os_linux.cpp revision 9099:115188e14c15
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
110// getrusage() is prepared to handle the associated failure.
111#ifndef RUSAGE_THREAD
112  #define RUSAGE_THREAD   (1)               /* only the calling thread */
113#endif
114
115#define MAX_PATH    (2 * K)
116
117#define MAX_SECS 100000000
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122#define LARGEPAGES_BIT (1 << 6)
123////////////////////////////////////////////////////////////////////////////////
124// global variables
125julong os::Linux::_physical_memory = 0;
126
127address   os::Linux::_initial_thread_stack_bottom = NULL;
128uintptr_t os::Linux::_initial_thread_stack_size   = 0;
129
130int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
132int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
133Mutex* os::Linux::_createThread_lock = NULL;
134pthread_t os::Linux::_main_thread;
135int os::Linux::_page_size = -1;
136const int os::Linux::_vm_default_page_size = (8 * K);
137bool os::Linux::_supports_fast_thread_cpu_time = false;
138const char * os::Linux::_glibc_version = NULL;
139const char * os::Linux::_libpthread_version = NULL;
140pthread_condattr_t os::Linux::_condattr[1];
141
142static jlong initial_time_count=0;
143
144static int clock_tics_per_sec = 100;
145
146// For diagnostics to print a message once. see run_periodic_checks
147static sigset_t check_signal_done;
148static bool check_signals = true;
149
150// Signal number used to suspend/resume a thread
151
152// do not use any signal number less than SIGSEGV, see 4355769
153static int SR_signum = SIGUSR2;
154sigset_t SR_sigset;
155
156// Declarations
157static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
158
159// utility functions
160
161static int SR_initialize();
162
163julong os::available_memory() {
164  return Linux::available_memory();
165}
166
167julong os::Linux::available_memory() {
168  // values in struct sysinfo are "unsigned long"
169  struct sysinfo si;
170  sysinfo(&si);
171
172  return (julong)si.freeram * si.mem_unit;
173}
174
175julong os::physical_memory() {
176  return Linux::physical_memory();
177}
178
179// Return true if user is running as root.
180
181bool os::have_special_privileges() {
182  static bool init = false;
183  static bool privileges = false;
184  if (!init) {
185    privileges = (getuid() != geteuid()) || (getgid() != getegid());
186    init = true;
187  }
188  return privileges;
189}
190
191
192#ifndef SYS_gettid
193// i386: 224, ia64: 1105, amd64: 186, sparc 143
194  #ifdef __ia64__
195    #define SYS_gettid 1105
196  #else
197    #ifdef __i386__
198      #define SYS_gettid 224
199    #else
200      #ifdef __amd64__
201        #define SYS_gettid 186
202      #else
203        #ifdef __sparc__
204          #define SYS_gettid 143
205        #else
206          #error define gettid for the arch
207        #endif
208      #endif
209    #endif
210  #endif
211#endif
212
213// Cpu architecture string
214static char cpu_arch[] = HOTSPOT_LIB_ARCH;
215
216
217// pid_t gettid()
218//
219// Returns the kernel thread id of the currently running thread. Kernel
220// thread id is used to access /proc.
221pid_t os::Linux::gettid() {
222  int rslt = syscall(SYS_gettid);
223  assert(rslt != -1, "must be."); // old linuxthreads implementation?
224  return (pid_t)rslt;
225}
226
227// Most versions of linux have a bug where the number of processors are
228// determined by looking at the /proc file system.  In a chroot environment,
229// the system call returns 1.  This causes the VM to act as if it is
230// a single processor and elide locking (see is_MP() call).
231static bool unsafe_chroot_detected = false;
232static const char *unstable_chroot_error = "/proc file system not found.\n"
233                     "Java may be unstable running multithreaded in a chroot "
234                     "environment on Linux when /proc filesystem is not mounted.";
235
236void os::Linux::initialize_system_info() {
237  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
238  if (processor_count() == 1) {
239    pid_t pid = os::Linux::gettid();
240    char fname[32];
241    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
242    FILE *fp = fopen(fname, "r");
243    if (fp == NULL) {
244      unsafe_chroot_detected = true;
245    } else {
246      fclose(fp);
247    }
248  }
249  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
250  assert(processor_count() > 0, "linux error");
251}
252
253void os::init_system_properties_values() {
254  // The next steps are taken in the product version:
255  //
256  // Obtain the JAVA_HOME value from the location of libjvm.so.
257  // This library should be located at:
258  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
259  //
260  // If "/jre/lib/" appears at the right place in the path, then we
261  // assume libjvm.so is installed in a JDK and we use this path.
262  //
263  // Otherwise exit with message: "Could not create the Java virtual machine."
264  //
265  // The following extra steps are taken in the debugging version:
266  //
267  // If "/jre/lib/" does NOT appear at the right place in the path
268  // instead of exit check for $JAVA_HOME environment variable.
269  //
270  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
271  // then we append a fake suffix "hotspot/libjvm.so" to this path so
272  // it looks like libjvm.so is installed there
273  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
274  //
275  // Otherwise exit.
276  //
277  // Important note: if the location of libjvm.so changes this
278  // code needs to be changed accordingly.
279
280  // See ld(1):
281  //      The linker uses the following search paths to locate required
282  //      shared libraries:
283  //        1: ...
284  //        ...
285  //        7: The default directories, normally /lib and /usr/lib.
286#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
287  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
288#else
289  #define DEFAULT_LIBPATH "/lib:/usr/lib"
290#endif
291
292// Base path of extensions installed on the system.
293#define SYS_EXT_DIR     "/usr/java/packages"
294#define EXTENSIONS_DIR  "/lib/ext"
295
296  // Buffer that fits several sprintfs.
297  // Note that the space for the colon and the trailing null are provided
298  // by the nulls included by the sizeof operator.
299  const size_t bufsize =
300    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
301         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
302  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
303
304  // sysclasspath, java_home, dll_dir
305  {
306    char *pslash;
307    os::jvm_path(buf, bufsize);
308
309    // Found the full path to libjvm.so.
310    // Now cut the path to <java_home>/jre if we can.
311    pslash = strrchr(buf, '/');
312    if (pslash != NULL) {
313      *pslash = '\0';            // Get rid of /libjvm.so.
314    }
315    pslash = strrchr(buf, '/');
316    if (pslash != NULL) {
317      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
318    }
319    Arguments::set_dll_dir(buf);
320
321    if (pslash != NULL) {
322      pslash = strrchr(buf, '/');
323      if (pslash != NULL) {
324        *pslash = '\0';          // Get rid of /<arch>.
325        pslash = strrchr(buf, '/');
326        if (pslash != NULL) {
327          *pslash = '\0';        // Get rid of /lib.
328        }
329      }
330    }
331    Arguments::set_java_home(buf);
332    set_boot_path('/', ':');
333  }
334
335  // Where to look for native libraries.
336  //
337  // Note: Due to a legacy implementation, most of the library path
338  // is set in the launcher. This was to accomodate linking restrictions
339  // on legacy Linux implementations (which are no longer supported).
340  // Eventually, all the library path setting will be done here.
341  //
342  // However, to prevent the proliferation of improperly built native
343  // libraries, the new path component /usr/java/packages is added here.
344  // Eventually, all the library path setting will be done here.
345  {
346    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
347    // should always exist (until the legacy problem cited above is
348    // addressed).
349    const char *v = ::getenv("LD_LIBRARY_PATH");
350    const char *v_colon = ":";
351    if (v == NULL) { v = ""; v_colon = ""; }
352    // That's +1 for the colon and +1 for the trailing '\0'.
353    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
354                                                     strlen(v) + 1 +
355                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
356                                                     mtInternal);
357    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
358    Arguments::set_library_path(ld_library_path);
359    FREE_C_HEAP_ARRAY(char, ld_library_path);
360  }
361
362  // Extensions directories.
363  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
364  Arguments::set_ext_dirs(buf);
365
366  FREE_C_HEAP_ARRAY(char, buf);
367
368#undef DEFAULT_LIBPATH
369#undef SYS_EXT_DIR
370#undef EXTENSIONS_DIR
371}
372
373////////////////////////////////////////////////////////////////////////////////
374// breakpoint support
375
376void os::breakpoint() {
377  BREAKPOINT;
378}
379
380extern "C" void breakpoint() {
381  // use debugger to set breakpoint here
382}
383
384////////////////////////////////////////////////////////////////////////////////
385// signal support
386
387debug_only(static bool signal_sets_initialized = false);
388static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
389
390bool os::Linux::is_sig_ignored(int sig) {
391  struct sigaction oact;
392  sigaction(sig, (struct sigaction*)NULL, &oact);
393  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
394                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
395  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
396    return true;
397  } else {
398    return false;
399  }
400}
401
402void os::Linux::signal_sets_init() {
403  // Should also have an assertion stating we are still single-threaded.
404  assert(!signal_sets_initialized, "Already initialized");
405  // Fill in signals that are necessarily unblocked for all threads in
406  // the VM. Currently, we unblock the following signals:
407  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
408  //                         by -Xrs (=ReduceSignalUsage));
409  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
410  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
411  // the dispositions or masks wrt these signals.
412  // Programs embedding the VM that want to use the above signals for their
413  // own purposes must, at this time, use the "-Xrs" option to prevent
414  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
415  // (See bug 4345157, and other related bugs).
416  // In reality, though, unblocking these signals is really a nop, since
417  // these signals are not blocked by default.
418  sigemptyset(&unblocked_sigs);
419  sigemptyset(&allowdebug_blocked_sigs);
420  sigaddset(&unblocked_sigs, SIGILL);
421  sigaddset(&unblocked_sigs, SIGSEGV);
422  sigaddset(&unblocked_sigs, SIGBUS);
423  sigaddset(&unblocked_sigs, SIGFPE);
424#if defined(PPC64)
425  sigaddset(&unblocked_sigs, SIGTRAP);
426#endif
427  sigaddset(&unblocked_sigs, SR_signum);
428
429  if (!ReduceSignalUsage) {
430    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
431      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
432      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
433    }
434    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
435      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
436      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
437    }
438    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
439      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
440      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
441    }
442  }
443  // Fill in signals that are blocked by all but the VM thread.
444  sigemptyset(&vm_sigs);
445  if (!ReduceSignalUsage) {
446    sigaddset(&vm_sigs, BREAK_SIGNAL);
447  }
448  debug_only(signal_sets_initialized = true);
449
450}
451
452// These are signals that are unblocked while a thread is running Java.
453// (For some reason, they get blocked by default.)
454sigset_t* os::Linux::unblocked_signals() {
455  assert(signal_sets_initialized, "Not initialized");
456  return &unblocked_sigs;
457}
458
459// These are the signals that are blocked while a (non-VM) thread is
460// running Java. Only the VM thread handles these signals.
461sigset_t* os::Linux::vm_signals() {
462  assert(signal_sets_initialized, "Not initialized");
463  return &vm_sigs;
464}
465
466// These are signals that are blocked during cond_wait to allow debugger in
467sigset_t* os::Linux::allowdebug_blocked_signals() {
468  assert(signal_sets_initialized, "Not initialized");
469  return &allowdebug_blocked_sigs;
470}
471
472void os::Linux::hotspot_sigmask(Thread* thread) {
473
474  //Save caller's signal mask before setting VM signal mask
475  sigset_t caller_sigmask;
476  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
477
478  OSThread* osthread = thread->osthread();
479  osthread->set_caller_sigmask(caller_sigmask);
480
481  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
482
483  if (!ReduceSignalUsage) {
484    if (thread->is_VM_thread()) {
485      // Only the VM thread handles BREAK_SIGNAL ...
486      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
487    } else {
488      // ... all other threads block BREAK_SIGNAL
489      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
490    }
491  }
492}
493
494//////////////////////////////////////////////////////////////////////////////
495// detecting pthread library
496
497void os::Linux::libpthread_init() {
498  // Save glibc and pthread version strings.
499#if !defined(_CS_GNU_LIBC_VERSION) || \
500    !defined(_CS_GNU_LIBPTHREAD_VERSION)
501  #error "glibc too old (< 2.3.2)"
502#endif
503
504  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
505  assert(n > 0, "cannot retrieve glibc version");
506  char *str = (char *)malloc(n, mtInternal);
507  confstr(_CS_GNU_LIBC_VERSION, str, n);
508  os::Linux::set_glibc_version(str);
509
510  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
511  assert(n > 0, "cannot retrieve pthread version");
512  str = (char *)malloc(n, mtInternal);
513  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
514  os::Linux::set_libpthread_version(str);
515}
516
517/////////////////////////////////////////////////////////////////////////////
518// thread stack expansion
519
520// os::Linux::manually_expand_stack() takes care of expanding the thread
521// stack. Note that this is normally not needed: pthread stacks allocate
522// thread stack using mmap() without MAP_NORESERVE, so the stack is already
523// committed. Therefore it is not necessary to expand the stack manually.
524//
525// Manually expanding the stack was historically needed on LinuxThreads
526// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
527// it is kept to deal with very rare corner cases:
528//
529// For one, user may run the VM on an own implementation of threads
530// whose stacks are - like the old LinuxThreads - implemented using
531// mmap(MAP_GROWSDOWN).
532//
533// Also, this coding may be needed if the VM is running on the primordial
534// thread. Normally we avoid running on the primordial thread; however,
535// user may still invoke the VM on the primordial thread.
536//
537// The following historical comment describes the details about running
538// on a thread stack allocated with mmap(MAP_GROWSDOWN):
539
540
541// Force Linux kernel to expand current thread stack. If "bottom" is close
542// to the stack guard, caller should block all signals.
543//
544// MAP_GROWSDOWN:
545//   A special mmap() flag that is used to implement thread stacks. It tells
546//   kernel that the memory region should extend downwards when needed. This
547//   allows early versions of LinuxThreads to only mmap the first few pages
548//   when creating a new thread. Linux kernel will automatically expand thread
549//   stack as needed (on page faults).
550//
551//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
552//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
553//   region, it's hard to tell if the fault is due to a legitimate stack
554//   access or because of reading/writing non-exist memory (e.g. buffer
555//   overrun). As a rule, if the fault happens below current stack pointer,
556//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
557//   application (see Linux kernel fault.c).
558//
559//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
560//   stack overflow detection.
561//
562//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
563//   not use MAP_GROWSDOWN.
564//
565// To get around the problem and allow stack banging on Linux, we need to
566// manually expand thread stack after receiving the SIGSEGV.
567//
568// There are two ways to expand thread stack to address "bottom", we used
569// both of them in JVM before 1.5:
570//   1. adjust stack pointer first so that it is below "bottom", and then
571//      touch "bottom"
572//   2. mmap() the page in question
573//
574// Now alternate signal stack is gone, it's harder to use 2. For instance,
575// if current sp is already near the lower end of page 101, and we need to
576// call mmap() to map page 100, it is possible that part of the mmap() frame
577// will be placed in page 100. When page 100 is mapped, it is zero-filled.
578// That will destroy the mmap() frame and cause VM to crash.
579//
580// The following code works by adjusting sp first, then accessing the "bottom"
581// page to force a page fault. Linux kernel will then automatically expand the
582// stack mapping.
583//
584// _expand_stack_to() assumes its frame size is less than page size, which
585// should always be true if the function is not inlined.
586
587#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
588  #define NOINLINE
589#else
590  #define NOINLINE __attribute__ ((noinline))
591#endif
592
593static void _expand_stack_to(address bottom) NOINLINE;
594
595static void _expand_stack_to(address bottom) {
596  address sp;
597  size_t size;
598  volatile char *p;
599
600  // Adjust bottom to point to the largest address within the same page, it
601  // gives us a one-page buffer if alloca() allocates slightly more memory.
602  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
603  bottom += os::Linux::page_size() - 1;
604
605  // sp might be slightly above current stack pointer; if that's the case, we
606  // will alloca() a little more space than necessary, which is OK. Don't use
607  // os::current_stack_pointer(), as its result can be slightly below current
608  // stack pointer, causing us to not alloca enough to reach "bottom".
609  sp = (address)&sp;
610
611  if (sp > bottom) {
612    size = sp - bottom;
613    p = (volatile char *)alloca(size);
614    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
615    p[0] = '\0';
616  }
617}
618
619bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
620  assert(t!=NULL, "just checking");
621  assert(t->osthread()->expanding_stack(), "expand should be set");
622  assert(t->stack_base() != NULL, "stack_base was not initialized");
623
624  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
625    sigset_t mask_all, old_sigset;
626    sigfillset(&mask_all);
627    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
628    _expand_stack_to(addr);
629    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
630    return true;
631  }
632  return false;
633}
634
635//////////////////////////////////////////////////////////////////////////////
636// create new thread
637
638// Thread start routine for all newly created threads
639static void *java_start(Thread *thread) {
640  // Try to randomize the cache line index of hot stack frames.
641  // This helps when threads of the same stack traces evict each other's
642  // cache lines. The threads can be either from the same JVM instance, or
643  // from different JVM instances. The benefit is especially true for
644  // processors with hyperthreading technology.
645  static int counter = 0;
646  int pid = os::current_process_id();
647  alloca(((pid ^ counter++) & 7) * 128);
648
649  ThreadLocalStorage::set_thread(thread);
650
651  OSThread* osthread = thread->osthread();
652  Monitor* sync = osthread->startThread_lock();
653
654  osthread->set_thread_id(os::current_thread_id());
655
656  if (UseNUMA) {
657    int lgrp_id = os::numa_get_group_id();
658    if (lgrp_id != -1) {
659      thread->set_lgrp_id(lgrp_id);
660    }
661  }
662  // initialize signal mask for this thread
663  os::Linux::hotspot_sigmask(thread);
664
665  // initialize floating point control register
666  os::Linux::init_thread_fpu_state();
667
668  // handshaking with parent thread
669  {
670    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
671
672    // notify parent thread
673    osthread->set_state(INITIALIZED);
674    sync->notify_all();
675
676    // wait until os::start_thread()
677    while (osthread->get_state() == INITIALIZED) {
678      sync->wait(Mutex::_no_safepoint_check_flag);
679    }
680  }
681
682  // call one more level start routine
683  thread->run();
684
685  return 0;
686}
687
688bool os::create_thread(Thread* thread, ThreadType thr_type,
689                       size_t stack_size) {
690  assert(thread->osthread() == NULL, "caller responsible");
691
692  // Allocate the OSThread object
693  OSThread* osthread = new OSThread(NULL, NULL);
694  if (osthread == NULL) {
695    return false;
696  }
697
698  // set the correct thread state
699  osthread->set_thread_type(thr_type);
700
701  // Initial state is ALLOCATED but not INITIALIZED
702  osthread->set_state(ALLOCATED);
703
704  thread->set_osthread(osthread);
705
706  // init thread attributes
707  pthread_attr_t attr;
708  pthread_attr_init(&attr);
709  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
710
711  // stack size
712  // calculate stack size if it's not specified by caller
713  if (stack_size == 0) {
714    stack_size = os::Linux::default_stack_size(thr_type);
715
716    switch (thr_type) {
717    case os::java_thread:
718      // Java threads use ThreadStackSize which default value can be
719      // changed with the flag -Xss
720      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
721      stack_size = JavaThread::stack_size_at_create();
722      break;
723    case os::compiler_thread:
724      if (CompilerThreadStackSize > 0) {
725        stack_size = (size_t)(CompilerThreadStackSize * K);
726        break;
727      } // else fall through:
728        // use VMThreadStackSize if CompilerThreadStackSize is not defined
729    case os::vm_thread:
730    case os::pgc_thread:
731    case os::cgc_thread:
732    case os::watcher_thread:
733      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
734      break;
735    }
736  }
737
738  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
739  pthread_attr_setstacksize(&attr, stack_size);
740
741  // glibc guard page
742  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
743
744  ThreadState state;
745
746  {
747    pthread_t tid;
748    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
749
750    pthread_attr_destroy(&attr);
751
752    if (ret != 0) {
753      if (PrintMiscellaneous && (Verbose || WizardMode)) {
754        perror("pthread_create()");
755      }
756      // Need to clean up stuff we've allocated so far
757      thread->set_osthread(NULL);
758      delete osthread;
759      return false;
760    }
761
762    // Store pthread info into the OSThread
763    osthread->set_pthread_id(tid);
764
765    // Wait until child thread is either initialized or aborted
766    {
767      Monitor* sync_with_child = osthread->startThread_lock();
768      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
769      while ((state = osthread->get_state()) == ALLOCATED) {
770        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
771      }
772    }
773  }
774
775  // Aborted due to thread limit being reached
776  if (state == ZOMBIE) {
777    thread->set_osthread(NULL);
778    delete osthread;
779    return false;
780  }
781
782  // The thread is returned suspended (in state INITIALIZED),
783  // and is started higher up in the call chain
784  assert(state == INITIALIZED, "race condition");
785  return true;
786}
787
788/////////////////////////////////////////////////////////////////////////////
789// attach existing thread
790
791// bootstrap the main thread
792bool os::create_main_thread(JavaThread* thread) {
793  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
794  return create_attached_thread(thread);
795}
796
797bool os::create_attached_thread(JavaThread* thread) {
798#ifdef ASSERT
799  thread->verify_not_published();
800#endif
801
802  // Allocate the OSThread object
803  OSThread* osthread = new OSThread(NULL, NULL);
804
805  if (osthread == NULL) {
806    return false;
807  }
808
809  // Store pthread info into the OSThread
810  osthread->set_thread_id(os::Linux::gettid());
811  osthread->set_pthread_id(::pthread_self());
812
813  // initialize floating point control register
814  os::Linux::init_thread_fpu_state();
815
816  // Initial thread state is RUNNABLE
817  osthread->set_state(RUNNABLE);
818
819  thread->set_osthread(osthread);
820
821  if (UseNUMA) {
822    int lgrp_id = os::numa_get_group_id();
823    if (lgrp_id != -1) {
824      thread->set_lgrp_id(lgrp_id);
825    }
826  }
827
828  if (os::Linux::is_initial_thread()) {
829    // If current thread is initial thread, its stack is mapped on demand,
830    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
831    // the entire stack region to avoid SEGV in stack banging.
832    // It is also useful to get around the heap-stack-gap problem on SuSE
833    // kernel (see 4821821 for details). We first expand stack to the top
834    // of yellow zone, then enable stack yellow zone (order is significant,
835    // enabling yellow zone first will crash JVM on SuSE Linux), so there
836    // is no gap between the last two virtual memory regions.
837
838    JavaThread *jt = (JavaThread *)thread;
839    address addr = jt->stack_yellow_zone_base();
840    assert(addr != NULL, "initialization problem?");
841    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
842
843    osthread->set_expanding_stack();
844    os::Linux::manually_expand_stack(jt, addr);
845    osthread->clear_expanding_stack();
846  }
847
848  // initialize signal mask for this thread
849  // and save the caller's signal mask
850  os::Linux::hotspot_sigmask(thread);
851
852  return true;
853}
854
855void os::pd_start_thread(Thread* thread) {
856  OSThread * osthread = thread->osthread();
857  assert(osthread->get_state() != INITIALIZED, "just checking");
858  Monitor* sync_with_child = osthread->startThread_lock();
859  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
860  sync_with_child->notify();
861}
862
863// Free Linux resources related to the OSThread
864void os::free_thread(OSThread* osthread) {
865  assert(osthread != NULL, "osthread not set");
866
867  if (Thread::current()->osthread() == osthread) {
868    // Restore caller's signal mask
869    sigset_t sigmask = osthread->caller_sigmask();
870    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
871  }
872
873  delete osthread;
874}
875
876//////////////////////////////////////////////////////////////////////////////
877// thread local storage
878
879// Restore the thread pointer if the destructor is called. This is in case
880// someone from JNI code sets up a destructor with pthread_key_create to run
881// detachCurrentThread on thread death. Unless we restore the thread pointer we
882// will hang or crash. When detachCurrentThread is called the key will be set
883// to null and we will not be called again. If detachCurrentThread is never
884// called we could loop forever depending on the pthread implementation.
885static void restore_thread_pointer(void* p) {
886  Thread* thread = (Thread*) p;
887  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
888}
889
890int os::allocate_thread_local_storage() {
891  pthread_key_t key;
892  int rslt = pthread_key_create(&key, restore_thread_pointer);
893  assert(rslt == 0, "cannot allocate thread local storage");
894  return (int)key;
895}
896
897// Note: This is currently not used by VM, as we don't destroy TLS key
898// on VM exit.
899void os::free_thread_local_storage(int index) {
900  int rslt = pthread_key_delete((pthread_key_t)index);
901  assert(rslt == 0, "invalid index");
902}
903
904void os::thread_local_storage_at_put(int index, void* value) {
905  int rslt = pthread_setspecific((pthread_key_t)index, value);
906  assert(rslt == 0, "pthread_setspecific failed");
907}
908
909extern "C" Thread* get_thread() {
910  return ThreadLocalStorage::thread();
911}
912
913//////////////////////////////////////////////////////////////////////////////
914// initial thread
915
916// Check if current thread is the initial thread, similar to Solaris thr_main.
917bool os::Linux::is_initial_thread(void) {
918  char dummy;
919  // If called before init complete, thread stack bottom will be null.
920  // Can be called if fatal error occurs before initialization.
921  if (initial_thread_stack_bottom() == NULL) return false;
922  assert(initial_thread_stack_bottom() != NULL &&
923         initial_thread_stack_size()   != 0,
924         "os::init did not locate initial thread's stack region");
925  if ((address)&dummy >= initial_thread_stack_bottom() &&
926      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
927    return true;
928  } else {
929    return false;
930  }
931}
932
933// Find the virtual memory area that contains addr
934static bool find_vma(address addr, address* vma_low, address* vma_high) {
935  FILE *fp = fopen("/proc/self/maps", "r");
936  if (fp) {
937    address low, high;
938    while (!feof(fp)) {
939      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
940        if (low <= addr && addr < high) {
941          if (vma_low)  *vma_low  = low;
942          if (vma_high) *vma_high = high;
943          fclose(fp);
944          return true;
945        }
946      }
947      for (;;) {
948        int ch = fgetc(fp);
949        if (ch == EOF || ch == (int)'\n') break;
950      }
951    }
952    fclose(fp);
953  }
954  return false;
955}
956
957// Locate initial thread stack. This special handling of initial thread stack
958// is needed because pthread_getattr_np() on most (all?) Linux distros returns
959// bogus value for initial thread.
960void os::Linux::capture_initial_stack(size_t max_size) {
961  // stack size is the easy part, get it from RLIMIT_STACK
962  size_t stack_size;
963  struct rlimit rlim;
964  getrlimit(RLIMIT_STACK, &rlim);
965  stack_size = rlim.rlim_cur;
966
967  // 6308388: a bug in ld.so will relocate its own .data section to the
968  //   lower end of primordial stack; reduce ulimit -s value a little bit
969  //   so we won't install guard page on ld.so's data section.
970  stack_size -= 2 * page_size();
971
972  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
973  //   7.1, in both cases we will get 2G in return value.
974  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
975  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
976  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
977  //   in case other parts in glibc still assumes 2M max stack size.
978  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
979  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
980  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
981    stack_size = 2 * K * K IA64_ONLY(*2);
982  }
983  // Try to figure out where the stack base (top) is. This is harder.
984  //
985  // When an application is started, glibc saves the initial stack pointer in
986  // a global variable "__libc_stack_end", which is then used by system
987  // libraries. __libc_stack_end should be pretty close to stack top. The
988  // variable is available since the very early days. However, because it is
989  // a private interface, it could disappear in the future.
990  //
991  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
992  // to __libc_stack_end, it is very close to stack top, but isn't the real
993  // stack top. Note that /proc may not exist if VM is running as a chroot
994  // program, so reading /proc/<pid>/stat could fail. Also the contents of
995  // /proc/<pid>/stat could change in the future (though unlikely).
996  //
997  // We try __libc_stack_end first. If that doesn't work, look for
998  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
999  // as a hint, which should work well in most cases.
1000
1001  uintptr_t stack_start;
1002
1003  // try __libc_stack_end first
1004  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1005  if (p && *p) {
1006    stack_start = *p;
1007  } else {
1008    // see if we can get the start_stack field from /proc/self/stat
1009    FILE *fp;
1010    int pid;
1011    char state;
1012    int ppid;
1013    int pgrp;
1014    int session;
1015    int nr;
1016    int tpgrp;
1017    unsigned long flags;
1018    unsigned long minflt;
1019    unsigned long cminflt;
1020    unsigned long majflt;
1021    unsigned long cmajflt;
1022    unsigned long utime;
1023    unsigned long stime;
1024    long cutime;
1025    long cstime;
1026    long prio;
1027    long nice;
1028    long junk;
1029    long it_real;
1030    uintptr_t start;
1031    uintptr_t vsize;
1032    intptr_t rss;
1033    uintptr_t rsslim;
1034    uintptr_t scodes;
1035    uintptr_t ecode;
1036    int i;
1037
1038    // Figure what the primordial thread stack base is. Code is inspired
1039    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1040    // followed by command name surrounded by parentheses, state, etc.
1041    char stat[2048];
1042    int statlen;
1043
1044    fp = fopen("/proc/self/stat", "r");
1045    if (fp) {
1046      statlen = fread(stat, 1, 2047, fp);
1047      stat[statlen] = '\0';
1048      fclose(fp);
1049
1050      // Skip pid and the command string. Note that we could be dealing with
1051      // weird command names, e.g. user could decide to rename java launcher
1052      // to "java 1.4.2 :)", then the stat file would look like
1053      //                1234 (java 1.4.2 :)) R ... ...
1054      // We don't really need to know the command string, just find the last
1055      // occurrence of ")" and then start parsing from there. See bug 4726580.
1056      char * s = strrchr(stat, ')');
1057
1058      i = 0;
1059      if (s) {
1060        // Skip blank chars
1061        do { s++; } while (s && isspace(*s));
1062
1063#define _UFM UINTX_FORMAT
1064#define _DFM INTX_FORMAT
1065
1066        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1067        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1068        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1069                   &state,          // 3  %c
1070                   &ppid,           // 4  %d
1071                   &pgrp,           // 5  %d
1072                   &session,        // 6  %d
1073                   &nr,             // 7  %d
1074                   &tpgrp,          // 8  %d
1075                   &flags,          // 9  %lu
1076                   &minflt,         // 10 %lu
1077                   &cminflt,        // 11 %lu
1078                   &majflt,         // 12 %lu
1079                   &cmajflt,        // 13 %lu
1080                   &utime,          // 14 %lu
1081                   &stime,          // 15 %lu
1082                   &cutime,         // 16 %ld
1083                   &cstime,         // 17 %ld
1084                   &prio,           // 18 %ld
1085                   &nice,           // 19 %ld
1086                   &junk,           // 20 %ld
1087                   &it_real,        // 21 %ld
1088                   &start,          // 22 UINTX_FORMAT
1089                   &vsize,          // 23 UINTX_FORMAT
1090                   &rss,            // 24 INTX_FORMAT
1091                   &rsslim,         // 25 UINTX_FORMAT
1092                   &scodes,         // 26 UINTX_FORMAT
1093                   &ecode,          // 27 UINTX_FORMAT
1094                   &stack_start);   // 28 UINTX_FORMAT
1095      }
1096
1097#undef _UFM
1098#undef _DFM
1099
1100      if (i != 28 - 2) {
1101        assert(false, "Bad conversion from /proc/self/stat");
1102        // product mode - assume we are the initial thread, good luck in the
1103        // embedded case.
1104        warning("Can't detect initial thread stack location - bad conversion");
1105        stack_start = (uintptr_t) &rlim;
1106      }
1107    } else {
1108      // For some reason we can't open /proc/self/stat (for example, running on
1109      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1110      // most cases, so don't abort:
1111      warning("Can't detect initial thread stack location - no /proc/self/stat");
1112      stack_start = (uintptr_t) &rlim;
1113    }
1114  }
1115
1116  // Now we have a pointer (stack_start) very close to the stack top, the
1117  // next thing to do is to figure out the exact location of stack top. We
1118  // can find out the virtual memory area that contains stack_start by
1119  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1120  // and its upper limit is the real stack top. (again, this would fail if
1121  // running inside chroot, because /proc may not exist.)
1122
1123  uintptr_t stack_top;
1124  address low, high;
1125  if (find_vma((address)stack_start, &low, &high)) {
1126    // success, "high" is the true stack top. (ignore "low", because initial
1127    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1128    stack_top = (uintptr_t)high;
1129  } else {
1130    // failed, likely because /proc/self/maps does not exist
1131    warning("Can't detect initial thread stack location - find_vma failed");
1132    // best effort: stack_start is normally within a few pages below the real
1133    // stack top, use it as stack top, and reduce stack size so we won't put
1134    // guard page outside stack.
1135    stack_top = stack_start;
1136    stack_size -= 16 * page_size();
1137  }
1138
1139  // stack_top could be partially down the page so align it
1140  stack_top = align_size_up(stack_top, page_size());
1141
1142  if (max_size && stack_size > max_size) {
1143    _initial_thread_stack_size = max_size;
1144  } else {
1145    _initial_thread_stack_size = stack_size;
1146  }
1147
1148  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1149  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1150}
1151
1152////////////////////////////////////////////////////////////////////////////////
1153// time support
1154
1155// Time since start-up in seconds to a fine granularity.
1156// Used by VMSelfDestructTimer and the MemProfiler.
1157double os::elapsedTime() {
1158
1159  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1160}
1161
1162jlong os::elapsed_counter() {
1163  return javaTimeNanos() - initial_time_count;
1164}
1165
1166jlong os::elapsed_frequency() {
1167  return NANOSECS_PER_SEC; // nanosecond resolution
1168}
1169
1170bool os::supports_vtime() { return true; }
1171bool os::enable_vtime()   { return false; }
1172bool os::vtime_enabled()  { return false; }
1173
1174double os::elapsedVTime() {
1175  struct rusage usage;
1176  int retval = getrusage(RUSAGE_THREAD, &usage);
1177  if (retval == 0) {
1178    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1179  } else {
1180    // better than nothing, but not much
1181    return elapsedTime();
1182  }
1183}
1184
1185jlong os::javaTimeMillis() {
1186  timeval time;
1187  int status = gettimeofday(&time, NULL);
1188  assert(status != -1, "linux error");
1189  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1190}
1191
1192void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1193  timeval time;
1194  int status = gettimeofday(&time, NULL);
1195  assert(status != -1, "linux error");
1196  seconds = jlong(time.tv_sec);
1197  nanos = jlong(time.tv_usec) * 1000;
1198}
1199
1200
1201#ifndef CLOCK_MONOTONIC
1202  #define CLOCK_MONOTONIC (1)
1203#endif
1204
1205void os::Linux::clock_init() {
1206  // we do dlopen's in this particular order due to bug in linux
1207  // dynamical loader (see 6348968) leading to crash on exit
1208  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1209  if (handle == NULL) {
1210    handle = dlopen("librt.so", RTLD_LAZY);
1211  }
1212
1213  if (handle) {
1214    int (*clock_getres_func)(clockid_t, struct timespec*) =
1215           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1216    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1217           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1218    if (clock_getres_func && clock_gettime_func) {
1219      // See if monotonic clock is supported by the kernel. Note that some
1220      // early implementations simply return kernel jiffies (updated every
1221      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1222      // for nano time (though the monotonic property is still nice to have).
1223      // It's fixed in newer kernels, however clock_getres() still returns
1224      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1225      // resolution for now. Hopefully as people move to new kernels, this
1226      // won't be a problem.
1227      struct timespec res;
1228      struct timespec tp;
1229      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1230          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1231        // yes, monotonic clock is supported
1232        _clock_gettime = clock_gettime_func;
1233        return;
1234      } else {
1235        // close librt if there is no monotonic clock
1236        dlclose(handle);
1237      }
1238    }
1239  }
1240  warning("No monotonic clock was available - timed services may " \
1241          "be adversely affected if the time-of-day clock changes");
1242}
1243
1244#ifndef SYS_clock_getres
1245  #if defined(IA32) || defined(AMD64)
1246    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1247    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1248  #else
1249    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1250    #define sys_clock_getres(x,y)  -1
1251  #endif
1252#else
1253  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1254#endif
1255
1256void os::Linux::fast_thread_clock_init() {
1257  if (!UseLinuxPosixThreadCPUClocks) {
1258    return;
1259  }
1260  clockid_t clockid;
1261  struct timespec tp;
1262  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1263      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1264
1265  // Switch to using fast clocks for thread cpu time if
1266  // the sys_clock_getres() returns 0 error code.
1267  // Note, that some kernels may support the current thread
1268  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1269  // returned by the pthread_getcpuclockid().
1270  // If the fast Posix clocks are supported then the sys_clock_getres()
1271  // must return at least tp.tv_sec == 0 which means a resolution
1272  // better than 1 sec. This is extra check for reliability.
1273
1274  if (pthread_getcpuclockid_func &&
1275      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1276      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1277    _supports_fast_thread_cpu_time = true;
1278    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1279  }
1280}
1281
1282jlong os::javaTimeNanos() {
1283  if (os::supports_monotonic_clock()) {
1284    struct timespec tp;
1285    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1286    assert(status == 0, "gettime error");
1287    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1288    return result;
1289  } else {
1290    timeval time;
1291    int status = gettimeofday(&time, NULL);
1292    assert(status != -1, "linux error");
1293    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1294    return 1000 * usecs;
1295  }
1296}
1297
1298void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1299  if (os::supports_monotonic_clock()) {
1300    info_ptr->max_value = ALL_64_BITS;
1301
1302    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1303    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1304    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1305  } else {
1306    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1307    info_ptr->max_value = ALL_64_BITS;
1308
1309    // gettimeofday is a real time clock so it skips
1310    info_ptr->may_skip_backward = true;
1311    info_ptr->may_skip_forward = true;
1312  }
1313
1314  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1315}
1316
1317// Return the real, user, and system times in seconds from an
1318// arbitrary fixed point in the past.
1319bool os::getTimesSecs(double* process_real_time,
1320                      double* process_user_time,
1321                      double* process_system_time) {
1322  struct tms ticks;
1323  clock_t real_ticks = times(&ticks);
1324
1325  if (real_ticks == (clock_t) (-1)) {
1326    return false;
1327  } else {
1328    double ticks_per_second = (double) clock_tics_per_sec;
1329    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1330    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1331    *process_real_time = ((double) real_ticks) / ticks_per_second;
1332
1333    return true;
1334  }
1335}
1336
1337
1338char * os::local_time_string(char *buf, size_t buflen) {
1339  struct tm t;
1340  time_t long_time;
1341  time(&long_time);
1342  localtime_r(&long_time, &t);
1343  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1344               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1345               t.tm_hour, t.tm_min, t.tm_sec);
1346  return buf;
1347}
1348
1349struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1350  return localtime_r(clock, res);
1351}
1352
1353////////////////////////////////////////////////////////////////////////////////
1354// runtime exit support
1355
1356// Note: os::shutdown() might be called very early during initialization, or
1357// called from signal handler. Before adding something to os::shutdown(), make
1358// sure it is async-safe and can handle partially initialized VM.
1359void os::shutdown() {
1360
1361  // allow PerfMemory to attempt cleanup of any persistent resources
1362  perfMemory_exit();
1363
1364  // needs to remove object in file system
1365  AttachListener::abort();
1366
1367  // flush buffered output, finish log files
1368  ostream_abort();
1369
1370  // Check for abort hook
1371  abort_hook_t abort_hook = Arguments::abort_hook();
1372  if (abort_hook != NULL) {
1373    abort_hook();
1374  }
1375
1376}
1377
1378// Note: os::abort() might be called very early during initialization, or
1379// called from signal handler. Before adding something to os::abort(), make
1380// sure it is async-safe and can handle partially initialized VM.
1381void os::abort(bool dump_core, void* siginfo, void* context) {
1382  os::shutdown();
1383  if (dump_core) {
1384#ifndef PRODUCT
1385    fdStream out(defaultStream::output_fd());
1386    out.print_raw("Current thread is ");
1387    char buf[16];
1388    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1389    out.print_raw_cr(buf);
1390    out.print_raw_cr("Dumping core ...");
1391#endif
1392    ::abort(); // dump core
1393  }
1394
1395  ::exit(1);
1396}
1397
1398// Die immediately, no exit hook, no abort hook, no cleanup.
1399void os::die() {
1400  ::abort();
1401}
1402
1403
1404// This method is a copy of JDK's sysGetLastErrorString
1405// from src/solaris/hpi/src/system_md.c
1406
1407size_t os::lasterror(char *buf, size_t len) {
1408  if (errno == 0)  return 0;
1409
1410  const char *s = ::strerror(errno);
1411  size_t n = ::strlen(s);
1412  if (n >= len) {
1413    n = len - 1;
1414  }
1415  ::strncpy(buf, s, n);
1416  buf[n] = '\0';
1417  return n;
1418}
1419
1420// thread_id is kernel thread id (similar to Solaris LWP id)
1421intx os::current_thread_id() { return os::Linux::gettid(); }
1422int os::current_process_id() {
1423  return ::getpid();
1424}
1425
1426// DLL functions
1427
1428const char* os::dll_file_extension() { return ".so"; }
1429
1430// This must be hard coded because it's the system's temporary
1431// directory not the java application's temp directory, ala java.io.tmpdir.
1432const char* os::get_temp_directory() { return "/tmp"; }
1433
1434static bool file_exists(const char* filename) {
1435  struct stat statbuf;
1436  if (filename == NULL || strlen(filename) == 0) {
1437    return false;
1438  }
1439  return os::stat(filename, &statbuf) == 0;
1440}
1441
1442bool os::dll_build_name(char* buffer, size_t buflen,
1443                        const char* pname, const char* fname) {
1444  bool retval = false;
1445  // Copied from libhpi
1446  const size_t pnamelen = pname ? strlen(pname) : 0;
1447
1448  // Return error on buffer overflow.
1449  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1450    return retval;
1451  }
1452
1453  if (pnamelen == 0) {
1454    snprintf(buffer, buflen, "lib%s.so", fname);
1455    retval = true;
1456  } else if (strchr(pname, *os::path_separator()) != NULL) {
1457    int n;
1458    char** pelements = split_path(pname, &n);
1459    if (pelements == NULL) {
1460      return false;
1461    }
1462    for (int i = 0; i < n; i++) {
1463      // Really shouldn't be NULL, but check can't hurt
1464      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1465        continue; // skip the empty path values
1466      }
1467      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1468      if (file_exists(buffer)) {
1469        retval = true;
1470        break;
1471      }
1472    }
1473    // release the storage
1474    for (int i = 0; i < n; i++) {
1475      if (pelements[i] != NULL) {
1476        FREE_C_HEAP_ARRAY(char, pelements[i]);
1477      }
1478    }
1479    if (pelements != NULL) {
1480      FREE_C_HEAP_ARRAY(char*, pelements);
1481    }
1482  } else {
1483    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1484    retval = true;
1485  }
1486  return retval;
1487}
1488
1489// check if addr is inside libjvm.so
1490bool os::address_is_in_vm(address addr) {
1491  static address libjvm_base_addr;
1492  Dl_info dlinfo;
1493
1494  if (libjvm_base_addr == NULL) {
1495    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1496      libjvm_base_addr = (address)dlinfo.dli_fbase;
1497    }
1498    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1499  }
1500
1501  if (dladdr((void *)addr, &dlinfo) != 0) {
1502    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1503  }
1504
1505  return false;
1506}
1507
1508bool os::dll_address_to_function_name(address addr, char *buf,
1509                                      int buflen, int *offset,
1510                                      bool demangle) {
1511  // buf is not optional, but offset is optional
1512  assert(buf != NULL, "sanity check");
1513
1514  Dl_info dlinfo;
1515
1516  if (dladdr((void*)addr, &dlinfo) != 0) {
1517    // see if we have a matching symbol
1518    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1519      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1520        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1521      }
1522      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1523      return true;
1524    }
1525    // no matching symbol so try for just file info
1526    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1527      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1528                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1529        return true;
1530      }
1531    }
1532  }
1533
1534  buf[0] = '\0';
1535  if (offset != NULL) *offset = -1;
1536  return false;
1537}
1538
1539struct _address_to_library_name {
1540  address addr;          // input : memory address
1541  size_t  buflen;        //         size of fname
1542  char*   fname;         // output: library name
1543  address base;          //         library base addr
1544};
1545
1546static int address_to_library_name_callback(struct dl_phdr_info *info,
1547                                            size_t size, void *data) {
1548  int i;
1549  bool found = false;
1550  address libbase = NULL;
1551  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1552
1553  // iterate through all loadable segments
1554  for (i = 0; i < info->dlpi_phnum; i++) {
1555    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1556    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1557      // base address of a library is the lowest address of its loaded
1558      // segments.
1559      if (libbase == NULL || libbase > segbase) {
1560        libbase = segbase;
1561      }
1562      // see if 'addr' is within current segment
1563      if (segbase <= d->addr &&
1564          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1565        found = true;
1566      }
1567    }
1568  }
1569
1570  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1571  // so dll_address_to_library_name() can fall through to use dladdr() which
1572  // can figure out executable name from argv[0].
1573  if (found && info->dlpi_name && info->dlpi_name[0]) {
1574    d->base = libbase;
1575    if (d->fname) {
1576      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1577    }
1578    return 1;
1579  }
1580  return 0;
1581}
1582
1583bool os::dll_address_to_library_name(address addr, char* buf,
1584                                     int buflen, int* offset) {
1585  // buf is not optional, but offset is optional
1586  assert(buf != NULL, "sanity check");
1587
1588  Dl_info dlinfo;
1589  struct _address_to_library_name data;
1590
1591  // There is a bug in old glibc dladdr() implementation that it could resolve
1592  // to wrong library name if the .so file has a base address != NULL. Here
1593  // we iterate through the program headers of all loaded libraries to find
1594  // out which library 'addr' really belongs to. This workaround can be
1595  // removed once the minimum requirement for glibc is moved to 2.3.x.
1596  data.addr = addr;
1597  data.fname = buf;
1598  data.buflen = buflen;
1599  data.base = NULL;
1600  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1601
1602  if (rslt) {
1603    // buf already contains library name
1604    if (offset) *offset = addr - data.base;
1605    return true;
1606  }
1607  if (dladdr((void*)addr, &dlinfo) != 0) {
1608    if (dlinfo.dli_fname != NULL) {
1609      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1610    }
1611    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1612      *offset = addr - (address)dlinfo.dli_fbase;
1613    }
1614    return true;
1615  }
1616
1617  buf[0] = '\0';
1618  if (offset) *offset = -1;
1619  return false;
1620}
1621
1622// Loads .dll/.so and
1623// in case of error it checks if .dll/.so was built for the
1624// same architecture as Hotspot is running on
1625
1626
1627// Remember the stack's state. The Linux dynamic linker will change
1628// the stack to 'executable' at most once, so we must safepoint only once.
1629bool os::Linux::_stack_is_executable = false;
1630
1631// VM operation that loads a library.  This is necessary if stack protection
1632// of the Java stacks can be lost during loading the library.  If we
1633// do not stop the Java threads, they can stack overflow before the stacks
1634// are protected again.
1635class VM_LinuxDllLoad: public VM_Operation {
1636 private:
1637  const char *_filename;
1638  char *_ebuf;
1639  int _ebuflen;
1640  void *_lib;
1641 public:
1642  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1643    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1644  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1645  void doit() {
1646    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1647    os::Linux::_stack_is_executable = true;
1648  }
1649  void* loaded_library() { return _lib; }
1650};
1651
1652void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1653  void * result = NULL;
1654  bool load_attempted = false;
1655
1656  // Check whether the library to load might change execution rights
1657  // of the stack. If they are changed, the protection of the stack
1658  // guard pages will be lost. We need a safepoint to fix this.
1659  //
1660  // See Linux man page execstack(8) for more info.
1661  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1662    ElfFile ef(filename);
1663    if (!ef.specifies_noexecstack()) {
1664      if (!is_init_completed()) {
1665        os::Linux::_stack_is_executable = true;
1666        // This is OK - No Java threads have been created yet, and hence no
1667        // stack guard pages to fix.
1668        //
1669        // This should happen only when you are building JDK7 using a very
1670        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1671        //
1672        // Dynamic loader will make all stacks executable after
1673        // this function returns, and will not do that again.
1674        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1675      } else {
1676        warning("You have loaded library %s which might have disabled stack guard. "
1677                "The VM will try to fix the stack guard now.\n"
1678                "It's highly recommended that you fix the library with "
1679                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1680                filename);
1681
1682        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1683        JavaThread *jt = JavaThread::current();
1684        if (jt->thread_state() != _thread_in_native) {
1685          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1686          // that requires ExecStack. Cannot enter safe point. Let's give up.
1687          warning("Unable to fix stack guard. Giving up.");
1688        } else {
1689          if (!LoadExecStackDllInVMThread) {
1690            // This is for the case where the DLL has an static
1691            // constructor function that executes JNI code. We cannot
1692            // load such DLLs in the VMThread.
1693            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1694          }
1695
1696          ThreadInVMfromNative tiv(jt);
1697          debug_only(VMNativeEntryWrapper vew;)
1698
1699          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1700          VMThread::execute(&op);
1701          if (LoadExecStackDllInVMThread) {
1702            result = op.loaded_library();
1703          }
1704          load_attempted = true;
1705        }
1706      }
1707    }
1708  }
1709
1710  if (!load_attempted) {
1711    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1712  }
1713
1714  if (result != NULL) {
1715    // Successful loading
1716    return result;
1717  }
1718
1719  Elf32_Ehdr elf_head;
1720  int diag_msg_max_length=ebuflen-strlen(ebuf);
1721  char* diag_msg_buf=ebuf+strlen(ebuf);
1722
1723  if (diag_msg_max_length==0) {
1724    // No more space in ebuf for additional diagnostics message
1725    return NULL;
1726  }
1727
1728
1729  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1730
1731  if (file_descriptor < 0) {
1732    // Can't open library, report dlerror() message
1733    return NULL;
1734  }
1735
1736  bool failed_to_read_elf_head=
1737    (sizeof(elf_head)!=
1738     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1739
1740  ::close(file_descriptor);
1741  if (failed_to_read_elf_head) {
1742    // file i/o error - report dlerror() msg
1743    return NULL;
1744  }
1745
1746  typedef struct {
1747    Elf32_Half  code;         // Actual value as defined in elf.h
1748    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1749    char        elf_class;    // 32 or 64 bit
1750    char        endianess;    // MSB or LSB
1751    char*       name;         // String representation
1752  } arch_t;
1753
1754#ifndef EM_486
1755  #define EM_486          6               /* Intel 80486 */
1756#endif
1757#ifndef EM_AARCH64
1758  #define EM_AARCH64    183               /* ARM AARCH64 */
1759#endif
1760
1761  static const arch_t arch_array[]={
1762    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1763    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1764    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1765    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1766    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1767    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1768    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1769    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1770#if defined(VM_LITTLE_ENDIAN)
1771    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1772#else
1773    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1774#endif
1775    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1776    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1777    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1778    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1779    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1780    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1781    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1782    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1783  };
1784
1785#if  (defined IA32)
1786  static  Elf32_Half running_arch_code=EM_386;
1787#elif   (defined AMD64)
1788  static  Elf32_Half running_arch_code=EM_X86_64;
1789#elif  (defined IA64)
1790  static  Elf32_Half running_arch_code=EM_IA_64;
1791#elif  (defined __sparc) && (defined _LP64)
1792  static  Elf32_Half running_arch_code=EM_SPARCV9;
1793#elif  (defined __sparc) && (!defined _LP64)
1794  static  Elf32_Half running_arch_code=EM_SPARC;
1795#elif  (defined __powerpc64__)
1796  static  Elf32_Half running_arch_code=EM_PPC64;
1797#elif  (defined __powerpc__)
1798  static  Elf32_Half running_arch_code=EM_PPC;
1799#elif  (defined ARM)
1800  static  Elf32_Half running_arch_code=EM_ARM;
1801#elif  (defined S390)
1802  static  Elf32_Half running_arch_code=EM_S390;
1803#elif  (defined ALPHA)
1804  static  Elf32_Half running_arch_code=EM_ALPHA;
1805#elif  (defined MIPSEL)
1806  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1807#elif  (defined PARISC)
1808  static  Elf32_Half running_arch_code=EM_PARISC;
1809#elif  (defined MIPS)
1810  static  Elf32_Half running_arch_code=EM_MIPS;
1811#elif  (defined M68K)
1812  static  Elf32_Half running_arch_code=EM_68K;
1813#elif  (defined AARCH64)
1814  static  Elf32_Half running_arch_code=EM_AARCH64;
1815#else
1816    #error Method os::dll_load requires that one of following is defined:\
1817         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1818#endif
1819
1820  // Identify compatability class for VM's architecture and library's architecture
1821  // Obtain string descriptions for architectures
1822
1823  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1824  int running_arch_index=-1;
1825
1826  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1827    if (running_arch_code == arch_array[i].code) {
1828      running_arch_index    = i;
1829    }
1830    if (lib_arch.code == arch_array[i].code) {
1831      lib_arch.compat_class = arch_array[i].compat_class;
1832      lib_arch.name         = arch_array[i].name;
1833    }
1834  }
1835
1836  assert(running_arch_index != -1,
1837         "Didn't find running architecture code (running_arch_code) in arch_array");
1838  if (running_arch_index == -1) {
1839    // Even though running architecture detection failed
1840    // we may still continue with reporting dlerror() message
1841    return NULL;
1842  }
1843
1844  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1845    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1846    return NULL;
1847  }
1848
1849#ifndef S390
1850  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1851    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1852    return NULL;
1853  }
1854#endif // !S390
1855
1856  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1857    if (lib_arch.name!=NULL) {
1858      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1859                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1860                 lib_arch.name, arch_array[running_arch_index].name);
1861    } else {
1862      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1863                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1864                 lib_arch.code,
1865                 arch_array[running_arch_index].name);
1866    }
1867  }
1868
1869  return NULL;
1870}
1871
1872void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1873                                int ebuflen) {
1874  void * result = ::dlopen(filename, RTLD_LAZY);
1875  if (result == NULL) {
1876    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1877    ebuf[ebuflen-1] = '\0';
1878  }
1879  return result;
1880}
1881
1882void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1883                                       int ebuflen) {
1884  void * result = NULL;
1885  if (LoadExecStackDllInVMThread) {
1886    result = dlopen_helper(filename, ebuf, ebuflen);
1887  }
1888
1889  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1890  // library that requires an executable stack, or which does not have this
1891  // stack attribute set, dlopen changes the stack attribute to executable. The
1892  // read protection of the guard pages gets lost.
1893  //
1894  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1895  // may have been queued at the same time.
1896
1897  if (!_stack_is_executable) {
1898    JavaThread *jt = Threads::first();
1899
1900    while (jt) {
1901      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1902          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1903        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1904                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1905          warning("Attempt to reguard stack yellow zone failed.");
1906        }
1907      }
1908      jt = jt->next();
1909    }
1910  }
1911
1912  return result;
1913}
1914
1915void* os::dll_lookup(void* handle, const char* name) {
1916  void* res = dlsym(handle, name);
1917  return res;
1918}
1919
1920void* os::get_default_process_handle() {
1921  return (void*)::dlopen(NULL, RTLD_LAZY);
1922}
1923
1924static bool _print_ascii_file(const char* filename, outputStream* st) {
1925  int fd = ::open(filename, O_RDONLY);
1926  if (fd == -1) {
1927    return false;
1928  }
1929
1930  char buf[32];
1931  int bytes;
1932  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1933    st->print_raw(buf, bytes);
1934  }
1935
1936  ::close(fd);
1937
1938  return true;
1939}
1940
1941void os::print_dll_info(outputStream *st) {
1942  st->print_cr("Dynamic libraries:");
1943
1944  char fname[32];
1945  pid_t pid = os::Linux::gettid();
1946
1947  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1948
1949  if (!_print_ascii_file(fname, st)) {
1950    st->print("Can not get library information for pid = %d\n", pid);
1951  }
1952}
1953
1954int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1955  FILE *procmapsFile = NULL;
1956
1957  // Open the procfs maps file for the current process
1958  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1959    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1960    char line[PATH_MAX + 100];
1961
1962    // Read line by line from 'file'
1963    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1964      u8 base, top, offset, inode;
1965      char permissions[5];
1966      char device[6];
1967      char name[PATH_MAX + 1];
1968
1969      // Parse fields from line
1970      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1971             &base, &top, permissions, &offset, device, &inode, name);
1972
1973      // Filter by device id '00:00' so that we only get file system mapped files.
1974      if (strcmp(device, "00:00") != 0) {
1975
1976        // Call callback with the fields of interest
1977        if(callback(name, (address)base, (address)top, param)) {
1978          // Oops abort, callback aborted
1979          fclose(procmapsFile);
1980          return 1;
1981        }
1982      }
1983    }
1984    fclose(procmapsFile);
1985  }
1986  return 0;
1987}
1988
1989void os::print_os_info_brief(outputStream* st) {
1990  os::Linux::print_distro_info(st);
1991
1992  os::Posix::print_uname_info(st);
1993
1994  os::Linux::print_libversion_info(st);
1995
1996}
1997
1998void os::print_os_info(outputStream* st) {
1999  st->print("OS:");
2000
2001  os::Linux::print_distro_info(st);
2002
2003  os::Posix::print_uname_info(st);
2004
2005  // Print warning if unsafe chroot environment detected
2006  if (unsafe_chroot_detected) {
2007    st->print("WARNING!! ");
2008    st->print_cr("%s", unstable_chroot_error);
2009  }
2010
2011  os::Linux::print_libversion_info(st);
2012
2013  os::Posix::print_rlimit_info(st);
2014
2015  os::Posix::print_load_average(st);
2016
2017  os::Linux::print_full_memory_info(st);
2018}
2019
2020// Try to identify popular distros.
2021// Most Linux distributions have a /etc/XXX-release file, which contains
2022// the OS version string. Newer Linux distributions have a /etc/lsb-release
2023// file that also contains the OS version string. Some have more than one
2024// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2025// /etc/redhat-release.), so the order is important.
2026// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2027// their own specific XXX-release file as well as a redhat-release file.
2028// Because of this the XXX-release file needs to be searched for before the
2029// redhat-release file.
2030// Since Red Hat has a lsb-release file that is not very descriptive the
2031// search for redhat-release needs to be before lsb-release.
2032// Since the lsb-release file is the new standard it needs to be searched
2033// before the older style release files.
2034// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2035// next to last resort.  The os-release file is a new standard that contains
2036// distribution information and the system-release file seems to be an old
2037// standard that has been replaced by the lsb-release and os-release files.
2038// Searching for the debian_version file is the last resort.  It contains
2039// an informative string like "6.0.6" or "wheezy/sid". Because of this
2040// "Debian " is printed before the contents of the debian_version file.
2041
2042const char* distro_files[] = {
2043  "/etc/oracle-release",
2044  "/etc/mandriva-release",
2045  "/etc/mandrake-release",
2046  "/etc/sun-release",
2047  "/etc/redhat-release",
2048  "/etc/lsb-release",
2049  "/etc/SuSE-release",
2050  "/etc/turbolinux-release",
2051  "/etc/gentoo-release",
2052  "/etc/ltib-release",
2053  "/etc/angstrom-version",
2054  "/etc/system-release",
2055  "/etc/os-release",
2056  NULL };
2057
2058void os::Linux::print_distro_info(outputStream* st) {
2059  for (int i = 0;; i++) {
2060    const char* file = distro_files[i];
2061    if (file == NULL) {
2062      break;  // done
2063    }
2064    // If file prints, we found it.
2065    if (_print_ascii_file(file, st)) {
2066      return;
2067    }
2068  }
2069
2070  if (file_exists("/etc/debian_version")) {
2071    st->print("Debian ");
2072    _print_ascii_file("/etc/debian_version", st);
2073  } else {
2074    st->print("Linux");
2075  }
2076  st->cr();
2077}
2078
2079static void parse_os_info(char* distro, size_t length, const char* file) {
2080  FILE* fp = fopen(file, "r");
2081  if (fp != NULL) {
2082    char buf[256];
2083    // get last line of the file.
2084    while (fgets(buf, sizeof(buf), fp)) { }
2085    // Edit out extra stuff in expected ubuntu format
2086    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2087      char* ptr = strstr(buf, "\"");  // the name is in quotes
2088      if (ptr != NULL) {
2089        ptr++; // go beyond first quote
2090        char* nl = strchr(ptr, '\"');
2091        if (nl != NULL) *nl = '\0';
2092        strncpy(distro, ptr, length);
2093      } else {
2094        ptr = strstr(buf, "=");
2095        ptr++; // go beyond equals then
2096        char* nl = strchr(ptr, '\n');
2097        if (nl != NULL) *nl = '\0';
2098        strncpy(distro, ptr, length);
2099      }
2100    } else {
2101      // if not in expected Ubuntu format, print out whole line minus \n
2102      char* nl = strchr(buf, '\n');
2103      if (nl != NULL) *nl = '\0';
2104      strncpy(distro, buf, length);
2105    }
2106    // close distro file
2107    fclose(fp);
2108  }
2109}
2110
2111void os::get_summary_os_info(char* buf, size_t buflen) {
2112  for (int i = 0;; i++) {
2113    const char* file = distro_files[i];
2114    if (file == NULL) {
2115      break; // ran out of distro_files
2116    }
2117    if (file_exists(file)) {
2118      parse_os_info(buf, buflen, file);
2119      return;
2120    }
2121  }
2122  // special case for debian
2123  if (file_exists("/etc/debian_version")) {
2124    strncpy(buf, "Debian ", buflen);
2125    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2126  } else {
2127    strncpy(buf, "Linux", buflen);
2128  }
2129}
2130
2131void os::Linux::print_libversion_info(outputStream* st) {
2132  // libc, pthread
2133  st->print("libc:");
2134  st->print("%s ", os::Linux::glibc_version());
2135  st->print("%s ", os::Linux::libpthread_version());
2136  st->cr();
2137}
2138
2139void os::Linux::print_full_memory_info(outputStream* st) {
2140  st->print("\n/proc/meminfo:\n");
2141  _print_ascii_file("/proc/meminfo", st);
2142  st->cr();
2143}
2144
2145void os::print_memory_info(outputStream* st) {
2146
2147  st->print("Memory:");
2148  st->print(" %dk page", os::vm_page_size()>>10);
2149
2150  // values in struct sysinfo are "unsigned long"
2151  struct sysinfo si;
2152  sysinfo(&si);
2153
2154  st->print(", physical " UINT64_FORMAT "k",
2155            os::physical_memory() >> 10);
2156  st->print("(" UINT64_FORMAT "k free)",
2157            os::available_memory() >> 10);
2158  st->print(", swap " UINT64_FORMAT "k",
2159            ((jlong)si.totalswap * si.mem_unit) >> 10);
2160  st->print("(" UINT64_FORMAT "k free)",
2161            ((jlong)si.freeswap * si.mem_unit) >> 10);
2162  st->cr();
2163}
2164
2165// Print the first "model name" line and the first "flags" line
2166// that we find and nothing more. We assume "model name" comes
2167// before "flags" so if we find a second "model name", then the
2168// "flags" field is considered missing.
2169static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2170#if defined(IA32) || defined(AMD64)
2171  // Other platforms have less repetitive cpuinfo files
2172  FILE *fp = fopen("/proc/cpuinfo", "r");
2173  if (fp) {
2174    while (!feof(fp)) {
2175      if (fgets(buf, buflen, fp)) {
2176        // Assume model name comes before flags
2177        bool model_name_printed = false;
2178        if (strstr(buf, "model name") != NULL) {
2179          if (!model_name_printed) {
2180            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2181            st->print_raw(buf);
2182            model_name_printed = true;
2183          } else {
2184            // model name printed but not flags?  Odd, just return
2185            fclose(fp);
2186            return true;
2187          }
2188        }
2189        // print the flags line too
2190        if (strstr(buf, "flags") != NULL) {
2191          st->print_raw(buf);
2192          fclose(fp);
2193          return true;
2194        }
2195      }
2196    }
2197    fclose(fp);
2198  }
2199#endif // x86 platforms
2200  return false;
2201}
2202
2203void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2204  // Only print the model name if the platform provides this as a summary
2205  if (!print_model_name_and_flags(st, buf, buflen)) {
2206    st->print("\n/proc/cpuinfo:\n");
2207    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2208      st->print_cr("  <Not Available>");
2209    }
2210  }
2211}
2212
2213#if defined(AMD64) || defined(IA32) || defined(X32)
2214const char* search_string = "model name";
2215#elif defined(SPARC)
2216const char* search_string = "cpu";
2217#else
2218const char* search_string = "Processor";
2219#endif
2220
2221// Parses the cpuinfo file for string representing the model name.
2222void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2223  FILE* fp = fopen("/proc/cpuinfo", "r");
2224  if (fp != NULL) {
2225    while (!feof(fp)) {
2226      char buf[256];
2227      if (fgets(buf, sizeof(buf), fp)) {
2228        char* start = strstr(buf, search_string);
2229        if (start != NULL) {
2230          char *ptr = start + strlen(search_string);
2231          char *end = buf + strlen(buf);
2232          while (ptr != end) {
2233             // skip whitespace and colon for the rest of the name.
2234             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2235               break;
2236             }
2237             ptr++;
2238          }
2239          if (ptr != end) {
2240            // reasonable string, get rid of newline and keep the rest
2241            char* nl = strchr(buf, '\n');
2242            if (nl != NULL) *nl = '\0';
2243            strncpy(cpuinfo, ptr, length);
2244            fclose(fp);
2245            return;
2246          }
2247        }
2248      }
2249    }
2250    fclose(fp);
2251  }
2252  // cpuinfo not found or parsing failed, just print generic string.  The entire
2253  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2254#if defined(AMD64)
2255  strncpy(cpuinfo, "x86_64", length);
2256#elif defined(IA32)
2257  strncpy(cpuinfo, "x86_32", length);
2258#elif defined(IA64)
2259  strncpy(cpuinfo, "IA64", length);
2260#elif defined(SPARC)
2261  strncpy(cpuinfo, "sparcv9", length);
2262#elif defined(AARCH64)
2263  strncpy(cpuinfo, "AArch64", length);
2264#elif defined(ARM)
2265  strncpy(cpuinfo, "ARM", length);
2266#elif defined(PPC)
2267  strncpy(cpuinfo, "PPC64", length);
2268#elif defined(ZERO_LIBARCH)
2269  strncpy(cpuinfo, ZERO_LIBARCH, length);
2270#else
2271  strncpy(cpuinfo, "unknown", length);
2272#endif
2273}
2274
2275void os::print_siginfo(outputStream* st, void* siginfo) {
2276  const siginfo_t* si = (const siginfo_t*)siginfo;
2277
2278  os::Posix::print_siginfo_brief(st, si);
2279#if INCLUDE_CDS
2280  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2281      UseSharedSpaces) {
2282    FileMapInfo* mapinfo = FileMapInfo::current_info();
2283    if (mapinfo->is_in_shared_space(si->si_addr)) {
2284      st->print("\n\nError accessing class data sharing archive."   \
2285                " Mapped file inaccessible during execution, "      \
2286                " possible disk/network problem.");
2287    }
2288  }
2289#endif
2290  st->cr();
2291}
2292
2293
2294static void print_signal_handler(outputStream* st, int sig,
2295                                 char* buf, size_t buflen);
2296
2297void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2298  st->print_cr("Signal Handlers:");
2299  print_signal_handler(st, SIGSEGV, buf, buflen);
2300  print_signal_handler(st, SIGBUS , buf, buflen);
2301  print_signal_handler(st, SIGFPE , buf, buflen);
2302  print_signal_handler(st, SIGPIPE, buf, buflen);
2303  print_signal_handler(st, SIGXFSZ, buf, buflen);
2304  print_signal_handler(st, SIGILL , buf, buflen);
2305  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2306  print_signal_handler(st, SR_signum, buf, buflen);
2307  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2308  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2309  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2310  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2311#if defined(PPC64)
2312  print_signal_handler(st, SIGTRAP, buf, buflen);
2313#endif
2314}
2315
2316static char saved_jvm_path[MAXPATHLEN] = {0};
2317
2318// Find the full path to the current module, libjvm.so
2319void os::jvm_path(char *buf, jint buflen) {
2320  // Error checking.
2321  if (buflen < MAXPATHLEN) {
2322    assert(false, "must use a large-enough buffer");
2323    buf[0] = '\0';
2324    return;
2325  }
2326  // Lazy resolve the path to current module.
2327  if (saved_jvm_path[0] != 0) {
2328    strcpy(buf, saved_jvm_path);
2329    return;
2330  }
2331
2332  char dli_fname[MAXPATHLEN];
2333  bool ret = dll_address_to_library_name(
2334                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2335                                         dli_fname, sizeof(dli_fname), NULL);
2336  assert(ret, "cannot locate libjvm");
2337  char *rp = NULL;
2338  if (ret && dli_fname[0] != '\0') {
2339    rp = realpath(dli_fname, buf);
2340  }
2341  if (rp == NULL) {
2342    return;
2343  }
2344
2345  if (Arguments::sun_java_launcher_is_altjvm()) {
2346    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2347    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2348    // If "/jre/lib/" appears at the right place in the string, then
2349    // assume we are installed in a JDK and we're done. Otherwise, check
2350    // for a JAVA_HOME environment variable and fix up the path so it
2351    // looks like libjvm.so is installed there (append a fake suffix
2352    // hotspot/libjvm.so).
2353    const char *p = buf + strlen(buf) - 1;
2354    for (int count = 0; p > buf && count < 5; ++count) {
2355      for (--p; p > buf && *p != '/'; --p)
2356        /* empty */ ;
2357    }
2358
2359    if (strncmp(p, "/jre/lib/", 9) != 0) {
2360      // Look for JAVA_HOME in the environment.
2361      char* java_home_var = ::getenv("JAVA_HOME");
2362      if (java_home_var != NULL && java_home_var[0] != 0) {
2363        char* jrelib_p;
2364        int len;
2365
2366        // Check the current module name "libjvm.so".
2367        p = strrchr(buf, '/');
2368        if (p == NULL) {
2369          return;
2370        }
2371        assert(strstr(p, "/libjvm") == p, "invalid library name");
2372
2373        rp = realpath(java_home_var, buf);
2374        if (rp == NULL) {
2375          return;
2376        }
2377
2378        // determine if this is a legacy image or modules image
2379        // modules image doesn't have "jre" subdirectory
2380        len = strlen(buf);
2381        assert(len < buflen, "Ran out of buffer room");
2382        jrelib_p = buf + len;
2383        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2384        if (0 != access(buf, F_OK)) {
2385          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2386        }
2387
2388        if (0 == access(buf, F_OK)) {
2389          // Use current module name "libjvm.so"
2390          len = strlen(buf);
2391          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2392        } else {
2393          // Go back to path of .so
2394          rp = realpath(dli_fname, buf);
2395          if (rp == NULL) {
2396            return;
2397          }
2398        }
2399      }
2400    }
2401  }
2402
2403  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2404  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2405}
2406
2407void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2408  // no prefix required, not even "_"
2409}
2410
2411void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2412  // no suffix required
2413}
2414
2415////////////////////////////////////////////////////////////////////////////////
2416// sun.misc.Signal support
2417
2418static volatile jint sigint_count = 0;
2419
2420static void UserHandler(int sig, void *siginfo, void *context) {
2421  // 4511530 - sem_post is serialized and handled by the manager thread. When
2422  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2423  // don't want to flood the manager thread with sem_post requests.
2424  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2425    return;
2426  }
2427
2428  // Ctrl-C is pressed during error reporting, likely because the error
2429  // handler fails to abort. Let VM die immediately.
2430  if (sig == SIGINT && is_error_reported()) {
2431    os::die();
2432  }
2433
2434  os::signal_notify(sig);
2435}
2436
2437void* os::user_handler() {
2438  return CAST_FROM_FN_PTR(void*, UserHandler);
2439}
2440
2441struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2442  struct timespec ts;
2443  // Semaphore's are always associated with CLOCK_REALTIME
2444  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2445  // see unpackTime for discussion on overflow checking
2446  if (sec >= MAX_SECS) {
2447    ts.tv_sec += MAX_SECS;
2448    ts.tv_nsec = 0;
2449  } else {
2450    ts.tv_sec += sec;
2451    ts.tv_nsec += nsec;
2452    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2453      ts.tv_nsec -= NANOSECS_PER_SEC;
2454      ++ts.tv_sec; // note: this must be <= max_secs
2455    }
2456  }
2457
2458  return ts;
2459}
2460
2461extern "C" {
2462  typedef void (*sa_handler_t)(int);
2463  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2464}
2465
2466void* os::signal(int signal_number, void* handler) {
2467  struct sigaction sigAct, oldSigAct;
2468
2469  sigfillset(&(sigAct.sa_mask));
2470  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2471  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2472
2473  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2474    // -1 means registration failed
2475    return (void *)-1;
2476  }
2477
2478  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2479}
2480
2481void os::signal_raise(int signal_number) {
2482  ::raise(signal_number);
2483}
2484
2485// The following code is moved from os.cpp for making this
2486// code platform specific, which it is by its very nature.
2487
2488// Will be modified when max signal is changed to be dynamic
2489int os::sigexitnum_pd() {
2490  return NSIG;
2491}
2492
2493// a counter for each possible signal value
2494static volatile jint pending_signals[NSIG+1] = { 0 };
2495
2496// Linux(POSIX) specific hand shaking semaphore.
2497static sem_t sig_sem;
2498static PosixSemaphore sr_semaphore;
2499
2500void os::signal_init_pd() {
2501  // Initialize signal structures
2502  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2503
2504  // Initialize signal semaphore
2505  ::sem_init(&sig_sem, 0, 0);
2506}
2507
2508void os::signal_notify(int sig) {
2509  Atomic::inc(&pending_signals[sig]);
2510  ::sem_post(&sig_sem);
2511}
2512
2513static int check_pending_signals(bool wait) {
2514  Atomic::store(0, &sigint_count);
2515  for (;;) {
2516    for (int i = 0; i < NSIG + 1; i++) {
2517      jint n = pending_signals[i];
2518      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2519        return i;
2520      }
2521    }
2522    if (!wait) {
2523      return -1;
2524    }
2525    JavaThread *thread = JavaThread::current();
2526    ThreadBlockInVM tbivm(thread);
2527
2528    bool threadIsSuspended;
2529    do {
2530      thread->set_suspend_equivalent();
2531      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2532      ::sem_wait(&sig_sem);
2533
2534      // were we externally suspended while we were waiting?
2535      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2536      if (threadIsSuspended) {
2537        // The semaphore has been incremented, but while we were waiting
2538        // another thread suspended us. We don't want to continue running
2539        // while suspended because that would surprise the thread that
2540        // suspended us.
2541        ::sem_post(&sig_sem);
2542
2543        thread->java_suspend_self();
2544      }
2545    } while (threadIsSuspended);
2546  }
2547}
2548
2549int os::signal_lookup() {
2550  return check_pending_signals(false);
2551}
2552
2553int os::signal_wait() {
2554  return check_pending_signals(true);
2555}
2556
2557////////////////////////////////////////////////////////////////////////////////
2558// Virtual Memory
2559
2560int os::vm_page_size() {
2561  // Seems redundant as all get out
2562  assert(os::Linux::page_size() != -1, "must call os::init");
2563  return os::Linux::page_size();
2564}
2565
2566// Solaris allocates memory by pages.
2567int os::vm_allocation_granularity() {
2568  assert(os::Linux::page_size() != -1, "must call os::init");
2569  return os::Linux::page_size();
2570}
2571
2572// Rationale behind this function:
2573//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2574//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2575//  samples for JITted code. Here we create private executable mapping over the code cache
2576//  and then we can use standard (well, almost, as mapping can change) way to provide
2577//  info for the reporting script by storing timestamp and location of symbol
2578void linux_wrap_code(char* base, size_t size) {
2579  static volatile jint cnt = 0;
2580
2581  if (!UseOprofile) {
2582    return;
2583  }
2584
2585  char buf[PATH_MAX+1];
2586  int num = Atomic::add(1, &cnt);
2587
2588  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2589           os::get_temp_directory(), os::current_process_id(), num);
2590  unlink(buf);
2591
2592  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2593
2594  if (fd != -1) {
2595    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2596    if (rv != (off_t)-1) {
2597      if (::write(fd, "", 1) == 1) {
2598        mmap(base, size,
2599             PROT_READ|PROT_WRITE|PROT_EXEC,
2600             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2601      }
2602    }
2603    ::close(fd);
2604    unlink(buf);
2605  }
2606}
2607
2608static bool recoverable_mmap_error(int err) {
2609  // See if the error is one we can let the caller handle. This
2610  // list of errno values comes from JBS-6843484. I can't find a
2611  // Linux man page that documents this specific set of errno
2612  // values so while this list currently matches Solaris, it may
2613  // change as we gain experience with this failure mode.
2614  switch (err) {
2615  case EBADF:
2616  case EINVAL:
2617  case ENOTSUP:
2618    // let the caller deal with these errors
2619    return true;
2620
2621  default:
2622    // Any remaining errors on this OS can cause our reserved mapping
2623    // to be lost. That can cause confusion where different data
2624    // structures think they have the same memory mapped. The worst
2625    // scenario is if both the VM and a library think they have the
2626    // same memory mapped.
2627    return false;
2628  }
2629}
2630
2631static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2632                                    int err) {
2633  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2634          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2635          strerror(err), err);
2636}
2637
2638static void warn_fail_commit_memory(char* addr, size_t size,
2639                                    size_t alignment_hint, bool exec,
2640                                    int err) {
2641  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2642          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2643          alignment_hint, exec, strerror(err), err);
2644}
2645
2646// NOTE: Linux kernel does not really reserve the pages for us.
2647//       All it does is to check if there are enough free pages
2648//       left at the time of mmap(). This could be a potential
2649//       problem.
2650int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2651  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2652  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2653                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2654  if (res != (uintptr_t) MAP_FAILED) {
2655    if (UseNUMAInterleaving) {
2656      numa_make_global(addr, size);
2657    }
2658    return 0;
2659  }
2660
2661  int err = errno;  // save errno from mmap() call above
2662
2663  if (!recoverable_mmap_error(err)) {
2664    warn_fail_commit_memory(addr, size, exec, err);
2665    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2666  }
2667
2668  return err;
2669}
2670
2671bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2672  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2673}
2674
2675void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2676                                  const char* mesg) {
2677  assert(mesg != NULL, "mesg must be specified");
2678  int err = os::Linux::commit_memory_impl(addr, size, exec);
2679  if (err != 0) {
2680    // the caller wants all commit errors to exit with the specified mesg:
2681    warn_fail_commit_memory(addr, size, exec, err);
2682    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2683  }
2684}
2685
2686// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2687#ifndef MAP_HUGETLB
2688  #define MAP_HUGETLB 0x40000
2689#endif
2690
2691// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2692#ifndef MADV_HUGEPAGE
2693  #define MADV_HUGEPAGE 14
2694#endif
2695
2696int os::Linux::commit_memory_impl(char* addr, size_t size,
2697                                  size_t alignment_hint, bool exec) {
2698  int err = os::Linux::commit_memory_impl(addr, size, exec);
2699  if (err == 0) {
2700    realign_memory(addr, size, alignment_hint);
2701  }
2702  return err;
2703}
2704
2705bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2706                          bool exec) {
2707  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2708}
2709
2710void os::pd_commit_memory_or_exit(char* addr, size_t size,
2711                                  size_t alignment_hint, bool exec,
2712                                  const char* mesg) {
2713  assert(mesg != NULL, "mesg must be specified");
2714  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2715  if (err != 0) {
2716    // the caller wants all commit errors to exit with the specified mesg:
2717    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2718    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2719  }
2720}
2721
2722void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2723  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2724    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2725    // be supported or the memory may already be backed by huge pages.
2726    ::madvise(addr, bytes, MADV_HUGEPAGE);
2727  }
2728}
2729
2730void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2731  // This method works by doing an mmap over an existing mmaping and effectively discarding
2732  // the existing pages. However it won't work for SHM-based large pages that cannot be
2733  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2734  // small pages on top of the SHM segment. This method always works for small pages, so we
2735  // allow that in any case.
2736  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2737    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2738  }
2739}
2740
2741void os::numa_make_global(char *addr, size_t bytes) {
2742  Linux::numa_interleave_memory(addr, bytes);
2743}
2744
2745// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2746// bind policy to MPOL_PREFERRED for the current thread.
2747#define USE_MPOL_PREFERRED 0
2748
2749void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2750  // To make NUMA and large pages more robust when both enabled, we need to ease
2751  // the requirements on where the memory should be allocated. MPOL_BIND is the
2752  // default policy and it will force memory to be allocated on the specified
2753  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2754  // the specified node, but will not force it. Using this policy will prevent
2755  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2756  // free large pages.
2757  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2758  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2759}
2760
2761bool os::numa_topology_changed() { return false; }
2762
2763size_t os::numa_get_groups_num() {
2764  int max_node = Linux::numa_max_node();
2765  return max_node > 0 ? max_node + 1 : 1;
2766}
2767
2768int os::numa_get_group_id() {
2769  int cpu_id = Linux::sched_getcpu();
2770  if (cpu_id != -1) {
2771    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2772    if (lgrp_id != -1) {
2773      return lgrp_id;
2774    }
2775  }
2776  return 0;
2777}
2778
2779size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2780  for (size_t i = 0; i < size; i++) {
2781    ids[i] = i;
2782  }
2783  return size;
2784}
2785
2786bool os::get_page_info(char *start, page_info* info) {
2787  return false;
2788}
2789
2790char *os::scan_pages(char *start, char* end, page_info* page_expected,
2791                     page_info* page_found) {
2792  return end;
2793}
2794
2795
2796int os::Linux::sched_getcpu_syscall(void) {
2797  unsigned int cpu;
2798  int retval = -1;
2799
2800#if defined(IA32)
2801  #ifndef SYS_getcpu
2802    #define SYS_getcpu 318
2803  #endif
2804  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2805#elif defined(AMD64)
2806// Unfortunately we have to bring all these macros here from vsyscall.h
2807// to be able to compile on old linuxes.
2808  #define __NR_vgetcpu 2
2809  #define VSYSCALL_START (-10UL << 20)
2810  #define VSYSCALL_SIZE 1024
2811  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2812  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2813  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2814  retval = vgetcpu(&cpu, NULL, NULL);
2815#endif
2816
2817  return (retval == -1) ? retval : cpu;
2818}
2819
2820// Something to do with the numa-aware allocator needs these symbols
2821extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2822extern "C" JNIEXPORT void numa_error(char *where) { }
2823extern "C" JNIEXPORT int fork1() { return fork(); }
2824
2825
2826// If we are running with libnuma version > 2, then we should
2827// be trying to use symbols with versions 1.1
2828// If we are running with earlier version, which did not have symbol versions,
2829// we should use the base version.
2830void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2831  void *f = dlvsym(handle, name, "libnuma_1.1");
2832  if (f == NULL) {
2833    f = dlsym(handle, name);
2834  }
2835  return f;
2836}
2837
2838bool os::Linux::libnuma_init() {
2839  // sched_getcpu() should be in libc.
2840  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2841                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2842
2843  // If it's not, try a direct syscall.
2844  if (sched_getcpu() == -1) {
2845    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2846                                    (void*)&sched_getcpu_syscall));
2847  }
2848
2849  if (sched_getcpu() != -1) { // Does it work?
2850    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2851    if (handle != NULL) {
2852      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2853                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2854      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2855                                       libnuma_dlsym(handle, "numa_max_node")));
2856      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2857                                        libnuma_dlsym(handle, "numa_available")));
2858      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2859                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2860      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2861                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2862      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2863                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2864
2865
2866      if (numa_available() != -1) {
2867        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2868        // Create a cpu -> node mapping
2869        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2870        rebuild_cpu_to_node_map();
2871        return true;
2872      }
2873    }
2874  }
2875  return false;
2876}
2877
2878// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2879// The table is later used in get_node_by_cpu().
2880void os::Linux::rebuild_cpu_to_node_map() {
2881  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2882                              // in libnuma (possible values are starting from 16,
2883                              // and continuing up with every other power of 2, but less
2884                              // than the maximum number of CPUs supported by kernel), and
2885                              // is a subject to change (in libnuma version 2 the requirements
2886                              // are more reasonable) we'll just hardcode the number they use
2887                              // in the library.
2888  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2889
2890  size_t cpu_num = os::active_processor_count();
2891  size_t cpu_map_size = NCPUS / BitsPerCLong;
2892  size_t cpu_map_valid_size =
2893    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2894
2895  cpu_to_node()->clear();
2896  cpu_to_node()->at_grow(cpu_num - 1);
2897  size_t node_num = numa_get_groups_num();
2898
2899  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2900  for (size_t i = 0; i < node_num; i++) {
2901    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2902      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2903        if (cpu_map[j] != 0) {
2904          for (size_t k = 0; k < BitsPerCLong; k++) {
2905            if (cpu_map[j] & (1UL << k)) {
2906              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2907            }
2908          }
2909        }
2910      }
2911    }
2912  }
2913  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2914}
2915
2916int os::Linux::get_node_by_cpu(int cpu_id) {
2917  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2918    return cpu_to_node()->at(cpu_id);
2919  }
2920  return -1;
2921}
2922
2923GrowableArray<int>* os::Linux::_cpu_to_node;
2924os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2925os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2926os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2927os::Linux::numa_available_func_t os::Linux::_numa_available;
2928os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2929os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2930os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2931unsigned long* os::Linux::_numa_all_nodes;
2932
2933bool os::pd_uncommit_memory(char* addr, size_t size) {
2934  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2935                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2936  return res  != (uintptr_t) MAP_FAILED;
2937}
2938
2939static address get_stack_commited_bottom(address bottom, size_t size) {
2940  address nbot = bottom;
2941  address ntop = bottom + size;
2942
2943  size_t page_sz = os::vm_page_size();
2944  unsigned pages = size / page_sz;
2945
2946  unsigned char vec[1];
2947  unsigned imin = 1, imax = pages + 1, imid;
2948  int mincore_return_value = 0;
2949
2950  assert(imin <= imax, "Unexpected page size");
2951
2952  while (imin < imax) {
2953    imid = (imax + imin) / 2;
2954    nbot = ntop - (imid * page_sz);
2955
2956    // Use a trick with mincore to check whether the page is mapped or not.
2957    // mincore sets vec to 1 if page resides in memory and to 0 if page
2958    // is swapped output but if page we are asking for is unmapped
2959    // it returns -1,ENOMEM
2960    mincore_return_value = mincore(nbot, page_sz, vec);
2961
2962    if (mincore_return_value == -1) {
2963      // Page is not mapped go up
2964      // to find first mapped page
2965      if (errno != EAGAIN) {
2966        assert(errno == ENOMEM, "Unexpected mincore errno");
2967        imax = imid;
2968      }
2969    } else {
2970      // Page is mapped go down
2971      // to find first not mapped page
2972      imin = imid + 1;
2973    }
2974  }
2975
2976  nbot = nbot + page_sz;
2977
2978  // Adjust stack bottom one page up if last checked page is not mapped
2979  if (mincore_return_value == -1) {
2980    nbot = nbot + page_sz;
2981  }
2982
2983  return nbot;
2984}
2985
2986
2987// Linux uses a growable mapping for the stack, and if the mapping for
2988// the stack guard pages is not removed when we detach a thread the
2989// stack cannot grow beyond the pages where the stack guard was
2990// mapped.  If at some point later in the process the stack expands to
2991// that point, the Linux kernel cannot expand the stack any further
2992// because the guard pages are in the way, and a segfault occurs.
2993//
2994// However, it's essential not to split the stack region by unmapping
2995// a region (leaving a hole) that's already part of the stack mapping,
2996// so if the stack mapping has already grown beyond the guard pages at
2997// the time we create them, we have to truncate the stack mapping.
2998// So, we need to know the extent of the stack mapping when
2999// create_stack_guard_pages() is called.
3000
3001// We only need this for stacks that are growable: at the time of
3002// writing thread stacks don't use growable mappings (i.e. those
3003// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3004// only applies to the main thread.
3005
3006// If the (growable) stack mapping already extends beyond the point
3007// where we're going to put our guard pages, truncate the mapping at
3008// that point by munmap()ping it.  This ensures that when we later
3009// munmap() the guard pages we don't leave a hole in the stack
3010// mapping. This only affects the main/initial thread
3011
3012bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3013  if (os::Linux::is_initial_thread()) {
3014    // As we manually grow stack up to bottom inside create_attached_thread(),
3015    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3016    // we don't need to do anything special.
3017    // Check it first, before calling heavy function.
3018    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3019    unsigned char vec[1];
3020
3021    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3022      // Fallback to slow path on all errors, including EAGAIN
3023      stack_extent = (uintptr_t) get_stack_commited_bottom(
3024                                                           os::Linux::initial_thread_stack_bottom(),
3025                                                           (size_t)addr - stack_extent);
3026    }
3027
3028    if (stack_extent < (uintptr_t)addr) {
3029      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3030    }
3031  }
3032
3033  return os::commit_memory(addr, size, !ExecMem);
3034}
3035
3036// If this is a growable mapping, remove the guard pages entirely by
3037// munmap()ping them.  If not, just call uncommit_memory(). This only
3038// affects the main/initial thread, but guard against future OS changes
3039// It's safe to always unmap guard pages for initial thread because we
3040// always place it right after end of the mapped region
3041
3042bool os::remove_stack_guard_pages(char* addr, size_t size) {
3043  uintptr_t stack_extent, stack_base;
3044
3045  if (os::Linux::is_initial_thread()) {
3046    return ::munmap(addr, size) == 0;
3047  }
3048
3049  return os::uncommit_memory(addr, size);
3050}
3051
3052// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3053// at 'requested_addr'. If there are existing memory mappings at the same
3054// location, however, they will be overwritten. If 'fixed' is false,
3055// 'requested_addr' is only treated as a hint, the return value may or
3056// may not start from the requested address. Unlike Linux mmap(), this
3057// function returns NULL to indicate failure.
3058static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3059  char * addr;
3060  int flags;
3061
3062  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3063  if (fixed) {
3064    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3065    flags |= MAP_FIXED;
3066  }
3067
3068  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3069  // touch an uncommitted page. Otherwise, the read/write might
3070  // succeed if we have enough swap space to back the physical page.
3071  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3072                       flags, -1, 0);
3073
3074  return addr == MAP_FAILED ? NULL : addr;
3075}
3076
3077static int anon_munmap(char * addr, size_t size) {
3078  return ::munmap(addr, size) == 0;
3079}
3080
3081char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3082                            size_t alignment_hint) {
3083  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3084}
3085
3086bool os::pd_release_memory(char* addr, size_t size) {
3087  return anon_munmap(addr, size);
3088}
3089
3090static bool linux_mprotect(char* addr, size_t size, int prot) {
3091  // Linux wants the mprotect address argument to be page aligned.
3092  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3093
3094  // According to SUSv3, mprotect() should only be used with mappings
3095  // established by mmap(), and mmap() always maps whole pages. Unaligned
3096  // 'addr' likely indicates problem in the VM (e.g. trying to change
3097  // protection of malloc'ed or statically allocated memory). Check the
3098  // caller if you hit this assert.
3099  assert(addr == bottom, "sanity check");
3100
3101  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3102  return ::mprotect(bottom, size, prot) == 0;
3103}
3104
3105// Set protections specified
3106bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3107                        bool is_committed) {
3108  unsigned int p = 0;
3109  switch (prot) {
3110  case MEM_PROT_NONE: p = PROT_NONE; break;
3111  case MEM_PROT_READ: p = PROT_READ; break;
3112  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3113  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3114  default:
3115    ShouldNotReachHere();
3116  }
3117  // is_committed is unused.
3118  return linux_mprotect(addr, bytes, p);
3119}
3120
3121bool os::guard_memory(char* addr, size_t size) {
3122  return linux_mprotect(addr, size, PROT_NONE);
3123}
3124
3125bool os::unguard_memory(char* addr, size_t size) {
3126  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3127}
3128
3129bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3130                                                    size_t page_size) {
3131  bool result = false;
3132  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3133                 MAP_ANONYMOUS|MAP_PRIVATE,
3134                 -1, 0);
3135  if (p != MAP_FAILED) {
3136    void *aligned_p = align_ptr_up(p, page_size);
3137
3138    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3139
3140    munmap(p, page_size * 2);
3141  }
3142
3143  if (warn && !result) {
3144    warning("TransparentHugePages is not supported by the operating system.");
3145  }
3146
3147  return result;
3148}
3149
3150bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3151  bool result = false;
3152  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3153                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3154                 -1, 0);
3155
3156  if (p != MAP_FAILED) {
3157    // We don't know if this really is a huge page or not.
3158    FILE *fp = fopen("/proc/self/maps", "r");
3159    if (fp) {
3160      while (!feof(fp)) {
3161        char chars[257];
3162        long x = 0;
3163        if (fgets(chars, sizeof(chars), fp)) {
3164          if (sscanf(chars, "%lx-%*x", &x) == 1
3165              && x == (long)p) {
3166            if (strstr (chars, "hugepage")) {
3167              result = true;
3168              break;
3169            }
3170          }
3171        }
3172      }
3173      fclose(fp);
3174    }
3175    munmap(p, page_size);
3176  }
3177
3178  if (warn && !result) {
3179    warning("HugeTLBFS is not supported by the operating system.");
3180  }
3181
3182  return result;
3183}
3184
3185// Set the coredump_filter bits to include largepages in core dump (bit 6)
3186//
3187// From the coredump_filter documentation:
3188//
3189// - (bit 0) anonymous private memory
3190// - (bit 1) anonymous shared memory
3191// - (bit 2) file-backed private memory
3192// - (bit 3) file-backed shared memory
3193// - (bit 4) ELF header pages in file-backed private memory areas (it is
3194//           effective only if the bit 2 is cleared)
3195// - (bit 5) hugetlb private memory
3196// - (bit 6) hugetlb shared memory
3197//
3198static void set_coredump_filter(void) {
3199  FILE *f;
3200  long cdm;
3201
3202  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3203    return;
3204  }
3205
3206  if (fscanf(f, "%lx", &cdm) != 1) {
3207    fclose(f);
3208    return;
3209  }
3210
3211  rewind(f);
3212
3213  if ((cdm & LARGEPAGES_BIT) == 0) {
3214    cdm |= LARGEPAGES_BIT;
3215    fprintf(f, "%#lx", cdm);
3216  }
3217
3218  fclose(f);
3219}
3220
3221// Large page support
3222
3223static size_t _large_page_size = 0;
3224
3225size_t os::Linux::find_large_page_size() {
3226  size_t large_page_size = 0;
3227
3228  // large_page_size on Linux is used to round up heap size. x86 uses either
3229  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3230  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3231  // page as large as 256M.
3232  //
3233  // Here we try to figure out page size by parsing /proc/meminfo and looking
3234  // for a line with the following format:
3235  //    Hugepagesize:     2048 kB
3236  //
3237  // If we can't determine the value (e.g. /proc is not mounted, or the text
3238  // format has been changed), we'll use the largest page size supported by
3239  // the processor.
3240
3241#ifndef ZERO
3242  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3243                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3244#endif // ZERO
3245
3246  FILE *fp = fopen("/proc/meminfo", "r");
3247  if (fp) {
3248    while (!feof(fp)) {
3249      int x = 0;
3250      char buf[16];
3251      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3252        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3253          large_page_size = x * K;
3254          break;
3255        }
3256      } else {
3257        // skip to next line
3258        for (;;) {
3259          int ch = fgetc(fp);
3260          if (ch == EOF || ch == (int)'\n') break;
3261        }
3262      }
3263    }
3264    fclose(fp);
3265  }
3266
3267  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3268    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3269            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3270            proper_unit_for_byte_size(large_page_size));
3271  }
3272
3273  return large_page_size;
3274}
3275
3276size_t os::Linux::setup_large_page_size() {
3277  _large_page_size = Linux::find_large_page_size();
3278  const size_t default_page_size = (size_t)Linux::page_size();
3279  if (_large_page_size > default_page_size) {
3280    _page_sizes[0] = _large_page_size;
3281    _page_sizes[1] = default_page_size;
3282    _page_sizes[2] = 0;
3283  }
3284
3285  return _large_page_size;
3286}
3287
3288bool os::Linux::setup_large_page_type(size_t page_size) {
3289  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3290      FLAG_IS_DEFAULT(UseSHM) &&
3291      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3292
3293    // The type of large pages has not been specified by the user.
3294
3295    // Try UseHugeTLBFS and then UseSHM.
3296    UseHugeTLBFS = UseSHM = true;
3297
3298    // Don't try UseTransparentHugePages since there are known
3299    // performance issues with it turned on. This might change in the future.
3300    UseTransparentHugePages = false;
3301  }
3302
3303  if (UseTransparentHugePages) {
3304    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3305    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3306      UseHugeTLBFS = false;
3307      UseSHM = false;
3308      return true;
3309    }
3310    UseTransparentHugePages = false;
3311  }
3312
3313  if (UseHugeTLBFS) {
3314    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3315    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3316      UseSHM = false;
3317      return true;
3318    }
3319    UseHugeTLBFS = false;
3320  }
3321
3322  return UseSHM;
3323}
3324
3325void os::large_page_init() {
3326  if (!UseLargePages &&
3327      !UseTransparentHugePages &&
3328      !UseHugeTLBFS &&
3329      !UseSHM) {
3330    // Not using large pages.
3331    return;
3332  }
3333
3334  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3335    // The user explicitly turned off large pages.
3336    // Ignore the rest of the large pages flags.
3337    UseTransparentHugePages = false;
3338    UseHugeTLBFS = false;
3339    UseSHM = false;
3340    return;
3341  }
3342
3343  size_t large_page_size = Linux::setup_large_page_size();
3344  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3345
3346  set_coredump_filter();
3347}
3348
3349#ifndef SHM_HUGETLB
3350  #define SHM_HUGETLB 04000
3351#endif
3352
3353char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3354                                            char* req_addr, bool exec) {
3355  // "exec" is passed in but not used.  Creating the shared image for
3356  // the code cache doesn't have an SHM_X executable permission to check.
3357  assert(UseLargePages && UseSHM, "only for SHM large pages");
3358  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3359
3360  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3361    return NULL; // Fallback to small pages.
3362  }
3363
3364  key_t key = IPC_PRIVATE;
3365  char *addr;
3366
3367  bool warn_on_failure = UseLargePages &&
3368                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3369                         !FLAG_IS_DEFAULT(UseSHM) ||
3370                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3371  char msg[128];
3372
3373  // Create a large shared memory region to attach to based on size.
3374  // Currently, size is the total size of the heap
3375  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3376  if (shmid == -1) {
3377    // Possible reasons for shmget failure:
3378    // 1. shmmax is too small for Java heap.
3379    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3380    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3381    // 2. not enough large page memory.
3382    //    > check available large pages: cat /proc/meminfo
3383    //    > increase amount of large pages:
3384    //          echo new_value > /proc/sys/vm/nr_hugepages
3385    //      Note 1: different Linux may use different name for this property,
3386    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3387    //      Note 2: it's possible there's enough physical memory available but
3388    //            they are so fragmented after a long run that they can't
3389    //            coalesce into large pages. Try to reserve large pages when
3390    //            the system is still "fresh".
3391    if (warn_on_failure) {
3392      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3393      warning("%s", msg);
3394    }
3395    return NULL;
3396  }
3397
3398  // attach to the region
3399  addr = (char*)shmat(shmid, req_addr, 0);
3400  int err = errno;
3401
3402  // Remove shmid. If shmat() is successful, the actual shared memory segment
3403  // will be deleted when it's detached by shmdt() or when the process
3404  // terminates. If shmat() is not successful this will remove the shared
3405  // segment immediately.
3406  shmctl(shmid, IPC_RMID, NULL);
3407
3408  if ((intptr_t)addr == -1) {
3409    if (warn_on_failure) {
3410      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3411      warning("%s", msg);
3412    }
3413    return NULL;
3414  }
3415
3416  return addr;
3417}
3418
3419static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3420                                        int error) {
3421  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3422
3423  bool warn_on_failure = UseLargePages &&
3424      (!FLAG_IS_DEFAULT(UseLargePages) ||
3425       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3426       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3427
3428  if (warn_on_failure) {
3429    char msg[128];
3430    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3431                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3432    warning("%s", msg);
3433  }
3434}
3435
3436char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3437                                                        char* req_addr,
3438                                                        bool exec) {
3439  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3440  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3441  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3442
3443  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3444  char* addr = (char*)::mmap(req_addr, bytes, prot,
3445                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3446                             -1, 0);
3447
3448  if (addr == MAP_FAILED) {
3449    warn_on_large_pages_failure(req_addr, bytes, errno);
3450    return NULL;
3451  }
3452
3453  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3454
3455  return addr;
3456}
3457
3458// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3459// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3460//   (req_addr != NULL) or with a given alignment.
3461//  - bytes shall be a multiple of alignment.
3462//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3463//  - alignment sets the alignment at which memory shall be allocated.
3464//     It must be a multiple of allocation granularity.
3465// Returns address of memory or NULL. If req_addr was not NULL, will only return
3466//  req_addr or NULL.
3467static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3468
3469  size_t extra_size = bytes;
3470  if (req_addr == NULL && alignment > 0) {
3471    extra_size += alignment;
3472  }
3473
3474  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3475    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3476    -1, 0);
3477  if (start == MAP_FAILED) {
3478    start = NULL;
3479  } else {
3480    if (req_addr != NULL) {
3481      if (start != req_addr) {
3482        ::munmap(start, extra_size);
3483        start = NULL;
3484      }
3485    } else {
3486      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3487      char* const end_aligned = start_aligned + bytes;
3488      char* const end = start + extra_size;
3489      if (start_aligned > start) {
3490        ::munmap(start, start_aligned - start);
3491      }
3492      if (end_aligned < end) {
3493        ::munmap(end_aligned, end - end_aligned);
3494      }
3495      start = start_aligned;
3496    }
3497  }
3498  return start;
3499
3500}
3501
3502// Reserve memory using mmap(MAP_HUGETLB).
3503//  - bytes shall be a multiple of alignment.
3504//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3505//  - alignment sets the alignment at which memory shall be allocated.
3506//     It must be a multiple of allocation granularity.
3507// Returns address of memory or NULL. If req_addr was not NULL, will only return
3508//  req_addr or NULL.
3509char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3510                                                         size_t alignment,
3511                                                         char* req_addr,
3512                                                         bool exec) {
3513  size_t large_page_size = os::large_page_size();
3514  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3515
3516  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3517  assert(is_size_aligned(bytes, alignment), "Must be");
3518
3519  // First reserve - but not commit - the address range in small pages.
3520  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3521
3522  if (start == NULL) {
3523    return NULL;
3524  }
3525
3526  assert(is_ptr_aligned(start, alignment), "Must be");
3527
3528  char* end = start + bytes;
3529
3530  // Find the regions of the allocated chunk that can be promoted to large pages.
3531  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3532  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3533
3534  size_t lp_bytes = lp_end - lp_start;
3535
3536  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3537
3538  if (lp_bytes == 0) {
3539    // The mapped region doesn't even span the start and the end of a large page.
3540    // Fall back to allocate a non-special area.
3541    ::munmap(start, end - start);
3542    return NULL;
3543  }
3544
3545  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3546
3547  void* result;
3548
3549  // Commit small-paged leading area.
3550  if (start != lp_start) {
3551    result = ::mmap(start, lp_start - start, prot,
3552                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3553                    -1, 0);
3554    if (result == MAP_FAILED) {
3555      ::munmap(lp_start, end - lp_start);
3556      return NULL;
3557    }
3558  }
3559
3560  // Commit large-paged area.
3561  result = ::mmap(lp_start, lp_bytes, prot,
3562                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3563                  -1, 0);
3564  if (result == MAP_FAILED) {
3565    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3566    // If the mmap above fails, the large pages region will be unmapped and we
3567    // have regions before and after with small pages. Release these regions.
3568    //
3569    // |  mapped  |  unmapped  |  mapped  |
3570    // ^          ^            ^          ^
3571    // start      lp_start     lp_end     end
3572    //
3573    ::munmap(start, lp_start - start);
3574    ::munmap(lp_end, end - lp_end);
3575    return NULL;
3576  }
3577
3578  // Commit small-paged trailing area.
3579  if (lp_end != end) {
3580    result = ::mmap(lp_end, end - lp_end, prot,
3581                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3582                    -1, 0);
3583    if (result == MAP_FAILED) {
3584      ::munmap(start, lp_end - start);
3585      return NULL;
3586    }
3587  }
3588
3589  return start;
3590}
3591
3592char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3593                                                   size_t alignment,
3594                                                   char* req_addr,
3595                                                   bool exec) {
3596  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3597  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3598  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3599  assert(is_power_of_2(os::large_page_size()), "Must be");
3600  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3601
3602  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3603    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3604  } else {
3605    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3606  }
3607}
3608
3609char* os::reserve_memory_special(size_t bytes, size_t alignment,
3610                                 char* req_addr, bool exec) {
3611  assert(UseLargePages, "only for large pages");
3612
3613  char* addr;
3614  if (UseSHM) {
3615    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3616  } else {
3617    assert(UseHugeTLBFS, "must be");
3618    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3619  }
3620
3621  if (addr != NULL) {
3622    if (UseNUMAInterleaving) {
3623      numa_make_global(addr, bytes);
3624    }
3625
3626    // The memory is committed
3627    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3628  }
3629
3630  return addr;
3631}
3632
3633bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3634  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3635  return shmdt(base) == 0;
3636}
3637
3638bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3639  return pd_release_memory(base, bytes);
3640}
3641
3642bool os::release_memory_special(char* base, size_t bytes) {
3643  bool res;
3644  if (MemTracker::tracking_level() > NMT_minimal) {
3645    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3646    res = os::Linux::release_memory_special_impl(base, bytes);
3647    if (res) {
3648      tkr.record((address)base, bytes);
3649    }
3650
3651  } else {
3652    res = os::Linux::release_memory_special_impl(base, bytes);
3653  }
3654  return res;
3655}
3656
3657bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3658  assert(UseLargePages, "only for large pages");
3659  bool res;
3660
3661  if (UseSHM) {
3662    res = os::Linux::release_memory_special_shm(base, bytes);
3663  } else {
3664    assert(UseHugeTLBFS, "must be");
3665    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3666  }
3667  return res;
3668}
3669
3670size_t os::large_page_size() {
3671  return _large_page_size;
3672}
3673
3674// With SysV SHM the entire memory region must be allocated as shared
3675// memory.
3676// HugeTLBFS allows application to commit large page memory on demand.
3677// However, when committing memory with HugeTLBFS fails, the region
3678// that was supposed to be committed will lose the old reservation
3679// and allow other threads to steal that memory region. Because of this
3680// behavior we can't commit HugeTLBFS memory.
3681bool os::can_commit_large_page_memory() {
3682  return UseTransparentHugePages;
3683}
3684
3685bool os::can_execute_large_page_memory() {
3686  return UseTransparentHugePages || UseHugeTLBFS;
3687}
3688
3689// Reserve memory at an arbitrary address, only if that area is
3690// available (and not reserved for something else).
3691
3692char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3693  const int max_tries = 10;
3694  char* base[max_tries];
3695  size_t size[max_tries];
3696  const size_t gap = 0x000000;
3697
3698  // Assert only that the size is a multiple of the page size, since
3699  // that's all that mmap requires, and since that's all we really know
3700  // about at this low abstraction level.  If we need higher alignment,
3701  // we can either pass an alignment to this method or verify alignment
3702  // in one of the methods further up the call chain.  See bug 5044738.
3703  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3704
3705  // Repeatedly allocate blocks until the block is allocated at the
3706  // right spot.
3707
3708  // Linux mmap allows caller to pass an address as hint; give it a try first,
3709  // if kernel honors the hint then we can return immediately.
3710  char * addr = anon_mmap(requested_addr, bytes, false);
3711  if (addr == requested_addr) {
3712    return requested_addr;
3713  }
3714
3715  if (addr != NULL) {
3716    // mmap() is successful but it fails to reserve at the requested address
3717    anon_munmap(addr, bytes);
3718  }
3719
3720  int i;
3721  for (i = 0; i < max_tries; ++i) {
3722    base[i] = reserve_memory(bytes);
3723
3724    if (base[i] != NULL) {
3725      // Is this the block we wanted?
3726      if (base[i] == requested_addr) {
3727        size[i] = bytes;
3728        break;
3729      }
3730
3731      // Does this overlap the block we wanted? Give back the overlapped
3732      // parts and try again.
3733
3734      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3735      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3736        unmap_memory(base[i], top_overlap);
3737        base[i] += top_overlap;
3738        size[i] = bytes - top_overlap;
3739      } else {
3740        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3741        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3742          unmap_memory(requested_addr, bottom_overlap);
3743          size[i] = bytes - bottom_overlap;
3744        } else {
3745          size[i] = bytes;
3746        }
3747      }
3748    }
3749  }
3750
3751  // Give back the unused reserved pieces.
3752
3753  for (int j = 0; j < i; ++j) {
3754    if (base[j] != NULL) {
3755      unmap_memory(base[j], size[j]);
3756    }
3757  }
3758
3759  if (i < max_tries) {
3760    return requested_addr;
3761  } else {
3762    return NULL;
3763  }
3764}
3765
3766size_t os::read(int fd, void *buf, unsigned int nBytes) {
3767  return ::read(fd, buf, nBytes);
3768}
3769
3770size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3771  return ::pread(fd, buf, nBytes, offset);
3772}
3773
3774// Short sleep, direct OS call.
3775//
3776// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3777// sched_yield(2) will actually give up the CPU:
3778//
3779//   * Alone on this pariticular CPU, keeps running.
3780//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3781//     (pre 2.6.39).
3782//
3783// So calling this with 0 is an alternative.
3784//
3785void os::naked_short_sleep(jlong ms) {
3786  struct timespec req;
3787
3788  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3789  req.tv_sec = 0;
3790  if (ms > 0) {
3791    req.tv_nsec = (ms % 1000) * 1000000;
3792  } else {
3793    req.tv_nsec = 1;
3794  }
3795
3796  nanosleep(&req, NULL);
3797
3798  return;
3799}
3800
3801// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3802void os::infinite_sleep() {
3803  while (true) {    // sleep forever ...
3804    ::sleep(100);   // ... 100 seconds at a time
3805  }
3806}
3807
3808// Used to convert frequent JVM_Yield() to nops
3809bool os::dont_yield() {
3810  return DontYieldALot;
3811}
3812
3813void os::naked_yield() {
3814  sched_yield();
3815}
3816
3817////////////////////////////////////////////////////////////////////////////////
3818// thread priority support
3819
3820// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3821// only supports dynamic priority, static priority must be zero. For real-time
3822// applications, Linux supports SCHED_RR which allows static priority (1-99).
3823// However, for large multi-threaded applications, SCHED_RR is not only slower
3824// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3825// of 5 runs - Sep 2005).
3826//
3827// The following code actually changes the niceness of kernel-thread/LWP. It
3828// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3829// not the entire user process, and user level threads are 1:1 mapped to kernel
3830// threads. It has always been the case, but could change in the future. For
3831// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3832// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3833
3834int os::java_to_os_priority[CriticalPriority + 1] = {
3835  19,              // 0 Entry should never be used
3836
3837   4,              // 1 MinPriority
3838   3,              // 2
3839   2,              // 3
3840
3841   1,              // 4
3842   0,              // 5 NormPriority
3843  -1,              // 6
3844
3845  -2,              // 7
3846  -3,              // 8
3847  -4,              // 9 NearMaxPriority
3848
3849  -5,              // 10 MaxPriority
3850
3851  -5               // 11 CriticalPriority
3852};
3853
3854static int prio_init() {
3855  if (ThreadPriorityPolicy == 1) {
3856    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3857    // if effective uid is not root. Perhaps, a more elegant way of doing
3858    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3859    if (geteuid() != 0) {
3860      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3861        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3862      }
3863      ThreadPriorityPolicy = 0;
3864    }
3865  }
3866  if (UseCriticalJavaThreadPriority) {
3867    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3868  }
3869  return 0;
3870}
3871
3872OSReturn os::set_native_priority(Thread* thread, int newpri) {
3873  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3874
3875  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3876  return (ret == 0) ? OS_OK : OS_ERR;
3877}
3878
3879OSReturn os::get_native_priority(const Thread* const thread,
3880                                 int *priority_ptr) {
3881  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3882    *priority_ptr = java_to_os_priority[NormPriority];
3883    return OS_OK;
3884  }
3885
3886  errno = 0;
3887  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3888  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3889}
3890
3891// Hint to the underlying OS that a task switch would not be good.
3892// Void return because it's a hint and can fail.
3893void os::hint_no_preempt() {}
3894
3895////////////////////////////////////////////////////////////////////////////////
3896// suspend/resume support
3897
3898//  the low-level signal-based suspend/resume support is a remnant from the
3899//  old VM-suspension that used to be for java-suspension, safepoints etc,
3900//  within hotspot. Now there is a single use-case for this:
3901//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3902//      that runs in the watcher thread.
3903//  The remaining code is greatly simplified from the more general suspension
3904//  code that used to be used.
3905//
3906//  The protocol is quite simple:
3907//  - suspend:
3908//      - sends a signal to the target thread
3909//      - polls the suspend state of the osthread using a yield loop
3910//      - target thread signal handler (SR_handler) sets suspend state
3911//        and blocks in sigsuspend until continued
3912//  - resume:
3913//      - sets target osthread state to continue
3914//      - sends signal to end the sigsuspend loop in the SR_handler
3915//
3916//  Note that the SR_lock plays no role in this suspend/resume protocol.
3917
3918static void resume_clear_context(OSThread *osthread) {
3919  osthread->set_ucontext(NULL);
3920  osthread->set_siginfo(NULL);
3921}
3922
3923static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3924                                 ucontext_t* context) {
3925  osthread->set_ucontext(context);
3926  osthread->set_siginfo(siginfo);
3927}
3928
3929// Handler function invoked when a thread's execution is suspended or
3930// resumed. We have to be careful that only async-safe functions are
3931// called here (Note: most pthread functions are not async safe and
3932// should be avoided.)
3933//
3934// Note: sigwait() is a more natural fit than sigsuspend() from an
3935// interface point of view, but sigwait() prevents the signal hander
3936// from being run. libpthread would get very confused by not having
3937// its signal handlers run and prevents sigwait()'s use with the
3938// mutex granting granting signal.
3939//
3940// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3941//
3942static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3943  // Save and restore errno to avoid confusing native code with EINTR
3944  // after sigsuspend.
3945  int old_errno = errno;
3946
3947  Thread* thread = Thread::current();
3948  OSThread* osthread = thread->osthread();
3949  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3950
3951  os::SuspendResume::State current = osthread->sr.state();
3952  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3953    suspend_save_context(osthread, siginfo, context);
3954
3955    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3956    os::SuspendResume::State state = osthread->sr.suspended();
3957    if (state == os::SuspendResume::SR_SUSPENDED) {
3958      sigset_t suspend_set;  // signals for sigsuspend()
3959
3960      // get current set of blocked signals and unblock resume signal
3961      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3962      sigdelset(&suspend_set, SR_signum);
3963
3964      sr_semaphore.signal();
3965      // wait here until we are resumed
3966      while (1) {
3967        sigsuspend(&suspend_set);
3968
3969        os::SuspendResume::State result = osthread->sr.running();
3970        if (result == os::SuspendResume::SR_RUNNING) {
3971          sr_semaphore.signal();
3972          break;
3973        }
3974      }
3975
3976    } else if (state == os::SuspendResume::SR_RUNNING) {
3977      // request was cancelled, continue
3978    } else {
3979      ShouldNotReachHere();
3980    }
3981
3982    resume_clear_context(osthread);
3983  } else if (current == os::SuspendResume::SR_RUNNING) {
3984    // request was cancelled, continue
3985  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3986    // ignore
3987  } else {
3988    // ignore
3989  }
3990
3991  errno = old_errno;
3992}
3993
3994
3995static int SR_initialize() {
3996  struct sigaction act;
3997  char *s;
3998  // Get signal number to use for suspend/resume
3999  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4000    int sig = ::strtol(s, 0, 10);
4001    if (sig > 0 || sig < _NSIG) {
4002      SR_signum = sig;
4003    }
4004  }
4005
4006  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4007         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4008
4009  sigemptyset(&SR_sigset);
4010  sigaddset(&SR_sigset, SR_signum);
4011
4012  // Set up signal handler for suspend/resume
4013  act.sa_flags = SA_RESTART|SA_SIGINFO;
4014  act.sa_handler = (void (*)(int)) SR_handler;
4015
4016  // SR_signum is blocked by default.
4017  // 4528190 - We also need to block pthread restart signal (32 on all
4018  // supported Linux platforms). Note that LinuxThreads need to block
4019  // this signal for all threads to work properly. So we don't have
4020  // to use hard-coded signal number when setting up the mask.
4021  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4022
4023  if (sigaction(SR_signum, &act, 0) == -1) {
4024    return -1;
4025  }
4026
4027  // Save signal flag
4028  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4029  return 0;
4030}
4031
4032static int sr_notify(OSThread* osthread) {
4033  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4034  assert_status(status == 0, status, "pthread_kill");
4035  return status;
4036}
4037
4038// "Randomly" selected value for how long we want to spin
4039// before bailing out on suspending a thread, also how often
4040// we send a signal to a thread we want to resume
4041static const int RANDOMLY_LARGE_INTEGER = 1000000;
4042static const int RANDOMLY_LARGE_INTEGER2 = 100;
4043
4044// returns true on success and false on error - really an error is fatal
4045// but this seems the normal response to library errors
4046static bool do_suspend(OSThread* osthread) {
4047  assert(osthread->sr.is_running(), "thread should be running");
4048  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4049
4050  // mark as suspended and send signal
4051  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4052    // failed to switch, state wasn't running?
4053    ShouldNotReachHere();
4054    return false;
4055  }
4056
4057  if (sr_notify(osthread) != 0) {
4058    ShouldNotReachHere();
4059  }
4060
4061  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4062  while (true) {
4063    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4064      break;
4065    } else {
4066      // timeout
4067      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4068      if (cancelled == os::SuspendResume::SR_RUNNING) {
4069        return false;
4070      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4071        // make sure that we consume the signal on the semaphore as well
4072        sr_semaphore.wait();
4073        break;
4074      } else {
4075        ShouldNotReachHere();
4076        return false;
4077      }
4078    }
4079  }
4080
4081  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4082  return true;
4083}
4084
4085static void do_resume(OSThread* osthread) {
4086  assert(osthread->sr.is_suspended(), "thread should be suspended");
4087  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4088
4089  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4090    // failed to switch to WAKEUP_REQUEST
4091    ShouldNotReachHere();
4092    return;
4093  }
4094
4095  while (true) {
4096    if (sr_notify(osthread) == 0) {
4097      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4098        if (osthread->sr.is_running()) {
4099          return;
4100        }
4101      }
4102    } else {
4103      ShouldNotReachHere();
4104    }
4105  }
4106
4107  guarantee(osthread->sr.is_running(), "Must be running!");
4108}
4109
4110///////////////////////////////////////////////////////////////////////////////////
4111// signal handling (except suspend/resume)
4112
4113// This routine may be used by user applications as a "hook" to catch signals.
4114// The user-defined signal handler must pass unrecognized signals to this
4115// routine, and if it returns true (non-zero), then the signal handler must
4116// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4117// routine will never retun false (zero), but instead will execute a VM panic
4118// routine kill the process.
4119//
4120// If this routine returns false, it is OK to call it again.  This allows
4121// the user-defined signal handler to perform checks either before or after
4122// the VM performs its own checks.  Naturally, the user code would be making
4123// a serious error if it tried to handle an exception (such as a null check
4124// or breakpoint) that the VM was generating for its own correct operation.
4125//
4126// This routine may recognize any of the following kinds of signals:
4127//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4128// It should be consulted by handlers for any of those signals.
4129//
4130// The caller of this routine must pass in the three arguments supplied
4131// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4132// field of the structure passed to sigaction().  This routine assumes that
4133// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4134//
4135// Note that the VM will print warnings if it detects conflicting signal
4136// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4137//
4138extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4139                                                 siginfo_t* siginfo,
4140                                                 void* ucontext,
4141                                                 int abort_if_unrecognized);
4142
4143void signalHandler(int sig, siginfo_t* info, void* uc) {
4144  assert(info != NULL && uc != NULL, "it must be old kernel");
4145  int orig_errno = errno;  // Preserve errno value over signal handler.
4146  JVM_handle_linux_signal(sig, info, uc, true);
4147  errno = orig_errno;
4148}
4149
4150
4151// This boolean allows users to forward their own non-matching signals
4152// to JVM_handle_linux_signal, harmlessly.
4153bool os::Linux::signal_handlers_are_installed = false;
4154
4155// For signal-chaining
4156struct sigaction os::Linux::sigact[MAXSIGNUM];
4157unsigned int os::Linux::sigs = 0;
4158bool os::Linux::libjsig_is_loaded = false;
4159typedef struct sigaction *(*get_signal_t)(int);
4160get_signal_t os::Linux::get_signal_action = NULL;
4161
4162struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4163  struct sigaction *actp = NULL;
4164
4165  if (libjsig_is_loaded) {
4166    // Retrieve the old signal handler from libjsig
4167    actp = (*get_signal_action)(sig);
4168  }
4169  if (actp == NULL) {
4170    // Retrieve the preinstalled signal handler from jvm
4171    actp = get_preinstalled_handler(sig);
4172  }
4173
4174  return actp;
4175}
4176
4177static bool call_chained_handler(struct sigaction *actp, int sig,
4178                                 siginfo_t *siginfo, void *context) {
4179  // Call the old signal handler
4180  if (actp->sa_handler == SIG_DFL) {
4181    // It's more reasonable to let jvm treat it as an unexpected exception
4182    // instead of taking the default action.
4183    return false;
4184  } else if (actp->sa_handler != SIG_IGN) {
4185    if ((actp->sa_flags & SA_NODEFER) == 0) {
4186      // automaticlly block the signal
4187      sigaddset(&(actp->sa_mask), sig);
4188    }
4189
4190    sa_handler_t hand;
4191    sa_sigaction_t sa;
4192    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4193    // retrieve the chained handler
4194    if (siginfo_flag_set) {
4195      sa = actp->sa_sigaction;
4196    } else {
4197      hand = actp->sa_handler;
4198    }
4199
4200    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4201      actp->sa_handler = SIG_DFL;
4202    }
4203
4204    // try to honor the signal mask
4205    sigset_t oset;
4206    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4207
4208    // call into the chained handler
4209    if (siginfo_flag_set) {
4210      (*sa)(sig, siginfo, context);
4211    } else {
4212      (*hand)(sig);
4213    }
4214
4215    // restore the signal mask
4216    pthread_sigmask(SIG_SETMASK, &oset, 0);
4217  }
4218  // Tell jvm's signal handler the signal is taken care of.
4219  return true;
4220}
4221
4222bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4223  bool chained = false;
4224  // signal-chaining
4225  if (UseSignalChaining) {
4226    struct sigaction *actp = get_chained_signal_action(sig);
4227    if (actp != NULL) {
4228      chained = call_chained_handler(actp, sig, siginfo, context);
4229    }
4230  }
4231  return chained;
4232}
4233
4234struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4235  if ((((unsigned int)1 << sig) & sigs) != 0) {
4236    return &sigact[sig];
4237  }
4238  return NULL;
4239}
4240
4241void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4242  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4243  sigact[sig] = oldAct;
4244  sigs |= (unsigned int)1 << sig;
4245}
4246
4247// for diagnostic
4248int os::Linux::sigflags[MAXSIGNUM];
4249
4250int os::Linux::get_our_sigflags(int sig) {
4251  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4252  return sigflags[sig];
4253}
4254
4255void os::Linux::set_our_sigflags(int sig, int flags) {
4256  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4257  sigflags[sig] = flags;
4258}
4259
4260void os::Linux::set_signal_handler(int sig, bool set_installed) {
4261  // Check for overwrite.
4262  struct sigaction oldAct;
4263  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4264
4265  void* oldhand = oldAct.sa_sigaction
4266                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4267                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4268  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4269      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4270      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4271    if (AllowUserSignalHandlers || !set_installed) {
4272      // Do not overwrite; user takes responsibility to forward to us.
4273      return;
4274    } else if (UseSignalChaining) {
4275      // save the old handler in jvm
4276      save_preinstalled_handler(sig, oldAct);
4277      // libjsig also interposes the sigaction() call below and saves the
4278      // old sigaction on it own.
4279    } else {
4280      fatal("Encountered unexpected pre-existing sigaction handler "
4281            "%#lx for signal %d.", (long)oldhand, sig);
4282    }
4283  }
4284
4285  struct sigaction sigAct;
4286  sigfillset(&(sigAct.sa_mask));
4287  sigAct.sa_handler = SIG_DFL;
4288  if (!set_installed) {
4289    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4290  } else {
4291    sigAct.sa_sigaction = signalHandler;
4292    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4293  }
4294  // Save flags, which are set by ours
4295  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4296  sigflags[sig] = sigAct.sa_flags;
4297
4298  int ret = sigaction(sig, &sigAct, &oldAct);
4299  assert(ret == 0, "check");
4300
4301  void* oldhand2  = oldAct.sa_sigaction
4302                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4303                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4304  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4305}
4306
4307// install signal handlers for signals that HotSpot needs to
4308// handle in order to support Java-level exception handling.
4309
4310void os::Linux::install_signal_handlers() {
4311  if (!signal_handlers_are_installed) {
4312    signal_handlers_are_installed = true;
4313
4314    // signal-chaining
4315    typedef void (*signal_setting_t)();
4316    signal_setting_t begin_signal_setting = NULL;
4317    signal_setting_t end_signal_setting = NULL;
4318    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4319                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4320    if (begin_signal_setting != NULL) {
4321      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4322                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4323      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4324                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4325      libjsig_is_loaded = true;
4326      assert(UseSignalChaining, "should enable signal-chaining");
4327    }
4328    if (libjsig_is_loaded) {
4329      // Tell libjsig jvm is setting signal handlers
4330      (*begin_signal_setting)();
4331    }
4332
4333    set_signal_handler(SIGSEGV, true);
4334    set_signal_handler(SIGPIPE, true);
4335    set_signal_handler(SIGBUS, true);
4336    set_signal_handler(SIGILL, true);
4337    set_signal_handler(SIGFPE, true);
4338#if defined(PPC64)
4339    set_signal_handler(SIGTRAP, true);
4340#endif
4341    set_signal_handler(SIGXFSZ, true);
4342
4343    if (libjsig_is_loaded) {
4344      // Tell libjsig jvm finishes setting signal handlers
4345      (*end_signal_setting)();
4346    }
4347
4348    // We don't activate signal checker if libjsig is in place, we trust ourselves
4349    // and if UserSignalHandler is installed all bets are off.
4350    // Log that signal checking is off only if -verbose:jni is specified.
4351    if (CheckJNICalls) {
4352      if (libjsig_is_loaded) {
4353        if (PrintJNIResolving) {
4354          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4355        }
4356        check_signals = false;
4357      }
4358      if (AllowUserSignalHandlers) {
4359        if (PrintJNIResolving) {
4360          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4361        }
4362        check_signals = false;
4363      }
4364    }
4365  }
4366}
4367
4368// This is the fastest way to get thread cpu time on Linux.
4369// Returns cpu time (user+sys) for any thread, not only for current.
4370// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4371// It might work on 2.6.10+ with a special kernel/glibc patch.
4372// For reference, please, see IEEE Std 1003.1-2004:
4373//   http://www.unix.org/single_unix_specification
4374
4375jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4376  struct timespec tp;
4377  int rc = os::Linux::clock_gettime(clockid, &tp);
4378  assert(rc == 0, "clock_gettime is expected to return 0 code");
4379
4380  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4381}
4382
4383/////
4384// glibc on Linux platform uses non-documented flag
4385// to indicate, that some special sort of signal
4386// trampoline is used.
4387// We will never set this flag, and we should
4388// ignore this flag in our diagnostic
4389#ifdef SIGNIFICANT_SIGNAL_MASK
4390  #undef SIGNIFICANT_SIGNAL_MASK
4391#endif
4392#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4393
4394static const char* get_signal_handler_name(address handler,
4395                                           char* buf, int buflen) {
4396  int offset;
4397  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4398  if (found) {
4399    // skip directory names
4400    const char *p1, *p2;
4401    p1 = buf;
4402    size_t len = strlen(os::file_separator());
4403    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4404    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4405  } else {
4406    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4407  }
4408  return buf;
4409}
4410
4411static void print_signal_handler(outputStream* st, int sig,
4412                                 char* buf, size_t buflen) {
4413  struct sigaction sa;
4414
4415  sigaction(sig, NULL, &sa);
4416
4417  // See comment for SIGNIFICANT_SIGNAL_MASK define
4418  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4419
4420  st->print("%s: ", os::exception_name(sig, buf, buflen));
4421
4422  address handler = (sa.sa_flags & SA_SIGINFO)
4423    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4424    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4425
4426  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4427    st->print("SIG_DFL");
4428  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4429    st->print("SIG_IGN");
4430  } else {
4431    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4432  }
4433
4434  st->print(", sa_mask[0]=");
4435  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4436
4437  address rh = VMError::get_resetted_sighandler(sig);
4438  // May be, handler was resetted by VMError?
4439  if (rh != NULL) {
4440    handler = rh;
4441    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4442  }
4443
4444  st->print(", sa_flags=");
4445  os::Posix::print_sa_flags(st, sa.sa_flags);
4446
4447  // Check: is it our handler?
4448  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4449      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4450    // It is our signal handler
4451    // check for flags, reset system-used one!
4452    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4453      st->print(
4454                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4455                os::Linux::get_our_sigflags(sig));
4456    }
4457  }
4458  st->cr();
4459}
4460
4461
4462#define DO_SIGNAL_CHECK(sig)                      \
4463  do {                                            \
4464    if (!sigismember(&check_signal_done, sig)) {  \
4465      os::Linux::check_signal_handler(sig);       \
4466    }                                             \
4467  } while (0)
4468
4469// This method is a periodic task to check for misbehaving JNI applications
4470// under CheckJNI, we can add any periodic checks here
4471
4472void os::run_periodic_checks() {
4473  if (check_signals == false) return;
4474
4475  // SEGV and BUS if overridden could potentially prevent
4476  // generation of hs*.log in the event of a crash, debugging
4477  // such a case can be very challenging, so we absolutely
4478  // check the following for a good measure:
4479  DO_SIGNAL_CHECK(SIGSEGV);
4480  DO_SIGNAL_CHECK(SIGILL);
4481  DO_SIGNAL_CHECK(SIGFPE);
4482  DO_SIGNAL_CHECK(SIGBUS);
4483  DO_SIGNAL_CHECK(SIGPIPE);
4484  DO_SIGNAL_CHECK(SIGXFSZ);
4485#if defined(PPC64)
4486  DO_SIGNAL_CHECK(SIGTRAP);
4487#endif
4488
4489  // ReduceSignalUsage allows the user to override these handlers
4490  // see comments at the very top and jvm_solaris.h
4491  if (!ReduceSignalUsage) {
4492    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4493    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4494    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4495    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4496  }
4497
4498  DO_SIGNAL_CHECK(SR_signum);
4499  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4500}
4501
4502typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4503
4504static os_sigaction_t os_sigaction = NULL;
4505
4506void os::Linux::check_signal_handler(int sig) {
4507  char buf[O_BUFLEN];
4508  address jvmHandler = NULL;
4509
4510
4511  struct sigaction act;
4512  if (os_sigaction == NULL) {
4513    // only trust the default sigaction, in case it has been interposed
4514    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4515    if (os_sigaction == NULL) return;
4516  }
4517
4518  os_sigaction(sig, (struct sigaction*)NULL, &act);
4519
4520
4521  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4522
4523  address thisHandler = (act.sa_flags & SA_SIGINFO)
4524    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4525    : CAST_FROM_FN_PTR(address, act.sa_handler);
4526
4527
4528  switch (sig) {
4529  case SIGSEGV:
4530  case SIGBUS:
4531  case SIGFPE:
4532  case SIGPIPE:
4533  case SIGILL:
4534  case SIGXFSZ:
4535    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4536    break;
4537
4538  case SHUTDOWN1_SIGNAL:
4539  case SHUTDOWN2_SIGNAL:
4540  case SHUTDOWN3_SIGNAL:
4541  case BREAK_SIGNAL:
4542    jvmHandler = (address)user_handler();
4543    break;
4544
4545  case INTERRUPT_SIGNAL:
4546    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4547    break;
4548
4549  default:
4550    if (sig == SR_signum) {
4551      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4552    } else {
4553      return;
4554    }
4555    break;
4556  }
4557
4558  if (thisHandler != jvmHandler) {
4559    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4560    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4561    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4562    // No need to check this sig any longer
4563    sigaddset(&check_signal_done, sig);
4564    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4565    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4566      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4567                    exception_name(sig, buf, O_BUFLEN));
4568    }
4569  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4570    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4571    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4572    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4573    // No need to check this sig any longer
4574    sigaddset(&check_signal_done, sig);
4575  }
4576
4577  // Dump all the signal
4578  if (sigismember(&check_signal_done, sig)) {
4579    print_signal_handlers(tty, buf, O_BUFLEN);
4580  }
4581}
4582
4583extern void report_error(char* file_name, int line_no, char* title,
4584                         char* format, ...);
4585
4586extern bool signal_name(int signo, char* buf, size_t len);
4587
4588const char* os::exception_name(int exception_code, char* buf, size_t size) {
4589  if (0 < exception_code && exception_code <= SIGRTMAX) {
4590    // signal
4591    if (!signal_name(exception_code, buf, size)) {
4592      jio_snprintf(buf, size, "SIG%d", exception_code);
4593    }
4594    return buf;
4595  } else {
4596    return NULL;
4597  }
4598}
4599
4600// this is called _before_ the most of global arguments have been parsed
4601void os::init(void) {
4602  char dummy;   // used to get a guess on initial stack address
4603//  first_hrtime = gethrtime();
4604
4605  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4606
4607  init_random(1234567);
4608
4609  ThreadCritical::initialize();
4610
4611  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4612  if (Linux::page_size() == -1) {
4613    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4614          strerror(errno));
4615  }
4616  init_page_sizes((size_t) Linux::page_size());
4617
4618  Linux::initialize_system_info();
4619
4620  // main_thread points to the aboriginal thread
4621  Linux::_main_thread = pthread_self();
4622
4623  Linux::clock_init();
4624  initial_time_count = javaTimeNanos();
4625
4626  // pthread_condattr initialization for monotonic clock
4627  int status;
4628  pthread_condattr_t* _condattr = os::Linux::condAttr();
4629  if ((status = pthread_condattr_init(_condattr)) != 0) {
4630    fatal("pthread_condattr_init: %s", strerror(status));
4631  }
4632  // Only set the clock if CLOCK_MONOTONIC is available
4633  if (os::supports_monotonic_clock()) {
4634    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4635      if (status == EINVAL) {
4636        warning("Unable to use monotonic clock with relative timed-waits" \
4637                " - changes to the time-of-day clock may have adverse affects");
4638      } else {
4639        fatal("pthread_condattr_setclock: %s", strerror(status));
4640      }
4641    }
4642  }
4643  // else it defaults to CLOCK_REALTIME
4644
4645  // If the pagesize of the VM is greater than 8K determine the appropriate
4646  // number of initial guard pages.  The user can change this with the
4647  // command line arguments, if needed.
4648  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4649    StackYellowPages = 1;
4650    StackRedPages = 1;
4651    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4652  }
4653
4654  // retrieve entry point for pthread_setname_np
4655  Linux::_pthread_setname_np =
4656    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4657
4658}
4659
4660// To install functions for atexit system call
4661extern "C" {
4662  static void perfMemory_exit_helper() {
4663    perfMemory_exit();
4664  }
4665}
4666
4667// this is called _after_ the global arguments have been parsed
4668jint os::init_2(void) {
4669  Linux::fast_thread_clock_init();
4670
4671  // Allocate a single page and mark it as readable for safepoint polling
4672  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4673  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4674
4675  os::set_polling_page(polling_page);
4676
4677#ifndef PRODUCT
4678  if (Verbose && PrintMiscellaneous) {
4679    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4680               (intptr_t)polling_page);
4681  }
4682#endif
4683
4684  if (!UseMembar) {
4685    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4686    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4687    os::set_memory_serialize_page(mem_serialize_page);
4688
4689#ifndef PRODUCT
4690    if (Verbose && PrintMiscellaneous) {
4691      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4692                 (intptr_t)mem_serialize_page);
4693    }
4694#endif
4695  }
4696
4697  // initialize suspend/resume support - must do this before signal_sets_init()
4698  if (SR_initialize() != 0) {
4699    perror("SR_initialize failed");
4700    return JNI_ERR;
4701  }
4702
4703  Linux::signal_sets_init();
4704  Linux::install_signal_handlers();
4705
4706  // Check minimum allowable stack size for thread creation and to initialize
4707  // the java system classes, including StackOverflowError - depends on page
4708  // size.  Add a page for compiler2 recursion in main thread.
4709  // Add in 2*BytesPerWord times page size to account for VM stack during
4710  // class initialization depending on 32 or 64 bit VM.
4711  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4712                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4713                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4714
4715  size_t threadStackSizeInBytes = ThreadStackSize * K;
4716  if (threadStackSizeInBytes != 0 &&
4717      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4718    tty->print_cr("\nThe stack size specified is too small, "
4719                  "Specify at least " SIZE_FORMAT "k",
4720                  os::Linux::min_stack_allowed/ K);
4721    return JNI_ERR;
4722  }
4723
4724  // Make the stack size a multiple of the page size so that
4725  // the yellow/red zones can be guarded.
4726  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4727                                                vm_page_size()));
4728
4729  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4730
4731#if defined(IA32)
4732  workaround_expand_exec_shield_cs_limit();
4733#endif
4734
4735  Linux::libpthread_init();
4736  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4737    tty->print_cr("[HotSpot is running with %s, %s]\n",
4738                  Linux::glibc_version(), Linux::libpthread_version());
4739  }
4740
4741  if (UseNUMA) {
4742    if (!Linux::libnuma_init()) {
4743      UseNUMA = false;
4744    } else {
4745      if ((Linux::numa_max_node() < 1)) {
4746        // There's only one node(they start from 0), disable NUMA.
4747        UseNUMA = false;
4748      }
4749    }
4750    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4751    // we can make the adaptive lgrp chunk resizing work. If the user specified
4752    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4753    // disable adaptive resizing.
4754    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4755      if (FLAG_IS_DEFAULT(UseNUMA)) {
4756        UseNUMA = false;
4757      } else {
4758        if (FLAG_IS_DEFAULT(UseLargePages) &&
4759            FLAG_IS_DEFAULT(UseSHM) &&
4760            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4761          UseLargePages = false;
4762        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4763          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4764          UseAdaptiveSizePolicy = false;
4765          UseAdaptiveNUMAChunkSizing = false;
4766        }
4767      }
4768    }
4769    if (!UseNUMA && ForceNUMA) {
4770      UseNUMA = true;
4771    }
4772  }
4773
4774  if (MaxFDLimit) {
4775    // set the number of file descriptors to max. print out error
4776    // if getrlimit/setrlimit fails but continue regardless.
4777    struct rlimit nbr_files;
4778    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4779    if (status != 0) {
4780      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4781        perror("os::init_2 getrlimit failed");
4782      }
4783    } else {
4784      nbr_files.rlim_cur = nbr_files.rlim_max;
4785      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4786      if (status != 0) {
4787        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4788          perror("os::init_2 setrlimit failed");
4789        }
4790      }
4791    }
4792  }
4793
4794  // Initialize lock used to serialize thread creation (see os::create_thread)
4795  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4796
4797  // at-exit methods are called in the reverse order of their registration.
4798  // atexit functions are called on return from main or as a result of a
4799  // call to exit(3C). There can be only 32 of these functions registered
4800  // and atexit() does not set errno.
4801
4802  if (PerfAllowAtExitRegistration) {
4803    // only register atexit functions if PerfAllowAtExitRegistration is set.
4804    // atexit functions can be delayed until process exit time, which
4805    // can be problematic for embedded VM situations. Embedded VMs should
4806    // call DestroyJavaVM() to assure that VM resources are released.
4807
4808    // note: perfMemory_exit_helper atexit function may be removed in
4809    // the future if the appropriate cleanup code can be added to the
4810    // VM_Exit VMOperation's doit method.
4811    if (atexit(perfMemory_exit_helper) != 0) {
4812      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4813    }
4814  }
4815
4816  // initialize thread priority policy
4817  prio_init();
4818
4819  return JNI_OK;
4820}
4821
4822// Mark the polling page as unreadable
4823void os::make_polling_page_unreadable(void) {
4824  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4825    fatal("Could not disable polling page");
4826  }
4827}
4828
4829// Mark the polling page as readable
4830void os::make_polling_page_readable(void) {
4831  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4832    fatal("Could not enable polling page");
4833  }
4834}
4835
4836int os::active_processor_count() {
4837  // Linux doesn't yet have a (official) notion of processor sets,
4838  // so just return the number of online processors.
4839  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4840  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4841  return online_cpus;
4842}
4843
4844void os::set_native_thread_name(const char *name) {
4845  if (Linux::_pthread_setname_np) {
4846    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4847    snprintf(buf, sizeof(buf), "%s", name);
4848    buf[sizeof(buf) - 1] = '\0';
4849    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4850    // ERANGE should not happen; all other errors should just be ignored.
4851    assert(rc != ERANGE, "pthread_setname_np failed");
4852  }
4853}
4854
4855bool os::distribute_processes(uint length, uint* distribution) {
4856  // Not yet implemented.
4857  return false;
4858}
4859
4860bool os::bind_to_processor(uint processor_id) {
4861  // Not yet implemented.
4862  return false;
4863}
4864
4865///
4866
4867void os::SuspendedThreadTask::internal_do_task() {
4868  if (do_suspend(_thread->osthread())) {
4869    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4870    do_task(context);
4871    do_resume(_thread->osthread());
4872  }
4873}
4874
4875class PcFetcher : public os::SuspendedThreadTask {
4876 public:
4877  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4878  ExtendedPC result();
4879 protected:
4880  void do_task(const os::SuspendedThreadTaskContext& context);
4881 private:
4882  ExtendedPC _epc;
4883};
4884
4885ExtendedPC PcFetcher::result() {
4886  guarantee(is_done(), "task is not done yet.");
4887  return _epc;
4888}
4889
4890void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4891  Thread* thread = context.thread();
4892  OSThread* osthread = thread->osthread();
4893  if (osthread->ucontext() != NULL) {
4894    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4895  } else {
4896    // NULL context is unexpected, double-check this is the VMThread
4897    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4898  }
4899}
4900
4901// Suspends the target using the signal mechanism and then grabs the PC before
4902// resuming the target. Used by the flat-profiler only
4903ExtendedPC os::get_thread_pc(Thread* thread) {
4904  // Make sure that it is called by the watcher for the VMThread
4905  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4906  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4907
4908  PcFetcher fetcher(thread);
4909  fetcher.run();
4910  return fetcher.result();
4911}
4912
4913////////////////////////////////////////////////////////////////////////////////
4914// debug support
4915
4916bool os::find(address addr, outputStream* st) {
4917  Dl_info dlinfo;
4918  memset(&dlinfo, 0, sizeof(dlinfo));
4919  if (dladdr(addr, &dlinfo) != 0) {
4920    st->print(PTR_FORMAT ": ", p2i(addr));
4921    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4922      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4923                p2i(addr) - p2i(dlinfo.dli_saddr));
4924    } else if (dlinfo.dli_fbase != NULL) {
4925      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4926    } else {
4927      st->print("<absolute address>");
4928    }
4929    if (dlinfo.dli_fname != NULL) {
4930      st->print(" in %s", dlinfo.dli_fname);
4931    }
4932    if (dlinfo.dli_fbase != NULL) {
4933      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4934    }
4935    st->cr();
4936
4937    if (Verbose) {
4938      // decode some bytes around the PC
4939      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4940      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4941      address       lowest = (address) dlinfo.dli_sname;
4942      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4943      if (begin < lowest)  begin = lowest;
4944      Dl_info dlinfo2;
4945      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4946          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4947        end = (address) dlinfo2.dli_saddr;
4948      }
4949      Disassembler::decode(begin, end, st);
4950    }
4951    return true;
4952  }
4953  return false;
4954}
4955
4956////////////////////////////////////////////////////////////////////////////////
4957// misc
4958
4959// This does not do anything on Linux. This is basically a hook for being
4960// able to use structured exception handling (thread-local exception filters)
4961// on, e.g., Win32.
4962void
4963os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4964                         JavaCallArguments* args, Thread* thread) {
4965  f(value, method, args, thread);
4966}
4967
4968void os::print_statistics() {
4969}
4970
4971int os::message_box(const char* title, const char* message) {
4972  int i;
4973  fdStream err(defaultStream::error_fd());
4974  for (i = 0; i < 78; i++) err.print_raw("=");
4975  err.cr();
4976  err.print_raw_cr(title);
4977  for (i = 0; i < 78; i++) err.print_raw("-");
4978  err.cr();
4979  err.print_raw_cr(message);
4980  for (i = 0; i < 78; i++) err.print_raw("=");
4981  err.cr();
4982
4983  char buf[16];
4984  // Prevent process from exiting upon "read error" without consuming all CPU
4985  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4986
4987  return buf[0] == 'y' || buf[0] == 'Y';
4988}
4989
4990int os::stat(const char *path, struct stat *sbuf) {
4991  char pathbuf[MAX_PATH];
4992  if (strlen(path) > MAX_PATH - 1) {
4993    errno = ENAMETOOLONG;
4994    return -1;
4995  }
4996  os::native_path(strcpy(pathbuf, path));
4997  return ::stat(pathbuf, sbuf);
4998}
4999
5000bool os::check_heap(bool force) {
5001  return true;
5002}
5003
5004// Is a (classpath) directory empty?
5005bool os::dir_is_empty(const char* path) {
5006  DIR *dir = NULL;
5007  struct dirent *ptr;
5008
5009  dir = opendir(path);
5010  if (dir == NULL) return true;
5011
5012  // Scan the directory
5013  bool result = true;
5014  char buf[sizeof(struct dirent) + MAX_PATH];
5015  while (result && (ptr = ::readdir(dir)) != NULL) {
5016    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5017      result = false;
5018    }
5019  }
5020  closedir(dir);
5021  return result;
5022}
5023
5024// This code originates from JDK's sysOpen and open64_w
5025// from src/solaris/hpi/src/system_md.c
5026
5027int os::open(const char *path, int oflag, int mode) {
5028  if (strlen(path) > MAX_PATH - 1) {
5029    errno = ENAMETOOLONG;
5030    return -1;
5031  }
5032
5033  // All file descriptors that are opened in the Java process and not
5034  // specifically destined for a subprocess should have the close-on-exec
5035  // flag set.  If we don't set it, then careless 3rd party native code
5036  // might fork and exec without closing all appropriate file descriptors
5037  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5038  // turn might:
5039  //
5040  // - cause end-of-file to fail to be detected on some file
5041  //   descriptors, resulting in mysterious hangs, or
5042  //
5043  // - might cause an fopen in the subprocess to fail on a system
5044  //   suffering from bug 1085341.
5045  //
5046  // (Yes, the default setting of the close-on-exec flag is a Unix
5047  // design flaw)
5048  //
5049  // See:
5050  // 1085341: 32-bit stdio routines should support file descriptors >255
5051  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5052  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5053  //
5054  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5055  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5056  // because it saves a system call and removes a small window where the flag
5057  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5058  // and we fall back to using FD_CLOEXEC (see below).
5059#ifdef O_CLOEXEC
5060  oflag |= O_CLOEXEC;
5061#endif
5062
5063  int fd = ::open64(path, oflag, mode);
5064  if (fd == -1) return -1;
5065
5066  //If the open succeeded, the file might still be a directory
5067  {
5068    struct stat64 buf64;
5069    int ret = ::fstat64(fd, &buf64);
5070    int st_mode = buf64.st_mode;
5071
5072    if (ret != -1) {
5073      if ((st_mode & S_IFMT) == S_IFDIR) {
5074        errno = EISDIR;
5075        ::close(fd);
5076        return -1;
5077      }
5078    } else {
5079      ::close(fd);
5080      return -1;
5081    }
5082  }
5083
5084#ifdef FD_CLOEXEC
5085  // Validate that the use of the O_CLOEXEC flag on open above worked.
5086  // With recent kernels, we will perform this check exactly once.
5087  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5088  if (!O_CLOEXEC_is_known_to_work) {
5089    int flags = ::fcntl(fd, F_GETFD);
5090    if (flags != -1) {
5091      if ((flags & FD_CLOEXEC) != 0)
5092        O_CLOEXEC_is_known_to_work = 1;
5093      else
5094        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5095    }
5096  }
5097#endif
5098
5099  return fd;
5100}
5101
5102
5103// create binary file, rewriting existing file if required
5104int os::create_binary_file(const char* path, bool rewrite_existing) {
5105  int oflags = O_WRONLY | O_CREAT;
5106  if (!rewrite_existing) {
5107    oflags |= O_EXCL;
5108  }
5109  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5110}
5111
5112// return current position of file pointer
5113jlong os::current_file_offset(int fd) {
5114  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5115}
5116
5117// move file pointer to the specified offset
5118jlong os::seek_to_file_offset(int fd, jlong offset) {
5119  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5120}
5121
5122// This code originates from JDK's sysAvailable
5123// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5124
5125int os::available(int fd, jlong *bytes) {
5126  jlong cur, end;
5127  int mode;
5128  struct stat64 buf64;
5129
5130  if (::fstat64(fd, &buf64) >= 0) {
5131    mode = buf64.st_mode;
5132    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5133      // XXX: is the following call interruptible? If so, this might
5134      // need to go through the INTERRUPT_IO() wrapper as for other
5135      // blocking, interruptible calls in this file.
5136      int n;
5137      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5138        *bytes = n;
5139        return 1;
5140      }
5141    }
5142  }
5143  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5144    return 0;
5145  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5146    return 0;
5147  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5148    return 0;
5149  }
5150  *bytes = end - cur;
5151  return 1;
5152}
5153
5154// Map a block of memory.
5155char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5156                        char *addr, size_t bytes, bool read_only,
5157                        bool allow_exec) {
5158  int prot;
5159  int flags = MAP_PRIVATE;
5160
5161  if (read_only) {
5162    prot = PROT_READ;
5163  } else {
5164    prot = PROT_READ | PROT_WRITE;
5165  }
5166
5167  if (allow_exec) {
5168    prot |= PROT_EXEC;
5169  }
5170
5171  if (addr != NULL) {
5172    flags |= MAP_FIXED;
5173  }
5174
5175  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5176                                     fd, file_offset);
5177  if (mapped_address == MAP_FAILED) {
5178    return NULL;
5179  }
5180  return mapped_address;
5181}
5182
5183
5184// Remap a block of memory.
5185char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5186                          char *addr, size_t bytes, bool read_only,
5187                          bool allow_exec) {
5188  // same as map_memory() on this OS
5189  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5190                        allow_exec);
5191}
5192
5193
5194// Unmap a block of memory.
5195bool os::pd_unmap_memory(char* addr, size_t bytes) {
5196  return munmap(addr, bytes) == 0;
5197}
5198
5199static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5200
5201static clockid_t thread_cpu_clockid(Thread* thread) {
5202  pthread_t tid = thread->osthread()->pthread_id();
5203  clockid_t clockid;
5204
5205  // Get thread clockid
5206  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5207  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5208  return clockid;
5209}
5210
5211// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5212// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5213// of a thread.
5214//
5215// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5216// the fast estimate available on the platform.
5217
5218jlong os::current_thread_cpu_time() {
5219  if (os::Linux::supports_fast_thread_cpu_time()) {
5220    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5221  } else {
5222    // return user + sys since the cost is the same
5223    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5224  }
5225}
5226
5227jlong os::thread_cpu_time(Thread* thread) {
5228  // consistent with what current_thread_cpu_time() returns
5229  if (os::Linux::supports_fast_thread_cpu_time()) {
5230    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5231  } else {
5232    return slow_thread_cpu_time(thread, true /* user + sys */);
5233  }
5234}
5235
5236jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5237  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5238    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5239  } else {
5240    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5241  }
5242}
5243
5244jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5245  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5246    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5247  } else {
5248    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5249  }
5250}
5251
5252//  -1 on error.
5253static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5254  pid_t  tid = thread->osthread()->thread_id();
5255  char *s;
5256  char stat[2048];
5257  int statlen;
5258  char proc_name[64];
5259  int count;
5260  long sys_time, user_time;
5261  char cdummy;
5262  int idummy;
5263  long ldummy;
5264  FILE *fp;
5265
5266  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5267  fp = fopen(proc_name, "r");
5268  if (fp == NULL) return -1;
5269  statlen = fread(stat, 1, 2047, fp);
5270  stat[statlen] = '\0';
5271  fclose(fp);
5272
5273  // Skip pid and the command string. Note that we could be dealing with
5274  // weird command names, e.g. user could decide to rename java launcher
5275  // to "java 1.4.2 :)", then the stat file would look like
5276  //                1234 (java 1.4.2 :)) R ... ...
5277  // We don't really need to know the command string, just find the last
5278  // occurrence of ")" and then start parsing from there. See bug 4726580.
5279  s = strrchr(stat, ')');
5280  if (s == NULL) return -1;
5281
5282  // Skip blank chars
5283  do { s++; } while (s && isspace(*s));
5284
5285  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5286                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5287                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5288                 &user_time, &sys_time);
5289  if (count != 13) return -1;
5290  if (user_sys_cpu_time) {
5291    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5292  } else {
5293    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5294  }
5295}
5296
5297void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5298  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5299  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5300  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5301  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5302}
5303
5304void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5305  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5306  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5307  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5308  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5309}
5310
5311bool os::is_thread_cpu_time_supported() {
5312  return true;
5313}
5314
5315// System loadavg support.  Returns -1 if load average cannot be obtained.
5316// Linux doesn't yet have a (official) notion of processor sets,
5317// so just return the system wide load average.
5318int os::loadavg(double loadavg[], int nelem) {
5319  return ::getloadavg(loadavg, nelem);
5320}
5321
5322void os::pause() {
5323  char filename[MAX_PATH];
5324  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5325    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5326  } else {
5327    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5328  }
5329
5330  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5331  if (fd != -1) {
5332    struct stat buf;
5333    ::close(fd);
5334    while (::stat(filename, &buf) == 0) {
5335      (void)::poll(NULL, 0, 100);
5336    }
5337  } else {
5338    jio_fprintf(stderr,
5339                "Could not open pause file '%s', continuing immediately.\n", filename);
5340  }
5341}
5342
5343
5344// Refer to the comments in os_solaris.cpp park-unpark. The next two
5345// comment paragraphs are worth repeating here:
5346//
5347// Assumption:
5348//    Only one parker can exist on an event, which is why we allocate
5349//    them per-thread. Multiple unparkers can coexist.
5350//
5351// _Event serves as a restricted-range semaphore.
5352//   -1 : thread is blocked, i.e. there is a waiter
5353//    0 : neutral: thread is running or ready,
5354//        could have been signaled after a wait started
5355//    1 : signaled - thread is running or ready
5356//
5357// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5358// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5359// For specifics regarding the bug see GLIBC BUGID 261237 :
5360//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5361// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5362// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5363// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5364// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5365// and monitorenter when we're using 1-0 locking.  All those operations may result in
5366// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5367// of libpthread avoids the problem, but isn't practical.
5368//
5369// Possible remedies:
5370//
5371// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5372//      This is palliative and probabilistic, however.  If the thread is preempted
5373//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5374//      than the minimum period may have passed, and the abstime may be stale (in the
5375//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5376//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5377//
5378// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5379//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5380//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5381//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5382//      thread.
5383//
5384// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5385//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5386//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5387//      This also works well.  In fact it avoids kernel-level scalability impediments
5388//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5389//      timers in a graceful fashion.
5390//
5391// 4.   When the abstime value is in the past it appears that control returns
5392//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5393//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5394//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5395//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5396//      It may be possible to avoid reinitialization by checking the return
5397//      value from pthread_cond_timedwait().  In addition to reinitializing the
5398//      condvar we must establish the invariant that cond_signal() is only called
5399//      within critical sections protected by the adjunct mutex.  This prevents
5400//      cond_signal() from "seeing" a condvar that's in the midst of being
5401//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5402//      desirable signal-after-unlock optimization that avoids futile context switching.
5403//
5404//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5405//      structure when a condvar is used or initialized.  cond_destroy()  would
5406//      release the helper structure.  Our reinitialize-after-timedwait fix
5407//      put excessive stress on malloc/free and locks protecting the c-heap.
5408//
5409// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5410// It may be possible to refine (4) by checking the kernel and NTPL verisons
5411// and only enabling the work-around for vulnerable environments.
5412
5413// utility to compute the abstime argument to timedwait:
5414// millis is the relative timeout time
5415// abstime will be the absolute timeout time
5416// TODO: replace compute_abstime() with unpackTime()
5417
5418static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5419  if (millis < 0)  millis = 0;
5420
5421  jlong seconds = millis / 1000;
5422  millis %= 1000;
5423  if (seconds > 50000000) { // see man cond_timedwait(3T)
5424    seconds = 50000000;
5425  }
5426
5427  if (os::supports_monotonic_clock()) {
5428    struct timespec now;
5429    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5430    assert_status(status == 0, status, "clock_gettime");
5431    abstime->tv_sec = now.tv_sec  + seconds;
5432    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5433    if (nanos >= NANOSECS_PER_SEC) {
5434      abstime->tv_sec += 1;
5435      nanos -= NANOSECS_PER_SEC;
5436    }
5437    abstime->tv_nsec = nanos;
5438  } else {
5439    struct timeval now;
5440    int status = gettimeofday(&now, NULL);
5441    assert(status == 0, "gettimeofday");
5442    abstime->tv_sec = now.tv_sec  + seconds;
5443    long usec = now.tv_usec + millis * 1000;
5444    if (usec >= 1000000) {
5445      abstime->tv_sec += 1;
5446      usec -= 1000000;
5447    }
5448    abstime->tv_nsec = usec * 1000;
5449  }
5450  return abstime;
5451}
5452
5453void os::PlatformEvent::park() {       // AKA "down()"
5454  // Transitions for _Event:
5455  //   -1 => -1 : illegal
5456  //    1 =>  0 : pass - return immediately
5457  //    0 => -1 : block; then set _Event to 0 before returning
5458
5459  // Invariant: Only the thread associated with the Event/PlatformEvent
5460  // may call park().
5461  // TODO: assert that _Assoc != NULL or _Assoc == Self
5462  assert(_nParked == 0, "invariant");
5463
5464  int v;
5465  for (;;) {
5466    v = _Event;
5467    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5468  }
5469  guarantee(v >= 0, "invariant");
5470  if (v == 0) {
5471    // Do this the hard way by blocking ...
5472    int status = pthread_mutex_lock(_mutex);
5473    assert_status(status == 0, status, "mutex_lock");
5474    guarantee(_nParked == 0, "invariant");
5475    ++_nParked;
5476    while (_Event < 0) {
5477      status = pthread_cond_wait(_cond, _mutex);
5478      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5479      // Treat this the same as if the wait was interrupted
5480      if (status == ETIME) { status = EINTR; }
5481      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5482    }
5483    --_nParked;
5484
5485    _Event = 0;
5486    status = pthread_mutex_unlock(_mutex);
5487    assert_status(status == 0, status, "mutex_unlock");
5488    // Paranoia to ensure our locked and lock-free paths interact
5489    // correctly with each other.
5490    OrderAccess::fence();
5491  }
5492  guarantee(_Event >= 0, "invariant");
5493}
5494
5495int os::PlatformEvent::park(jlong millis) {
5496  // Transitions for _Event:
5497  //   -1 => -1 : illegal
5498  //    1 =>  0 : pass - return immediately
5499  //    0 => -1 : block; then set _Event to 0 before returning
5500
5501  guarantee(_nParked == 0, "invariant");
5502
5503  int v;
5504  for (;;) {
5505    v = _Event;
5506    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5507  }
5508  guarantee(v >= 0, "invariant");
5509  if (v != 0) return OS_OK;
5510
5511  // We do this the hard way, by blocking the thread.
5512  // Consider enforcing a minimum timeout value.
5513  struct timespec abst;
5514  compute_abstime(&abst, millis);
5515
5516  int ret = OS_TIMEOUT;
5517  int status = pthread_mutex_lock(_mutex);
5518  assert_status(status == 0, status, "mutex_lock");
5519  guarantee(_nParked == 0, "invariant");
5520  ++_nParked;
5521
5522  // Object.wait(timo) will return because of
5523  // (a) notification
5524  // (b) timeout
5525  // (c) thread.interrupt
5526  //
5527  // Thread.interrupt and object.notify{All} both call Event::set.
5528  // That is, we treat thread.interrupt as a special case of notification.
5529  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5530  // We assume all ETIME returns are valid.
5531  //
5532  // TODO: properly differentiate simultaneous notify+interrupt.
5533  // In that case, we should propagate the notify to another waiter.
5534
5535  while (_Event < 0) {
5536    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5537    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5538      pthread_cond_destroy(_cond);
5539      pthread_cond_init(_cond, os::Linux::condAttr());
5540    }
5541    assert_status(status == 0 || status == EINTR ||
5542                  status == ETIME || status == ETIMEDOUT,
5543                  status, "cond_timedwait");
5544    if (!FilterSpuriousWakeups) break;                 // previous semantics
5545    if (status == ETIME || status == ETIMEDOUT) break;
5546    // We consume and ignore EINTR and spurious wakeups.
5547  }
5548  --_nParked;
5549  if (_Event >= 0) {
5550    ret = OS_OK;
5551  }
5552  _Event = 0;
5553  status = pthread_mutex_unlock(_mutex);
5554  assert_status(status == 0, status, "mutex_unlock");
5555  assert(_nParked == 0, "invariant");
5556  // Paranoia to ensure our locked and lock-free paths interact
5557  // correctly with each other.
5558  OrderAccess::fence();
5559  return ret;
5560}
5561
5562void os::PlatformEvent::unpark() {
5563  // Transitions for _Event:
5564  //    0 => 1 : just return
5565  //    1 => 1 : just return
5566  //   -1 => either 0 or 1; must signal target thread
5567  //         That is, we can safely transition _Event from -1 to either
5568  //         0 or 1.
5569  // See also: "Semaphores in Plan 9" by Mullender & Cox
5570  //
5571  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5572  // that it will take two back-to-back park() calls for the owning
5573  // thread to block. This has the benefit of forcing a spurious return
5574  // from the first park() call after an unpark() call which will help
5575  // shake out uses of park() and unpark() without condition variables.
5576
5577  if (Atomic::xchg(1, &_Event) >= 0) return;
5578
5579  // Wait for the thread associated with the event to vacate
5580  int status = pthread_mutex_lock(_mutex);
5581  assert_status(status == 0, status, "mutex_lock");
5582  int AnyWaiters = _nParked;
5583  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5584  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5585    AnyWaiters = 0;
5586    pthread_cond_signal(_cond);
5587  }
5588  status = pthread_mutex_unlock(_mutex);
5589  assert_status(status == 0, status, "mutex_unlock");
5590  if (AnyWaiters != 0) {
5591    // Note that we signal() *after* dropping the lock for "immortal" Events.
5592    // This is safe and avoids a common class of  futile wakeups.  In rare
5593    // circumstances this can cause a thread to return prematurely from
5594    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5595    // will simply re-test the condition and re-park itself.
5596    // This provides particular benefit if the underlying platform does not
5597    // provide wait morphing.
5598    status = pthread_cond_signal(_cond);
5599    assert_status(status == 0, status, "cond_signal");
5600  }
5601}
5602
5603
5604// JSR166
5605// -------------------------------------------------------
5606
5607// The solaris and linux implementations of park/unpark are fairly
5608// conservative for now, but can be improved. They currently use a
5609// mutex/condvar pair, plus a a count.
5610// Park decrements count if > 0, else does a condvar wait.  Unpark
5611// sets count to 1 and signals condvar.  Only one thread ever waits
5612// on the condvar. Contention seen when trying to park implies that someone
5613// is unparking you, so don't wait. And spurious returns are fine, so there
5614// is no need to track notifications.
5615
5616// This code is common to linux and solaris and will be moved to a
5617// common place in dolphin.
5618//
5619// The passed in time value is either a relative time in nanoseconds
5620// or an absolute time in milliseconds. Either way it has to be unpacked
5621// into suitable seconds and nanoseconds components and stored in the
5622// given timespec structure.
5623// Given time is a 64-bit value and the time_t used in the timespec is only
5624// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5625// overflow if times way in the future are given. Further on Solaris versions
5626// prior to 10 there is a restriction (see cond_timedwait) that the specified
5627// number of seconds, in abstime, is less than current_time  + 100,000,000.
5628// As it will be 28 years before "now + 100000000" will overflow we can
5629// ignore overflow and just impose a hard-limit on seconds using the value
5630// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5631// years from "now".
5632
5633static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5634  assert(time > 0, "convertTime");
5635  time_t max_secs = 0;
5636
5637  if (!os::supports_monotonic_clock() || isAbsolute) {
5638    struct timeval now;
5639    int status = gettimeofday(&now, NULL);
5640    assert(status == 0, "gettimeofday");
5641
5642    max_secs = now.tv_sec + MAX_SECS;
5643
5644    if (isAbsolute) {
5645      jlong secs = time / 1000;
5646      if (secs > max_secs) {
5647        absTime->tv_sec = max_secs;
5648      } else {
5649        absTime->tv_sec = secs;
5650      }
5651      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5652    } else {
5653      jlong secs = time / NANOSECS_PER_SEC;
5654      if (secs >= MAX_SECS) {
5655        absTime->tv_sec = max_secs;
5656        absTime->tv_nsec = 0;
5657      } else {
5658        absTime->tv_sec = now.tv_sec + secs;
5659        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5660        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5661          absTime->tv_nsec -= NANOSECS_PER_SEC;
5662          ++absTime->tv_sec; // note: this must be <= max_secs
5663        }
5664      }
5665    }
5666  } else {
5667    // must be relative using monotonic clock
5668    struct timespec now;
5669    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5670    assert_status(status == 0, status, "clock_gettime");
5671    max_secs = now.tv_sec + MAX_SECS;
5672    jlong secs = time / NANOSECS_PER_SEC;
5673    if (secs >= MAX_SECS) {
5674      absTime->tv_sec = max_secs;
5675      absTime->tv_nsec = 0;
5676    } else {
5677      absTime->tv_sec = now.tv_sec + secs;
5678      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5679      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5680        absTime->tv_nsec -= NANOSECS_PER_SEC;
5681        ++absTime->tv_sec; // note: this must be <= max_secs
5682      }
5683    }
5684  }
5685  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5686  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5687  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5688  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5689}
5690
5691void Parker::park(bool isAbsolute, jlong time) {
5692  // Ideally we'd do something useful while spinning, such
5693  // as calling unpackTime().
5694
5695  // Optional fast-path check:
5696  // Return immediately if a permit is available.
5697  // We depend on Atomic::xchg() having full barrier semantics
5698  // since we are doing a lock-free update to _counter.
5699  if (Atomic::xchg(0, &_counter) > 0) return;
5700
5701  Thread* thread = Thread::current();
5702  assert(thread->is_Java_thread(), "Must be JavaThread");
5703  JavaThread *jt = (JavaThread *)thread;
5704
5705  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5706  // Check interrupt before trying to wait
5707  if (Thread::is_interrupted(thread, false)) {
5708    return;
5709  }
5710
5711  // Next, demultiplex/decode time arguments
5712  timespec absTime;
5713  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5714    return;
5715  }
5716  if (time > 0) {
5717    unpackTime(&absTime, isAbsolute, time);
5718  }
5719
5720
5721  // Enter safepoint region
5722  // Beware of deadlocks such as 6317397.
5723  // The per-thread Parker:: mutex is a classic leaf-lock.
5724  // In particular a thread must never block on the Threads_lock while
5725  // holding the Parker:: mutex.  If safepoints are pending both the
5726  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5727  ThreadBlockInVM tbivm(jt);
5728
5729  // Don't wait if cannot get lock since interference arises from
5730  // unblocking.  Also. check interrupt before trying wait
5731  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5732    return;
5733  }
5734
5735  int status;
5736  if (_counter > 0)  { // no wait needed
5737    _counter = 0;
5738    status = pthread_mutex_unlock(_mutex);
5739    assert(status == 0, "invariant");
5740    // Paranoia to ensure our locked and lock-free paths interact
5741    // correctly with each other and Java-level accesses.
5742    OrderAccess::fence();
5743    return;
5744  }
5745
5746#ifdef ASSERT
5747  // Don't catch signals while blocked; let the running threads have the signals.
5748  // (This allows a debugger to break into the running thread.)
5749  sigset_t oldsigs;
5750  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5751  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5752#endif
5753
5754  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5755  jt->set_suspend_equivalent();
5756  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5757
5758  assert(_cur_index == -1, "invariant");
5759  if (time == 0) {
5760    _cur_index = REL_INDEX; // arbitrary choice when not timed
5761    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5762  } else {
5763    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5764    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5765    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5766      pthread_cond_destroy(&_cond[_cur_index]);
5767      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5768    }
5769  }
5770  _cur_index = -1;
5771  assert_status(status == 0 || status == EINTR ||
5772                status == ETIME || status == ETIMEDOUT,
5773                status, "cond_timedwait");
5774
5775#ifdef ASSERT
5776  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5777#endif
5778
5779  _counter = 0;
5780  status = pthread_mutex_unlock(_mutex);
5781  assert_status(status == 0, status, "invariant");
5782  // Paranoia to ensure our locked and lock-free paths interact
5783  // correctly with each other and Java-level accesses.
5784  OrderAccess::fence();
5785
5786  // If externally suspended while waiting, re-suspend
5787  if (jt->handle_special_suspend_equivalent_condition()) {
5788    jt->java_suspend_self();
5789  }
5790}
5791
5792void Parker::unpark() {
5793  int status = pthread_mutex_lock(_mutex);
5794  assert(status == 0, "invariant");
5795  const int s = _counter;
5796  _counter = 1;
5797  if (s < 1) {
5798    // thread might be parked
5799    if (_cur_index != -1) {
5800      // thread is definitely parked
5801      if (WorkAroundNPTLTimedWaitHang) {
5802        status = pthread_cond_signal(&_cond[_cur_index]);
5803        assert(status == 0, "invariant");
5804        status = pthread_mutex_unlock(_mutex);
5805        assert(status == 0, "invariant");
5806      } else {
5807        // must capture correct index before unlocking
5808        int index = _cur_index;
5809        status = pthread_mutex_unlock(_mutex);
5810        assert(status == 0, "invariant");
5811        status = pthread_cond_signal(&_cond[index]);
5812        assert(status == 0, "invariant");
5813      }
5814    } else {
5815      pthread_mutex_unlock(_mutex);
5816      assert(status == 0, "invariant");
5817    }
5818  } else {
5819    pthread_mutex_unlock(_mutex);
5820    assert(status == 0, "invariant");
5821  }
5822}
5823
5824
5825extern char** environ;
5826
5827// Run the specified command in a separate process. Return its exit value,
5828// or -1 on failure (e.g. can't fork a new process).
5829// Unlike system(), this function can be called from signal handler. It
5830// doesn't block SIGINT et al.
5831int os::fork_and_exec(char* cmd) {
5832  const char * argv[4] = {"sh", "-c", cmd, NULL};
5833
5834  pid_t pid = fork();
5835
5836  if (pid < 0) {
5837    // fork failed
5838    return -1;
5839
5840  } else if (pid == 0) {
5841    // child process
5842
5843    execve("/bin/sh", (char* const*)argv, environ);
5844
5845    // execve failed
5846    _exit(-1);
5847
5848  } else  {
5849    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5850    // care about the actual exit code, for now.
5851
5852    int status;
5853
5854    // Wait for the child process to exit.  This returns immediately if
5855    // the child has already exited. */
5856    while (waitpid(pid, &status, 0) < 0) {
5857      switch (errno) {
5858      case ECHILD: return 0;
5859      case EINTR: break;
5860      default: return -1;
5861      }
5862    }
5863
5864    if (WIFEXITED(status)) {
5865      // The child exited normally; get its exit code.
5866      return WEXITSTATUS(status);
5867    } else if (WIFSIGNALED(status)) {
5868      // The child exited because of a signal
5869      // The best value to return is 0x80 + signal number,
5870      // because that is what all Unix shells do, and because
5871      // it allows callers to distinguish between process exit and
5872      // process death by signal.
5873      return 0x80 + WTERMSIG(status);
5874    } else {
5875      // Unknown exit code; pass it through
5876      return status;
5877    }
5878  }
5879}
5880
5881// is_headless_jre()
5882//
5883// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5884// in order to report if we are running in a headless jre
5885//
5886// Since JDK8 xawt/libmawt.so was moved into the same directory
5887// as libawt.so, and renamed libawt_xawt.so
5888//
5889bool os::is_headless_jre() {
5890  struct stat statbuf;
5891  char buf[MAXPATHLEN];
5892  char libmawtpath[MAXPATHLEN];
5893  const char *xawtstr  = "/xawt/libmawt.so";
5894  const char *new_xawtstr = "/libawt_xawt.so";
5895  char *p;
5896
5897  // Get path to libjvm.so
5898  os::jvm_path(buf, sizeof(buf));
5899
5900  // Get rid of libjvm.so
5901  p = strrchr(buf, '/');
5902  if (p == NULL) {
5903    return false;
5904  } else {
5905    *p = '\0';
5906  }
5907
5908  // Get rid of client or server
5909  p = strrchr(buf, '/');
5910  if (p == NULL) {
5911    return false;
5912  } else {
5913    *p = '\0';
5914  }
5915
5916  // check xawt/libmawt.so
5917  strcpy(libmawtpath, buf);
5918  strcat(libmawtpath, xawtstr);
5919  if (::stat(libmawtpath, &statbuf) == 0) return false;
5920
5921  // check libawt_xawt.so
5922  strcpy(libmawtpath, buf);
5923  strcat(libmawtpath, new_xawtstr);
5924  if (::stat(libmawtpath, &statbuf) == 0) return false;
5925
5926  return true;
5927}
5928
5929// Get the default path to the core file
5930// Returns the length of the string
5931int os::get_core_path(char* buffer, size_t bufferSize) {
5932  /*
5933   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5934   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5935   */
5936  const int core_pattern_len = 129;
5937  char core_pattern[core_pattern_len] = {0};
5938
5939  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5940  if (core_pattern_file != -1) {
5941    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5942    ::close(core_pattern_file);
5943
5944    if (ret > 0) {
5945      char *last_char = core_pattern + strlen(core_pattern) - 1;
5946
5947      if (*last_char == '\n') {
5948        *last_char = '\0';
5949      }
5950    }
5951  }
5952
5953  if (strlen(core_pattern) == 0) {
5954    return -1;
5955  }
5956
5957  char *pid_pos = strstr(core_pattern, "%p");
5958  int written;
5959
5960  if (core_pattern[0] == '/') {
5961    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5962  } else {
5963    char cwd[PATH_MAX];
5964
5965    const char* p = get_current_directory(cwd, PATH_MAX);
5966    if (p == NULL) {
5967      return -1;
5968    }
5969
5970    if (core_pattern[0] == '|') {
5971      written = jio_snprintf(buffer, bufferSize,
5972                        "\"%s\" (or dumping to %s/core.%d)",
5973                                     &core_pattern[1], p, current_process_id());
5974    } else {
5975      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5976    }
5977  }
5978
5979  if (written < 0) {
5980    return -1;
5981  }
5982
5983  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5984    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5985
5986    if (core_uses_pid_file != -1) {
5987      char core_uses_pid = 0;
5988      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5989      ::close(core_uses_pid_file);
5990
5991      if (core_uses_pid == '1') {
5992        jio_snprintf(buffer + written, bufferSize - written,
5993                                          ".%d", current_process_id());
5994      }
5995    }
5996  }
5997
5998  return strlen(buffer);
5999}
6000
6001/////////////// Unit tests ///////////////
6002
6003#ifndef PRODUCT
6004
6005#define test_log(...)              \
6006  do {                             \
6007    if (VerboseInternalVMTests) {  \
6008      tty->print_cr(__VA_ARGS__);  \
6009      tty->flush();                \
6010    }                              \
6011  } while (false)
6012
6013class TestReserveMemorySpecial : AllStatic {
6014 public:
6015  static void small_page_write(void* addr, size_t size) {
6016    size_t page_size = os::vm_page_size();
6017
6018    char* end = (char*)addr + size;
6019    for (char* p = (char*)addr; p < end; p += page_size) {
6020      *p = 1;
6021    }
6022  }
6023
6024  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6025    if (!UseHugeTLBFS) {
6026      return;
6027    }
6028
6029    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6030
6031    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6032
6033    if (addr != NULL) {
6034      small_page_write(addr, size);
6035
6036      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6037    }
6038  }
6039
6040  static void test_reserve_memory_special_huge_tlbfs_only() {
6041    if (!UseHugeTLBFS) {
6042      return;
6043    }
6044
6045    size_t lp = os::large_page_size();
6046
6047    for (size_t size = lp; size <= lp * 10; size += lp) {
6048      test_reserve_memory_special_huge_tlbfs_only(size);
6049    }
6050  }
6051
6052  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6053    size_t lp = os::large_page_size();
6054    size_t ag = os::vm_allocation_granularity();
6055
6056    // sizes to test
6057    const size_t sizes[] = {
6058      lp, lp + ag, lp + lp / 2, lp * 2,
6059      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6060      lp * 10, lp * 10 + lp / 2
6061    };
6062    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6063
6064    // For each size/alignment combination, we test three scenarios:
6065    // 1) with req_addr == NULL
6066    // 2) with a non-null req_addr at which we expect to successfully allocate
6067    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6068    //    expect the allocation to either fail or to ignore req_addr
6069
6070    // Pre-allocate two areas; they shall be as large as the largest allocation
6071    //  and aligned to the largest alignment we will be testing.
6072    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6073    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6074      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6075      -1, 0);
6076    assert(mapping1 != MAP_FAILED, "should work");
6077
6078    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6079      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6080      -1, 0);
6081    assert(mapping2 != MAP_FAILED, "should work");
6082
6083    // Unmap the first mapping, but leave the second mapping intact: the first
6084    // mapping will serve as a value for a "good" req_addr (case 2). The second
6085    // mapping, still intact, as "bad" req_addr (case 3).
6086    ::munmap(mapping1, mapping_size);
6087
6088    // Case 1
6089    test_log("%s, req_addr NULL:", __FUNCTION__);
6090    test_log("size            align           result");
6091
6092    for (int i = 0; i < num_sizes; i++) {
6093      const size_t size = sizes[i];
6094      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6095        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6096        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6097                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6098        if (p != NULL) {
6099          assert(is_ptr_aligned(p, alignment), "must be");
6100          small_page_write(p, size);
6101          os::Linux::release_memory_special_huge_tlbfs(p, size);
6102        }
6103      }
6104    }
6105
6106    // Case 2
6107    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6108    test_log("size            align           req_addr         result");
6109
6110    for (int i = 0; i < num_sizes; i++) {
6111      const size_t size = sizes[i];
6112      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6113        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6114        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6115        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6116                 size, alignment, p2i(req_addr), p2i(p),
6117                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6118        if (p != NULL) {
6119          assert(p == req_addr, "must be");
6120          small_page_write(p, size);
6121          os::Linux::release_memory_special_huge_tlbfs(p, size);
6122        }
6123      }
6124    }
6125
6126    // Case 3
6127    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6128    test_log("size            align           req_addr         result");
6129
6130    for (int i = 0; i < num_sizes; i++) {
6131      const size_t size = sizes[i];
6132      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6133        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6134        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6135        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6136                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6137        // as the area around req_addr contains already existing mappings, the API should always
6138        // return NULL (as per contract, it cannot return another address)
6139        assert(p == NULL, "must be");
6140      }
6141    }
6142
6143    ::munmap(mapping2, mapping_size);
6144
6145  }
6146
6147  static void test_reserve_memory_special_huge_tlbfs() {
6148    if (!UseHugeTLBFS) {
6149      return;
6150    }
6151
6152    test_reserve_memory_special_huge_tlbfs_only();
6153    test_reserve_memory_special_huge_tlbfs_mixed();
6154  }
6155
6156  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6157    if (!UseSHM) {
6158      return;
6159    }
6160
6161    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6162
6163    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6164
6165    if (addr != NULL) {
6166      assert(is_ptr_aligned(addr, alignment), "Check");
6167      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6168
6169      small_page_write(addr, size);
6170
6171      os::Linux::release_memory_special_shm(addr, size);
6172    }
6173  }
6174
6175  static void test_reserve_memory_special_shm() {
6176    size_t lp = os::large_page_size();
6177    size_t ag = os::vm_allocation_granularity();
6178
6179    for (size_t size = ag; size < lp * 3; size += ag) {
6180      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6181        test_reserve_memory_special_shm(size, alignment);
6182      }
6183    }
6184  }
6185
6186  static void test() {
6187    test_reserve_memory_special_huge_tlbfs();
6188    test_reserve_memory_special_shm();
6189  }
6190};
6191
6192void TestReserveMemorySpecial_test() {
6193  TestReserveMemorySpecial::test();
6194}
6195
6196#endif
6197