os_linux.cpp revision 9737:e286c9ccd58d
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
110// getrusage() is prepared to handle the associated failure.
111#ifndef RUSAGE_THREAD
112  #define RUSAGE_THREAD   (1)               /* only the calling thread */
113#endif
114
115#define MAX_PATH    (2 * K)
116
117#define MAX_SECS 100000000
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122#define LARGEPAGES_BIT (1 << 6)
123////////////////////////////////////////////////////////////////////////////////
124// global variables
125julong os::Linux::_physical_memory = 0;
126
127address   os::Linux::_initial_thread_stack_bottom = NULL;
128uintptr_t os::Linux::_initial_thread_stack_size   = 0;
129
130int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
132int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
133Mutex* os::Linux::_createThread_lock = NULL;
134pthread_t os::Linux::_main_thread;
135int os::Linux::_page_size = -1;
136const int os::Linux::_vm_default_page_size = (8 * K);
137bool os::Linux::_supports_fast_thread_cpu_time = false;
138const char * os::Linux::_glibc_version = NULL;
139const char * os::Linux::_libpthread_version = NULL;
140pthread_condattr_t os::Linux::_condattr[1];
141
142static jlong initial_time_count=0;
143
144static int clock_tics_per_sec = 100;
145
146// For diagnostics to print a message once. see run_periodic_checks
147static sigset_t check_signal_done;
148static bool check_signals = true;
149
150// Signal number used to suspend/resume a thread
151
152// do not use any signal number less than SIGSEGV, see 4355769
153static int SR_signum = SIGUSR2;
154sigset_t SR_sigset;
155
156// Declarations
157static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
158
159// utility functions
160
161static int SR_initialize();
162
163julong os::available_memory() {
164  return Linux::available_memory();
165}
166
167julong os::Linux::available_memory() {
168  // values in struct sysinfo are "unsigned long"
169  struct sysinfo si;
170  sysinfo(&si);
171
172  return (julong)si.freeram * si.mem_unit;
173}
174
175julong os::physical_memory() {
176  return Linux::physical_memory();
177}
178
179// Return true if user is running as root.
180
181bool os::have_special_privileges() {
182  static bool init = false;
183  static bool privileges = false;
184  if (!init) {
185    privileges = (getuid() != geteuid()) || (getgid() != getegid());
186    init = true;
187  }
188  return privileges;
189}
190
191
192#ifndef SYS_gettid
193// i386: 224, ia64: 1105, amd64: 186, sparc 143
194  #ifdef __ia64__
195    #define SYS_gettid 1105
196  #else
197    #ifdef __i386__
198      #define SYS_gettid 224
199    #else
200      #ifdef __amd64__
201        #define SYS_gettid 186
202      #else
203        #ifdef __sparc__
204          #define SYS_gettid 143
205        #else
206          #error define gettid for the arch
207        #endif
208      #endif
209    #endif
210  #endif
211#endif
212
213// Cpu architecture string
214static char cpu_arch[] = HOTSPOT_LIB_ARCH;
215
216
217// pid_t gettid()
218//
219// Returns the kernel thread id of the currently running thread. Kernel
220// thread id is used to access /proc.
221pid_t os::Linux::gettid() {
222  int rslt = syscall(SYS_gettid);
223  assert(rslt != -1, "must be."); // old linuxthreads implementation?
224  return (pid_t)rslt;
225}
226
227// Most versions of linux have a bug where the number of processors are
228// determined by looking at the /proc file system.  In a chroot environment,
229// the system call returns 1.  This causes the VM to act as if it is
230// a single processor and elide locking (see is_MP() call).
231static bool unsafe_chroot_detected = false;
232static const char *unstable_chroot_error = "/proc file system not found.\n"
233                     "Java may be unstable running multithreaded in a chroot "
234                     "environment on Linux when /proc filesystem is not mounted.";
235
236void os::Linux::initialize_system_info() {
237  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
238  if (processor_count() == 1) {
239    pid_t pid = os::Linux::gettid();
240    char fname[32];
241    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
242    FILE *fp = fopen(fname, "r");
243    if (fp == NULL) {
244      unsafe_chroot_detected = true;
245    } else {
246      fclose(fp);
247    }
248  }
249  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
250  assert(processor_count() > 0, "linux error");
251}
252
253void os::init_system_properties_values() {
254  // The next steps are taken in the product version:
255  //
256  // Obtain the JAVA_HOME value from the location of libjvm.so.
257  // This library should be located at:
258  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
259  //
260  // If "/jre/lib/" appears at the right place in the path, then we
261  // assume libjvm.so is installed in a JDK and we use this path.
262  //
263  // Otherwise exit with message: "Could not create the Java virtual machine."
264  //
265  // The following extra steps are taken in the debugging version:
266  //
267  // If "/jre/lib/" does NOT appear at the right place in the path
268  // instead of exit check for $JAVA_HOME environment variable.
269  //
270  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
271  // then we append a fake suffix "hotspot/libjvm.so" to this path so
272  // it looks like libjvm.so is installed there
273  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
274  //
275  // Otherwise exit.
276  //
277  // Important note: if the location of libjvm.so changes this
278  // code needs to be changed accordingly.
279
280  // See ld(1):
281  //      The linker uses the following search paths to locate required
282  //      shared libraries:
283  //        1: ...
284  //        ...
285  //        7: The default directories, normally /lib and /usr/lib.
286#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
287  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
288#else
289  #define DEFAULT_LIBPATH "/lib:/usr/lib"
290#endif
291
292// Base path of extensions installed on the system.
293#define SYS_EXT_DIR     "/usr/java/packages"
294#define EXTENSIONS_DIR  "/lib/ext"
295
296  // Buffer that fits several sprintfs.
297  // Note that the space for the colon and the trailing null are provided
298  // by the nulls included by the sizeof operator.
299  const size_t bufsize =
300    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
301         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
302  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
303
304  // sysclasspath, java_home, dll_dir
305  {
306    char *pslash;
307    os::jvm_path(buf, bufsize);
308
309    // Found the full path to libjvm.so.
310    // Now cut the path to <java_home>/jre if we can.
311    pslash = strrchr(buf, '/');
312    if (pslash != NULL) {
313      *pslash = '\0';            // Get rid of /libjvm.so.
314    }
315    pslash = strrchr(buf, '/');
316    if (pslash != NULL) {
317      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
318    }
319    Arguments::set_dll_dir(buf);
320
321    if (pslash != NULL) {
322      pslash = strrchr(buf, '/');
323      if (pslash != NULL) {
324        *pslash = '\0';          // Get rid of /<arch>.
325        pslash = strrchr(buf, '/');
326        if (pslash != NULL) {
327          *pslash = '\0';        // Get rid of /lib.
328        }
329      }
330    }
331    Arguments::set_java_home(buf);
332    set_boot_path('/', ':');
333  }
334
335  // Where to look for native libraries.
336  //
337  // Note: Due to a legacy implementation, most of the library path
338  // is set in the launcher. This was to accomodate linking restrictions
339  // on legacy Linux implementations (which are no longer supported).
340  // Eventually, all the library path setting will be done here.
341  //
342  // However, to prevent the proliferation of improperly built native
343  // libraries, the new path component /usr/java/packages is added here.
344  // Eventually, all the library path setting will be done here.
345  {
346    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
347    // should always exist (until the legacy problem cited above is
348    // addressed).
349    const char *v = ::getenv("LD_LIBRARY_PATH");
350    const char *v_colon = ":";
351    if (v == NULL) { v = ""; v_colon = ""; }
352    // That's +1 for the colon and +1 for the trailing '\0'.
353    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
354                                                     strlen(v) + 1 +
355                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
356                                                     mtInternal);
357    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
358    Arguments::set_library_path(ld_library_path);
359    FREE_C_HEAP_ARRAY(char, ld_library_path);
360  }
361
362  // Extensions directories.
363  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
364  Arguments::set_ext_dirs(buf);
365
366  FREE_C_HEAP_ARRAY(char, buf);
367
368#undef DEFAULT_LIBPATH
369#undef SYS_EXT_DIR
370#undef EXTENSIONS_DIR
371}
372
373////////////////////////////////////////////////////////////////////////////////
374// breakpoint support
375
376void os::breakpoint() {
377  BREAKPOINT;
378}
379
380extern "C" void breakpoint() {
381  // use debugger to set breakpoint here
382}
383
384////////////////////////////////////////////////////////////////////////////////
385// signal support
386
387debug_only(static bool signal_sets_initialized = false);
388static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
389
390bool os::Linux::is_sig_ignored(int sig) {
391  struct sigaction oact;
392  sigaction(sig, (struct sigaction*)NULL, &oact);
393  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
394                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
395  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
396    return true;
397  } else {
398    return false;
399  }
400}
401
402void os::Linux::signal_sets_init() {
403  // Should also have an assertion stating we are still single-threaded.
404  assert(!signal_sets_initialized, "Already initialized");
405  // Fill in signals that are necessarily unblocked for all threads in
406  // the VM. Currently, we unblock the following signals:
407  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
408  //                         by -Xrs (=ReduceSignalUsage));
409  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
410  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
411  // the dispositions or masks wrt these signals.
412  // Programs embedding the VM that want to use the above signals for their
413  // own purposes must, at this time, use the "-Xrs" option to prevent
414  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
415  // (See bug 4345157, and other related bugs).
416  // In reality, though, unblocking these signals is really a nop, since
417  // these signals are not blocked by default.
418  sigemptyset(&unblocked_sigs);
419  sigemptyset(&allowdebug_blocked_sigs);
420  sigaddset(&unblocked_sigs, SIGILL);
421  sigaddset(&unblocked_sigs, SIGSEGV);
422  sigaddset(&unblocked_sigs, SIGBUS);
423  sigaddset(&unblocked_sigs, SIGFPE);
424#if defined(PPC64)
425  sigaddset(&unblocked_sigs, SIGTRAP);
426#endif
427  sigaddset(&unblocked_sigs, SR_signum);
428
429  if (!ReduceSignalUsage) {
430    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
431      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
432      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
433    }
434    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
435      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
436      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
437    }
438    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
439      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
440      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
441    }
442  }
443  // Fill in signals that are blocked by all but the VM thread.
444  sigemptyset(&vm_sigs);
445  if (!ReduceSignalUsage) {
446    sigaddset(&vm_sigs, BREAK_SIGNAL);
447  }
448  debug_only(signal_sets_initialized = true);
449
450}
451
452// These are signals that are unblocked while a thread is running Java.
453// (For some reason, they get blocked by default.)
454sigset_t* os::Linux::unblocked_signals() {
455  assert(signal_sets_initialized, "Not initialized");
456  return &unblocked_sigs;
457}
458
459// These are the signals that are blocked while a (non-VM) thread is
460// running Java. Only the VM thread handles these signals.
461sigset_t* os::Linux::vm_signals() {
462  assert(signal_sets_initialized, "Not initialized");
463  return &vm_sigs;
464}
465
466// These are signals that are blocked during cond_wait to allow debugger in
467sigset_t* os::Linux::allowdebug_blocked_signals() {
468  assert(signal_sets_initialized, "Not initialized");
469  return &allowdebug_blocked_sigs;
470}
471
472void os::Linux::hotspot_sigmask(Thread* thread) {
473
474  //Save caller's signal mask before setting VM signal mask
475  sigset_t caller_sigmask;
476  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
477
478  OSThread* osthread = thread->osthread();
479  osthread->set_caller_sigmask(caller_sigmask);
480
481  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
482
483  if (!ReduceSignalUsage) {
484    if (thread->is_VM_thread()) {
485      // Only the VM thread handles BREAK_SIGNAL ...
486      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
487    } else {
488      // ... all other threads block BREAK_SIGNAL
489      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
490    }
491  }
492}
493
494//////////////////////////////////////////////////////////////////////////////
495// detecting pthread library
496
497void os::Linux::libpthread_init() {
498  // Save glibc and pthread version strings.
499#if !defined(_CS_GNU_LIBC_VERSION) || \
500    !defined(_CS_GNU_LIBPTHREAD_VERSION)
501  #error "glibc too old (< 2.3.2)"
502#endif
503
504  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
505  assert(n > 0, "cannot retrieve glibc version");
506  char *str = (char *)malloc(n, mtInternal);
507  confstr(_CS_GNU_LIBC_VERSION, str, n);
508  os::Linux::set_glibc_version(str);
509
510  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
511  assert(n > 0, "cannot retrieve pthread version");
512  str = (char *)malloc(n, mtInternal);
513  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
514  os::Linux::set_libpthread_version(str);
515}
516
517/////////////////////////////////////////////////////////////////////////////
518// thread stack expansion
519
520// os::Linux::manually_expand_stack() takes care of expanding the thread
521// stack. Note that this is normally not needed: pthread stacks allocate
522// thread stack using mmap() without MAP_NORESERVE, so the stack is already
523// committed. Therefore it is not necessary to expand the stack manually.
524//
525// Manually expanding the stack was historically needed on LinuxThreads
526// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
527// it is kept to deal with very rare corner cases:
528//
529// For one, user may run the VM on an own implementation of threads
530// whose stacks are - like the old LinuxThreads - implemented using
531// mmap(MAP_GROWSDOWN).
532//
533// Also, this coding may be needed if the VM is running on the primordial
534// thread. Normally we avoid running on the primordial thread; however,
535// user may still invoke the VM on the primordial thread.
536//
537// The following historical comment describes the details about running
538// on a thread stack allocated with mmap(MAP_GROWSDOWN):
539
540
541// Force Linux kernel to expand current thread stack. If "bottom" is close
542// to the stack guard, caller should block all signals.
543//
544// MAP_GROWSDOWN:
545//   A special mmap() flag that is used to implement thread stacks. It tells
546//   kernel that the memory region should extend downwards when needed. This
547//   allows early versions of LinuxThreads to only mmap the first few pages
548//   when creating a new thread. Linux kernel will automatically expand thread
549//   stack as needed (on page faults).
550//
551//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
552//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
553//   region, it's hard to tell if the fault is due to a legitimate stack
554//   access or because of reading/writing non-exist memory (e.g. buffer
555//   overrun). As a rule, if the fault happens below current stack pointer,
556//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
557//   application (see Linux kernel fault.c).
558//
559//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
560//   stack overflow detection.
561//
562//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
563//   not use MAP_GROWSDOWN.
564//
565// To get around the problem and allow stack banging on Linux, we need to
566// manually expand thread stack after receiving the SIGSEGV.
567//
568// There are two ways to expand thread stack to address "bottom", we used
569// both of them in JVM before 1.5:
570//   1. adjust stack pointer first so that it is below "bottom", and then
571//      touch "bottom"
572//   2. mmap() the page in question
573//
574// Now alternate signal stack is gone, it's harder to use 2. For instance,
575// if current sp is already near the lower end of page 101, and we need to
576// call mmap() to map page 100, it is possible that part of the mmap() frame
577// will be placed in page 100. When page 100 is mapped, it is zero-filled.
578// That will destroy the mmap() frame and cause VM to crash.
579//
580// The following code works by adjusting sp first, then accessing the "bottom"
581// page to force a page fault. Linux kernel will then automatically expand the
582// stack mapping.
583//
584// _expand_stack_to() assumes its frame size is less than page size, which
585// should always be true if the function is not inlined.
586
587#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
588  #define NOINLINE
589#else
590  #define NOINLINE __attribute__ ((noinline))
591#endif
592
593static void _expand_stack_to(address bottom) NOINLINE;
594
595static void _expand_stack_to(address bottom) {
596  address sp;
597  size_t size;
598  volatile char *p;
599
600  // Adjust bottom to point to the largest address within the same page, it
601  // gives us a one-page buffer if alloca() allocates slightly more memory.
602  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
603  bottom += os::Linux::page_size() - 1;
604
605  // sp might be slightly above current stack pointer; if that's the case, we
606  // will alloca() a little more space than necessary, which is OK. Don't use
607  // os::current_stack_pointer(), as its result can be slightly below current
608  // stack pointer, causing us to not alloca enough to reach "bottom".
609  sp = (address)&sp;
610
611  if (sp > bottom) {
612    size = sp - bottom;
613    p = (volatile char *)alloca(size);
614    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
615    p[0] = '\0';
616  }
617}
618
619bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
620  assert(t!=NULL, "just checking");
621  assert(t->osthread()->expanding_stack(), "expand should be set");
622  assert(t->stack_base() != NULL, "stack_base was not initialized");
623
624  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
625    sigset_t mask_all, old_sigset;
626    sigfillset(&mask_all);
627    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
628    _expand_stack_to(addr);
629    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
630    return true;
631  }
632  return false;
633}
634
635//////////////////////////////////////////////////////////////////////////////
636// create new thread
637
638// Thread start routine for all newly created threads
639static void *java_start(Thread *thread) {
640  // Try to randomize the cache line index of hot stack frames.
641  // This helps when threads of the same stack traces evict each other's
642  // cache lines. The threads can be either from the same JVM instance, or
643  // from different JVM instances. The benefit is especially true for
644  // processors with hyperthreading technology.
645  static int counter = 0;
646  int pid = os::current_process_id();
647  alloca(((pid ^ counter++) & 7) * 128);
648
649  thread->initialize_thread_current();
650
651  OSThread* osthread = thread->osthread();
652  Monitor* sync = osthread->startThread_lock();
653
654  osthread->set_thread_id(os::current_thread_id());
655
656  if (UseNUMA) {
657    int lgrp_id = os::numa_get_group_id();
658    if (lgrp_id != -1) {
659      thread->set_lgrp_id(lgrp_id);
660    }
661  }
662  // initialize signal mask for this thread
663  os::Linux::hotspot_sigmask(thread);
664
665  // initialize floating point control register
666  os::Linux::init_thread_fpu_state();
667
668  // handshaking with parent thread
669  {
670    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
671
672    // notify parent thread
673    osthread->set_state(INITIALIZED);
674    sync->notify_all();
675
676    // wait until os::start_thread()
677    while (osthread->get_state() == INITIALIZED) {
678      sync->wait(Mutex::_no_safepoint_check_flag);
679    }
680  }
681
682  // call one more level start routine
683  thread->run();
684
685  return 0;
686}
687
688bool os::create_thread(Thread* thread, ThreadType thr_type,
689                       size_t stack_size) {
690  assert(thread->osthread() == NULL, "caller responsible");
691
692  // Allocate the OSThread object
693  OSThread* osthread = new OSThread(NULL, NULL);
694  if (osthread == NULL) {
695    return false;
696  }
697
698  // set the correct thread state
699  osthread->set_thread_type(thr_type);
700
701  // Initial state is ALLOCATED but not INITIALIZED
702  osthread->set_state(ALLOCATED);
703
704  thread->set_osthread(osthread);
705
706  // init thread attributes
707  pthread_attr_t attr;
708  pthread_attr_init(&attr);
709  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
710
711  // stack size
712  // calculate stack size if it's not specified by caller
713  if (stack_size == 0) {
714    stack_size = os::Linux::default_stack_size(thr_type);
715
716    switch (thr_type) {
717    case os::java_thread:
718      // Java threads use ThreadStackSize which default value can be
719      // changed with the flag -Xss
720      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
721      stack_size = JavaThread::stack_size_at_create();
722      break;
723    case os::compiler_thread:
724      if (CompilerThreadStackSize > 0) {
725        stack_size = (size_t)(CompilerThreadStackSize * K);
726        break;
727      } // else fall through:
728        // use VMThreadStackSize if CompilerThreadStackSize is not defined
729    case os::vm_thread:
730    case os::pgc_thread:
731    case os::cgc_thread:
732    case os::watcher_thread:
733      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
734      break;
735    }
736  }
737
738  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
739  pthread_attr_setstacksize(&attr, stack_size);
740
741  // glibc guard page
742  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
743
744  ThreadState state;
745
746  {
747    pthread_t tid;
748    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
749
750    pthread_attr_destroy(&attr);
751
752    if (ret != 0) {
753      if (PrintMiscellaneous && (Verbose || WizardMode)) {
754        perror("pthread_create()");
755      }
756      // Need to clean up stuff we've allocated so far
757      thread->set_osthread(NULL);
758      delete osthread;
759      return false;
760    }
761
762    // Store pthread info into the OSThread
763    osthread->set_pthread_id(tid);
764
765    // Wait until child thread is either initialized or aborted
766    {
767      Monitor* sync_with_child = osthread->startThread_lock();
768      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
769      while ((state = osthread->get_state()) == ALLOCATED) {
770        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
771      }
772    }
773  }
774
775  // Aborted due to thread limit being reached
776  if (state == ZOMBIE) {
777    thread->set_osthread(NULL);
778    delete osthread;
779    return false;
780  }
781
782  // The thread is returned suspended (in state INITIALIZED),
783  // and is started higher up in the call chain
784  assert(state == INITIALIZED, "race condition");
785  return true;
786}
787
788/////////////////////////////////////////////////////////////////////////////
789// attach existing thread
790
791// bootstrap the main thread
792bool os::create_main_thread(JavaThread* thread) {
793  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
794  return create_attached_thread(thread);
795}
796
797bool os::create_attached_thread(JavaThread* thread) {
798#ifdef ASSERT
799  thread->verify_not_published();
800#endif
801
802  // Allocate the OSThread object
803  OSThread* osthread = new OSThread(NULL, NULL);
804
805  if (osthread == NULL) {
806    return false;
807  }
808
809  // Store pthread info into the OSThread
810  osthread->set_thread_id(os::Linux::gettid());
811  osthread->set_pthread_id(::pthread_self());
812
813  // initialize floating point control register
814  os::Linux::init_thread_fpu_state();
815
816  // Initial thread state is RUNNABLE
817  osthread->set_state(RUNNABLE);
818
819  thread->set_osthread(osthread);
820
821  if (UseNUMA) {
822    int lgrp_id = os::numa_get_group_id();
823    if (lgrp_id != -1) {
824      thread->set_lgrp_id(lgrp_id);
825    }
826  }
827
828  if (os::Linux::is_initial_thread()) {
829    // If current thread is initial thread, its stack is mapped on demand,
830    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
831    // the entire stack region to avoid SEGV in stack banging.
832    // It is also useful to get around the heap-stack-gap problem on SuSE
833    // kernel (see 4821821 for details). We first expand stack to the top
834    // of yellow zone, then enable stack yellow zone (order is significant,
835    // enabling yellow zone first will crash JVM on SuSE Linux), so there
836    // is no gap between the last two virtual memory regions.
837
838    JavaThread *jt = (JavaThread *)thread;
839    address addr = jt->stack_yellow_zone_base();
840    assert(addr != NULL, "initialization problem?");
841    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
842
843    osthread->set_expanding_stack();
844    os::Linux::manually_expand_stack(jt, addr);
845    osthread->clear_expanding_stack();
846  }
847
848  // initialize signal mask for this thread
849  // and save the caller's signal mask
850  os::Linux::hotspot_sigmask(thread);
851
852  return true;
853}
854
855void os::pd_start_thread(Thread* thread) {
856  OSThread * osthread = thread->osthread();
857  assert(osthread->get_state() != INITIALIZED, "just checking");
858  Monitor* sync_with_child = osthread->startThread_lock();
859  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
860  sync_with_child->notify();
861}
862
863// Free Linux resources related to the OSThread
864void os::free_thread(OSThread* osthread) {
865  assert(osthread != NULL, "osthread not set");
866
867  if (Thread::current()->osthread() == osthread) {
868    // Restore caller's signal mask
869    sigset_t sigmask = osthread->caller_sigmask();
870    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
871  }
872
873  delete osthread;
874}
875
876//////////////////////////////////////////////////////////////////////////////
877// initial thread
878
879// Check if current thread is the initial thread, similar to Solaris thr_main.
880bool os::Linux::is_initial_thread(void) {
881  char dummy;
882  // If called before init complete, thread stack bottom will be null.
883  // Can be called if fatal error occurs before initialization.
884  if (initial_thread_stack_bottom() == NULL) return false;
885  assert(initial_thread_stack_bottom() != NULL &&
886         initial_thread_stack_size()   != 0,
887         "os::init did not locate initial thread's stack region");
888  if ((address)&dummy >= initial_thread_stack_bottom() &&
889      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
890    return true;
891  } else {
892    return false;
893  }
894}
895
896// Find the virtual memory area that contains addr
897static bool find_vma(address addr, address* vma_low, address* vma_high) {
898  FILE *fp = fopen("/proc/self/maps", "r");
899  if (fp) {
900    address low, high;
901    while (!feof(fp)) {
902      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
903        if (low <= addr && addr < high) {
904          if (vma_low)  *vma_low  = low;
905          if (vma_high) *vma_high = high;
906          fclose(fp);
907          return true;
908        }
909      }
910      for (;;) {
911        int ch = fgetc(fp);
912        if (ch == EOF || ch == (int)'\n') break;
913      }
914    }
915    fclose(fp);
916  }
917  return false;
918}
919
920// Locate initial thread stack. This special handling of initial thread stack
921// is needed because pthread_getattr_np() on most (all?) Linux distros returns
922// bogus value for initial thread.
923void os::Linux::capture_initial_stack(size_t max_size) {
924  // stack size is the easy part, get it from RLIMIT_STACK
925  size_t stack_size;
926  struct rlimit rlim;
927  getrlimit(RLIMIT_STACK, &rlim);
928  stack_size = rlim.rlim_cur;
929
930  // 6308388: a bug in ld.so will relocate its own .data section to the
931  //   lower end of primordial stack; reduce ulimit -s value a little bit
932  //   so we won't install guard page on ld.so's data section.
933  stack_size -= 2 * page_size();
934
935  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
936  //   7.1, in both cases we will get 2G in return value.
937  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
938  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
939  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
940  //   in case other parts in glibc still assumes 2M max stack size.
941  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
942  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
943  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
944    stack_size = 2 * K * K IA64_ONLY(*2);
945  }
946  // Try to figure out where the stack base (top) is. This is harder.
947  //
948  // When an application is started, glibc saves the initial stack pointer in
949  // a global variable "__libc_stack_end", which is then used by system
950  // libraries. __libc_stack_end should be pretty close to stack top. The
951  // variable is available since the very early days. However, because it is
952  // a private interface, it could disappear in the future.
953  //
954  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
955  // to __libc_stack_end, it is very close to stack top, but isn't the real
956  // stack top. Note that /proc may not exist if VM is running as a chroot
957  // program, so reading /proc/<pid>/stat could fail. Also the contents of
958  // /proc/<pid>/stat could change in the future (though unlikely).
959  //
960  // We try __libc_stack_end first. If that doesn't work, look for
961  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
962  // as a hint, which should work well in most cases.
963
964  uintptr_t stack_start;
965
966  // try __libc_stack_end first
967  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
968  if (p && *p) {
969    stack_start = *p;
970  } else {
971    // see if we can get the start_stack field from /proc/self/stat
972    FILE *fp;
973    int pid;
974    char state;
975    int ppid;
976    int pgrp;
977    int session;
978    int nr;
979    int tpgrp;
980    unsigned long flags;
981    unsigned long minflt;
982    unsigned long cminflt;
983    unsigned long majflt;
984    unsigned long cmajflt;
985    unsigned long utime;
986    unsigned long stime;
987    long cutime;
988    long cstime;
989    long prio;
990    long nice;
991    long junk;
992    long it_real;
993    uintptr_t start;
994    uintptr_t vsize;
995    intptr_t rss;
996    uintptr_t rsslim;
997    uintptr_t scodes;
998    uintptr_t ecode;
999    int i;
1000
1001    // Figure what the primordial thread stack base is. Code is inspired
1002    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1003    // followed by command name surrounded by parentheses, state, etc.
1004    char stat[2048];
1005    int statlen;
1006
1007    fp = fopen("/proc/self/stat", "r");
1008    if (fp) {
1009      statlen = fread(stat, 1, 2047, fp);
1010      stat[statlen] = '\0';
1011      fclose(fp);
1012
1013      // Skip pid and the command string. Note that we could be dealing with
1014      // weird command names, e.g. user could decide to rename java launcher
1015      // to "java 1.4.2 :)", then the stat file would look like
1016      //                1234 (java 1.4.2 :)) R ... ...
1017      // We don't really need to know the command string, just find the last
1018      // occurrence of ")" and then start parsing from there. See bug 4726580.
1019      char * s = strrchr(stat, ')');
1020
1021      i = 0;
1022      if (s) {
1023        // Skip blank chars
1024        do { s++; } while (s && isspace(*s));
1025
1026#define _UFM UINTX_FORMAT
1027#define _DFM INTX_FORMAT
1028
1029        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1030        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1031        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1032                   &state,          // 3  %c
1033                   &ppid,           // 4  %d
1034                   &pgrp,           // 5  %d
1035                   &session,        // 6  %d
1036                   &nr,             // 7  %d
1037                   &tpgrp,          // 8  %d
1038                   &flags,          // 9  %lu
1039                   &minflt,         // 10 %lu
1040                   &cminflt,        // 11 %lu
1041                   &majflt,         // 12 %lu
1042                   &cmajflt,        // 13 %lu
1043                   &utime,          // 14 %lu
1044                   &stime,          // 15 %lu
1045                   &cutime,         // 16 %ld
1046                   &cstime,         // 17 %ld
1047                   &prio,           // 18 %ld
1048                   &nice,           // 19 %ld
1049                   &junk,           // 20 %ld
1050                   &it_real,        // 21 %ld
1051                   &start,          // 22 UINTX_FORMAT
1052                   &vsize,          // 23 UINTX_FORMAT
1053                   &rss,            // 24 INTX_FORMAT
1054                   &rsslim,         // 25 UINTX_FORMAT
1055                   &scodes,         // 26 UINTX_FORMAT
1056                   &ecode,          // 27 UINTX_FORMAT
1057                   &stack_start);   // 28 UINTX_FORMAT
1058      }
1059
1060#undef _UFM
1061#undef _DFM
1062
1063      if (i != 28 - 2) {
1064        assert(false, "Bad conversion from /proc/self/stat");
1065        // product mode - assume we are the initial thread, good luck in the
1066        // embedded case.
1067        warning("Can't detect initial thread stack location - bad conversion");
1068        stack_start = (uintptr_t) &rlim;
1069      }
1070    } else {
1071      // For some reason we can't open /proc/self/stat (for example, running on
1072      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1073      // most cases, so don't abort:
1074      warning("Can't detect initial thread stack location - no /proc/self/stat");
1075      stack_start = (uintptr_t) &rlim;
1076    }
1077  }
1078
1079  // Now we have a pointer (stack_start) very close to the stack top, the
1080  // next thing to do is to figure out the exact location of stack top. We
1081  // can find out the virtual memory area that contains stack_start by
1082  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1083  // and its upper limit is the real stack top. (again, this would fail if
1084  // running inside chroot, because /proc may not exist.)
1085
1086  uintptr_t stack_top;
1087  address low, high;
1088  if (find_vma((address)stack_start, &low, &high)) {
1089    // success, "high" is the true stack top. (ignore "low", because initial
1090    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1091    stack_top = (uintptr_t)high;
1092  } else {
1093    // failed, likely because /proc/self/maps does not exist
1094    warning("Can't detect initial thread stack location - find_vma failed");
1095    // best effort: stack_start is normally within a few pages below the real
1096    // stack top, use it as stack top, and reduce stack size so we won't put
1097    // guard page outside stack.
1098    stack_top = stack_start;
1099    stack_size -= 16 * page_size();
1100  }
1101
1102  // stack_top could be partially down the page so align it
1103  stack_top = align_size_up(stack_top, page_size());
1104
1105  if (max_size && stack_size > max_size) {
1106    _initial_thread_stack_size = max_size;
1107  } else {
1108    _initial_thread_stack_size = stack_size;
1109  }
1110
1111  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1112  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1113}
1114
1115////////////////////////////////////////////////////////////////////////////////
1116// time support
1117
1118// Time since start-up in seconds to a fine granularity.
1119// Used by VMSelfDestructTimer and the MemProfiler.
1120double os::elapsedTime() {
1121
1122  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1123}
1124
1125jlong os::elapsed_counter() {
1126  return javaTimeNanos() - initial_time_count;
1127}
1128
1129jlong os::elapsed_frequency() {
1130  return NANOSECS_PER_SEC; // nanosecond resolution
1131}
1132
1133bool os::supports_vtime() { return true; }
1134bool os::enable_vtime()   { return false; }
1135bool os::vtime_enabled()  { return false; }
1136
1137double os::elapsedVTime() {
1138  struct rusage usage;
1139  int retval = getrusage(RUSAGE_THREAD, &usage);
1140  if (retval == 0) {
1141    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1142  } else {
1143    // better than nothing, but not much
1144    return elapsedTime();
1145  }
1146}
1147
1148jlong os::javaTimeMillis() {
1149  timeval time;
1150  int status = gettimeofday(&time, NULL);
1151  assert(status != -1, "linux error");
1152  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1153}
1154
1155void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1156  timeval time;
1157  int status = gettimeofday(&time, NULL);
1158  assert(status != -1, "linux error");
1159  seconds = jlong(time.tv_sec);
1160  nanos = jlong(time.tv_usec) * 1000;
1161}
1162
1163
1164#ifndef CLOCK_MONOTONIC
1165  #define CLOCK_MONOTONIC (1)
1166#endif
1167
1168void os::Linux::clock_init() {
1169  // we do dlopen's in this particular order due to bug in linux
1170  // dynamical loader (see 6348968) leading to crash on exit
1171  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1172  if (handle == NULL) {
1173    handle = dlopen("librt.so", RTLD_LAZY);
1174  }
1175
1176  if (handle) {
1177    int (*clock_getres_func)(clockid_t, struct timespec*) =
1178           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1179    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1180           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1181    if (clock_getres_func && clock_gettime_func) {
1182      // See if monotonic clock is supported by the kernel. Note that some
1183      // early implementations simply return kernel jiffies (updated every
1184      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1185      // for nano time (though the monotonic property is still nice to have).
1186      // It's fixed in newer kernels, however clock_getres() still returns
1187      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1188      // resolution for now. Hopefully as people move to new kernels, this
1189      // won't be a problem.
1190      struct timespec res;
1191      struct timespec tp;
1192      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1193          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1194        // yes, monotonic clock is supported
1195        _clock_gettime = clock_gettime_func;
1196        return;
1197      } else {
1198        // close librt if there is no monotonic clock
1199        dlclose(handle);
1200      }
1201    }
1202  }
1203  warning("No monotonic clock was available - timed services may " \
1204          "be adversely affected if the time-of-day clock changes");
1205}
1206
1207#ifndef SYS_clock_getres
1208  #if defined(IA32) || defined(AMD64)
1209    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1210    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1211  #else
1212    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1213    #define sys_clock_getres(x,y)  -1
1214  #endif
1215#else
1216  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1217#endif
1218
1219void os::Linux::fast_thread_clock_init() {
1220  if (!UseLinuxPosixThreadCPUClocks) {
1221    return;
1222  }
1223  clockid_t clockid;
1224  struct timespec tp;
1225  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1226      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1227
1228  // Switch to using fast clocks for thread cpu time if
1229  // the sys_clock_getres() returns 0 error code.
1230  // Note, that some kernels may support the current thread
1231  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1232  // returned by the pthread_getcpuclockid().
1233  // If the fast Posix clocks are supported then the sys_clock_getres()
1234  // must return at least tp.tv_sec == 0 which means a resolution
1235  // better than 1 sec. This is extra check for reliability.
1236
1237  if (pthread_getcpuclockid_func &&
1238      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1239      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1240    _supports_fast_thread_cpu_time = true;
1241    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1242  }
1243}
1244
1245jlong os::javaTimeNanos() {
1246  if (os::supports_monotonic_clock()) {
1247    struct timespec tp;
1248    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1249    assert(status == 0, "gettime error");
1250    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1251    return result;
1252  } else {
1253    timeval time;
1254    int status = gettimeofday(&time, NULL);
1255    assert(status != -1, "linux error");
1256    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1257    return 1000 * usecs;
1258  }
1259}
1260
1261void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1262  if (os::supports_monotonic_clock()) {
1263    info_ptr->max_value = ALL_64_BITS;
1264
1265    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1266    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1267    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1268  } else {
1269    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1270    info_ptr->max_value = ALL_64_BITS;
1271
1272    // gettimeofday is a real time clock so it skips
1273    info_ptr->may_skip_backward = true;
1274    info_ptr->may_skip_forward = true;
1275  }
1276
1277  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1278}
1279
1280// Return the real, user, and system times in seconds from an
1281// arbitrary fixed point in the past.
1282bool os::getTimesSecs(double* process_real_time,
1283                      double* process_user_time,
1284                      double* process_system_time) {
1285  struct tms ticks;
1286  clock_t real_ticks = times(&ticks);
1287
1288  if (real_ticks == (clock_t) (-1)) {
1289    return false;
1290  } else {
1291    double ticks_per_second = (double) clock_tics_per_sec;
1292    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1293    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1294    *process_real_time = ((double) real_ticks) / ticks_per_second;
1295
1296    return true;
1297  }
1298}
1299
1300
1301char * os::local_time_string(char *buf, size_t buflen) {
1302  struct tm t;
1303  time_t long_time;
1304  time(&long_time);
1305  localtime_r(&long_time, &t);
1306  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1307               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1308               t.tm_hour, t.tm_min, t.tm_sec);
1309  return buf;
1310}
1311
1312struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1313  return localtime_r(clock, res);
1314}
1315
1316////////////////////////////////////////////////////////////////////////////////
1317// runtime exit support
1318
1319// Note: os::shutdown() might be called very early during initialization, or
1320// called from signal handler. Before adding something to os::shutdown(), make
1321// sure it is async-safe and can handle partially initialized VM.
1322void os::shutdown() {
1323
1324  // allow PerfMemory to attempt cleanup of any persistent resources
1325  perfMemory_exit();
1326
1327  // needs to remove object in file system
1328  AttachListener::abort();
1329
1330  // flush buffered output, finish log files
1331  ostream_abort();
1332
1333  // Check for abort hook
1334  abort_hook_t abort_hook = Arguments::abort_hook();
1335  if (abort_hook != NULL) {
1336    abort_hook();
1337  }
1338
1339}
1340
1341// Note: os::abort() might be called very early during initialization, or
1342// called from signal handler. Before adding something to os::abort(), make
1343// sure it is async-safe and can handle partially initialized VM.
1344void os::abort(bool dump_core, void* siginfo, void* context) {
1345  os::shutdown();
1346  if (dump_core) {
1347#ifndef PRODUCT
1348    fdStream out(defaultStream::output_fd());
1349    out.print_raw("Current thread is ");
1350    char buf[16];
1351    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1352    out.print_raw_cr(buf);
1353    out.print_raw_cr("Dumping core ...");
1354#endif
1355    ::abort(); // dump core
1356  }
1357
1358  ::exit(1);
1359}
1360
1361// Die immediately, no exit hook, no abort hook, no cleanup.
1362void os::die() {
1363  ::abort();
1364}
1365
1366
1367// This method is a copy of JDK's sysGetLastErrorString
1368// from src/solaris/hpi/src/system_md.c
1369
1370size_t os::lasterror(char *buf, size_t len) {
1371  if (errno == 0)  return 0;
1372
1373  const char *s = ::strerror(errno);
1374  size_t n = ::strlen(s);
1375  if (n >= len) {
1376    n = len - 1;
1377  }
1378  ::strncpy(buf, s, n);
1379  buf[n] = '\0';
1380  return n;
1381}
1382
1383// thread_id is kernel thread id (similar to Solaris LWP id)
1384intx os::current_thread_id() { return os::Linux::gettid(); }
1385int os::current_process_id() {
1386  return ::getpid();
1387}
1388
1389// DLL functions
1390
1391const char* os::dll_file_extension() { return ".so"; }
1392
1393// This must be hard coded because it's the system's temporary
1394// directory not the java application's temp directory, ala java.io.tmpdir.
1395const char* os::get_temp_directory() { return "/tmp"; }
1396
1397static bool file_exists(const char* filename) {
1398  struct stat statbuf;
1399  if (filename == NULL || strlen(filename) == 0) {
1400    return false;
1401  }
1402  return os::stat(filename, &statbuf) == 0;
1403}
1404
1405bool os::dll_build_name(char* buffer, size_t buflen,
1406                        const char* pname, const char* fname) {
1407  bool retval = false;
1408  // Copied from libhpi
1409  const size_t pnamelen = pname ? strlen(pname) : 0;
1410
1411  // Return error on buffer overflow.
1412  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1413    return retval;
1414  }
1415
1416  if (pnamelen == 0) {
1417    snprintf(buffer, buflen, "lib%s.so", fname);
1418    retval = true;
1419  } else if (strchr(pname, *os::path_separator()) != NULL) {
1420    int n;
1421    char** pelements = split_path(pname, &n);
1422    if (pelements == NULL) {
1423      return false;
1424    }
1425    for (int i = 0; i < n; i++) {
1426      // Really shouldn't be NULL, but check can't hurt
1427      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1428        continue; // skip the empty path values
1429      }
1430      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1431      if (file_exists(buffer)) {
1432        retval = true;
1433        break;
1434      }
1435    }
1436    // release the storage
1437    for (int i = 0; i < n; i++) {
1438      if (pelements[i] != NULL) {
1439        FREE_C_HEAP_ARRAY(char, pelements[i]);
1440      }
1441    }
1442    if (pelements != NULL) {
1443      FREE_C_HEAP_ARRAY(char*, pelements);
1444    }
1445  } else {
1446    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1447    retval = true;
1448  }
1449  return retval;
1450}
1451
1452// check if addr is inside libjvm.so
1453bool os::address_is_in_vm(address addr) {
1454  static address libjvm_base_addr;
1455  Dl_info dlinfo;
1456
1457  if (libjvm_base_addr == NULL) {
1458    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1459      libjvm_base_addr = (address)dlinfo.dli_fbase;
1460    }
1461    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1462  }
1463
1464  if (dladdr((void *)addr, &dlinfo) != 0) {
1465    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1466  }
1467
1468  return false;
1469}
1470
1471bool os::dll_address_to_function_name(address addr, char *buf,
1472                                      int buflen, int *offset,
1473                                      bool demangle) {
1474  // buf is not optional, but offset is optional
1475  assert(buf != NULL, "sanity check");
1476
1477  Dl_info dlinfo;
1478
1479  if (dladdr((void*)addr, &dlinfo) != 0) {
1480    // see if we have a matching symbol
1481    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1482      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1483        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1484      }
1485      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1486      return true;
1487    }
1488    // no matching symbol so try for just file info
1489    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1490      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1491                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1492        return true;
1493      }
1494    }
1495  }
1496
1497  buf[0] = '\0';
1498  if (offset != NULL) *offset = -1;
1499  return false;
1500}
1501
1502struct _address_to_library_name {
1503  address addr;          // input : memory address
1504  size_t  buflen;        //         size of fname
1505  char*   fname;         // output: library name
1506  address base;          //         library base addr
1507};
1508
1509static int address_to_library_name_callback(struct dl_phdr_info *info,
1510                                            size_t size, void *data) {
1511  int i;
1512  bool found = false;
1513  address libbase = NULL;
1514  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1515
1516  // iterate through all loadable segments
1517  for (i = 0; i < info->dlpi_phnum; i++) {
1518    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1519    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1520      // base address of a library is the lowest address of its loaded
1521      // segments.
1522      if (libbase == NULL || libbase > segbase) {
1523        libbase = segbase;
1524      }
1525      // see if 'addr' is within current segment
1526      if (segbase <= d->addr &&
1527          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1528        found = true;
1529      }
1530    }
1531  }
1532
1533  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1534  // so dll_address_to_library_name() can fall through to use dladdr() which
1535  // can figure out executable name from argv[0].
1536  if (found && info->dlpi_name && info->dlpi_name[0]) {
1537    d->base = libbase;
1538    if (d->fname) {
1539      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1540    }
1541    return 1;
1542  }
1543  return 0;
1544}
1545
1546bool os::dll_address_to_library_name(address addr, char* buf,
1547                                     int buflen, int* offset) {
1548  // buf is not optional, but offset is optional
1549  assert(buf != NULL, "sanity check");
1550
1551  Dl_info dlinfo;
1552  struct _address_to_library_name data;
1553
1554  // There is a bug in old glibc dladdr() implementation that it could resolve
1555  // to wrong library name if the .so file has a base address != NULL. Here
1556  // we iterate through the program headers of all loaded libraries to find
1557  // out which library 'addr' really belongs to. This workaround can be
1558  // removed once the minimum requirement for glibc is moved to 2.3.x.
1559  data.addr = addr;
1560  data.fname = buf;
1561  data.buflen = buflen;
1562  data.base = NULL;
1563  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1564
1565  if (rslt) {
1566    // buf already contains library name
1567    if (offset) *offset = addr - data.base;
1568    return true;
1569  }
1570  if (dladdr((void*)addr, &dlinfo) != 0) {
1571    if (dlinfo.dli_fname != NULL) {
1572      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1573    }
1574    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1575      *offset = addr - (address)dlinfo.dli_fbase;
1576    }
1577    return true;
1578  }
1579
1580  buf[0] = '\0';
1581  if (offset) *offset = -1;
1582  return false;
1583}
1584
1585// Loads .dll/.so and
1586// in case of error it checks if .dll/.so was built for the
1587// same architecture as Hotspot is running on
1588
1589
1590// Remember the stack's state. The Linux dynamic linker will change
1591// the stack to 'executable' at most once, so we must safepoint only once.
1592bool os::Linux::_stack_is_executable = false;
1593
1594// VM operation that loads a library.  This is necessary if stack protection
1595// of the Java stacks can be lost during loading the library.  If we
1596// do not stop the Java threads, they can stack overflow before the stacks
1597// are protected again.
1598class VM_LinuxDllLoad: public VM_Operation {
1599 private:
1600  const char *_filename;
1601  char *_ebuf;
1602  int _ebuflen;
1603  void *_lib;
1604 public:
1605  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1606    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1607  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1608  void doit() {
1609    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1610    os::Linux::_stack_is_executable = true;
1611  }
1612  void* loaded_library() { return _lib; }
1613};
1614
1615void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1616  void * result = NULL;
1617  bool load_attempted = false;
1618
1619  // Check whether the library to load might change execution rights
1620  // of the stack. If they are changed, the protection of the stack
1621  // guard pages will be lost. We need a safepoint to fix this.
1622  //
1623  // See Linux man page execstack(8) for more info.
1624  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1625    ElfFile ef(filename);
1626    if (!ef.specifies_noexecstack()) {
1627      if (!is_init_completed()) {
1628        os::Linux::_stack_is_executable = true;
1629        // This is OK - No Java threads have been created yet, and hence no
1630        // stack guard pages to fix.
1631        //
1632        // This should happen only when you are building JDK7 using a very
1633        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1634        //
1635        // Dynamic loader will make all stacks executable after
1636        // this function returns, and will not do that again.
1637        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1638      } else {
1639        warning("You have loaded library %s which might have disabled stack guard. "
1640                "The VM will try to fix the stack guard now.\n"
1641                "It's highly recommended that you fix the library with "
1642                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1643                filename);
1644
1645        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1646        JavaThread *jt = JavaThread::current();
1647        if (jt->thread_state() != _thread_in_native) {
1648          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1649          // that requires ExecStack. Cannot enter safe point. Let's give up.
1650          warning("Unable to fix stack guard. Giving up.");
1651        } else {
1652          if (!LoadExecStackDllInVMThread) {
1653            // This is for the case where the DLL has an static
1654            // constructor function that executes JNI code. We cannot
1655            // load such DLLs in the VMThread.
1656            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1657          }
1658
1659          ThreadInVMfromNative tiv(jt);
1660          debug_only(VMNativeEntryWrapper vew;)
1661
1662          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1663          VMThread::execute(&op);
1664          if (LoadExecStackDllInVMThread) {
1665            result = op.loaded_library();
1666          }
1667          load_attempted = true;
1668        }
1669      }
1670    }
1671  }
1672
1673  if (!load_attempted) {
1674    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1675  }
1676
1677  if (result != NULL) {
1678    // Successful loading
1679    return result;
1680  }
1681
1682  Elf32_Ehdr elf_head;
1683  int diag_msg_max_length=ebuflen-strlen(ebuf);
1684  char* diag_msg_buf=ebuf+strlen(ebuf);
1685
1686  if (diag_msg_max_length==0) {
1687    // No more space in ebuf for additional diagnostics message
1688    return NULL;
1689  }
1690
1691
1692  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1693
1694  if (file_descriptor < 0) {
1695    // Can't open library, report dlerror() message
1696    return NULL;
1697  }
1698
1699  bool failed_to_read_elf_head=
1700    (sizeof(elf_head)!=
1701     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1702
1703  ::close(file_descriptor);
1704  if (failed_to_read_elf_head) {
1705    // file i/o error - report dlerror() msg
1706    return NULL;
1707  }
1708
1709  typedef struct {
1710    Elf32_Half  code;         // Actual value as defined in elf.h
1711    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1712    char        elf_class;    // 32 or 64 bit
1713    char        endianess;    // MSB or LSB
1714    char*       name;         // String representation
1715  } arch_t;
1716
1717#ifndef EM_486
1718  #define EM_486          6               /* Intel 80486 */
1719#endif
1720#ifndef EM_AARCH64
1721  #define EM_AARCH64    183               /* ARM AARCH64 */
1722#endif
1723
1724  static const arch_t arch_array[]={
1725    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1726    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1727    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1728    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1729    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1730    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1731    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1732    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1733#if defined(VM_LITTLE_ENDIAN)
1734    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1735#else
1736    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1737#endif
1738    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1739    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1740    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1741    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1742    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1743    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1744    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1745    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1746  };
1747
1748#if  (defined IA32)
1749  static  Elf32_Half running_arch_code=EM_386;
1750#elif   (defined AMD64)
1751  static  Elf32_Half running_arch_code=EM_X86_64;
1752#elif  (defined IA64)
1753  static  Elf32_Half running_arch_code=EM_IA_64;
1754#elif  (defined __sparc) && (defined _LP64)
1755  static  Elf32_Half running_arch_code=EM_SPARCV9;
1756#elif  (defined __sparc) && (!defined _LP64)
1757  static  Elf32_Half running_arch_code=EM_SPARC;
1758#elif  (defined __powerpc64__)
1759  static  Elf32_Half running_arch_code=EM_PPC64;
1760#elif  (defined __powerpc__)
1761  static  Elf32_Half running_arch_code=EM_PPC;
1762#elif  (defined ARM)
1763  static  Elf32_Half running_arch_code=EM_ARM;
1764#elif  (defined S390)
1765  static  Elf32_Half running_arch_code=EM_S390;
1766#elif  (defined ALPHA)
1767  static  Elf32_Half running_arch_code=EM_ALPHA;
1768#elif  (defined MIPSEL)
1769  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1770#elif  (defined PARISC)
1771  static  Elf32_Half running_arch_code=EM_PARISC;
1772#elif  (defined MIPS)
1773  static  Elf32_Half running_arch_code=EM_MIPS;
1774#elif  (defined M68K)
1775  static  Elf32_Half running_arch_code=EM_68K;
1776#elif  (defined AARCH64)
1777  static  Elf32_Half running_arch_code=EM_AARCH64;
1778#else
1779    #error Method os::dll_load requires that one of following is defined:\
1780         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1781#endif
1782
1783  // Identify compatability class for VM's architecture and library's architecture
1784  // Obtain string descriptions for architectures
1785
1786  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1787  int running_arch_index=-1;
1788
1789  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1790    if (running_arch_code == arch_array[i].code) {
1791      running_arch_index    = i;
1792    }
1793    if (lib_arch.code == arch_array[i].code) {
1794      lib_arch.compat_class = arch_array[i].compat_class;
1795      lib_arch.name         = arch_array[i].name;
1796    }
1797  }
1798
1799  assert(running_arch_index != -1,
1800         "Didn't find running architecture code (running_arch_code) in arch_array");
1801  if (running_arch_index == -1) {
1802    // Even though running architecture detection failed
1803    // we may still continue with reporting dlerror() message
1804    return NULL;
1805  }
1806
1807  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1808    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1809    return NULL;
1810  }
1811
1812#ifndef S390
1813  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1814    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1815    return NULL;
1816  }
1817#endif // !S390
1818
1819  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1820    if (lib_arch.name!=NULL) {
1821      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1822                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1823                 lib_arch.name, arch_array[running_arch_index].name);
1824    } else {
1825      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1826                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1827                 lib_arch.code,
1828                 arch_array[running_arch_index].name);
1829    }
1830  }
1831
1832  return NULL;
1833}
1834
1835void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1836                                int ebuflen) {
1837  void * result = ::dlopen(filename, RTLD_LAZY);
1838  if (result == NULL) {
1839    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1840    ebuf[ebuflen-1] = '\0';
1841  }
1842  return result;
1843}
1844
1845void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1846                                       int ebuflen) {
1847  void * result = NULL;
1848  if (LoadExecStackDllInVMThread) {
1849    result = dlopen_helper(filename, ebuf, ebuflen);
1850  }
1851
1852  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1853  // library that requires an executable stack, or which does not have this
1854  // stack attribute set, dlopen changes the stack attribute to executable. The
1855  // read protection of the guard pages gets lost.
1856  //
1857  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1858  // may have been queued at the same time.
1859
1860  if (!_stack_is_executable) {
1861    JavaThread *jt = Threads::first();
1862
1863    while (jt) {
1864      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1865          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1866        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1867                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1868          warning("Attempt to reguard stack yellow zone failed.");
1869        }
1870      }
1871      jt = jt->next();
1872    }
1873  }
1874
1875  return result;
1876}
1877
1878void* os::dll_lookup(void* handle, const char* name) {
1879  void* res = dlsym(handle, name);
1880  return res;
1881}
1882
1883void* os::get_default_process_handle() {
1884  return (void*)::dlopen(NULL, RTLD_LAZY);
1885}
1886
1887static bool _print_ascii_file(const char* filename, outputStream* st) {
1888  int fd = ::open(filename, O_RDONLY);
1889  if (fd == -1) {
1890    return false;
1891  }
1892
1893  char buf[32];
1894  int bytes;
1895  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1896    st->print_raw(buf, bytes);
1897  }
1898
1899  ::close(fd);
1900
1901  return true;
1902}
1903
1904void os::print_dll_info(outputStream *st) {
1905  st->print_cr("Dynamic libraries:");
1906
1907  char fname[32];
1908  pid_t pid = os::Linux::gettid();
1909
1910  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1911
1912  if (!_print_ascii_file(fname, st)) {
1913    st->print("Can not get library information for pid = %d\n", pid);
1914  }
1915}
1916
1917int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1918  FILE *procmapsFile = NULL;
1919
1920  // Open the procfs maps file for the current process
1921  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1922    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1923    char line[PATH_MAX + 100];
1924
1925    // Read line by line from 'file'
1926    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1927      u8 base, top, offset, inode;
1928      char permissions[5];
1929      char device[6];
1930      char name[PATH_MAX + 1];
1931
1932      // Parse fields from line
1933      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1934             &base, &top, permissions, &offset, device, &inode, name);
1935
1936      // Filter by device id '00:00' so that we only get file system mapped files.
1937      if (strcmp(device, "00:00") != 0) {
1938
1939        // Call callback with the fields of interest
1940        if(callback(name, (address)base, (address)top, param)) {
1941          // Oops abort, callback aborted
1942          fclose(procmapsFile);
1943          return 1;
1944        }
1945      }
1946    }
1947    fclose(procmapsFile);
1948  }
1949  return 0;
1950}
1951
1952void os::print_os_info_brief(outputStream* st) {
1953  os::Linux::print_distro_info(st);
1954
1955  os::Posix::print_uname_info(st);
1956
1957  os::Linux::print_libversion_info(st);
1958
1959}
1960
1961void os::print_os_info(outputStream* st) {
1962  st->print("OS:");
1963
1964  os::Linux::print_distro_info(st);
1965
1966  os::Posix::print_uname_info(st);
1967
1968  // Print warning if unsafe chroot environment detected
1969  if (unsafe_chroot_detected) {
1970    st->print("WARNING!! ");
1971    st->print_cr("%s", unstable_chroot_error);
1972  }
1973
1974  os::Linux::print_libversion_info(st);
1975
1976  os::Posix::print_rlimit_info(st);
1977
1978  os::Posix::print_load_average(st);
1979
1980  os::Linux::print_full_memory_info(st);
1981}
1982
1983// Try to identify popular distros.
1984// Most Linux distributions have a /etc/XXX-release file, which contains
1985// the OS version string. Newer Linux distributions have a /etc/lsb-release
1986// file that also contains the OS version string. Some have more than one
1987// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1988// /etc/redhat-release.), so the order is important.
1989// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1990// their own specific XXX-release file as well as a redhat-release file.
1991// Because of this the XXX-release file needs to be searched for before the
1992// redhat-release file.
1993// Since Red Hat has a lsb-release file that is not very descriptive the
1994// search for redhat-release needs to be before lsb-release.
1995// Since the lsb-release file is the new standard it needs to be searched
1996// before the older style release files.
1997// Searching system-release (Red Hat) and os-release (other Linuxes) are a
1998// next to last resort.  The os-release file is a new standard that contains
1999// distribution information and the system-release file seems to be an old
2000// standard that has been replaced by the lsb-release and os-release files.
2001// Searching for the debian_version file is the last resort.  It contains
2002// an informative string like "6.0.6" or "wheezy/sid". Because of this
2003// "Debian " is printed before the contents of the debian_version file.
2004
2005const char* distro_files[] = {
2006  "/etc/oracle-release",
2007  "/etc/mandriva-release",
2008  "/etc/mandrake-release",
2009  "/etc/sun-release",
2010  "/etc/redhat-release",
2011  "/etc/lsb-release",
2012  "/etc/SuSE-release",
2013  "/etc/turbolinux-release",
2014  "/etc/gentoo-release",
2015  "/etc/ltib-release",
2016  "/etc/angstrom-version",
2017  "/etc/system-release",
2018  "/etc/os-release",
2019  NULL };
2020
2021void os::Linux::print_distro_info(outputStream* st) {
2022  for (int i = 0;; i++) {
2023    const char* file = distro_files[i];
2024    if (file == NULL) {
2025      break;  // done
2026    }
2027    // If file prints, we found it.
2028    if (_print_ascii_file(file, st)) {
2029      return;
2030    }
2031  }
2032
2033  if (file_exists("/etc/debian_version")) {
2034    st->print("Debian ");
2035    _print_ascii_file("/etc/debian_version", st);
2036  } else {
2037    st->print("Linux");
2038  }
2039  st->cr();
2040}
2041
2042static void parse_os_info(char* distro, size_t length, const char* file) {
2043  FILE* fp = fopen(file, "r");
2044  if (fp != NULL) {
2045    char buf[256];
2046    // get last line of the file.
2047    while (fgets(buf, sizeof(buf), fp)) { }
2048    // Edit out extra stuff in expected ubuntu format
2049    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2050      char* ptr = strstr(buf, "\"");  // the name is in quotes
2051      if (ptr != NULL) {
2052        ptr++; // go beyond first quote
2053        char* nl = strchr(ptr, '\"');
2054        if (nl != NULL) *nl = '\0';
2055        strncpy(distro, ptr, length);
2056      } else {
2057        ptr = strstr(buf, "=");
2058        ptr++; // go beyond equals then
2059        char* nl = strchr(ptr, '\n');
2060        if (nl != NULL) *nl = '\0';
2061        strncpy(distro, ptr, length);
2062      }
2063    } else {
2064      // if not in expected Ubuntu format, print out whole line minus \n
2065      char* nl = strchr(buf, '\n');
2066      if (nl != NULL) *nl = '\0';
2067      strncpy(distro, buf, length);
2068    }
2069    // close distro file
2070    fclose(fp);
2071  }
2072}
2073
2074void os::get_summary_os_info(char* buf, size_t buflen) {
2075  for (int i = 0;; i++) {
2076    const char* file = distro_files[i];
2077    if (file == NULL) {
2078      break; // ran out of distro_files
2079    }
2080    if (file_exists(file)) {
2081      parse_os_info(buf, buflen, file);
2082      return;
2083    }
2084  }
2085  // special case for debian
2086  if (file_exists("/etc/debian_version")) {
2087    strncpy(buf, "Debian ", buflen);
2088    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2089  } else {
2090    strncpy(buf, "Linux", buflen);
2091  }
2092}
2093
2094void os::Linux::print_libversion_info(outputStream* st) {
2095  // libc, pthread
2096  st->print("libc:");
2097  st->print("%s ", os::Linux::glibc_version());
2098  st->print("%s ", os::Linux::libpthread_version());
2099  st->cr();
2100}
2101
2102void os::Linux::print_full_memory_info(outputStream* st) {
2103  st->print("\n/proc/meminfo:\n");
2104  _print_ascii_file("/proc/meminfo", st);
2105  st->cr();
2106}
2107
2108void os::print_memory_info(outputStream* st) {
2109
2110  st->print("Memory:");
2111  st->print(" %dk page", os::vm_page_size()>>10);
2112
2113  // values in struct sysinfo are "unsigned long"
2114  struct sysinfo si;
2115  sysinfo(&si);
2116
2117  st->print(", physical " UINT64_FORMAT "k",
2118            os::physical_memory() >> 10);
2119  st->print("(" UINT64_FORMAT "k free)",
2120            os::available_memory() >> 10);
2121  st->print(", swap " UINT64_FORMAT "k",
2122            ((jlong)si.totalswap * si.mem_unit) >> 10);
2123  st->print("(" UINT64_FORMAT "k free)",
2124            ((jlong)si.freeswap * si.mem_unit) >> 10);
2125  st->cr();
2126}
2127
2128// Print the first "model name" line and the first "flags" line
2129// that we find and nothing more. We assume "model name" comes
2130// before "flags" so if we find a second "model name", then the
2131// "flags" field is considered missing.
2132static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2133#if defined(IA32) || defined(AMD64)
2134  // Other platforms have less repetitive cpuinfo files
2135  FILE *fp = fopen("/proc/cpuinfo", "r");
2136  if (fp) {
2137    while (!feof(fp)) {
2138      if (fgets(buf, buflen, fp)) {
2139        // Assume model name comes before flags
2140        bool model_name_printed = false;
2141        if (strstr(buf, "model name") != NULL) {
2142          if (!model_name_printed) {
2143            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2144            st->print_raw(buf);
2145            model_name_printed = true;
2146          } else {
2147            // model name printed but not flags?  Odd, just return
2148            fclose(fp);
2149            return true;
2150          }
2151        }
2152        // print the flags line too
2153        if (strstr(buf, "flags") != NULL) {
2154          st->print_raw(buf);
2155          fclose(fp);
2156          return true;
2157        }
2158      }
2159    }
2160    fclose(fp);
2161  }
2162#endif // x86 platforms
2163  return false;
2164}
2165
2166void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2167  // Only print the model name if the platform provides this as a summary
2168  if (!print_model_name_and_flags(st, buf, buflen)) {
2169    st->print("\n/proc/cpuinfo:\n");
2170    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2171      st->print_cr("  <Not Available>");
2172    }
2173  }
2174}
2175
2176#if defined(AMD64) || defined(IA32) || defined(X32)
2177const char* search_string = "model name";
2178#elif defined(SPARC)
2179const char* search_string = "cpu";
2180#else
2181const char* search_string = "Processor";
2182#endif
2183
2184// Parses the cpuinfo file for string representing the model name.
2185void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2186  FILE* fp = fopen("/proc/cpuinfo", "r");
2187  if (fp != NULL) {
2188    while (!feof(fp)) {
2189      char buf[256];
2190      if (fgets(buf, sizeof(buf), fp)) {
2191        char* start = strstr(buf, search_string);
2192        if (start != NULL) {
2193          char *ptr = start + strlen(search_string);
2194          char *end = buf + strlen(buf);
2195          while (ptr != end) {
2196             // skip whitespace and colon for the rest of the name.
2197             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2198               break;
2199             }
2200             ptr++;
2201          }
2202          if (ptr != end) {
2203            // reasonable string, get rid of newline and keep the rest
2204            char* nl = strchr(buf, '\n');
2205            if (nl != NULL) *nl = '\0';
2206            strncpy(cpuinfo, ptr, length);
2207            fclose(fp);
2208            return;
2209          }
2210        }
2211      }
2212    }
2213    fclose(fp);
2214  }
2215  // cpuinfo not found or parsing failed, just print generic string.  The entire
2216  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2217#if defined(AMD64)
2218  strncpy(cpuinfo, "x86_64", length);
2219#elif defined(IA32)
2220  strncpy(cpuinfo, "x86_32", length);
2221#elif defined(IA64)
2222  strncpy(cpuinfo, "IA64", length);
2223#elif defined(SPARC)
2224  strncpy(cpuinfo, "sparcv9", length);
2225#elif defined(AARCH64)
2226  strncpy(cpuinfo, "AArch64", length);
2227#elif defined(ARM)
2228  strncpy(cpuinfo, "ARM", length);
2229#elif defined(PPC)
2230  strncpy(cpuinfo, "PPC64", length);
2231#elif defined(ZERO_LIBARCH)
2232  strncpy(cpuinfo, ZERO_LIBARCH, length);
2233#else
2234  strncpy(cpuinfo, "unknown", length);
2235#endif
2236}
2237
2238void os::print_siginfo(outputStream* st, void* siginfo) {
2239  const siginfo_t* si = (const siginfo_t*)siginfo;
2240
2241  os::Posix::print_siginfo_brief(st, si);
2242#if INCLUDE_CDS
2243  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2244      UseSharedSpaces) {
2245    FileMapInfo* mapinfo = FileMapInfo::current_info();
2246    if (mapinfo->is_in_shared_space(si->si_addr)) {
2247      st->print("\n\nError accessing class data sharing archive."   \
2248                " Mapped file inaccessible during execution, "      \
2249                " possible disk/network problem.");
2250    }
2251  }
2252#endif
2253  st->cr();
2254}
2255
2256
2257static void print_signal_handler(outputStream* st, int sig,
2258                                 char* buf, size_t buflen);
2259
2260void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2261  st->print_cr("Signal Handlers:");
2262  print_signal_handler(st, SIGSEGV, buf, buflen);
2263  print_signal_handler(st, SIGBUS , buf, buflen);
2264  print_signal_handler(st, SIGFPE , buf, buflen);
2265  print_signal_handler(st, SIGPIPE, buf, buflen);
2266  print_signal_handler(st, SIGXFSZ, buf, buflen);
2267  print_signal_handler(st, SIGILL , buf, buflen);
2268  print_signal_handler(st, SR_signum, buf, buflen);
2269  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2270  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2271  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2272  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2273#if defined(PPC64)
2274  print_signal_handler(st, SIGTRAP, buf, buflen);
2275#endif
2276}
2277
2278static char saved_jvm_path[MAXPATHLEN] = {0};
2279
2280// Find the full path to the current module, libjvm.so
2281void os::jvm_path(char *buf, jint buflen) {
2282  // Error checking.
2283  if (buflen < MAXPATHLEN) {
2284    assert(false, "must use a large-enough buffer");
2285    buf[0] = '\0';
2286    return;
2287  }
2288  // Lazy resolve the path to current module.
2289  if (saved_jvm_path[0] != 0) {
2290    strcpy(buf, saved_jvm_path);
2291    return;
2292  }
2293
2294  char dli_fname[MAXPATHLEN];
2295  bool ret = dll_address_to_library_name(
2296                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2297                                         dli_fname, sizeof(dli_fname), NULL);
2298  assert(ret, "cannot locate libjvm");
2299  char *rp = NULL;
2300  if (ret && dli_fname[0] != '\0') {
2301    rp = realpath(dli_fname, buf);
2302  }
2303  if (rp == NULL) {
2304    return;
2305  }
2306
2307  if (Arguments::sun_java_launcher_is_altjvm()) {
2308    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2309    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2310    // If "/jre/lib/" appears at the right place in the string, then
2311    // assume we are installed in a JDK and we're done. Otherwise, check
2312    // for a JAVA_HOME environment variable and fix up the path so it
2313    // looks like libjvm.so is installed there (append a fake suffix
2314    // hotspot/libjvm.so).
2315    const char *p = buf + strlen(buf) - 1;
2316    for (int count = 0; p > buf && count < 5; ++count) {
2317      for (--p; p > buf && *p != '/'; --p)
2318        /* empty */ ;
2319    }
2320
2321    if (strncmp(p, "/jre/lib/", 9) != 0) {
2322      // Look for JAVA_HOME in the environment.
2323      char* java_home_var = ::getenv("JAVA_HOME");
2324      if (java_home_var != NULL && java_home_var[0] != 0) {
2325        char* jrelib_p;
2326        int len;
2327
2328        // Check the current module name "libjvm.so".
2329        p = strrchr(buf, '/');
2330        if (p == NULL) {
2331          return;
2332        }
2333        assert(strstr(p, "/libjvm") == p, "invalid library name");
2334
2335        rp = realpath(java_home_var, buf);
2336        if (rp == NULL) {
2337          return;
2338        }
2339
2340        // determine if this is a legacy image or modules image
2341        // modules image doesn't have "jre" subdirectory
2342        len = strlen(buf);
2343        assert(len < buflen, "Ran out of buffer room");
2344        jrelib_p = buf + len;
2345        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2346        if (0 != access(buf, F_OK)) {
2347          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2348        }
2349
2350        if (0 == access(buf, F_OK)) {
2351          // Use current module name "libjvm.so"
2352          len = strlen(buf);
2353          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2354        } else {
2355          // Go back to path of .so
2356          rp = realpath(dli_fname, buf);
2357          if (rp == NULL) {
2358            return;
2359          }
2360        }
2361      }
2362    }
2363  }
2364
2365  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2366  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2367}
2368
2369void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2370  // no prefix required, not even "_"
2371}
2372
2373void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2374  // no suffix required
2375}
2376
2377////////////////////////////////////////////////////////////////////////////////
2378// sun.misc.Signal support
2379
2380static volatile jint sigint_count = 0;
2381
2382static void UserHandler(int sig, void *siginfo, void *context) {
2383  // 4511530 - sem_post is serialized and handled by the manager thread. When
2384  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2385  // don't want to flood the manager thread with sem_post requests.
2386  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2387    return;
2388  }
2389
2390  // Ctrl-C is pressed during error reporting, likely because the error
2391  // handler fails to abort. Let VM die immediately.
2392  if (sig == SIGINT && is_error_reported()) {
2393    os::die();
2394  }
2395
2396  os::signal_notify(sig);
2397}
2398
2399void* os::user_handler() {
2400  return CAST_FROM_FN_PTR(void*, UserHandler);
2401}
2402
2403struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2404  struct timespec ts;
2405  // Semaphore's are always associated with CLOCK_REALTIME
2406  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2407  // see unpackTime for discussion on overflow checking
2408  if (sec >= MAX_SECS) {
2409    ts.tv_sec += MAX_SECS;
2410    ts.tv_nsec = 0;
2411  } else {
2412    ts.tv_sec += sec;
2413    ts.tv_nsec += nsec;
2414    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2415      ts.tv_nsec -= NANOSECS_PER_SEC;
2416      ++ts.tv_sec; // note: this must be <= max_secs
2417    }
2418  }
2419
2420  return ts;
2421}
2422
2423extern "C" {
2424  typedef void (*sa_handler_t)(int);
2425  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2426}
2427
2428void* os::signal(int signal_number, void* handler) {
2429  struct sigaction sigAct, oldSigAct;
2430
2431  sigfillset(&(sigAct.sa_mask));
2432  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2433  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2434
2435  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2436    // -1 means registration failed
2437    return (void *)-1;
2438  }
2439
2440  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2441}
2442
2443void os::signal_raise(int signal_number) {
2444  ::raise(signal_number);
2445}
2446
2447// The following code is moved from os.cpp for making this
2448// code platform specific, which it is by its very nature.
2449
2450// Will be modified when max signal is changed to be dynamic
2451int os::sigexitnum_pd() {
2452  return NSIG;
2453}
2454
2455// a counter for each possible signal value
2456static volatile jint pending_signals[NSIG+1] = { 0 };
2457
2458// Linux(POSIX) specific hand shaking semaphore.
2459static sem_t sig_sem;
2460static PosixSemaphore sr_semaphore;
2461
2462void os::signal_init_pd() {
2463  // Initialize signal structures
2464  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2465
2466  // Initialize signal semaphore
2467  ::sem_init(&sig_sem, 0, 0);
2468}
2469
2470void os::signal_notify(int sig) {
2471  Atomic::inc(&pending_signals[sig]);
2472  ::sem_post(&sig_sem);
2473}
2474
2475static int check_pending_signals(bool wait) {
2476  Atomic::store(0, &sigint_count);
2477  for (;;) {
2478    for (int i = 0; i < NSIG + 1; i++) {
2479      jint n = pending_signals[i];
2480      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2481        return i;
2482      }
2483    }
2484    if (!wait) {
2485      return -1;
2486    }
2487    JavaThread *thread = JavaThread::current();
2488    ThreadBlockInVM tbivm(thread);
2489
2490    bool threadIsSuspended;
2491    do {
2492      thread->set_suspend_equivalent();
2493      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2494      ::sem_wait(&sig_sem);
2495
2496      // were we externally suspended while we were waiting?
2497      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2498      if (threadIsSuspended) {
2499        // The semaphore has been incremented, but while we were waiting
2500        // another thread suspended us. We don't want to continue running
2501        // while suspended because that would surprise the thread that
2502        // suspended us.
2503        ::sem_post(&sig_sem);
2504
2505        thread->java_suspend_self();
2506      }
2507    } while (threadIsSuspended);
2508  }
2509}
2510
2511int os::signal_lookup() {
2512  return check_pending_signals(false);
2513}
2514
2515int os::signal_wait() {
2516  return check_pending_signals(true);
2517}
2518
2519////////////////////////////////////////////////////////////////////////////////
2520// Virtual Memory
2521
2522int os::vm_page_size() {
2523  // Seems redundant as all get out
2524  assert(os::Linux::page_size() != -1, "must call os::init");
2525  return os::Linux::page_size();
2526}
2527
2528// Solaris allocates memory by pages.
2529int os::vm_allocation_granularity() {
2530  assert(os::Linux::page_size() != -1, "must call os::init");
2531  return os::Linux::page_size();
2532}
2533
2534// Rationale behind this function:
2535//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2536//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2537//  samples for JITted code. Here we create private executable mapping over the code cache
2538//  and then we can use standard (well, almost, as mapping can change) way to provide
2539//  info for the reporting script by storing timestamp and location of symbol
2540void linux_wrap_code(char* base, size_t size) {
2541  static volatile jint cnt = 0;
2542
2543  if (!UseOprofile) {
2544    return;
2545  }
2546
2547  char buf[PATH_MAX+1];
2548  int num = Atomic::add(1, &cnt);
2549
2550  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2551           os::get_temp_directory(), os::current_process_id(), num);
2552  unlink(buf);
2553
2554  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2555
2556  if (fd != -1) {
2557    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2558    if (rv != (off_t)-1) {
2559      if (::write(fd, "", 1) == 1) {
2560        mmap(base, size,
2561             PROT_READ|PROT_WRITE|PROT_EXEC,
2562             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2563      }
2564    }
2565    ::close(fd);
2566    unlink(buf);
2567  }
2568}
2569
2570static bool recoverable_mmap_error(int err) {
2571  // See if the error is one we can let the caller handle. This
2572  // list of errno values comes from JBS-6843484. I can't find a
2573  // Linux man page that documents this specific set of errno
2574  // values so while this list currently matches Solaris, it may
2575  // change as we gain experience with this failure mode.
2576  switch (err) {
2577  case EBADF:
2578  case EINVAL:
2579  case ENOTSUP:
2580    // let the caller deal with these errors
2581    return true;
2582
2583  default:
2584    // Any remaining errors on this OS can cause our reserved mapping
2585    // to be lost. That can cause confusion where different data
2586    // structures think they have the same memory mapped. The worst
2587    // scenario is if both the VM and a library think they have the
2588    // same memory mapped.
2589    return false;
2590  }
2591}
2592
2593static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2594                                    int err) {
2595  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2596          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2597          strerror(err), err);
2598}
2599
2600static void warn_fail_commit_memory(char* addr, size_t size,
2601                                    size_t alignment_hint, bool exec,
2602                                    int err) {
2603  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2604          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2605          alignment_hint, exec, strerror(err), err);
2606}
2607
2608// NOTE: Linux kernel does not really reserve the pages for us.
2609//       All it does is to check if there are enough free pages
2610//       left at the time of mmap(). This could be a potential
2611//       problem.
2612int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2613  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2614  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2615                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2616  if (res != (uintptr_t) MAP_FAILED) {
2617    if (UseNUMAInterleaving) {
2618      numa_make_global(addr, size);
2619    }
2620    return 0;
2621  }
2622
2623  int err = errno;  // save errno from mmap() call above
2624
2625  if (!recoverable_mmap_error(err)) {
2626    warn_fail_commit_memory(addr, size, exec, err);
2627    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2628  }
2629
2630  return err;
2631}
2632
2633bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2634  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2635}
2636
2637void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2638                                  const char* mesg) {
2639  assert(mesg != NULL, "mesg must be specified");
2640  int err = os::Linux::commit_memory_impl(addr, size, exec);
2641  if (err != 0) {
2642    // the caller wants all commit errors to exit with the specified mesg:
2643    warn_fail_commit_memory(addr, size, exec, err);
2644    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2645  }
2646}
2647
2648// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2649#ifndef MAP_HUGETLB
2650  #define MAP_HUGETLB 0x40000
2651#endif
2652
2653// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2654#ifndef MADV_HUGEPAGE
2655  #define MADV_HUGEPAGE 14
2656#endif
2657
2658int os::Linux::commit_memory_impl(char* addr, size_t size,
2659                                  size_t alignment_hint, bool exec) {
2660  int err = os::Linux::commit_memory_impl(addr, size, exec);
2661  if (err == 0) {
2662    realign_memory(addr, size, alignment_hint);
2663  }
2664  return err;
2665}
2666
2667bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2668                          bool exec) {
2669  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2670}
2671
2672void os::pd_commit_memory_or_exit(char* addr, size_t size,
2673                                  size_t alignment_hint, bool exec,
2674                                  const char* mesg) {
2675  assert(mesg != NULL, "mesg must be specified");
2676  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2677  if (err != 0) {
2678    // the caller wants all commit errors to exit with the specified mesg:
2679    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2680    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2681  }
2682}
2683
2684void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2685  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2686    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2687    // be supported or the memory may already be backed by huge pages.
2688    ::madvise(addr, bytes, MADV_HUGEPAGE);
2689  }
2690}
2691
2692void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2693  // This method works by doing an mmap over an existing mmaping and effectively discarding
2694  // the existing pages. However it won't work for SHM-based large pages that cannot be
2695  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2696  // small pages on top of the SHM segment. This method always works for small pages, so we
2697  // allow that in any case.
2698  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2699    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2700  }
2701}
2702
2703void os::numa_make_global(char *addr, size_t bytes) {
2704  Linux::numa_interleave_memory(addr, bytes);
2705}
2706
2707// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2708// bind policy to MPOL_PREFERRED for the current thread.
2709#define USE_MPOL_PREFERRED 0
2710
2711void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2712  // To make NUMA and large pages more robust when both enabled, we need to ease
2713  // the requirements on where the memory should be allocated. MPOL_BIND is the
2714  // default policy and it will force memory to be allocated on the specified
2715  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2716  // the specified node, but will not force it. Using this policy will prevent
2717  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2718  // free large pages.
2719  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2720  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2721}
2722
2723bool os::numa_topology_changed() { return false; }
2724
2725size_t os::numa_get_groups_num() {
2726  int max_node = Linux::numa_max_node();
2727  return max_node > 0 ? max_node + 1 : 1;
2728}
2729
2730int os::numa_get_group_id() {
2731  int cpu_id = Linux::sched_getcpu();
2732  if (cpu_id != -1) {
2733    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2734    if (lgrp_id != -1) {
2735      return lgrp_id;
2736    }
2737  }
2738  return 0;
2739}
2740
2741size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2742  for (size_t i = 0; i < size; i++) {
2743    ids[i] = i;
2744  }
2745  return size;
2746}
2747
2748bool os::get_page_info(char *start, page_info* info) {
2749  return false;
2750}
2751
2752char *os::scan_pages(char *start, char* end, page_info* page_expected,
2753                     page_info* page_found) {
2754  return end;
2755}
2756
2757
2758int os::Linux::sched_getcpu_syscall(void) {
2759  unsigned int cpu = 0;
2760  int retval = -1;
2761
2762#if defined(IA32)
2763  #ifndef SYS_getcpu
2764    #define SYS_getcpu 318
2765  #endif
2766  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2767#elif defined(AMD64)
2768// Unfortunately we have to bring all these macros here from vsyscall.h
2769// to be able to compile on old linuxes.
2770  #define __NR_vgetcpu 2
2771  #define VSYSCALL_START (-10UL << 20)
2772  #define VSYSCALL_SIZE 1024
2773  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2774  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2775  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2776  retval = vgetcpu(&cpu, NULL, NULL);
2777#endif
2778
2779  return (retval == -1) ? retval : cpu;
2780}
2781
2782// Something to do with the numa-aware allocator needs these symbols
2783extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2784extern "C" JNIEXPORT void numa_error(char *where) { }
2785
2786
2787// If we are running with libnuma version > 2, then we should
2788// be trying to use symbols with versions 1.1
2789// If we are running with earlier version, which did not have symbol versions,
2790// we should use the base version.
2791void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2792  void *f = dlvsym(handle, name, "libnuma_1.1");
2793  if (f == NULL) {
2794    f = dlsym(handle, name);
2795  }
2796  return f;
2797}
2798
2799bool os::Linux::libnuma_init() {
2800  // sched_getcpu() should be in libc.
2801  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2802                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2803
2804  // If it's not, try a direct syscall.
2805  if (sched_getcpu() == -1) {
2806    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2807                                    (void*)&sched_getcpu_syscall));
2808  }
2809
2810  if (sched_getcpu() != -1) { // Does it work?
2811    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2812    if (handle != NULL) {
2813      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2814                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2815      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2816                                       libnuma_dlsym(handle, "numa_max_node")));
2817      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2818                                        libnuma_dlsym(handle, "numa_available")));
2819      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2820                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2821      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2822                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2823      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2824                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2825
2826
2827      if (numa_available() != -1) {
2828        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2829        // Create a cpu -> node mapping
2830        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2831        rebuild_cpu_to_node_map();
2832        return true;
2833      }
2834    }
2835  }
2836  return false;
2837}
2838
2839// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2840// The table is later used in get_node_by_cpu().
2841void os::Linux::rebuild_cpu_to_node_map() {
2842  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2843                              // in libnuma (possible values are starting from 16,
2844                              // and continuing up with every other power of 2, but less
2845                              // than the maximum number of CPUs supported by kernel), and
2846                              // is a subject to change (in libnuma version 2 the requirements
2847                              // are more reasonable) we'll just hardcode the number they use
2848                              // in the library.
2849  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2850
2851  size_t cpu_num = os::active_processor_count();
2852  size_t cpu_map_size = NCPUS / BitsPerCLong;
2853  size_t cpu_map_valid_size =
2854    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2855
2856  cpu_to_node()->clear();
2857  cpu_to_node()->at_grow(cpu_num - 1);
2858  size_t node_num = numa_get_groups_num();
2859
2860  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2861  for (size_t i = 0; i < node_num; i++) {
2862    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2863      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2864        if (cpu_map[j] != 0) {
2865          for (size_t k = 0; k < BitsPerCLong; k++) {
2866            if (cpu_map[j] & (1UL << k)) {
2867              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2868            }
2869          }
2870        }
2871      }
2872    }
2873  }
2874  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2875}
2876
2877int os::Linux::get_node_by_cpu(int cpu_id) {
2878  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2879    return cpu_to_node()->at(cpu_id);
2880  }
2881  return -1;
2882}
2883
2884GrowableArray<int>* os::Linux::_cpu_to_node;
2885os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2886os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2887os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2888os::Linux::numa_available_func_t os::Linux::_numa_available;
2889os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2890os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2891os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2892unsigned long* os::Linux::_numa_all_nodes;
2893
2894bool os::pd_uncommit_memory(char* addr, size_t size) {
2895  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2896                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2897  return res  != (uintptr_t) MAP_FAILED;
2898}
2899
2900static address get_stack_commited_bottom(address bottom, size_t size) {
2901  address nbot = bottom;
2902  address ntop = bottom + size;
2903
2904  size_t page_sz = os::vm_page_size();
2905  unsigned pages = size / page_sz;
2906
2907  unsigned char vec[1];
2908  unsigned imin = 1, imax = pages + 1, imid;
2909  int mincore_return_value = 0;
2910
2911  assert(imin <= imax, "Unexpected page size");
2912
2913  while (imin < imax) {
2914    imid = (imax + imin) / 2;
2915    nbot = ntop - (imid * page_sz);
2916
2917    // Use a trick with mincore to check whether the page is mapped or not.
2918    // mincore sets vec to 1 if page resides in memory and to 0 if page
2919    // is swapped output but if page we are asking for is unmapped
2920    // it returns -1,ENOMEM
2921    mincore_return_value = mincore(nbot, page_sz, vec);
2922
2923    if (mincore_return_value == -1) {
2924      // Page is not mapped go up
2925      // to find first mapped page
2926      if (errno != EAGAIN) {
2927        assert(errno == ENOMEM, "Unexpected mincore errno");
2928        imax = imid;
2929      }
2930    } else {
2931      // Page is mapped go down
2932      // to find first not mapped page
2933      imin = imid + 1;
2934    }
2935  }
2936
2937  nbot = nbot + page_sz;
2938
2939  // Adjust stack bottom one page up if last checked page is not mapped
2940  if (mincore_return_value == -1) {
2941    nbot = nbot + page_sz;
2942  }
2943
2944  return nbot;
2945}
2946
2947
2948// Linux uses a growable mapping for the stack, and if the mapping for
2949// the stack guard pages is not removed when we detach a thread the
2950// stack cannot grow beyond the pages where the stack guard was
2951// mapped.  If at some point later in the process the stack expands to
2952// that point, the Linux kernel cannot expand the stack any further
2953// because the guard pages are in the way, and a segfault occurs.
2954//
2955// However, it's essential not to split the stack region by unmapping
2956// a region (leaving a hole) that's already part of the stack mapping,
2957// so if the stack mapping has already grown beyond the guard pages at
2958// the time we create them, we have to truncate the stack mapping.
2959// So, we need to know the extent of the stack mapping when
2960// create_stack_guard_pages() is called.
2961
2962// We only need this for stacks that are growable: at the time of
2963// writing thread stacks don't use growable mappings (i.e. those
2964// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2965// only applies to the main thread.
2966
2967// If the (growable) stack mapping already extends beyond the point
2968// where we're going to put our guard pages, truncate the mapping at
2969// that point by munmap()ping it.  This ensures that when we later
2970// munmap() the guard pages we don't leave a hole in the stack
2971// mapping. This only affects the main/initial thread
2972
2973bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2974  if (os::Linux::is_initial_thread()) {
2975    // As we manually grow stack up to bottom inside create_attached_thread(),
2976    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2977    // we don't need to do anything special.
2978    // Check it first, before calling heavy function.
2979    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2980    unsigned char vec[1];
2981
2982    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2983      // Fallback to slow path on all errors, including EAGAIN
2984      stack_extent = (uintptr_t) get_stack_commited_bottom(
2985                                                           os::Linux::initial_thread_stack_bottom(),
2986                                                           (size_t)addr - stack_extent);
2987    }
2988
2989    if (stack_extent < (uintptr_t)addr) {
2990      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2991    }
2992  }
2993
2994  return os::commit_memory(addr, size, !ExecMem);
2995}
2996
2997// If this is a growable mapping, remove the guard pages entirely by
2998// munmap()ping them.  If not, just call uncommit_memory(). This only
2999// affects the main/initial thread, but guard against future OS changes
3000// It's safe to always unmap guard pages for initial thread because we
3001// always place it right after end of the mapped region
3002
3003bool os::remove_stack_guard_pages(char* addr, size_t size) {
3004  uintptr_t stack_extent, stack_base;
3005
3006  if (os::Linux::is_initial_thread()) {
3007    return ::munmap(addr, size) == 0;
3008  }
3009
3010  return os::uncommit_memory(addr, size);
3011}
3012
3013// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3014// at 'requested_addr'. If there are existing memory mappings at the same
3015// location, however, they will be overwritten. If 'fixed' is false,
3016// 'requested_addr' is only treated as a hint, the return value may or
3017// may not start from the requested address. Unlike Linux mmap(), this
3018// function returns NULL to indicate failure.
3019static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3020  char * addr;
3021  int flags;
3022
3023  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3024  if (fixed) {
3025    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3026    flags |= MAP_FIXED;
3027  }
3028
3029  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3030  // touch an uncommitted page. Otherwise, the read/write might
3031  // succeed if we have enough swap space to back the physical page.
3032  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3033                       flags, -1, 0);
3034
3035  return addr == MAP_FAILED ? NULL : addr;
3036}
3037
3038static int anon_munmap(char * addr, size_t size) {
3039  return ::munmap(addr, size) == 0;
3040}
3041
3042char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3043                            size_t alignment_hint) {
3044  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3045}
3046
3047bool os::pd_release_memory(char* addr, size_t size) {
3048  return anon_munmap(addr, size);
3049}
3050
3051static bool linux_mprotect(char* addr, size_t size, int prot) {
3052  // Linux wants the mprotect address argument to be page aligned.
3053  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3054
3055  // According to SUSv3, mprotect() should only be used with mappings
3056  // established by mmap(), and mmap() always maps whole pages. Unaligned
3057  // 'addr' likely indicates problem in the VM (e.g. trying to change
3058  // protection of malloc'ed or statically allocated memory). Check the
3059  // caller if you hit this assert.
3060  assert(addr == bottom, "sanity check");
3061
3062  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3063  return ::mprotect(bottom, size, prot) == 0;
3064}
3065
3066// Set protections specified
3067bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3068                        bool is_committed) {
3069  unsigned int p = 0;
3070  switch (prot) {
3071  case MEM_PROT_NONE: p = PROT_NONE; break;
3072  case MEM_PROT_READ: p = PROT_READ; break;
3073  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3074  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3075  default:
3076    ShouldNotReachHere();
3077  }
3078  // is_committed is unused.
3079  return linux_mprotect(addr, bytes, p);
3080}
3081
3082bool os::guard_memory(char* addr, size_t size) {
3083  return linux_mprotect(addr, size, PROT_NONE);
3084}
3085
3086bool os::unguard_memory(char* addr, size_t size) {
3087  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3088}
3089
3090bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3091                                                    size_t page_size) {
3092  bool result = false;
3093  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3094                 MAP_ANONYMOUS|MAP_PRIVATE,
3095                 -1, 0);
3096  if (p != MAP_FAILED) {
3097    void *aligned_p = align_ptr_up(p, page_size);
3098
3099    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3100
3101    munmap(p, page_size * 2);
3102  }
3103
3104  if (warn && !result) {
3105    warning("TransparentHugePages is not supported by the operating system.");
3106  }
3107
3108  return result;
3109}
3110
3111bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3112  bool result = false;
3113  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3114                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3115                 -1, 0);
3116
3117  if (p != MAP_FAILED) {
3118    // We don't know if this really is a huge page or not.
3119    FILE *fp = fopen("/proc/self/maps", "r");
3120    if (fp) {
3121      while (!feof(fp)) {
3122        char chars[257];
3123        long x = 0;
3124        if (fgets(chars, sizeof(chars), fp)) {
3125          if (sscanf(chars, "%lx-%*x", &x) == 1
3126              && x == (long)p) {
3127            if (strstr (chars, "hugepage")) {
3128              result = true;
3129              break;
3130            }
3131          }
3132        }
3133      }
3134      fclose(fp);
3135    }
3136    munmap(p, page_size);
3137  }
3138
3139  if (warn && !result) {
3140    warning("HugeTLBFS is not supported by the operating system.");
3141  }
3142
3143  return result;
3144}
3145
3146// Set the coredump_filter bits to include largepages in core dump (bit 6)
3147//
3148// From the coredump_filter documentation:
3149//
3150// - (bit 0) anonymous private memory
3151// - (bit 1) anonymous shared memory
3152// - (bit 2) file-backed private memory
3153// - (bit 3) file-backed shared memory
3154// - (bit 4) ELF header pages in file-backed private memory areas (it is
3155//           effective only if the bit 2 is cleared)
3156// - (bit 5) hugetlb private memory
3157// - (bit 6) hugetlb shared memory
3158//
3159static void set_coredump_filter(void) {
3160  FILE *f;
3161  long cdm;
3162
3163  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3164    return;
3165  }
3166
3167  if (fscanf(f, "%lx", &cdm) != 1) {
3168    fclose(f);
3169    return;
3170  }
3171
3172  rewind(f);
3173
3174  if ((cdm & LARGEPAGES_BIT) == 0) {
3175    cdm |= LARGEPAGES_BIT;
3176    fprintf(f, "%#lx", cdm);
3177  }
3178
3179  fclose(f);
3180}
3181
3182// Large page support
3183
3184static size_t _large_page_size = 0;
3185
3186size_t os::Linux::find_large_page_size() {
3187  size_t large_page_size = 0;
3188
3189  // large_page_size on Linux is used to round up heap size. x86 uses either
3190  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3191  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3192  // page as large as 256M.
3193  //
3194  // Here we try to figure out page size by parsing /proc/meminfo and looking
3195  // for a line with the following format:
3196  //    Hugepagesize:     2048 kB
3197  //
3198  // If we can't determine the value (e.g. /proc is not mounted, or the text
3199  // format has been changed), we'll use the largest page size supported by
3200  // the processor.
3201
3202#ifndef ZERO
3203  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3204                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3205#endif // ZERO
3206
3207  FILE *fp = fopen("/proc/meminfo", "r");
3208  if (fp) {
3209    while (!feof(fp)) {
3210      int x = 0;
3211      char buf[16];
3212      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3213        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3214          large_page_size = x * K;
3215          break;
3216        }
3217      } else {
3218        // skip to next line
3219        for (;;) {
3220          int ch = fgetc(fp);
3221          if (ch == EOF || ch == (int)'\n') break;
3222        }
3223      }
3224    }
3225    fclose(fp);
3226  }
3227
3228  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3229    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3230            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3231            proper_unit_for_byte_size(large_page_size));
3232  }
3233
3234  return large_page_size;
3235}
3236
3237size_t os::Linux::setup_large_page_size() {
3238  _large_page_size = Linux::find_large_page_size();
3239  const size_t default_page_size = (size_t)Linux::page_size();
3240  if (_large_page_size > default_page_size) {
3241    _page_sizes[0] = _large_page_size;
3242    _page_sizes[1] = default_page_size;
3243    _page_sizes[2] = 0;
3244  }
3245
3246  return _large_page_size;
3247}
3248
3249bool os::Linux::setup_large_page_type(size_t page_size) {
3250  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3251      FLAG_IS_DEFAULT(UseSHM) &&
3252      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3253
3254    // The type of large pages has not been specified by the user.
3255
3256    // Try UseHugeTLBFS and then UseSHM.
3257    UseHugeTLBFS = UseSHM = true;
3258
3259    // Don't try UseTransparentHugePages since there are known
3260    // performance issues with it turned on. This might change in the future.
3261    UseTransparentHugePages = false;
3262  }
3263
3264  if (UseTransparentHugePages) {
3265    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3266    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3267      UseHugeTLBFS = false;
3268      UseSHM = false;
3269      return true;
3270    }
3271    UseTransparentHugePages = false;
3272  }
3273
3274  if (UseHugeTLBFS) {
3275    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3276    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3277      UseSHM = false;
3278      return true;
3279    }
3280    UseHugeTLBFS = false;
3281  }
3282
3283  return UseSHM;
3284}
3285
3286void os::large_page_init() {
3287  if (!UseLargePages &&
3288      !UseTransparentHugePages &&
3289      !UseHugeTLBFS &&
3290      !UseSHM) {
3291    // Not using large pages.
3292    return;
3293  }
3294
3295  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3296    // The user explicitly turned off large pages.
3297    // Ignore the rest of the large pages flags.
3298    UseTransparentHugePages = false;
3299    UseHugeTLBFS = false;
3300    UseSHM = false;
3301    return;
3302  }
3303
3304  size_t large_page_size = Linux::setup_large_page_size();
3305  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3306
3307  set_coredump_filter();
3308}
3309
3310#ifndef SHM_HUGETLB
3311  #define SHM_HUGETLB 04000
3312#endif
3313
3314char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3315                                            char* req_addr, bool exec) {
3316  // "exec" is passed in but not used.  Creating the shared image for
3317  // the code cache doesn't have an SHM_X executable permission to check.
3318  assert(UseLargePages && UseSHM, "only for SHM large pages");
3319  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3320
3321  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3322    return NULL; // Fallback to small pages.
3323  }
3324
3325  key_t key = IPC_PRIVATE;
3326  char *addr;
3327
3328  bool warn_on_failure = UseLargePages &&
3329                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3330                         !FLAG_IS_DEFAULT(UseSHM) ||
3331                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3332  char msg[128];
3333
3334  // Create a large shared memory region to attach to based on size.
3335  // Currently, size is the total size of the heap
3336  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3337  if (shmid == -1) {
3338    // Possible reasons for shmget failure:
3339    // 1. shmmax is too small for Java heap.
3340    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3341    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3342    // 2. not enough large page memory.
3343    //    > check available large pages: cat /proc/meminfo
3344    //    > increase amount of large pages:
3345    //          echo new_value > /proc/sys/vm/nr_hugepages
3346    //      Note 1: different Linux may use different name for this property,
3347    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3348    //      Note 2: it's possible there's enough physical memory available but
3349    //            they are so fragmented after a long run that they can't
3350    //            coalesce into large pages. Try to reserve large pages when
3351    //            the system is still "fresh".
3352    if (warn_on_failure) {
3353      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3354      warning("%s", msg);
3355    }
3356    return NULL;
3357  }
3358
3359  // attach to the region
3360  addr = (char*)shmat(shmid, req_addr, 0);
3361  int err = errno;
3362
3363  // Remove shmid. If shmat() is successful, the actual shared memory segment
3364  // will be deleted when it's detached by shmdt() or when the process
3365  // terminates. If shmat() is not successful this will remove the shared
3366  // segment immediately.
3367  shmctl(shmid, IPC_RMID, NULL);
3368
3369  if ((intptr_t)addr == -1) {
3370    if (warn_on_failure) {
3371      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3372      warning("%s", msg);
3373    }
3374    return NULL;
3375  }
3376
3377  return addr;
3378}
3379
3380static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3381                                        int error) {
3382  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3383
3384  bool warn_on_failure = UseLargePages &&
3385      (!FLAG_IS_DEFAULT(UseLargePages) ||
3386       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3387       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3388
3389  if (warn_on_failure) {
3390    char msg[128];
3391    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3392                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3393    warning("%s", msg);
3394  }
3395}
3396
3397char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3398                                                        char* req_addr,
3399                                                        bool exec) {
3400  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3401  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3402  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3403
3404  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3405  char* addr = (char*)::mmap(req_addr, bytes, prot,
3406                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3407                             -1, 0);
3408
3409  if (addr == MAP_FAILED) {
3410    warn_on_large_pages_failure(req_addr, bytes, errno);
3411    return NULL;
3412  }
3413
3414  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3415
3416  return addr;
3417}
3418
3419// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3420// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3421//   (req_addr != NULL) or with a given alignment.
3422//  - bytes shall be a multiple of alignment.
3423//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3424//  - alignment sets the alignment at which memory shall be allocated.
3425//     It must be a multiple of allocation granularity.
3426// Returns address of memory or NULL. If req_addr was not NULL, will only return
3427//  req_addr or NULL.
3428static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3429
3430  size_t extra_size = bytes;
3431  if (req_addr == NULL && alignment > 0) {
3432    extra_size += alignment;
3433  }
3434
3435  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3436    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3437    -1, 0);
3438  if (start == MAP_FAILED) {
3439    start = NULL;
3440  } else {
3441    if (req_addr != NULL) {
3442      if (start != req_addr) {
3443        ::munmap(start, extra_size);
3444        start = NULL;
3445      }
3446    } else {
3447      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3448      char* const end_aligned = start_aligned + bytes;
3449      char* const end = start + extra_size;
3450      if (start_aligned > start) {
3451        ::munmap(start, start_aligned - start);
3452      }
3453      if (end_aligned < end) {
3454        ::munmap(end_aligned, end - end_aligned);
3455      }
3456      start = start_aligned;
3457    }
3458  }
3459  return start;
3460
3461}
3462
3463// Reserve memory using mmap(MAP_HUGETLB).
3464//  - bytes shall be a multiple of alignment.
3465//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3466//  - alignment sets the alignment at which memory shall be allocated.
3467//     It must be a multiple of allocation granularity.
3468// Returns address of memory or NULL. If req_addr was not NULL, will only return
3469//  req_addr or NULL.
3470char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3471                                                         size_t alignment,
3472                                                         char* req_addr,
3473                                                         bool exec) {
3474  size_t large_page_size = os::large_page_size();
3475  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3476
3477  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3478  assert(is_size_aligned(bytes, alignment), "Must be");
3479
3480  // First reserve - but not commit - the address range in small pages.
3481  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3482
3483  if (start == NULL) {
3484    return NULL;
3485  }
3486
3487  assert(is_ptr_aligned(start, alignment), "Must be");
3488
3489  char* end = start + bytes;
3490
3491  // Find the regions of the allocated chunk that can be promoted to large pages.
3492  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3493  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3494
3495  size_t lp_bytes = lp_end - lp_start;
3496
3497  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3498
3499  if (lp_bytes == 0) {
3500    // The mapped region doesn't even span the start and the end of a large page.
3501    // Fall back to allocate a non-special area.
3502    ::munmap(start, end - start);
3503    return NULL;
3504  }
3505
3506  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3507
3508  void* result;
3509
3510  // Commit small-paged leading area.
3511  if (start != lp_start) {
3512    result = ::mmap(start, lp_start - start, prot,
3513                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3514                    -1, 0);
3515    if (result == MAP_FAILED) {
3516      ::munmap(lp_start, end - lp_start);
3517      return NULL;
3518    }
3519  }
3520
3521  // Commit large-paged area.
3522  result = ::mmap(lp_start, lp_bytes, prot,
3523                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3524                  -1, 0);
3525  if (result == MAP_FAILED) {
3526    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3527    // If the mmap above fails, the large pages region will be unmapped and we
3528    // have regions before and after with small pages. Release these regions.
3529    //
3530    // |  mapped  |  unmapped  |  mapped  |
3531    // ^          ^            ^          ^
3532    // start      lp_start     lp_end     end
3533    //
3534    ::munmap(start, lp_start - start);
3535    ::munmap(lp_end, end - lp_end);
3536    return NULL;
3537  }
3538
3539  // Commit small-paged trailing area.
3540  if (lp_end != end) {
3541    result = ::mmap(lp_end, end - lp_end, prot,
3542                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3543                    -1, 0);
3544    if (result == MAP_FAILED) {
3545      ::munmap(start, lp_end - start);
3546      return NULL;
3547    }
3548  }
3549
3550  return start;
3551}
3552
3553char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3554                                                   size_t alignment,
3555                                                   char* req_addr,
3556                                                   bool exec) {
3557  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3558  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3559  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3560  assert(is_power_of_2(os::large_page_size()), "Must be");
3561  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3562
3563  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3564    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3565  } else {
3566    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3567  }
3568}
3569
3570char* os::reserve_memory_special(size_t bytes, size_t alignment,
3571                                 char* req_addr, bool exec) {
3572  assert(UseLargePages, "only for large pages");
3573
3574  char* addr;
3575  if (UseSHM) {
3576    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3577  } else {
3578    assert(UseHugeTLBFS, "must be");
3579    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3580  }
3581
3582  if (addr != NULL) {
3583    if (UseNUMAInterleaving) {
3584      numa_make_global(addr, bytes);
3585    }
3586
3587    // The memory is committed
3588    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3589  }
3590
3591  return addr;
3592}
3593
3594bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3595  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3596  return shmdt(base) == 0;
3597}
3598
3599bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3600  return pd_release_memory(base, bytes);
3601}
3602
3603bool os::release_memory_special(char* base, size_t bytes) {
3604  bool res;
3605  if (MemTracker::tracking_level() > NMT_minimal) {
3606    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3607    res = os::Linux::release_memory_special_impl(base, bytes);
3608    if (res) {
3609      tkr.record((address)base, bytes);
3610    }
3611
3612  } else {
3613    res = os::Linux::release_memory_special_impl(base, bytes);
3614  }
3615  return res;
3616}
3617
3618bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3619  assert(UseLargePages, "only for large pages");
3620  bool res;
3621
3622  if (UseSHM) {
3623    res = os::Linux::release_memory_special_shm(base, bytes);
3624  } else {
3625    assert(UseHugeTLBFS, "must be");
3626    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3627  }
3628  return res;
3629}
3630
3631size_t os::large_page_size() {
3632  return _large_page_size;
3633}
3634
3635// With SysV SHM the entire memory region must be allocated as shared
3636// memory.
3637// HugeTLBFS allows application to commit large page memory on demand.
3638// However, when committing memory with HugeTLBFS fails, the region
3639// that was supposed to be committed will lose the old reservation
3640// and allow other threads to steal that memory region. Because of this
3641// behavior we can't commit HugeTLBFS memory.
3642bool os::can_commit_large_page_memory() {
3643  return UseTransparentHugePages;
3644}
3645
3646bool os::can_execute_large_page_memory() {
3647  return UseTransparentHugePages || UseHugeTLBFS;
3648}
3649
3650// Reserve memory at an arbitrary address, only if that area is
3651// available (and not reserved for something else).
3652
3653char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3654  const int max_tries = 10;
3655  char* base[max_tries];
3656  size_t size[max_tries];
3657  const size_t gap = 0x000000;
3658
3659  // Assert only that the size is a multiple of the page size, since
3660  // that's all that mmap requires, and since that's all we really know
3661  // about at this low abstraction level.  If we need higher alignment,
3662  // we can either pass an alignment to this method or verify alignment
3663  // in one of the methods further up the call chain.  See bug 5044738.
3664  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3665
3666  // Repeatedly allocate blocks until the block is allocated at the
3667  // right spot.
3668
3669  // Linux mmap allows caller to pass an address as hint; give it a try first,
3670  // if kernel honors the hint then we can return immediately.
3671  char * addr = anon_mmap(requested_addr, bytes, false);
3672  if (addr == requested_addr) {
3673    return requested_addr;
3674  }
3675
3676  if (addr != NULL) {
3677    // mmap() is successful but it fails to reserve at the requested address
3678    anon_munmap(addr, bytes);
3679  }
3680
3681  int i;
3682  for (i = 0; i < max_tries; ++i) {
3683    base[i] = reserve_memory(bytes);
3684
3685    if (base[i] != NULL) {
3686      // Is this the block we wanted?
3687      if (base[i] == requested_addr) {
3688        size[i] = bytes;
3689        break;
3690      }
3691
3692      // Does this overlap the block we wanted? Give back the overlapped
3693      // parts and try again.
3694
3695      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3696      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3697        unmap_memory(base[i], top_overlap);
3698        base[i] += top_overlap;
3699        size[i] = bytes - top_overlap;
3700      } else {
3701        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3702        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3703          unmap_memory(requested_addr, bottom_overlap);
3704          size[i] = bytes - bottom_overlap;
3705        } else {
3706          size[i] = bytes;
3707        }
3708      }
3709    }
3710  }
3711
3712  // Give back the unused reserved pieces.
3713
3714  for (int j = 0; j < i; ++j) {
3715    if (base[j] != NULL) {
3716      unmap_memory(base[j], size[j]);
3717    }
3718  }
3719
3720  if (i < max_tries) {
3721    return requested_addr;
3722  } else {
3723    return NULL;
3724  }
3725}
3726
3727size_t os::read(int fd, void *buf, unsigned int nBytes) {
3728  return ::read(fd, buf, nBytes);
3729}
3730
3731size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3732  return ::pread(fd, buf, nBytes, offset);
3733}
3734
3735// Short sleep, direct OS call.
3736//
3737// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3738// sched_yield(2) will actually give up the CPU:
3739//
3740//   * Alone on this pariticular CPU, keeps running.
3741//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3742//     (pre 2.6.39).
3743//
3744// So calling this with 0 is an alternative.
3745//
3746void os::naked_short_sleep(jlong ms) {
3747  struct timespec req;
3748
3749  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3750  req.tv_sec = 0;
3751  if (ms > 0) {
3752    req.tv_nsec = (ms % 1000) * 1000000;
3753  } else {
3754    req.tv_nsec = 1;
3755  }
3756
3757  nanosleep(&req, NULL);
3758
3759  return;
3760}
3761
3762// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3763void os::infinite_sleep() {
3764  while (true) {    // sleep forever ...
3765    ::sleep(100);   // ... 100 seconds at a time
3766  }
3767}
3768
3769// Used to convert frequent JVM_Yield() to nops
3770bool os::dont_yield() {
3771  return DontYieldALot;
3772}
3773
3774void os::naked_yield() {
3775  sched_yield();
3776}
3777
3778////////////////////////////////////////////////////////////////////////////////
3779// thread priority support
3780
3781// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3782// only supports dynamic priority, static priority must be zero. For real-time
3783// applications, Linux supports SCHED_RR which allows static priority (1-99).
3784// However, for large multi-threaded applications, SCHED_RR is not only slower
3785// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3786// of 5 runs - Sep 2005).
3787//
3788// The following code actually changes the niceness of kernel-thread/LWP. It
3789// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3790// not the entire user process, and user level threads are 1:1 mapped to kernel
3791// threads. It has always been the case, but could change in the future. For
3792// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3793// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3794
3795int os::java_to_os_priority[CriticalPriority + 1] = {
3796  19,              // 0 Entry should never be used
3797
3798   4,              // 1 MinPriority
3799   3,              // 2
3800   2,              // 3
3801
3802   1,              // 4
3803   0,              // 5 NormPriority
3804  -1,              // 6
3805
3806  -2,              // 7
3807  -3,              // 8
3808  -4,              // 9 NearMaxPriority
3809
3810  -5,              // 10 MaxPriority
3811
3812  -5               // 11 CriticalPriority
3813};
3814
3815static int prio_init() {
3816  if (ThreadPriorityPolicy == 1) {
3817    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3818    // if effective uid is not root. Perhaps, a more elegant way of doing
3819    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3820    if (geteuid() != 0) {
3821      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3822        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3823      }
3824      ThreadPriorityPolicy = 0;
3825    }
3826  }
3827  if (UseCriticalJavaThreadPriority) {
3828    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3829  }
3830  return 0;
3831}
3832
3833OSReturn os::set_native_priority(Thread* thread, int newpri) {
3834  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3835
3836  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3837  return (ret == 0) ? OS_OK : OS_ERR;
3838}
3839
3840OSReturn os::get_native_priority(const Thread* const thread,
3841                                 int *priority_ptr) {
3842  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3843    *priority_ptr = java_to_os_priority[NormPriority];
3844    return OS_OK;
3845  }
3846
3847  errno = 0;
3848  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3849  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3850}
3851
3852// Hint to the underlying OS that a task switch would not be good.
3853// Void return because it's a hint and can fail.
3854void os::hint_no_preempt() {}
3855
3856////////////////////////////////////////////////////////////////////////////////
3857// suspend/resume support
3858
3859//  the low-level signal-based suspend/resume support is a remnant from the
3860//  old VM-suspension that used to be for java-suspension, safepoints etc,
3861//  within hotspot. Now there is a single use-case for this:
3862//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3863//      that runs in the watcher thread.
3864//  The remaining code is greatly simplified from the more general suspension
3865//  code that used to be used.
3866//
3867//  The protocol is quite simple:
3868//  - suspend:
3869//      - sends a signal to the target thread
3870//      - polls the suspend state of the osthread using a yield loop
3871//      - target thread signal handler (SR_handler) sets suspend state
3872//        and blocks in sigsuspend until continued
3873//  - resume:
3874//      - sets target osthread state to continue
3875//      - sends signal to end the sigsuspend loop in the SR_handler
3876//
3877//  Note that the SR_lock plays no role in this suspend/resume protocol.
3878
3879static void resume_clear_context(OSThread *osthread) {
3880  osthread->set_ucontext(NULL);
3881  osthread->set_siginfo(NULL);
3882}
3883
3884static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3885                                 ucontext_t* context) {
3886  osthread->set_ucontext(context);
3887  osthread->set_siginfo(siginfo);
3888}
3889
3890// Handler function invoked when a thread's execution is suspended or
3891// resumed. We have to be careful that only async-safe functions are
3892// called here (Note: most pthread functions are not async safe and
3893// should be avoided.)
3894//
3895// Note: sigwait() is a more natural fit than sigsuspend() from an
3896// interface point of view, but sigwait() prevents the signal hander
3897// from being run. libpthread would get very confused by not having
3898// its signal handlers run and prevents sigwait()'s use with the
3899// mutex granting granting signal.
3900//
3901// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3902//
3903static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3904  // Save and restore errno to avoid confusing native code with EINTR
3905  // after sigsuspend.
3906  int old_errno = errno;
3907
3908  Thread* thread = Thread::current();
3909  OSThread* osthread = thread->osthread();
3910  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3911
3912  os::SuspendResume::State current = osthread->sr.state();
3913  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3914    suspend_save_context(osthread, siginfo, context);
3915
3916    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3917    os::SuspendResume::State state = osthread->sr.suspended();
3918    if (state == os::SuspendResume::SR_SUSPENDED) {
3919      sigset_t suspend_set;  // signals for sigsuspend()
3920
3921      // get current set of blocked signals and unblock resume signal
3922      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3923      sigdelset(&suspend_set, SR_signum);
3924
3925      sr_semaphore.signal();
3926      // wait here until we are resumed
3927      while (1) {
3928        sigsuspend(&suspend_set);
3929
3930        os::SuspendResume::State result = osthread->sr.running();
3931        if (result == os::SuspendResume::SR_RUNNING) {
3932          sr_semaphore.signal();
3933          break;
3934        }
3935      }
3936
3937    } else if (state == os::SuspendResume::SR_RUNNING) {
3938      // request was cancelled, continue
3939    } else {
3940      ShouldNotReachHere();
3941    }
3942
3943    resume_clear_context(osthread);
3944  } else if (current == os::SuspendResume::SR_RUNNING) {
3945    // request was cancelled, continue
3946  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3947    // ignore
3948  } else {
3949    // ignore
3950  }
3951
3952  errno = old_errno;
3953}
3954
3955static int SR_initialize() {
3956  struct sigaction act;
3957  char *s;
3958
3959  // Get signal number to use for suspend/resume
3960  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3961    int sig = ::strtol(s, 0, 10);
3962    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
3963        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
3964      SR_signum = sig;
3965    } else {
3966      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
3967              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
3968    }
3969  }
3970
3971  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3972         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3973
3974  sigemptyset(&SR_sigset);
3975  sigaddset(&SR_sigset, SR_signum);
3976
3977  // Set up signal handler for suspend/resume
3978  act.sa_flags = SA_RESTART|SA_SIGINFO;
3979  act.sa_handler = (void (*)(int)) SR_handler;
3980
3981  // SR_signum is blocked by default.
3982  // 4528190 - We also need to block pthread restart signal (32 on all
3983  // supported Linux platforms). Note that LinuxThreads need to block
3984  // this signal for all threads to work properly. So we don't have
3985  // to use hard-coded signal number when setting up the mask.
3986  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3987
3988  if (sigaction(SR_signum, &act, 0) == -1) {
3989    return -1;
3990  }
3991
3992  // Save signal flag
3993  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3994  return 0;
3995}
3996
3997static int sr_notify(OSThread* osthread) {
3998  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3999  assert_status(status == 0, status, "pthread_kill");
4000  return status;
4001}
4002
4003// "Randomly" selected value for how long we want to spin
4004// before bailing out on suspending a thread, also how often
4005// we send a signal to a thread we want to resume
4006static const int RANDOMLY_LARGE_INTEGER = 1000000;
4007static const int RANDOMLY_LARGE_INTEGER2 = 100;
4008
4009// returns true on success and false on error - really an error is fatal
4010// but this seems the normal response to library errors
4011static bool do_suspend(OSThread* osthread) {
4012  assert(osthread->sr.is_running(), "thread should be running");
4013  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4014
4015  // mark as suspended and send signal
4016  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4017    // failed to switch, state wasn't running?
4018    ShouldNotReachHere();
4019    return false;
4020  }
4021
4022  if (sr_notify(osthread) != 0) {
4023    ShouldNotReachHere();
4024  }
4025
4026  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4027  while (true) {
4028    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4029      break;
4030    } else {
4031      // timeout
4032      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4033      if (cancelled == os::SuspendResume::SR_RUNNING) {
4034        return false;
4035      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4036        // make sure that we consume the signal on the semaphore as well
4037        sr_semaphore.wait();
4038        break;
4039      } else {
4040        ShouldNotReachHere();
4041        return false;
4042      }
4043    }
4044  }
4045
4046  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4047  return true;
4048}
4049
4050static void do_resume(OSThread* osthread) {
4051  assert(osthread->sr.is_suspended(), "thread should be suspended");
4052  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4053
4054  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4055    // failed to switch to WAKEUP_REQUEST
4056    ShouldNotReachHere();
4057    return;
4058  }
4059
4060  while (true) {
4061    if (sr_notify(osthread) == 0) {
4062      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4063        if (osthread->sr.is_running()) {
4064          return;
4065        }
4066      }
4067    } else {
4068      ShouldNotReachHere();
4069    }
4070  }
4071
4072  guarantee(osthread->sr.is_running(), "Must be running!");
4073}
4074
4075///////////////////////////////////////////////////////////////////////////////////
4076// signal handling (except suspend/resume)
4077
4078// This routine may be used by user applications as a "hook" to catch signals.
4079// The user-defined signal handler must pass unrecognized signals to this
4080// routine, and if it returns true (non-zero), then the signal handler must
4081// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4082// routine will never retun false (zero), but instead will execute a VM panic
4083// routine kill the process.
4084//
4085// If this routine returns false, it is OK to call it again.  This allows
4086// the user-defined signal handler to perform checks either before or after
4087// the VM performs its own checks.  Naturally, the user code would be making
4088// a serious error if it tried to handle an exception (such as a null check
4089// or breakpoint) that the VM was generating for its own correct operation.
4090//
4091// This routine may recognize any of the following kinds of signals:
4092//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4093// It should be consulted by handlers for any of those signals.
4094//
4095// The caller of this routine must pass in the three arguments supplied
4096// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4097// field of the structure passed to sigaction().  This routine assumes that
4098// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4099//
4100// Note that the VM will print warnings if it detects conflicting signal
4101// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4102//
4103extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4104                                                 siginfo_t* siginfo,
4105                                                 void* ucontext,
4106                                                 int abort_if_unrecognized);
4107
4108void signalHandler(int sig, siginfo_t* info, void* uc) {
4109  assert(info != NULL && uc != NULL, "it must be old kernel");
4110  int orig_errno = errno;  // Preserve errno value over signal handler.
4111  JVM_handle_linux_signal(sig, info, uc, true);
4112  errno = orig_errno;
4113}
4114
4115
4116// This boolean allows users to forward their own non-matching signals
4117// to JVM_handle_linux_signal, harmlessly.
4118bool os::Linux::signal_handlers_are_installed = false;
4119
4120// For signal-chaining
4121struct sigaction sigact[NSIG];
4122uint64_t sigs = 0;
4123#if (64 < NSIG-1)
4124#error "Not all signals can be encoded in sigs. Adapt its type!"
4125#endif
4126bool os::Linux::libjsig_is_loaded = false;
4127typedef struct sigaction *(*get_signal_t)(int);
4128get_signal_t os::Linux::get_signal_action = NULL;
4129
4130struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4131  struct sigaction *actp = NULL;
4132
4133  if (libjsig_is_loaded) {
4134    // Retrieve the old signal handler from libjsig
4135    actp = (*get_signal_action)(sig);
4136  }
4137  if (actp == NULL) {
4138    // Retrieve the preinstalled signal handler from jvm
4139    actp = get_preinstalled_handler(sig);
4140  }
4141
4142  return actp;
4143}
4144
4145static bool call_chained_handler(struct sigaction *actp, int sig,
4146                                 siginfo_t *siginfo, void *context) {
4147  // Call the old signal handler
4148  if (actp->sa_handler == SIG_DFL) {
4149    // It's more reasonable to let jvm treat it as an unexpected exception
4150    // instead of taking the default action.
4151    return false;
4152  } else if (actp->sa_handler != SIG_IGN) {
4153    if ((actp->sa_flags & SA_NODEFER) == 0) {
4154      // automaticlly block the signal
4155      sigaddset(&(actp->sa_mask), sig);
4156    }
4157
4158    sa_handler_t hand = NULL;
4159    sa_sigaction_t sa = NULL;
4160    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4161    // retrieve the chained handler
4162    if (siginfo_flag_set) {
4163      sa = actp->sa_sigaction;
4164    } else {
4165      hand = actp->sa_handler;
4166    }
4167
4168    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4169      actp->sa_handler = SIG_DFL;
4170    }
4171
4172    // try to honor the signal mask
4173    sigset_t oset;
4174    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4175
4176    // call into the chained handler
4177    if (siginfo_flag_set) {
4178      (*sa)(sig, siginfo, context);
4179    } else {
4180      (*hand)(sig);
4181    }
4182
4183    // restore the signal mask
4184    pthread_sigmask(SIG_SETMASK, &oset, 0);
4185  }
4186  // Tell jvm's signal handler the signal is taken care of.
4187  return true;
4188}
4189
4190bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4191  bool chained = false;
4192  // signal-chaining
4193  if (UseSignalChaining) {
4194    struct sigaction *actp = get_chained_signal_action(sig);
4195    if (actp != NULL) {
4196      chained = call_chained_handler(actp, sig, siginfo, context);
4197    }
4198  }
4199  return chained;
4200}
4201
4202struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4203  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4204    return &sigact[sig];
4205  }
4206  return NULL;
4207}
4208
4209void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4210  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4211  sigact[sig] = oldAct;
4212  sigs |= (uint64_t)1 << (sig-1);
4213}
4214
4215// for diagnostic
4216int sigflags[NSIG];
4217
4218int os::Linux::get_our_sigflags(int sig) {
4219  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4220  return sigflags[sig];
4221}
4222
4223void os::Linux::set_our_sigflags(int sig, int flags) {
4224  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4225  if (sig > 0 && sig < NSIG) {
4226    sigflags[sig] = flags;
4227  }
4228}
4229
4230void os::Linux::set_signal_handler(int sig, bool set_installed) {
4231  // Check for overwrite.
4232  struct sigaction oldAct;
4233  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4234
4235  void* oldhand = oldAct.sa_sigaction
4236                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4237                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4238  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4239      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4240      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4241    if (AllowUserSignalHandlers || !set_installed) {
4242      // Do not overwrite; user takes responsibility to forward to us.
4243      return;
4244    } else if (UseSignalChaining) {
4245      // save the old handler in jvm
4246      save_preinstalled_handler(sig, oldAct);
4247      // libjsig also interposes the sigaction() call below and saves the
4248      // old sigaction on it own.
4249    } else {
4250      fatal("Encountered unexpected pre-existing sigaction handler "
4251            "%#lx for signal %d.", (long)oldhand, sig);
4252    }
4253  }
4254
4255  struct sigaction sigAct;
4256  sigfillset(&(sigAct.sa_mask));
4257  sigAct.sa_handler = SIG_DFL;
4258  if (!set_installed) {
4259    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4260  } else {
4261    sigAct.sa_sigaction = signalHandler;
4262    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4263  }
4264  // Save flags, which are set by ours
4265  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4266  sigflags[sig] = sigAct.sa_flags;
4267
4268  int ret = sigaction(sig, &sigAct, &oldAct);
4269  assert(ret == 0, "check");
4270
4271  void* oldhand2  = oldAct.sa_sigaction
4272                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4273                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4274  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4275}
4276
4277// install signal handlers for signals that HotSpot needs to
4278// handle in order to support Java-level exception handling.
4279
4280void os::Linux::install_signal_handlers() {
4281  if (!signal_handlers_are_installed) {
4282    signal_handlers_are_installed = true;
4283
4284    // signal-chaining
4285    typedef void (*signal_setting_t)();
4286    signal_setting_t begin_signal_setting = NULL;
4287    signal_setting_t end_signal_setting = NULL;
4288    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4289                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4290    if (begin_signal_setting != NULL) {
4291      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4292                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4293      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4294                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4295      libjsig_is_loaded = true;
4296      assert(UseSignalChaining, "should enable signal-chaining");
4297    }
4298    if (libjsig_is_loaded) {
4299      // Tell libjsig jvm is setting signal handlers
4300      (*begin_signal_setting)();
4301    }
4302
4303    set_signal_handler(SIGSEGV, true);
4304    set_signal_handler(SIGPIPE, true);
4305    set_signal_handler(SIGBUS, true);
4306    set_signal_handler(SIGILL, true);
4307    set_signal_handler(SIGFPE, true);
4308#if defined(PPC64)
4309    set_signal_handler(SIGTRAP, true);
4310#endif
4311    set_signal_handler(SIGXFSZ, true);
4312
4313    if (libjsig_is_loaded) {
4314      // Tell libjsig jvm finishes setting signal handlers
4315      (*end_signal_setting)();
4316    }
4317
4318    // We don't activate signal checker if libjsig is in place, we trust ourselves
4319    // and if UserSignalHandler is installed all bets are off.
4320    // Log that signal checking is off only if -verbose:jni is specified.
4321    if (CheckJNICalls) {
4322      if (libjsig_is_loaded) {
4323        if (PrintJNIResolving) {
4324          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4325        }
4326        check_signals = false;
4327      }
4328      if (AllowUserSignalHandlers) {
4329        if (PrintJNIResolving) {
4330          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4331        }
4332        check_signals = false;
4333      }
4334    }
4335  }
4336}
4337
4338// This is the fastest way to get thread cpu time on Linux.
4339// Returns cpu time (user+sys) for any thread, not only for current.
4340// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4341// It might work on 2.6.10+ with a special kernel/glibc patch.
4342// For reference, please, see IEEE Std 1003.1-2004:
4343//   http://www.unix.org/single_unix_specification
4344
4345jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4346  struct timespec tp;
4347  int rc = os::Linux::clock_gettime(clockid, &tp);
4348  assert(rc == 0, "clock_gettime is expected to return 0 code");
4349
4350  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4351}
4352
4353/////
4354// glibc on Linux platform uses non-documented flag
4355// to indicate, that some special sort of signal
4356// trampoline is used.
4357// We will never set this flag, and we should
4358// ignore this flag in our diagnostic
4359#ifdef SIGNIFICANT_SIGNAL_MASK
4360  #undef SIGNIFICANT_SIGNAL_MASK
4361#endif
4362#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4363
4364static const char* get_signal_handler_name(address handler,
4365                                           char* buf, int buflen) {
4366  int offset = 0;
4367  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4368  if (found) {
4369    // skip directory names
4370    const char *p1, *p2;
4371    p1 = buf;
4372    size_t len = strlen(os::file_separator());
4373    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4374    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4375  } else {
4376    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4377  }
4378  return buf;
4379}
4380
4381static void print_signal_handler(outputStream* st, int sig,
4382                                 char* buf, size_t buflen) {
4383  struct sigaction sa;
4384
4385  sigaction(sig, NULL, &sa);
4386
4387  // See comment for SIGNIFICANT_SIGNAL_MASK define
4388  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4389
4390  st->print("%s: ", os::exception_name(sig, buf, buflen));
4391
4392  address handler = (sa.sa_flags & SA_SIGINFO)
4393    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4394    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4395
4396  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4397    st->print("SIG_DFL");
4398  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4399    st->print("SIG_IGN");
4400  } else {
4401    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4402  }
4403
4404  st->print(", sa_mask[0]=");
4405  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4406
4407  address rh = VMError::get_resetted_sighandler(sig);
4408  // May be, handler was resetted by VMError?
4409  if (rh != NULL) {
4410    handler = rh;
4411    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4412  }
4413
4414  st->print(", sa_flags=");
4415  os::Posix::print_sa_flags(st, sa.sa_flags);
4416
4417  // Check: is it our handler?
4418  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4419      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4420    // It is our signal handler
4421    // check for flags, reset system-used one!
4422    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4423      st->print(
4424                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4425                os::Linux::get_our_sigflags(sig));
4426    }
4427  }
4428  st->cr();
4429}
4430
4431
4432#define DO_SIGNAL_CHECK(sig)                      \
4433  do {                                            \
4434    if (!sigismember(&check_signal_done, sig)) {  \
4435      os::Linux::check_signal_handler(sig);       \
4436    }                                             \
4437  } while (0)
4438
4439// This method is a periodic task to check for misbehaving JNI applications
4440// under CheckJNI, we can add any periodic checks here
4441
4442void os::run_periodic_checks() {
4443  if (check_signals == false) return;
4444
4445  // SEGV and BUS if overridden could potentially prevent
4446  // generation of hs*.log in the event of a crash, debugging
4447  // such a case can be very challenging, so we absolutely
4448  // check the following for a good measure:
4449  DO_SIGNAL_CHECK(SIGSEGV);
4450  DO_SIGNAL_CHECK(SIGILL);
4451  DO_SIGNAL_CHECK(SIGFPE);
4452  DO_SIGNAL_CHECK(SIGBUS);
4453  DO_SIGNAL_CHECK(SIGPIPE);
4454  DO_SIGNAL_CHECK(SIGXFSZ);
4455#if defined(PPC64)
4456  DO_SIGNAL_CHECK(SIGTRAP);
4457#endif
4458
4459  // ReduceSignalUsage allows the user to override these handlers
4460  // see comments at the very top and jvm_solaris.h
4461  if (!ReduceSignalUsage) {
4462    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4463    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4464    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4465    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4466  }
4467
4468  DO_SIGNAL_CHECK(SR_signum);
4469}
4470
4471typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4472
4473static os_sigaction_t os_sigaction = NULL;
4474
4475void os::Linux::check_signal_handler(int sig) {
4476  char buf[O_BUFLEN];
4477  address jvmHandler = NULL;
4478
4479
4480  struct sigaction act;
4481  if (os_sigaction == NULL) {
4482    // only trust the default sigaction, in case it has been interposed
4483    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4484    if (os_sigaction == NULL) return;
4485  }
4486
4487  os_sigaction(sig, (struct sigaction*)NULL, &act);
4488
4489
4490  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4491
4492  address thisHandler = (act.sa_flags & SA_SIGINFO)
4493    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4494    : CAST_FROM_FN_PTR(address, act.sa_handler);
4495
4496
4497  switch (sig) {
4498  case SIGSEGV:
4499  case SIGBUS:
4500  case SIGFPE:
4501  case SIGPIPE:
4502  case SIGILL:
4503  case SIGXFSZ:
4504    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4505    break;
4506
4507  case SHUTDOWN1_SIGNAL:
4508  case SHUTDOWN2_SIGNAL:
4509  case SHUTDOWN3_SIGNAL:
4510  case BREAK_SIGNAL:
4511    jvmHandler = (address)user_handler();
4512    break;
4513
4514  default:
4515    if (sig == SR_signum) {
4516      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4517    } else {
4518      return;
4519    }
4520    break;
4521  }
4522
4523  if (thisHandler != jvmHandler) {
4524    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4525    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4526    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4527    // No need to check this sig any longer
4528    sigaddset(&check_signal_done, sig);
4529    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4530    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4531      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4532                    exception_name(sig, buf, O_BUFLEN));
4533    }
4534  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4535    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4536    tty->print("expected:");
4537    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4538    tty->cr();
4539    tty->print("  found:");
4540    os::Posix::print_sa_flags(tty, act.sa_flags);
4541    tty->cr();
4542    // No need to check this sig any longer
4543    sigaddset(&check_signal_done, sig);
4544  }
4545
4546  // Dump all the signal
4547  if (sigismember(&check_signal_done, sig)) {
4548    print_signal_handlers(tty, buf, O_BUFLEN);
4549  }
4550}
4551
4552extern void report_error(char* file_name, int line_no, char* title,
4553                         char* format, ...);
4554
4555// this is called _before_ the most of global arguments have been parsed
4556void os::init(void) {
4557  char dummy;   // used to get a guess on initial stack address
4558//  first_hrtime = gethrtime();
4559
4560  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4561
4562  init_random(1234567);
4563
4564  ThreadCritical::initialize();
4565
4566  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4567  if (Linux::page_size() == -1) {
4568    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4569          strerror(errno));
4570  }
4571  init_page_sizes((size_t) Linux::page_size());
4572
4573  Linux::initialize_system_info();
4574
4575  // main_thread points to the aboriginal thread
4576  Linux::_main_thread = pthread_self();
4577
4578  Linux::clock_init();
4579  initial_time_count = javaTimeNanos();
4580
4581  // pthread_condattr initialization for monotonic clock
4582  int status;
4583  pthread_condattr_t* _condattr = os::Linux::condAttr();
4584  if ((status = pthread_condattr_init(_condattr)) != 0) {
4585    fatal("pthread_condattr_init: %s", strerror(status));
4586  }
4587  // Only set the clock if CLOCK_MONOTONIC is available
4588  if (os::supports_monotonic_clock()) {
4589    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4590      if (status == EINVAL) {
4591        warning("Unable to use monotonic clock with relative timed-waits" \
4592                " - changes to the time-of-day clock may have adverse affects");
4593      } else {
4594        fatal("pthread_condattr_setclock: %s", strerror(status));
4595      }
4596    }
4597  }
4598  // else it defaults to CLOCK_REALTIME
4599
4600  // If the pagesize of the VM is greater than 8K determine the appropriate
4601  // number of initial guard pages.  The user can change this with the
4602  // command line arguments, if needed.
4603  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4604    StackYellowPages = 1;
4605    StackRedPages = 1;
4606#if defined(IA32) || defined(IA64)
4607    StackReservedPages = 1;
4608#else
4609    StackReservedPages = 0;
4610#endif
4611    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4612  }
4613
4614  // retrieve entry point for pthread_setname_np
4615  Linux::_pthread_setname_np =
4616    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4617
4618}
4619
4620// To install functions for atexit system call
4621extern "C" {
4622  static void perfMemory_exit_helper() {
4623    perfMemory_exit();
4624  }
4625}
4626
4627// this is called _after_ the global arguments have been parsed
4628jint os::init_2(void) {
4629  Linux::fast_thread_clock_init();
4630
4631  // Allocate a single page and mark it as readable for safepoint polling
4632  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4633  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4634
4635  os::set_polling_page(polling_page);
4636
4637#ifndef PRODUCT
4638  if (Verbose && PrintMiscellaneous) {
4639    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4640               (intptr_t)polling_page);
4641  }
4642#endif
4643
4644  if (!UseMembar) {
4645    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4646    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4647    os::set_memory_serialize_page(mem_serialize_page);
4648
4649#ifndef PRODUCT
4650    if (Verbose && PrintMiscellaneous) {
4651      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4652                 (intptr_t)mem_serialize_page);
4653    }
4654#endif
4655  }
4656
4657  // initialize suspend/resume support - must do this before signal_sets_init()
4658  if (SR_initialize() != 0) {
4659    perror("SR_initialize failed");
4660    return JNI_ERR;
4661  }
4662
4663  Linux::signal_sets_init();
4664  Linux::install_signal_handlers();
4665
4666  // Check minimum allowable stack size for thread creation and to initialize
4667  // the java system classes, including StackOverflowError - depends on page
4668  // size.  Add a page for compiler2 recursion in main thread.
4669  // Add in 2*BytesPerWord times page size to account for VM stack during
4670  // class initialization depending on 32 or 64 bit VM.
4671  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4672                                      (size_t)(StackReservedPages+StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4673                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4674
4675  size_t threadStackSizeInBytes = ThreadStackSize * K;
4676  if (threadStackSizeInBytes != 0 &&
4677      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4678    tty->print_cr("\nThe stack size specified is too small, "
4679                  "Specify at least " SIZE_FORMAT "k",
4680                  os::Linux::min_stack_allowed/ K);
4681    return JNI_ERR;
4682  }
4683
4684  // Make the stack size a multiple of the page size so that
4685  // the yellow/red zones can be guarded.
4686  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4687                                                vm_page_size()));
4688
4689  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4690
4691#if defined(IA32)
4692  workaround_expand_exec_shield_cs_limit();
4693#endif
4694
4695  Linux::libpthread_init();
4696  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4697    tty->print_cr("[HotSpot is running with %s, %s]\n",
4698                  Linux::glibc_version(), Linux::libpthread_version());
4699  }
4700
4701  if (UseNUMA) {
4702    if (!Linux::libnuma_init()) {
4703      UseNUMA = false;
4704    } else {
4705      if ((Linux::numa_max_node() < 1)) {
4706        // There's only one node(they start from 0), disable NUMA.
4707        UseNUMA = false;
4708      }
4709    }
4710    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4711    // we can make the adaptive lgrp chunk resizing work. If the user specified
4712    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4713    // disable adaptive resizing.
4714    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4715      if (FLAG_IS_DEFAULT(UseNUMA)) {
4716        UseNUMA = false;
4717      } else {
4718        if (FLAG_IS_DEFAULT(UseLargePages) &&
4719            FLAG_IS_DEFAULT(UseSHM) &&
4720            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4721          UseLargePages = false;
4722        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4723          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4724          UseAdaptiveSizePolicy = false;
4725          UseAdaptiveNUMAChunkSizing = false;
4726        }
4727      }
4728    }
4729    if (!UseNUMA && ForceNUMA) {
4730      UseNUMA = true;
4731    }
4732  }
4733
4734  if (MaxFDLimit) {
4735    // set the number of file descriptors to max. print out error
4736    // if getrlimit/setrlimit fails but continue regardless.
4737    struct rlimit nbr_files;
4738    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4739    if (status != 0) {
4740      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4741        perror("os::init_2 getrlimit failed");
4742      }
4743    } else {
4744      nbr_files.rlim_cur = nbr_files.rlim_max;
4745      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4746      if (status != 0) {
4747        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4748          perror("os::init_2 setrlimit failed");
4749        }
4750      }
4751    }
4752  }
4753
4754  // Initialize lock used to serialize thread creation (see os::create_thread)
4755  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4756
4757  // at-exit methods are called in the reverse order of their registration.
4758  // atexit functions are called on return from main or as a result of a
4759  // call to exit(3C). There can be only 32 of these functions registered
4760  // and atexit() does not set errno.
4761
4762  if (PerfAllowAtExitRegistration) {
4763    // only register atexit functions if PerfAllowAtExitRegistration is set.
4764    // atexit functions can be delayed until process exit time, which
4765    // can be problematic for embedded VM situations. Embedded VMs should
4766    // call DestroyJavaVM() to assure that VM resources are released.
4767
4768    // note: perfMemory_exit_helper atexit function may be removed in
4769    // the future if the appropriate cleanup code can be added to the
4770    // VM_Exit VMOperation's doit method.
4771    if (atexit(perfMemory_exit_helper) != 0) {
4772      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4773    }
4774  }
4775
4776  // initialize thread priority policy
4777  prio_init();
4778
4779  return JNI_OK;
4780}
4781
4782// Mark the polling page as unreadable
4783void os::make_polling_page_unreadable(void) {
4784  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4785    fatal("Could not disable polling page");
4786  }
4787}
4788
4789// Mark the polling page as readable
4790void os::make_polling_page_readable(void) {
4791  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4792    fatal("Could not enable polling page");
4793  }
4794}
4795
4796int os::active_processor_count() {
4797  // Linux doesn't yet have a (official) notion of processor sets,
4798  // so just return the number of online processors.
4799  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4800  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4801  return online_cpus;
4802}
4803
4804void os::set_native_thread_name(const char *name) {
4805  if (Linux::_pthread_setname_np) {
4806    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4807    snprintf(buf, sizeof(buf), "%s", name);
4808    buf[sizeof(buf) - 1] = '\0';
4809    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4810    // ERANGE should not happen; all other errors should just be ignored.
4811    assert(rc != ERANGE, "pthread_setname_np failed");
4812  }
4813}
4814
4815bool os::distribute_processes(uint length, uint* distribution) {
4816  // Not yet implemented.
4817  return false;
4818}
4819
4820bool os::bind_to_processor(uint processor_id) {
4821  // Not yet implemented.
4822  return false;
4823}
4824
4825///
4826
4827void os::SuspendedThreadTask::internal_do_task() {
4828  if (do_suspend(_thread->osthread())) {
4829    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4830    do_task(context);
4831    do_resume(_thread->osthread());
4832  }
4833}
4834
4835class PcFetcher : public os::SuspendedThreadTask {
4836 public:
4837  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4838  ExtendedPC result();
4839 protected:
4840  void do_task(const os::SuspendedThreadTaskContext& context);
4841 private:
4842  ExtendedPC _epc;
4843};
4844
4845ExtendedPC PcFetcher::result() {
4846  guarantee(is_done(), "task is not done yet.");
4847  return _epc;
4848}
4849
4850void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4851  Thread* thread = context.thread();
4852  OSThread* osthread = thread->osthread();
4853  if (osthread->ucontext() != NULL) {
4854    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4855  } else {
4856    // NULL context is unexpected, double-check this is the VMThread
4857    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4858  }
4859}
4860
4861// Suspends the target using the signal mechanism and then grabs the PC before
4862// resuming the target. Used by the flat-profiler only
4863ExtendedPC os::get_thread_pc(Thread* thread) {
4864  // Make sure that it is called by the watcher for the VMThread
4865  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4866  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4867
4868  PcFetcher fetcher(thread);
4869  fetcher.run();
4870  return fetcher.result();
4871}
4872
4873////////////////////////////////////////////////////////////////////////////////
4874// debug support
4875
4876bool os::find(address addr, outputStream* st) {
4877  Dl_info dlinfo;
4878  memset(&dlinfo, 0, sizeof(dlinfo));
4879  if (dladdr(addr, &dlinfo) != 0) {
4880    st->print(PTR_FORMAT ": ", p2i(addr));
4881    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4882      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4883                p2i(addr) - p2i(dlinfo.dli_saddr));
4884    } else if (dlinfo.dli_fbase != NULL) {
4885      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4886    } else {
4887      st->print("<absolute address>");
4888    }
4889    if (dlinfo.dli_fname != NULL) {
4890      st->print(" in %s", dlinfo.dli_fname);
4891    }
4892    if (dlinfo.dli_fbase != NULL) {
4893      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4894    }
4895    st->cr();
4896
4897    if (Verbose) {
4898      // decode some bytes around the PC
4899      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4900      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4901      address       lowest = (address) dlinfo.dli_sname;
4902      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4903      if (begin < lowest)  begin = lowest;
4904      Dl_info dlinfo2;
4905      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4906          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4907        end = (address) dlinfo2.dli_saddr;
4908      }
4909      Disassembler::decode(begin, end, st);
4910    }
4911    return true;
4912  }
4913  return false;
4914}
4915
4916////////////////////////////////////////////////////////////////////////////////
4917// misc
4918
4919// This does not do anything on Linux. This is basically a hook for being
4920// able to use structured exception handling (thread-local exception filters)
4921// on, e.g., Win32.
4922void
4923os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
4924                         JavaCallArguments* args, Thread* thread) {
4925  f(value, method, args, thread);
4926}
4927
4928void os::print_statistics() {
4929}
4930
4931bool os::message_box(const char* title, const char* message) {
4932  int i;
4933  fdStream err(defaultStream::error_fd());
4934  for (i = 0; i < 78; i++) err.print_raw("=");
4935  err.cr();
4936  err.print_raw_cr(title);
4937  for (i = 0; i < 78; i++) err.print_raw("-");
4938  err.cr();
4939  err.print_raw_cr(message);
4940  for (i = 0; i < 78; i++) err.print_raw("=");
4941  err.cr();
4942
4943  char buf[16];
4944  // Prevent process from exiting upon "read error" without consuming all CPU
4945  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4946
4947  return buf[0] == 'y' || buf[0] == 'Y';
4948}
4949
4950int os::stat(const char *path, struct stat *sbuf) {
4951  char pathbuf[MAX_PATH];
4952  if (strlen(path) > MAX_PATH - 1) {
4953    errno = ENAMETOOLONG;
4954    return -1;
4955  }
4956  os::native_path(strcpy(pathbuf, path));
4957  return ::stat(pathbuf, sbuf);
4958}
4959
4960bool os::check_heap(bool force) {
4961  return true;
4962}
4963
4964// Is a (classpath) directory empty?
4965bool os::dir_is_empty(const char* path) {
4966  DIR *dir = NULL;
4967  struct dirent *ptr;
4968
4969  dir = opendir(path);
4970  if (dir == NULL) return true;
4971
4972  // Scan the directory
4973  bool result = true;
4974  char buf[sizeof(struct dirent) + MAX_PATH];
4975  while (result && (ptr = ::readdir(dir)) != NULL) {
4976    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4977      result = false;
4978    }
4979  }
4980  closedir(dir);
4981  return result;
4982}
4983
4984// This code originates from JDK's sysOpen and open64_w
4985// from src/solaris/hpi/src/system_md.c
4986
4987int os::open(const char *path, int oflag, int mode) {
4988  if (strlen(path) > MAX_PATH - 1) {
4989    errno = ENAMETOOLONG;
4990    return -1;
4991  }
4992
4993  // All file descriptors that are opened in the Java process and not
4994  // specifically destined for a subprocess should have the close-on-exec
4995  // flag set.  If we don't set it, then careless 3rd party native code
4996  // might fork and exec without closing all appropriate file descriptors
4997  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
4998  // turn might:
4999  //
5000  // - cause end-of-file to fail to be detected on some file
5001  //   descriptors, resulting in mysterious hangs, or
5002  //
5003  // - might cause an fopen in the subprocess to fail on a system
5004  //   suffering from bug 1085341.
5005  //
5006  // (Yes, the default setting of the close-on-exec flag is a Unix
5007  // design flaw)
5008  //
5009  // See:
5010  // 1085341: 32-bit stdio routines should support file descriptors >255
5011  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5012  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5013  //
5014  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5015  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5016  // because it saves a system call and removes a small window where the flag
5017  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5018  // and we fall back to using FD_CLOEXEC (see below).
5019#ifdef O_CLOEXEC
5020  oflag |= O_CLOEXEC;
5021#endif
5022
5023  int fd = ::open64(path, oflag, mode);
5024  if (fd == -1) return -1;
5025
5026  //If the open succeeded, the file might still be a directory
5027  {
5028    struct stat64 buf64;
5029    int ret = ::fstat64(fd, &buf64);
5030    int st_mode = buf64.st_mode;
5031
5032    if (ret != -1) {
5033      if ((st_mode & S_IFMT) == S_IFDIR) {
5034        errno = EISDIR;
5035        ::close(fd);
5036        return -1;
5037      }
5038    } else {
5039      ::close(fd);
5040      return -1;
5041    }
5042  }
5043
5044#ifdef FD_CLOEXEC
5045  // Validate that the use of the O_CLOEXEC flag on open above worked.
5046  // With recent kernels, we will perform this check exactly once.
5047  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5048  if (!O_CLOEXEC_is_known_to_work) {
5049    int flags = ::fcntl(fd, F_GETFD);
5050    if (flags != -1) {
5051      if ((flags & FD_CLOEXEC) != 0)
5052        O_CLOEXEC_is_known_to_work = 1;
5053      else
5054        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5055    }
5056  }
5057#endif
5058
5059  return fd;
5060}
5061
5062
5063// create binary file, rewriting existing file if required
5064int os::create_binary_file(const char* path, bool rewrite_existing) {
5065  int oflags = O_WRONLY | O_CREAT;
5066  if (!rewrite_existing) {
5067    oflags |= O_EXCL;
5068  }
5069  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5070}
5071
5072// return current position of file pointer
5073jlong os::current_file_offset(int fd) {
5074  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5075}
5076
5077// move file pointer to the specified offset
5078jlong os::seek_to_file_offset(int fd, jlong offset) {
5079  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5080}
5081
5082// This code originates from JDK's sysAvailable
5083// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5084
5085int os::available(int fd, jlong *bytes) {
5086  jlong cur, end;
5087  int mode;
5088  struct stat64 buf64;
5089
5090  if (::fstat64(fd, &buf64) >= 0) {
5091    mode = buf64.st_mode;
5092    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5093      int n;
5094      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5095        *bytes = n;
5096        return 1;
5097      }
5098    }
5099  }
5100  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5101    return 0;
5102  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5103    return 0;
5104  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5105    return 0;
5106  }
5107  *bytes = end - cur;
5108  return 1;
5109}
5110
5111// Map a block of memory.
5112char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5113                        char *addr, size_t bytes, bool read_only,
5114                        bool allow_exec) {
5115  int prot;
5116  int flags = MAP_PRIVATE;
5117
5118  if (read_only) {
5119    prot = PROT_READ;
5120  } else {
5121    prot = PROT_READ | PROT_WRITE;
5122  }
5123
5124  if (allow_exec) {
5125    prot |= PROT_EXEC;
5126  }
5127
5128  if (addr != NULL) {
5129    flags |= MAP_FIXED;
5130  }
5131
5132  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5133                                     fd, file_offset);
5134  if (mapped_address == MAP_FAILED) {
5135    return NULL;
5136  }
5137  return mapped_address;
5138}
5139
5140
5141// Remap a block of memory.
5142char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5143                          char *addr, size_t bytes, bool read_only,
5144                          bool allow_exec) {
5145  // same as map_memory() on this OS
5146  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5147                        allow_exec);
5148}
5149
5150
5151// Unmap a block of memory.
5152bool os::pd_unmap_memory(char* addr, size_t bytes) {
5153  return munmap(addr, bytes) == 0;
5154}
5155
5156static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5157
5158static clockid_t thread_cpu_clockid(Thread* thread) {
5159  pthread_t tid = thread->osthread()->pthread_id();
5160  clockid_t clockid;
5161
5162  // Get thread clockid
5163  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5164  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5165  return clockid;
5166}
5167
5168// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5169// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5170// of a thread.
5171//
5172// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5173// the fast estimate available on the platform.
5174
5175jlong os::current_thread_cpu_time() {
5176  if (os::Linux::supports_fast_thread_cpu_time()) {
5177    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5178  } else {
5179    // return user + sys since the cost is the same
5180    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5181  }
5182}
5183
5184jlong os::thread_cpu_time(Thread* thread) {
5185  // consistent with what current_thread_cpu_time() returns
5186  if (os::Linux::supports_fast_thread_cpu_time()) {
5187    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5188  } else {
5189    return slow_thread_cpu_time(thread, true /* user + sys */);
5190  }
5191}
5192
5193jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5194  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5195    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5196  } else {
5197    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5198  }
5199}
5200
5201jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5202  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5203    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5204  } else {
5205    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5206  }
5207}
5208
5209//  -1 on error.
5210static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5211  pid_t  tid = thread->osthread()->thread_id();
5212  char *s;
5213  char stat[2048];
5214  int statlen;
5215  char proc_name[64];
5216  int count;
5217  long sys_time, user_time;
5218  char cdummy;
5219  int idummy;
5220  long ldummy;
5221  FILE *fp;
5222
5223  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5224  fp = fopen(proc_name, "r");
5225  if (fp == NULL) return -1;
5226  statlen = fread(stat, 1, 2047, fp);
5227  stat[statlen] = '\0';
5228  fclose(fp);
5229
5230  // Skip pid and the command string. Note that we could be dealing with
5231  // weird command names, e.g. user could decide to rename java launcher
5232  // to "java 1.4.2 :)", then the stat file would look like
5233  //                1234 (java 1.4.2 :)) R ... ...
5234  // We don't really need to know the command string, just find the last
5235  // occurrence of ")" and then start parsing from there. See bug 4726580.
5236  s = strrchr(stat, ')');
5237  if (s == NULL) return -1;
5238
5239  // Skip blank chars
5240  do { s++; } while (s && isspace(*s));
5241
5242  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5243                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5244                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5245                 &user_time, &sys_time);
5246  if (count != 13) return -1;
5247  if (user_sys_cpu_time) {
5248    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5249  } else {
5250    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5251  }
5252}
5253
5254void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5255  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5256  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5257  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5258  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5259}
5260
5261void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5262  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5263  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5264  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5265  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5266}
5267
5268bool os::is_thread_cpu_time_supported() {
5269  return true;
5270}
5271
5272// System loadavg support.  Returns -1 if load average cannot be obtained.
5273// Linux doesn't yet have a (official) notion of processor sets,
5274// so just return the system wide load average.
5275int os::loadavg(double loadavg[], int nelem) {
5276  return ::getloadavg(loadavg, nelem);
5277}
5278
5279void os::pause() {
5280  char filename[MAX_PATH];
5281  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5282    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5283  } else {
5284    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5285  }
5286
5287  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5288  if (fd != -1) {
5289    struct stat buf;
5290    ::close(fd);
5291    while (::stat(filename, &buf) == 0) {
5292      (void)::poll(NULL, 0, 100);
5293    }
5294  } else {
5295    jio_fprintf(stderr,
5296                "Could not open pause file '%s', continuing immediately.\n", filename);
5297  }
5298}
5299
5300
5301// Refer to the comments in os_solaris.cpp park-unpark. The next two
5302// comment paragraphs are worth repeating here:
5303//
5304// Assumption:
5305//    Only one parker can exist on an event, which is why we allocate
5306//    them per-thread. Multiple unparkers can coexist.
5307//
5308// _Event serves as a restricted-range semaphore.
5309//   -1 : thread is blocked, i.e. there is a waiter
5310//    0 : neutral: thread is running or ready,
5311//        could have been signaled after a wait started
5312//    1 : signaled - thread is running or ready
5313//
5314// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5315// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5316// For specifics regarding the bug see GLIBC BUGID 261237 :
5317//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5318// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5319// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5320// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5321// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5322// and monitorenter when we're using 1-0 locking.  All those operations may result in
5323// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5324// of libpthread avoids the problem, but isn't practical.
5325//
5326// Possible remedies:
5327//
5328// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5329//      This is palliative and probabilistic, however.  If the thread is preempted
5330//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5331//      than the minimum period may have passed, and the abstime may be stale (in the
5332//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5333//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5334//
5335// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5336//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5337//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5338//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5339//      thread.
5340//
5341// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5342//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5343//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5344//      This also works well.  In fact it avoids kernel-level scalability impediments
5345//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5346//      timers in a graceful fashion.
5347//
5348// 4.   When the abstime value is in the past it appears that control returns
5349//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5350//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5351//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5352//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5353//      It may be possible to avoid reinitialization by checking the return
5354//      value from pthread_cond_timedwait().  In addition to reinitializing the
5355//      condvar we must establish the invariant that cond_signal() is only called
5356//      within critical sections protected by the adjunct mutex.  This prevents
5357//      cond_signal() from "seeing" a condvar that's in the midst of being
5358//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5359//      desirable signal-after-unlock optimization that avoids futile context switching.
5360//
5361//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5362//      structure when a condvar is used or initialized.  cond_destroy()  would
5363//      release the helper structure.  Our reinitialize-after-timedwait fix
5364//      put excessive stress on malloc/free and locks protecting the c-heap.
5365//
5366// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5367// It may be possible to refine (4) by checking the kernel and NTPL verisons
5368// and only enabling the work-around for vulnerable environments.
5369
5370// utility to compute the abstime argument to timedwait:
5371// millis is the relative timeout time
5372// abstime will be the absolute timeout time
5373// TODO: replace compute_abstime() with unpackTime()
5374
5375static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5376  if (millis < 0)  millis = 0;
5377
5378  jlong seconds = millis / 1000;
5379  millis %= 1000;
5380  if (seconds > 50000000) { // see man cond_timedwait(3T)
5381    seconds = 50000000;
5382  }
5383
5384  if (os::supports_monotonic_clock()) {
5385    struct timespec now;
5386    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5387    assert_status(status == 0, status, "clock_gettime");
5388    abstime->tv_sec = now.tv_sec  + seconds;
5389    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5390    if (nanos >= NANOSECS_PER_SEC) {
5391      abstime->tv_sec += 1;
5392      nanos -= NANOSECS_PER_SEC;
5393    }
5394    abstime->tv_nsec = nanos;
5395  } else {
5396    struct timeval now;
5397    int status = gettimeofday(&now, NULL);
5398    assert(status == 0, "gettimeofday");
5399    abstime->tv_sec = now.tv_sec  + seconds;
5400    long usec = now.tv_usec + millis * 1000;
5401    if (usec >= 1000000) {
5402      abstime->tv_sec += 1;
5403      usec -= 1000000;
5404    }
5405    abstime->tv_nsec = usec * 1000;
5406  }
5407  return abstime;
5408}
5409
5410void os::PlatformEvent::park() {       // AKA "down()"
5411  // Transitions for _Event:
5412  //   -1 => -1 : illegal
5413  //    1 =>  0 : pass - return immediately
5414  //    0 => -1 : block; then set _Event to 0 before returning
5415
5416  // Invariant: Only the thread associated with the Event/PlatformEvent
5417  // may call park().
5418  // TODO: assert that _Assoc != NULL or _Assoc == Self
5419  assert(_nParked == 0, "invariant");
5420
5421  int v;
5422  for (;;) {
5423    v = _Event;
5424    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5425  }
5426  guarantee(v >= 0, "invariant");
5427  if (v == 0) {
5428    // Do this the hard way by blocking ...
5429    int status = pthread_mutex_lock(_mutex);
5430    assert_status(status == 0, status, "mutex_lock");
5431    guarantee(_nParked == 0, "invariant");
5432    ++_nParked;
5433    while (_Event < 0) {
5434      status = pthread_cond_wait(_cond, _mutex);
5435      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5436      // Treat this the same as if the wait was interrupted
5437      if (status == ETIME) { status = EINTR; }
5438      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5439    }
5440    --_nParked;
5441
5442    _Event = 0;
5443    status = pthread_mutex_unlock(_mutex);
5444    assert_status(status == 0, status, "mutex_unlock");
5445    // Paranoia to ensure our locked and lock-free paths interact
5446    // correctly with each other.
5447    OrderAccess::fence();
5448  }
5449  guarantee(_Event >= 0, "invariant");
5450}
5451
5452int os::PlatformEvent::park(jlong millis) {
5453  // Transitions for _Event:
5454  //   -1 => -1 : illegal
5455  //    1 =>  0 : pass - return immediately
5456  //    0 => -1 : block; then set _Event to 0 before returning
5457
5458  guarantee(_nParked == 0, "invariant");
5459
5460  int v;
5461  for (;;) {
5462    v = _Event;
5463    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5464  }
5465  guarantee(v >= 0, "invariant");
5466  if (v != 0) return OS_OK;
5467
5468  // We do this the hard way, by blocking the thread.
5469  // Consider enforcing a minimum timeout value.
5470  struct timespec abst;
5471  compute_abstime(&abst, millis);
5472
5473  int ret = OS_TIMEOUT;
5474  int status = pthread_mutex_lock(_mutex);
5475  assert_status(status == 0, status, "mutex_lock");
5476  guarantee(_nParked == 0, "invariant");
5477  ++_nParked;
5478
5479  // Object.wait(timo) will return because of
5480  // (a) notification
5481  // (b) timeout
5482  // (c) thread.interrupt
5483  //
5484  // Thread.interrupt and object.notify{All} both call Event::set.
5485  // That is, we treat thread.interrupt as a special case of notification.
5486  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5487  // We assume all ETIME returns are valid.
5488  //
5489  // TODO: properly differentiate simultaneous notify+interrupt.
5490  // In that case, we should propagate the notify to another waiter.
5491
5492  while (_Event < 0) {
5493    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5494    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5495      pthread_cond_destroy(_cond);
5496      pthread_cond_init(_cond, os::Linux::condAttr());
5497    }
5498    assert_status(status == 0 || status == EINTR ||
5499                  status == ETIME || status == ETIMEDOUT,
5500                  status, "cond_timedwait");
5501    if (!FilterSpuriousWakeups) break;                 // previous semantics
5502    if (status == ETIME || status == ETIMEDOUT) break;
5503    // We consume and ignore EINTR and spurious wakeups.
5504  }
5505  --_nParked;
5506  if (_Event >= 0) {
5507    ret = OS_OK;
5508  }
5509  _Event = 0;
5510  status = pthread_mutex_unlock(_mutex);
5511  assert_status(status == 0, status, "mutex_unlock");
5512  assert(_nParked == 0, "invariant");
5513  // Paranoia to ensure our locked and lock-free paths interact
5514  // correctly with each other.
5515  OrderAccess::fence();
5516  return ret;
5517}
5518
5519void os::PlatformEvent::unpark() {
5520  // Transitions for _Event:
5521  //    0 => 1 : just return
5522  //    1 => 1 : just return
5523  //   -1 => either 0 or 1; must signal target thread
5524  //         That is, we can safely transition _Event from -1 to either
5525  //         0 or 1.
5526  // See also: "Semaphores in Plan 9" by Mullender & Cox
5527  //
5528  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5529  // that it will take two back-to-back park() calls for the owning
5530  // thread to block. This has the benefit of forcing a spurious return
5531  // from the first park() call after an unpark() call which will help
5532  // shake out uses of park() and unpark() without condition variables.
5533
5534  if (Atomic::xchg(1, &_Event) >= 0) return;
5535
5536  // Wait for the thread associated with the event to vacate
5537  int status = pthread_mutex_lock(_mutex);
5538  assert_status(status == 0, status, "mutex_lock");
5539  int AnyWaiters = _nParked;
5540  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5541  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5542    AnyWaiters = 0;
5543    pthread_cond_signal(_cond);
5544  }
5545  status = pthread_mutex_unlock(_mutex);
5546  assert_status(status == 0, status, "mutex_unlock");
5547  if (AnyWaiters != 0) {
5548    // Note that we signal() *after* dropping the lock for "immortal" Events.
5549    // This is safe and avoids a common class of  futile wakeups.  In rare
5550    // circumstances this can cause a thread to return prematurely from
5551    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5552    // will simply re-test the condition and re-park itself.
5553    // This provides particular benefit if the underlying platform does not
5554    // provide wait morphing.
5555    status = pthread_cond_signal(_cond);
5556    assert_status(status == 0, status, "cond_signal");
5557  }
5558}
5559
5560
5561// JSR166
5562// -------------------------------------------------------
5563
5564// The solaris and linux implementations of park/unpark are fairly
5565// conservative for now, but can be improved. They currently use a
5566// mutex/condvar pair, plus a a count.
5567// Park decrements count if > 0, else does a condvar wait.  Unpark
5568// sets count to 1 and signals condvar.  Only one thread ever waits
5569// on the condvar. Contention seen when trying to park implies that someone
5570// is unparking you, so don't wait. And spurious returns are fine, so there
5571// is no need to track notifications.
5572
5573// This code is common to linux and solaris and will be moved to a
5574// common place in dolphin.
5575//
5576// The passed in time value is either a relative time in nanoseconds
5577// or an absolute time in milliseconds. Either way it has to be unpacked
5578// into suitable seconds and nanoseconds components and stored in the
5579// given timespec structure.
5580// Given time is a 64-bit value and the time_t used in the timespec is only
5581// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5582// overflow if times way in the future are given. Further on Solaris versions
5583// prior to 10 there is a restriction (see cond_timedwait) that the specified
5584// number of seconds, in abstime, is less than current_time  + 100,000,000.
5585// As it will be 28 years before "now + 100000000" will overflow we can
5586// ignore overflow and just impose a hard-limit on seconds using the value
5587// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5588// years from "now".
5589
5590static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5591  assert(time > 0, "convertTime");
5592  time_t max_secs = 0;
5593
5594  if (!os::supports_monotonic_clock() || isAbsolute) {
5595    struct timeval now;
5596    int status = gettimeofday(&now, NULL);
5597    assert(status == 0, "gettimeofday");
5598
5599    max_secs = now.tv_sec + MAX_SECS;
5600
5601    if (isAbsolute) {
5602      jlong secs = time / 1000;
5603      if (secs > max_secs) {
5604        absTime->tv_sec = max_secs;
5605      } else {
5606        absTime->tv_sec = secs;
5607      }
5608      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5609    } else {
5610      jlong secs = time / NANOSECS_PER_SEC;
5611      if (secs >= MAX_SECS) {
5612        absTime->tv_sec = max_secs;
5613        absTime->tv_nsec = 0;
5614      } else {
5615        absTime->tv_sec = now.tv_sec + secs;
5616        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5617        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5618          absTime->tv_nsec -= NANOSECS_PER_SEC;
5619          ++absTime->tv_sec; // note: this must be <= max_secs
5620        }
5621      }
5622    }
5623  } else {
5624    // must be relative using monotonic clock
5625    struct timespec now;
5626    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5627    assert_status(status == 0, status, "clock_gettime");
5628    max_secs = now.tv_sec + MAX_SECS;
5629    jlong secs = time / NANOSECS_PER_SEC;
5630    if (secs >= MAX_SECS) {
5631      absTime->tv_sec = max_secs;
5632      absTime->tv_nsec = 0;
5633    } else {
5634      absTime->tv_sec = now.tv_sec + secs;
5635      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5636      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5637        absTime->tv_nsec -= NANOSECS_PER_SEC;
5638        ++absTime->tv_sec; // note: this must be <= max_secs
5639      }
5640    }
5641  }
5642  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5643  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5644  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5645  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5646}
5647
5648void Parker::park(bool isAbsolute, jlong time) {
5649  // Ideally we'd do something useful while spinning, such
5650  // as calling unpackTime().
5651
5652  // Optional fast-path check:
5653  // Return immediately if a permit is available.
5654  // We depend on Atomic::xchg() having full barrier semantics
5655  // since we are doing a lock-free update to _counter.
5656  if (Atomic::xchg(0, &_counter) > 0) return;
5657
5658  Thread* thread = Thread::current();
5659  assert(thread->is_Java_thread(), "Must be JavaThread");
5660  JavaThread *jt = (JavaThread *)thread;
5661
5662  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5663  // Check interrupt before trying to wait
5664  if (Thread::is_interrupted(thread, false)) {
5665    return;
5666  }
5667
5668  // Next, demultiplex/decode time arguments
5669  timespec absTime;
5670  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5671    return;
5672  }
5673  if (time > 0) {
5674    unpackTime(&absTime, isAbsolute, time);
5675  }
5676
5677
5678  // Enter safepoint region
5679  // Beware of deadlocks such as 6317397.
5680  // The per-thread Parker:: mutex is a classic leaf-lock.
5681  // In particular a thread must never block on the Threads_lock while
5682  // holding the Parker:: mutex.  If safepoints are pending both the
5683  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5684  ThreadBlockInVM tbivm(jt);
5685
5686  // Don't wait if cannot get lock since interference arises from
5687  // unblocking.  Also. check interrupt before trying wait
5688  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5689    return;
5690  }
5691
5692  int status;
5693  if (_counter > 0)  { // no wait needed
5694    _counter = 0;
5695    status = pthread_mutex_unlock(_mutex);
5696    assert(status == 0, "invariant");
5697    // Paranoia to ensure our locked and lock-free paths interact
5698    // correctly with each other and Java-level accesses.
5699    OrderAccess::fence();
5700    return;
5701  }
5702
5703#ifdef ASSERT
5704  // Don't catch signals while blocked; let the running threads have the signals.
5705  // (This allows a debugger to break into the running thread.)
5706  sigset_t oldsigs;
5707  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5708  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5709#endif
5710
5711  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5712  jt->set_suspend_equivalent();
5713  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5714
5715  assert(_cur_index == -1, "invariant");
5716  if (time == 0) {
5717    _cur_index = REL_INDEX; // arbitrary choice when not timed
5718    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5719  } else {
5720    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5721    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5722    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5723      pthread_cond_destroy(&_cond[_cur_index]);
5724      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5725    }
5726  }
5727  _cur_index = -1;
5728  assert_status(status == 0 || status == EINTR ||
5729                status == ETIME || status == ETIMEDOUT,
5730                status, "cond_timedwait");
5731
5732#ifdef ASSERT
5733  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5734#endif
5735
5736  _counter = 0;
5737  status = pthread_mutex_unlock(_mutex);
5738  assert_status(status == 0, status, "invariant");
5739  // Paranoia to ensure our locked and lock-free paths interact
5740  // correctly with each other and Java-level accesses.
5741  OrderAccess::fence();
5742
5743  // If externally suspended while waiting, re-suspend
5744  if (jt->handle_special_suspend_equivalent_condition()) {
5745    jt->java_suspend_self();
5746  }
5747}
5748
5749void Parker::unpark() {
5750  int status = pthread_mutex_lock(_mutex);
5751  assert(status == 0, "invariant");
5752  const int s = _counter;
5753  _counter = 1;
5754  if (s < 1) {
5755    // thread might be parked
5756    if (_cur_index != -1) {
5757      // thread is definitely parked
5758      if (WorkAroundNPTLTimedWaitHang) {
5759        status = pthread_cond_signal(&_cond[_cur_index]);
5760        assert(status == 0, "invariant");
5761        status = pthread_mutex_unlock(_mutex);
5762        assert(status == 0, "invariant");
5763      } else {
5764        // must capture correct index before unlocking
5765        int index = _cur_index;
5766        status = pthread_mutex_unlock(_mutex);
5767        assert(status == 0, "invariant");
5768        status = pthread_cond_signal(&_cond[index]);
5769        assert(status == 0, "invariant");
5770      }
5771    } else {
5772      pthread_mutex_unlock(_mutex);
5773      assert(status == 0, "invariant");
5774    }
5775  } else {
5776    pthread_mutex_unlock(_mutex);
5777    assert(status == 0, "invariant");
5778  }
5779}
5780
5781
5782extern char** environ;
5783
5784// Run the specified command in a separate process. Return its exit value,
5785// or -1 on failure (e.g. can't fork a new process).
5786// Unlike system(), this function can be called from signal handler. It
5787// doesn't block SIGINT et al.
5788int os::fork_and_exec(char* cmd) {
5789  const char * argv[4] = {"sh", "-c", cmd, NULL};
5790
5791  pid_t pid = fork();
5792
5793  if (pid < 0) {
5794    // fork failed
5795    return -1;
5796
5797  } else if (pid == 0) {
5798    // child process
5799
5800    execve("/bin/sh", (char* const*)argv, environ);
5801
5802    // execve failed
5803    _exit(-1);
5804
5805  } else  {
5806    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5807    // care about the actual exit code, for now.
5808
5809    int status;
5810
5811    // Wait for the child process to exit.  This returns immediately if
5812    // the child has already exited. */
5813    while (waitpid(pid, &status, 0) < 0) {
5814      switch (errno) {
5815      case ECHILD: return 0;
5816      case EINTR: break;
5817      default: return -1;
5818      }
5819    }
5820
5821    if (WIFEXITED(status)) {
5822      // The child exited normally; get its exit code.
5823      return WEXITSTATUS(status);
5824    } else if (WIFSIGNALED(status)) {
5825      // The child exited because of a signal
5826      // The best value to return is 0x80 + signal number,
5827      // because that is what all Unix shells do, and because
5828      // it allows callers to distinguish between process exit and
5829      // process death by signal.
5830      return 0x80 + WTERMSIG(status);
5831    } else {
5832      // Unknown exit code; pass it through
5833      return status;
5834    }
5835  }
5836}
5837
5838// is_headless_jre()
5839//
5840// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5841// in order to report if we are running in a headless jre
5842//
5843// Since JDK8 xawt/libmawt.so was moved into the same directory
5844// as libawt.so, and renamed libawt_xawt.so
5845//
5846bool os::is_headless_jre() {
5847  struct stat statbuf;
5848  char buf[MAXPATHLEN];
5849  char libmawtpath[MAXPATHLEN];
5850  const char *xawtstr  = "/xawt/libmawt.so";
5851  const char *new_xawtstr = "/libawt_xawt.so";
5852  char *p;
5853
5854  // Get path to libjvm.so
5855  os::jvm_path(buf, sizeof(buf));
5856
5857  // Get rid of libjvm.so
5858  p = strrchr(buf, '/');
5859  if (p == NULL) {
5860    return false;
5861  } else {
5862    *p = '\0';
5863  }
5864
5865  // Get rid of client or server
5866  p = strrchr(buf, '/');
5867  if (p == NULL) {
5868    return false;
5869  } else {
5870    *p = '\0';
5871  }
5872
5873  // check xawt/libmawt.so
5874  strcpy(libmawtpath, buf);
5875  strcat(libmawtpath, xawtstr);
5876  if (::stat(libmawtpath, &statbuf) == 0) return false;
5877
5878  // check libawt_xawt.so
5879  strcpy(libmawtpath, buf);
5880  strcat(libmawtpath, new_xawtstr);
5881  if (::stat(libmawtpath, &statbuf) == 0) return false;
5882
5883  return true;
5884}
5885
5886// Get the default path to the core file
5887// Returns the length of the string
5888int os::get_core_path(char* buffer, size_t bufferSize) {
5889  /*
5890   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5891   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5892   */
5893  const int core_pattern_len = 129;
5894  char core_pattern[core_pattern_len] = {0};
5895
5896  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5897  if (core_pattern_file == -1) {
5898    return -1;
5899  }
5900
5901  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5902  ::close(core_pattern_file);
5903  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5904    return -1;
5905  }
5906  if (core_pattern[ret-1] == '\n') {
5907    core_pattern[ret-1] = '\0';
5908  } else {
5909    core_pattern[ret] = '\0';
5910  }
5911
5912  char *pid_pos = strstr(core_pattern, "%p");
5913  int written;
5914
5915  if (core_pattern[0] == '/') {
5916    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5917  } else {
5918    char cwd[PATH_MAX];
5919
5920    const char* p = get_current_directory(cwd, PATH_MAX);
5921    if (p == NULL) {
5922      return -1;
5923    }
5924
5925    if (core_pattern[0] == '|') {
5926      written = jio_snprintf(buffer, bufferSize,
5927                        "\"%s\" (or dumping to %s/core.%d)",
5928                                     &core_pattern[1], p, current_process_id());
5929    } else {
5930      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5931    }
5932  }
5933
5934  if (written < 0) {
5935    return -1;
5936  }
5937
5938  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5939    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5940
5941    if (core_uses_pid_file != -1) {
5942      char core_uses_pid = 0;
5943      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5944      ::close(core_uses_pid_file);
5945
5946      if (core_uses_pid == '1') {
5947        jio_snprintf(buffer + written, bufferSize - written,
5948                                          ".%d", current_process_id());
5949      }
5950    }
5951  }
5952
5953  return strlen(buffer);
5954}
5955
5956bool os::start_debugging(char *buf, int buflen) {
5957  int len = (int)strlen(buf);
5958  char *p = &buf[len];
5959
5960  jio_snprintf(p, buflen-len,
5961             "\n\n"
5962             "Do you want to debug the problem?\n\n"
5963             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5964             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5965             "Otherwise, press RETURN to abort...",
5966             os::current_process_id(), os::current_process_id(),
5967             os::current_thread_id(), os::current_thread_id());
5968
5969  bool yes = os::message_box("Unexpected Error", buf);
5970
5971  if (yes) {
5972    // yes, user asked VM to launch debugger
5973    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
5974                     os::current_process_id(), os::current_process_id());
5975
5976    os::fork_and_exec(buf);
5977    yes = false;
5978  }
5979  return yes;
5980}
5981
5982
5983
5984/////////////// Unit tests ///////////////
5985
5986#ifndef PRODUCT
5987
5988#define test_log(...)              \
5989  do {                             \
5990    if (VerboseInternalVMTests) {  \
5991      tty->print_cr(__VA_ARGS__);  \
5992      tty->flush();                \
5993    }                              \
5994  } while (false)
5995
5996class TestReserveMemorySpecial : AllStatic {
5997 public:
5998  static void small_page_write(void* addr, size_t size) {
5999    size_t page_size = os::vm_page_size();
6000
6001    char* end = (char*)addr + size;
6002    for (char* p = (char*)addr; p < end; p += page_size) {
6003      *p = 1;
6004    }
6005  }
6006
6007  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6008    if (!UseHugeTLBFS) {
6009      return;
6010    }
6011
6012    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6013
6014    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6015
6016    if (addr != NULL) {
6017      small_page_write(addr, size);
6018
6019      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6020    }
6021  }
6022
6023  static void test_reserve_memory_special_huge_tlbfs_only() {
6024    if (!UseHugeTLBFS) {
6025      return;
6026    }
6027
6028    size_t lp = os::large_page_size();
6029
6030    for (size_t size = lp; size <= lp * 10; size += lp) {
6031      test_reserve_memory_special_huge_tlbfs_only(size);
6032    }
6033  }
6034
6035  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6036    size_t lp = os::large_page_size();
6037    size_t ag = os::vm_allocation_granularity();
6038
6039    // sizes to test
6040    const size_t sizes[] = {
6041      lp, lp + ag, lp + lp / 2, lp * 2,
6042      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6043      lp * 10, lp * 10 + lp / 2
6044    };
6045    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6046
6047    // For each size/alignment combination, we test three scenarios:
6048    // 1) with req_addr == NULL
6049    // 2) with a non-null req_addr at which we expect to successfully allocate
6050    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6051    //    expect the allocation to either fail or to ignore req_addr
6052
6053    // Pre-allocate two areas; they shall be as large as the largest allocation
6054    //  and aligned to the largest alignment we will be testing.
6055    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6056    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6057      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6058      -1, 0);
6059    assert(mapping1 != MAP_FAILED, "should work");
6060
6061    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6062      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6063      -1, 0);
6064    assert(mapping2 != MAP_FAILED, "should work");
6065
6066    // Unmap the first mapping, but leave the second mapping intact: the first
6067    // mapping will serve as a value for a "good" req_addr (case 2). The second
6068    // mapping, still intact, as "bad" req_addr (case 3).
6069    ::munmap(mapping1, mapping_size);
6070
6071    // Case 1
6072    test_log("%s, req_addr NULL:", __FUNCTION__);
6073    test_log("size            align           result");
6074
6075    for (int i = 0; i < num_sizes; i++) {
6076      const size_t size = sizes[i];
6077      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6078        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6079        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6080                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6081        if (p != NULL) {
6082          assert(is_ptr_aligned(p, alignment), "must be");
6083          small_page_write(p, size);
6084          os::Linux::release_memory_special_huge_tlbfs(p, size);
6085        }
6086      }
6087    }
6088
6089    // Case 2
6090    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6091    test_log("size            align           req_addr         result");
6092
6093    for (int i = 0; i < num_sizes; i++) {
6094      const size_t size = sizes[i];
6095      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6096        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6097        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6098        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6099                 size, alignment, p2i(req_addr), p2i(p),
6100                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6101        if (p != NULL) {
6102          assert(p == req_addr, "must be");
6103          small_page_write(p, size);
6104          os::Linux::release_memory_special_huge_tlbfs(p, size);
6105        }
6106      }
6107    }
6108
6109    // Case 3
6110    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6111    test_log("size            align           req_addr         result");
6112
6113    for (int i = 0; i < num_sizes; i++) {
6114      const size_t size = sizes[i];
6115      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6116        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6117        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6118        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6119                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6120        // as the area around req_addr contains already existing mappings, the API should always
6121        // return NULL (as per contract, it cannot return another address)
6122        assert(p == NULL, "must be");
6123      }
6124    }
6125
6126    ::munmap(mapping2, mapping_size);
6127
6128  }
6129
6130  static void test_reserve_memory_special_huge_tlbfs() {
6131    if (!UseHugeTLBFS) {
6132      return;
6133    }
6134
6135    test_reserve_memory_special_huge_tlbfs_only();
6136    test_reserve_memory_special_huge_tlbfs_mixed();
6137  }
6138
6139  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6140    if (!UseSHM) {
6141      return;
6142    }
6143
6144    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6145
6146    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6147
6148    if (addr != NULL) {
6149      assert(is_ptr_aligned(addr, alignment), "Check");
6150      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6151
6152      small_page_write(addr, size);
6153
6154      os::Linux::release_memory_special_shm(addr, size);
6155    }
6156  }
6157
6158  static void test_reserve_memory_special_shm() {
6159    size_t lp = os::large_page_size();
6160    size_t ag = os::vm_allocation_granularity();
6161
6162    for (size_t size = ag; size < lp * 3; size += ag) {
6163      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6164        test_reserve_memory_special_shm(size, alignment);
6165      }
6166    }
6167  }
6168
6169  static void test() {
6170    test_reserve_memory_special_huge_tlbfs();
6171    test_reserve_memory_special_shm();
6172  }
6173};
6174
6175void TestReserveMemorySpecial_test() {
6176  TestReserveMemorySpecial::test();
6177}
6178
6179#endif
6180