os_linux.cpp revision 8656:289a2d2a8f97
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
110
111// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
112// getrusage() is prepared to handle the associated failure.
113#ifndef RUSAGE_THREAD
114  #define RUSAGE_THREAD   (1)               /* only the calling thread */
115#endif
116
117#define MAX_PATH    (2 * K)
118
119#define MAX_SECS 100000000
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124#define LARGEPAGES_BIT (1 << 6)
125////////////////////////////////////////////////////////////////////////////////
126// global variables
127julong os::Linux::_physical_memory = 0;
128
129address   os::Linux::_initial_thread_stack_bottom = NULL;
130uintptr_t os::Linux::_initial_thread_stack_size   = 0;
131
132int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
133int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
134int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
135Mutex* os::Linux::_createThread_lock = NULL;
136pthread_t os::Linux::_main_thread;
137int os::Linux::_page_size = -1;
138const int os::Linux::_vm_default_page_size = (8 * K);
139bool os::Linux::_supports_fast_thread_cpu_time = false;
140const char * os::Linux::_glibc_version = NULL;
141const char * os::Linux::_libpthread_version = NULL;
142pthread_condattr_t os::Linux::_condattr[1];
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152// Signal number used to suspend/resume a thread
153
154// do not use any signal number less than SIGSEGV, see 4355769
155static int SR_signum = SIGUSR2;
156sigset_t SR_sigset;
157
158// Declarations
159static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
160
161// utility functions
162
163static int SR_initialize();
164
165julong os::available_memory() {
166  return Linux::available_memory();
167}
168
169julong os::Linux::available_memory() {
170  // values in struct sysinfo are "unsigned long"
171  struct sysinfo si;
172  sysinfo(&si);
173
174  return (julong)si.freeram * si.mem_unit;
175}
176
177julong os::physical_memory() {
178  return Linux::physical_memory();
179}
180
181// Return true if user is running as root.
182
183bool os::have_special_privileges() {
184  static bool init = false;
185  static bool privileges = false;
186  if (!init) {
187    privileges = (getuid() != geteuid()) || (getgid() != getegid());
188    init = true;
189  }
190  return privileges;
191}
192
193
194#ifndef SYS_gettid
195// i386: 224, ia64: 1105, amd64: 186, sparc 143
196  #ifdef __ia64__
197    #define SYS_gettid 1105
198  #else
199    #ifdef __i386__
200      #define SYS_gettid 224
201    #else
202      #ifdef __amd64__
203        #define SYS_gettid 186
204      #else
205        #ifdef __sparc__
206          #define SYS_gettid 143
207        #else
208          #error define gettid for the arch
209        #endif
210      #endif
211    #endif
212  #endif
213#endif
214
215// Cpu architecture string
216static char cpu_arch[] = HOTSPOT_LIB_ARCH;
217
218
219// pid_t gettid()
220//
221// Returns the kernel thread id of the currently running thread. Kernel
222// thread id is used to access /proc.
223pid_t os::Linux::gettid() {
224  int rslt = syscall(SYS_gettid);
225  assert(rslt != -1, "must be."); // old linuxthreads implementation?
226  return (pid_t)rslt;
227}
228
229// Most versions of linux have a bug where the number of processors are
230// determined by looking at the /proc file system.  In a chroot environment,
231// the system call returns 1.  This causes the VM to act as if it is
232// a single processor and elide locking (see is_MP() call).
233static bool unsafe_chroot_detected = false;
234static const char *unstable_chroot_error = "/proc file system not found.\n"
235                     "Java may be unstable running multithreaded in a chroot "
236                     "environment on Linux when /proc filesystem is not mounted.";
237
238void os::Linux::initialize_system_info() {
239  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
240  if (processor_count() == 1) {
241    pid_t pid = os::Linux::gettid();
242    char fname[32];
243    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
244    FILE *fp = fopen(fname, "r");
245    if (fp == NULL) {
246      unsafe_chroot_detected = true;
247    } else {
248      fclose(fp);
249    }
250  }
251  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
252  assert(processor_count() > 0, "linux error");
253}
254
255void os::init_system_properties_values() {
256  // The next steps are taken in the product version:
257  //
258  // Obtain the JAVA_HOME value from the location of libjvm.so.
259  // This library should be located at:
260  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
261  //
262  // If "/jre/lib/" appears at the right place in the path, then we
263  // assume libjvm.so is installed in a JDK and we use this path.
264  //
265  // Otherwise exit with message: "Could not create the Java virtual machine."
266  //
267  // The following extra steps are taken in the debugging version:
268  //
269  // If "/jre/lib/" does NOT appear at the right place in the path
270  // instead of exit check for $JAVA_HOME environment variable.
271  //
272  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
273  // then we append a fake suffix "hotspot/libjvm.so" to this path so
274  // it looks like libjvm.so is installed there
275  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
276  //
277  // Otherwise exit.
278  //
279  // Important note: if the location of libjvm.so changes this
280  // code needs to be changed accordingly.
281
282  // See ld(1):
283  //      The linker uses the following search paths to locate required
284  //      shared libraries:
285  //        1: ...
286  //        ...
287  //        7: The default directories, normally /lib and /usr/lib.
288#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
289  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
290#else
291  #define DEFAULT_LIBPATH "/lib:/usr/lib"
292#endif
293
294// Base path of extensions installed on the system.
295#define SYS_EXT_DIR     "/usr/java/packages"
296#define EXTENSIONS_DIR  "/lib/ext"
297
298  // Buffer that fits several sprintfs.
299  // Note that the space for the colon and the trailing null are provided
300  // by the nulls included by the sizeof operator.
301  const size_t bufsize =
302    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
303         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
304  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
305
306  // sysclasspath, java_home, dll_dir
307  {
308    char *pslash;
309    os::jvm_path(buf, bufsize);
310
311    // Found the full path to libjvm.so.
312    // Now cut the path to <java_home>/jre if we can.
313    pslash = strrchr(buf, '/');
314    if (pslash != NULL) {
315      *pslash = '\0';            // Get rid of /libjvm.so.
316    }
317    pslash = strrchr(buf, '/');
318    if (pslash != NULL) {
319      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
320    }
321    Arguments::set_dll_dir(buf);
322
323    if (pslash != NULL) {
324      pslash = strrchr(buf, '/');
325      if (pslash != NULL) {
326        *pslash = '\0';          // Get rid of /<arch>.
327        pslash = strrchr(buf, '/');
328        if (pslash != NULL) {
329          *pslash = '\0';        // Get rid of /lib.
330        }
331      }
332    }
333    Arguments::set_java_home(buf);
334    set_boot_path('/', ':');
335  }
336
337  // Where to look for native libraries.
338  //
339  // Note: Due to a legacy implementation, most of the library path
340  // is set in the launcher. This was to accomodate linking restrictions
341  // on legacy Linux implementations (which are no longer supported).
342  // Eventually, all the library path setting will be done here.
343  //
344  // However, to prevent the proliferation of improperly built native
345  // libraries, the new path component /usr/java/packages is added here.
346  // Eventually, all the library path setting will be done here.
347  {
348    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
349    // should always exist (until the legacy problem cited above is
350    // addressed).
351    const char *v = ::getenv("LD_LIBRARY_PATH");
352    const char *v_colon = ":";
353    if (v == NULL) { v = ""; v_colon = ""; }
354    // That's +1 for the colon and +1 for the trailing '\0'.
355    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
356                                                     strlen(v) + 1 +
357                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
358                                                     mtInternal);
359    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
360    Arguments::set_library_path(ld_library_path);
361    FREE_C_HEAP_ARRAY(char, ld_library_path);
362  }
363
364  // Extensions directories.
365  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
366  Arguments::set_ext_dirs(buf);
367
368  FREE_C_HEAP_ARRAY(char, buf);
369
370#undef DEFAULT_LIBPATH
371#undef SYS_EXT_DIR
372#undef EXTENSIONS_DIR
373}
374
375////////////////////////////////////////////////////////////////////////////////
376// breakpoint support
377
378void os::breakpoint() {
379  BREAKPOINT;
380}
381
382extern "C" void breakpoint() {
383  // use debugger to set breakpoint here
384}
385
386////////////////////////////////////////////////////////////////////////////////
387// signal support
388
389debug_only(static bool signal_sets_initialized = false);
390static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
391
392bool os::Linux::is_sig_ignored(int sig) {
393  struct sigaction oact;
394  sigaction(sig, (struct sigaction*)NULL, &oact);
395  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
396                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
397  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
398    return true;
399  } else {
400    return false;
401  }
402}
403
404void os::Linux::signal_sets_init() {
405  // Should also have an assertion stating we are still single-threaded.
406  assert(!signal_sets_initialized, "Already initialized");
407  // Fill in signals that are necessarily unblocked for all threads in
408  // the VM. Currently, we unblock the following signals:
409  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
410  //                         by -Xrs (=ReduceSignalUsage));
411  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
412  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
413  // the dispositions or masks wrt these signals.
414  // Programs embedding the VM that want to use the above signals for their
415  // own purposes must, at this time, use the "-Xrs" option to prevent
416  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
417  // (See bug 4345157, and other related bugs).
418  // In reality, though, unblocking these signals is really a nop, since
419  // these signals are not blocked by default.
420  sigemptyset(&unblocked_sigs);
421  sigemptyset(&allowdebug_blocked_sigs);
422  sigaddset(&unblocked_sigs, SIGILL);
423  sigaddset(&unblocked_sigs, SIGSEGV);
424  sigaddset(&unblocked_sigs, SIGBUS);
425  sigaddset(&unblocked_sigs, SIGFPE);
426#if defined(PPC64)
427  sigaddset(&unblocked_sigs, SIGTRAP);
428#endif
429  sigaddset(&unblocked_sigs, SR_signum);
430
431  if (!ReduceSignalUsage) {
432    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
433      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
434      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
435    }
436    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
437      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
438      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
439    }
440    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
441      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
442      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
443    }
444  }
445  // Fill in signals that are blocked by all but the VM thread.
446  sigemptyset(&vm_sigs);
447  if (!ReduceSignalUsage) {
448    sigaddset(&vm_sigs, BREAK_SIGNAL);
449  }
450  debug_only(signal_sets_initialized = true);
451
452}
453
454// These are signals that are unblocked while a thread is running Java.
455// (For some reason, they get blocked by default.)
456sigset_t* os::Linux::unblocked_signals() {
457  assert(signal_sets_initialized, "Not initialized");
458  return &unblocked_sigs;
459}
460
461// These are the signals that are blocked while a (non-VM) thread is
462// running Java. Only the VM thread handles these signals.
463sigset_t* os::Linux::vm_signals() {
464  assert(signal_sets_initialized, "Not initialized");
465  return &vm_sigs;
466}
467
468// These are signals that are blocked during cond_wait to allow debugger in
469sigset_t* os::Linux::allowdebug_blocked_signals() {
470  assert(signal_sets_initialized, "Not initialized");
471  return &allowdebug_blocked_sigs;
472}
473
474void os::Linux::hotspot_sigmask(Thread* thread) {
475
476  //Save caller's signal mask before setting VM signal mask
477  sigset_t caller_sigmask;
478  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
479
480  OSThread* osthread = thread->osthread();
481  osthread->set_caller_sigmask(caller_sigmask);
482
483  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
484
485  if (!ReduceSignalUsage) {
486    if (thread->is_VM_thread()) {
487      // Only the VM thread handles BREAK_SIGNAL ...
488      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
489    } else {
490      // ... all other threads block BREAK_SIGNAL
491      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
492    }
493  }
494}
495
496//////////////////////////////////////////////////////////////////////////////
497// detecting pthread library
498
499void os::Linux::libpthread_init() {
500  // Save glibc and pthread version strings.
501#if !defined(_CS_GNU_LIBC_VERSION) || \
502    !defined(_CS_GNU_LIBPTHREAD_VERSION)
503  #error "glibc too old (< 2.3.2)"
504#endif
505
506  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
507  assert(n > 0, "cannot retrieve glibc version");
508  char *str = (char *)malloc(n, mtInternal);
509  confstr(_CS_GNU_LIBC_VERSION, str, n);
510  os::Linux::set_glibc_version(str);
511
512  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
513  assert(n > 0, "cannot retrieve pthread version");
514  str = (char *)malloc(n, mtInternal);
515  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
516  os::Linux::set_libpthread_version(str);
517}
518
519/////////////////////////////////////////////////////////////////////////////
520// thread stack expansion
521
522// os::Linux::manually_expand_stack() takes care of expanding the thread
523// stack. Note that this is normally not needed: pthread stacks allocate
524// thread stack using mmap() without MAP_NORESERVE, so the stack is already
525// committed. Therefore it is not necessary to expand the stack manually.
526//
527// Manually expanding the stack was historically needed on LinuxThreads
528// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
529// it is kept to deal with very rare corner cases:
530//
531// For one, user may run the VM on an own implementation of threads
532// whose stacks are - like the old LinuxThreads - implemented using
533// mmap(MAP_GROWSDOWN).
534//
535// Also, this coding may be needed if the VM is running on the primordial
536// thread. Normally we avoid running on the primordial thread; however,
537// user may still invoke the VM on the primordial thread.
538//
539// The following historical comment describes the details about running
540// on a thread stack allocated with mmap(MAP_GROWSDOWN):
541
542
543// Force Linux kernel to expand current thread stack. If "bottom" is close
544// to the stack guard, caller should block all signals.
545//
546// MAP_GROWSDOWN:
547//   A special mmap() flag that is used to implement thread stacks. It tells
548//   kernel that the memory region should extend downwards when needed. This
549//   allows early versions of LinuxThreads to only mmap the first few pages
550//   when creating a new thread. Linux kernel will automatically expand thread
551//   stack as needed (on page faults).
552//
553//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
554//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
555//   region, it's hard to tell if the fault is due to a legitimate stack
556//   access or because of reading/writing non-exist memory (e.g. buffer
557//   overrun). As a rule, if the fault happens below current stack pointer,
558//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
559//   application (see Linux kernel fault.c).
560//
561//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
562//   stack overflow detection.
563//
564//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
565//   not use MAP_GROWSDOWN.
566//
567// To get around the problem and allow stack banging on Linux, we need to
568// manually expand thread stack after receiving the SIGSEGV.
569//
570// There are two ways to expand thread stack to address "bottom", we used
571// both of them in JVM before 1.5:
572//   1. adjust stack pointer first so that it is below "bottom", and then
573//      touch "bottom"
574//   2. mmap() the page in question
575//
576// Now alternate signal stack is gone, it's harder to use 2. For instance,
577// if current sp is already near the lower end of page 101, and we need to
578// call mmap() to map page 100, it is possible that part of the mmap() frame
579// will be placed in page 100. When page 100 is mapped, it is zero-filled.
580// That will destroy the mmap() frame and cause VM to crash.
581//
582// The following code works by adjusting sp first, then accessing the "bottom"
583// page to force a page fault. Linux kernel will then automatically expand the
584// stack mapping.
585//
586// _expand_stack_to() assumes its frame size is less than page size, which
587// should always be true if the function is not inlined.
588
589#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
590  #define NOINLINE
591#else
592  #define NOINLINE __attribute__ ((noinline))
593#endif
594
595static void _expand_stack_to(address bottom) NOINLINE;
596
597static void _expand_stack_to(address bottom) {
598  address sp;
599  size_t size;
600  volatile char *p;
601
602  // Adjust bottom to point to the largest address within the same page, it
603  // gives us a one-page buffer if alloca() allocates slightly more memory.
604  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
605  bottom += os::Linux::page_size() - 1;
606
607  // sp might be slightly above current stack pointer; if that's the case, we
608  // will alloca() a little more space than necessary, which is OK. Don't use
609  // os::current_stack_pointer(), as its result can be slightly below current
610  // stack pointer, causing us to not alloca enough to reach "bottom".
611  sp = (address)&sp;
612
613  if (sp > bottom) {
614    size = sp - bottom;
615    p = (volatile char *)alloca(size);
616    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
617    p[0] = '\0';
618  }
619}
620
621bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
622  assert(t!=NULL, "just checking");
623  assert(t->osthread()->expanding_stack(), "expand should be set");
624  assert(t->stack_base() != NULL, "stack_base was not initialized");
625
626  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
627    sigset_t mask_all, old_sigset;
628    sigfillset(&mask_all);
629    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
630    _expand_stack_to(addr);
631    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
632    return true;
633  }
634  return false;
635}
636
637//////////////////////////////////////////////////////////////////////////////
638// create new thread
639
640// Thread start routine for all newly created threads
641static void *java_start(Thread *thread) {
642  // Try to randomize the cache line index of hot stack frames.
643  // This helps when threads of the same stack traces evict each other's
644  // cache lines. The threads can be either from the same JVM instance, or
645  // from different JVM instances. The benefit is especially true for
646  // processors with hyperthreading technology.
647  static int counter = 0;
648  int pid = os::current_process_id();
649  alloca(((pid ^ counter++) & 7) * 128);
650
651  ThreadLocalStorage::set_thread(thread);
652
653  OSThread* osthread = thread->osthread();
654  Monitor* sync = osthread->startThread_lock();
655
656  // thread_id is kernel thread id (similar to Solaris LWP id)
657  osthread->set_thread_id(os::Linux::gettid());
658
659  if (UseNUMA) {
660    int lgrp_id = os::numa_get_group_id();
661    if (lgrp_id != -1) {
662      thread->set_lgrp_id(lgrp_id);
663    }
664  }
665  // initialize signal mask for this thread
666  os::Linux::hotspot_sigmask(thread);
667
668  // initialize floating point control register
669  os::Linux::init_thread_fpu_state();
670
671  // handshaking with parent thread
672  {
673    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
674
675    // notify parent thread
676    osthread->set_state(INITIALIZED);
677    sync->notify_all();
678
679    // wait until os::start_thread()
680    while (osthread->get_state() == INITIALIZED) {
681      sync->wait(Mutex::_no_safepoint_check_flag);
682    }
683  }
684
685  // call one more level start routine
686  thread->run();
687
688  return 0;
689}
690
691bool os::create_thread(Thread* thread, ThreadType thr_type,
692                       size_t stack_size) {
693  assert(thread->osthread() == NULL, "caller responsible");
694
695  // Allocate the OSThread object
696  OSThread* osthread = new OSThread(NULL, NULL);
697  if (osthread == NULL) {
698    return false;
699  }
700
701  // set the correct thread state
702  osthread->set_thread_type(thr_type);
703
704  // Initial state is ALLOCATED but not INITIALIZED
705  osthread->set_state(ALLOCATED);
706
707  thread->set_osthread(osthread);
708
709  // init thread attributes
710  pthread_attr_t attr;
711  pthread_attr_init(&attr);
712  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
713
714  // stack size
715  if (os::Linux::supports_variable_stack_size()) {
716    // calculate stack size if it's not specified by caller
717    if (stack_size == 0) {
718      stack_size = os::Linux::default_stack_size(thr_type);
719
720      switch (thr_type) {
721      case os::java_thread:
722        // Java threads use ThreadStackSize which default value can be
723        // changed with the flag -Xss
724        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
725        stack_size = JavaThread::stack_size_at_create();
726        break;
727      case os::compiler_thread:
728        if (CompilerThreadStackSize > 0) {
729          stack_size = (size_t)(CompilerThreadStackSize * K);
730          break;
731        } // else fall through:
732          // use VMThreadStackSize if CompilerThreadStackSize is not defined
733      case os::vm_thread:
734      case os::pgc_thread:
735      case os::cgc_thread:
736      case os::watcher_thread:
737        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
738        break;
739      }
740    }
741
742    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
743    pthread_attr_setstacksize(&attr, stack_size);
744  } else {
745    // let pthread_create() pick the default value.
746  }
747
748  // glibc guard page
749  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
750
751  ThreadState state;
752
753  {
754    pthread_t tid;
755    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
756
757    pthread_attr_destroy(&attr);
758
759    if (ret != 0) {
760      if (PrintMiscellaneous && (Verbose || WizardMode)) {
761        perror("pthread_create()");
762      }
763      // Need to clean up stuff we've allocated so far
764      thread->set_osthread(NULL);
765      delete osthread;
766      return false;
767    }
768
769    // Store pthread info into the OSThread
770    osthread->set_pthread_id(tid);
771
772    // Wait until child thread is either initialized or aborted
773    {
774      Monitor* sync_with_child = osthread->startThread_lock();
775      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
776      while ((state = osthread->get_state()) == ALLOCATED) {
777        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
778      }
779    }
780  }
781
782  // Aborted due to thread limit being reached
783  if (state == ZOMBIE) {
784    thread->set_osthread(NULL);
785    delete osthread;
786    return false;
787  }
788
789  // The thread is returned suspended (in state INITIALIZED),
790  // and is started higher up in the call chain
791  assert(state == INITIALIZED, "race condition");
792  return true;
793}
794
795/////////////////////////////////////////////////////////////////////////////
796// attach existing thread
797
798// bootstrap the main thread
799bool os::create_main_thread(JavaThread* thread) {
800  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
801  return create_attached_thread(thread);
802}
803
804bool os::create_attached_thread(JavaThread* thread) {
805#ifdef ASSERT
806  thread->verify_not_published();
807#endif
808
809  // Allocate the OSThread object
810  OSThread* osthread = new OSThread(NULL, NULL);
811
812  if (osthread == NULL) {
813    return false;
814  }
815
816  // Store pthread info into the OSThread
817  osthread->set_thread_id(os::Linux::gettid());
818  osthread->set_pthread_id(::pthread_self());
819
820  // initialize floating point control register
821  os::Linux::init_thread_fpu_state();
822
823  // Initial thread state is RUNNABLE
824  osthread->set_state(RUNNABLE);
825
826  thread->set_osthread(osthread);
827
828  if (UseNUMA) {
829    int lgrp_id = os::numa_get_group_id();
830    if (lgrp_id != -1) {
831      thread->set_lgrp_id(lgrp_id);
832    }
833  }
834
835  if (os::Linux::is_initial_thread()) {
836    // If current thread is initial thread, its stack is mapped on demand,
837    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
838    // the entire stack region to avoid SEGV in stack banging.
839    // It is also useful to get around the heap-stack-gap problem on SuSE
840    // kernel (see 4821821 for details). We first expand stack to the top
841    // of yellow zone, then enable stack yellow zone (order is significant,
842    // enabling yellow zone first will crash JVM on SuSE Linux), so there
843    // is no gap between the last two virtual memory regions.
844
845    JavaThread *jt = (JavaThread *)thread;
846    address addr = jt->stack_yellow_zone_base();
847    assert(addr != NULL, "initialization problem?");
848    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
849
850    osthread->set_expanding_stack();
851    os::Linux::manually_expand_stack(jt, addr);
852    osthread->clear_expanding_stack();
853  }
854
855  // initialize signal mask for this thread
856  // and save the caller's signal mask
857  os::Linux::hotspot_sigmask(thread);
858
859  return true;
860}
861
862void os::pd_start_thread(Thread* thread) {
863  OSThread * osthread = thread->osthread();
864  assert(osthread->get_state() != INITIALIZED, "just checking");
865  Monitor* sync_with_child = osthread->startThread_lock();
866  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
867  sync_with_child->notify();
868}
869
870// Free Linux resources related to the OSThread
871void os::free_thread(OSThread* osthread) {
872  assert(osthread != NULL, "osthread not set");
873
874  if (Thread::current()->osthread() == osthread) {
875    // Restore caller's signal mask
876    sigset_t sigmask = osthread->caller_sigmask();
877    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
878  }
879
880  delete osthread;
881}
882
883//////////////////////////////////////////////////////////////////////////////
884// thread local storage
885
886// Restore the thread pointer if the destructor is called. This is in case
887// someone from JNI code sets up a destructor with pthread_key_create to run
888// detachCurrentThread on thread death. Unless we restore the thread pointer we
889// will hang or crash. When detachCurrentThread is called the key will be set
890// to null and we will not be called again. If detachCurrentThread is never
891// called we could loop forever depending on the pthread implementation.
892static void restore_thread_pointer(void* p) {
893  Thread* thread = (Thread*) p;
894  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
895}
896
897int os::allocate_thread_local_storage() {
898  pthread_key_t key;
899  int rslt = pthread_key_create(&key, restore_thread_pointer);
900  assert(rslt == 0, "cannot allocate thread local storage");
901  return (int)key;
902}
903
904// Note: This is currently not used by VM, as we don't destroy TLS key
905// on VM exit.
906void os::free_thread_local_storage(int index) {
907  int rslt = pthread_key_delete((pthread_key_t)index);
908  assert(rslt == 0, "invalid index");
909}
910
911void os::thread_local_storage_at_put(int index, void* value) {
912  int rslt = pthread_setspecific((pthread_key_t)index, value);
913  assert(rslt == 0, "pthread_setspecific failed");
914}
915
916extern "C" Thread* get_thread() {
917  return ThreadLocalStorage::thread();
918}
919
920//////////////////////////////////////////////////////////////////////////////
921// initial thread
922
923// Check if current thread is the initial thread, similar to Solaris thr_main.
924bool os::Linux::is_initial_thread(void) {
925  char dummy;
926  // If called before init complete, thread stack bottom will be null.
927  // Can be called if fatal error occurs before initialization.
928  if (initial_thread_stack_bottom() == NULL) return false;
929  assert(initial_thread_stack_bottom() != NULL &&
930         initial_thread_stack_size()   != 0,
931         "os::init did not locate initial thread's stack region");
932  if ((address)&dummy >= initial_thread_stack_bottom() &&
933      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
934    return true;
935  } else {
936    return false;
937  }
938}
939
940// Find the virtual memory area that contains addr
941static bool find_vma(address addr, address* vma_low, address* vma_high) {
942  FILE *fp = fopen("/proc/self/maps", "r");
943  if (fp) {
944    address low, high;
945    while (!feof(fp)) {
946      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
947        if (low <= addr && addr < high) {
948          if (vma_low)  *vma_low  = low;
949          if (vma_high) *vma_high = high;
950          fclose(fp);
951          return true;
952        }
953      }
954      for (;;) {
955        int ch = fgetc(fp);
956        if (ch == EOF || ch == (int)'\n') break;
957      }
958    }
959    fclose(fp);
960  }
961  return false;
962}
963
964// Locate initial thread stack. This special handling of initial thread stack
965// is needed because pthread_getattr_np() on most (all?) Linux distros returns
966// bogus value for initial thread.
967void os::Linux::capture_initial_stack(size_t max_size) {
968  // stack size is the easy part, get it from RLIMIT_STACK
969  size_t stack_size;
970  struct rlimit rlim;
971  getrlimit(RLIMIT_STACK, &rlim);
972  stack_size = rlim.rlim_cur;
973
974  // 6308388: a bug in ld.so will relocate its own .data section to the
975  //   lower end of primordial stack; reduce ulimit -s value a little bit
976  //   so we won't install guard page on ld.so's data section.
977  stack_size -= 2 * page_size();
978
979  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
980  //   7.1, in both cases we will get 2G in return value.
981  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
982  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
983  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
984  //   in case other parts in glibc still assumes 2M max stack size.
985  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
986  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
987  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
988    stack_size = 2 * K * K IA64_ONLY(*2);
989  }
990  // Try to figure out where the stack base (top) is. This is harder.
991  //
992  // When an application is started, glibc saves the initial stack pointer in
993  // a global variable "__libc_stack_end", which is then used by system
994  // libraries. __libc_stack_end should be pretty close to stack top. The
995  // variable is available since the very early days. However, because it is
996  // a private interface, it could disappear in the future.
997  //
998  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
999  // to __libc_stack_end, it is very close to stack top, but isn't the real
1000  // stack top. Note that /proc may not exist if VM is running as a chroot
1001  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1002  // /proc/<pid>/stat could change in the future (though unlikely).
1003  //
1004  // We try __libc_stack_end first. If that doesn't work, look for
1005  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1006  // as a hint, which should work well in most cases.
1007
1008  uintptr_t stack_start;
1009
1010  // try __libc_stack_end first
1011  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1012  if (p && *p) {
1013    stack_start = *p;
1014  } else {
1015    // see if we can get the start_stack field from /proc/self/stat
1016    FILE *fp;
1017    int pid;
1018    char state;
1019    int ppid;
1020    int pgrp;
1021    int session;
1022    int nr;
1023    int tpgrp;
1024    unsigned long flags;
1025    unsigned long minflt;
1026    unsigned long cminflt;
1027    unsigned long majflt;
1028    unsigned long cmajflt;
1029    unsigned long utime;
1030    unsigned long stime;
1031    long cutime;
1032    long cstime;
1033    long prio;
1034    long nice;
1035    long junk;
1036    long it_real;
1037    uintptr_t start;
1038    uintptr_t vsize;
1039    intptr_t rss;
1040    uintptr_t rsslim;
1041    uintptr_t scodes;
1042    uintptr_t ecode;
1043    int i;
1044
1045    // Figure what the primordial thread stack base is. Code is inspired
1046    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1047    // followed by command name surrounded by parentheses, state, etc.
1048    char stat[2048];
1049    int statlen;
1050
1051    fp = fopen("/proc/self/stat", "r");
1052    if (fp) {
1053      statlen = fread(stat, 1, 2047, fp);
1054      stat[statlen] = '\0';
1055      fclose(fp);
1056
1057      // Skip pid and the command string. Note that we could be dealing with
1058      // weird command names, e.g. user could decide to rename java launcher
1059      // to "java 1.4.2 :)", then the stat file would look like
1060      //                1234 (java 1.4.2 :)) R ... ...
1061      // We don't really need to know the command string, just find the last
1062      // occurrence of ")" and then start parsing from there. See bug 4726580.
1063      char * s = strrchr(stat, ')');
1064
1065      i = 0;
1066      if (s) {
1067        // Skip blank chars
1068        do { s++; } while (s && isspace(*s));
1069
1070#define _UFM UINTX_FORMAT
1071#define _DFM INTX_FORMAT
1072
1073        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1074        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1075        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1076                   &state,          // 3  %c
1077                   &ppid,           // 4  %d
1078                   &pgrp,           // 5  %d
1079                   &session,        // 6  %d
1080                   &nr,             // 7  %d
1081                   &tpgrp,          // 8  %d
1082                   &flags,          // 9  %lu
1083                   &minflt,         // 10 %lu
1084                   &cminflt,        // 11 %lu
1085                   &majflt,         // 12 %lu
1086                   &cmajflt,        // 13 %lu
1087                   &utime,          // 14 %lu
1088                   &stime,          // 15 %lu
1089                   &cutime,         // 16 %ld
1090                   &cstime,         // 17 %ld
1091                   &prio,           // 18 %ld
1092                   &nice,           // 19 %ld
1093                   &junk,           // 20 %ld
1094                   &it_real,        // 21 %ld
1095                   &start,          // 22 UINTX_FORMAT
1096                   &vsize,          // 23 UINTX_FORMAT
1097                   &rss,            // 24 INTX_FORMAT
1098                   &rsslim,         // 25 UINTX_FORMAT
1099                   &scodes,         // 26 UINTX_FORMAT
1100                   &ecode,          // 27 UINTX_FORMAT
1101                   &stack_start);   // 28 UINTX_FORMAT
1102      }
1103
1104#undef _UFM
1105#undef _DFM
1106
1107      if (i != 28 - 2) {
1108        assert(false, "Bad conversion from /proc/self/stat");
1109        // product mode - assume we are the initial thread, good luck in the
1110        // embedded case.
1111        warning("Can't detect initial thread stack location - bad conversion");
1112        stack_start = (uintptr_t) &rlim;
1113      }
1114    } else {
1115      // For some reason we can't open /proc/self/stat (for example, running on
1116      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1117      // most cases, so don't abort:
1118      warning("Can't detect initial thread stack location - no /proc/self/stat");
1119      stack_start = (uintptr_t) &rlim;
1120    }
1121  }
1122
1123  // Now we have a pointer (stack_start) very close to the stack top, the
1124  // next thing to do is to figure out the exact location of stack top. We
1125  // can find out the virtual memory area that contains stack_start by
1126  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1127  // and its upper limit is the real stack top. (again, this would fail if
1128  // running inside chroot, because /proc may not exist.)
1129
1130  uintptr_t stack_top;
1131  address low, high;
1132  if (find_vma((address)stack_start, &low, &high)) {
1133    // success, "high" is the true stack top. (ignore "low", because initial
1134    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1135    stack_top = (uintptr_t)high;
1136  } else {
1137    // failed, likely because /proc/self/maps does not exist
1138    warning("Can't detect initial thread stack location - find_vma failed");
1139    // best effort: stack_start is normally within a few pages below the real
1140    // stack top, use it as stack top, and reduce stack size so we won't put
1141    // guard page outside stack.
1142    stack_top = stack_start;
1143    stack_size -= 16 * page_size();
1144  }
1145
1146  // stack_top could be partially down the page so align it
1147  stack_top = align_size_up(stack_top, page_size());
1148
1149  if (max_size && stack_size > max_size) {
1150    _initial_thread_stack_size = max_size;
1151  } else {
1152    _initial_thread_stack_size = stack_size;
1153  }
1154
1155  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1156  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1157}
1158
1159////////////////////////////////////////////////////////////////////////////////
1160// time support
1161
1162// Time since start-up in seconds to a fine granularity.
1163// Used by VMSelfDestructTimer and the MemProfiler.
1164double os::elapsedTime() {
1165
1166  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1167}
1168
1169jlong os::elapsed_counter() {
1170  return javaTimeNanos() - initial_time_count;
1171}
1172
1173jlong os::elapsed_frequency() {
1174  return NANOSECS_PER_SEC; // nanosecond resolution
1175}
1176
1177bool os::supports_vtime() { return true; }
1178bool os::enable_vtime()   { return false; }
1179bool os::vtime_enabled()  { return false; }
1180
1181double os::elapsedVTime() {
1182  struct rusage usage;
1183  int retval = getrusage(RUSAGE_THREAD, &usage);
1184  if (retval == 0) {
1185    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1186  } else {
1187    // better than nothing, but not much
1188    return elapsedTime();
1189  }
1190}
1191
1192jlong os::javaTimeMillis() {
1193  timeval time;
1194  int status = gettimeofday(&time, NULL);
1195  assert(status != -1, "linux error");
1196  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1197}
1198
1199void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1200  timeval time;
1201  int status = gettimeofday(&time, NULL);
1202  assert(status != -1, "linux error");
1203  seconds = jlong(time.tv_sec);
1204  nanos = jlong(time.tv_usec) * 1000;
1205}
1206
1207
1208#ifndef CLOCK_MONOTONIC
1209  #define CLOCK_MONOTONIC (1)
1210#endif
1211
1212void os::Linux::clock_init() {
1213  // we do dlopen's in this particular order due to bug in linux
1214  // dynamical loader (see 6348968) leading to crash on exit
1215  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1216  if (handle == NULL) {
1217    handle = dlopen("librt.so", RTLD_LAZY);
1218  }
1219
1220  if (handle) {
1221    int (*clock_getres_func)(clockid_t, struct timespec*) =
1222           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1223    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1224           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1225    if (clock_getres_func && clock_gettime_func) {
1226      // See if monotonic clock is supported by the kernel. Note that some
1227      // early implementations simply return kernel jiffies (updated every
1228      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1229      // for nano time (though the monotonic property is still nice to have).
1230      // It's fixed in newer kernels, however clock_getres() still returns
1231      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1232      // resolution for now. Hopefully as people move to new kernels, this
1233      // won't be a problem.
1234      struct timespec res;
1235      struct timespec tp;
1236      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1237          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1238        // yes, monotonic clock is supported
1239        _clock_gettime = clock_gettime_func;
1240        return;
1241      } else {
1242        // close librt if there is no monotonic clock
1243        dlclose(handle);
1244      }
1245    }
1246  }
1247  warning("No monotonic clock was available - timed services may " \
1248          "be adversely affected if the time-of-day clock changes");
1249}
1250
1251#ifndef SYS_clock_getres
1252  #if defined(IA32) || defined(AMD64)
1253    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1254    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1255  #else
1256    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1257    #define sys_clock_getres(x,y)  -1
1258  #endif
1259#else
1260  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1261#endif
1262
1263void os::Linux::fast_thread_clock_init() {
1264  if (!UseLinuxPosixThreadCPUClocks) {
1265    return;
1266  }
1267  clockid_t clockid;
1268  struct timespec tp;
1269  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1270      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1271
1272  // Switch to using fast clocks for thread cpu time if
1273  // the sys_clock_getres() returns 0 error code.
1274  // Note, that some kernels may support the current thread
1275  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1276  // returned by the pthread_getcpuclockid().
1277  // If the fast Posix clocks are supported then the sys_clock_getres()
1278  // must return at least tp.tv_sec == 0 which means a resolution
1279  // better than 1 sec. This is extra check for reliability.
1280
1281  if (pthread_getcpuclockid_func &&
1282      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1283      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1284    _supports_fast_thread_cpu_time = true;
1285    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1286  }
1287}
1288
1289jlong os::javaTimeNanos() {
1290  if (os::supports_monotonic_clock()) {
1291    struct timespec tp;
1292    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1293    assert(status == 0, "gettime error");
1294    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1295    return result;
1296  } else {
1297    timeval time;
1298    int status = gettimeofday(&time, NULL);
1299    assert(status != -1, "linux error");
1300    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1301    return 1000 * usecs;
1302  }
1303}
1304
1305void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1306  if (os::supports_monotonic_clock()) {
1307    info_ptr->max_value = ALL_64_BITS;
1308
1309    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1310    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1311    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1312  } else {
1313    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1314    info_ptr->max_value = ALL_64_BITS;
1315
1316    // gettimeofday is a real time clock so it skips
1317    info_ptr->may_skip_backward = true;
1318    info_ptr->may_skip_forward = true;
1319  }
1320
1321  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1322}
1323
1324// Return the real, user, and system times in seconds from an
1325// arbitrary fixed point in the past.
1326bool os::getTimesSecs(double* process_real_time,
1327                      double* process_user_time,
1328                      double* process_system_time) {
1329  struct tms ticks;
1330  clock_t real_ticks = times(&ticks);
1331
1332  if (real_ticks == (clock_t) (-1)) {
1333    return false;
1334  } else {
1335    double ticks_per_second = (double) clock_tics_per_sec;
1336    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1337    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1338    *process_real_time = ((double) real_ticks) / ticks_per_second;
1339
1340    return true;
1341  }
1342}
1343
1344
1345char * os::local_time_string(char *buf, size_t buflen) {
1346  struct tm t;
1347  time_t long_time;
1348  time(&long_time);
1349  localtime_r(&long_time, &t);
1350  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1351               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1352               t.tm_hour, t.tm_min, t.tm_sec);
1353  return buf;
1354}
1355
1356struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1357  return localtime_r(clock, res);
1358}
1359
1360////////////////////////////////////////////////////////////////////////////////
1361// runtime exit support
1362
1363// Note: os::shutdown() might be called very early during initialization, or
1364// called from signal handler. Before adding something to os::shutdown(), make
1365// sure it is async-safe and can handle partially initialized VM.
1366void os::shutdown() {
1367
1368  // allow PerfMemory to attempt cleanup of any persistent resources
1369  perfMemory_exit();
1370
1371  // needs to remove object in file system
1372  AttachListener::abort();
1373
1374  // flush buffered output, finish log files
1375  ostream_abort();
1376
1377  // Check for abort hook
1378  abort_hook_t abort_hook = Arguments::abort_hook();
1379  if (abort_hook != NULL) {
1380    abort_hook();
1381  }
1382
1383}
1384
1385// Note: os::abort() might be called very early during initialization, or
1386// called from signal handler. Before adding something to os::abort(), make
1387// sure it is async-safe and can handle partially initialized VM.
1388void os::abort(bool dump_core, void* siginfo, void* context) {
1389  os::shutdown();
1390  if (dump_core) {
1391#ifndef PRODUCT
1392    fdStream out(defaultStream::output_fd());
1393    out.print_raw("Current thread is ");
1394    char buf[16];
1395    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1396    out.print_raw_cr(buf);
1397    out.print_raw_cr("Dumping core ...");
1398#endif
1399    ::abort(); // dump core
1400  }
1401
1402  ::exit(1);
1403}
1404
1405// Die immediately, no exit hook, no abort hook, no cleanup.
1406void os::die() {
1407  ::abort();
1408}
1409
1410
1411// This method is a copy of JDK's sysGetLastErrorString
1412// from src/solaris/hpi/src/system_md.c
1413
1414size_t os::lasterror(char *buf, size_t len) {
1415  if (errno == 0)  return 0;
1416
1417  const char *s = ::strerror(errno);
1418  size_t n = ::strlen(s);
1419  if (n >= len) {
1420    n = len - 1;
1421  }
1422  ::strncpy(buf, s, n);
1423  buf[n] = '\0';
1424  return n;
1425}
1426
1427intx os::current_thread_id() { return (intx)pthread_self(); }
1428int os::current_process_id() {
1429  return ::getpid();
1430}
1431
1432// DLL functions
1433
1434const char* os::dll_file_extension() { return ".so"; }
1435
1436// This must be hard coded because it's the system's temporary
1437// directory not the java application's temp directory, ala java.io.tmpdir.
1438const char* os::get_temp_directory() { return "/tmp"; }
1439
1440static bool file_exists(const char* filename) {
1441  struct stat statbuf;
1442  if (filename == NULL || strlen(filename) == 0) {
1443    return false;
1444  }
1445  return os::stat(filename, &statbuf) == 0;
1446}
1447
1448bool os::dll_build_name(char* buffer, size_t buflen,
1449                        const char* pname, const char* fname) {
1450  bool retval = false;
1451  // Copied from libhpi
1452  const size_t pnamelen = pname ? strlen(pname) : 0;
1453
1454  // Return error on buffer overflow.
1455  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1456    return retval;
1457  }
1458
1459  if (pnamelen == 0) {
1460    snprintf(buffer, buflen, "lib%s.so", fname);
1461    retval = true;
1462  } else if (strchr(pname, *os::path_separator()) != NULL) {
1463    int n;
1464    char** pelements = split_path(pname, &n);
1465    if (pelements == NULL) {
1466      return false;
1467    }
1468    for (int i = 0; i < n; i++) {
1469      // Really shouldn't be NULL, but check can't hurt
1470      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1471        continue; // skip the empty path values
1472      }
1473      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1474      if (file_exists(buffer)) {
1475        retval = true;
1476        break;
1477      }
1478    }
1479    // release the storage
1480    for (int i = 0; i < n; i++) {
1481      if (pelements[i] != NULL) {
1482        FREE_C_HEAP_ARRAY(char, pelements[i]);
1483      }
1484    }
1485    if (pelements != NULL) {
1486      FREE_C_HEAP_ARRAY(char*, pelements);
1487    }
1488  } else {
1489    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1490    retval = true;
1491  }
1492  return retval;
1493}
1494
1495// check if addr is inside libjvm.so
1496bool os::address_is_in_vm(address addr) {
1497  static address libjvm_base_addr;
1498  Dl_info dlinfo;
1499
1500  if (libjvm_base_addr == NULL) {
1501    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1502      libjvm_base_addr = (address)dlinfo.dli_fbase;
1503    }
1504    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1505  }
1506
1507  if (dladdr((void *)addr, &dlinfo) != 0) {
1508    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1509  }
1510
1511  return false;
1512}
1513
1514bool os::dll_address_to_function_name(address addr, char *buf,
1515                                      int buflen, int *offset,
1516                                      bool demangle) {
1517  // buf is not optional, but offset is optional
1518  assert(buf != NULL, "sanity check");
1519
1520  Dl_info dlinfo;
1521
1522  if (dladdr((void*)addr, &dlinfo) != 0) {
1523    // see if we have a matching symbol
1524    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1525      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1526        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1527      }
1528      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1529      return true;
1530    }
1531    // no matching symbol so try for just file info
1532    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1533      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1534                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1535        return true;
1536      }
1537    }
1538  }
1539
1540  buf[0] = '\0';
1541  if (offset != NULL) *offset = -1;
1542  return false;
1543}
1544
1545struct _address_to_library_name {
1546  address addr;          // input : memory address
1547  size_t  buflen;        //         size of fname
1548  char*   fname;         // output: library name
1549  address base;          //         library base addr
1550};
1551
1552static int address_to_library_name_callback(struct dl_phdr_info *info,
1553                                            size_t size, void *data) {
1554  int i;
1555  bool found = false;
1556  address libbase = NULL;
1557  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1558
1559  // iterate through all loadable segments
1560  for (i = 0; i < info->dlpi_phnum; i++) {
1561    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1562    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1563      // base address of a library is the lowest address of its loaded
1564      // segments.
1565      if (libbase == NULL || libbase > segbase) {
1566        libbase = segbase;
1567      }
1568      // see if 'addr' is within current segment
1569      if (segbase <= d->addr &&
1570          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1571        found = true;
1572      }
1573    }
1574  }
1575
1576  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1577  // so dll_address_to_library_name() can fall through to use dladdr() which
1578  // can figure out executable name from argv[0].
1579  if (found && info->dlpi_name && info->dlpi_name[0]) {
1580    d->base = libbase;
1581    if (d->fname) {
1582      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1583    }
1584    return 1;
1585  }
1586  return 0;
1587}
1588
1589bool os::dll_address_to_library_name(address addr, char* buf,
1590                                     int buflen, int* offset) {
1591  // buf is not optional, but offset is optional
1592  assert(buf != NULL, "sanity check");
1593
1594  Dl_info dlinfo;
1595  struct _address_to_library_name data;
1596
1597  // There is a bug in old glibc dladdr() implementation that it could resolve
1598  // to wrong library name if the .so file has a base address != NULL. Here
1599  // we iterate through the program headers of all loaded libraries to find
1600  // out which library 'addr' really belongs to. This workaround can be
1601  // removed once the minimum requirement for glibc is moved to 2.3.x.
1602  data.addr = addr;
1603  data.fname = buf;
1604  data.buflen = buflen;
1605  data.base = NULL;
1606  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1607
1608  if (rslt) {
1609    // buf already contains library name
1610    if (offset) *offset = addr - data.base;
1611    return true;
1612  }
1613  if (dladdr((void*)addr, &dlinfo) != 0) {
1614    if (dlinfo.dli_fname != NULL) {
1615      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1616    }
1617    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1618      *offset = addr - (address)dlinfo.dli_fbase;
1619    }
1620    return true;
1621  }
1622
1623  buf[0] = '\0';
1624  if (offset) *offset = -1;
1625  return false;
1626}
1627
1628// Loads .dll/.so and
1629// in case of error it checks if .dll/.so was built for the
1630// same architecture as Hotspot is running on
1631
1632
1633// Remember the stack's state. The Linux dynamic linker will change
1634// the stack to 'executable' at most once, so we must safepoint only once.
1635bool os::Linux::_stack_is_executable = false;
1636
1637// VM operation that loads a library.  This is necessary if stack protection
1638// of the Java stacks can be lost during loading the library.  If we
1639// do not stop the Java threads, they can stack overflow before the stacks
1640// are protected again.
1641class VM_LinuxDllLoad: public VM_Operation {
1642 private:
1643  const char *_filename;
1644  char *_ebuf;
1645  int _ebuflen;
1646  void *_lib;
1647 public:
1648  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1649    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1650  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1651  void doit() {
1652    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1653    os::Linux::_stack_is_executable = true;
1654  }
1655  void* loaded_library() { return _lib; }
1656};
1657
1658void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1659  void * result = NULL;
1660  bool load_attempted = false;
1661
1662  // Check whether the library to load might change execution rights
1663  // of the stack. If they are changed, the protection of the stack
1664  // guard pages will be lost. We need a safepoint to fix this.
1665  //
1666  // See Linux man page execstack(8) for more info.
1667  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1668    ElfFile ef(filename);
1669    if (!ef.specifies_noexecstack()) {
1670      if (!is_init_completed()) {
1671        os::Linux::_stack_is_executable = true;
1672        // This is OK - No Java threads have been created yet, and hence no
1673        // stack guard pages to fix.
1674        //
1675        // This should happen only when you are building JDK7 using a very
1676        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1677        //
1678        // Dynamic loader will make all stacks executable after
1679        // this function returns, and will not do that again.
1680        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1681      } else {
1682        warning("You have loaded library %s which might have disabled stack guard. "
1683                "The VM will try to fix the stack guard now.\n"
1684                "It's highly recommended that you fix the library with "
1685                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1686                filename);
1687
1688        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1689        JavaThread *jt = JavaThread::current();
1690        if (jt->thread_state() != _thread_in_native) {
1691          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1692          // that requires ExecStack. Cannot enter safe point. Let's give up.
1693          warning("Unable to fix stack guard. Giving up.");
1694        } else {
1695          if (!LoadExecStackDllInVMThread) {
1696            // This is for the case where the DLL has an static
1697            // constructor function that executes JNI code. We cannot
1698            // load such DLLs in the VMThread.
1699            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1700          }
1701
1702          ThreadInVMfromNative tiv(jt);
1703          debug_only(VMNativeEntryWrapper vew;)
1704
1705          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1706          VMThread::execute(&op);
1707          if (LoadExecStackDllInVMThread) {
1708            result = op.loaded_library();
1709          }
1710          load_attempted = true;
1711        }
1712      }
1713    }
1714  }
1715
1716  if (!load_attempted) {
1717    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1718  }
1719
1720  if (result != NULL) {
1721    // Successful loading
1722    return result;
1723  }
1724
1725  Elf32_Ehdr elf_head;
1726  int diag_msg_max_length=ebuflen-strlen(ebuf);
1727  char* diag_msg_buf=ebuf+strlen(ebuf);
1728
1729  if (diag_msg_max_length==0) {
1730    // No more space in ebuf for additional diagnostics message
1731    return NULL;
1732  }
1733
1734
1735  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1736
1737  if (file_descriptor < 0) {
1738    // Can't open library, report dlerror() message
1739    return NULL;
1740  }
1741
1742  bool failed_to_read_elf_head=
1743    (sizeof(elf_head)!=
1744     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1745
1746  ::close(file_descriptor);
1747  if (failed_to_read_elf_head) {
1748    // file i/o error - report dlerror() msg
1749    return NULL;
1750  }
1751
1752  typedef struct {
1753    Elf32_Half  code;         // Actual value as defined in elf.h
1754    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1755    char        elf_class;    // 32 or 64 bit
1756    char        endianess;    // MSB or LSB
1757    char*       name;         // String representation
1758  } arch_t;
1759
1760#ifndef EM_486
1761  #define EM_486          6               /* Intel 80486 */
1762#endif
1763#ifndef EM_AARCH64
1764  #define EM_AARCH64    183               /* ARM AARCH64 */
1765#endif
1766
1767  static const arch_t arch_array[]={
1768    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1769    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1770    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1771    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1772    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1773    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1774    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1775    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1776#if defined(VM_LITTLE_ENDIAN)
1777    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1778#else
1779    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1780#endif
1781    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1782    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1783    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1784    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1785    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1786    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1787    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1788    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1789  };
1790
1791#if  (defined IA32)
1792  static  Elf32_Half running_arch_code=EM_386;
1793#elif   (defined AMD64)
1794  static  Elf32_Half running_arch_code=EM_X86_64;
1795#elif  (defined IA64)
1796  static  Elf32_Half running_arch_code=EM_IA_64;
1797#elif  (defined __sparc) && (defined _LP64)
1798  static  Elf32_Half running_arch_code=EM_SPARCV9;
1799#elif  (defined __sparc) && (!defined _LP64)
1800  static  Elf32_Half running_arch_code=EM_SPARC;
1801#elif  (defined __powerpc64__)
1802  static  Elf32_Half running_arch_code=EM_PPC64;
1803#elif  (defined __powerpc__)
1804  static  Elf32_Half running_arch_code=EM_PPC;
1805#elif  (defined ARM)
1806  static  Elf32_Half running_arch_code=EM_ARM;
1807#elif  (defined S390)
1808  static  Elf32_Half running_arch_code=EM_S390;
1809#elif  (defined ALPHA)
1810  static  Elf32_Half running_arch_code=EM_ALPHA;
1811#elif  (defined MIPSEL)
1812  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1813#elif  (defined PARISC)
1814  static  Elf32_Half running_arch_code=EM_PARISC;
1815#elif  (defined MIPS)
1816  static  Elf32_Half running_arch_code=EM_MIPS;
1817#elif  (defined M68K)
1818  static  Elf32_Half running_arch_code=EM_68K;
1819#elif  (defined AARCH64)
1820  static  Elf32_Half running_arch_code=EM_AARCH64;
1821#else
1822    #error Method os::dll_load requires that one of following is defined:\
1823         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1824#endif
1825
1826  // Identify compatability class for VM's architecture and library's architecture
1827  // Obtain string descriptions for architectures
1828
1829  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1830  int running_arch_index=-1;
1831
1832  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1833    if (running_arch_code == arch_array[i].code) {
1834      running_arch_index    = i;
1835    }
1836    if (lib_arch.code == arch_array[i].code) {
1837      lib_arch.compat_class = arch_array[i].compat_class;
1838      lib_arch.name         = arch_array[i].name;
1839    }
1840  }
1841
1842  assert(running_arch_index != -1,
1843         "Didn't find running architecture code (running_arch_code) in arch_array");
1844  if (running_arch_index == -1) {
1845    // Even though running architecture detection failed
1846    // we may still continue with reporting dlerror() message
1847    return NULL;
1848  }
1849
1850  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1851    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1852    return NULL;
1853  }
1854
1855#ifndef S390
1856  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1857    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1858    return NULL;
1859  }
1860#endif // !S390
1861
1862  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1863    if (lib_arch.name!=NULL) {
1864      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1865                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1866                 lib_arch.name, arch_array[running_arch_index].name);
1867    } else {
1868      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1869                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1870                 lib_arch.code,
1871                 arch_array[running_arch_index].name);
1872    }
1873  }
1874
1875  return NULL;
1876}
1877
1878void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1879                                int ebuflen) {
1880  void * result = ::dlopen(filename, RTLD_LAZY);
1881  if (result == NULL) {
1882    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1883    ebuf[ebuflen-1] = '\0';
1884  }
1885  return result;
1886}
1887
1888void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1889                                       int ebuflen) {
1890  void * result = NULL;
1891  if (LoadExecStackDllInVMThread) {
1892    result = dlopen_helper(filename, ebuf, ebuflen);
1893  }
1894
1895  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1896  // library that requires an executable stack, or which does not have this
1897  // stack attribute set, dlopen changes the stack attribute to executable. The
1898  // read protection of the guard pages gets lost.
1899  //
1900  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1901  // may have been queued at the same time.
1902
1903  if (!_stack_is_executable) {
1904    JavaThread *jt = Threads::first();
1905
1906    while (jt) {
1907      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1908          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1909        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1910                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1911          warning("Attempt to reguard stack yellow zone failed.");
1912        }
1913      }
1914      jt = jt->next();
1915    }
1916  }
1917
1918  return result;
1919}
1920
1921void* os::dll_lookup(void* handle, const char* name) {
1922  void* res = dlsym(handle, name);
1923  return res;
1924}
1925
1926void* os::get_default_process_handle() {
1927  return (void*)::dlopen(NULL, RTLD_LAZY);
1928}
1929
1930static bool _print_ascii_file(const char* filename, outputStream* st) {
1931  int fd = ::open(filename, O_RDONLY);
1932  if (fd == -1) {
1933    return false;
1934  }
1935
1936  char buf[32];
1937  int bytes;
1938  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1939    st->print_raw(buf, bytes);
1940  }
1941
1942  ::close(fd);
1943
1944  return true;
1945}
1946
1947void os::print_dll_info(outputStream *st) {
1948  st->print_cr("Dynamic libraries:");
1949
1950  char fname[32];
1951  pid_t pid = os::Linux::gettid();
1952
1953  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1954
1955  if (!_print_ascii_file(fname, st)) {
1956    st->print("Can not get library information for pid = %d\n", pid);
1957  }
1958}
1959
1960int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1961  FILE *procmapsFile = NULL;
1962
1963  // Open the procfs maps file for the current process
1964  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1965    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1966    char line[PATH_MAX + 100];
1967
1968    // Read line by line from 'file'
1969    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1970      u8 base, top, offset, inode;
1971      char permissions[5];
1972      char device[6];
1973      char name[PATH_MAX + 1];
1974
1975      // Parse fields from line
1976      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
1977
1978      // Filter by device id '00:00' so that we only get file system mapped files.
1979      if (strcmp(device, "00:00") != 0) {
1980
1981        // Call callback with the fields of interest
1982        if(callback(name, (address)base, (address)top, param)) {
1983          // Oops abort, callback aborted
1984          fclose(procmapsFile);
1985          return 1;
1986        }
1987      }
1988    }
1989    fclose(procmapsFile);
1990  }
1991  return 0;
1992}
1993
1994void os::print_os_info_brief(outputStream* st) {
1995  os::Linux::print_distro_info(st);
1996
1997  os::Posix::print_uname_info(st);
1998
1999  os::Linux::print_libversion_info(st);
2000
2001}
2002
2003void os::print_os_info(outputStream* st) {
2004  st->print("OS:");
2005
2006  os::Linux::print_distro_info(st);
2007
2008  os::Posix::print_uname_info(st);
2009
2010  // Print warning if unsafe chroot environment detected
2011  if (unsafe_chroot_detected) {
2012    st->print("WARNING!! ");
2013    st->print_cr("%s", unstable_chroot_error);
2014  }
2015
2016  os::Linux::print_libversion_info(st);
2017
2018  os::Posix::print_rlimit_info(st);
2019
2020  os::Posix::print_load_average(st);
2021
2022  os::Linux::print_full_memory_info(st);
2023}
2024
2025// Try to identify popular distros.
2026// Most Linux distributions have a /etc/XXX-release file, which contains
2027// the OS version string. Newer Linux distributions have a /etc/lsb-release
2028// file that also contains the OS version string. Some have more than one
2029// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2030// /etc/redhat-release.), so the order is important.
2031// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2032// their own specific XXX-release file as well as a redhat-release file.
2033// Because of this the XXX-release file needs to be searched for before the
2034// redhat-release file.
2035// Since Red Hat has a lsb-release file that is not very descriptive the
2036// search for redhat-release needs to be before lsb-release.
2037// Since the lsb-release file is the new standard it needs to be searched
2038// before the older style release files.
2039// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2040// next to last resort.  The os-release file is a new standard that contains
2041// distribution information and the system-release file seems to be an old
2042// standard that has been replaced by the lsb-release and os-release files.
2043// Searching for the debian_version file is the last resort.  It contains
2044// an informative string like "6.0.6" or "wheezy/sid". Because of this
2045// "Debian " is printed before the contents of the debian_version file.
2046void os::Linux::print_distro_info(outputStream* st) {
2047  if (!_print_ascii_file("/etc/oracle-release", st) &&
2048      !_print_ascii_file("/etc/mandriva-release", st) &&
2049      !_print_ascii_file("/etc/mandrake-release", st) &&
2050      !_print_ascii_file("/etc/sun-release", st) &&
2051      !_print_ascii_file("/etc/redhat-release", st) &&
2052      !_print_ascii_file("/etc/lsb-release", st) &&
2053      !_print_ascii_file("/etc/SuSE-release", st) &&
2054      !_print_ascii_file("/etc/turbolinux-release", st) &&
2055      !_print_ascii_file("/etc/gentoo-release", st) &&
2056      !_print_ascii_file("/etc/ltib-release", st) &&
2057      !_print_ascii_file("/etc/angstrom-version", st) &&
2058      !_print_ascii_file("/etc/system-release", st) &&
2059      !_print_ascii_file("/etc/os-release", st)) {
2060
2061    if (file_exists("/etc/debian_version")) {
2062      st->print("Debian ");
2063      _print_ascii_file("/etc/debian_version", st);
2064    } else {
2065      st->print("Linux");
2066    }
2067  }
2068  st->cr();
2069}
2070
2071void os::Linux::print_libversion_info(outputStream* st) {
2072  // libc, pthread
2073  st->print("libc:");
2074  st->print("%s ", os::Linux::glibc_version());
2075  st->print("%s ", os::Linux::libpthread_version());
2076  st->cr();
2077}
2078
2079void os::Linux::print_full_memory_info(outputStream* st) {
2080  st->print("\n/proc/meminfo:\n");
2081  _print_ascii_file("/proc/meminfo", st);
2082  st->cr();
2083}
2084
2085void os::print_memory_info(outputStream* st) {
2086
2087  st->print("Memory:");
2088  st->print(" %dk page", os::vm_page_size()>>10);
2089
2090  // values in struct sysinfo are "unsigned long"
2091  struct sysinfo si;
2092  sysinfo(&si);
2093
2094  st->print(", physical " UINT64_FORMAT "k",
2095            os::physical_memory() >> 10);
2096  st->print("(" UINT64_FORMAT "k free)",
2097            os::available_memory() >> 10);
2098  st->print(", swap " UINT64_FORMAT "k",
2099            ((jlong)si.totalswap * si.mem_unit) >> 10);
2100  st->print("(" UINT64_FORMAT "k free)",
2101            ((jlong)si.freeswap * si.mem_unit) >> 10);
2102  st->cr();
2103}
2104
2105// Print the first "model name" line and the first "flags" line
2106// that we find and nothing more. We assume "model name" comes
2107// before "flags" so if we find a second "model name", then the
2108// "flags" field is considered missing.
2109static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2110#if defined(IA32) || defined(AMD64)
2111  // Other platforms have less repetitive cpuinfo files
2112  FILE *fp = fopen("/proc/cpuinfo", "r");
2113  if (fp) {
2114    while (!feof(fp)) {
2115      if (fgets(buf, buflen, fp)) {
2116        // Assume model name comes before flags
2117        bool model_name_printed = false;
2118        if (strstr(buf, "model name") != NULL) {
2119          if (!model_name_printed) {
2120            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2121            st->print_raw(buf);
2122            model_name_printed = true;
2123          } else {
2124            // model name printed but not flags?  Odd, just return
2125            fclose(fp);
2126            return true;
2127          }
2128        }
2129        // print the flags line too
2130        if (strstr(buf, "flags") != NULL) {
2131          st->print_raw(buf);
2132          fclose(fp);
2133          return true;
2134        }
2135      }
2136    }
2137    fclose(fp);
2138  }
2139#endif // x86 platforms
2140  return false;
2141}
2142
2143void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2144  // Only print the model name if the platform provides this as a summary
2145  if (!print_model_name_and_flags(st, buf, buflen)) {
2146    st->print("\n/proc/cpuinfo:\n");
2147    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2148      st->print_cr("  <Not Available>");
2149    }
2150  }
2151}
2152
2153void os::print_siginfo(outputStream* st, void* siginfo) {
2154  const siginfo_t* si = (const siginfo_t*)siginfo;
2155
2156  os::Posix::print_siginfo_brief(st, si);
2157#if INCLUDE_CDS
2158  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2159      UseSharedSpaces) {
2160    FileMapInfo* mapinfo = FileMapInfo::current_info();
2161    if (mapinfo->is_in_shared_space(si->si_addr)) {
2162      st->print("\n\nError accessing class data sharing archive."   \
2163                " Mapped file inaccessible during execution, "      \
2164                " possible disk/network problem.");
2165    }
2166  }
2167#endif
2168  st->cr();
2169}
2170
2171
2172static void print_signal_handler(outputStream* st, int sig,
2173                                 char* buf, size_t buflen);
2174
2175void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2176  st->print_cr("Signal Handlers:");
2177  print_signal_handler(st, SIGSEGV, buf, buflen);
2178  print_signal_handler(st, SIGBUS , buf, buflen);
2179  print_signal_handler(st, SIGFPE , buf, buflen);
2180  print_signal_handler(st, SIGPIPE, buf, buflen);
2181  print_signal_handler(st, SIGXFSZ, buf, buflen);
2182  print_signal_handler(st, SIGILL , buf, buflen);
2183  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2184  print_signal_handler(st, SR_signum, buf, buflen);
2185  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2186  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2187  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2188  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2189#if defined(PPC64)
2190  print_signal_handler(st, SIGTRAP, buf, buflen);
2191#endif
2192}
2193
2194static char saved_jvm_path[MAXPATHLEN] = {0};
2195
2196// Find the full path to the current module, libjvm.so
2197void os::jvm_path(char *buf, jint buflen) {
2198  // Error checking.
2199  if (buflen < MAXPATHLEN) {
2200    assert(false, "must use a large-enough buffer");
2201    buf[0] = '\0';
2202    return;
2203  }
2204  // Lazy resolve the path to current module.
2205  if (saved_jvm_path[0] != 0) {
2206    strcpy(buf, saved_jvm_path);
2207    return;
2208  }
2209
2210  char dli_fname[MAXPATHLEN];
2211  bool ret = dll_address_to_library_name(
2212                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2213                                         dli_fname, sizeof(dli_fname), NULL);
2214  assert(ret, "cannot locate libjvm");
2215  char *rp = NULL;
2216  if (ret && dli_fname[0] != '\0') {
2217    rp = realpath(dli_fname, buf);
2218  }
2219  if (rp == NULL) {
2220    return;
2221  }
2222
2223  if (Arguments::sun_java_launcher_is_altjvm()) {
2224    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2225    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2226    // If "/jre/lib/" appears at the right place in the string, then
2227    // assume we are installed in a JDK and we're done. Otherwise, check
2228    // for a JAVA_HOME environment variable and fix up the path so it
2229    // looks like libjvm.so is installed there (append a fake suffix
2230    // hotspot/libjvm.so).
2231    const char *p = buf + strlen(buf) - 1;
2232    for (int count = 0; p > buf && count < 5; ++count) {
2233      for (--p; p > buf && *p != '/'; --p)
2234        /* empty */ ;
2235    }
2236
2237    if (strncmp(p, "/jre/lib/", 9) != 0) {
2238      // Look for JAVA_HOME in the environment.
2239      char* java_home_var = ::getenv("JAVA_HOME");
2240      if (java_home_var != NULL && java_home_var[0] != 0) {
2241        char* jrelib_p;
2242        int len;
2243
2244        // Check the current module name "libjvm.so".
2245        p = strrchr(buf, '/');
2246        if (p == NULL) {
2247          return;
2248        }
2249        assert(strstr(p, "/libjvm") == p, "invalid library name");
2250
2251        rp = realpath(java_home_var, buf);
2252        if (rp == NULL) {
2253          return;
2254        }
2255
2256        // determine if this is a legacy image or modules image
2257        // modules image doesn't have "jre" subdirectory
2258        len = strlen(buf);
2259        assert(len < buflen, "Ran out of buffer room");
2260        jrelib_p = buf + len;
2261        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2262        if (0 != access(buf, F_OK)) {
2263          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2264        }
2265
2266        if (0 == access(buf, F_OK)) {
2267          // Use current module name "libjvm.so"
2268          len = strlen(buf);
2269          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2270        } else {
2271          // Go back to path of .so
2272          rp = realpath(dli_fname, buf);
2273          if (rp == NULL) {
2274            return;
2275          }
2276        }
2277      }
2278    }
2279  }
2280
2281  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2282  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2283}
2284
2285void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2286  // no prefix required, not even "_"
2287}
2288
2289void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2290  // no suffix required
2291}
2292
2293////////////////////////////////////////////////////////////////////////////////
2294// sun.misc.Signal support
2295
2296static volatile jint sigint_count = 0;
2297
2298static void UserHandler(int sig, void *siginfo, void *context) {
2299  // 4511530 - sem_post is serialized and handled by the manager thread. When
2300  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2301  // don't want to flood the manager thread with sem_post requests.
2302  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2303    return;
2304  }
2305
2306  // Ctrl-C is pressed during error reporting, likely because the error
2307  // handler fails to abort. Let VM die immediately.
2308  if (sig == SIGINT && is_error_reported()) {
2309    os::die();
2310  }
2311
2312  os::signal_notify(sig);
2313}
2314
2315void* os::user_handler() {
2316  return CAST_FROM_FN_PTR(void*, UserHandler);
2317}
2318
2319struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2320  struct timespec ts;
2321  // Semaphore's are always associated with CLOCK_REALTIME
2322  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2323  // see unpackTime for discussion on overflow checking
2324  if (sec >= MAX_SECS) {
2325    ts.tv_sec += MAX_SECS;
2326    ts.tv_nsec = 0;
2327  } else {
2328    ts.tv_sec += sec;
2329    ts.tv_nsec += nsec;
2330    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2331      ts.tv_nsec -= NANOSECS_PER_SEC;
2332      ++ts.tv_sec; // note: this must be <= max_secs
2333    }
2334  }
2335
2336  return ts;
2337}
2338
2339extern "C" {
2340  typedef void (*sa_handler_t)(int);
2341  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2342}
2343
2344void* os::signal(int signal_number, void* handler) {
2345  struct sigaction sigAct, oldSigAct;
2346
2347  sigfillset(&(sigAct.sa_mask));
2348  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2349  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2350
2351  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2352    // -1 means registration failed
2353    return (void *)-1;
2354  }
2355
2356  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2357}
2358
2359void os::signal_raise(int signal_number) {
2360  ::raise(signal_number);
2361}
2362
2363// The following code is moved from os.cpp for making this
2364// code platform specific, which it is by its very nature.
2365
2366// Will be modified when max signal is changed to be dynamic
2367int os::sigexitnum_pd() {
2368  return NSIG;
2369}
2370
2371// a counter for each possible signal value
2372static volatile jint pending_signals[NSIG+1] = { 0 };
2373
2374// Linux(POSIX) specific hand shaking semaphore.
2375static sem_t sig_sem;
2376static PosixSemaphore sr_semaphore;
2377
2378void os::signal_init_pd() {
2379  // Initialize signal structures
2380  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2381
2382  // Initialize signal semaphore
2383  ::sem_init(&sig_sem, 0, 0);
2384}
2385
2386void os::signal_notify(int sig) {
2387  Atomic::inc(&pending_signals[sig]);
2388  ::sem_post(&sig_sem);
2389}
2390
2391static int check_pending_signals(bool wait) {
2392  Atomic::store(0, &sigint_count);
2393  for (;;) {
2394    for (int i = 0; i < NSIG + 1; i++) {
2395      jint n = pending_signals[i];
2396      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2397        return i;
2398      }
2399    }
2400    if (!wait) {
2401      return -1;
2402    }
2403    JavaThread *thread = JavaThread::current();
2404    ThreadBlockInVM tbivm(thread);
2405
2406    bool threadIsSuspended;
2407    do {
2408      thread->set_suspend_equivalent();
2409      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2410      ::sem_wait(&sig_sem);
2411
2412      // were we externally suspended while we were waiting?
2413      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2414      if (threadIsSuspended) {
2415        // The semaphore has been incremented, but while we were waiting
2416        // another thread suspended us. We don't want to continue running
2417        // while suspended because that would surprise the thread that
2418        // suspended us.
2419        ::sem_post(&sig_sem);
2420
2421        thread->java_suspend_self();
2422      }
2423    } while (threadIsSuspended);
2424  }
2425}
2426
2427int os::signal_lookup() {
2428  return check_pending_signals(false);
2429}
2430
2431int os::signal_wait() {
2432  return check_pending_signals(true);
2433}
2434
2435////////////////////////////////////////////////////////////////////////////////
2436// Virtual Memory
2437
2438int os::vm_page_size() {
2439  // Seems redundant as all get out
2440  assert(os::Linux::page_size() != -1, "must call os::init");
2441  return os::Linux::page_size();
2442}
2443
2444// Solaris allocates memory by pages.
2445int os::vm_allocation_granularity() {
2446  assert(os::Linux::page_size() != -1, "must call os::init");
2447  return os::Linux::page_size();
2448}
2449
2450// Rationale behind this function:
2451//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2452//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2453//  samples for JITted code. Here we create private executable mapping over the code cache
2454//  and then we can use standard (well, almost, as mapping can change) way to provide
2455//  info for the reporting script by storing timestamp and location of symbol
2456void linux_wrap_code(char* base, size_t size) {
2457  static volatile jint cnt = 0;
2458
2459  if (!UseOprofile) {
2460    return;
2461  }
2462
2463  char buf[PATH_MAX+1];
2464  int num = Atomic::add(1, &cnt);
2465
2466  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2467           os::get_temp_directory(), os::current_process_id(), num);
2468  unlink(buf);
2469
2470  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2471
2472  if (fd != -1) {
2473    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2474    if (rv != (off_t)-1) {
2475      if (::write(fd, "", 1) == 1) {
2476        mmap(base, size,
2477             PROT_READ|PROT_WRITE|PROT_EXEC,
2478             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2479      }
2480    }
2481    ::close(fd);
2482    unlink(buf);
2483  }
2484}
2485
2486static bool recoverable_mmap_error(int err) {
2487  // See if the error is one we can let the caller handle. This
2488  // list of errno values comes from JBS-6843484. I can't find a
2489  // Linux man page that documents this specific set of errno
2490  // values so while this list currently matches Solaris, it may
2491  // change as we gain experience with this failure mode.
2492  switch (err) {
2493  case EBADF:
2494  case EINVAL:
2495  case ENOTSUP:
2496    // let the caller deal with these errors
2497    return true;
2498
2499  default:
2500    // Any remaining errors on this OS can cause our reserved mapping
2501    // to be lost. That can cause confusion where different data
2502    // structures think they have the same memory mapped. The worst
2503    // scenario is if both the VM and a library think they have the
2504    // same memory mapped.
2505    return false;
2506  }
2507}
2508
2509static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2510                                    int err) {
2511  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2512          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2513          strerror(err), err);
2514}
2515
2516static void warn_fail_commit_memory(char* addr, size_t size,
2517                                    size_t alignment_hint, bool exec,
2518                                    int err) {
2519  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2520          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2521          alignment_hint, exec, strerror(err), err);
2522}
2523
2524// NOTE: Linux kernel does not really reserve the pages for us.
2525//       All it does is to check if there are enough free pages
2526//       left at the time of mmap(). This could be a potential
2527//       problem.
2528int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2529  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2530  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2531                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2532  if (res != (uintptr_t) MAP_FAILED) {
2533    if (UseNUMAInterleaving) {
2534      numa_make_global(addr, size);
2535    }
2536    return 0;
2537  }
2538
2539  int err = errno;  // save errno from mmap() call above
2540
2541  if (!recoverable_mmap_error(err)) {
2542    warn_fail_commit_memory(addr, size, exec, err);
2543    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2544  }
2545
2546  return err;
2547}
2548
2549bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2550  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2551}
2552
2553void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2554                                  const char* mesg) {
2555  assert(mesg != NULL, "mesg must be specified");
2556  int err = os::Linux::commit_memory_impl(addr, size, exec);
2557  if (err != 0) {
2558    // the caller wants all commit errors to exit with the specified mesg:
2559    warn_fail_commit_memory(addr, size, exec, err);
2560    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2561  }
2562}
2563
2564// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2565#ifndef MAP_HUGETLB
2566  #define MAP_HUGETLB 0x40000
2567#endif
2568
2569// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2570#ifndef MADV_HUGEPAGE
2571  #define MADV_HUGEPAGE 14
2572#endif
2573
2574int os::Linux::commit_memory_impl(char* addr, size_t size,
2575                                  size_t alignment_hint, bool exec) {
2576  int err = os::Linux::commit_memory_impl(addr, size, exec);
2577  if (err == 0) {
2578    realign_memory(addr, size, alignment_hint);
2579  }
2580  return err;
2581}
2582
2583bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2584                          bool exec) {
2585  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2586}
2587
2588void os::pd_commit_memory_or_exit(char* addr, size_t size,
2589                                  size_t alignment_hint, bool exec,
2590                                  const char* mesg) {
2591  assert(mesg != NULL, "mesg must be specified");
2592  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2593  if (err != 0) {
2594    // the caller wants all commit errors to exit with the specified mesg:
2595    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2596    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2597  }
2598}
2599
2600void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2601  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2602    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2603    // be supported or the memory may already be backed by huge pages.
2604    ::madvise(addr, bytes, MADV_HUGEPAGE);
2605  }
2606}
2607
2608void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2609  // This method works by doing an mmap over an existing mmaping and effectively discarding
2610  // the existing pages. However it won't work for SHM-based large pages that cannot be
2611  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2612  // small pages on top of the SHM segment. This method always works for small pages, so we
2613  // allow that in any case.
2614  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2615    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2616  }
2617}
2618
2619void os::numa_make_global(char *addr, size_t bytes) {
2620  Linux::numa_interleave_memory(addr, bytes);
2621}
2622
2623// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2624// bind policy to MPOL_PREFERRED for the current thread.
2625#define USE_MPOL_PREFERRED 0
2626
2627void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2628  // To make NUMA and large pages more robust when both enabled, we need to ease
2629  // the requirements on where the memory should be allocated. MPOL_BIND is the
2630  // default policy and it will force memory to be allocated on the specified
2631  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2632  // the specified node, but will not force it. Using this policy will prevent
2633  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2634  // free large pages.
2635  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2636  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2637}
2638
2639bool os::numa_topology_changed() { return false; }
2640
2641size_t os::numa_get_groups_num() {
2642  int max_node = Linux::numa_max_node();
2643  return max_node > 0 ? max_node + 1 : 1;
2644}
2645
2646int os::numa_get_group_id() {
2647  int cpu_id = Linux::sched_getcpu();
2648  if (cpu_id != -1) {
2649    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2650    if (lgrp_id != -1) {
2651      return lgrp_id;
2652    }
2653  }
2654  return 0;
2655}
2656
2657size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2658  for (size_t i = 0; i < size; i++) {
2659    ids[i] = i;
2660  }
2661  return size;
2662}
2663
2664bool os::get_page_info(char *start, page_info* info) {
2665  return false;
2666}
2667
2668char *os::scan_pages(char *start, char* end, page_info* page_expected,
2669                     page_info* page_found) {
2670  return end;
2671}
2672
2673
2674int os::Linux::sched_getcpu_syscall(void) {
2675  unsigned int cpu;
2676  int retval = -1;
2677
2678#if defined(IA32)
2679  #ifndef SYS_getcpu
2680    #define SYS_getcpu 318
2681  #endif
2682  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2683#elif defined(AMD64)
2684// Unfortunately we have to bring all these macros here from vsyscall.h
2685// to be able to compile on old linuxes.
2686  #define __NR_vgetcpu 2
2687  #define VSYSCALL_START (-10UL << 20)
2688  #define VSYSCALL_SIZE 1024
2689  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2690  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2691  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2692  retval = vgetcpu(&cpu, NULL, NULL);
2693#endif
2694
2695  return (retval == -1) ? retval : cpu;
2696}
2697
2698// Something to do with the numa-aware allocator needs these symbols
2699extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2700extern "C" JNIEXPORT void numa_error(char *where) { }
2701extern "C" JNIEXPORT int fork1() { return fork(); }
2702
2703
2704// If we are running with libnuma version > 2, then we should
2705// be trying to use symbols with versions 1.1
2706// If we are running with earlier version, which did not have symbol versions,
2707// we should use the base version.
2708void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2709  void *f = dlvsym(handle, name, "libnuma_1.1");
2710  if (f == NULL) {
2711    f = dlsym(handle, name);
2712  }
2713  return f;
2714}
2715
2716bool os::Linux::libnuma_init() {
2717  // sched_getcpu() should be in libc.
2718  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2719                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2720
2721  // If it's not, try a direct syscall.
2722  if (sched_getcpu() == -1) {
2723    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2724                                    (void*)&sched_getcpu_syscall));
2725  }
2726
2727  if (sched_getcpu() != -1) { // Does it work?
2728    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2729    if (handle != NULL) {
2730      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2731                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2732      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2733                                       libnuma_dlsym(handle, "numa_max_node")));
2734      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2735                                        libnuma_dlsym(handle, "numa_available")));
2736      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2737                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2738      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2739                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2740      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2741                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2742
2743
2744      if (numa_available() != -1) {
2745        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2746        // Create a cpu -> node mapping
2747        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2748        rebuild_cpu_to_node_map();
2749        return true;
2750      }
2751    }
2752  }
2753  return false;
2754}
2755
2756// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2757// The table is later used in get_node_by_cpu().
2758void os::Linux::rebuild_cpu_to_node_map() {
2759  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2760                              // in libnuma (possible values are starting from 16,
2761                              // and continuing up with every other power of 2, but less
2762                              // than the maximum number of CPUs supported by kernel), and
2763                              // is a subject to change (in libnuma version 2 the requirements
2764                              // are more reasonable) we'll just hardcode the number they use
2765                              // in the library.
2766  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2767
2768  size_t cpu_num = os::active_processor_count();
2769  size_t cpu_map_size = NCPUS / BitsPerCLong;
2770  size_t cpu_map_valid_size =
2771    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2772
2773  cpu_to_node()->clear();
2774  cpu_to_node()->at_grow(cpu_num - 1);
2775  size_t node_num = numa_get_groups_num();
2776
2777  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2778  for (size_t i = 0; i < node_num; i++) {
2779    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2780      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2781        if (cpu_map[j] != 0) {
2782          for (size_t k = 0; k < BitsPerCLong; k++) {
2783            if (cpu_map[j] & (1UL << k)) {
2784              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2785            }
2786          }
2787        }
2788      }
2789    }
2790  }
2791  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2792}
2793
2794int os::Linux::get_node_by_cpu(int cpu_id) {
2795  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2796    return cpu_to_node()->at(cpu_id);
2797  }
2798  return -1;
2799}
2800
2801GrowableArray<int>* os::Linux::_cpu_to_node;
2802os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2803os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2804os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2805os::Linux::numa_available_func_t os::Linux::_numa_available;
2806os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2807os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2808os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2809unsigned long* os::Linux::_numa_all_nodes;
2810
2811bool os::pd_uncommit_memory(char* addr, size_t size) {
2812  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2813                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2814  return res  != (uintptr_t) MAP_FAILED;
2815}
2816
2817static address get_stack_commited_bottom(address bottom, size_t size) {
2818  address nbot = bottom;
2819  address ntop = bottom + size;
2820
2821  size_t page_sz = os::vm_page_size();
2822  unsigned pages = size / page_sz;
2823
2824  unsigned char vec[1];
2825  unsigned imin = 1, imax = pages + 1, imid;
2826  int mincore_return_value = 0;
2827
2828  assert(imin <= imax, "Unexpected page size");
2829
2830  while (imin < imax) {
2831    imid = (imax + imin) / 2;
2832    nbot = ntop - (imid * page_sz);
2833
2834    // Use a trick with mincore to check whether the page is mapped or not.
2835    // mincore sets vec to 1 if page resides in memory and to 0 if page
2836    // is swapped output but if page we are asking for is unmapped
2837    // it returns -1,ENOMEM
2838    mincore_return_value = mincore(nbot, page_sz, vec);
2839
2840    if (mincore_return_value == -1) {
2841      // Page is not mapped go up
2842      // to find first mapped page
2843      if (errno != EAGAIN) {
2844        assert(errno == ENOMEM, "Unexpected mincore errno");
2845        imax = imid;
2846      }
2847    } else {
2848      // Page is mapped go down
2849      // to find first not mapped page
2850      imin = imid + 1;
2851    }
2852  }
2853
2854  nbot = nbot + page_sz;
2855
2856  // Adjust stack bottom one page up if last checked page is not mapped
2857  if (mincore_return_value == -1) {
2858    nbot = nbot + page_sz;
2859  }
2860
2861  return nbot;
2862}
2863
2864
2865// Linux uses a growable mapping for the stack, and if the mapping for
2866// the stack guard pages is not removed when we detach a thread the
2867// stack cannot grow beyond the pages where the stack guard was
2868// mapped.  If at some point later in the process the stack expands to
2869// that point, the Linux kernel cannot expand the stack any further
2870// because the guard pages are in the way, and a segfault occurs.
2871//
2872// However, it's essential not to split the stack region by unmapping
2873// a region (leaving a hole) that's already part of the stack mapping,
2874// so if the stack mapping has already grown beyond the guard pages at
2875// the time we create them, we have to truncate the stack mapping.
2876// So, we need to know the extent of the stack mapping when
2877// create_stack_guard_pages() is called.
2878
2879// We only need this for stacks that are growable: at the time of
2880// writing thread stacks don't use growable mappings (i.e. those
2881// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2882// only applies to the main thread.
2883
2884// If the (growable) stack mapping already extends beyond the point
2885// where we're going to put our guard pages, truncate the mapping at
2886// that point by munmap()ping it.  This ensures that when we later
2887// munmap() the guard pages we don't leave a hole in the stack
2888// mapping. This only affects the main/initial thread
2889
2890bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2891  if (os::Linux::is_initial_thread()) {
2892    // As we manually grow stack up to bottom inside create_attached_thread(),
2893    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2894    // we don't need to do anything special.
2895    // Check it first, before calling heavy function.
2896    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2897    unsigned char vec[1];
2898
2899    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2900      // Fallback to slow path on all errors, including EAGAIN
2901      stack_extent = (uintptr_t) get_stack_commited_bottom(
2902                                                           os::Linux::initial_thread_stack_bottom(),
2903                                                           (size_t)addr - stack_extent);
2904    }
2905
2906    if (stack_extent < (uintptr_t)addr) {
2907      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2908    }
2909  }
2910
2911  return os::commit_memory(addr, size, !ExecMem);
2912}
2913
2914// If this is a growable mapping, remove the guard pages entirely by
2915// munmap()ping them.  If not, just call uncommit_memory(). This only
2916// affects the main/initial thread, but guard against future OS changes
2917// It's safe to always unmap guard pages for initial thread because we
2918// always place it right after end of the mapped region
2919
2920bool os::remove_stack_guard_pages(char* addr, size_t size) {
2921  uintptr_t stack_extent, stack_base;
2922
2923  if (os::Linux::is_initial_thread()) {
2924    return ::munmap(addr, size) == 0;
2925  }
2926
2927  return os::uncommit_memory(addr, size);
2928}
2929
2930// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2931// at 'requested_addr'. If there are existing memory mappings at the same
2932// location, however, they will be overwritten. If 'fixed' is false,
2933// 'requested_addr' is only treated as a hint, the return value may or
2934// may not start from the requested address. Unlike Linux mmap(), this
2935// function returns NULL to indicate failure.
2936static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2937  char * addr;
2938  int flags;
2939
2940  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2941  if (fixed) {
2942    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2943    flags |= MAP_FIXED;
2944  }
2945
2946  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2947  // touch an uncommitted page. Otherwise, the read/write might
2948  // succeed if we have enough swap space to back the physical page.
2949  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2950                       flags, -1, 0);
2951
2952  return addr == MAP_FAILED ? NULL : addr;
2953}
2954
2955static int anon_munmap(char * addr, size_t size) {
2956  return ::munmap(addr, size) == 0;
2957}
2958
2959char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2960                            size_t alignment_hint) {
2961  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2962}
2963
2964bool os::pd_release_memory(char* addr, size_t size) {
2965  return anon_munmap(addr, size);
2966}
2967
2968static bool linux_mprotect(char* addr, size_t size, int prot) {
2969  // Linux wants the mprotect address argument to be page aligned.
2970  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2971
2972  // According to SUSv3, mprotect() should only be used with mappings
2973  // established by mmap(), and mmap() always maps whole pages. Unaligned
2974  // 'addr' likely indicates problem in the VM (e.g. trying to change
2975  // protection of malloc'ed or statically allocated memory). Check the
2976  // caller if you hit this assert.
2977  assert(addr == bottom, "sanity check");
2978
2979  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2980  return ::mprotect(bottom, size, prot) == 0;
2981}
2982
2983// Set protections specified
2984bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2985                        bool is_committed) {
2986  unsigned int p = 0;
2987  switch (prot) {
2988  case MEM_PROT_NONE: p = PROT_NONE; break;
2989  case MEM_PROT_READ: p = PROT_READ; break;
2990  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2991  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2992  default:
2993    ShouldNotReachHere();
2994  }
2995  // is_committed is unused.
2996  return linux_mprotect(addr, bytes, p);
2997}
2998
2999bool os::guard_memory(char* addr, size_t size) {
3000  return linux_mprotect(addr, size, PROT_NONE);
3001}
3002
3003bool os::unguard_memory(char* addr, size_t size) {
3004  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3005}
3006
3007bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3008                                                    size_t page_size) {
3009  bool result = false;
3010  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3011                 MAP_ANONYMOUS|MAP_PRIVATE,
3012                 -1, 0);
3013  if (p != MAP_FAILED) {
3014    void *aligned_p = align_ptr_up(p, page_size);
3015
3016    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3017
3018    munmap(p, page_size * 2);
3019  }
3020
3021  if (warn && !result) {
3022    warning("TransparentHugePages is not supported by the operating system.");
3023  }
3024
3025  return result;
3026}
3027
3028bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3029  bool result = false;
3030  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3031                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3032                 -1, 0);
3033
3034  if (p != MAP_FAILED) {
3035    // We don't know if this really is a huge page or not.
3036    FILE *fp = fopen("/proc/self/maps", "r");
3037    if (fp) {
3038      while (!feof(fp)) {
3039        char chars[257];
3040        long x = 0;
3041        if (fgets(chars, sizeof(chars), fp)) {
3042          if (sscanf(chars, "%lx-%*x", &x) == 1
3043              && x == (long)p) {
3044            if (strstr (chars, "hugepage")) {
3045              result = true;
3046              break;
3047            }
3048          }
3049        }
3050      }
3051      fclose(fp);
3052    }
3053    munmap(p, page_size);
3054  }
3055
3056  if (warn && !result) {
3057    warning("HugeTLBFS is not supported by the operating system.");
3058  }
3059
3060  return result;
3061}
3062
3063// Set the coredump_filter bits to include largepages in core dump (bit 6)
3064//
3065// From the coredump_filter documentation:
3066//
3067// - (bit 0) anonymous private memory
3068// - (bit 1) anonymous shared memory
3069// - (bit 2) file-backed private memory
3070// - (bit 3) file-backed shared memory
3071// - (bit 4) ELF header pages in file-backed private memory areas (it is
3072//           effective only if the bit 2 is cleared)
3073// - (bit 5) hugetlb private memory
3074// - (bit 6) hugetlb shared memory
3075//
3076static void set_coredump_filter(void) {
3077  FILE *f;
3078  long cdm;
3079
3080  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3081    return;
3082  }
3083
3084  if (fscanf(f, "%lx", &cdm) != 1) {
3085    fclose(f);
3086    return;
3087  }
3088
3089  rewind(f);
3090
3091  if ((cdm & LARGEPAGES_BIT) == 0) {
3092    cdm |= LARGEPAGES_BIT;
3093    fprintf(f, "%#lx", cdm);
3094  }
3095
3096  fclose(f);
3097}
3098
3099// Large page support
3100
3101static size_t _large_page_size = 0;
3102
3103size_t os::Linux::find_large_page_size() {
3104  size_t large_page_size = 0;
3105
3106  // large_page_size on Linux is used to round up heap size. x86 uses either
3107  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3108  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3109  // page as large as 256M.
3110  //
3111  // Here we try to figure out page size by parsing /proc/meminfo and looking
3112  // for a line with the following format:
3113  //    Hugepagesize:     2048 kB
3114  //
3115  // If we can't determine the value (e.g. /proc is not mounted, or the text
3116  // format has been changed), we'll use the largest page size supported by
3117  // the processor.
3118
3119#ifndef ZERO
3120  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3121                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3122#endif // ZERO
3123
3124  FILE *fp = fopen("/proc/meminfo", "r");
3125  if (fp) {
3126    while (!feof(fp)) {
3127      int x = 0;
3128      char buf[16];
3129      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3130        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3131          large_page_size = x * K;
3132          break;
3133        }
3134      } else {
3135        // skip to next line
3136        for (;;) {
3137          int ch = fgetc(fp);
3138          if (ch == EOF || ch == (int)'\n') break;
3139        }
3140      }
3141    }
3142    fclose(fp);
3143  }
3144
3145  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3146    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3147            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3148            proper_unit_for_byte_size(large_page_size));
3149  }
3150
3151  return large_page_size;
3152}
3153
3154size_t os::Linux::setup_large_page_size() {
3155  _large_page_size = Linux::find_large_page_size();
3156  const size_t default_page_size = (size_t)Linux::page_size();
3157  if (_large_page_size > default_page_size) {
3158    _page_sizes[0] = _large_page_size;
3159    _page_sizes[1] = default_page_size;
3160    _page_sizes[2] = 0;
3161  }
3162
3163  return _large_page_size;
3164}
3165
3166bool os::Linux::setup_large_page_type(size_t page_size) {
3167  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3168      FLAG_IS_DEFAULT(UseSHM) &&
3169      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3170
3171    // The type of large pages has not been specified by the user.
3172
3173    // Try UseHugeTLBFS and then UseSHM.
3174    UseHugeTLBFS = UseSHM = true;
3175
3176    // Don't try UseTransparentHugePages since there are known
3177    // performance issues with it turned on. This might change in the future.
3178    UseTransparentHugePages = false;
3179  }
3180
3181  if (UseTransparentHugePages) {
3182    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3183    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3184      UseHugeTLBFS = false;
3185      UseSHM = false;
3186      return true;
3187    }
3188    UseTransparentHugePages = false;
3189  }
3190
3191  if (UseHugeTLBFS) {
3192    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3193    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3194      UseSHM = false;
3195      return true;
3196    }
3197    UseHugeTLBFS = false;
3198  }
3199
3200  return UseSHM;
3201}
3202
3203void os::large_page_init() {
3204  if (!UseLargePages &&
3205      !UseTransparentHugePages &&
3206      !UseHugeTLBFS &&
3207      !UseSHM) {
3208    // Not using large pages.
3209    return;
3210  }
3211
3212  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3213    // The user explicitly turned off large pages.
3214    // Ignore the rest of the large pages flags.
3215    UseTransparentHugePages = false;
3216    UseHugeTLBFS = false;
3217    UseSHM = false;
3218    return;
3219  }
3220
3221  size_t large_page_size = Linux::setup_large_page_size();
3222  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3223
3224  set_coredump_filter();
3225}
3226
3227#ifndef SHM_HUGETLB
3228  #define SHM_HUGETLB 04000
3229#endif
3230
3231char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3232                                            char* req_addr, bool exec) {
3233  // "exec" is passed in but not used.  Creating the shared image for
3234  // the code cache doesn't have an SHM_X executable permission to check.
3235  assert(UseLargePages && UseSHM, "only for SHM large pages");
3236  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3237
3238  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3239    return NULL; // Fallback to small pages.
3240  }
3241
3242  key_t key = IPC_PRIVATE;
3243  char *addr;
3244
3245  bool warn_on_failure = UseLargePages &&
3246                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3247                         !FLAG_IS_DEFAULT(UseSHM) ||
3248                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3249  char msg[128];
3250
3251  // Create a large shared memory region to attach to based on size.
3252  // Currently, size is the total size of the heap
3253  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3254  if (shmid == -1) {
3255    // Possible reasons for shmget failure:
3256    // 1. shmmax is too small for Java heap.
3257    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3258    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3259    // 2. not enough large page memory.
3260    //    > check available large pages: cat /proc/meminfo
3261    //    > increase amount of large pages:
3262    //          echo new_value > /proc/sys/vm/nr_hugepages
3263    //      Note 1: different Linux may use different name for this property,
3264    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3265    //      Note 2: it's possible there's enough physical memory available but
3266    //            they are so fragmented after a long run that they can't
3267    //            coalesce into large pages. Try to reserve large pages when
3268    //            the system is still "fresh".
3269    if (warn_on_failure) {
3270      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3271      warning("%s", msg);
3272    }
3273    return NULL;
3274  }
3275
3276  // attach to the region
3277  addr = (char*)shmat(shmid, req_addr, 0);
3278  int err = errno;
3279
3280  // Remove shmid. If shmat() is successful, the actual shared memory segment
3281  // will be deleted when it's detached by shmdt() or when the process
3282  // terminates. If shmat() is not successful this will remove the shared
3283  // segment immediately.
3284  shmctl(shmid, IPC_RMID, NULL);
3285
3286  if ((intptr_t)addr == -1) {
3287    if (warn_on_failure) {
3288      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3289      warning("%s", msg);
3290    }
3291    return NULL;
3292  }
3293
3294  return addr;
3295}
3296
3297static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3298                                        int error) {
3299  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3300
3301  bool warn_on_failure = UseLargePages &&
3302      (!FLAG_IS_DEFAULT(UseLargePages) ||
3303       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3304       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3305
3306  if (warn_on_failure) {
3307    char msg[128];
3308    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3309                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3310    warning("%s", msg);
3311  }
3312}
3313
3314char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3315                                                        char* req_addr,
3316                                                        bool exec) {
3317  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3318  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3319  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3320
3321  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3322  char* addr = (char*)::mmap(req_addr, bytes, prot,
3323                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3324                             -1, 0);
3325
3326  if (addr == MAP_FAILED) {
3327    warn_on_large_pages_failure(req_addr, bytes, errno);
3328    return NULL;
3329  }
3330
3331  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3332
3333  return addr;
3334}
3335
3336// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3337// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3338//   (req_addr != NULL) or with a given alignment.
3339//  - bytes shall be a multiple of alignment.
3340//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3341//  - alignment sets the alignment at which memory shall be allocated.
3342//     It must be a multiple of allocation granularity.
3343// Returns address of memory or NULL. If req_addr was not NULL, will only return
3344//  req_addr or NULL.
3345static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3346
3347  size_t extra_size = bytes;
3348  if (req_addr == NULL && alignment > 0) {
3349    extra_size += alignment;
3350  }
3351
3352  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3353    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3354    -1, 0);
3355  if (start == MAP_FAILED) {
3356    start = NULL;
3357  } else {
3358    if (req_addr != NULL) {
3359      if (start != req_addr) {
3360        ::munmap(start, extra_size);
3361        start = NULL;
3362      }
3363    } else {
3364      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3365      char* const end_aligned = start_aligned + bytes;
3366      char* const end = start + extra_size;
3367      if (start_aligned > start) {
3368        ::munmap(start, start_aligned - start);
3369      }
3370      if (end_aligned < end) {
3371        ::munmap(end_aligned, end - end_aligned);
3372      }
3373      start = start_aligned;
3374    }
3375  }
3376  return start;
3377
3378}
3379
3380// Reserve memory using mmap(MAP_HUGETLB).
3381//  - bytes shall be a multiple of alignment.
3382//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3383//  - alignment sets the alignment at which memory shall be allocated.
3384//     It must be a multiple of allocation granularity.
3385// Returns address of memory or NULL. If req_addr was not NULL, will only return
3386//  req_addr or NULL.
3387char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3388                                                         size_t alignment,
3389                                                         char* req_addr,
3390                                                         bool exec) {
3391  size_t large_page_size = os::large_page_size();
3392  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3393
3394  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3395  assert(is_size_aligned(bytes, alignment), "Must be");
3396
3397  // First reserve - but not commit - the address range in small pages.
3398  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3399
3400  if (start == NULL) {
3401    return NULL;
3402  }
3403
3404  assert(is_ptr_aligned(start, alignment), "Must be");
3405
3406  char* end = start + bytes;
3407
3408  // Find the regions of the allocated chunk that can be promoted to large pages.
3409  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3410  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3411
3412  size_t lp_bytes = lp_end - lp_start;
3413
3414  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3415
3416  if (lp_bytes == 0) {
3417    // The mapped region doesn't even span the start and the end of a large page.
3418    // Fall back to allocate a non-special area.
3419    ::munmap(start, end - start);
3420    return NULL;
3421  }
3422
3423  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3424
3425  void* result;
3426
3427  // Commit small-paged leading area.
3428  if (start != lp_start) {
3429    result = ::mmap(start, lp_start - start, prot,
3430                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3431                    -1, 0);
3432    if (result == MAP_FAILED) {
3433      ::munmap(lp_start, end - lp_start);
3434      return NULL;
3435    }
3436  }
3437
3438  // Commit large-paged area.
3439  result = ::mmap(lp_start, lp_bytes, prot,
3440                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3441                  -1, 0);
3442  if (result == MAP_FAILED) {
3443    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3444    // If the mmap above fails, the large pages region will be unmapped and we
3445    // have regions before and after with small pages. Release these regions.
3446    //
3447    // |  mapped  |  unmapped  |  mapped  |
3448    // ^          ^            ^          ^
3449    // start      lp_start     lp_end     end
3450    //
3451    ::munmap(start, lp_start - start);
3452    ::munmap(lp_end, end - lp_end);
3453    return NULL;
3454  }
3455
3456  // Commit small-paged trailing area.
3457  if (lp_end != end) {
3458    result = ::mmap(lp_end, end - lp_end, prot,
3459                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3460                    -1, 0);
3461    if (result == MAP_FAILED) {
3462      ::munmap(start, lp_end - start);
3463      return NULL;
3464    }
3465  }
3466
3467  return start;
3468}
3469
3470char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3471                                                   size_t alignment,
3472                                                   char* req_addr,
3473                                                   bool exec) {
3474  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3475  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3476  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3477  assert(is_power_of_2(os::large_page_size()), "Must be");
3478  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3479
3480  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3481    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3482  } else {
3483    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3484  }
3485}
3486
3487char* os::reserve_memory_special(size_t bytes, size_t alignment,
3488                                 char* req_addr, bool exec) {
3489  assert(UseLargePages, "only for large pages");
3490
3491  char* addr;
3492  if (UseSHM) {
3493    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3494  } else {
3495    assert(UseHugeTLBFS, "must be");
3496    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3497  }
3498
3499  if (addr != NULL) {
3500    if (UseNUMAInterleaving) {
3501      numa_make_global(addr, bytes);
3502    }
3503
3504    // The memory is committed
3505    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3506  }
3507
3508  return addr;
3509}
3510
3511bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3512  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3513  return shmdt(base) == 0;
3514}
3515
3516bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3517  return pd_release_memory(base, bytes);
3518}
3519
3520bool os::release_memory_special(char* base, size_t bytes) {
3521  bool res;
3522  if (MemTracker::tracking_level() > NMT_minimal) {
3523    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3524    res = os::Linux::release_memory_special_impl(base, bytes);
3525    if (res) {
3526      tkr.record((address)base, bytes);
3527    }
3528
3529  } else {
3530    res = os::Linux::release_memory_special_impl(base, bytes);
3531  }
3532  return res;
3533}
3534
3535bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3536  assert(UseLargePages, "only for large pages");
3537  bool res;
3538
3539  if (UseSHM) {
3540    res = os::Linux::release_memory_special_shm(base, bytes);
3541  } else {
3542    assert(UseHugeTLBFS, "must be");
3543    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3544  }
3545  return res;
3546}
3547
3548size_t os::large_page_size() {
3549  return _large_page_size;
3550}
3551
3552// With SysV SHM the entire memory region must be allocated as shared
3553// memory.
3554// HugeTLBFS allows application to commit large page memory on demand.
3555// However, when committing memory with HugeTLBFS fails, the region
3556// that was supposed to be committed will lose the old reservation
3557// and allow other threads to steal that memory region. Because of this
3558// behavior we can't commit HugeTLBFS memory.
3559bool os::can_commit_large_page_memory() {
3560  return UseTransparentHugePages;
3561}
3562
3563bool os::can_execute_large_page_memory() {
3564  return UseTransparentHugePages || UseHugeTLBFS;
3565}
3566
3567// Reserve memory at an arbitrary address, only if that area is
3568// available (and not reserved for something else).
3569
3570char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3571  const int max_tries = 10;
3572  char* base[max_tries];
3573  size_t size[max_tries];
3574  const size_t gap = 0x000000;
3575
3576  // Assert only that the size is a multiple of the page size, since
3577  // that's all that mmap requires, and since that's all we really know
3578  // about at this low abstraction level.  If we need higher alignment,
3579  // we can either pass an alignment to this method or verify alignment
3580  // in one of the methods further up the call chain.  See bug 5044738.
3581  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3582
3583  // Repeatedly allocate blocks until the block is allocated at the
3584  // right spot.
3585
3586  // Linux mmap allows caller to pass an address as hint; give it a try first,
3587  // if kernel honors the hint then we can return immediately.
3588  char * addr = anon_mmap(requested_addr, bytes, false);
3589  if (addr == requested_addr) {
3590    return requested_addr;
3591  }
3592
3593  if (addr != NULL) {
3594    // mmap() is successful but it fails to reserve at the requested address
3595    anon_munmap(addr, bytes);
3596  }
3597
3598  int i;
3599  for (i = 0; i < max_tries; ++i) {
3600    base[i] = reserve_memory(bytes);
3601
3602    if (base[i] != NULL) {
3603      // Is this the block we wanted?
3604      if (base[i] == requested_addr) {
3605        size[i] = bytes;
3606        break;
3607      }
3608
3609      // Does this overlap the block we wanted? Give back the overlapped
3610      // parts and try again.
3611
3612      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3613      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3614        unmap_memory(base[i], top_overlap);
3615        base[i] += top_overlap;
3616        size[i] = bytes - top_overlap;
3617      } else {
3618        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3619        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3620          unmap_memory(requested_addr, bottom_overlap);
3621          size[i] = bytes - bottom_overlap;
3622        } else {
3623          size[i] = bytes;
3624        }
3625      }
3626    }
3627  }
3628
3629  // Give back the unused reserved pieces.
3630
3631  for (int j = 0; j < i; ++j) {
3632    if (base[j] != NULL) {
3633      unmap_memory(base[j], size[j]);
3634    }
3635  }
3636
3637  if (i < max_tries) {
3638    return requested_addr;
3639  } else {
3640    return NULL;
3641  }
3642}
3643
3644size_t os::read(int fd, void *buf, unsigned int nBytes) {
3645  return ::read(fd, buf, nBytes);
3646}
3647
3648size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3649  return ::pread(fd, buf, nBytes, offset);
3650}
3651
3652// Short sleep, direct OS call.
3653//
3654// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3655// sched_yield(2) will actually give up the CPU:
3656//
3657//   * Alone on this pariticular CPU, keeps running.
3658//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3659//     (pre 2.6.39).
3660//
3661// So calling this with 0 is an alternative.
3662//
3663void os::naked_short_sleep(jlong ms) {
3664  struct timespec req;
3665
3666  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3667  req.tv_sec = 0;
3668  if (ms > 0) {
3669    req.tv_nsec = (ms % 1000) * 1000000;
3670  } else {
3671    req.tv_nsec = 1;
3672  }
3673
3674  nanosleep(&req, NULL);
3675
3676  return;
3677}
3678
3679// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3680void os::infinite_sleep() {
3681  while (true) {    // sleep forever ...
3682    ::sleep(100);   // ... 100 seconds at a time
3683  }
3684}
3685
3686// Used to convert frequent JVM_Yield() to nops
3687bool os::dont_yield() {
3688  return DontYieldALot;
3689}
3690
3691void os::naked_yield() {
3692  sched_yield();
3693}
3694
3695////////////////////////////////////////////////////////////////////////////////
3696// thread priority support
3697
3698// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3699// only supports dynamic priority, static priority must be zero. For real-time
3700// applications, Linux supports SCHED_RR which allows static priority (1-99).
3701// However, for large multi-threaded applications, SCHED_RR is not only slower
3702// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3703// of 5 runs - Sep 2005).
3704//
3705// The following code actually changes the niceness of kernel-thread/LWP. It
3706// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3707// not the entire user process, and user level threads are 1:1 mapped to kernel
3708// threads. It has always been the case, but could change in the future. For
3709// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3710// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3711
3712int os::java_to_os_priority[CriticalPriority + 1] = {
3713  19,              // 0 Entry should never be used
3714
3715   4,              // 1 MinPriority
3716   3,              // 2
3717   2,              // 3
3718
3719   1,              // 4
3720   0,              // 5 NormPriority
3721  -1,              // 6
3722
3723  -2,              // 7
3724  -3,              // 8
3725  -4,              // 9 NearMaxPriority
3726
3727  -5,              // 10 MaxPriority
3728
3729  -5               // 11 CriticalPriority
3730};
3731
3732static int prio_init() {
3733  if (ThreadPriorityPolicy == 1) {
3734    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3735    // if effective uid is not root. Perhaps, a more elegant way of doing
3736    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3737    if (geteuid() != 0) {
3738      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3739        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3740      }
3741      ThreadPriorityPolicy = 0;
3742    }
3743  }
3744  if (UseCriticalJavaThreadPriority) {
3745    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3746  }
3747  return 0;
3748}
3749
3750OSReturn os::set_native_priority(Thread* thread, int newpri) {
3751  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3752
3753  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3754  return (ret == 0) ? OS_OK : OS_ERR;
3755}
3756
3757OSReturn os::get_native_priority(const Thread* const thread,
3758                                 int *priority_ptr) {
3759  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3760    *priority_ptr = java_to_os_priority[NormPriority];
3761    return OS_OK;
3762  }
3763
3764  errno = 0;
3765  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3766  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3767}
3768
3769// Hint to the underlying OS that a task switch would not be good.
3770// Void return because it's a hint and can fail.
3771void os::hint_no_preempt() {}
3772
3773////////////////////////////////////////////////////////////////////////////////
3774// suspend/resume support
3775
3776//  the low-level signal-based suspend/resume support is a remnant from the
3777//  old VM-suspension that used to be for java-suspension, safepoints etc,
3778//  within hotspot. Now there is a single use-case for this:
3779//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3780//      that runs in the watcher thread.
3781//  The remaining code is greatly simplified from the more general suspension
3782//  code that used to be used.
3783//
3784//  The protocol is quite simple:
3785//  - suspend:
3786//      - sends a signal to the target thread
3787//      - polls the suspend state of the osthread using a yield loop
3788//      - target thread signal handler (SR_handler) sets suspend state
3789//        and blocks in sigsuspend until continued
3790//  - resume:
3791//      - sets target osthread state to continue
3792//      - sends signal to end the sigsuspend loop in the SR_handler
3793//
3794//  Note that the SR_lock plays no role in this suspend/resume protocol.
3795
3796static void resume_clear_context(OSThread *osthread) {
3797  osthread->set_ucontext(NULL);
3798  osthread->set_siginfo(NULL);
3799}
3800
3801static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3802                                 ucontext_t* context) {
3803  osthread->set_ucontext(context);
3804  osthread->set_siginfo(siginfo);
3805}
3806
3807// Handler function invoked when a thread's execution is suspended or
3808// resumed. We have to be careful that only async-safe functions are
3809// called here (Note: most pthread functions are not async safe and
3810// should be avoided.)
3811//
3812// Note: sigwait() is a more natural fit than sigsuspend() from an
3813// interface point of view, but sigwait() prevents the signal hander
3814// from being run. libpthread would get very confused by not having
3815// its signal handlers run and prevents sigwait()'s use with the
3816// mutex granting granting signal.
3817//
3818// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3819//
3820static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3821  // Save and restore errno to avoid confusing native code with EINTR
3822  // after sigsuspend.
3823  int old_errno = errno;
3824
3825  Thread* thread = Thread::current();
3826  OSThread* osthread = thread->osthread();
3827  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3828
3829  os::SuspendResume::State current = osthread->sr.state();
3830  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3831    suspend_save_context(osthread, siginfo, context);
3832
3833    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3834    os::SuspendResume::State state = osthread->sr.suspended();
3835    if (state == os::SuspendResume::SR_SUSPENDED) {
3836      sigset_t suspend_set;  // signals for sigsuspend()
3837
3838      // get current set of blocked signals and unblock resume signal
3839      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3840      sigdelset(&suspend_set, SR_signum);
3841
3842      sr_semaphore.signal();
3843      // wait here until we are resumed
3844      while (1) {
3845        sigsuspend(&suspend_set);
3846
3847        os::SuspendResume::State result = osthread->sr.running();
3848        if (result == os::SuspendResume::SR_RUNNING) {
3849          sr_semaphore.signal();
3850          break;
3851        }
3852      }
3853
3854    } else if (state == os::SuspendResume::SR_RUNNING) {
3855      // request was cancelled, continue
3856    } else {
3857      ShouldNotReachHere();
3858    }
3859
3860    resume_clear_context(osthread);
3861  } else if (current == os::SuspendResume::SR_RUNNING) {
3862    // request was cancelled, continue
3863  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3864    // ignore
3865  } else {
3866    // ignore
3867  }
3868
3869  errno = old_errno;
3870}
3871
3872
3873static int SR_initialize() {
3874  struct sigaction act;
3875  char *s;
3876  // Get signal number to use for suspend/resume
3877  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3878    int sig = ::strtol(s, 0, 10);
3879    if (sig > 0 || sig < _NSIG) {
3880      SR_signum = sig;
3881    }
3882  }
3883
3884  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3885         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3886
3887  sigemptyset(&SR_sigset);
3888  sigaddset(&SR_sigset, SR_signum);
3889
3890  // Set up signal handler for suspend/resume
3891  act.sa_flags = SA_RESTART|SA_SIGINFO;
3892  act.sa_handler = (void (*)(int)) SR_handler;
3893
3894  // SR_signum is blocked by default.
3895  // 4528190 - We also need to block pthread restart signal (32 on all
3896  // supported Linux platforms). Note that LinuxThreads need to block
3897  // this signal for all threads to work properly. So we don't have
3898  // to use hard-coded signal number when setting up the mask.
3899  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3900
3901  if (sigaction(SR_signum, &act, 0) == -1) {
3902    return -1;
3903  }
3904
3905  // Save signal flag
3906  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3907  return 0;
3908}
3909
3910static int sr_notify(OSThread* osthread) {
3911  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3912  assert_status(status == 0, status, "pthread_kill");
3913  return status;
3914}
3915
3916// "Randomly" selected value for how long we want to spin
3917// before bailing out on suspending a thread, also how often
3918// we send a signal to a thread we want to resume
3919static const int RANDOMLY_LARGE_INTEGER = 1000000;
3920static const int RANDOMLY_LARGE_INTEGER2 = 100;
3921
3922// returns true on success and false on error - really an error is fatal
3923// but this seems the normal response to library errors
3924static bool do_suspend(OSThread* osthread) {
3925  assert(osthread->sr.is_running(), "thread should be running");
3926  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3927
3928  // mark as suspended and send signal
3929  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3930    // failed to switch, state wasn't running?
3931    ShouldNotReachHere();
3932    return false;
3933  }
3934
3935  if (sr_notify(osthread) != 0) {
3936    ShouldNotReachHere();
3937  }
3938
3939  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3940  while (true) {
3941    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3942      break;
3943    } else {
3944      // timeout
3945      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3946      if (cancelled == os::SuspendResume::SR_RUNNING) {
3947        return false;
3948      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3949        // make sure that we consume the signal on the semaphore as well
3950        sr_semaphore.wait();
3951        break;
3952      } else {
3953        ShouldNotReachHere();
3954        return false;
3955      }
3956    }
3957  }
3958
3959  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3960  return true;
3961}
3962
3963static void do_resume(OSThread* osthread) {
3964  assert(osthread->sr.is_suspended(), "thread should be suspended");
3965  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3966
3967  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3968    // failed to switch to WAKEUP_REQUEST
3969    ShouldNotReachHere();
3970    return;
3971  }
3972
3973  while (true) {
3974    if (sr_notify(osthread) == 0) {
3975      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3976        if (osthread->sr.is_running()) {
3977          return;
3978        }
3979      }
3980    } else {
3981      ShouldNotReachHere();
3982    }
3983  }
3984
3985  guarantee(osthread->sr.is_running(), "Must be running!");
3986}
3987
3988///////////////////////////////////////////////////////////////////////////////////
3989// signal handling (except suspend/resume)
3990
3991// This routine may be used by user applications as a "hook" to catch signals.
3992// The user-defined signal handler must pass unrecognized signals to this
3993// routine, and if it returns true (non-zero), then the signal handler must
3994// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3995// routine will never retun false (zero), but instead will execute a VM panic
3996// routine kill the process.
3997//
3998// If this routine returns false, it is OK to call it again.  This allows
3999// the user-defined signal handler to perform checks either before or after
4000// the VM performs its own checks.  Naturally, the user code would be making
4001// a serious error if it tried to handle an exception (such as a null check
4002// or breakpoint) that the VM was generating for its own correct operation.
4003//
4004// This routine may recognize any of the following kinds of signals:
4005//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4006// It should be consulted by handlers for any of those signals.
4007//
4008// The caller of this routine must pass in the three arguments supplied
4009// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4010// field of the structure passed to sigaction().  This routine assumes that
4011// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4012//
4013// Note that the VM will print warnings if it detects conflicting signal
4014// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4015//
4016extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4017                                                 siginfo_t* siginfo,
4018                                                 void* ucontext,
4019                                                 int abort_if_unrecognized);
4020
4021void signalHandler(int sig, siginfo_t* info, void* uc) {
4022  assert(info != NULL && uc != NULL, "it must be old kernel");
4023  int orig_errno = errno;  // Preserve errno value over signal handler.
4024  JVM_handle_linux_signal(sig, info, uc, true);
4025  errno = orig_errno;
4026}
4027
4028
4029// This boolean allows users to forward their own non-matching signals
4030// to JVM_handle_linux_signal, harmlessly.
4031bool os::Linux::signal_handlers_are_installed = false;
4032
4033// For signal-chaining
4034struct sigaction os::Linux::sigact[MAXSIGNUM];
4035unsigned int os::Linux::sigs = 0;
4036bool os::Linux::libjsig_is_loaded = false;
4037typedef struct sigaction *(*get_signal_t)(int);
4038get_signal_t os::Linux::get_signal_action = NULL;
4039
4040struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4041  struct sigaction *actp = NULL;
4042
4043  if (libjsig_is_loaded) {
4044    // Retrieve the old signal handler from libjsig
4045    actp = (*get_signal_action)(sig);
4046  }
4047  if (actp == NULL) {
4048    // Retrieve the preinstalled signal handler from jvm
4049    actp = get_preinstalled_handler(sig);
4050  }
4051
4052  return actp;
4053}
4054
4055static bool call_chained_handler(struct sigaction *actp, int sig,
4056                                 siginfo_t *siginfo, void *context) {
4057  // Call the old signal handler
4058  if (actp->sa_handler == SIG_DFL) {
4059    // It's more reasonable to let jvm treat it as an unexpected exception
4060    // instead of taking the default action.
4061    return false;
4062  } else if (actp->sa_handler != SIG_IGN) {
4063    if ((actp->sa_flags & SA_NODEFER) == 0) {
4064      // automaticlly block the signal
4065      sigaddset(&(actp->sa_mask), sig);
4066    }
4067
4068    sa_handler_t hand;
4069    sa_sigaction_t sa;
4070    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4071    // retrieve the chained handler
4072    if (siginfo_flag_set) {
4073      sa = actp->sa_sigaction;
4074    } else {
4075      hand = actp->sa_handler;
4076    }
4077
4078    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4079      actp->sa_handler = SIG_DFL;
4080    }
4081
4082    // try to honor the signal mask
4083    sigset_t oset;
4084    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4085
4086    // call into the chained handler
4087    if (siginfo_flag_set) {
4088      (*sa)(sig, siginfo, context);
4089    } else {
4090      (*hand)(sig);
4091    }
4092
4093    // restore the signal mask
4094    pthread_sigmask(SIG_SETMASK, &oset, 0);
4095  }
4096  // Tell jvm's signal handler the signal is taken care of.
4097  return true;
4098}
4099
4100bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4101  bool chained = false;
4102  // signal-chaining
4103  if (UseSignalChaining) {
4104    struct sigaction *actp = get_chained_signal_action(sig);
4105    if (actp != NULL) {
4106      chained = call_chained_handler(actp, sig, siginfo, context);
4107    }
4108  }
4109  return chained;
4110}
4111
4112struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4113  if ((((unsigned int)1 << sig) & sigs) != 0) {
4114    return &sigact[sig];
4115  }
4116  return NULL;
4117}
4118
4119void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4120  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4121  sigact[sig] = oldAct;
4122  sigs |= (unsigned int)1 << sig;
4123}
4124
4125// for diagnostic
4126int os::Linux::sigflags[MAXSIGNUM];
4127
4128int os::Linux::get_our_sigflags(int sig) {
4129  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4130  return sigflags[sig];
4131}
4132
4133void os::Linux::set_our_sigflags(int sig, int flags) {
4134  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4135  sigflags[sig] = flags;
4136}
4137
4138void os::Linux::set_signal_handler(int sig, bool set_installed) {
4139  // Check for overwrite.
4140  struct sigaction oldAct;
4141  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4142
4143  void* oldhand = oldAct.sa_sigaction
4144                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4145                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4146  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4147      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4148      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4149    if (AllowUserSignalHandlers || !set_installed) {
4150      // Do not overwrite; user takes responsibility to forward to us.
4151      return;
4152    } else if (UseSignalChaining) {
4153      // save the old handler in jvm
4154      save_preinstalled_handler(sig, oldAct);
4155      // libjsig also interposes the sigaction() call below and saves the
4156      // old sigaction on it own.
4157    } else {
4158      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4159                    "%#lx for signal %d.", (long)oldhand, sig));
4160    }
4161  }
4162
4163  struct sigaction sigAct;
4164  sigfillset(&(sigAct.sa_mask));
4165  sigAct.sa_handler = SIG_DFL;
4166  if (!set_installed) {
4167    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4168  } else {
4169    sigAct.sa_sigaction = signalHandler;
4170    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4171  }
4172  // Save flags, which are set by ours
4173  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4174  sigflags[sig] = sigAct.sa_flags;
4175
4176  int ret = sigaction(sig, &sigAct, &oldAct);
4177  assert(ret == 0, "check");
4178
4179  void* oldhand2  = oldAct.sa_sigaction
4180                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4181                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4182  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4183}
4184
4185// install signal handlers for signals that HotSpot needs to
4186// handle in order to support Java-level exception handling.
4187
4188void os::Linux::install_signal_handlers() {
4189  if (!signal_handlers_are_installed) {
4190    signal_handlers_are_installed = true;
4191
4192    // signal-chaining
4193    typedef void (*signal_setting_t)();
4194    signal_setting_t begin_signal_setting = NULL;
4195    signal_setting_t end_signal_setting = NULL;
4196    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4197                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4198    if (begin_signal_setting != NULL) {
4199      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4200                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4201      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4202                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4203      libjsig_is_loaded = true;
4204      assert(UseSignalChaining, "should enable signal-chaining");
4205    }
4206    if (libjsig_is_loaded) {
4207      // Tell libjsig jvm is setting signal handlers
4208      (*begin_signal_setting)();
4209    }
4210
4211    set_signal_handler(SIGSEGV, true);
4212    set_signal_handler(SIGPIPE, true);
4213    set_signal_handler(SIGBUS, true);
4214    set_signal_handler(SIGILL, true);
4215    set_signal_handler(SIGFPE, true);
4216#if defined(PPC64)
4217    set_signal_handler(SIGTRAP, true);
4218#endif
4219    set_signal_handler(SIGXFSZ, true);
4220
4221    if (libjsig_is_loaded) {
4222      // Tell libjsig jvm finishes setting signal handlers
4223      (*end_signal_setting)();
4224    }
4225
4226    // We don't activate signal checker if libjsig is in place, we trust ourselves
4227    // and if UserSignalHandler is installed all bets are off.
4228    // Log that signal checking is off only if -verbose:jni is specified.
4229    if (CheckJNICalls) {
4230      if (libjsig_is_loaded) {
4231        if (PrintJNIResolving) {
4232          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4233        }
4234        check_signals = false;
4235      }
4236      if (AllowUserSignalHandlers) {
4237        if (PrintJNIResolving) {
4238          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4239        }
4240        check_signals = false;
4241      }
4242    }
4243  }
4244}
4245
4246// This is the fastest way to get thread cpu time on Linux.
4247// Returns cpu time (user+sys) for any thread, not only for current.
4248// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4249// It might work on 2.6.10+ with a special kernel/glibc patch.
4250// For reference, please, see IEEE Std 1003.1-2004:
4251//   http://www.unix.org/single_unix_specification
4252
4253jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4254  struct timespec tp;
4255  int rc = os::Linux::clock_gettime(clockid, &tp);
4256  assert(rc == 0, "clock_gettime is expected to return 0 code");
4257
4258  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4259}
4260
4261/////
4262// glibc on Linux platform uses non-documented flag
4263// to indicate, that some special sort of signal
4264// trampoline is used.
4265// We will never set this flag, and we should
4266// ignore this flag in our diagnostic
4267#ifdef SIGNIFICANT_SIGNAL_MASK
4268  #undef SIGNIFICANT_SIGNAL_MASK
4269#endif
4270#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4271
4272static const char* get_signal_handler_name(address handler,
4273                                           char* buf, int buflen) {
4274  int offset;
4275  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4276  if (found) {
4277    // skip directory names
4278    const char *p1, *p2;
4279    p1 = buf;
4280    size_t len = strlen(os::file_separator());
4281    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4282    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4283  } else {
4284    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4285  }
4286  return buf;
4287}
4288
4289static void print_signal_handler(outputStream* st, int sig,
4290                                 char* buf, size_t buflen) {
4291  struct sigaction sa;
4292
4293  sigaction(sig, NULL, &sa);
4294
4295  // See comment for SIGNIFICANT_SIGNAL_MASK define
4296  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4297
4298  st->print("%s: ", os::exception_name(sig, buf, buflen));
4299
4300  address handler = (sa.sa_flags & SA_SIGINFO)
4301    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4302    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4303
4304  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4305    st->print("SIG_DFL");
4306  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4307    st->print("SIG_IGN");
4308  } else {
4309    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4310  }
4311
4312  st->print(", sa_mask[0]=");
4313  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4314
4315  address rh = VMError::get_resetted_sighandler(sig);
4316  // May be, handler was resetted by VMError?
4317  if (rh != NULL) {
4318    handler = rh;
4319    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4320  }
4321
4322  st->print(", sa_flags=");
4323  os::Posix::print_sa_flags(st, sa.sa_flags);
4324
4325  // Check: is it our handler?
4326  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4327      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4328    // It is our signal handler
4329    // check for flags, reset system-used one!
4330    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4331      st->print(
4332                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4333                os::Linux::get_our_sigflags(sig));
4334    }
4335  }
4336  st->cr();
4337}
4338
4339
4340#define DO_SIGNAL_CHECK(sig)                      \
4341  do {                                            \
4342    if (!sigismember(&check_signal_done, sig)) {  \
4343      os::Linux::check_signal_handler(sig);       \
4344    }                                             \
4345  } while (0)
4346
4347// This method is a periodic task to check for misbehaving JNI applications
4348// under CheckJNI, we can add any periodic checks here
4349
4350void os::run_periodic_checks() {
4351  if (check_signals == false) return;
4352
4353  // SEGV and BUS if overridden could potentially prevent
4354  // generation of hs*.log in the event of a crash, debugging
4355  // such a case can be very challenging, so we absolutely
4356  // check the following for a good measure:
4357  DO_SIGNAL_CHECK(SIGSEGV);
4358  DO_SIGNAL_CHECK(SIGILL);
4359  DO_SIGNAL_CHECK(SIGFPE);
4360  DO_SIGNAL_CHECK(SIGBUS);
4361  DO_SIGNAL_CHECK(SIGPIPE);
4362  DO_SIGNAL_CHECK(SIGXFSZ);
4363#if defined(PPC64)
4364  DO_SIGNAL_CHECK(SIGTRAP);
4365#endif
4366
4367  // ReduceSignalUsage allows the user to override these handlers
4368  // see comments at the very top and jvm_solaris.h
4369  if (!ReduceSignalUsage) {
4370    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4371    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4372    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4373    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4374  }
4375
4376  DO_SIGNAL_CHECK(SR_signum);
4377  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4378}
4379
4380typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4381
4382static os_sigaction_t os_sigaction = NULL;
4383
4384void os::Linux::check_signal_handler(int sig) {
4385  char buf[O_BUFLEN];
4386  address jvmHandler = NULL;
4387
4388
4389  struct sigaction act;
4390  if (os_sigaction == NULL) {
4391    // only trust the default sigaction, in case it has been interposed
4392    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4393    if (os_sigaction == NULL) return;
4394  }
4395
4396  os_sigaction(sig, (struct sigaction*)NULL, &act);
4397
4398
4399  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4400
4401  address thisHandler = (act.sa_flags & SA_SIGINFO)
4402    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4403    : CAST_FROM_FN_PTR(address, act.sa_handler);
4404
4405
4406  switch (sig) {
4407  case SIGSEGV:
4408  case SIGBUS:
4409  case SIGFPE:
4410  case SIGPIPE:
4411  case SIGILL:
4412  case SIGXFSZ:
4413    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4414    break;
4415
4416  case SHUTDOWN1_SIGNAL:
4417  case SHUTDOWN2_SIGNAL:
4418  case SHUTDOWN3_SIGNAL:
4419  case BREAK_SIGNAL:
4420    jvmHandler = (address)user_handler();
4421    break;
4422
4423  case INTERRUPT_SIGNAL:
4424    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4425    break;
4426
4427  default:
4428    if (sig == SR_signum) {
4429      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4430    } else {
4431      return;
4432    }
4433    break;
4434  }
4435
4436  if (thisHandler != jvmHandler) {
4437    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4438    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4439    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4440    // No need to check this sig any longer
4441    sigaddset(&check_signal_done, sig);
4442    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4443    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4444      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4445                    exception_name(sig, buf, O_BUFLEN));
4446    }
4447  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4448    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4449    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4450    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4451    // No need to check this sig any longer
4452    sigaddset(&check_signal_done, sig);
4453  }
4454
4455  // Dump all the signal
4456  if (sigismember(&check_signal_done, sig)) {
4457    print_signal_handlers(tty, buf, O_BUFLEN);
4458  }
4459}
4460
4461extern void report_error(char* file_name, int line_no, char* title,
4462                         char* format, ...);
4463
4464extern bool signal_name(int signo, char* buf, size_t len);
4465
4466const char* os::exception_name(int exception_code, char* buf, size_t size) {
4467  if (0 < exception_code && exception_code <= SIGRTMAX) {
4468    // signal
4469    if (!signal_name(exception_code, buf, size)) {
4470      jio_snprintf(buf, size, "SIG%d", exception_code);
4471    }
4472    return buf;
4473  } else {
4474    return NULL;
4475  }
4476}
4477
4478// this is called _before_ the most of global arguments have been parsed
4479void os::init(void) {
4480  char dummy;   // used to get a guess on initial stack address
4481//  first_hrtime = gethrtime();
4482
4483  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4484
4485  init_random(1234567);
4486
4487  ThreadCritical::initialize();
4488
4489  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4490  if (Linux::page_size() == -1) {
4491    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4492                  strerror(errno)));
4493  }
4494  init_page_sizes((size_t) Linux::page_size());
4495
4496  Linux::initialize_system_info();
4497
4498  // main_thread points to the aboriginal thread
4499  Linux::_main_thread = pthread_self();
4500
4501  Linux::clock_init();
4502  initial_time_count = javaTimeNanos();
4503
4504  // pthread_condattr initialization for monotonic clock
4505  int status;
4506  pthread_condattr_t* _condattr = os::Linux::condAttr();
4507  if ((status = pthread_condattr_init(_condattr)) != 0) {
4508    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4509  }
4510  // Only set the clock if CLOCK_MONOTONIC is available
4511  if (os::supports_monotonic_clock()) {
4512    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4513      if (status == EINVAL) {
4514        warning("Unable to use monotonic clock with relative timed-waits" \
4515                " - changes to the time-of-day clock may have adverse affects");
4516      } else {
4517        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4518      }
4519    }
4520  }
4521  // else it defaults to CLOCK_REALTIME
4522
4523  // If the pagesize of the VM is greater than 8K determine the appropriate
4524  // number of initial guard pages.  The user can change this with the
4525  // command line arguments, if needed.
4526  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4527    StackYellowPages = 1;
4528    StackRedPages = 1;
4529    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4530  }
4531
4532  // retrieve entry point for pthread_setname_np
4533  Linux::_pthread_setname_np =
4534    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4535
4536}
4537
4538// To install functions for atexit system call
4539extern "C" {
4540  static void perfMemory_exit_helper() {
4541    perfMemory_exit();
4542  }
4543}
4544
4545// this is called _after_ the global arguments have been parsed
4546jint os::init_2(void) {
4547  Linux::fast_thread_clock_init();
4548
4549  // Allocate a single page and mark it as readable for safepoint polling
4550  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4551  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4552
4553  os::set_polling_page(polling_page);
4554
4555#ifndef PRODUCT
4556  if (Verbose && PrintMiscellaneous) {
4557    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4558               (intptr_t)polling_page);
4559  }
4560#endif
4561
4562  if (!UseMembar) {
4563    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4564    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4565    os::set_memory_serialize_page(mem_serialize_page);
4566
4567#ifndef PRODUCT
4568    if (Verbose && PrintMiscellaneous) {
4569      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4570                 (intptr_t)mem_serialize_page);
4571    }
4572#endif
4573  }
4574
4575  // initialize suspend/resume support - must do this before signal_sets_init()
4576  if (SR_initialize() != 0) {
4577    perror("SR_initialize failed");
4578    return JNI_ERR;
4579  }
4580
4581  Linux::signal_sets_init();
4582  Linux::install_signal_handlers();
4583
4584  // Check minimum allowable stack size for thread creation and to initialize
4585  // the java system classes, including StackOverflowError - depends on page
4586  // size.  Add a page for compiler2 recursion in main thread.
4587  // Add in 2*BytesPerWord times page size to account for VM stack during
4588  // class initialization depending on 32 or 64 bit VM.
4589  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4590                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4591                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4592
4593  size_t threadStackSizeInBytes = ThreadStackSize * K;
4594  if (threadStackSizeInBytes != 0 &&
4595      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4596    tty->print_cr("\nThe stack size specified is too small, "
4597                  "Specify at least %dk",
4598                  os::Linux::min_stack_allowed/ K);
4599    return JNI_ERR;
4600  }
4601
4602  // Make the stack size a multiple of the page size so that
4603  // the yellow/red zones can be guarded.
4604  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4605                                                vm_page_size()));
4606
4607  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4608
4609#if defined(IA32)
4610  workaround_expand_exec_shield_cs_limit();
4611#endif
4612
4613  Linux::libpthread_init();
4614  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4615    tty->print_cr("[HotSpot is running with %s, %s]\n",
4616                  Linux::glibc_version(), Linux::libpthread_version());
4617  }
4618
4619  if (UseNUMA) {
4620    if (!Linux::libnuma_init()) {
4621      UseNUMA = false;
4622    } else {
4623      if ((Linux::numa_max_node() < 1)) {
4624        // There's only one node(they start from 0), disable NUMA.
4625        UseNUMA = false;
4626      }
4627    }
4628    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4629    // we can make the adaptive lgrp chunk resizing work. If the user specified
4630    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4631    // disable adaptive resizing.
4632    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4633      if (FLAG_IS_DEFAULT(UseNUMA)) {
4634        UseNUMA = false;
4635      } else {
4636        if (FLAG_IS_DEFAULT(UseLargePages) &&
4637            FLAG_IS_DEFAULT(UseSHM) &&
4638            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4639          UseLargePages = false;
4640        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4641          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4642          UseAdaptiveSizePolicy = false;
4643          UseAdaptiveNUMAChunkSizing = false;
4644        }
4645      }
4646    }
4647    if (!UseNUMA && ForceNUMA) {
4648      UseNUMA = true;
4649    }
4650  }
4651
4652  if (MaxFDLimit) {
4653    // set the number of file descriptors to max. print out error
4654    // if getrlimit/setrlimit fails but continue regardless.
4655    struct rlimit nbr_files;
4656    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4657    if (status != 0) {
4658      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4659        perror("os::init_2 getrlimit failed");
4660      }
4661    } else {
4662      nbr_files.rlim_cur = nbr_files.rlim_max;
4663      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4664      if (status != 0) {
4665        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4666          perror("os::init_2 setrlimit failed");
4667        }
4668      }
4669    }
4670  }
4671
4672  // Initialize lock used to serialize thread creation (see os::create_thread)
4673  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4674
4675  // at-exit methods are called in the reverse order of their registration.
4676  // atexit functions are called on return from main or as a result of a
4677  // call to exit(3C). There can be only 32 of these functions registered
4678  // and atexit() does not set errno.
4679
4680  if (PerfAllowAtExitRegistration) {
4681    // only register atexit functions if PerfAllowAtExitRegistration is set.
4682    // atexit functions can be delayed until process exit time, which
4683    // can be problematic for embedded VM situations. Embedded VMs should
4684    // call DestroyJavaVM() to assure that VM resources are released.
4685
4686    // note: perfMemory_exit_helper atexit function may be removed in
4687    // the future if the appropriate cleanup code can be added to the
4688    // VM_Exit VMOperation's doit method.
4689    if (atexit(perfMemory_exit_helper) != 0) {
4690      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4691    }
4692  }
4693
4694  // initialize thread priority policy
4695  prio_init();
4696
4697  return JNI_OK;
4698}
4699
4700// Mark the polling page as unreadable
4701void os::make_polling_page_unreadable(void) {
4702  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4703    fatal("Could not disable polling page");
4704  }
4705}
4706
4707// Mark the polling page as readable
4708void os::make_polling_page_readable(void) {
4709  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4710    fatal("Could not enable polling page");
4711  }
4712}
4713
4714int os::active_processor_count() {
4715  // Linux doesn't yet have a (official) notion of processor sets,
4716  // so just return the number of online processors.
4717  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4718  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4719  return online_cpus;
4720}
4721
4722void os::set_native_thread_name(const char *name) {
4723  if (Linux::_pthread_setname_np) {
4724    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4725    snprintf(buf, sizeof(buf), "%s", name);
4726    buf[sizeof(buf) - 1] = '\0';
4727    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4728    // ERANGE should not happen; all other errors should just be ignored.
4729    assert(rc != ERANGE, "pthread_setname_np failed");
4730  }
4731}
4732
4733bool os::distribute_processes(uint length, uint* distribution) {
4734  // Not yet implemented.
4735  return false;
4736}
4737
4738bool os::bind_to_processor(uint processor_id) {
4739  // Not yet implemented.
4740  return false;
4741}
4742
4743///
4744
4745void os::SuspendedThreadTask::internal_do_task() {
4746  if (do_suspend(_thread->osthread())) {
4747    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4748    do_task(context);
4749    do_resume(_thread->osthread());
4750  }
4751}
4752
4753class PcFetcher : public os::SuspendedThreadTask {
4754 public:
4755  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4756  ExtendedPC result();
4757 protected:
4758  void do_task(const os::SuspendedThreadTaskContext& context);
4759 private:
4760  ExtendedPC _epc;
4761};
4762
4763ExtendedPC PcFetcher::result() {
4764  guarantee(is_done(), "task is not done yet.");
4765  return _epc;
4766}
4767
4768void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4769  Thread* thread = context.thread();
4770  OSThread* osthread = thread->osthread();
4771  if (osthread->ucontext() != NULL) {
4772    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4773  } else {
4774    // NULL context is unexpected, double-check this is the VMThread
4775    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4776  }
4777}
4778
4779// Suspends the target using the signal mechanism and then grabs the PC before
4780// resuming the target. Used by the flat-profiler only
4781ExtendedPC os::get_thread_pc(Thread* thread) {
4782  // Make sure that it is called by the watcher for the VMThread
4783  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4784  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4785
4786  PcFetcher fetcher(thread);
4787  fetcher.run();
4788  return fetcher.result();
4789}
4790
4791////////////////////////////////////////////////////////////////////////////////
4792// debug support
4793
4794bool os::find(address addr, outputStream* st) {
4795  Dl_info dlinfo;
4796  memset(&dlinfo, 0, sizeof(dlinfo));
4797  if (dladdr(addr, &dlinfo) != 0) {
4798    st->print(PTR_FORMAT ": ", addr);
4799    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4800      st->print("%s+%#x", dlinfo.dli_sname,
4801                addr - (intptr_t)dlinfo.dli_saddr);
4802    } else if (dlinfo.dli_fbase != NULL) {
4803      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4804    } else {
4805      st->print("<absolute address>");
4806    }
4807    if (dlinfo.dli_fname != NULL) {
4808      st->print(" in %s", dlinfo.dli_fname);
4809    }
4810    if (dlinfo.dli_fbase != NULL) {
4811      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4812    }
4813    st->cr();
4814
4815    if (Verbose) {
4816      // decode some bytes around the PC
4817      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4818      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4819      address       lowest = (address) dlinfo.dli_sname;
4820      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4821      if (begin < lowest)  begin = lowest;
4822      Dl_info dlinfo2;
4823      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4824          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4825        end = (address) dlinfo2.dli_saddr;
4826      }
4827      Disassembler::decode(begin, end, st);
4828    }
4829    return true;
4830  }
4831  return false;
4832}
4833
4834////////////////////////////////////////////////////////////////////////////////
4835// misc
4836
4837// This does not do anything on Linux. This is basically a hook for being
4838// able to use structured exception handling (thread-local exception filters)
4839// on, e.g., Win32.
4840void
4841os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4842                         JavaCallArguments* args, Thread* thread) {
4843  f(value, method, args, thread);
4844}
4845
4846void os::print_statistics() {
4847}
4848
4849int os::message_box(const char* title, const char* message) {
4850  int i;
4851  fdStream err(defaultStream::error_fd());
4852  for (i = 0; i < 78; i++) err.print_raw("=");
4853  err.cr();
4854  err.print_raw_cr(title);
4855  for (i = 0; i < 78; i++) err.print_raw("-");
4856  err.cr();
4857  err.print_raw_cr(message);
4858  for (i = 0; i < 78; i++) err.print_raw("=");
4859  err.cr();
4860
4861  char buf[16];
4862  // Prevent process from exiting upon "read error" without consuming all CPU
4863  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4864
4865  return buf[0] == 'y' || buf[0] == 'Y';
4866}
4867
4868int os::stat(const char *path, struct stat *sbuf) {
4869  char pathbuf[MAX_PATH];
4870  if (strlen(path) > MAX_PATH - 1) {
4871    errno = ENAMETOOLONG;
4872    return -1;
4873  }
4874  os::native_path(strcpy(pathbuf, path));
4875  return ::stat(pathbuf, sbuf);
4876}
4877
4878bool os::check_heap(bool force) {
4879  return true;
4880}
4881
4882// Is a (classpath) directory empty?
4883bool os::dir_is_empty(const char* path) {
4884  DIR *dir = NULL;
4885  struct dirent *ptr;
4886
4887  dir = opendir(path);
4888  if (dir == NULL) return true;
4889
4890  // Scan the directory
4891  bool result = true;
4892  char buf[sizeof(struct dirent) + MAX_PATH];
4893  while (result && (ptr = ::readdir(dir)) != NULL) {
4894    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4895      result = false;
4896    }
4897  }
4898  closedir(dir);
4899  return result;
4900}
4901
4902// This code originates from JDK's sysOpen and open64_w
4903// from src/solaris/hpi/src/system_md.c
4904
4905int os::open(const char *path, int oflag, int mode) {
4906  if (strlen(path) > MAX_PATH - 1) {
4907    errno = ENAMETOOLONG;
4908    return -1;
4909  }
4910
4911  // All file descriptors that are opened in the Java process and not
4912  // specifically destined for a subprocess should have the close-on-exec
4913  // flag set.  If we don't set it, then careless 3rd party native code
4914  // might fork and exec without closing all appropriate file descriptors
4915  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
4916  // turn might:
4917  //
4918  // - cause end-of-file to fail to be detected on some file
4919  //   descriptors, resulting in mysterious hangs, or
4920  //
4921  // - might cause an fopen in the subprocess to fail on a system
4922  //   suffering from bug 1085341.
4923  //
4924  // (Yes, the default setting of the close-on-exec flag is a Unix
4925  // design flaw)
4926  //
4927  // See:
4928  // 1085341: 32-bit stdio routines should support file descriptors >255
4929  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4930  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4931  //
4932  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
4933  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
4934  // because it saves a system call and removes a small window where the flag
4935  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
4936  // and we fall back to using FD_CLOEXEC (see below).
4937#ifdef O_CLOEXEC
4938  oflag |= O_CLOEXEC;
4939#endif
4940
4941  int fd = ::open64(path, oflag, mode);
4942  if (fd == -1) return -1;
4943
4944  //If the open succeeded, the file might still be a directory
4945  {
4946    struct stat64 buf64;
4947    int ret = ::fstat64(fd, &buf64);
4948    int st_mode = buf64.st_mode;
4949
4950    if (ret != -1) {
4951      if ((st_mode & S_IFMT) == S_IFDIR) {
4952        errno = EISDIR;
4953        ::close(fd);
4954        return -1;
4955      }
4956    } else {
4957      ::close(fd);
4958      return -1;
4959    }
4960  }
4961
4962#ifdef FD_CLOEXEC
4963  // Validate that the use of the O_CLOEXEC flag on open above worked.
4964  // With recent kernels, we will perform this check exactly once.
4965  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
4966  if (!O_CLOEXEC_is_known_to_work) {
4967    int flags = ::fcntl(fd, F_GETFD);
4968    if (flags != -1) {
4969      if ((flags & FD_CLOEXEC) != 0)
4970        O_CLOEXEC_is_known_to_work = 1;
4971      else
4972        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4973    }
4974  }
4975#endif
4976
4977  return fd;
4978}
4979
4980
4981// create binary file, rewriting existing file if required
4982int os::create_binary_file(const char* path, bool rewrite_existing) {
4983  int oflags = O_WRONLY | O_CREAT;
4984  if (!rewrite_existing) {
4985    oflags |= O_EXCL;
4986  }
4987  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4988}
4989
4990// return current position of file pointer
4991jlong os::current_file_offset(int fd) {
4992  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4993}
4994
4995// move file pointer to the specified offset
4996jlong os::seek_to_file_offset(int fd, jlong offset) {
4997  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4998}
4999
5000// This code originates from JDK's sysAvailable
5001// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5002
5003int os::available(int fd, jlong *bytes) {
5004  jlong cur, end;
5005  int mode;
5006  struct stat64 buf64;
5007
5008  if (::fstat64(fd, &buf64) >= 0) {
5009    mode = buf64.st_mode;
5010    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5011      // XXX: is the following call interruptible? If so, this might
5012      // need to go through the INTERRUPT_IO() wrapper as for other
5013      // blocking, interruptible calls in this file.
5014      int n;
5015      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5016        *bytes = n;
5017        return 1;
5018      }
5019    }
5020  }
5021  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5022    return 0;
5023  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5024    return 0;
5025  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5026    return 0;
5027  }
5028  *bytes = end - cur;
5029  return 1;
5030}
5031
5032// Map a block of memory.
5033char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5034                        char *addr, size_t bytes, bool read_only,
5035                        bool allow_exec) {
5036  int prot;
5037  int flags = MAP_PRIVATE;
5038
5039  if (read_only) {
5040    prot = PROT_READ;
5041  } else {
5042    prot = PROT_READ | PROT_WRITE;
5043  }
5044
5045  if (allow_exec) {
5046    prot |= PROT_EXEC;
5047  }
5048
5049  if (addr != NULL) {
5050    flags |= MAP_FIXED;
5051  }
5052
5053  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5054                                     fd, file_offset);
5055  if (mapped_address == MAP_FAILED) {
5056    return NULL;
5057  }
5058  return mapped_address;
5059}
5060
5061
5062// Remap a block of memory.
5063char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5064                          char *addr, size_t bytes, bool read_only,
5065                          bool allow_exec) {
5066  // same as map_memory() on this OS
5067  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5068                        allow_exec);
5069}
5070
5071
5072// Unmap a block of memory.
5073bool os::pd_unmap_memory(char* addr, size_t bytes) {
5074  return munmap(addr, bytes) == 0;
5075}
5076
5077static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5078
5079static clockid_t thread_cpu_clockid(Thread* thread) {
5080  pthread_t tid = thread->osthread()->pthread_id();
5081  clockid_t clockid;
5082
5083  // Get thread clockid
5084  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5085  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5086  return clockid;
5087}
5088
5089// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5090// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5091// of a thread.
5092//
5093// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5094// the fast estimate available on the platform.
5095
5096jlong os::current_thread_cpu_time() {
5097  if (os::Linux::supports_fast_thread_cpu_time()) {
5098    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5099  } else {
5100    // return user + sys since the cost is the same
5101    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5102  }
5103}
5104
5105jlong os::thread_cpu_time(Thread* thread) {
5106  // consistent with what current_thread_cpu_time() returns
5107  if (os::Linux::supports_fast_thread_cpu_time()) {
5108    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5109  } else {
5110    return slow_thread_cpu_time(thread, true /* user + sys */);
5111  }
5112}
5113
5114jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5115  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5116    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5117  } else {
5118    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5119  }
5120}
5121
5122jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5123  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5124    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5125  } else {
5126    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5127  }
5128}
5129
5130//  -1 on error.
5131static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5132  pid_t  tid = thread->osthread()->thread_id();
5133  char *s;
5134  char stat[2048];
5135  int statlen;
5136  char proc_name[64];
5137  int count;
5138  long sys_time, user_time;
5139  char cdummy;
5140  int idummy;
5141  long ldummy;
5142  FILE *fp;
5143
5144  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5145  fp = fopen(proc_name, "r");
5146  if (fp == NULL) return -1;
5147  statlen = fread(stat, 1, 2047, fp);
5148  stat[statlen] = '\0';
5149  fclose(fp);
5150
5151  // Skip pid and the command string. Note that we could be dealing with
5152  // weird command names, e.g. user could decide to rename java launcher
5153  // to "java 1.4.2 :)", then the stat file would look like
5154  //                1234 (java 1.4.2 :)) R ... ...
5155  // We don't really need to know the command string, just find the last
5156  // occurrence of ")" and then start parsing from there. See bug 4726580.
5157  s = strrchr(stat, ')');
5158  if (s == NULL) return -1;
5159
5160  // Skip blank chars
5161  do { s++; } while (s && isspace(*s));
5162
5163  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5164                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5165                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5166                 &user_time, &sys_time);
5167  if (count != 13) return -1;
5168  if (user_sys_cpu_time) {
5169    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5170  } else {
5171    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5172  }
5173}
5174
5175void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5176  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5177  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5178  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5179  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5180}
5181
5182void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5183  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5184  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5185  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5186  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5187}
5188
5189bool os::is_thread_cpu_time_supported() {
5190  return true;
5191}
5192
5193// System loadavg support.  Returns -1 if load average cannot be obtained.
5194// Linux doesn't yet have a (official) notion of processor sets,
5195// so just return the system wide load average.
5196int os::loadavg(double loadavg[], int nelem) {
5197  return ::getloadavg(loadavg, nelem);
5198}
5199
5200void os::pause() {
5201  char filename[MAX_PATH];
5202  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5203    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5204  } else {
5205    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5206  }
5207
5208  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5209  if (fd != -1) {
5210    struct stat buf;
5211    ::close(fd);
5212    while (::stat(filename, &buf) == 0) {
5213      (void)::poll(NULL, 0, 100);
5214    }
5215  } else {
5216    jio_fprintf(stderr,
5217                "Could not open pause file '%s', continuing immediately.\n", filename);
5218  }
5219}
5220
5221
5222// Refer to the comments in os_solaris.cpp park-unpark. The next two
5223// comment paragraphs are worth repeating here:
5224//
5225// Assumption:
5226//    Only one parker can exist on an event, which is why we allocate
5227//    them per-thread. Multiple unparkers can coexist.
5228//
5229// _Event serves as a restricted-range semaphore.
5230//   -1 : thread is blocked, i.e. there is a waiter
5231//    0 : neutral: thread is running or ready,
5232//        could have been signaled after a wait started
5233//    1 : signaled - thread is running or ready
5234//
5235// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5236// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5237// For specifics regarding the bug see GLIBC BUGID 261237 :
5238//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5239// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5240// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5241// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5242// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5243// and monitorenter when we're using 1-0 locking.  All those operations may result in
5244// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5245// of libpthread avoids the problem, but isn't practical.
5246//
5247// Possible remedies:
5248//
5249// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5250//      This is palliative and probabilistic, however.  If the thread is preempted
5251//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5252//      than the minimum period may have passed, and the abstime may be stale (in the
5253//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5254//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5255//
5256// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5257//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5258//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5259//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5260//      thread.
5261//
5262// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5263//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5264//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5265//      This also works well.  In fact it avoids kernel-level scalability impediments
5266//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5267//      timers in a graceful fashion.
5268//
5269// 4.   When the abstime value is in the past it appears that control returns
5270//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5271//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5272//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5273//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5274//      It may be possible to avoid reinitialization by checking the return
5275//      value from pthread_cond_timedwait().  In addition to reinitializing the
5276//      condvar we must establish the invariant that cond_signal() is only called
5277//      within critical sections protected by the adjunct mutex.  This prevents
5278//      cond_signal() from "seeing" a condvar that's in the midst of being
5279//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5280//      desirable signal-after-unlock optimization that avoids futile context switching.
5281//
5282//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5283//      structure when a condvar is used or initialized.  cond_destroy()  would
5284//      release the helper structure.  Our reinitialize-after-timedwait fix
5285//      put excessive stress on malloc/free and locks protecting the c-heap.
5286//
5287// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5288// It may be possible to refine (4) by checking the kernel and NTPL verisons
5289// and only enabling the work-around for vulnerable environments.
5290
5291// utility to compute the abstime argument to timedwait:
5292// millis is the relative timeout time
5293// abstime will be the absolute timeout time
5294// TODO: replace compute_abstime() with unpackTime()
5295
5296static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5297  if (millis < 0)  millis = 0;
5298
5299  jlong seconds = millis / 1000;
5300  millis %= 1000;
5301  if (seconds > 50000000) { // see man cond_timedwait(3T)
5302    seconds = 50000000;
5303  }
5304
5305  if (os::supports_monotonic_clock()) {
5306    struct timespec now;
5307    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5308    assert_status(status == 0, status, "clock_gettime");
5309    abstime->tv_sec = now.tv_sec  + seconds;
5310    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5311    if (nanos >= NANOSECS_PER_SEC) {
5312      abstime->tv_sec += 1;
5313      nanos -= NANOSECS_PER_SEC;
5314    }
5315    abstime->tv_nsec = nanos;
5316  } else {
5317    struct timeval now;
5318    int status = gettimeofday(&now, NULL);
5319    assert(status == 0, "gettimeofday");
5320    abstime->tv_sec = now.tv_sec  + seconds;
5321    long usec = now.tv_usec + millis * 1000;
5322    if (usec >= 1000000) {
5323      abstime->tv_sec += 1;
5324      usec -= 1000000;
5325    }
5326    abstime->tv_nsec = usec * 1000;
5327  }
5328  return abstime;
5329}
5330
5331void os::PlatformEvent::park() {       // AKA "down()"
5332  // Transitions for _Event:
5333  //   -1 => -1 : illegal
5334  //    1 =>  0 : pass - return immediately
5335  //    0 => -1 : block; then set _Event to 0 before returning
5336
5337  // Invariant: Only the thread associated with the Event/PlatformEvent
5338  // may call park().
5339  // TODO: assert that _Assoc != NULL or _Assoc == Self
5340  assert(_nParked == 0, "invariant");
5341
5342  int v;
5343  for (;;) {
5344    v = _Event;
5345    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5346  }
5347  guarantee(v >= 0, "invariant");
5348  if (v == 0) {
5349    // Do this the hard way by blocking ...
5350    int status = pthread_mutex_lock(_mutex);
5351    assert_status(status == 0, status, "mutex_lock");
5352    guarantee(_nParked == 0, "invariant");
5353    ++_nParked;
5354    while (_Event < 0) {
5355      status = pthread_cond_wait(_cond, _mutex);
5356      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5357      // Treat this the same as if the wait was interrupted
5358      if (status == ETIME) { status = EINTR; }
5359      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5360    }
5361    --_nParked;
5362
5363    _Event = 0;
5364    status = pthread_mutex_unlock(_mutex);
5365    assert_status(status == 0, status, "mutex_unlock");
5366    // Paranoia to ensure our locked and lock-free paths interact
5367    // correctly with each other.
5368    OrderAccess::fence();
5369  }
5370  guarantee(_Event >= 0, "invariant");
5371}
5372
5373int os::PlatformEvent::park(jlong millis) {
5374  // Transitions for _Event:
5375  //   -1 => -1 : illegal
5376  //    1 =>  0 : pass - return immediately
5377  //    0 => -1 : block; then set _Event to 0 before returning
5378
5379  guarantee(_nParked == 0, "invariant");
5380
5381  int v;
5382  for (;;) {
5383    v = _Event;
5384    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5385  }
5386  guarantee(v >= 0, "invariant");
5387  if (v != 0) return OS_OK;
5388
5389  // We do this the hard way, by blocking the thread.
5390  // Consider enforcing a minimum timeout value.
5391  struct timespec abst;
5392  compute_abstime(&abst, millis);
5393
5394  int ret = OS_TIMEOUT;
5395  int status = pthread_mutex_lock(_mutex);
5396  assert_status(status == 0, status, "mutex_lock");
5397  guarantee(_nParked == 0, "invariant");
5398  ++_nParked;
5399
5400  // Object.wait(timo) will return because of
5401  // (a) notification
5402  // (b) timeout
5403  // (c) thread.interrupt
5404  //
5405  // Thread.interrupt and object.notify{All} both call Event::set.
5406  // That is, we treat thread.interrupt as a special case of notification.
5407  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5408  // We assume all ETIME returns are valid.
5409  //
5410  // TODO: properly differentiate simultaneous notify+interrupt.
5411  // In that case, we should propagate the notify to another waiter.
5412
5413  while (_Event < 0) {
5414    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5415    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5416      pthread_cond_destroy(_cond);
5417      pthread_cond_init(_cond, os::Linux::condAttr());
5418    }
5419    assert_status(status == 0 || status == EINTR ||
5420                  status == ETIME || status == ETIMEDOUT,
5421                  status, "cond_timedwait");
5422    if (!FilterSpuriousWakeups) break;                 // previous semantics
5423    if (status == ETIME || status == ETIMEDOUT) break;
5424    // We consume and ignore EINTR and spurious wakeups.
5425  }
5426  --_nParked;
5427  if (_Event >= 0) {
5428    ret = OS_OK;
5429  }
5430  _Event = 0;
5431  status = pthread_mutex_unlock(_mutex);
5432  assert_status(status == 0, status, "mutex_unlock");
5433  assert(_nParked == 0, "invariant");
5434  // Paranoia to ensure our locked and lock-free paths interact
5435  // correctly with each other.
5436  OrderAccess::fence();
5437  return ret;
5438}
5439
5440void os::PlatformEvent::unpark() {
5441  // Transitions for _Event:
5442  //    0 => 1 : just return
5443  //    1 => 1 : just return
5444  //   -1 => either 0 or 1; must signal target thread
5445  //         That is, we can safely transition _Event from -1 to either
5446  //         0 or 1.
5447  // See also: "Semaphores in Plan 9" by Mullender & Cox
5448  //
5449  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5450  // that it will take two back-to-back park() calls for the owning
5451  // thread to block. This has the benefit of forcing a spurious return
5452  // from the first park() call after an unpark() call which will help
5453  // shake out uses of park() and unpark() without condition variables.
5454
5455  if (Atomic::xchg(1, &_Event) >= 0) return;
5456
5457  // Wait for the thread associated with the event to vacate
5458  int status = pthread_mutex_lock(_mutex);
5459  assert_status(status == 0, status, "mutex_lock");
5460  int AnyWaiters = _nParked;
5461  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5462  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5463    AnyWaiters = 0;
5464    pthread_cond_signal(_cond);
5465  }
5466  status = pthread_mutex_unlock(_mutex);
5467  assert_status(status == 0, status, "mutex_unlock");
5468  if (AnyWaiters != 0) {
5469    // Note that we signal() *after* dropping the lock for "immortal" Events.
5470    // This is safe and avoids a common class of  futile wakeups.  In rare
5471    // circumstances this can cause a thread to return prematurely from
5472    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5473    // will simply re-test the condition and re-park itself.
5474    // This provides particular benefit if the underlying platform does not
5475    // provide wait morphing.
5476    status = pthread_cond_signal(_cond);
5477    assert_status(status == 0, status, "cond_signal");
5478  }
5479}
5480
5481
5482// JSR166
5483// -------------------------------------------------------
5484
5485// The solaris and linux implementations of park/unpark are fairly
5486// conservative for now, but can be improved. They currently use a
5487// mutex/condvar pair, plus a a count.
5488// Park decrements count if > 0, else does a condvar wait.  Unpark
5489// sets count to 1 and signals condvar.  Only one thread ever waits
5490// on the condvar. Contention seen when trying to park implies that someone
5491// is unparking you, so don't wait. And spurious returns are fine, so there
5492// is no need to track notifications.
5493
5494// This code is common to linux and solaris and will be moved to a
5495// common place in dolphin.
5496//
5497// The passed in time value is either a relative time in nanoseconds
5498// or an absolute time in milliseconds. Either way it has to be unpacked
5499// into suitable seconds and nanoseconds components and stored in the
5500// given timespec structure.
5501// Given time is a 64-bit value and the time_t used in the timespec is only
5502// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5503// overflow if times way in the future are given. Further on Solaris versions
5504// prior to 10 there is a restriction (see cond_timedwait) that the specified
5505// number of seconds, in abstime, is less than current_time  + 100,000,000.
5506// As it will be 28 years before "now + 100000000" will overflow we can
5507// ignore overflow and just impose a hard-limit on seconds using the value
5508// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5509// years from "now".
5510
5511static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5512  assert(time > 0, "convertTime");
5513  time_t max_secs = 0;
5514
5515  if (!os::supports_monotonic_clock() || isAbsolute) {
5516    struct timeval now;
5517    int status = gettimeofday(&now, NULL);
5518    assert(status == 0, "gettimeofday");
5519
5520    max_secs = now.tv_sec + MAX_SECS;
5521
5522    if (isAbsolute) {
5523      jlong secs = time / 1000;
5524      if (secs > max_secs) {
5525        absTime->tv_sec = max_secs;
5526      } else {
5527        absTime->tv_sec = secs;
5528      }
5529      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5530    } else {
5531      jlong secs = time / NANOSECS_PER_SEC;
5532      if (secs >= MAX_SECS) {
5533        absTime->tv_sec = max_secs;
5534        absTime->tv_nsec = 0;
5535      } else {
5536        absTime->tv_sec = now.tv_sec + secs;
5537        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5538        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5539          absTime->tv_nsec -= NANOSECS_PER_SEC;
5540          ++absTime->tv_sec; // note: this must be <= max_secs
5541        }
5542      }
5543    }
5544  } else {
5545    // must be relative using monotonic clock
5546    struct timespec now;
5547    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5548    assert_status(status == 0, status, "clock_gettime");
5549    max_secs = now.tv_sec + MAX_SECS;
5550    jlong secs = time / NANOSECS_PER_SEC;
5551    if (secs >= MAX_SECS) {
5552      absTime->tv_sec = max_secs;
5553      absTime->tv_nsec = 0;
5554    } else {
5555      absTime->tv_sec = now.tv_sec + secs;
5556      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5557      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5558        absTime->tv_nsec -= NANOSECS_PER_SEC;
5559        ++absTime->tv_sec; // note: this must be <= max_secs
5560      }
5561    }
5562  }
5563  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5564  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5565  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5566  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5567}
5568
5569void Parker::park(bool isAbsolute, jlong time) {
5570  // Ideally we'd do something useful while spinning, such
5571  // as calling unpackTime().
5572
5573  // Optional fast-path check:
5574  // Return immediately if a permit is available.
5575  // We depend on Atomic::xchg() having full barrier semantics
5576  // since we are doing a lock-free update to _counter.
5577  if (Atomic::xchg(0, &_counter) > 0) return;
5578
5579  Thread* thread = Thread::current();
5580  assert(thread->is_Java_thread(), "Must be JavaThread");
5581  JavaThread *jt = (JavaThread *)thread;
5582
5583  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5584  // Check interrupt before trying to wait
5585  if (Thread::is_interrupted(thread, false)) {
5586    return;
5587  }
5588
5589  // Next, demultiplex/decode time arguments
5590  timespec absTime;
5591  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5592    return;
5593  }
5594  if (time > 0) {
5595    unpackTime(&absTime, isAbsolute, time);
5596  }
5597
5598
5599  // Enter safepoint region
5600  // Beware of deadlocks such as 6317397.
5601  // The per-thread Parker:: mutex is a classic leaf-lock.
5602  // In particular a thread must never block on the Threads_lock while
5603  // holding the Parker:: mutex.  If safepoints are pending both the
5604  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5605  ThreadBlockInVM tbivm(jt);
5606
5607  // Don't wait if cannot get lock since interference arises from
5608  // unblocking.  Also. check interrupt before trying wait
5609  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5610    return;
5611  }
5612
5613  int status;
5614  if (_counter > 0)  { // no wait needed
5615    _counter = 0;
5616    status = pthread_mutex_unlock(_mutex);
5617    assert(status == 0, "invariant");
5618    // Paranoia to ensure our locked and lock-free paths interact
5619    // correctly with each other and Java-level accesses.
5620    OrderAccess::fence();
5621    return;
5622  }
5623
5624#ifdef ASSERT
5625  // Don't catch signals while blocked; let the running threads have the signals.
5626  // (This allows a debugger to break into the running thread.)
5627  sigset_t oldsigs;
5628  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5629  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5630#endif
5631
5632  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5633  jt->set_suspend_equivalent();
5634  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5635
5636  assert(_cur_index == -1, "invariant");
5637  if (time == 0) {
5638    _cur_index = REL_INDEX; // arbitrary choice when not timed
5639    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5640  } else {
5641    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5642    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5643    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5644      pthread_cond_destroy(&_cond[_cur_index]);
5645      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5646    }
5647  }
5648  _cur_index = -1;
5649  assert_status(status == 0 || status == EINTR ||
5650                status == ETIME || status == ETIMEDOUT,
5651                status, "cond_timedwait");
5652
5653#ifdef ASSERT
5654  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5655#endif
5656
5657  _counter = 0;
5658  status = pthread_mutex_unlock(_mutex);
5659  assert_status(status == 0, status, "invariant");
5660  // Paranoia to ensure our locked and lock-free paths interact
5661  // correctly with each other and Java-level accesses.
5662  OrderAccess::fence();
5663
5664  // If externally suspended while waiting, re-suspend
5665  if (jt->handle_special_suspend_equivalent_condition()) {
5666    jt->java_suspend_self();
5667  }
5668}
5669
5670void Parker::unpark() {
5671  int status = pthread_mutex_lock(_mutex);
5672  assert(status == 0, "invariant");
5673  const int s = _counter;
5674  _counter = 1;
5675  if (s < 1) {
5676    // thread might be parked
5677    if (_cur_index != -1) {
5678      // thread is definitely parked
5679      if (WorkAroundNPTLTimedWaitHang) {
5680        status = pthread_cond_signal(&_cond[_cur_index]);
5681        assert(status == 0, "invariant");
5682        status = pthread_mutex_unlock(_mutex);
5683        assert(status == 0, "invariant");
5684      } else {
5685        status = pthread_mutex_unlock(_mutex);
5686        assert(status == 0, "invariant");
5687        status = pthread_cond_signal(&_cond[_cur_index]);
5688        assert(status == 0, "invariant");
5689      }
5690    } else {
5691      pthread_mutex_unlock(_mutex);
5692      assert(status == 0, "invariant");
5693    }
5694  } else {
5695    pthread_mutex_unlock(_mutex);
5696    assert(status == 0, "invariant");
5697  }
5698}
5699
5700
5701extern char** environ;
5702
5703// Run the specified command in a separate process. Return its exit value,
5704// or -1 on failure (e.g. can't fork a new process).
5705// Unlike system(), this function can be called from signal handler. It
5706// doesn't block SIGINT et al.
5707int os::fork_and_exec(char* cmd) {
5708  const char * argv[4] = {"sh", "-c", cmd, NULL};
5709
5710  pid_t pid = fork();
5711
5712  if (pid < 0) {
5713    // fork failed
5714    return -1;
5715
5716  } else if (pid == 0) {
5717    // child process
5718
5719    execve("/bin/sh", (char* const*)argv, environ);
5720
5721    // execve failed
5722    _exit(-1);
5723
5724  } else  {
5725    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5726    // care about the actual exit code, for now.
5727
5728    int status;
5729
5730    // Wait for the child process to exit.  This returns immediately if
5731    // the child has already exited. */
5732    while (waitpid(pid, &status, 0) < 0) {
5733      switch (errno) {
5734      case ECHILD: return 0;
5735      case EINTR: break;
5736      default: return -1;
5737      }
5738    }
5739
5740    if (WIFEXITED(status)) {
5741      // The child exited normally; get its exit code.
5742      return WEXITSTATUS(status);
5743    } else if (WIFSIGNALED(status)) {
5744      // The child exited because of a signal
5745      // The best value to return is 0x80 + signal number,
5746      // because that is what all Unix shells do, and because
5747      // it allows callers to distinguish between process exit and
5748      // process death by signal.
5749      return 0x80 + WTERMSIG(status);
5750    } else {
5751      // Unknown exit code; pass it through
5752      return status;
5753    }
5754  }
5755}
5756
5757// is_headless_jre()
5758//
5759// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5760// in order to report if we are running in a headless jre
5761//
5762// Since JDK8 xawt/libmawt.so was moved into the same directory
5763// as libawt.so, and renamed libawt_xawt.so
5764//
5765bool os::is_headless_jre() {
5766  struct stat statbuf;
5767  char buf[MAXPATHLEN];
5768  char libmawtpath[MAXPATHLEN];
5769  const char *xawtstr  = "/xawt/libmawt.so";
5770  const char *new_xawtstr = "/libawt_xawt.so";
5771  char *p;
5772
5773  // Get path to libjvm.so
5774  os::jvm_path(buf, sizeof(buf));
5775
5776  // Get rid of libjvm.so
5777  p = strrchr(buf, '/');
5778  if (p == NULL) {
5779    return false;
5780  } else {
5781    *p = '\0';
5782  }
5783
5784  // Get rid of client or server
5785  p = strrchr(buf, '/');
5786  if (p == NULL) {
5787    return false;
5788  } else {
5789    *p = '\0';
5790  }
5791
5792  // check xawt/libmawt.so
5793  strcpy(libmawtpath, buf);
5794  strcat(libmawtpath, xawtstr);
5795  if (::stat(libmawtpath, &statbuf) == 0) return false;
5796
5797  // check libawt_xawt.so
5798  strcpy(libmawtpath, buf);
5799  strcat(libmawtpath, new_xawtstr);
5800  if (::stat(libmawtpath, &statbuf) == 0) return false;
5801
5802  return true;
5803}
5804
5805// Get the default path to the core file
5806// Returns the length of the string
5807int os::get_core_path(char* buffer, size_t bufferSize) {
5808  /*
5809   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5810   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5811   */
5812  const int core_pattern_len = 129;
5813  char core_pattern[core_pattern_len] = {0};
5814
5815  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5816  if (core_pattern_file != -1) {
5817    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5818    ::close(core_pattern_file);
5819
5820    if (ret > 0) {
5821      char *last_char = core_pattern + strlen(core_pattern) - 1;
5822
5823      if (*last_char == '\n') {
5824        *last_char = '\0';
5825      }
5826    }
5827  }
5828
5829  if (strlen(core_pattern) == 0) {
5830    return -1;
5831  }
5832
5833  char *pid_pos = strstr(core_pattern, "%p");
5834  int written;
5835
5836  if (core_pattern[0] == '/') {
5837    written = jio_snprintf(buffer, bufferSize, core_pattern);
5838  } else {
5839    char cwd[PATH_MAX];
5840
5841    const char* p = get_current_directory(cwd, PATH_MAX);
5842    if (p == NULL) {
5843      return -1;
5844    }
5845
5846    if (core_pattern[0] == '|') {
5847      written = jio_snprintf(buffer, bufferSize,
5848                        "\"%s\" (or dumping to %s/core.%d)",
5849                                     &core_pattern[1], p, current_process_id());
5850    } else {
5851      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5852    }
5853  }
5854
5855  if (written < 0) {
5856    return -1;
5857  }
5858
5859  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5860    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5861
5862    if (core_uses_pid_file != -1) {
5863      char core_uses_pid = 0;
5864      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5865      ::close(core_uses_pid_file);
5866
5867      if (core_uses_pid == '1') {
5868        jio_snprintf(buffer + written, bufferSize - written,
5869                                          ".%d", current_process_id());
5870      }
5871    }
5872  }
5873
5874  return strlen(buffer);
5875}
5876
5877/////////////// Unit tests ///////////////
5878
5879#ifndef PRODUCT
5880
5881#define test_log(...)              \
5882  do {                             \
5883    if (VerboseInternalVMTests) {  \
5884      tty->print_cr(__VA_ARGS__);  \
5885      tty->flush();                \
5886    }                              \
5887  } while (false)
5888
5889class TestReserveMemorySpecial : AllStatic {
5890 public:
5891  static void small_page_write(void* addr, size_t size) {
5892    size_t page_size = os::vm_page_size();
5893
5894    char* end = (char*)addr + size;
5895    for (char* p = (char*)addr; p < end; p += page_size) {
5896      *p = 1;
5897    }
5898  }
5899
5900  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5901    if (!UseHugeTLBFS) {
5902      return;
5903    }
5904
5905    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5906
5907    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5908
5909    if (addr != NULL) {
5910      small_page_write(addr, size);
5911
5912      os::Linux::release_memory_special_huge_tlbfs(addr, size);
5913    }
5914  }
5915
5916  static void test_reserve_memory_special_huge_tlbfs_only() {
5917    if (!UseHugeTLBFS) {
5918      return;
5919    }
5920
5921    size_t lp = os::large_page_size();
5922
5923    for (size_t size = lp; size <= lp * 10; size += lp) {
5924      test_reserve_memory_special_huge_tlbfs_only(size);
5925    }
5926  }
5927
5928  static void test_reserve_memory_special_huge_tlbfs_mixed() {
5929    size_t lp = os::large_page_size();
5930    size_t ag = os::vm_allocation_granularity();
5931
5932    // sizes to test
5933    const size_t sizes[] = {
5934      lp, lp + ag, lp + lp / 2, lp * 2,
5935      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5936      lp * 10, lp * 10 + lp / 2
5937    };
5938    const int num_sizes = sizeof(sizes) / sizeof(size_t);
5939
5940    // For each size/alignment combination, we test three scenarios:
5941    // 1) with req_addr == NULL
5942    // 2) with a non-null req_addr at which we expect to successfully allocate
5943    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5944    //    expect the allocation to either fail or to ignore req_addr
5945
5946    // Pre-allocate two areas; they shall be as large as the largest allocation
5947    //  and aligned to the largest alignment we will be testing.
5948    const size_t mapping_size = sizes[num_sizes - 1] * 2;
5949    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5950      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5951      -1, 0);
5952    assert(mapping1 != MAP_FAILED, "should work");
5953
5954    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5955      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5956      -1, 0);
5957    assert(mapping2 != MAP_FAILED, "should work");
5958
5959    // Unmap the first mapping, but leave the second mapping intact: the first
5960    // mapping will serve as a value for a "good" req_addr (case 2). The second
5961    // mapping, still intact, as "bad" req_addr (case 3).
5962    ::munmap(mapping1, mapping_size);
5963
5964    // Case 1
5965    test_log("%s, req_addr NULL:", __FUNCTION__);
5966    test_log("size            align           result");
5967
5968    for (int i = 0; i < num_sizes; i++) {
5969      const size_t size = sizes[i];
5970      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
5971        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5972        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5973            size, alignment, p, (p != NULL ? "" : "(failed)"));
5974        if (p != NULL) {
5975          assert(is_ptr_aligned(p, alignment), "must be");
5976          small_page_write(p, size);
5977          os::Linux::release_memory_special_huge_tlbfs(p, size);
5978        }
5979      }
5980    }
5981
5982    // Case 2
5983    test_log("%s, req_addr non-NULL:", __FUNCTION__);
5984    test_log("size            align           req_addr         result");
5985
5986    for (int i = 0; i < num_sizes; i++) {
5987      const size_t size = sizes[i];
5988      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
5989        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
5990        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5991        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5992            size, alignment, req_addr, p,
5993            ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5994        if (p != NULL) {
5995          assert(p == req_addr, "must be");
5996          small_page_write(p, size);
5997          os::Linux::release_memory_special_huge_tlbfs(p, size);
5998        }
5999      }
6000    }
6001
6002    // Case 3
6003    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6004    test_log("size            align           req_addr         result");
6005
6006    for (int i = 0; i < num_sizes; i++) {
6007      const size_t size = sizes[i];
6008      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6009        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6010        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6011        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6012            size, alignment, req_addr, p,
6013            ((p != NULL ? "" : "(failed)")));
6014        // as the area around req_addr contains already existing mappings, the API should always
6015        // return NULL (as per contract, it cannot return another address)
6016        assert(p == NULL, "must be");
6017      }
6018    }
6019
6020    ::munmap(mapping2, mapping_size);
6021
6022  }
6023
6024  static void test_reserve_memory_special_huge_tlbfs() {
6025    if (!UseHugeTLBFS) {
6026      return;
6027    }
6028
6029    test_reserve_memory_special_huge_tlbfs_only();
6030    test_reserve_memory_special_huge_tlbfs_mixed();
6031  }
6032
6033  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6034    if (!UseSHM) {
6035      return;
6036    }
6037
6038    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6039
6040    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6041
6042    if (addr != NULL) {
6043      assert(is_ptr_aligned(addr, alignment), "Check");
6044      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6045
6046      small_page_write(addr, size);
6047
6048      os::Linux::release_memory_special_shm(addr, size);
6049    }
6050  }
6051
6052  static void test_reserve_memory_special_shm() {
6053    size_t lp = os::large_page_size();
6054    size_t ag = os::vm_allocation_granularity();
6055
6056    for (size_t size = ag; size < lp * 3; size += ag) {
6057      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6058        test_reserve_memory_special_shm(size, alignment);
6059      }
6060    }
6061  }
6062
6063  static void test() {
6064    test_reserve_memory_special_huge_tlbfs();
6065    test_reserve_memory_special_shm();
6066  }
6067};
6068
6069void TestReserveMemorySpecial_test() {
6070  TestReserveMemorySpecial::test();
6071}
6072
6073#endif
6074