os_posix.cpp revision 10272:b0cdcfe42ebf
125603Skjc/*
255205Speter * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
325603Skjc * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4139823Simp *
525603Skjc * This code is free software; you can redistribute it and/or modify it
625603Skjc * under the terms of the GNU General Public License version 2 only, as
725603Skjc * published by the Free Software Foundation.
825603Skjc *
925603Skjc * This code is distributed in the hope that it will be useful, but WITHOUT
1025603Skjc * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1125603Skjc * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1225603Skjc * version 2 for more details (a copy is included in the LICENSE file that
1325603Skjc * accompanied this code).
1425603Skjc *
1525603Skjc * You should have received a copy of the GNU General Public License version
1625603Skjc * 2 along with this work; if not, write to the Free Software Foundation,
1725603Skjc * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1825603Skjc *
1925603Skjc * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2025603Skjc * or visit www.oracle.com if you need additional information or have any
2125603Skjc * questions.
2225603Skjc *
2325603Skjc */
2425603Skjc
2525603Skjc#include "utilities/globalDefinitions.hpp"
2625603Skjc#include "prims/jvm.h"
2725603Skjc#include "semaphore_posix.hpp"
2825603Skjc#include "runtime/frame.inline.hpp"
2925603Skjc#include "runtime/interfaceSupport.hpp"
3025603Skjc#include "runtime/os.hpp"
3125603Skjc#include "utilities/vmError.hpp"
3225603Skjc
3325603Skjc#include <signal.h>
3425603Skjc#include <unistd.h>
3525603Skjc#include <sys/resource.h>
3625603Skjc#include <sys/utsname.h>
3725603Skjc#include <pthread.h>
3825603Skjc#include <semaphore.h>
3925603Skjc#include <signal.h>
40114739Sharti
41114739Sharti// Todo: provide a os::get_max_process_id() or similar. Number of processes
42114739Sharti// may have been configured, can be read more accurately from proc fs etc.
43116523Sharti#ifndef MAX_PID
44116523Sharti#define MAX_PID INT_MAX
45116523Sharti#endif
46116523Sharti#define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
47116523Sharti
48116523Sharti// Check core dump limit and report possible place where core can be found
49116441Shartivoid os::check_dump_limit(char* buffer, size_t bufferSize) {
50116441Sharti  int n;
51116523Sharti  struct rlimit rlim;
52116441Sharti  bool success;
53117628Sharti
54117628Sharti  char core_path[PATH_MAX];
55117721Sharti  n = get_core_path(core_path, PATH_MAX);
56117721Sharti
57125017Sharti  if (n <= 0) {
58114739Sharti    jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
59114739Sharti    success = true;
60116523Sharti#ifdef LINUX
61116441Sharti  } else if (core_path[0] == '"') { // redirect to user process
62116441Sharti    jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
63116441Sharti    success = true;
64116441Sharti#endif
65116441Sharti  } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
66116441Sharti    jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
67116441Sharti    success = true;
68116441Sharti  } else {
69116441Sharti    switch(rlim.rlim_cur) {
70117628Sharti      case RLIM_INFINITY:
71117628Sharti        jio_snprintf(buffer, bufferSize, "%s", core_path);
72117628Sharti        success = true;
73117628Sharti        break;
74125017Sharti      case 0:
75125017Sharti        jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
76114739Sharti        success = false;
77114739Sharti        break;
78114739Sharti      default:
79114739Sharti        jio_snprintf(buffer, bufferSize, "%s (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, (unsigned long)(rlim.rlim_cur >> 10));
80114739Sharti        success = true;
81114739Sharti        break;
82114739Sharti    }
83114739Sharti  }
84114739Sharti
85114739Sharti  VMError::record_coredump_status(buffer, success);
86114739Sharti}
87114739Sharti
88114739Shartiint os::get_native_stack(address* stack, int frames, int toSkip) {
89114739Sharti#ifdef _NMT_NOINLINE_
90114739Sharti  toSkip++;
91114739Sharti#endif
92114739Sharti
93114739Sharti  int frame_idx = 0;
94114739Sharti  int num_of_frames;  // number of frames captured
95114739Sharti  frame fr = os::current_frame();
96114739Sharti  while (fr.pc() && frame_idx < frames) {
97114739Sharti    if (toSkip > 0) {
98116441Sharti      toSkip --;
99116441Sharti    } else {
100116441Sharti      stack[frame_idx ++] = fr.pc();
101116441Sharti    }
102116441Sharti    if (fr.fp() == NULL || fr.cb() != NULL ||
103116441Sharti        fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
104116441Sharti
105116441Sharti    if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
106116441Sharti      fr = os::get_sender_for_C_frame(&fr);
107116441Sharti    } else {
108116441Sharti      break;
109116441Sharti    }
110116441Sharti  }
111116441Sharti  num_of_frames = frame_idx;
112116441Sharti  for (; frame_idx < frames; frame_idx ++) {
113116441Sharti    stack[frame_idx] = NULL;
114116441Sharti  }
115116441Sharti
116116441Sharti  return num_of_frames;
117116441Sharti}
118116441Sharti
119116441Sharti
120116441Shartibool os::unsetenv(const char* name) {
121116441Sharti  assert(name != NULL, "Null pointer");
122116441Sharti  return (::unsetenv(name) == 0);
123116441Sharti}
124116441Sharti
125116441Shartiint os::get_last_error() {
126116441Sharti  return errno;
127116441Sharti}
128116441Sharti
129116441Shartibool os::is_debugger_attached() {
130116441Sharti  // not implemented
131116441Sharti  return false;
132116441Sharti}
133116441Sharti
134116441Shartivoid os::wait_for_keypress_at_exit(void) {
135116523Sharti  // don't do anything on posix platforms
136116523Sharti  return;
137116523Sharti}
138116523Sharti
139116523Sharti// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
140116523Sharti// so on posix, unmap the section at the start and at the end of the chunk that we mapped
141118496Sharti// rather than unmapping and remapping the whole chunk to get requested alignment.
142118496Shartichar* os::reserve_memory_aligned(size_t size, size_t alignment) {
143116441Sharti  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
144116523Sharti      "Alignment must be a multiple of allocation granularity (page size)");
145116523Sharti  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
146116523Sharti
147116523Sharti  size_t extra_size = size + alignment;
148116441Sharti  assert(extra_size >= size, "overflow, size is too large to allow alignment");
149116523Sharti
150116523Sharti  char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
151116523Sharti
152116523Sharti  if (extra_base == NULL) {
153116441Sharti    return NULL;
154116441Sharti  }
155116441Sharti
156116441Sharti  // Do manual alignment
157116441Sharti  char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
158116441Sharti
159116441Sharti  // [  |                                       |  ]
160116441Sharti  // ^ extra_base
161116441Sharti  //    ^ extra_base + begin_offset == aligned_base
162116441Sharti  //     extra_base + begin_offset + size       ^
163116441Sharti  //                       extra_base + extra_size ^
164116441Sharti  // |<>| == begin_offset
165116441Sharti  //                              end_offset == |<>|
166116441Sharti  size_t begin_offset = aligned_base - extra_base;
167116441Sharti  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
168116441Sharti
169116523Sharti  if (begin_offset > 0) {
170116523Sharti      os::release_memory(extra_base, begin_offset);
171116523Sharti  }
172116441Sharti
173117625Sharti  if (end_offset > 0) {
174116441Sharti      os::release_memory(extra_base + begin_offset + size, end_offset);
175114739Sharti  }
176114739Sharti
177114739Sharti  return aligned_base;
178114739Sharti}
179147256Sbrooks
180114739Shartiint os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
181114739Sharti    return vsnprintf(buf, len, fmt, args);
182114739Sharti}
183114739Sharti
184147256Sbrooksvoid os::Posix::print_load_average(outputStream* st) {
185117625Sharti  st->print("load average:");
186114739Sharti  double loadavg[3];
187116480Sharti  os::loadavg(loadavg, 3);
188116480Sharti  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
189116480Sharti  st->cr();
190116480Sharti}
191116480Sharti
192116480Shartivoid os::Posix::print_rlimit_info(outputStream* st) {
193116480Sharti  st->print("rlimit:");
194116480Sharti  struct rlimit rlim;
195116480Sharti
196116480Sharti  st->print(" STACK ");
197116480Sharti  getrlimit(RLIMIT_STACK, &rlim);
198116480Sharti  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
199116480Sharti  else st->print("%luk", rlim.rlim_cur >> 10);
200116480Sharti
201116480Sharti  st->print(", CORE ");
202116480Sharti  getrlimit(RLIMIT_CORE, &rlim);
20325603Skjc  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
204116523Sharti  else st->print("%luk", rlim.rlim_cur >> 10);
20525603Skjc
206116523Sharti  // Isn't there on solaris
20725603Skjc#if !defined(TARGET_OS_FAMILY_solaris) && !defined(TARGET_OS_FAMILY_aix)
20825603Skjc  st->print(", NPROC ");
20925603Skjc  getrlimit(RLIMIT_NPROC, &rlim);
21025603Skjc  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
21125603Skjc  else st->print("%lu", rlim.rlim_cur);
21225603Skjc#endif
213116523Sharti
21425603Skjc  st->print(", NOFILE ");
21525603Skjc  getrlimit(RLIMIT_NOFILE, &rlim);
216116523Sharti  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
217116523Sharti  else st->print("%lu", rlim.rlim_cur);
218116523Sharti
219116523Sharti  st->print(", AS ");
22025603Skjc  getrlimit(RLIMIT_AS, &rlim);
22125603Skjc  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
22225603Skjc  else st->print("%luk", rlim.rlim_cur >> 10);
22325603Skjc  st->cr();
224117627Sharti}
225118548Sharti
226117627Shartivoid os::Posix::print_uname_info(outputStream* st) {
227117627Sharti  // kernel
22825603Skjc  st->print("uname:");
229116523Sharti  struct utsname name;
230116523Sharti  uname(&name);
23125603Skjc  st->print("%s ", name.sysname);
232116523Sharti#ifdef ASSERT
23325603Skjc  st->print("%s ", name.nodename);
23425603Skjc#endif
23525603Skjc  st->print("%s ", name.release);
236116523Sharti  st->print("%s ", name.version);
237116523Sharti  st->print("%s", name.machine);
238116523Sharti  st->cr();
23925603Skjc}
240116523Sharti
24137939Skjcbool os::get_host_name(char* buf, size_t buflen) {
24225603Skjc  struct utsname name;
24325603Skjc  uname(&name);
24425603Skjc  jio_snprintf(buf, buflen, "%s", name.nodename);
245116523Sharti  return true;
24625603Skjc}
247116523Sharti
248116523Shartibool os::has_allocatable_memory_limit(julong* limit) {
24925603Skjc  struct rlimit rlim;
25025603Skjc  int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
25125603Skjc  // if there was an error when calling getrlimit, assume that there is no limitation
252116523Sharti  // on virtual memory.
253116523Sharti  bool result;
254116523Sharti  if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
255116523Sharti    result = false;
256116523Sharti  } else {
25725603Skjc    *limit = (julong)rlim.rlim_cur;
258118157Sharti    result = true;
259118157Sharti  }
260118157Sharti#ifdef _LP64
261118157Sharti  return result;
262118157Sharti#else
263118157Sharti  // arbitrary virtual space limit for 32 bit Unices found by testing. If
264118157Sharti  // getrlimit above returned a limit, bound it with this limit. Otherwise
265118157Sharti  // directly use it.
266118157Sharti  const julong max_virtual_limit = (julong)3800*M;
267118157Sharti  if (result) {
268118157Sharti    *limit = MIN2(*limit, max_virtual_limit);
269118157Sharti  } else {
270118157Sharti    *limit = max_virtual_limit;
271118157Sharti  }
272118157Sharti
273118157Sharti  // bound by actually allocatable memory. The algorithm uses two bounds, an
274118157Sharti  // upper and a lower limit. The upper limit is the current highest amount of
275118157Sharti  // memory that could not be allocated, the lower limit is the current highest
276118157Sharti  // amount of memory that could be allocated.
277118157Sharti  // The algorithm iteratively refines the result by halving the difference
278118157Sharti  // between these limits, updating either the upper limit (if that value could
279118157Sharti  // not be allocated) or the lower limit (if the that value could be allocated)
280118157Sharti  // until the difference between these limits is "small".
281118157Sharti
282118157Sharti  // the minimum amount of memory we care about allocating.
283118157Sharti  const julong min_allocation_size = M;
284118157Sharti
285118157Sharti  julong upper_limit = *limit;
286118157Sharti
287118157Sharti  // first check a few trivial cases
288118157Sharti  if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
289118157Sharti    *limit = upper_limit;
29025603Skjc  } else if (!is_allocatable(min_allocation_size)) {
29192725Salfred    // we found that not even min_allocation_size is allocatable. Return it
292114201Sharti    // anyway. There is no point to search for a better value any more.
29392725Salfred    *limit = min_allocation_size;
294116523Sharti  } else {
29592725Salfred    // perform the binary search.
296116523Sharti    julong lower_limit = min_allocation_size;
297117630Sharti    while ((upper_limit - lower_limit) > min_allocation_size) {
298117630Sharti      julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
299118157Sharti      temp_limit = align_size_down_(temp_limit, min_allocation_size);
300118157Sharti      if (is_allocatable(temp_limit)) {
301118157Sharti        lower_limit = temp_limit;
302118157Sharti      } else {
303118157Sharti        upper_limit = temp_limit;
304118157Sharti      }
305118157Sharti    }
306118157Sharti    *limit = lower_limit;
307118157Sharti  }
308147256Sbrooks  return true;
309118157Sharti#endif
310118157Sharti}
311118157Sharti
312118157Sharticonst char* os::get_current_directory(char *buf, size_t buflen) {
313118157Sharti  return getcwd(buf, buflen);
314118157Sharti}
315118157Sharti
316118157ShartiFILE* os::open(int fd, const char* mode) {
317147256Sbrooks  return ::fdopen(fd, mode);
318118157Sharti}
319118157Sharti
320118157Sharti// Builds a platform dependent Agent_OnLoad_<lib_name> function name
321118157Sharti// which is used to find statically linked in agents.
322118157Sharti// Parameters:
323148887Srwatson//            sym_name: Symbol in library we are looking for
324148887Srwatson//            lib_name: Name of library to look in, NULL for shared libs.
325118157Sharti//            is_absolute_path == true if lib_name is absolute path to agent
326147256Sbrooks//                                     such as "/a/b/libL.so"
327118157Sharti//            == false if only the base name of the library is passed in
328118157Sharti//               such as "L"
329118157Shartichar* os::build_agent_function_name(const char *sym_name, const char *lib_name,
330118157Sharti                                    bool is_absolute_path) {
331118157Sharti  char *agent_entry_name;
332118157Sharti  size_t len;
333118157Sharti  size_t name_len;
334118157Sharti  size_t prefix_len = strlen(JNI_LIB_PREFIX);
335147256Sbrooks  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
336118157Sharti  const char *start;
33725603Skjc
338  if (lib_name != NULL) {
339    len = name_len = strlen(lib_name);
340    if (is_absolute_path) {
341      // Need to strip path, prefix and suffix
342      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
343        lib_name = ++start;
344      }
345      if (len <= (prefix_len + suffix_len)) {
346        return NULL;
347      }
348      lib_name += prefix_len;
349      name_len = strlen(lib_name) - suffix_len;
350    }
351  }
352  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
353  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
354  if (agent_entry_name == NULL) {
355    return NULL;
356  }
357  strcpy(agent_entry_name, sym_name);
358  if (lib_name != NULL) {
359    strcat(agent_entry_name, "_");
360    strncat(agent_entry_name, lib_name, name_len);
361  }
362  return agent_entry_name;
363}
364
365int os::sleep(Thread* thread, jlong millis, bool interruptible) {
366  assert(thread == Thread::current(),  "thread consistency check");
367
368  ParkEvent * const slp = thread->_SleepEvent ;
369  slp->reset() ;
370  OrderAccess::fence() ;
371
372  if (interruptible) {
373    jlong prevtime = javaTimeNanos();
374
375    for (;;) {
376      if (os::is_interrupted(thread, true)) {
377        return OS_INTRPT;
378      }
379
380      jlong newtime = javaTimeNanos();
381
382      if (newtime - prevtime < 0) {
383        // time moving backwards, should only happen if no monotonic clock
384        // not a guarantee() because JVM should not abort on kernel/glibc bugs
385        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
386      } else {
387        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
388      }
389
390      if (millis <= 0) {
391        return OS_OK;
392      }
393
394      prevtime = newtime;
395
396      {
397        assert(thread->is_Java_thread(), "sanity check");
398        JavaThread *jt = (JavaThread *) thread;
399        ThreadBlockInVM tbivm(jt);
400        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
401
402        jt->set_suspend_equivalent();
403        // cleared by handle_special_suspend_equivalent_condition() or
404        // java_suspend_self() via check_and_wait_while_suspended()
405
406        slp->park(millis);
407
408        // were we externally suspended while we were waiting?
409        jt->check_and_wait_while_suspended();
410      }
411    }
412  } else {
413    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
414    jlong prevtime = javaTimeNanos();
415
416    for (;;) {
417      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
418      // the 1st iteration ...
419      jlong newtime = javaTimeNanos();
420
421      if (newtime - prevtime < 0) {
422        // time moving backwards, should only happen if no monotonic clock
423        // not a guarantee() because JVM should not abort on kernel/glibc bugs
424        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
425      } else {
426        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
427      }
428
429      if (millis <= 0) break ;
430
431      prevtime = newtime;
432      slp->park(millis);
433    }
434    return OS_OK ;
435  }
436}
437
438////////////////////////////////////////////////////////////////////////////////
439// interrupt support
440
441void os::interrupt(Thread* thread) {
442  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
443    "possibility of dangling Thread pointer");
444
445  OSThread* osthread = thread->osthread();
446
447  if (!osthread->interrupted()) {
448    osthread->set_interrupted(true);
449    // More than one thread can get here with the same value of osthread,
450    // resulting in multiple notifications.  We do, however, want the store
451    // to interrupted() to be visible to other threads before we execute unpark().
452    OrderAccess::fence();
453    ParkEvent * const slp = thread->_SleepEvent ;
454    if (slp != NULL) slp->unpark() ;
455  }
456
457  // For JSR166. Unpark even if interrupt status already was set
458  if (thread->is_Java_thread())
459    ((JavaThread*)thread)->parker()->unpark();
460
461  ParkEvent * ev = thread->_ParkEvent ;
462  if (ev != NULL) ev->unpark() ;
463
464}
465
466bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
467  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
468    "possibility of dangling Thread pointer");
469
470  OSThread* osthread = thread->osthread();
471
472  bool interrupted = osthread->interrupted();
473
474  // NOTE that since there is no "lock" around the interrupt and
475  // is_interrupted operations, there is the possibility that the
476  // interrupted flag (in osThread) will be "false" but that the
477  // low-level events will be in the signaled state. This is
478  // intentional. The effect of this is that Object.wait() and
479  // LockSupport.park() will appear to have a spurious wakeup, which
480  // is allowed and not harmful, and the possibility is so rare that
481  // it is not worth the added complexity to add yet another lock.
482  // For the sleep event an explicit reset is performed on entry
483  // to os::sleep, so there is no early return. It has also been
484  // recommended not to put the interrupted flag into the "event"
485  // structure because it hides the issue.
486  if (interrupted && clear_interrupted) {
487    osthread->set_interrupted(false);
488    // consider thread->_SleepEvent->reset() ... optional optimization
489  }
490
491  return interrupted;
492}
493
494
495
496static const struct {
497  int sig; const char* name;
498}
499 g_signal_info[] =
500  {
501  {  SIGABRT,     "SIGABRT" },
502#ifdef SIGAIO
503  {  SIGAIO,      "SIGAIO" },
504#endif
505  {  SIGALRM,     "SIGALRM" },
506#ifdef SIGALRM1
507  {  SIGALRM1,    "SIGALRM1" },
508#endif
509  {  SIGBUS,      "SIGBUS" },
510#ifdef SIGCANCEL
511  {  SIGCANCEL,   "SIGCANCEL" },
512#endif
513  {  SIGCHLD,     "SIGCHLD" },
514#ifdef SIGCLD
515  {  SIGCLD,      "SIGCLD" },
516#endif
517  {  SIGCONT,     "SIGCONT" },
518#ifdef SIGCPUFAIL
519  {  SIGCPUFAIL,  "SIGCPUFAIL" },
520#endif
521#ifdef SIGDANGER
522  {  SIGDANGER,   "SIGDANGER" },
523#endif
524#ifdef SIGDIL
525  {  SIGDIL,      "SIGDIL" },
526#endif
527#ifdef SIGEMT
528  {  SIGEMT,      "SIGEMT" },
529#endif
530  {  SIGFPE,      "SIGFPE" },
531#ifdef SIGFREEZE
532  {  SIGFREEZE,   "SIGFREEZE" },
533#endif
534#ifdef SIGGFAULT
535  {  SIGGFAULT,   "SIGGFAULT" },
536#endif
537#ifdef SIGGRANT
538  {  SIGGRANT,    "SIGGRANT" },
539#endif
540  {  SIGHUP,      "SIGHUP" },
541  {  SIGILL,      "SIGILL" },
542  {  SIGINT,      "SIGINT" },
543#ifdef SIGIO
544  {  SIGIO,       "SIGIO" },
545#endif
546#ifdef SIGIOINT
547  {  SIGIOINT,    "SIGIOINT" },
548#endif
549#ifdef SIGIOT
550// SIGIOT is there for BSD compatibility, but on most Unices just a
551// synonym for SIGABRT. The result should be "SIGABRT", not
552// "SIGIOT".
553#if (SIGIOT != SIGABRT )
554  {  SIGIOT,      "SIGIOT" },
555#endif
556#endif
557#ifdef SIGKAP
558  {  SIGKAP,      "SIGKAP" },
559#endif
560  {  SIGKILL,     "SIGKILL" },
561#ifdef SIGLOST
562  {  SIGLOST,     "SIGLOST" },
563#endif
564#ifdef SIGLWP
565  {  SIGLWP,      "SIGLWP" },
566#endif
567#ifdef SIGLWPTIMER
568  {  SIGLWPTIMER, "SIGLWPTIMER" },
569#endif
570#ifdef SIGMIGRATE
571  {  SIGMIGRATE,  "SIGMIGRATE" },
572#endif
573#ifdef SIGMSG
574  {  SIGMSG,      "SIGMSG" },
575#endif
576  {  SIGPIPE,     "SIGPIPE" },
577#ifdef SIGPOLL
578  {  SIGPOLL,     "SIGPOLL" },
579#endif
580#ifdef SIGPRE
581  {  SIGPRE,      "SIGPRE" },
582#endif
583  {  SIGPROF,     "SIGPROF" },
584#ifdef SIGPTY
585  {  SIGPTY,      "SIGPTY" },
586#endif
587#ifdef SIGPWR
588  {  SIGPWR,      "SIGPWR" },
589#endif
590  {  SIGQUIT,     "SIGQUIT" },
591#ifdef SIGRECONFIG
592  {  SIGRECONFIG, "SIGRECONFIG" },
593#endif
594#ifdef SIGRECOVERY
595  {  SIGRECOVERY, "SIGRECOVERY" },
596#endif
597#ifdef SIGRESERVE
598  {  SIGRESERVE,  "SIGRESERVE" },
599#endif
600#ifdef SIGRETRACT
601  {  SIGRETRACT,  "SIGRETRACT" },
602#endif
603#ifdef SIGSAK
604  {  SIGSAK,      "SIGSAK" },
605#endif
606  {  SIGSEGV,     "SIGSEGV" },
607#ifdef SIGSOUND
608  {  SIGSOUND,    "SIGSOUND" },
609#endif
610#ifdef SIGSTKFLT
611  {  SIGSTKFLT,    "SIGSTKFLT" },
612#endif
613  {  SIGSTOP,     "SIGSTOP" },
614  {  SIGSYS,      "SIGSYS" },
615#ifdef SIGSYSERROR
616  {  SIGSYSERROR, "SIGSYSERROR" },
617#endif
618#ifdef SIGTALRM
619  {  SIGTALRM,    "SIGTALRM" },
620#endif
621  {  SIGTERM,     "SIGTERM" },
622#ifdef SIGTHAW
623  {  SIGTHAW,     "SIGTHAW" },
624#endif
625  {  SIGTRAP,     "SIGTRAP" },
626#ifdef SIGTSTP
627  {  SIGTSTP,     "SIGTSTP" },
628#endif
629  {  SIGTTIN,     "SIGTTIN" },
630  {  SIGTTOU,     "SIGTTOU" },
631#ifdef SIGURG
632  {  SIGURG,      "SIGURG" },
633#endif
634  {  SIGUSR1,     "SIGUSR1" },
635  {  SIGUSR2,     "SIGUSR2" },
636#ifdef SIGVIRT
637  {  SIGVIRT,     "SIGVIRT" },
638#endif
639  {  SIGVTALRM,   "SIGVTALRM" },
640#ifdef SIGWAITING
641  {  SIGWAITING,  "SIGWAITING" },
642#endif
643#ifdef SIGWINCH
644  {  SIGWINCH,    "SIGWINCH" },
645#endif
646#ifdef SIGWINDOW
647  {  SIGWINDOW,   "SIGWINDOW" },
648#endif
649  {  SIGXCPU,     "SIGXCPU" },
650  {  SIGXFSZ,     "SIGXFSZ" },
651#ifdef SIGXRES
652  {  SIGXRES,     "SIGXRES" },
653#endif
654  { -1, NULL }
655};
656
657// Returned string is a constant. For unknown signals "UNKNOWN" is returned.
658const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
659
660  const char* ret = NULL;
661
662#ifdef SIGRTMIN
663  if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
664    if (sig == SIGRTMIN) {
665      ret = "SIGRTMIN";
666    } else if (sig == SIGRTMAX) {
667      ret = "SIGRTMAX";
668    } else {
669      jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
670      return out;
671    }
672  }
673#endif
674
675  if (sig > 0) {
676    for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
677      if (g_signal_info[idx].sig == sig) {
678        ret = g_signal_info[idx].name;
679        break;
680      }
681    }
682  }
683
684  if (!ret) {
685    if (!is_valid_signal(sig)) {
686      ret = "INVALID";
687    } else {
688      ret = "UNKNOWN";
689    }
690  }
691
692  if (out && outlen > 0) {
693    strncpy(out, ret, outlen);
694    out[outlen - 1] = '\0';
695  }
696  return out;
697}
698
699int os::Posix::get_signal_number(const char* signal_name) {
700  char tmp[30];
701  const char* s = signal_name;
702  if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
703    jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
704    s = tmp;
705  }
706  for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
707    if (strcmp(g_signal_info[idx].name, s) == 0) {
708      return g_signal_info[idx].sig;
709    }
710  }
711  return -1;
712}
713
714int os::get_signal_number(const char* signal_name) {
715  return os::Posix::get_signal_number(signal_name);
716}
717
718// Returns true if signal number is valid.
719bool os::Posix::is_valid_signal(int sig) {
720  // MacOS not really POSIX compliant: sigaddset does not return
721  // an error for invalid signal numbers. However, MacOS does not
722  // support real time signals and simply seems to have just 33
723  // signals with no holes in the signal range.
724#ifdef __APPLE__
725  return sig >= 1 && sig < NSIG;
726#else
727  // Use sigaddset to check for signal validity.
728  sigset_t set;
729  if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
730    return false;
731  }
732  return true;
733#endif
734}
735
736// Returns:
737// NULL for an invalid signal number
738// "SIG<num>" for a valid but unknown signal number
739// signal name otherwise.
740const char* os::exception_name(int sig, char* buf, size_t size) {
741  if (!os::Posix::is_valid_signal(sig)) {
742    return NULL;
743  }
744  const char* const name = os::Posix::get_signal_name(sig, buf, size);
745  if (strcmp(name, "UNKNOWN") == 0) {
746    jio_snprintf(buf, size, "SIG%d", sig);
747  }
748  return buf;
749}
750
751#define NUM_IMPORTANT_SIGS 32
752// Returns one-line short description of a signal set in a user provided buffer.
753const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
754  assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
755  // Note: for shortness, just print out the first 32. That should
756  // cover most of the useful ones, apart from realtime signals.
757  for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
758    const int rc = sigismember(set, sig);
759    if (rc == -1 && errno == EINVAL) {
760      buffer[sig-1] = '?';
761    } else {
762      buffer[sig-1] = rc == 0 ? '0' : '1';
763    }
764  }
765  buffer[NUM_IMPORTANT_SIGS] = 0;
766  return buffer;
767}
768
769// Prints one-line description of a signal set.
770void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
771  char buf[NUM_IMPORTANT_SIGS + 1];
772  os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
773  st->print("%s", buf);
774}
775
776// Writes one-line description of a combination of sigaction.sa_flags into a user
777// provided buffer. Returns that buffer.
778const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
779  char* p = buffer;
780  size_t remaining = size;
781  bool first = true;
782  int idx = 0;
783
784  assert(buffer, "invalid argument");
785
786  if (size == 0) {
787    return buffer;
788  }
789
790  strncpy(buffer, "none", size);
791
792  const struct {
793    // NB: i is an unsigned int here because SA_RESETHAND is on some
794    // systems 0x80000000, which is implicitly unsigned.  Assignining
795    // it to an int field would be an overflow in unsigned-to-signed
796    // conversion.
797    unsigned int i;
798    const char* s;
799  } flaginfo [] = {
800    { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
801    { SA_ONSTACK,   "SA_ONSTACK"   },
802    { SA_RESETHAND, "SA_RESETHAND" },
803    { SA_RESTART,   "SA_RESTART"   },
804    { SA_SIGINFO,   "SA_SIGINFO"   },
805    { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
806    { SA_NODEFER,   "SA_NODEFER"   },
807#ifdef AIX
808    { SA_ONSTACK,   "SA_ONSTACK"   },
809    { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
810#endif
811    { 0, NULL }
812  };
813
814  for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
815    if (flags & flaginfo[idx].i) {
816      if (first) {
817        jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
818        first = false;
819      } else {
820        jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
821      }
822      const size_t len = strlen(p);
823      p += len;
824      remaining -= len;
825    }
826  }
827
828  buffer[size - 1] = '\0';
829
830  return buffer;
831}
832
833// Prints one-line description of a combination of sigaction.sa_flags.
834void os::Posix::print_sa_flags(outputStream* st, int flags) {
835  char buffer[0x100];
836  os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
837  st->print("%s", buffer);
838}
839
840// Helper function for os::Posix::print_siginfo_...():
841// return a textual description for signal code.
842struct enum_sigcode_desc_t {
843  const char* s_name;
844  const char* s_desc;
845};
846
847static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
848
849  const struct {
850    int sig; int code; const char* s_code; const char* s_desc;
851  } t1 [] = {
852    { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
853    { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
854    { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
855    { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
856    { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
857    { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
858    { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
859    { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
860#if defined(IA64) && defined(LINUX)
861    { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
862    { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
863#endif
864    { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
865    { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
866    { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
867    { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
868    { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
869    { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
870    { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
871    { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
872    { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
873    { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
874#ifdef AIX
875    // no explanation found what keyerr would be
876    { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
877#endif
878#if defined(IA64) && !defined(AIX)
879    { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
880#endif
881#if defined(__sparc) && defined(SOLARIS)
882// define Solaris Sparc M7 ADI SEGV signals
883#if !defined(SEGV_ACCADI)
884#define SEGV_ACCADI 3
885#endif
886    { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
887#if !defined(SEGV_ACCDERR)
888#define SEGV_ACCDERR 4
889#endif
890    { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
891#if !defined(SEGV_ACCPERR)
892#define SEGV_ACCPERR 5
893#endif
894    { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
895#endif // defined(__sparc) && defined(SOLARIS)
896    { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
897    { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
898    { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
899    { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
900    { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
901    { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
902    { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
903    { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
904    { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
905    { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
906    { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
907#ifdef SIGPOLL
908    { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
909    { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
910    { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
911    { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
912    { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
913#endif
914    { -1, -1, NULL, NULL }
915  };
916
917  // Codes valid in any signal context.
918  const struct {
919    int code; const char* s_code; const char* s_desc;
920  } t2 [] = {
921    { SI_USER,      "SI_USER",     "Signal sent by kill()." },
922    { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
923    { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
924    { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
925    { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
926    // Linux specific
927#ifdef SI_TKILL
928    { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
929#endif
930#ifdef SI_DETHREAD
931    { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
932#endif
933#ifdef SI_KERNEL
934    { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
935#endif
936#ifdef SI_SIGIO
937    { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
938#endif
939
940#ifdef AIX
941    { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
942    { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
943#endif
944
945#ifdef __sun
946    { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
947    { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
948    { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
949#endif
950
951    { -1, NULL, NULL }
952  };
953
954  const char* s_code = NULL;
955  const char* s_desc = NULL;
956
957  for (int i = 0; t1[i].sig != -1; i ++) {
958    if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
959      s_code = t1[i].s_code;
960      s_desc = t1[i].s_desc;
961      break;
962    }
963  }
964
965  if (s_code == NULL) {
966    for (int i = 0; t2[i].s_code != NULL; i ++) {
967      if (t2[i].code == si->si_code) {
968        s_code = t2[i].s_code;
969        s_desc = t2[i].s_desc;
970      }
971    }
972  }
973
974  if (s_code == NULL) {
975    out->s_name = "unknown";
976    out->s_desc = "unknown";
977    return false;
978  }
979
980  out->s_name = s_code;
981  out->s_desc = s_desc;
982
983  return true;
984}
985
986void os::print_siginfo(outputStream* os, const void* si0) {
987
988  const siginfo_t* const si = (const siginfo_t*) si0;
989
990  char buf[20];
991  os->print("siginfo:");
992
993  if (!si) {
994    os->print(" <null>");
995    return;
996  }
997
998  const int sig = si->si_signo;
999
1000  os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1001
1002  enum_sigcode_desc_t ed;
1003  get_signal_code_description(si, &ed);
1004  os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1005
1006  if (si->si_errno) {
1007    os->print(", si_errno: %d", si->si_errno);
1008  }
1009
1010  // Output additional information depending on the signal code.
1011
1012  // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1013  // so it depends on the context which member to use. For synchronous error signals,
1014  // we print si_addr, unless the signal was sent by another process or thread, in
1015  // which case we print out pid or tid of the sender.
1016  if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1017    const pid_t pid = si->si_pid;
1018    os->print(", si_pid: %ld", (long) pid);
1019    if (IS_VALID_PID(pid)) {
1020      const pid_t me = getpid();
1021      if (me == pid) {
1022        os->print(" (current process)");
1023      }
1024    } else {
1025      os->print(" (invalid)");
1026    }
1027    os->print(", si_uid: %ld", (long) si->si_uid);
1028    if (sig == SIGCHLD) {
1029      os->print(", si_status: %d", si->si_status);
1030    }
1031  } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1032             sig == SIGTRAP || sig == SIGFPE) {
1033    os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1034#ifdef SIGPOLL
1035  } else if (sig == SIGPOLL) {
1036    os->print(", si_band: %ld", si->si_band);
1037#endif
1038  }
1039
1040}
1041
1042int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1043  return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1044}
1045
1046address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1047#ifdef TARGET_OS_FAMILY_linux
1048   return Linux::ucontext_get_pc(ctx);
1049#elif defined(TARGET_OS_FAMILY_solaris)
1050   return Solaris::ucontext_get_pc(ctx);
1051#elif defined(TARGET_OS_FAMILY_aix)
1052   return Aix::ucontext_get_pc(ctx);
1053#elif defined(TARGET_OS_FAMILY_bsd)
1054   return Bsd::ucontext_get_pc(ctx);
1055#else
1056   VMError::report_and_die("unimplemented ucontext_get_pc");
1057#endif
1058}
1059
1060void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1061#ifdef TARGET_OS_FAMILY_linux
1062   Linux::ucontext_set_pc(ctx, pc);
1063#elif defined(TARGET_OS_FAMILY_solaris)
1064   Solaris::ucontext_set_pc(ctx, pc);
1065#elif defined(TARGET_OS_FAMILY_aix)
1066   Aix::ucontext_set_pc(ctx, pc);
1067#elif defined(TARGET_OS_FAMILY_bsd)
1068   Bsd::ucontext_set_pc(ctx, pc);
1069#else
1070   VMError::report_and_die("unimplemented ucontext_get_pc");
1071#endif
1072}
1073
1074
1075os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
1076  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
1077}
1078
1079/*
1080 * See the caveats for this class in os_posix.hpp
1081 * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1082 * method and returns false. If none of the signals are raised, returns true.
1083 * The callback is supposed to provide the method that should be protected.
1084 */
1085bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1086  sigset_t saved_sig_mask;
1087
1088  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
1089  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
1090      "crash_protection already set?");
1091
1092  // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1093  // since on at least some systems (OS X) siglongjmp will restore the mask
1094  // for the process, not the thread
1095  pthread_sigmask(0, NULL, &saved_sig_mask);
1096  if (sigsetjmp(_jmpbuf, 0) == 0) {
1097    // make sure we can see in the signal handler that we have crash protection
1098    // installed
1099    WatcherThread::watcher_thread()->set_crash_protection(this);
1100    cb.call();
1101    // and clear the crash protection
1102    WatcherThread::watcher_thread()->set_crash_protection(NULL);
1103    return true;
1104  }
1105  // this happens when we siglongjmp() back
1106  pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1107  WatcherThread::watcher_thread()->set_crash_protection(NULL);
1108  return false;
1109}
1110
1111void os::WatcherThreadCrashProtection::restore() {
1112  assert(WatcherThread::watcher_thread()->has_crash_protection(),
1113      "must have crash protection");
1114
1115  siglongjmp(_jmpbuf, 1);
1116}
1117
1118void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
1119    Thread* thread) {
1120
1121  if (thread != NULL &&
1122      thread->is_Watcher_thread() &&
1123      WatcherThread::watcher_thread()->has_crash_protection()) {
1124
1125    if (sig == SIGSEGV || sig == SIGBUS) {
1126      WatcherThread::watcher_thread()->crash_protection()->restore();
1127    }
1128  }
1129}
1130
1131#define check_with_errno(check_type, cond, msg)                             \
1132  do {                                                                      \
1133    int err = errno;                                                        \
1134    check_type(cond, "%s; error='%s' (errno=%d)", msg, strerror(err), err); \
1135} while (false)
1136
1137#define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
1138#define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
1139
1140// POSIX unamed semaphores are not supported on OS X.
1141#ifndef __APPLE__
1142
1143PosixSemaphore::PosixSemaphore(uint value) {
1144  int ret = sem_init(&_semaphore, 0, value);
1145
1146  guarantee_with_errno(ret == 0, "Failed to initialize semaphore");
1147}
1148
1149PosixSemaphore::~PosixSemaphore() {
1150  sem_destroy(&_semaphore);
1151}
1152
1153void PosixSemaphore::signal(uint count) {
1154  for (uint i = 0; i < count; i++) {
1155    int ret = sem_post(&_semaphore);
1156
1157    assert_with_errno(ret == 0, "sem_post failed");
1158  }
1159}
1160
1161void PosixSemaphore::wait() {
1162  int ret;
1163
1164  do {
1165    ret = sem_wait(&_semaphore);
1166  } while (ret != 0 && errno == EINTR);
1167
1168  assert_with_errno(ret == 0, "sem_wait failed");
1169}
1170
1171bool PosixSemaphore::trywait() {
1172  int ret;
1173
1174  do {
1175    ret = sem_trywait(&_semaphore);
1176  } while (ret != 0 && errno == EINTR);
1177
1178  assert_with_errno(ret == 0 || errno == EAGAIN, "trywait failed");
1179
1180  return ret == 0;
1181}
1182
1183bool PosixSemaphore::timedwait(struct timespec ts) {
1184  while (true) {
1185    int result = sem_timedwait(&_semaphore, &ts);
1186    if (result == 0) {
1187      return true;
1188    } else if (errno == EINTR) {
1189      continue;
1190    } else if (errno == ETIMEDOUT) {
1191      return false;
1192    } else {
1193      assert_with_errno(false, "timedwait failed");
1194      return false;
1195    }
1196  }
1197}
1198
1199#endif // __APPLE__
1200