os_linux.cpp revision 9867:3125c4a60cc9
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
110// getrusage() is prepared to handle the associated failure.
111#ifndef RUSAGE_THREAD
112  #define RUSAGE_THREAD   (1)               /* only the calling thread */
113#endif
114
115#define MAX_PATH    (2 * K)
116
117#define MAX_SECS 100000000
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122#define LARGEPAGES_BIT (1 << 6)
123////////////////////////////////////////////////////////////////////////////////
124// global variables
125julong os::Linux::_physical_memory = 0;
126
127address   os::Linux::_initial_thread_stack_bottom = NULL;
128uintptr_t os::Linux::_initial_thread_stack_size   = 0;
129
130int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
132int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
133Mutex* os::Linux::_createThread_lock = NULL;
134pthread_t os::Linux::_main_thread;
135int os::Linux::_page_size = -1;
136const int os::Linux::_vm_default_page_size = (8 * K);
137bool os::Linux::_supports_fast_thread_cpu_time = false;
138const char * os::Linux::_glibc_version = NULL;
139const char * os::Linux::_libpthread_version = NULL;
140pthread_condattr_t os::Linux::_condattr[1];
141
142static jlong initial_time_count=0;
143
144static int clock_tics_per_sec = 100;
145
146// For diagnostics to print a message once. see run_periodic_checks
147static sigset_t check_signal_done;
148static bool check_signals = true;
149
150// Signal number used to suspend/resume a thread
151
152// do not use any signal number less than SIGSEGV, see 4355769
153static int SR_signum = SIGUSR2;
154sigset_t SR_sigset;
155
156// Declarations
157static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
158
159// utility functions
160
161static int SR_initialize();
162
163julong os::available_memory() {
164  return Linux::available_memory();
165}
166
167julong os::Linux::available_memory() {
168  // values in struct sysinfo are "unsigned long"
169  struct sysinfo si;
170  sysinfo(&si);
171
172  return (julong)si.freeram * si.mem_unit;
173}
174
175julong os::physical_memory() {
176  return Linux::physical_memory();
177}
178
179// Return true if user is running as root.
180
181bool os::have_special_privileges() {
182  static bool init = false;
183  static bool privileges = false;
184  if (!init) {
185    privileges = (getuid() != geteuid()) || (getgid() != getegid());
186    init = true;
187  }
188  return privileges;
189}
190
191
192#ifndef SYS_gettid
193// i386: 224, ia64: 1105, amd64: 186, sparc 143
194  #ifdef __ia64__
195    #define SYS_gettid 1105
196  #else
197    #ifdef __i386__
198      #define SYS_gettid 224
199    #else
200      #ifdef __amd64__
201        #define SYS_gettid 186
202      #else
203        #ifdef __sparc__
204          #define SYS_gettid 143
205        #else
206          #error define gettid for the arch
207        #endif
208      #endif
209    #endif
210  #endif
211#endif
212
213// Cpu architecture string
214static char cpu_arch[] = HOTSPOT_LIB_ARCH;
215
216
217// pid_t gettid()
218//
219// Returns the kernel thread id of the currently running thread. Kernel
220// thread id is used to access /proc.
221pid_t os::Linux::gettid() {
222  int rslt = syscall(SYS_gettid);
223  assert(rslt != -1, "must be."); // old linuxthreads implementation?
224  return (pid_t)rslt;
225}
226
227// Most versions of linux have a bug where the number of processors are
228// determined by looking at the /proc file system.  In a chroot environment,
229// the system call returns 1.  This causes the VM to act as if it is
230// a single processor and elide locking (see is_MP() call).
231static bool unsafe_chroot_detected = false;
232static const char *unstable_chroot_error = "/proc file system not found.\n"
233                     "Java may be unstable running multithreaded in a chroot "
234                     "environment on Linux when /proc filesystem is not mounted.";
235
236void os::Linux::initialize_system_info() {
237  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
238  if (processor_count() == 1) {
239    pid_t pid = os::Linux::gettid();
240    char fname[32];
241    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
242    FILE *fp = fopen(fname, "r");
243    if (fp == NULL) {
244      unsafe_chroot_detected = true;
245    } else {
246      fclose(fp);
247    }
248  }
249  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
250  assert(processor_count() > 0, "linux error");
251}
252
253void os::init_system_properties_values() {
254  // The next steps are taken in the product version:
255  //
256  // Obtain the JAVA_HOME value from the location of libjvm.so.
257  // This library should be located at:
258  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
259  //
260  // If "/jre/lib/" appears at the right place in the path, then we
261  // assume libjvm.so is installed in a JDK and we use this path.
262  //
263  // Otherwise exit with message: "Could not create the Java virtual machine."
264  //
265  // The following extra steps are taken in the debugging version:
266  //
267  // If "/jre/lib/" does NOT appear at the right place in the path
268  // instead of exit check for $JAVA_HOME environment variable.
269  //
270  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
271  // then we append a fake suffix "hotspot/libjvm.so" to this path so
272  // it looks like libjvm.so is installed there
273  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
274  //
275  // Otherwise exit.
276  //
277  // Important note: if the location of libjvm.so changes this
278  // code needs to be changed accordingly.
279
280  // See ld(1):
281  //      The linker uses the following search paths to locate required
282  //      shared libraries:
283  //        1: ...
284  //        ...
285  //        7: The default directories, normally /lib and /usr/lib.
286#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
287  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
288#else
289  #define DEFAULT_LIBPATH "/lib:/usr/lib"
290#endif
291
292// Base path of extensions installed on the system.
293#define SYS_EXT_DIR     "/usr/java/packages"
294#define EXTENSIONS_DIR  "/lib/ext"
295
296  // Buffer that fits several sprintfs.
297  // Note that the space for the colon and the trailing null are provided
298  // by the nulls included by the sizeof operator.
299  const size_t bufsize =
300    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
301         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
302  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
303
304  // sysclasspath, java_home, dll_dir
305  {
306    char *pslash;
307    os::jvm_path(buf, bufsize);
308
309    // Found the full path to libjvm.so.
310    // Now cut the path to <java_home>/jre if we can.
311    pslash = strrchr(buf, '/');
312    if (pslash != NULL) {
313      *pslash = '\0';            // Get rid of /libjvm.so.
314    }
315    pslash = strrchr(buf, '/');
316    if (pslash != NULL) {
317      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
318    }
319    Arguments::set_dll_dir(buf);
320
321    if (pslash != NULL) {
322      pslash = strrchr(buf, '/');
323      if (pslash != NULL) {
324        *pslash = '\0';          // Get rid of /<arch>.
325        pslash = strrchr(buf, '/');
326        if (pslash != NULL) {
327          *pslash = '\0';        // Get rid of /lib.
328        }
329      }
330    }
331    Arguments::set_java_home(buf);
332    set_boot_path('/', ':');
333  }
334
335  // Where to look for native libraries.
336  //
337  // Note: Due to a legacy implementation, most of the library path
338  // is set in the launcher. This was to accomodate linking restrictions
339  // on legacy Linux implementations (which are no longer supported).
340  // Eventually, all the library path setting will be done here.
341  //
342  // However, to prevent the proliferation of improperly built native
343  // libraries, the new path component /usr/java/packages is added here.
344  // Eventually, all the library path setting will be done here.
345  {
346    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
347    // should always exist (until the legacy problem cited above is
348    // addressed).
349    const char *v = ::getenv("LD_LIBRARY_PATH");
350    const char *v_colon = ":";
351    if (v == NULL) { v = ""; v_colon = ""; }
352    // That's +1 for the colon and +1 for the trailing '\0'.
353    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
354                                                     strlen(v) + 1 +
355                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
356                                                     mtInternal);
357    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
358    Arguments::set_library_path(ld_library_path);
359    FREE_C_HEAP_ARRAY(char, ld_library_path);
360  }
361
362  // Extensions directories.
363  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
364  Arguments::set_ext_dirs(buf);
365
366  FREE_C_HEAP_ARRAY(char, buf);
367
368#undef DEFAULT_LIBPATH
369#undef SYS_EXT_DIR
370#undef EXTENSIONS_DIR
371}
372
373////////////////////////////////////////////////////////////////////////////////
374// breakpoint support
375
376void os::breakpoint() {
377  BREAKPOINT;
378}
379
380extern "C" void breakpoint() {
381  // use debugger to set breakpoint here
382}
383
384////////////////////////////////////////////////////////////////////////////////
385// signal support
386
387debug_only(static bool signal_sets_initialized = false);
388static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
389
390bool os::Linux::is_sig_ignored(int sig) {
391  struct sigaction oact;
392  sigaction(sig, (struct sigaction*)NULL, &oact);
393  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
394                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
395  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
396    return true;
397  } else {
398    return false;
399  }
400}
401
402void os::Linux::signal_sets_init() {
403  // Should also have an assertion stating we are still single-threaded.
404  assert(!signal_sets_initialized, "Already initialized");
405  // Fill in signals that are necessarily unblocked for all threads in
406  // the VM. Currently, we unblock the following signals:
407  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
408  //                         by -Xrs (=ReduceSignalUsage));
409  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
410  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
411  // the dispositions or masks wrt these signals.
412  // Programs embedding the VM that want to use the above signals for their
413  // own purposes must, at this time, use the "-Xrs" option to prevent
414  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
415  // (See bug 4345157, and other related bugs).
416  // In reality, though, unblocking these signals is really a nop, since
417  // these signals are not blocked by default.
418  sigemptyset(&unblocked_sigs);
419  sigemptyset(&allowdebug_blocked_sigs);
420  sigaddset(&unblocked_sigs, SIGILL);
421  sigaddset(&unblocked_sigs, SIGSEGV);
422  sigaddset(&unblocked_sigs, SIGBUS);
423  sigaddset(&unblocked_sigs, SIGFPE);
424#if defined(PPC64)
425  sigaddset(&unblocked_sigs, SIGTRAP);
426#endif
427  sigaddset(&unblocked_sigs, SR_signum);
428
429  if (!ReduceSignalUsage) {
430    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
431      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
432      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
433    }
434    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
435      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
436      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
437    }
438    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
439      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
440      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
441    }
442  }
443  // Fill in signals that are blocked by all but the VM thread.
444  sigemptyset(&vm_sigs);
445  if (!ReduceSignalUsage) {
446    sigaddset(&vm_sigs, BREAK_SIGNAL);
447  }
448  debug_only(signal_sets_initialized = true);
449
450}
451
452// These are signals that are unblocked while a thread is running Java.
453// (For some reason, they get blocked by default.)
454sigset_t* os::Linux::unblocked_signals() {
455  assert(signal_sets_initialized, "Not initialized");
456  return &unblocked_sigs;
457}
458
459// These are the signals that are blocked while a (non-VM) thread is
460// running Java. Only the VM thread handles these signals.
461sigset_t* os::Linux::vm_signals() {
462  assert(signal_sets_initialized, "Not initialized");
463  return &vm_sigs;
464}
465
466// These are signals that are blocked during cond_wait to allow debugger in
467sigset_t* os::Linux::allowdebug_blocked_signals() {
468  assert(signal_sets_initialized, "Not initialized");
469  return &allowdebug_blocked_sigs;
470}
471
472void os::Linux::hotspot_sigmask(Thread* thread) {
473
474  //Save caller's signal mask before setting VM signal mask
475  sigset_t caller_sigmask;
476  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
477
478  OSThread* osthread = thread->osthread();
479  osthread->set_caller_sigmask(caller_sigmask);
480
481  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
482
483  if (!ReduceSignalUsage) {
484    if (thread->is_VM_thread()) {
485      // Only the VM thread handles BREAK_SIGNAL ...
486      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
487    } else {
488      // ... all other threads block BREAK_SIGNAL
489      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
490    }
491  }
492}
493
494//////////////////////////////////////////////////////////////////////////////
495// detecting pthread library
496
497void os::Linux::libpthread_init() {
498  // Save glibc and pthread version strings.
499#if !defined(_CS_GNU_LIBC_VERSION) || \
500    !defined(_CS_GNU_LIBPTHREAD_VERSION)
501  #error "glibc too old (< 2.3.2)"
502#endif
503
504  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
505  assert(n > 0, "cannot retrieve glibc version");
506  char *str = (char *)malloc(n, mtInternal);
507  confstr(_CS_GNU_LIBC_VERSION, str, n);
508  os::Linux::set_glibc_version(str);
509
510  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
511  assert(n > 0, "cannot retrieve pthread version");
512  str = (char *)malloc(n, mtInternal);
513  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
514  os::Linux::set_libpthread_version(str);
515}
516
517/////////////////////////////////////////////////////////////////////////////
518// thread stack expansion
519
520// os::Linux::manually_expand_stack() takes care of expanding the thread
521// stack. Note that this is normally not needed: pthread stacks allocate
522// thread stack using mmap() without MAP_NORESERVE, so the stack is already
523// committed. Therefore it is not necessary to expand the stack manually.
524//
525// Manually expanding the stack was historically needed on LinuxThreads
526// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
527// it is kept to deal with very rare corner cases:
528//
529// For one, user may run the VM on an own implementation of threads
530// whose stacks are - like the old LinuxThreads - implemented using
531// mmap(MAP_GROWSDOWN).
532//
533// Also, this coding may be needed if the VM is running on the primordial
534// thread. Normally we avoid running on the primordial thread; however,
535// user may still invoke the VM on the primordial thread.
536//
537// The following historical comment describes the details about running
538// on a thread stack allocated with mmap(MAP_GROWSDOWN):
539
540
541// Force Linux kernel to expand current thread stack. If "bottom" is close
542// to the stack guard, caller should block all signals.
543//
544// MAP_GROWSDOWN:
545//   A special mmap() flag that is used to implement thread stacks. It tells
546//   kernel that the memory region should extend downwards when needed. This
547//   allows early versions of LinuxThreads to only mmap the first few pages
548//   when creating a new thread. Linux kernel will automatically expand thread
549//   stack as needed (on page faults).
550//
551//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
552//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
553//   region, it's hard to tell if the fault is due to a legitimate stack
554//   access or because of reading/writing non-exist memory (e.g. buffer
555//   overrun). As a rule, if the fault happens below current stack pointer,
556//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
557//   application (see Linux kernel fault.c).
558//
559//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
560//   stack overflow detection.
561//
562//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
563//   not use MAP_GROWSDOWN.
564//
565// To get around the problem and allow stack banging on Linux, we need to
566// manually expand thread stack after receiving the SIGSEGV.
567//
568// There are two ways to expand thread stack to address "bottom", we used
569// both of them in JVM before 1.5:
570//   1. adjust stack pointer first so that it is below "bottom", and then
571//      touch "bottom"
572//   2. mmap() the page in question
573//
574// Now alternate signal stack is gone, it's harder to use 2. For instance,
575// if current sp is already near the lower end of page 101, and we need to
576// call mmap() to map page 100, it is possible that part of the mmap() frame
577// will be placed in page 100. When page 100 is mapped, it is zero-filled.
578// That will destroy the mmap() frame and cause VM to crash.
579//
580// The following code works by adjusting sp first, then accessing the "bottom"
581// page to force a page fault. Linux kernel will then automatically expand the
582// stack mapping.
583//
584// _expand_stack_to() assumes its frame size is less than page size, which
585// should always be true if the function is not inlined.
586
587#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
588  #define NOINLINE
589#else
590  #define NOINLINE __attribute__ ((noinline))
591#endif
592
593static void _expand_stack_to(address bottom) NOINLINE;
594
595static void _expand_stack_to(address bottom) {
596  address sp;
597  size_t size;
598  volatile char *p;
599
600  // Adjust bottom to point to the largest address within the same page, it
601  // gives us a one-page buffer if alloca() allocates slightly more memory.
602  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
603  bottom += os::Linux::page_size() - 1;
604
605  // sp might be slightly above current stack pointer; if that's the case, we
606  // will alloca() a little more space than necessary, which is OK. Don't use
607  // os::current_stack_pointer(), as its result can be slightly below current
608  // stack pointer, causing us to not alloca enough to reach "bottom".
609  sp = (address)&sp;
610
611  if (sp > bottom) {
612    size = sp - bottom;
613    p = (volatile char *)alloca(size);
614    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
615    p[0] = '\0';
616  }
617}
618
619bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
620  assert(t!=NULL, "just checking");
621  assert(t->osthread()->expanding_stack(), "expand should be set");
622  assert(t->stack_base() != NULL, "stack_base was not initialized");
623
624  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
625    sigset_t mask_all, old_sigset;
626    sigfillset(&mask_all);
627    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
628    _expand_stack_to(addr);
629    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
630    return true;
631  }
632  return false;
633}
634
635//////////////////////////////////////////////////////////////////////////////
636// create new thread
637
638// Thread start routine for all newly created threads
639static void *java_start(Thread *thread) {
640  // Try to randomize the cache line index of hot stack frames.
641  // This helps when threads of the same stack traces evict each other's
642  // cache lines. The threads can be either from the same JVM instance, or
643  // from different JVM instances. The benefit is especially true for
644  // processors with hyperthreading technology.
645  static int counter = 0;
646  int pid = os::current_process_id();
647  alloca(((pid ^ counter++) & 7) * 128);
648
649  thread->initialize_thread_current();
650
651  OSThread* osthread = thread->osthread();
652  Monitor* sync = osthread->startThread_lock();
653
654  osthread->set_thread_id(os::current_thread_id());
655
656  if (UseNUMA) {
657    int lgrp_id = os::numa_get_group_id();
658    if (lgrp_id != -1) {
659      thread->set_lgrp_id(lgrp_id);
660    }
661  }
662  // initialize signal mask for this thread
663  os::Linux::hotspot_sigmask(thread);
664
665  // initialize floating point control register
666  os::Linux::init_thread_fpu_state();
667
668  // handshaking with parent thread
669  {
670    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
671
672    // notify parent thread
673    osthread->set_state(INITIALIZED);
674    sync->notify_all();
675
676    // wait until os::start_thread()
677    while (osthread->get_state() == INITIALIZED) {
678      sync->wait(Mutex::_no_safepoint_check_flag);
679    }
680  }
681
682  // call one more level start routine
683  thread->run();
684
685  return 0;
686}
687
688bool os::create_thread(Thread* thread, ThreadType thr_type,
689                       size_t stack_size) {
690  assert(thread->osthread() == NULL, "caller responsible");
691
692  // Allocate the OSThread object
693  OSThread* osthread = new OSThread(NULL, NULL);
694  if (osthread == NULL) {
695    return false;
696  }
697
698  // set the correct thread state
699  osthread->set_thread_type(thr_type);
700
701  // Initial state is ALLOCATED but not INITIALIZED
702  osthread->set_state(ALLOCATED);
703
704  thread->set_osthread(osthread);
705
706  // init thread attributes
707  pthread_attr_t attr;
708  pthread_attr_init(&attr);
709  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
710
711  // stack size
712  // calculate stack size if it's not specified by caller
713  if (stack_size == 0) {
714    stack_size = os::Linux::default_stack_size(thr_type);
715
716    switch (thr_type) {
717    case os::java_thread:
718      // Java threads use ThreadStackSize which default value can be
719      // changed with the flag -Xss
720      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
721      stack_size = JavaThread::stack_size_at_create();
722      break;
723    case os::compiler_thread:
724      if (CompilerThreadStackSize > 0) {
725        stack_size = (size_t)(CompilerThreadStackSize * K);
726        break;
727      } // else fall through:
728        // use VMThreadStackSize if CompilerThreadStackSize is not defined
729    case os::vm_thread:
730    case os::pgc_thread:
731    case os::cgc_thread:
732    case os::watcher_thread:
733      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
734      break;
735    }
736  }
737
738  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
739  pthread_attr_setstacksize(&attr, stack_size);
740
741  // glibc guard page
742  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
743
744  ThreadState state;
745
746  {
747    pthread_t tid;
748    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
749
750    pthread_attr_destroy(&attr);
751
752    if (ret != 0) {
753      if (PrintMiscellaneous && (Verbose || WizardMode)) {
754        perror("pthread_create()");
755      }
756      // Need to clean up stuff we've allocated so far
757      thread->set_osthread(NULL);
758      delete osthread;
759      return false;
760    }
761
762    // Store pthread info into the OSThread
763    osthread->set_pthread_id(tid);
764
765    // Wait until child thread is either initialized or aborted
766    {
767      Monitor* sync_with_child = osthread->startThread_lock();
768      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
769      while ((state = osthread->get_state()) == ALLOCATED) {
770        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
771      }
772    }
773  }
774
775  // Aborted due to thread limit being reached
776  if (state == ZOMBIE) {
777    thread->set_osthread(NULL);
778    delete osthread;
779    return false;
780  }
781
782  // The thread is returned suspended (in state INITIALIZED),
783  // and is started higher up in the call chain
784  assert(state == INITIALIZED, "race condition");
785  return true;
786}
787
788/////////////////////////////////////////////////////////////////////////////
789// attach existing thread
790
791// bootstrap the main thread
792bool os::create_main_thread(JavaThread* thread) {
793  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
794  return create_attached_thread(thread);
795}
796
797bool os::create_attached_thread(JavaThread* thread) {
798#ifdef ASSERT
799  thread->verify_not_published();
800#endif
801
802  // Allocate the OSThread object
803  OSThread* osthread = new OSThread(NULL, NULL);
804
805  if (osthread == NULL) {
806    return false;
807  }
808
809  // Store pthread info into the OSThread
810  osthread->set_thread_id(os::Linux::gettid());
811  osthread->set_pthread_id(::pthread_self());
812
813  // initialize floating point control register
814  os::Linux::init_thread_fpu_state();
815
816  // Initial thread state is RUNNABLE
817  osthread->set_state(RUNNABLE);
818
819  thread->set_osthread(osthread);
820
821  if (UseNUMA) {
822    int lgrp_id = os::numa_get_group_id();
823    if (lgrp_id != -1) {
824      thread->set_lgrp_id(lgrp_id);
825    }
826  }
827
828  if (os::Linux::is_initial_thread()) {
829    // If current thread is initial thread, its stack is mapped on demand,
830    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
831    // the entire stack region to avoid SEGV in stack banging.
832    // It is also useful to get around the heap-stack-gap problem on SuSE
833    // kernel (see 4821821 for details). We first expand stack to the top
834    // of yellow zone, then enable stack yellow zone (order is significant,
835    // enabling yellow zone first will crash JVM on SuSE Linux), so there
836    // is no gap between the last two virtual memory regions.
837
838    JavaThread *jt = (JavaThread *)thread;
839    address addr = jt->stack_reserved_zone_base();
840    assert(addr != NULL, "initialization problem?");
841    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
842
843    osthread->set_expanding_stack();
844    os::Linux::manually_expand_stack(jt, addr);
845    osthread->clear_expanding_stack();
846  }
847
848  // initialize signal mask for this thread
849  // and save the caller's signal mask
850  os::Linux::hotspot_sigmask(thread);
851
852  return true;
853}
854
855void os::pd_start_thread(Thread* thread) {
856  OSThread * osthread = thread->osthread();
857  assert(osthread->get_state() != INITIALIZED, "just checking");
858  Monitor* sync_with_child = osthread->startThread_lock();
859  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
860  sync_with_child->notify();
861}
862
863// Free Linux resources related to the OSThread
864void os::free_thread(OSThread* osthread) {
865  assert(osthread != NULL, "osthread not set");
866
867  if (Thread::current()->osthread() == osthread) {
868    // Restore caller's signal mask
869    sigset_t sigmask = osthread->caller_sigmask();
870    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
871  }
872
873  delete osthread;
874}
875
876//////////////////////////////////////////////////////////////////////////////
877// initial thread
878
879// Check if current thread is the initial thread, similar to Solaris thr_main.
880bool os::Linux::is_initial_thread(void) {
881  char dummy;
882  // If called before init complete, thread stack bottom will be null.
883  // Can be called if fatal error occurs before initialization.
884  if (initial_thread_stack_bottom() == NULL) return false;
885  assert(initial_thread_stack_bottom() != NULL &&
886         initial_thread_stack_size()   != 0,
887         "os::init did not locate initial thread's stack region");
888  if ((address)&dummy >= initial_thread_stack_bottom() &&
889      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
890    return true;
891  } else {
892    return false;
893  }
894}
895
896// Find the virtual memory area that contains addr
897static bool find_vma(address addr, address* vma_low, address* vma_high) {
898  FILE *fp = fopen("/proc/self/maps", "r");
899  if (fp) {
900    address low, high;
901    while (!feof(fp)) {
902      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
903        if (low <= addr && addr < high) {
904          if (vma_low)  *vma_low  = low;
905          if (vma_high) *vma_high = high;
906          fclose(fp);
907          return true;
908        }
909      }
910      for (;;) {
911        int ch = fgetc(fp);
912        if (ch == EOF || ch == (int)'\n') break;
913      }
914    }
915    fclose(fp);
916  }
917  return false;
918}
919
920// Locate initial thread stack. This special handling of initial thread stack
921// is needed because pthread_getattr_np() on most (all?) Linux distros returns
922// bogus value for initial thread.
923void os::Linux::capture_initial_stack(size_t max_size) {
924  // stack size is the easy part, get it from RLIMIT_STACK
925  size_t stack_size;
926  struct rlimit rlim;
927  getrlimit(RLIMIT_STACK, &rlim);
928  stack_size = rlim.rlim_cur;
929
930  // 6308388: a bug in ld.so will relocate its own .data section to the
931  //   lower end of primordial stack; reduce ulimit -s value a little bit
932  //   so we won't install guard page on ld.so's data section.
933  stack_size -= 2 * page_size();
934
935  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
936  //   7.1, in both cases we will get 2G in return value.
937  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
938  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
939  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
940  //   in case other parts in glibc still assumes 2M max stack size.
941  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
942  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
943  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
944    stack_size = 2 * K * K IA64_ONLY(*2);
945  }
946  // Try to figure out where the stack base (top) is. This is harder.
947  //
948  // When an application is started, glibc saves the initial stack pointer in
949  // a global variable "__libc_stack_end", which is then used by system
950  // libraries. __libc_stack_end should be pretty close to stack top. The
951  // variable is available since the very early days. However, because it is
952  // a private interface, it could disappear in the future.
953  //
954  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
955  // to __libc_stack_end, it is very close to stack top, but isn't the real
956  // stack top. Note that /proc may not exist if VM is running as a chroot
957  // program, so reading /proc/<pid>/stat could fail. Also the contents of
958  // /proc/<pid>/stat could change in the future (though unlikely).
959  //
960  // We try __libc_stack_end first. If that doesn't work, look for
961  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
962  // as a hint, which should work well in most cases.
963
964  uintptr_t stack_start;
965
966  // try __libc_stack_end first
967  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
968  if (p && *p) {
969    stack_start = *p;
970  } else {
971    // see if we can get the start_stack field from /proc/self/stat
972    FILE *fp;
973    int pid;
974    char state;
975    int ppid;
976    int pgrp;
977    int session;
978    int nr;
979    int tpgrp;
980    unsigned long flags;
981    unsigned long minflt;
982    unsigned long cminflt;
983    unsigned long majflt;
984    unsigned long cmajflt;
985    unsigned long utime;
986    unsigned long stime;
987    long cutime;
988    long cstime;
989    long prio;
990    long nice;
991    long junk;
992    long it_real;
993    uintptr_t start;
994    uintptr_t vsize;
995    intptr_t rss;
996    uintptr_t rsslim;
997    uintptr_t scodes;
998    uintptr_t ecode;
999    int i;
1000
1001    // Figure what the primordial thread stack base is. Code is inspired
1002    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1003    // followed by command name surrounded by parentheses, state, etc.
1004    char stat[2048];
1005    int statlen;
1006
1007    fp = fopen("/proc/self/stat", "r");
1008    if (fp) {
1009      statlen = fread(stat, 1, 2047, fp);
1010      stat[statlen] = '\0';
1011      fclose(fp);
1012
1013      // Skip pid and the command string. Note that we could be dealing with
1014      // weird command names, e.g. user could decide to rename java launcher
1015      // to "java 1.4.2 :)", then the stat file would look like
1016      //                1234 (java 1.4.2 :)) R ... ...
1017      // We don't really need to know the command string, just find the last
1018      // occurrence of ")" and then start parsing from there. See bug 4726580.
1019      char * s = strrchr(stat, ')');
1020
1021      i = 0;
1022      if (s) {
1023        // Skip blank chars
1024        do { s++; } while (s && isspace(*s));
1025
1026#define _UFM UINTX_FORMAT
1027#define _DFM INTX_FORMAT
1028
1029        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1030        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1031        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1032                   &state,          // 3  %c
1033                   &ppid,           // 4  %d
1034                   &pgrp,           // 5  %d
1035                   &session,        // 6  %d
1036                   &nr,             // 7  %d
1037                   &tpgrp,          // 8  %d
1038                   &flags,          // 9  %lu
1039                   &minflt,         // 10 %lu
1040                   &cminflt,        // 11 %lu
1041                   &majflt,         // 12 %lu
1042                   &cmajflt,        // 13 %lu
1043                   &utime,          // 14 %lu
1044                   &stime,          // 15 %lu
1045                   &cutime,         // 16 %ld
1046                   &cstime,         // 17 %ld
1047                   &prio,           // 18 %ld
1048                   &nice,           // 19 %ld
1049                   &junk,           // 20 %ld
1050                   &it_real,        // 21 %ld
1051                   &start,          // 22 UINTX_FORMAT
1052                   &vsize,          // 23 UINTX_FORMAT
1053                   &rss,            // 24 INTX_FORMAT
1054                   &rsslim,         // 25 UINTX_FORMAT
1055                   &scodes,         // 26 UINTX_FORMAT
1056                   &ecode,          // 27 UINTX_FORMAT
1057                   &stack_start);   // 28 UINTX_FORMAT
1058      }
1059
1060#undef _UFM
1061#undef _DFM
1062
1063      if (i != 28 - 2) {
1064        assert(false, "Bad conversion from /proc/self/stat");
1065        // product mode - assume we are the initial thread, good luck in the
1066        // embedded case.
1067        warning("Can't detect initial thread stack location - bad conversion");
1068        stack_start = (uintptr_t) &rlim;
1069      }
1070    } else {
1071      // For some reason we can't open /proc/self/stat (for example, running on
1072      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1073      // most cases, so don't abort:
1074      warning("Can't detect initial thread stack location - no /proc/self/stat");
1075      stack_start = (uintptr_t) &rlim;
1076    }
1077  }
1078
1079  // Now we have a pointer (stack_start) very close to the stack top, the
1080  // next thing to do is to figure out the exact location of stack top. We
1081  // can find out the virtual memory area that contains stack_start by
1082  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1083  // and its upper limit is the real stack top. (again, this would fail if
1084  // running inside chroot, because /proc may not exist.)
1085
1086  uintptr_t stack_top;
1087  address low, high;
1088  if (find_vma((address)stack_start, &low, &high)) {
1089    // success, "high" is the true stack top. (ignore "low", because initial
1090    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1091    stack_top = (uintptr_t)high;
1092  } else {
1093    // failed, likely because /proc/self/maps does not exist
1094    warning("Can't detect initial thread stack location - find_vma failed");
1095    // best effort: stack_start is normally within a few pages below the real
1096    // stack top, use it as stack top, and reduce stack size so we won't put
1097    // guard page outside stack.
1098    stack_top = stack_start;
1099    stack_size -= 16 * page_size();
1100  }
1101
1102  // stack_top could be partially down the page so align it
1103  stack_top = align_size_up(stack_top, page_size());
1104
1105  if (max_size && stack_size > max_size) {
1106    _initial_thread_stack_size = max_size;
1107  } else {
1108    _initial_thread_stack_size = stack_size;
1109  }
1110
1111  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1112  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1113}
1114
1115////////////////////////////////////////////////////////////////////////////////
1116// time support
1117
1118// Time since start-up in seconds to a fine granularity.
1119// Used by VMSelfDestructTimer and the MemProfiler.
1120double os::elapsedTime() {
1121
1122  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1123}
1124
1125jlong os::elapsed_counter() {
1126  return javaTimeNanos() - initial_time_count;
1127}
1128
1129jlong os::elapsed_frequency() {
1130  return NANOSECS_PER_SEC; // nanosecond resolution
1131}
1132
1133bool os::supports_vtime() { return true; }
1134bool os::enable_vtime()   { return false; }
1135bool os::vtime_enabled()  { return false; }
1136
1137double os::elapsedVTime() {
1138  struct rusage usage;
1139  int retval = getrusage(RUSAGE_THREAD, &usage);
1140  if (retval == 0) {
1141    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1142  } else {
1143    // better than nothing, but not much
1144    return elapsedTime();
1145  }
1146}
1147
1148jlong os::javaTimeMillis() {
1149  timeval time;
1150  int status = gettimeofday(&time, NULL);
1151  assert(status != -1, "linux error");
1152  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1153}
1154
1155void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1156  timeval time;
1157  int status = gettimeofday(&time, NULL);
1158  assert(status != -1, "linux error");
1159  seconds = jlong(time.tv_sec);
1160  nanos = jlong(time.tv_usec) * 1000;
1161}
1162
1163
1164#ifndef CLOCK_MONOTONIC
1165  #define CLOCK_MONOTONIC (1)
1166#endif
1167
1168void os::Linux::clock_init() {
1169  // we do dlopen's in this particular order due to bug in linux
1170  // dynamical loader (see 6348968) leading to crash on exit
1171  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1172  if (handle == NULL) {
1173    handle = dlopen("librt.so", RTLD_LAZY);
1174  }
1175
1176  if (handle) {
1177    int (*clock_getres_func)(clockid_t, struct timespec*) =
1178           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1179    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1180           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1181    if (clock_getres_func && clock_gettime_func) {
1182      // See if monotonic clock is supported by the kernel. Note that some
1183      // early implementations simply return kernel jiffies (updated every
1184      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1185      // for nano time (though the monotonic property is still nice to have).
1186      // It's fixed in newer kernels, however clock_getres() still returns
1187      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1188      // resolution for now. Hopefully as people move to new kernels, this
1189      // won't be a problem.
1190      struct timespec res;
1191      struct timespec tp;
1192      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1193          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1194        // yes, monotonic clock is supported
1195        _clock_gettime = clock_gettime_func;
1196        return;
1197      } else {
1198        // close librt if there is no monotonic clock
1199        dlclose(handle);
1200      }
1201    }
1202  }
1203  warning("No monotonic clock was available - timed services may " \
1204          "be adversely affected if the time-of-day clock changes");
1205}
1206
1207#ifndef SYS_clock_getres
1208  #if defined(IA32) || defined(AMD64)
1209    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1210    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1211  #else
1212    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1213    #define sys_clock_getres(x,y)  -1
1214  #endif
1215#else
1216  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1217#endif
1218
1219void os::Linux::fast_thread_clock_init() {
1220  if (!UseLinuxPosixThreadCPUClocks) {
1221    return;
1222  }
1223  clockid_t clockid;
1224  struct timespec tp;
1225  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1226      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1227
1228  // Switch to using fast clocks for thread cpu time if
1229  // the sys_clock_getres() returns 0 error code.
1230  // Note, that some kernels may support the current thread
1231  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1232  // returned by the pthread_getcpuclockid().
1233  // If the fast Posix clocks are supported then the sys_clock_getres()
1234  // must return at least tp.tv_sec == 0 which means a resolution
1235  // better than 1 sec. This is extra check for reliability.
1236
1237  if (pthread_getcpuclockid_func &&
1238      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1239      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1240    _supports_fast_thread_cpu_time = true;
1241    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1242  }
1243}
1244
1245jlong os::javaTimeNanos() {
1246  if (os::supports_monotonic_clock()) {
1247    struct timespec tp;
1248    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1249    assert(status == 0, "gettime error");
1250    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1251    return result;
1252  } else {
1253    timeval time;
1254    int status = gettimeofday(&time, NULL);
1255    assert(status != -1, "linux error");
1256    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1257    return 1000 * usecs;
1258  }
1259}
1260
1261void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1262  if (os::supports_monotonic_clock()) {
1263    info_ptr->max_value = ALL_64_BITS;
1264
1265    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1266    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1267    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1268  } else {
1269    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1270    info_ptr->max_value = ALL_64_BITS;
1271
1272    // gettimeofday is a real time clock so it skips
1273    info_ptr->may_skip_backward = true;
1274    info_ptr->may_skip_forward = true;
1275  }
1276
1277  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1278}
1279
1280// Return the real, user, and system times in seconds from an
1281// arbitrary fixed point in the past.
1282bool os::getTimesSecs(double* process_real_time,
1283                      double* process_user_time,
1284                      double* process_system_time) {
1285  struct tms ticks;
1286  clock_t real_ticks = times(&ticks);
1287
1288  if (real_ticks == (clock_t) (-1)) {
1289    return false;
1290  } else {
1291    double ticks_per_second = (double) clock_tics_per_sec;
1292    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1293    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1294    *process_real_time = ((double) real_ticks) / ticks_per_second;
1295
1296    return true;
1297  }
1298}
1299
1300
1301char * os::local_time_string(char *buf, size_t buflen) {
1302  struct tm t;
1303  time_t long_time;
1304  time(&long_time);
1305  localtime_r(&long_time, &t);
1306  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1307               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1308               t.tm_hour, t.tm_min, t.tm_sec);
1309  return buf;
1310}
1311
1312struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1313  return localtime_r(clock, res);
1314}
1315
1316////////////////////////////////////////////////////////////////////////////////
1317// runtime exit support
1318
1319// Note: os::shutdown() might be called very early during initialization, or
1320// called from signal handler. Before adding something to os::shutdown(), make
1321// sure it is async-safe and can handle partially initialized VM.
1322void os::shutdown() {
1323
1324  // allow PerfMemory to attempt cleanup of any persistent resources
1325  perfMemory_exit();
1326
1327  // needs to remove object in file system
1328  AttachListener::abort();
1329
1330  // flush buffered output, finish log files
1331  ostream_abort();
1332
1333  // Check for abort hook
1334  abort_hook_t abort_hook = Arguments::abort_hook();
1335  if (abort_hook != NULL) {
1336    abort_hook();
1337  }
1338
1339}
1340
1341// Note: os::abort() might be called very early during initialization, or
1342// called from signal handler. Before adding something to os::abort(), make
1343// sure it is async-safe and can handle partially initialized VM.
1344void os::abort(bool dump_core, void* siginfo, const void* context) {
1345  os::shutdown();
1346  if (dump_core) {
1347#ifndef PRODUCT
1348    fdStream out(defaultStream::output_fd());
1349    out.print_raw("Current thread is ");
1350    char buf[16];
1351    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1352    out.print_raw_cr(buf);
1353    out.print_raw_cr("Dumping core ...");
1354#endif
1355    ::abort(); // dump core
1356  }
1357
1358  ::exit(1);
1359}
1360
1361// Die immediately, no exit hook, no abort hook, no cleanup.
1362void os::die() {
1363  ::abort();
1364}
1365
1366
1367// This method is a copy of JDK's sysGetLastErrorString
1368// from src/solaris/hpi/src/system_md.c
1369
1370size_t os::lasterror(char *buf, size_t len) {
1371  if (errno == 0)  return 0;
1372
1373  const char *s = ::strerror(errno);
1374  size_t n = ::strlen(s);
1375  if (n >= len) {
1376    n = len - 1;
1377  }
1378  ::strncpy(buf, s, n);
1379  buf[n] = '\0';
1380  return n;
1381}
1382
1383// thread_id is kernel thread id (similar to Solaris LWP id)
1384intx os::current_thread_id() { return os::Linux::gettid(); }
1385int os::current_process_id() {
1386  return ::getpid();
1387}
1388
1389// DLL functions
1390
1391const char* os::dll_file_extension() { return ".so"; }
1392
1393// This must be hard coded because it's the system's temporary
1394// directory not the java application's temp directory, ala java.io.tmpdir.
1395const char* os::get_temp_directory() { return "/tmp"; }
1396
1397static bool file_exists(const char* filename) {
1398  struct stat statbuf;
1399  if (filename == NULL || strlen(filename) == 0) {
1400    return false;
1401  }
1402  return os::stat(filename, &statbuf) == 0;
1403}
1404
1405bool os::dll_build_name(char* buffer, size_t buflen,
1406                        const char* pname, const char* fname) {
1407  bool retval = false;
1408  // Copied from libhpi
1409  const size_t pnamelen = pname ? strlen(pname) : 0;
1410
1411  // Return error on buffer overflow.
1412  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1413    return retval;
1414  }
1415
1416  if (pnamelen == 0) {
1417    snprintf(buffer, buflen, "lib%s.so", fname);
1418    retval = true;
1419  } else if (strchr(pname, *os::path_separator()) != NULL) {
1420    int n;
1421    char** pelements = split_path(pname, &n);
1422    if (pelements == NULL) {
1423      return false;
1424    }
1425    for (int i = 0; i < n; i++) {
1426      // Really shouldn't be NULL, but check can't hurt
1427      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1428        continue; // skip the empty path values
1429      }
1430      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1431      if (file_exists(buffer)) {
1432        retval = true;
1433        break;
1434      }
1435    }
1436    // release the storage
1437    for (int i = 0; i < n; i++) {
1438      if (pelements[i] != NULL) {
1439        FREE_C_HEAP_ARRAY(char, pelements[i]);
1440      }
1441    }
1442    if (pelements != NULL) {
1443      FREE_C_HEAP_ARRAY(char*, pelements);
1444    }
1445  } else {
1446    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1447    retval = true;
1448  }
1449  return retval;
1450}
1451
1452// check if addr is inside libjvm.so
1453bool os::address_is_in_vm(address addr) {
1454  static address libjvm_base_addr;
1455  Dl_info dlinfo;
1456
1457  if (libjvm_base_addr == NULL) {
1458    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1459      libjvm_base_addr = (address)dlinfo.dli_fbase;
1460    }
1461    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1462  }
1463
1464  if (dladdr((void *)addr, &dlinfo) != 0) {
1465    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1466  }
1467
1468  return false;
1469}
1470
1471bool os::dll_address_to_function_name(address addr, char *buf,
1472                                      int buflen, int *offset,
1473                                      bool demangle) {
1474  // buf is not optional, but offset is optional
1475  assert(buf != NULL, "sanity check");
1476
1477  Dl_info dlinfo;
1478
1479  if (dladdr((void*)addr, &dlinfo) != 0) {
1480    // see if we have a matching symbol
1481    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1482      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1483        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1484      }
1485      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1486      return true;
1487    }
1488    // no matching symbol so try for just file info
1489    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1490      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1491                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1492        return true;
1493      }
1494    }
1495  }
1496
1497  buf[0] = '\0';
1498  if (offset != NULL) *offset = -1;
1499  return false;
1500}
1501
1502struct _address_to_library_name {
1503  address addr;          // input : memory address
1504  size_t  buflen;        //         size of fname
1505  char*   fname;         // output: library name
1506  address base;          //         library base addr
1507};
1508
1509static int address_to_library_name_callback(struct dl_phdr_info *info,
1510                                            size_t size, void *data) {
1511  int i;
1512  bool found = false;
1513  address libbase = NULL;
1514  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1515
1516  // iterate through all loadable segments
1517  for (i = 0; i < info->dlpi_phnum; i++) {
1518    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1519    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1520      // base address of a library is the lowest address of its loaded
1521      // segments.
1522      if (libbase == NULL || libbase > segbase) {
1523        libbase = segbase;
1524      }
1525      // see if 'addr' is within current segment
1526      if (segbase <= d->addr &&
1527          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1528        found = true;
1529      }
1530    }
1531  }
1532
1533  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1534  // so dll_address_to_library_name() can fall through to use dladdr() which
1535  // can figure out executable name from argv[0].
1536  if (found && info->dlpi_name && info->dlpi_name[0]) {
1537    d->base = libbase;
1538    if (d->fname) {
1539      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1540    }
1541    return 1;
1542  }
1543  return 0;
1544}
1545
1546bool os::dll_address_to_library_name(address addr, char* buf,
1547                                     int buflen, int* offset) {
1548  // buf is not optional, but offset is optional
1549  assert(buf != NULL, "sanity check");
1550
1551  Dl_info dlinfo;
1552  struct _address_to_library_name data;
1553
1554  // There is a bug in old glibc dladdr() implementation that it could resolve
1555  // to wrong library name if the .so file has a base address != NULL. Here
1556  // we iterate through the program headers of all loaded libraries to find
1557  // out which library 'addr' really belongs to. This workaround can be
1558  // removed once the minimum requirement for glibc is moved to 2.3.x.
1559  data.addr = addr;
1560  data.fname = buf;
1561  data.buflen = buflen;
1562  data.base = NULL;
1563  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1564
1565  if (rslt) {
1566    // buf already contains library name
1567    if (offset) *offset = addr - data.base;
1568    return true;
1569  }
1570  if (dladdr((void*)addr, &dlinfo) != 0) {
1571    if (dlinfo.dli_fname != NULL) {
1572      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1573    }
1574    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1575      *offset = addr - (address)dlinfo.dli_fbase;
1576    }
1577    return true;
1578  }
1579
1580  buf[0] = '\0';
1581  if (offset) *offset = -1;
1582  return false;
1583}
1584
1585// Loads .dll/.so and
1586// in case of error it checks if .dll/.so was built for the
1587// same architecture as Hotspot is running on
1588
1589
1590// Remember the stack's state. The Linux dynamic linker will change
1591// the stack to 'executable' at most once, so we must safepoint only once.
1592bool os::Linux::_stack_is_executable = false;
1593
1594// VM operation that loads a library.  This is necessary if stack protection
1595// of the Java stacks can be lost during loading the library.  If we
1596// do not stop the Java threads, they can stack overflow before the stacks
1597// are protected again.
1598class VM_LinuxDllLoad: public VM_Operation {
1599 private:
1600  const char *_filename;
1601  char *_ebuf;
1602  int _ebuflen;
1603  void *_lib;
1604 public:
1605  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1606    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1607  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1608  void doit() {
1609    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1610    os::Linux::_stack_is_executable = true;
1611  }
1612  void* loaded_library() { return _lib; }
1613};
1614
1615void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1616  void * result = NULL;
1617  bool load_attempted = false;
1618
1619  // Check whether the library to load might change execution rights
1620  // of the stack. If they are changed, the protection of the stack
1621  // guard pages will be lost. We need a safepoint to fix this.
1622  //
1623  // See Linux man page execstack(8) for more info.
1624  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1625    ElfFile ef(filename);
1626    if (!ef.specifies_noexecstack()) {
1627      if (!is_init_completed()) {
1628        os::Linux::_stack_is_executable = true;
1629        // This is OK - No Java threads have been created yet, and hence no
1630        // stack guard pages to fix.
1631        //
1632        // This should happen only when you are building JDK7 using a very
1633        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1634        //
1635        // Dynamic loader will make all stacks executable after
1636        // this function returns, and will not do that again.
1637        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1638      } else {
1639        warning("You have loaded library %s which might have disabled stack guard. "
1640                "The VM will try to fix the stack guard now.\n"
1641                "It's highly recommended that you fix the library with "
1642                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1643                filename);
1644
1645        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1646        JavaThread *jt = JavaThread::current();
1647        if (jt->thread_state() != _thread_in_native) {
1648          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1649          // that requires ExecStack. Cannot enter safe point. Let's give up.
1650          warning("Unable to fix stack guard. Giving up.");
1651        } else {
1652          if (!LoadExecStackDllInVMThread) {
1653            // This is for the case where the DLL has an static
1654            // constructor function that executes JNI code. We cannot
1655            // load such DLLs in the VMThread.
1656            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1657          }
1658
1659          ThreadInVMfromNative tiv(jt);
1660          debug_only(VMNativeEntryWrapper vew;)
1661
1662          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1663          VMThread::execute(&op);
1664          if (LoadExecStackDllInVMThread) {
1665            result = op.loaded_library();
1666          }
1667          load_attempted = true;
1668        }
1669      }
1670    }
1671  }
1672
1673  if (!load_attempted) {
1674    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1675  }
1676
1677  if (result != NULL) {
1678    // Successful loading
1679    return result;
1680  }
1681
1682  Elf32_Ehdr elf_head;
1683  int diag_msg_max_length=ebuflen-strlen(ebuf);
1684  char* diag_msg_buf=ebuf+strlen(ebuf);
1685
1686  if (diag_msg_max_length==0) {
1687    // No more space in ebuf for additional diagnostics message
1688    return NULL;
1689  }
1690
1691
1692  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1693
1694  if (file_descriptor < 0) {
1695    // Can't open library, report dlerror() message
1696    return NULL;
1697  }
1698
1699  bool failed_to_read_elf_head=
1700    (sizeof(elf_head)!=
1701     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1702
1703  ::close(file_descriptor);
1704  if (failed_to_read_elf_head) {
1705    // file i/o error - report dlerror() msg
1706    return NULL;
1707  }
1708
1709  typedef struct {
1710    Elf32_Half  code;         // Actual value as defined in elf.h
1711    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1712    char        elf_class;    // 32 or 64 bit
1713    char        endianess;    // MSB or LSB
1714    char*       name;         // String representation
1715  } arch_t;
1716
1717#ifndef EM_486
1718  #define EM_486          6               /* Intel 80486 */
1719#endif
1720#ifndef EM_AARCH64
1721  #define EM_AARCH64    183               /* ARM AARCH64 */
1722#endif
1723
1724  static const arch_t arch_array[]={
1725    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1726    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1727    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1728    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1729    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1730    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1731    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1732    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1733#if defined(VM_LITTLE_ENDIAN)
1734    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1735#else
1736    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1737#endif
1738    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1739    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1740    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1741    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1742    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1743    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1744    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1745    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1746  };
1747
1748#if  (defined IA32)
1749  static  Elf32_Half running_arch_code=EM_386;
1750#elif   (defined AMD64)
1751  static  Elf32_Half running_arch_code=EM_X86_64;
1752#elif  (defined IA64)
1753  static  Elf32_Half running_arch_code=EM_IA_64;
1754#elif  (defined __sparc) && (defined _LP64)
1755  static  Elf32_Half running_arch_code=EM_SPARCV9;
1756#elif  (defined __sparc) && (!defined _LP64)
1757  static  Elf32_Half running_arch_code=EM_SPARC;
1758#elif  (defined __powerpc64__)
1759  static  Elf32_Half running_arch_code=EM_PPC64;
1760#elif  (defined __powerpc__)
1761  static  Elf32_Half running_arch_code=EM_PPC;
1762#elif  (defined ARM)
1763  static  Elf32_Half running_arch_code=EM_ARM;
1764#elif  (defined S390)
1765  static  Elf32_Half running_arch_code=EM_S390;
1766#elif  (defined ALPHA)
1767  static  Elf32_Half running_arch_code=EM_ALPHA;
1768#elif  (defined MIPSEL)
1769  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1770#elif  (defined PARISC)
1771  static  Elf32_Half running_arch_code=EM_PARISC;
1772#elif  (defined MIPS)
1773  static  Elf32_Half running_arch_code=EM_MIPS;
1774#elif  (defined M68K)
1775  static  Elf32_Half running_arch_code=EM_68K;
1776#elif  (defined AARCH64)
1777  static  Elf32_Half running_arch_code=EM_AARCH64;
1778#else
1779    #error Method os::dll_load requires that one of following is defined:\
1780         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1781#endif
1782
1783  // Identify compatability class for VM's architecture and library's architecture
1784  // Obtain string descriptions for architectures
1785
1786  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1787  int running_arch_index=-1;
1788
1789  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1790    if (running_arch_code == arch_array[i].code) {
1791      running_arch_index    = i;
1792    }
1793    if (lib_arch.code == arch_array[i].code) {
1794      lib_arch.compat_class = arch_array[i].compat_class;
1795      lib_arch.name         = arch_array[i].name;
1796    }
1797  }
1798
1799  assert(running_arch_index != -1,
1800         "Didn't find running architecture code (running_arch_code) in arch_array");
1801  if (running_arch_index == -1) {
1802    // Even though running architecture detection failed
1803    // we may still continue with reporting dlerror() message
1804    return NULL;
1805  }
1806
1807  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1808    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1809    return NULL;
1810  }
1811
1812#ifndef S390
1813  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1814    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1815    return NULL;
1816  }
1817#endif // !S390
1818
1819  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1820    if (lib_arch.name!=NULL) {
1821      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1822                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1823                 lib_arch.name, arch_array[running_arch_index].name);
1824    } else {
1825      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1826                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1827                 lib_arch.code,
1828                 arch_array[running_arch_index].name);
1829    }
1830  }
1831
1832  return NULL;
1833}
1834
1835void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1836                                int ebuflen) {
1837  void * result = ::dlopen(filename, RTLD_LAZY);
1838  if (result == NULL) {
1839    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1840    ebuf[ebuflen-1] = '\0';
1841  }
1842  return result;
1843}
1844
1845void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1846                                       int ebuflen) {
1847  void * result = NULL;
1848  if (LoadExecStackDllInVMThread) {
1849    result = dlopen_helper(filename, ebuf, ebuflen);
1850  }
1851
1852  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1853  // library that requires an executable stack, or which does not have this
1854  // stack attribute set, dlopen changes the stack attribute to executable. The
1855  // read protection of the guard pages gets lost.
1856  //
1857  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1858  // may have been queued at the same time.
1859
1860  if (!_stack_is_executable) {
1861    JavaThread *jt = Threads::first();
1862
1863    while (jt) {
1864      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1865          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1866        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1867          warning("Attempt to reguard stack yellow zone failed.");
1868        }
1869      }
1870      jt = jt->next();
1871    }
1872  }
1873
1874  return result;
1875}
1876
1877void* os::dll_lookup(void* handle, const char* name) {
1878  void* res = dlsym(handle, name);
1879  return res;
1880}
1881
1882void* os::get_default_process_handle() {
1883  return (void*)::dlopen(NULL, RTLD_LAZY);
1884}
1885
1886static bool _print_ascii_file(const char* filename, outputStream* st) {
1887  int fd = ::open(filename, O_RDONLY);
1888  if (fd == -1) {
1889    return false;
1890  }
1891
1892  char buf[32];
1893  int bytes;
1894  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1895    st->print_raw(buf, bytes);
1896  }
1897
1898  ::close(fd);
1899
1900  return true;
1901}
1902
1903void os::print_dll_info(outputStream *st) {
1904  st->print_cr("Dynamic libraries:");
1905
1906  char fname[32];
1907  pid_t pid = os::Linux::gettid();
1908
1909  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1910
1911  if (!_print_ascii_file(fname, st)) {
1912    st->print("Can not get library information for pid = %d\n", pid);
1913  }
1914}
1915
1916int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1917  FILE *procmapsFile = NULL;
1918
1919  // Open the procfs maps file for the current process
1920  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1921    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1922    char line[PATH_MAX + 100];
1923
1924    // Read line by line from 'file'
1925    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1926      u8 base, top, offset, inode;
1927      char permissions[5];
1928      char device[6];
1929      char name[PATH_MAX + 1];
1930
1931      // Parse fields from line
1932      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1933             &base, &top, permissions, &offset, device, &inode, name);
1934
1935      // Filter by device id '00:00' so that we only get file system mapped files.
1936      if (strcmp(device, "00:00") != 0) {
1937
1938        // Call callback with the fields of interest
1939        if(callback(name, (address)base, (address)top, param)) {
1940          // Oops abort, callback aborted
1941          fclose(procmapsFile);
1942          return 1;
1943        }
1944      }
1945    }
1946    fclose(procmapsFile);
1947  }
1948  return 0;
1949}
1950
1951void os::print_os_info_brief(outputStream* st) {
1952  os::Linux::print_distro_info(st);
1953
1954  os::Posix::print_uname_info(st);
1955
1956  os::Linux::print_libversion_info(st);
1957
1958}
1959
1960void os::print_os_info(outputStream* st) {
1961  st->print("OS:");
1962
1963  os::Linux::print_distro_info(st);
1964
1965  os::Posix::print_uname_info(st);
1966
1967  // Print warning if unsafe chroot environment detected
1968  if (unsafe_chroot_detected) {
1969    st->print("WARNING!! ");
1970    st->print_cr("%s", unstable_chroot_error);
1971  }
1972
1973  os::Linux::print_libversion_info(st);
1974
1975  os::Posix::print_rlimit_info(st);
1976
1977  os::Posix::print_load_average(st);
1978
1979  os::Linux::print_full_memory_info(st);
1980}
1981
1982// Try to identify popular distros.
1983// Most Linux distributions have a /etc/XXX-release file, which contains
1984// the OS version string. Newer Linux distributions have a /etc/lsb-release
1985// file that also contains the OS version string. Some have more than one
1986// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1987// /etc/redhat-release.), so the order is important.
1988// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1989// their own specific XXX-release file as well as a redhat-release file.
1990// Because of this the XXX-release file needs to be searched for before the
1991// redhat-release file.
1992// Since Red Hat has a lsb-release file that is not very descriptive the
1993// search for redhat-release needs to be before lsb-release.
1994// Since the lsb-release file is the new standard it needs to be searched
1995// before the older style release files.
1996// Searching system-release (Red Hat) and os-release (other Linuxes) are a
1997// next to last resort.  The os-release file is a new standard that contains
1998// distribution information and the system-release file seems to be an old
1999// standard that has been replaced by the lsb-release and os-release files.
2000// Searching for the debian_version file is the last resort.  It contains
2001// an informative string like "6.0.6" or "wheezy/sid". Because of this
2002// "Debian " is printed before the contents of the debian_version file.
2003
2004const char* distro_files[] = {
2005  "/etc/oracle-release",
2006  "/etc/mandriva-release",
2007  "/etc/mandrake-release",
2008  "/etc/sun-release",
2009  "/etc/redhat-release",
2010  "/etc/lsb-release",
2011  "/etc/SuSE-release",
2012  "/etc/turbolinux-release",
2013  "/etc/gentoo-release",
2014  "/etc/ltib-release",
2015  "/etc/angstrom-version",
2016  "/etc/system-release",
2017  "/etc/os-release",
2018  NULL };
2019
2020void os::Linux::print_distro_info(outputStream* st) {
2021  for (int i = 0;; i++) {
2022    const char* file = distro_files[i];
2023    if (file == NULL) {
2024      break;  // done
2025    }
2026    // If file prints, we found it.
2027    if (_print_ascii_file(file, st)) {
2028      return;
2029    }
2030  }
2031
2032  if (file_exists("/etc/debian_version")) {
2033    st->print("Debian ");
2034    _print_ascii_file("/etc/debian_version", st);
2035  } else {
2036    st->print("Linux");
2037  }
2038  st->cr();
2039}
2040
2041static void parse_os_info(char* distro, size_t length, const char* file) {
2042  FILE* fp = fopen(file, "r");
2043  if (fp != NULL) {
2044    char buf[256];
2045    // get last line of the file.
2046    while (fgets(buf, sizeof(buf), fp)) { }
2047    // Edit out extra stuff in expected ubuntu format
2048    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2049      char* ptr = strstr(buf, "\"");  // the name is in quotes
2050      if (ptr != NULL) {
2051        ptr++; // go beyond first quote
2052        char* nl = strchr(ptr, '\"');
2053        if (nl != NULL) *nl = '\0';
2054        strncpy(distro, ptr, length);
2055      } else {
2056        ptr = strstr(buf, "=");
2057        ptr++; // go beyond equals then
2058        char* nl = strchr(ptr, '\n');
2059        if (nl != NULL) *nl = '\0';
2060        strncpy(distro, ptr, length);
2061      }
2062    } else {
2063      // if not in expected Ubuntu format, print out whole line minus \n
2064      char* nl = strchr(buf, '\n');
2065      if (nl != NULL) *nl = '\0';
2066      strncpy(distro, buf, length);
2067    }
2068    // close distro file
2069    fclose(fp);
2070  }
2071}
2072
2073void os::get_summary_os_info(char* buf, size_t buflen) {
2074  for (int i = 0;; i++) {
2075    const char* file = distro_files[i];
2076    if (file == NULL) {
2077      break; // ran out of distro_files
2078    }
2079    if (file_exists(file)) {
2080      parse_os_info(buf, buflen, file);
2081      return;
2082    }
2083  }
2084  // special case for debian
2085  if (file_exists("/etc/debian_version")) {
2086    strncpy(buf, "Debian ", buflen);
2087    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2088  } else {
2089    strncpy(buf, "Linux", buflen);
2090  }
2091}
2092
2093void os::Linux::print_libversion_info(outputStream* st) {
2094  // libc, pthread
2095  st->print("libc:");
2096  st->print("%s ", os::Linux::glibc_version());
2097  st->print("%s ", os::Linux::libpthread_version());
2098  st->cr();
2099}
2100
2101void os::Linux::print_full_memory_info(outputStream* st) {
2102  st->print("\n/proc/meminfo:\n");
2103  _print_ascii_file("/proc/meminfo", st);
2104  st->cr();
2105}
2106
2107void os::print_memory_info(outputStream* st) {
2108
2109  st->print("Memory:");
2110  st->print(" %dk page", os::vm_page_size()>>10);
2111
2112  // values in struct sysinfo are "unsigned long"
2113  struct sysinfo si;
2114  sysinfo(&si);
2115
2116  st->print(", physical " UINT64_FORMAT "k",
2117            os::physical_memory() >> 10);
2118  st->print("(" UINT64_FORMAT "k free)",
2119            os::available_memory() >> 10);
2120  st->print(", swap " UINT64_FORMAT "k",
2121            ((jlong)si.totalswap * si.mem_unit) >> 10);
2122  st->print("(" UINT64_FORMAT "k free)",
2123            ((jlong)si.freeswap * si.mem_unit) >> 10);
2124  st->cr();
2125}
2126
2127// Print the first "model name" line and the first "flags" line
2128// that we find and nothing more. We assume "model name" comes
2129// before "flags" so if we find a second "model name", then the
2130// "flags" field is considered missing.
2131static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2132#if defined(IA32) || defined(AMD64)
2133  // Other platforms have less repetitive cpuinfo files
2134  FILE *fp = fopen("/proc/cpuinfo", "r");
2135  if (fp) {
2136    while (!feof(fp)) {
2137      if (fgets(buf, buflen, fp)) {
2138        // Assume model name comes before flags
2139        bool model_name_printed = false;
2140        if (strstr(buf, "model name") != NULL) {
2141          if (!model_name_printed) {
2142            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2143            st->print_raw(buf);
2144            model_name_printed = true;
2145          } else {
2146            // model name printed but not flags?  Odd, just return
2147            fclose(fp);
2148            return true;
2149          }
2150        }
2151        // print the flags line too
2152        if (strstr(buf, "flags") != NULL) {
2153          st->print_raw(buf);
2154          fclose(fp);
2155          return true;
2156        }
2157      }
2158    }
2159    fclose(fp);
2160  }
2161#endif // x86 platforms
2162  return false;
2163}
2164
2165void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2166  // Only print the model name if the platform provides this as a summary
2167  if (!print_model_name_and_flags(st, buf, buflen)) {
2168    st->print("\n/proc/cpuinfo:\n");
2169    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2170      st->print_cr("  <Not Available>");
2171    }
2172  }
2173}
2174
2175#if defined(AMD64) || defined(IA32) || defined(X32)
2176const char* search_string = "model name";
2177#elif defined(SPARC)
2178const char* search_string = "cpu";
2179#elif defined(PPC64)
2180const char* search_string = "cpu";
2181#else
2182const char* search_string = "Processor";
2183#endif
2184
2185// Parses the cpuinfo file for string representing the model name.
2186void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2187  FILE* fp = fopen("/proc/cpuinfo", "r");
2188  if (fp != NULL) {
2189    while (!feof(fp)) {
2190      char buf[256];
2191      if (fgets(buf, sizeof(buf), fp)) {
2192        char* start = strstr(buf, search_string);
2193        if (start != NULL) {
2194          char *ptr = start + strlen(search_string);
2195          char *end = buf + strlen(buf);
2196          while (ptr != end) {
2197             // skip whitespace and colon for the rest of the name.
2198             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2199               break;
2200             }
2201             ptr++;
2202          }
2203          if (ptr != end) {
2204            // reasonable string, get rid of newline and keep the rest
2205            char* nl = strchr(buf, '\n');
2206            if (nl != NULL) *nl = '\0';
2207            strncpy(cpuinfo, ptr, length);
2208            fclose(fp);
2209            return;
2210          }
2211        }
2212      }
2213    }
2214    fclose(fp);
2215  }
2216  // cpuinfo not found or parsing failed, just print generic string.  The entire
2217  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2218#if defined(AMD64)
2219  strncpy(cpuinfo, "x86_64", length);
2220#elif defined(IA32)
2221  strncpy(cpuinfo, "x86_32", length);
2222#elif defined(IA64)
2223  strncpy(cpuinfo, "IA64", length);
2224#elif defined(SPARC)
2225  strncpy(cpuinfo, "sparcv9", length);
2226#elif defined(AARCH64)
2227  strncpy(cpuinfo, "AArch64", length);
2228#elif defined(ARM)
2229  strncpy(cpuinfo, "ARM", length);
2230#elif defined(PPC)
2231  strncpy(cpuinfo, "PPC64", length);
2232#elif defined(ZERO_LIBARCH)
2233  strncpy(cpuinfo, ZERO_LIBARCH, length);
2234#else
2235  strncpy(cpuinfo, "unknown", length);
2236#endif
2237}
2238
2239static void print_signal_handler(outputStream* st, int sig,
2240                                 char* buf, size_t buflen);
2241
2242void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2243  st->print_cr("Signal Handlers:");
2244  print_signal_handler(st, SIGSEGV, buf, buflen);
2245  print_signal_handler(st, SIGBUS , buf, buflen);
2246  print_signal_handler(st, SIGFPE , buf, buflen);
2247  print_signal_handler(st, SIGPIPE, buf, buflen);
2248  print_signal_handler(st, SIGXFSZ, buf, buflen);
2249  print_signal_handler(st, SIGILL , buf, buflen);
2250  print_signal_handler(st, SR_signum, buf, buflen);
2251  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2252  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2253  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2254  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2255#if defined(PPC64)
2256  print_signal_handler(st, SIGTRAP, buf, buflen);
2257#endif
2258}
2259
2260static char saved_jvm_path[MAXPATHLEN] = {0};
2261
2262// Find the full path to the current module, libjvm.so
2263void os::jvm_path(char *buf, jint buflen) {
2264  // Error checking.
2265  if (buflen < MAXPATHLEN) {
2266    assert(false, "must use a large-enough buffer");
2267    buf[0] = '\0';
2268    return;
2269  }
2270  // Lazy resolve the path to current module.
2271  if (saved_jvm_path[0] != 0) {
2272    strcpy(buf, saved_jvm_path);
2273    return;
2274  }
2275
2276  char dli_fname[MAXPATHLEN];
2277  bool ret = dll_address_to_library_name(
2278                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2279                                         dli_fname, sizeof(dli_fname), NULL);
2280  assert(ret, "cannot locate libjvm");
2281  char *rp = NULL;
2282  if (ret && dli_fname[0] != '\0') {
2283    rp = realpath(dli_fname, buf);
2284  }
2285  if (rp == NULL) {
2286    return;
2287  }
2288
2289  if (Arguments::sun_java_launcher_is_altjvm()) {
2290    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2291    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2292    // If "/jre/lib/" appears at the right place in the string, then
2293    // assume we are installed in a JDK and we're done. Otherwise, check
2294    // for a JAVA_HOME environment variable and fix up the path so it
2295    // looks like libjvm.so is installed there (append a fake suffix
2296    // hotspot/libjvm.so).
2297    const char *p = buf + strlen(buf) - 1;
2298    for (int count = 0; p > buf && count < 5; ++count) {
2299      for (--p; p > buf && *p != '/'; --p)
2300        /* empty */ ;
2301    }
2302
2303    if (strncmp(p, "/jre/lib/", 9) != 0) {
2304      // Look for JAVA_HOME in the environment.
2305      char* java_home_var = ::getenv("JAVA_HOME");
2306      if (java_home_var != NULL && java_home_var[0] != 0) {
2307        char* jrelib_p;
2308        int len;
2309
2310        // Check the current module name "libjvm.so".
2311        p = strrchr(buf, '/');
2312        if (p == NULL) {
2313          return;
2314        }
2315        assert(strstr(p, "/libjvm") == p, "invalid library name");
2316
2317        rp = realpath(java_home_var, buf);
2318        if (rp == NULL) {
2319          return;
2320        }
2321
2322        // determine if this is a legacy image or modules image
2323        // modules image doesn't have "jre" subdirectory
2324        len = strlen(buf);
2325        assert(len < buflen, "Ran out of buffer room");
2326        jrelib_p = buf + len;
2327        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2328        if (0 != access(buf, F_OK)) {
2329          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2330        }
2331
2332        if (0 == access(buf, F_OK)) {
2333          // Use current module name "libjvm.so"
2334          len = strlen(buf);
2335          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2336        } else {
2337          // Go back to path of .so
2338          rp = realpath(dli_fname, buf);
2339          if (rp == NULL) {
2340            return;
2341          }
2342        }
2343      }
2344    }
2345  }
2346
2347  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2348  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2349}
2350
2351void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2352  // no prefix required, not even "_"
2353}
2354
2355void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2356  // no suffix required
2357}
2358
2359////////////////////////////////////////////////////////////////////////////////
2360// sun.misc.Signal support
2361
2362static volatile jint sigint_count = 0;
2363
2364static void UserHandler(int sig, void *siginfo, void *context) {
2365  // 4511530 - sem_post is serialized and handled by the manager thread. When
2366  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2367  // don't want to flood the manager thread with sem_post requests.
2368  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2369    return;
2370  }
2371
2372  // Ctrl-C is pressed during error reporting, likely because the error
2373  // handler fails to abort. Let VM die immediately.
2374  if (sig == SIGINT && is_error_reported()) {
2375    os::die();
2376  }
2377
2378  os::signal_notify(sig);
2379}
2380
2381void* os::user_handler() {
2382  return CAST_FROM_FN_PTR(void*, UserHandler);
2383}
2384
2385struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2386  struct timespec ts;
2387  // Semaphore's are always associated with CLOCK_REALTIME
2388  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2389  // see unpackTime for discussion on overflow checking
2390  if (sec >= MAX_SECS) {
2391    ts.tv_sec += MAX_SECS;
2392    ts.tv_nsec = 0;
2393  } else {
2394    ts.tv_sec += sec;
2395    ts.tv_nsec += nsec;
2396    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2397      ts.tv_nsec -= NANOSECS_PER_SEC;
2398      ++ts.tv_sec; // note: this must be <= max_secs
2399    }
2400  }
2401
2402  return ts;
2403}
2404
2405extern "C" {
2406  typedef void (*sa_handler_t)(int);
2407  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2408}
2409
2410void* os::signal(int signal_number, void* handler) {
2411  struct sigaction sigAct, oldSigAct;
2412
2413  sigfillset(&(sigAct.sa_mask));
2414  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2415  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2416
2417  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2418    // -1 means registration failed
2419    return (void *)-1;
2420  }
2421
2422  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2423}
2424
2425void os::signal_raise(int signal_number) {
2426  ::raise(signal_number);
2427}
2428
2429// The following code is moved from os.cpp for making this
2430// code platform specific, which it is by its very nature.
2431
2432// Will be modified when max signal is changed to be dynamic
2433int os::sigexitnum_pd() {
2434  return NSIG;
2435}
2436
2437// a counter for each possible signal value
2438static volatile jint pending_signals[NSIG+1] = { 0 };
2439
2440// Linux(POSIX) specific hand shaking semaphore.
2441static sem_t sig_sem;
2442static PosixSemaphore sr_semaphore;
2443
2444void os::signal_init_pd() {
2445  // Initialize signal structures
2446  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2447
2448  // Initialize signal semaphore
2449  ::sem_init(&sig_sem, 0, 0);
2450}
2451
2452void os::signal_notify(int sig) {
2453  Atomic::inc(&pending_signals[sig]);
2454  ::sem_post(&sig_sem);
2455}
2456
2457static int check_pending_signals(bool wait) {
2458  Atomic::store(0, &sigint_count);
2459  for (;;) {
2460    for (int i = 0; i < NSIG + 1; i++) {
2461      jint n = pending_signals[i];
2462      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2463        return i;
2464      }
2465    }
2466    if (!wait) {
2467      return -1;
2468    }
2469    JavaThread *thread = JavaThread::current();
2470    ThreadBlockInVM tbivm(thread);
2471
2472    bool threadIsSuspended;
2473    do {
2474      thread->set_suspend_equivalent();
2475      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2476      ::sem_wait(&sig_sem);
2477
2478      // were we externally suspended while we were waiting?
2479      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2480      if (threadIsSuspended) {
2481        // The semaphore has been incremented, but while we were waiting
2482        // another thread suspended us. We don't want to continue running
2483        // while suspended because that would surprise the thread that
2484        // suspended us.
2485        ::sem_post(&sig_sem);
2486
2487        thread->java_suspend_self();
2488      }
2489    } while (threadIsSuspended);
2490  }
2491}
2492
2493int os::signal_lookup() {
2494  return check_pending_signals(false);
2495}
2496
2497int os::signal_wait() {
2498  return check_pending_signals(true);
2499}
2500
2501////////////////////////////////////////////////////////////////////////////////
2502// Virtual Memory
2503
2504int os::vm_page_size() {
2505  // Seems redundant as all get out
2506  assert(os::Linux::page_size() != -1, "must call os::init");
2507  return os::Linux::page_size();
2508}
2509
2510// Solaris allocates memory by pages.
2511int os::vm_allocation_granularity() {
2512  assert(os::Linux::page_size() != -1, "must call os::init");
2513  return os::Linux::page_size();
2514}
2515
2516// Rationale behind this function:
2517//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2518//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2519//  samples for JITted code. Here we create private executable mapping over the code cache
2520//  and then we can use standard (well, almost, as mapping can change) way to provide
2521//  info for the reporting script by storing timestamp and location of symbol
2522void linux_wrap_code(char* base, size_t size) {
2523  static volatile jint cnt = 0;
2524
2525  if (!UseOprofile) {
2526    return;
2527  }
2528
2529  char buf[PATH_MAX+1];
2530  int num = Atomic::add(1, &cnt);
2531
2532  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2533           os::get_temp_directory(), os::current_process_id(), num);
2534  unlink(buf);
2535
2536  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2537
2538  if (fd != -1) {
2539    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2540    if (rv != (off_t)-1) {
2541      if (::write(fd, "", 1) == 1) {
2542        mmap(base, size,
2543             PROT_READ|PROT_WRITE|PROT_EXEC,
2544             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2545      }
2546    }
2547    ::close(fd);
2548    unlink(buf);
2549  }
2550}
2551
2552static bool recoverable_mmap_error(int err) {
2553  // See if the error is one we can let the caller handle. This
2554  // list of errno values comes from JBS-6843484. I can't find a
2555  // Linux man page that documents this specific set of errno
2556  // values so while this list currently matches Solaris, it may
2557  // change as we gain experience with this failure mode.
2558  switch (err) {
2559  case EBADF:
2560  case EINVAL:
2561  case ENOTSUP:
2562    // let the caller deal with these errors
2563    return true;
2564
2565  default:
2566    // Any remaining errors on this OS can cause our reserved mapping
2567    // to be lost. That can cause confusion where different data
2568    // structures think they have the same memory mapped. The worst
2569    // scenario is if both the VM and a library think they have the
2570    // same memory mapped.
2571    return false;
2572  }
2573}
2574
2575static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2576                                    int err) {
2577  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2578          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2579          strerror(err), err);
2580}
2581
2582static void warn_fail_commit_memory(char* addr, size_t size,
2583                                    size_t alignment_hint, bool exec,
2584                                    int err) {
2585  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2586          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2587          alignment_hint, exec, strerror(err), err);
2588}
2589
2590// NOTE: Linux kernel does not really reserve the pages for us.
2591//       All it does is to check if there are enough free pages
2592//       left at the time of mmap(). This could be a potential
2593//       problem.
2594int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2595  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2596  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2597                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2598  if (res != (uintptr_t) MAP_FAILED) {
2599    if (UseNUMAInterleaving) {
2600      numa_make_global(addr, size);
2601    }
2602    return 0;
2603  }
2604
2605  int err = errno;  // save errno from mmap() call above
2606
2607  if (!recoverable_mmap_error(err)) {
2608    warn_fail_commit_memory(addr, size, exec, err);
2609    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2610  }
2611
2612  return err;
2613}
2614
2615bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2616  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2617}
2618
2619void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2620                                  const char* mesg) {
2621  assert(mesg != NULL, "mesg must be specified");
2622  int err = os::Linux::commit_memory_impl(addr, size, exec);
2623  if (err != 0) {
2624    // the caller wants all commit errors to exit with the specified mesg:
2625    warn_fail_commit_memory(addr, size, exec, err);
2626    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2627  }
2628}
2629
2630// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2631#ifndef MAP_HUGETLB
2632  #define MAP_HUGETLB 0x40000
2633#endif
2634
2635// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2636#ifndef MADV_HUGEPAGE
2637  #define MADV_HUGEPAGE 14
2638#endif
2639
2640int os::Linux::commit_memory_impl(char* addr, size_t size,
2641                                  size_t alignment_hint, bool exec) {
2642  int err = os::Linux::commit_memory_impl(addr, size, exec);
2643  if (err == 0) {
2644    realign_memory(addr, size, alignment_hint);
2645  }
2646  return err;
2647}
2648
2649bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2650                          bool exec) {
2651  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2652}
2653
2654void os::pd_commit_memory_or_exit(char* addr, size_t size,
2655                                  size_t alignment_hint, bool exec,
2656                                  const char* mesg) {
2657  assert(mesg != NULL, "mesg must be specified");
2658  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2659  if (err != 0) {
2660    // the caller wants all commit errors to exit with the specified mesg:
2661    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2662    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2663  }
2664}
2665
2666void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2667  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2668    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2669    // be supported or the memory may already be backed by huge pages.
2670    ::madvise(addr, bytes, MADV_HUGEPAGE);
2671  }
2672}
2673
2674void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2675  // This method works by doing an mmap over an existing mmaping and effectively discarding
2676  // the existing pages. However it won't work for SHM-based large pages that cannot be
2677  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2678  // small pages on top of the SHM segment. This method always works for small pages, so we
2679  // allow that in any case.
2680  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2681    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2682  }
2683}
2684
2685void os::numa_make_global(char *addr, size_t bytes) {
2686  Linux::numa_interleave_memory(addr, bytes);
2687}
2688
2689// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2690// bind policy to MPOL_PREFERRED for the current thread.
2691#define USE_MPOL_PREFERRED 0
2692
2693void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2694  // To make NUMA and large pages more robust when both enabled, we need to ease
2695  // the requirements on where the memory should be allocated. MPOL_BIND is the
2696  // default policy and it will force memory to be allocated on the specified
2697  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2698  // the specified node, but will not force it. Using this policy will prevent
2699  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2700  // free large pages.
2701  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2702  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2703}
2704
2705bool os::numa_topology_changed() { return false; }
2706
2707size_t os::numa_get_groups_num() {
2708  int max_node = Linux::numa_max_node();
2709  return max_node > 0 ? max_node + 1 : 1;
2710}
2711
2712int os::numa_get_group_id() {
2713  int cpu_id = Linux::sched_getcpu();
2714  if (cpu_id != -1) {
2715    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2716    if (lgrp_id != -1) {
2717      return lgrp_id;
2718    }
2719  }
2720  return 0;
2721}
2722
2723size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2724  for (size_t i = 0; i < size; i++) {
2725    ids[i] = i;
2726  }
2727  return size;
2728}
2729
2730bool os::get_page_info(char *start, page_info* info) {
2731  return false;
2732}
2733
2734char *os::scan_pages(char *start, char* end, page_info* page_expected,
2735                     page_info* page_found) {
2736  return end;
2737}
2738
2739
2740int os::Linux::sched_getcpu_syscall(void) {
2741  unsigned int cpu = 0;
2742  int retval = -1;
2743
2744#if defined(IA32)
2745  #ifndef SYS_getcpu
2746    #define SYS_getcpu 318
2747  #endif
2748  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2749#elif defined(AMD64)
2750// Unfortunately we have to bring all these macros here from vsyscall.h
2751// to be able to compile on old linuxes.
2752  #define __NR_vgetcpu 2
2753  #define VSYSCALL_START (-10UL << 20)
2754  #define VSYSCALL_SIZE 1024
2755  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2756  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2757  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2758  retval = vgetcpu(&cpu, NULL, NULL);
2759#endif
2760
2761  return (retval == -1) ? retval : cpu;
2762}
2763
2764// Something to do with the numa-aware allocator needs these symbols
2765extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2766extern "C" JNIEXPORT void numa_error(char *where) { }
2767
2768
2769// If we are running with libnuma version > 2, then we should
2770// be trying to use symbols with versions 1.1
2771// If we are running with earlier version, which did not have symbol versions,
2772// we should use the base version.
2773void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2774  void *f = dlvsym(handle, name, "libnuma_1.1");
2775  if (f == NULL) {
2776    f = dlsym(handle, name);
2777  }
2778  return f;
2779}
2780
2781bool os::Linux::libnuma_init() {
2782  // sched_getcpu() should be in libc.
2783  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2784                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2785
2786  // If it's not, try a direct syscall.
2787  if (sched_getcpu() == -1) {
2788    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2789                                    (void*)&sched_getcpu_syscall));
2790  }
2791
2792  if (sched_getcpu() != -1) { // Does it work?
2793    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2794    if (handle != NULL) {
2795      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2796                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2797      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2798                                       libnuma_dlsym(handle, "numa_max_node")));
2799      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2800                                        libnuma_dlsym(handle, "numa_available")));
2801      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2802                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2803      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2804                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2805      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2806                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2807
2808
2809      if (numa_available() != -1) {
2810        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2811        // Create a cpu -> node mapping
2812        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2813        rebuild_cpu_to_node_map();
2814        return true;
2815      }
2816    }
2817  }
2818  return false;
2819}
2820
2821// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2822// The table is later used in get_node_by_cpu().
2823void os::Linux::rebuild_cpu_to_node_map() {
2824  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2825                              // in libnuma (possible values are starting from 16,
2826                              // and continuing up with every other power of 2, but less
2827                              // than the maximum number of CPUs supported by kernel), and
2828                              // is a subject to change (in libnuma version 2 the requirements
2829                              // are more reasonable) we'll just hardcode the number they use
2830                              // in the library.
2831  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2832
2833  size_t cpu_num = os::active_processor_count();
2834  size_t cpu_map_size = NCPUS / BitsPerCLong;
2835  size_t cpu_map_valid_size =
2836    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2837
2838  cpu_to_node()->clear();
2839  cpu_to_node()->at_grow(cpu_num - 1);
2840  size_t node_num = numa_get_groups_num();
2841
2842  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2843  for (size_t i = 0; i < node_num; i++) {
2844    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2845      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2846        if (cpu_map[j] != 0) {
2847          for (size_t k = 0; k < BitsPerCLong; k++) {
2848            if (cpu_map[j] & (1UL << k)) {
2849              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2850            }
2851          }
2852        }
2853      }
2854    }
2855  }
2856  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2857}
2858
2859int os::Linux::get_node_by_cpu(int cpu_id) {
2860  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2861    return cpu_to_node()->at(cpu_id);
2862  }
2863  return -1;
2864}
2865
2866GrowableArray<int>* os::Linux::_cpu_to_node;
2867os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2868os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2869os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2870os::Linux::numa_available_func_t os::Linux::_numa_available;
2871os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2872os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2873os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2874unsigned long* os::Linux::_numa_all_nodes;
2875
2876bool os::pd_uncommit_memory(char* addr, size_t size) {
2877  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2878                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2879  return res  != (uintptr_t) MAP_FAILED;
2880}
2881
2882static address get_stack_commited_bottom(address bottom, size_t size) {
2883  address nbot = bottom;
2884  address ntop = bottom + size;
2885
2886  size_t page_sz = os::vm_page_size();
2887  unsigned pages = size / page_sz;
2888
2889  unsigned char vec[1];
2890  unsigned imin = 1, imax = pages + 1, imid;
2891  int mincore_return_value = 0;
2892
2893  assert(imin <= imax, "Unexpected page size");
2894
2895  while (imin < imax) {
2896    imid = (imax + imin) / 2;
2897    nbot = ntop - (imid * page_sz);
2898
2899    // Use a trick with mincore to check whether the page is mapped or not.
2900    // mincore sets vec to 1 if page resides in memory and to 0 if page
2901    // is swapped output but if page we are asking for is unmapped
2902    // it returns -1,ENOMEM
2903    mincore_return_value = mincore(nbot, page_sz, vec);
2904
2905    if (mincore_return_value == -1) {
2906      // Page is not mapped go up
2907      // to find first mapped page
2908      if (errno != EAGAIN) {
2909        assert(errno == ENOMEM, "Unexpected mincore errno");
2910        imax = imid;
2911      }
2912    } else {
2913      // Page is mapped go down
2914      // to find first not mapped page
2915      imin = imid + 1;
2916    }
2917  }
2918
2919  nbot = nbot + page_sz;
2920
2921  // Adjust stack bottom one page up if last checked page is not mapped
2922  if (mincore_return_value == -1) {
2923    nbot = nbot + page_sz;
2924  }
2925
2926  return nbot;
2927}
2928
2929
2930// Linux uses a growable mapping for the stack, and if the mapping for
2931// the stack guard pages is not removed when we detach a thread the
2932// stack cannot grow beyond the pages where the stack guard was
2933// mapped.  If at some point later in the process the stack expands to
2934// that point, the Linux kernel cannot expand the stack any further
2935// because the guard pages are in the way, and a segfault occurs.
2936//
2937// However, it's essential not to split the stack region by unmapping
2938// a region (leaving a hole) that's already part of the stack mapping,
2939// so if the stack mapping has already grown beyond the guard pages at
2940// the time we create them, we have to truncate the stack mapping.
2941// So, we need to know the extent of the stack mapping when
2942// create_stack_guard_pages() is called.
2943
2944// We only need this for stacks that are growable: at the time of
2945// writing thread stacks don't use growable mappings (i.e. those
2946// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2947// only applies to the main thread.
2948
2949// If the (growable) stack mapping already extends beyond the point
2950// where we're going to put our guard pages, truncate the mapping at
2951// that point by munmap()ping it.  This ensures that when we later
2952// munmap() the guard pages we don't leave a hole in the stack
2953// mapping. This only affects the main/initial thread
2954
2955bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2956  if (os::Linux::is_initial_thread()) {
2957    // As we manually grow stack up to bottom inside create_attached_thread(),
2958    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2959    // we don't need to do anything special.
2960    // Check it first, before calling heavy function.
2961    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2962    unsigned char vec[1];
2963
2964    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2965      // Fallback to slow path on all errors, including EAGAIN
2966      stack_extent = (uintptr_t) get_stack_commited_bottom(
2967                                                           os::Linux::initial_thread_stack_bottom(),
2968                                                           (size_t)addr - stack_extent);
2969    }
2970
2971    if (stack_extent < (uintptr_t)addr) {
2972      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2973    }
2974  }
2975
2976  return os::commit_memory(addr, size, !ExecMem);
2977}
2978
2979// If this is a growable mapping, remove the guard pages entirely by
2980// munmap()ping them.  If not, just call uncommit_memory(). This only
2981// affects the main/initial thread, but guard against future OS changes
2982// It's safe to always unmap guard pages for initial thread because we
2983// always place it right after end of the mapped region
2984
2985bool os::remove_stack_guard_pages(char* addr, size_t size) {
2986  uintptr_t stack_extent, stack_base;
2987
2988  if (os::Linux::is_initial_thread()) {
2989    return ::munmap(addr, size) == 0;
2990  }
2991
2992  return os::uncommit_memory(addr, size);
2993}
2994
2995// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2996// at 'requested_addr'. If there are existing memory mappings at the same
2997// location, however, they will be overwritten. If 'fixed' is false,
2998// 'requested_addr' is only treated as a hint, the return value may or
2999// may not start from the requested address. Unlike Linux mmap(), this
3000// function returns NULL to indicate failure.
3001static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3002  char * addr;
3003  int flags;
3004
3005  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3006  if (fixed) {
3007    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3008    flags |= MAP_FIXED;
3009  }
3010
3011  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3012  // touch an uncommitted page. Otherwise, the read/write might
3013  // succeed if we have enough swap space to back the physical page.
3014  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3015                       flags, -1, 0);
3016
3017  return addr == MAP_FAILED ? NULL : addr;
3018}
3019
3020static int anon_munmap(char * addr, size_t size) {
3021  return ::munmap(addr, size) == 0;
3022}
3023
3024char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3025                            size_t alignment_hint) {
3026  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3027}
3028
3029bool os::pd_release_memory(char* addr, size_t size) {
3030  return anon_munmap(addr, size);
3031}
3032
3033static bool linux_mprotect(char* addr, size_t size, int prot) {
3034  // Linux wants the mprotect address argument to be page aligned.
3035  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3036
3037  // According to SUSv3, mprotect() should only be used with mappings
3038  // established by mmap(), and mmap() always maps whole pages. Unaligned
3039  // 'addr' likely indicates problem in the VM (e.g. trying to change
3040  // protection of malloc'ed or statically allocated memory). Check the
3041  // caller if you hit this assert.
3042  assert(addr == bottom, "sanity check");
3043
3044  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3045  return ::mprotect(bottom, size, prot) == 0;
3046}
3047
3048// Set protections specified
3049bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3050                        bool is_committed) {
3051  unsigned int p = 0;
3052  switch (prot) {
3053  case MEM_PROT_NONE: p = PROT_NONE; break;
3054  case MEM_PROT_READ: p = PROT_READ; break;
3055  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3056  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3057  default:
3058    ShouldNotReachHere();
3059  }
3060  // is_committed is unused.
3061  return linux_mprotect(addr, bytes, p);
3062}
3063
3064bool os::guard_memory(char* addr, size_t size) {
3065  return linux_mprotect(addr, size, PROT_NONE);
3066}
3067
3068bool os::unguard_memory(char* addr, size_t size) {
3069  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3070}
3071
3072bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3073                                                    size_t page_size) {
3074  bool result = false;
3075  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3076                 MAP_ANONYMOUS|MAP_PRIVATE,
3077                 -1, 0);
3078  if (p != MAP_FAILED) {
3079    void *aligned_p = align_ptr_up(p, page_size);
3080
3081    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3082
3083    munmap(p, page_size * 2);
3084  }
3085
3086  if (warn && !result) {
3087    warning("TransparentHugePages is not supported by the operating system.");
3088  }
3089
3090  return result;
3091}
3092
3093bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3094  bool result = false;
3095  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3096                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3097                 -1, 0);
3098
3099  if (p != MAP_FAILED) {
3100    // We don't know if this really is a huge page or not.
3101    FILE *fp = fopen("/proc/self/maps", "r");
3102    if (fp) {
3103      while (!feof(fp)) {
3104        char chars[257];
3105        long x = 0;
3106        if (fgets(chars, sizeof(chars), fp)) {
3107          if (sscanf(chars, "%lx-%*x", &x) == 1
3108              && x == (long)p) {
3109            if (strstr (chars, "hugepage")) {
3110              result = true;
3111              break;
3112            }
3113          }
3114        }
3115      }
3116      fclose(fp);
3117    }
3118    munmap(p, page_size);
3119  }
3120
3121  if (warn && !result) {
3122    warning("HugeTLBFS is not supported by the operating system.");
3123  }
3124
3125  return result;
3126}
3127
3128// Set the coredump_filter bits to include largepages in core dump (bit 6)
3129//
3130// From the coredump_filter documentation:
3131//
3132// - (bit 0) anonymous private memory
3133// - (bit 1) anonymous shared memory
3134// - (bit 2) file-backed private memory
3135// - (bit 3) file-backed shared memory
3136// - (bit 4) ELF header pages in file-backed private memory areas (it is
3137//           effective only if the bit 2 is cleared)
3138// - (bit 5) hugetlb private memory
3139// - (bit 6) hugetlb shared memory
3140//
3141static void set_coredump_filter(void) {
3142  FILE *f;
3143  long cdm;
3144
3145  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3146    return;
3147  }
3148
3149  if (fscanf(f, "%lx", &cdm) != 1) {
3150    fclose(f);
3151    return;
3152  }
3153
3154  rewind(f);
3155
3156  if ((cdm & LARGEPAGES_BIT) == 0) {
3157    cdm |= LARGEPAGES_BIT;
3158    fprintf(f, "%#lx", cdm);
3159  }
3160
3161  fclose(f);
3162}
3163
3164// Large page support
3165
3166static size_t _large_page_size = 0;
3167
3168size_t os::Linux::find_large_page_size() {
3169  size_t large_page_size = 0;
3170
3171  // large_page_size on Linux is used to round up heap size. x86 uses either
3172  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3173  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3174  // page as large as 256M.
3175  //
3176  // Here we try to figure out page size by parsing /proc/meminfo and looking
3177  // for a line with the following format:
3178  //    Hugepagesize:     2048 kB
3179  //
3180  // If we can't determine the value (e.g. /proc is not mounted, or the text
3181  // format has been changed), we'll use the largest page size supported by
3182  // the processor.
3183
3184#ifndef ZERO
3185  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3186                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3187#endif // ZERO
3188
3189  FILE *fp = fopen("/proc/meminfo", "r");
3190  if (fp) {
3191    while (!feof(fp)) {
3192      int x = 0;
3193      char buf[16];
3194      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3195        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3196          large_page_size = x * K;
3197          break;
3198        }
3199      } else {
3200        // skip to next line
3201        for (;;) {
3202          int ch = fgetc(fp);
3203          if (ch == EOF || ch == (int)'\n') break;
3204        }
3205      }
3206    }
3207    fclose(fp);
3208  }
3209
3210  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3211    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3212            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3213            proper_unit_for_byte_size(large_page_size));
3214  }
3215
3216  return large_page_size;
3217}
3218
3219size_t os::Linux::setup_large_page_size() {
3220  _large_page_size = Linux::find_large_page_size();
3221  const size_t default_page_size = (size_t)Linux::page_size();
3222  if (_large_page_size > default_page_size) {
3223    _page_sizes[0] = _large_page_size;
3224    _page_sizes[1] = default_page_size;
3225    _page_sizes[2] = 0;
3226  }
3227
3228  return _large_page_size;
3229}
3230
3231bool os::Linux::setup_large_page_type(size_t page_size) {
3232  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3233      FLAG_IS_DEFAULT(UseSHM) &&
3234      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3235
3236    // The type of large pages has not been specified by the user.
3237
3238    // Try UseHugeTLBFS and then UseSHM.
3239    UseHugeTLBFS = UseSHM = true;
3240
3241    // Don't try UseTransparentHugePages since there are known
3242    // performance issues with it turned on. This might change in the future.
3243    UseTransparentHugePages = false;
3244  }
3245
3246  if (UseTransparentHugePages) {
3247    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3248    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3249      UseHugeTLBFS = false;
3250      UseSHM = false;
3251      return true;
3252    }
3253    UseTransparentHugePages = false;
3254  }
3255
3256  if (UseHugeTLBFS) {
3257    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3258    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3259      UseSHM = false;
3260      return true;
3261    }
3262    UseHugeTLBFS = false;
3263  }
3264
3265  return UseSHM;
3266}
3267
3268void os::large_page_init() {
3269  if (!UseLargePages &&
3270      !UseTransparentHugePages &&
3271      !UseHugeTLBFS &&
3272      !UseSHM) {
3273    // Not using large pages.
3274    return;
3275  }
3276
3277  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3278    // The user explicitly turned off large pages.
3279    // Ignore the rest of the large pages flags.
3280    UseTransparentHugePages = false;
3281    UseHugeTLBFS = false;
3282    UseSHM = false;
3283    return;
3284  }
3285
3286  size_t large_page_size = Linux::setup_large_page_size();
3287  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3288
3289  set_coredump_filter();
3290}
3291
3292#ifndef SHM_HUGETLB
3293  #define SHM_HUGETLB 04000
3294#endif
3295
3296char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3297                                            char* req_addr, bool exec) {
3298  // "exec" is passed in but not used.  Creating the shared image for
3299  // the code cache doesn't have an SHM_X executable permission to check.
3300  assert(UseLargePages && UseSHM, "only for SHM large pages");
3301  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3302
3303  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3304    return NULL; // Fallback to small pages.
3305  }
3306
3307  key_t key = IPC_PRIVATE;
3308  char *addr;
3309
3310  bool warn_on_failure = UseLargePages &&
3311                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3312                         !FLAG_IS_DEFAULT(UseSHM) ||
3313                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3314  char msg[128];
3315
3316  // Create a large shared memory region to attach to based on size.
3317  // Currently, size is the total size of the heap
3318  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3319  if (shmid == -1) {
3320    // Possible reasons for shmget failure:
3321    // 1. shmmax is too small for Java heap.
3322    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3323    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3324    // 2. not enough large page memory.
3325    //    > check available large pages: cat /proc/meminfo
3326    //    > increase amount of large pages:
3327    //          echo new_value > /proc/sys/vm/nr_hugepages
3328    //      Note 1: different Linux may use different name for this property,
3329    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3330    //      Note 2: it's possible there's enough physical memory available but
3331    //            they are so fragmented after a long run that they can't
3332    //            coalesce into large pages. Try to reserve large pages when
3333    //            the system is still "fresh".
3334    if (warn_on_failure) {
3335      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3336      warning("%s", msg);
3337    }
3338    return NULL;
3339  }
3340
3341  // attach to the region
3342  addr = (char*)shmat(shmid, req_addr, 0);
3343  int err = errno;
3344
3345  // Remove shmid. If shmat() is successful, the actual shared memory segment
3346  // will be deleted when it's detached by shmdt() or when the process
3347  // terminates. If shmat() is not successful this will remove the shared
3348  // segment immediately.
3349  shmctl(shmid, IPC_RMID, NULL);
3350
3351  if ((intptr_t)addr == -1) {
3352    if (warn_on_failure) {
3353      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3354      warning("%s", msg);
3355    }
3356    return NULL;
3357  }
3358
3359  return addr;
3360}
3361
3362static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3363                                        int error) {
3364  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3365
3366  bool warn_on_failure = UseLargePages &&
3367      (!FLAG_IS_DEFAULT(UseLargePages) ||
3368       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3369       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3370
3371  if (warn_on_failure) {
3372    char msg[128];
3373    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3374                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3375    warning("%s", msg);
3376  }
3377}
3378
3379char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3380                                                        char* req_addr,
3381                                                        bool exec) {
3382  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3383  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3384  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3385
3386  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3387  char* addr = (char*)::mmap(req_addr, bytes, prot,
3388                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3389                             -1, 0);
3390
3391  if (addr == MAP_FAILED) {
3392    warn_on_large_pages_failure(req_addr, bytes, errno);
3393    return NULL;
3394  }
3395
3396  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3397
3398  return addr;
3399}
3400
3401// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3402// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3403//   (req_addr != NULL) or with a given alignment.
3404//  - bytes shall be a multiple of alignment.
3405//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3406//  - alignment sets the alignment at which memory shall be allocated.
3407//     It must be a multiple of allocation granularity.
3408// Returns address of memory or NULL. If req_addr was not NULL, will only return
3409//  req_addr or NULL.
3410static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3411
3412  size_t extra_size = bytes;
3413  if (req_addr == NULL && alignment > 0) {
3414    extra_size += alignment;
3415  }
3416
3417  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3418    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3419    -1, 0);
3420  if (start == MAP_FAILED) {
3421    start = NULL;
3422  } else {
3423    if (req_addr != NULL) {
3424      if (start != req_addr) {
3425        ::munmap(start, extra_size);
3426        start = NULL;
3427      }
3428    } else {
3429      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3430      char* const end_aligned = start_aligned + bytes;
3431      char* const end = start + extra_size;
3432      if (start_aligned > start) {
3433        ::munmap(start, start_aligned - start);
3434      }
3435      if (end_aligned < end) {
3436        ::munmap(end_aligned, end - end_aligned);
3437      }
3438      start = start_aligned;
3439    }
3440  }
3441  return start;
3442
3443}
3444
3445// Reserve memory using mmap(MAP_HUGETLB).
3446//  - bytes shall be a multiple of alignment.
3447//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3448//  - alignment sets the alignment at which memory shall be allocated.
3449//     It must be a multiple of allocation granularity.
3450// Returns address of memory or NULL. If req_addr was not NULL, will only return
3451//  req_addr or NULL.
3452char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3453                                                         size_t alignment,
3454                                                         char* req_addr,
3455                                                         bool exec) {
3456  size_t large_page_size = os::large_page_size();
3457  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3458
3459  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3460  assert(is_size_aligned(bytes, alignment), "Must be");
3461
3462  // First reserve - but not commit - the address range in small pages.
3463  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3464
3465  if (start == NULL) {
3466    return NULL;
3467  }
3468
3469  assert(is_ptr_aligned(start, alignment), "Must be");
3470
3471  char* end = start + bytes;
3472
3473  // Find the regions of the allocated chunk that can be promoted to large pages.
3474  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3475  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3476
3477  size_t lp_bytes = lp_end - lp_start;
3478
3479  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3480
3481  if (lp_bytes == 0) {
3482    // The mapped region doesn't even span the start and the end of a large page.
3483    // Fall back to allocate a non-special area.
3484    ::munmap(start, end - start);
3485    return NULL;
3486  }
3487
3488  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3489
3490  void* result;
3491
3492  // Commit small-paged leading area.
3493  if (start != lp_start) {
3494    result = ::mmap(start, lp_start - start, prot,
3495                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3496                    -1, 0);
3497    if (result == MAP_FAILED) {
3498      ::munmap(lp_start, end - lp_start);
3499      return NULL;
3500    }
3501  }
3502
3503  // Commit large-paged area.
3504  result = ::mmap(lp_start, lp_bytes, prot,
3505                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3506                  -1, 0);
3507  if (result == MAP_FAILED) {
3508    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3509    // If the mmap above fails, the large pages region will be unmapped and we
3510    // have regions before and after with small pages. Release these regions.
3511    //
3512    // |  mapped  |  unmapped  |  mapped  |
3513    // ^          ^            ^          ^
3514    // start      lp_start     lp_end     end
3515    //
3516    ::munmap(start, lp_start - start);
3517    ::munmap(lp_end, end - lp_end);
3518    return NULL;
3519  }
3520
3521  // Commit small-paged trailing area.
3522  if (lp_end != end) {
3523    result = ::mmap(lp_end, end - lp_end, prot,
3524                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3525                    -1, 0);
3526    if (result == MAP_FAILED) {
3527      ::munmap(start, lp_end - start);
3528      return NULL;
3529    }
3530  }
3531
3532  return start;
3533}
3534
3535char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3536                                                   size_t alignment,
3537                                                   char* req_addr,
3538                                                   bool exec) {
3539  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3540  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3541  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3542  assert(is_power_of_2(os::large_page_size()), "Must be");
3543  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3544
3545  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3546    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3547  } else {
3548    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3549  }
3550}
3551
3552char* os::reserve_memory_special(size_t bytes, size_t alignment,
3553                                 char* req_addr, bool exec) {
3554  assert(UseLargePages, "only for large pages");
3555
3556  char* addr;
3557  if (UseSHM) {
3558    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3559  } else {
3560    assert(UseHugeTLBFS, "must be");
3561    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3562  }
3563
3564  if (addr != NULL) {
3565    if (UseNUMAInterleaving) {
3566      numa_make_global(addr, bytes);
3567    }
3568
3569    // The memory is committed
3570    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3571  }
3572
3573  return addr;
3574}
3575
3576bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3577  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3578  return shmdt(base) == 0;
3579}
3580
3581bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3582  return pd_release_memory(base, bytes);
3583}
3584
3585bool os::release_memory_special(char* base, size_t bytes) {
3586  bool res;
3587  if (MemTracker::tracking_level() > NMT_minimal) {
3588    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3589    res = os::Linux::release_memory_special_impl(base, bytes);
3590    if (res) {
3591      tkr.record((address)base, bytes);
3592    }
3593
3594  } else {
3595    res = os::Linux::release_memory_special_impl(base, bytes);
3596  }
3597  return res;
3598}
3599
3600bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3601  assert(UseLargePages, "only for large pages");
3602  bool res;
3603
3604  if (UseSHM) {
3605    res = os::Linux::release_memory_special_shm(base, bytes);
3606  } else {
3607    assert(UseHugeTLBFS, "must be");
3608    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3609  }
3610  return res;
3611}
3612
3613size_t os::large_page_size() {
3614  return _large_page_size;
3615}
3616
3617// With SysV SHM the entire memory region must be allocated as shared
3618// memory.
3619// HugeTLBFS allows application to commit large page memory on demand.
3620// However, when committing memory with HugeTLBFS fails, the region
3621// that was supposed to be committed will lose the old reservation
3622// and allow other threads to steal that memory region. Because of this
3623// behavior we can't commit HugeTLBFS memory.
3624bool os::can_commit_large_page_memory() {
3625  return UseTransparentHugePages;
3626}
3627
3628bool os::can_execute_large_page_memory() {
3629  return UseTransparentHugePages || UseHugeTLBFS;
3630}
3631
3632// Reserve memory at an arbitrary address, only if that area is
3633// available (and not reserved for something else).
3634
3635char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3636  const int max_tries = 10;
3637  char* base[max_tries];
3638  size_t size[max_tries];
3639  const size_t gap = 0x000000;
3640
3641  // Assert only that the size is a multiple of the page size, since
3642  // that's all that mmap requires, and since that's all we really know
3643  // about at this low abstraction level.  If we need higher alignment,
3644  // we can either pass an alignment to this method or verify alignment
3645  // in one of the methods further up the call chain.  See bug 5044738.
3646  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3647
3648  // Repeatedly allocate blocks until the block is allocated at the
3649  // right spot.
3650
3651  // Linux mmap allows caller to pass an address as hint; give it a try first,
3652  // if kernel honors the hint then we can return immediately.
3653  char * addr = anon_mmap(requested_addr, bytes, false);
3654  if (addr == requested_addr) {
3655    return requested_addr;
3656  }
3657
3658  if (addr != NULL) {
3659    // mmap() is successful but it fails to reserve at the requested address
3660    anon_munmap(addr, bytes);
3661  }
3662
3663  int i;
3664  for (i = 0; i < max_tries; ++i) {
3665    base[i] = reserve_memory(bytes);
3666
3667    if (base[i] != NULL) {
3668      // Is this the block we wanted?
3669      if (base[i] == requested_addr) {
3670        size[i] = bytes;
3671        break;
3672      }
3673
3674      // Does this overlap the block we wanted? Give back the overlapped
3675      // parts and try again.
3676
3677      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3678      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3679        unmap_memory(base[i], top_overlap);
3680        base[i] += top_overlap;
3681        size[i] = bytes - top_overlap;
3682      } else {
3683        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3684        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3685          unmap_memory(requested_addr, bottom_overlap);
3686          size[i] = bytes - bottom_overlap;
3687        } else {
3688          size[i] = bytes;
3689        }
3690      }
3691    }
3692  }
3693
3694  // Give back the unused reserved pieces.
3695
3696  for (int j = 0; j < i; ++j) {
3697    if (base[j] != NULL) {
3698      unmap_memory(base[j], size[j]);
3699    }
3700  }
3701
3702  if (i < max_tries) {
3703    return requested_addr;
3704  } else {
3705    return NULL;
3706  }
3707}
3708
3709size_t os::read(int fd, void *buf, unsigned int nBytes) {
3710  return ::read(fd, buf, nBytes);
3711}
3712
3713size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3714  return ::pread(fd, buf, nBytes, offset);
3715}
3716
3717// Short sleep, direct OS call.
3718//
3719// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3720// sched_yield(2) will actually give up the CPU:
3721//
3722//   * Alone on this pariticular CPU, keeps running.
3723//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3724//     (pre 2.6.39).
3725//
3726// So calling this with 0 is an alternative.
3727//
3728void os::naked_short_sleep(jlong ms) {
3729  struct timespec req;
3730
3731  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3732  req.tv_sec = 0;
3733  if (ms > 0) {
3734    req.tv_nsec = (ms % 1000) * 1000000;
3735  } else {
3736    req.tv_nsec = 1;
3737  }
3738
3739  nanosleep(&req, NULL);
3740
3741  return;
3742}
3743
3744// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3745void os::infinite_sleep() {
3746  while (true) {    // sleep forever ...
3747    ::sleep(100);   // ... 100 seconds at a time
3748  }
3749}
3750
3751// Used to convert frequent JVM_Yield() to nops
3752bool os::dont_yield() {
3753  return DontYieldALot;
3754}
3755
3756void os::naked_yield() {
3757  sched_yield();
3758}
3759
3760////////////////////////////////////////////////////////////////////////////////
3761// thread priority support
3762
3763// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3764// only supports dynamic priority, static priority must be zero. For real-time
3765// applications, Linux supports SCHED_RR which allows static priority (1-99).
3766// However, for large multi-threaded applications, SCHED_RR is not only slower
3767// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3768// of 5 runs - Sep 2005).
3769//
3770// The following code actually changes the niceness of kernel-thread/LWP. It
3771// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3772// not the entire user process, and user level threads are 1:1 mapped to kernel
3773// threads. It has always been the case, but could change in the future. For
3774// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3775// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3776
3777int os::java_to_os_priority[CriticalPriority + 1] = {
3778  19,              // 0 Entry should never be used
3779
3780   4,              // 1 MinPriority
3781   3,              // 2
3782   2,              // 3
3783
3784   1,              // 4
3785   0,              // 5 NormPriority
3786  -1,              // 6
3787
3788  -2,              // 7
3789  -3,              // 8
3790  -4,              // 9 NearMaxPriority
3791
3792  -5,              // 10 MaxPriority
3793
3794  -5               // 11 CriticalPriority
3795};
3796
3797static int prio_init() {
3798  if (ThreadPriorityPolicy == 1) {
3799    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3800    // if effective uid is not root. Perhaps, a more elegant way of doing
3801    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3802    if (geteuid() != 0) {
3803      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3804        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3805      }
3806      ThreadPriorityPolicy = 0;
3807    }
3808  }
3809  if (UseCriticalJavaThreadPriority) {
3810    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3811  }
3812  return 0;
3813}
3814
3815OSReturn os::set_native_priority(Thread* thread, int newpri) {
3816  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3817
3818  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3819  return (ret == 0) ? OS_OK : OS_ERR;
3820}
3821
3822OSReturn os::get_native_priority(const Thread* const thread,
3823                                 int *priority_ptr) {
3824  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3825    *priority_ptr = java_to_os_priority[NormPriority];
3826    return OS_OK;
3827  }
3828
3829  errno = 0;
3830  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3831  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3832}
3833
3834// Hint to the underlying OS that a task switch would not be good.
3835// Void return because it's a hint and can fail.
3836void os::hint_no_preempt() {}
3837
3838////////////////////////////////////////////////////////////////////////////////
3839// suspend/resume support
3840
3841//  the low-level signal-based suspend/resume support is a remnant from the
3842//  old VM-suspension that used to be for java-suspension, safepoints etc,
3843//  within hotspot. Now there is a single use-case for this:
3844//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3845//      that runs in the watcher thread.
3846//  The remaining code is greatly simplified from the more general suspension
3847//  code that used to be used.
3848//
3849//  The protocol is quite simple:
3850//  - suspend:
3851//      - sends a signal to the target thread
3852//      - polls the suspend state of the osthread using a yield loop
3853//      - target thread signal handler (SR_handler) sets suspend state
3854//        and blocks in sigsuspend until continued
3855//  - resume:
3856//      - sets target osthread state to continue
3857//      - sends signal to end the sigsuspend loop in the SR_handler
3858//
3859//  Note that the SR_lock plays no role in this suspend/resume protocol.
3860
3861static void resume_clear_context(OSThread *osthread) {
3862  osthread->set_ucontext(NULL);
3863  osthread->set_siginfo(NULL);
3864}
3865
3866static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3867                                 ucontext_t* context) {
3868  osthread->set_ucontext(context);
3869  osthread->set_siginfo(siginfo);
3870}
3871
3872// Handler function invoked when a thread's execution is suspended or
3873// resumed. We have to be careful that only async-safe functions are
3874// called here (Note: most pthread functions are not async safe and
3875// should be avoided.)
3876//
3877// Note: sigwait() is a more natural fit than sigsuspend() from an
3878// interface point of view, but sigwait() prevents the signal hander
3879// from being run. libpthread would get very confused by not having
3880// its signal handlers run and prevents sigwait()'s use with the
3881// mutex granting granting signal.
3882//
3883// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3884//
3885static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3886  // Save and restore errno to avoid confusing native code with EINTR
3887  // after sigsuspend.
3888  int old_errno = errno;
3889
3890  Thread* thread = Thread::current();
3891  OSThread* osthread = thread->osthread();
3892  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3893
3894  os::SuspendResume::State current = osthread->sr.state();
3895  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3896    suspend_save_context(osthread, siginfo, context);
3897
3898    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3899    os::SuspendResume::State state = osthread->sr.suspended();
3900    if (state == os::SuspendResume::SR_SUSPENDED) {
3901      sigset_t suspend_set;  // signals for sigsuspend()
3902
3903      // get current set of blocked signals and unblock resume signal
3904      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3905      sigdelset(&suspend_set, SR_signum);
3906
3907      sr_semaphore.signal();
3908      // wait here until we are resumed
3909      while (1) {
3910        sigsuspend(&suspend_set);
3911
3912        os::SuspendResume::State result = osthread->sr.running();
3913        if (result == os::SuspendResume::SR_RUNNING) {
3914          sr_semaphore.signal();
3915          break;
3916        }
3917      }
3918
3919    } else if (state == os::SuspendResume::SR_RUNNING) {
3920      // request was cancelled, continue
3921    } else {
3922      ShouldNotReachHere();
3923    }
3924
3925    resume_clear_context(osthread);
3926  } else if (current == os::SuspendResume::SR_RUNNING) {
3927    // request was cancelled, continue
3928  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3929    // ignore
3930  } else {
3931    // ignore
3932  }
3933
3934  errno = old_errno;
3935}
3936
3937static int SR_initialize() {
3938  struct sigaction act;
3939  char *s;
3940
3941  // Get signal number to use for suspend/resume
3942  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3943    int sig = ::strtol(s, 0, 10);
3944    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
3945        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
3946      SR_signum = sig;
3947    } else {
3948      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
3949              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
3950    }
3951  }
3952
3953  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3954         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3955
3956  sigemptyset(&SR_sigset);
3957  sigaddset(&SR_sigset, SR_signum);
3958
3959  // Set up signal handler for suspend/resume
3960  act.sa_flags = SA_RESTART|SA_SIGINFO;
3961  act.sa_handler = (void (*)(int)) SR_handler;
3962
3963  // SR_signum is blocked by default.
3964  // 4528190 - We also need to block pthread restart signal (32 on all
3965  // supported Linux platforms). Note that LinuxThreads need to block
3966  // this signal for all threads to work properly. So we don't have
3967  // to use hard-coded signal number when setting up the mask.
3968  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3969
3970  if (sigaction(SR_signum, &act, 0) == -1) {
3971    return -1;
3972  }
3973
3974  // Save signal flag
3975  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3976  return 0;
3977}
3978
3979static int sr_notify(OSThread* osthread) {
3980  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3981  assert_status(status == 0, status, "pthread_kill");
3982  return status;
3983}
3984
3985// "Randomly" selected value for how long we want to spin
3986// before bailing out on suspending a thread, also how often
3987// we send a signal to a thread we want to resume
3988static const int RANDOMLY_LARGE_INTEGER = 1000000;
3989static const int RANDOMLY_LARGE_INTEGER2 = 100;
3990
3991// returns true on success and false on error - really an error is fatal
3992// but this seems the normal response to library errors
3993static bool do_suspend(OSThread* osthread) {
3994  assert(osthread->sr.is_running(), "thread should be running");
3995  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3996
3997  // mark as suspended and send signal
3998  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3999    // failed to switch, state wasn't running?
4000    ShouldNotReachHere();
4001    return false;
4002  }
4003
4004  if (sr_notify(osthread) != 0) {
4005    ShouldNotReachHere();
4006  }
4007
4008  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4009  while (true) {
4010    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4011      break;
4012    } else {
4013      // timeout
4014      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4015      if (cancelled == os::SuspendResume::SR_RUNNING) {
4016        return false;
4017      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4018        // make sure that we consume the signal on the semaphore as well
4019        sr_semaphore.wait();
4020        break;
4021      } else {
4022        ShouldNotReachHere();
4023        return false;
4024      }
4025    }
4026  }
4027
4028  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4029  return true;
4030}
4031
4032static void do_resume(OSThread* osthread) {
4033  assert(osthread->sr.is_suspended(), "thread should be suspended");
4034  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4035
4036  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4037    // failed to switch to WAKEUP_REQUEST
4038    ShouldNotReachHere();
4039    return;
4040  }
4041
4042  while (true) {
4043    if (sr_notify(osthread) == 0) {
4044      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4045        if (osthread->sr.is_running()) {
4046          return;
4047        }
4048      }
4049    } else {
4050      ShouldNotReachHere();
4051    }
4052  }
4053
4054  guarantee(osthread->sr.is_running(), "Must be running!");
4055}
4056
4057///////////////////////////////////////////////////////////////////////////////////
4058// signal handling (except suspend/resume)
4059
4060// This routine may be used by user applications as a "hook" to catch signals.
4061// The user-defined signal handler must pass unrecognized signals to this
4062// routine, and if it returns true (non-zero), then the signal handler must
4063// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4064// routine will never retun false (zero), but instead will execute a VM panic
4065// routine kill the process.
4066//
4067// If this routine returns false, it is OK to call it again.  This allows
4068// the user-defined signal handler to perform checks either before or after
4069// the VM performs its own checks.  Naturally, the user code would be making
4070// a serious error if it tried to handle an exception (such as a null check
4071// or breakpoint) that the VM was generating for its own correct operation.
4072//
4073// This routine may recognize any of the following kinds of signals:
4074//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4075// It should be consulted by handlers for any of those signals.
4076//
4077// The caller of this routine must pass in the three arguments supplied
4078// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4079// field of the structure passed to sigaction().  This routine assumes that
4080// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4081//
4082// Note that the VM will print warnings if it detects conflicting signal
4083// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4084//
4085extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4086                                                 siginfo_t* siginfo,
4087                                                 void* ucontext,
4088                                                 int abort_if_unrecognized);
4089
4090void signalHandler(int sig, siginfo_t* info, void* uc) {
4091  assert(info != NULL && uc != NULL, "it must be old kernel");
4092  int orig_errno = errno;  // Preserve errno value over signal handler.
4093  JVM_handle_linux_signal(sig, info, uc, true);
4094  errno = orig_errno;
4095}
4096
4097
4098// This boolean allows users to forward their own non-matching signals
4099// to JVM_handle_linux_signal, harmlessly.
4100bool os::Linux::signal_handlers_are_installed = false;
4101
4102// For signal-chaining
4103struct sigaction sigact[NSIG];
4104uint64_t sigs = 0;
4105#if (64 < NSIG-1)
4106#error "Not all signals can be encoded in sigs. Adapt its type!"
4107#endif
4108bool os::Linux::libjsig_is_loaded = false;
4109typedef struct sigaction *(*get_signal_t)(int);
4110get_signal_t os::Linux::get_signal_action = NULL;
4111
4112struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4113  struct sigaction *actp = NULL;
4114
4115  if (libjsig_is_loaded) {
4116    // Retrieve the old signal handler from libjsig
4117    actp = (*get_signal_action)(sig);
4118  }
4119  if (actp == NULL) {
4120    // Retrieve the preinstalled signal handler from jvm
4121    actp = get_preinstalled_handler(sig);
4122  }
4123
4124  return actp;
4125}
4126
4127static bool call_chained_handler(struct sigaction *actp, int sig,
4128                                 siginfo_t *siginfo, void *context) {
4129  // Call the old signal handler
4130  if (actp->sa_handler == SIG_DFL) {
4131    // It's more reasonable to let jvm treat it as an unexpected exception
4132    // instead of taking the default action.
4133    return false;
4134  } else if (actp->sa_handler != SIG_IGN) {
4135    if ((actp->sa_flags & SA_NODEFER) == 0) {
4136      // automaticlly block the signal
4137      sigaddset(&(actp->sa_mask), sig);
4138    }
4139
4140    sa_handler_t hand = NULL;
4141    sa_sigaction_t sa = NULL;
4142    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4143    // retrieve the chained handler
4144    if (siginfo_flag_set) {
4145      sa = actp->sa_sigaction;
4146    } else {
4147      hand = actp->sa_handler;
4148    }
4149
4150    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4151      actp->sa_handler = SIG_DFL;
4152    }
4153
4154    // try to honor the signal mask
4155    sigset_t oset;
4156    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4157
4158    // call into the chained handler
4159    if (siginfo_flag_set) {
4160      (*sa)(sig, siginfo, context);
4161    } else {
4162      (*hand)(sig);
4163    }
4164
4165    // restore the signal mask
4166    pthread_sigmask(SIG_SETMASK, &oset, 0);
4167  }
4168  // Tell jvm's signal handler the signal is taken care of.
4169  return true;
4170}
4171
4172bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4173  bool chained = false;
4174  // signal-chaining
4175  if (UseSignalChaining) {
4176    struct sigaction *actp = get_chained_signal_action(sig);
4177    if (actp != NULL) {
4178      chained = call_chained_handler(actp, sig, siginfo, context);
4179    }
4180  }
4181  return chained;
4182}
4183
4184struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4185  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4186    return &sigact[sig];
4187  }
4188  return NULL;
4189}
4190
4191void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4192  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4193  sigact[sig] = oldAct;
4194  sigs |= (uint64_t)1 << (sig-1);
4195}
4196
4197// for diagnostic
4198int sigflags[NSIG];
4199
4200int os::Linux::get_our_sigflags(int sig) {
4201  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4202  return sigflags[sig];
4203}
4204
4205void os::Linux::set_our_sigflags(int sig, int flags) {
4206  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4207  if (sig > 0 && sig < NSIG) {
4208    sigflags[sig] = flags;
4209  }
4210}
4211
4212void os::Linux::set_signal_handler(int sig, bool set_installed) {
4213  // Check for overwrite.
4214  struct sigaction oldAct;
4215  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4216
4217  void* oldhand = oldAct.sa_sigaction
4218                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4219                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4220  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4221      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4222      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4223    if (AllowUserSignalHandlers || !set_installed) {
4224      // Do not overwrite; user takes responsibility to forward to us.
4225      return;
4226    } else if (UseSignalChaining) {
4227      // save the old handler in jvm
4228      save_preinstalled_handler(sig, oldAct);
4229      // libjsig also interposes the sigaction() call below and saves the
4230      // old sigaction on it own.
4231    } else {
4232      fatal("Encountered unexpected pre-existing sigaction handler "
4233            "%#lx for signal %d.", (long)oldhand, sig);
4234    }
4235  }
4236
4237  struct sigaction sigAct;
4238  sigfillset(&(sigAct.sa_mask));
4239  sigAct.sa_handler = SIG_DFL;
4240  if (!set_installed) {
4241    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4242  } else {
4243    sigAct.sa_sigaction = signalHandler;
4244    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4245  }
4246  // Save flags, which are set by ours
4247  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4248  sigflags[sig] = sigAct.sa_flags;
4249
4250  int ret = sigaction(sig, &sigAct, &oldAct);
4251  assert(ret == 0, "check");
4252
4253  void* oldhand2  = oldAct.sa_sigaction
4254                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4255                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4256  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4257}
4258
4259// install signal handlers for signals that HotSpot needs to
4260// handle in order to support Java-level exception handling.
4261
4262void os::Linux::install_signal_handlers() {
4263  if (!signal_handlers_are_installed) {
4264    signal_handlers_are_installed = true;
4265
4266    // signal-chaining
4267    typedef void (*signal_setting_t)();
4268    signal_setting_t begin_signal_setting = NULL;
4269    signal_setting_t end_signal_setting = NULL;
4270    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4271                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4272    if (begin_signal_setting != NULL) {
4273      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4274                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4275      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4276                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4277      libjsig_is_loaded = true;
4278      assert(UseSignalChaining, "should enable signal-chaining");
4279    }
4280    if (libjsig_is_loaded) {
4281      // Tell libjsig jvm is setting signal handlers
4282      (*begin_signal_setting)();
4283    }
4284
4285    set_signal_handler(SIGSEGV, true);
4286    set_signal_handler(SIGPIPE, true);
4287    set_signal_handler(SIGBUS, true);
4288    set_signal_handler(SIGILL, true);
4289    set_signal_handler(SIGFPE, true);
4290#if defined(PPC64)
4291    set_signal_handler(SIGTRAP, true);
4292#endif
4293    set_signal_handler(SIGXFSZ, true);
4294
4295    if (libjsig_is_loaded) {
4296      // Tell libjsig jvm finishes setting signal handlers
4297      (*end_signal_setting)();
4298    }
4299
4300    // We don't activate signal checker if libjsig is in place, we trust ourselves
4301    // and if UserSignalHandler is installed all bets are off.
4302    // Log that signal checking is off only if -verbose:jni is specified.
4303    if (CheckJNICalls) {
4304      if (libjsig_is_loaded) {
4305        if (PrintJNIResolving) {
4306          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4307        }
4308        check_signals = false;
4309      }
4310      if (AllowUserSignalHandlers) {
4311        if (PrintJNIResolving) {
4312          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4313        }
4314        check_signals = false;
4315      }
4316    }
4317  }
4318}
4319
4320// This is the fastest way to get thread cpu time on Linux.
4321// Returns cpu time (user+sys) for any thread, not only for current.
4322// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4323// It might work on 2.6.10+ with a special kernel/glibc patch.
4324// For reference, please, see IEEE Std 1003.1-2004:
4325//   http://www.unix.org/single_unix_specification
4326
4327jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4328  struct timespec tp;
4329  int rc = os::Linux::clock_gettime(clockid, &tp);
4330  assert(rc == 0, "clock_gettime is expected to return 0 code");
4331
4332  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4333}
4334
4335/////
4336// glibc on Linux platform uses non-documented flag
4337// to indicate, that some special sort of signal
4338// trampoline is used.
4339// We will never set this flag, and we should
4340// ignore this flag in our diagnostic
4341#ifdef SIGNIFICANT_SIGNAL_MASK
4342  #undef SIGNIFICANT_SIGNAL_MASK
4343#endif
4344#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4345
4346static const char* get_signal_handler_name(address handler,
4347                                           char* buf, int buflen) {
4348  int offset = 0;
4349  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4350  if (found) {
4351    // skip directory names
4352    const char *p1, *p2;
4353    p1 = buf;
4354    size_t len = strlen(os::file_separator());
4355    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4356    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4357  } else {
4358    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4359  }
4360  return buf;
4361}
4362
4363static void print_signal_handler(outputStream* st, int sig,
4364                                 char* buf, size_t buflen) {
4365  struct sigaction sa;
4366
4367  sigaction(sig, NULL, &sa);
4368
4369  // See comment for SIGNIFICANT_SIGNAL_MASK define
4370  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4371
4372  st->print("%s: ", os::exception_name(sig, buf, buflen));
4373
4374  address handler = (sa.sa_flags & SA_SIGINFO)
4375    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4376    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4377
4378  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4379    st->print("SIG_DFL");
4380  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4381    st->print("SIG_IGN");
4382  } else {
4383    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4384  }
4385
4386  st->print(", sa_mask[0]=");
4387  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4388
4389  address rh = VMError::get_resetted_sighandler(sig);
4390  // May be, handler was resetted by VMError?
4391  if (rh != NULL) {
4392    handler = rh;
4393    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4394  }
4395
4396  st->print(", sa_flags=");
4397  os::Posix::print_sa_flags(st, sa.sa_flags);
4398
4399  // Check: is it our handler?
4400  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4401      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4402    // It is our signal handler
4403    // check for flags, reset system-used one!
4404    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4405      st->print(
4406                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4407                os::Linux::get_our_sigflags(sig));
4408    }
4409  }
4410  st->cr();
4411}
4412
4413
4414#define DO_SIGNAL_CHECK(sig)                      \
4415  do {                                            \
4416    if (!sigismember(&check_signal_done, sig)) {  \
4417      os::Linux::check_signal_handler(sig);       \
4418    }                                             \
4419  } while (0)
4420
4421// This method is a periodic task to check for misbehaving JNI applications
4422// under CheckJNI, we can add any periodic checks here
4423
4424void os::run_periodic_checks() {
4425  if (check_signals == false) return;
4426
4427  // SEGV and BUS if overridden could potentially prevent
4428  // generation of hs*.log in the event of a crash, debugging
4429  // such a case can be very challenging, so we absolutely
4430  // check the following for a good measure:
4431  DO_SIGNAL_CHECK(SIGSEGV);
4432  DO_SIGNAL_CHECK(SIGILL);
4433  DO_SIGNAL_CHECK(SIGFPE);
4434  DO_SIGNAL_CHECK(SIGBUS);
4435  DO_SIGNAL_CHECK(SIGPIPE);
4436  DO_SIGNAL_CHECK(SIGXFSZ);
4437#if defined(PPC64)
4438  DO_SIGNAL_CHECK(SIGTRAP);
4439#endif
4440
4441  // ReduceSignalUsage allows the user to override these handlers
4442  // see comments at the very top and jvm_solaris.h
4443  if (!ReduceSignalUsage) {
4444    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4445    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4446    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4447    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4448  }
4449
4450  DO_SIGNAL_CHECK(SR_signum);
4451}
4452
4453typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4454
4455static os_sigaction_t os_sigaction = NULL;
4456
4457void os::Linux::check_signal_handler(int sig) {
4458  char buf[O_BUFLEN];
4459  address jvmHandler = NULL;
4460
4461
4462  struct sigaction act;
4463  if (os_sigaction == NULL) {
4464    // only trust the default sigaction, in case it has been interposed
4465    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4466    if (os_sigaction == NULL) return;
4467  }
4468
4469  os_sigaction(sig, (struct sigaction*)NULL, &act);
4470
4471
4472  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4473
4474  address thisHandler = (act.sa_flags & SA_SIGINFO)
4475    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4476    : CAST_FROM_FN_PTR(address, act.sa_handler);
4477
4478
4479  switch (sig) {
4480  case SIGSEGV:
4481  case SIGBUS:
4482  case SIGFPE:
4483  case SIGPIPE:
4484  case SIGILL:
4485  case SIGXFSZ:
4486    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4487    break;
4488
4489  case SHUTDOWN1_SIGNAL:
4490  case SHUTDOWN2_SIGNAL:
4491  case SHUTDOWN3_SIGNAL:
4492  case BREAK_SIGNAL:
4493    jvmHandler = (address)user_handler();
4494    break;
4495
4496  default:
4497    if (sig == SR_signum) {
4498      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4499    } else {
4500      return;
4501    }
4502    break;
4503  }
4504
4505  if (thisHandler != jvmHandler) {
4506    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4507    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4508    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4509    // No need to check this sig any longer
4510    sigaddset(&check_signal_done, sig);
4511    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4512    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4513      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4514                    exception_name(sig, buf, O_BUFLEN));
4515    }
4516  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4517    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4518    tty->print("expected:");
4519    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4520    tty->cr();
4521    tty->print("  found:");
4522    os::Posix::print_sa_flags(tty, act.sa_flags);
4523    tty->cr();
4524    // No need to check this sig any longer
4525    sigaddset(&check_signal_done, sig);
4526  }
4527
4528  // Dump all the signal
4529  if (sigismember(&check_signal_done, sig)) {
4530    print_signal_handlers(tty, buf, O_BUFLEN);
4531  }
4532}
4533
4534extern void report_error(char* file_name, int line_no, char* title,
4535                         char* format, ...);
4536
4537// this is called _before_ the most of global arguments have been parsed
4538void os::init(void) {
4539  char dummy;   // used to get a guess on initial stack address
4540//  first_hrtime = gethrtime();
4541
4542  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4543
4544  init_random(1234567);
4545
4546  ThreadCritical::initialize();
4547
4548  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4549  if (Linux::page_size() == -1) {
4550    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4551          strerror(errno));
4552  }
4553  init_page_sizes((size_t) Linux::page_size());
4554
4555  Linux::initialize_system_info();
4556
4557  // main_thread points to the aboriginal thread
4558  Linux::_main_thread = pthread_self();
4559
4560  Linux::clock_init();
4561  initial_time_count = javaTimeNanos();
4562
4563  // pthread_condattr initialization for monotonic clock
4564  int status;
4565  pthread_condattr_t* _condattr = os::Linux::condAttr();
4566  if ((status = pthread_condattr_init(_condattr)) != 0) {
4567    fatal("pthread_condattr_init: %s", strerror(status));
4568  }
4569  // Only set the clock if CLOCK_MONOTONIC is available
4570  if (os::supports_monotonic_clock()) {
4571    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4572      if (status == EINVAL) {
4573        warning("Unable to use monotonic clock with relative timed-waits" \
4574                " - changes to the time-of-day clock may have adverse affects");
4575      } else {
4576        fatal("pthread_condattr_setclock: %s", strerror(status));
4577      }
4578    }
4579  }
4580  // else it defaults to CLOCK_REALTIME
4581
4582  // retrieve entry point for pthread_setname_np
4583  Linux::_pthread_setname_np =
4584    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4585
4586}
4587
4588// To install functions for atexit system call
4589extern "C" {
4590  static void perfMemory_exit_helper() {
4591    perfMemory_exit();
4592  }
4593}
4594
4595// this is called _after_ the global arguments have been parsed
4596jint os::init_2(void) {
4597  Linux::fast_thread_clock_init();
4598
4599  // Allocate a single page and mark it as readable for safepoint polling
4600  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4601  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4602
4603  os::set_polling_page(polling_page);
4604
4605#ifndef PRODUCT
4606  if (Verbose && PrintMiscellaneous) {
4607    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4608               (intptr_t)polling_page);
4609  }
4610#endif
4611
4612  if (!UseMembar) {
4613    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4614    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4615    os::set_memory_serialize_page(mem_serialize_page);
4616
4617#ifndef PRODUCT
4618    if (Verbose && PrintMiscellaneous) {
4619      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4620                 (intptr_t)mem_serialize_page);
4621    }
4622#endif
4623  }
4624
4625  // initialize suspend/resume support - must do this before signal_sets_init()
4626  if (SR_initialize() != 0) {
4627    perror("SR_initialize failed");
4628    return JNI_ERR;
4629  }
4630
4631  Linux::signal_sets_init();
4632  Linux::install_signal_handlers();
4633
4634  // Check minimum allowable stack size for thread creation and to initialize
4635  // the java system classes, including StackOverflowError - depends on page
4636  // size.  Add a page for compiler2 recursion in main thread.
4637  // Add in 2*BytesPerWord times page size to account for VM stack during
4638  // class initialization depending on 32 or 64 bit VM.
4639  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4640                                      JavaThread::stack_guard_zone_size() +
4641                                      JavaThread::stack_shadow_zone_size() +
4642                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4643
4644  size_t threadStackSizeInBytes = ThreadStackSize * K;
4645  if (threadStackSizeInBytes != 0 &&
4646      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4647    tty->print_cr("\nThe stack size specified is too small, "
4648                  "Specify at least " SIZE_FORMAT "k",
4649                  os::Linux::min_stack_allowed/ K);
4650    return JNI_ERR;
4651  }
4652
4653  // Make the stack size a multiple of the page size so that
4654  // the yellow/red zones can be guarded.
4655  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4656                                                vm_page_size()));
4657
4658  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4659
4660#if defined(IA32)
4661  workaround_expand_exec_shield_cs_limit();
4662#endif
4663
4664  Linux::libpthread_init();
4665  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4666    tty->print_cr("[HotSpot is running with %s, %s]\n",
4667                  Linux::glibc_version(), Linux::libpthread_version());
4668  }
4669
4670  if (UseNUMA) {
4671    if (!Linux::libnuma_init()) {
4672      UseNUMA = false;
4673    } else {
4674      if ((Linux::numa_max_node() < 1)) {
4675        // There's only one node(they start from 0), disable NUMA.
4676        UseNUMA = false;
4677      }
4678    }
4679    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4680    // we can make the adaptive lgrp chunk resizing work. If the user specified
4681    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4682    // disable adaptive resizing.
4683    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4684      if (FLAG_IS_DEFAULT(UseNUMA)) {
4685        UseNUMA = false;
4686      } else {
4687        if (FLAG_IS_DEFAULT(UseLargePages) &&
4688            FLAG_IS_DEFAULT(UseSHM) &&
4689            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4690          UseLargePages = false;
4691        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4692          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4693          UseAdaptiveSizePolicy = false;
4694          UseAdaptiveNUMAChunkSizing = false;
4695        }
4696      }
4697    }
4698    if (!UseNUMA && ForceNUMA) {
4699      UseNUMA = true;
4700    }
4701  }
4702
4703  if (MaxFDLimit) {
4704    // set the number of file descriptors to max. print out error
4705    // if getrlimit/setrlimit fails but continue regardless.
4706    struct rlimit nbr_files;
4707    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4708    if (status != 0) {
4709      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4710        perror("os::init_2 getrlimit failed");
4711      }
4712    } else {
4713      nbr_files.rlim_cur = nbr_files.rlim_max;
4714      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4715      if (status != 0) {
4716        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4717          perror("os::init_2 setrlimit failed");
4718        }
4719      }
4720    }
4721  }
4722
4723  // Initialize lock used to serialize thread creation (see os::create_thread)
4724  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4725
4726  // at-exit methods are called in the reverse order of their registration.
4727  // atexit functions are called on return from main or as a result of a
4728  // call to exit(3C). There can be only 32 of these functions registered
4729  // and atexit() does not set errno.
4730
4731  if (PerfAllowAtExitRegistration) {
4732    // only register atexit functions if PerfAllowAtExitRegistration is set.
4733    // atexit functions can be delayed until process exit time, which
4734    // can be problematic for embedded VM situations. Embedded VMs should
4735    // call DestroyJavaVM() to assure that VM resources are released.
4736
4737    // note: perfMemory_exit_helper atexit function may be removed in
4738    // the future if the appropriate cleanup code can be added to the
4739    // VM_Exit VMOperation's doit method.
4740    if (atexit(perfMemory_exit_helper) != 0) {
4741      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4742    }
4743  }
4744
4745  // initialize thread priority policy
4746  prio_init();
4747
4748  return JNI_OK;
4749}
4750
4751// Mark the polling page as unreadable
4752void os::make_polling_page_unreadable(void) {
4753  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4754    fatal("Could not disable polling page");
4755  }
4756}
4757
4758// Mark the polling page as readable
4759void os::make_polling_page_readable(void) {
4760  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4761    fatal("Could not enable polling page");
4762  }
4763}
4764
4765int os::active_processor_count() {
4766  // Linux doesn't yet have a (official) notion of processor sets,
4767  // so just return the number of online processors.
4768  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4769  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4770  return online_cpus;
4771}
4772
4773void os::set_native_thread_name(const char *name) {
4774  if (Linux::_pthread_setname_np) {
4775    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4776    snprintf(buf, sizeof(buf), "%s", name);
4777    buf[sizeof(buf) - 1] = '\0';
4778    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4779    // ERANGE should not happen; all other errors should just be ignored.
4780    assert(rc != ERANGE, "pthread_setname_np failed");
4781  }
4782}
4783
4784bool os::distribute_processes(uint length, uint* distribution) {
4785  // Not yet implemented.
4786  return false;
4787}
4788
4789bool os::bind_to_processor(uint processor_id) {
4790  // Not yet implemented.
4791  return false;
4792}
4793
4794///
4795
4796void os::SuspendedThreadTask::internal_do_task() {
4797  if (do_suspend(_thread->osthread())) {
4798    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4799    do_task(context);
4800    do_resume(_thread->osthread());
4801  }
4802}
4803
4804class PcFetcher : public os::SuspendedThreadTask {
4805 public:
4806  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4807  ExtendedPC result();
4808 protected:
4809  void do_task(const os::SuspendedThreadTaskContext& context);
4810 private:
4811  ExtendedPC _epc;
4812};
4813
4814ExtendedPC PcFetcher::result() {
4815  guarantee(is_done(), "task is not done yet.");
4816  return _epc;
4817}
4818
4819void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4820  Thread* thread = context.thread();
4821  OSThread* osthread = thread->osthread();
4822  if (osthread->ucontext() != NULL) {
4823    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
4824  } else {
4825    // NULL context is unexpected, double-check this is the VMThread
4826    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4827  }
4828}
4829
4830// Suspends the target using the signal mechanism and then grabs the PC before
4831// resuming the target. Used by the flat-profiler only
4832ExtendedPC os::get_thread_pc(Thread* thread) {
4833  // Make sure that it is called by the watcher for the VMThread
4834  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4835  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4836
4837  PcFetcher fetcher(thread);
4838  fetcher.run();
4839  return fetcher.result();
4840}
4841
4842////////////////////////////////////////////////////////////////////////////////
4843// debug support
4844
4845bool os::find(address addr, outputStream* st) {
4846  Dl_info dlinfo;
4847  memset(&dlinfo, 0, sizeof(dlinfo));
4848  if (dladdr(addr, &dlinfo) != 0) {
4849    st->print(PTR_FORMAT ": ", p2i(addr));
4850    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4851      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4852                p2i(addr) - p2i(dlinfo.dli_saddr));
4853    } else if (dlinfo.dli_fbase != NULL) {
4854      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4855    } else {
4856      st->print("<absolute address>");
4857    }
4858    if (dlinfo.dli_fname != NULL) {
4859      st->print(" in %s", dlinfo.dli_fname);
4860    }
4861    if (dlinfo.dli_fbase != NULL) {
4862      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4863    }
4864    st->cr();
4865
4866    if (Verbose) {
4867      // decode some bytes around the PC
4868      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4869      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4870      address       lowest = (address) dlinfo.dli_sname;
4871      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4872      if (begin < lowest)  begin = lowest;
4873      Dl_info dlinfo2;
4874      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4875          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4876        end = (address) dlinfo2.dli_saddr;
4877      }
4878      Disassembler::decode(begin, end, st);
4879    }
4880    return true;
4881  }
4882  return false;
4883}
4884
4885////////////////////////////////////////////////////////////////////////////////
4886// misc
4887
4888// This does not do anything on Linux. This is basically a hook for being
4889// able to use structured exception handling (thread-local exception filters)
4890// on, e.g., Win32.
4891void
4892os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
4893                         JavaCallArguments* args, Thread* thread) {
4894  f(value, method, args, thread);
4895}
4896
4897void os::print_statistics() {
4898}
4899
4900bool os::message_box(const char* title, const char* message) {
4901  int i;
4902  fdStream err(defaultStream::error_fd());
4903  for (i = 0; i < 78; i++) err.print_raw("=");
4904  err.cr();
4905  err.print_raw_cr(title);
4906  for (i = 0; i < 78; i++) err.print_raw("-");
4907  err.cr();
4908  err.print_raw_cr(message);
4909  for (i = 0; i < 78; i++) err.print_raw("=");
4910  err.cr();
4911
4912  char buf[16];
4913  // Prevent process from exiting upon "read error" without consuming all CPU
4914  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4915
4916  return buf[0] == 'y' || buf[0] == 'Y';
4917}
4918
4919int os::stat(const char *path, struct stat *sbuf) {
4920  char pathbuf[MAX_PATH];
4921  if (strlen(path) > MAX_PATH - 1) {
4922    errno = ENAMETOOLONG;
4923    return -1;
4924  }
4925  os::native_path(strcpy(pathbuf, path));
4926  return ::stat(pathbuf, sbuf);
4927}
4928
4929bool os::check_heap(bool force) {
4930  return true;
4931}
4932
4933// Is a (classpath) directory empty?
4934bool os::dir_is_empty(const char* path) {
4935  DIR *dir = NULL;
4936  struct dirent *ptr;
4937
4938  dir = opendir(path);
4939  if (dir == NULL) return true;
4940
4941  // Scan the directory
4942  bool result = true;
4943  char buf[sizeof(struct dirent) + MAX_PATH];
4944  while (result && (ptr = ::readdir(dir)) != NULL) {
4945    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4946      result = false;
4947    }
4948  }
4949  closedir(dir);
4950  return result;
4951}
4952
4953// This code originates from JDK's sysOpen and open64_w
4954// from src/solaris/hpi/src/system_md.c
4955
4956int os::open(const char *path, int oflag, int mode) {
4957  if (strlen(path) > MAX_PATH - 1) {
4958    errno = ENAMETOOLONG;
4959    return -1;
4960  }
4961
4962  // All file descriptors that are opened in the Java process and not
4963  // specifically destined for a subprocess should have the close-on-exec
4964  // flag set.  If we don't set it, then careless 3rd party native code
4965  // might fork and exec without closing all appropriate file descriptors
4966  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
4967  // turn might:
4968  //
4969  // - cause end-of-file to fail to be detected on some file
4970  //   descriptors, resulting in mysterious hangs, or
4971  //
4972  // - might cause an fopen in the subprocess to fail on a system
4973  //   suffering from bug 1085341.
4974  //
4975  // (Yes, the default setting of the close-on-exec flag is a Unix
4976  // design flaw)
4977  //
4978  // See:
4979  // 1085341: 32-bit stdio routines should support file descriptors >255
4980  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4981  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4982  //
4983  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
4984  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
4985  // because it saves a system call and removes a small window where the flag
4986  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
4987  // and we fall back to using FD_CLOEXEC (see below).
4988#ifdef O_CLOEXEC
4989  oflag |= O_CLOEXEC;
4990#endif
4991
4992  int fd = ::open64(path, oflag, mode);
4993  if (fd == -1) return -1;
4994
4995  //If the open succeeded, the file might still be a directory
4996  {
4997    struct stat64 buf64;
4998    int ret = ::fstat64(fd, &buf64);
4999    int st_mode = buf64.st_mode;
5000
5001    if (ret != -1) {
5002      if ((st_mode & S_IFMT) == S_IFDIR) {
5003        errno = EISDIR;
5004        ::close(fd);
5005        return -1;
5006      }
5007    } else {
5008      ::close(fd);
5009      return -1;
5010    }
5011  }
5012
5013#ifdef FD_CLOEXEC
5014  // Validate that the use of the O_CLOEXEC flag on open above worked.
5015  // With recent kernels, we will perform this check exactly once.
5016  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5017  if (!O_CLOEXEC_is_known_to_work) {
5018    int flags = ::fcntl(fd, F_GETFD);
5019    if (flags != -1) {
5020      if ((flags & FD_CLOEXEC) != 0)
5021        O_CLOEXEC_is_known_to_work = 1;
5022      else
5023        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5024    }
5025  }
5026#endif
5027
5028  return fd;
5029}
5030
5031
5032// create binary file, rewriting existing file if required
5033int os::create_binary_file(const char* path, bool rewrite_existing) {
5034  int oflags = O_WRONLY | O_CREAT;
5035  if (!rewrite_existing) {
5036    oflags |= O_EXCL;
5037  }
5038  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5039}
5040
5041// return current position of file pointer
5042jlong os::current_file_offset(int fd) {
5043  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5044}
5045
5046// move file pointer to the specified offset
5047jlong os::seek_to_file_offset(int fd, jlong offset) {
5048  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5049}
5050
5051// This code originates from JDK's sysAvailable
5052// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5053
5054int os::available(int fd, jlong *bytes) {
5055  jlong cur, end;
5056  int mode;
5057  struct stat64 buf64;
5058
5059  if (::fstat64(fd, &buf64) >= 0) {
5060    mode = buf64.st_mode;
5061    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5062      int n;
5063      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5064        *bytes = n;
5065        return 1;
5066      }
5067    }
5068  }
5069  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5070    return 0;
5071  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5072    return 0;
5073  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5074    return 0;
5075  }
5076  *bytes = end - cur;
5077  return 1;
5078}
5079
5080// Map a block of memory.
5081char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5082                        char *addr, size_t bytes, bool read_only,
5083                        bool allow_exec) {
5084  int prot;
5085  int flags = MAP_PRIVATE;
5086
5087  if (read_only) {
5088    prot = PROT_READ;
5089  } else {
5090    prot = PROT_READ | PROT_WRITE;
5091  }
5092
5093  if (allow_exec) {
5094    prot |= PROT_EXEC;
5095  }
5096
5097  if (addr != NULL) {
5098    flags |= MAP_FIXED;
5099  }
5100
5101  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5102                                     fd, file_offset);
5103  if (mapped_address == MAP_FAILED) {
5104    return NULL;
5105  }
5106  return mapped_address;
5107}
5108
5109
5110// Remap a block of memory.
5111char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5112                          char *addr, size_t bytes, bool read_only,
5113                          bool allow_exec) {
5114  // same as map_memory() on this OS
5115  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5116                        allow_exec);
5117}
5118
5119
5120// Unmap a block of memory.
5121bool os::pd_unmap_memory(char* addr, size_t bytes) {
5122  return munmap(addr, bytes) == 0;
5123}
5124
5125static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5126
5127static clockid_t thread_cpu_clockid(Thread* thread) {
5128  pthread_t tid = thread->osthread()->pthread_id();
5129  clockid_t clockid;
5130
5131  // Get thread clockid
5132  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5133  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5134  return clockid;
5135}
5136
5137// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5138// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5139// of a thread.
5140//
5141// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5142// the fast estimate available on the platform.
5143
5144jlong os::current_thread_cpu_time() {
5145  if (os::Linux::supports_fast_thread_cpu_time()) {
5146    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5147  } else {
5148    // return user + sys since the cost is the same
5149    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5150  }
5151}
5152
5153jlong os::thread_cpu_time(Thread* thread) {
5154  // consistent with what current_thread_cpu_time() returns
5155  if (os::Linux::supports_fast_thread_cpu_time()) {
5156    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5157  } else {
5158    return slow_thread_cpu_time(thread, true /* user + sys */);
5159  }
5160}
5161
5162jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5163  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5164    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5165  } else {
5166    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5167  }
5168}
5169
5170jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5171  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5172    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5173  } else {
5174    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5175  }
5176}
5177
5178//  -1 on error.
5179static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5180  pid_t  tid = thread->osthread()->thread_id();
5181  char *s;
5182  char stat[2048];
5183  int statlen;
5184  char proc_name[64];
5185  int count;
5186  long sys_time, user_time;
5187  char cdummy;
5188  int idummy;
5189  long ldummy;
5190  FILE *fp;
5191
5192  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5193  fp = fopen(proc_name, "r");
5194  if (fp == NULL) return -1;
5195  statlen = fread(stat, 1, 2047, fp);
5196  stat[statlen] = '\0';
5197  fclose(fp);
5198
5199  // Skip pid and the command string. Note that we could be dealing with
5200  // weird command names, e.g. user could decide to rename java launcher
5201  // to "java 1.4.2 :)", then the stat file would look like
5202  //                1234 (java 1.4.2 :)) R ... ...
5203  // We don't really need to know the command string, just find the last
5204  // occurrence of ")" and then start parsing from there. See bug 4726580.
5205  s = strrchr(stat, ')');
5206  if (s == NULL) return -1;
5207
5208  // Skip blank chars
5209  do { s++; } while (s && isspace(*s));
5210
5211  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5212                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5213                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5214                 &user_time, &sys_time);
5215  if (count != 13) return -1;
5216  if (user_sys_cpu_time) {
5217    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5218  } else {
5219    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5220  }
5221}
5222
5223void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5224  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5225  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5226  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5227  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5228}
5229
5230void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5231  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5232  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5233  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5234  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5235}
5236
5237bool os::is_thread_cpu_time_supported() {
5238  return true;
5239}
5240
5241// System loadavg support.  Returns -1 if load average cannot be obtained.
5242// Linux doesn't yet have a (official) notion of processor sets,
5243// so just return the system wide load average.
5244int os::loadavg(double loadavg[], int nelem) {
5245  return ::getloadavg(loadavg, nelem);
5246}
5247
5248void os::pause() {
5249  char filename[MAX_PATH];
5250  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5251    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5252  } else {
5253    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5254  }
5255
5256  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5257  if (fd != -1) {
5258    struct stat buf;
5259    ::close(fd);
5260    while (::stat(filename, &buf) == 0) {
5261      (void)::poll(NULL, 0, 100);
5262    }
5263  } else {
5264    jio_fprintf(stderr,
5265                "Could not open pause file '%s', continuing immediately.\n", filename);
5266  }
5267}
5268
5269
5270// Refer to the comments in os_solaris.cpp park-unpark. The next two
5271// comment paragraphs are worth repeating here:
5272//
5273// Assumption:
5274//    Only one parker can exist on an event, which is why we allocate
5275//    them per-thread. Multiple unparkers can coexist.
5276//
5277// _Event serves as a restricted-range semaphore.
5278//   -1 : thread is blocked, i.e. there is a waiter
5279//    0 : neutral: thread is running or ready,
5280//        could have been signaled after a wait started
5281//    1 : signaled - thread is running or ready
5282//
5283// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5284// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5285// For specifics regarding the bug see GLIBC BUGID 261237 :
5286//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5287// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5288// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5289// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5290// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5291// and monitorenter when we're using 1-0 locking.  All those operations may result in
5292// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5293// of libpthread avoids the problem, but isn't practical.
5294//
5295// Possible remedies:
5296//
5297// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5298//      This is palliative and probabilistic, however.  If the thread is preempted
5299//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5300//      than the minimum period may have passed, and the abstime may be stale (in the
5301//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5302//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5303//
5304// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5305//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5306//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5307//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5308//      thread.
5309//
5310// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5311//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5312//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5313//      This also works well.  In fact it avoids kernel-level scalability impediments
5314//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5315//      timers in a graceful fashion.
5316//
5317// 4.   When the abstime value is in the past it appears that control returns
5318//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5319//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5320//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5321//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5322//      It may be possible to avoid reinitialization by checking the return
5323//      value from pthread_cond_timedwait().  In addition to reinitializing the
5324//      condvar we must establish the invariant that cond_signal() is only called
5325//      within critical sections protected by the adjunct mutex.  This prevents
5326//      cond_signal() from "seeing" a condvar that's in the midst of being
5327//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5328//      desirable signal-after-unlock optimization that avoids futile context switching.
5329//
5330//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5331//      structure when a condvar is used or initialized.  cond_destroy()  would
5332//      release the helper structure.  Our reinitialize-after-timedwait fix
5333//      put excessive stress on malloc/free and locks protecting the c-heap.
5334//
5335// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5336// It may be possible to refine (4) by checking the kernel and NTPL verisons
5337// and only enabling the work-around for vulnerable environments.
5338
5339// utility to compute the abstime argument to timedwait:
5340// millis is the relative timeout time
5341// abstime will be the absolute timeout time
5342// TODO: replace compute_abstime() with unpackTime()
5343
5344static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5345  if (millis < 0)  millis = 0;
5346
5347  jlong seconds = millis / 1000;
5348  millis %= 1000;
5349  if (seconds > 50000000) { // see man cond_timedwait(3T)
5350    seconds = 50000000;
5351  }
5352
5353  if (os::supports_monotonic_clock()) {
5354    struct timespec now;
5355    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5356    assert_status(status == 0, status, "clock_gettime");
5357    abstime->tv_sec = now.tv_sec  + seconds;
5358    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5359    if (nanos >= NANOSECS_PER_SEC) {
5360      abstime->tv_sec += 1;
5361      nanos -= NANOSECS_PER_SEC;
5362    }
5363    abstime->tv_nsec = nanos;
5364  } else {
5365    struct timeval now;
5366    int status = gettimeofday(&now, NULL);
5367    assert(status == 0, "gettimeofday");
5368    abstime->tv_sec = now.tv_sec  + seconds;
5369    long usec = now.tv_usec + millis * 1000;
5370    if (usec >= 1000000) {
5371      abstime->tv_sec += 1;
5372      usec -= 1000000;
5373    }
5374    abstime->tv_nsec = usec * 1000;
5375  }
5376  return abstime;
5377}
5378
5379void os::PlatformEvent::park() {       // AKA "down()"
5380  // Transitions for _Event:
5381  //   -1 => -1 : illegal
5382  //    1 =>  0 : pass - return immediately
5383  //    0 => -1 : block; then set _Event to 0 before returning
5384
5385  // Invariant: Only the thread associated with the Event/PlatformEvent
5386  // may call park().
5387  // TODO: assert that _Assoc != NULL or _Assoc == Self
5388  assert(_nParked == 0, "invariant");
5389
5390  int v;
5391  for (;;) {
5392    v = _Event;
5393    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5394  }
5395  guarantee(v >= 0, "invariant");
5396  if (v == 0) {
5397    // Do this the hard way by blocking ...
5398    int status = pthread_mutex_lock(_mutex);
5399    assert_status(status == 0, status, "mutex_lock");
5400    guarantee(_nParked == 0, "invariant");
5401    ++_nParked;
5402    while (_Event < 0) {
5403      status = pthread_cond_wait(_cond, _mutex);
5404      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5405      // Treat this the same as if the wait was interrupted
5406      if (status == ETIME) { status = EINTR; }
5407      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5408    }
5409    --_nParked;
5410
5411    _Event = 0;
5412    status = pthread_mutex_unlock(_mutex);
5413    assert_status(status == 0, status, "mutex_unlock");
5414    // Paranoia to ensure our locked and lock-free paths interact
5415    // correctly with each other.
5416    OrderAccess::fence();
5417  }
5418  guarantee(_Event >= 0, "invariant");
5419}
5420
5421int os::PlatformEvent::park(jlong millis) {
5422  // Transitions for _Event:
5423  //   -1 => -1 : illegal
5424  //    1 =>  0 : pass - return immediately
5425  //    0 => -1 : block; then set _Event to 0 before returning
5426
5427  guarantee(_nParked == 0, "invariant");
5428
5429  int v;
5430  for (;;) {
5431    v = _Event;
5432    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5433  }
5434  guarantee(v >= 0, "invariant");
5435  if (v != 0) return OS_OK;
5436
5437  // We do this the hard way, by blocking the thread.
5438  // Consider enforcing a minimum timeout value.
5439  struct timespec abst;
5440  compute_abstime(&abst, millis);
5441
5442  int ret = OS_TIMEOUT;
5443  int status = pthread_mutex_lock(_mutex);
5444  assert_status(status == 0, status, "mutex_lock");
5445  guarantee(_nParked == 0, "invariant");
5446  ++_nParked;
5447
5448  // Object.wait(timo) will return because of
5449  // (a) notification
5450  // (b) timeout
5451  // (c) thread.interrupt
5452  //
5453  // Thread.interrupt and object.notify{All} both call Event::set.
5454  // That is, we treat thread.interrupt as a special case of notification.
5455  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5456  // We assume all ETIME returns are valid.
5457  //
5458  // TODO: properly differentiate simultaneous notify+interrupt.
5459  // In that case, we should propagate the notify to another waiter.
5460
5461  while (_Event < 0) {
5462    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5463    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5464      pthread_cond_destroy(_cond);
5465      pthread_cond_init(_cond, os::Linux::condAttr());
5466    }
5467    assert_status(status == 0 || status == EINTR ||
5468                  status == ETIME || status == ETIMEDOUT,
5469                  status, "cond_timedwait");
5470    if (!FilterSpuriousWakeups) break;                 // previous semantics
5471    if (status == ETIME || status == ETIMEDOUT) break;
5472    // We consume and ignore EINTR and spurious wakeups.
5473  }
5474  --_nParked;
5475  if (_Event >= 0) {
5476    ret = OS_OK;
5477  }
5478  _Event = 0;
5479  status = pthread_mutex_unlock(_mutex);
5480  assert_status(status == 0, status, "mutex_unlock");
5481  assert(_nParked == 0, "invariant");
5482  // Paranoia to ensure our locked and lock-free paths interact
5483  // correctly with each other.
5484  OrderAccess::fence();
5485  return ret;
5486}
5487
5488void os::PlatformEvent::unpark() {
5489  // Transitions for _Event:
5490  //    0 => 1 : just return
5491  //    1 => 1 : just return
5492  //   -1 => either 0 or 1; must signal target thread
5493  //         That is, we can safely transition _Event from -1 to either
5494  //         0 or 1.
5495  // See also: "Semaphores in Plan 9" by Mullender & Cox
5496  //
5497  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5498  // that it will take two back-to-back park() calls for the owning
5499  // thread to block. This has the benefit of forcing a spurious return
5500  // from the first park() call after an unpark() call which will help
5501  // shake out uses of park() and unpark() without condition variables.
5502
5503  if (Atomic::xchg(1, &_Event) >= 0) return;
5504
5505  // Wait for the thread associated with the event to vacate
5506  int status = pthread_mutex_lock(_mutex);
5507  assert_status(status == 0, status, "mutex_lock");
5508  int AnyWaiters = _nParked;
5509  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5510  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5511    AnyWaiters = 0;
5512    pthread_cond_signal(_cond);
5513  }
5514  status = pthread_mutex_unlock(_mutex);
5515  assert_status(status == 0, status, "mutex_unlock");
5516  if (AnyWaiters != 0) {
5517    // Note that we signal() *after* dropping the lock for "immortal" Events.
5518    // This is safe and avoids a common class of  futile wakeups.  In rare
5519    // circumstances this can cause a thread to return prematurely from
5520    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5521    // will simply re-test the condition and re-park itself.
5522    // This provides particular benefit if the underlying platform does not
5523    // provide wait morphing.
5524    status = pthread_cond_signal(_cond);
5525    assert_status(status == 0, status, "cond_signal");
5526  }
5527}
5528
5529
5530// JSR166
5531// -------------------------------------------------------
5532
5533// The solaris and linux implementations of park/unpark are fairly
5534// conservative for now, but can be improved. They currently use a
5535// mutex/condvar pair, plus a a count.
5536// Park decrements count if > 0, else does a condvar wait.  Unpark
5537// sets count to 1 and signals condvar.  Only one thread ever waits
5538// on the condvar. Contention seen when trying to park implies that someone
5539// is unparking you, so don't wait. And spurious returns are fine, so there
5540// is no need to track notifications.
5541
5542// This code is common to linux and solaris and will be moved to a
5543// common place in dolphin.
5544//
5545// The passed in time value is either a relative time in nanoseconds
5546// or an absolute time in milliseconds. Either way it has to be unpacked
5547// into suitable seconds and nanoseconds components and stored in the
5548// given timespec structure.
5549// Given time is a 64-bit value and the time_t used in the timespec is only
5550// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5551// overflow if times way in the future are given. Further on Solaris versions
5552// prior to 10 there is a restriction (see cond_timedwait) that the specified
5553// number of seconds, in abstime, is less than current_time  + 100,000,000.
5554// As it will be 28 years before "now + 100000000" will overflow we can
5555// ignore overflow and just impose a hard-limit on seconds using the value
5556// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5557// years from "now".
5558
5559static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5560  assert(time > 0, "convertTime");
5561  time_t max_secs = 0;
5562
5563  if (!os::supports_monotonic_clock() || isAbsolute) {
5564    struct timeval now;
5565    int status = gettimeofday(&now, NULL);
5566    assert(status == 0, "gettimeofday");
5567
5568    max_secs = now.tv_sec + MAX_SECS;
5569
5570    if (isAbsolute) {
5571      jlong secs = time / 1000;
5572      if (secs > max_secs) {
5573        absTime->tv_sec = max_secs;
5574      } else {
5575        absTime->tv_sec = secs;
5576      }
5577      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5578    } else {
5579      jlong secs = time / NANOSECS_PER_SEC;
5580      if (secs >= MAX_SECS) {
5581        absTime->tv_sec = max_secs;
5582        absTime->tv_nsec = 0;
5583      } else {
5584        absTime->tv_sec = now.tv_sec + secs;
5585        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5586        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5587          absTime->tv_nsec -= NANOSECS_PER_SEC;
5588          ++absTime->tv_sec; // note: this must be <= max_secs
5589        }
5590      }
5591    }
5592  } else {
5593    // must be relative using monotonic clock
5594    struct timespec now;
5595    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5596    assert_status(status == 0, status, "clock_gettime");
5597    max_secs = now.tv_sec + MAX_SECS;
5598    jlong secs = time / NANOSECS_PER_SEC;
5599    if (secs >= MAX_SECS) {
5600      absTime->tv_sec = max_secs;
5601      absTime->tv_nsec = 0;
5602    } else {
5603      absTime->tv_sec = now.tv_sec + secs;
5604      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5605      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5606        absTime->tv_nsec -= NANOSECS_PER_SEC;
5607        ++absTime->tv_sec; // note: this must be <= max_secs
5608      }
5609    }
5610  }
5611  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5612  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5613  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5614  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5615}
5616
5617void Parker::park(bool isAbsolute, jlong time) {
5618  // Ideally we'd do something useful while spinning, such
5619  // as calling unpackTime().
5620
5621  // Optional fast-path check:
5622  // Return immediately if a permit is available.
5623  // We depend on Atomic::xchg() having full barrier semantics
5624  // since we are doing a lock-free update to _counter.
5625  if (Atomic::xchg(0, &_counter) > 0) return;
5626
5627  Thread* thread = Thread::current();
5628  assert(thread->is_Java_thread(), "Must be JavaThread");
5629  JavaThread *jt = (JavaThread *)thread;
5630
5631  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5632  // Check interrupt before trying to wait
5633  if (Thread::is_interrupted(thread, false)) {
5634    return;
5635  }
5636
5637  // Next, demultiplex/decode time arguments
5638  timespec absTime;
5639  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5640    return;
5641  }
5642  if (time > 0) {
5643    unpackTime(&absTime, isAbsolute, time);
5644  }
5645
5646
5647  // Enter safepoint region
5648  // Beware of deadlocks such as 6317397.
5649  // The per-thread Parker:: mutex is a classic leaf-lock.
5650  // In particular a thread must never block on the Threads_lock while
5651  // holding the Parker:: mutex.  If safepoints are pending both the
5652  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5653  ThreadBlockInVM tbivm(jt);
5654
5655  // Don't wait if cannot get lock since interference arises from
5656  // unblocking.  Also. check interrupt before trying wait
5657  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5658    return;
5659  }
5660
5661  int status;
5662  if (_counter > 0)  { // no wait needed
5663    _counter = 0;
5664    status = pthread_mutex_unlock(_mutex);
5665    assert(status == 0, "invariant");
5666    // Paranoia to ensure our locked and lock-free paths interact
5667    // correctly with each other and Java-level accesses.
5668    OrderAccess::fence();
5669    return;
5670  }
5671
5672#ifdef ASSERT
5673  // Don't catch signals while blocked; let the running threads have the signals.
5674  // (This allows a debugger to break into the running thread.)
5675  sigset_t oldsigs;
5676  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5677  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5678#endif
5679
5680  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5681  jt->set_suspend_equivalent();
5682  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5683
5684  assert(_cur_index == -1, "invariant");
5685  if (time == 0) {
5686    _cur_index = REL_INDEX; // arbitrary choice when not timed
5687    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5688  } else {
5689    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5690    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5691    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5692      pthread_cond_destroy(&_cond[_cur_index]);
5693      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5694    }
5695  }
5696  _cur_index = -1;
5697  assert_status(status == 0 || status == EINTR ||
5698                status == ETIME || status == ETIMEDOUT,
5699                status, "cond_timedwait");
5700
5701#ifdef ASSERT
5702  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5703#endif
5704
5705  _counter = 0;
5706  status = pthread_mutex_unlock(_mutex);
5707  assert_status(status == 0, status, "invariant");
5708  // Paranoia to ensure our locked and lock-free paths interact
5709  // correctly with each other and Java-level accesses.
5710  OrderAccess::fence();
5711
5712  // If externally suspended while waiting, re-suspend
5713  if (jt->handle_special_suspend_equivalent_condition()) {
5714    jt->java_suspend_self();
5715  }
5716}
5717
5718void Parker::unpark() {
5719  int status = pthread_mutex_lock(_mutex);
5720  assert(status == 0, "invariant");
5721  const int s = _counter;
5722  _counter = 1;
5723  if (s < 1) {
5724    // thread might be parked
5725    if (_cur_index != -1) {
5726      // thread is definitely parked
5727      if (WorkAroundNPTLTimedWaitHang) {
5728        status = pthread_cond_signal(&_cond[_cur_index]);
5729        assert(status == 0, "invariant");
5730        status = pthread_mutex_unlock(_mutex);
5731        assert(status == 0, "invariant");
5732      } else {
5733        // must capture correct index before unlocking
5734        int index = _cur_index;
5735        status = pthread_mutex_unlock(_mutex);
5736        assert(status == 0, "invariant");
5737        status = pthread_cond_signal(&_cond[index]);
5738        assert(status == 0, "invariant");
5739      }
5740    } else {
5741      pthread_mutex_unlock(_mutex);
5742      assert(status == 0, "invariant");
5743    }
5744  } else {
5745    pthread_mutex_unlock(_mutex);
5746    assert(status == 0, "invariant");
5747  }
5748}
5749
5750
5751extern char** environ;
5752
5753// Run the specified command in a separate process. Return its exit value,
5754// or -1 on failure (e.g. can't fork a new process).
5755// Unlike system(), this function can be called from signal handler. It
5756// doesn't block SIGINT et al.
5757int os::fork_and_exec(char* cmd) {
5758  const char * argv[4] = {"sh", "-c", cmd, NULL};
5759
5760  pid_t pid = fork();
5761
5762  if (pid < 0) {
5763    // fork failed
5764    return -1;
5765
5766  } else if (pid == 0) {
5767    // child process
5768
5769    execve("/bin/sh", (char* const*)argv, environ);
5770
5771    // execve failed
5772    _exit(-1);
5773
5774  } else  {
5775    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5776    // care about the actual exit code, for now.
5777
5778    int status;
5779
5780    // Wait for the child process to exit.  This returns immediately if
5781    // the child has already exited. */
5782    while (waitpid(pid, &status, 0) < 0) {
5783      switch (errno) {
5784      case ECHILD: return 0;
5785      case EINTR: break;
5786      default: return -1;
5787      }
5788    }
5789
5790    if (WIFEXITED(status)) {
5791      // The child exited normally; get its exit code.
5792      return WEXITSTATUS(status);
5793    } else if (WIFSIGNALED(status)) {
5794      // The child exited because of a signal
5795      // The best value to return is 0x80 + signal number,
5796      // because that is what all Unix shells do, and because
5797      // it allows callers to distinguish between process exit and
5798      // process death by signal.
5799      return 0x80 + WTERMSIG(status);
5800    } else {
5801      // Unknown exit code; pass it through
5802      return status;
5803    }
5804  }
5805}
5806
5807// is_headless_jre()
5808//
5809// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5810// in order to report if we are running in a headless jre
5811//
5812// Since JDK8 xawt/libmawt.so was moved into the same directory
5813// as libawt.so, and renamed libawt_xawt.so
5814//
5815bool os::is_headless_jre() {
5816  struct stat statbuf;
5817  char buf[MAXPATHLEN];
5818  char libmawtpath[MAXPATHLEN];
5819  const char *xawtstr  = "/xawt/libmawt.so";
5820  const char *new_xawtstr = "/libawt_xawt.so";
5821  char *p;
5822
5823  // Get path to libjvm.so
5824  os::jvm_path(buf, sizeof(buf));
5825
5826  // Get rid of libjvm.so
5827  p = strrchr(buf, '/');
5828  if (p == NULL) {
5829    return false;
5830  } else {
5831    *p = '\0';
5832  }
5833
5834  // Get rid of client or server
5835  p = strrchr(buf, '/');
5836  if (p == NULL) {
5837    return false;
5838  } else {
5839    *p = '\0';
5840  }
5841
5842  // check xawt/libmawt.so
5843  strcpy(libmawtpath, buf);
5844  strcat(libmawtpath, xawtstr);
5845  if (::stat(libmawtpath, &statbuf) == 0) return false;
5846
5847  // check libawt_xawt.so
5848  strcpy(libmawtpath, buf);
5849  strcat(libmawtpath, new_xawtstr);
5850  if (::stat(libmawtpath, &statbuf) == 0) return false;
5851
5852  return true;
5853}
5854
5855// Get the default path to the core file
5856// Returns the length of the string
5857int os::get_core_path(char* buffer, size_t bufferSize) {
5858  /*
5859   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5860   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5861   */
5862  const int core_pattern_len = 129;
5863  char core_pattern[core_pattern_len] = {0};
5864
5865  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5866  if (core_pattern_file == -1) {
5867    return -1;
5868  }
5869
5870  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5871  ::close(core_pattern_file);
5872  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5873    return -1;
5874  }
5875  if (core_pattern[ret-1] == '\n') {
5876    core_pattern[ret-1] = '\0';
5877  } else {
5878    core_pattern[ret] = '\0';
5879  }
5880
5881  char *pid_pos = strstr(core_pattern, "%p");
5882  int written;
5883
5884  if (core_pattern[0] == '/') {
5885    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5886  } else {
5887    char cwd[PATH_MAX];
5888
5889    const char* p = get_current_directory(cwd, PATH_MAX);
5890    if (p == NULL) {
5891      return -1;
5892    }
5893
5894    if (core_pattern[0] == '|') {
5895      written = jio_snprintf(buffer, bufferSize,
5896                        "\"%s\" (or dumping to %s/core.%d)",
5897                                     &core_pattern[1], p, current_process_id());
5898    } else {
5899      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5900    }
5901  }
5902
5903  if (written < 0) {
5904    return -1;
5905  }
5906
5907  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5908    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5909
5910    if (core_uses_pid_file != -1) {
5911      char core_uses_pid = 0;
5912      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5913      ::close(core_uses_pid_file);
5914
5915      if (core_uses_pid == '1') {
5916        jio_snprintf(buffer + written, bufferSize - written,
5917                                          ".%d", current_process_id());
5918      }
5919    }
5920  }
5921
5922  return strlen(buffer);
5923}
5924
5925bool os::start_debugging(char *buf, int buflen) {
5926  int len = (int)strlen(buf);
5927  char *p = &buf[len];
5928
5929  jio_snprintf(p, buflen-len,
5930             "\n\n"
5931             "Do you want to debug the problem?\n\n"
5932             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5933             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5934             "Otherwise, press RETURN to abort...",
5935             os::current_process_id(), os::current_process_id(),
5936             os::current_thread_id(), os::current_thread_id());
5937
5938  bool yes = os::message_box("Unexpected Error", buf);
5939
5940  if (yes) {
5941    // yes, user asked VM to launch debugger
5942    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
5943                     os::current_process_id(), os::current_process_id());
5944
5945    os::fork_and_exec(buf);
5946    yes = false;
5947  }
5948  return yes;
5949}
5950
5951
5952
5953/////////////// Unit tests ///////////////
5954
5955#ifndef PRODUCT
5956
5957#define test_log(...)              \
5958  do {                             \
5959    if (VerboseInternalVMTests) {  \
5960      tty->print_cr(__VA_ARGS__);  \
5961      tty->flush();                \
5962    }                              \
5963  } while (false)
5964
5965class TestReserveMemorySpecial : AllStatic {
5966 public:
5967  static void small_page_write(void* addr, size_t size) {
5968    size_t page_size = os::vm_page_size();
5969
5970    char* end = (char*)addr + size;
5971    for (char* p = (char*)addr; p < end; p += page_size) {
5972      *p = 1;
5973    }
5974  }
5975
5976  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5977    if (!UseHugeTLBFS) {
5978      return;
5979    }
5980
5981    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5982
5983    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5984
5985    if (addr != NULL) {
5986      small_page_write(addr, size);
5987
5988      os::Linux::release_memory_special_huge_tlbfs(addr, size);
5989    }
5990  }
5991
5992  static void test_reserve_memory_special_huge_tlbfs_only() {
5993    if (!UseHugeTLBFS) {
5994      return;
5995    }
5996
5997    size_t lp = os::large_page_size();
5998
5999    for (size_t size = lp; size <= lp * 10; size += lp) {
6000      test_reserve_memory_special_huge_tlbfs_only(size);
6001    }
6002  }
6003
6004  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6005    size_t lp = os::large_page_size();
6006    size_t ag = os::vm_allocation_granularity();
6007
6008    // sizes to test
6009    const size_t sizes[] = {
6010      lp, lp + ag, lp + lp / 2, lp * 2,
6011      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6012      lp * 10, lp * 10 + lp / 2
6013    };
6014    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6015
6016    // For each size/alignment combination, we test three scenarios:
6017    // 1) with req_addr == NULL
6018    // 2) with a non-null req_addr at which we expect to successfully allocate
6019    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6020    //    expect the allocation to either fail or to ignore req_addr
6021
6022    // Pre-allocate two areas; they shall be as large as the largest allocation
6023    //  and aligned to the largest alignment we will be testing.
6024    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6025    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6026      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6027      -1, 0);
6028    assert(mapping1 != MAP_FAILED, "should work");
6029
6030    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6031      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6032      -1, 0);
6033    assert(mapping2 != MAP_FAILED, "should work");
6034
6035    // Unmap the first mapping, but leave the second mapping intact: the first
6036    // mapping will serve as a value for a "good" req_addr (case 2). The second
6037    // mapping, still intact, as "bad" req_addr (case 3).
6038    ::munmap(mapping1, mapping_size);
6039
6040    // Case 1
6041    test_log("%s, req_addr NULL:", __FUNCTION__);
6042    test_log("size            align           result");
6043
6044    for (int i = 0; i < num_sizes; i++) {
6045      const size_t size = sizes[i];
6046      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6047        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6048        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6049                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6050        if (p != NULL) {
6051          assert(is_ptr_aligned(p, alignment), "must be");
6052          small_page_write(p, size);
6053          os::Linux::release_memory_special_huge_tlbfs(p, size);
6054        }
6055      }
6056    }
6057
6058    // Case 2
6059    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6060    test_log("size            align           req_addr         result");
6061
6062    for (int i = 0; i < num_sizes; i++) {
6063      const size_t size = sizes[i];
6064      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6065        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6066        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6067        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6068                 size, alignment, p2i(req_addr), p2i(p),
6069                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6070        if (p != NULL) {
6071          assert(p == req_addr, "must be");
6072          small_page_write(p, size);
6073          os::Linux::release_memory_special_huge_tlbfs(p, size);
6074        }
6075      }
6076    }
6077
6078    // Case 3
6079    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6080    test_log("size            align           req_addr         result");
6081
6082    for (int i = 0; i < num_sizes; i++) {
6083      const size_t size = sizes[i];
6084      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6085        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6086        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6087        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6088                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6089        // as the area around req_addr contains already existing mappings, the API should always
6090        // return NULL (as per contract, it cannot return another address)
6091        assert(p == NULL, "must be");
6092      }
6093    }
6094
6095    ::munmap(mapping2, mapping_size);
6096
6097  }
6098
6099  static void test_reserve_memory_special_huge_tlbfs() {
6100    if (!UseHugeTLBFS) {
6101      return;
6102    }
6103
6104    test_reserve_memory_special_huge_tlbfs_only();
6105    test_reserve_memory_special_huge_tlbfs_mixed();
6106  }
6107
6108  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6109    if (!UseSHM) {
6110      return;
6111    }
6112
6113    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6114
6115    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6116
6117    if (addr != NULL) {
6118      assert(is_ptr_aligned(addr, alignment), "Check");
6119      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6120
6121      small_page_write(addr, size);
6122
6123      os::Linux::release_memory_special_shm(addr, size);
6124    }
6125  }
6126
6127  static void test_reserve_memory_special_shm() {
6128    size_t lp = os::large_page_size();
6129    size_t ag = os::vm_allocation_granularity();
6130
6131    for (size_t size = ag; size < lp * 3; size += ag) {
6132      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6133        test_reserve_memory_special_shm(size, alignment);
6134      }
6135    }
6136  }
6137
6138  static void test() {
6139    test_reserve_memory_special_huge_tlbfs();
6140    test_reserve_memory_special_shm();
6141  }
6142};
6143
6144void TestReserveMemorySpecial_test() {
6145  TestReserveMemorySpecial::test();
6146}
6147
6148#endif
6149