os_posix.cpp revision 13268:786437c6344b
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "utilities/globalDefinitions.hpp"
26#include "prims/jvm.h"
27#include "semaphore_posix.hpp"
28#include "runtime/frame.inline.hpp"
29#include "runtime/interfaceSupport.hpp"
30#include "runtime/os.hpp"
31#include "utilities/align.hpp"
32#include "utilities/macros.hpp"
33#include "utilities/vmError.hpp"
34
35#include <dlfcn.h>
36#include <pthread.h>
37#include <semaphore.h>
38#include <signal.h>
39#include <sys/resource.h>
40#include <sys/utsname.h>
41#include <time.h>
42#include <unistd.h>
43
44// Todo: provide a os::get_max_process_id() or similar. Number of processes
45// may have been configured, can be read more accurately from proc fs etc.
46#ifndef MAX_PID
47#define MAX_PID INT_MAX
48#endif
49#define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
50
51// Check core dump limit and report possible place where core can be found
52void os::check_dump_limit(char* buffer, size_t bufferSize) {
53  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
54    jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
55    VMError::record_coredump_status(buffer, false);
56    return;
57  }
58
59  int n;
60  struct rlimit rlim;
61  bool success;
62
63  char core_path[PATH_MAX];
64  n = get_core_path(core_path, PATH_MAX);
65
66  if (n <= 0) {
67    jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
68    success = true;
69#ifdef LINUX
70  } else if (core_path[0] == '"') { // redirect to user process
71    jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
72    success = true;
73#endif
74  } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
75    jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
76    success = true;
77  } else {
78    switch(rlim.rlim_cur) {
79      case RLIM_INFINITY:
80        jio_snprintf(buffer, bufferSize, "%s", core_path);
81        success = true;
82        break;
83      case 0:
84        jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
85        success = false;
86        break;
87      default:
88        jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / 1024);
89        success = true;
90        break;
91    }
92  }
93
94  VMError::record_coredump_status(buffer, success);
95}
96
97int os::get_native_stack(address* stack, int frames, int toSkip) {
98  int frame_idx = 0;
99  int num_of_frames;  // number of frames captured
100  frame fr = os::current_frame();
101  while (fr.pc() && frame_idx < frames) {
102    if (toSkip > 0) {
103      toSkip --;
104    } else {
105      stack[frame_idx ++] = fr.pc();
106    }
107    if (fr.fp() == NULL || fr.cb() != NULL ||
108        fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
109
110    if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
111      fr = os::get_sender_for_C_frame(&fr);
112    } else {
113      break;
114    }
115  }
116  num_of_frames = frame_idx;
117  for (; frame_idx < frames; frame_idx ++) {
118    stack[frame_idx] = NULL;
119  }
120
121  return num_of_frames;
122}
123
124
125bool os::unsetenv(const char* name) {
126  assert(name != NULL, "Null pointer");
127  return (::unsetenv(name) == 0);
128}
129
130int os::get_last_error() {
131  return errno;
132}
133
134bool os::is_debugger_attached() {
135  // not implemented
136  return false;
137}
138
139void os::wait_for_keypress_at_exit(void) {
140  // don't do anything on posix platforms
141  return;
142}
143
144// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
145// so on posix, unmap the section at the start and at the end of the chunk that we mapped
146// rather than unmapping and remapping the whole chunk to get requested alignment.
147char* os::reserve_memory_aligned(size_t size, size_t alignment) {
148  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
149      "Alignment must be a multiple of allocation granularity (page size)");
150  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
151
152  size_t extra_size = size + alignment;
153  assert(extra_size >= size, "overflow, size is too large to allow alignment");
154
155  char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
156
157  if (extra_base == NULL) {
158    return NULL;
159  }
160
161  // Do manual alignment
162  char* aligned_base = align_up(extra_base, alignment);
163
164  // [  |                                       |  ]
165  // ^ extra_base
166  //    ^ extra_base + begin_offset == aligned_base
167  //     extra_base + begin_offset + size       ^
168  //                       extra_base + extra_size ^
169  // |<>| == begin_offset
170  //                              end_offset == |<>|
171  size_t begin_offset = aligned_base - extra_base;
172  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
173
174  if (begin_offset > 0) {
175      os::release_memory(extra_base, begin_offset);
176  }
177
178  if (end_offset > 0) {
179      os::release_memory(extra_base + begin_offset + size, end_offset);
180  }
181
182  return aligned_base;
183}
184
185int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
186    return vsnprintf(buf, len, fmt, args);
187}
188
189int os::get_fileno(FILE* fp) {
190  return NOT_AIX(::)fileno(fp);
191}
192
193struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
194  return gmtime_r(clock, res);
195}
196
197void os::Posix::print_load_average(outputStream* st) {
198  st->print("load average:");
199  double loadavg[3];
200  os::loadavg(loadavg, 3);
201  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
202  st->cr();
203}
204
205void os::Posix::print_rlimit_info(outputStream* st) {
206  st->print("rlimit:");
207  struct rlimit rlim;
208
209  st->print(" STACK ");
210  getrlimit(RLIMIT_STACK, &rlim);
211  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
212  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
213
214  st->print(", CORE ");
215  getrlimit(RLIMIT_CORE, &rlim);
216  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
217  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
218
219  // Isn't there on solaris
220#if defined(AIX)
221  st->print(", NPROC ");
222  st->print("%d", sysconf(_SC_CHILD_MAX));
223#elif !defined(SOLARIS)
224  st->print(", NPROC ");
225  getrlimit(RLIMIT_NPROC, &rlim);
226  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
227  else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
228#endif
229
230  st->print(", NOFILE ");
231  getrlimit(RLIMIT_NOFILE, &rlim);
232  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
233  else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
234
235  st->print(", AS ");
236  getrlimit(RLIMIT_AS, &rlim);
237  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
238  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
239
240  st->print(", DATA ");
241  getrlimit(RLIMIT_DATA, &rlim);
242  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
243  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
244
245  st->print(", FSIZE ");
246  getrlimit(RLIMIT_FSIZE, &rlim);
247  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
248  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
249
250  st->cr();
251}
252
253void os::Posix::print_uname_info(outputStream* st) {
254  // kernel
255  st->print("uname:");
256  struct utsname name;
257  uname(&name);
258  st->print("%s ", name.sysname);
259#ifdef ASSERT
260  st->print("%s ", name.nodename);
261#endif
262  st->print("%s ", name.release);
263  st->print("%s ", name.version);
264  st->print("%s", name.machine);
265  st->cr();
266}
267
268bool os::get_host_name(char* buf, size_t buflen) {
269  struct utsname name;
270  uname(&name);
271  jio_snprintf(buf, buflen, "%s", name.nodename);
272  return true;
273}
274
275bool os::has_allocatable_memory_limit(julong* limit) {
276  struct rlimit rlim;
277  int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
278  // if there was an error when calling getrlimit, assume that there is no limitation
279  // on virtual memory.
280  bool result;
281  if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
282    result = false;
283  } else {
284    *limit = (julong)rlim.rlim_cur;
285    result = true;
286  }
287#ifdef _LP64
288  return result;
289#else
290  // arbitrary virtual space limit for 32 bit Unices found by testing. If
291  // getrlimit above returned a limit, bound it with this limit. Otherwise
292  // directly use it.
293  const julong max_virtual_limit = (julong)3800*M;
294  if (result) {
295    *limit = MIN2(*limit, max_virtual_limit);
296  } else {
297    *limit = max_virtual_limit;
298  }
299
300  // bound by actually allocatable memory. The algorithm uses two bounds, an
301  // upper and a lower limit. The upper limit is the current highest amount of
302  // memory that could not be allocated, the lower limit is the current highest
303  // amount of memory that could be allocated.
304  // The algorithm iteratively refines the result by halving the difference
305  // between these limits, updating either the upper limit (if that value could
306  // not be allocated) or the lower limit (if the that value could be allocated)
307  // until the difference between these limits is "small".
308
309  // the minimum amount of memory we care about allocating.
310  const julong min_allocation_size = M;
311
312  julong upper_limit = *limit;
313
314  // first check a few trivial cases
315  if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
316    *limit = upper_limit;
317  } else if (!is_allocatable(min_allocation_size)) {
318    // we found that not even min_allocation_size is allocatable. Return it
319    // anyway. There is no point to search for a better value any more.
320    *limit = min_allocation_size;
321  } else {
322    // perform the binary search.
323    julong lower_limit = min_allocation_size;
324    while ((upper_limit - lower_limit) > min_allocation_size) {
325      julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
326      temp_limit = align_down(temp_limit, min_allocation_size);
327      if (is_allocatable(temp_limit)) {
328        lower_limit = temp_limit;
329      } else {
330        upper_limit = temp_limit;
331      }
332    }
333    *limit = lower_limit;
334  }
335  return true;
336#endif
337}
338
339const char* os::get_current_directory(char *buf, size_t buflen) {
340  return getcwd(buf, buflen);
341}
342
343FILE* os::open(int fd, const char* mode) {
344  return ::fdopen(fd, mode);
345}
346
347void os::flockfile(FILE* fp) {
348  ::flockfile(fp);
349}
350
351void os::funlockfile(FILE* fp) {
352  ::funlockfile(fp);
353}
354
355// Builds a platform dependent Agent_OnLoad_<lib_name> function name
356// which is used to find statically linked in agents.
357// Parameters:
358//            sym_name: Symbol in library we are looking for
359//            lib_name: Name of library to look in, NULL for shared libs.
360//            is_absolute_path == true if lib_name is absolute path to agent
361//                                     such as "/a/b/libL.so"
362//            == false if only the base name of the library is passed in
363//               such as "L"
364char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
365                                    bool is_absolute_path) {
366  char *agent_entry_name;
367  size_t len;
368  size_t name_len;
369  size_t prefix_len = strlen(JNI_LIB_PREFIX);
370  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
371  const char *start;
372
373  if (lib_name != NULL) {
374    name_len = strlen(lib_name);
375    if (is_absolute_path) {
376      // Need to strip path, prefix and suffix
377      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
378        lib_name = ++start;
379      }
380      if (strlen(lib_name) <= (prefix_len + suffix_len)) {
381        return NULL;
382      }
383      lib_name += prefix_len;
384      name_len = strlen(lib_name) - suffix_len;
385    }
386  }
387  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
388  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
389  if (agent_entry_name == NULL) {
390    return NULL;
391  }
392  strcpy(agent_entry_name, sym_name);
393  if (lib_name != NULL) {
394    strcat(agent_entry_name, "_");
395    strncat(agent_entry_name, lib_name, name_len);
396  }
397  return agent_entry_name;
398}
399
400int os::sleep(Thread* thread, jlong millis, bool interruptible) {
401  assert(thread == Thread::current(),  "thread consistency check");
402
403  ParkEvent * const slp = thread->_SleepEvent ;
404  slp->reset() ;
405  OrderAccess::fence() ;
406
407  if (interruptible) {
408    jlong prevtime = javaTimeNanos();
409
410    for (;;) {
411      if (os::is_interrupted(thread, true)) {
412        return OS_INTRPT;
413      }
414
415      jlong newtime = javaTimeNanos();
416
417      if (newtime - prevtime < 0) {
418        // time moving backwards, should only happen if no monotonic clock
419        // not a guarantee() because JVM should not abort on kernel/glibc bugs
420        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
421      } else {
422        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
423      }
424
425      if (millis <= 0) {
426        return OS_OK;
427      }
428
429      prevtime = newtime;
430
431      {
432        assert(thread->is_Java_thread(), "sanity check");
433        JavaThread *jt = (JavaThread *) thread;
434        ThreadBlockInVM tbivm(jt);
435        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
436
437        jt->set_suspend_equivalent();
438        // cleared by handle_special_suspend_equivalent_condition() or
439        // java_suspend_self() via check_and_wait_while_suspended()
440
441        slp->park(millis);
442
443        // were we externally suspended while we were waiting?
444        jt->check_and_wait_while_suspended();
445      }
446    }
447  } else {
448    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
449    jlong prevtime = javaTimeNanos();
450
451    for (;;) {
452      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
453      // the 1st iteration ...
454      jlong newtime = javaTimeNanos();
455
456      if (newtime - prevtime < 0) {
457        // time moving backwards, should only happen if no monotonic clock
458        // not a guarantee() because JVM should not abort on kernel/glibc bugs
459        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
460      } else {
461        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
462      }
463
464      if (millis <= 0) break ;
465
466      prevtime = newtime;
467      slp->park(millis);
468    }
469    return OS_OK ;
470  }
471}
472
473////////////////////////////////////////////////////////////////////////////////
474// interrupt support
475
476void os::interrupt(Thread* thread) {
477  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
478    "possibility of dangling Thread pointer");
479
480  OSThread* osthread = thread->osthread();
481
482  if (!osthread->interrupted()) {
483    osthread->set_interrupted(true);
484    // More than one thread can get here with the same value of osthread,
485    // resulting in multiple notifications.  We do, however, want the store
486    // to interrupted() to be visible to other threads before we execute unpark().
487    OrderAccess::fence();
488    ParkEvent * const slp = thread->_SleepEvent ;
489    if (slp != NULL) slp->unpark() ;
490  }
491
492  // For JSR166. Unpark even if interrupt status already was set
493  if (thread->is_Java_thread())
494    ((JavaThread*)thread)->parker()->unpark();
495
496  ParkEvent * ev = thread->_ParkEvent ;
497  if (ev != NULL) ev->unpark() ;
498
499}
500
501bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
502  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
503    "possibility of dangling Thread pointer");
504
505  OSThread* osthread = thread->osthread();
506
507  bool interrupted = osthread->interrupted();
508
509  // NOTE that since there is no "lock" around the interrupt and
510  // is_interrupted operations, there is the possibility that the
511  // interrupted flag (in osThread) will be "false" but that the
512  // low-level events will be in the signaled state. This is
513  // intentional. The effect of this is that Object.wait() and
514  // LockSupport.park() will appear to have a spurious wakeup, which
515  // is allowed and not harmful, and the possibility is so rare that
516  // it is not worth the added complexity to add yet another lock.
517  // For the sleep event an explicit reset is performed on entry
518  // to os::sleep, so there is no early return. It has also been
519  // recommended not to put the interrupted flag into the "event"
520  // structure because it hides the issue.
521  if (interrupted && clear_interrupted) {
522    osthread->set_interrupted(false);
523    // consider thread->_SleepEvent->reset() ... optional optimization
524  }
525
526  return interrupted;
527}
528
529
530
531static const struct {
532  int sig; const char* name;
533}
534 g_signal_info[] =
535  {
536  {  SIGABRT,     "SIGABRT" },
537#ifdef SIGAIO
538  {  SIGAIO,      "SIGAIO" },
539#endif
540  {  SIGALRM,     "SIGALRM" },
541#ifdef SIGALRM1
542  {  SIGALRM1,    "SIGALRM1" },
543#endif
544  {  SIGBUS,      "SIGBUS" },
545#ifdef SIGCANCEL
546  {  SIGCANCEL,   "SIGCANCEL" },
547#endif
548  {  SIGCHLD,     "SIGCHLD" },
549#ifdef SIGCLD
550  {  SIGCLD,      "SIGCLD" },
551#endif
552  {  SIGCONT,     "SIGCONT" },
553#ifdef SIGCPUFAIL
554  {  SIGCPUFAIL,  "SIGCPUFAIL" },
555#endif
556#ifdef SIGDANGER
557  {  SIGDANGER,   "SIGDANGER" },
558#endif
559#ifdef SIGDIL
560  {  SIGDIL,      "SIGDIL" },
561#endif
562#ifdef SIGEMT
563  {  SIGEMT,      "SIGEMT" },
564#endif
565  {  SIGFPE,      "SIGFPE" },
566#ifdef SIGFREEZE
567  {  SIGFREEZE,   "SIGFREEZE" },
568#endif
569#ifdef SIGGFAULT
570  {  SIGGFAULT,   "SIGGFAULT" },
571#endif
572#ifdef SIGGRANT
573  {  SIGGRANT,    "SIGGRANT" },
574#endif
575  {  SIGHUP,      "SIGHUP" },
576  {  SIGILL,      "SIGILL" },
577  {  SIGINT,      "SIGINT" },
578#ifdef SIGIO
579  {  SIGIO,       "SIGIO" },
580#endif
581#ifdef SIGIOINT
582  {  SIGIOINT,    "SIGIOINT" },
583#endif
584#ifdef SIGIOT
585// SIGIOT is there for BSD compatibility, but on most Unices just a
586// synonym for SIGABRT. The result should be "SIGABRT", not
587// "SIGIOT".
588#if (SIGIOT != SIGABRT )
589  {  SIGIOT,      "SIGIOT" },
590#endif
591#endif
592#ifdef SIGKAP
593  {  SIGKAP,      "SIGKAP" },
594#endif
595  {  SIGKILL,     "SIGKILL" },
596#ifdef SIGLOST
597  {  SIGLOST,     "SIGLOST" },
598#endif
599#ifdef SIGLWP
600  {  SIGLWP,      "SIGLWP" },
601#endif
602#ifdef SIGLWPTIMER
603  {  SIGLWPTIMER, "SIGLWPTIMER" },
604#endif
605#ifdef SIGMIGRATE
606  {  SIGMIGRATE,  "SIGMIGRATE" },
607#endif
608#ifdef SIGMSG
609  {  SIGMSG,      "SIGMSG" },
610#endif
611  {  SIGPIPE,     "SIGPIPE" },
612#ifdef SIGPOLL
613  {  SIGPOLL,     "SIGPOLL" },
614#endif
615#ifdef SIGPRE
616  {  SIGPRE,      "SIGPRE" },
617#endif
618  {  SIGPROF,     "SIGPROF" },
619#ifdef SIGPTY
620  {  SIGPTY,      "SIGPTY" },
621#endif
622#ifdef SIGPWR
623  {  SIGPWR,      "SIGPWR" },
624#endif
625  {  SIGQUIT,     "SIGQUIT" },
626#ifdef SIGRECONFIG
627  {  SIGRECONFIG, "SIGRECONFIG" },
628#endif
629#ifdef SIGRECOVERY
630  {  SIGRECOVERY, "SIGRECOVERY" },
631#endif
632#ifdef SIGRESERVE
633  {  SIGRESERVE,  "SIGRESERVE" },
634#endif
635#ifdef SIGRETRACT
636  {  SIGRETRACT,  "SIGRETRACT" },
637#endif
638#ifdef SIGSAK
639  {  SIGSAK,      "SIGSAK" },
640#endif
641  {  SIGSEGV,     "SIGSEGV" },
642#ifdef SIGSOUND
643  {  SIGSOUND,    "SIGSOUND" },
644#endif
645#ifdef SIGSTKFLT
646  {  SIGSTKFLT,    "SIGSTKFLT" },
647#endif
648  {  SIGSTOP,     "SIGSTOP" },
649  {  SIGSYS,      "SIGSYS" },
650#ifdef SIGSYSERROR
651  {  SIGSYSERROR, "SIGSYSERROR" },
652#endif
653#ifdef SIGTALRM
654  {  SIGTALRM,    "SIGTALRM" },
655#endif
656  {  SIGTERM,     "SIGTERM" },
657#ifdef SIGTHAW
658  {  SIGTHAW,     "SIGTHAW" },
659#endif
660  {  SIGTRAP,     "SIGTRAP" },
661#ifdef SIGTSTP
662  {  SIGTSTP,     "SIGTSTP" },
663#endif
664  {  SIGTTIN,     "SIGTTIN" },
665  {  SIGTTOU,     "SIGTTOU" },
666#ifdef SIGURG
667  {  SIGURG,      "SIGURG" },
668#endif
669  {  SIGUSR1,     "SIGUSR1" },
670  {  SIGUSR2,     "SIGUSR2" },
671#ifdef SIGVIRT
672  {  SIGVIRT,     "SIGVIRT" },
673#endif
674  {  SIGVTALRM,   "SIGVTALRM" },
675#ifdef SIGWAITING
676  {  SIGWAITING,  "SIGWAITING" },
677#endif
678#ifdef SIGWINCH
679  {  SIGWINCH,    "SIGWINCH" },
680#endif
681#ifdef SIGWINDOW
682  {  SIGWINDOW,   "SIGWINDOW" },
683#endif
684  {  SIGXCPU,     "SIGXCPU" },
685  {  SIGXFSZ,     "SIGXFSZ" },
686#ifdef SIGXRES
687  {  SIGXRES,     "SIGXRES" },
688#endif
689  { -1, NULL }
690};
691
692// Returned string is a constant. For unknown signals "UNKNOWN" is returned.
693const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
694
695  const char* ret = NULL;
696
697#ifdef SIGRTMIN
698  if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
699    if (sig == SIGRTMIN) {
700      ret = "SIGRTMIN";
701    } else if (sig == SIGRTMAX) {
702      ret = "SIGRTMAX";
703    } else {
704      jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
705      return out;
706    }
707  }
708#endif
709
710  if (sig > 0) {
711    for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
712      if (g_signal_info[idx].sig == sig) {
713        ret = g_signal_info[idx].name;
714        break;
715      }
716    }
717  }
718
719  if (!ret) {
720    if (!is_valid_signal(sig)) {
721      ret = "INVALID";
722    } else {
723      ret = "UNKNOWN";
724    }
725  }
726
727  if (out && outlen > 0) {
728    strncpy(out, ret, outlen);
729    out[outlen - 1] = '\0';
730  }
731  return out;
732}
733
734int os::Posix::get_signal_number(const char* signal_name) {
735  char tmp[30];
736  const char* s = signal_name;
737  if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
738    jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
739    s = tmp;
740  }
741  for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
742    if (strcmp(g_signal_info[idx].name, s) == 0) {
743      return g_signal_info[idx].sig;
744    }
745  }
746  return -1;
747}
748
749int os::get_signal_number(const char* signal_name) {
750  return os::Posix::get_signal_number(signal_name);
751}
752
753// Returns true if signal number is valid.
754bool os::Posix::is_valid_signal(int sig) {
755  // MacOS not really POSIX compliant: sigaddset does not return
756  // an error for invalid signal numbers. However, MacOS does not
757  // support real time signals and simply seems to have just 33
758  // signals with no holes in the signal range.
759#ifdef __APPLE__
760  return sig >= 1 && sig < NSIG;
761#else
762  // Use sigaddset to check for signal validity.
763  sigset_t set;
764  sigemptyset(&set);
765  if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
766    return false;
767  }
768  return true;
769#endif
770}
771
772// Returns:
773// NULL for an invalid signal number
774// "SIG<num>" for a valid but unknown signal number
775// signal name otherwise.
776const char* os::exception_name(int sig, char* buf, size_t size) {
777  if (!os::Posix::is_valid_signal(sig)) {
778    return NULL;
779  }
780  const char* const name = os::Posix::get_signal_name(sig, buf, size);
781  if (strcmp(name, "UNKNOWN") == 0) {
782    jio_snprintf(buf, size, "SIG%d", sig);
783  }
784  return buf;
785}
786
787#define NUM_IMPORTANT_SIGS 32
788// Returns one-line short description of a signal set in a user provided buffer.
789const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
790  assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
791  // Note: for shortness, just print out the first 32. That should
792  // cover most of the useful ones, apart from realtime signals.
793  for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
794    const int rc = sigismember(set, sig);
795    if (rc == -1 && errno == EINVAL) {
796      buffer[sig-1] = '?';
797    } else {
798      buffer[sig-1] = rc == 0 ? '0' : '1';
799    }
800  }
801  buffer[NUM_IMPORTANT_SIGS] = 0;
802  return buffer;
803}
804
805// Prints one-line description of a signal set.
806void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
807  char buf[NUM_IMPORTANT_SIGS + 1];
808  os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
809  st->print("%s", buf);
810}
811
812// Writes one-line description of a combination of sigaction.sa_flags into a user
813// provided buffer. Returns that buffer.
814const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
815  char* p = buffer;
816  size_t remaining = size;
817  bool first = true;
818  int idx = 0;
819
820  assert(buffer, "invalid argument");
821
822  if (size == 0) {
823    return buffer;
824  }
825
826  strncpy(buffer, "none", size);
827
828  const struct {
829    // NB: i is an unsigned int here because SA_RESETHAND is on some
830    // systems 0x80000000, which is implicitly unsigned.  Assignining
831    // it to an int field would be an overflow in unsigned-to-signed
832    // conversion.
833    unsigned int i;
834    const char* s;
835  } flaginfo [] = {
836    { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
837    { SA_ONSTACK,   "SA_ONSTACK"   },
838    { SA_RESETHAND, "SA_RESETHAND" },
839    { SA_RESTART,   "SA_RESTART"   },
840    { SA_SIGINFO,   "SA_SIGINFO"   },
841    { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
842    { SA_NODEFER,   "SA_NODEFER"   },
843#ifdef AIX
844    { SA_ONSTACK,   "SA_ONSTACK"   },
845    { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
846#endif
847    { 0, NULL }
848  };
849
850  for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
851    if (flags & flaginfo[idx].i) {
852      if (first) {
853        jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
854        first = false;
855      } else {
856        jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
857      }
858      const size_t len = strlen(p);
859      p += len;
860      remaining -= len;
861    }
862  }
863
864  buffer[size - 1] = '\0';
865
866  return buffer;
867}
868
869// Prints one-line description of a combination of sigaction.sa_flags.
870void os::Posix::print_sa_flags(outputStream* st, int flags) {
871  char buffer[0x100];
872  os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
873  st->print("%s", buffer);
874}
875
876// Helper function for os::Posix::print_siginfo_...():
877// return a textual description for signal code.
878struct enum_sigcode_desc_t {
879  const char* s_name;
880  const char* s_desc;
881};
882
883static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
884
885  const struct {
886    int sig; int code; const char* s_code; const char* s_desc;
887  } t1 [] = {
888    { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
889    { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
890    { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
891    { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
892    { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
893    { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
894    { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
895    { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
896#if defined(IA64) && defined(LINUX)
897    { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
898    { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
899#endif
900    { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
901    { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
902    { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
903    { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
904    { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
905    { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
906    { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
907    { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
908    { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
909    { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
910#ifdef AIX
911    // no explanation found what keyerr would be
912    { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
913#endif
914#if defined(IA64) && !defined(AIX)
915    { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
916#endif
917#if defined(__sparc) && defined(SOLARIS)
918// define Solaris Sparc M7 ADI SEGV signals
919#if !defined(SEGV_ACCADI)
920#define SEGV_ACCADI 3
921#endif
922    { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
923#if !defined(SEGV_ACCDERR)
924#define SEGV_ACCDERR 4
925#endif
926    { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
927#if !defined(SEGV_ACCPERR)
928#define SEGV_ACCPERR 5
929#endif
930    { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
931#endif // defined(__sparc) && defined(SOLARIS)
932    { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
933    { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
934    { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
935    { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
936    { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
937    { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
938    { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
939    { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
940    { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
941    { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
942    { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
943#ifdef SIGPOLL
944    { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
945    { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
946    { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
947    { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
948    { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
949#endif
950    { -1, -1, NULL, NULL }
951  };
952
953  // Codes valid in any signal context.
954  const struct {
955    int code; const char* s_code; const char* s_desc;
956  } t2 [] = {
957    { SI_USER,      "SI_USER",     "Signal sent by kill()." },
958    { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
959    { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
960    { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
961    { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
962    // Linux specific
963#ifdef SI_TKILL
964    { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
965#endif
966#ifdef SI_DETHREAD
967    { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
968#endif
969#ifdef SI_KERNEL
970    { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
971#endif
972#ifdef SI_SIGIO
973    { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
974#endif
975
976#ifdef AIX
977    { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
978    { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
979#endif
980
981#ifdef __sun
982    { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
983    { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
984    { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
985#endif
986
987    { -1, NULL, NULL }
988  };
989
990  const char* s_code = NULL;
991  const char* s_desc = NULL;
992
993  for (int i = 0; t1[i].sig != -1; i ++) {
994    if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
995      s_code = t1[i].s_code;
996      s_desc = t1[i].s_desc;
997      break;
998    }
999  }
1000
1001  if (s_code == NULL) {
1002    for (int i = 0; t2[i].s_code != NULL; i ++) {
1003      if (t2[i].code == si->si_code) {
1004        s_code = t2[i].s_code;
1005        s_desc = t2[i].s_desc;
1006      }
1007    }
1008  }
1009
1010  if (s_code == NULL) {
1011    out->s_name = "unknown";
1012    out->s_desc = "unknown";
1013    return false;
1014  }
1015
1016  out->s_name = s_code;
1017  out->s_desc = s_desc;
1018
1019  return true;
1020}
1021
1022void os::print_siginfo(outputStream* os, const void* si0) {
1023
1024  const siginfo_t* const si = (const siginfo_t*) si0;
1025
1026  char buf[20];
1027  os->print("siginfo:");
1028
1029  if (!si) {
1030    os->print(" <null>");
1031    return;
1032  }
1033
1034  const int sig = si->si_signo;
1035
1036  os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1037
1038  enum_sigcode_desc_t ed;
1039  get_signal_code_description(si, &ed);
1040  os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1041
1042  if (si->si_errno) {
1043    os->print(", si_errno: %d", si->si_errno);
1044  }
1045
1046  // Output additional information depending on the signal code.
1047
1048  // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1049  // so it depends on the context which member to use. For synchronous error signals,
1050  // we print si_addr, unless the signal was sent by another process or thread, in
1051  // which case we print out pid or tid of the sender.
1052  if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1053    const pid_t pid = si->si_pid;
1054    os->print(", si_pid: %ld", (long) pid);
1055    if (IS_VALID_PID(pid)) {
1056      const pid_t me = getpid();
1057      if (me == pid) {
1058        os->print(" (current process)");
1059      }
1060    } else {
1061      os->print(" (invalid)");
1062    }
1063    os->print(", si_uid: %ld", (long) si->si_uid);
1064    if (sig == SIGCHLD) {
1065      os->print(", si_status: %d", si->si_status);
1066    }
1067  } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1068             sig == SIGTRAP || sig == SIGFPE) {
1069    os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1070#ifdef SIGPOLL
1071  } else if (sig == SIGPOLL) {
1072    os->print(", si_band: %ld", si->si_band);
1073#endif
1074  }
1075
1076}
1077
1078int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1079  return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1080}
1081
1082address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1083#if defined(AIX)
1084   return Aix::ucontext_get_pc(ctx);
1085#elif defined(BSD)
1086   return Bsd::ucontext_get_pc(ctx);
1087#elif defined(LINUX)
1088   return Linux::ucontext_get_pc(ctx);
1089#elif defined(SOLARIS)
1090   return Solaris::ucontext_get_pc(ctx);
1091#else
1092   VMError::report_and_die("unimplemented ucontext_get_pc");
1093#endif
1094}
1095
1096void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1097#if defined(AIX)
1098   Aix::ucontext_set_pc(ctx, pc);
1099#elif defined(BSD)
1100   Bsd::ucontext_set_pc(ctx, pc);
1101#elif defined(LINUX)
1102   Linux::ucontext_set_pc(ctx, pc);
1103#elif defined(SOLARIS)
1104   Solaris::ucontext_set_pc(ctx, pc);
1105#else
1106   VMError::report_and_die("unimplemented ucontext_get_pc");
1107#endif
1108}
1109
1110char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1111  size_t stack_size = 0;
1112  size_t guard_size = 0;
1113  int detachstate = 0;
1114  pthread_attr_getstacksize(attr, &stack_size);
1115  pthread_attr_getguardsize(attr, &guard_size);
1116  // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
1117  LINUX_ONLY(stack_size -= guard_size);
1118  pthread_attr_getdetachstate(attr, &detachstate);
1119  jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1120    stack_size / 1024, guard_size / 1024,
1121    (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1122  return buf;
1123}
1124
1125char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {
1126
1127  if (filename == NULL || outbuf == NULL || outbuflen < 1) {
1128    assert(false, "os::Posix::realpath: invalid arguments.");
1129    errno = EINVAL;
1130    return NULL;
1131  }
1132
1133  char* result = NULL;
1134
1135  // This assumes platform realpath() is implemented according to POSIX.1-2008.
1136  // POSIX.1-2008 allows to specify NULL for the output buffer, in which case
1137  // output buffer is dynamically allocated and must be ::free()'d by the caller.
1138  char* p = ::realpath(filename, NULL);
1139  if (p != NULL) {
1140    if (strlen(p) < outbuflen) {
1141      strcpy(outbuf, p);
1142      result = outbuf;
1143    } else {
1144      errno = ENAMETOOLONG;
1145    }
1146    ::free(p); // *not* os::free
1147  } else {
1148    // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
1149    // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
1150    // that it complains about the NULL we handed down as user buffer.
1151    // In this case, use the user provided buffer but at least check whether realpath caused
1152    // a memory overwrite.
1153    if (errno == EINVAL) {
1154      outbuf[outbuflen - 1] = '\0';
1155      p = ::realpath(filename, outbuf);
1156      if (p != NULL) {
1157        guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
1158        result = p;
1159      }
1160    }
1161  }
1162  return result;
1163
1164}
1165
1166
1167// Check minimum allowable stack sizes for thread creation and to initialize
1168// the java system classes, including StackOverflowError - depends on page
1169// size.
1170// The space needed for frames during startup is platform dependent. It
1171// depends on word size, platform calling conventions, C frame layout and
1172// interpreter/C1/C2 design decisions. Therefore this is given in a
1173// platform (os/cpu) dependent constant.
1174// To this, space for guard mechanisms is added, which depends on the
1175// page size which again depends on the concrete system the VM is running
1176// on. Space for libc guard pages is not included in this size.
1177jint os::Posix::set_minimum_stack_sizes() {
1178  size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN);
1179
1180  _java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
1181                                   JavaThread::stack_guard_zone_size() +
1182                                   JavaThread::stack_shadow_zone_size();
1183
1184  _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size());
1185  _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);
1186
1187  size_t stack_size_in_bytes = ThreadStackSize * K;
1188  if (stack_size_in_bytes != 0 &&
1189      stack_size_in_bytes < _java_thread_min_stack_allowed) {
1190    // The '-Xss' and '-XX:ThreadStackSize=N' options both set
1191    // ThreadStackSize so we go with "Java thread stack size" instead
1192    // of "ThreadStackSize" to be more friendly.
1193    tty->print_cr("\nThe Java thread stack size specified is too small. "
1194                  "Specify at least " SIZE_FORMAT "k",
1195                  _java_thread_min_stack_allowed / K);
1196    return JNI_ERR;
1197  }
1198
1199  // Make the stack size a multiple of the page size so that
1200  // the yellow/red zones can be guarded.
1201  JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size()));
1202
1203  // Reminder: a compiler thread is a Java thread.
1204  _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
1205                                       JavaThread::stack_guard_zone_size() +
1206                                       JavaThread::stack_shadow_zone_size();
1207
1208  _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size());
1209  _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);
1210
1211  stack_size_in_bytes = CompilerThreadStackSize * K;
1212  if (stack_size_in_bytes != 0 &&
1213      stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
1214    tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
1215                  "Specify at least " SIZE_FORMAT "k",
1216                  _compiler_thread_min_stack_allowed / K);
1217    return JNI_ERR;
1218  }
1219
1220  _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
1221  _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);
1222
1223  stack_size_in_bytes = VMThreadStackSize * K;
1224  if (stack_size_in_bytes != 0 &&
1225      stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
1226    tty->print_cr("\nThe VMThreadStackSize specified is too small. "
1227                  "Specify at least " SIZE_FORMAT "k",
1228                  _vm_internal_thread_min_stack_allowed / K);
1229    return JNI_ERR;
1230  }
1231  return JNI_OK;
1232}
1233
1234// Called when creating the thread.  The minimum stack sizes have already been calculated
1235size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
1236  size_t stack_size;
1237  if (req_stack_size == 0) {
1238    stack_size = default_stack_size(thr_type);
1239  } else {
1240    stack_size = req_stack_size;
1241  }
1242
1243  switch (thr_type) {
1244  case os::java_thread:
1245    // Java threads use ThreadStackSize which default value can be
1246    // changed with the flag -Xss
1247    if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
1248      // no requested size and we have a more specific default value
1249      stack_size = JavaThread::stack_size_at_create();
1250    }
1251    stack_size = MAX2(stack_size,
1252                      _java_thread_min_stack_allowed);
1253    break;
1254  case os::compiler_thread:
1255    if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
1256      // no requested size and we have a more specific default value
1257      stack_size = (size_t)(CompilerThreadStackSize * K);
1258    }
1259    stack_size = MAX2(stack_size,
1260                      _compiler_thread_min_stack_allowed);
1261    break;
1262  case os::vm_thread:
1263  case os::pgc_thread:
1264  case os::cgc_thread:
1265  case os::watcher_thread:
1266  default:  // presume the unknown thr_type is a VM internal
1267    if (req_stack_size == 0 && VMThreadStackSize > 0) {
1268      // no requested size and we have a more specific default value
1269      stack_size = (size_t)(VMThreadStackSize * K);
1270    }
1271
1272    stack_size = MAX2(stack_size,
1273                      _vm_internal_thread_min_stack_allowed);
1274    break;
1275  }
1276
1277  // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
1278  // Be careful not to round up to 0. Align down in that case.
1279  if (stack_size <= SIZE_MAX - vm_page_size()) {
1280    stack_size = align_up(stack_size, vm_page_size());
1281  } else {
1282    stack_size = align_down(stack_size, vm_page_size());
1283  }
1284
1285  return stack_size;
1286}
1287
1288Thread* os::ThreadCrashProtection::_protected_thread = NULL;
1289os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
1290volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
1291
1292os::ThreadCrashProtection::ThreadCrashProtection() {
1293}
1294
1295/*
1296 * See the caveats for this class in os_posix.hpp
1297 * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1298 * method and returns false. If none of the signals are raised, returns true.
1299 * The callback is supposed to provide the method that should be protected.
1300 */
1301bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1302  sigset_t saved_sig_mask;
1303
1304  Thread::muxAcquire(&_crash_mux, "CrashProtection");
1305
1306  _protected_thread = Thread::current_or_null();
1307  assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
1308
1309  // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1310  // since on at least some systems (OS X) siglongjmp will restore the mask
1311  // for the process, not the thread
1312  pthread_sigmask(0, NULL, &saved_sig_mask);
1313  if (sigsetjmp(_jmpbuf, 0) == 0) {
1314    // make sure we can see in the signal handler that we have crash protection
1315    // installed
1316    _crash_protection = this;
1317    cb.call();
1318    // and clear the crash protection
1319    _crash_protection = NULL;
1320    _protected_thread = NULL;
1321    Thread::muxRelease(&_crash_mux);
1322    return true;
1323  }
1324  // this happens when we siglongjmp() back
1325  pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1326  _crash_protection = NULL;
1327  _protected_thread = NULL;
1328  Thread::muxRelease(&_crash_mux);
1329  return false;
1330}
1331
1332void os::ThreadCrashProtection::restore() {
1333  assert(_crash_protection != NULL, "must have crash protection");
1334  siglongjmp(_jmpbuf, 1);
1335}
1336
1337void os::ThreadCrashProtection::check_crash_protection(int sig,
1338    Thread* thread) {
1339
1340  if (thread != NULL &&
1341      thread == _protected_thread &&
1342      _crash_protection != NULL) {
1343
1344    if (sig == SIGSEGV || sig == SIGBUS) {
1345      _crash_protection->restore();
1346    }
1347  }
1348}
1349
1350#define check_with_errno(check_type, cond, msg)                             \
1351  do {                                                                      \
1352    int err = errno;                                                        \
1353    check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
1354               os::errno_name(err));                                        \
1355} while (false)
1356
1357#define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
1358#define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
1359
1360// POSIX unamed semaphores are not supported on OS X.
1361#ifndef __APPLE__
1362
1363PosixSemaphore::PosixSemaphore(uint value) {
1364  int ret = sem_init(&_semaphore, 0, value);
1365
1366  guarantee_with_errno(ret == 0, "Failed to initialize semaphore");
1367}
1368
1369PosixSemaphore::~PosixSemaphore() {
1370  sem_destroy(&_semaphore);
1371}
1372
1373void PosixSemaphore::signal(uint count) {
1374  for (uint i = 0; i < count; i++) {
1375    int ret = sem_post(&_semaphore);
1376
1377    assert_with_errno(ret == 0, "sem_post failed");
1378  }
1379}
1380
1381void PosixSemaphore::wait() {
1382  int ret;
1383
1384  do {
1385    ret = sem_wait(&_semaphore);
1386  } while (ret != 0 && errno == EINTR);
1387
1388  assert_with_errno(ret == 0, "sem_wait failed");
1389}
1390
1391bool PosixSemaphore::trywait() {
1392  int ret;
1393
1394  do {
1395    ret = sem_trywait(&_semaphore);
1396  } while (ret != 0 && errno == EINTR);
1397
1398  assert_with_errno(ret == 0 || errno == EAGAIN, "trywait failed");
1399
1400  return ret == 0;
1401}
1402
1403bool PosixSemaphore::timedwait(struct timespec ts) {
1404  while (true) {
1405    int result = sem_timedwait(&_semaphore, &ts);
1406    if (result == 0) {
1407      return true;
1408    } else if (errno == EINTR) {
1409      continue;
1410    } else if (errno == ETIMEDOUT) {
1411      return false;
1412    } else {
1413      assert_with_errno(false, "timedwait failed");
1414      return false;
1415    }
1416  }
1417}
1418
1419#endif // __APPLE__
1420
1421
1422// Shared pthread_mutex/cond based PlatformEvent implementation.
1423// Not currently usable by Solaris.
1424
1425#ifndef SOLARIS
1426
1427// Shared condattr object for use with relative timed-waits. Will be associated
1428// with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
1429// but otherwise whatever default is used by the platform - generally the
1430// time-of-day clock.
1431static pthread_condattr_t _condAttr[1];
1432
1433// Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
1434// all systems (e.g. FreeBSD) map the default to "normal".
1435static pthread_mutexattr_t _mutexAttr[1];
1436
1437// common basic initialization that is always supported
1438static void pthread_init_common(void) {
1439  int status;
1440  if ((status = pthread_condattr_init(_condAttr)) != 0) {
1441    fatal("pthread_condattr_init: %s", os::strerror(status));
1442  }
1443  if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
1444    fatal("pthread_mutexattr_init: %s", os::strerror(status));
1445  }
1446  if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
1447    fatal("pthread_mutexattr_settype: %s", os::strerror(status));
1448  }
1449}
1450
1451// Not all POSIX types and API's are available on all notionally "posix"
1452// platforms. If we have build-time support then we will check for actual
1453// runtime support via dlopen/dlsym lookup. This allows for running on an
1454// older OS version compared to the build platform. But if there is no
1455// build time support then there cannot be any runtime support as we do not
1456// know what the runtime types would be (for example clockid_t might be an
1457// int or int64_t).
1458//
1459#ifdef SUPPORTS_CLOCK_MONOTONIC
1460
1461// This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC
1462
1463static int (*_clock_gettime)(clockid_t, struct timespec *);
1464static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t);
1465
1466static bool _use_clock_monotonic_condattr;
1467
1468// Determine what POSIX API's are present and do appropriate
1469// configuration.
1470void os::Posix::init(void) {
1471
1472  // NOTE: no logging available when this is called. Put logging
1473  // statements in init_2().
1474
1475  // Copied from os::Linux::clock_init(). The duplication is temporary.
1476
1477  // 1. Check for CLOCK_MONOTONIC support.
1478
1479  void* handle = NULL;
1480
1481  // For linux we need librt, for other OS we can find
1482  // this function in regular libc.
1483#ifdef NEEDS_LIBRT
1484  // We do dlopen's in this particular order due to bug in linux
1485  // dynamic loader (see 6348968) leading to crash on exit.
1486  handle = dlopen("librt.so.1", RTLD_LAZY);
1487  if (handle == NULL) {
1488    handle = dlopen("librt.so", RTLD_LAZY);
1489  }
1490#endif
1491
1492  if (handle == NULL) {
1493    handle = RTLD_DEFAULT;
1494  }
1495
1496  _clock_gettime = NULL;
1497
1498  int (*clock_getres_func)(clockid_t, struct timespec*) =
1499    (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1500  int (*clock_gettime_func)(clockid_t, struct timespec*) =
1501    (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1502  if (clock_getres_func != NULL && clock_gettime_func != NULL) {
1503    // We assume that if both clock_gettime and clock_getres support
1504    // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
1505    struct timespec res;
1506    struct timespec tp;
1507    if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
1508        clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
1509      // Yes, monotonic clock is supported.
1510      _clock_gettime = clock_gettime_func;
1511    } else {
1512#ifdef NEEDS_LIBRT
1513      // Close librt if there is no monotonic clock.
1514      if (handle != RTLD_DEFAULT) {
1515        dlclose(handle);
1516      }
1517#endif
1518    }
1519  }
1520
1521  // 2. Check for pthread_condattr_setclock support.
1522
1523  _pthread_condattr_setclock = NULL;
1524
1525  // libpthread is already loaded.
1526  int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
1527    (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
1528                                                   "pthread_condattr_setclock");
1529  if (condattr_setclock_func != NULL) {
1530    _pthread_condattr_setclock = condattr_setclock_func;
1531  }
1532
1533  // Now do general initialization.
1534
1535  pthread_init_common();
1536
1537  int status;
1538  if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
1539    if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
1540      if (status == EINVAL) {
1541        _use_clock_monotonic_condattr = false;
1542        warning("Unable to use monotonic clock with relative timed-waits" \
1543                " - changes to the time-of-day clock may have adverse affects");
1544      } else {
1545        fatal("pthread_condattr_setclock: %s", os::strerror(status));
1546      }
1547    } else {
1548      _use_clock_monotonic_condattr = true;
1549    }
1550  } else {
1551    _use_clock_monotonic_condattr = false;
1552  }
1553}
1554
1555void os::Posix::init_2(void) {
1556  log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
1557               (_clock_gettime != NULL ? "" : " not"));
1558  log_info(os)("Use of pthread_condattr_setclock is%s supported",
1559               (_pthread_condattr_setclock != NULL ? "" : " not"));
1560  log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
1561               _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
1562}
1563
1564#else // !SUPPORTS_CLOCK_MONOTONIC
1565
1566void os::Posix::init(void) {
1567  pthread_init_common();
1568}
1569
1570void os::Posix::init_2(void) {
1571  log_info(os)("Use of CLOCK_MONOTONIC is not supported");
1572  log_info(os)("Use of pthread_condattr_setclock is not supported");
1573  log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
1574}
1575
1576#endif // SUPPORTS_CLOCK_MONOTONIC
1577
1578os::PlatformEvent::PlatformEvent() {
1579  int status = pthread_cond_init(_cond, _condAttr);
1580  assert_status(status == 0, status, "cond_init");
1581  status = pthread_mutex_init(_mutex, _mutexAttr);
1582  assert_status(status == 0, status, "mutex_init");
1583  _event   = 0;
1584  _nParked = 0;
1585}
1586
1587// Utility to convert the given timeout to an absolute timespec
1588// (based on the appropriate clock) to use with pthread_cond_timewait.
1589// The clock queried here must be the clock used to manage the
1590// timeout of the condition variable.
1591//
1592// The passed in timeout value is either a relative time in nanoseconds
1593// or an absolute time in milliseconds. A relative timeout will be
1594// associated with CLOCK_MONOTONIC if available; otherwise, or if absolute,
1595// the default time-of-day clock will be used.
1596
1597// Given time is a 64-bit value and the time_t used in the timespec is
1598// sometimes a signed-32-bit value we have to watch for overflow if times
1599// way in the future are given. Further on Solaris versions
1600// prior to 10 there is a restriction (see cond_timedwait) that the specified
1601// number of seconds, in abstime, is less than current_time + 100000000.
1602// As it will be over 20 years before "now + 100000000" will overflow we can
1603// ignore overflow and just impose a hard-limit on seconds using the value
1604// of "now + 100000000". This places a limit on the timeout of about 3.17
1605// years from "now".
1606//
1607#define MAX_SECS 100000000
1608
1609// Calculate a new absolute time that is "timeout" nanoseconds from "now".
1610// "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
1611// on which clock is being used).
1612static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
1613                          jlong now_part_sec, jlong unit) {
1614  time_t max_secs = now_sec + MAX_SECS;
1615
1616  jlong seconds = timeout / NANOUNITS;
1617  timeout %= NANOUNITS; // remaining nanos
1618
1619  if (seconds >= MAX_SECS) {
1620    // More seconds than we can add, so pin to max_secs.
1621    abstime->tv_sec = max_secs;
1622    abstime->tv_nsec = 0;
1623  } else {
1624    abstime->tv_sec = now_sec  + seconds;
1625    long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
1626    if (nanos >= NANOUNITS) { // overflow
1627      abstime->tv_sec += 1;
1628      nanos -= NANOUNITS;
1629    }
1630    abstime->tv_nsec = nanos;
1631  }
1632}
1633
1634// Unpack the given deadline in milliseconds since the epoch, into the given timespec.
1635// The current time in seconds is also passed in to enforce an upper bound as discussed above.
1636static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
1637  time_t max_secs = now_sec + MAX_SECS;
1638
1639  jlong seconds = deadline / MILLIUNITS;
1640  jlong millis = deadline % MILLIUNITS;
1641
1642  if (seconds >= max_secs) {
1643    // Absolute seconds exceeds allowed max, so pin to max_secs.
1644    abstime->tv_sec = max_secs;
1645    abstime->tv_nsec = 0;
1646  } else {
1647    abstime->tv_sec = seconds;
1648    abstime->tv_nsec = millis * (NANOUNITS / MILLIUNITS);
1649  }
1650}
1651
1652static void to_abstime(timespec* abstime, jlong timeout, bool isAbsolute) {
1653  DEBUG_ONLY(int max_secs = MAX_SECS;)
1654
1655  if (timeout < 0) {
1656    timeout = 0;
1657  }
1658
1659#ifdef SUPPORTS_CLOCK_MONOTONIC
1660
1661  if (_use_clock_monotonic_condattr && !isAbsolute) {
1662    struct timespec now;
1663    int status = _clock_gettime(CLOCK_MONOTONIC, &now);
1664    assert_status(status == 0, status, "clock_gettime");
1665    calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
1666    DEBUG_ONLY(max_secs += now.tv_sec;)
1667  } else {
1668
1669#else
1670
1671  { // Match the block scope.
1672
1673#endif // SUPPORTS_CLOCK_MONOTONIC
1674
1675    // Time-of-day clock is all we can reliably use.
1676    struct timeval now;
1677    int status = gettimeofday(&now, NULL);
1678    assert_status(status == 0, errno, "gettimeofday");
1679    if (isAbsolute) {
1680      unpack_abs_time(abstime, timeout, now.tv_sec);
1681    } else {
1682      calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
1683    }
1684    DEBUG_ONLY(max_secs += now.tv_sec;)
1685  }
1686
1687  assert(abstime->tv_sec >= 0, "tv_sec < 0");
1688  assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
1689  assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
1690  assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
1691}
1692
1693// PlatformEvent
1694//
1695// Assumption:
1696//    Only one parker can exist on an event, which is why we allocate
1697//    them per-thread. Multiple unparkers can coexist.
1698//
1699// _event serves as a restricted-range semaphore.
1700//   -1 : thread is blocked, i.e. there is a waiter
1701//    0 : neutral: thread is running or ready,
1702//        could have been signaled after a wait started
1703//    1 : signaled - thread is running or ready
1704//
1705//    Having three states allows for some detection of bad usage - see
1706//    comments on unpark().
1707
1708void os::PlatformEvent::park() {       // AKA "down()"
1709  // Transitions for _event:
1710  //   -1 => -1 : illegal
1711  //    1 =>  0 : pass - return immediately
1712  //    0 => -1 : block; then set _event to 0 before returning
1713
1714  // Invariant: Only the thread associated with the PlatformEvent
1715  // may call park().
1716  assert(_nParked == 0, "invariant");
1717
1718  int v;
1719
1720  // atomically decrement _event
1721  for (;;) {
1722    v = _event;
1723    if (Atomic::cmpxchg(v - 1, &_event, v) == v) break;
1724  }
1725  guarantee(v >= 0, "invariant");
1726
1727  if (v == 0) { // Do this the hard way by blocking ...
1728    int status = pthread_mutex_lock(_mutex);
1729    assert_status(status == 0, status, "mutex_lock");
1730    guarantee(_nParked == 0, "invariant");
1731    ++_nParked;
1732    while (_event < 0) {
1733      // OS-level "spurious wakeups" are ignored
1734      status = pthread_cond_wait(_cond, _mutex);
1735      assert_status(status == 0, status, "cond_wait");
1736    }
1737    --_nParked;
1738
1739    _event = 0;
1740    status = pthread_mutex_unlock(_mutex);
1741    assert_status(status == 0, status, "mutex_unlock");
1742    // Paranoia to ensure our locked and lock-free paths interact
1743    // correctly with each other.
1744    OrderAccess::fence();
1745  }
1746  guarantee(_event >= 0, "invariant");
1747}
1748
1749int os::PlatformEvent::park(jlong millis) {
1750  // Transitions for _event:
1751  //   -1 => -1 : illegal
1752  //    1 =>  0 : pass - return immediately
1753  //    0 => -1 : block; then set _event to 0 before returning
1754
1755  // Invariant: Only the thread associated with the Event/PlatformEvent
1756  // may call park().
1757  assert(_nParked == 0, "invariant");
1758
1759  int v;
1760  // atomically decrement _event
1761  for (;;) {
1762    v = _event;
1763    if (Atomic::cmpxchg(v - 1, &_event, v) == v) break;
1764  }
1765  guarantee(v >= 0, "invariant");
1766
1767  if (v == 0) { // Do this the hard way by blocking ...
1768    struct timespec abst;
1769    to_abstime(&abst, millis * (NANOUNITS / MILLIUNITS), false);
1770
1771    int ret = OS_TIMEOUT;
1772    int status = pthread_mutex_lock(_mutex);
1773    assert_status(status == 0, status, "mutex_lock");
1774    guarantee(_nParked == 0, "invariant");
1775    ++_nParked;
1776
1777    while (_event < 0) {
1778      status = pthread_cond_timedwait(_cond, _mutex, &abst);
1779      assert_status(status == 0 || status == ETIMEDOUT,
1780                    status, "cond_timedwait");
1781      // OS-level "spurious wakeups" are ignored unless the archaic
1782      // FilterSpuriousWakeups is set false. That flag should be obsoleted.
1783      if (!FilterSpuriousWakeups) break;
1784      if (status == ETIMEDOUT) break;
1785    }
1786    --_nParked;
1787
1788    if (_event >= 0) {
1789      ret = OS_OK;
1790    }
1791
1792    _event = 0;
1793    status = pthread_mutex_unlock(_mutex);
1794    assert_status(status == 0, status, "mutex_unlock");
1795    // Paranoia to ensure our locked and lock-free paths interact
1796    // correctly with each other.
1797    OrderAccess::fence();
1798    return ret;
1799  }
1800  return OS_OK;
1801}
1802
1803void os::PlatformEvent::unpark() {
1804  // Transitions for _event:
1805  //    0 => 1 : just return
1806  //    1 => 1 : just return
1807  //   -1 => either 0 or 1; must signal target thread
1808  //         That is, we can safely transition _event from -1 to either
1809  //         0 or 1.
1810  // See also: "Semaphores in Plan 9" by Mullender & Cox
1811  //
1812  // Note: Forcing a transition from "-1" to "1" on an unpark() means
1813  // that it will take two back-to-back park() calls for the owning
1814  // thread to block. This has the benefit of forcing a spurious return
1815  // from the first park() call after an unpark() call which will help
1816  // shake out uses of park() and unpark() without checking state conditions
1817  // properly. This spurious return doesn't manifest itself in any user code
1818  // but only in the correctly written condition checking loops of ObjectMonitor,
1819  // Mutex/Monitor, Thread::muxAcquire and os::sleep
1820
1821  if (Atomic::xchg(1, &_event) >= 0) return;
1822
1823  int status = pthread_mutex_lock(_mutex);
1824  assert_status(status == 0, status, "mutex_lock");
1825  int anyWaiters = _nParked;
1826  assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
1827  status = pthread_mutex_unlock(_mutex);
1828  assert_status(status == 0, status, "mutex_unlock");
1829
1830  // Note that we signal() *after* dropping the lock for "immortal" Events.
1831  // This is safe and avoids a common class of futile wakeups.  In rare
1832  // circumstances this can cause a thread to return prematurely from
1833  // cond_{timed}wait() but the spurious wakeup is benign and the victim
1834  // will simply re-test the condition and re-park itself.
1835  // This provides particular benefit if the underlying platform does not
1836  // provide wait morphing.
1837
1838  if (anyWaiters != 0) {
1839    status = pthread_cond_signal(_cond);
1840    assert_status(status == 0, status, "cond_signal");
1841  }
1842}
1843
1844// JSR166 support
1845
1846 os::PlatformParker::PlatformParker() {
1847  int status;
1848  status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
1849  assert_status(status == 0, status, "cond_init rel");
1850  status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
1851  assert_status(status == 0, status, "cond_init abs");
1852  status = pthread_mutex_init(_mutex, _mutexAttr);
1853  assert_status(status == 0, status, "mutex_init");
1854  _cur_index = -1; // mark as unused
1855}
1856
1857// Parker::park decrements count if > 0, else does a condvar wait.  Unpark
1858// sets count to 1 and signals condvar.  Only one thread ever waits
1859// on the condvar. Contention seen when trying to park implies that someone
1860// is unparking you, so don't wait. And spurious returns are fine, so there
1861// is no need to track notifications.
1862
1863void Parker::park(bool isAbsolute, jlong time) {
1864
1865  // Optional fast-path check:
1866  // Return immediately if a permit is available.
1867  // We depend on Atomic::xchg() having full barrier semantics
1868  // since we are doing a lock-free update to _counter.
1869  if (Atomic::xchg(0, &_counter) > 0) return;
1870
1871  Thread* thread = Thread::current();
1872  assert(thread->is_Java_thread(), "Must be JavaThread");
1873  JavaThread *jt = (JavaThread *)thread;
1874
1875  // Optional optimization -- avoid state transitions if there's
1876  // an interrupt pending.
1877  if (Thread::is_interrupted(thread, false)) {
1878    return;
1879  }
1880
1881  // Next, demultiplex/decode time arguments
1882  struct timespec absTime;
1883  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
1884    return;
1885  }
1886  if (time > 0) {
1887    to_abstime(&absTime, time, isAbsolute);
1888  }
1889
1890  // Enter safepoint region
1891  // Beware of deadlocks such as 6317397.
1892  // The per-thread Parker:: mutex is a classic leaf-lock.
1893  // In particular a thread must never block on the Threads_lock while
1894  // holding the Parker:: mutex.  If safepoints are pending both the
1895  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
1896  ThreadBlockInVM tbivm(jt);
1897
1898  // Don't wait if cannot get lock since interference arises from
1899  // unparking. Also re-check interrupt before trying wait.
1900  if (Thread::is_interrupted(thread, false) ||
1901      pthread_mutex_trylock(_mutex) != 0) {
1902    return;
1903  }
1904
1905  int status;
1906  if (_counter > 0)  { // no wait needed
1907    _counter = 0;
1908    status = pthread_mutex_unlock(_mutex);
1909    assert_status(status == 0, status, "invariant");
1910    // Paranoia to ensure our locked and lock-free paths interact
1911    // correctly with each other and Java-level accesses.
1912    OrderAccess::fence();
1913    return;
1914  }
1915
1916  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
1917  jt->set_suspend_equivalent();
1918  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1919
1920  assert(_cur_index == -1, "invariant");
1921  if (time == 0) {
1922    _cur_index = REL_INDEX; // arbitrary choice when not timed
1923    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
1924    assert_status(status == 0, status, "cond_timedwait");
1925  }
1926  else {
1927    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
1928    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
1929    assert_status(status == 0 || status == ETIMEDOUT,
1930                  status, "cond_timedwait");
1931  }
1932  _cur_index = -1;
1933
1934  _counter = 0;
1935  status = pthread_mutex_unlock(_mutex);
1936  assert_status(status == 0, status, "invariant");
1937  // Paranoia to ensure our locked and lock-free paths interact
1938  // correctly with each other and Java-level accesses.
1939  OrderAccess::fence();
1940
1941  // If externally suspended while waiting, re-suspend
1942  if (jt->handle_special_suspend_equivalent_condition()) {
1943    jt->java_suspend_self();
1944  }
1945}
1946
1947void Parker::unpark() {
1948  int status = pthread_mutex_lock(_mutex);
1949  assert_status(status == 0, status, "invariant");
1950  const int s = _counter;
1951  _counter = 1;
1952  // must capture correct index before unlocking
1953  int index = _cur_index;
1954  status = pthread_mutex_unlock(_mutex);
1955  assert_status(status == 0, status, "invariant");
1956
1957  // Note that we signal() *after* dropping the lock for "immortal" Events.
1958  // This is safe and avoids a common class of futile wakeups.  In rare
1959  // circumstances this can cause a thread to return prematurely from
1960  // cond_{timed}wait() but the spurious wakeup is benign and the victim
1961  // will simply re-test the condition and re-park itself.
1962  // This provides particular benefit if the underlying platform does not
1963  // provide wait morphing.
1964
1965  if (s < 1 && index != -1) {
1966    // thread is definitely parked
1967    status = pthread_cond_signal(&_cond[index]);
1968    assert_status(status == 0, status, "invariant");
1969  }
1970}
1971
1972
1973#endif // !SOLARIS
1974