os_linux.cpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
110
111// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
112// getrusage() is prepared to handle the associated failure.
113#ifndef RUSAGE_THREAD
114  #define RUSAGE_THREAD   (1)               /* only the calling thread */
115#endif
116
117#define MAX_PATH    (2 * K)
118
119#define MAX_SECS 100000000
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124#define LARGEPAGES_BIT (1 << 6)
125////////////////////////////////////////////////////////////////////////////////
126// global variables
127julong os::Linux::_physical_memory = 0;
128
129address   os::Linux::_initial_thread_stack_bottom = NULL;
130uintptr_t os::Linux::_initial_thread_stack_size   = 0;
131
132int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
133int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
134int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
135Mutex* os::Linux::_createThread_lock = NULL;
136pthread_t os::Linux::_main_thread;
137int os::Linux::_page_size = -1;
138const int os::Linux::_vm_default_page_size = (8 * K);
139bool os::Linux::_supports_fast_thread_cpu_time = false;
140const char * os::Linux::_glibc_version = NULL;
141const char * os::Linux::_libpthread_version = NULL;
142pthread_condattr_t os::Linux::_condattr[1];
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152// Signal number used to suspend/resume a thread
153
154// do not use any signal number less than SIGSEGV, see 4355769
155static int SR_signum = SIGUSR2;
156sigset_t SR_sigset;
157
158// Declarations
159static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
160
161// utility functions
162
163static int SR_initialize();
164
165julong os::available_memory() {
166  return Linux::available_memory();
167}
168
169julong os::Linux::available_memory() {
170  // values in struct sysinfo are "unsigned long"
171  struct sysinfo si;
172  sysinfo(&si);
173
174  return (julong)si.freeram * si.mem_unit;
175}
176
177julong os::physical_memory() {
178  return Linux::physical_memory();
179}
180
181// Return true if user is running as root.
182
183bool os::have_special_privileges() {
184  static bool init = false;
185  static bool privileges = false;
186  if (!init) {
187    privileges = (getuid() != geteuid()) || (getgid() != getegid());
188    init = true;
189  }
190  return privileges;
191}
192
193
194#ifndef SYS_gettid
195// i386: 224, ia64: 1105, amd64: 186, sparc 143
196  #ifdef __ia64__
197    #define SYS_gettid 1105
198  #else
199    #ifdef __i386__
200      #define SYS_gettid 224
201    #else
202      #ifdef __amd64__
203        #define SYS_gettid 186
204      #else
205        #ifdef __sparc__
206          #define SYS_gettid 143
207        #else
208          #error define gettid for the arch
209        #endif
210      #endif
211    #endif
212  #endif
213#endif
214
215// Cpu architecture string
216static char cpu_arch[] = HOTSPOT_LIB_ARCH;
217
218
219// pid_t gettid()
220//
221// Returns the kernel thread id of the currently running thread. Kernel
222// thread id is used to access /proc.
223pid_t os::Linux::gettid() {
224  int rslt = syscall(SYS_gettid);
225  assert(rslt != -1, "must be."); // old linuxthreads implementation?
226  return (pid_t)rslt;
227}
228
229// Most versions of linux have a bug where the number of processors are
230// determined by looking at the /proc file system.  In a chroot environment,
231// the system call returns 1.  This causes the VM to act as if it is
232// a single processor and elide locking (see is_MP() call).
233static bool unsafe_chroot_detected = false;
234static const char *unstable_chroot_error = "/proc file system not found.\n"
235                     "Java may be unstable running multithreaded in a chroot "
236                     "environment on Linux when /proc filesystem is not mounted.";
237
238void os::Linux::initialize_system_info() {
239  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
240  if (processor_count() == 1) {
241    pid_t pid = os::Linux::gettid();
242    char fname[32];
243    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
244    FILE *fp = fopen(fname, "r");
245    if (fp == NULL) {
246      unsafe_chroot_detected = true;
247    } else {
248      fclose(fp);
249    }
250  }
251  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
252  assert(processor_count() > 0, "linux error");
253}
254
255void os::init_system_properties_values() {
256  // The next steps are taken in the product version:
257  //
258  // Obtain the JAVA_HOME value from the location of libjvm.so.
259  // This library should be located at:
260  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
261  //
262  // If "/jre/lib/" appears at the right place in the path, then we
263  // assume libjvm.so is installed in a JDK and we use this path.
264  //
265  // Otherwise exit with message: "Could not create the Java virtual machine."
266  //
267  // The following extra steps are taken in the debugging version:
268  //
269  // If "/jre/lib/" does NOT appear at the right place in the path
270  // instead of exit check for $JAVA_HOME environment variable.
271  //
272  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
273  // then we append a fake suffix "hotspot/libjvm.so" to this path so
274  // it looks like libjvm.so is installed there
275  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
276  //
277  // Otherwise exit.
278  //
279  // Important note: if the location of libjvm.so changes this
280  // code needs to be changed accordingly.
281
282  // See ld(1):
283  //      The linker uses the following search paths to locate required
284  //      shared libraries:
285  //        1: ...
286  //        ...
287  //        7: The default directories, normally /lib and /usr/lib.
288#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
289  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
290#else
291  #define DEFAULT_LIBPATH "/lib:/usr/lib"
292#endif
293
294// Base path of extensions installed on the system.
295#define SYS_EXT_DIR     "/usr/java/packages"
296#define EXTENSIONS_DIR  "/lib/ext"
297
298  // Buffer that fits several sprintfs.
299  // Note that the space for the colon and the trailing null are provided
300  // by the nulls included by the sizeof operator.
301  const size_t bufsize =
302    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
303         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
304  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
305
306  // sysclasspath, java_home, dll_dir
307  {
308    char *pslash;
309    os::jvm_path(buf, bufsize);
310
311    // Found the full path to libjvm.so.
312    // Now cut the path to <java_home>/jre if we can.
313    pslash = strrchr(buf, '/');
314    if (pslash != NULL) {
315      *pslash = '\0';            // Get rid of /libjvm.so.
316    }
317    pslash = strrchr(buf, '/');
318    if (pslash != NULL) {
319      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
320    }
321    Arguments::set_dll_dir(buf);
322
323    if (pslash != NULL) {
324      pslash = strrchr(buf, '/');
325      if (pslash != NULL) {
326        *pslash = '\0';          // Get rid of /<arch>.
327        pslash = strrchr(buf, '/');
328        if (pslash != NULL) {
329          *pslash = '\0';        // Get rid of /lib.
330        }
331      }
332    }
333    Arguments::set_java_home(buf);
334    set_boot_path('/', ':');
335  }
336
337  // Where to look for native libraries.
338  //
339  // Note: Due to a legacy implementation, most of the library path
340  // is set in the launcher. This was to accomodate linking restrictions
341  // on legacy Linux implementations (which are no longer supported).
342  // Eventually, all the library path setting will be done here.
343  //
344  // However, to prevent the proliferation of improperly built native
345  // libraries, the new path component /usr/java/packages is added here.
346  // Eventually, all the library path setting will be done here.
347  {
348    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
349    // should always exist (until the legacy problem cited above is
350    // addressed).
351    const char *v = ::getenv("LD_LIBRARY_PATH");
352    const char *v_colon = ":";
353    if (v == NULL) { v = ""; v_colon = ""; }
354    // That's +1 for the colon and +1 for the trailing '\0'.
355    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
356                                                     strlen(v) + 1 +
357                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
358                                                     mtInternal);
359    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
360    Arguments::set_library_path(ld_library_path);
361    FREE_C_HEAP_ARRAY(char, ld_library_path);
362  }
363
364  // Extensions directories.
365  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
366  Arguments::set_ext_dirs(buf);
367
368  FREE_C_HEAP_ARRAY(char, buf);
369
370#undef DEFAULT_LIBPATH
371#undef SYS_EXT_DIR
372#undef EXTENSIONS_DIR
373}
374
375////////////////////////////////////////////////////////////////////////////////
376// breakpoint support
377
378void os::breakpoint() {
379  BREAKPOINT;
380}
381
382extern "C" void breakpoint() {
383  // use debugger to set breakpoint here
384}
385
386////////////////////////////////////////////////////////////////////////////////
387// signal support
388
389debug_only(static bool signal_sets_initialized = false);
390static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
391
392bool os::Linux::is_sig_ignored(int sig) {
393  struct sigaction oact;
394  sigaction(sig, (struct sigaction*)NULL, &oact);
395  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
396                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
397  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
398    return true;
399  } else {
400    return false;
401  }
402}
403
404void os::Linux::signal_sets_init() {
405  // Should also have an assertion stating we are still single-threaded.
406  assert(!signal_sets_initialized, "Already initialized");
407  // Fill in signals that are necessarily unblocked for all threads in
408  // the VM. Currently, we unblock the following signals:
409  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
410  //                         by -Xrs (=ReduceSignalUsage));
411  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
412  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
413  // the dispositions or masks wrt these signals.
414  // Programs embedding the VM that want to use the above signals for their
415  // own purposes must, at this time, use the "-Xrs" option to prevent
416  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
417  // (See bug 4345157, and other related bugs).
418  // In reality, though, unblocking these signals is really a nop, since
419  // these signals are not blocked by default.
420  sigemptyset(&unblocked_sigs);
421  sigemptyset(&allowdebug_blocked_sigs);
422  sigaddset(&unblocked_sigs, SIGILL);
423  sigaddset(&unblocked_sigs, SIGSEGV);
424  sigaddset(&unblocked_sigs, SIGBUS);
425  sigaddset(&unblocked_sigs, SIGFPE);
426#if defined(PPC64)
427  sigaddset(&unblocked_sigs, SIGTRAP);
428#endif
429  sigaddset(&unblocked_sigs, SR_signum);
430
431  if (!ReduceSignalUsage) {
432    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
433      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
434      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
435    }
436    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
437      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
438      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
439    }
440    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
441      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
442      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
443    }
444  }
445  // Fill in signals that are blocked by all but the VM thread.
446  sigemptyset(&vm_sigs);
447  if (!ReduceSignalUsage) {
448    sigaddset(&vm_sigs, BREAK_SIGNAL);
449  }
450  debug_only(signal_sets_initialized = true);
451
452}
453
454// These are signals that are unblocked while a thread is running Java.
455// (For some reason, they get blocked by default.)
456sigset_t* os::Linux::unblocked_signals() {
457  assert(signal_sets_initialized, "Not initialized");
458  return &unblocked_sigs;
459}
460
461// These are the signals that are blocked while a (non-VM) thread is
462// running Java. Only the VM thread handles these signals.
463sigset_t* os::Linux::vm_signals() {
464  assert(signal_sets_initialized, "Not initialized");
465  return &vm_sigs;
466}
467
468// These are signals that are blocked during cond_wait to allow debugger in
469sigset_t* os::Linux::allowdebug_blocked_signals() {
470  assert(signal_sets_initialized, "Not initialized");
471  return &allowdebug_blocked_sigs;
472}
473
474void os::Linux::hotspot_sigmask(Thread* thread) {
475
476  //Save caller's signal mask before setting VM signal mask
477  sigset_t caller_sigmask;
478  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
479
480  OSThread* osthread = thread->osthread();
481  osthread->set_caller_sigmask(caller_sigmask);
482
483  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
484
485  if (!ReduceSignalUsage) {
486    if (thread->is_VM_thread()) {
487      // Only the VM thread handles BREAK_SIGNAL ...
488      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
489    } else {
490      // ... all other threads block BREAK_SIGNAL
491      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
492    }
493  }
494}
495
496//////////////////////////////////////////////////////////////////////////////
497// detecting pthread library
498
499void os::Linux::libpthread_init() {
500  // Save glibc and pthread version strings.
501#if !defined(_CS_GNU_LIBC_VERSION) || \
502    !defined(_CS_GNU_LIBPTHREAD_VERSION)
503  #error "glibc too old (< 2.3.2)"
504#endif
505
506  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
507  assert(n > 0, "cannot retrieve glibc version");
508  char *str = (char *)malloc(n, mtInternal);
509  confstr(_CS_GNU_LIBC_VERSION, str, n);
510  os::Linux::set_glibc_version(str);
511
512  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
513  assert(n > 0, "cannot retrieve pthread version");
514  str = (char *)malloc(n, mtInternal);
515  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
516  os::Linux::set_libpthread_version(str);
517}
518
519/////////////////////////////////////////////////////////////////////////////
520// thread stack expansion
521
522// os::Linux::manually_expand_stack() takes care of expanding the thread
523// stack. Note that this is normally not needed: pthread stacks allocate
524// thread stack using mmap() without MAP_NORESERVE, so the stack is already
525// committed. Therefore it is not necessary to expand the stack manually.
526//
527// Manually expanding the stack was historically needed on LinuxThreads
528// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
529// it is kept to deal with very rare corner cases:
530//
531// For one, user may run the VM on an own implementation of threads
532// whose stacks are - like the old LinuxThreads - implemented using
533// mmap(MAP_GROWSDOWN).
534//
535// Also, this coding may be needed if the VM is running on the primordial
536// thread. Normally we avoid running on the primordial thread; however,
537// user may still invoke the VM on the primordial thread.
538//
539// The following historical comment describes the details about running
540// on a thread stack allocated with mmap(MAP_GROWSDOWN):
541
542
543// Force Linux kernel to expand current thread stack. If "bottom" is close
544// to the stack guard, caller should block all signals.
545//
546// MAP_GROWSDOWN:
547//   A special mmap() flag that is used to implement thread stacks. It tells
548//   kernel that the memory region should extend downwards when needed. This
549//   allows early versions of LinuxThreads to only mmap the first few pages
550//   when creating a new thread. Linux kernel will automatically expand thread
551//   stack as needed (on page faults).
552//
553//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
554//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
555//   region, it's hard to tell if the fault is due to a legitimate stack
556//   access or because of reading/writing non-exist memory (e.g. buffer
557//   overrun). As a rule, if the fault happens below current stack pointer,
558//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
559//   application (see Linux kernel fault.c).
560//
561//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
562//   stack overflow detection.
563//
564//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
565//   not use MAP_GROWSDOWN.
566//
567// To get around the problem and allow stack banging on Linux, we need to
568// manually expand thread stack after receiving the SIGSEGV.
569//
570// There are two ways to expand thread stack to address "bottom", we used
571// both of them in JVM before 1.5:
572//   1. adjust stack pointer first so that it is below "bottom", and then
573//      touch "bottom"
574//   2. mmap() the page in question
575//
576// Now alternate signal stack is gone, it's harder to use 2. For instance,
577// if current sp is already near the lower end of page 101, and we need to
578// call mmap() to map page 100, it is possible that part of the mmap() frame
579// will be placed in page 100. When page 100 is mapped, it is zero-filled.
580// That will destroy the mmap() frame and cause VM to crash.
581//
582// The following code works by adjusting sp first, then accessing the "bottom"
583// page to force a page fault. Linux kernel will then automatically expand the
584// stack mapping.
585//
586// _expand_stack_to() assumes its frame size is less than page size, which
587// should always be true if the function is not inlined.
588
589#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
590  #define NOINLINE
591#else
592  #define NOINLINE __attribute__ ((noinline))
593#endif
594
595static void _expand_stack_to(address bottom) NOINLINE;
596
597static void _expand_stack_to(address bottom) {
598  address sp;
599  size_t size;
600  volatile char *p;
601
602  // Adjust bottom to point to the largest address within the same page, it
603  // gives us a one-page buffer if alloca() allocates slightly more memory.
604  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
605  bottom += os::Linux::page_size() - 1;
606
607  // sp might be slightly above current stack pointer; if that's the case, we
608  // will alloca() a little more space than necessary, which is OK. Don't use
609  // os::current_stack_pointer(), as its result can be slightly below current
610  // stack pointer, causing us to not alloca enough to reach "bottom".
611  sp = (address)&sp;
612
613  if (sp > bottom) {
614    size = sp - bottom;
615    p = (volatile char *)alloca(size);
616    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
617    p[0] = '\0';
618  }
619}
620
621bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
622  assert(t!=NULL, "just checking");
623  assert(t->osthread()->expanding_stack(), "expand should be set");
624  assert(t->stack_base() != NULL, "stack_base was not initialized");
625
626  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
627    sigset_t mask_all, old_sigset;
628    sigfillset(&mask_all);
629    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
630    _expand_stack_to(addr);
631    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
632    return true;
633  }
634  return false;
635}
636
637//////////////////////////////////////////////////////////////////////////////
638// create new thread
639
640// Thread start routine for all newly created threads
641static void *java_start(Thread *thread) {
642  // Try to randomize the cache line index of hot stack frames.
643  // This helps when threads of the same stack traces evict each other's
644  // cache lines. The threads can be either from the same JVM instance, or
645  // from different JVM instances. The benefit is especially true for
646  // processors with hyperthreading technology.
647  static int counter = 0;
648  int pid = os::current_process_id();
649  alloca(((pid ^ counter++) & 7) * 128);
650
651  ThreadLocalStorage::set_thread(thread);
652
653  OSThread* osthread = thread->osthread();
654  Monitor* sync = osthread->startThread_lock();
655
656  osthread->set_thread_id(os::current_thread_id());
657
658  if (UseNUMA) {
659    int lgrp_id = os::numa_get_group_id();
660    if (lgrp_id != -1) {
661      thread->set_lgrp_id(lgrp_id);
662    }
663  }
664  // initialize signal mask for this thread
665  os::Linux::hotspot_sigmask(thread);
666
667  // initialize floating point control register
668  os::Linux::init_thread_fpu_state();
669
670  // handshaking with parent thread
671  {
672    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
673
674    // notify parent thread
675    osthread->set_state(INITIALIZED);
676    sync->notify_all();
677
678    // wait until os::start_thread()
679    while (osthread->get_state() == INITIALIZED) {
680      sync->wait(Mutex::_no_safepoint_check_flag);
681    }
682  }
683
684  // call one more level start routine
685  thread->run();
686
687  return 0;
688}
689
690bool os::create_thread(Thread* thread, ThreadType thr_type,
691                       size_t stack_size) {
692  assert(thread->osthread() == NULL, "caller responsible");
693
694  // Allocate the OSThread object
695  OSThread* osthread = new OSThread(NULL, NULL);
696  if (osthread == NULL) {
697    return false;
698  }
699
700  // set the correct thread state
701  osthread->set_thread_type(thr_type);
702
703  // Initial state is ALLOCATED but not INITIALIZED
704  osthread->set_state(ALLOCATED);
705
706  thread->set_osthread(osthread);
707
708  // init thread attributes
709  pthread_attr_t attr;
710  pthread_attr_init(&attr);
711  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
712
713  // stack size
714  // calculate stack size if it's not specified by caller
715  if (stack_size == 0) {
716    stack_size = os::Linux::default_stack_size(thr_type);
717
718    switch (thr_type) {
719    case os::java_thread:
720      // Java threads use ThreadStackSize which default value can be
721      // changed with the flag -Xss
722      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
723      stack_size = JavaThread::stack_size_at_create();
724      break;
725    case os::compiler_thread:
726      if (CompilerThreadStackSize > 0) {
727        stack_size = (size_t)(CompilerThreadStackSize * K);
728        break;
729      } // else fall through:
730        // use VMThreadStackSize if CompilerThreadStackSize is not defined
731    case os::vm_thread:
732    case os::pgc_thread:
733    case os::cgc_thread:
734    case os::watcher_thread:
735      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
736      break;
737    }
738  }
739
740  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
741  pthread_attr_setstacksize(&attr, stack_size);
742
743  // glibc guard page
744  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
745
746  ThreadState state;
747
748  {
749    pthread_t tid;
750    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
751
752    pthread_attr_destroy(&attr);
753
754    if (ret != 0) {
755      if (PrintMiscellaneous && (Verbose || WizardMode)) {
756        perror("pthread_create()");
757      }
758      // Need to clean up stuff we've allocated so far
759      thread->set_osthread(NULL);
760      delete osthread;
761      return false;
762    }
763
764    // Store pthread info into the OSThread
765    osthread->set_pthread_id(tid);
766
767    // Wait until child thread is either initialized or aborted
768    {
769      Monitor* sync_with_child = osthread->startThread_lock();
770      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
771      while ((state = osthread->get_state()) == ALLOCATED) {
772        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
773      }
774    }
775  }
776
777  // Aborted due to thread limit being reached
778  if (state == ZOMBIE) {
779    thread->set_osthread(NULL);
780    delete osthread;
781    return false;
782  }
783
784  // The thread is returned suspended (in state INITIALIZED),
785  // and is started higher up in the call chain
786  assert(state == INITIALIZED, "race condition");
787  return true;
788}
789
790/////////////////////////////////////////////////////////////////////////////
791// attach existing thread
792
793// bootstrap the main thread
794bool os::create_main_thread(JavaThread* thread) {
795  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
796  return create_attached_thread(thread);
797}
798
799bool os::create_attached_thread(JavaThread* thread) {
800#ifdef ASSERT
801  thread->verify_not_published();
802#endif
803
804  // Allocate the OSThread object
805  OSThread* osthread = new OSThread(NULL, NULL);
806
807  if (osthread == NULL) {
808    return false;
809  }
810
811  // Store pthread info into the OSThread
812  osthread->set_thread_id(os::Linux::gettid());
813  osthread->set_pthread_id(::pthread_self());
814
815  // initialize floating point control register
816  os::Linux::init_thread_fpu_state();
817
818  // Initial thread state is RUNNABLE
819  osthread->set_state(RUNNABLE);
820
821  thread->set_osthread(osthread);
822
823  if (UseNUMA) {
824    int lgrp_id = os::numa_get_group_id();
825    if (lgrp_id != -1) {
826      thread->set_lgrp_id(lgrp_id);
827    }
828  }
829
830  if (os::Linux::is_initial_thread()) {
831    // If current thread is initial thread, its stack is mapped on demand,
832    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
833    // the entire stack region to avoid SEGV in stack banging.
834    // It is also useful to get around the heap-stack-gap problem on SuSE
835    // kernel (see 4821821 for details). We first expand stack to the top
836    // of yellow zone, then enable stack yellow zone (order is significant,
837    // enabling yellow zone first will crash JVM on SuSE Linux), so there
838    // is no gap between the last two virtual memory regions.
839
840    JavaThread *jt = (JavaThread *)thread;
841    address addr = jt->stack_yellow_zone_base();
842    assert(addr != NULL, "initialization problem?");
843    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
844
845    osthread->set_expanding_stack();
846    os::Linux::manually_expand_stack(jt, addr);
847    osthread->clear_expanding_stack();
848  }
849
850  // initialize signal mask for this thread
851  // and save the caller's signal mask
852  os::Linux::hotspot_sigmask(thread);
853
854  return true;
855}
856
857void os::pd_start_thread(Thread* thread) {
858  OSThread * osthread = thread->osthread();
859  assert(osthread->get_state() != INITIALIZED, "just checking");
860  Monitor* sync_with_child = osthread->startThread_lock();
861  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
862  sync_with_child->notify();
863}
864
865// Free Linux resources related to the OSThread
866void os::free_thread(OSThread* osthread) {
867  assert(osthread != NULL, "osthread not set");
868
869  if (Thread::current()->osthread() == osthread) {
870    // Restore caller's signal mask
871    sigset_t sigmask = osthread->caller_sigmask();
872    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
873  }
874
875  delete osthread;
876}
877
878//////////////////////////////////////////////////////////////////////////////
879// thread local storage
880
881// Restore the thread pointer if the destructor is called. This is in case
882// someone from JNI code sets up a destructor with pthread_key_create to run
883// detachCurrentThread on thread death. Unless we restore the thread pointer we
884// will hang or crash. When detachCurrentThread is called the key will be set
885// to null and we will not be called again. If detachCurrentThread is never
886// called we could loop forever depending on the pthread implementation.
887static void restore_thread_pointer(void* p) {
888  Thread* thread = (Thread*) p;
889  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
890}
891
892int os::allocate_thread_local_storage() {
893  pthread_key_t key;
894  int rslt = pthread_key_create(&key, restore_thread_pointer);
895  assert(rslt == 0, "cannot allocate thread local storage");
896  return (int)key;
897}
898
899// Note: This is currently not used by VM, as we don't destroy TLS key
900// on VM exit.
901void os::free_thread_local_storage(int index) {
902  int rslt = pthread_key_delete((pthread_key_t)index);
903  assert(rslt == 0, "invalid index");
904}
905
906void os::thread_local_storage_at_put(int index, void* value) {
907  int rslt = pthread_setspecific((pthread_key_t)index, value);
908  assert(rslt == 0, "pthread_setspecific failed");
909}
910
911extern "C" Thread* get_thread() {
912  return ThreadLocalStorage::thread();
913}
914
915//////////////////////////////////////////////////////////////////////////////
916// initial thread
917
918// Check if current thread is the initial thread, similar to Solaris thr_main.
919bool os::Linux::is_initial_thread(void) {
920  char dummy;
921  // If called before init complete, thread stack bottom will be null.
922  // Can be called if fatal error occurs before initialization.
923  if (initial_thread_stack_bottom() == NULL) return false;
924  assert(initial_thread_stack_bottom() != NULL &&
925         initial_thread_stack_size()   != 0,
926         "os::init did not locate initial thread's stack region");
927  if ((address)&dummy >= initial_thread_stack_bottom() &&
928      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
929    return true;
930  } else {
931    return false;
932  }
933}
934
935// Find the virtual memory area that contains addr
936static bool find_vma(address addr, address* vma_low, address* vma_high) {
937  FILE *fp = fopen("/proc/self/maps", "r");
938  if (fp) {
939    address low, high;
940    while (!feof(fp)) {
941      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
942        if (low <= addr && addr < high) {
943          if (vma_low)  *vma_low  = low;
944          if (vma_high) *vma_high = high;
945          fclose(fp);
946          return true;
947        }
948      }
949      for (;;) {
950        int ch = fgetc(fp);
951        if (ch == EOF || ch == (int)'\n') break;
952      }
953    }
954    fclose(fp);
955  }
956  return false;
957}
958
959// Locate initial thread stack. This special handling of initial thread stack
960// is needed because pthread_getattr_np() on most (all?) Linux distros returns
961// bogus value for initial thread.
962void os::Linux::capture_initial_stack(size_t max_size) {
963  // stack size is the easy part, get it from RLIMIT_STACK
964  size_t stack_size;
965  struct rlimit rlim;
966  getrlimit(RLIMIT_STACK, &rlim);
967  stack_size = rlim.rlim_cur;
968
969  // 6308388: a bug in ld.so will relocate its own .data section to the
970  //   lower end of primordial stack; reduce ulimit -s value a little bit
971  //   so we won't install guard page on ld.so's data section.
972  stack_size -= 2 * page_size();
973
974  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
975  //   7.1, in both cases we will get 2G in return value.
976  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
977  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
978  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
979  //   in case other parts in glibc still assumes 2M max stack size.
980  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
981  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
982  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
983    stack_size = 2 * K * K IA64_ONLY(*2);
984  }
985  // Try to figure out where the stack base (top) is. This is harder.
986  //
987  // When an application is started, glibc saves the initial stack pointer in
988  // a global variable "__libc_stack_end", which is then used by system
989  // libraries. __libc_stack_end should be pretty close to stack top. The
990  // variable is available since the very early days. However, because it is
991  // a private interface, it could disappear in the future.
992  //
993  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
994  // to __libc_stack_end, it is very close to stack top, but isn't the real
995  // stack top. Note that /proc may not exist if VM is running as a chroot
996  // program, so reading /proc/<pid>/stat could fail. Also the contents of
997  // /proc/<pid>/stat could change in the future (though unlikely).
998  //
999  // We try __libc_stack_end first. If that doesn't work, look for
1000  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1001  // as a hint, which should work well in most cases.
1002
1003  uintptr_t stack_start;
1004
1005  // try __libc_stack_end first
1006  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1007  if (p && *p) {
1008    stack_start = *p;
1009  } else {
1010    // see if we can get the start_stack field from /proc/self/stat
1011    FILE *fp;
1012    int pid;
1013    char state;
1014    int ppid;
1015    int pgrp;
1016    int session;
1017    int nr;
1018    int tpgrp;
1019    unsigned long flags;
1020    unsigned long minflt;
1021    unsigned long cminflt;
1022    unsigned long majflt;
1023    unsigned long cmajflt;
1024    unsigned long utime;
1025    unsigned long stime;
1026    long cutime;
1027    long cstime;
1028    long prio;
1029    long nice;
1030    long junk;
1031    long it_real;
1032    uintptr_t start;
1033    uintptr_t vsize;
1034    intptr_t rss;
1035    uintptr_t rsslim;
1036    uintptr_t scodes;
1037    uintptr_t ecode;
1038    int i;
1039
1040    // Figure what the primordial thread stack base is. Code is inspired
1041    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1042    // followed by command name surrounded by parentheses, state, etc.
1043    char stat[2048];
1044    int statlen;
1045
1046    fp = fopen("/proc/self/stat", "r");
1047    if (fp) {
1048      statlen = fread(stat, 1, 2047, fp);
1049      stat[statlen] = '\0';
1050      fclose(fp);
1051
1052      // Skip pid and the command string. Note that we could be dealing with
1053      // weird command names, e.g. user could decide to rename java launcher
1054      // to "java 1.4.2 :)", then the stat file would look like
1055      //                1234 (java 1.4.2 :)) R ... ...
1056      // We don't really need to know the command string, just find the last
1057      // occurrence of ")" and then start parsing from there. See bug 4726580.
1058      char * s = strrchr(stat, ')');
1059
1060      i = 0;
1061      if (s) {
1062        // Skip blank chars
1063        do { s++; } while (s && isspace(*s));
1064
1065#define _UFM UINTX_FORMAT
1066#define _DFM INTX_FORMAT
1067
1068        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1069        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1070        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1071                   &state,          // 3  %c
1072                   &ppid,           // 4  %d
1073                   &pgrp,           // 5  %d
1074                   &session,        // 6  %d
1075                   &nr,             // 7  %d
1076                   &tpgrp,          // 8  %d
1077                   &flags,          // 9  %lu
1078                   &minflt,         // 10 %lu
1079                   &cminflt,        // 11 %lu
1080                   &majflt,         // 12 %lu
1081                   &cmajflt,        // 13 %lu
1082                   &utime,          // 14 %lu
1083                   &stime,          // 15 %lu
1084                   &cutime,         // 16 %ld
1085                   &cstime,         // 17 %ld
1086                   &prio,           // 18 %ld
1087                   &nice,           // 19 %ld
1088                   &junk,           // 20 %ld
1089                   &it_real,        // 21 %ld
1090                   &start,          // 22 UINTX_FORMAT
1091                   &vsize,          // 23 UINTX_FORMAT
1092                   &rss,            // 24 INTX_FORMAT
1093                   &rsslim,         // 25 UINTX_FORMAT
1094                   &scodes,         // 26 UINTX_FORMAT
1095                   &ecode,          // 27 UINTX_FORMAT
1096                   &stack_start);   // 28 UINTX_FORMAT
1097      }
1098
1099#undef _UFM
1100#undef _DFM
1101
1102      if (i != 28 - 2) {
1103        assert(false, "Bad conversion from /proc/self/stat");
1104        // product mode - assume we are the initial thread, good luck in the
1105        // embedded case.
1106        warning("Can't detect initial thread stack location - bad conversion");
1107        stack_start = (uintptr_t) &rlim;
1108      }
1109    } else {
1110      // For some reason we can't open /proc/self/stat (for example, running on
1111      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1112      // most cases, so don't abort:
1113      warning("Can't detect initial thread stack location - no /proc/self/stat");
1114      stack_start = (uintptr_t) &rlim;
1115    }
1116  }
1117
1118  // Now we have a pointer (stack_start) very close to the stack top, the
1119  // next thing to do is to figure out the exact location of stack top. We
1120  // can find out the virtual memory area that contains stack_start by
1121  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1122  // and its upper limit is the real stack top. (again, this would fail if
1123  // running inside chroot, because /proc may not exist.)
1124
1125  uintptr_t stack_top;
1126  address low, high;
1127  if (find_vma((address)stack_start, &low, &high)) {
1128    // success, "high" is the true stack top. (ignore "low", because initial
1129    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1130    stack_top = (uintptr_t)high;
1131  } else {
1132    // failed, likely because /proc/self/maps does not exist
1133    warning("Can't detect initial thread stack location - find_vma failed");
1134    // best effort: stack_start is normally within a few pages below the real
1135    // stack top, use it as stack top, and reduce stack size so we won't put
1136    // guard page outside stack.
1137    stack_top = stack_start;
1138    stack_size -= 16 * page_size();
1139  }
1140
1141  // stack_top could be partially down the page so align it
1142  stack_top = align_size_up(stack_top, page_size());
1143
1144  if (max_size && stack_size > max_size) {
1145    _initial_thread_stack_size = max_size;
1146  } else {
1147    _initial_thread_stack_size = stack_size;
1148  }
1149
1150  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1151  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1152}
1153
1154////////////////////////////////////////////////////////////////////////////////
1155// time support
1156
1157// Time since start-up in seconds to a fine granularity.
1158// Used by VMSelfDestructTimer and the MemProfiler.
1159double os::elapsedTime() {
1160
1161  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1162}
1163
1164jlong os::elapsed_counter() {
1165  return javaTimeNanos() - initial_time_count;
1166}
1167
1168jlong os::elapsed_frequency() {
1169  return NANOSECS_PER_SEC; // nanosecond resolution
1170}
1171
1172bool os::supports_vtime() { return true; }
1173bool os::enable_vtime()   { return false; }
1174bool os::vtime_enabled()  { return false; }
1175
1176double os::elapsedVTime() {
1177  struct rusage usage;
1178  int retval = getrusage(RUSAGE_THREAD, &usage);
1179  if (retval == 0) {
1180    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1181  } else {
1182    // better than nothing, but not much
1183    return elapsedTime();
1184  }
1185}
1186
1187jlong os::javaTimeMillis() {
1188  timeval time;
1189  int status = gettimeofday(&time, NULL);
1190  assert(status != -1, "linux error");
1191  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1192}
1193
1194void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1195  timeval time;
1196  int status = gettimeofday(&time, NULL);
1197  assert(status != -1, "linux error");
1198  seconds = jlong(time.tv_sec);
1199  nanos = jlong(time.tv_usec) * 1000;
1200}
1201
1202
1203#ifndef CLOCK_MONOTONIC
1204  #define CLOCK_MONOTONIC (1)
1205#endif
1206
1207void os::Linux::clock_init() {
1208  // we do dlopen's in this particular order due to bug in linux
1209  // dynamical loader (see 6348968) leading to crash on exit
1210  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1211  if (handle == NULL) {
1212    handle = dlopen("librt.so", RTLD_LAZY);
1213  }
1214
1215  if (handle) {
1216    int (*clock_getres_func)(clockid_t, struct timespec*) =
1217           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1218    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1219           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1220    if (clock_getres_func && clock_gettime_func) {
1221      // See if monotonic clock is supported by the kernel. Note that some
1222      // early implementations simply return kernel jiffies (updated every
1223      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1224      // for nano time (though the monotonic property is still nice to have).
1225      // It's fixed in newer kernels, however clock_getres() still returns
1226      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1227      // resolution for now. Hopefully as people move to new kernels, this
1228      // won't be a problem.
1229      struct timespec res;
1230      struct timespec tp;
1231      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1232          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1233        // yes, monotonic clock is supported
1234        _clock_gettime = clock_gettime_func;
1235        return;
1236      } else {
1237        // close librt if there is no monotonic clock
1238        dlclose(handle);
1239      }
1240    }
1241  }
1242  warning("No monotonic clock was available - timed services may " \
1243          "be adversely affected if the time-of-day clock changes");
1244}
1245
1246#ifndef SYS_clock_getres
1247  #if defined(IA32) || defined(AMD64)
1248    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1249    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1250  #else
1251    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1252    #define sys_clock_getres(x,y)  -1
1253  #endif
1254#else
1255  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1256#endif
1257
1258void os::Linux::fast_thread_clock_init() {
1259  if (!UseLinuxPosixThreadCPUClocks) {
1260    return;
1261  }
1262  clockid_t clockid;
1263  struct timespec tp;
1264  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1265      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1266
1267  // Switch to using fast clocks for thread cpu time if
1268  // the sys_clock_getres() returns 0 error code.
1269  // Note, that some kernels may support the current thread
1270  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1271  // returned by the pthread_getcpuclockid().
1272  // If the fast Posix clocks are supported then the sys_clock_getres()
1273  // must return at least tp.tv_sec == 0 which means a resolution
1274  // better than 1 sec. This is extra check for reliability.
1275
1276  if (pthread_getcpuclockid_func &&
1277      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1278      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1279    _supports_fast_thread_cpu_time = true;
1280    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1281  }
1282}
1283
1284jlong os::javaTimeNanos() {
1285  if (os::supports_monotonic_clock()) {
1286    struct timespec tp;
1287    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1288    assert(status == 0, "gettime error");
1289    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1290    return result;
1291  } else {
1292    timeval time;
1293    int status = gettimeofday(&time, NULL);
1294    assert(status != -1, "linux error");
1295    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1296    return 1000 * usecs;
1297  }
1298}
1299
1300void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1301  if (os::supports_monotonic_clock()) {
1302    info_ptr->max_value = ALL_64_BITS;
1303
1304    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1305    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1306    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1307  } else {
1308    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1309    info_ptr->max_value = ALL_64_BITS;
1310
1311    // gettimeofday is a real time clock so it skips
1312    info_ptr->may_skip_backward = true;
1313    info_ptr->may_skip_forward = true;
1314  }
1315
1316  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1317}
1318
1319// Return the real, user, and system times in seconds from an
1320// arbitrary fixed point in the past.
1321bool os::getTimesSecs(double* process_real_time,
1322                      double* process_user_time,
1323                      double* process_system_time) {
1324  struct tms ticks;
1325  clock_t real_ticks = times(&ticks);
1326
1327  if (real_ticks == (clock_t) (-1)) {
1328    return false;
1329  } else {
1330    double ticks_per_second = (double) clock_tics_per_sec;
1331    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1332    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1333    *process_real_time = ((double) real_ticks) / ticks_per_second;
1334
1335    return true;
1336  }
1337}
1338
1339
1340char * os::local_time_string(char *buf, size_t buflen) {
1341  struct tm t;
1342  time_t long_time;
1343  time(&long_time);
1344  localtime_r(&long_time, &t);
1345  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1346               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1347               t.tm_hour, t.tm_min, t.tm_sec);
1348  return buf;
1349}
1350
1351struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1352  return localtime_r(clock, res);
1353}
1354
1355////////////////////////////////////////////////////////////////////////////////
1356// runtime exit support
1357
1358// Note: os::shutdown() might be called very early during initialization, or
1359// called from signal handler. Before adding something to os::shutdown(), make
1360// sure it is async-safe and can handle partially initialized VM.
1361void os::shutdown() {
1362
1363  // allow PerfMemory to attempt cleanup of any persistent resources
1364  perfMemory_exit();
1365
1366  // needs to remove object in file system
1367  AttachListener::abort();
1368
1369  // flush buffered output, finish log files
1370  ostream_abort();
1371
1372  // Check for abort hook
1373  abort_hook_t abort_hook = Arguments::abort_hook();
1374  if (abort_hook != NULL) {
1375    abort_hook();
1376  }
1377
1378}
1379
1380// Note: os::abort() might be called very early during initialization, or
1381// called from signal handler. Before adding something to os::abort(), make
1382// sure it is async-safe and can handle partially initialized VM.
1383void os::abort(bool dump_core, void* siginfo, void* context) {
1384  os::shutdown();
1385  if (dump_core) {
1386#ifndef PRODUCT
1387    fdStream out(defaultStream::output_fd());
1388    out.print_raw("Current thread is ");
1389    char buf[16];
1390    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1391    out.print_raw_cr(buf);
1392    out.print_raw_cr("Dumping core ...");
1393#endif
1394    ::abort(); // dump core
1395  }
1396
1397  ::exit(1);
1398}
1399
1400// Die immediately, no exit hook, no abort hook, no cleanup.
1401void os::die() {
1402  ::abort();
1403}
1404
1405
1406// This method is a copy of JDK's sysGetLastErrorString
1407// from src/solaris/hpi/src/system_md.c
1408
1409size_t os::lasterror(char *buf, size_t len) {
1410  if (errno == 0)  return 0;
1411
1412  const char *s = ::strerror(errno);
1413  size_t n = ::strlen(s);
1414  if (n >= len) {
1415    n = len - 1;
1416  }
1417  ::strncpy(buf, s, n);
1418  buf[n] = '\0';
1419  return n;
1420}
1421
1422// thread_id is kernel thread id (similar to Solaris LWP id)
1423intx os::current_thread_id() { return os::Linux::gettid(); }
1424int os::current_process_id() {
1425  return ::getpid();
1426}
1427
1428// DLL functions
1429
1430const char* os::dll_file_extension() { return ".so"; }
1431
1432// This must be hard coded because it's the system's temporary
1433// directory not the java application's temp directory, ala java.io.tmpdir.
1434const char* os::get_temp_directory() { return "/tmp"; }
1435
1436static bool file_exists(const char* filename) {
1437  struct stat statbuf;
1438  if (filename == NULL || strlen(filename) == 0) {
1439    return false;
1440  }
1441  return os::stat(filename, &statbuf) == 0;
1442}
1443
1444bool os::dll_build_name(char* buffer, size_t buflen,
1445                        const char* pname, const char* fname) {
1446  bool retval = false;
1447  // Copied from libhpi
1448  const size_t pnamelen = pname ? strlen(pname) : 0;
1449
1450  // Return error on buffer overflow.
1451  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1452    return retval;
1453  }
1454
1455  if (pnamelen == 0) {
1456    snprintf(buffer, buflen, "lib%s.so", fname);
1457    retval = true;
1458  } else if (strchr(pname, *os::path_separator()) != NULL) {
1459    int n;
1460    char** pelements = split_path(pname, &n);
1461    if (pelements == NULL) {
1462      return false;
1463    }
1464    for (int i = 0; i < n; i++) {
1465      // Really shouldn't be NULL, but check can't hurt
1466      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1467        continue; // skip the empty path values
1468      }
1469      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1470      if (file_exists(buffer)) {
1471        retval = true;
1472        break;
1473      }
1474    }
1475    // release the storage
1476    for (int i = 0; i < n; i++) {
1477      if (pelements[i] != NULL) {
1478        FREE_C_HEAP_ARRAY(char, pelements[i]);
1479      }
1480    }
1481    if (pelements != NULL) {
1482      FREE_C_HEAP_ARRAY(char*, pelements);
1483    }
1484  } else {
1485    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1486    retval = true;
1487  }
1488  return retval;
1489}
1490
1491// check if addr is inside libjvm.so
1492bool os::address_is_in_vm(address addr) {
1493  static address libjvm_base_addr;
1494  Dl_info dlinfo;
1495
1496  if (libjvm_base_addr == NULL) {
1497    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1498      libjvm_base_addr = (address)dlinfo.dli_fbase;
1499    }
1500    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1501  }
1502
1503  if (dladdr((void *)addr, &dlinfo) != 0) {
1504    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1505  }
1506
1507  return false;
1508}
1509
1510bool os::dll_address_to_function_name(address addr, char *buf,
1511                                      int buflen, int *offset,
1512                                      bool demangle) {
1513  // buf is not optional, but offset is optional
1514  assert(buf != NULL, "sanity check");
1515
1516  Dl_info dlinfo;
1517
1518  if (dladdr((void*)addr, &dlinfo) != 0) {
1519    // see if we have a matching symbol
1520    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1521      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1522        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1523      }
1524      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1525      return true;
1526    }
1527    // no matching symbol so try for just file info
1528    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1529      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1530                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1531        return true;
1532      }
1533    }
1534  }
1535
1536  buf[0] = '\0';
1537  if (offset != NULL) *offset = -1;
1538  return false;
1539}
1540
1541struct _address_to_library_name {
1542  address addr;          // input : memory address
1543  size_t  buflen;        //         size of fname
1544  char*   fname;         // output: library name
1545  address base;          //         library base addr
1546};
1547
1548static int address_to_library_name_callback(struct dl_phdr_info *info,
1549                                            size_t size, void *data) {
1550  int i;
1551  bool found = false;
1552  address libbase = NULL;
1553  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1554
1555  // iterate through all loadable segments
1556  for (i = 0; i < info->dlpi_phnum; i++) {
1557    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1558    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1559      // base address of a library is the lowest address of its loaded
1560      // segments.
1561      if (libbase == NULL || libbase > segbase) {
1562        libbase = segbase;
1563      }
1564      // see if 'addr' is within current segment
1565      if (segbase <= d->addr &&
1566          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1567        found = true;
1568      }
1569    }
1570  }
1571
1572  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1573  // so dll_address_to_library_name() can fall through to use dladdr() which
1574  // can figure out executable name from argv[0].
1575  if (found && info->dlpi_name && info->dlpi_name[0]) {
1576    d->base = libbase;
1577    if (d->fname) {
1578      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1579    }
1580    return 1;
1581  }
1582  return 0;
1583}
1584
1585bool os::dll_address_to_library_name(address addr, char* buf,
1586                                     int buflen, int* offset) {
1587  // buf is not optional, but offset is optional
1588  assert(buf != NULL, "sanity check");
1589
1590  Dl_info dlinfo;
1591  struct _address_to_library_name data;
1592
1593  // There is a bug in old glibc dladdr() implementation that it could resolve
1594  // to wrong library name if the .so file has a base address != NULL. Here
1595  // we iterate through the program headers of all loaded libraries to find
1596  // out which library 'addr' really belongs to. This workaround can be
1597  // removed once the minimum requirement for glibc is moved to 2.3.x.
1598  data.addr = addr;
1599  data.fname = buf;
1600  data.buflen = buflen;
1601  data.base = NULL;
1602  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1603
1604  if (rslt) {
1605    // buf already contains library name
1606    if (offset) *offset = addr - data.base;
1607    return true;
1608  }
1609  if (dladdr((void*)addr, &dlinfo) != 0) {
1610    if (dlinfo.dli_fname != NULL) {
1611      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1612    }
1613    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1614      *offset = addr - (address)dlinfo.dli_fbase;
1615    }
1616    return true;
1617  }
1618
1619  buf[0] = '\0';
1620  if (offset) *offset = -1;
1621  return false;
1622}
1623
1624// Loads .dll/.so and
1625// in case of error it checks if .dll/.so was built for the
1626// same architecture as Hotspot is running on
1627
1628
1629// Remember the stack's state. The Linux dynamic linker will change
1630// the stack to 'executable' at most once, so we must safepoint only once.
1631bool os::Linux::_stack_is_executable = false;
1632
1633// VM operation that loads a library.  This is necessary if stack protection
1634// of the Java stacks can be lost during loading the library.  If we
1635// do not stop the Java threads, they can stack overflow before the stacks
1636// are protected again.
1637class VM_LinuxDllLoad: public VM_Operation {
1638 private:
1639  const char *_filename;
1640  char *_ebuf;
1641  int _ebuflen;
1642  void *_lib;
1643 public:
1644  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1645    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1646  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1647  void doit() {
1648    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1649    os::Linux::_stack_is_executable = true;
1650  }
1651  void* loaded_library() { return _lib; }
1652};
1653
1654void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1655  void * result = NULL;
1656  bool load_attempted = false;
1657
1658  // Check whether the library to load might change execution rights
1659  // of the stack. If they are changed, the protection of the stack
1660  // guard pages will be lost. We need a safepoint to fix this.
1661  //
1662  // See Linux man page execstack(8) for more info.
1663  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1664    ElfFile ef(filename);
1665    if (!ef.specifies_noexecstack()) {
1666      if (!is_init_completed()) {
1667        os::Linux::_stack_is_executable = true;
1668        // This is OK - No Java threads have been created yet, and hence no
1669        // stack guard pages to fix.
1670        //
1671        // This should happen only when you are building JDK7 using a very
1672        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1673        //
1674        // Dynamic loader will make all stacks executable after
1675        // this function returns, and will not do that again.
1676        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1677      } else {
1678        warning("You have loaded library %s which might have disabled stack guard. "
1679                "The VM will try to fix the stack guard now.\n"
1680                "It's highly recommended that you fix the library with "
1681                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1682                filename);
1683
1684        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1685        JavaThread *jt = JavaThread::current();
1686        if (jt->thread_state() != _thread_in_native) {
1687          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1688          // that requires ExecStack. Cannot enter safe point. Let's give up.
1689          warning("Unable to fix stack guard. Giving up.");
1690        } else {
1691          if (!LoadExecStackDllInVMThread) {
1692            // This is for the case where the DLL has an static
1693            // constructor function that executes JNI code. We cannot
1694            // load such DLLs in the VMThread.
1695            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1696          }
1697
1698          ThreadInVMfromNative tiv(jt);
1699          debug_only(VMNativeEntryWrapper vew;)
1700
1701          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1702          VMThread::execute(&op);
1703          if (LoadExecStackDllInVMThread) {
1704            result = op.loaded_library();
1705          }
1706          load_attempted = true;
1707        }
1708      }
1709    }
1710  }
1711
1712  if (!load_attempted) {
1713    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1714  }
1715
1716  if (result != NULL) {
1717    // Successful loading
1718    return result;
1719  }
1720
1721  Elf32_Ehdr elf_head;
1722  int diag_msg_max_length=ebuflen-strlen(ebuf);
1723  char* diag_msg_buf=ebuf+strlen(ebuf);
1724
1725  if (diag_msg_max_length==0) {
1726    // No more space in ebuf for additional diagnostics message
1727    return NULL;
1728  }
1729
1730
1731  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1732
1733  if (file_descriptor < 0) {
1734    // Can't open library, report dlerror() message
1735    return NULL;
1736  }
1737
1738  bool failed_to_read_elf_head=
1739    (sizeof(elf_head)!=
1740     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1741
1742  ::close(file_descriptor);
1743  if (failed_to_read_elf_head) {
1744    // file i/o error - report dlerror() msg
1745    return NULL;
1746  }
1747
1748  typedef struct {
1749    Elf32_Half  code;         // Actual value as defined in elf.h
1750    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1751    char        elf_class;    // 32 or 64 bit
1752    char        endianess;    // MSB or LSB
1753    char*       name;         // String representation
1754  } arch_t;
1755
1756#ifndef EM_486
1757  #define EM_486          6               /* Intel 80486 */
1758#endif
1759#ifndef EM_AARCH64
1760  #define EM_AARCH64    183               /* ARM AARCH64 */
1761#endif
1762
1763  static const arch_t arch_array[]={
1764    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1765    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1766    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1767    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1768    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1769    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1770    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1771    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1772#if defined(VM_LITTLE_ENDIAN)
1773    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1774#else
1775    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1776#endif
1777    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1778    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1779    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1780    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1781    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1782    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1783    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1784    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1785  };
1786
1787#if  (defined IA32)
1788  static  Elf32_Half running_arch_code=EM_386;
1789#elif   (defined AMD64)
1790  static  Elf32_Half running_arch_code=EM_X86_64;
1791#elif  (defined IA64)
1792  static  Elf32_Half running_arch_code=EM_IA_64;
1793#elif  (defined __sparc) && (defined _LP64)
1794  static  Elf32_Half running_arch_code=EM_SPARCV9;
1795#elif  (defined __sparc) && (!defined _LP64)
1796  static  Elf32_Half running_arch_code=EM_SPARC;
1797#elif  (defined __powerpc64__)
1798  static  Elf32_Half running_arch_code=EM_PPC64;
1799#elif  (defined __powerpc__)
1800  static  Elf32_Half running_arch_code=EM_PPC;
1801#elif  (defined ARM)
1802  static  Elf32_Half running_arch_code=EM_ARM;
1803#elif  (defined S390)
1804  static  Elf32_Half running_arch_code=EM_S390;
1805#elif  (defined ALPHA)
1806  static  Elf32_Half running_arch_code=EM_ALPHA;
1807#elif  (defined MIPSEL)
1808  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1809#elif  (defined PARISC)
1810  static  Elf32_Half running_arch_code=EM_PARISC;
1811#elif  (defined MIPS)
1812  static  Elf32_Half running_arch_code=EM_MIPS;
1813#elif  (defined M68K)
1814  static  Elf32_Half running_arch_code=EM_68K;
1815#elif  (defined AARCH64)
1816  static  Elf32_Half running_arch_code=EM_AARCH64;
1817#else
1818    #error Method os::dll_load requires that one of following is defined:\
1819         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1820#endif
1821
1822  // Identify compatability class for VM's architecture and library's architecture
1823  // Obtain string descriptions for architectures
1824
1825  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1826  int running_arch_index=-1;
1827
1828  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1829    if (running_arch_code == arch_array[i].code) {
1830      running_arch_index    = i;
1831    }
1832    if (lib_arch.code == arch_array[i].code) {
1833      lib_arch.compat_class = arch_array[i].compat_class;
1834      lib_arch.name         = arch_array[i].name;
1835    }
1836  }
1837
1838  assert(running_arch_index != -1,
1839         "Didn't find running architecture code (running_arch_code) in arch_array");
1840  if (running_arch_index == -1) {
1841    // Even though running architecture detection failed
1842    // we may still continue with reporting dlerror() message
1843    return NULL;
1844  }
1845
1846  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1847    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1848    return NULL;
1849  }
1850
1851#ifndef S390
1852  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1853    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1854    return NULL;
1855  }
1856#endif // !S390
1857
1858  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1859    if (lib_arch.name!=NULL) {
1860      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1861                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1862                 lib_arch.name, arch_array[running_arch_index].name);
1863    } else {
1864      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1865                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1866                 lib_arch.code,
1867                 arch_array[running_arch_index].name);
1868    }
1869  }
1870
1871  return NULL;
1872}
1873
1874void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1875                                int ebuflen) {
1876  void * result = ::dlopen(filename, RTLD_LAZY);
1877  if (result == NULL) {
1878    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1879    ebuf[ebuflen-1] = '\0';
1880  }
1881  return result;
1882}
1883
1884void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1885                                       int ebuflen) {
1886  void * result = NULL;
1887  if (LoadExecStackDllInVMThread) {
1888    result = dlopen_helper(filename, ebuf, ebuflen);
1889  }
1890
1891  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1892  // library that requires an executable stack, or which does not have this
1893  // stack attribute set, dlopen changes the stack attribute to executable. The
1894  // read protection of the guard pages gets lost.
1895  //
1896  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1897  // may have been queued at the same time.
1898
1899  if (!_stack_is_executable) {
1900    JavaThread *jt = Threads::first();
1901
1902    while (jt) {
1903      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1904          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1905        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1906                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1907          warning("Attempt to reguard stack yellow zone failed.");
1908        }
1909      }
1910      jt = jt->next();
1911    }
1912  }
1913
1914  return result;
1915}
1916
1917void* os::dll_lookup(void* handle, const char* name) {
1918  void* res = dlsym(handle, name);
1919  return res;
1920}
1921
1922void* os::get_default_process_handle() {
1923  return (void*)::dlopen(NULL, RTLD_LAZY);
1924}
1925
1926static bool _print_ascii_file(const char* filename, outputStream* st) {
1927  int fd = ::open(filename, O_RDONLY);
1928  if (fd == -1) {
1929    return false;
1930  }
1931
1932  char buf[32];
1933  int bytes;
1934  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1935    st->print_raw(buf, bytes);
1936  }
1937
1938  ::close(fd);
1939
1940  return true;
1941}
1942
1943void os::print_dll_info(outputStream *st) {
1944  st->print_cr("Dynamic libraries:");
1945
1946  char fname[32];
1947  pid_t pid = os::Linux::gettid();
1948
1949  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1950
1951  if (!_print_ascii_file(fname, st)) {
1952    st->print("Can not get library information for pid = %d\n", pid);
1953  }
1954}
1955
1956int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1957  FILE *procmapsFile = NULL;
1958
1959  // Open the procfs maps file for the current process
1960  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1961    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1962    char line[PATH_MAX + 100];
1963
1964    // Read line by line from 'file'
1965    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1966      u8 base, top, offset, inode;
1967      char permissions[5];
1968      char device[6];
1969      char name[PATH_MAX + 1];
1970
1971      // Parse fields from line
1972      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
1973
1974      // Filter by device id '00:00' so that we only get file system mapped files.
1975      if (strcmp(device, "00:00") != 0) {
1976
1977        // Call callback with the fields of interest
1978        if(callback(name, (address)base, (address)top, param)) {
1979          // Oops abort, callback aborted
1980          fclose(procmapsFile);
1981          return 1;
1982        }
1983      }
1984    }
1985    fclose(procmapsFile);
1986  }
1987  return 0;
1988}
1989
1990void os::print_os_info_brief(outputStream* st) {
1991  os::Linux::print_distro_info(st);
1992
1993  os::Posix::print_uname_info(st);
1994
1995  os::Linux::print_libversion_info(st);
1996
1997}
1998
1999void os::print_os_info(outputStream* st) {
2000  st->print("OS:");
2001
2002  os::Linux::print_distro_info(st);
2003
2004  os::Posix::print_uname_info(st);
2005
2006  // Print warning if unsafe chroot environment detected
2007  if (unsafe_chroot_detected) {
2008    st->print("WARNING!! ");
2009    st->print_cr("%s", unstable_chroot_error);
2010  }
2011
2012  os::Linux::print_libversion_info(st);
2013
2014  os::Posix::print_rlimit_info(st);
2015
2016  os::Posix::print_load_average(st);
2017
2018  os::Linux::print_full_memory_info(st);
2019}
2020
2021// Try to identify popular distros.
2022// Most Linux distributions have a /etc/XXX-release file, which contains
2023// the OS version string. Newer Linux distributions have a /etc/lsb-release
2024// file that also contains the OS version string. Some have more than one
2025// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2026// /etc/redhat-release.), so the order is important.
2027// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2028// their own specific XXX-release file as well as a redhat-release file.
2029// Because of this the XXX-release file needs to be searched for before the
2030// redhat-release file.
2031// Since Red Hat has a lsb-release file that is not very descriptive the
2032// search for redhat-release needs to be before lsb-release.
2033// Since the lsb-release file is the new standard it needs to be searched
2034// before the older style release files.
2035// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2036// next to last resort.  The os-release file is a new standard that contains
2037// distribution information and the system-release file seems to be an old
2038// standard that has been replaced by the lsb-release and os-release files.
2039// Searching for the debian_version file is the last resort.  It contains
2040// an informative string like "6.0.6" or "wheezy/sid". Because of this
2041// "Debian " is printed before the contents of the debian_version file.
2042
2043const char* distro_files[] = {
2044  "/etc/oracle-release",
2045  "/etc/mandriva-release",
2046  "/etc/mandrake-release",
2047  "/etc/sun-release",
2048  "/etc/redhat-release",
2049  "/etc/lsb-release",
2050  "/etc/SuSE-release",
2051  "/etc/turbolinux-release",
2052  "/etc/gentoo-release",
2053  "/etc/ltib-release",
2054  "/etc/angstrom-version",
2055  "/etc/system-release",
2056  "/etc/os-release",
2057  NULL };
2058
2059void os::Linux::print_distro_info(outputStream* st) {
2060  for (int i = 0;; i++) {
2061    const char* file = distro_files[i];
2062    if (file == NULL) {
2063      break;  // done
2064    }
2065    // If file prints, we found it.
2066    if (_print_ascii_file(file, st)) {
2067      return;
2068    }
2069  }
2070
2071  if (file_exists("/etc/debian_version")) {
2072    st->print("Debian ");
2073    _print_ascii_file("/etc/debian_version", st);
2074  } else {
2075    st->print("Linux");
2076  }
2077  st->cr();
2078}
2079
2080static void parse_os_info(char* distro, size_t length, const char* file) {
2081  FILE* fp = fopen(file, "r");
2082  if (fp != NULL) {
2083    char buf[256];
2084    // get last line of the file.
2085    while (fgets(buf, sizeof(buf), fp)) { }
2086    // Edit out extra stuff in expected ubuntu format
2087    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2088      char* ptr = strstr(buf, "\"");  // the name is in quotes
2089      if (ptr != NULL) {
2090        ptr++; // go beyond first quote
2091        char* nl = strchr(ptr, '\"');
2092        if (nl != NULL) *nl = '\0';
2093        strncpy(distro, ptr, length);
2094      } else {
2095        ptr = strstr(buf, "=");
2096        ptr++; // go beyond equals then
2097        char* nl = strchr(ptr, '\n');
2098        if (nl != NULL) *nl = '\0';
2099        strncpy(distro, ptr, length);
2100      }
2101    } else {
2102      // if not in expected Ubuntu format, print out whole line minus \n
2103      char* nl = strchr(buf, '\n');
2104      if (nl != NULL) *nl = '\0';
2105      strncpy(distro, buf, length);
2106    }
2107    // close distro file
2108    fclose(fp);
2109  }
2110}
2111
2112void os::get_summary_os_info(char* buf, size_t buflen) {
2113  for (int i = 0;; i++) {
2114    const char* file = distro_files[i];
2115    if (file == NULL) {
2116      break; // ran out of distro_files
2117    }
2118    if (file_exists(file)) {
2119      parse_os_info(buf, buflen, file);
2120      return;
2121    }
2122  }
2123  // special case for debian
2124  if (file_exists("/etc/debian_version")) {
2125    strncpy(buf, "Debian ", buflen);
2126    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2127  } else {
2128    strncpy(buf, "Linux", buflen);
2129  }
2130}
2131
2132void os::Linux::print_libversion_info(outputStream* st) {
2133  // libc, pthread
2134  st->print("libc:");
2135  st->print("%s ", os::Linux::glibc_version());
2136  st->print("%s ", os::Linux::libpthread_version());
2137  st->cr();
2138}
2139
2140void os::Linux::print_full_memory_info(outputStream* st) {
2141  st->print("\n/proc/meminfo:\n");
2142  _print_ascii_file("/proc/meminfo", st);
2143  st->cr();
2144}
2145
2146void os::print_memory_info(outputStream* st) {
2147
2148  st->print("Memory:");
2149  st->print(" %dk page", os::vm_page_size()>>10);
2150
2151  // values in struct sysinfo are "unsigned long"
2152  struct sysinfo si;
2153  sysinfo(&si);
2154
2155  st->print(", physical " UINT64_FORMAT "k",
2156            os::physical_memory() >> 10);
2157  st->print("(" UINT64_FORMAT "k free)",
2158            os::available_memory() >> 10);
2159  st->print(", swap " UINT64_FORMAT "k",
2160            ((jlong)si.totalswap * si.mem_unit) >> 10);
2161  st->print("(" UINT64_FORMAT "k free)",
2162            ((jlong)si.freeswap * si.mem_unit) >> 10);
2163  st->cr();
2164}
2165
2166// Print the first "model name" line and the first "flags" line
2167// that we find and nothing more. We assume "model name" comes
2168// before "flags" so if we find a second "model name", then the
2169// "flags" field is considered missing.
2170static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2171#if defined(IA32) || defined(AMD64)
2172  // Other platforms have less repetitive cpuinfo files
2173  FILE *fp = fopen("/proc/cpuinfo", "r");
2174  if (fp) {
2175    while (!feof(fp)) {
2176      if (fgets(buf, buflen, fp)) {
2177        // Assume model name comes before flags
2178        bool model_name_printed = false;
2179        if (strstr(buf, "model name") != NULL) {
2180          if (!model_name_printed) {
2181            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2182            st->print_raw(buf);
2183            model_name_printed = true;
2184          } else {
2185            // model name printed but not flags?  Odd, just return
2186            fclose(fp);
2187            return true;
2188          }
2189        }
2190        // print the flags line too
2191        if (strstr(buf, "flags") != NULL) {
2192          st->print_raw(buf);
2193          fclose(fp);
2194          return true;
2195        }
2196      }
2197    }
2198    fclose(fp);
2199  }
2200#endif // x86 platforms
2201  return false;
2202}
2203
2204void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2205  // Only print the model name if the platform provides this as a summary
2206  if (!print_model_name_and_flags(st, buf, buflen)) {
2207    st->print("\n/proc/cpuinfo:\n");
2208    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2209      st->print_cr("  <Not Available>");
2210    }
2211  }
2212}
2213
2214#if defined(AMD64) || defined(IA32) || defined(X32)
2215const char* search_string = "model name";
2216#elif defined(SPARC)
2217const char* search_string = "cpu";
2218#else
2219const char* search_string = "Processor";
2220#endif
2221
2222// Parses the cpuinfo file for string representing the model name.
2223void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2224  FILE* fp = fopen("/proc/cpuinfo", "r");
2225  if (fp != NULL) {
2226    while (!feof(fp)) {
2227      char buf[256];
2228      if (fgets(buf, sizeof(buf), fp)) {
2229        char* start = strstr(buf, search_string);
2230        if (start != NULL) {
2231          char *ptr = start + strlen(search_string);
2232          char *end = buf + strlen(buf);
2233          while (ptr != end) {
2234             // skip whitespace and colon for the rest of the name.
2235             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2236               break;
2237             }
2238             ptr++;
2239          }
2240          if (ptr != end) {
2241            // reasonable string, get rid of newline and keep the rest
2242            char* nl = strchr(buf, '\n');
2243            if (nl != NULL) *nl = '\0';
2244            strncpy(cpuinfo, ptr, length);
2245            fclose(fp);
2246            return;
2247          }
2248        }
2249      }
2250    }
2251    fclose(fp);
2252  }
2253  // cpuinfo not found or parsing failed, just print generic string.  The entire
2254  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2255#if defined(AMD64)
2256  strncpy(cpuinfo, "x86_64", length);
2257#elif defined(IA32)
2258  strncpy(cpuinfo, "x86_32", length);
2259#elif defined(IA64)
2260  strncpy(cpuinfo, "IA64", length);
2261#elif defined(SPARC)
2262  strncpy(cpuinfo, "sparcv9", length);
2263#elif defined(AARCH64)
2264  strncpy(cpuinfo, "AArch64", length);
2265#elif defined(ARM)
2266  strncpy(cpuinfo, "ARM", length);
2267#elif defined(PPC)
2268  strncpy(cpuinfo, "PPC64", length);
2269#elif defined(ZERO_LIBARCH)
2270  strncpy(cpuinfo, ZERO_LIBARCH, length);
2271#else
2272  strncpy(cpuinfo, "unknown", length);
2273#endif
2274}
2275
2276void os::print_siginfo(outputStream* st, void* siginfo) {
2277  const siginfo_t* si = (const siginfo_t*)siginfo;
2278
2279  os::Posix::print_siginfo_brief(st, si);
2280#if INCLUDE_CDS
2281  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2282      UseSharedSpaces) {
2283    FileMapInfo* mapinfo = FileMapInfo::current_info();
2284    if (mapinfo->is_in_shared_space(si->si_addr)) {
2285      st->print("\n\nError accessing class data sharing archive."   \
2286                " Mapped file inaccessible during execution, "      \
2287                " possible disk/network problem.");
2288    }
2289  }
2290#endif
2291  st->cr();
2292}
2293
2294
2295static void print_signal_handler(outputStream* st, int sig,
2296                                 char* buf, size_t buflen);
2297
2298void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2299  st->print_cr("Signal Handlers:");
2300  print_signal_handler(st, SIGSEGV, buf, buflen);
2301  print_signal_handler(st, SIGBUS , buf, buflen);
2302  print_signal_handler(st, SIGFPE , buf, buflen);
2303  print_signal_handler(st, SIGPIPE, buf, buflen);
2304  print_signal_handler(st, SIGXFSZ, buf, buflen);
2305  print_signal_handler(st, SIGILL , buf, buflen);
2306  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2307  print_signal_handler(st, SR_signum, buf, buflen);
2308  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2309  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2310  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2311  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2312#if defined(PPC64)
2313  print_signal_handler(st, SIGTRAP, buf, buflen);
2314#endif
2315}
2316
2317static char saved_jvm_path[MAXPATHLEN] = {0};
2318
2319// Find the full path to the current module, libjvm.so
2320void os::jvm_path(char *buf, jint buflen) {
2321  // Error checking.
2322  if (buflen < MAXPATHLEN) {
2323    assert(false, "must use a large-enough buffer");
2324    buf[0] = '\0';
2325    return;
2326  }
2327  // Lazy resolve the path to current module.
2328  if (saved_jvm_path[0] != 0) {
2329    strcpy(buf, saved_jvm_path);
2330    return;
2331  }
2332
2333  char dli_fname[MAXPATHLEN];
2334  bool ret = dll_address_to_library_name(
2335                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2336                                         dli_fname, sizeof(dli_fname), NULL);
2337  assert(ret, "cannot locate libjvm");
2338  char *rp = NULL;
2339  if (ret && dli_fname[0] != '\0') {
2340    rp = realpath(dli_fname, buf);
2341  }
2342  if (rp == NULL) {
2343    return;
2344  }
2345
2346  if (Arguments::sun_java_launcher_is_altjvm()) {
2347    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2348    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2349    // If "/jre/lib/" appears at the right place in the string, then
2350    // assume we are installed in a JDK and we're done. Otherwise, check
2351    // for a JAVA_HOME environment variable and fix up the path so it
2352    // looks like libjvm.so is installed there (append a fake suffix
2353    // hotspot/libjvm.so).
2354    const char *p = buf + strlen(buf) - 1;
2355    for (int count = 0; p > buf && count < 5; ++count) {
2356      for (--p; p > buf && *p != '/'; --p)
2357        /* empty */ ;
2358    }
2359
2360    if (strncmp(p, "/jre/lib/", 9) != 0) {
2361      // Look for JAVA_HOME in the environment.
2362      char* java_home_var = ::getenv("JAVA_HOME");
2363      if (java_home_var != NULL && java_home_var[0] != 0) {
2364        char* jrelib_p;
2365        int len;
2366
2367        // Check the current module name "libjvm.so".
2368        p = strrchr(buf, '/');
2369        if (p == NULL) {
2370          return;
2371        }
2372        assert(strstr(p, "/libjvm") == p, "invalid library name");
2373
2374        rp = realpath(java_home_var, buf);
2375        if (rp == NULL) {
2376          return;
2377        }
2378
2379        // determine if this is a legacy image or modules image
2380        // modules image doesn't have "jre" subdirectory
2381        len = strlen(buf);
2382        assert(len < buflen, "Ran out of buffer room");
2383        jrelib_p = buf + len;
2384        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2385        if (0 != access(buf, F_OK)) {
2386          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2387        }
2388
2389        if (0 == access(buf, F_OK)) {
2390          // Use current module name "libjvm.so"
2391          len = strlen(buf);
2392          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2393        } else {
2394          // Go back to path of .so
2395          rp = realpath(dli_fname, buf);
2396          if (rp == NULL) {
2397            return;
2398          }
2399        }
2400      }
2401    }
2402  }
2403
2404  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2405  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2406}
2407
2408void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2409  // no prefix required, not even "_"
2410}
2411
2412void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2413  // no suffix required
2414}
2415
2416////////////////////////////////////////////////////////////////////////////////
2417// sun.misc.Signal support
2418
2419static volatile jint sigint_count = 0;
2420
2421static void UserHandler(int sig, void *siginfo, void *context) {
2422  // 4511530 - sem_post is serialized and handled by the manager thread. When
2423  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2424  // don't want to flood the manager thread with sem_post requests.
2425  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2426    return;
2427  }
2428
2429  // Ctrl-C is pressed during error reporting, likely because the error
2430  // handler fails to abort. Let VM die immediately.
2431  if (sig == SIGINT && is_error_reported()) {
2432    os::die();
2433  }
2434
2435  os::signal_notify(sig);
2436}
2437
2438void* os::user_handler() {
2439  return CAST_FROM_FN_PTR(void*, UserHandler);
2440}
2441
2442struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2443  struct timespec ts;
2444  // Semaphore's are always associated with CLOCK_REALTIME
2445  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2446  // see unpackTime for discussion on overflow checking
2447  if (sec >= MAX_SECS) {
2448    ts.tv_sec += MAX_SECS;
2449    ts.tv_nsec = 0;
2450  } else {
2451    ts.tv_sec += sec;
2452    ts.tv_nsec += nsec;
2453    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2454      ts.tv_nsec -= NANOSECS_PER_SEC;
2455      ++ts.tv_sec; // note: this must be <= max_secs
2456    }
2457  }
2458
2459  return ts;
2460}
2461
2462extern "C" {
2463  typedef void (*sa_handler_t)(int);
2464  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2465}
2466
2467void* os::signal(int signal_number, void* handler) {
2468  struct sigaction sigAct, oldSigAct;
2469
2470  sigfillset(&(sigAct.sa_mask));
2471  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2472  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2473
2474  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2475    // -1 means registration failed
2476    return (void *)-1;
2477  }
2478
2479  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2480}
2481
2482void os::signal_raise(int signal_number) {
2483  ::raise(signal_number);
2484}
2485
2486// The following code is moved from os.cpp for making this
2487// code platform specific, which it is by its very nature.
2488
2489// Will be modified when max signal is changed to be dynamic
2490int os::sigexitnum_pd() {
2491  return NSIG;
2492}
2493
2494// a counter for each possible signal value
2495static volatile jint pending_signals[NSIG+1] = { 0 };
2496
2497// Linux(POSIX) specific hand shaking semaphore.
2498static sem_t sig_sem;
2499static PosixSemaphore sr_semaphore;
2500
2501void os::signal_init_pd() {
2502  // Initialize signal structures
2503  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2504
2505  // Initialize signal semaphore
2506  ::sem_init(&sig_sem, 0, 0);
2507}
2508
2509void os::signal_notify(int sig) {
2510  Atomic::inc(&pending_signals[sig]);
2511  ::sem_post(&sig_sem);
2512}
2513
2514static int check_pending_signals(bool wait) {
2515  Atomic::store(0, &sigint_count);
2516  for (;;) {
2517    for (int i = 0; i < NSIG + 1; i++) {
2518      jint n = pending_signals[i];
2519      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2520        return i;
2521      }
2522    }
2523    if (!wait) {
2524      return -1;
2525    }
2526    JavaThread *thread = JavaThread::current();
2527    ThreadBlockInVM tbivm(thread);
2528
2529    bool threadIsSuspended;
2530    do {
2531      thread->set_suspend_equivalent();
2532      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2533      ::sem_wait(&sig_sem);
2534
2535      // were we externally suspended while we were waiting?
2536      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2537      if (threadIsSuspended) {
2538        // The semaphore has been incremented, but while we were waiting
2539        // another thread suspended us. We don't want to continue running
2540        // while suspended because that would surprise the thread that
2541        // suspended us.
2542        ::sem_post(&sig_sem);
2543
2544        thread->java_suspend_self();
2545      }
2546    } while (threadIsSuspended);
2547  }
2548}
2549
2550int os::signal_lookup() {
2551  return check_pending_signals(false);
2552}
2553
2554int os::signal_wait() {
2555  return check_pending_signals(true);
2556}
2557
2558////////////////////////////////////////////////////////////////////////////////
2559// Virtual Memory
2560
2561int os::vm_page_size() {
2562  // Seems redundant as all get out
2563  assert(os::Linux::page_size() != -1, "must call os::init");
2564  return os::Linux::page_size();
2565}
2566
2567// Solaris allocates memory by pages.
2568int os::vm_allocation_granularity() {
2569  assert(os::Linux::page_size() != -1, "must call os::init");
2570  return os::Linux::page_size();
2571}
2572
2573// Rationale behind this function:
2574//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2575//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2576//  samples for JITted code. Here we create private executable mapping over the code cache
2577//  and then we can use standard (well, almost, as mapping can change) way to provide
2578//  info for the reporting script by storing timestamp and location of symbol
2579void linux_wrap_code(char* base, size_t size) {
2580  static volatile jint cnt = 0;
2581
2582  if (!UseOprofile) {
2583    return;
2584  }
2585
2586  char buf[PATH_MAX+1];
2587  int num = Atomic::add(1, &cnt);
2588
2589  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2590           os::get_temp_directory(), os::current_process_id(), num);
2591  unlink(buf);
2592
2593  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2594
2595  if (fd != -1) {
2596    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2597    if (rv != (off_t)-1) {
2598      if (::write(fd, "", 1) == 1) {
2599        mmap(base, size,
2600             PROT_READ|PROT_WRITE|PROT_EXEC,
2601             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2602      }
2603    }
2604    ::close(fd);
2605    unlink(buf);
2606  }
2607}
2608
2609static bool recoverable_mmap_error(int err) {
2610  // See if the error is one we can let the caller handle. This
2611  // list of errno values comes from JBS-6843484. I can't find a
2612  // Linux man page that documents this specific set of errno
2613  // values so while this list currently matches Solaris, it may
2614  // change as we gain experience with this failure mode.
2615  switch (err) {
2616  case EBADF:
2617  case EINVAL:
2618  case ENOTSUP:
2619    // let the caller deal with these errors
2620    return true;
2621
2622  default:
2623    // Any remaining errors on this OS can cause our reserved mapping
2624    // to be lost. That can cause confusion where different data
2625    // structures think they have the same memory mapped. The worst
2626    // scenario is if both the VM and a library think they have the
2627    // same memory mapped.
2628    return false;
2629  }
2630}
2631
2632static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2633                                    int err) {
2634  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2635          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2636          strerror(err), err);
2637}
2638
2639static void warn_fail_commit_memory(char* addr, size_t size,
2640                                    size_t alignment_hint, bool exec,
2641                                    int err) {
2642  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2643          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2644          alignment_hint, exec, strerror(err), err);
2645}
2646
2647// NOTE: Linux kernel does not really reserve the pages for us.
2648//       All it does is to check if there are enough free pages
2649//       left at the time of mmap(). This could be a potential
2650//       problem.
2651int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2652  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2653  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2654                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2655  if (res != (uintptr_t) MAP_FAILED) {
2656    if (UseNUMAInterleaving) {
2657      numa_make_global(addr, size);
2658    }
2659    return 0;
2660  }
2661
2662  int err = errno;  // save errno from mmap() call above
2663
2664  if (!recoverable_mmap_error(err)) {
2665    warn_fail_commit_memory(addr, size, exec, err);
2666    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2667  }
2668
2669  return err;
2670}
2671
2672bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2673  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2674}
2675
2676void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2677                                  const char* mesg) {
2678  assert(mesg != NULL, "mesg must be specified");
2679  int err = os::Linux::commit_memory_impl(addr, size, exec);
2680  if (err != 0) {
2681    // the caller wants all commit errors to exit with the specified mesg:
2682    warn_fail_commit_memory(addr, size, exec, err);
2683    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2684  }
2685}
2686
2687// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2688#ifndef MAP_HUGETLB
2689  #define MAP_HUGETLB 0x40000
2690#endif
2691
2692// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2693#ifndef MADV_HUGEPAGE
2694  #define MADV_HUGEPAGE 14
2695#endif
2696
2697int os::Linux::commit_memory_impl(char* addr, size_t size,
2698                                  size_t alignment_hint, bool exec) {
2699  int err = os::Linux::commit_memory_impl(addr, size, exec);
2700  if (err == 0) {
2701    realign_memory(addr, size, alignment_hint);
2702  }
2703  return err;
2704}
2705
2706bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2707                          bool exec) {
2708  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2709}
2710
2711void os::pd_commit_memory_or_exit(char* addr, size_t size,
2712                                  size_t alignment_hint, bool exec,
2713                                  const char* mesg) {
2714  assert(mesg != NULL, "mesg must be specified");
2715  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2716  if (err != 0) {
2717    // the caller wants all commit errors to exit with the specified mesg:
2718    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2719    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2720  }
2721}
2722
2723void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2724  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2725    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2726    // be supported or the memory may already be backed by huge pages.
2727    ::madvise(addr, bytes, MADV_HUGEPAGE);
2728  }
2729}
2730
2731void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2732  // This method works by doing an mmap over an existing mmaping and effectively discarding
2733  // the existing pages. However it won't work for SHM-based large pages that cannot be
2734  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2735  // small pages on top of the SHM segment. This method always works for small pages, so we
2736  // allow that in any case.
2737  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2738    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2739  }
2740}
2741
2742void os::numa_make_global(char *addr, size_t bytes) {
2743  Linux::numa_interleave_memory(addr, bytes);
2744}
2745
2746// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2747// bind policy to MPOL_PREFERRED for the current thread.
2748#define USE_MPOL_PREFERRED 0
2749
2750void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2751  // To make NUMA and large pages more robust when both enabled, we need to ease
2752  // the requirements on where the memory should be allocated. MPOL_BIND is the
2753  // default policy and it will force memory to be allocated on the specified
2754  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2755  // the specified node, but will not force it. Using this policy will prevent
2756  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2757  // free large pages.
2758  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2759  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2760}
2761
2762bool os::numa_topology_changed() { return false; }
2763
2764size_t os::numa_get_groups_num() {
2765  int max_node = Linux::numa_max_node();
2766  return max_node > 0 ? max_node + 1 : 1;
2767}
2768
2769int os::numa_get_group_id() {
2770  int cpu_id = Linux::sched_getcpu();
2771  if (cpu_id != -1) {
2772    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2773    if (lgrp_id != -1) {
2774      return lgrp_id;
2775    }
2776  }
2777  return 0;
2778}
2779
2780size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2781  for (size_t i = 0; i < size; i++) {
2782    ids[i] = i;
2783  }
2784  return size;
2785}
2786
2787bool os::get_page_info(char *start, page_info* info) {
2788  return false;
2789}
2790
2791char *os::scan_pages(char *start, char* end, page_info* page_expected,
2792                     page_info* page_found) {
2793  return end;
2794}
2795
2796
2797int os::Linux::sched_getcpu_syscall(void) {
2798  unsigned int cpu;
2799  int retval = -1;
2800
2801#if defined(IA32)
2802  #ifndef SYS_getcpu
2803    #define SYS_getcpu 318
2804  #endif
2805  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2806#elif defined(AMD64)
2807// Unfortunately we have to bring all these macros here from vsyscall.h
2808// to be able to compile on old linuxes.
2809  #define __NR_vgetcpu 2
2810  #define VSYSCALL_START (-10UL << 20)
2811  #define VSYSCALL_SIZE 1024
2812  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2813  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2814  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2815  retval = vgetcpu(&cpu, NULL, NULL);
2816#endif
2817
2818  return (retval == -1) ? retval : cpu;
2819}
2820
2821// Something to do with the numa-aware allocator needs these symbols
2822extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2823extern "C" JNIEXPORT void numa_error(char *where) { }
2824extern "C" JNIEXPORT int fork1() { return fork(); }
2825
2826
2827// If we are running with libnuma version > 2, then we should
2828// be trying to use symbols with versions 1.1
2829// If we are running with earlier version, which did not have symbol versions,
2830// we should use the base version.
2831void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2832  void *f = dlvsym(handle, name, "libnuma_1.1");
2833  if (f == NULL) {
2834    f = dlsym(handle, name);
2835  }
2836  return f;
2837}
2838
2839bool os::Linux::libnuma_init() {
2840  // sched_getcpu() should be in libc.
2841  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2842                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2843
2844  // If it's not, try a direct syscall.
2845  if (sched_getcpu() == -1) {
2846    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2847                                    (void*)&sched_getcpu_syscall));
2848  }
2849
2850  if (sched_getcpu() != -1) { // Does it work?
2851    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2852    if (handle != NULL) {
2853      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2854                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2855      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2856                                       libnuma_dlsym(handle, "numa_max_node")));
2857      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2858                                        libnuma_dlsym(handle, "numa_available")));
2859      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2860                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2861      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2862                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2863      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2864                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2865
2866
2867      if (numa_available() != -1) {
2868        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2869        // Create a cpu -> node mapping
2870        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2871        rebuild_cpu_to_node_map();
2872        return true;
2873      }
2874    }
2875  }
2876  return false;
2877}
2878
2879// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2880// The table is later used in get_node_by_cpu().
2881void os::Linux::rebuild_cpu_to_node_map() {
2882  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2883                              // in libnuma (possible values are starting from 16,
2884                              // and continuing up with every other power of 2, but less
2885                              // than the maximum number of CPUs supported by kernel), and
2886                              // is a subject to change (in libnuma version 2 the requirements
2887                              // are more reasonable) we'll just hardcode the number they use
2888                              // in the library.
2889  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2890
2891  size_t cpu_num = os::active_processor_count();
2892  size_t cpu_map_size = NCPUS / BitsPerCLong;
2893  size_t cpu_map_valid_size =
2894    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2895
2896  cpu_to_node()->clear();
2897  cpu_to_node()->at_grow(cpu_num - 1);
2898  size_t node_num = numa_get_groups_num();
2899
2900  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2901  for (size_t i = 0; i < node_num; i++) {
2902    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2903      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2904        if (cpu_map[j] != 0) {
2905          for (size_t k = 0; k < BitsPerCLong; k++) {
2906            if (cpu_map[j] & (1UL << k)) {
2907              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2908            }
2909          }
2910        }
2911      }
2912    }
2913  }
2914  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2915}
2916
2917int os::Linux::get_node_by_cpu(int cpu_id) {
2918  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2919    return cpu_to_node()->at(cpu_id);
2920  }
2921  return -1;
2922}
2923
2924GrowableArray<int>* os::Linux::_cpu_to_node;
2925os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2926os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2927os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2928os::Linux::numa_available_func_t os::Linux::_numa_available;
2929os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2930os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2931os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2932unsigned long* os::Linux::_numa_all_nodes;
2933
2934bool os::pd_uncommit_memory(char* addr, size_t size) {
2935  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2936                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2937  return res  != (uintptr_t) MAP_FAILED;
2938}
2939
2940static address get_stack_commited_bottom(address bottom, size_t size) {
2941  address nbot = bottom;
2942  address ntop = bottom + size;
2943
2944  size_t page_sz = os::vm_page_size();
2945  unsigned pages = size / page_sz;
2946
2947  unsigned char vec[1];
2948  unsigned imin = 1, imax = pages + 1, imid;
2949  int mincore_return_value = 0;
2950
2951  assert(imin <= imax, "Unexpected page size");
2952
2953  while (imin < imax) {
2954    imid = (imax + imin) / 2;
2955    nbot = ntop - (imid * page_sz);
2956
2957    // Use a trick with mincore to check whether the page is mapped or not.
2958    // mincore sets vec to 1 if page resides in memory and to 0 if page
2959    // is swapped output but if page we are asking for is unmapped
2960    // it returns -1,ENOMEM
2961    mincore_return_value = mincore(nbot, page_sz, vec);
2962
2963    if (mincore_return_value == -1) {
2964      // Page is not mapped go up
2965      // to find first mapped page
2966      if (errno != EAGAIN) {
2967        assert(errno == ENOMEM, "Unexpected mincore errno");
2968        imax = imid;
2969      }
2970    } else {
2971      // Page is mapped go down
2972      // to find first not mapped page
2973      imin = imid + 1;
2974    }
2975  }
2976
2977  nbot = nbot + page_sz;
2978
2979  // Adjust stack bottom one page up if last checked page is not mapped
2980  if (mincore_return_value == -1) {
2981    nbot = nbot + page_sz;
2982  }
2983
2984  return nbot;
2985}
2986
2987
2988// Linux uses a growable mapping for the stack, and if the mapping for
2989// the stack guard pages is not removed when we detach a thread the
2990// stack cannot grow beyond the pages where the stack guard was
2991// mapped.  If at some point later in the process the stack expands to
2992// that point, the Linux kernel cannot expand the stack any further
2993// because the guard pages are in the way, and a segfault occurs.
2994//
2995// However, it's essential not to split the stack region by unmapping
2996// a region (leaving a hole) that's already part of the stack mapping,
2997// so if the stack mapping has already grown beyond the guard pages at
2998// the time we create them, we have to truncate the stack mapping.
2999// So, we need to know the extent of the stack mapping when
3000// create_stack_guard_pages() is called.
3001
3002// We only need this for stacks that are growable: at the time of
3003// writing thread stacks don't use growable mappings (i.e. those
3004// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3005// only applies to the main thread.
3006
3007// If the (growable) stack mapping already extends beyond the point
3008// where we're going to put our guard pages, truncate the mapping at
3009// that point by munmap()ping it.  This ensures that when we later
3010// munmap() the guard pages we don't leave a hole in the stack
3011// mapping. This only affects the main/initial thread
3012
3013bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3014  if (os::Linux::is_initial_thread()) {
3015    // As we manually grow stack up to bottom inside create_attached_thread(),
3016    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3017    // we don't need to do anything special.
3018    // Check it first, before calling heavy function.
3019    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3020    unsigned char vec[1];
3021
3022    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3023      // Fallback to slow path on all errors, including EAGAIN
3024      stack_extent = (uintptr_t) get_stack_commited_bottom(
3025                                                           os::Linux::initial_thread_stack_bottom(),
3026                                                           (size_t)addr - stack_extent);
3027    }
3028
3029    if (stack_extent < (uintptr_t)addr) {
3030      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3031    }
3032  }
3033
3034  return os::commit_memory(addr, size, !ExecMem);
3035}
3036
3037// If this is a growable mapping, remove the guard pages entirely by
3038// munmap()ping them.  If not, just call uncommit_memory(). This only
3039// affects the main/initial thread, but guard against future OS changes
3040// It's safe to always unmap guard pages for initial thread because we
3041// always place it right after end of the mapped region
3042
3043bool os::remove_stack_guard_pages(char* addr, size_t size) {
3044  uintptr_t stack_extent, stack_base;
3045
3046  if (os::Linux::is_initial_thread()) {
3047    return ::munmap(addr, size) == 0;
3048  }
3049
3050  return os::uncommit_memory(addr, size);
3051}
3052
3053// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3054// at 'requested_addr'. If there are existing memory mappings at the same
3055// location, however, they will be overwritten. If 'fixed' is false,
3056// 'requested_addr' is only treated as a hint, the return value may or
3057// may not start from the requested address. Unlike Linux mmap(), this
3058// function returns NULL to indicate failure.
3059static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3060  char * addr;
3061  int flags;
3062
3063  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3064  if (fixed) {
3065    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3066    flags |= MAP_FIXED;
3067  }
3068
3069  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3070  // touch an uncommitted page. Otherwise, the read/write might
3071  // succeed if we have enough swap space to back the physical page.
3072  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3073                       flags, -1, 0);
3074
3075  return addr == MAP_FAILED ? NULL : addr;
3076}
3077
3078static int anon_munmap(char * addr, size_t size) {
3079  return ::munmap(addr, size) == 0;
3080}
3081
3082char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3083                            size_t alignment_hint) {
3084  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3085}
3086
3087bool os::pd_release_memory(char* addr, size_t size) {
3088  return anon_munmap(addr, size);
3089}
3090
3091static bool linux_mprotect(char* addr, size_t size, int prot) {
3092  // Linux wants the mprotect address argument to be page aligned.
3093  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3094
3095  // According to SUSv3, mprotect() should only be used with mappings
3096  // established by mmap(), and mmap() always maps whole pages. Unaligned
3097  // 'addr' likely indicates problem in the VM (e.g. trying to change
3098  // protection of malloc'ed or statically allocated memory). Check the
3099  // caller if you hit this assert.
3100  assert(addr == bottom, "sanity check");
3101
3102  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3103  return ::mprotect(bottom, size, prot) == 0;
3104}
3105
3106// Set protections specified
3107bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3108                        bool is_committed) {
3109  unsigned int p = 0;
3110  switch (prot) {
3111  case MEM_PROT_NONE: p = PROT_NONE; break;
3112  case MEM_PROT_READ: p = PROT_READ; break;
3113  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3114  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3115  default:
3116    ShouldNotReachHere();
3117  }
3118  // is_committed is unused.
3119  return linux_mprotect(addr, bytes, p);
3120}
3121
3122bool os::guard_memory(char* addr, size_t size) {
3123  return linux_mprotect(addr, size, PROT_NONE);
3124}
3125
3126bool os::unguard_memory(char* addr, size_t size) {
3127  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3128}
3129
3130bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3131                                                    size_t page_size) {
3132  bool result = false;
3133  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3134                 MAP_ANONYMOUS|MAP_PRIVATE,
3135                 -1, 0);
3136  if (p != MAP_FAILED) {
3137    void *aligned_p = align_ptr_up(p, page_size);
3138
3139    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3140
3141    munmap(p, page_size * 2);
3142  }
3143
3144  if (warn && !result) {
3145    warning("TransparentHugePages is not supported by the operating system.");
3146  }
3147
3148  return result;
3149}
3150
3151bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3152  bool result = false;
3153  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3154                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3155                 -1, 0);
3156
3157  if (p != MAP_FAILED) {
3158    // We don't know if this really is a huge page or not.
3159    FILE *fp = fopen("/proc/self/maps", "r");
3160    if (fp) {
3161      while (!feof(fp)) {
3162        char chars[257];
3163        long x = 0;
3164        if (fgets(chars, sizeof(chars), fp)) {
3165          if (sscanf(chars, "%lx-%*x", &x) == 1
3166              && x == (long)p) {
3167            if (strstr (chars, "hugepage")) {
3168              result = true;
3169              break;
3170            }
3171          }
3172        }
3173      }
3174      fclose(fp);
3175    }
3176    munmap(p, page_size);
3177  }
3178
3179  if (warn && !result) {
3180    warning("HugeTLBFS is not supported by the operating system.");
3181  }
3182
3183  return result;
3184}
3185
3186// Set the coredump_filter bits to include largepages in core dump (bit 6)
3187//
3188// From the coredump_filter documentation:
3189//
3190// - (bit 0) anonymous private memory
3191// - (bit 1) anonymous shared memory
3192// - (bit 2) file-backed private memory
3193// - (bit 3) file-backed shared memory
3194// - (bit 4) ELF header pages in file-backed private memory areas (it is
3195//           effective only if the bit 2 is cleared)
3196// - (bit 5) hugetlb private memory
3197// - (bit 6) hugetlb shared memory
3198//
3199static void set_coredump_filter(void) {
3200  FILE *f;
3201  long cdm;
3202
3203  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3204    return;
3205  }
3206
3207  if (fscanf(f, "%lx", &cdm) != 1) {
3208    fclose(f);
3209    return;
3210  }
3211
3212  rewind(f);
3213
3214  if ((cdm & LARGEPAGES_BIT) == 0) {
3215    cdm |= LARGEPAGES_BIT;
3216    fprintf(f, "%#lx", cdm);
3217  }
3218
3219  fclose(f);
3220}
3221
3222// Large page support
3223
3224static size_t _large_page_size = 0;
3225
3226size_t os::Linux::find_large_page_size() {
3227  size_t large_page_size = 0;
3228
3229  // large_page_size on Linux is used to round up heap size. x86 uses either
3230  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3231  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3232  // page as large as 256M.
3233  //
3234  // Here we try to figure out page size by parsing /proc/meminfo and looking
3235  // for a line with the following format:
3236  //    Hugepagesize:     2048 kB
3237  //
3238  // If we can't determine the value (e.g. /proc is not mounted, or the text
3239  // format has been changed), we'll use the largest page size supported by
3240  // the processor.
3241
3242#ifndef ZERO
3243  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3244                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3245#endif // ZERO
3246
3247  FILE *fp = fopen("/proc/meminfo", "r");
3248  if (fp) {
3249    while (!feof(fp)) {
3250      int x = 0;
3251      char buf[16];
3252      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3253        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3254          large_page_size = x * K;
3255          break;
3256        }
3257      } else {
3258        // skip to next line
3259        for (;;) {
3260          int ch = fgetc(fp);
3261          if (ch == EOF || ch == (int)'\n') break;
3262        }
3263      }
3264    }
3265    fclose(fp);
3266  }
3267
3268  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3269    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3270            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3271            proper_unit_for_byte_size(large_page_size));
3272  }
3273
3274  return large_page_size;
3275}
3276
3277size_t os::Linux::setup_large_page_size() {
3278  _large_page_size = Linux::find_large_page_size();
3279  const size_t default_page_size = (size_t)Linux::page_size();
3280  if (_large_page_size > default_page_size) {
3281    _page_sizes[0] = _large_page_size;
3282    _page_sizes[1] = default_page_size;
3283    _page_sizes[2] = 0;
3284  }
3285
3286  return _large_page_size;
3287}
3288
3289bool os::Linux::setup_large_page_type(size_t page_size) {
3290  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3291      FLAG_IS_DEFAULT(UseSHM) &&
3292      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3293
3294    // The type of large pages has not been specified by the user.
3295
3296    // Try UseHugeTLBFS and then UseSHM.
3297    UseHugeTLBFS = UseSHM = true;
3298
3299    // Don't try UseTransparentHugePages since there are known
3300    // performance issues with it turned on. This might change in the future.
3301    UseTransparentHugePages = false;
3302  }
3303
3304  if (UseTransparentHugePages) {
3305    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3306    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3307      UseHugeTLBFS = false;
3308      UseSHM = false;
3309      return true;
3310    }
3311    UseTransparentHugePages = false;
3312  }
3313
3314  if (UseHugeTLBFS) {
3315    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3316    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3317      UseSHM = false;
3318      return true;
3319    }
3320    UseHugeTLBFS = false;
3321  }
3322
3323  return UseSHM;
3324}
3325
3326void os::large_page_init() {
3327  if (!UseLargePages &&
3328      !UseTransparentHugePages &&
3329      !UseHugeTLBFS &&
3330      !UseSHM) {
3331    // Not using large pages.
3332    return;
3333  }
3334
3335  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3336    // The user explicitly turned off large pages.
3337    // Ignore the rest of the large pages flags.
3338    UseTransparentHugePages = false;
3339    UseHugeTLBFS = false;
3340    UseSHM = false;
3341    return;
3342  }
3343
3344  size_t large_page_size = Linux::setup_large_page_size();
3345  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3346
3347  set_coredump_filter();
3348}
3349
3350#ifndef SHM_HUGETLB
3351  #define SHM_HUGETLB 04000
3352#endif
3353
3354char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3355                                            char* req_addr, bool exec) {
3356  // "exec" is passed in but not used.  Creating the shared image for
3357  // the code cache doesn't have an SHM_X executable permission to check.
3358  assert(UseLargePages && UseSHM, "only for SHM large pages");
3359  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3360
3361  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3362    return NULL; // Fallback to small pages.
3363  }
3364
3365  key_t key = IPC_PRIVATE;
3366  char *addr;
3367
3368  bool warn_on_failure = UseLargePages &&
3369                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3370                         !FLAG_IS_DEFAULT(UseSHM) ||
3371                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3372  char msg[128];
3373
3374  // Create a large shared memory region to attach to based on size.
3375  // Currently, size is the total size of the heap
3376  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3377  if (shmid == -1) {
3378    // Possible reasons for shmget failure:
3379    // 1. shmmax is too small for Java heap.
3380    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3381    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3382    // 2. not enough large page memory.
3383    //    > check available large pages: cat /proc/meminfo
3384    //    > increase amount of large pages:
3385    //          echo new_value > /proc/sys/vm/nr_hugepages
3386    //      Note 1: different Linux may use different name for this property,
3387    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3388    //      Note 2: it's possible there's enough physical memory available but
3389    //            they are so fragmented after a long run that they can't
3390    //            coalesce into large pages. Try to reserve large pages when
3391    //            the system is still "fresh".
3392    if (warn_on_failure) {
3393      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3394      warning("%s", msg);
3395    }
3396    return NULL;
3397  }
3398
3399  // attach to the region
3400  addr = (char*)shmat(shmid, req_addr, 0);
3401  int err = errno;
3402
3403  // Remove shmid. If shmat() is successful, the actual shared memory segment
3404  // will be deleted when it's detached by shmdt() or when the process
3405  // terminates. If shmat() is not successful this will remove the shared
3406  // segment immediately.
3407  shmctl(shmid, IPC_RMID, NULL);
3408
3409  if ((intptr_t)addr == -1) {
3410    if (warn_on_failure) {
3411      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3412      warning("%s", msg);
3413    }
3414    return NULL;
3415  }
3416
3417  return addr;
3418}
3419
3420static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3421                                        int error) {
3422  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3423
3424  bool warn_on_failure = UseLargePages &&
3425      (!FLAG_IS_DEFAULT(UseLargePages) ||
3426       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3427       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3428
3429  if (warn_on_failure) {
3430    char msg[128];
3431    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3432                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3433    warning("%s", msg);
3434  }
3435}
3436
3437char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3438                                                        char* req_addr,
3439                                                        bool exec) {
3440  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3441  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3442  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3443
3444  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3445  char* addr = (char*)::mmap(req_addr, bytes, prot,
3446                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3447                             -1, 0);
3448
3449  if (addr == MAP_FAILED) {
3450    warn_on_large_pages_failure(req_addr, bytes, errno);
3451    return NULL;
3452  }
3453
3454  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3455
3456  return addr;
3457}
3458
3459// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3460// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3461//   (req_addr != NULL) or with a given alignment.
3462//  - bytes shall be a multiple of alignment.
3463//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3464//  - alignment sets the alignment at which memory shall be allocated.
3465//     It must be a multiple of allocation granularity.
3466// Returns address of memory or NULL. If req_addr was not NULL, will only return
3467//  req_addr or NULL.
3468static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3469
3470  size_t extra_size = bytes;
3471  if (req_addr == NULL && alignment > 0) {
3472    extra_size += alignment;
3473  }
3474
3475  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3476    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3477    -1, 0);
3478  if (start == MAP_FAILED) {
3479    start = NULL;
3480  } else {
3481    if (req_addr != NULL) {
3482      if (start != req_addr) {
3483        ::munmap(start, extra_size);
3484        start = NULL;
3485      }
3486    } else {
3487      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3488      char* const end_aligned = start_aligned + bytes;
3489      char* const end = start + extra_size;
3490      if (start_aligned > start) {
3491        ::munmap(start, start_aligned - start);
3492      }
3493      if (end_aligned < end) {
3494        ::munmap(end_aligned, end - end_aligned);
3495      }
3496      start = start_aligned;
3497    }
3498  }
3499  return start;
3500
3501}
3502
3503// Reserve memory using mmap(MAP_HUGETLB).
3504//  - bytes shall be a multiple of alignment.
3505//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3506//  - alignment sets the alignment at which memory shall be allocated.
3507//     It must be a multiple of allocation granularity.
3508// Returns address of memory or NULL. If req_addr was not NULL, will only return
3509//  req_addr or NULL.
3510char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3511                                                         size_t alignment,
3512                                                         char* req_addr,
3513                                                         bool exec) {
3514  size_t large_page_size = os::large_page_size();
3515  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3516
3517  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3518  assert(is_size_aligned(bytes, alignment), "Must be");
3519
3520  // First reserve - but not commit - the address range in small pages.
3521  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3522
3523  if (start == NULL) {
3524    return NULL;
3525  }
3526
3527  assert(is_ptr_aligned(start, alignment), "Must be");
3528
3529  char* end = start + bytes;
3530
3531  // Find the regions of the allocated chunk that can be promoted to large pages.
3532  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3533  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3534
3535  size_t lp_bytes = lp_end - lp_start;
3536
3537  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3538
3539  if (lp_bytes == 0) {
3540    // The mapped region doesn't even span the start and the end of a large page.
3541    // Fall back to allocate a non-special area.
3542    ::munmap(start, end - start);
3543    return NULL;
3544  }
3545
3546  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3547
3548  void* result;
3549
3550  // Commit small-paged leading area.
3551  if (start != lp_start) {
3552    result = ::mmap(start, lp_start - start, prot,
3553                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3554                    -1, 0);
3555    if (result == MAP_FAILED) {
3556      ::munmap(lp_start, end - lp_start);
3557      return NULL;
3558    }
3559  }
3560
3561  // Commit large-paged area.
3562  result = ::mmap(lp_start, lp_bytes, prot,
3563                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3564                  -1, 0);
3565  if (result == MAP_FAILED) {
3566    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3567    // If the mmap above fails, the large pages region will be unmapped and we
3568    // have regions before and after with small pages. Release these regions.
3569    //
3570    // |  mapped  |  unmapped  |  mapped  |
3571    // ^          ^            ^          ^
3572    // start      lp_start     lp_end     end
3573    //
3574    ::munmap(start, lp_start - start);
3575    ::munmap(lp_end, end - lp_end);
3576    return NULL;
3577  }
3578
3579  // Commit small-paged trailing area.
3580  if (lp_end != end) {
3581    result = ::mmap(lp_end, end - lp_end, prot,
3582                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3583                    -1, 0);
3584    if (result == MAP_FAILED) {
3585      ::munmap(start, lp_end - start);
3586      return NULL;
3587    }
3588  }
3589
3590  return start;
3591}
3592
3593char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3594                                                   size_t alignment,
3595                                                   char* req_addr,
3596                                                   bool exec) {
3597  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3598  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3599  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3600  assert(is_power_of_2(os::large_page_size()), "Must be");
3601  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3602
3603  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3604    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3605  } else {
3606    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3607  }
3608}
3609
3610char* os::reserve_memory_special(size_t bytes, size_t alignment,
3611                                 char* req_addr, bool exec) {
3612  assert(UseLargePages, "only for large pages");
3613
3614  char* addr;
3615  if (UseSHM) {
3616    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3617  } else {
3618    assert(UseHugeTLBFS, "must be");
3619    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3620  }
3621
3622  if (addr != NULL) {
3623    if (UseNUMAInterleaving) {
3624      numa_make_global(addr, bytes);
3625    }
3626
3627    // The memory is committed
3628    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3629  }
3630
3631  return addr;
3632}
3633
3634bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3635  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3636  return shmdt(base) == 0;
3637}
3638
3639bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3640  return pd_release_memory(base, bytes);
3641}
3642
3643bool os::release_memory_special(char* base, size_t bytes) {
3644  bool res;
3645  if (MemTracker::tracking_level() > NMT_minimal) {
3646    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3647    res = os::Linux::release_memory_special_impl(base, bytes);
3648    if (res) {
3649      tkr.record((address)base, bytes);
3650    }
3651
3652  } else {
3653    res = os::Linux::release_memory_special_impl(base, bytes);
3654  }
3655  return res;
3656}
3657
3658bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3659  assert(UseLargePages, "only for large pages");
3660  bool res;
3661
3662  if (UseSHM) {
3663    res = os::Linux::release_memory_special_shm(base, bytes);
3664  } else {
3665    assert(UseHugeTLBFS, "must be");
3666    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3667  }
3668  return res;
3669}
3670
3671size_t os::large_page_size() {
3672  return _large_page_size;
3673}
3674
3675// With SysV SHM the entire memory region must be allocated as shared
3676// memory.
3677// HugeTLBFS allows application to commit large page memory on demand.
3678// However, when committing memory with HugeTLBFS fails, the region
3679// that was supposed to be committed will lose the old reservation
3680// and allow other threads to steal that memory region. Because of this
3681// behavior we can't commit HugeTLBFS memory.
3682bool os::can_commit_large_page_memory() {
3683  return UseTransparentHugePages;
3684}
3685
3686bool os::can_execute_large_page_memory() {
3687  return UseTransparentHugePages || UseHugeTLBFS;
3688}
3689
3690// Reserve memory at an arbitrary address, only if that area is
3691// available (and not reserved for something else).
3692
3693char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3694  const int max_tries = 10;
3695  char* base[max_tries];
3696  size_t size[max_tries];
3697  const size_t gap = 0x000000;
3698
3699  // Assert only that the size is a multiple of the page size, since
3700  // that's all that mmap requires, and since that's all we really know
3701  // about at this low abstraction level.  If we need higher alignment,
3702  // we can either pass an alignment to this method or verify alignment
3703  // in one of the methods further up the call chain.  See bug 5044738.
3704  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3705
3706  // Repeatedly allocate blocks until the block is allocated at the
3707  // right spot.
3708
3709  // Linux mmap allows caller to pass an address as hint; give it a try first,
3710  // if kernel honors the hint then we can return immediately.
3711  char * addr = anon_mmap(requested_addr, bytes, false);
3712  if (addr == requested_addr) {
3713    return requested_addr;
3714  }
3715
3716  if (addr != NULL) {
3717    // mmap() is successful but it fails to reserve at the requested address
3718    anon_munmap(addr, bytes);
3719  }
3720
3721  int i;
3722  for (i = 0; i < max_tries; ++i) {
3723    base[i] = reserve_memory(bytes);
3724
3725    if (base[i] != NULL) {
3726      // Is this the block we wanted?
3727      if (base[i] == requested_addr) {
3728        size[i] = bytes;
3729        break;
3730      }
3731
3732      // Does this overlap the block we wanted? Give back the overlapped
3733      // parts and try again.
3734
3735      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3736      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3737        unmap_memory(base[i], top_overlap);
3738        base[i] += top_overlap;
3739        size[i] = bytes - top_overlap;
3740      } else {
3741        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3742        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3743          unmap_memory(requested_addr, bottom_overlap);
3744          size[i] = bytes - bottom_overlap;
3745        } else {
3746          size[i] = bytes;
3747        }
3748      }
3749    }
3750  }
3751
3752  // Give back the unused reserved pieces.
3753
3754  for (int j = 0; j < i; ++j) {
3755    if (base[j] != NULL) {
3756      unmap_memory(base[j], size[j]);
3757    }
3758  }
3759
3760  if (i < max_tries) {
3761    return requested_addr;
3762  } else {
3763    return NULL;
3764  }
3765}
3766
3767size_t os::read(int fd, void *buf, unsigned int nBytes) {
3768  return ::read(fd, buf, nBytes);
3769}
3770
3771size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3772  return ::pread(fd, buf, nBytes, offset);
3773}
3774
3775// Short sleep, direct OS call.
3776//
3777// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3778// sched_yield(2) will actually give up the CPU:
3779//
3780//   * Alone on this pariticular CPU, keeps running.
3781//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3782//     (pre 2.6.39).
3783//
3784// So calling this with 0 is an alternative.
3785//
3786void os::naked_short_sleep(jlong ms) {
3787  struct timespec req;
3788
3789  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3790  req.tv_sec = 0;
3791  if (ms > 0) {
3792    req.tv_nsec = (ms % 1000) * 1000000;
3793  } else {
3794    req.tv_nsec = 1;
3795  }
3796
3797  nanosleep(&req, NULL);
3798
3799  return;
3800}
3801
3802// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3803void os::infinite_sleep() {
3804  while (true) {    // sleep forever ...
3805    ::sleep(100);   // ... 100 seconds at a time
3806  }
3807}
3808
3809// Used to convert frequent JVM_Yield() to nops
3810bool os::dont_yield() {
3811  return DontYieldALot;
3812}
3813
3814void os::naked_yield() {
3815  sched_yield();
3816}
3817
3818////////////////////////////////////////////////////////////////////////////////
3819// thread priority support
3820
3821// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3822// only supports dynamic priority, static priority must be zero. For real-time
3823// applications, Linux supports SCHED_RR which allows static priority (1-99).
3824// However, for large multi-threaded applications, SCHED_RR is not only slower
3825// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3826// of 5 runs - Sep 2005).
3827//
3828// The following code actually changes the niceness of kernel-thread/LWP. It
3829// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3830// not the entire user process, and user level threads are 1:1 mapped to kernel
3831// threads. It has always been the case, but could change in the future. For
3832// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3833// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3834
3835int os::java_to_os_priority[CriticalPriority + 1] = {
3836  19,              // 0 Entry should never be used
3837
3838   4,              // 1 MinPriority
3839   3,              // 2
3840   2,              // 3
3841
3842   1,              // 4
3843   0,              // 5 NormPriority
3844  -1,              // 6
3845
3846  -2,              // 7
3847  -3,              // 8
3848  -4,              // 9 NearMaxPriority
3849
3850  -5,              // 10 MaxPriority
3851
3852  -5               // 11 CriticalPriority
3853};
3854
3855static int prio_init() {
3856  if (ThreadPriorityPolicy == 1) {
3857    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3858    // if effective uid is not root. Perhaps, a more elegant way of doing
3859    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3860    if (geteuid() != 0) {
3861      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3862        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3863      }
3864      ThreadPriorityPolicy = 0;
3865    }
3866  }
3867  if (UseCriticalJavaThreadPriority) {
3868    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3869  }
3870  return 0;
3871}
3872
3873OSReturn os::set_native_priority(Thread* thread, int newpri) {
3874  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3875
3876  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3877  return (ret == 0) ? OS_OK : OS_ERR;
3878}
3879
3880OSReturn os::get_native_priority(const Thread* const thread,
3881                                 int *priority_ptr) {
3882  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3883    *priority_ptr = java_to_os_priority[NormPriority];
3884    return OS_OK;
3885  }
3886
3887  errno = 0;
3888  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3889  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3890}
3891
3892// Hint to the underlying OS that a task switch would not be good.
3893// Void return because it's a hint and can fail.
3894void os::hint_no_preempt() {}
3895
3896////////////////////////////////////////////////////////////////////////////////
3897// suspend/resume support
3898
3899//  the low-level signal-based suspend/resume support is a remnant from the
3900//  old VM-suspension that used to be for java-suspension, safepoints etc,
3901//  within hotspot. Now there is a single use-case for this:
3902//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3903//      that runs in the watcher thread.
3904//  The remaining code is greatly simplified from the more general suspension
3905//  code that used to be used.
3906//
3907//  The protocol is quite simple:
3908//  - suspend:
3909//      - sends a signal to the target thread
3910//      - polls the suspend state of the osthread using a yield loop
3911//      - target thread signal handler (SR_handler) sets suspend state
3912//        and blocks in sigsuspend until continued
3913//  - resume:
3914//      - sets target osthread state to continue
3915//      - sends signal to end the sigsuspend loop in the SR_handler
3916//
3917//  Note that the SR_lock plays no role in this suspend/resume protocol.
3918
3919static void resume_clear_context(OSThread *osthread) {
3920  osthread->set_ucontext(NULL);
3921  osthread->set_siginfo(NULL);
3922}
3923
3924static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3925                                 ucontext_t* context) {
3926  osthread->set_ucontext(context);
3927  osthread->set_siginfo(siginfo);
3928}
3929
3930// Handler function invoked when a thread's execution is suspended or
3931// resumed. We have to be careful that only async-safe functions are
3932// called here (Note: most pthread functions are not async safe and
3933// should be avoided.)
3934//
3935// Note: sigwait() is a more natural fit than sigsuspend() from an
3936// interface point of view, but sigwait() prevents the signal hander
3937// from being run. libpthread would get very confused by not having
3938// its signal handlers run and prevents sigwait()'s use with the
3939// mutex granting granting signal.
3940//
3941// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3942//
3943static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3944  // Save and restore errno to avoid confusing native code with EINTR
3945  // after sigsuspend.
3946  int old_errno = errno;
3947
3948  Thread* thread = Thread::current();
3949  OSThread* osthread = thread->osthread();
3950  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3951
3952  os::SuspendResume::State current = osthread->sr.state();
3953  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3954    suspend_save_context(osthread, siginfo, context);
3955
3956    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3957    os::SuspendResume::State state = osthread->sr.suspended();
3958    if (state == os::SuspendResume::SR_SUSPENDED) {
3959      sigset_t suspend_set;  // signals for sigsuspend()
3960
3961      // get current set of blocked signals and unblock resume signal
3962      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3963      sigdelset(&suspend_set, SR_signum);
3964
3965      sr_semaphore.signal();
3966      // wait here until we are resumed
3967      while (1) {
3968        sigsuspend(&suspend_set);
3969
3970        os::SuspendResume::State result = osthread->sr.running();
3971        if (result == os::SuspendResume::SR_RUNNING) {
3972          sr_semaphore.signal();
3973          break;
3974        }
3975      }
3976
3977    } else if (state == os::SuspendResume::SR_RUNNING) {
3978      // request was cancelled, continue
3979    } else {
3980      ShouldNotReachHere();
3981    }
3982
3983    resume_clear_context(osthread);
3984  } else if (current == os::SuspendResume::SR_RUNNING) {
3985    // request was cancelled, continue
3986  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3987    // ignore
3988  } else {
3989    // ignore
3990  }
3991
3992  errno = old_errno;
3993}
3994
3995
3996static int SR_initialize() {
3997  struct sigaction act;
3998  char *s;
3999  // Get signal number to use for suspend/resume
4000  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4001    int sig = ::strtol(s, 0, 10);
4002    if (sig > 0 || sig < _NSIG) {
4003      SR_signum = sig;
4004    }
4005  }
4006
4007  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4008         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4009
4010  sigemptyset(&SR_sigset);
4011  sigaddset(&SR_sigset, SR_signum);
4012
4013  // Set up signal handler for suspend/resume
4014  act.sa_flags = SA_RESTART|SA_SIGINFO;
4015  act.sa_handler = (void (*)(int)) SR_handler;
4016
4017  // SR_signum is blocked by default.
4018  // 4528190 - We also need to block pthread restart signal (32 on all
4019  // supported Linux platforms). Note that LinuxThreads need to block
4020  // this signal for all threads to work properly. So we don't have
4021  // to use hard-coded signal number when setting up the mask.
4022  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4023
4024  if (sigaction(SR_signum, &act, 0) == -1) {
4025    return -1;
4026  }
4027
4028  // Save signal flag
4029  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4030  return 0;
4031}
4032
4033static int sr_notify(OSThread* osthread) {
4034  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4035  assert_status(status == 0, status, "pthread_kill");
4036  return status;
4037}
4038
4039// "Randomly" selected value for how long we want to spin
4040// before bailing out on suspending a thread, also how often
4041// we send a signal to a thread we want to resume
4042static const int RANDOMLY_LARGE_INTEGER = 1000000;
4043static const int RANDOMLY_LARGE_INTEGER2 = 100;
4044
4045// returns true on success and false on error - really an error is fatal
4046// but this seems the normal response to library errors
4047static bool do_suspend(OSThread* osthread) {
4048  assert(osthread->sr.is_running(), "thread should be running");
4049  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4050
4051  // mark as suspended and send signal
4052  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4053    // failed to switch, state wasn't running?
4054    ShouldNotReachHere();
4055    return false;
4056  }
4057
4058  if (sr_notify(osthread) != 0) {
4059    ShouldNotReachHere();
4060  }
4061
4062  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4063  while (true) {
4064    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4065      break;
4066    } else {
4067      // timeout
4068      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4069      if (cancelled == os::SuspendResume::SR_RUNNING) {
4070        return false;
4071      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4072        // make sure that we consume the signal on the semaphore as well
4073        sr_semaphore.wait();
4074        break;
4075      } else {
4076        ShouldNotReachHere();
4077        return false;
4078      }
4079    }
4080  }
4081
4082  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4083  return true;
4084}
4085
4086static void do_resume(OSThread* osthread) {
4087  assert(osthread->sr.is_suspended(), "thread should be suspended");
4088  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4089
4090  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4091    // failed to switch to WAKEUP_REQUEST
4092    ShouldNotReachHere();
4093    return;
4094  }
4095
4096  while (true) {
4097    if (sr_notify(osthread) == 0) {
4098      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4099        if (osthread->sr.is_running()) {
4100          return;
4101        }
4102      }
4103    } else {
4104      ShouldNotReachHere();
4105    }
4106  }
4107
4108  guarantee(osthread->sr.is_running(), "Must be running!");
4109}
4110
4111///////////////////////////////////////////////////////////////////////////////////
4112// signal handling (except suspend/resume)
4113
4114// This routine may be used by user applications as a "hook" to catch signals.
4115// The user-defined signal handler must pass unrecognized signals to this
4116// routine, and if it returns true (non-zero), then the signal handler must
4117// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4118// routine will never retun false (zero), but instead will execute a VM panic
4119// routine kill the process.
4120//
4121// If this routine returns false, it is OK to call it again.  This allows
4122// the user-defined signal handler to perform checks either before or after
4123// the VM performs its own checks.  Naturally, the user code would be making
4124// a serious error if it tried to handle an exception (such as a null check
4125// or breakpoint) that the VM was generating for its own correct operation.
4126//
4127// This routine may recognize any of the following kinds of signals:
4128//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4129// It should be consulted by handlers for any of those signals.
4130//
4131// The caller of this routine must pass in the three arguments supplied
4132// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4133// field of the structure passed to sigaction().  This routine assumes that
4134// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4135//
4136// Note that the VM will print warnings if it detects conflicting signal
4137// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4138//
4139extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4140                                                 siginfo_t* siginfo,
4141                                                 void* ucontext,
4142                                                 int abort_if_unrecognized);
4143
4144void signalHandler(int sig, siginfo_t* info, void* uc) {
4145  assert(info != NULL && uc != NULL, "it must be old kernel");
4146  int orig_errno = errno;  // Preserve errno value over signal handler.
4147  JVM_handle_linux_signal(sig, info, uc, true);
4148  errno = orig_errno;
4149}
4150
4151
4152// This boolean allows users to forward their own non-matching signals
4153// to JVM_handle_linux_signal, harmlessly.
4154bool os::Linux::signal_handlers_are_installed = false;
4155
4156// For signal-chaining
4157struct sigaction os::Linux::sigact[MAXSIGNUM];
4158unsigned int os::Linux::sigs = 0;
4159bool os::Linux::libjsig_is_loaded = false;
4160typedef struct sigaction *(*get_signal_t)(int);
4161get_signal_t os::Linux::get_signal_action = NULL;
4162
4163struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4164  struct sigaction *actp = NULL;
4165
4166  if (libjsig_is_loaded) {
4167    // Retrieve the old signal handler from libjsig
4168    actp = (*get_signal_action)(sig);
4169  }
4170  if (actp == NULL) {
4171    // Retrieve the preinstalled signal handler from jvm
4172    actp = get_preinstalled_handler(sig);
4173  }
4174
4175  return actp;
4176}
4177
4178static bool call_chained_handler(struct sigaction *actp, int sig,
4179                                 siginfo_t *siginfo, void *context) {
4180  // Call the old signal handler
4181  if (actp->sa_handler == SIG_DFL) {
4182    // It's more reasonable to let jvm treat it as an unexpected exception
4183    // instead of taking the default action.
4184    return false;
4185  } else if (actp->sa_handler != SIG_IGN) {
4186    if ((actp->sa_flags & SA_NODEFER) == 0) {
4187      // automaticlly block the signal
4188      sigaddset(&(actp->sa_mask), sig);
4189    }
4190
4191    sa_handler_t hand;
4192    sa_sigaction_t sa;
4193    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4194    // retrieve the chained handler
4195    if (siginfo_flag_set) {
4196      sa = actp->sa_sigaction;
4197    } else {
4198      hand = actp->sa_handler;
4199    }
4200
4201    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4202      actp->sa_handler = SIG_DFL;
4203    }
4204
4205    // try to honor the signal mask
4206    sigset_t oset;
4207    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4208
4209    // call into the chained handler
4210    if (siginfo_flag_set) {
4211      (*sa)(sig, siginfo, context);
4212    } else {
4213      (*hand)(sig);
4214    }
4215
4216    // restore the signal mask
4217    pthread_sigmask(SIG_SETMASK, &oset, 0);
4218  }
4219  // Tell jvm's signal handler the signal is taken care of.
4220  return true;
4221}
4222
4223bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4224  bool chained = false;
4225  // signal-chaining
4226  if (UseSignalChaining) {
4227    struct sigaction *actp = get_chained_signal_action(sig);
4228    if (actp != NULL) {
4229      chained = call_chained_handler(actp, sig, siginfo, context);
4230    }
4231  }
4232  return chained;
4233}
4234
4235struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4236  if ((((unsigned int)1 << sig) & sigs) != 0) {
4237    return &sigact[sig];
4238  }
4239  return NULL;
4240}
4241
4242void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4243  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4244  sigact[sig] = oldAct;
4245  sigs |= (unsigned int)1 << sig;
4246}
4247
4248// for diagnostic
4249int os::Linux::sigflags[MAXSIGNUM];
4250
4251int os::Linux::get_our_sigflags(int sig) {
4252  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4253  return sigflags[sig];
4254}
4255
4256void os::Linux::set_our_sigflags(int sig, int flags) {
4257  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4258  sigflags[sig] = flags;
4259}
4260
4261void os::Linux::set_signal_handler(int sig, bool set_installed) {
4262  // Check for overwrite.
4263  struct sigaction oldAct;
4264  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4265
4266  void* oldhand = oldAct.sa_sigaction
4267                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4268                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4269  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4270      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4271      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4272    if (AllowUserSignalHandlers || !set_installed) {
4273      // Do not overwrite; user takes responsibility to forward to us.
4274      return;
4275    } else if (UseSignalChaining) {
4276      // save the old handler in jvm
4277      save_preinstalled_handler(sig, oldAct);
4278      // libjsig also interposes the sigaction() call below and saves the
4279      // old sigaction on it own.
4280    } else {
4281      fatal("Encountered unexpected pre-existing sigaction handler "
4282            "%#lx for signal %d.", (long)oldhand, sig);
4283    }
4284  }
4285
4286  struct sigaction sigAct;
4287  sigfillset(&(sigAct.sa_mask));
4288  sigAct.sa_handler = SIG_DFL;
4289  if (!set_installed) {
4290    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4291  } else {
4292    sigAct.sa_sigaction = signalHandler;
4293    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4294  }
4295  // Save flags, which are set by ours
4296  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4297  sigflags[sig] = sigAct.sa_flags;
4298
4299  int ret = sigaction(sig, &sigAct, &oldAct);
4300  assert(ret == 0, "check");
4301
4302  void* oldhand2  = oldAct.sa_sigaction
4303                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4304                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4305  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4306}
4307
4308// install signal handlers for signals that HotSpot needs to
4309// handle in order to support Java-level exception handling.
4310
4311void os::Linux::install_signal_handlers() {
4312  if (!signal_handlers_are_installed) {
4313    signal_handlers_are_installed = true;
4314
4315    // signal-chaining
4316    typedef void (*signal_setting_t)();
4317    signal_setting_t begin_signal_setting = NULL;
4318    signal_setting_t end_signal_setting = NULL;
4319    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4320                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4321    if (begin_signal_setting != NULL) {
4322      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4323                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4324      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4325                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4326      libjsig_is_loaded = true;
4327      assert(UseSignalChaining, "should enable signal-chaining");
4328    }
4329    if (libjsig_is_loaded) {
4330      // Tell libjsig jvm is setting signal handlers
4331      (*begin_signal_setting)();
4332    }
4333
4334    set_signal_handler(SIGSEGV, true);
4335    set_signal_handler(SIGPIPE, true);
4336    set_signal_handler(SIGBUS, true);
4337    set_signal_handler(SIGILL, true);
4338    set_signal_handler(SIGFPE, true);
4339#if defined(PPC64)
4340    set_signal_handler(SIGTRAP, true);
4341#endif
4342    set_signal_handler(SIGXFSZ, true);
4343
4344    if (libjsig_is_loaded) {
4345      // Tell libjsig jvm finishes setting signal handlers
4346      (*end_signal_setting)();
4347    }
4348
4349    // We don't activate signal checker if libjsig is in place, we trust ourselves
4350    // and if UserSignalHandler is installed all bets are off.
4351    // Log that signal checking is off only if -verbose:jni is specified.
4352    if (CheckJNICalls) {
4353      if (libjsig_is_loaded) {
4354        if (PrintJNIResolving) {
4355          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4356        }
4357        check_signals = false;
4358      }
4359      if (AllowUserSignalHandlers) {
4360        if (PrintJNIResolving) {
4361          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4362        }
4363        check_signals = false;
4364      }
4365    }
4366  }
4367}
4368
4369// This is the fastest way to get thread cpu time on Linux.
4370// Returns cpu time (user+sys) for any thread, not only for current.
4371// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4372// It might work on 2.6.10+ with a special kernel/glibc patch.
4373// For reference, please, see IEEE Std 1003.1-2004:
4374//   http://www.unix.org/single_unix_specification
4375
4376jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4377  struct timespec tp;
4378  int rc = os::Linux::clock_gettime(clockid, &tp);
4379  assert(rc == 0, "clock_gettime is expected to return 0 code");
4380
4381  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4382}
4383
4384/////
4385// glibc on Linux platform uses non-documented flag
4386// to indicate, that some special sort of signal
4387// trampoline is used.
4388// We will never set this flag, and we should
4389// ignore this flag in our diagnostic
4390#ifdef SIGNIFICANT_SIGNAL_MASK
4391  #undef SIGNIFICANT_SIGNAL_MASK
4392#endif
4393#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4394
4395static const char* get_signal_handler_name(address handler,
4396                                           char* buf, int buflen) {
4397  int offset;
4398  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4399  if (found) {
4400    // skip directory names
4401    const char *p1, *p2;
4402    p1 = buf;
4403    size_t len = strlen(os::file_separator());
4404    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4405    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4406  } else {
4407    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4408  }
4409  return buf;
4410}
4411
4412static void print_signal_handler(outputStream* st, int sig,
4413                                 char* buf, size_t buflen) {
4414  struct sigaction sa;
4415
4416  sigaction(sig, NULL, &sa);
4417
4418  // See comment for SIGNIFICANT_SIGNAL_MASK define
4419  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4420
4421  st->print("%s: ", os::exception_name(sig, buf, buflen));
4422
4423  address handler = (sa.sa_flags & SA_SIGINFO)
4424    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4425    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4426
4427  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4428    st->print("SIG_DFL");
4429  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4430    st->print("SIG_IGN");
4431  } else {
4432    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4433  }
4434
4435  st->print(", sa_mask[0]=");
4436  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4437
4438  address rh = VMError::get_resetted_sighandler(sig);
4439  // May be, handler was resetted by VMError?
4440  if (rh != NULL) {
4441    handler = rh;
4442    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4443  }
4444
4445  st->print(", sa_flags=");
4446  os::Posix::print_sa_flags(st, sa.sa_flags);
4447
4448  // Check: is it our handler?
4449  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4450      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4451    // It is our signal handler
4452    // check for flags, reset system-used one!
4453    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4454      st->print(
4455                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4456                os::Linux::get_our_sigflags(sig));
4457    }
4458  }
4459  st->cr();
4460}
4461
4462
4463#define DO_SIGNAL_CHECK(sig)                      \
4464  do {                                            \
4465    if (!sigismember(&check_signal_done, sig)) {  \
4466      os::Linux::check_signal_handler(sig);       \
4467    }                                             \
4468  } while (0)
4469
4470// This method is a periodic task to check for misbehaving JNI applications
4471// under CheckJNI, we can add any periodic checks here
4472
4473void os::run_periodic_checks() {
4474  if (check_signals == false) return;
4475
4476  // SEGV and BUS if overridden could potentially prevent
4477  // generation of hs*.log in the event of a crash, debugging
4478  // such a case can be very challenging, so we absolutely
4479  // check the following for a good measure:
4480  DO_SIGNAL_CHECK(SIGSEGV);
4481  DO_SIGNAL_CHECK(SIGILL);
4482  DO_SIGNAL_CHECK(SIGFPE);
4483  DO_SIGNAL_CHECK(SIGBUS);
4484  DO_SIGNAL_CHECK(SIGPIPE);
4485  DO_SIGNAL_CHECK(SIGXFSZ);
4486#if defined(PPC64)
4487  DO_SIGNAL_CHECK(SIGTRAP);
4488#endif
4489
4490  // ReduceSignalUsage allows the user to override these handlers
4491  // see comments at the very top and jvm_solaris.h
4492  if (!ReduceSignalUsage) {
4493    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4494    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4495    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4496    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4497  }
4498
4499  DO_SIGNAL_CHECK(SR_signum);
4500  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4501}
4502
4503typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4504
4505static os_sigaction_t os_sigaction = NULL;
4506
4507void os::Linux::check_signal_handler(int sig) {
4508  char buf[O_BUFLEN];
4509  address jvmHandler = NULL;
4510
4511
4512  struct sigaction act;
4513  if (os_sigaction == NULL) {
4514    // only trust the default sigaction, in case it has been interposed
4515    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4516    if (os_sigaction == NULL) return;
4517  }
4518
4519  os_sigaction(sig, (struct sigaction*)NULL, &act);
4520
4521
4522  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4523
4524  address thisHandler = (act.sa_flags & SA_SIGINFO)
4525    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4526    : CAST_FROM_FN_PTR(address, act.sa_handler);
4527
4528
4529  switch (sig) {
4530  case SIGSEGV:
4531  case SIGBUS:
4532  case SIGFPE:
4533  case SIGPIPE:
4534  case SIGILL:
4535  case SIGXFSZ:
4536    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4537    break;
4538
4539  case SHUTDOWN1_SIGNAL:
4540  case SHUTDOWN2_SIGNAL:
4541  case SHUTDOWN3_SIGNAL:
4542  case BREAK_SIGNAL:
4543    jvmHandler = (address)user_handler();
4544    break;
4545
4546  case INTERRUPT_SIGNAL:
4547    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4548    break;
4549
4550  default:
4551    if (sig == SR_signum) {
4552      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4553    } else {
4554      return;
4555    }
4556    break;
4557  }
4558
4559  if (thisHandler != jvmHandler) {
4560    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4561    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4562    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4563    // No need to check this sig any longer
4564    sigaddset(&check_signal_done, sig);
4565    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4566    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4567      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4568                    exception_name(sig, buf, O_BUFLEN));
4569    }
4570  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4571    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4572    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4573    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4574    // No need to check this sig any longer
4575    sigaddset(&check_signal_done, sig);
4576  }
4577
4578  // Dump all the signal
4579  if (sigismember(&check_signal_done, sig)) {
4580    print_signal_handlers(tty, buf, O_BUFLEN);
4581  }
4582}
4583
4584extern void report_error(char* file_name, int line_no, char* title,
4585                         char* format, ...);
4586
4587extern bool signal_name(int signo, char* buf, size_t len);
4588
4589const char* os::exception_name(int exception_code, char* buf, size_t size) {
4590  if (0 < exception_code && exception_code <= SIGRTMAX) {
4591    // signal
4592    if (!signal_name(exception_code, buf, size)) {
4593      jio_snprintf(buf, size, "SIG%d", exception_code);
4594    }
4595    return buf;
4596  } else {
4597    return NULL;
4598  }
4599}
4600
4601// this is called _before_ the most of global arguments have been parsed
4602void os::init(void) {
4603  char dummy;   // used to get a guess on initial stack address
4604//  first_hrtime = gethrtime();
4605
4606  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4607
4608  init_random(1234567);
4609
4610  ThreadCritical::initialize();
4611
4612  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4613  if (Linux::page_size() == -1) {
4614    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4615          strerror(errno));
4616  }
4617  init_page_sizes((size_t) Linux::page_size());
4618
4619  Linux::initialize_system_info();
4620
4621  // main_thread points to the aboriginal thread
4622  Linux::_main_thread = pthread_self();
4623
4624  Linux::clock_init();
4625  initial_time_count = javaTimeNanos();
4626
4627  // pthread_condattr initialization for monotonic clock
4628  int status;
4629  pthread_condattr_t* _condattr = os::Linux::condAttr();
4630  if ((status = pthread_condattr_init(_condattr)) != 0) {
4631    fatal("pthread_condattr_init: %s", strerror(status));
4632  }
4633  // Only set the clock if CLOCK_MONOTONIC is available
4634  if (os::supports_monotonic_clock()) {
4635    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4636      if (status == EINVAL) {
4637        warning("Unable to use monotonic clock with relative timed-waits" \
4638                " - changes to the time-of-day clock may have adverse affects");
4639      } else {
4640        fatal("pthread_condattr_setclock: %s", strerror(status));
4641      }
4642    }
4643  }
4644  // else it defaults to CLOCK_REALTIME
4645
4646  // If the pagesize of the VM is greater than 8K determine the appropriate
4647  // number of initial guard pages.  The user can change this with the
4648  // command line arguments, if needed.
4649  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4650    StackYellowPages = 1;
4651    StackRedPages = 1;
4652    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4653  }
4654
4655  // retrieve entry point for pthread_setname_np
4656  Linux::_pthread_setname_np =
4657    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4658
4659}
4660
4661// To install functions for atexit system call
4662extern "C" {
4663  static void perfMemory_exit_helper() {
4664    perfMemory_exit();
4665  }
4666}
4667
4668// this is called _after_ the global arguments have been parsed
4669jint os::init_2(void) {
4670  Linux::fast_thread_clock_init();
4671
4672  // Allocate a single page and mark it as readable for safepoint polling
4673  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4674  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4675
4676  os::set_polling_page(polling_page);
4677
4678#ifndef PRODUCT
4679  if (Verbose && PrintMiscellaneous) {
4680    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4681               (intptr_t)polling_page);
4682  }
4683#endif
4684
4685  if (!UseMembar) {
4686    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4687    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4688    os::set_memory_serialize_page(mem_serialize_page);
4689
4690#ifndef PRODUCT
4691    if (Verbose && PrintMiscellaneous) {
4692      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4693                 (intptr_t)mem_serialize_page);
4694    }
4695#endif
4696  }
4697
4698  // initialize suspend/resume support - must do this before signal_sets_init()
4699  if (SR_initialize() != 0) {
4700    perror("SR_initialize failed");
4701    return JNI_ERR;
4702  }
4703
4704  Linux::signal_sets_init();
4705  Linux::install_signal_handlers();
4706
4707  // Check minimum allowable stack size for thread creation and to initialize
4708  // the java system classes, including StackOverflowError - depends on page
4709  // size.  Add a page for compiler2 recursion in main thread.
4710  // Add in 2*BytesPerWord times page size to account for VM stack during
4711  // class initialization depending on 32 or 64 bit VM.
4712  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4713                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4714                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4715
4716  size_t threadStackSizeInBytes = ThreadStackSize * K;
4717  if (threadStackSizeInBytes != 0 &&
4718      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4719    tty->print_cr("\nThe stack size specified is too small, "
4720                  "Specify at least %dk",
4721                  os::Linux::min_stack_allowed/ K);
4722    return JNI_ERR;
4723  }
4724
4725  // Make the stack size a multiple of the page size so that
4726  // the yellow/red zones can be guarded.
4727  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4728                                                vm_page_size()));
4729
4730  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4731
4732#if defined(IA32)
4733  workaround_expand_exec_shield_cs_limit();
4734#endif
4735
4736  Linux::libpthread_init();
4737  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4738    tty->print_cr("[HotSpot is running with %s, %s]\n",
4739                  Linux::glibc_version(), Linux::libpthread_version());
4740  }
4741
4742  if (UseNUMA) {
4743    if (!Linux::libnuma_init()) {
4744      UseNUMA = false;
4745    } else {
4746      if ((Linux::numa_max_node() < 1)) {
4747        // There's only one node(they start from 0), disable NUMA.
4748        UseNUMA = false;
4749      }
4750    }
4751    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4752    // we can make the adaptive lgrp chunk resizing work. If the user specified
4753    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4754    // disable adaptive resizing.
4755    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4756      if (FLAG_IS_DEFAULT(UseNUMA)) {
4757        UseNUMA = false;
4758      } else {
4759        if (FLAG_IS_DEFAULT(UseLargePages) &&
4760            FLAG_IS_DEFAULT(UseSHM) &&
4761            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4762          UseLargePages = false;
4763        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4764          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4765          UseAdaptiveSizePolicy = false;
4766          UseAdaptiveNUMAChunkSizing = false;
4767        }
4768      }
4769    }
4770    if (!UseNUMA && ForceNUMA) {
4771      UseNUMA = true;
4772    }
4773  }
4774
4775  if (MaxFDLimit) {
4776    // set the number of file descriptors to max. print out error
4777    // if getrlimit/setrlimit fails but continue regardless.
4778    struct rlimit nbr_files;
4779    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4780    if (status != 0) {
4781      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4782        perror("os::init_2 getrlimit failed");
4783      }
4784    } else {
4785      nbr_files.rlim_cur = nbr_files.rlim_max;
4786      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4787      if (status != 0) {
4788        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4789          perror("os::init_2 setrlimit failed");
4790        }
4791      }
4792    }
4793  }
4794
4795  // Initialize lock used to serialize thread creation (see os::create_thread)
4796  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4797
4798  // at-exit methods are called in the reverse order of their registration.
4799  // atexit functions are called on return from main or as a result of a
4800  // call to exit(3C). There can be only 32 of these functions registered
4801  // and atexit() does not set errno.
4802
4803  if (PerfAllowAtExitRegistration) {
4804    // only register atexit functions if PerfAllowAtExitRegistration is set.
4805    // atexit functions can be delayed until process exit time, which
4806    // can be problematic for embedded VM situations. Embedded VMs should
4807    // call DestroyJavaVM() to assure that VM resources are released.
4808
4809    // note: perfMemory_exit_helper atexit function may be removed in
4810    // the future if the appropriate cleanup code can be added to the
4811    // VM_Exit VMOperation's doit method.
4812    if (atexit(perfMemory_exit_helper) != 0) {
4813      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4814    }
4815  }
4816
4817  // initialize thread priority policy
4818  prio_init();
4819
4820  return JNI_OK;
4821}
4822
4823// Mark the polling page as unreadable
4824void os::make_polling_page_unreadable(void) {
4825  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4826    fatal("Could not disable polling page");
4827  }
4828}
4829
4830// Mark the polling page as readable
4831void os::make_polling_page_readable(void) {
4832  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4833    fatal("Could not enable polling page");
4834  }
4835}
4836
4837int os::active_processor_count() {
4838  // Linux doesn't yet have a (official) notion of processor sets,
4839  // so just return the number of online processors.
4840  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4841  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4842  return online_cpus;
4843}
4844
4845void os::set_native_thread_name(const char *name) {
4846  if (Linux::_pthread_setname_np) {
4847    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4848    snprintf(buf, sizeof(buf), "%s", name);
4849    buf[sizeof(buf) - 1] = '\0';
4850    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4851    // ERANGE should not happen; all other errors should just be ignored.
4852    assert(rc != ERANGE, "pthread_setname_np failed");
4853  }
4854}
4855
4856bool os::distribute_processes(uint length, uint* distribution) {
4857  // Not yet implemented.
4858  return false;
4859}
4860
4861bool os::bind_to_processor(uint processor_id) {
4862  // Not yet implemented.
4863  return false;
4864}
4865
4866///
4867
4868void os::SuspendedThreadTask::internal_do_task() {
4869  if (do_suspend(_thread->osthread())) {
4870    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4871    do_task(context);
4872    do_resume(_thread->osthread());
4873  }
4874}
4875
4876class PcFetcher : public os::SuspendedThreadTask {
4877 public:
4878  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4879  ExtendedPC result();
4880 protected:
4881  void do_task(const os::SuspendedThreadTaskContext& context);
4882 private:
4883  ExtendedPC _epc;
4884};
4885
4886ExtendedPC PcFetcher::result() {
4887  guarantee(is_done(), "task is not done yet.");
4888  return _epc;
4889}
4890
4891void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4892  Thread* thread = context.thread();
4893  OSThread* osthread = thread->osthread();
4894  if (osthread->ucontext() != NULL) {
4895    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4896  } else {
4897    // NULL context is unexpected, double-check this is the VMThread
4898    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4899  }
4900}
4901
4902// Suspends the target using the signal mechanism and then grabs the PC before
4903// resuming the target. Used by the flat-profiler only
4904ExtendedPC os::get_thread_pc(Thread* thread) {
4905  // Make sure that it is called by the watcher for the VMThread
4906  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4907  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4908
4909  PcFetcher fetcher(thread);
4910  fetcher.run();
4911  return fetcher.result();
4912}
4913
4914////////////////////////////////////////////////////////////////////////////////
4915// debug support
4916
4917bool os::find(address addr, outputStream* st) {
4918  Dl_info dlinfo;
4919  memset(&dlinfo, 0, sizeof(dlinfo));
4920  if (dladdr(addr, &dlinfo) != 0) {
4921    st->print(PTR_FORMAT ": ", addr);
4922    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4923      st->print("%s+%#x", dlinfo.dli_sname,
4924                addr - (intptr_t)dlinfo.dli_saddr);
4925    } else if (dlinfo.dli_fbase != NULL) {
4926      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4927    } else {
4928      st->print("<absolute address>");
4929    }
4930    if (dlinfo.dli_fname != NULL) {
4931      st->print(" in %s", dlinfo.dli_fname);
4932    }
4933    if (dlinfo.dli_fbase != NULL) {
4934      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4935    }
4936    st->cr();
4937
4938    if (Verbose) {
4939      // decode some bytes around the PC
4940      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4941      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4942      address       lowest = (address) dlinfo.dli_sname;
4943      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4944      if (begin < lowest)  begin = lowest;
4945      Dl_info dlinfo2;
4946      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4947          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4948        end = (address) dlinfo2.dli_saddr;
4949      }
4950      Disassembler::decode(begin, end, st);
4951    }
4952    return true;
4953  }
4954  return false;
4955}
4956
4957////////////////////////////////////////////////////////////////////////////////
4958// misc
4959
4960// This does not do anything on Linux. This is basically a hook for being
4961// able to use structured exception handling (thread-local exception filters)
4962// on, e.g., Win32.
4963void
4964os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4965                         JavaCallArguments* args, Thread* thread) {
4966  f(value, method, args, thread);
4967}
4968
4969void os::print_statistics() {
4970}
4971
4972int os::message_box(const char* title, const char* message) {
4973  int i;
4974  fdStream err(defaultStream::error_fd());
4975  for (i = 0; i < 78; i++) err.print_raw("=");
4976  err.cr();
4977  err.print_raw_cr(title);
4978  for (i = 0; i < 78; i++) err.print_raw("-");
4979  err.cr();
4980  err.print_raw_cr(message);
4981  for (i = 0; i < 78; i++) err.print_raw("=");
4982  err.cr();
4983
4984  char buf[16];
4985  // Prevent process from exiting upon "read error" without consuming all CPU
4986  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4987
4988  return buf[0] == 'y' || buf[0] == 'Y';
4989}
4990
4991int os::stat(const char *path, struct stat *sbuf) {
4992  char pathbuf[MAX_PATH];
4993  if (strlen(path) > MAX_PATH - 1) {
4994    errno = ENAMETOOLONG;
4995    return -1;
4996  }
4997  os::native_path(strcpy(pathbuf, path));
4998  return ::stat(pathbuf, sbuf);
4999}
5000
5001bool os::check_heap(bool force) {
5002  return true;
5003}
5004
5005// Is a (classpath) directory empty?
5006bool os::dir_is_empty(const char* path) {
5007  DIR *dir = NULL;
5008  struct dirent *ptr;
5009
5010  dir = opendir(path);
5011  if (dir == NULL) return true;
5012
5013  // Scan the directory
5014  bool result = true;
5015  char buf[sizeof(struct dirent) + MAX_PATH];
5016  while (result && (ptr = ::readdir(dir)) != NULL) {
5017    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5018      result = false;
5019    }
5020  }
5021  closedir(dir);
5022  return result;
5023}
5024
5025// This code originates from JDK's sysOpen and open64_w
5026// from src/solaris/hpi/src/system_md.c
5027
5028int os::open(const char *path, int oflag, int mode) {
5029  if (strlen(path) > MAX_PATH - 1) {
5030    errno = ENAMETOOLONG;
5031    return -1;
5032  }
5033
5034  // All file descriptors that are opened in the Java process and not
5035  // specifically destined for a subprocess should have the close-on-exec
5036  // flag set.  If we don't set it, then careless 3rd party native code
5037  // might fork and exec without closing all appropriate file descriptors
5038  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5039  // turn might:
5040  //
5041  // - cause end-of-file to fail to be detected on some file
5042  //   descriptors, resulting in mysterious hangs, or
5043  //
5044  // - might cause an fopen in the subprocess to fail on a system
5045  //   suffering from bug 1085341.
5046  //
5047  // (Yes, the default setting of the close-on-exec flag is a Unix
5048  // design flaw)
5049  //
5050  // See:
5051  // 1085341: 32-bit stdio routines should support file descriptors >255
5052  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5053  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5054  //
5055  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5056  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5057  // because it saves a system call and removes a small window where the flag
5058  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5059  // and we fall back to using FD_CLOEXEC (see below).
5060#ifdef O_CLOEXEC
5061  oflag |= O_CLOEXEC;
5062#endif
5063
5064  int fd = ::open64(path, oflag, mode);
5065  if (fd == -1) return -1;
5066
5067  //If the open succeeded, the file might still be a directory
5068  {
5069    struct stat64 buf64;
5070    int ret = ::fstat64(fd, &buf64);
5071    int st_mode = buf64.st_mode;
5072
5073    if (ret != -1) {
5074      if ((st_mode & S_IFMT) == S_IFDIR) {
5075        errno = EISDIR;
5076        ::close(fd);
5077        return -1;
5078      }
5079    } else {
5080      ::close(fd);
5081      return -1;
5082    }
5083  }
5084
5085#ifdef FD_CLOEXEC
5086  // Validate that the use of the O_CLOEXEC flag on open above worked.
5087  // With recent kernels, we will perform this check exactly once.
5088  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5089  if (!O_CLOEXEC_is_known_to_work) {
5090    int flags = ::fcntl(fd, F_GETFD);
5091    if (flags != -1) {
5092      if ((flags & FD_CLOEXEC) != 0)
5093        O_CLOEXEC_is_known_to_work = 1;
5094      else
5095        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5096    }
5097  }
5098#endif
5099
5100  return fd;
5101}
5102
5103
5104// create binary file, rewriting existing file if required
5105int os::create_binary_file(const char* path, bool rewrite_existing) {
5106  int oflags = O_WRONLY | O_CREAT;
5107  if (!rewrite_existing) {
5108    oflags |= O_EXCL;
5109  }
5110  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5111}
5112
5113// return current position of file pointer
5114jlong os::current_file_offset(int fd) {
5115  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5116}
5117
5118// move file pointer to the specified offset
5119jlong os::seek_to_file_offset(int fd, jlong offset) {
5120  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5121}
5122
5123// This code originates from JDK's sysAvailable
5124// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5125
5126int os::available(int fd, jlong *bytes) {
5127  jlong cur, end;
5128  int mode;
5129  struct stat64 buf64;
5130
5131  if (::fstat64(fd, &buf64) >= 0) {
5132    mode = buf64.st_mode;
5133    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5134      // XXX: is the following call interruptible? If so, this might
5135      // need to go through the INTERRUPT_IO() wrapper as for other
5136      // blocking, interruptible calls in this file.
5137      int n;
5138      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5139        *bytes = n;
5140        return 1;
5141      }
5142    }
5143  }
5144  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5145    return 0;
5146  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5147    return 0;
5148  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5149    return 0;
5150  }
5151  *bytes = end - cur;
5152  return 1;
5153}
5154
5155// Map a block of memory.
5156char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5157                        char *addr, size_t bytes, bool read_only,
5158                        bool allow_exec) {
5159  int prot;
5160  int flags = MAP_PRIVATE;
5161
5162  if (read_only) {
5163    prot = PROT_READ;
5164  } else {
5165    prot = PROT_READ | PROT_WRITE;
5166  }
5167
5168  if (allow_exec) {
5169    prot |= PROT_EXEC;
5170  }
5171
5172  if (addr != NULL) {
5173    flags |= MAP_FIXED;
5174  }
5175
5176  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5177                                     fd, file_offset);
5178  if (mapped_address == MAP_FAILED) {
5179    return NULL;
5180  }
5181  return mapped_address;
5182}
5183
5184
5185// Remap a block of memory.
5186char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5187                          char *addr, size_t bytes, bool read_only,
5188                          bool allow_exec) {
5189  // same as map_memory() on this OS
5190  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5191                        allow_exec);
5192}
5193
5194
5195// Unmap a block of memory.
5196bool os::pd_unmap_memory(char* addr, size_t bytes) {
5197  return munmap(addr, bytes) == 0;
5198}
5199
5200static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5201
5202static clockid_t thread_cpu_clockid(Thread* thread) {
5203  pthread_t tid = thread->osthread()->pthread_id();
5204  clockid_t clockid;
5205
5206  // Get thread clockid
5207  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5208  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5209  return clockid;
5210}
5211
5212// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5213// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5214// of a thread.
5215//
5216// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5217// the fast estimate available on the platform.
5218
5219jlong os::current_thread_cpu_time() {
5220  if (os::Linux::supports_fast_thread_cpu_time()) {
5221    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5222  } else {
5223    // return user + sys since the cost is the same
5224    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5225  }
5226}
5227
5228jlong os::thread_cpu_time(Thread* thread) {
5229  // consistent with what current_thread_cpu_time() returns
5230  if (os::Linux::supports_fast_thread_cpu_time()) {
5231    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5232  } else {
5233    return slow_thread_cpu_time(thread, true /* user + sys */);
5234  }
5235}
5236
5237jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5238  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5239    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5240  } else {
5241    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5242  }
5243}
5244
5245jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5246  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5247    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5248  } else {
5249    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5250  }
5251}
5252
5253//  -1 on error.
5254static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5255  pid_t  tid = thread->osthread()->thread_id();
5256  char *s;
5257  char stat[2048];
5258  int statlen;
5259  char proc_name[64];
5260  int count;
5261  long sys_time, user_time;
5262  char cdummy;
5263  int idummy;
5264  long ldummy;
5265  FILE *fp;
5266
5267  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5268  fp = fopen(proc_name, "r");
5269  if (fp == NULL) return -1;
5270  statlen = fread(stat, 1, 2047, fp);
5271  stat[statlen] = '\0';
5272  fclose(fp);
5273
5274  // Skip pid and the command string. Note that we could be dealing with
5275  // weird command names, e.g. user could decide to rename java launcher
5276  // to "java 1.4.2 :)", then the stat file would look like
5277  //                1234 (java 1.4.2 :)) R ... ...
5278  // We don't really need to know the command string, just find the last
5279  // occurrence of ")" and then start parsing from there. See bug 4726580.
5280  s = strrchr(stat, ')');
5281  if (s == NULL) return -1;
5282
5283  // Skip blank chars
5284  do { s++; } while (s && isspace(*s));
5285
5286  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5287                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5288                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5289                 &user_time, &sys_time);
5290  if (count != 13) return -1;
5291  if (user_sys_cpu_time) {
5292    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5293  } else {
5294    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5295  }
5296}
5297
5298void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5299  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5300  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5301  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5302  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5303}
5304
5305void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5306  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5307  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5308  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5309  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5310}
5311
5312bool os::is_thread_cpu_time_supported() {
5313  return true;
5314}
5315
5316// System loadavg support.  Returns -1 if load average cannot be obtained.
5317// Linux doesn't yet have a (official) notion of processor sets,
5318// so just return the system wide load average.
5319int os::loadavg(double loadavg[], int nelem) {
5320  return ::getloadavg(loadavg, nelem);
5321}
5322
5323void os::pause() {
5324  char filename[MAX_PATH];
5325  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5326    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5327  } else {
5328    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5329  }
5330
5331  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5332  if (fd != -1) {
5333    struct stat buf;
5334    ::close(fd);
5335    while (::stat(filename, &buf) == 0) {
5336      (void)::poll(NULL, 0, 100);
5337    }
5338  } else {
5339    jio_fprintf(stderr,
5340                "Could not open pause file '%s', continuing immediately.\n", filename);
5341  }
5342}
5343
5344
5345// Refer to the comments in os_solaris.cpp park-unpark. The next two
5346// comment paragraphs are worth repeating here:
5347//
5348// Assumption:
5349//    Only one parker can exist on an event, which is why we allocate
5350//    them per-thread. Multiple unparkers can coexist.
5351//
5352// _Event serves as a restricted-range semaphore.
5353//   -1 : thread is blocked, i.e. there is a waiter
5354//    0 : neutral: thread is running or ready,
5355//        could have been signaled after a wait started
5356//    1 : signaled - thread is running or ready
5357//
5358// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5359// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5360// For specifics regarding the bug see GLIBC BUGID 261237 :
5361//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5362// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5363// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5364// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5365// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5366// and monitorenter when we're using 1-0 locking.  All those operations may result in
5367// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5368// of libpthread avoids the problem, but isn't practical.
5369//
5370// Possible remedies:
5371//
5372// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5373//      This is palliative and probabilistic, however.  If the thread is preempted
5374//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5375//      than the minimum period may have passed, and the abstime may be stale (in the
5376//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5377//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5378//
5379// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5380//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5381//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5382//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5383//      thread.
5384//
5385// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5386//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5387//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5388//      This also works well.  In fact it avoids kernel-level scalability impediments
5389//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5390//      timers in a graceful fashion.
5391//
5392// 4.   When the abstime value is in the past it appears that control returns
5393//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5394//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5395//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5396//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5397//      It may be possible to avoid reinitialization by checking the return
5398//      value from pthread_cond_timedwait().  In addition to reinitializing the
5399//      condvar we must establish the invariant that cond_signal() is only called
5400//      within critical sections protected by the adjunct mutex.  This prevents
5401//      cond_signal() from "seeing" a condvar that's in the midst of being
5402//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5403//      desirable signal-after-unlock optimization that avoids futile context switching.
5404//
5405//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5406//      structure when a condvar is used or initialized.  cond_destroy()  would
5407//      release the helper structure.  Our reinitialize-after-timedwait fix
5408//      put excessive stress on malloc/free and locks protecting the c-heap.
5409//
5410// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5411// It may be possible to refine (4) by checking the kernel and NTPL verisons
5412// and only enabling the work-around for vulnerable environments.
5413
5414// utility to compute the abstime argument to timedwait:
5415// millis is the relative timeout time
5416// abstime will be the absolute timeout time
5417// TODO: replace compute_abstime() with unpackTime()
5418
5419static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5420  if (millis < 0)  millis = 0;
5421
5422  jlong seconds = millis / 1000;
5423  millis %= 1000;
5424  if (seconds > 50000000) { // see man cond_timedwait(3T)
5425    seconds = 50000000;
5426  }
5427
5428  if (os::supports_monotonic_clock()) {
5429    struct timespec now;
5430    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5431    assert_status(status == 0, status, "clock_gettime");
5432    abstime->tv_sec = now.tv_sec  + seconds;
5433    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5434    if (nanos >= NANOSECS_PER_SEC) {
5435      abstime->tv_sec += 1;
5436      nanos -= NANOSECS_PER_SEC;
5437    }
5438    abstime->tv_nsec = nanos;
5439  } else {
5440    struct timeval now;
5441    int status = gettimeofday(&now, NULL);
5442    assert(status == 0, "gettimeofday");
5443    abstime->tv_sec = now.tv_sec  + seconds;
5444    long usec = now.tv_usec + millis * 1000;
5445    if (usec >= 1000000) {
5446      abstime->tv_sec += 1;
5447      usec -= 1000000;
5448    }
5449    abstime->tv_nsec = usec * 1000;
5450  }
5451  return abstime;
5452}
5453
5454void os::PlatformEvent::park() {       // AKA "down()"
5455  // Transitions for _Event:
5456  //   -1 => -1 : illegal
5457  //    1 =>  0 : pass - return immediately
5458  //    0 => -1 : block; then set _Event to 0 before returning
5459
5460  // Invariant: Only the thread associated with the Event/PlatformEvent
5461  // may call park().
5462  // TODO: assert that _Assoc != NULL or _Assoc == Self
5463  assert(_nParked == 0, "invariant");
5464
5465  int v;
5466  for (;;) {
5467    v = _Event;
5468    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5469  }
5470  guarantee(v >= 0, "invariant");
5471  if (v == 0) {
5472    // Do this the hard way by blocking ...
5473    int status = pthread_mutex_lock(_mutex);
5474    assert_status(status == 0, status, "mutex_lock");
5475    guarantee(_nParked == 0, "invariant");
5476    ++_nParked;
5477    while (_Event < 0) {
5478      status = pthread_cond_wait(_cond, _mutex);
5479      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5480      // Treat this the same as if the wait was interrupted
5481      if (status == ETIME) { status = EINTR; }
5482      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5483    }
5484    --_nParked;
5485
5486    _Event = 0;
5487    status = pthread_mutex_unlock(_mutex);
5488    assert_status(status == 0, status, "mutex_unlock");
5489    // Paranoia to ensure our locked and lock-free paths interact
5490    // correctly with each other.
5491    OrderAccess::fence();
5492  }
5493  guarantee(_Event >= 0, "invariant");
5494}
5495
5496int os::PlatformEvent::park(jlong millis) {
5497  // Transitions for _Event:
5498  //   -1 => -1 : illegal
5499  //    1 =>  0 : pass - return immediately
5500  //    0 => -1 : block; then set _Event to 0 before returning
5501
5502  guarantee(_nParked == 0, "invariant");
5503
5504  int v;
5505  for (;;) {
5506    v = _Event;
5507    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5508  }
5509  guarantee(v >= 0, "invariant");
5510  if (v != 0) return OS_OK;
5511
5512  // We do this the hard way, by blocking the thread.
5513  // Consider enforcing a minimum timeout value.
5514  struct timespec abst;
5515  compute_abstime(&abst, millis);
5516
5517  int ret = OS_TIMEOUT;
5518  int status = pthread_mutex_lock(_mutex);
5519  assert_status(status == 0, status, "mutex_lock");
5520  guarantee(_nParked == 0, "invariant");
5521  ++_nParked;
5522
5523  // Object.wait(timo) will return because of
5524  // (a) notification
5525  // (b) timeout
5526  // (c) thread.interrupt
5527  //
5528  // Thread.interrupt and object.notify{All} both call Event::set.
5529  // That is, we treat thread.interrupt as a special case of notification.
5530  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5531  // We assume all ETIME returns are valid.
5532  //
5533  // TODO: properly differentiate simultaneous notify+interrupt.
5534  // In that case, we should propagate the notify to another waiter.
5535
5536  while (_Event < 0) {
5537    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5538    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5539      pthread_cond_destroy(_cond);
5540      pthread_cond_init(_cond, os::Linux::condAttr());
5541    }
5542    assert_status(status == 0 || status == EINTR ||
5543                  status == ETIME || status == ETIMEDOUT,
5544                  status, "cond_timedwait");
5545    if (!FilterSpuriousWakeups) break;                 // previous semantics
5546    if (status == ETIME || status == ETIMEDOUT) break;
5547    // We consume and ignore EINTR and spurious wakeups.
5548  }
5549  --_nParked;
5550  if (_Event >= 0) {
5551    ret = OS_OK;
5552  }
5553  _Event = 0;
5554  status = pthread_mutex_unlock(_mutex);
5555  assert_status(status == 0, status, "mutex_unlock");
5556  assert(_nParked == 0, "invariant");
5557  // Paranoia to ensure our locked and lock-free paths interact
5558  // correctly with each other.
5559  OrderAccess::fence();
5560  return ret;
5561}
5562
5563void os::PlatformEvent::unpark() {
5564  // Transitions for _Event:
5565  //    0 => 1 : just return
5566  //    1 => 1 : just return
5567  //   -1 => either 0 or 1; must signal target thread
5568  //         That is, we can safely transition _Event from -1 to either
5569  //         0 or 1.
5570  // See also: "Semaphores in Plan 9" by Mullender & Cox
5571  //
5572  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5573  // that it will take two back-to-back park() calls for the owning
5574  // thread to block. This has the benefit of forcing a spurious return
5575  // from the first park() call after an unpark() call which will help
5576  // shake out uses of park() and unpark() without condition variables.
5577
5578  if (Atomic::xchg(1, &_Event) >= 0) return;
5579
5580  // Wait for the thread associated with the event to vacate
5581  int status = pthread_mutex_lock(_mutex);
5582  assert_status(status == 0, status, "mutex_lock");
5583  int AnyWaiters = _nParked;
5584  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5585  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5586    AnyWaiters = 0;
5587    pthread_cond_signal(_cond);
5588  }
5589  status = pthread_mutex_unlock(_mutex);
5590  assert_status(status == 0, status, "mutex_unlock");
5591  if (AnyWaiters != 0) {
5592    // Note that we signal() *after* dropping the lock for "immortal" Events.
5593    // This is safe and avoids a common class of  futile wakeups.  In rare
5594    // circumstances this can cause a thread to return prematurely from
5595    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5596    // will simply re-test the condition and re-park itself.
5597    // This provides particular benefit if the underlying platform does not
5598    // provide wait morphing.
5599    status = pthread_cond_signal(_cond);
5600    assert_status(status == 0, status, "cond_signal");
5601  }
5602}
5603
5604
5605// JSR166
5606// -------------------------------------------------------
5607
5608// The solaris and linux implementations of park/unpark are fairly
5609// conservative for now, but can be improved. They currently use a
5610// mutex/condvar pair, plus a a count.
5611// Park decrements count if > 0, else does a condvar wait.  Unpark
5612// sets count to 1 and signals condvar.  Only one thread ever waits
5613// on the condvar. Contention seen when trying to park implies that someone
5614// is unparking you, so don't wait. And spurious returns are fine, so there
5615// is no need to track notifications.
5616
5617// This code is common to linux and solaris and will be moved to a
5618// common place in dolphin.
5619//
5620// The passed in time value is either a relative time in nanoseconds
5621// or an absolute time in milliseconds. Either way it has to be unpacked
5622// into suitable seconds and nanoseconds components and stored in the
5623// given timespec structure.
5624// Given time is a 64-bit value and the time_t used in the timespec is only
5625// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5626// overflow if times way in the future are given. Further on Solaris versions
5627// prior to 10 there is a restriction (see cond_timedwait) that the specified
5628// number of seconds, in abstime, is less than current_time  + 100,000,000.
5629// As it will be 28 years before "now + 100000000" will overflow we can
5630// ignore overflow and just impose a hard-limit on seconds using the value
5631// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5632// years from "now".
5633
5634static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5635  assert(time > 0, "convertTime");
5636  time_t max_secs = 0;
5637
5638  if (!os::supports_monotonic_clock() || isAbsolute) {
5639    struct timeval now;
5640    int status = gettimeofday(&now, NULL);
5641    assert(status == 0, "gettimeofday");
5642
5643    max_secs = now.tv_sec + MAX_SECS;
5644
5645    if (isAbsolute) {
5646      jlong secs = time / 1000;
5647      if (secs > max_secs) {
5648        absTime->tv_sec = max_secs;
5649      } else {
5650        absTime->tv_sec = secs;
5651      }
5652      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5653    } else {
5654      jlong secs = time / NANOSECS_PER_SEC;
5655      if (secs >= MAX_SECS) {
5656        absTime->tv_sec = max_secs;
5657        absTime->tv_nsec = 0;
5658      } else {
5659        absTime->tv_sec = now.tv_sec + secs;
5660        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5661        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5662          absTime->tv_nsec -= NANOSECS_PER_SEC;
5663          ++absTime->tv_sec; // note: this must be <= max_secs
5664        }
5665      }
5666    }
5667  } else {
5668    // must be relative using monotonic clock
5669    struct timespec now;
5670    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5671    assert_status(status == 0, status, "clock_gettime");
5672    max_secs = now.tv_sec + MAX_SECS;
5673    jlong secs = time / NANOSECS_PER_SEC;
5674    if (secs >= MAX_SECS) {
5675      absTime->tv_sec = max_secs;
5676      absTime->tv_nsec = 0;
5677    } else {
5678      absTime->tv_sec = now.tv_sec + secs;
5679      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5680      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5681        absTime->tv_nsec -= NANOSECS_PER_SEC;
5682        ++absTime->tv_sec; // note: this must be <= max_secs
5683      }
5684    }
5685  }
5686  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5687  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5688  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5689  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5690}
5691
5692void Parker::park(bool isAbsolute, jlong time) {
5693  // Ideally we'd do something useful while spinning, such
5694  // as calling unpackTime().
5695
5696  // Optional fast-path check:
5697  // Return immediately if a permit is available.
5698  // We depend on Atomic::xchg() having full barrier semantics
5699  // since we are doing a lock-free update to _counter.
5700  if (Atomic::xchg(0, &_counter) > 0) return;
5701
5702  Thread* thread = Thread::current();
5703  assert(thread->is_Java_thread(), "Must be JavaThread");
5704  JavaThread *jt = (JavaThread *)thread;
5705
5706  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5707  // Check interrupt before trying to wait
5708  if (Thread::is_interrupted(thread, false)) {
5709    return;
5710  }
5711
5712  // Next, demultiplex/decode time arguments
5713  timespec absTime;
5714  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5715    return;
5716  }
5717  if (time > 0) {
5718    unpackTime(&absTime, isAbsolute, time);
5719  }
5720
5721
5722  // Enter safepoint region
5723  // Beware of deadlocks such as 6317397.
5724  // The per-thread Parker:: mutex is a classic leaf-lock.
5725  // In particular a thread must never block on the Threads_lock while
5726  // holding the Parker:: mutex.  If safepoints are pending both the
5727  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5728  ThreadBlockInVM tbivm(jt);
5729
5730  // Don't wait if cannot get lock since interference arises from
5731  // unblocking.  Also. check interrupt before trying wait
5732  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5733    return;
5734  }
5735
5736  int status;
5737  if (_counter > 0)  { // no wait needed
5738    _counter = 0;
5739    status = pthread_mutex_unlock(_mutex);
5740    assert(status == 0, "invariant");
5741    // Paranoia to ensure our locked and lock-free paths interact
5742    // correctly with each other and Java-level accesses.
5743    OrderAccess::fence();
5744    return;
5745  }
5746
5747#ifdef ASSERT
5748  // Don't catch signals while blocked; let the running threads have the signals.
5749  // (This allows a debugger to break into the running thread.)
5750  sigset_t oldsigs;
5751  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5752  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5753#endif
5754
5755  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5756  jt->set_suspend_equivalent();
5757  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5758
5759  assert(_cur_index == -1, "invariant");
5760  if (time == 0) {
5761    _cur_index = REL_INDEX; // arbitrary choice when not timed
5762    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5763  } else {
5764    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5765    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5766    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5767      pthread_cond_destroy(&_cond[_cur_index]);
5768      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5769    }
5770  }
5771  _cur_index = -1;
5772  assert_status(status == 0 || status == EINTR ||
5773                status == ETIME || status == ETIMEDOUT,
5774                status, "cond_timedwait");
5775
5776#ifdef ASSERT
5777  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5778#endif
5779
5780  _counter = 0;
5781  status = pthread_mutex_unlock(_mutex);
5782  assert_status(status == 0, status, "invariant");
5783  // Paranoia to ensure our locked and lock-free paths interact
5784  // correctly with each other and Java-level accesses.
5785  OrderAccess::fence();
5786
5787  // If externally suspended while waiting, re-suspend
5788  if (jt->handle_special_suspend_equivalent_condition()) {
5789    jt->java_suspend_self();
5790  }
5791}
5792
5793void Parker::unpark() {
5794  int status = pthread_mutex_lock(_mutex);
5795  assert(status == 0, "invariant");
5796  const int s = _counter;
5797  _counter = 1;
5798  if (s < 1) {
5799    // thread might be parked
5800    if (_cur_index != -1) {
5801      // thread is definitely parked
5802      if (WorkAroundNPTLTimedWaitHang) {
5803        status = pthread_cond_signal(&_cond[_cur_index]);
5804        assert(status == 0, "invariant");
5805        status = pthread_mutex_unlock(_mutex);
5806        assert(status == 0, "invariant");
5807      } else {
5808        // must capture correct index before unlocking
5809        int index = _cur_index;
5810        status = pthread_mutex_unlock(_mutex);
5811        assert(status == 0, "invariant");
5812        status = pthread_cond_signal(&_cond[index]);
5813        assert(status == 0, "invariant");
5814      }
5815    } else {
5816      pthread_mutex_unlock(_mutex);
5817      assert(status == 0, "invariant");
5818    }
5819  } else {
5820    pthread_mutex_unlock(_mutex);
5821    assert(status == 0, "invariant");
5822  }
5823}
5824
5825
5826extern char** environ;
5827
5828// Run the specified command in a separate process. Return its exit value,
5829// or -1 on failure (e.g. can't fork a new process).
5830// Unlike system(), this function can be called from signal handler. It
5831// doesn't block SIGINT et al.
5832int os::fork_and_exec(char* cmd) {
5833  const char * argv[4] = {"sh", "-c", cmd, NULL};
5834
5835  pid_t pid = fork();
5836
5837  if (pid < 0) {
5838    // fork failed
5839    return -1;
5840
5841  } else if (pid == 0) {
5842    // child process
5843
5844    execve("/bin/sh", (char* const*)argv, environ);
5845
5846    // execve failed
5847    _exit(-1);
5848
5849  } else  {
5850    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5851    // care about the actual exit code, for now.
5852
5853    int status;
5854
5855    // Wait for the child process to exit.  This returns immediately if
5856    // the child has already exited. */
5857    while (waitpid(pid, &status, 0) < 0) {
5858      switch (errno) {
5859      case ECHILD: return 0;
5860      case EINTR: break;
5861      default: return -1;
5862      }
5863    }
5864
5865    if (WIFEXITED(status)) {
5866      // The child exited normally; get its exit code.
5867      return WEXITSTATUS(status);
5868    } else if (WIFSIGNALED(status)) {
5869      // The child exited because of a signal
5870      // The best value to return is 0x80 + signal number,
5871      // because that is what all Unix shells do, and because
5872      // it allows callers to distinguish between process exit and
5873      // process death by signal.
5874      return 0x80 + WTERMSIG(status);
5875    } else {
5876      // Unknown exit code; pass it through
5877      return status;
5878    }
5879  }
5880}
5881
5882// is_headless_jre()
5883//
5884// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5885// in order to report if we are running in a headless jre
5886//
5887// Since JDK8 xawt/libmawt.so was moved into the same directory
5888// as libawt.so, and renamed libawt_xawt.so
5889//
5890bool os::is_headless_jre() {
5891  struct stat statbuf;
5892  char buf[MAXPATHLEN];
5893  char libmawtpath[MAXPATHLEN];
5894  const char *xawtstr  = "/xawt/libmawt.so";
5895  const char *new_xawtstr = "/libawt_xawt.so";
5896  char *p;
5897
5898  // Get path to libjvm.so
5899  os::jvm_path(buf, sizeof(buf));
5900
5901  // Get rid of libjvm.so
5902  p = strrchr(buf, '/');
5903  if (p == NULL) {
5904    return false;
5905  } else {
5906    *p = '\0';
5907  }
5908
5909  // Get rid of client or server
5910  p = strrchr(buf, '/');
5911  if (p == NULL) {
5912    return false;
5913  } else {
5914    *p = '\0';
5915  }
5916
5917  // check xawt/libmawt.so
5918  strcpy(libmawtpath, buf);
5919  strcat(libmawtpath, xawtstr);
5920  if (::stat(libmawtpath, &statbuf) == 0) return false;
5921
5922  // check libawt_xawt.so
5923  strcpy(libmawtpath, buf);
5924  strcat(libmawtpath, new_xawtstr);
5925  if (::stat(libmawtpath, &statbuf) == 0) return false;
5926
5927  return true;
5928}
5929
5930// Get the default path to the core file
5931// Returns the length of the string
5932int os::get_core_path(char* buffer, size_t bufferSize) {
5933  /*
5934   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5935   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5936   */
5937  const int core_pattern_len = 129;
5938  char core_pattern[core_pattern_len] = {0};
5939
5940  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5941  if (core_pattern_file != -1) {
5942    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5943    ::close(core_pattern_file);
5944
5945    if (ret > 0) {
5946      char *last_char = core_pattern + strlen(core_pattern) - 1;
5947
5948      if (*last_char == '\n') {
5949        *last_char = '\0';
5950      }
5951    }
5952  }
5953
5954  if (strlen(core_pattern) == 0) {
5955    return -1;
5956  }
5957
5958  char *pid_pos = strstr(core_pattern, "%p");
5959  int written;
5960
5961  if (core_pattern[0] == '/') {
5962    written = jio_snprintf(buffer, bufferSize, core_pattern);
5963  } else {
5964    char cwd[PATH_MAX];
5965
5966    const char* p = get_current_directory(cwd, PATH_MAX);
5967    if (p == NULL) {
5968      return -1;
5969    }
5970
5971    if (core_pattern[0] == '|') {
5972      written = jio_snprintf(buffer, bufferSize,
5973                        "\"%s\" (or dumping to %s/core.%d)",
5974                                     &core_pattern[1], p, current_process_id());
5975    } else {
5976      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5977    }
5978  }
5979
5980  if (written < 0) {
5981    return -1;
5982  }
5983
5984  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5985    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5986
5987    if (core_uses_pid_file != -1) {
5988      char core_uses_pid = 0;
5989      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5990      ::close(core_uses_pid_file);
5991
5992      if (core_uses_pid == '1') {
5993        jio_snprintf(buffer + written, bufferSize - written,
5994                                          ".%d", current_process_id());
5995      }
5996    }
5997  }
5998
5999  return strlen(buffer);
6000}
6001
6002/////////////// Unit tests ///////////////
6003
6004#ifndef PRODUCT
6005
6006#define test_log(...)              \
6007  do {                             \
6008    if (VerboseInternalVMTests) {  \
6009      tty->print_cr(__VA_ARGS__);  \
6010      tty->flush();                \
6011    }                              \
6012  } while (false)
6013
6014class TestReserveMemorySpecial : AllStatic {
6015 public:
6016  static void small_page_write(void* addr, size_t size) {
6017    size_t page_size = os::vm_page_size();
6018
6019    char* end = (char*)addr + size;
6020    for (char* p = (char*)addr; p < end; p += page_size) {
6021      *p = 1;
6022    }
6023  }
6024
6025  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6026    if (!UseHugeTLBFS) {
6027      return;
6028    }
6029
6030    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6031
6032    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6033
6034    if (addr != NULL) {
6035      small_page_write(addr, size);
6036
6037      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6038    }
6039  }
6040
6041  static void test_reserve_memory_special_huge_tlbfs_only() {
6042    if (!UseHugeTLBFS) {
6043      return;
6044    }
6045
6046    size_t lp = os::large_page_size();
6047
6048    for (size_t size = lp; size <= lp * 10; size += lp) {
6049      test_reserve_memory_special_huge_tlbfs_only(size);
6050    }
6051  }
6052
6053  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6054    size_t lp = os::large_page_size();
6055    size_t ag = os::vm_allocation_granularity();
6056
6057    // sizes to test
6058    const size_t sizes[] = {
6059      lp, lp + ag, lp + lp / 2, lp * 2,
6060      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6061      lp * 10, lp * 10 + lp / 2
6062    };
6063    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6064
6065    // For each size/alignment combination, we test three scenarios:
6066    // 1) with req_addr == NULL
6067    // 2) with a non-null req_addr at which we expect to successfully allocate
6068    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6069    //    expect the allocation to either fail or to ignore req_addr
6070
6071    // Pre-allocate two areas; they shall be as large as the largest allocation
6072    //  and aligned to the largest alignment we will be testing.
6073    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6074    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6075      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6076      -1, 0);
6077    assert(mapping1 != MAP_FAILED, "should work");
6078
6079    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6080      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6081      -1, 0);
6082    assert(mapping2 != MAP_FAILED, "should work");
6083
6084    // Unmap the first mapping, but leave the second mapping intact: the first
6085    // mapping will serve as a value for a "good" req_addr (case 2). The second
6086    // mapping, still intact, as "bad" req_addr (case 3).
6087    ::munmap(mapping1, mapping_size);
6088
6089    // Case 1
6090    test_log("%s, req_addr NULL:", __FUNCTION__);
6091    test_log("size            align           result");
6092
6093    for (int i = 0; i < num_sizes; i++) {
6094      const size_t size = sizes[i];
6095      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6096        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6097        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6098            size, alignment, p, (p != NULL ? "" : "(failed)"));
6099        if (p != NULL) {
6100          assert(is_ptr_aligned(p, alignment), "must be");
6101          small_page_write(p, size);
6102          os::Linux::release_memory_special_huge_tlbfs(p, size);
6103        }
6104      }
6105    }
6106
6107    // Case 2
6108    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6109    test_log("size            align           req_addr         result");
6110
6111    for (int i = 0; i < num_sizes; i++) {
6112      const size_t size = sizes[i];
6113      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6114        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6115        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6116        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6117            size, alignment, req_addr, p,
6118            ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6119        if (p != NULL) {
6120          assert(p == req_addr, "must be");
6121          small_page_write(p, size);
6122          os::Linux::release_memory_special_huge_tlbfs(p, size);
6123        }
6124      }
6125    }
6126
6127    // Case 3
6128    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6129    test_log("size            align           req_addr         result");
6130
6131    for (int i = 0; i < num_sizes; i++) {
6132      const size_t size = sizes[i];
6133      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6134        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6135        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6136        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6137            size, alignment, req_addr, p,
6138            ((p != NULL ? "" : "(failed)")));
6139        // as the area around req_addr contains already existing mappings, the API should always
6140        // return NULL (as per contract, it cannot return another address)
6141        assert(p == NULL, "must be");
6142      }
6143    }
6144
6145    ::munmap(mapping2, mapping_size);
6146
6147  }
6148
6149  static void test_reserve_memory_special_huge_tlbfs() {
6150    if (!UseHugeTLBFS) {
6151      return;
6152    }
6153
6154    test_reserve_memory_special_huge_tlbfs_only();
6155    test_reserve_memory_special_huge_tlbfs_mixed();
6156  }
6157
6158  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6159    if (!UseSHM) {
6160      return;
6161    }
6162
6163    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6164
6165    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6166
6167    if (addr != NULL) {
6168      assert(is_ptr_aligned(addr, alignment), "Check");
6169      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6170
6171      small_page_write(addr, size);
6172
6173      os::Linux::release_memory_special_shm(addr, size);
6174    }
6175  }
6176
6177  static void test_reserve_memory_special_shm() {
6178    size_t lp = os::large_page_size();
6179    size_t ag = os::vm_allocation_granularity();
6180
6181    for (size_t size = ag; size < lp * 3; size += ag) {
6182      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6183        test_reserve_memory_special_shm(size, alignment);
6184      }
6185    }
6186  }
6187
6188  static void test() {
6189    test_reserve_memory_special_huge_tlbfs();
6190    test_reserve_memory_special_shm();
6191  }
6192};
6193
6194void TestReserveMemorySpecial_test() {
6195  TestReserveMemorySpecial::test();
6196}
6197
6198#endif
6199