard pages.  A reasonable max size is 8MB.
1183      size_t current_size = current_stack_size();
1184      // This should never happen, but just in case....
1185      if (current_size == 0) current_size = 2 * K * K;
1186      stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1187    }
1188    address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1189    stack_size = (size_t)(base - bottom);
1190
1191    assert(stack_size > 0, "Stack size calculation problem");
1192
1193    if (stack_size > jt->stack_size()) {
1194#ifndef PRODUCT
1195      struct rlimit limits;
1196      getrlimit(RLIMIT_STACK, &limits);
1197      size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1198      assert(size >= jt->stack_size(), "Stack size problem in main thread");
1199#endif
1200      tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1201                    "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1202                    "See limit(1) to increase the stack size limit.",
1203                    stack_size / K, jt->stack_size() / K);
1204      vm_exit(1);
1205    }
1206    assert(jt->stack_size() >= stack_size,
1207           "Attempt to map more stack than was allocated");
1208    jt->set_stack_size(stack_size);
1209  }
1210
1211  // With the T2 libthread (T1 is no longer supported) threads are always bound
1212  // and we use stackbanging in all cases.
1213
1214  os::Solaris::init_thread_fpu_state();
1215  std::set_terminate(_handle_uncaught_cxx_exception);
1216}
1217
1218
1219
1220// Free Solaris resources related to the OSThread
1221void os::free_thread(OSThread* osthread) {
1222  assert(osthread != NULL, "os::free_thread but osthread not set");
1223
1224
1225  // We are told to free resources of the argument thread,
1226  // but we can only really operate on the current thread.
1227  // The main thread must take the VMThread down synchronously
1228  // before the main thread exits and frees up CodeHeap
1229  guarantee((Thread::current()->osthread() == osthread
1230             || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1231  if (Thread::current()->osthread() == osthread) {
1232    // Restore caller's signal mask
1233    sigset_t sigmask = osthread->caller_sigmask();
1234    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1235  }
1236  delete osthread;
1237}
1238
1239void os::pd_start_thread(Thread* thread) {
1240  int status = thr_continue(thread->osthread()->thread_id());
1241  assert_status(status == 0, status, "thr_continue failed");
1242}
1243
1244
1245intx os::current_thread_id() {
1246  return (intx)thr_self();
1247}
1248
1249static pid_t _initial_pid = 0;
1250
1251int os::current_process_id() {
1252  return (int)(_initial_pid ? _initial_pid : getpid());
1253}
1254
1255// gethrtime() should be monotonic according to the documentation,
1256// but some virtualized platforms are known to break this guarantee.
1257// getTimeNanos() must be guaranteed not to move backwards, so we
1258// are forced to add a check here.
1259inline hrtime_t getTimeNanos() {
1260  const hrtime_t now = gethrtime();
1261  const hrtime_t prev = max_hrtime;
1262  if (now <= prev) {
1263    return prev;   // same or retrograde time;
1264  }
1265  const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1266  assert(obsv >= prev, "invariant");   // Monotonicity
1267  // If the CAS succeeded then we're done and return "now".
1268  // If the CAS failed and the observed value "obsv" is >= now then
1269  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1270  // some other thread raced this thread and installed a new value, in which case
1271  // we could either (a) retry the entire operation, (b) retry trying to install now
1272  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1273  // we might discard a higher "now" value in deference to a slightly lower but freshly
1274  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1275  // to (a) or (b) -- and greatly reduces coherence traffic.
1276  // We might also condition (c) on the magnitude of the delta between obsv and now.
1277  // Avoiding excessive CAS operations to hot RW locations is critical.
1278  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1279  return (prev == obsv) ? now : obsv;
1280}
1281
1282// Time since start-up in seconds to a fine granularity.
1283// Used by VMSelfDestructTimer and the MemProfiler.
1284double os::elapsedTime() {
1285  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1286}
1287
1288jlong os::elapsed_counter() {
1289  return (jlong)(getTimeNanos() - first_hrtime);
1290}
1291
1292jlong os::elapsed_frequency() {
1293  return hrtime_hz;
1294}
1295
1296// Return the real, user, and system times in seconds from an
1297// arbitrary fixed point in the past.
1298bool os::getTimesSecs(double* process_real_time,
1299                      double* process_user_time,
1300                      double* process_system_time) {
1301  struct tms ticks;
1302  clock_t real_ticks = times(&ticks);
1303
1304  if (real_ticks == (clock_t) (-1)) {
1305    return false;
1306  } else {
1307    double ticks_per_second = (double) clock_tics_per_sec;
1308    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1309    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1310    // For consistency return the real time from getTimeNanos()
1311    // converted to seconds.
1312    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1313
1314    return true;
1315  }
1316}
1317
1318bool os::supports_vtime() { return true; }
1319
1320bool os::enable_vtime() {
1321  int fd = ::open("/proc/self/ctl", O_WRONLY);
1322  if (fd == -1) {
1323    return false;
1324  }
1325
1326  long cmd[] = { PCSET, PR_MSACCT };
1327  int res = ::write(fd, cmd, sizeof(long) * 2);
1328  ::close(fd);
1329  if (res != sizeof(long) * 2) {
1330    return false;
1331  }
1332  return true;
1333}
1334
1335bool os::vtime_enabled() {
1336  int fd = ::open("/proc/self/status", O_RDONLY);
1337  if (fd == -1) {
1338    return false;
1339  }
1340
1341  pstatus_t status;
1342  int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1343  ::close(fd);
1344  if (res != sizeof(pstatus_t)) {
1345    return false;
1346  }
1347  return status.pr_flags & PR_MSACCT;
1348}
1349
1350double os::elapsedVTime() {
1351  return (double)gethrvtime() / (double)hrtime_hz;
1352}
1353
1354// Used internally for comparisons only
1355// getTimeMillis guaranteed to not move backwards on Solaris
1356jlong getTimeMillis() {
1357  jlong nanotime = getTimeNanos();
1358  return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1359}
1360
1361// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1362jlong os::javaTimeMillis() {
1363  timeval t;
1364  if (gettimeofday(&t, NULL) == -1) {
1365    fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1366  }
1367  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1368}
1369
1370void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1371  timeval t;
1372  if (gettimeofday(&t, NULL) == -1) {
1373    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1374  }
1375  seconds = jlong(t.tv_sec);
1376  nanos = jlong(t.tv_usec) * 1000;
1377}
1378
1379
1380jlong os::javaTimeNanos() {
1381  return (jlong)getTimeNanos();
1382}
1383
1384void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1385  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1386  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1387  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1388  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1389}
1390
1391char * os::local_time_string(char *buf, size_t buflen) {
1392  struct tm t;
1393  time_t long_time;
1394  time(&long_time);
1395  localtime_r(&long_time, &t);
1396  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1397               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1398               t.tm_hour, t.tm_min, t.tm_sec);
1399  return buf;
1400}
1401
1402// Note: os::shutdown() might be called very early during initialization, or
1403// called from signal handler. Before adding something to os::shutdown(), make
1404// sure it is async-safe and can handle partially initialized VM.
1405void os::shutdown() {
1406
1407  // allow PerfMemory to attempt cleanup of any persistent resources
1408  perfMemory_exit();
1409
1410  // needs to remove object in file system
1411  AttachListener::abort();
1412
1413  // flush buffered output, finish log files
1414  ostream_abort();
1415
1416  // Check for abort hook
1417  abort_hook_t abort_hook = Arguments::abort_hook();
1418  if (abort_hook != NULL) {
1419    abort_hook();
1420  }
1421}
1422
1423// Note: os::abort() might be called very early during initialization, or
1424// called from signal handler. Before adding something to os::abort(), make
1425// sure it is async-safe and can handle partially initialized VM.
1426void os::abort(bool dump_core, void* siginfo, const void* context) {
1427  os::shutdown();
1428  if (dump_core) {
1429#ifndef PRODUCT
1430    fdStream out(defaultStream::output_fd());
1431    out.print_raw("Current thread is ");
1432    char buf[16];
1433    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1434    out.print_raw_cr(buf);
1435    out.print_raw_cr("Dumping core ...");
1436#endif
1437    ::abort(); // dump core (for debugging)
1438  }
1439
1440  ::exit(1);
1441}
1442
1443// Die immediately, no exit hook, no abort hook, no cleanup.
1444void os::die() {
1445  ::abort(); // dump core (for debugging)
1446}
1447
1448// DLL functions
1449
1450const char* os::dll_file_extension() { return ".so"; }
1451
1452// This must be hard coded because it's the system's temporary
1453// directory not the java application's temp directory, ala java.io.tmpdir.
1454const char* os::get_temp_directory() { return "/tmp"; }
1455
1456static bool file_exists(const char* filename) {
1457  struct stat statbuf;
1458  if (filename == NULL || strlen(filename) == 0) {
1459    return false;
1460  }
1461  return os::stat(filename, &statbuf) == 0;
1462}
1463
1464bool os::dll_build_name(char* buffer, size_t buflen,
1465                        const char* pname, const char* fname) {
1466  bool retval = false;
1467  const size_t pnamelen = pname ? strlen(pname) : 0;
1468
1469  // Return error on buffer overflow.
1470  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1471    return retval;
1472  }
1473
1474  if (pnamelen == 0) {
1475    snprintf(buffer, buflen, "lib%s.so", fname);
1476    retval = true;
1477  } else if (strchr(pname, *os::path_separator()) != NULL) {
1478    int n;
1479    char** pelements = split_path(pname, &n);
1480    if (pelements == NULL) {
1481      return false;
1482    }
1483    for (int i = 0; i < n; i++) {
1484      // really shouldn't be NULL but what the heck, check can't hurt
1485      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1486        continue; // skip the empty path values
1487      }
1488      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1489      if (file_exists(buffer)) {
1490        retval = true;
1491        break;
1492      }
1493    }
1494    // release the storage
1495    for (int i = 0; i < n; i++) {
1496      if (pelements[i] != NULL) {
1497        FREE_C_HEAP_ARRAY(char, pelements[i]);
1498      }
1499    }
1500    if (pelements != NULL) {
1501      FREE_C_HEAP_ARRAY(char*, pelements);
1502    }
1503  } else {
1504    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1505    retval = true;
1506  }
1507  return retval;
1508}
1509
1510// check if addr is inside libjvm.so
1511bool os::address_is_in_vm(address addr) {
1512  static address libjvm_base_addr;
1513  Dl_info dlinfo;
1514
1515  if (libjvm_base_addr == NULL) {
1516    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1517      libjvm_base_addr = (address)dlinfo.dli_fbase;
1518    }
1519    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1520  }
1521
1522  if (dladdr((void *)addr, &dlinfo) != 0) {
1523    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1524  }
1525
1526  return false;
1527}
1528
1529typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1530static dladdr1_func_type dladdr1_func = NULL;
1531
1532bool os::dll_address_to_function_name(address addr, char *buf,
1533                                      int buflen, int * offset,
1534                                      bool demangle) {
1535  // buf is not optional, but offset is optional
1536  assert(buf != NULL, "sanity check");
1537
1538  Dl_info dlinfo;
1539
1540  // dladdr1_func was initialized in os::init()
1541  if (dladdr1_func != NULL) {
1542    // yes, we have dladdr1
1543
1544    // Support for dladdr1 is checked at runtime; it may be
1545    // available even if the vm is built on a machine that does
1546    // not have dladdr1 support.  Make sure there is a value for
1547    // RTLD_DL_SYMENT.
1548#ifndef RTLD_DL_SYMENT
1549  #define RTLD_DL_SYMENT 1
1550#endif
1551#ifdef _LP64
1552    Elf64_Sym * info;
1553#else
1554    Elf32_Sym * info;
1555#endif
1556    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1557                     RTLD_DL_SYMENT) != 0) {
1558      // see if we have a matching symbol that covers our address
1559      if (dlinfo.dli_saddr != NULL &&
1560          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1561        if (dlinfo.dli_sname != NULL) {
1562          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1563            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1564          }
1565          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1566          return true;
1567        }
1568      }
1569      // no matching symbol so try for just file info
1570      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1571        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1572                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1573          return true;
1574        }
1575      }
1576    }
1577    buf[0] = '\0';
1578    if (offset != NULL) *offset  = -1;
1579    return false;
1580  }
1581
1582  // no, only dladdr is available
1583  if (dladdr((void *)addr, &dlinfo) != 0) {
1584    // see if we have a matching symbol
1585    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1586      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1587        jio_snprintf(buf, buflen, dlinfo.dli_sname);
1588      }
1589      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1590      return true;
1591    }
1592    // no matching symbol so try for just file info
1593    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1594      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1595                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1596        return true;
1597      }
1598    }
1599  }
1600  buf[0] = '\0';
1601  if (offset != NULL) *offset  = -1;
1602  return false;
1603}
1604
1605bool os::dll_address_to_library_name(address addr, char* buf,
1606                                     int buflen, int* offset) {
1607  // buf is not optional, but offset is optional
1608  assert(buf != NULL, "sanity check");
1609
1610  Dl_info dlinfo;
1611
1612  if (dladdr((void*)addr, &dlinfo) != 0) {
1613    if (dlinfo.dli_fname != NULL) {
1614      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1615    }
1616    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1617      *offset = addr - (address)dlinfo.dli_fbase;
1618    }
1619    return true;
1620  }
1621
1622  buf[0] = '\0';
1623  if (offset) *offset = -1;
1624  return false;
1625}
1626
1627int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1628  Dl_info dli;
1629  // Sanity check?
1630  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1631      dli.dli_fname == NULL) {
1632    return 1;
1633  }
1634
1635  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1636  if (handle == NULL) {
1637    return 1;
1638  }
1639
1640  Link_map *map;
1641  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1642  if (map == NULL) {
1643    dlclose(handle);
1644    return 1;
1645  }
1646
1647  while (map->l_prev != NULL) {
1648    map = map->l_prev;
1649  }
1650
1651  while (map != NULL) {
1652    // Iterate through all map entries and call callback with fields of interest
1653    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1654      dlclose(handle);
1655      return 1;
1656    }
1657    map = map->l_next;
1658  }
1659
1660  dlclose(handle);
1661  return 0;
1662}
1663
1664int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1665  outputStream * out = (outputStream *) param;
1666  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1667  return 0;
1668}
1669
1670void os::print_dll_info(outputStream * st) {
1671  st->print_cr("Dynamic libraries:"); st->flush();
1672  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1673    st->print_cr("Error: Cannot print dynamic libraries.");
1674  }
1675}
1676
1677// Loads .dll/.so and
1678// in case of error it checks if .dll/.so was built for the
1679// same architecture as Hotspot is running on
1680
1681void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1682  void * result= ::dlopen(filename, RTLD_LAZY);
1683  if (result != NULL) {
1684    // Successful loading
1685    return result;
1686  }
1687
1688  Elf32_Ehdr elf_head;
1689
1690  // Read system error message into ebuf
1691  // It may or may not be overwritten below
1692  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1693  ebuf[ebuflen-1]='\0';
1694  int diag_msg_max_length=ebuflen-strlen(ebuf);
1695  char* diag_msg_buf=ebuf+strlen(ebuf);
1696
1697  if (diag_msg_max_length==0) {
1698    // No more space in ebuf for additional diagnostics message
1699    return NULL;
1700  }
1701
1702
1703  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1704
1705  if (file_descriptor < 0) {
1706    // Can't open library, report dlerror() message
1707    return NULL;
1708  }
1709
1710  bool failed_to_read_elf_head=
1711    (sizeof(elf_head)!=
1712     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1713
1714  ::close(file_descriptor);
1715  if (failed_to_read_elf_head) {
1716    // file i/o error - report dlerror() msg
1717    return NULL;
1718  }
1719
1720  typedef struct {
1721    Elf32_Half  code;         // Actual value as defined in elf.h
1722    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1723    char        elf_class;    // 32 or 64 bit
1724    char        endianess;    // MSB or LSB
1725    char*       name;         // String representation
1726  } arch_t;
1727
1728  static const arch_t arch_array[]={
1729    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1730    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1731    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1732    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1733    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1734    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1735    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1736    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1737    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1738    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1739  };
1740
1741#if  (defined IA32)
1742  static  Elf32_Half running_arch_code=EM_386;
1743#elif   (defined AMD64)
1744  static  Elf32_Half running_arch_code=EM_X86_64;
1745#elif  (defined IA64)
1746  static  Elf32_Half running_arch_code=EM_IA_64;
1747#elif  (defined __sparc) && (defined _LP64)
1748  static  Elf32_Half running_arch_code=EM_SPARCV9;
1749#elif  (defined __sparc) && (!defined _LP64)
1750  static  Elf32_Half running_arch_code=EM_SPARC;
1751#elif  (defined __powerpc64__)
1752  static  Elf32_Half running_arch_code=EM_PPC64;
1753#elif  (defined __powerpc__)
1754  static  Elf32_Half running_arch_code=EM_PPC;
1755#elif (defined ARM)
1756  static  Elf32_Half running_arch_code=EM_ARM;
1757#else
1758  #error Method os::dll_load requires that one of following is defined:\
1759       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1760#endif
1761
1762  // Identify compatability class for VM's architecture and library's architecture
1763  // Obtain string descriptions for architectures
1764
1765  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1766  int running_arch_index=-1;
1767
1768  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1769    if (running_arch_code == arch_array[i].code) {
1770      running_arch_index    = i;
1771    }
1772    if (lib_arch.code == arch_array[i].code) {
1773      lib_arch.compat_class = arch_array[i].compat_class;
1774      lib_arch.name         = arch_array[i].name;
1775    }
1776  }
1777
1778  assert(running_arch_index != -1,
1779         "Didn't find running architecture code (running_arch_code) in arch_array");
1780  if (running_arch_index == -1) {
1781    // Even though running architecture detection failed
1782    // we may still continue with reporting dlerror() message
1783    return NULL;
1784  }
1785
1786  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1787    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1788    return NULL;
1789  }
1790
1791  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1792    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1793    return NULL;
1794  }
1795
1796  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1797    if (lib_arch.name!=NULL) {
1798      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1799                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1800                 lib_arch.name, arch_array[running_arch_index].name);
1801    } else {
1802      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1803                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1804                 lib_arch.code,
1805                 arch_array[running_arch_index].name);
1806    }
1807  }
1808
1809  return NULL;
1810}
1811
1812void* os::dll_lookup(void* handle, const char* name) {
1813  return dlsym(handle, name);
1814}
1815
1816void* os::get_default_process_handle() {
1817  return (void*)::dlopen(NULL, RTLD_LAZY);
1818}
1819
1820int os::stat(const char *path, struct stat *sbuf) {
1821  char pathbuf[MAX_PATH];
1822  if (strlen(path) > MAX_PATH - 1) {
1823    errno = ENAMETOOLONG;
1824    return -1;
1825  }
1826  os::native_path(strcpy(pathbuf, path));
1827  return ::stat(pathbuf, sbuf);
1828}
1829
1830static inline time_t get_mtime(const char* filename) {
1831  struct stat st;
1832  int ret = os::stat(filename, &st);
1833  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1834  return st.st_mtime;
1835}
1836
1837int os::compare_file_modified_times(const char* file1, const char* file2) {
1838  time_t t1 = get_mtime(file1);
1839  time_t t2 = get_mtime(file2);
1840  return t1 - t2;
1841}
1842
1843static bool _print_ascii_file(const char* filename, outputStream* st) {
1844  int fd = ::open(filename, O_RDONLY);
1845  if (fd == -1) {
1846    return false;
1847  }
1848
1849  char buf[32];
1850  int bytes;
1851  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1852    st->print_raw(buf, bytes);
1853  }
1854
1855  ::close(fd);
1856
1857  return true;
1858}
1859
1860void os::print_os_info_brief(outputStream* st) {
1861  os::Solaris::print_distro_info(st);
1862
1863  os::Posix::print_uname_info(st);
1864
1865  os::Solaris::print_libversion_info(st);
1866}
1867
1868void os::print_os_info(outputStream* st) {
1869  st->print("OS:");
1870
1871  os::Solaris::print_distro_info(st);
1872
1873  os::Posix::print_uname_info(st);
1874
1875  os::Solaris::print_libversion_info(st);
1876
1877  os::Posix::print_rlimit_info(st);
1878
1879  os::Posix::print_load_average(st);
1880}
1881
1882void os::Solaris::print_distro_info(outputStream* st) {
1883  if (!_print_ascii_file("/etc/release", st)) {
1884    st->print("Solaris");
1885  }
1886  st->cr();
1887}
1888
1889void os::get_summary_os_info(char* buf, size_t buflen) {
1890  strncpy(buf, "Solaris", buflen);  // default to plain solaris
1891  FILE* fp = fopen("/etc/release", "r");
1892  if (fp != NULL) {
1893    char tmp[256];
1894    // Only get the first line and chop out everything but the os name.
1895    if (fgets(tmp, sizeof(tmp), fp)) {
1896      char* ptr = tmp;
1897      // skip past whitespace characters
1898      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1899      if (*ptr != '\0') {
1900        char* nl = strchr(ptr, '\n');
1901        if (nl != NULL) *nl = '\0';
1902        strncpy(buf, ptr, buflen);
1903      }
1904    }
1905    fclose(fp);
1906  }
1907}
1908
1909void os::Solaris::print_libversion_info(outputStream* st) {
1910  st->print("  (T2 libthread)");
1911  st->cr();
1912}
1913
1914static bool check_addr0(outputStream* st) {
1915  jboolean status = false;
1916  const int read_chunk = 200;
1917  int ret = 0;
1918  int nmap = 0;
1919  int fd = ::open("/proc/self/map",O_RDONLY);
1920  if (fd >= 0) {
1921    prmap_t *p = NULL;
1922    char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1923    if (NULL == mbuff) {
1924      ::close(fd);
1925      return status;
1926    }
1927    while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1928      //check if read() has not read partial data
1929      if( 0 != ret % sizeof(prmap_t)){
1930        break;
1931      }
1932      nmap = ret / sizeof(prmap_t);
1933      p = (prmap_t *)mbuff;
1934      for(int i = 0; i < nmap; i++){
1935        if (p->pr_vaddr == 0x0) {
1936          st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1937          st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1938          st->print("Access: ");
1939          st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1940          st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1941          st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1942          st->cr();
1943          status = true;
1944        }
1945        p++;
1946      }
1947    }
1948    free(mbuff);
1949    ::close(fd);
1950  }
1951  return status;
1952}
1953
1954void os::get_summary_cpu_info(char* buf, size_t buflen) {
1955  // Get MHz with system call. We don't seem to already have this.
1956  processor_info_t stats;
1957  processorid_t id = getcpuid();
1958  int clock = 0;
1959  if (processor_info(id, &stats) != -1) {
1960    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1961  }
1962#ifdef AMD64
1963  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1964#else
1965  // must be sparc
1966  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1967#endif
1968}
1969
1970void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1971  // Nothing to do for now.
1972}
1973
1974void os::print_memory_info(outputStream* st) {
1975  st->print("Memory:");
1976  st->print(" %dk page", os::vm_page_size()>>10);
1977  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1978  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1979  st->cr();
1980  (void) check_addr0(st);
1981}
1982
1983// Moved from whole group, because we need them here for diagnostic
1984// prints.
1985#define OLDMAXSIGNUM 32
1986static int Maxsignum = 0;
1987static int *ourSigFlags = NULL;
1988
1989int os::Solaris::get_our_sigflags(int sig) {
1990  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1991  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1992  return ourSigFlags[sig];
1993}
1994
1995void os::Solaris::set_our_sigflags(int sig, int flags) {
1996  assert(ourSigFlags!=NULL, "signal data structure not initialized");
1997  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1998  ourSigFlags[sig] = flags;
1999}
2000
2001
2002static const char* get_signal_handler_name(address handler,
2003                                           char* buf, int buflen) {
2004  int offset;
2005  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2006  if (found) {
2007    // skip directory names
2008    const char *p1, *p2;
2009    p1 = buf;
2010    size_t len = strlen(os::file_separator());
2011    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2012    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2013  } else {
2014    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2015  }
2016  return buf;
2017}
2018
2019static void print_signal_handler(outputStream* st, int sig,
2020                                 char* buf, size_t buflen) {
2021  struct sigaction sa;
2022
2023  sigaction(sig, NULL, &sa);
2024
2025  st->print("%s: ", os::exception_name(sig, buf, buflen));
2026
2027  address handler = (sa.sa_flags & SA_SIGINFO)
2028                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2029                  : CAST_FROM_FN_PTR(address, sa.sa_handler);
2030
2031  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2032    st->print("SIG_DFL");
2033  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2034    st->print("SIG_IGN");
2035  } else {
2036    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2037  }
2038
2039  st->print(", sa_mask[0]=");
2040  os::Posix::print_signal_set_short(st, &sa.sa_mask);
2041
2042  address rh = VMError::get_resetted_sighandler(sig);
2043  // May be, handler was resetted by VMError?
2044  if (rh != NULL) {
2045    handler = rh;
2046    sa.sa_flags = VMError::get_resetted_sigflags(sig);
2047  }
2048
2049  st->print(", sa_flags=");
2050  os::Posix::print_sa_flags(st, sa.sa_flags);
2051
2052  // Check: is it our handler?
2053  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
2054    // It is our signal handler
2055    // check for flags
2056    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2057      st->print(
2058                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2059                os::Solaris::get_our_sigflags(sig));
2060    }
2061  }
2062  st->cr();
2063}
2064
2065void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2066  st->print_cr("Signal Handlers:");
2067  print_signal_handler(st, SIGSEGV, buf, buflen);
2068  print_signal_handler(st, SIGBUS , buf, buflen);
2069  print_signal_handler(st, SIGFPE , buf, buflen);
2070  print_signal_handler(st, SIGPIPE, buf, buflen);
2071  print_signal_handler(st, SIGXFSZ, buf, buflen);
2072  print_signal_handler(st, SIGILL , buf, buflen);
2073  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2074  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2075  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2076  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2077  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2078  print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2079}
2080
2081static char saved_jvm_path[MAXPATHLEN] = { 0 };
2082
2083// Find the full path to the current module, libjvm.so
2084void os::jvm_path(char *buf, jint buflen) {
2085  // Error checking.
2086  if (buflen < MAXPATHLEN) {
2087    assert(false, "must use a large-enough buffer");
2088    buf[0] = '\0';
2089    return;
2090  }
2091  // Lazy resolve the path to current module.
2092  if (saved_jvm_path[0] != 0) {
2093    strcpy(buf, saved_jvm_path);
2094    return;
2095  }
2096
2097  Dl_info dlinfo;
2098  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2099  assert(ret != 0, "cannot locate libjvm");
2100  if (ret != 0 && dlinfo.dli_fname != NULL) {
2101    realpath((char *)dlinfo.dli_fname, buf);
2102  } else {
2103    buf[0] = '\0';
2104    return;
2105  }
2106
2107  if (Arguments::sun_java_launcher_is_altjvm()) {
2108    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2109    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2110    // If "/jre/lib/" appears at the right place in the string, then
2111    // assume we are installed in a JDK and we're done.  Otherwise, check
2112    // for a JAVA_HOME environment variable and fix up the path so it
2113    // looks like libjvm.so is installed there (append a fake suffix
2114    // hotspot/libjvm.so).
2115    const char *p = buf + strlen(buf) - 1;
2116    for (int count = 0; p > buf && count < 5; ++count) {
2117      for (--p; p > buf && *p != '/'; --p)
2118        /* empty */ ;
2119    }
2120
2121    if (strncmp(p, "/jre/lib/", 9) != 0) {
2122      // Look for JAVA_HOME in the environment.
2123      char* java_home_var = ::getenv("JAVA_HOME");
2124      if (java_home_var != NULL && java_home_var[0] != 0) {
2125        char cpu_arch[12];
2126        char* jrelib_p;
2127        int   len;
2128        sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2129#ifdef _LP64
2130        // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2131        if (strcmp(cpu_arch, "sparc") == 0) {
2132          strcat(cpu_arch, "v9");
2133        } else if (strcmp(cpu_arch, "i386") == 0) {
2134          strcpy(cpu_arch, "amd64");
2135        }
2136#endif
2137        // Check the current module name "libjvm.so".
2138        p = strrchr(buf, '/');
2139        assert(strstr(p, "/libjvm") == p, "invalid library name");
2140
2141        realpath(java_home_var, buf);
2142        // determine if this is a legacy image or modules image
2143        // modules image doesn't have "jre" subdirectory
2144        len = strlen(buf);
2145        assert(len < buflen, "Ran out of buffer space");
2146        jrelib_p = buf + len;
2147        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2148        if (0 != access(buf, F_OK)) {
2149          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2150        }
2151
2152        if (0 == access(buf, F_OK)) {
2153          // Use current module name "libjvm.so"
2154          len = strlen(buf);
2155          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2156        } else {
2157          // Go back to path of .so
2158          realpath((char *)dlinfo.dli_fname, buf);
2159        }
2160      }
2161    }
2162  }
2163
2164  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2165  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2166}
2167
2168
2169void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2170  // no prefix required, not even "_"
2171}
2172
2173
2174void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2175  // no suffix required
2176}
2177
2178// This method is a copy of JDK's sysGetLastErrorString
2179// from src/solaris/hpi/src/system_md.c
2180
2181size_t os::lasterror(char *buf, size_t len) {
2182  if (errno == 0)  return 0;
2183
2184  const char *s = os::strerror(errno);
2185  size_t n = ::strlen(s);
2186  if (n >= len) {
2187    n = len - 1;
2188  }
2189  ::strncpy(buf, s, n);
2190  buf[n] = '\0';
2191  return n;
2192}
2193
2194
2195// sun.misc.Signal
2196
2197extern "C" {
2198  static void UserHandler(int sig, void *siginfo, void *context) {
2199    // Ctrl-C is pressed during error reporting, likely because the error
2200    // handler fails to abort. Let VM die immediately.
2201    if (sig == SIGINT && is_error_reported()) {
2202      os::die();
2203    }
2204
2205    os::signal_notify(sig);
2206    // We do not need to reinstate the signal handler each time...
2207  }
2208}
2209
2210void* os::user_handler() {
2211  return CAST_FROM_FN_PTR(void*, UserHandler);
2212}
2213
2214struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2215  struct timespec ts;
2216  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2217
2218  return ts;
2219}
2220
2221extern "C" {
2222  typedef void (*sa_handler_t)(int);
2223  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2224}
2225
2226void* os::signal(int signal_number, void* handler) {
2227  struct sigaction sigAct, oldSigAct;
2228  sigfillset(&(sigAct.sa_mask));
2229  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2230  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2231
2232  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2233    // -1 means registration failed
2234    return (void *)-1;
2235  }
2236
2237  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2238}
2239
2240void os::signal_raise(int signal_number) {
2241  raise(signal_number);
2242}
2243
2244// The following code is moved from os.cpp for making this
2245// code platform specific, which it is by its very nature.
2246
2247// a counter for each possible signal value
2248static int Sigexit = 0;
2249static int Maxlibjsigsigs;
2250static jint *pending_signals = NULL;
2251static int *preinstalled_sigs = NULL;
2252static struct sigaction *chainedsigactions = NULL;
2253static sema_t sig_sem;
2254typedef int (*version_getting_t)();
2255version_getting_t os::Solaris::get_libjsig_version = NULL;
2256static int libjsigversion = NULL;
2257
2258int os::sigexitnum_pd() {
2259  assert(Sigexit > 0, "signal memory not yet initialized");
2260  return Sigexit;
2261}
2262
2263void os::Solaris::init_signal_mem() {
2264  // Initialize signal structures
2265  Maxsignum = SIGRTMAX;
2266  Sigexit = Maxsignum+1;
2267  assert(Maxsignum >0, "Unable to obtain max signal number");
2268
2269  Maxlibjsigsigs = Maxsignum;
2270
2271  // pending_signals has one int per signal
2272  // The additional signal is for SIGEXIT - exit signal to signal_thread
2273  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2274  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2275
2276  if (UseSignalChaining) {
2277    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2278                                                   * (Maxsignum + 1), mtInternal);
2279    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2280    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2281    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2282  }
2283  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2284  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2285}
2286
2287void os::signal_init_pd() {
2288  int ret;
2289
2290  ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2291  assert(ret == 0, "sema_init() failed");
2292}
2293
2294void os::signal_notify(int signal_number) {
2295  int ret;
2296
2297  Atomic::inc(&pending_signals[signal_number]);
2298  ret = ::sema_post(&sig_sem);
2299  assert(ret == 0, "sema_post() failed");
2300}
2301
2302static int check_pending_signals(bool wait_for_signal) {
2303  int ret;
2304  while (true) {
2305    for (int i = 0; i < Sigexit + 1; i++) {
2306      jint n = pending_signals[i];
2307      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2308        return i;
2309      }
2310    }
2311    if (!wait_for_signal) {
2312      return -1;
2313    }
2314    JavaThread *thread = JavaThread::current();
2315    ThreadBlockInVM tbivm(thread);
2316
2317    bool threadIsSuspended;
2318    do {
2319      thread->set_suspend_equivalent();
2320      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2321      while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2322        ;
2323      assert(ret == 0, "sema_wait() failed");
2324
2325      // were we externally suspended while we were waiting?
2326      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2327      if (threadIsSuspended) {
2328        // The semaphore has been incremented, but while we were waiting
2329        // another thread suspended us. We don't want to continue running
2330        // while suspended because that would surprise the thread that
2331        // suspended us.
2332        ret = ::sema_post(&sig_sem);
2333        assert(ret == 0, "sema_post() failed");
2334
2335        thread->java_suspend_self();
2336      }
2337    } while (threadIsSuspended);
2338  }
2339}
2340
2341int os::signal_lookup() {
2342  return check_pending_signals(false);
2343}
2344
2345int os::signal_wait() {
2346  return check_pending_signals(true);
2347}
2348
2349////////////////////////////////////////////////////////////////////////////////
2350// Virtual Memory
2351
2352static int page_size = -1;
2353
2354// The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2355// clear this var if support is not available.
2356static bool has_map_align = true;
2357
2358int os::vm_page_size() {
2359  assert(page_size != -1, "must call os::init");
2360  return page_size;
2361}
2362
2363// Solaris allocates memory by pages.
2364int os::vm_allocation_granularity() {
2365  assert(page_size != -1, "must call os::init");
2366  return page_size;
2367}
2368
2369static bool recoverable_mmap_error(int err) {
2370  // See if the error is one we can let the caller handle. This
2371  // list of errno values comes from the Solaris mmap(2) man page.
2372  switch (err) {
2373  case EBADF:
2374  case EINVAL:
2375  case ENOTSUP:
2376    // let the caller deal with these errors
2377    return true;
2378
2379  default:
2380    // Any remaining errors on this OS can cause our reserved mapping
2381    // to be lost. That can cause confusion where different data
2382    // structures think they have the same memory mapped. The worst
2383    // scenario is if both the VM and a library think they have the
2384    // same memory mapped.
2385    return false;
2386  }
2387}
2388
2389static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2390                                    int err) {
2391  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2392          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2393          os::strerror(err), err);
2394}
2395
2396static void warn_fail_commit_memory(char* addr, size_t bytes,
2397                                    size_t alignment_hint, bool exec,
2398                                    int err) {
2399  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2400          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2401          alignment_hint, exec, os::strerror(err), err);
2402}
2403
2404int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2405  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2406  size_t size = bytes;
2407  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2408  if (res != NULL) {
2409    if (UseNUMAInterleaving) {
2410      numa_make_global(addr, bytes);
2411    }
2412    return 0;
2413  }
2414
2415  int err = errno;  // save errno from mmap() call in mmap_chunk()
2416
2417  if (!recoverable_mmap_error(err)) {
2418    warn_fail_commit_memory(addr, bytes, exec, err);
2419    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2420  }
2421
2422  return err;
2423}
2424
2425bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2426  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2427}
2428
2429void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2430                                  const char* mesg) {
2431  assert(mesg != NULL, "mesg must be specified");
2432  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2433  if (err != 0) {
2434    // the caller wants all commit errors to exit with the specified mesg:
2435    warn_fail_commit_memory(addr, bytes, exec, err);
2436    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2437  }
2438}
2439
2440size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2441  assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2442         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2443         alignment, (size_t) vm_page_size());
2444
2445  for (int i = 0; _page_sizes[i] != 0; i++) {
2446    if (is_size_aligned(alignment, _page_sizes[i])) {
2447      return _page_sizes[i];
2448    }
2449  }
2450
2451  return (size_t) vm_page_size();
2452}
2453
2454int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2455                                    size_t alignment_hint, bool exec) {
2456  int err = Solaris::commit_memory_impl(addr, bytes, exec);
2457  if (err == 0 && UseLargePages && alignment_hint > 0) {
2458    assert(is_size_aligned(bytes, alignment_hint),
2459           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2460
2461    // The syscall memcntl requires an exact page size (see man memcntl for details).
2462    size_t page_size = page_size_for_alignment(alignment_hint);
2463    if (page_size > (size_t) vm_page_size()) {
2464      (void)Solaris::setup_large_pages(addr, bytes, page_size);
2465    }
2466  }
2467  return err;
2468}
2469
2470bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2471                          bool exec) {
2472  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2473}
2474
2475void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2476                                  size_t alignment_hint, bool exec,
2477                                  const char* mesg) {
2478  assert(mesg != NULL, "mesg must be specified");
2479  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2480  if (err != 0) {
2481    // the caller wants all commit errors to exit with the specified mesg:
2482    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2483    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2484  }
2485}
2486
2487// Uncommit the pages in a specified region.
2488void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2489  if (madvise(addr, bytes, MADV_FREE) < 0) {
2490    debug_only(warning("MADV_FREE failed."));
2491    return;
2492  }
2493}
2494
2495bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2496  return os::commit_memory(addr, size, !ExecMem);
2497}
2498
2499bool os::remove_stack_guard_pages(char* addr, size_t size) {
2500  return os::uncommit_memory(addr, size);
2501}
2502
2503// Change the page size in a given range.
2504void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2505  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2506  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2507  if (UseLargePages) {
2508    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2509    if (page_size > (size_t) vm_page_size()) {
2510      Solaris::setup_large_pages(addr, bytes, page_size);
2511    }
2512  }
2513}
2514
2515// Tell the OS to make the range local to the first-touching LWP
2516void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2517  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2518  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2519    debug_only(warning("MADV_ACCESS_LWP failed."));
2520  }
2521}
2522
2523// Tell the OS that this range would be accessed from different LWPs.
2524void os::numa_make_global(char *addr, size_t bytes) {
2525  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2526  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2527    debug_only(warning("MADV_ACCESS_MANY failed."));
2528  }
2529}
2530
2531// Get the number of the locality groups.
2532size_t os::numa_get_groups_num() {
2533  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2534  return n != -1 ? n : 1;
2535}
2536
2537// Get a list of leaf locality groups. A leaf lgroup is group that
2538// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2539// board. An LWP is assigned to one of these groups upon creation.
2540size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2541  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2542    ids[0] = 0;
2543    return 1;
2544  }
2545  int result_size = 0, top = 1, bottom = 0, cur = 0;
2546  for (int k = 0; k < size; k++) {
2547    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2548                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
2549    if (r == -1) {
2550      ids[0] = 0;
2551      return 1;
2552    }
2553    if (!r) {
2554      // That's a leaf node.
2555      assert(bottom <= cur, "Sanity check");
2556      // Check if the node has memory
2557      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2558                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
2559        ids[bottom++] = ids[cur];
2560      }
2561    }
2562    top += r;
2563    cur++;
2564  }
2565  if (bottom == 0) {
2566    // Handle a situation, when the OS reports no memory available.
2567    // Assume UMA architecture.
2568    ids[0] = 0;
2569    return 1;
2570  }
2571  return bottom;
2572}
2573
2574// Detect the topology change. Typically happens during CPU plugging-unplugging.
2575bool os::numa_topology_changed() {
2576  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2577  if (is_stale != -1 && is_stale) {
2578    Solaris::lgrp_fini(Solaris::lgrp_cookie());
2579    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2580    assert(c != 0, "Failure to initialize LGRP API");
2581    Solaris::set_lgrp_cookie(c);
2582    return true;
2583  }
2584  return false;
2585}
2586
2587// Get the group id of the current LWP.
2588int os::numa_get_group_id() {
2589  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2590  if (lgrp_id == -1) {
2591    return 0;
2592  }
2593  const int size = os::numa_get_groups_num();
2594  int *ids = (int*)alloca(size * sizeof(int));
2595
2596  // Get the ids of all lgroups with memory; r is the count.
2597  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2598                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2599  if (r <= 0) {
2600    return 0;
2601  }
2602  return ids[os::random() % r];
2603}
2604
2605// Request information about the page.
2606bool os::get_page_info(char *start, page_info* info) {
2607  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2608  uint64_t addr = (uintptr_t)start;
2609  uint64_t outdata[2];
2610  uint_t validity = 0;
2611
2612  if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2613    return false;
2614  }
2615
2616  info->size = 0;
2617  info->lgrp_id = -1;
2618
2619  if ((validity & 1) != 0) {
2620    if ((validity & 2) != 0) {
2621      info->lgrp_id = outdata[0];
2622    }
2623    if ((validity & 4) != 0) {
2624      info->size = outdata[1];
2625    }
2626    return true;
2627  }
2628  return false;
2629}
2630
2631// Scan the pages from start to end until a page different than
2632// the one described in the info parameter is encountered.
2633char *os::scan_pages(char *start, char* end, page_info* page_expected,
2634                     page_info* page_found) {
2635  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2636  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2637  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2638  uint_t validity[MAX_MEMINFO_CNT];
2639
2640  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2641  uint64_t p = (uint64_t)start;
2642  while (p < (uint64_t)end) {
2643    addrs[0] = p;
2644    size_t addrs_count = 1;
2645    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2646      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2647      addrs_count++;
2648    }
2649
2650    if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2651      return NULL;
2652    }
2653
2654    size_t i = 0;
2655    for (; i < addrs_count; i++) {
2656      if ((validity[i] & 1) != 0) {
2657        if ((validity[i] & 4) != 0) {
2658          if (outdata[types * i + 1] != page_expected->size) {
2659            break;
2660          }
2661        } else if (page_expected->size != 0) {
2662          break;
2663        }
2664
2665        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2666          if (outdata[types * i] != page_expected->lgrp_id) {
2667            break;
2668          }
2669        }
2670      } else {
2671        return NULL;
2672      }
2673    }
2674
2675    if (i < addrs_count) {
2676      if ((validity[i] & 2) != 0) {
2677        page_found->lgrp_id = outdata[types * i];
2678      } else {
2679        page_found->lgrp_id = -1;
2680      }
2681      if ((validity[i] & 4) != 0) {
2682        page_found->size = outdata[types * i + 1];
2683      } else {
2684        page_found->size = 0;
2685      }
2686      return (char*)addrs[i];
2687    }
2688
2689    p = addrs[addrs_count - 1] + page_size;
2690  }
2691  return end;
2692}
2693
2694bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2695  size_t size = bytes;
2696  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2697  // uncommitted page. Otherwise, the read/write might succeed if we
2698  // have enough swap space to back the physical page.
2699  return
2700    NULL != Solaris::mmap_chunk(addr, size,
2701                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2702                                PROT_NONE);
2703}
2704
2705char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2706  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2707
2708  if (b == MAP_FAILED) {
2709    return NULL;
2710  }
2711  return b;
2712}
2713
2714char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2715                             size_t alignment_hint, bool fixed) {
2716  char* addr = requested_addr;
2717  int flags = MAP_PRIVATE | MAP_NORESERVE;
2718
2719  assert(!(fixed && (alignment_hint > 0)),
2720         "alignment hint meaningless with fixed mmap");
2721
2722  if (fixed) {
2723    flags |= MAP_FIXED;
2724  } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2725    flags |= MAP_ALIGN;
2726    addr = (char*) alignment_hint;
2727  }
2728
2729  // Map uncommitted pages PROT_NONE so we fail early if we touch an
2730  // uncommitted page. Otherwise, the read/write might succeed if we
2731  // have enough swap space to back the physical page.
2732  return mmap_chunk(addr, bytes, flags, PROT_NONE);
2733}
2734
2735char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2736                            size_t alignment_hint) {
2737  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2738                                  (requested_addr != NULL));
2739
2740  guarantee(requested_addr == NULL || requested_addr == addr,
2741            "OS failed to return requested mmap address.");
2742  return addr;
2743}
2744
2745// Reserve memory at an arbitrary address, only if that area is
2746// available (and not reserved for something else).
2747
2748char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2749  const int max_tries = 10;
2750  char* base[max_tries];
2751  size_t size[max_tries];
2752
2753  // Solaris adds a gap between mmap'ed regions.  The size of the gap
2754  // is dependent on the requested size and the MMU.  Our initial gap
2755  // value here is just a guess and will be corrected later.
2756  bool had_top_overlap = false;
2757  bool have_adjusted_gap = false;
2758  size_t gap = 0x400000;
2759
2760  // Assert only that the size is a multiple of the page size, since
2761  // that's all that mmap requires, and since that's all we really know
2762  // about at this low abstraction level.  If we need higher alignment,
2763  // we can either pass an alignment to this method or verify alignment
2764  // in one of the methods further up the call chain.  See bug 5044738.
2765  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2766
2767  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2768  // Give it a try, if the kernel honors the hint we can return immediately.
2769  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2770
2771  volatile int err = errno;
2772  if (addr == requested_addr) {
2773    return addr;
2774  } else if (addr != NULL) {
2775    pd_unmap_memory(addr, bytes);
2776  }
2777
2778  if (log_is_enabled(Warning, os)) {
2779    char buf[256];
2780    buf[0] = '\0';
2781    if (addr == NULL) {
2782      jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2783    }
2784    log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2785            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2786            "%s", bytes, requested_addr, addr, buf);
2787  }
2788
2789  // Address hint method didn't work.  Fall back to the old method.
2790  // In theory, once SNV becomes our oldest supported platform, this
2791  // code will no longer be needed.
2792  //
2793  // Repeatedly allocate blocks until the block is allocated at the
2794  // right spot. Give up after max_tries.
2795  int i;
2796  for (i = 0; i < max_tries; ++i) {
2797    base[i] = reserve_memory(bytes);
2798
2799    if (base[i] != NULL) {
2800      // Is this the block we wanted?
2801      if (base[i] == requested_addr) {
2802        size[i] = bytes;
2803        break;
2804      }
2805
2806      // check that the gap value is right
2807      if (had_top_overlap && !have_adjusted_gap) {
2808        size_t actual_gap = base[i-1] - base[i] - bytes;
2809        if (gap != actual_gap) {
2810          // adjust the gap value and retry the last 2 allocations
2811          assert(i > 0, "gap adjustment code problem");
2812          have_adjusted_gap = true;  // adjust the gap only once, just in case
2813          gap = actual_gap;
2814          log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2815          unmap_memory(base[i], bytes);
2816          unmap_memory(base[i-1], size[i-1]);
2817          i-=2;
2818          continue;
2819        }
2820      }
2821
2822      // Does this overlap the block we wanted? Give back the overlapped
2823      // parts and try again.
2824      //
2825      // There is still a bug in this code: if top_overlap == bytes,
2826      // the overlap is offset from requested region by the value of gap.
2827      // In this case giving back the overlapped part will not work,
2828      // because we'll give back the entire block at base[i] and
2829      // therefore the subsequent allocation will not generate a new gap.
2830      // This could be fixed with a new algorithm that used larger
2831      // or variable size chunks to find the requested region -
2832      // but such a change would introduce additional complications.
2833      // It's rare enough that the planets align for this bug,
2834      // so we'll just wait for a fix for 6204603/5003415 which
2835      // will provide a mmap flag to allow us to avoid this business.
2836
2837      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2838      if (top_overlap >= 0 && top_overlap < bytes) {
2839        had_top_overlap = true;
2840        unmap_memory(base[i], top_overlap);
2841        base[i] += top_overlap;
2842        size[i] = bytes - top_overlap;
2843      } else {
2844        size_t bottom_overlap = base[i] + bytes - requested_addr;
2845        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2846          if (bottom_overlap == 0) {
2847            log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2848          }
2849          unmap_memory(requested_addr, bottom_overlap);
2850          size[i] = bytes - bottom_overlap;
2851        } else {
2852          size[i] = bytes;
2853        }
2854      }
2855    }
2856  }
2857
2858  // Give back the unused reserved pieces.
2859
2860  for (int j = 0; j < i; ++j) {
2861    if (base[j] != NULL) {
2862      unmap_memory(base[j], size[j]);
2863    }
2864  }
2865
2866  return (i < max_tries) ? requested_addr : NULL;
2867}
2868
2869bool os::pd_release_memory(char* addr, size_t bytes) {
2870  size_t size = bytes;
2871  return munmap(addr, size) == 0;
2872}
2873
2874static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2875  assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2876         "addr must be page aligned");
2877  int retVal = mprotect(addr, bytes, prot);
2878  return retVal == 0;
2879}
2880
2881// Protect memory (Used to pass readonly pages through
2882// JNI GetArray<type>Elements with empty arrays.)
2883// Also, used for serialization page and for compressed oops null pointer
2884// checking.
2885bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2886                        bool is_committed) {
2887  unsigned int p = 0;
2888  switch (prot) {
2889  case MEM_PROT_NONE: p = PROT_NONE; break;
2890  case MEM_PROT_READ: p = PROT_READ; break;
2891  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2892  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2893  default:
2894    ShouldNotReachHere();
2895  }
2896  // is_committed is unused.
2897  return solaris_mprotect(addr, bytes, p);
2898}
2899
2900// guard_memory and unguard_memory only happens within stack guard pages.
2901// Since ISM pertains only to the heap, guard and unguard memory should not
2902/// happen with an ISM region.
2903bool os::guard_memory(char* addr, size_t bytes) {
2904  return solaris_mprotect(addr, bytes, PROT_NONE);
2905}
2906
2907bool os::unguard_memory(char* addr, size_t bytes) {
2908  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2909}
2910
2911// Large page support
2912static size_t _large_page_size = 0;
2913
2914// Insertion sort for small arrays (descending order).
2915static void insertion_sort_descending(size_t* array, int len) {
2916  for (int i = 0; i < len; i++) {
2917    size_t val = array[i];
2918    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2919      size_t tmp = array[key];
2920      array[key] = array[key - 1];
2921      array[key - 1] = tmp;
2922    }
2923  }
2924}
2925
2926bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2927  const unsigned int usable_count = VM_Version::page_size_count();
2928  if (usable_count == 1) {
2929    return false;
2930  }
2931
2932  // Find the right getpagesizes interface.  When solaris 11 is the minimum
2933  // build platform, getpagesizes() (without the '2') can be called directly.
2934  typedef int (*gps_t)(size_t[], int);
2935  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2936  if (gps_func == NULL) {
2937    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2938    if (gps_func == NULL) {
2939      if (warn) {
2940        warning("MPSS is not supported by the operating system.");
2941      }
2942      return false;
2943    }
2944  }
2945
2946  // Fill the array of page sizes.
2947  int n = (*gps_func)(_page_sizes, page_sizes_max);
2948  assert(n > 0, "Solaris bug?");
2949
2950  if (n == page_sizes_max) {
2951    // Add a sentinel value (necessary only if the array was completely filled
2952    // since it is static (zeroed at initialization)).
2953    _page_sizes[--n] = 0;
2954    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2955  }
2956  assert(_page_sizes[n] == 0, "missing sentinel");
2957  trace_page_sizes("available page sizes", _page_sizes, n);
2958
2959  if (n == 1) return false;     // Only one page size available.
2960
2961  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2962  // select up to usable_count elements.  First sort the array, find the first
2963  // acceptable value, then copy the usable sizes to the top of the array and
2964  // trim the rest.  Make sure to include the default page size :-).
2965  //
2966  // A better policy could get rid of the 4M limit by taking the sizes of the
2967  // important VM memory regions (java heap and possibly the code cache) into
2968  // account.
2969  insertion_sort_descending(_page_sizes, n);
2970  const size_t size_limit =
2971    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2972  int beg;
2973  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2974  const int end = MIN2((int)usable_count, n) - 1;
2975  for (int cur = 0; cur < end; ++cur, ++beg) {
2976    _page_sizes[cur] = _page_sizes[beg];
2977  }
2978  _page_sizes[end] = vm_page_size();
2979  _page_sizes[end + 1] = 0;
2980
2981  if (_page_sizes[end] > _page_sizes[end - 1]) {
2982    // Default page size is not the smallest; sort again.
2983    insertion_sort_descending(_page_sizes, end + 1);
2984  }
2985  *page_size = _page_sizes[0];
2986
2987  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2988  return true;
2989}
2990
2991void os::large_page_init() {
2992  if (UseLargePages) {
2993    // print a warning if any large page related flag is specified on command line
2994    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2995                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2996
2997    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2998  }
2999}
3000
3001bool os::Solaris::is_valid_page_size(size_t bytes) {
3002  for (int i = 0; _page_sizes[i] != 0; i++) {
3003    if (_page_sizes[i] == bytes) {
3004      return true;
3005    }
3006  }
3007  return false;
3008}
3009
3010bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3011  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
3012  assert(is_ptr_aligned((void*) start, align),
3013         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
3014  assert(is_size_aligned(bytes, align),
3015         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
3016
3017  // Signal to OS that we want large pages for addresses
3018  // from addr, addr + bytes
3019  struct memcntl_mha mpss_struct;
3020  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3021  mpss_struct.mha_pagesize = align;
3022  mpss_struct.mha_flags = 0;
3023  // Upon successful completion, memcntl() returns 0
3024  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3025    debug_only(warning("Attempt to use MPSS failed."));
3026    return false;
3027  }
3028  return true;
3029}
3030
3031char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3032  fatal("os::reserve_memory_special should not be called on Solaris.");
3033  return NULL;
3034}
3035
3036bool os::release_memory_special(char* base, size_t bytes) {
3037  fatal("os::release_memory_special should not be called on Solaris.");
3038  return false;
3039}
3040
3041size_t os::large_page_size() {
3042  return _large_page_size;
3043}
3044
3045// MPSS allows application to commit large page memory on demand; with ISM
3046// the entire memory region must be allocated as shared memory.
3047bool os::can_commit_large_page_memory() {
3048  return true;
3049}
3050
3051bool os::can_execute_large_page_memory() {
3052  return true;
3053}
3054
3055// Read calls from inside the vm need to perform state transitions
3056size_t os::read(int fd, void *buf, unsigned int nBytes) {
3057  size_t res;
3058  JavaThread* thread = (JavaThread*)Thread::current();
3059  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3060  ThreadBlockInVM tbiv(thread);
3061  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3062  return res;
3063}
3064
3065size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3066  size_t res;
3067  JavaThread* thread = (JavaThread*)Thread::current();
3068  assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3069  ThreadBlockInVM tbiv(thread);
3070  RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3071  return res;
3072}
3073
3074size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3075  size_t res;
3076  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3077         "Assumed _thread_in_native");
3078  RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3079  return res;
3080}
3081
3082void os::naked_short_sleep(jlong ms) {
3083  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3084
3085  // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3086  // Solaris requires -lrt for this.
3087  usleep((ms * 1000));
3088
3089  return;
3090}
3091
3092// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3093void os::infinite_sleep() {
3094  while (true) {    // sleep forever ...
3095    ::sleep(100);   // ... 100 seconds at a time
3096  }
3097}
3098
3099// Used to convert frequent JVM_Yield() to nops
3100bool os::dont_yield() {
3101  if (DontYieldALot) {
3102    static hrtime_t last_time = 0;
3103    hrtime_t diff = getTimeNanos() - last_time;
3104
3105    if (diff < DontYieldALotInterval * 1000000) {
3106      return true;
3107    }
3108
3109    last_time += diff;
3110
3111    return false;
3112  } else {
3113    return false;
3114  }
3115}
3116
3117// Note that yield semantics are defined by the scheduling class to which
3118// the thread currently belongs.  Typically, yield will _not yield to
3119// other equal or higher priority threads that reside on the dispatch queues
3120// of other CPUs.
3121
3122void os::naked_yield() {
3123  thr_yield();
3124}
3125
3126// Interface for setting lwp priorities.  If we are using T2 libthread,
3127// which forces the use of BoundThreads or we manually set UseBoundThreads,
3128// all of our threads will be assigned to real lwp's.  Using the thr_setprio
3129// function is meaningless in this mode so we must adjust the real lwp's priority
3130// The routines below implement the getting and setting of lwp priorities.
3131//
3132// Note: T2 is now the only supported libthread. UseBoundThreads flag is
3133//       being deprecated and all threads are now BoundThreads
3134//
3135// Note: There are three priority scales used on Solaris.  Java priotities
3136//       which range from 1 to 10, libthread "thr_setprio" scale which range
3137//       from 0 to 127, and the current scheduling class of the process we
3138//       are running in.  This is typically from -60 to +60.
3139//       The setting of the lwp priorities in done after a call to thr_setprio
3140//       so Java priorities are mapped to libthread priorities and we map from
3141//       the latter to lwp priorities.  We don't keep priorities stored in
3142//       Java priorities since some of our worker threads want to set priorities
3143//       higher than all Java threads.
3144//
3145// For related information:
3146// (1)  man -s 2 priocntl
3147// (2)  man -s 4 priocntl
3148// (3)  man dispadmin
3149// =    librt.so
3150// =    libthread/common/rtsched.c - thrp_setlwpprio().
3151// =    ps -cL <pid> ... to validate priority.
3152// =    sched_get_priority_min and _max
3153//              pthread_create
3154//              sched_setparam
3155//              pthread_setschedparam
3156//
3157// Assumptions:
3158// +    We assume that all threads in the process belong to the same
3159//              scheduling class.   IE. an homogenous process.
3160// +    Must be root or in IA group to change change "interactive" attribute.
3161//              Priocntl() will fail silently.  The only indication of failure is when
3162//              we read-back the value and notice that it hasn't changed.
3163// +    Interactive threads enter the runq at the head, non-interactive at the tail.
3164// +    For RT, change timeslice as well.  Invariant:
3165//              constant "priority integral"
3166//              Konst == TimeSlice * (60-Priority)
3167//              Given a priority, compute appropriate timeslice.
3168// +    Higher numerical values have higher priority.
3169
3170// sched class attributes
3171typedef struct {
3172  int   schedPolicy;              // classID
3173  int   maxPrio;
3174  int   minPrio;
3175} SchedInfo;
3176
3177
3178static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3179
3180#ifdef ASSERT
3181static int  ReadBackValidate = 1;
3182#endif
3183static int  myClass     = 0;
3184static int  myMin       = 0;
3185static int  myMax       = 0;
3186static int  myCur       = 0;
3187static bool priocntl_enable = false;
3188
3189static const int criticalPrio = FXCriticalPriority;
3190static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3191
3192
3193// lwp_priocntl_init
3194//
3195// Try to determine the priority scale for our process.
3196//
3197// Return errno or 0 if OK.
3198//
3199static int lwp_priocntl_init() {
3200  int rslt;
3201  pcinfo_t ClassInfo;
3202  pcparms_t ParmInfo;
3203  int i;
3204
3205  if (!UseThreadPriorities) return 0;
3206
3207  // If ThreadPriorityPolicy is 1, switch tables
3208  if (ThreadPriorityPolicy == 1) {
3209    for (i = 0; i < CriticalPriority+1; i++)
3210      os::java_to_os_priority[i] = prio_policy1[i];
3211  }
3212  if (UseCriticalJavaThreadPriority) {
3213    // MaxPriority always maps to the FX scheduling class and criticalPrio.
3214    // See set_native_priority() and set_lwp_class_and_priority().
3215    // Save original MaxPriority mapping in case attempt to
3216    // use critical priority fails.
3217    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3218    // Set negative to distinguish from other priorities
3219    os::java_to_os_priority[MaxPriority] = -criticalPrio;
3220  }
3221
3222  // Get IDs for a set of well-known scheduling classes.
3223  // TODO-FIXME: GETCLINFO returns the current # of classes in the
3224  // the system.  We should have a loop that iterates over the
3225  // classID values, which are known to be "small" integers.
3226
3227  strcpy(ClassInfo.pc_clname, "TS");
3228  ClassInfo.pc_cid = -1;
3229  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3230  if (rslt < 0) return errno;
3231  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3232  tsLimits.schedPolicy = ClassInfo.pc_cid;
3233  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3234  tsLimits.minPrio = -tsLimits.maxPrio;
3235
3236  strcpy(ClassInfo.pc_clname, "IA");
3237  ClassInfo.pc_cid = -1;
3238  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3239  if (rslt < 0) return errno;
3240  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3241  iaLimits.schedPolicy = ClassInfo.pc_cid;
3242  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3243  iaLimits.minPrio = -iaLimits.maxPrio;
3244
3245  strcpy(ClassInfo.pc_clname, "RT");
3246  ClassInfo.pc_cid = -1;
3247  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3248  if (rslt < 0) return errno;
3249  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3250  rtLimits.schedPolicy = ClassInfo.pc_cid;
3251  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3252  rtLimits.minPrio = 0;
3253
3254  strcpy(ClassInfo.pc_clname, "FX");
3255  ClassInfo.pc_cid = -1;
3256  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3257  if (rslt < 0) return errno;
3258  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3259  fxLimits.schedPolicy = ClassInfo.pc_cid;
3260  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3261  fxLimits.minPrio = 0;
3262
3263  // Query our "current" scheduling class.
3264  // This will normally be IA, TS or, rarely, FX or RT.
3265  memset(&ParmInfo, 0, sizeof(ParmInfo));
3266  ParmInfo.pc_cid = PC_CLNULL;
3267  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3268  if (rslt < 0) return errno;
3269  myClass = ParmInfo.pc_cid;
3270
3271  // We now know our scheduling classId, get specific information
3272  // about the class.
3273  ClassInfo.pc_cid = myClass;
3274  ClassInfo.pc_clname[0] = 0;
3275  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3276  if (rslt < 0) return errno;
3277
3278  if (ThreadPriorityVerbose) {
3279    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3280  }
3281
3282  memset(&ParmInfo, 0, sizeof(pcparms_t));
3283  ParmInfo.pc_cid = PC_CLNULL;
3284  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3285  if (rslt < 0) return errno;
3286
3287  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3288    myMin = rtLimits.minPrio;
3289    myMax = rtLimits.maxPrio;
3290  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3291    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3292    myMin = iaLimits.minPrio;
3293    myMax = iaLimits.maxPrio;
3294    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3295  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3296    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3297    myMin = tsLimits.minPrio;
3298    myMax = tsLimits.maxPrio;
3299    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3300  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3301    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3302    myMin = fxLimits.minPrio;
3303    myMax = fxLimits.maxPrio;
3304    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3305  } else {
3306    // No clue - punt
3307    if (ThreadPriorityVerbose) {
3308      tty->print_cr("Unknown scheduling class: %s ... \n",
3309                    ClassInfo.pc_clname);
3310    }
3311    return EINVAL;      // no clue, punt
3312  }
3313
3314  if (ThreadPriorityVerbose) {
3315    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3316  }
3317
3318  priocntl_enable = true;  // Enable changing priorities
3319  return 0;
3320}
3321
3322#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3323#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3324#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3325#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3326
3327
3328// scale_to_lwp_priority
3329//
3330// Convert from the libthread "thr_setprio" scale to our current
3331// lwp scheduling class scale.
3332//
3333static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3334  int v;
3335
3336  if (x == 127) return rMax;            // avoid round-down
3337  v = (((x*(rMax-rMin)))/128)+rMin;
3338  return v;
3339}
3340
3341
3342// set_lwp_class_and_priority
3343int set_lwp_class_and_priority(int ThreadID, int lwpid,
3344                               int newPrio, int new_class, bool scale) {
3345  int rslt;
3346  int Actual, Expected, prv;
3347  pcparms_t ParmInfo;                   // for GET-SET
3348#ifdef ASSERT
3349  pcparms_t ReadBack;                   // for readback
3350#endif
3351
3352  // Set priority via PC_GETPARMS, update, PC_SETPARMS
3353  // Query current values.
3354  // TODO: accelerate this by eliminating the PC_GETPARMS call.
3355  // Cache "pcparms_t" in global ParmCache.
3356  // TODO: elide set-to-same-value
3357
3358  // If something went wrong on init, don't change priorities.
3359  if (!priocntl_enable) {
3360    if (ThreadPriorityVerbose) {
3361      tty->print_cr("Trying to set priority but init failed, ignoring");
3362    }
3363    return EINVAL;
3364  }
3365
3366  // If lwp hasn't started yet, just return
3367  // the _start routine will call us again.
3368  if (lwpid <= 0) {
3369    if (ThreadPriorityVerbose) {
3370      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3371                    INTPTR_FORMAT " to %d, lwpid not set",
3372                    ThreadID, newPrio);
3373    }
3374    return 0;
3375  }
3376
3377  if (ThreadPriorityVerbose) {
3378    tty->print_cr ("set_lwp_class_and_priority("
3379                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3380                   ThreadID, lwpid, newPrio);
3381  }
3382
3383  memset(&ParmInfo, 0, sizeof(pcparms_t));
3384  ParmInfo.pc_cid = PC_CLNULL;
3385  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3386  if (rslt < 0) return errno;
3387
3388  int cur_class = ParmInfo.pc_cid;
3389  ParmInfo.pc_cid = (id_t)new_class;
3390
3391  if (new_class == rtLimits.schedPolicy) {
3392    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3393    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3394                                                       rtLimits.maxPrio, newPrio)
3395                               : newPrio;
3396    rtInfo->rt_tqsecs  = RT_NOCHANGE;
3397    rtInfo->rt_tqnsecs = RT_NOCHANGE;
3398    if (ThreadPriorityVerbose) {
3399      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3400    }
3401  } else if (new_class == iaLimits.schedPolicy) {
3402    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3403    int maxClamped     = MIN2(iaLimits.maxPrio,
3404                              cur_class == new_class
3405                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3406    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3407                                                       maxClamped, newPrio)
3408                               : newPrio;
3409    iaInfo->ia_uprilim = cur_class == new_class
3410                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3411    iaInfo->ia_mode    = IA_NOCHANGE;
3412    if (ThreadPriorityVerbose) {
3413      tty->print_cr("IA: [%d...%d] %d->%d\n",
3414                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3415    }
3416  } else if (new_class == tsLimits.schedPolicy) {
3417    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3418    int maxClamped     = MIN2(tsLimits.maxPrio,
3419                              cur_class == new_class
3420                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3421    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3422                                                       maxClamped, newPrio)
3423                               : newPrio;
3424    tsInfo->ts_uprilim = cur_class == new_class
3425                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3426    if (ThreadPriorityVerbose) {
3427      tty->print_cr("TS: [%d...%d] %d->%d\n",
3428                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3429    }
3430  } else if (new_class == fxLimits.schedPolicy) {
3431    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3432    int maxClamped     = MIN2(fxLimits.maxPrio,
3433                              cur_class == new_class
3434                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3435    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3436                                                       maxClamped, newPrio)
3437                               : newPrio;
3438    fxInfo->fx_uprilim = cur_class == new_class
3439                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3440    fxInfo->fx_tqsecs  = FX_NOCHANGE;
3441    fxInfo->fx_tqnsecs = FX_NOCHANGE;
3442    if (ThreadPriorityVerbose) {
3443      tty->print_cr("FX: [%d...%d] %d->%d\n",
3444                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3445    }
3446  } else {
3447    if (ThreadPriorityVerbose) {
3448      tty->print_cr("Unknown new scheduling class %d\n", new_class);
3449    }
3450    return EINVAL;    // no clue, punt
3451  }
3452
3453  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3454  if (ThreadPriorityVerbose && rslt) {
3455    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3456  }
3457  if (rslt < 0) return errno;
3458
3459#ifdef ASSERT
3460  // Sanity check: read back what we just attempted to set.
3461  // In theory it could have changed in the interim ...
3462  //
3463  // The priocntl system call is tricky.
3464  // Sometimes it'll validate the priority value argument and
3465  // return EINVAL if unhappy.  At other times it fails silently.
3466  // Readbacks are prudent.
3467
3468  if (!ReadBackValidate) return 0;
3469
3470  memset(&ReadBack, 0, sizeof(pcparms_t));
3471  ReadBack.pc_cid = PC_CLNULL;
3472  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3473  assert(rslt >= 0, "priocntl failed");
3474  Actual = Expected = 0xBAD;
3475  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3476  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3477    Actual   = RTPRI(ReadBack)->rt_pri;
3478    Expected = RTPRI(ParmInfo)->rt_pri;
3479  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3480    Actual   = IAPRI(ReadBack)->ia_upri;
3481    Expected = IAPRI(ParmInfo)->ia_upri;
3482  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3483    Actual   = TSPRI(ReadBack)->ts_upri;
3484    Expected = TSPRI(ParmInfo)->ts_upri;
3485  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3486    Actual   = FXPRI(ReadBack)->fx_upri;
3487    Expected = FXPRI(ParmInfo)->fx_upri;
3488  } else {
3489    if (ThreadPriorityVerbose) {
3490      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3491                    ParmInfo.pc_cid);
3492    }
3493  }
3494
3495  if (Actual != Expected) {
3496    if (ThreadPriorityVerbose) {
3497      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3498                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3499    }
3500  }
3501#endif
3502
3503  return 0;
3504}
3505
3506// Solaris only gives access to 128 real priorities at a time,
3507// so we expand Java's ten to fill this range.  This would be better
3508// if we dynamically adjusted relative priorities.
3509//
3510// The ThreadPriorityPolicy option allows us to select 2 different
3511// priority scales.
3512//
3513// ThreadPriorityPolicy=0
3514// Since the Solaris' default priority is MaximumPriority, we do not
3515// set a priority lower than Max unless a priority lower than
3516// NormPriority is requested.
3517//
3518// ThreadPriorityPolicy=1
3519// This mode causes the priority table to get filled with
3520// linear values.  NormPriority get's mapped to 50% of the
3521// Maximum priority an so on.  This will cause VM threads
3522// to get unfair treatment against other Solaris processes
3523// which do not explicitly alter their thread priorities.
3524
3525int os::java_to_os_priority[CriticalPriority + 1] = {
3526  -99999,         // 0 Entry should never be used
3527
3528  0,              // 1 MinPriority
3529  32,             // 2
3530  64,             // 3
3531
3532  96,             // 4
3533  127,            // 5 NormPriority
3534  127,            // 6
3535
3536  127,            // 7
3537  127,            // 8
3538  127,            // 9 NearMaxPriority
3539
3540  127,            // 10 MaxPriority
3541
3542  -criticalPrio   // 11 CriticalPriority
3543};
3544
3545OSReturn os::set_native_priority(Thread* thread, int newpri) {
3546  OSThread* osthread = thread->osthread();
3547
3548  // Save requested priority in case the thread hasn't been started
3549  osthread->set_native_priority(newpri);
3550
3551  // Check for critical priority request
3552  bool fxcritical = false;
3553  if (newpri == -criticalPrio) {
3554    fxcritical = true;
3555    newpri = criticalPrio;
3556  }
3557
3558  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3559  if (!UseThreadPriorities) return OS_OK;
3560
3561  int status = 0;
3562
3563  if (!fxcritical) {
3564    // Use thr_setprio only if we have a priority that thr_setprio understands
3565    status = thr_setprio(thread->osthread()->thread_id(), newpri);
3566  }
3567
3568  int lwp_status =
3569          set_lwp_class_and_priority(osthread->thread_id(),
3570                                     osthread->lwp_id(),
3571                                     newpri,
3572                                     fxcritical ? fxLimits.schedPolicy : myClass,
3573                                     !fxcritical);
3574  if (lwp_status != 0 && fxcritical) {
3575    // Try again, this time without changing the scheduling class
3576    newpri = java_MaxPriority_to_os_priority;
3577    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3578                                            osthread->lwp_id(),
3579                                            newpri, myClass, false);
3580  }
3581  status |= lwp_status;
3582  return (status == 0) ? OS_OK : OS_ERR;
3583}
3584
3585
3586OSReturn os::get_native_priority(const Thread* const thread,
3587                                 int *priority_ptr) {
3588  int p;
3589  if (!UseThreadPriorities) {
3590    *priority_ptr = NormalPriority;
3591    return OS_OK;
3592  }
3593  int status = thr_getprio(thread->osthread()->thread_id(), &p);
3594  if (status != 0) {
3595    return OS_ERR;
3596  }
3597  *priority_ptr = p;
3598  return OS_OK;
3599}
3600
3601
3602// Hint to the underlying OS that a task switch would not be good.
3603// Void return because it's a hint and can fail.
3604void os::hint_no_preempt() {
3605  schedctl_start(schedctl_init());
3606}
3607
3608static void resume_clear_context(OSThread *osthread) {
3609  osthread->set_ucontext(NULL);
3610}
3611
3612static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3613  osthread->set_ucontext(context);
3614}
3615
3616static PosixSemaphore sr_semaphore;
3617
3618void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3619  // Save and restore errno to avoid confusing native code with EINTR
3620  // after sigsuspend.
3621  int old_errno = errno;
3622
3623  OSThread* osthread = thread->osthread();
3624  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3625
3626  os::SuspendResume::State current = osthread->sr.state();
3627  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3628    suspend_save_context(osthread, uc);
3629
3630    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3631    os::SuspendResume::State state = osthread->sr.suspended();
3632    if (state == os::SuspendResume::SR_SUSPENDED) {
3633      sigset_t suspend_set;  // signals for sigsuspend()
3634
3635      // get current set of blocked signals and unblock resume signal
3636      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3637      sigdelset(&suspend_set, os::Solaris::SIGasync());
3638
3639      sr_semaphore.signal();
3640      // wait here until we are resumed
3641      while (1) {
3642        sigsuspend(&suspend_set);
3643
3644        os::SuspendResume::State result = osthread->sr.running();
3645        if (result == os::SuspendResume::SR_RUNNING) {
3646          sr_semaphore.signal();
3647          break;
3648        }
3649      }
3650
3651    } else if (state == os::SuspendResume::SR_RUNNING) {
3652      // request was cancelled, continue
3653    } else {
3654      ShouldNotReachHere();
3655    }
3656
3657    resume_clear_context(osthread);
3658  } else if (current == os::SuspendResume::SR_RUNNING) {
3659    // request was cancelled, continue
3660  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3661    // ignore
3662  } else {
3663    // ignore
3664  }
3665
3666  errno = old_errno;
3667}
3668
3669void os::print_statistics() {
3670}
3671
3672bool os::message_box(const char* title, const char* message) {
3673  int i;
3674  fdStream err(defaultStream::error_fd());
3675  for (i = 0; i < 78; i++) err.print_raw("=");
3676  err.cr();
3677  err.print_raw_cr(title);
3678  for (i = 0; i < 78; i++) err.print_raw("-");
3679  err.cr();
3680  err.print_raw_cr(message);
3681  for (i = 0; i < 78; i++) err.print_raw("=");
3682  err.cr();
3683
3684  char buf[16];
3685  // Prevent process from exiting upon "read error" without consuming all CPU
3686  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3687
3688  return buf[0] == 'y' || buf[0] == 'Y';
3689}
3690
3691static int sr_notify(OSThread* osthread) {
3692  int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3693  assert_status(status == 0, status, "thr_kill");
3694  return status;
3695}
3696
3697// "Randomly" selected value for how long we want to spin
3698// before bailing out on suspending a thread, also how often
3699// we send a signal to a thread we want to resume
3700static const int RANDOMLY_LARGE_INTEGER = 1000000;
3701static const int RANDOMLY_LARGE_INTEGER2 = 100;
3702
3703static bool do_suspend(OSThread* osthread) {
3704  assert(osthread->sr.is_running(), "thread should be running");
3705  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3706
3707  // mark as suspended and send signal
3708  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3709    // failed to switch, state wasn't running?
3710    ShouldNotReachHere();
3711    return false;
3712  }
3713
3714  if (sr_notify(osthread) != 0) {
3715    ShouldNotReachHere();
3716  }
3717
3718  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3719  while (true) {
3720    if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3721      break;
3722    } else {
3723      // timeout
3724      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3725      if (cancelled == os::SuspendResume::SR_RUNNING) {
3726        return false;
3727      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3728        // make sure that we consume the signal on the semaphore as well
3729        sr_semaphore.wait();
3730        break;
3731      } else {
3732        ShouldNotReachHere();
3733        return false;
3734      }
3735    }
3736  }
3737
3738  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3739  return true;
3740}
3741
3742static void do_resume(OSThread* osthread) {
3743  assert(osthread->sr.is_suspended(), "thread should be suspended");
3744  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3745
3746  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3747    // failed to switch to WAKEUP_REQUEST
3748    ShouldNotReachHere();
3749    return;
3750  }
3751
3752  while (true) {
3753    if (sr_notify(osthread) == 0) {
3754      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3755        if (osthread->sr.is_running()) {
3756          return;
3757        }
3758      }
3759    } else {
3760      ShouldNotReachHere();
3761    }
3762  }
3763
3764  guarantee(osthread->sr.is_running(), "Must be running!");
3765}
3766
3767void os::SuspendedThreadTask::internal_do_task() {
3768  if (do_suspend(_thread->osthread())) {
3769    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3770    do_task(context);
3771    do_resume(_thread->osthread());
3772  }
3773}
3774
3775class PcFetcher : public os::SuspendedThreadTask {
3776 public:
3777  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3778  ExtendedPC result();
3779 protected:
3780  void do_task(const os::SuspendedThreadTaskContext& context);
3781 private:
3782  ExtendedPC _epc;
3783};
3784
3785ExtendedPC PcFetcher::result() {
3786  guarantee(is_done(), "task is not done yet.");
3787  return _epc;
3788}
3789
3790void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3791  Thread* thread = context.thread();
3792  OSThread* osthread = thread->osthread();
3793  if (osthread->ucontext() != NULL) {
3794    _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3795  } else {
3796    // NULL context is unexpected, double-check this is the VMThread
3797    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3798  }
3799}
3800
3801// A lightweight implementation that does not suspend the target thread and
3802// thus returns only a hint. Used for profiling only!
3803ExtendedPC os::get_thread_pc(Thread* thread) {
3804  // Make sure that it is called by the watcher and the Threads lock is owned.
3805  assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3806  // For now, is only used to profile the VM Thread
3807  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3808  PcFetcher fetcher(thread);
3809  fetcher.run();
3810  return fetcher.result();
3811}
3812
3813
3814// This does not do anything on Solaris. This is basically a hook for being
3815// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3816void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3817                              const methodHandle& method, JavaCallArguments* args,
3818                              Thread* thread) {
3819  f(value, method, args, thread);
3820}
3821
3822// This routine may be used by user applications as a "hook" to catch signals.
3823// The user-defined signal handler must pass unrecognized signals to this
3824// routine, and if it returns true (non-zero), then the signal handler must
3825// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3826// routine will never retun false (zero), but instead will execute a VM panic
3827// routine kill the process.
3828//
3829// If this routine returns false, it is OK to call it again.  This allows
3830// the user-defined signal handler to perform checks either before or after
3831// the VM performs its own checks.  Naturally, the user code would be making
3832// a serious error if it tried to handle an exception (such as a null check
3833// or breakpoint) that the VM was generating for its own correct operation.
3834//
3835// This routine may recognize any of the following kinds of signals:
3836// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3837// os::Solaris::SIGasync
3838// It should be consulted by handlers for any of those signals.
3839//
3840// The caller of this routine must pass in the three arguments supplied
3841// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3842// field of the structure passed to sigaction().  This routine assumes that
3843// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3844//
3845// Note that the VM will print warnings if it detects conflicting signal
3846// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3847//
3848extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3849                                                   siginfo_t* siginfo,
3850                                                   void* ucontext,
3851                                                   int abort_if_unrecognized);
3852
3853
3854void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3855  int orig_errno = errno;  // Preserve errno value over signal handler.
3856  JVM_handle_solaris_signal(sig, info, ucVoid, true);
3857  errno = orig_errno;
3858}
3859
3860// This boolean allows users to forward their own non-matching signals
3861// to JVM_handle_solaris_signal, harmlessly.
3862bool os::Solaris::signal_handlers_are_installed = false;
3863
3864// For signal-chaining
3865bool os::Solaris::libjsig_is_loaded = false;
3866typedef struct sigaction *(*get_signal_t)(int);
3867get_signal_t os::Solaris::get_signal_action = NULL;
3868
3869struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3870  struct sigaction *actp = NULL;
3871
3872  if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3873    // Retrieve the old signal handler from libjsig
3874    actp = (*get_signal_action)(sig);
3875  }
3876  if (actp == NULL) {
3877    // Retrieve the preinstalled signal handler from jvm
3878    actp = get_preinstalled_handler(sig);
3879  }
3880
3881  return actp;
3882}
3883
3884static bool call_chained_handler(struct sigaction *actp, int sig,
3885                                 siginfo_t *siginfo, void *context) {
3886  // Call the old signal handler
3887  if (actp->sa_handler == SIG_DFL) {
3888    // It's more reasonable to let jvm treat it as an unexpected exception
3889    // instead of taking the default action.
3890    return false;
3891  } else if (actp->sa_handler != SIG_IGN) {
3892    if ((actp->sa_flags & SA_NODEFER) == 0) {
3893      // automaticlly block the signal
3894      sigaddset(&(actp->sa_mask), sig);
3895    }
3896
3897    sa_handler_t hand;
3898    sa_sigaction_t sa;
3899    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3900    // retrieve the chained handler
3901    if (siginfo_flag_set) {
3902      sa = actp->sa_sigaction;
3903    } else {
3904      hand = actp->sa_handler;
3905    }
3906
3907    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3908      actp->sa_handler = SIG_DFL;
3909    }
3910
3911    // try to honor the signal mask
3912    sigset_t oset;
3913    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3914
3915    // call into the chained handler
3916    if (siginfo_flag_set) {
3917      (*sa)(sig, siginfo, context);
3918    } else {
3919      (*hand)(sig);
3920    }
3921
3922    // restore the signal mask
3923    pthread_sigmask(SIG_SETMASK, &oset, 0);
3924  }
3925  // Tell jvm's signal handler the signal is taken care of.
3926  return true;
3927}
3928
3929bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3930  bool chained = false;
3931  // signal-chaining
3932  if (UseSignalChaining) {
3933    struct sigaction *actp = get_chained_signal_action(sig);
3934    if (actp != NULL) {
3935      chained = call_chained_handler(actp, sig, siginfo, context);
3936    }
3937  }
3938  return chained;
3939}
3940
3941struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3942  assert((chainedsigactions != (struct sigaction *)NULL) &&
3943         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3944  if (preinstalled_sigs[sig] != 0) {
3945    return &chainedsigactions[sig];
3946  }
3947  return NULL;
3948}
3949
3950void os::Solaris::save_preinstalled_handler(int sig,
3951                                            struct sigaction& oldAct) {
3952  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3953  assert((chainedsigactions != (struct sigaction *)NULL) &&
3954         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3955  chainedsigactions[sig] = oldAct;
3956  preinstalled_sigs[sig] = 1;
3957}
3958
3959void os::Solaris::set_signal_handler(int sig, bool set_installed,
3960                                     bool oktochain) {
3961  // Check for overwrite.
3962  struct sigaction oldAct;
3963  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3964  void* oldhand =
3965      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3966                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3967  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3968      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3969      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3970    if (AllowUserSignalHandlers || !set_installed) {
3971      // Do not overwrite; user takes responsibility to forward to us.
3972      return;
3973    } else if (UseSignalChaining) {
3974      if (oktochain) {
3975        // save the old handler in jvm
3976        save_preinstalled_handler(sig, oldAct);
3977      } else {
3978        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3979      }
3980      // libjsig also interposes the sigaction() call below and saves the
3981      // old sigaction on it own.
3982    } else {
3983      fatal("Encountered unexpected pre-existing sigaction handler "
3984            "%#lx for signal %d.", (long)oldhand, sig);
3985    }
3986  }
3987
3988  struct sigaction sigAct;
3989  sigfillset(&(sigAct.sa_mask));
3990  sigAct.sa_handler = SIG_DFL;
3991
3992  sigAct.sa_sigaction = signalHandler;
3993  // Handle SIGSEGV on alternate signal stack if
3994  // not using stack banging
3995  if (!UseStackBanging && sig == SIGSEGV) {
3996    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3997  } else {
3998    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3999  }
4000  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4001
4002  sigaction(sig, &sigAct, &oldAct);
4003
4004  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4005                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4006  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4007}
4008
4009
4010#define DO_SIGNAL_CHECK(sig)                      \
4011  do {                                            \
4012    if (!sigismember(&check_signal_done, sig)) {  \
4013      os::Solaris::check_signal_handler(sig);     \
4014    }                                             \
4015  } while (0)
4016
4017// This method is a periodic task to check for misbehaving JNI applications
4018// under CheckJNI, we can add any periodic checks here
4019
4020void os::run_periodic_checks() {
4021  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4022  // thereby preventing a NULL checks.
4023  if (!check_addr0_done) check_addr0_done = check_addr0(tty);
4024
4025  if (check_signals == false) return;
4026
4027  // SEGV and BUS if overridden could potentially prevent
4028  // generation of hs*.log in the event of a crash, debugging
4029  // such a case can be very challenging, so we absolutely
4030  // check for the following for a good measure:
4031  DO_SIGNAL_CHECK(SIGSEGV);
4032  DO_SIGNAL_CHECK(SIGILL);
4033  DO_SIGNAL_CHECK(SIGFPE);
4034  DO_SIGNAL_CHECK(SIGBUS);
4035  DO_SIGNAL_CHECK(SIGPIPE);
4036  DO_SIGNAL_CHECK(SIGXFSZ);
4037
4038  // ReduceSignalUsage allows the user to override these handlers
4039  // see comments at the very top and jvm_solaris.h
4040  if (!ReduceSignalUsage) {
4041    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4042    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4043    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4044    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4045  }
4046
4047  // See comments above for using JVM1/JVM2
4048  DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4049
4050}
4051
4052typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4053
4054static os_sigaction_t os_sigaction = NULL;
4055
4056void os::Solaris::check_signal_handler(int sig) {
4057  char buf[O_BUFLEN];
4058  address jvmHandler = NULL;
4059
4060  struct sigaction act;
4061  if (os_sigaction == NULL) {
4062    // only trust the default sigaction, in case it has been interposed
4063    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4064    if (os_sigaction == NULL) return;
4065  }
4066
4067  os_sigaction(sig, (struct sigaction*)NULL, &act);
4068
4069  address thisHandler = (act.sa_flags & SA_SIGINFO)
4070    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4071    : CAST_FROM_FN_PTR(address, act.sa_handler);
4072
4073
4074  switch (sig) {
4075  case SIGSEGV:
4076  case SIGBUS:
4077  case SIGFPE:
4078  case SIGPIPE:
4079  case SIGXFSZ:
4080  case SIGILL:
4081    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4082    break;
4083
4084  case SHUTDOWN1_SIGNAL:
4085  case SHUTDOWN2_SIGNAL:
4086  case SHUTDOWN3_SIGNAL:
4087  case BREAK_SIGNAL:
4088    jvmHandler = (address)user_handler();
4089    break;
4090
4091  default:
4092    int asynsig = os::Solaris::SIGasync();
4093
4094    if (sig == asynsig) {
4095      jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4096    } else {
4097      return;
4098    }
4099    break;
4100  }
4101
4102
4103  if (thisHandler != jvmHandler) {
4104    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4105    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4106    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4107    // No need to check this sig any longer
4108    sigaddset(&check_signal_done, sig);
4109    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4110    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4111      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4112                    exception_name(sig, buf, O_BUFLEN));
4113    }
4114  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4115    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4116    tty->print("expected:");
4117    os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4118    tty->cr();
4119    tty->print("  found:");
4120    os::Posix::print_sa_flags(tty, act.sa_flags);
4121    tty->cr();
4122    // No need to check this sig any longer
4123    sigaddset(&check_signal_done, sig);
4124  }
4125
4126  // Print all the signal handler state
4127  if (sigismember(&check_signal_done, sig)) {
4128    print_signal_handlers(tty, buf, O_BUFLEN);
4129  }
4130
4131}
4132
4133void os::Solaris::install_signal_handlers() {
4134  bool libjsigdone = false;
4135  signal_handlers_are_installed = true;
4136
4137  // signal-chaining
4138  typedef void (*signal_setting_t)();
4139  signal_setting_t begin_signal_setting = NULL;
4140  signal_setting_t end_signal_setting = NULL;
4141  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4142                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4143  if (begin_signal_setting != NULL) {
4144    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4145                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4146    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4147                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4148    get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4149                                         dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4150    libjsig_is_loaded = true;
4151    if (os::Solaris::get_libjsig_version != NULL) {
4152      libjsigversion =  (*os::Solaris::get_libjsig_version)();
4153    }
4154    assert(UseSignalChaining, "should enable signal-chaining");
4155  }
4156  if (libjsig_is_loaded) {
4157    // Tell libjsig jvm is setting signal handlers
4158    (*begin_signal_setting)();
4159  }
4160
4161  set_signal_handler(SIGSEGV, true, true);
4162  set_signal_handler(SIGPIPE, true, true);
4163  set_signal_handler(SIGXFSZ, true, true);
4164  set_signal_handler(SIGBUS, true, true);
4165  set_signal_handler(SIGILL, true, true);
4166  set_signal_handler(SIGFPE, true, true);
4167
4168
4169  if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4170    // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4171    // can not register overridable signals which might be > 32
4172    if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4173      // Tell libjsig jvm has finished setting signal handlers
4174      (*end_signal_setting)();
4175      libjsigdone = true;
4176    }
4177  }
4178
4179  set_signal_handler(os::Solaris::SIGasync(), true, true);
4180
4181  if (libjsig_is_loaded && !libjsigdone) {
4182    // Tell libjsig jvm finishes setting signal handlers
4183    (*end_signal_setting)();
4184  }
4185
4186  // We don't activate signal checker if libjsig is in place, we trust ourselves
4187  // and if UserSignalHandler is installed all bets are off.
4188  // Log that signal checking is off only if -verbose:jni is specified.
4189  if (CheckJNICalls) {
4190    if (libjsig_is_loaded) {
4191      if (PrintJNIResolving) {
4192        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4193      }
4194      check_signals = false;
4195    }
4196    if (AllowUserSignalHandlers) {
4197      if (PrintJNIResolving) {
4198        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4199      }
4200      check_signals = false;
4201    }
4202  }
4203}
4204
4205
4206void report_error(const char* file_name, int line_no, const char* title,
4207                  const char* format, ...);
4208
4209// (Static) wrapper for getisax(2) call.
4210os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4211
4212// (Static) wrappers for the liblgrp API
4213os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4214os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4215os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4216os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4217os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4218os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4219os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4220os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4221os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4222
4223// (Static) wrapper for meminfo() call.
4224os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4225
4226static address resolve_symbol_lazy(const char* name) {
4227  address addr = (address) dlsym(RTLD_DEFAULT, name);
4228  if (addr == NULL) {
4229    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4230    addr = (address) dlsym(RTLD_NEXT, name);
4231  }
4232  return addr;
4233}
4234
4235static address resolve_symbol(const char* name) {
4236  address addr = resolve_symbol_lazy(name);
4237  if (addr == NULL) {
4238    fatal(dlerror());
4239  }
4240  return addr;
4241}
4242
4243void os::Solaris::libthread_init() {
4244  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4245
4246  lwp_priocntl_init();
4247
4248  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4249  if (func == NULL) {
4250    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4251    // Guarantee that this VM is running on an new enough OS (5.6 or
4252    // later) that it will have a new enough libthread.so.
4253    guarantee(func != NULL, "libthread.so is too old.");
4254  }
4255
4256  int size;
4257  void (*handler_info_func)(address *, int *);
4258  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4259  handler_info_func(&handler_start, &size);
4260  handler_end = handler_start + size;
4261}
4262
4263
4264int_fnP_mutex_tP os::Solaris::_mutex_lock;
4265int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4266int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4267int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4268int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4269int os::Solaris::_mutex_scope = USYNC_THREAD;
4270
4271int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4272int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4273int_fnP_cond_tP os::Solaris::_cond_signal;
4274int_fnP_cond_tP os::Solaris::_cond_broadcast;
4275int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4276int_fnP_cond_tP os::Solaris::_cond_destroy;
4277int os::Solaris::_cond_scope = USYNC_THREAD;
4278
4279void os::Solaris::synchronization_init() {
4280  if (UseLWPSynchronization) {
4281    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4282    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4283    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4284    os::Solaris::set_mutex_init(lwp_mutex_init);
4285    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4286    os::Solaris::set_mutex_scope(USYNC_THREAD);
4287
4288    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4289    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4290    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4291    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4292    os::Solaris::set_cond_init(lwp_cond_init);
4293    os::Solaris::set_cond_destroy(lwp_cond_destroy);
4294    os::Solaris::set_cond_scope(USYNC_THREAD);
4295  } else {
4296    os::Solaris::set_mutex_scope(USYNC_THREAD);
4297    os::Solaris::set_cond_scope(USYNC_THREAD);
4298
4299    if (UsePthreads) {
4300      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4301      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4302      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4303      os::Solaris::set_mutex_init(pthread_mutex_default_init);
4304      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4305
4306      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4307      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4308      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4309      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4310      os::Solaris::set_cond_init(pthread_cond_default_init);
4311      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4312    } else {
4313      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4314      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4315      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4316      os::Solaris::set_mutex_init(::mutex_init);
4317      os::Solaris::set_mutex_destroy(::mutex_destroy);
4318
4319      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4320      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4321      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4322      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4323      os::Solaris::set_cond_init(::cond_init);
4324      os::Solaris::set_cond_destroy(::cond_destroy);
4325    }
4326  }
4327}
4328
4329bool os::Solaris::liblgrp_init() {
4330  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4331  if (handle != NULL) {
4332    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4333    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4334    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4335    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4336    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4337    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4338    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4339    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4340                                                      dlsym(handle, "lgrp_cookie_stale")));
4341
4342    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4343    set_lgrp_cookie(c);
4344    return true;
4345  }
4346  return false;
4347}
4348
4349void os::Solaris::misc_sym_init() {
4350  address func;
4351
4352  // getisax
4353  func = resolve_symbol_lazy("getisax");
4354  if (func != NULL) {
4355    os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4356  }
4357
4358  // meminfo
4359  func = resolve_symbol_lazy("meminfo");
4360  if (func != NULL) {
4361    os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4362  }
4363}
4364
4365uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4366  assert(_getisax != NULL, "_getisax not set");
4367  return _getisax(array, n);
4368}
4369
4370// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4371typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4372static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4373
4374void init_pset_getloadavg_ptr(void) {
4375  pset_getloadavg_ptr =
4376    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4377  if (pset_getloadavg_ptr == NULL) {
4378    log_warning(os)("pset_getloadavg function not found");
4379  }
4380}
4381
4382int os::Solaris::_dev_zero_fd = -1;
4383
4384// this is called _before_ the global arguments have been parsed
4385void os::init(void) {
4386  _initial_pid = getpid();
4387
4388  max_hrtime = first_hrtime = gethrtime();
4389
4390  init_random(1234567);
4391
4392  page_size = sysconf(_SC_PAGESIZE);
4393  if (page_size == -1) {
4394    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4395  }
4396  init_page_sizes((size_t) page_size);
4397
4398  Solaris::initialize_system_info();
4399
4400  // Initialize misc. symbols as soon as possible, so we can use them
4401  // if we need them.
4402  Solaris::misc_sym_init();
4403
4404  int fd = ::open("/dev/zero", O_RDWR);
4405  if (fd < 0) {
4406    fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4407  } else {
4408    Solaris::set_dev_zero_fd(fd);
4409
4410    // Close on exec, child won't inherit.
4411    fcntl(fd, F_SETFD, FD_CLOEXEC);
4412  }
4413
4414  clock_tics_per_sec = CLK_TCK;
4415
4416  // check if dladdr1() exists; dladdr1 can provide more information than
4417  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4418  // and is available on linker patches for 5.7 and 5.8.
4419  // libdl.so must have been loaded, this call is just an entry lookup
4420  void * hdl = dlopen("libdl.so", RTLD_NOW);
4421  if (hdl) {
4422    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4423  }
4424
4425  // (Solaris only) this switches to calls that actually do locking.
4426  ThreadCritical::initialize();
4427
4428  main_thread = thr_self();
4429
4430  // Constant minimum stack size allowed. It must be at least
4431  // the minimum of what the OS supports (thr_min_stack()), and
4432  // enough to allow the thread to get to user bytecode execution.
4433  Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4434
4435  // retrieve entry point for pthread_setname_np
4436  void * handle = dlopen("libc.so.1", RTLD_LAZY);
4437  if (handle != NULL) {
4438    Solaris::_pthread_setname_np =
4439        (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4440  }
4441}
4442
4443// To install functions for atexit system call
4444extern "C" {
4445  static void perfMemory_exit_helper() {
4446    perfMemory_exit();
4447  }
4448}
4449
4450// this is called _after_ the global arguments have been parsed
4451jint os::init_2(void) {
4452  // try to enable extended file IO ASAP, see 6431278
4453  os::Solaris::try_enable_extended_io();
4454
4455  // Allocate a single page and mark it as readable for safepoint polling.  Also
4456  // use this first mmap call to check support for MAP_ALIGN.
4457  address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4458                                                      page_size,
4459                                                      MAP_PRIVATE | MAP_ALIGN,
4460                                                      PROT_READ);
4461  if (polling_page == NULL) {
4462    has_map_align = false;
4463    polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4464                                                PROT_READ);
4465  }
4466
4467  os::set_polling_page(polling_page);
4468  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4469
4470  if (!UseMembar) {
4471    address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4472    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4473    os::set_memory_serialize_page(mem_serialize_page);
4474    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4475  }
4476
4477  // Check minimum allowable stack size for thread creation and to initialize
4478  // the java system classes, including StackOverflowError - depends on page
4479  // size.  Add a page for compiler2 recursion in main thread.
4480  // Add in 2*BytesPerWord times page size to account for VM stack during
4481  // class initialization depending on 32 or 64 bit VM.
4482  os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4483                                        JavaThread::stack_guard_zone_size() +
4484                                        JavaThread::stack_shadow_zone_size() +
4485                                        (2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4486
4487  size_t threadStackSizeInBytes = ThreadStackSize * K;
4488  if (threadStackSizeInBytes != 0 &&
4489      threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4490    tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4491                  os::Solaris::min_stack_allowed/K);
4492    return JNI_ERR;
4493  }
4494
4495  // For 64kbps there will be a 64kb page size, which makes
4496  // the usable default stack size quite a bit less.  Increase the
4497  // stack for 64kb (or any > than 8kb) pages, this increases
4498  // virtual memory fragmentation (since we're not creating the
4499  // stack on a power of 2 boundary.  The real fix for this
4500  // should be to fix the guard page mechanism.
4501
4502  if (vm_page_size() > 8*K) {
4503    threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4504       ? threadStackSizeInBytes +
4505         JavaThread::stack_red_zone_size() +
4506         JavaThread::stack_yellow_zone_size()
4507       : 0;
4508    ThreadStackSize = threadStackSizeInBytes/K;
4509  }
4510
4511  // Make the stack size a multiple of the page size so that
4512  // the yellow/red zones can be guarded.
4513  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4514                                                vm_page_size()));
4515
4516  Solaris::libthread_init();
4517
4518  if (UseNUMA) {
4519    if (!Solaris::liblgrp_init()) {
4520      UseNUMA = false;
4521    } else {
4522      size_t lgrp_limit = os::numa_get_groups_num();
4523      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4524      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4525      FREE_C_HEAP_ARRAY(int, lgrp_ids);
4526      if (lgrp_num < 2) {
4527        // There's only one locality group, disable NUMA.
4528        UseNUMA = false;
4529      }
4530    }
4531    if (!UseNUMA && ForceNUMA) {
4532      UseNUMA = true;
4533    }
4534  }
4535
4536  Solaris::signal_sets_init();
4537  Solaris::init_signal_mem();
4538  Solaris::install_signal_handlers();
4539
4540  if (libjsigversion < JSIG_VERSION_1_4_1) {
4541    Maxlibjsigsigs = OLDMAXSIGNUM;
4542  }
4543
4544  // initialize synchronization primitives to use either thread or
4545  // lwp synchronization (controlled by UseLWPSynchronization)
4546  Solaris::synchronization_init();
4547
4548  if (MaxFDLimit) {
4549    // set the number of file descriptors to max. print out error
4550    // if getrlimit/setrlimit fails but continue regardless.
4551    struct rlimit nbr_files;
4552    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4553    if (status != 0) {
4554      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4555    } else {
4556      nbr_files.rlim_cur = nbr_files.rlim_max;
4557      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4558      if (status != 0) {
4559        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4560      }
4561    }
4562  }
4563
4564  // Calculate theoretical max. size of Threads to guard gainst
4565  // artifical out-of-memory situations, where all available address-
4566  // space has been reserved by thread stacks. Default stack size is 1Mb.
4567  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4568    JavaThread::stack_size_at_create() : (1*K*K);
4569  assert(pre_thread_stack_size != 0, "Must have a stack");
4570  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4571  // we should start doing Virtual Memory banging. Currently when the threads will
4572  // have used all but 200Mb of space.
4573  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4574  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4575
4576  // at-exit methods are called in the reverse order of their registration.
4577  // In Solaris 7 and earlier, atexit functions are called on return from
4578  // main or as a result of a call to exit(3C). There can be only 32 of
4579  // these functions registered and atexit() does not set errno. In Solaris
4580  // 8 and later, there is no limit to the number of functions registered
4581  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4582  // functions are called upon dlclose(3DL) in addition to return from main
4583  // and exit(3C).
4584
4585  if (PerfAllowAtExitRegistration) {
4586    // only register atexit functions if PerfAllowAtExitRegistration is set.
4587    // atexit functions can be delayed until process exit time, which
4588    // can be problematic for embedded VM situations. Embedded VMs should
4589    // call DestroyJavaVM() to assure that VM resources are released.
4590
4591    // note: perfMemory_exit_helper atexit function may be removed in
4592    // the future if the appropriate cleanup code can be added to the
4593    // VM_Exit VMOperation's doit method.
4594    if (atexit(perfMemory_exit_helper) != 0) {
4595      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4596    }
4597  }
4598
4599  // Init pset_loadavg function pointer
4600  init_pset_getloadavg_ptr();
4601
4602  return JNI_OK;
4603}
4604
4605// Mark the polling page as unreadable
4606void os::make_polling_page_unreadable(void) {
4607  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4608    fatal("Could not disable polling page");
4609  }
4610}
4611
4612// Mark the polling page as readable
4613void os::make_polling_page_readable(void) {
4614  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4615    fatal("Could not enable polling page");
4616  }
4617}
4618
4619// OS interface.
4620
4621bool os::check_heap(bool force) { return true; }
4622
4623// Is a (classpath) directory empty?
4624bool os::dir_is_empty(const char* path) {
4625  DIR *dir = NULL;
4626  struct dirent *ptr;
4627
4628  dir = opendir(path);
4629  if (dir == NULL) return true;
4630
4631  // Scan the directory
4632  bool result = true;
4633  char buf[sizeof(struct dirent) + MAX_PATH];
4634  struct dirent *dbuf = (struct dirent *) buf;
4635  while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4636    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4637      result = false;
4638    }
4639  }
4640  closedir(dir);
4641  return result;
4642}
4643
4644// This code originates from JDK's sysOpen and open64_w
4645// from src/solaris/hpi/src/system_md.c
4646
4647int os::open(const char *path, int oflag, int mode) {
4648  if (strlen(path) > MAX_PATH - 1) {
4649    errno = ENAMETOOLONG;
4650    return -1;
4651  }
4652  int fd;
4653
4654  fd = ::open64(path, oflag, mode);
4655  if (fd == -1) return -1;
4656
4657  // If the open succeeded, the file might still be a directory
4658  {
4659    struct stat64 buf64;
4660    int ret = ::fstat64(fd, &buf64);
4661    int st_mode = buf64.st_mode;
4662
4663    if (ret != -1) {
4664      if ((st_mode & S_IFMT) == S_IFDIR) {
4665        errno = EISDIR;
4666        ::close(fd);
4667        return -1;
4668      }
4669    } else {
4670      ::close(fd);
4671      return -1;
4672    }
4673  }
4674
4675  // 32-bit Solaris systems suffer from:
4676  //
4677  // - an historical default soft limit of 256 per-process file
4678  //   descriptors that is too low for many Java programs.
4679  //
4680  // - a design flaw where file descriptors created using stdio
4681  //   fopen must be less than 256, _even_ when the first limit above
4682  //   has been raised.  This can cause calls to fopen (but not calls to
4683  //   open, for example) to fail mysteriously, perhaps in 3rd party
4684  //   native code (although the JDK itself uses fopen).  One can hardly
4685  //   criticize them for using this most standard of all functions.
4686  //
4687  // We attempt to make everything work anyways by:
4688  //
4689  // - raising the soft limit on per-process file descriptors beyond
4690  //   256
4691  //
4692  // - As of Solaris 10u4, we can request that Solaris raise the 256
4693  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4694  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4695  //
4696  // - If we are stuck on an old (pre 10u4) Solaris system, we can
4697  //   workaround the bug by remapping non-stdio file descriptors below
4698  //   256 to ones beyond 256, which is done below.
4699  //
4700  // See:
4701  // 1085341: 32-bit stdio routines should support file descriptors >255
4702  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4703  // 6431278: Netbeans crash on 32 bit Solaris: need to call
4704  //          enable_extended_FILE_stdio() in VM initialisation
4705  // Giri Mandalika's blog
4706  // http://technopark02.blogspot.com/2005_05_01_archive.html
4707  //
4708#ifndef  _LP64
4709  if ((!enabled_extended_FILE_stdio) && fd < 256) {
4710    int newfd = ::fcntl(fd, F_DUPFD, 256);
4711    if (newfd != -1) {
4712      ::close(fd);
4713      fd = newfd;
4714    }
4715  }
4716#endif // 32-bit Solaris
4717
4718  // All file descriptors that are opened in the JVM and not
4719  // specifically destined for a subprocess should have the
4720  // close-on-exec flag set.  If we don't set it, then careless 3rd
4721  // party native code might fork and exec without closing all
4722  // appropriate file descriptors (e.g. as we do in closeDescriptors in
4723  // UNIXProcess.c), and this in turn might:
4724  //
4725  // - cause end-of-file to fail to be detected on some file
4726  //   descriptors, resulting in mysterious hangs, or
4727  //
4728  // - might cause an fopen in the subprocess to fail on a system
4729  //   suffering from bug 1085341.
4730  //
4731  // (Yes, the default setting of the close-on-exec flag is a Unix
4732  // design flaw)
4733  //
4734  // See:
4735  // 1085341: 32-bit stdio routines should support file descriptors >255
4736  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4737  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4738  //
4739#ifdef FD_CLOEXEC
4740  {
4741    int flags = ::fcntl(fd, F_GETFD);
4742    if (flags != -1) {
4743      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4744    }
4745  }
4746#endif
4747
4748  return fd;
4749}
4750
4751// create binary file, rewriting existing file if required
4752int os::create_binary_file(const char* path, bool rewrite_existing) {
4753  int oflags = O_WRONLY | O_CREAT;
4754  if (!rewrite_existing) {
4755    oflags |= O_EXCL;
4756  }
4757  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4758}
4759
4760// return current position of file pointer
4761jlong os::current_file_offset(int fd) {
4762  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4763}
4764
4765// move file pointer to the specified offset
4766jlong os::seek_to_file_offset(int fd, jlong offset) {
4767  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4768}
4769
4770jlong os::lseek(int fd, jlong offset, int whence) {
4771  return (jlong) ::lseek64(fd, offset, whence);
4772}
4773
4774char * os::native_path(char *path) {
4775  return path;
4776}
4777
4778int os::ftruncate(int fd, jlong length) {
4779  return ::ftruncate64(fd, length);
4780}
4781
4782int os::fsync(int fd)  {
4783  RESTARTABLE_RETURN_INT(::fsync(fd));
4784}
4785
4786int os::available(int fd, jlong *bytes) {
4787  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4788         "Assumed _thread_in_native");
4789  jlong cur, end;
4790  int mode;
4791  struct stat64 buf64;
4792
4793  if (::fstat64(fd, &buf64) >= 0) {
4794    mode = buf64.st_mode;
4795    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4796      int n,ioctl_return;
4797
4798      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4799      if (ioctl_return>= 0) {
4800        *bytes = n;
4801        return 1;
4802      }
4803    }
4804  }
4805  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4806    return 0;
4807  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4808    return 0;
4809  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4810    return 0;
4811  }
4812  *bytes = end - cur;
4813  return 1;
4814}
4815
4816// Map a block of memory.
4817char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4818                        char *addr, size_t bytes, bool read_only,
4819                        bool allow_exec) {
4820  int prot;
4821  int flags;
4822
4823  if (read_only) {
4824    prot = PROT_READ;
4825    flags = MAP_SHARED;
4826  } else {
4827    prot = PROT_READ | PROT_WRITE;
4828    flags = MAP_PRIVATE;
4829  }
4830
4831  if (allow_exec) {
4832    prot |= PROT_EXEC;
4833  }
4834
4835  if (addr != NULL) {
4836    flags |= MAP_FIXED;
4837  }
4838
4839  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4840                                     fd, file_offset);
4841  if (mapped_address == MAP_FAILED) {
4842    return NULL;
4843  }
4844  return mapped_address;
4845}
4846
4847
4848// Remap a block of memory.
4849char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4850                          char *addr, size_t bytes, bool read_only,
4851                          bool allow_exec) {
4852  // same as map_memory() on this OS
4853  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4854                        allow_exec);
4855}
4856
4857
4858// Unmap a block of memory.
4859bool os::pd_unmap_memory(char* addr, size_t bytes) {
4860  return munmap(addr, bytes) == 0;
4861}
4862
4863void os::pause() {
4864  char filename[MAX_PATH];
4865  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4866    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4867  } else {
4868    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4869  }
4870
4871  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4872  if (fd != -1) {
4873    struct stat buf;
4874    ::close(fd);
4875    while (::stat(filename, &buf) == 0) {
4876      (void)::poll(NULL, 0, 100);
4877    }
4878  } else {
4879    jio_fprintf(stderr,
4880                "Could not open pause file '%s', continuing immediately.\n", filename);
4881  }
4882}
4883
4884#ifndef PRODUCT
4885#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4886// Turn this on if you need to trace synch operations.
4887// Set RECORD_SYNCH_LIMIT to a large-enough value,
4888// and call record_synch_enable and record_synch_disable
4889// around the computation of interest.
4890
4891void record_synch(char* name, bool returning);  // defined below
4892
4893class RecordSynch {
4894  char* _name;
4895 public:
4896  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4897  ~RecordSynch()                       { record_synch(_name, true); }
4898};
4899
4900#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4901extern "C" ret name params {                                    \
4902  typedef ret name##_t params;                                  \
4903  static name##_t* implem = NULL;                               \
4904  static int callcount = 0;                                     \
4905  if (implem == NULL) {                                         \
4906    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4907    if (implem == NULL)  fatal(dlerror());                      \
4908  }                                                             \
4909  ++callcount;                                                  \
4910  RecordSynch _rs(#name);                                       \
4911  inner;                                                        \
4912  return implem args;                                           \
4913}
4914// in dbx, examine callcounts this way:
4915// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4916
4917#define CHECK_POINTER_OK(p) \
4918  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4919#define CHECK_MU \
4920  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4921#define CHECK_CV \
4922  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4923#define CHECK_P(p) \
4924  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4925
4926#define CHECK_MUTEX(mutex_op) \
4927  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4928
4929CHECK_MUTEX(   mutex_lock)
4930CHECK_MUTEX(  _mutex_lock)
4931CHECK_MUTEX( mutex_unlock)
4932CHECK_MUTEX(_mutex_unlock)
4933CHECK_MUTEX( mutex_trylock)
4934CHECK_MUTEX(_mutex_trylock)
4935
4936#define CHECK_COND(cond_op) \
4937  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4938
4939CHECK_COND( cond_wait);
4940CHECK_COND(_cond_wait);
4941CHECK_COND(_cond_wait_cancel);
4942
4943#define CHECK_COND2(cond_op) \
4944  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4945
4946CHECK_COND2( cond_timedwait);
4947CHECK_COND2(_cond_timedwait);
4948CHECK_COND2(_cond_timedwait_cancel);
4949
4950// do the _lwp_* versions too
4951#define mutex_t lwp_mutex_t
4952#define cond_t  lwp_cond_t
4953CHECK_MUTEX(  _lwp_mutex_lock)
4954CHECK_MUTEX(  _lwp_mutex_unlock)
4955CHECK_MUTEX(  _lwp_mutex_trylock)
4956CHECK_MUTEX( __lwp_mutex_lock)
4957CHECK_MUTEX( __lwp_mutex_unlock)
4958CHECK_MUTEX( __lwp_mutex_trylock)
4959CHECK_MUTEX(___lwp_mutex_lock)
4960CHECK_MUTEX(___lwp_mutex_unlock)
4961
4962CHECK_COND(  _lwp_cond_wait);
4963CHECK_COND( __lwp_cond_wait);
4964CHECK_COND(___lwp_cond_wait);
4965
4966CHECK_COND2(  _lwp_cond_timedwait);
4967CHECK_COND2( __lwp_cond_timedwait);
4968#undef mutex_t
4969#undef cond_t
4970
4971CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4972CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4973CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4974CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4975CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4976CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4977CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4978CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4979
4980
4981// recording machinery:
4982
4983enum { RECORD_SYNCH_LIMIT = 200 };
4984char* record_synch_name[RECORD_SYNCH_LIMIT];
4985void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4986bool record_synch_returning[RECORD_SYNCH_LIMIT];
4987thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4988int record_synch_count = 0;
4989bool record_synch_enabled = false;
4990
4991// in dbx, examine recorded data this way:
4992// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4993
4994void record_synch(char* name, bool returning) {
4995  if (record_synch_enabled) {
4996    if (record_synch_count < RECORD_SYNCH_LIMIT) {
4997      record_synch_name[record_synch_count] = name;
4998      record_synch_returning[record_synch_count] = returning;
4999      record_synch_thread[record_synch_count] = thr_self();
5000      record_synch_arg0ptr[record_synch_count] = &name;
5001      record_synch_count++;
5002    }
5003    // put more checking code here:
5004    // ...
5005  }
5006}
5007
5008void record_synch_enable() {
5009  // start collecting trace data, if not already doing so
5010  if (!record_synch_enabled)  record_synch_count = 0;
5011  record_synch_enabled = true;
5012}
5013
5014void record_synch_disable() {
5015  // stop collecting trace data
5016  record_synch_enabled = false;
5017}
5018
5019#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5020#endif // PRODUCT
5021
5022const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5023const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5024                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5025
5026
5027// JVMTI & JVM monitoring and management support
5028// The thread_cpu_time() and current_thread_cpu_time() are only
5029// supported if is_thread_cpu_time_supported() returns true.
5030// They are not supported on Solaris T1.
5031
5032// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5033// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5034// of a thread.
5035//
5036// current_thread_cpu_time() and thread_cpu_time(Thread *)
5037// returns the fast estimate available on the platform.
5038
5039// hrtime_t gethrvtime() return value includes
5040// user time but does not include system time
5041jlong os::current_thread_cpu_time() {
5042  return (jlong) gethrvtime();
5043}
5044
5045jlong os::thread_cpu_time(Thread *thread) {
5046  // return user level CPU time only to be consistent with
5047  // what current_thread_cpu_time returns.
5048  // thread_cpu_time_info() must be changed if this changes
5049  return os::thread_cpu_time(thread, false /* user time only */);
5050}
5051
5052jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5053  if (user_sys_cpu_time) {
5054    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5055  } else {
5056    return os::current_thread_cpu_time();
5057  }
5058}
5059
5060jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5061  char proc_name[64];
5062  int count;
5063  prusage_t prusage;
5064  jlong lwp_time;
5065  int fd;
5066
5067  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5068          getpid(),
5069          thread->osthread()->lwp_id());
5070  fd = ::open(proc_name, O_RDONLY);
5071  if (fd == -1) return -1;
5072
5073  do {
5074    count = ::pread(fd,
5075                    (void *)&prusage.pr_utime,
5076                    thr_time_size,
5077                    thr_time_off);
5078  } while (count < 0 && errno == EINTR);
5079  ::close(fd);
5080  if (count < 0) return -1;
5081
5082  if (user_sys_cpu_time) {
5083    // user + system CPU time
5084    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5085                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5086                 (jlong)prusage.pr_stime.tv_nsec +
5087                 (jlong)prusage.pr_utime.tv_nsec;
5088  } else {
5089    // user level CPU time only
5090    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5091                (jlong)prusage.pr_utime.tv_nsec;
5092  }
5093
5094  return (lwp_time);
5095}
5096
5097void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5098  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5099  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5100  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5101  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5102}
5103
5104void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5105  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5106  info_ptr->may_skip_backward = false;    // elapsed time not wall time
5107  info_ptr->may_skip_forward = false;     // elapsed time not wall time
5108  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5109}
5110
5111bool os::is_thread_cpu_time_supported() {
5112  return true;
5113}
5114
5115// System loadavg support.  Returns -1 if load average cannot be obtained.
5116// Return the load average for our processor set if the primitive exists
5117// (Solaris 9 and later).  Otherwise just return system wide loadavg.
5118int os::loadavg(double loadavg[], int nelem) {
5119  if (pset_getloadavg_ptr != NULL) {
5120    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5121  } else {
5122    return ::getloadavg(loadavg, nelem);
5123  }
5124}
5125
5126//---------------------------------------------------------------------------------
5127
5128bool os::find(address addr, outputStream* st) {
5129  Dl_info dlinfo;
5130  memset(&dlinfo, 0, sizeof(dlinfo));
5131  if (dladdr(addr, &dlinfo) != 0) {
5132    st->print(PTR_FORMAT ": ", addr);
5133    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5134      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5135    } else if (dlinfo.dli_fbase != NULL) {
5136      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5137    } else {
5138      st->print("<absolute address>");
5139    }
5140    if (dlinfo.dli_fname != NULL) {
5141      st->print(" in %s", dlinfo.dli_fname);
5142    }
5143    if (dlinfo.dli_fbase != NULL) {
5144      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5145    }
5146    st->cr();
5147
5148    if (Verbose) {
5149      // decode some bytes around the PC
5150      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5151      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5152      address       lowest = (address) dlinfo.dli_sname;
5153      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5154      if (begin < lowest)  begin = lowest;
5155      Dl_info dlinfo2;
5156      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5157          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5158        end = (address) dlinfo2.dli_saddr;
5159      }
5160      Disassembler::decode(begin, end, st);
5161    }
5162    return true;
5163  }
5164  return false;
5165}
5166
5167// Following function has been added to support HotSparc's libjvm.so running
5168// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5169// src/solaris/hpi/native_threads in the EVM codebase.
5170//
5171// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5172// libraries and should thus be removed. We will leave it behind for a while
5173// until we no longer want to able to run on top of 1.3.0 Solaris production
5174// JDK. See 4341971.
5175
5176#define STACK_SLACK 0x800
5177
5178extern "C" {
5179  intptr_t sysThreadAvailableStackWithSlack() {
5180    stack_t st;
5181    intptr_t retval, stack_top;
5182    retval = thr_stksegment(&st);
5183    assert(retval == 0, "incorrect return value from thr_stksegment");
5184    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5185    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5186    stack_top=(intptr_t)st.ss_sp-st.ss_size;
5187    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5188  }
5189}
5190
5191// ObjectMonitor park-unpark infrastructure ...
5192//
5193// We implement Solaris and Linux PlatformEvents with the
5194// obvious condvar-mutex-flag triple.
5195// Another alternative that works quite well is pipes:
5196// Each PlatformEvent consists of a pipe-pair.
5197// The thread associated with the PlatformEvent
5198// calls park(), which reads from the input end of the pipe.
5199// Unpark() writes into the other end of the pipe.
5200// The write-side of the pipe must be set NDELAY.
5201// Unfortunately pipes consume a large # of handles.
5202// Native solaris lwp_park() and lwp_unpark() work nicely, too.
5203// Using pipes for the 1st few threads might be workable, however.
5204//
5205// park() is permitted to return spuriously.
5206// Callers of park() should wrap the call to park() in
5207// an appropriate loop.  A litmus test for the correct
5208// usage of park is the following: if park() were modified
5209// to immediately return 0 your code should still work,
5210// albeit degenerating to a spin loop.
5211//
5212// In a sense, park()-unpark() just provides more polite spinning
5213// and polling with the key difference over naive spinning being
5214// that a parked thread needs to be explicitly unparked() in order
5215// to wake up and to poll the underlying condition.
5216//
5217// Assumption:
5218//    Only one parker can exist on an event, which is why we allocate
5219//    them per-thread. Multiple unparkers can coexist.
5220//
5221// _Event transitions in park()
5222//   -1 => -1 : illegal
5223//    1 =>  0 : pass - return immediately
5224//    0 => -1 : block; then set _Event to 0 before returning
5225//
5226// _Event transitions in unpark()
5227//    0 => 1 : just return
5228//    1 => 1 : just return
5229//   -1 => either 0 or 1; must signal target thread
5230//         That is, we can safely transition _Event from -1 to either
5231//         0 or 1.
5232//
5233// _Event serves as a restricted-range semaphore.
5234//   -1 : thread is blocked, i.e. there is a waiter
5235//    0 : neutral: thread is running or ready,
5236//        could have been signaled after a wait started
5237//    1 : signaled - thread is running or ready
5238//
5239// Another possible encoding of _Event would be with
5240// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5241//
5242// TODO-FIXME: add DTRACE probes for:
5243// 1.   Tx parks
5244// 2.   Ty unparks Tx
5245// 3.   Tx resumes from park
5246
5247
5248// value determined through experimentation
5249#define ROUNDINGFIX 11
5250
5251// utility to compute the abstime argument to timedwait.
5252// TODO-FIXME: switch from compute_abstime() to unpackTime().
5253
5254static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5255  // millis is the relative timeout time
5256  // abstime will be the absolute timeout time
5257  if (millis < 0)  millis = 0;
5258  struct timeval now;
5259  int status = gettimeofday(&now, NULL);
5260  assert(status == 0, "gettimeofday");
5261  jlong seconds = millis / 1000;
5262  jlong max_wait_period;
5263
5264  if (UseLWPSynchronization) {
5265    // forward port of fix for 4275818 (not sleeping long enough)
5266    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5267    // _lwp_cond_timedwait() used a round_down algorithm rather
5268    // than a round_up. For millis less than our roundfactor
5269    // it rounded down to 0 which doesn't meet the spec.
5270    // For millis > roundfactor we may return a bit sooner, but
5271    // since we can not accurately identify the patch level and
5272    // this has already been fixed in Solaris 9 and 8 we will
5273    // leave it alone rather than always rounding down.
5274
5275    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5276    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5277    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5278    max_wait_period = 21000000;
5279  } else {
5280    max_wait_period = 50000000;
5281  }
5282  millis %= 1000;
5283  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5284    seconds = max_wait_period;
5285  }
5286  abstime->tv_sec = now.tv_sec  + seconds;
5287  long       usec = now.tv_usec + millis * 1000;
5288  if (usec >= 1000000) {
5289    abstime->tv_sec += 1;
5290    usec -= 1000000;
5291  }
5292  abstime->tv_nsec = usec * 1000;
5293  return abstime;
5294}
5295
5296void os::PlatformEvent::park() {           // AKA: down()
5297  // Transitions for _Event:
5298  //   -1 => -1 : illegal
5299  //    1 =>  0 : pass - return immediately
5300  //    0 => -1 : block; then set _Event to 0 before returning
5301
5302  // Invariant: Only the thread associated with the Event/PlatformEvent
5303  // may call park().
5304  assert(_nParked == 0, "invariant");
5305
5306  int v;
5307  for (;;) {
5308    v = _Event;
5309    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5310  }
5311  guarantee(v >= 0, "invariant");
5312  if (v == 0) {
5313    // Do this the hard way by blocking ...
5314    // See http://monaco.sfbay/detail.jsf?cr=5094058.
5315    // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5316    // Only for SPARC >= V8PlusA
5317#if defined(__sparc) && defined(COMPILER2)
5318    if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5319#endif
5320    int status = os::Solaris::mutex_lock(_mutex);
5321    assert_status(status == 0, status, "mutex_lock");
5322    guarantee(_nParked == 0, "invariant");
5323    ++_nParked;
5324    while (_Event < 0) {
5325      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5326      // Treat this the same as if the wait was interrupted
5327      // With usr/lib/lwp going to kernel, always handle ETIME
5328      status = os::Solaris::cond_wait(_cond, _mutex);
5329      if (status == ETIME) status = EINTR;
5330      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5331    }
5332    --_nParked;
5333    _Event = 0;
5334    status = os::Solaris::mutex_unlock(_mutex);
5335    assert_status(status == 0, status, "mutex_unlock");
5336    // Paranoia to ensure our locked and lock-free paths interact
5337    // correctly with each other.
5338    OrderAccess::fence();
5339  }
5340}
5341
5342int os::PlatformEvent::park(jlong millis) {
5343  // Transitions for _Event:
5344  //   -1 => -1 : illegal
5345  //    1 =>  0 : pass - return immediately
5346  //    0 => -1 : block; then set _Event to 0 before returning
5347
5348  guarantee(_nParked == 0, "invariant");
5349  int v;
5350  for (;;) {
5351    v = _Event;
5352    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5353  }
5354  guarantee(v >= 0, "invariant");
5355  if (v != 0) return OS_OK;
5356
5357  int ret = OS_TIMEOUT;
5358  timestruc_t abst;
5359  compute_abstime(&abst, millis);
5360
5361  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5362  // For Solaris SPARC set fprs.FEF=0 prior to parking.
5363  // Only for SPARC >= V8PlusA
5364#if defined(__sparc) && defined(COMPILER2)
5365  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5366#endif
5367  int status = os::Solaris::mutex_lock(_mutex);
5368  assert_status(status == 0, status, "mutex_lock");
5369  guarantee(_nParked == 0, "invariant");
5370  ++_nParked;
5371  while (_Event < 0) {
5372    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5373    assert_status(status == 0 || status == EINTR ||
5374                  status == ETIME || status == ETIMEDOUT,
5375                  status, "cond_timedwait");
5376    if (!FilterSpuriousWakeups) break;                // previous semantics
5377    if (status == ETIME || status == ETIMEDOUT) break;
5378    // We consume and ignore EINTR and spurious wakeups.
5379  }
5380  --_nParked;
5381  if (_Event >= 0) ret = OS_OK;
5382  _Event = 0;
5383  status = os::Solaris::mutex_unlock(_mutex);
5384  assert_status(status == 0, status, "mutex_unlock");
5385  // Paranoia to ensure our locked and lock-free paths interact
5386  // correctly with each other.
5387  OrderAccess::fence();
5388  return ret;
5389}
5390
5391void os::PlatformEvent::unpark() {
5392  // Transitions for _Event:
5393  //    0 => 1 : just return
5394  //    1 => 1 : just return
5395  //   -1 => either 0 or 1; must signal target thread
5396  //         That is, we can safely transition _Event from -1 to either
5397  //         0 or 1.
5398  // See also: "Semaphores in Plan 9" by Mullender & Cox
5399  //
5400  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5401  // that it will take two back-to-back park() calls for the owning
5402  // thread to block. This has the benefit of forcing a spurious return
5403  // from the first park() call after an unpark() call which will help
5404  // shake out uses of park() and unpark() without condition variables.
5405
5406  if (Atomic::xchg(1, &_Event) >= 0) return;
5407
5408  // If the thread associated with the event was parked, wake it.
5409  // Wait for the thread assoc with the PlatformEvent to vacate.
5410  int status = os::Solaris::mutex_lock(_mutex);
5411  assert_status(status == 0, status, "mutex_lock");
5412  int AnyWaiters = _nParked;
5413  status = os::Solaris::mutex_unlock(_mutex);
5414  assert_status(status == 0, status, "mutex_unlock");
5415  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5416  if (AnyWaiters != 0) {
5417    // Note that we signal() *after* dropping the lock for "immortal" Events.
5418    // This is safe and avoids a common class of  futile wakeups.  In rare
5419    // circumstances this can cause a thread to return prematurely from
5420    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5421    // will simply re-test the condition and re-park itself.
5422    // This provides particular benefit if the underlying platform does not
5423    // provide wait morphing.
5424    status = os::Solaris::cond_signal(_cond);
5425    assert_status(status == 0, status, "cond_signal");
5426  }
5427}
5428
5429// JSR166
5430// -------------------------------------------------------
5431
5432// The solaris and linux implementations of park/unpark are fairly
5433// conservative for now, but can be improved. They currently use a
5434// mutex/condvar pair, plus _counter.
5435// Park decrements _counter if > 0, else does a condvar wait.  Unpark
5436// sets count to 1 and signals condvar.  Only one thread ever waits
5437// on the condvar. Contention seen when trying to park implies that someone
5438// is unparking you, so don't wait. And spurious returns are fine, so there
5439// is no need to track notifications.
5440
5441#define MAX_SECS 100000000
5442
5443// This code is common to linux and solaris and will be moved to a
5444// common place in dolphin.
5445//
5446// The passed in time value is either a relative time in nanoseconds
5447// or an absolute time in milliseconds. Either way it has to be unpacked
5448// into suitable seconds and nanoseconds components and stored in the
5449// given timespec structure.
5450// Given time is a 64-bit value and the time_t used in the timespec is only
5451// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5452// overflow if times way in the future are given. Further on Solaris versions
5453// prior to 10 there is a restriction (see cond_timedwait) that the specified
5454// number of seconds, in abstime, is less than current_time  + 100,000,000.
5455// As it will be 28 years before "now + 100000000" will overflow we can
5456// ignore overflow and just impose a hard-limit on seconds using the value
5457// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5458// years from "now".
5459//
5460static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5461  assert(time > 0, "convertTime");
5462
5463  struct timeval now;
5464  int status = gettimeofday(&now, NULL);
5465  assert(status == 0, "gettimeofday");
5466
5467  time_t max_secs = now.tv_sec + MAX_SECS;
5468
5469  if (isAbsolute) {
5470    jlong secs = time / 1000;
5471    if (secs > max_secs) {
5472      absTime->tv_sec = max_secs;
5473    } else {
5474      absTime->tv_sec = secs;
5475    }
5476    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5477  } else {
5478    jlong secs = time / NANOSECS_PER_SEC;
5479    if (secs >= MAX_SECS) {
5480      absTime->tv_sec = max_secs;
5481      absTime->tv_nsec = 0;
5482    } else {
5483      absTime->tv_sec = now.tv_sec + secs;
5484      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5485      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5486        absTime->tv_nsec -= NANOSECS_PER_SEC;
5487        ++absTime->tv_sec; // note: this must be <= max_secs
5488      }
5489    }
5490  }
5491  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5492  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5493  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5494  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5495}
5496
5497void Parker::park(bool isAbsolute, jlong time) {
5498  // Ideally we'd do something useful while spinning, such
5499  // as calling unpackTime().
5500
5501  // Optional fast-path check:
5502  // Return immediately if a permit is available.
5503  // We depend on Atomic::xchg() having full barrier semantics
5504  // since we are doing a lock-free update to _counter.
5505  if (Atomic::xchg(0, &_counter) > 0) return;
5506
5507  // Optional fast-exit: Check interrupt before trying to wait
5508  Thread* thread = Thread::current();
5509  assert(thread->is_Java_thread(), "Must be JavaThread");
5510  JavaThread *jt = (JavaThread *)thread;
5511  if (Thread::is_interrupted(thread, false)) {
5512    return;
5513  }
5514
5515  // First, demultiplex/decode time arguments
5516  timespec absTime;
5517  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5518    return;
5519  }
5520  if (time > 0) {
5521    // Warning: this code might be exposed to the old Solaris time
5522    // round-down bugs.  Grep "roundingFix" for details.
5523    unpackTime(&absTime, isAbsolute, time);
5524  }
5525
5526  // Enter safepoint region
5527  // Beware of deadlocks such as 6317397.
5528  // The per-thread Parker:: _mutex is a classic leaf-lock.
5529  // In particular a thread must never block on the Threads_lock while
5530  // holding the Parker:: mutex.  If safepoints are pending both the
5531  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5532  ThreadBlockInVM tbivm(jt);
5533
5534  // Don't wait if cannot get lock since interference arises from
5535  // unblocking.  Also. check interrupt before trying wait
5536  if (Thread::is_interrupted(thread, false) ||
5537      os::Solaris::mutex_trylock(_mutex) != 0) {
5538    return;
5539  }
5540
5541  int status;
5542
5543  if (_counter > 0)  { // no wait needed
5544    _counter = 0;
5545    status = os::Solaris::mutex_unlock(_mutex);
5546    assert(status == 0, "invariant");
5547    // Paranoia to ensure our locked and lock-free paths interact
5548    // correctly with each other and Java-level accesses.
5549    OrderAccess::fence();
5550    return;
5551  }
5552
5553#ifdef ASSERT
5554  // Don't catch signals while blocked; let the running threads have the signals.
5555  // (This allows a debugger to break into the running thread.)
5556  sigset_t oldsigs;
5557  sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5558  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5559#endif
5560
5561  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5562  jt->set_suspend_equivalent();
5563  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5564
5565  // Do this the hard way by blocking ...
5566  // See http://monaco.sfbay/detail.jsf?cr=5094058.
5567  // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5568  // Only for SPARC >= V8PlusA
5569#if defined(__sparc) && defined(COMPILER2)
5570  if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5571#endif
5572
5573  if (time == 0) {
5574    status = os::Solaris::cond_wait(_cond, _mutex);
5575  } else {
5576    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5577  }
5578  // Note that an untimed cond_wait() can sometimes return ETIME on older
5579  // versions of the Solaris.
5580  assert_status(status == 0 || status == EINTR ||
5581                status == ETIME || status == ETIMEDOUT,
5582                status, "cond_timedwait");
5583
5584#ifdef ASSERT
5585  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5586#endif
5587  _counter = 0;
5588  status = os::Solaris::mutex_unlock(_mutex);
5589  assert_status(status == 0, status, "mutex_unlock");
5590  // Paranoia to ensure our locked and lock-free paths interact
5591  // correctly with each other and Java-level accesses.
5592  OrderAccess::fence();
5593
5594  // If externally suspended while waiting, re-suspend
5595  if (jt->handle_special_suspend_equivalent_condition()) {
5596    jt->java_suspend_self();
5597  }
5598}
5599
5600void Parker::unpark() {
5601  int status = os::Solaris::mutex_lock(_mutex);
5602  assert(status == 0, "invariant");
5603  const int s = _counter;
5604  _counter = 1;
5605  status = os::Solaris::mutex_unlock(_mutex);
5606  assert(status == 0, "invariant");
5607
5608  if (s < 1) {
5609    status = os::Solaris::cond_signal(_cond);
5610    assert(status == 0, "invariant");
5611  }
5612}
5613
5614extern char** environ;
5615
5616// Run the specified command in a separate process. Return its exit value,
5617// or -1 on failure (e.g. can't fork a new process).
5618// Unlike system(), this function can be called from signal handler. It
5619// doesn't block SIGINT et al.
5620int os::fork_and_exec(char* cmd) {
5621  char * argv[4];
5622  argv[0] = (char *)"sh";
5623  argv[1] = (char *)"-c";
5624  argv[2] = cmd;
5625  argv[3] = NULL;
5626
5627  // fork is async-safe, fork1 is not so can't use in signal handler
5628  pid_t pid;
5629  Thread* t = Thread::current_or_null_safe();
5630  if (t != NULL && t->is_inside_signal_handler()) {
5631    pid = fork();
5632  } else {
5633    pid = fork1();
5634  }
5635
5636  if (pid < 0) {
5637    // fork failed
5638    warning("fork failed: %s", os::strerror(errno));
5639    return -1;
5640
5641  } else if (pid == 0) {
5642    // child process
5643
5644    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5645    execve("/usr/bin/sh", argv, environ);
5646
5647    // execve failed
5648    _exit(-1);
5649
5650  } else  {
5651    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5652    // care about the actual exit code, for now.
5653
5654    int status;
5655
5656    // Wait for the child process to exit.  This returns immediately if
5657    // the child has already exited. */
5658    while (waitpid(pid, &status, 0) < 0) {
5659      switch (errno) {
5660      case ECHILD: return 0;
5661      case EINTR: break;
5662      default: return -1;
5663      }
5664    }
5665
5666    if (WIFEXITED(status)) {
5667      // The child exited normally; get its exit code.
5668      return WEXITSTATUS(status);
5669    } else if (WIFSIGNALED(status)) {
5670      // The child exited because of a signal
5671      // The best value to return is 0x80 + signal number,
5672      // because that is what all Unix shells do, and because
5673      // it allows callers to distinguish between process exit and
5674      // process death by signal.
5675      return 0x80 + WTERMSIG(status);
5676    } else {
5677      // Unknown exit code; pass it through
5678      return status;
5679    }
5680  }
5681}
5682
5683// is_headless_jre()
5684//
5685// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5686// in order to report if we are running in a headless jre
5687//
5688// Since JDK8 xawt/libmawt.so was moved into the same directory
5689// as libawt.so, and renamed libawt_xawt.so
5690//
5691bool os::is_headless_jre() {
5692  struct stat statbuf;
5693  char buf[MAXPATHLEN];
5694  char libmawtpath[MAXPATHLEN];
5695  const char *xawtstr  = "/xawt/libmawt.so";
5696  const char *new_xawtstr = "/libawt_xawt.so";
5697  char *p;
5698
5699  // Get path to libjvm.so
5700  os::jvm_path(buf, sizeof(buf));
5701
5702  // Get rid of libjvm.so
5703  p = strrchr(buf, '/');
5704  if (p == NULL) {
5705    return false;
5706  } else {
5707    *p = '\0';
5708  }
5709
5710  // Get rid of client or server
5711  p = strrchr(buf, '/');
5712  if (p == NULL) {
5713    return false;
5714  } else {
5715    *p = '\0';
5716  }
5717
5718  // check xawt/libmawt.so
5719  strcpy(libmawtpath, buf);
5720  strcat(libmawtpath, xawtstr);
5721  if (::stat(libmawtpath, &statbuf) == 0) return false;
5722
5723  // check libawt_xawt.so
5724  strcpy(libmawtpath, buf);
5725  strcat(libmawtpath, new_xawtstr);
5726  if (::stat(libmawtpath, &statbuf) == 0) return false;
5727
5728  return true;
5729}
5730
5731size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5732  size_t res;
5733  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5734  return res;
5735}
5736
5737int os::close(int fd) {
5738  return ::close(fd);
5739}
5740
5741int os::socket_close(int fd) {
5742  return ::close(fd);
5743}
5744
5745int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5746  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5747         "Assumed _thread_in_native");
5748  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5749}
5750
5751int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5752  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5753         "Assumed _thread_in_native");
5754  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5755}
5756
5757int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5758  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5759}
5760
5761// As both poll and select can be interrupted by signals, we have to be
5762// prepared to restart the system call after updating the timeout, unless
5763// a poll() is done with timeout == -1, in which case we repeat with this
5764// "wait forever" value.
5765
5766int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5767  int _result;
5768  _result = ::connect(fd, him, len);
5769
5770  // On Solaris, when a connect() call is interrupted, the connection
5771  // can be established asynchronously (see 6343810). Subsequent calls
5772  // to connect() must check the errno value which has the semantic
5773  // described below (copied from the connect() man page). Handling
5774  // of asynchronously established connections is required for both
5775  // blocking and non-blocking sockets.
5776  //     EINTR            The  connection  attempt  was   interrupted
5777  //                      before  any data arrived by the delivery of
5778  //                      a signal. The connection, however, will  be
5779  //                      established asynchronously.
5780  //
5781  //     EINPROGRESS      The socket is non-blocking, and the connec-
5782  //                      tion  cannot  be completed immediately.
5783  //
5784  //     EALREADY         The socket is non-blocking,  and a previous
5785  //                      connection  attempt  has  not yet been com-
5786  //                      pleted.
5787  //
5788  //     EISCONN          The socket is already connected.
5789  if (_result == OS_ERR && errno == EINTR) {
5790    // restarting a connect() changes its errno semantics
5791    RESTARTABLE(::connect(fd, him, len), _result);
5792    // undo these changes
5793    if (_result == OS_ERR) {
5794      if (errno == EALREADY) {
5795        errno = EINPROGRESS; // fall through
5796      } else if (errno == EISCONN) {
5797        errno = 0;
5798        return OS_OK;
5799      }
5800    }
5801  }
5802  return _result;
5803}
5804
5805// Get the default path to the core file
5806// Returns the length of the string
5807int os::get_core_path(char* buffer, size_t bufferSize) {
5808  const char* p = get_current_directory(buffer, bufferSize);
5809
5810  if (p == NULL) {
5811    assert(p != NULL, "failed to get current directory");
5812    return 0;
5813  }
5814
5815  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5816                                              p, current_process_id());
5817
5818  return strlen(buffer);
5819}
5820
5821#ifndef PRODUCT
5822void TestReserveMemorySpecial_test() {
5823  // No tests available for this platform
5824}
5825#endif
5826
5827bool os::start_debugging(char *buf, int buflen) {
5828  int len = (int)strlen(buf);
5829  char *p = &buf[len];
5830
5831  jio_snprintf(p, buflen-len,
5832               "\n\n"
5833               "Do you want to debug the problem?\n\n"
5834               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5835               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5836               "Otherwise, press RETURN to abort...",
5837               os::current_process_id(), os::current_thread_id());
5838
5839  bool yes = os::message_box("Unexpected Error", buf);
5840
5841  if (yes) {
5842    // yes, user asked VM to launch debugger
5843    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5844
5845    os::fork_and_exec(buf);
5846    yes = false;
5847  }
5848  return yes;
5849}
5850