os_posix.cpp revision 13131:4e5902b7f92e
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "utilities/globalDefinitions.hpp"
26#include "prims/jvm.h"
27#include "semaphore_posix.hpp"
28#include "runtime/frame.inline.hpp"
29#include "runtime/interfaceSupport.hpp"
30#include "runtime/os.hpp"
31#include "utilities/macros.hpp"
32#include "utilities/vmError.hpp"
33
34#include <dlfcn.h>
35#include <pthread.h>
36#include <semaphore.h>
37#include <signal.h>
38#include <sys/resource.h>
39#include <sys/utsname.h>
40#include <time.h>
41#include <unistd.h>
42
43// Todo: provide a os::get_max_process_id() or similar. Number of processes
44// may have been configured, can be read more accurately from proc fs etc.
45#ifndef MAX_PID
46#define MAX_PID INT_MAX
47#endif
48#define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
49
50// Check core dump limit and report possible place where core can be found
51void os::check_dump_limit(char* buffer, size_t bufferSize) {
52  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
53    jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
54    VMError::record_coredump_status(buffer, false);
55    return;
56  }
57
58  int n;
59  struct rlimit rlim;
60  bool success;
61
62  char core_path[PATH_MAX];
63  n = get_core_path(core_path, PATH_MAX);
64
65  if (n <= 0) {
66    jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
67    success = true;
68#ifdef LINUX
69  } else if (core_path[0] == '"') { // redirect to user process
70    jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
71    success = true;
72#endif
73  } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
74    jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
75    success = true;
76  } else {
77    switch(rlim.rlim_cur) {
78      case RLIM_INFINITY:
79        jio_snprintf(buffer, bufferSize, "%s", core_path);
80        success = true;
81        break;
82      case 0:
83        jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
84        success = false;
85        break;
86      default:
87        jio_snprintf(buffer, bufferSize, "%s (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, (unsigned long)(rlim.rlim_cur >> 10));
88        success = true;
89        break;
90    }
91  }
92
93  VMError::record_coredump_status(buffer, success);
94}
95
96int os::get_native_stack(address* stack, int frames, int toSkip) {
97  int frame_idx = 0;
98  int num_of_frames;  // number of frames captured
99  frame fr = os::current_frame();
100  while (fr.pc() && frame_idx < frames) {
101    if (toSkip > 0) {
102      toSkip --;
103    } else {
104      stack[frame_idx ++] = fr.pc();
105    }
106    if (fr.fp() == NULL || fr.cb() != NULL ||
107        fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
108
109    if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
110      fr = os::get_sender_for_C_frame(&fr);
111    } else {
112      break;
113    }
114  }
115  num_of_frames = frame_idx;
116  for (; frame_idx < frames; frame_idx ++) {
117    stack[frame_idx] = NULL;
118  }
119
120  return num_of_frames;
121}
122
123
124bool os::unsetenv(const char* name) {
125  assert(name != NULL, "Null pointer");
126  return (::unsetenv(name) == 0);
127}
128
129int os::get_last_error() {
130  return errno;
131}
132
133bool os::is_debugger_attached() {
134  // not implemented
135  return false;
136}
137
138void os::wait_for_keypress_at_exit(void) {
139  // don't do anything on posix platforms
140  return;
141}
142
143// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
144// so on posix, unmap the section at the start and at the end of the chunk that we mapped
145// rather than unmapping and remapping the whole chunk to get requested alignment.
146char* os::reserve_memory_aligned(size_t size, size_t alignment) {
147  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
148      "Alignment must be a multiple of allocation granularity (page size)");
149  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
150
151  size_t extra_size = size + alignment;
152  assert(extra_size >= size, "overflow, size is too large to allow alignment");
153
154  char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
155
156  if (extra_base == NULL) {
157    return NULL;
158  }
159
160  // Do manual alignment
161  char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
162
163  // [  |                                       |  ]
164  // ^ extra_base
165  //    ^ extra_base + begin_offset == aligned_base
166  //     extra_base + begin_offset + size       ^
167  //                       extra_base + extra_size ^
168  // |<>| == begin_offset
169  //                              end_offset == |<>|
170  size_t begin_offset = aligned_base - extra_base;
171  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
172
173  if (begin_offset > 0) {
174      os::release_memory(extra_base, begin_offset);
175  }
176
177  if (end_offset > 0) {
178      os::release_memory(extra_base + begin_offset + size, end_offset);
179  }
180
181  return aligned_base;
182}
183
184int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
185    return vsnprintf(buf, len, fmt, args);
186}
187
188int os::get_fileno(FILE* fp) {
189  return NOT_AIX(::)fileno(fp);
190}
191
192struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
193  return gmtime_r(clock, res);
194}
195
196void os::Posix::print_load_average(outputStream* st) {
197  st->print("load average:");
198  double loadavg[3];
199  os::loadavg(loadavg, 3);
200  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
201  st->cr();
202}
203
204void os::Posix::print_rlimit_info(outputStream* st) {
205  st->print("rlimit:");
206  struct rlimit rlim;
207
208  st->print(" STACK ");
209  getrlimit(RLIMIT_STACK, &rlim);
210  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
211  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) >> 10);
212
213  st->print(", CORE ");
214  getrlimit(RLIMIT_CORE, &rlim);
215  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
216  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) >> 10);
217
218  // Isn't there on solaris
219#if !defined(SOLARIS) && !defined(AIX)
220  st->print(", NPROC ");
221  getrlimit(RLIMIT_NPROC, &rlim);
222  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
223  else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
224#endif
225
226  st->print(", NOFILE ");
227  getrlimit(RLIMIT_NOFILE, &rlim);
228  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
229  else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
230
231  st->print(", AS ");
232  getrlimit(RLIMIT_AS, &rlim);
233  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
234  else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) >> 10);
235  st->cr();
236}
237
238void os::Posix::print_uname_info(outputStream* st) {
239  // kernel
240  st->print("uname:");
241  struct utsname name;
242  uname(&name);
243  st->print("%s ", name.sysname);
244#ifdef ASSERT
245  st->print("%s ", name.nodename);
246#endif
247  st->print("%s ", name.release);
248  st->print("%s ", name.version);
249  st->print("%s", name.machine);
250  st->cr();
251}
252
253bool os::get_host_name(char* buf, size_t buflen) {
254  struct utsname name;
255  uname(&name);
256  jio_snprintf(buf, buflen, "%s", name.nodename);
257  return true;
258}
259
260bool os::has_allocatable_memory_limit(julong* limit) {
261  struct rlimit rlim;
262  int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
263  // if there was an error when calling getrlimit, assume that there is no limitation
264  // on virtual memory.
265  bool result;
266  if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
267    result = false;
268  } else {
269    *limit = (julong)rlim.rlim_cur;
270    result = true;
271  }
272#ifdef _LP64
273  return result;
274#else
275  // arbitrary virtual space limit for 32 bit Unices found by testing. If
276  // getrlimit above returned a limit, bound it with this limit. Otherwise
277  // directly use it.
278  const julong max_virtual_limit = (julong)3800*M;
279  if (result) {
280    *limit = MIN2(*limit, max_virtual_limit);
281  } else {
282    *limit = max_virtual_limit;
283  }
284
285  // bound by actually allocatable memory. The algorithm uses two bounds, an
286  // upper and a lower limit. The upper limit is the current highest amount of
287  // memory that could not be allocated, the lower limit is the current highest
288  // amount of memory that could be allocated.
289  // The algorithm iteratively refines the result by halving the difference
290  // between these limits, updating either the upper limit (if that value could
291  // not be allocated) or the lower limit (if the that value could be allocated)
292  // until the difference between these limits is "small".
293
294  // the minimum amount of memory we care about allocating.
295  const julong min_allocation_size = M;
296
297  julong upper_limit = *limit;
298
299  // first check a few trivial cases
300  if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
301    *limit = upper_limit;
302  } else if (!is_allocatable(min_allocation_size)) {
303    // we found that not even min_allocation_size is allocatable. Return it
304    // anyway. There is no point to search for a better value any more.
305    *limit = min_allocation_size;
306  } else {
307    // perform the binary search.
308    julong lower_limit = min_allocation_size;
309    while ((upper_limit - lower_limit) > min_allocation_size) {
310      julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
311      temp_limit = align_size_down_(temp_limit, min_allocation_size);
312      if (is_allocatable(temp_limit)) {
313        lower_limit = temp_limit;
314      } else {
315        upper_limit = temp_limit;
316      }
317    }
318    *limit = lower_limit;
319  }
320  return true;
321#endif
322}
323
324const char* os::get_current_directory(char *buf, size_t buflen) {
325  return getcwd(buf, buflen);
326}
327
328FILE* os::open(int fd, const char* mode) {
329  return ::fdopen(fd, mode);
330}
331
332void os::flockfile(FILE* fp) {
333  ::flockfile(fp);
334}
335
336void os::funlockfile(FILE* fp) {
337  ::funlockfile(fp);
338}
339
340// Builds a platform dependent Agent_OnLoad_<lib_name> function name
341// which is used to find statically linked in agents.
342// Parameters:
343//            sym_name: Symbol in library we are looking for
344//            lib_name: Name of library to look in, NULL for shared libs.
345//            is_absolute_path == true if lib_name is absolute path to agent
346//                                     such as "/a/b/libL.so"
347//            == false if only the base name of the library is passed in
348//               such as "L"
349char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
350                                    bool is_absolute_path) {
351  char *agent_entry_name;
352  size_t len;
353  size_t name_len;
354  size_t prefix_len = strlen(JNI_LIB_PREFIX);
355  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
356  const char *start;
357
358  if (lib_name != NULL) {
359    name_len = strlen(lib_name);
360    if (is_absolute_path) {
361      // Need to strip path, prefix and suffix
362      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
363        lib_name = ++start;
364      }
365      if (strlen(lib_name) <= (prefix_len + suffix_len)) {
366        return NULL;
367      }
368      lib_name += prefix_len;
369      name_len = strlen(lib_name) - suffix_len;
370    }
371  }
372  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
373  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
374  if (agent_entry_name == NULL) {
375    return NULL;
376  }
377  strcpy(agent_entry_name, sym_name);
378  if (lib_name != NULL) {
379    strcat(agent_entry_name, "_");
380    strncat(agent_entry_name, lib_name, name_len);
381  }
382  return agent_entry_name;
383}
384
385int os::sleep(Thread* thread, jlong millis, bool interruptible) {
386  assert(thread == Thread::current(),  "thread consistency check");
387
388  ParkEvent * const slp = thread->_SleepEvent ;
389  slp->reset() ;
390  OrderAccess::fence() ;
391
392  if (interruptible) {
393    jlong prevtime = javaTimeNanos();
394
395    for (;;) {
396      if (os::is_interrupted(thread, true)) {
397        return OS_INTRPT;
398      }
399
400      jlong newtime = javaTimeNanos();
401
402      if (newtime - prevtime < 0) {
403        // time moving backwards, should only happen if no monotonic clock
404        // not a guarantee() because JVM should not abort on kernel/glibc bugs
405        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
406      } else {
407        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
408      }
409
410      if (millis <= 0) {
411        return OS_OK;
412      }
413
414      prevtime = newtime;
415
416      {
417        assert(thread->is_Java_thread(), "sanity check");
418        JavaThread *jt = (JavaThread *) thread;
419        ThreadBlockInVM tbivm(jt);
420        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
421
422        jt->set_suspend_equivalent();
423        // cleared by handle_special_suspend_equivalent_condition() or
424        // java_suspend_self() via check_and_wait_while_suspended()
425
426        slp->park(millis);
427
428        // were we externally suspended while we were waiting?
429        jt->check_and_wait_while_suspended();
430      }
431    }
432  } else {
433    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
434    jlong prevtime = javaTimeNanos();
435
436    for (;;) {
437      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
438      // the 1st iteration ...
439      jlong newtime = javaTimeNanos();
440
441      if (newtime - prevtime < 0) {
442        // time moving backwards, should only happen if no monotonic clock
443        // not a guarantee() because JVM should not abort on kernel/glibc bugs
444        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
445      } else {
446        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
447      }
448
449      if (millis <= 0) break ;
450
451      prevtime = newtime;
452      slp->park(millis);
453    }
454    return OS_OK ;
455  }
456}
457
458////////////////////////////////////////////////////////////////////////////////
459// interrupt support
460
461void os::interrupt(Thread* thread) {
462  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
463    "possibility of dangling Thread pointer");
464
465  OSThread* osthread = thread->osthread();
466
467  if (!osthread->interrupted()) {
468    osthread->set_interrupted(true);
469    // More than one thread can get here with the same value of osthread,
470    // resulting in multiple notifications.  We do, however, want the store
471    // to interrupted() to be visible to other threads before we execute unpark().
472    OrderAccess::fence();
473    ParkEvent * const slp = thread->_SleepEvent ;
474    if (slp != NULL) slp->unpark() ;
475  }
476
477  // For JSR166. Unpark even if interrupt status already was set
478  if (thread->is_Java_thread())
479    ((JavaThread*)thread)->parker()->unpark();
480
481  ParkEvent * ev = thread->_ParkEvent ;
482  if (ev != NULL) ev->unpark() ;
483
484}
485
486bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
487  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
488    "possibility of dangling Thread pointer");
489
490  OSThread* osthread = thread->osthread();
491
492  bool interrupted = osthread->interrupted();
493
494  // NOTE that since there is no "lock" around the interrupt and
495  // is_interrupted operations, there is the possibility that the
496  // interrupted flag (in osThread) will be "false" but that the
497  // low-level events will be in the signaled state. This is
498  // intentional. The effect of this is that Object.wait() and
499  // LockSupport.park() will appear to have a spurious wakeup, which
500  // is allowed and not harmful, and the possibility is so rare that
501  // it is not worth the added complexity to add yet another lock.
502  // For the sleep event an explicit reset is performed on entry
503  // to os::sleep, so there is no early return. It has also been
504  // recommended not to put the interrupted flag into the "event"
505  // structure because it hides the issue.
506  if (interrupted && clear_interrupted) {
507    osthread->set_interrupted(false);
508    // consider thread->_SleepEvent->reset() ... optional optimization
509  }
510
511  return interrupted;
512}
513
514
515
516static const struct {
517  int sig; const char* name;
518}
519 g_signal_info[] =
520  {
521  {  SIGABRT,     "SIGABRT" },
522#ifdef SIGAIO
523  {  SIGAIO,      "SIGAIO" },
524#endif
525  {  SIGALRM,     "SIGALRM" },
526#ifdef SIGALRM1
527  {  SIGALRM1,    "SIGALRM1" },
528#endif
529  {  SIGBUS,      "SIGBUS" },
530#ifdef SIGCANCEL
531  {  SIGCANCEL,   "SIGCANCEL" },
532#endif
533  {  SIGCHLD,     "SIGCHLD" },
534#ifdef SIGCLD
535  {  SIGCLD,      "SIGCLD" },
536#endif
537  {  SIGCONT,     "SIGCONT" },
538#ifdef SIGCPUFAIL
539  {  SIGCPUFAIL,  "SIGCPUFAIL" },
540#endif
541#ifdef SIGDANGER
542  {  SIGDANGER,   "SIGDANGER" },
543#endif
544#ifdef SIGDIL
545  {  SIGDIL,      "SIGDIL" },
546#endif
547#ifdef SIGEMT
548  {  SIGEMT,      "SIGEMT" },
549#endif
550  {  SIGFPE,      "SIGFPE" },
551#ifdef SIGFREEZE
552  {  SIGFREEZE,   "SIGFREEZE" },
553#endif
554#ifdef SIGGFAULT
555  {  SIGGFAULT,   "SIGGFAULT" },
556#endif
557#ifdef SIGGRANT
558  {  SIGGRANT,    "SIGGRANT" },
559#endif
560  {  SIGHUP,      "SIGHUP" },
561  {  SIGILL,      "SIGILL" },
562  {  SIGINT,      "SIGINT" },
563#ifdef SIGIO
564  {  SIGIO,       "SIGIO" },
565#endif
566#ifdef SIGIOINT
567  {  SIGIOINT,    "SIGIOINT" },
568#endif
569#ifdef SIGIOT
570// SIGIOT is there for BSD compatibility, but on most Unices just a
571// synonym for SIGABRT. The result should be "SIGABRT", not
572// "SIGIOT".
573#if (SIGIOT != SIGABRT )
574  {  SIGIOT,      "SIGIOT" },
575#endif
576#endif
577#ifdef SIGKAP
578  {  SIGKAP,      "SIGKAP" },
579#endif
580  {  SIGKILL,     "SIGKILL" },
581#ifdef SIGLOST
582  {  SIGLOST,     "SIGLOST" },
583#endif
584#ifdef SIGLWP
585  {  SIGLWP,      "SIGLWP" },
586#endif
587#ifdef SIGLWPTIMER
588  {  SIGLWPTIMER, "SIGLWPTIMER" },
589#endif
590#ifdef SIGMIGRATE
591  {  SIGMIGRATE,  "SIGMIGRATE" },
592#endif
593#ifdef SIGMSG
594  {  SIGMSG,      "SIGMSG" },
595#endif
596  {  SIGPIPE,     "SIGPIPE" },
597#ifdef SIGPOLL
598  {  SIGPOLL,     "SIGPOLL" },
599#endif
600#ifdef SIGPRE
601  {  SIGPRE,      "SIGPRE" },
602#endif
603  {  SIGPROF,     "SIGPROF" },
604#ifdef SIGPTY
605  {  SIGPTY,      "SIGPTY" },
606#endif
607#ifdef SIGPWR
608  {  SIGPWR,      "SIGPWR" },
609#endif
610  {  SIGQUIT,     "SIGQUIT" },
611#ifdef SIGRECONFIG
612  {  SIGRECONFIG, "SIGRECONFIG" },
613#endif
614#ifdef SIGRECOVERY
615  {  SIGRECOVERY, "SIGRECOVERY" },
616#endif
617#ifdef SIGRESERVE
618  {  SIGRESERVE,  "SIGRESERVE" },
619#endif
620#ifdef SIGRETRACT
621  {  SIGRETRACT,  "SIGRETRACT" },
622#endif
623#ifdef SIGSAK
624  {  SIGSAK,      "SIGSAK" },
625#endif
626  {  SIGSEGV,     "SIGSEGV" },
627#ifdef SIGSOUND
628  {  SIGSOUND,    "SIGSOUND" },
629#endif
630#ifdef SIGSTKFLT
631  {  SIGSTKFLT,    "SIGSTKFLT" },
632#endif
633  {  SIGSTOP,     "SIGSTOP" },
634  {  SIGSYS,      "SIGSYS" },
635#ifdef SIGSYSERROR
636  {  SIGSYSERROR, "SIGSYSERROR" },
637#endif
638#ifdef SIGTALRM
639  {  SIGTALRM,    "SIGTALRM" },
640#endif
641  {  SIGTERM,     "SIGTERM" },
642#ifdef SIGTHAW
643  {  SIGTHAW,     "SIGTHAW" },
644#endif
645  {  SIGTRAP,     "SIGTRAP" },
646#ifdef SIGTSTP
647  {  SIGTSTP,     "SIGTSTP" },
648#endif
649  {  SIGTTIN,     "SIGTTIN" },
650  {  SIGTTOU,     "SIGTTOU" },
651#ifdef SIGURG
652  {  SIGURG,      "SIGURG" },
653#endif
654  {  SIGUSR1,     "SIGUSR1" },
655  {  SIGUSR2,     "SIGUSR2" },
656#ifdef SIGVIRT
657  {  SIGVIRT,     "SIGVIRT" },
658#endif
659  {  SIGVTALRM,   "SIGVTALRM" },
660#ifdef SIGWAITING
661  {  SIGWAITING,  "SIGWAITING" },
662#endif
663#ifdef SIGWINCH
664  {  SIGWINCH,    "SIGWINCH" },
665#endif
666#ifdef SIGWINDOW
667  {  SIGWINDOW,   "SIGWINDOW" },
668#endif
669  {  SIGXCPU,     "SIGXCPU" },
670  {  SIGXFSZ,     "SIGXFSZ" },
671#ifdef SIGXRES
672  {  SIGXRES,     "SIGXRES" },
673#endif
674  { -1, NULL }
675};
676
677// Returned string is a constant. For unknown signals "UNKNOWN" is returned.
678const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
679
680  const char* ret = NULL;
681
682#ifdef SIGRTMIN
683  if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
684    if (sig == SIGRTMIN) {
685      ret = "SIGRTMIN";
686    } else if (sig == SIGRTMAX) {
687      ret = "SIGRTMAX";
688    } else {
689      jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
690      return out;
691    }
692  }
693#endif
694
695  if (sig > 0) {
696    for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
697      if (g_signal_info[idx].sig == sig) {
698        ret = g_signal_info[idx].name;
699        break;
700      }
701    }
702  }
703
704  if (!ret) {
705    if (!is_valid_signal(sig)) {
706      ret = "INVALID";
707    } else {
708      ret = "UNKNOWN";
709    }
710  }
711
712  if (out && outlen > 0) {
713    strncpy(out, ret, outlen);
714    out[outlen - 1] = '\0';
715  }
716  return out;
717}
718
719int os::Posix::get_signal_number(const char* signal_name) {
720  char tmp[30];
721  const char* s = signal_name;
722  if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
723    jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
724    s = tmp;
725  }
726  for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
727    if (strcmp(g_signal_info[idx].name, s) == 0) {
728      return g_signal_info[idx].sig;
729    }
730  }
731  return -1;
732}
733
734int os::get_signal_number(const char* signal_name) {
735  return os::Posix::get_signal_number(signal_name);
736}
737
738// Returns true if signal number is valid.
739bool os::Posix::is_valid_signal(int sig) {
740  // MacOS not really POSIX compliant: sigaddset does not return
741  // an error for invalid signal numbers. However, MacOS does not
742  // support real time signals and simply seems to have just 33
743  // signals with no holes in the signal range.
744#ifdef __APPLE__
745  return sig >= 1 && sig < NSIG;
746#else
747  // Use sigaddset to check for signal validity.
748  sigset_t set;
749  if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
750    return false;
751  }
752  return true;
753#endif
754}
755
756// Returns:
757// NULL for an invalid signal number
758// "SIG<num>" for a valid but unknown signal number
759// signal name otherwise.
760const char* os::exception_name(int sig, char* buf, size_t size) {
761  if (!os::Posix::is_valid_signal(sig)) {
762    return NULL;
763  }
764  const char* const name = os::Posix::get_signal_name(sig, buf, size);
765  if (strcmp(name, "UNKNOWN") == 0) {
766    jio_snprintf(buf, size, "SIG%d", sig);
767  }
768  return buf;
769}
770
771#define NUM_IMPORTANT_SIGS 32
772// Returns one-line short description of a signal set in a user provided buffer.
773const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
774  assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
775  // Note: for shortness, just print out the first 32. That should
776  // cover most of the useful ones, apart from realtime signals.
777  for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
778    const int rc = sigismember(set, sig);
779    if (rc == -1 && errno == EINVAL) {
780      buffer[sig-1] = '?';
781    } else {
782      buffer[sig-1] = rc == 0 ? '0' : '1';
783    }
784  }
785  buffer[NUM_IMPORTANT_SIGS] = 0;
786  return buffer;
787}
788
789// Prints one-line description of a signal set.
790void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
791  char buf[NUM_IMPORTANT_SIGS + 1];
792  os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
793  st->print("%s", buf);
794}
795
796// Writes one-line description of a combination of sigaction.sa_flags into a user
797// provided buffer. Returns that buffer.
798const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
799  char* p = buffer;
800  size_t remaining = size;
801  bool first = true;
802  int idx = 0;
803
804  assert(buffer, "invalid argument");
805
806  if (size == 0) {
807    return buffer;
808  }
809
810  strncpy(buffer, "none", size);
811
812  const struct {
813    // NB: i is an unsigned int here because SA_RESETHAND is on some
814    // systems 0x80000000, which is implicitly unsigned.  Assignining
815    // it to an int field would be an overflow in unsigned-to-signed
816    // conversion.
817    unsigned int i;
818    const char* s;
819  } flaginfo [] = {
820    { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
821    { SA_ONSTACK,   "SA_ONSTACK"   },
822    { SA_RESETHAND, "SA_RESETHAND" },
823    { SA_RESTART,   "SA_RESTART"   },
824    { SA_SIGINFO,   "SA_SIGINFO"   },
825    { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
826    { SA_NODEFER,   "SA_NODEFER"   },
827#ifdef AIX
828    { SA_ONSTACK,   "SA_ONSTACK"   },
829    { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
830#endif
831    { 0, NULL }
832  };
833
834  for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
835    if (flags & flaginfo[idx].i) {
836      if (first) {
837        jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
838        first = false;
839      } else {
840        jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
841      }
842      const size_t len = strlen(p);
843      p += len;
844      remaining -= len;
845    }
846  }
847
848  buffer[size - 1] = '\0';
849
850  return buffer;
851}
852
853// Prints one-line description of a combination of sigaction.sa_flags.
854void os::Posix::print_sa_flags(outputStream* st, int flags) {
855  char buffer[0x100];
856  os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
857  st->print("%s", buffer);
858}
859
860// Helper function for os::Posix::print_siginfo_...():
861// return a textual description for signal code.
862struct enum_sigcode_desc_t {
863  const char* s_name;
864  const char* s_desc;
865};
866
867static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
868
869  const struct {
870    int sig; int code; const char* s_code; const char* s_desc;
871  } t1 [] = {
872    { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
873    { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
874    { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
875    { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
876    { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
877    { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
878    { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
879    { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
880#if defined(IA64) && defined(LINUX)
881    { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
882    { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
883#endif
884    { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
885    { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
886    { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
887    { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
888    { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
889    { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
890    { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
891    { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
892    { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
893    { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
894#ifdef AIX
895    // no explanation found what keyerr would be
896    { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
897#endif
898#if defined(IA64) && !defined(AIX)
899    { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
900#endif
901#if defined(__sparc) && defined(SOLARIS)
902// define Solaris Sparc M7 ADI SEGV signals
903#if !defined(SEGV_ACCADI)
904#define SEGV_ACCADI 3
905#endif
906    { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
907#if !defined(SEGV_ACCDERR)
908#define SEGV_ACCDERR 4
909#endif
910    { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
911#if !defined(SEGV_ACCPERR)
912#define SEGV_ACCPERR 5
913#endif
914    { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
915#endif // defined(__sparc) && defined(SOLARIS)
916    { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
917    { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
918    { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
919    { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
920    { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
921    { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
922    { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
923    { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
924    { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
925    { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
926    { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
927#ifdef SIGPOLL
928    { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
929    { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
930    { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
931    { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
932    { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
933#endif
934    { -1, -1, NULL, NULL }
935  };
936
937  // Codes valid in any signal context.
938  const struct {
939    int code; const char* s_code; const char* s_desc;
940  } t2 [] = {
941    { SI_USER,      "SI_USER",     "Signal sent by kill()." },
942    { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
943    { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
944    { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
945    { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
946    // Linux specific
947#ifdef SI_TKILL
948    { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
949#endif
950#ifdef SI_DETHREAD
951    { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
952#endif
953#ifdef SI_KERNEL
954    { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
955#endif
956#ifdef SI_SIGIO
957    { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
958#endif
959
960#ifdef AIX
961    { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
962    { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
963#endif
964
965#ifdef __sun
966    { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
967    { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
968    { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
969#endif
970
971    { -1, NULL, NULL }
972  };
973
974  const char* s_code = NULL;
975  const char* s_desc = NULL;
976
977  for (int i = 0; t1[i].sig != -1; i ++) {
978    if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
979      s_code = t1[i].s_code;
980      s_desc = t1[i].s_desc;
981      break;
982    }
983  }
984
985  if (s_code == NULL) {
986    for (int i = 0; t2[i].s_code != NULL; i ++) {
987      if (t2[i].code == si->si_code) {
988        s_code = t2[i].s_code;
989        s_desc = t2[i].s_desc;
990      }
991    }
992  }
993
994  if (s_code == NULL) {
995    out->s_name = "unknown";
996    out->s_desc = "unknown";
997    return false;
998  }
999
1000  out->s_name = s_code;
1001  out->s_desc = s_desc;
1002
1003  return true;
1004}
1005
1006void os::print_siginfo(outputStream* os, const void* si0) {
1007
1008  const siginfo_t* const si = (const siginfo_t*) si0;
1009
1010  char buf[20];
1011  os->print("siginfo:");
1012
1013  if (!si) {
1014    os->print(" <null>");
1015    return;
1016  }
1017
1018  const int sig = si->si_signo;
1019
1020  os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1021
1022  enum_sigcode_desc_t ed;
1023  get_signal_code_description(si, &ed);
1024  os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1025
1026  if (si->si_errno) {
1027    os->print(", si_errno: %d", si->si_errno);
1028  }
1029
1030  // Output additional information depending on the signal code.
1031
1032  // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1033  // so it depends on the context which member to use. For synchronous error signals,
1034  // we print si_addr, unless the signal was sent by another process or thread, in
1035  // which case we print out pid or tid of the sender.
1036  if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1037    const pid_t pid = si->si_pid;
1038    os->print(", si_pid: %ld", (long) pid);
1039    if (IS_VALID_PID(pid)) {
1040      const pid_t me = getpid();
1041      if (me == pid) {
1042        os->print(" (current process)");
1043      }
1044    } else {
1045      os->print(" (invalid)");
1046    }
1047    os->print(", si_uid: %ld", (long) si->si_uid);
1048    if (sig == SIGCHLD) {
1049      os->print(", si_status: %d", si->si_status);
1050    }
1051  } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1052             sig == SIGTRAP || sig == SIGFPE) {
1053    os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1054#ifdef SIGPOLL
1055  } else if (sig == SIGPOLL) {
1056    os->print(", si_band: %ld", si->si_band);
1057#endif
1058  }
1059
1060}
1061
1062int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1063  return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1064}
1065
1066address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1067#if defined(AIX)
1068   return Aix::ucontext_get_pc(ctx);
1069#elif defined(BSD)
1070   return Bsd::ucontext_get_pc(ctx);
1071#elif defined(LINUX)
1072   return Linux::ucontext_get_pc(ctx);
1073#elif defined(SOLARIS)
1074   return Solaris::ucontext_get_pc(ctx);
1075#else
1076   VMError::report_and_die("unimplemented ucontext_get_pc");
1077#endif
1078}
1079
1080void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1081#if defined(AIX)
1082   Aix::ucontext_set_pc(ctx, pc);
1083#elif defined(BSD)
1084   Bsd::ucontext_set_pc(ctx, pc);
1085#elif defined(LINUX)
1086   Linux::ucontext_set_pc(ctx, pc);
1087#elif defined(SOLARIS)
1088   Solaris::ucontext_set_pc(ctx, pc);
1089#else
1090   VMError::report_and_die("unimplemented ucontext_get_pc");
1091#endif
1092}
1093
1094char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1095  size_t stack_size = 0;
1096  size_t guard_size = 0;
1097  int detachstate = 0;
1098  pthread_attr_getstacksize(attr, &stack_size);
1099  pthread_attr_getguardsize(attr, &guard_size);
1100  // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
1101  LINUX_ONLY(stack_size -= guard_size);
1102  pthread_attr_getdetachstate(attr, &detachstate);
1103  jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1104    stack_size / 1024, guard_size / 1024,
1105    (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1106  return buf;
1107}
1108
1109char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {
1110
1111  if (filename == NULL || outbuf == NULL || outbuflen < 1) {
1112    assert(false, "os::Posix::realpath: invalid arguments.");
1113    errno = EINVAL;
1114    return NULL;
1115  }
1116
1117  char* result = NULL;
1118
1119  // This assumes platform realpath() is implemented according to POSIX.1-2008.
1120  // POSIX.1-2008 allows to specify NULL for the output buffer, in which case
1121  // output buffer is dynamically allocated and must be ::free()'d by the caller.
1122  char* p = ::realpath(filename, NULL);
1123  if (p != NULL) {
1124    if (strlen(p) < outbuflen) {
1125      strcpy(outbuf, p);
1126      result = outbuf;
1127    } else {
1128      errno = ENAMETOOLONG;
1129    }
1130    ::free(p); // *not* os::free
1131  } else {
1132    // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
1133    // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
1134    // that it complains about the NULL we handed down as user buffer.
1135    // In this case, use the user provided buffer but at least check whether realpath caused
1136    // a memory overwrite.
1137    if (errno == EINVAL) {
1138      outbuf[outbuflen - 1] = '\0';
1139      p = ::realpath(filename, outbuf);
1140      if (p != NULL) {
1141        guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
1142        result = p;
1143      }
1144    }
1145  }
1146  return result;
1147
1148}
1149
1150
1151// Check minimum allowable stack sizes for thread creation and to initialize
1152// the java system classes, including StackOverflowError - depends on page
1153// size.
1154// The space needed for frames during startup is platform dependent. It
1155// depends on word size, platform calling conventions, C frame layout and
1156// interpreter/C1/C2 design decisions. Therefore this is given in a
1157// platform (os/cpu) dependent constant.
1158// To this, space for guard mechanisms is added, which depends on the
1159// page size which again depends on the concrete system the VM is running
1160// on. Space for libc guard pages is not included in this size.
1161jint os::Posix::set_minimum_stack_sizes() {
1162  size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN);
1163
1164  _java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
1165                                   JavaThread::stack_guard_zone_size() +
1166                                   JavaThread::stack_shadow_zone_size();
1167
1168  _java_thread_min_stack_allowed = align_size_up(_java_thread_min_stack_allowed, vm_page_size());
1169  _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);
1170
1171  size_t stack_size_in_bytes = ThreadStackSize * K;
1172  if (stack_size_in_bytes != 0 &&
1173      stack_size_in_bytes < _java_thread_min_stack_allowed) {
1174    // The '-Xss' and '-XX:ThreadStackSize=N' options both set
1175    // ThreadStackSize so we go with "Java thread stack size" instead
1176    // of "ThreadStackSize" to be more friendly.
1177    tty->print_cr("\nThe Java thread stack size specified is too small. "
1178                  "Specify at least " SIZE_FORMAT "k",
1179                  _java_thread_min_stack_allowed / K);
1180    return JNI_ERR;
1181  }
1182
1183  // Make the stack size a multiple of the page size so that
1184  // the yellow/red zones can be guarded.
1185  JavaThread::set_stack_size_at_create(round_to(stack_size_in_bytes, vm_page_size()));
1186
1187  // Reminder: a compiler thread is a Java thread.
1188  _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
1189                                       JavaThread::stack_guard_zone_size() +
1190                                       JavaThread::stack_shadow_zone_size();
1191
1192  _compiler_thread_min_stack_allowed = align_size_up(_compiler_thread_min_stack_allowed, vm_page_size());
1193  _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);
1194
1195  stack_size_in_bytes = CompilerThreadStackSize * K;
1196  if (stack_size_in_bytes != 0 &&
1197      stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
1198    tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
1199                  "Specify at least " SIZE_FORMAT "k",
1200                  _compiler_thread_min_stack_allowed / K);
1201    return JNI_ERR;
1202  }
1203
1204  _vm_internal_thread_min_stack_allowed = align_size_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
1205  _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);
1206
1207  stack_size_in_bytes = VMThreadStackSize * K;
1208  if (stack_size_in_bytes != 0 &&
1209      stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
1210    tty->print_cr("\nThe VMThreadStackSize specified is too small. "
1211                  "Specify at least " SIZE_FORMAT "k",
1212                  _vm_internal_thread_min_stack_allowed / K);
1213    return JNI_ERR;
1214  }
1215  return JNI_OK;
1216}
1217
1218// Called when creating the thread.  The minimum stack sizes have already been calculated
1219size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
1220  size_t stack_size;
1221  if (req_stack_size == 0) {
1222    stack_size = default_stack_size(thr_type);
1223  } else {
1224    stack_size = req_stack_size;
1225  }
1226
1227  switch (thr_type) {
1228  case os::java_thread:
1229    // Java threads use ThreadStackSize which default value can be
1230    // changed with the flag -Xss
1231    if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
1232      // no requested size and we have a more specific default value
1233      stack_size = JavaThread::stack_size_at_create();
1234    }
1235    stack_size = MAX2(stack_size,
1236                      _java_thread_min_stack_allowed);
1237    break;
1238  case os::compiler_thread:
1239    if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
1240      // no requested size and we have a more specific default value
1241      stack_size = (size_t)(CompilerThreadStackSize * K);
1242    }
1243    stack_size = MAX2(stack_size,
1244                      _compiler_thread_min_stack_allowed);
1245    break;
1246  case os::vm_thread:
1247  case os::pgc_thread:
1248  case os::cgc_thread:
1249  case os::watcher_thread:
1250  default:  // presume the unknown thr_type is a VM internal
1251    if (req_stack_size == 0 && VMThreadStackSize > 0) {
1252      // no requested size and we have a more specific default value
1253      stack_size = (size_t)(VMThreadStackSize * K);
1254    }
1255
1256    stack_size = MAX2(stack_size,
1257                      _vm_internal_thread_min_stack_allowed);
1258    break;
1259  }
1260
1261  // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
1262  // Be careful not to round up to 0. Align down in that case.
1263  if (stack_size <= SIZE_MAX - vm_page_size()) {
1264    stack_size = align_size_up(stack_size, vm_page_size());
1265  } else {
1266    stack_size = align_size_down(stack_size, vm_page_size());
1267  }
1268
1269  return stack_size;
1270}
1271
1272os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
1273  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
1274}
1275
1276/*
1277 * See the caveats for this class in os_posix.hpp
1278 * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1279 * method and returns false. If none of the signals are raised, returns true.
1280 * The callback is supposed to provide the method that should be protected.
1281 */
1282bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1283  sigset_t saved_sig_mask;
1284
1285  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
1286  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
1287      "crash_protection already set?");
1288
1289  // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1290  // since on at least some systems (OS X) siglongjmp will restore the mask
1291  // for the process, not the thread
1292  pthread_sigmask(0, NULL, &saved_sig_mask);
1293  if (sigsetjmp(_jmpbuf, 0) == 0) {
1294    // make sure we can see in the signal handler that we have crash protection
1295    // installed
1296    WatcherThread::watcher_thread()->set_crash_protection(this);
1297    cb.call();
1298    // and clear the crash protection
1299    WatcherThread::watcher_thread()->set_crash_protection(NULL);
1300    return true;
1301  }
1302  // this happens when we siglongjmp() back
1303  pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1304  WatcherThread::watcher_thread()->set_crash_protection(NULL);
1305  return false;
1306}
1307
1308void os::WatcherThreadCrashProtection::restore() {
1309  assert(WatcherThread::watcher_thread()->has_crash_protection(),
1310      "must have crash protection");
1311
1312  siglongjmp(_jmpbuf, 1);
1313}
1314
1315void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
1316    Thread* thread) {
1317
1318  if (thread != NULL &&
1319      thread->is_Watcher_thread() &&
1320      WatcherThread::watcher_thread()->has_crash_protection()) {
1321
1322    if (sig == SIGSEGV || sig == SIGBUS) {
1323      WatcherThread::watcher_thread()->crash_protection()->restore();
1324    }
1325  }
1326}
1327
1328#define check_with_errno(check_type, cond, msg)                             \
1329  do {                                                                      \
1330    int err = errno;                                                        \
1331    check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
1332               os::errno_name(err));                                        \
1333} while (false)
1334
1335#define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
1336#define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
1337
1338// POSIX unamed semaphores are not supported on OS X.
1339#ifndef __APPLE__
1340
1341PosixSemaphore::PosixSemaphore(uint value) {
1342  int ret = sem_init(&_semaphore, 0, value);
1343
1344  guarantee_with_errno(ret == 0, "Failed to initialize semaphore");
1345}
1346
1347PosixSemaphore::~PosixSemaphore() {
1348  sem_destroy(&_semaphore);
1349}
1350
1351void PosixSemaphore::signal(uint count) {
1352  for (uint i = 0; i < count; i++) {
1353    int ret = sem_post(&_semaphore);
1354
1355    assert_with_errno(ret == 0, "sem_post failed");
1356  }
1357}
1358
1359void PosixSemaphore::wait() {
1360  int ret;
1361
1362  do {
1363    ret = sem_wait(&_semaphore);
1364  } while (ret != 0 && errno == EINTR);
1365
1366  assert_with_errno(ret == 0, "sem_wait failed");
1367}
1368
1369bool PosixSemaphore::trywait() {
1370  int ret;
1371
1372  do {
1373    ret = sem_trywait(&_semaphore);
1374  } while (ret != 0 && errno == EINTR);
1375
1376  assert_with_errno(ret == 0 || errno == EAGAIN, "trywait failed");
1377
1378  return ret == 0;
1379}
1380
1381bool PosixSemaphore::timedwait(struct timespec ts) {
1382  while (true) {
1383    int result = sem_timedwait(&_semaphore, &ts);
1384    if (result == 0) {
1385      return true;
1386    } else if (errno == EINTR) {
1387      continue;
1388    } else if (errno == ETIMEDOUT) {
1389      return false;
1390    } else {
1391      assert_with_errno(false, "timedwait failed");
1392      return false;
1393    }
1394  }
1395}
1396
1397#endif // __APPLE__
1398
1399
1400// Shared pthread_mutex/cond based PlatformEvent implementation.
1401// Not currently usable by Solaris.
1402
1403#ifndef SOLARIS
1404
1405// Shared condattr object for use with relative timed-waits. Will be associated
1406// with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
1407// but otherwise whatever default is used by the platform - generally the
1408// time-of-day clock.
1409static pthread_condattr_t _condAttr[1];
1410
1411// Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
1412// all systems (e.g. FreeBSD) map the default to "normal".
1413static pthread_mutexattr_t _mutexAttr[1];
1414
1415// common basic initialization that is always supported
1416static void pthread_init_common(void) {
1417  int status;
1418  if ((status = pthread_condattr_init(_condAttr)) != 0) {
1419    fatal("pthread_condattr_init: %s", os::strerror(status));
1420  }
1421  if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
1422    fatal("pthread_mutexattr_init: %s", os::strerror(status));
1423  }
1424  if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
1425    fatal("pthread_mutexattr_settype: %s", os::strerror(status));
1426  }
1427}
1428
1429// Not all POSIX types and API's are available on all notionally "posix"
1430// platforms. If we have build-time support then we will check for actual
1431// runtime support via dlopen/dlsym lookup. This allows for running on an
1432// older OS version compared to the build platform. But if there is no
1433// build time support then there cannot be any runtime support as we do not
1434// know what the runtime types would be (for example clockid_t might be an
1435// int or int64_t).
1436//
1437#ifdef SUPPORTS_CLOCK_MONOTONIC
1438
1439// This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC
1440
1441static int (*_clock_gettime)(clockid_t, struct timespec *);
1442static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t);
1443
1444static bool _use_clock_monotonic_condattr;
1445
1446// Determine what POSIX API's are present and do appropriate
1447// configuration.
1448void os::Posix::init(void) {
1449
1450  // NOTE: no logging available when this is called. Put logging
1451  // statements in init_2().
1452
1453  // Copied from os::Linux::clock_init(). The duplication is temporary.
1454
1455  // 1. Check for CLOCK_MONOTONIC support.
1456
1457  void* handle = NULL;
1458
1459  // For linux we need librt, for other OS we can find
1460  // this function in regular libc.
1461#ifdef NEEDS_LIBRT
1462  // We do dlopen's in this particular order due to bug in linux
1463  // dynamic loader (see 6348968) leading to crash on exit.
1464  handle = dlopen("librt.so.1", RTLD_LAZY);
1465  if (handle == NULL) {
1466    handle = dlopen("librt.so", RTLD_LAZY);
1467  }
1468#endif
1469
1470  if (handle == NULL) {
1471    handle = RTLD_DEFAULT;
1472  }
1473
1474  _clock_gettime = NULL;
1475
1476  int (*clock_getres_func)(clockid_t, struct timespec*) =
1477    (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1478  int (*clock_gettime_func)(clockid_t, struct timespec*) =
1479    (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1480  if (clock_getres_func != NULL && clock_gettime_func != NULL) {
1481    // We assume that if both clock_gettime and clock_getres support
1482    // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
1483    struct timespec res;
1484    struct timespec tp;
1485    if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
1486        clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
1487      // Yes, monotonic clock is supported.
1488      _clock_gettime = clock_gettime_func;
1489    } else {
1490#ifdef NEEDS_LIBRT
1491      // Close librt if there is no monotonic clock.
1492      if (handle != RTLD_DEFAULT) {
1493        dlclose(handle);
1494      }
1495#endif
1496    }
1497  }
1498
1499  // 2. Check for pthread_condattr_setclock support.
1500
1501  _pthread_condattr_setclock = NULL;
1502
1503  // libpthread is already loaded.
1504  int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
1505    (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
1506                                                   "pthread_condattr_setclock");
1507  if (condattr_setclock_func != NULL) {
1508    _pthread_condattr_setclock = condattr_setclock_func;
1509  }
1510
1511  // Now do general initialization.
1512
1513  pthread_init_common();
1514
1515  int status;
1516  if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
1517    if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
1518      if (status == EINVAL) {
1519        _use_clock_monotonic_condattr = false;
1520        warning("Unable to use monotonic clock with relative timed-waits" \
1521                " - changes to the time-of-day clock may have adverse affects");
1522      } else {
1523        fatal("pthread_condattr_setclock: %s", os::strerror(status));
1524      }
1525    } else {
1526      _use_clock_monotonic_condattr = true;
1527    }
1528  } else {
1529    _use_clock_monotonic_condattr = false;
1530  }
1531}
1532
1533void os::Posix::init_2(void) {
1534  log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
1535               (_clock_gettime != NULL ? "" : " not"));
1536  log_info(os)("Use of pthread_condattr_setclock is%s supported",
1537               (_pthread_condattr_setclock != NULL ? "" : " not"));
1538  log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
1539               _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
1540}
1541
1542#else // !SUPPORTS_CLOCK_MONOTONIC
1543
1544void os::Posix::init(void) {
1545  pthread_init_common();
1546}
1547
1548void os::Posix::init_2(void) {
1549  log_info(os)("Use of CLOCK_MONOTONIC is not supported");
1550  log_info(os)("Use of pthread_condattr_setclock is not supported");
1551  log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
1552}
1553
1554#endif // SUPPORTS_CLOCK_MONOTONIC
1555
1556os::PlatformEvent::PlatformEvent() {
1557  int status = pthread_cond_init(_cond, _condAttr);
1558  assert_status(status == 0, status, "cond_init");
1559  status = pthread_mutex_init(_mutex, _mutexAttr);
1560  assert_status(status == 0, status, "mutex_init");
1561  _event   = 0;
1562  _nParked = 0;
1563}
1564
1565// Utility to convert the given timeout to an absolute timespec
1566// (based on the appropriate clock) to use with pthread_cond_timewait.
1567// The clock queried here must be the clock used to manage the
1568// timeout of the condition variable.
1569//
1570// The passed in timeout value is either a relative time in nanoseconds
1571// or an absolute time in milliseconds. A relative timeout will be
1572// associated with CLOCK_MONOTONIC if available; otherwise, or if absolute,
1573// the default time-of-day clock will be used.
1574
1575// Given time is a 64-bit value and the time_t used in the timespec is
1576// sometimes a signed-32-bit value we have to watch for overflow if times
1577// way in the future are given. Further on Solaris versions
1578// prior to 10 there is a restriction (see cond_timedwait) that the specified
1579// number of seconds, in abstime, is less than current_time + 100000000.
1580// As it will be over 20 years before "now + 100000000" will overflow we can
1581// ignore overflow and just impose a hard-limit on seconds using the value
1582// of "now + 100000000". This places a limit on the timeout of about 3.17
1583// years from "now".
1584//
1585#define MAX_SECS 100000000
1586
1587// Calculate a new absolute time that is "timeout" nanoseconds from "now".
1588// "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
1589// on which clock is being used).
1590static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
1591                          jlong now_part_sec, jlong unit) {
1592  time_t max_secs = now_sec + MAX_SECS;
1593
1594  jlong seconds = timeout / NANOUNITS;
1595  timeout %= NANOUNITS; // remaining nanos
1596
1597  if (seconds >= MAX_SECS) {
1598    // More seconds than we can add, so pin to max_secs.
1599    abstime->tv_sec = max_secs;
1600    abstime->tv_nsec = 0;
1601  } else {
1602    abstime->tv_sec = now_sec  + seconds;
1603    long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
1604    if (nanos >= NANOUNITS) { // overflow
1605      abstime->tv_sec += 1;
1606      nanos -= NANOUNITS;
1607    }
1608    abstime->tv_nsec = nanos;
1609  }
1610}
1611
1612// Unpack the given deadline in milliseconds since the epoch, into the given timespec.
1613// The current time in seconds is also passed in to enforce an upper bound as discussed above.
1614static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
1615  time_t max_secs = now_sec + MAX_SECS;
1616
1617  jlong seconds = deadline / MILLIUNITS;
1618  jlong millis = deadline % MILLIUNITS;
1619
1620  if (seconds >= max_secs) {
1621    // Absolute seconds exceeds allowed max, so pin to max_secs.
1622    abstime->tv_sec = max_secs;
1623    abstime->tv_nsec = 0;
1624  } else {
1625    abstime->tv_sec = seconds;
1626    abstime->tv_nsec = millis * (NANOUNITS / MILLIUNITS);
1627  }
1628}
1629
1630static void to_abstime(timespec* abstime, jlong timeout, bool isAbsolute) {
1631  DEBUG_ONLY(int max_secs = MAX_SECS;)
1632
1633  if (timeout < 0) {
1634    timeout = 0;
1635  }
1636
1637#ifdef SUPPORTS_CLOCK_MONOTONIC
1638
1639  if (_use_clock_monotonic_condattr && !isAbsolute) {
1640    struct timespec now;
1641    int status = _clock_gettime(CLOCK_MONOTONIC, &now);
1642    assert_status(status == 0, status, "clock_gettime");
1643    calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
1644    DEBUG_ONLY(max_secs += now.tv_sec;)
1645  } else {
1646
1647#else
1648
1649  { // Match the block scope.
1650
1651#endif // SUPPORTS_CLOCK_MONOTONIC
1652
1653    // Time-of-day clock is all we can reliably use.
1654    struct timeval now;
1655    int status = gettimeofday(&now, NULL);
1656    assert_status(status == 0, errno, "gettimeofday");
1657    if (isAbsolute) {
1658      unpack_abs_time(abstime, timeout, now.tv_sec);
1659    } else {
1660      calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
1661    }
1662    DEBUG_ONLY(max_secs += now.tv_sec;)
1663  }
1664
1665  assert(abstime->tv_sec >= 0, "tv_sec < 0");
1666  assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
1667  assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
1668  assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
1669}
1670
1671// PlatformEvent
1672//
1673// Assumption:
1674//    Only one parker can exist on an event, which is why we allocate
1675//    them per-thread. Multiple unparkers can coexist.
1676//
1677// _event serves as a restricted-range semaphore.
1678//   -1 : thread is blocked, i.e. there is a waiter
1679//    0 : neutral: thread is running or ready,
1680//        could have been signaled after a wait started
1681//    1 : signaled - thread is running or ready
1682//
1683//    Having three states allows for some detection of bad usage - see
1684//    comments on unpark().
1685
1686void os::PlatformEvent::park() {       // AKA "down()"
1687  // Transitions for _event:
1688  //   -1 => -1 : illegal
1689  //    1 =>  0 : pass - return immediately
1690  //    0 => -1 : block; then set _event to 0 before returning
1691
1692  // Invariant: Only the thread associated with the PlatformEvent
1693  // may call park().
1694  assert(_nParked == 0, "invariant");
1695
1696  int v;
1697
1698  // atomically decrement _event
1699  for (;;) {
1700    v = _event;
1701    if (Atomic::cmpxchg(v - 1, &_event, v) == v) break;
1702  }
1703  guarantee(v >= 0, "invariant");
1704
1705  if (v == 0) { // Do this the hard way by blocking ...
1706    int status = pthread_mutex_lock(_mutex);
1707    assert_status(status == 0, status, "mutex_lock");
1708    guarantee(_nParked == 0, "invariant");
1709    ++_nParked;
1710    while (_event < 0) {
1711      // OS-level "spurious wakeups" are ignored
1712      status = pthread_cond_wait(_cond, _mutex);
1713      assert_status(status == 0, status, "cond_wait");
1714    }
1715    --_nParked;
1716
1717    _event = 0;
1718    status = pthread_mutex_unlock(_mutex);
1719    assert_status(status == 0, status, "mutex_unlock");
1720    // Paranoia to ensure our locked and lock-free paths interact
1721    // correctly with each other.
1722    OrderAccess::fence();
1723  }
1724  guarantee(_event >= 0, "invariant");
1725}
1726
1727int os::PlatformEvent::park(jlong millis) {
1728  // Transitions for _event:
1729  //   -1 => -1 : illegal
1730  //    1 =>  0 : pass - return immediately
1731  //    0 => -1 : block; then set _event to 0 before returning
1732
1733  // Invariant: Only the thread associated with the Event/PlatformEvent
1734  // may call park().
1735  assert(_nParked == 0, "invariant");
1736
1737  int v;
1738  // atomically decrement _event
1739  for (;;) {
1740    v = _event;
1741    if (Atomic::cmpxchg(v - 1, &_event, v) == v) break;
1742  }
1743  guarantee(v >= 0, "invariant");
1744
1745  if (v == 0) { // Do this the hard way by blocking ...
1746    struct timespec abst;
1747    to_abstime(&abst, millis * (NANOUNITS / MILLIUNITS), false);
1748
1749    int ret = OS_TIMEOUT;
1750    int status = pthread_mutex_lock(_mutex);
1751    assert_status(status == 0, status, "mutex_lock");
1752    guarantee(_nParked == 0, "invariant");
1753    ++_nParked;
1754
1755    while (_event < 0) {
1756      status = pthread_cond_timedwait(_cond, _mutex, &abst);
1757      assert_status(status == 0 || status == ETIMEDOUT,
1758                    status, "cond_timedwait");
1759      // OS-level "spurious wakeups" are ignored unless the archaic
1760      // FilterSpuriousWakeups is set false. That flag should be obsoleted.
1761      if (!FilterSpuriousWakeups) break;
1762      if (status == ETIMEDOUT) break;
1763    }
1764    --_nParked;
1765
1766    if (_event >= 0) {
1767      ret = OS_OK;
1768    }
1769
1770    _event = 0;
1771    status = pthread_mutex_unlock(_mutex);
1772    assert_status(status == 0, status, "mutex_unlock");
1773    // Paranoia to ensure our locked and lock-free paths interact
1774    // correctly with each other.
1775    OrderAccess::fence();
1776    return ret;
1777  }
1778  return OS_OK;
1779}
1780
1781void os::PlatformEvent::unpark() {
1782  // Transitions for _event:
1783  //    0 => 1 : just return
1784  //    1 => 1 : just return
1785  //   -1 => either 0 or 1; must signal target thread
1786  //         That is, we can safely transition _event from -1 to either
1787  //         0 or 1.
1788  // See also: "Semaphores in Plan 9" by Mullender & Cox
1789  //
1790  // Note: Forcing a transition from "-1" to "1" on an unpark() means
1791  // that it will take two back-to-back park() calls for the owning
1792  // thread to block. This has the benefit of forcing a spurious return
1793  // from the first park() call after an unpark() call which will help
1794  // shake out uses of park() and unpark() without checking state conditions
1795  // properly. This spurious return doesn't manifest itself in any user code
1796  // but only in the correctly written condition checking loops of ObjectMonitor,
1797  // Mutex/Monitor, Thread::muxAcquire and os::sleep
1798
1799  if (Atomic::xchg(1, &_event) >= 0) return;
1800
1801  int status = pthread_mutex_lock(_mutex);
1802  assert_status(status == 0, status, "mutex_lock");
1803  int anyWaiters = _nParked;
1804  assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
1805  status = pthread_mutex_unlock(_mutex);
1806  assert_status(status == 0, status, "mutex_unlock");
1807
1808  // Note that we signal() *after* dropping the lock for "immortal" Events.
1809  // This is safe and avoids a common class of futile wakeups.  In rare
1810  // circumstances this can cause a thread to return prematurely from
1811  // cond_{timed}wait() but the spurious wakeup is benign and the victim
1812  // will simply re-test the condition and re-park itself.
1813  // This provides particular benefit if the underlying platform does not
1814  // provide wait morphing.
1815
1816  if (anyWaiters != 0) {
1817    status = pthread_cond_signal(_cond);
1818    assert_status(status == 0, status, "cond_signal");
1819  }
1820}
1821
1822// JSR166 support
1823
1824 os::PlatformParker::PlatformParker() {
1825  int status;
1826  status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
1827  assert_status(status == 0, status, "cond_init rel");
1828  status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
1829  assert_status(status == 0, status, "cond_init abs");
1830  status = pthread_mutex_init(_mutex, _mutexAttr);
1831  assert_status(status == 0, status, "mutex_init");
1832  _cur_index = -1; // mark as unused
1833}
1834
1835// Parker::park decrements count if > 0, else does a condvar wait.  Unpark
1836// sets count to 1 and signals condvar.  Only one thread ever waits
1837// on the condvar. Contention seen when trying to park implies that someone
1838// is unparking you, so don't wait. And spurious returns are fine, so there
1839// is no need to track notifications.
1840
1841void Parker::park(bool isAbsolute, jlong time) {
1842
1843  // Optional fast-path check:
1844  // Return immediately if a permit is available.
1845  // We depend on Atomic::xchg() having full barrier semantics
1846  // since we are doing a lock-free update to _counter.
1847  if (Atomic::xchg(0, &_counter) > 0) return;
1848
1849  Thread* thread = Thread::current();
1850  assert(thread->is_Java_thread(), "Must be JavaThread");
1851  JavaThread *jt = (JavaThread *)thread;
1852
1853  // Optional optimization -- avoid state transitions if there's
1854  // an interrupt pending.
1855  if (Thread::is_interrupted(thread, false)) {
1856    return;
1857  }
1858
1859  // Next, demultiplex/decode time arguments
1860  struct timespec absTime;
1861  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
1862    return;
1863  }
1864  if (time > 0) {
1865    to_abstime(&absTime, time, isAbsolute);
1866  }
1867
1868  // Enter safepoint region
1869  // Beware of deadlocks such as 6317397.
1870  // The per-thread Parker:: mutex is a classic leaf-lock.
1871  // In particular a thread must never block on the Threads_lock while
1872  // holding the Parker:: mutex.  If safepoints are pending both the
1873  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
1874  ThreadBlockInVM tbivm(jt);
1875
1876  // Don't wait if cannot get lock since interference arises from
1877  // unparking. Also re-check interrupt before trying wait.
1878  if (Thread::is_interrupted(thread, false) ||
1879      pthread_mutex_trylock(_mutex) != 0) {
1880    return;
1881  }
1882
1883  int status;
1884  if (_counter > 0)  { // no wait needed
1885    _counter = 0;
1886    status = pthread_mutex_unlock(_mutex);
1887    assert_status(status == 0, status, "invariant");
1888    // Paranoia to ensure our locked and lock-free paths interact
1889    // correctly with each other and Java-level accesses.
1890    OrderAccess::fence();
1891    return;
1892  }
1893
1894  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
1895  jt->set_suspend_equivalent();
1896  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1897
1898  assert(_cur_index == -1, "invariant");
1899  if (time == 0) {
1900    _cur_index = REL_INDEX; // arbitrary choice when not timed
1901    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
1902    assert_status(status == 0, status, "cond_timedwait");
1903  }
1904  else {
1905    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
1906    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
1907    assert_status(status == 0 || status == ETIMEDOUT,
1908                  status, "cond_timedwait");
1909  }
1910  _cur_index = -1;
1911
1912  _counter = 0;
1913  status = pthread_mutex_unlock(_mutex);
1914  assert_status(status == 0, status, "invariant");
1915  // Paranoia to ensure our locked and lock-free paths interact
1916  // correctly with each other and Java-level accesses.
1917  OrderAccess::fence();
1918
1919  // If externally suspended while waiting, re-suspend
1920  if (jt->handle_special_suspend_equivalent_condition()) {
1921    jt->java_suspend_self();
1922  }
1923}
1924
1925void Parker::unpark() {
1926  int status = pthread_mutex_lock(_mutex);
1927  assert_status(status == 0, status, "invariant");
1928  const int s = _counter;
1929  _counter = 1;
1930  // must capture correct index before unlocking
1931  int index = _cur_index;
1932  status = pthread_mutex_unlock(_mutex);
1933  assert_status(status == 0, status, "invariant");
1934
1935  // Note that we signal() *after* dropping the lock for "immortal" Events.
1936  // This is safe and avoids a common class of futile wakeups.  In rare
1937  // circumstances this can cause a thread to return prematurely from
1938  // cond_{timed}wait() but the spurious wakeup is benign and the victim
1939  // will simply re-test the condition and re-park itself.
1940  // This provides particular benefit if the underlying platform does not
1941  // provide wait morphing.
1942
1943  if (s < 1 && index != -1) {
1944    // thread is definitely parked
1945    status = pthread_cond_signal(&_cond[index]);
1946    assert_status(status == 0, status, "invariant");
1947  }
1948}
1949
1950
1951#endif // !SOLARIS
1952