os_linux.cpp revision 8575:5916110131c4
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/macros.hpp"
72#include "utilities/vmError.hpp"
73
74// put OS-includes here
75# include <sys/types.h>
76# include <sys/mman.h>
77# include <sys/stat.h>
78# include <sys/select.h>
79# include <pthread.h>
80# include <signal.h>
81# include <errno.h>
82# include <dlfcn.h>
83# include <stdio.h>
84# include <unistd.h>
85# include <sys/resource.h>
86# include <pthread.h>
87# include <sys/stat.h>
88# include <sys/time.h>
89# include <sys/times.h>
90# include <sys/utsname.h>
91# include <sys/socket.h>
92# include <sys/wait.h>
93# include <pwd.h>
94# include <poll.h>
95# include <semaphore.h>
96# include <fcntl.h>
97# include <string.h>
98# include <syscall.h>
99# include <sys/sysinfo.h>
100# include <gnu/libc-version.h>
101# include <sys/ipc.h>
102# include <sys/shm.h>
103# include <link.h>
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107
108PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
109
110// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
111// getrusage() is prepared to handle the associated failure.
112#ifndef RUSAGE_THREAD
113  #define RUSAGE_THREAD   (1)               /* only the calling thread */
114#endif
115
116#define MAX_PATH    (2 * K)
117
118#define MAX_SECS 100000000
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123#define LARGEPAGES_BIT (1 << 6)
124////////////////////////////////////////////////////////////////////////////////
125// global variables
126julong os::Linux::_physical_memory = 0;
127
128address   os::Linux::_initial_thread_stack_bottom = NULL;
129uintptr_t os::Linux::_initial_thread_stack_size   = 0;
130
131int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
133int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
134Mutex* os::Linux::_createThread_lock = NULL;
135pthread_t os::Linux::_main_thread;
136int os::Linux::_page_size = -1;
137const int os::Linux::_vm_default_page_size = (8 * K);
138bool os::Linux::_supports_fast_thread_cpu_time = false;
139const char * os::Linux::_glibc_version = NULL;
140const char * os::Linux::_libpthread_version = NULL;
141pthread_condattr_t os::Linux::_condattr[1];
142
143static jlong initial_time_count=0;
144
145static int clock_tics_per_sec = 100;
146
147// For diagnostics to print a message once. see run_periodic_checks
148static sigset_t check_signal_done;
149static bool check_signals = true;
150
151// Signal number used to suspend/resume a thread
152
153// do not use any signal number less than SIGSEGV, see 4355769
154static int SR_signum = SIGUSR2;
155sigset_t SR_sigset;
156
157// Declarations
158static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
159
160// utility functions
161
162static int SR_initialize();
163
164julong os::available_memory() {
165  return Linux::available_memory();
166}
167
168julong os::Linux::available_memory() {
169  // values in struct sysinfo are "unsigned long"
170  struct sysinfo si;
171  sysinfo(&si);
172
173  return (julong)si.freeram * si.mem_unit;
174}
175
176julong os::physical_memory() {
177  return Linux::physical_memory();
178}
179
180// Return true if user is running as root.
181
182bool os::have_special_privileges() {
183  static bool init = false;
184  static bool privileges = false;
185  if (!init) {
186    privileges = (getuid() != geteuid()) || (getgid() != getegid());
187    init = true;
188  }
189  return privileges;
190}
191
192
193#ifndef SYS_gettid
194// i386: 224, ia64: 1105, amd64: 186, sparc 143
195  #ifdef __ia64__
196    #define SYS_gettid 1105
197  #else
198    #ifdef __i386__
199      #define SYS_gettid 224
200    #else
201      #ifdef __amd64__
202        #define SYS_gettid 186
203      #else
204        #ifdef __sparc__
205          #define SYS_gettid 143
206        #else
207          #error define gettid for the arch
208        #endif
209      #endif
210    #endif
211  #endif
212#endif
213
214// Cpu architecture string
215static char cpu_arch[] = HOTSPOT_LIB_ARCH;
216
217
218// pid_t gettid()
219//
220// Returns the kernel thread id of the currently running thread. Kernel
221// thread id is used to access /proc.
222pid_t os::Linux::gettid() {
223  int rslt = syscall(SYS_gettid);
224  assert(rslt != -1, "must be."); // old linuxthreads implementation?
225  return (pid_t)rslt;
226}
227
228// Most versions of linux have a bug where the number of processors are
229// determined by looking at the /proc file system.  In a chroot environment,
230// the system call returns 1.  This causes the VM to act as if it is
231// a single processor and elide locking (see is_MP() call).
232static bool unsafe_chroot_detected = false;
233static const char *unstable_chroot_error = "/proc file system not found.\n"
234                     "Java may be unstable running multithreaded in a chroot "
235                     "environment on Linux when /proc filesystem is not mounted.";
236
237void os::Linux::initialize_system_info() {
238  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
239  if (processor_count() == 1) {
240    pid_t pid = os::Linux::gettid();
241    char fname[32];
242    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
243    FILE *fp = fopen(fname, "r");
244    if (fp == NULL) {
245      unsafe_chroot_detected = true;
246    } else {
247      fclose(fp);
248    }
249  }
250  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
251  assert(processor_count() > 0, "linux error");
252}
253
254void os::init_system_properties_values() {
255  // The next steps are taken in the product version:
256  //
257  // Obtain the JAVA_HOME value from the location of libjvm.so.
258  // This library should be located at:
259  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
260  //
261  // If "/jre/lib/" appears at the right place in the path, then we
262  // assume libjvm.so is installed in a JDK and we use this path.
263  //
264  // Otherwise exit with message: "Could not create the Java virtual machine."
265  //
266  // The following extra steps are taken in the debugging version:
267  //
268  // If "/jre/lib/" does NOT appear at the right place in the path
269  // instead of exit check for $JAVA_HOME environment variable.
270  //
271  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
272  // then we append a fake suffix "hotspot/libjvm.so" to this path so
273  // it looks like libjvm.so is installed there
274  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
275  //
276  // Otherwise exit.
277  //
278  // Important note: if the location of libjvm.so changes this
279  // code needs to be changed accordingly.
280
281  // See ld(1):
282  //      The linker uses the following search paths to locate required
283  //      shared libraries:
284  //        1: ...
285  //        ...
286  //        7: The default directories, normally /lib and /usr/lib.
287#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
288  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
289#else
290  #define DEFAULT_LIBPATH "/lib:/usr/lib"
291#endif
292
293// Base path of extensions installed on the system.
294#define SYS_EXT_DIR     "/usr/java/packages"
295#define EXTENSIONS_DIR  "/lib/ext"
296
297  // Buffer that fits several sprintfs.
298  // Note that the space for the colon and the trailing null are provided
299  // by the nulls included by the sizeof operator.
300  const size_t bufsize =
301    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
302         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
303  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
304
305  // sysclasspath, java_home, dll_dir
306  {
307    char *pslash;
308    os::jvm_path(buf, bufsize);
309
310    // Found the full path to libjvm.so.
311    // Now cut the path to <java_home>/jre if we can.
312    pslash = strrchr(buf, '/');
313    if (pslash != NULL) {
314      *pslash = '\0';            // Get rid of /libjvm.so.
315    }
316    pslash = strrchr(buf, '/');
317    if (pslash != NULL) {
318      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
319    }
320    Arguments::set_dll_dir(buf);
321
322    if (pslash != NULL) {
323      pslash = strrchr(buf, '/');
324      if (pslash != NULL) {
325        *pslash = '\0';          // Get rid of /<arch>.
326        pslash = strrchr(buf, '/');
327        if (pslash != NULL) {
328          *pslash = '\0';        // Get rid of /lib.
329        }
330      }
331    }
332    Arguments::set_java_home(buf);
333    set_boot_path('/', ':');
334  }
335
336  // Where to look for native libraries.
337  //
338  // Note: Due to a legacy implementation, most of the library path
339  // is set in the launcher. This was to accomodate linking restrictions
340  // on legacy Linux implementations (which are no longer supported).
341  // Eventually, all the library path setting will be done here.
342  //
343  // However, to prevent the proliferation of improperly built native
344  // libraries, the new path component /usr/java/packages is added here.
345  // Eventually, all the library path setting will be done here.
346  {
347    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
348    // should always exist (until the legacy problem cited above is
349    // addressed).
350    const char *v = ::getenv("LD_LIBRARY_PATH");
351    const char *v_colon = ":";
352    if (v == NULL) { v = ""; v_colon = ""; }
353    // That's +1 for the colon and +1 for the trailing '\0'.
354    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
355                                                     strlen(v) + 1 +
356                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
357                                                     mtInternal);
358    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
359    Arguments::set_library_path(ld_library_path);
360    FREE_C_HEAP_ARRAY(char, ld_library_path);
361  }
362
363  // Extensions directories.
364  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
365  Arguments::set_ext_dirs(buf);
366
367  FREE_C_HEAP_ARRAY(char, buf);
368
369#undef DEFAULT_LIBPATH
370#undef SYS_EXT_DIR
371#undef EXTENSIONS_DIR
372}
373
374////////////////////////////////////////////////////////////////////////////////
375// breakpoint support
376
377void os::breakpoint() {
378  BREAKPOINT;
379}
380
381extern "C" void breakpoint() {
382  // use debugger to set breakpoint here
383}
384
385////////////////////////////////////////////////////////////////////////////////
386// signal support
387
388debug_only(static bool signal_sets_initialized = false);
389static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
390
391bool os::Linux::is_sig_ignored(int sig) {
392  struct sigaction oact;
393  sigaction(sig, (struct sigaction*)NULL, &oact);
394  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
395                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
396  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
397    return true;
398  } else {
399    return false;
400  }
401}
402
403void os::Linux::signal_sets_init() {
404  // Should also have an assertion stating we are still single-threaded.
405  assert(!signal_sets_initialized, "Already initialized");
406  // Fill in signals that are necessarily unblocked for all threads in
407  // the VM. Currently, we unblock the following signals:
408  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
409  //                         by -Xrs (=ReduceSignalUsage));
410  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
411  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
412  // the dispositions or masks wrt these signals.
413  // Programs embedding the VM that want to use the above signals for their
414  // own purposes must, at this time, use the "-Xrs" option to prevent
415  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
416  // (See bug 4345157, and other related bugs).
417  // In reality, though, unblocking these signals is really a nop, since
418  // these signals are not blocked by default.
419  sigemptyset(&unblocked_sigs);
420  sigemptyset(&allowdebug_blocked_sigs);
421  sigaddset(&unblocked_sigs, SIGILL);
422  sigaddset(&unblocked_sigs, SIGSEGV);
423  sigaddset(&unblocked_sigs, SIGBUS);
424  sigaddset(&unblocked_sigs, SIGFPE);
425#if defined(PPC64)
426  sigaddset(&unblocked_sigs, SIGTRAP);
427#endif
428  sigaddset(&unblocked_sigs, SR_signum);
429
430  if (!ReduceSignalUsage) {
431    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
432      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
433      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
434    }
435    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
436      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
437      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
438    }
439    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
440      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
441      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
442    }
443  }
444  // Fill in signals that are blocked by all but the VM thread.
445  sigemptyset(&vm_sigs);
446  if (!ReduceSignalUsage) {
447    sigaddset(&vm_sigs, BREAK_SIGNAL);
448  }
449  debug_only(signal_sets_initialized = true);
450
451}
452
453// These are signals that are unblocked while a thread is running Java.
454// (For some reason, they get blocked by default.)
455sigset_t* os::Linux::unblocked_signals() {
456  assert(signal_sets_initialized, "Not initialized");
457  return &unblocked_sigs;
458}
459
460// These are the signals that are blocked while a (non-VM) thread is
461// running Java. Only the VM thread handles these signals.
462sigset_t* os::Linux::vm_signals() {
463  assert(signal_sets_initialized, "Not initialized");
464  return &vm_sigs;
465}
466
467// These are signals that are blocked during cond_wait to allow debugger in
468sigset_t* os::Linux::allowdebug_blocked_signals() {
469  assert(signal_sets_initialized, "Not initialized");
470  return &allowdebug_blocked_sigs;
471}
472
473void os::Linux::hotspot_sigmask(Thread* thread) {
474
475  //Save caller's signal mask before setting VM signal mask
476  sigset_t caller_sigmask;
477  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
478
479  OSThread* osthread = thread->osthread();
480  osthread->set_caller_sigmask(caller_sigmask);
481
482  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
483
484  if (!ReduceSignalUsage) {
485    if (thread->is_VM_thread()) {
486      // Only the VM thread handles BREAK_SIGNAL ...
487      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
488    } else {
489      // ... all other threads block BREAK_SIGNAL
490      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
491    }
492  }
493}
494
495//////////////////////////////////////////////////////////////////////////////
496// detecting pthread library
497
498void os::Linux::libpthread_init() {
499  // Save glibc and pthread version strings.
500#if !defined(_CS_GNU_LIBC_VERSION) || \
501    !defined(_CS_GNU_LIBPTHREAD_VERSION)
502  #error "glibc too old (< 2.3.2)"
503#endif
504
505  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
506  assert(n > 0, "cannot retrieve glibc version");
507  char *str = (char *)malloc(n, mtInternal);
508  confstr(_CS_GNU_LIBC_VERSION, str, n);
509  os::Linux::set_glibc_version(str);
510
511  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
512  assert(n > 0, "cannot retrieve pthread version");
513  str = (char *)malloc(n, mtInternal);
514  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
515  os::Linux::set_libpthread_version(str);
516}
517
518/////////////////////////////////////////////////////////////////////////////
519// thread stack expansion
520
521// os::Linux::manually_expand_stack() takes care of expanding the thread
522// stack. Note that this is normally not needed: pthread stacks allocate
523// thread stack using mmap() without MAP_NORESERVE, so the stack is already
524// committed. Therefore it is not necessary to expand the stack manually.
525//
526// Manually expanding the stack was historically needed on LinuxThreads
527// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
528// it is kept to deal with very rare corner cases:
529//
530// For one, user may run the VM on an own implementation of threads
531// whose stacks are - like the old LinuxThreads - implemented using
532// mmap(MAP_GROWSDOWN).
533//
534// Also, this coding may be needed if the VM is running on the primordial
535// thread. Normally we avoid running on the primordial thread; however,
536// user may still invoke the VM on the primordial thread.
537//
538// The following historical comment describes the details about running
539// on a thread stack allocated with mmap(MAP_GROWSDOWN):
540
541
542// Force Linux kernel to expand current thread stack. If "bottom" is close
543// to the stack guard, caller should block all signals.
544//
545// MAP_GROWSDOWN:
546//   A special mmap() flag that is used to implement thread stacks. It tells
547//   kernel that the memory region should extend downwards when needed. This
548//   allows early versions of LinuxThreads to only mmap the first few pages
549//   when creating a new thread. Linux kernel will automatically expand thread
550//   stack as needed (on page faults).
551//
552//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
553//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
554//   region, it's hard to tell if the fault is due to a legitimate stack
555//   access or because of reading/writing non-exist memory (e.g. buffer
556//   overrun). As a rule, if the fault happens below current stack pointer,
557//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
558//   application (see Linux kernel fault.c).
559//
560//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
561//   stack overflow detection.
562//
563//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
564//   not use MAP_GROWSDOWN.
565//
566// To get around the problem and allow stack banging on Linux, we need to
567// manually expand thread stack after receiving the SIGSEGV.
568//
569// There are two ways to expand thread stack to address "bottom", we used
570// both of them in JVM before 1.5:
571//   1. adjust stack pointer first so that it is below "bottom", and then
572//      touch "bottom"
573//   2. mmap() the page in question
574//
575// Now alternate signal stack is gone, it's harder to use 2. For instance,
576// if current sp is already near the lower end of page 101, and we need to
577// call mmap() to map page 100, it is possible that part of the mmap() frame
578// will be placed in page 100. When page 100 is mapped, it is zero-filled.
579// That will destroy the mmap() frame and cause VM to crash.
580//
581// The following code works by adjusting sp first, then accessing the "bottom"
582// page to force a page fault. Linux kernel will then automatically expand the
583// stack mapping.
584//
585// _expand_stack_to() assumes its frame size is less than page size, which
586// should always be true if the function is not inlined.
587
588#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
589  #define NOINLINE
590#else
591  #define NOINLINE __attribute__ ((noinline))
592#endif
593
594static void _expand_stack_to(address bottom) NOINLINE;
595
596static void _expand_stack_to(address bottom) {
597  address sp;
598  size_t size;
599  volatile char *p;
600
601  // Adjust bottom to point to the largest address within the same page, it
602  // gives us a one-page buffer if alloca() allocates slightly more memory.
603  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
604  bottom += os::Linux::page_size() - 1;
605
606  // sp might be slightly above current stack pointer; if that's the case, we
607  // will alloca() a little more space than necessary, which is OK. Don't use
608  // os::current_stack_pointer(), as its result can be slightly below current
609  // stack pointer, causing us to not alloca enough to reach "bottom".
610  sp = (address)&sp;
611
612  if (sp > bottom) {
613    size = sp - bottom;
614    p = (volatile char *)alloca(size);
615    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
616    p[0] = '\0';
617  }
618}
619
620bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
621  assert(t!=NULL, "just checking");
622  assert(t->osthread()->expanding_stack(), "expand should be set");
623  assert(t->stack_base() != NULL, "stack_base was not initialized");
624
625  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
626    sigset_t mask_all, old_sigset;
627    sigfillset(&mask_all);
628    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
629    _expand_stack_to(addr);
630    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
631    return true;
632  }
633  return false;
634}
635
636//////////////////////////////////////////////////////////////////////////////
637// create new thread
638
639// Thread start routine for all newly created threads
640static void *java_start(Thread *thread) {
641  // Try to randomize the cache line index of hot stack frames.
642  // This helps when threads of the same stack traces evict each other's
643  // cache lines. The threads can be either from the same JVM instance, or
644  // from different JVM instances. The benefit is especially true for
645  // processors with hyperthreading technology.
646  static int counter = 0;
647  int pid = os::current_process_id();
648  alloca(((pid ^ counter++) & 7) * 128);
649
650  ThreadLocalStorage::set_thread(thread);
651
652  OSThread* osthread = thread->osthread();
653  Monitor* sync = osthread->startThread_lock();
654
655  // thread_id is kernel thread id (similar to Solaris LWP id)
656  osthread->set_thread_id(os::Linux::gettid());
657
658  if (UseNUMA) {
659    int lgrp_id = os::numa_get_group_id();
660    if (lgrp_id != -1) {
661      thread->set_lgrp_id(lgrp_id);
662    }
663  }
664  // initialize signal mask for this thread
665  os::Linux::hotspot_sigmask(thread);
666
667  // initialize floating point control register
668  os::Linux::init_thread_fpu_state();
669
670  // handshaking with parent thread
671  {
672    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
673
674    // notify parent thread
675    osthread->set_state(INITIALIZED);
676    sync->notify_all();
677
678    // wait until os::start_thread()
679    while (osthread->get_state() == INITIALIZED) {
680      sync->wait(Mutex::_no_safepoint_check_flag);
681    }
682  }
683
684  // call one more level start routine
685  thread->run();
686
687  return 0;
688}
689
690bool os::create_thread(Thread* thread, ThreadType thr_type,
691                       size_t stack_size) {
692  assert(thread->osthread() == NULL, "caller responsible");
693
694  // Allocate the OSThread object
695  OSThread* osthread = new OSThread(NULL, NULL);
696  if (osthread == NULL) {
697    return false;
698  }
699
700  // set the correct thread state
701  osthread->set_thread_type(thr_type);
702
703  // Initial state is ALLOCATED but not INITIALIZED
704  osthread->set_state(ALLOCATED);
705
706  thread->set_osthread(osthread);
707
708  // init thread attributes
709  pthread_attr_t attr;
710  pthread_attr_init(&attr);
711  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
712
713  // stack size
714  if (os::Linux::supports_variable_stack_size()) {
715    // calculate stack size if it's not specified by caller
716    if (stack_size == 0) {
717      stack_size = os::Linux::default_stack_size(thr_type);
718
719      switch (thr_type) {
720      case os::java_thread:
721        // Java threads use ThreadStackSize which default value can be
722        // changed with the flag -Xss
723        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
724        stack_size = JavaThread::stack_size_at_create();
725        break;
726      case os::compiler_thread:
727        if (CompilerThreadStackSize > 0) {
728          stack_size = (size_t)(CompilerThreadStackSize * K);
729          break;
730        } // else fall through:
731          // use VMThreadStackSize if CompilerThreadStackSize is not defined
732      case os::vm_thread:
733      case os::pgc_thread:
734      case os::cgc_thread:
735      case os::watcher_thread:
736        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
737        break;
738      }
739    }
740
741    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
742    pthread_attr_setstacksize(&attr, stack_size);
743  } else {
744    // let pthread_create() pick the default value.
745  }
746
747  // glibc guard page
748  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
749
750  ThreadState state;
751
752  {
753    pthread_t tid;
754    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
755
756    pthread_attr_destroy(&attr);
757
758    if (ret != 0) {
759      if (PrintMiscellaneous && (Verbose || WizardMode)) {
760        perror("pthread_create()");
761      }
762      // Need to clean up stuff we've allocated so far
763      thread->set_osthread(NULL);
764      delete osthread;
765      return false;
766    }
767
768    // Store pthread info into the OSThread
769    osthread->set_pthread_id(tid);
770
771    // Wait until child thread is either initialized or aborted
772    {
773      Monitor* sync_with_child = osthread->startThread_lock();
774      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
775      while ((state = osthread->get_state()) == ALLOCATED) {
776        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
777      }
778    }
779  }
780
781  // Aborted due to thread limit being reached
782  if (state == ZOMBIE) {
783    thread->set_osthread(NULL);
784    delete osthread;
785    return false;
786  }
787
788  // The thread is returned suspended (in state INITIALIZED),
789  // and is started higher up in the call chain
790  assert(state == INITIALIZED, "race condition");
791  return true;
792}
793
794/////////////////////////////////////////////////////////////////////////////
795// attach existing thread
796
797// bootstrap the main thread
798bool os::create_main_thread(JavaThread* thread) {
799  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
800  return create_attached_thread(thread);
801}
802
803bool os::create_attached_thread(JavaThread* thread) {
804#ifdef ASSERT
805  thread->verify_not_published();
806#endif
807
808  // Allocate the OSThread object
809  OSThread* osthread = new OSThread(NULL, NULL);
810
811  if (osthread == NULL) {
812    return false;
813  }
814
815  // Store pthread info into the OSThread
816  osthread->set_thread_id(os::Linux::gettid());
817  osthread->set_pthread_id(::pthread_self());
818
819  // initialize floating point control register
820  os::Linux::init_thread_fpu_state();
821
822  // Initial thread state is RUNNABLE
823  osthread->set_state(RUNNABLE);
824
825  thread->set_osthread(osthread);
826
827  if (UseNUMA) {
828    int lgrp_id = os::numa_get_group_id();
829    if (lgrp_id != -1) {
830      thread->set_lgrp_id(lgrp_id);
831    }
832  }
833
834  if (os::Linux::is_initial_thread()) {
835    // If current thread is initial thread, its stack is mapped on demand,
836    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
837    // the entire stack region to avoid SEGV in stack banging.
838    // It is also useful to get around the heap-stack-gap problem on SuSE
839    // kernel (see 4821821 for details). We first expand stack to the top
840    // of yellow zone, then enable stack yellow zone (order is significant,
841    // enabling yellow zone first will crash JVM on SuSE Linux), so there
842    // is no gap between the last two virtual memory regions.
843
844    JavaThread *jt = (JavaThread *)thread;
845    address addr = jt->stack_yellow_zone_base();
846    assert(addr != NULL, "initialization problem?");
847    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
848
849    osthread->set_expanding_stack();
850    os::Linux::manually_expand_stack(jt, addr);
851    osthread->clear_expanding_stack();
852  }
853
854  // initialize signal mask for this thread
855  // and save the caller's signal mask
856  os::Linux::hotspot_sigmask(thread);
857
858  return true;
859}
860
861void os::pd_start_thread(Thread* thread) {
862  OSThread * osthread = thread->osthread();
863  assert(osthread->get_state() != INITIALIZED, "just checking");
864  Monitor* sync_with_child = osthread->startThread_lock();
865  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
866  sync_with_child->notify();
867}
868
869// Free Linux resources related to the OSThread
870void os::free_thread(OSThread* osthread) {
871  assert(osthread != NULL, "osthread not set");
872
873  if (Thread::current()->osthread() == osthread) {
874    // Restore caller's signal mask
875    sigset_t sigmask = osthread->caller_sigmask();
876    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
877  }
878
879  delete osthread;
880}
881
882//////////////////////////////////////////////////////////////////////////////
883// thread local storage
884
885// Restore the thread pointer if the destructor is called. This is in case
886// someone from JNI code sets up a destructor with pthread_key_create to run
887// detachCurrentThread on thread death. Unless we restore the thread pointer we
888// will hang or crash. When detachCurrentThread is called the key will be set
889// to null and we will not be called again. If detachCurrentThread is never
890// called we could loop forever depending on the pthread implementation.
891static void restore_thread_pointer(void* p) {
892  Thread* thread = (Thread*) p;
893  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
894}
895
896int os::allocate_thread_local_storage() {
897  pthread_key_t key;
898  int rslt = pthread_key_create(&key, restore_thread_pointer);
899  assert(rslt == 0, "cannot allocate thread local storage");
900  return (int)key;
901}
902
903// Note: This is currently not used by VM, as we don't destroy TLS key
904// on VM exit.
905void os::free_thread_local_storage(int index) {
906  int rslt = pthread_key_delete((pthread_key_t)index);
907  assert(rslt == 0, "invalid index");
908}
909
910void os::thread_local_storage_at_put(int index, void* value) {
911  int rslt = pthread_setspecific((pthread_key_t)index, value);
912  assert(rslt == 0, "pthread_setspecific failed");
913}
914
915extern "C" Thread* get_thread() {
916  return ThreadLocalStorage::thread();
917}
918
919//////////////////////////////////////////////////////////////////////////////
920// initial thread
921
922// Check if current thread is the initial thread, similar to Solaris thr_main.
923bool os::Linux::is_initial_thread(void) {
924  char dummy;
925  // If called before init complete, thread stack bottom will be null.
926  // Can be called if fatal error occurs before initialization.
927  if (initial_thread_stack_bottom() == NULL) return false;
928  assert(initial_thread_stack_bottom() != NULL &&
929         initial_thread_stack_size()   != 0,
930         "os::init did not locate initial thread's stack region");
931  if ((address)&dummy >= initial_thread_stack_bottom() &&
932      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
933    return true;
934  } else {
935    return false;
936  }
937}
938
939// Find the virtual memory area that contains addr
940static bool find_vma(address addr, address* vma_low, address* vma_high) {
941  FILE *fp = fopen("/proc/self/maps", "r");
942  if (fp) {
943    address low, high;
944    while (!feof(fp)) {
945      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
946        if (low <= addr && addr < high) {
947          if (vma_low)  *vma_low  = low;
948          if (vma_high) *vma_high = high;
949          fclose(fp);
950          return true;
951        }
952      }
953      for (;;) {
954        int ch = fgetc(fp);
955        if (ch == EOF || ch == (int)'\n') break;
956      }
957    }
958    fclose(fp);
959  }
960  return false;
961}
962
963// Locate initial thread stack. This special handling of initial thread stack
964// is needed because pthread_getattr_np() on most (all?) Linux distros returns
965// bogus value for initial thread.
966void os::Linux::capture_initial_stack(size_t max_size) {
967  // stack size is the easy part, get it from RLIMIT_STACK
968  size_t stack_size;
969  struct rlimit rlim;
970  getrlimit(RLIMIT_STACK, &rlim);
971  stack_size = rlim.rlim_cur;
972
973  // 6308388: a bug in ld.so will relocate its own .data section to the
974  //   lower end of primordial stack; reduce ulimit -s value a little bit
975  //   so we won't install guard page on ld.so's data section.
976  stack_size -= 2 * page_size();
977
978  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
979  //   7.1, in both cases we will get 2G in return value.
980  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
981  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
982  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
983  //   in case other parts in glibc still assumes 2M max stack size.
984  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
985  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
986  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
987    stack_size = 2 * K * K IA64_ONLY(*2);
988  }
989  // Try to figure out where the stack base (top) is. This is harder.
990  //
991  // When an application is started, glibc saves the initial stack pointer in
992  // a global variable "__libc_stack_end", which is then used by system
993  // libraries. __libc_stack_end should be pretty close to stack top. The
994  // variable is available since the very early days. However, because it is
995  // a private interface, it could disappear in the future.
996  //
997  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
998  // to __libc_stack_end, it is very close to stack top, but isn't the real
999  // stack top. Note that /proc may not exist if VM is running as a chroot
1000  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1001  // /proc/<pid>/stat could change in the future (though unlikely).
1002  //
1003  // We try __libc_stack_end first. If that doesn't work, look for
1004  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1005  // as a hint, which should work well in most cases.
1006
1007  uintptr_t stack_start;
1008
1009  // try __libc_stack_end first
1010  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1011  if (p && *p) {
1012    stack_start = *p;
1013  } else {
1014    // see if we can get the start_stack field from /proc/self/stat
1015    FILE *fp;
1016    int pid;
1017    char state;
1018    int ppid;
1019    int pgrp;
1020    int session;
1021    int nr;
1022    int tpgrp;
1023    unsigned long flags;
1024    unsigned long minflt;
1025    unsigned long cminflt;
1026    unsigned long majflt;
1027    unsigned long cmajflt;
1028    unsigned long utime;
1029    unsigned long stime;
1030    long cutime;
1031    long cstime;
1032    long prio;
1033    long nice;
1034    long junk;
1035    long it_real;
1036    uintptr_t start;
1037    uintptr_t vsize;
1038    intptr_t rss;
1039    uintptr_t rsslim;
1040    uintptr_t scodes;
1041    uintptr_t ecode;
1042    int i;
1043
1044    // Figure what the primordial thread stack base is. Code is inspired
1045    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1046    // followed by command name surrounded by parentheses, state, etc.
1047    char stat[2048];
1048    int statlen;
1049
1050    fp = fopen("/proc/self/stat", "r");
1051    if (fp) {
1052      statlen = fread(stat, 1, 2047, fp);
1053      stat[statlen] = '\0';
1054      fclose(fp);
1055
1056      // Skip pid and the command string. Note that we could be dealing with
1057      // weird command names, e.g. user could decide to rename java launcher
1058      // to "java 1.4.2 :)", then the stat file would look like
1059      //                1234 (java 1.4.2 :)) R ... ...
1060      // We don't really need to know the command string, just find the last
1061      // occurrence of ")" and then start parsing from there. See bug 4726580.
1062      char * s = strrchr(stat, ')');
1063
1064      i = 0;
1065      if (s) {
1066        // Skip blank chars
1067        do { s++; } while (s && isspace(*s));
1068
1069#define _UFM UINTX_FORMAT
1070#define _DFM INTX_FORMAT
1071
1072        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1073        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1074        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1075                   &state,          // 3  %c
1076                   &ppid,           // 4  %d
1077                   &pgrp,           // 5  %d
1078                   &session,        // 6  %d
1079                   &nr,             // 7  %d
1080                   &tpgrp,          // 8  %d
1081                   &flags,          // 9  %lu
1082                   &minflt,         // 10 %lu
1083                   &cminflt,        // 11 %lu
1084                   &majflt,         // 12 %lu
1085                   &cmajflt,        // 13 %lu
1086                   &utime,          // 14 %lu
1087                   &stime,          // 15 %lu
1088                   &cutime,         // 16 %ld
1089                   &cstime,         // 17 %ld
1090                   &prio,           // 18 %ld
1091                   &nice,           // 19 %ld
1092                   &junk,           // 20 %ld
1093                   &it_real,        // 21 %ld
1094                   &start,          // 22 UINTX_FORMAT
1095                   &vsize,          // 23 UINTX_FORMAT
1096                   &rss,            // 24 INTX_FORMAT
1097                   &rsslim,         // 25 UINTX_FORMAT
1098                   &scodes,         // 26 UINTX_FORMAT
1099                   &ecode,          // 27 UINTX_FORMAT
1100                   &stack_start);   // 28 UINTX_FORMAT
1101      }
1102
1103#undef _UFM
1104#undef _DFM
1105
1106      if (i != 28 - 2) {
1107        assert(false, "Bad conversion from /proc/self/stat");
1108        // product mode - assume we are the initial thread, good luck in the
1109        // embedded case.
1110        warning("Can't detect initial thread stack location - bad conversion");
1111        stack_start = (uintptr_t) &rlim;
1112      }
1113    } else {
1114      // For some reason we can't open /proc/self/stat (for example, running on
1115      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1116      // most cases, so don't abort:
1117      warning("Can't detect initial thread stack location - no /proc/self/stat");
1118      stack_start = (uintptr_t) &rlim;
1119    }
1120  }
1121
1122  // Now we have a pointer (stack_start) very close to the stack top, the
1123  // next thing to do is to figure out the exact location of stack top. We
1124  // can find out the virtual memory area that contains stack_start by
1125  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1126  // and its upper limit is the real stack top. (again, this would fail if
1127  // running inside chroot, because /proc may not exist.)
1128
1129  uintptr_t stack_top;
1130  address low, high;
1131  if (find_vma((address)stack_start, &low, &high)) {
1132    // success, "high" is the true stack top. (ignore "low", because initial
1133    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1134    stack_top = (uintptr_t)high;
1135  } else {
1136    // failed, likely because /proc/self/maps does not exist
1137    warning("Can't detect initial thread stack location - find_vma failed");
1138    // best effort: stack_start is normally within a few pages below the real
1139    // stack top, use it as stack top, and reduce stack size so we won't put
1140    // guard page outside stack.
1141    stack_top = stack_start;
1142    stack_size -= 16 * page_size();
1143  }
1144
1145  // stack_top could be partially down the page so align it
1146  stack_top = align_size_up(stack_top, page_size());
1147
1148  if (max_size && stack_size > max_size) {
1149    _initial_thread_stack_size = max_size;
1150  } else {
1151    _initial_thread_stack_size = stack_size;
1152  }
1153
1154  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1155  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1156}
1157
1158////////////////////////////////////////////////////////////////////////////////
1159// time support
1160
1161// Time since start-up in seconds to a fine granularity.
1162// Used by VMSelfDestructTimer and the MemProfiler.
1163double os::elapsedTime() {
1164
1165  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1166}
1167
1168jlong os::elapsed_counter() {
1169  return javaTimeNanos() - initial_time_count;
1170}
1171
1172jlong os::elapsed_frequency() {
1173  return NANOSECS_PER_SEC; // nanosecond resolution
1174}
1175
1176bool os::supports_vtime() { return true; }
1177bool os::enable_vtime()   { return false; }
1178bool os::vtime_enabled()  { return false; }
1179
1180double os::elapsedVTime() {
1181  struct rusage usage;
1182  int retval = getrusage(RUSAGE_THREAD, &usage);
1183  if (retval == 0) {
1184    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1185  } else {
1186    // better than nothing, but not much
1187    return elapsedTime();
1188  }
1189}
1190
1191jlong os::javaTimeMillis() {
1192  timeval time;
1193  int status = gettimeofday(&time, NULL);
1194  assert(status != -1, "linux error");
1195  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1196}
1197
1198void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1199  timeval time;
1200  int status = gettimeofday(&time, NULL);
1201  assert(status != -1, "linux error");
1202  seconds = jlong(time.tv_sec);
1203  nanos = jlong(time.tv_usec) * 1000;
1204}
1205
1206
1207#ifndef CLOCK_MONOTONIC
1208  #define CLOCK_MONOTONIC (1)
1209#endif
1210
1211void os::Linux::clock_init() {
1212  // we do dlopen's in this particular order due to bug in linux
1213  // dynamical loader (see 6348968) leading to crash on exit
1214  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1215  if (handle == NULL) {
1216    handle = dlopen("librt.so", RTLD_LAZY);
1217  }
1218
1219  if (handle) {
1220    int (*clock_getres_func)(clockid_t, struct timespec*) =
1221           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1222    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1223           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1224    if (clock_getres_func && clock_gettime_func) {
1225      // See if monotonic clock is supported by the kernel. Note that some
1226      // early implementations simply return kernel jiffies (updated every
1227      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1228      // for nano time (though the monotonic property is still nice to have).
1229      // It's fixed in newer kernels, however clock_getres() still returns
1230      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1231      // resolution for now. Hopefully as people move to new kernels, this
1232      // won't be a problem.
1233      struct timespec res;
1234      struct timespec tp;
1235      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1236          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1237        // yes, monotonic clock is supported
1238        _clock_gettime = clock_gettime_func;
1239        return;
1240      } else {
1241        // close librt if there is no monotonic clock
1242        dlclose(handle);
1243      }
1244    }
1245  }
1246  warning("No monotonic clock was available - timed services may " \
1247          "be adversely affected if the time-of-day clock changes");
1248}
1249
1250#ifndef SYS_clock_getres
1251  #if defined(IA32) || defined(AMD64)
1252    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1253    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1254  #else
1255    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1256    #define sys_clock_getres(x,y)  -1
1257  #endif
1258#else
1259  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1260#endif
1261
1262void os::Linux::fast_thread_clock_init() {
1263  if (!UseLinuxPosixThreadCPUClocks) {
1264    return;
1265  }
1266  clockid_t clockid;
1267  struct timespec tp;
1268  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1269      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1270
1271  // Switch to using fast clocks for thread cpu time if
1272  // the sys_clock_getres() returns 0 error code.
1273  // Note, that some kernels may support the current thread
1274  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1275  // returned by the pthread_getcpuclockid().
1276  // If the fast Posix clocks are supported then the sys_clock_getres()
1277  // must return at least tp.tv_sec == 0 which means a resolution
1278  // better than 1 sec. This is extra check for reliability.
1279
1280  if (pthread_getcpuclockid_func &&
1281      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1282      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1283    _supports_fast_thread_cpu_time = true;
1284    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1285  }
1286}
1287
1288jlong os::javaTimeNanos() {
1289  if (os::supports_monotonic_clock()) {
1290    struct timespec tp;
1291    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1292    assert(status == 0, "gettime error");
1293    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1294    return result;
1295  } else {
1296    timeval time;
1297    int status = gettimeofday(&time, NULL);
1298    assert(status != -1, "linux error");
1299    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1300    return 1000 * usecs;
1301  }
1302}
1303
1304void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1305  if (os::supports_monotonic_clock()) {
1306    info_ptr->max_value = ALL_64_BITS;
1307
1308    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1309    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1310    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1311  } else {
1312    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1313    info_ptr->max_value = ALL_64_BITS;
1314
1315    // gettimeofday is a real time clock so it skips
1316    info_ptr->may_skip_backward = true;
1317    info_ptr->may_skip_forward = true;
1318  }
1319
1320  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1321}
1322
1323// Return the real, user, and system times in seconds from an
1324// arbitrary fixed point in the past.
1325bool os::getTimesSecs(double* process_real_time,
1326                      double* process_user_time,
1327                      double* process_system_time) {
1328  struct tms ticks;
1329  clock_t real_ticks = times(&ticks);
1330
1331  if (real_ticks == (clock_t) (-1)) {
1332    return false;
1333  } else {
1334    double ticks_per_second = (double) clock_tics_per_sec;
1335    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1336    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1337    *process_real_time = ((double) real_ticks) / ticks_per_second;
1338
1339    return true;
1340  }
1341}
1342
1343
1344char * os::local_time_string(char *buf, size_t buflen) {
1345  struct tm t;
1346  time_t long_time;
1347  time(&long_time);
1348  localtime_r(&long_time, &t);
1349  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1350               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1351               t.tm_hour, t.tm_min, t.tm_sec);
1352  return buf;
1353}
1354
1355struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1356  return localtime_r(clock, res);
1357}
1358
1359////////////////////////////////////////////////////////////////////////////////
1360// runtime exit support
1361
1362// Note: os::shutdown() might be called very early during initialization, or
1363// called from signal handler. Before adding something to os::shutdown(), make
1364// sure it is async-safe and can handle partially initialized VM.
1365void os::shutdown() {
1366
1367  // allow PerfMemory to attempt cleanup of any persistent resources
1368  perfMemory_exit();
1369
1370  // needs to remove object in file system
1371  AttachListener::abort();
1372
1373  // flush buffered output, finish log files
1374  ostream_abort();
1375
1376  // Check for abort hook
1377  abort_hook_t abort_hook = Arguments::abort_hook();
1378  if (abort_hook != NULL) {
1379    abort_hook();
1380  }
1381
1382}
1383
1384// Note: os::abort() might be called very early during initialization, or
1385// called from signal handler. Before adding something to os::abort(), make
1386// sure it is async-safe and can handle partially initialized VM.
1387void os::abort(bool dump_core, void* siginfo, void* context) {
1388  os::shutdown();
1389  if (dump_core) {
1390#ifndef PRODUCT
1391    fdStream out(defaultStream::output_fd());
1392    out.print_raw("Current thread is ");
1393    char buf[16];
1394    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1395    out.print_raw_cr(buf);
1396    out.print_raw_cr("Dumping core ...");
1397#endif
1398    ::abort(); // dump core
1399  }
1400
1401  ::exit(1);
1402}
1403
1404// Die immediately, no exit hook, no abort hook, no cleanup.
1405void os::die() {
1406  ::abort();
1407}
1408
1409
1410// This method is a copy of JDK's sysGetLastErrorString
1411// from src/solaris/hpi/src/system_md.c
1412
1413size_t os::lasterror(char *buf, size_t len) {
1414  if (errno == 0)  return 0;
1415
1416  const char *s = ::strerror(errno);
1417  size_t n = ::strlen(s);
1418  if (n >= len) {
1419    n = len - 1;
1420  }
1421  ::strncpy(buf, s, n);
1422  buf[n] = '\0';
1423  return n;
1424}
1425
1426intx os::current_thread_id() { return (intx)pthread_self(); }
1427int os::current_process_id() {
1428  return ::getpid();
1429}
1430
1431// DLL functions
1432
1433const char* os::dll_file_extension() { return ".so"; }
1434
1435// This must be hard coded because it's the system's temporary
1436// directory not the java application's temp directory, ala java.io.tmpdir.
1437const char* os::get_temp_directory() { return "/tmp"; }
1438
1439static bool file_exists(const char* filename) {
1440  struct stat statbuf;
1441  if (filename == NULL || strlen(filename) == 0) {
1442    return false;
1443  }
1444  return os::stat(filename, &statbuf) == 0;
1445}
1446
1447bool os::dll_build_name(char* buffer, size_t buflen,
1448                        const char* pname, const char* fname) {
1449  bool retval = false;
1450  // Copied from libhpi
1451  const size_t pnamelen = pname ? strlen(pname) : 0;
1452
1453  // Return error on buffer overflow.
1454  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1455    return retval;
1456  }
1457
1458  if (pnamelen == 0) {
1459    snprintf(buffer, buflen, "lib%s.so", fname);
1460    retval = true;
1461  } else if (strchr(pname, *os::path_separator()) != NULL) {
1462    int n;
1463    char** pelements = split_path(pname, &n);
1464    if (pelements == NULL) {
1465      return false;
1466    }
1467    for (int i = 0; i < n; i++) {
1468      // Really shouldn't be NULL, but check can't hurt
1469      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1470        continue; // skip the empty path values
1471      }
1472      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1473      if (file_exists(buffer)) {
1474        retval = true;
1475        break;
1476      }
1477    }
1478    // release the storage
1479    for (int i = 0; i < n; i++) {
1480      if (pelements[i] != NULL) {
1481        FREE_C_HEAP_ARRAY(char, pelements[i]);
1482      }
1483    }
1484    if (pelements != NULL) {
1485      FREE_C_HEAP_ARRAY(char*, pelements);
1486    }
1487  } else {
1488    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1489    retval = true;
1490  }
1491  return retval;
1492}
1493
1494// check if addr is inside libjvm.so
1495bool os::address_is_in_vm(address addr) {
1496  static address libjvm_base_addr;
1497  Dl_info dlinfo;
1498
1499  if (libjvm_base_addr == NULL) {
1500    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1501      libjvm_base_addr = (address)dlinfo.dli_fbase;
1502    }
1503    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1504  }
1505
1506  if (dladdr((void *)addr, &dlinfo) != 0) {
1507    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1508  }
1509
1510  return false;
1511}
1512
1513bool os::dll_address_to_function_name(address addr, char *buf,
1514                                      int buflen, int *offset,
1515                                      bool demangle) {
1516  // buf is not optional, but offset is optional
1517  assert(buf != NULL, "sanity check");
1518
1519  Dl_info dlinfo;
1520
1521  if (dladdr((void*)addr, &dlinfo) != 0) {
1522    // see if we have a matching symbol
1523    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1524      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1525        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1526      }
1527      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1528      return true;
1529    }
1530    // no matching symbol so try for just file info
1531    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1532      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1533                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1534        return true;
1535      }
1536    }
1537  }
1538
1539  buf[0] = '\0';
1540  if (offset != NULL) *offset = -1;
1541  return false;
1542}
1543
1544struct _address_to_library_name {
1545  address addr;          // input : memory address
1546  size_t  buflen;        //         size of fname
1547  char*   fname;         // output: library name
1548  address base;          //         library base addr
1549};
1550
1551static int address_to_library_name_callback(struct dl_phdr_info *info,
1552                                            size_t size, void *data) {
1553  int i;
1554  bool found = false;
1555  address libbase = NULL;
1556  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1557
1558  // iterate through all loadable segments
1559  for (i = 0; i < info->dlpi_phnum; i++) {
1560    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1561    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1562      // base address of a library is the lowest address of its loaded
1563      // segments.
1564      if (libbase == NULL || libbase > segbase) {
1565        libbase = segbase;
1566      }
1567      // see if 'addr' is within current segment
1568      if (segbase <= d->addr &&
1569          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1570        found = true;
1571      }
1572    }
1573  }
1574
1575  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1576  // so dll_address_to_library_name() can fall through to use dladdr() which
1577  // can figure out executable name from argv[0].
1578  if (found && info->dlpi_name && info->dlpi_name[0]) {
1579    d->base = libbase;
1580    if (d->fname) {
1581      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1582    }
1583    return 1;
1584  }
1585  return 0;
1586}
1587
1588bool os::dll_address_to_library_name(address addr, char* buf,
1589                                     int buflen, int* offset) {
1590  // buf is not optional, but offset is optional
1591  assert(buf != NULL, "sanity check");
1592
1593  Dl_info dlinfo;
1594  struct _address_to_library_name data;
1595
1596  // There is a bug in old glibc dladdr() implementation that it could resolve
1597  // to wrong library name if the .so file has a base address != NULL. Here
1598  // we iterate through the program headers of all loaded libraries to find
1599  // out which library 'addr' really belongs to. This workaround can be
1600  // removed once the minimum requirement for glibc is moved to 2.3.x.
1601  data.addr = addr;
1602  data.fname = buf;
1603  data.buflen = buflen;
1604  data.base = NULL;
1605  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1606
1607  if (rslt) {
1608    // buf already contains library name
1609    if (offset) *offset = addr - data.base;
1610    return true;
1611  }
1612  if (dladdr((void*)addr, &dlinfo) != 0) {
1613    if (dlinfo.dli_fname != NULL) {
1614      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1615    }
1616    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1617      *offset = addr - (address)dlinfo.dli_fbase;
1618    }
1619    return true;
1620  }
1621
1622  buf[0] = '\0';
1623  if (offset) *offset = -1;
1624  return false;
1625}
1626
1627// Loads .dll/.so and
1628// in case of error it checks if .dll/.so was built for the
1629// same architecture as Hotspot is running on
1630
1631
1632// Remember the stack's state. The Linux dynamic linker will change
1633// the stack to 'executable' at most once, so we must safepoint only once.
1634bool os::Linux::_stack_is_executable = false;
1635
1636// VM operation that loads a library.  This is necessary if stack protection
1637// of the Java stacks can be lost during loading the library.  If we
1638// do not stop the Java threads, they can stack overflow before the stacks
1639// are protected again.
1640class VM_LinuxDllLoad: public VM_Operation {
1641 private:
1642  const char *_filename;
1643  char *_ebuf;
1644  int _ebuflen;
1645  void *_lib;
1646 public:
1647  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1648    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1649  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1650  void doit() {
1651    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1652    os::Linux::_stack_is_executable = true;
1653  }
1654  void* loaded_library() { return _lib; }
1655};
1656
1657void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1658  void * result = NULL;
1659  bool load_attempted = false;
1660
1661  // Check whether the library to load might change execution rights
1662  // of the stack. If they are changed, the protection of the stack
1663  // guard pages will be lost. We need a safepoint to fix this.
1664  //
1665  // See Linux man page execstack(8) for more info.
1666  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1667    ElfFile ef(filename);
1668    if (!ef.specifies_noexecstack()) {
1669      if (!is_init_completed()) {
1670        os::Linux::_stack_is_executable = true;
1671        // This is OK - No Java threads have been created yet, and hence no
1672        // stack guard pages to fix.
1673        //
1674        // This should happen only when you are building JDK7 using a very
1675        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1676        //
1677        // Dynamic loader will make all stacks executable after
1678        // this function returns, and will not do that again.
1679        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1680      } else {
1681        warning("You have loaded library %s which might have disabled stack guard. "
1682                "The VM will try to fix the stack guard now.\n"
1683                "It's highly recommended that you fix the library with "
1684                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1685                filename);
1686
1687        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1688        JavaThread *jt = JavaThread::current();
1689        if (jt->thread_state() != _thread_in_native) {
1690          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1691          // that requires ExecStack. Cannot enter safe point. Let's give up.
1692          warning("Unable to fix stack guard. Giving up.");
1693        } else {
1694          if (!LoadExecStackDllInVMThread) {
1695            // This is for the case where the DLL has an static
1696            // constructor function that executes JNI code. We cannot
1697            // load such DLLs in the VMThread.
1698            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1699          }
1700
1701          ThreadInVMfromNative tiv(jt);
1702          debug_only(VMNativeEntryWrapper vew;)
1703
1704          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1705          VMThread::execute(&op);
1706          if (LoadExecStackDllInVMThread) {
1707            result = op.loaded_library();
1708          }
1709          load_attempted = true;
1710        }
1711      }
1712    }
1713  }
1714
1715  if (!load_attempted) {
1716    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1717  }
1718
1719  if (result != NULL) {
1720    // Successful loading
1721    return result;
1722  }
1723
1724  Elf32_Ehdr elf_head;
1725  int diag_msg_max_length=ebuflen-strlen(ebuf);
1726  char* diag_msg_buf=ebuf+strlen(ebuf);
1727
1728  if (diag_msg_max_length==0) {
1729    // No more space in ebuf for additional diagnostics message
1730    return NULL;
1731  }
1732
1733
1734  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1735
1736  if (file_descriptor < 0) {
1737    // Can't open library, report dlerror() message
1738    return NULL;
1739  }
1740
1741  bool failed_to_read_elf_head=
1742    (sizeof(elf_head)!=
1743     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1744
1745  ::close(file_descriptor);
1746  if (failed_to_read_elf_head) {
1747    // file i/o error - report dlerror() msg
1748    return NULL;
1749  }
1750
1751  typedef struct {
1752    Elf32_Half  code;         // Actual value as defined in elf.h
1753    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1754    char        elf_class;    // 32 or 64 bit
1755    char        endianess;    // MSB or LSB
1756    char*       name;         // String representation
1757  } arch_t;
1758
1759#ifndef EM_486
1760  #define EM_486          6               /* Intel 80486 */
1761#endif
1762#ifndef EM_AARCH64
1763  #define EM_AARCH64    183               /* ARM AARCH64 */
1764#endif
1765
1766  static const arch_t arch_array[]={
1767    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1768    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1769    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1770    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1771    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1772    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1773    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1774    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1775#if defined(VM_LITTLE_ENDIAN)
1776    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1777#else
1778    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1779#endif
1780    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1781    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1782    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1783    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1784    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1785    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1786    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1787    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1788  };
1789
1790#if  (defined IA32)
1791  static  Elf32_Half running_arch_code=EM_386;
1792#elif   (defined AMD64)
1793  static  Elf32_Half running_arch_code=EM_X86_64;
1794#elif  (defined IA64)
1795  static  Elf32_Half running_arch_code=EM_IA_64;
1796#elif  (defined __sparc) && (defined _LP64)
1797  static  Elf32_Half running_arch_code=EM_SPARCV9;
1798#elif  (defined __sparc) && (!defined _LP64)
1799  static  Elf32_Half running_arch_code=EM_SPARC;
1800#elif  (defined __powerpc64__)
1801  static  Elf32_Half running_arch_code=EM_PPC64;
1802#elif  (defined __powerpc__)
1803  static  Elf32_Half running_arch_code=EM_PPC;
1804#elif  (defined ARM)
1805  static  Elf32_Half running_arch_code=EM_ARM;
1806#elif  (defined S390)
1807  static  Elf32_Half running_arch_code=EM_S390;
1808#elif  (defined ALPHA)
1809  static  Elf32_Half running_arch_code=EM_ALPHA;
1810#elif  (defined MIPSEL)
1811  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1812#elif  (defined PARISC)
1813  static  Elf32_Half running_arch_code=EM_PARISC;
1814#elif  (defined MIPS)
1815  static  Elf32_Half running_arch_code=EM_MIPS;
1816#elif  (defined M68K)
1817  static  Elf32_Half running_arch_code=EM_68K;
1818#elif  (defined AARCH64)
1819  static  Elf32_Half running_arch_code=EM_AARCH64;
1820#else
1821    #error Method os::dll_load requires that one of following is defined:\
1822         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1823#endif
1824
1825  // Identify compatability class for VM's architecture and library's architecture
1826  // Obtain string descriptions for architectures
1827
1828  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1829  int running_arch_index=-1;
1830
1831  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1832    if (running_arch_code == arch_array[i].code) {
1833      running_arch_index    = i;
1834    }
1835    if (lib_arch.code == arch_array[i].code) {
1836      lib_arch.compat_class = arch_array[i].compat_class;
1837      lib_arch.name         = arch_array[i].name;
1838    }
1839  }
1840
1841  assert(running_arch_index != -1,
1842         "Didn't find running architecture code (running_arch_code) in arch_array");
1843  if (running_arch_index == -1) {
1844    // Even though running architecture detection failed
1845    // we may still continue with reporting dlerror() message
1846    return NULL;
1847  }
1848
1849  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1850    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1851    return NULL;
1852  }
1853
1854#ifndef S390
1855  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1856    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1857    return NULL;
1858  }
1859#endif // !S390
1860
1861  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1862    if (lib_arch.name!=NULL) {
1863      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1864                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1865                 lib_arch.name, arch_array[running_arch_index].name);
1866    } else {
1867      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1868                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1869                 lib_arch.code,
1870                 arch_array[running_arch_index].name);
1871    }
1872  }
1873
1874  return NULL;
1875}
1876
1877void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1878                                int ebuflen) {
1879  void * result = ::dlopen(filename, RTLD_LAZY);
1880  if (result == NULL) {
1881    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1882    ebuf[ebuflen-1] = '\0';
1883  }
1884  return result;
1885}
1886
1887void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1888                                       int ebuflen) {
1889  void * result = NULL;
1890  if (LoadExecStackDllInVMThread) {
1891    result = dlopen_helper(filename, ebuf, ebuflen);
1892  }
1893
1894  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1895  // library that requires an executable stack, or which does not have this
1896  // stack attribute set, dlopen changes the stack attribute to executable. The
1897  // read protection of the guard pages gets lost.
1898  //
1899  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1900  // may have been queued at the same time.
1901
1902  if (!_stack_is_executable) {
1903    JavaThread *jt = Threads::first();
1904
1905    while (jt) {
1906      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1907          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1908        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1909                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1910          warning("Attempt to reguard stack yellow zone failed.");
1911        }
1912      }
1913      jt = jt->next();
1914    }
1915  }
1916
1917  return result;
1918}
1919
1920void* os::dll_lookup(void* handle, const char* name) {
1921  void* res = dlsym(handle, name);
1922  return res;
1923}
1924
1925void* os::get_default_process_handle() {
1926  return (void*)::dlopen(NULL, RTLD_LAZY);
1927}
1928
1929static bool _print_ascii_file(const char* filename, outputStream* st) {
1930  int fd = ::open(filename, O_RDONLY);
1931  if (fd == -1) {
1932    return false;
1933  }
1934
1935  char buf[32];
1936  int bytes;
1937  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1938    st->print_raw(buf, bytes);
1939  }
1940
1941  ::close(fd);
1942
1943  return true;
1944}
1945
1946void os::print_dll_info(outputStream *st) {
1947  st->print_cr("Dynamic libraries:");
1948
1949  char fname[32];
1950  pid_t pid = os::Linux::gettid();
1951
1952  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1953
1954  if (!_print_ascii_file(fname, st)) {
1955    st->print("Can not get library information for pid = %d\n", pid);
1956  }
1957}
1958
1959int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1960  FILE *procmapsFile = NULL;
1961
1962  // Open the procfs maps file for the current process
1963  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1964    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1965    char line[PATH_MAX + 100];
1966
1967    // Read line by line from 'file'
1968    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1969      u8 base, top, offset, inode;
1970      char permissions[5];
1971      char device[6];
1972      char name[PATH_MAX + 1];
1973
1974      // Parse fields from line
1975      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
1976
1977      // Filter by device id '00:00' so that we only get file system mapped files.
1978      if (strcmp(device, "00:00") != 0) {
1979
1980        // Call callback with the fields of interest
1981        if(callback(name, (address)base, (address)top, param)) {
1982          // Oops abort, callback aborted
1983          fclose(procmapsFile);
1984          return 1;
1985        }
1986      }
1987    }
1988    fclose(procmapsFile);
1989  }
1990  return 0;
1991}
1992
1993void os::print_os_info_brief(outputStream* st) {
1994  os::Linux::print_distro_info(st);
1995
1996  os::Posix::print_uname_info(st);
1997
1998  os::Linux::print_libversion_info(st);
1999
2000}
2001
2002void os::print_os_info(outputStream* st) {
2003  st->print("OS:");
2004
2005  os::Linux::print_distro_info(st);
2006
2007  os::Posix::print_uname_info(st);
2008
2009  // Print warning if unsafe chroot environment detected
2010  if (unsafe_chroot_detected) {
2011    st->print("WARNING!! ");
2012    st->print_cr("%s", unstable_chroot_error);
2013  }
2014
2015  os::Linux::print_libversion_info(st);
2016
2017  os::Posix::print_rlimit_info(st);
2018
2019  os::Posix::print_load_average(st);
2020
2021  os::Linux::print_full_memory_info(st);
2022}
2023
2024// Try to identify popular distros.
2025// Most Linux distributions have a /etc/XXX-release file, which contains
2026// the OS version string. Newer Linux distributions have a /etc/lsb-release
2027// file that also contains the OS version string. Some have more than one
2028// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2029// /etc/redhat-release.), so the order is important.
2030// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2031// their own specific XXX-release file as well as a redhat-release file.
2032// Because of this the XXX-release file needs to be searched for before the
2033// redhat-release file.
2034// Since Red Hat has a lsb-release file that is not very descriptive the
2035// search for redhat-release needs to be before lsb-release.
2036// Since the lsb-release file is the new standard it needs to be searched
2037// before the older style release files.
2038// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2039// next to last resort.  The os-release file is a new standard that contains
2040// distribution information and the system-release file seems to be an old
2041// standard that has been replaced by the lsb-release and os-release files.
2042// Searching for the debian_version file is the last resort.  It contains
2043// an informative string like "6.0.6" or "wheezy/sid". Because of this
2044// "Debian " is printed before the contents of the debian_version file.
2045void os::Linux::print_distro_info(outputStream* st) {
2046  if (!_print_ascii_file("/etc/oracle-release", st) &&
2047      !_print_ascii_file("/etc/mandriva-release", st) &&
2048      !_print_ascii_file("/etc/mandrake-release", st) &&
2049      !_print_ascii_file("/etc/sun-release", st) &&
2050      !_print_ascii_file("/etc/redhat-release", st) &&
2051      !_print_ascii_file("/etc/lsb-release", st) &&
2052      !_print_ascii_file("/etc/SuSE-release", st) &&
2053      !_print_ascii_file("/etc/turbolinux-release", st) &&
2054      !_print_ascii_file("/etc/gentoo-release", st) &&
2055      !_print_ascii_file("/etc/ltib-release", st) &&
2056      !_print_ascii_file("/etc/angstrom-version", st) &&
2057      !_print_ascii_file("/etc/system-release", st) &&
2058      !_print_ascii_file("/etc/os-release", st)) {
2059
2060    if (file_exists("/etc/debian_version")) {
2061      st->print("Debian ");
2062      _print_ascii_file("/etc/debian_version", st);
2063    } else {
2064      st->print("Linux");
2065    }
2066  }
2067  st->cr();
2068}
2069
2070void os::Linux::print_libversion_info(outputStream* st) {
2071  // libc, pthread
2072  st->print("libc:");
2073  st->print("%s ", os::Linux::glibc_version());
2074  st->print("%s ", os::Linux::libpthread_version());
2075  st->cr();
2076}
2077
2078void os::Linux::print_full_memory_info(outputStream* st) {
2079  st->print("\n/proc/meminfo:\n");
2080  _print_ascii_file("/proc/meminfo", st);
2081  st->cr();
2082}
2083
2084void os::print_memory_info(outputStream* st) {
2085
2086  st->print("Memory:");
2087  st->print(" %dk page", os::vm_page_size()>>10);
2088
2089  // values in struct sysinfo are "unsigned long"
2090  struct sysinfo si;
2091  sysinfo(&si);
2092
2093  st->print(", physical " UINT64_FORMAT "k",
2094            os::physical_memory() >> 10);
2095  st->print("(" UINT64_FORMAT "k free)",
2096            os::available_memory() >> 10);
2097  st->print(", swap " UINT64_FORMAT "k",
2098            ((jlong)si.totalswap * si.mem_unit) >> 10);
2099  st->print("(" UINT64_FORMAT "k free)",
2100            ((jlong)si.freeswap * si.mem_unit) >> 10);
2101  st->cr();
2102}
2103
2104// Print the first "model name" line and the first "flags" line
2105// that we find and nothing more. We assume "model name" comes
2106// before "flags" so if we find a second "model name", then the
2107// "flags" field is considered missing.
2108static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2109#if defined(IA32) || defined(AMD64)
2110  // Other platforms have less repetitive cpuinfo files
2111  FILE *fp = fopen("/proc/cpuinfo", "r");
2112  if (fp) {
2113    while (!feof(fp)) {
2114      if (fgets(buf, buflen, fp)) {
2115        // Assume model name comes before flags
2116        bool model_name_printed = false;
2117        if (strstr(buf, "model name") != NULL) {
2118          if (!model_name_printed) {
2119            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2120            st->print_raw(buf);
2121            model_name_printed = true;
2122          } else {
2123            // model name printed but not flags?  Odd, just return
2124            fclose(fp);
2125            return true;
2126          }
2127        }
2128        // print the flags line too
2129        if (strstr(buf, "flags") != NULL) {
2130          st->print_raw(buf);
2131          fclose(fp);
2132          return true;
2133        }
2134      }
2135    }
2136    fclose(fp);
2137  }
2138#endif // x86 platforms
2139  return false;
2140}
2141
2142void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2143  // Only print the model name if the platform provides this as a summary
2144  if (!print_model_name_and_flags(st, buf, buflen)) {
2145    st->print("\n/proc/cpuinfo:\n");
2146    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2147      st->print_cr("  <Not Available>");
2148    }
2149  }
2150}
2151
2152void os::print_siginfo(outputStream* st, void* siginfo) {
2153  const siginfo_t* si = (const siginfo_t*)siginfo;
2154
2155  os::Posix::print_siginfo_brief(st, si);
2156#if INCLUDE_CDS
2157  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2158      UseSharedSpaces) {
2159    FileMapInfo* mapinfo = FileMapInfo::current_info();
2160    if (mapinfo->is_in_shared_space(si->si_addr)) {
2161      st->print("\n\nError accessing class data sharing archive."   \
2162                " Mapped file inaccessible during execution, "      \
2163                " possible disk/network problem.");
2164    }
2165  }
2166#endif
2167  st->cr();
2168}
2169
2170
2171static void print_signal_handler(outputStream* st, int sig,
2172                                 char* buf, size_t buflen);
2173
2174void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2175  st->print_cr("Signal Handlers:");
2176  print_signal_handler(st, SIGSEGV, buf, buflen);
2177  print_signal_handler(st, SIGBUS , buf, buflen);
2178  print_signal_handler(st, SIGFPE , buf, buflen);
2179  print_signal_handler(st, SIGPIPE, buf, buflen);
2180  print_signal_handler(st, SIGXFSZ, buf, buflen);
2181  print_signal_handler(st, SIGILL , buf, buflen);
2182  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2183  print_signal_handler(st, SR_signum, buf, buflen);
2184  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2185  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2186  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2187  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2188#if defined(PPC64)
2189  print_signal_handler(st, SIGTRAP, buf, buflen);
2190#endif
2191}
2192
2193static char saved_jvm_path[MAXPATHLEN] = {0};
2194
2195// Find the full path to the current module, libjvm.so
2196void os::jvm_path(char *buf, jint buflen) {
2197  // Error checking.
2198  if (buflen < MAXPATHLEN) {
2199    assert(false, "must use a large-enough buffer");
2200    buf[0] = '\0';
2201    return;
2202  }
2203  // Lazy resolve the path to current module.
2204  if (saved_jvm_path[0] != 0) {
2205    strcpy(buf, saved_jvm_path);
2206    return;
2207  }
2208
2209  char dli_fname[MAXPATHLEN];
2210  bool ret = dll_address_to_library_name(
2211                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2212                                         dli_fname, sizeof(dli_fname), NULL);
2213  assert(ret, "cannot locate libjvm");
2214  char *rp = NULL;
2215  if (ret && dli_fname[0] != '\0') {
2216    rp = realpath(dli_fname, buf);
2217  }
2218  if (rp == NULL) {
2219    return;
2220  }
2221
2222  if (Arguments::sun_java_launcher_is_altjvm()) {
2223    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2224    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2225    // If "/jre/lib/" appears at the right place in the string, then
2226    // assume we are installed in a JDK and we're done. Otherwise, check
2227    // for a JAVA_HOME environment variable and fix up the path so it
2228    // looks like libjvm.so is installed there (append a fake suffix
2229    // hotspot/libjvm.so).
2230    const char *p = buf + strlen(buf) - 1;
2231    for (int count = 0; p > buf && count < 5; ++count) {
2232      for (--p; p > buf && *p != '/'; --p)
2233        /* empty */ ;
2234    }
2235
2236    if (strncmp(p, "/jre/lib/", 9) != 0) {
2237      // Look for JAVA_HOME in the environment.
2238      char* java_home_var = ::getenv("JAVA_HOME");
2239      if (java_home_var != NULL && java_home_var[0] != 0) {
2240        char* jrelib_p;
2241        int len;
2242
2243        // Check the current module name "libjvm.so".
2244        p = strrchr(buf, '/');
2245        if (p == NULL) {
2246          return;
2247        }
2248        assert(strstr(p, "/libjvm") == p, "invalid library name");
2249
2250        rp = realpath(java_home_var, buf);
2251        if (rp == NULL) {
2252          return;
2253        }
2254
2255        // determine if this is a legacy image or modules image
2256        // modules image doesn't have "jre" subdirectory
2257        len = strlen(buf);
2258        assert(len < buflen, "Ran out of buffer room");
2259        jrelib_p = buf + len;
2260        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2261        if (0 != access(buf, F_OK)) {
2262          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2263        }
2264
2265        if (0 == access(buf, F_OK)) {
2266          // Use current module name "libjvm.so"
2267          len = strlen(buf);
2268          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2269        } else {
2270          // Go back to path of .so
2271          rp = realpath(dli_fname, buf);
2272          if (rp == NULL) {
2273            return;
2274          }
2275        }
2276      }
2277    }
2278  }
2279
2280  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2281  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2282}
2283
2284void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2285  // no prefix required, not even "_"
2286}
2287
2288void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2289  // no suffix required
2290}
2291
2292////////////////////////////////////////////////////////////////////////////////
2293// sun.misc.Signal support
2294
2295static volatile jint sigint_count = 0;
2296
2297static void UserHandler(int sig, void *siginfo, void *context) {
2298  // 4511530 - sem_post is serialized and handled by the manager thread. When
2299  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2300  // don't want to flood the manager thread with sem_post requests.
2301  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2302    return;
2303  }
2304
2305  // Ctrl-C is pressed during error reporting, likely because the error
2306  // handler fails to abort. Let VM die immediately.
2307  if (sig == SIGINT && is_error_reported()) {
2308    os::die();
2309  }
2310
2311  os::signal_notify(sig);
2312}
2313
2314void* os::user_handler() {
2315  return CAST_FROM_FN_PTR(void*, UserHandler);
2316}
2317
2318class Semaphore : public StackObj {
2319 public:
2320  Semaphore();
2321  ~Semaphore();
2322  void signal();
2323  void wait();
2324  bool trywait();
2325  bool timedwait(unsigned int sec, int nsec);
2326 private:
2327  sem_t _semaphore;
2328};
2329
2330Semaphore::Semaphore() {
2331  sem_init(&_semaphore, 0, 0);
2332}
2333
2334Semaphore::~Semaphore() {
2335  sem_destroy(&_semaphore);
2336}
2337
2338void Semaphore::signal() {
2339  sem_post(&_semaphore);
2340}
2341
2342void Semaphore::wait() {
2343  sem_wait(&_semaphore);
2344}
2345
2346bool Semaphore::trywait() {
2347  return sem_trywait(&_semaphore) == 0;
2348}
2349
2350bool Semaphore::timedwait(unsigned int sec, int nsec) {
2351
2352  struct timespec ts;
2353  // Semaphore's are always associated with CLOCK_REALTIME
2354  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2355  // see unpackTime for discussion on overflow checking
2356  if (sec >= MAX_SECS) {
2357    ts.tv_sec += MAX_SECS;
2358    ts.tv_nsec = 0;
2359  } else {
2360    ts.tv_sec += sec;
2361    ts.tv_nsec += nsec;
2362    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2363      ts.tv_nsec -= NANOSECS_PER_SEC;
2364      ++ts.tv_sec; // note: this must be <= max_secs
2365    }
2366  }
2367
2368  while (1) {
2369    int result = sem_timedwait(&_semaphore, &ts);
2370    if (result == 0) {
2371      return true;
2372    } else if (errno == EINTR) {
2373      continue;
2374    } else if (errno == ETIMEDOUT) {
2375      return false;
2376    } else {
2377      return false;
2378    }
2379  }
2380}
2381
2382extern "C" {
2383  typedef void (*sa_handler_t)(int);
2384  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2385}
2386
2387void* os::signal(int signal_number, void* handler) {
2388  struct sigaction sigAct, oldSigAct;
2389
2390  sigfillset(&(sigAct.sa_mask));
2391  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2392  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2393
2394  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2395    // -1 means registration failed
2396    return (void *)-1;
2397  }
2398
2399  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2400}
2401
2402void os::signal_raise(int signal_number) {
2403  ::raise(signal_number);
2404}
2405
2406// The following code is moved from os.cpp for making this
2407// code platform specific, which it is by its very nature.
2408
2409// Will be modified when max signal is changed to be dynamic
2410int os::sigexitnum_pd() {
2411  return NSIG;
2412}
2413
2414// a counter for each possible signal value
2415static volatile jint pending_signals[NSIG+1] = { 0 };
2416
2417// Linux(POSIX) specific hand shaking semaphore.
2418static sem_t sig_sem;
2419static Semaphore sr_semaphore;
2420
2421void os::signal_init_pd() {
2422  // Initialize signal structures
2423  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2424
2425  // Initialize signal semaphore
2426  ::sem_init(&sig_sem, 0, 0);
2427}
2428
2429void os::signal_notify(int sig) {
2430  Atomic::inc(&pending_signals[sig]);
2431  ::sem_post(&sig_sem);
2432}
2433
2434static int check_pending_signals(bool wait) {
2435  Atomic::store(0, &sigint_count);
2436  for (;;) {
2437    for (int i = 0; i < NSIG + 1; i++) {
2438      jint n = pending_signals[i];
2439      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2440        return i;
2441      }
2442    }
2443    if (!wait) {
2444      return -1;
2445    }
2446    JavaThread *thread = JavaThread::current();
2447    ThreadBlockInVM tbivm(thread);
2448
2449    bool threadIsSuspended;
2450    do {
2451      thread->set_suspend_equivalent();
2452      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2453      ::sem_wait(&sig_sem);
2454
2455      // were we externally suspended while we were waiting?
2456      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2457      if (threadIsSuspended) {
2458        // The semaphore has been incremented, but while we were waiting
2459        // another thread suspended us. We don't want to continue running
2460        // while suspended because that would surprise the thread that
2461        // suspended us.
2462        ::sem_post(&sig_sem);
2463
2464        thread->java_suspend_self();
2465      }
2466    } while (threadIsSuspended);
2467  }
2468}
2469
2470int os::signal_lookup() {
2471  return check_pending_signals(false);
2472}
2473
2474int os::signal_wait() {
2475  return check_pending_signals(true);
2476}
2477
2478////////////////////////////////////////////////////////////////////////////////
2479// Virtual Memory
2480
2481int os::vm_page_size() {
2482  // Seems redundant as all get out
2483  assert(os::Linux::page_size() != -1, "must call os::init");
2484  return os::Linux::page_size();
2485}
2486
2487// Solaris allocates memory by pages.
2488int os::vm_allocation_granularity() {
2489  assert(os::Linux::page_size() != -1, "must call os::init");
2490  return os::Linux::page_size();
2491}
2492
2493// Rationale behind this function:
2494//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2495//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2496//  samples for JITted code. Here we create private executable mapping over the code cache
2497//  and then we can use standard (well, almost, as mapping can change) way to provide
2498//  info for the reporting script by storing timestamp and location of symbol
2499void linux_wrap_code(char* base, size_t size) {
2500  static volatile jint cnt = 0;
2501
2502  if (!UseOprofile) {
2503    return;
2504  }
2505
2506  char buf[PATH_MAX+1];
2507  int num = Atomic::add(1, &cnt);
2508
2509  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2510           os::get_temp_directory(), os::current_process_id(), num);
2511  unlink(buf);
2512
2513  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2514
2515  if (fd != -1) {
2516    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2517    if (rv != (off_t)-1) {
2518      if (::write(fd, "", 1) == 1) {
2519        mmap(base, size,
2520             PROT_READ|PROT_WRITE|PROT_EXEC,
2521             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2522      }
2523    }
2524    ::close(fd);
2525    unlink(buf);
2526  }
2527}
2528
2529static bool recoverable_mmap_error(int err) {
2530  // See if the error is one we can let the caller handle. This
2531  // list of errno values comes from JBS-6843484. I can't find a
2532  // Linux man page that documents this specific set of errno
2533  // values so while this list currently matches Solaris, it may
2534  // change as we gain experience with this failure mode.
2535  switch (err) {
2536  case EBADF:
2537  case EINVAL:
2538  case ENOTSUP:
2539    // let the caller deal with these errors
2540    return true;
2541
2542  default:
2543    // Any remaining errors on this OS can cause our reserved mapping
2544    // to be lost. That can cause confusion where different data
2545    // structures think they have the same memory mapped. The worst
2546    // scenario is if both the VM and a library think they have the
2547    // same memory mapped.
2548    return false;
2549  }
2550}
2551
2552static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2553                                    int err) {
2554  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2555          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2556          strerror(err), err);
2557}
2558
2559static void warn_fail_commit_memory(char* addr, size_t size,
2560                                    size_t alignment_hint, bool exec,
2561                                    int err) {
2562  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2563          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2564          alignment_hint, exec, strerror(err), err);
2565}
2566
2567// NOTE: Linux kernel does not really reserve the pages for us.
2568//       All it does is to check if there are enough free pages
2569//       left at the time of mmap(). This could be a potential
2570//       problem.
2571int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2572  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2573  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2574                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2575  if (res != (uintptr_t) MAP_FAILED) {
2576    if (UseNUMAInterleaving) {
2577      numa_make_global(addr, size);
2578    }
2579    return 0;
2580  }
2581
2582  int err = errno;  // save errno from mmap() call above
2583
2584  if (!recoverable_mmap_error(err)) {
2585    warn_fail_commit_memory(addr, size, exec, err);
2586    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2587  }
2588
2589  return err;
2590}
2591
2592bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2593  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2594}
2595
2596void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2597                                  const char* mesg) {
2598  assert(mesg != NULL, "mesg must be specified");
2599  int err = os::Linux::commit_memory_impl(addr, size, exec);
2600  if (err != 0) {
2601    // the caller wants all commit errors to exit with the specified mesg:
2602    warn_fail_commit_memory(addr, size, exec, err);
2603    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2604  }
2605}
2606
2607// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2608#ifndef MAP_HUGETLB
2609  #define MAP_HUGETLB 0x40000
2610#endif
2611
2612// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2613#ifndef MADV_HUGEPAGE
2614  #define MADV_HUGEPAGE 14
2615#endif
2616
2617int os::Linux::commit_memory_impl(char* addr, size_t size,
2618                                  size_t alignment_hint, bool exec) {
2619  int err = os::Linux::commit_memory_impl(addr, size, exec);
2620  if (err == 0) {
2621    realign_memory(addr, size, alignment_hint);
2622  }
2623  return err;
2624}
2625
2626bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2627                          bool exec) {
2628  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2629}
2630
2631void os::pd_commit_memory_or_exit(char* addr, size_t size,
2632                                  size_t alignment_hint, bool exec,
2633                                  const char* mesg) {
2634  assert(mesg != NULL, "mesg must be specified");
2635  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2636  if (err != 0) {
2637    // the caller wants all commit errors to exit with the specified mesg:
2638    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2639    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2640  }
2641}
2642
2643void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2644  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2645    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2646    // be supported or the memory may already be backed by huge pages.
2647    ::madvise(addr, bytes, MADV_HUGEPAGE);
2648  }
2649}
2650
2651void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2652  // This method works by doing an mmap over an existing mmaping and effectively discarding
2653  // the existing pages. However it won't work for SHM-based large pages that cannot be
2654  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2655  // small pages on top of the SHM segment. This method always works for small pages, so we
2656  // allow that in any case.
2657  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2658    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2659  }
2660}
2661
2662void os::numa_make_global(char *addr, size_t bytes) {
2663  Linux::numa_interleave_memory(addr, bytes);
2664}
2665
2666// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2667// bind policy to MPOL_PREFERRED for the current thread.
2668#define USE_MPOL_PREFERRED 0
2669
2670void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2671  // To make NUMA and large pages more robust when both enabled, we need to ease
2672  // the requirements on where the memory should be allocated. MPOL_BIND is the
2673  // default policy and it will force memory to be allocated on the specified
2674  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2675  // the specified node, but will not force it. Using this policy will prevent
2676  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2677  // free large pages.
2678  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2679  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2680}
2681
2682bool os::numa_topology_changed() { return false; }
2683
2684size_t os::numa_get_groups_num() {
2685  int max_node = Linux::numa_max_node();
2686  return max_node > 0 ? max_node + 1 : 1;
2687}
2688
2689int os::numa_get_group_id() {
2690  int cpu_id = Linux::sched_getcpu();
2691  if (cpu_id != -1) {
2692    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2693    if (lgrp_id != -1) {
2694      return lgrp_id;
2695    }
2696  }
2697  return 0;
2698}
2699
2700size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2701  for (size_t i = 0; i < size; i++) {
2702    ids[i] = i;
2703  }
2704  return size;
2705}
2706
2707bool os::get_page_info(char *start, page_info* info) {
2708  return false;
2709}
2710
2711char *os::scan_pages(char *start, char* end, page_info* page_expected,
2712                     page_info* page_found) {
2713  return end;
2714}
2715
2716
2717int os::Linux::sched_getcpu_syscall(void) {
2718  unsigned int cpu;
2719  int retval = -1;
2720
2721#if defined(IA32)
2722  #ifndef SYS_getcpu
2723    #define SYS_getcpu 318
2724  #endif
2725  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2726#elif defined(AMD64)
2727// Unfortunately we have to bring all these macros here from vsyscall.h
2728// to be able to compile on old linuxes.
2729  #define __NR_vgetcpu 2
2730  #define VSYSCALL_START (-10UL << 20)
2731  #define VSYSCALL_SIZE 1024
2732  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2733  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2734  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2735  retval = vgetcpu(&cpu, NULL, NULL);
2736#endif
2737
2738  return (retval == -1) ? retval : cpu;
2739}
2740
2741// Something to do with the numa-aware allocator needs these symbols
2742extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2743extern "C" JNIEXPORT void numa_error(char *where) { }
2744extern "C" JNIEXPORT int fork1() { return fork(); }
2745
2746
2747// If we are running with libnuma version > 2, then we should
2748// be trying to use symbols with versions 1.1
2749// If we are running with earlier version, which did not have symbol versions,
2750// we should use the base version.
2751void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2752  void *f = dlvsym(handle, name, "libnuma_1.1");
2753  if (f == NULL) {
2754    f = dlsym(handle, name);
2755  }
2756  return f;
2757}
2758
2759bool os::Linux::libnuma_init() {
2760  // sched_getcpu() should be in libc.
2761  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2762                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2763
2764  // If it's not, try a direct syscall.
2765  if (sched_getcpu() == -1) {
2766    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2767                                    (void*)&sched_getcpu_syscall));
2768  }
2769
2770  if (sched_getcpu() != -1) { // Does it work?
2771    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2772    if (handle != NULL) {
2773      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2774                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2775      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2776                                       libnuma_dlsym(handle, "numa_max_node")));
2777      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2778                                        libnuma_dlsym(handle, "numa_available")));
2779      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2780                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2781      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2782                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2783      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2784                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2785
2786
2787      if (numa_available() != -1) {
2788        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2789        // Create a cpu -> node mapping
2790        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2791        rebuild_cpu_to_node_map();
2792        return true;
2793      }
2794    }
2795  }
2796  return false;
2797}
2798
2799// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2800// The table is later used in get_node_by_cpu().
2801void os::Linux::rebuild_cpu_to_node_map() {
2802  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2803                              // in libnuma (possible values are starting from 16,
2804                              // and continuing up with every other power of 2, but less
2805                              // than the maximum number of CPUs supported by kernel), and
2806                              // is a subject to change (in libnuma version 2 the requirements
2807                              // are more reasonable) we'll just hardcode the number they use
2808                              // in the library.
2809  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2810
2811  size_t cpu_num = os::active_processor_count();
2812  size_t cpu_map_size = NCPUS / BitsPerCLong;
2813  size_t cpu_map_valid_size =
2814    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2815
2816  cpu_to_node()->clear();
2817  cpu_to_node()->at_grow(cpu_num - 1);
2818  size_t node_num = numa_get_groups_num();
2819
2820  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2821  for (size_t i = 0; i < node_num; i++) {
2822    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2823      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2824        if (cpu_map[j] != 0) {
2825          for (size_t k = 0; k < BitsPerCLong; k++) {
2826            if (cpu_map[j] & (1UL << k)) {
2827              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2828            }
2829          }
2830        }
2831      }
2832    }
2833  }
2834  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2835}
2836
2837int os::Linux::get_node_by_cpu(int cpu_id) {
2838  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2839    return cpu_to_node()->at(cpu_id);
2840  }
2841  return -1;
2842}
2843
2844GrowableArray<int>* os::Linux::_cpu_to_node;
2845os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2846os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2847os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2848os::Linux::numa_available_func_t os::Linux::_numa_available;
2849os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2850os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2851os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2852unsigned long* os::Linux::_numa_all_nodes;
2853
2854bool os::pd_uncommit_memory(char* addr, size_t size) {
2855  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2856                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2857  return res  != (uintptr_t) MAP_FAILED;
2858}
2859
2860static address get_stack_commited_bottom(address bottom, size_t size) {
2861  address nbot = bottom;
2862  address ntop = bottom + size;
2863
2864  size_t page_sz = os::vm_page_size();
2865  unsigned pages = size / page_sz;
2866
2867  unsigned char vec[1];
2868  unsigned imin = 1, imax = pages + 1, imid;
2869  int mincore_return_value = 0;
2870
2871  assert(imin <= imax, "Unexpected page size");
2872
2873  while (imin < imax) {
2874    imid = (imax + imin) / 2;
2875    nbot = ntop - (imid * page_sz);
2876
2877    // Use a trick with mincore to check whether the page is mapped or not.
2878    // mincore sets vec to 1 if page resides in memory and to 0 if page
2879    // is swapped output but if page we are asking for is unmapped
2880    // it returns -1,ENOMEM
2881    mincore_return_value = mincore(nbot, page_sz, vec);
2882
2883    if (mincore_return_value == -1) {
2884      // Page is not mapped go up
2885      // to find first mapped page
2886      if (errno != EAGAIN) {
2887        assert(errno == ENOMEM, "Unexpected mincore errno");
2888        imax = imid;
2889      }
2890    } else {
2891      // Page is mapped go down
2892      // to find first not mapped page
2893      imin = imid + 1;
2894    }
2895  }
2896
2897  nbot = nbot + page_sz;
2898
2899  // Adjust stack bottom one page up if last checked page is not mapped
2900  if (mincore_return_value == -1) {
2901    nbot = nbot + page_sz;
2902  }
2903
2904  return nbot;
2905}
2906
2907
2908// Linux uses a growable mapping for the stack, and if the mapping for
2909// the stack guard pages is not removed when we detach a thread the
2910// stack cannot grow beyond the pages where the stack guard was
2911// mapped.  If at some point later in the process the stack expands to
2912// that point, the Linux kernel cannot expand the stack any further
2913// because the guard pages are in the way, and a segfault occurs.
2914//
2915// However, it's essential not to split the stack region by unmapping
2916// a region (leaving a hole) that's already part of the stack mapping,
2917// so if the stack mapping has already grown beyond the guard pages at
2918// the time we create them, we have to truncate the stack mapping.
2919// So, we need to know the extent of the stack mapping when
2920// create_stack_guard_pages() is called.
2921
2922// We only need this for stacks that are growable: at the time of
2923// writing thread stacks don't use growable mappings (i.e. those
2924// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2925// only applies to the main thread.
2926
2927// If the (growable) stack mapping already extends beyond the point
2928// where we're going to put our guard pages, truncate the mapping at
2929// that point by munmap()ping it.  This ensures that when we later
2930// munmap() the guard pages we don't leave a hole in the stack
2931// mapping. This only affects the main/initial thread
2932
2933bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2934  if (os::Linux::is_initial_thread()) {
2935    // As we manually grow stack up to bottom inside create_attached_thread(),
2936    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2937    // we don't need to do anything special.
2938    // Check it first, before calling heavy function.
2939    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2940    unsigned char vec[1];
2941
2942    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2943      // Fallback to slow path on all errors, including EAGAIN
2944      stack_extent = (uintptr_t) get_stack_commited_bottom(
2945                                                           os::Linux::initial_thread_stack_bottom(),
2946                                                           (size_t)addr - stack_extent);
2947    }
2948
2949    if (stack_extent < (uintptr_t)addr) {
2950      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2951    }
2952  }
2953
2954  return os::commit_memory(addr, size, !ExecMem);
2955}
2956
2957// If this is a growable mapping, remove the guard pages entirely by
2958// munmap()ping them.  If not, just call uncommit_memory(). This only
2959// affects the main/initial thread, but guard against future OS changes
2960// It's safe to always unmap guard pages for initial thread because we
2961// always place it right after end of the mapped region
2962
2963bool os::remove_stack_guard_pages(char* addr, size_t size) {
2964  uintptr_t stack_extent, stack_base;
2965
2966  if (os::Linux::is_initial_thread()) {
2967    return ::munmap(addr, size) == 0;
2968  }
2969
2970  return os::uncommit_memory(addr, size);
2971}
2972
2973// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2974// at 'requested_addr'. If there are existing memory mappings at the same
2975// location, however, they will be overwritten. If 'fixed' is false,
2976// 'requested_addr' is only treated as a hint, the return value may or
2977// may not start from the requested address. Unlike Linux mmap(), this
2978// function returns NULL to indicate failure.
2979static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2980  char * addr;
2981  int flags;
2982
2983  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2984  if (fixed) {
2985    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2986    flags |= MAP_FIXED;
2987  }
2988
2989  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2990  // touch an uncommitted page. Otherwise, the read/write might
2991  // succeed if we have enough swap space to back the physical page.
2992  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2993                       flags, -1, 0);
2994
2995  return addr == MAP_FAILED ? NULL : addr;
2996}
2997
2998static int anon_munmap(char * addr, size_t size) {
2999  return ::munmap(addr, size) == 0;
3000}
3001
3002char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3003                            size_t alignment_hint) {
3004  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3005}
3006
3007bool os::pd_release_memory(char* addr, size_t size) {
3008  return anon_munmap(addr, size);
3009}
3010
3011static bool linux_mprotect(char* addr, size_t size, int prot) {
3012  // Linux wants the mprotect address argument to be page aligned.
3013  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3014
3015  // According to SUSv3, mprotect() should only be used with mappings
3016  // established by mmap(), and mmap() always maps whole pages. Unaligned
3017  // 'addr' likely indicates problem in the VM (e.g. trying to change
3018  // protection of malloc'ed or statically allocated memory). Check the
3019  // caller if you hit this assert.
3020  assert(addr == bottom, "sanity check");
3021
3022  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3023  return ::mprotect(bottom, size, prot) == 0;
3024}
3025
3026// Set protections specified
3027bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3028                        bool is_committed) {
3029  unsigned int p = 0;
3030  switch (prot) {
3031  case MEM_PROT_NONE: p = PROT_NONE; break;
3032  case MEM_PROT_READ: p = PROT_READ; break;
3033  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3034  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3035  default:
3036    ShouldNotReachHere();
3037  }
3038  // is_committed is unused.
3039  return linux_mprotect(addr, bytes, p);
3040}
3041
3042bool os::guard_memory(char* addr, size_t size) {
3043  return linux_mprotect(addr, size, PROT_NONE);
3044}
3045
3046bool os::unguard_memory(char* addr, size_t size) {
3047  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3048}
3049
3050bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3051                                                    size_t page_size) {
3052  bool result = false;
3053  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3054                 MAP_ANONYMOUS|MAP_PRIVATE,
3055                 -1, 0);
3056  if (p != MAP_FAILED) {
3057    void *aligned_p = align_ptr_up(p, page_size);
3058
3059    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3060
3061    munmap(p, page_size * 2);
3062  }
3063
3064  if (warn && !result) {
3065    warning("TransparentHugePages is not supported by the operating system.");
3066  }
3067
3068  return result;
3069}
3070
3071bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3072  bool result = false;
3073  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3074                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3075                 -1, 0);
3076
3077  if (p != MAP_FAILED) {
3078    // We don't know if this really is a huge page or not.
3079    FILE *fp = fopen("/proc/self/maps", "r");
3080    if (fp) {
3081      while (!feof(fp)) {
3082        char chars[257];
3083        long x = 0;
3084        if (fgets(chars, sizeof(chars), fp)) {
3085          if (sscanf(chars, "%lx-%*x", &x) == 1
3086              && x == (long)p) {
3087            if (strstr (chars, "hugepage")) {
3088              result = true;
3089              break;
3090            }
3091          }
3092        }
3093      }
3094      fclose(fp);
3095    }
3096    munmap(p, page_size);
3097  }
3098
3099  if (warn && !result) {
3100    warning("HugeTLBFS is not supported by the operating system.");
3101  }
3102
3103  return result;
3104}
3105
3106// Set the coredump_filter bits to include largepages in core dump (bit 6)
3107//
3108// From the coredump_filter documentation:
3109//
3110// - (bit 0) anonymous private memory
3111// - (bit 1) anonymous shared memory
3112// - (bit 2) file-backed private memory
3113// - (bit 3) file-backed shared memory
3114// - (bit 4) ELF header pages in file-backed private memory areas (it is
3115//           effective only if the bit 2 is cleared)
3116// - (bit 5) hugetlb private memory
3117// - (bit 6) hugetlb shared memory
3118//
3119static void set_coredump_filter(void) {
3120  FILE *f;
3121  long cdm;
3122
3123  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3124    return;
3125  }
3126
3127  if (fscanf(f, "%lx", &cdm) != 1) {
3128    fclose(f);
3129    return;
3130  }
3131
3132  rewind(f);
3133
3134  if ((cdm & LARGEPAGES_BIT) == 0) {
3135    cdm |= LARGEPAGES_BIT;
3136    fprintf(f, "%#lx", cdm);
3137  }
3138
3139  fclose(f);
3140}
3141
3142// Large page support
3143
3144static size_t _large_page_size = 0;
3145
3146size_t os::Linux::find_large_page_size() {
3147  size_t large_page_size = 0;
3148
3149  // large_page_size on Linux is used to round up heap size. x86 uses either
3150  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3151  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3152  // page as large as 256M.
3153  //
3154  // Here we try to figure out page size by parsing /proc/meminfo and looking
3155  // for a line with the following format:
3156  //    Hugepagesize:     2048 kB
3157  //
3158  // If we can't determine the value (e.g. /proc is not mounted, or the text
3159  // format has been changed), we'll use the largest page size supported by
3160  // the processor.
3161
3162#ifndef ZERO
3163  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3164                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3165#endif // ZERO
3166
3167  FILE *fp = fopen("/proc/meminfo", "r");
3168  if (fp) {
3169    while (!feof(fp)) {
3170      int x = 0;
3171      char buf[16];
3172      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3173        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3174          large_page_size = x * K;
3175          break;
3176        }
3177      } else {
3178        // skip to next line
3179        for (;;) {
3180          int ch = fgetc(fp);
3181          if (ch == EOF || ch == (int)'\n') break;
3182        }
3183      }
3184    }
3185    fclose(fp);
3186  }
3187
3188  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3189    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3190            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3191            proper_unit_for_byte_size(large_page_size));
3192  }
3193
3194  return large_page_size;
3195}
3196
3197size_t os::Linux::setup_large_page_size() {
3198  _large_page_size = Linux::find_large_page_size();
3199  const size_t default_page_size = (size_t)Linux::page_size();
3200  if (_large_page_size > default_page_size) {
3201    _page_sizes[0] = _large_page_size;
3202    _page_sizes[1] = default_page_size;
3203    _page_sizes[2] = 0;
3204  }
3205
3206  return _large_page_size;
3207}
3208
3209bool os::Linux::setup_large_page_type(size_t page_size) {
3210  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3211      FLAG_IS_DEFAULT(UseSHM) &&
3212      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3213
3214    // The type of large pages has not been specified by the user.
3215
3216    // Try UseHugeTLBFS and then UseSHM.
3217    UseHugeTLBFS = UseSHM = true;
3218
3219    // Don't try UseTransparentHugePages since there are known
3220    // performance issues with it turned on. This might change in the future.
3221    UseTransparentHugePages = false;
3222  }
3223
3224  if (UseTransparentHugePages) {
3225    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3226    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3227      UseHugeTLBFS = false;
3228      UseSHM = false;
3229      return true;
3230    }
3231    UseTransparentHugePages = false;
3232  }
3233
3234  if (UseHugeTLBFS) {
3235    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3236    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3237      UseSHM = false;
3238      return true;
3239    }
3240    UseHugeTLBFS = false;
3241  }
3242
3243  return UseSHM;
3244}
3245
3246void os::large_page_init() {
3247  if (!UseLargePages &&
3248      !UseTransparentHugePages &&
3249      !UseHugeTLBFS &&
3250      !UseSHM) {
3251    // Not using large pages.
3252    return;
3253  }
3254
3255  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3256    // The user explicitly turned off large pages.
3257    // Ignore the rest of the large pages flags.
3258    UseTransparentHugePages = false;
3259    UseHugeTLBFS = false;
3260    UseSHM = false;
3261    return;
3262  }
3263
3264  size_t large_page_size = Linux::setup_large_page_size();
3265  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3266
3267  set_coredump_filter();
3268}
3269
3270#ifndef SHM_HUGETLB
3271  #define SHM_HUGETLB 04000
3272#endif
3273
3274char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3275                                            char* req_addr, bool exec) {
3276  // "exec" is passed in but not used.  Creating the shared image for
3277  // the code cache doesn't have an SHM_X executable permission to check.
3278  assert(UseLargePages && UseSHM, "only for SHM large pages");
3279  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3280
3281  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3282    return NULL; // Fallback to small pages.
3283  }
3284
3285  key_t key = IPC_PRIVATE;
3286  char *addr;
3287
3288  bool warn_on_failure = UseLargePages &&
3289                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3290                         !FLAG_IS_DEFAULT(UseSHM) ||
3291                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3292  char msg[128];
3293
3294  // Create a large shared memory region to attach to based on size.
3295  // Currently, size is the total size of the heap
3296  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3297  if (shmid == -1) {
3298    // Possible reasons for shmget failure:
3299    // 1. shmmax is too small for Java heap.
3300    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3301    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3302    // 2. not enough large page memory.
3303    //    > check available large pages: cat /proc/meminfo
3304    //    > increase amount of large pages:
3305    //          echo new_value > /proc/sys/vm/nr_hugepages
3306    //      Note 1: different Linux may use different name for this property,
3307    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3308    //      Note 2: it's possible there's enough physical memory available but
3309    //            they are so fragmented after a long run that they can't
3310    //            coalesce into large pages. Try to reserve large pages when
3311    //            the system is still "fresh".
3312    if (warn_on_failure) {
3313      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3314      warning("%s", msg);
3315    }
3316    return NULL;
3317  }
3318
3319  // attach to the region
3320  addr = (char*)shmat(shmid, req_addr, 0);
3321  int err = errno;
3322
3323  // Remove shmid. If shmat() is successful, the actual shared memory segment
3324  // will be deleted when it's detached by shmdt() or when the process
3325  // terminates. If shmat() is not successful this will remove the shared
3326  // segment immediately.
3327  shmctl(shmid, IPC_RMID, NULL);
3328
3329  if ((intptr_t)addr == -1) {
3330    if (warn_on_failure) {
3331      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3332      warning("%s", msg);
3333    }
3334    return NULL;
3335  }
3336
3337  return addr;
3338}
3339
3340static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3341                                        int error) {
3342  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3343
3344  bool warn_on_failure = UseLargePages &&
3345      (!FLAG_IS_DEFAULT(UseLargePages) ||
3346       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3347       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3348
3349  if (warn_on_failure) {
3350    char msg[128];
3351    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3352                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3353    warning("%s", msg);
3354  }
3355}
3356
3357char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3358                                                        char* req_addr,
3359                                                        bool exec) {
3360  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3361  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3362  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3363
3364  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3365  char* addr = (char*)::mmap(req_addr, bytes, prot,
3366                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3367                             -1, 0);
3368
3369  if (addr == MAP_FAILED) {
3370    warn_on_large_pages_failure(req_addr, bytes, errno);
3371    return NULL;
3372  }
3373
3374  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3375
3376  return addr;
3377}
3378
3379// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3380// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3381//   (req_addr != NULL) or with a given alignment.
3382//  - bytes shall be a multiple of alignment.
3383//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3384//  - alignment sets the alignment at which memory shall be allocated.
3385//     It must be a multiple of allocation granularity.
3386// Returns address of memory or NULL. If req_addr was not NULL, will only return
3387//  req_addr or NULL.
3388static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3389
3390  size_t extra_size = bytes;
3391  if (req_addr == NULL && alignment > 0) {
3392    extra_size += alignment;
3393  }
3394
3395  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3396    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3397    -1, 0);
3398  if (start == MAP_FAILED) {
3399    start = NULL;
3400  } else {
3401    if (req_addr != NULL) {
3402      if (start != req_addr) {
3403        ::munmap(start, extra_size);
3404        start = NULL;
3405      }
3406    } else {
3407      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3408      char* const end_aligned = start_aligned + bytes;
3409      char* const end = start + extra_size;
3410      if (start_aligned > start) {
3411        ::munmap(start, start_aligned - start);
3412      }
3413      if (end_aligned < end) {
3414        ::munmap(end_aligned, end - end_aligned);
3415      }
3416      start = start_aligned;
3417    }
3418  }
3419  return start;
3420
3421}
3422
3423// Reserve memory using mmap(MAP_HUGETLB).
3424//  - bytes shall be a multiple of alignment.
3425//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3426//  - alignment sets the alignment at which memory shall be allocated.
3427//     It must be a multiple of allocation granularity.
3428// Returns address of memory or NULL. If req_addr was not NULL, will only return
3429//  req_addr or NULL.
3430char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3431                                                         size_t alignment,
3432                                                         char* req_addr,
3433                                                         bool exec) {
3434  size_t large_page_size = os::large_page_size();
3435  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3436
3437  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3438  assert(is_size_aligned(bytes, alignment), "Must be");
3439
3440  // First reserve - but not commit - the address range in small pages.
3441  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3442
3443  if (start == NULL) {
3444    return NULL;
3445  }
3446
3447  assert(is_ptr_aligned(start, alignment), "Must be");
3448
3449  char* end = start + bytes;
3450
3451  // Find the regions of the allocated chunk that can be promoted to large pages.
3452  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3453  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3454
3455  size_t lp_bytes = lp_end - lp_start;
3456
3457  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3458
3459  if (lp_bytes == 0) {
3460    // The mapped region doesn't even span the start and the end of a large page.
3461    // Fall back to allocate a non-special area.
3462    ::munmap(start, end - start);
3463    return NULL;
3464  }
3465
3466  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3467
3468  void* result;
3469
3470  // Commit small-paged leading area.
3471  if (start != lp_start) {
3472    result = ::mmap(start, lp_start - start, prot,
3473                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3474                    -1, 0);
3475    if (result == MAP_FAILED) {
3476      ::munmap(lp_start, end - lp_start);
3477      return NULL;
3478    }
3479  }
3480
3481  // Commit large-paged area.
3482  result = ::mmap(lp_start, lp_bytes, prot,
3483                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3484                  -1, 0);
3485  if (result == MAP_FAILED) {
3486    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3487    // If the mmap above fails, the large pages region will be unmapped and we
3488    // have regions before and after with small pages. Release these regions.
3489    //
3490    // |  mapped  |  unmapped  |  mapped  |
3491    // ^          ^            ^          ^
3492    // start      lp_start     lp_end     end
3493    //
3494    ::munmap(start, lp_start - start);
3495    ::munmap(lp_end, end - lp_end);
3496    return NULL;
3497  }
3498
3499  // Commit small-paged trailing area.
3500  if (lp_end != end) {
3501    result = ::mmap(lp_end, end - lp_end, prot,
3502                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3503                    -1, 0);
3504    if (result == MAP_FAILED) {
3505      ::munmap(start, lp_end - start);
3506      return NULL;
3507    }
3508  }
3509
3510  return start;
3511}
3512
3513char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3514                                                   size_t alignment,
3515                                                   char* req_addr,
3516                                                   bool exec) {
3517  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3518  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3519  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3520  assert(is_power_of_2(os::large_page_size()), "Must be");
3521  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3522
3523  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3524    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3525  } else {
3526    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3527  }
3528}
3529
3530char* os::reserve_memory_special(size_t bytes, size_t alignment,
3531                                 char* req_addr, bool exec) {
3532  assert(UseLargePages, "only for large pages");
3533
3534  char* addr;
3535  if (UseSHM) {
3536    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3537  } else {
3538    assert(UseHugeTLBFS, "must be");
3539    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3540  }
3541
3542  if (addr != NULL) {
3543    if (UseNUMAInterleaving) {
3544      numa_make_global(addr, bytes);
3545    }
3546
3547    // The memory is committed
3548    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3549  }
3550
3551  return addr;
3552}
3553
3554bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3555  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3556  return shmdt(base) == 0;
3557}
3558
3559bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3560  return pd_release_memory(base, bytes);
3561}
3562
3563bool os::release_memory_special(char* base, size_t bytes) {
3564  bool res;
3565  if (MemTracker::tracking_level() > NMT_minimal) {
3566    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3567    res = os::Linux::release_memory_special_impl(base, bytes);
3568    if (res) {
3569      tkr.record((address)base, bytes);
3570    }
3571
3572  } else {
3573    res = os::Linux::release_memory_special_impl(base, bytes);
3574  }
3575  return res;
3576}
3577
3578bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3579  assert(UseLargePages, "only for large pages");
3580  bool res;
3581
3582  if (UseSHM) {
3583    res = os::Linux::release_memory_special_shm(base, bytes);
3584  } else {
3585    assert(UseHugeTLBFS, "must be");
3586    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3587  }
3588  return res;
3589}
3590
3591size_t os::large_page_size() {
3592  return _large_page_size;
3593}
3594
3595// With SysV SHM the entire memory region must be allocated as shared
3596// memory.
3597// HugeTLBFS allows application to commit large page memory on demand.
3598// However, when committing memory with HugeTLBFS fails, the region
3599// that was supposed to be committed will lose the old reservation
3600// and allow other threads to steal that memory region. Because of this
3601// behavior we can't commit HugeTLBFS memory.
3602bool os::can_commit_large_page_memory() {
3603  return UseTransparentHugePages;
3604}
3605
3606bool os::can_execute_large_page_memory() {
3607  return UseTransparentHugePages || UseHugeTLBFS;
3608}
3609
3610// Reserve memory at an arbitrary address, only if that area is
3611// available (and not reserved for something else).
3612
3613char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3614  const int max_tries = 10;
3615  char* base[max_tries];
3616  size_t size[max_tries];
3617  const size_t gap = 0x000000;
3618
3619  // Assert only that the size is a multiple of the page size, since
3620  // that's all that mmap requires, and since that's all we really know
3621  // about at this low abstraction level.  If we need higher alignment,
3622  // we can either pass an alignment to this method or verify alignment
3623  // in one of the methods further up the call chain.  See bug 5044738.
3624  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3625
3626  // Repeatedly allocate blocks until the block is allocated at the
3627  // right spot.
3628
3629  // Linux mmap allows caller to pass an address as hint; give it a try first,
3630  // if kernel honors the hint then we can return immediately.
3631  char * addr = anon_mmap(requested_addr, bytes, false);
3632  if (addr == requested_addr) {
3633    return requested_addr;
3634  }
3635
3636  if (addr != NULL) {
3637    // mmap() is successful but it fails to reserve at the requested address
3638    anon_munmap(addr, bytes);
3639  }
3640
3641  int i;
3642  for (i = 0; i < max_tries; ++i) {
3643    base[i] = reserve_memory(bytes);
3644
3645    if (base[i] != NULL) {
3646      // Is this the block we wanted?
3647      if (base[i] == requested_addr) {
3648        size[i] = bytes;
3649        break;
3650      }
3651
3652      // Does this overlap the block we wanted? Give back the overlapped
3653      // parts and try again.
3654
3655      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3656      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3657        unmap_memory(base[i], top_overlap);
3658        base[i] += top_overlap;
3659        size[i] = bytes - top_overlap;
3660      } else {
3661        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3662        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3663          unmap_memory(requested_addr, bottom_overlap);
3664          size[i] = bytes - bottom_overlap;
3665        } else {
3666          size[i] = bytes;
3667        }
3668      }
3669    }
3670  }
3671
3672  // Give back the unused reserved pieces.
3673
3674  for (int j = 0; j < i; ++j) {
3675    if (base[j] != NULL) {
3676      unmap_memory(base[j], size[j]);
3677    }
3678  }
3679
3680  if (i < max_tries) {
3681    return requested_addr;
3682  } else {
3683    return NULL;
3684  }
3685}
3686
3687size_t os::read(int fd, void *buf, unsigned int nBytes) {
3688  return ::read(fd, buf, nBytes);
3689}
3690
3691size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3692  return ::pread(fd, buf, nBytes, offset);
3693}
3694
3695// Short sleep, direct OS call.
3696//
3697// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3698// sched_yield(2) will actually give up the CPU:
3699//
3700//   * Alone on this pariticular CPU, keeps running.
3701//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3702//     (pre 2.6.39).
3703//
3704// So calling this with 0 is an alternative.
3705//
3706void os::naked_short_sleep(jlong ms) {
3707  struct timespec req;
3708
3709  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3710  req.tv_sec = 0;
3711  if (ms > 0) {
3712    req.tv_nsec = (ms % 1000) * 1000000;
3713  } else {
3714    req.tv_nsec = 1;
3715  }
3716
3717  nanosleep(&req, NULL);
3718
3719  return;
3720}
3721
3722// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3723void os::infinite_sleep() {
3724  while (true) {    // sleep forever ...
3725    ::sleep(100);   // ... 100 seconds at a time
3726  }
3727}
3728
3729// Used to convert frequent JVM_Yield() to nops
3730bool os::dont_yield() {
3731  return DontYieldALot;
3732}
3733
3734void os::naked_yield() {
3735  sched_yield();
3736}
3737
3738////////////////////////////////////////////////////////////////////////////////
3739// thread priority support
3740
3741// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3742// only supports dynamic priority, static priority must be zero. For real-time
3743// applications, Linux supports SCHED_RR which allows static priority (1-99).
3744// However, for large multi-threaded applications, SCHED_RR is not only slower
3745// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3746// of 5 runs - Sep 2005).
3747//
3748// The following code actually changes the niceness of kernel-thread/LWP. It
3749// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3750// not the entire user process, and user level threads are 1:1 mapped to kernel
3751// threads. It has always been the case, but could change in the future. For
3752// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3753// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3754
3755int os::java_to_os_priority[CriticalPriority + 1] = {
3756  19,              // 0 Entry should never be used
3757
3758   4,              // 1 MinPriority
3759   3,              // 2
3760   2,              // 3
3761
3762   1,              // 4
3763   0,              // 5 NormPriority
3764  -1,              // 6
3765
3766  -2,              // 7
3767  -3,              // 8
3768  -4,              // 9 NearMaxPriority
3769
3770  -5,              // 10 MaxPriority
3771
3772  -5               // 11 CriticalPriority
3773};
3774
3775static int prio_init() {
3776  if (ThreadPriorityPolicy == 1) {
3777    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3778    // if effective uid is not root. Perhaps, a more elegant way of doing
3779    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3780    if (geteuid() != 0) {
3781      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3782        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3783      }
3784      ThreadPriorityPolicy = 0;
3785    }
3786  }
3787  if (UseCriticalJavaThreadPriority) {
3788    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3789  }
3790  return 0;
3791}
3792
3793OSReturn os::set_native_priority(Thread* thread, int newpri) {
3794  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3795
3796  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3797  return (ret == 0) ? OS_OK : OS_ERR;
3798}
3799
3800OSReturn os::get_native_priority(const Thread* const thread,
3801                                 int *priority_ptr) {
3802  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3803    *priority_ptr = java_to_os_priority[NormPriority];
3804    return OS_OK;
3805  }
3806
3807  errno = 0;
3808  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3809  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3810}
3811
3812// Hint to the underlying OS that a task switch would not be good.
3813// Void return because it's a hint and can fail.
3814void os::hint_no_preempt() {}
3815
3816////////////////////////////////////////////////////////////////////////////////
3817// suspend/resume support
3818
3819//  the low-level signal-based suspend/resume support is a remnant from the
3820//  old VM-suspension that used to be for java-suspension, safepoints etc,
3821//  within hotspot. Now there is a single use-case for this:
3822//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3823//      that runs in the watcher thread.
3824//  The remaining code is greatly simplified from the more general suspension
3825//  code that used to be used.
3826//
3827//  The protocol is quite simple:
3828//  - suspend:
3829//      - sends a signal to the target thread
3830//      - polls the suspend state of the osthread using a yield loop
3831//      - target thread signal handler (SR_handler) sets suspend state
3832//        and blocks in sigsuspend until continued
3833//  - resume:
3834//      - sets target osthread state to continue
3835//      - sends signal to end the sigsuspend loop in the SR_handler
3836//
3837//  Note that the SR_lock plays no role in this suspend/resume protocol.
3838
3839static void resume_clear_context(OSThread *osthread) {
3840  osthread->set_ucontext(NULL);
3841  osthread->set_siginfo(NULL);
3842}
3843
3844static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3845                                 ucontext_t* context) {
3846  osthread->set_ucontext(context);
3847  osthread->set_siginfo(siginfo);
3848}
3849
3850// Handler function invoked when a thread's execution is suspended or
3851// resumed. We have to be careful that only async-safe functions are
3852// called here (Note: most pthread functions are not async safe and
3853// should be avoided.)
3854//
3855// Note: sigwait() is a more natural fit than sigsuspend() from an
3856// interface point of view, but sigwait() prevents the signal hander
3857// from being run. libpthread would get very confused by not having
3858// its signal handlers run and prevents sigwait()'s use with the
3859// mutex granting granting signal.
3860//
3861// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3862//
3863static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3864  // Save and restore errno to avoid confusing native code with EINTR
3865  // after sigsuspend.
3866  int old_errno = errno;
3867
3868  Thread* thread = Thread::current();
3869  OSThread* osthread = thread->osthread();
3870  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3871
3872  os::SuspendResume::State current = osthread->sr.state();
3873  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3874    suspend_save_context(osthread, siginfo, context);
3875
3876    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3877    os::SuspendResume::State state = osthread->sr.suspended();
3878    if (state == os::SuspendResume::SR_SUSPENDED) {
3879      sigset_t suspend_set;  // signals for sigsuspend()
3880
3881      // get current set of blocked signals and unblock resume signal
3882      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3883      sigdelset(&suspend_set, SR_signum);
3884
3885      sr_semaphore.signal();
3886      // wait here until we are resumed
3887      while (1) {
3888        sigsuspend(&suspend_set);
3889
3890        os::SuspendResume::State result = osthread->sr.running();
3891        if (result == os::SuspendResume::SR_RUNNING) {
3892          sr_semaphore.signal();
3893          break;
3894        }
3895      }
3896
3897    } else if (state == os::SuspendResume::SR_RUNNING) {
3898      // request was cancelled, continue
3899    } else {
3900      ShouldNotReachHere();
3901    }
3902
3903    resume_clear_context(osthread);
3904  } else if (current == os::SuspendResume::SR_RUNNING) {
3905    // request was cancelled, continue
3906  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3907    // ignore
3908  } else {
3909    // ignore
3910  }
3911
3912  errno = old_errno;
3913}
3914
3915
3916static int SR_initialize() {
3917  struct sigaction act;
3918  char *s;
3919  // Get signal number to use for suspend/resume
3920  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3921    int sig = ::strtol(s, 0, 10);
3922    if (sig > 0 || sig < _NSIG) {
3923      SR_signum = sig;
3924    }
3925  }
3926
3927  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3928         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3929
3930  sigemptyset(&SR_sigset);
3931  sigaddset(&SR_sigset, SR_signum);
3932
3933  // Set up signal handler for suspend/resume
3934  act.sa_flags = SA_RESTART|SA_SIGINFO;
3935  act.sa_handler = (void (*)(int)) SR_handler;
3936
3937  // SR_signum is blocked by default.
3938  // 4528190 - We also need to block pthread restart signal (32 on all
3939  // supported Linux platforms). Note that LinuxThreads need to block
3940  // this signal for all threads to work properly. So we don't have
3941  // to use hard-coded signal number when setting up the mask.
3942  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3943
3944  if (sigaction(SR_signum, &act, 0) == -1) {
3945    return -1;
3946  }
3947
3948  // Save signal flag
3949  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3950  return 0;
3951}
3952
3953static int sr_notify(OSThread* osthread) {
3954  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3955  assert_status(status == 0, status, "pthread_kill");
3956  return status;
3957}
3958
3959// "Randomly" selected value for how long we want to spin
3960// before bailing out on suspending a thread, also how often
3961// we send a signal to a thread we want to resume
3962static const int RANDOMLY_LARGE_INTEGER = 1000000;
3963static const int RANDOMLY_LARGE_INTEGER2 = 100;
3964
3965// returns true on success and false on error - really an error is fatal
3966// but this seems the normal response to library errors
3967static bool do_suspend(OSThread* osthread) {
3968  assert(osthread->sr.is_running(), "thread should be running");
3969  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3970
3971  // mark as suspended and send signal
3972  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3973    // failed to switch, state wasn't running?
3974    ShouldNotReachHere();
3975    return false;
3976  }
3977
3978  if (sr_notify(osthread) != 0) {
3979    ShouldNotReachHere();
3980  }
3981
3982  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3983  while (true) {
3984    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3985      break;
3986    } else {
3987      // timeout
3988      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3989      if (cancelled == os::SuspendResume::SR_RUNNING) {
3990        return false;
3991      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3992        // make sure that we consume the signal on the semaphore as well
3993        sr_semaphore.wait();
3994        break;
3995      } else {
3996        ShouldNotReachHere();
3997        return false;
3998      }
3999    }
4000  }
4001
4002  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4003  return true;
4004}
4005
4006static void do_resume(OSThread* osthread) {
4007  assert(osthread->sr.is_suspended(), "thread should be suspended");
4008  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4009
4010  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4011    // failed to switch to WAKEUP_REQUEST
4012    ShouldNotReachHere();
4013    return;
4014  }
4015
4016  while (true) {
4017    if (sr_notify(osthread) == 0) {
4018      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4019        if (osthread->sr.is_running()) {
4020          return;
4021        }
4022      }
4023    } else {
4024      ShouldNotReachHere();
4025    }
4026  }
4027
4028  guarantee(osthread->sr.is_running(), "Must be running!");
4029}
4030
4031///////////////////////////////////////////////////////////////////////////////////
4032// signal handling (except suspend/resume)
4033
4034// This routine may be used by user applications as a "hook" to catch signals.
4035// The user-defined signal handler must pass unrecognized signals to this
4036// routine, and if it returns true (non-zero), then the signal handler must
4037// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4038// routine will never retun false (zero), but instead will execute a VM panic
4039// routine kill the process.
4040//
4041// If this routine returns false, it is OK to call it again.  This allows
4042// the user-defined signal handler to perform checks either before or after
4043// the VM performs its own checks.  Naturally, the user code would be making
4044// a serious error if it tried to handle an exception (such as a null check
4045// or breakpoint) that the VM was generating for its own correct operation.
4046//
4047// This routine may recognize any of the following kinds of signals:
4048//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4049// It should be consulted by handlers for any of those signals.
4050//
4051// The caller of this routine must pass in the three arguments supplied
4052// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4053// field of the structure passed to sigaction().  This routine assumes that
4054// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4055//
4056// Note that the VM will print warnings if it detects conflicting signal
4057// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4058//
4059extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4060                                                 siginfo_t* siginfo,
4061                                                 void* ucontext,
4062                                                 int abort_if_unrecognized);
4063
4064void signalHandler(int sig, siginfo_t* info, void* uc) {
4065  assert(info != NULL && uc != NULL, "it must be old kernel");
4066  int orig_errno = errno;  // Preserve errno value over signal handler.
4067  JVM_handle_linux_signal(sig, info, uc, true);
4068  errno = orig_errno;
4069}
4070
4071
4072// This boolean allows users to forward their own non-matching signals
4073// to JVM_handle_linux_signal, harmlessly.
4074bool os::Linux::signal_handlers_are_installed = false;
4075
4076// For signal-chaining
4077struct sigaction os::Linux::sigact[MAXSIGNUM];
4078unsigned int os::Linux::sigs = 0;
4079bool os::Linux::libjsig_is_loaded = false;
4080typedef struct sigaction *(*get_signal_t)(int);
4081get_signal_t os::Linux::get_signal_action = NULL;
4082
4083struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4084  struct sigaction *actp = NULL;
4085
4086  if (libjsig_is_loaded) {
4087    // Retrieve the old signal handler from libjsig
4088    actp = (*get_signal_action)(sig);
4089  }
4090  if (actp == NULL) {
4091    // Retrieve the preinstalled signal handler from jvm
4092    actp = get_preinstalled_handler(sig);
4093  }
4094
4095  return actp;
4096}
4097
4098static bool call_chained_handler(struct sigaction *actp, int sig,
4099                                 siginfo_t *siginfo, void *context) {
4100  // Call the old signal handler
4101  if (actp->sa_handler == SIG_DFL) {
4102    // It's more reasonable to let jvm treat it as an unexpected exception
4103    // instead of taking the default action.
4104    return false;
4105  } else if (actp->sa_handler != SIG_IGN) {
4106    if ((actp->sa_flags & SA_NODEFER) == 0) {
4107      // automaticlly block the signal
4108      sigaddset(&(actp->sa_mask), sig);
4109    }
4110
4111    sa_handler_t hand;
4112    sa_sigaction_t sa;
4113    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4114    // retrieve the chained handler
4115    if (siginfo_flag_set) {
4116      sa = actp->sa_sigaction;
4117    } else {
4118      hand = actp->sa_handler;
4119    }
4120
4121    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4122      actp->sa_handler = SIG_DFL;
4123    }
4124
4125    // try to honor the signal mask
4126    sigset_t oset;
4127    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4128
4129    // call into the chained handler
4130    if (siginfo_flag_set) {
4131      (*sa)(sig, siginfo, context);
4132    } else {
4133      (*hand)(sig);
4134    }
4135
4136    // restore the signal mask
4137    pthread_sigmask(SIG_SETMASK, &oset, 0);
4138  }
4139  // Tell jvm's signal handler the signal is taken care of.
4140  return true;
4141}
4142
4143bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4144  bool chained = false;
4145  // signal-chaining
4146  if (UseSignalChaining) {
4147    struct sigaction *actp = get_chained_signal_action(sig);
4148    if (actp != NULL) {
4149      chained = call_chained_handler(actp, sig, siginfo, context);
4150    }
4151  }
4152  return chained;
4153}
4154
4155struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4156  if ((((unsigned int)1 << sig) & sigs) != 0) {
4157    return &sigact[sig];
4158  }
4159  return NULL;
4160}
4161
4162void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4163  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4164  sigact[sig] = oldAct;
4165  sigs |= (unsigned int)1 << sig;
4166}
4167
4168// for diagnostic
4169int os::Linux::sigflags[MAXSIGNUM];
4170
4171int os::Linux::get_our_sigflags(int sig) {
4172  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4173  return sigflags[sig];
4174}
4175
4176void os::Linux::set_our_sigflags(int sig, int flags) {
4177  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4178  sigflags[sig] = flags;
4179}
4180
4181void os::Linux::set_signal_handler(int sig, bool set_installed) {
4182  // Check for overwrite.
4183  struct sigaction oldAct;
4184  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4185
4186  void* oldhand = oldAct.sa_sigaction
4187                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4188                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4189  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4190      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4191      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4192    if (AllowUserSignalHandlers || !set_installed) {
4193      // Do not overwrite; user takes responsibility to forward to us.
4194      return;
4195    } else if (UseSignalChaining) {
4196      // save the old handler in jvm
4197      save_preinstalled_handler(sig, oldAct);
4198      // libjsig also interposes the sigaction() call below and saves the
4199      // old sigaction on it own.
4200    } else {
4201      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4202                    "%#lx for signal %d.", (long)oldhand, sig));
4203    }
4204  }
4205
4206  struct sigaction sigAct;
4207  sigfillset(&(sigAct.sa_mask));
4208  sigAct.sa_handler = SIG_DFL;
4209  if (!set_installed) {
4210    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4211  } else {
4212    sigAct.sa_sigaction = signalHandler;
4213    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4214  }
4215  // Save flags, which are set by ours
4216  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4217  sigflags[sig] = sigAct.sa_flags;
4218
4219  int ret = sigaction(sig, &sigAct, &oldAct);
4220  assert(ret == 0, "check");
4221
4222  void* oldhand2  = oldAct.sa_sigaction
4223                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4224                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4225  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4226}
4227
4228// install signal handlers for signals that HotSpot needs to
4229// handle in order to support Java-level exception handling.
4230
4231void os::Linux::install_signal_handlers() {
4232  if (!signal_handlers_are_installed) {
4233    signal_handlers_are_installed = true;
4234
4235    // signal-chaining
4236    typedef void (*signal_setting_t)();
4237    signal_setting_t begin_signal_setting = NULL;
4238    signal_setting_t end_signal_setting = NULL;
4239    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4240                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4241    if (begin_signal_setting != NULL) {
4242      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4243                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4244      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4245                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4246      libjsig_is_loaded = true;
4247      assert(UseSignalChaining, "should enable signal-chaining");
4248    }
4249    if (libjsig_is_loaded) {
4250      // Tell libjsig jvm is setting signal handlers
4251      (*begin_signal_setting)();
4252    }
4253
4254    set_signal_handler(SIGSEGV, true);
4255    set_signal_handler(SIGPIPE, true);
4256    set_signal_handler(SIGBUS, true);
4257    set_signal_handler(SIGILL, true);
4258    set_signal_handler(SIGFPE, true);
4259#if defined(PPC64)
4260    set_signal_handler(SIGTRAP, true);
4261#endif
4262    set_signal_handler(SIGXFSZ, true);
4263
4264    if (libjsig_is_loaded) {
4265      // Tell libjsig jvm finishes setting signal handlers
4266      (*end_signal_setting)();
4267    }
4268
4269    // We don't activate signal checker if libjsig is in place, we trust ourselves
4270    // and if UserSignalHandler is installed all bets are off.
4271    // Log that signal checking is off only if -verbose:jni is specified.
4272    if (CheckJNICalls) {
4273      if (libjsig_is_loaded) {
4274        if (PrintJNIResolving) {
4275          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4276        }
4277        check_signals = false;
4278      }
4279      if (AllowUserSignalHandlers) {
4280        if (PrintJNIResolving) {
4281          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4282        }
4283        check_signals = false;
4284      }
4285    }
4286  }
4287}
4288
4289// This is the fastest way to get thread cpu time on Linux.
4290// Returns cpu time (user+sys) for any thread, not only for current.
4291// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4292// It might work on 2.6.10+ with a special kernel/glibc patch.
4293// For reference, please, see IEEE Std 1003.1-2004:
4294//   http://www.unix.org/single_unix_specification
4295
4296jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4297  struct timespec tp;
4298  int rc = os::Linux::clock_gettime(clockid, &tp);
4299  assert(rc == 0, "clock_gettime is expected to return 0 code");
4300
4301  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4302}
4303
4304/////
4305// glibc on Linux platform uses non-documented flag
4306// to indicate, that some special sort of signal
4307// trampoline is used.
4308// We will never set this flag, and we should
4309// ignore this flag in our diagnostic
4310#ifdef SIGNIFICANT_SIGNAL_MASK
4311  #undef SIGNIFICANT_SIGNAL_MASK
4312#endif
4313#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4314
4315static const char* get_signal_handler_name(address handler,
4316                                           char* buf, int buflen) {
4317  int offset;
4318  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4319  if (found) {
4320    // skip directory names
4321    const char *p1, *p2;
4322    p1 = buf;
4323    size_t len = strlen(os::file_separator());
4324    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4325    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4326  } else {
4327    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4328  }
4329  return buf;
4330}
4331
4332static void print_signal_handler(outputStream* st, int sig,
4333                                 char* buf, size_t buflen) {
4334  struct sigaction sa;
4335
4336  sigaction(sig, NULL, &sa);
4337
4338  // See comment for SIGNIFICANT_SIGNAL_MASK define
4339  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4340
4341  st->print("%s: ", os::exception_name(sig, buf, buflen));
4342
4343  address handler = (sa.sa_flags & SA_SIGINFO)
4344    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4345    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4346
4347  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4348    st->print("SIG_DFL");
4349  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4350    st->print("SIG_IGN");
4351  } else {
4352    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4353  }
4354
4355  st->print(", sa_mask[0]=");
4356  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4357
4358  address rh = VMError::get_resetted_sighandler(sig);
4359  // May be, handler was resetted by VMError?
4360  if (rh != NULL) {
4361    handler = rh;
4362    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4363  }
4364
4365  st->print(", sa_flags=");
4366  os::Posix::print_sa_flags(st, sa.sa_flags);
4367
4368  // Check: is it our handler?
4369  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4370      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4371    // It is our signal handler
4372    // check for flags, reset system-used one!
4373    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4374      st->print(
4375                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4376                os::Linux::get_our_sigflags(sig));
4377    }
4378  }
4379  st->cr();
4380}
4381
4382
4383#define DO_SIGNAL_CHECK(sig)                      \
4384  do {                                            \
4385    if (!sigismember(&check_signal_done, sig)) {  \
4386      os::Linux::check_signal_handler(sig);       \
4387    }                                             \
4388  } while (0)
4389
4390// This method is a periodic task to check for misbehaving JNI applications
4391// under CheckJNI, we can add any periodic checks here
4392
4393void os::run_periodic_checks() {
4394  if (check_signals == false) return;
4395
4396  // SEGV and BUS if overridden could potentially prevent
4397  // generation of hs*.log in the event of a crash, debugging
4398  // such a case can be very challenging, so we absolutely
4399  // check the following for a good measure:
4400  DO_SIGNAL_CHECK(SIGSEGV);
4401  DO_SIGNAL_CHECK(SIGILL);
4402  DO_SIGNAL_CHECK(SIGFPE);
4403  DO_SIGNAL_CHECK(SIGBUS);
4404  DO_SIGNAL_CHECK(SIGPIPE);
4405  DO_SIGNAL_CHECK(SIGXFSZ);
4406#if defined(PPC64)
4407  DO_SIGNAL_CHECK(SIGTRAP);
4408#endif
4409
4410  // ReduceSignalUsage allows the user to override these handlers
4411  // see comments at the very top and jvm_solaris.h
4412  if (!ReduceSignalUsage) {
4413    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4414    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4415    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4416    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4417  }
4418
4419  DO_SIGNAL_CHECK(SR_signum);
4420  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4421}
4422
4423typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4424
4425static os_sigaction_t os_sigaction = NULL;
4426
4427void os::Linux::check_signal_handler(int sig) {
4428  char buf[O_BUFLEN];
4429  address jvmHandler = NULL;
4430
4431
4432  struct sigaction act;
4433  if (os_sigaction == NULL) {
4434    // only trust the default sigaction, in case it has been interposed
4435    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4436    if (os_sigaction == NULL) return;
4437  }
4438
4439  os_sigaction(sig, (struct sigaction*)NULL, &act);
4440
4441
4442  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4443
4444  address thisHandler = (act.sa_flags & SA_SIGINFO)
4445    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4446    : CAST_FROM_FN_PTR(address, act.sa_handler);
4447
4448
4449  switch (sig) {
4450  case SIGSEGV:
4451  case SIGBUS:
4452  case SIGFPE:
4453  case SIGPIPE:
4454  case SIGILL:
4455  case SIGXFSZ:
4456    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4457    break;
4458
4459  case SHUTDOWN1_SIGNAL:
4460  case SHUTDOWN2_SIGNAL:
4461  case SHUTDOWN3_SIGNAL:
4462  case BREAK_SIGNAL:
4463    jvmHandler = (address)user_handler();
4464    break;
4465
4466  case INTERRUPT_SIGNAL:
4467    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4468    break;
4469
4470  default:
4471    if (sig == SR_signum) {
4472      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4473    } else {
4474      return;
4475    }
4476    break;
4477  }
4478
4479  if (thisHandler != jvmHandler) {
4480    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4481    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4482    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4483    // No need to check this sig any longer
4484    sigaddset(&check_signal_done, sig);
4485    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4486    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4487      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4488                    exception_name(sig, buf, O_BUFLEN));
4489    }
4490  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4491    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4492    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4493    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4494    // No need to check this sig any longer
4495    sigaddset(&check_signal_done, sig);
4496  }
4497
4498  // Dump all the signal
4499  if (sigismember(&check_signal_done, sig)) {
4500    print_signal_handlers(tty, buf, O_BUFLEN);
4501  }
4502}
4503
4504extern void report_error(char* file_name, int line_no, char* title,
4505                         char* format, ...);
4506
4507extern bool signal_name(int signo, char* buf, size_t len);
4508
4509const char* os::exception_name(int exception_code, char* buf, size_t size) {
4510  if (0 < exception_code && exception_code <= SIGRTMAX) {
4511    // signal
4512    if (!signal_name(exception_code, buf, size)) {
4513      jio_snprintf(buf, size, "SIG%d", exception_code);
4514    }
4515    return buf;
4516  } else {
4517    return NULL;
4518  }
4519}
4520
4521// this is called _before_ the most of global arguments have been parsed
4522void os::init(void) {
4523  char dummy;   // used to get a guess on initial stack address
4524//  first_hrtime = gethrtime();
4525
4526  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4527
4528  init_random(1234567);
4529
4530  ThreadCritical::initialize();
4531
4532  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4533  if (Linux::page_size() == -1) {
4534    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4535                  strerror(errno)));
4536  }
4537  init_page_sizes((size_t) Linux::page_size());
4538
4539  Linux::initialize_system_info();
4540
4541  // main_thread points to the aboriginal thread
4542  Linux::_main_thread = pthread_self();
4543
4544  Linux::clock_init();
4545  initial_time_count = javaTimeNanos();
4546
4547  // pthread_condattr initialization for monotonic clock
4548  int status;
4549  pthread_condattr_t* _condattr = os::Linux::condAttr();
4550  if ((status = pthread_condattr_init(_condattr)) != 0) {
4551    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4552  }
4553  // Only set the clock if CLOCK_MONOTONIC is available
4554  if (os::supports_monotonic_clock()) {
4555    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4556      if (status == EINVAL) {
4557        warning("Unable to use monotonic clock with relative timed-waits" \
4558                " - changes to the time-of-day clock may have adverse affects");
4559      } else {
4560        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4561      }
4562    }
4563  }
4564  // else it defaults to CLOCK_REALTIME
4565
4566  // If the pagesize of the VM is greater than 8K determine the appropriate
4567  // number of initial guard pages.  The user can change this with the
4568  // command line arguments, if needed.
4569  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4570    StackYellowPages = 1;
4571    StackRedPages = 1;
4572    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4573  }
4574
4575  // retrieve entry point for pthread_setname_np
4576  Linux::_pthread_setname_np =
4577    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4578
4579}
4580
4581// To install functions for atexit system call
4582extern "C" {
4583  static void perfMemory_exit_helper() {
4584    perfMemory_exit();
4585  }
4586}
4587
4588// this is called _after_ the global arguments have been parsed
4589jint os::init_2(void) {
4590  Linux::fast_thread_clock_init();
4591
4592  // Allocate a single page and mark it as readable for safepoint polling
4593  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4594  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4595
4596  os::set_polling_page(polling_page);
4597
4598#ifndef PRODUCT
4599  if (Verbose && PrintMiscellaneous) {
4600    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4601               (intptr_t)polling_page);
4602  }
4603#endif
4604
4605  if (!UseMembar) {
4606    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4607    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4608    os::set_memory_serialize_page(mem_serialize_page);
4609
4610#ifndef PRODUCT
4611    if (Verbose && PrintMiscellaneous) {
4612      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4613                 (intptr_t)mem_serialize_page);
4614    }
4615#endif
4616  }
4617
4618  // initialize suspend/resume support - must do this before signal_sets_init()
4619  if (SR_initialize() != 0) {
4620    perror("SR_initialize failed");
4621    return JNI_ERR;
4622  }
4623
4624  Linux::signal_sets_init();
4625  Linux::install_signal_handlers();
4626
4627  // Check minimum allowable stack size for thread creation and to initialize
4628  // the java system classes, including StackOverflowError - depends on page
4629  // size.  Add a page for compiler2 recursion in main thread.
4630  // Add in 2*BytesPerWord times page size to account for VM stack during
4631  // class initialization depending on 32 or 64 bit VM.
4632  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4633                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4634                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4635
4636  size_t threadStackSizeInBytes = ThreadStackSize * K;
4637  if (threadStackSizeInBytes != 0 &&
4638      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4639    tty->print_cr("\nThe stack size specified is too small, "
4640                  "Specify at least %dk",
4641                  os::Linux::min_stack_allowed/ K);
4642    return JNI_ERR;
4643  }
4644
4645  // Make the stack size a multiple of the page size so that
4646  // the yellow/red zones can be guarded.
4647  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4648                                                vm_page_size()));
4649
4650  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4651
4652#if defined(IA32)
4653  workaround_expand_exec_shield_cs_limit();
4654#endif
4655
4656  Linux::libpthread_init();
4657  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4658    tty->print_cr("[HotSpot is running with %s, %s]\n",
4659                  Linux::glibc_version(), Linux::libpthread_version());
4660  }
4661
4662  if (UseNUMA) {
4663    if (!Linux::libnuma_init()) {
4664      UseNUMA = false;
4665    } else {
4666      if ((Linux::numa_max_node() < 1)) {
4667        // There's only one node(they start from 0), disable NUMA.
4668        UseNUMA = false;
4669      }
4670    }
4671    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4672    // we can make the adaptive lgrp chunk resizing work. If the user specified
4673    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4674    // disable adaptive resizing.
4675    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4676      if (FLAG_IS_DEFAULT(UseNUMA)) {
4677        UseNUMA = false;
4678      } else {
4679        if (FLAG_IS_DEFAULT(UseLargePages) &&
4680            FLAG_IS_DEFAULT(UseSHM) &&
4681            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4682          UseLargePages = false;
4683        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4684          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4685          UseAdaptiveSizePolicy = false;
4686          UseAdaptiveNUMAChunkSizing = false;
4687        }
4688      }
4689    }
4690    if (!UseNUMA && ForceNUMA) {
4691      UseNUMA = true;
4692    }
4693  }
4694
4695  if (MaxFDLimit) {
4696    // set the number of file descriptors to max. print out error
4697    // if getrlimit/setrlimit fails but continue regardless.
4698    struct rlimit nbr_files;
4699    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4700    if (status != 0) {
4701      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4702        perror("os::init_2 getrlimit failed");
4703      }
4704    } else {
4705      nbr_files.rlim_cur = nbr_files.rlim_max;
4706      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4707      if (status != 0) {
4708        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4709          perror("os::init_2 setrlimit failed");
4710        }
4711      }
4712    }
4713  }
4714
4715  // Initialize lock used to serialize thread creation (see os::create_thread)
4716  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4717
4718  // at-exit methods are called in the reverse order of their registration.
4719  // atexit functions are called on return from main or as a result of a
4720  // call to exit(3C). There can be only 32 of these functions registered
4721  // and atexit() does not set errno.
4722
4723  if (PerfAllowAtExitRegistration) {
4724    // only register atexit functions if PerfAllowAtExitRegistration is set.
4725    // atexit functions can be delayed until process exit time, which
4726    // can be problematic for embedded VM situations. Embedded VMs should
4727    // call DestroyJavaVM() to assure that VM resources are released.
4728
4729    // note: perfMemory_exit_helper atexit function may be removed in
4730    // the future if the appropriate cleanup code can be added to the
4731    // VM_Exit VMOperation's doit method.
4732    if (atexit(perfMemory_exit_helper) != 0) {
4733      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4734    }
4735  }
4736
4737  // initialize thread priority policy
4738  prio_init();
4739
4740  return JNI_OK;
4741}
4742
4743// Mark the polling page as unreadable
4744void os::make_polling_page_unreadable(void) {
4745  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4746    fatal("Could not disable polling page");
4747  }
4748}
4749
4750// Mark the polling page as readable
4751void os::make_polling_page_readable(void) {
4752  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4753    fatal("Could not enable polling page");
4754  }
4755}
4756
4757int os::active_processor_count() {
4758  // Linux doesn't yet have a (official) notion of processor sets,
4759  // so just return the number of online processors.
4760  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4761  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4762  return online_cpus;
4763}
4764
4765void os::set_native_thread_name(const char *name) {
4766  if (Linux::_pthread_setname_np) {
4767    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4768    snprintf(buf, sizeof(buf), "%s", name);
4769    buf[sizeof(buf) - 1] = '\0';
4770    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4771    // ERANGE should not happen; all other errors should just be ignored.
4772    assert(rc != ERANGE, "pthread_setname_np failed");
4773  }
4774}
4775
4776bool os::distribute_processes(uint length, uint* distribution) {
4777  // Not yet implemented.
4778  return false;
4779}
4780
4781bool os::bind_to_processor(uint processor_id) {
4782  // Not yet implemented.
4783  return false;
4784}
4785
4786///
4787
4788void os::SuspendedThreadTask::internal_do_task() {
4789  if (do_suspend(_thread->osthread())) {
4790    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4791    do_task(context);
4792    do_resume(_thread->osthread());
4793  }
4794}
4795
4796class PcFetcher : public os::SuspendedThreadTask {
4797 public:
4798  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4799  ExtendedPC result();
4800 protected:
4801  void do_task(const os::SuspendedThreadTaskContext& context);
4802 private:
4803  ExtendedPC _epc;
4804};
4805
4806ExtendedPC PcFetcher::result() {
4807  guarantee(is_done(), "task is not done yet.");
4808  return _epc;
4809}
4810
4811void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4812  Thread* thread = context.thread();
4813  OSThread* osthread = thread->osthread();
4814  if (osthread->ucontext() != NULL) {
4815    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4816  } else {
4817    // NULL context is unexpected, double-check this is the VMThread
4818    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4819  }
4820}
4821
4822// Suspends the target using the signal mechanism and then grabs the PC before
4823// resuming the target. Used by the flat-profiler only
4824ExtendedPC os::get_thread_pc(Thread* thread) {
4825  // Make sure that it is called by the watcher for the VMThread
4826  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4827  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4828
4829  PcFetcher fetcher(thread);
4830  fetcher.run();
4831  return fetcher.result();
4832}
4833
4834////////////////////////////////////////////////////////////////////////////////
4835// debug support
4836
4837bool os::find(address addr, outputStream* st) {
4838  Dl_info dlinfo;
4839  memset(&dlinfo, 0, sizeof(dlinfo));
4840  if (dladdr(addr, &dlinfo) != 0) {
4841    st->print(PTR_FORMAT ": ", addr);
4842    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4843      st->print("%s+%#x", dlinfo.dli_sname,
4844                addr - (intptr_t)dlinfo.dli_saddr);
4845    } else if (dlinfo.dli_fbase != NULL) {
4846      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4847    } else {
4848      st->print("<absolute address>");
4849    }
4850    if (dlinfo.dli_fname != NULL) {
4851      st->print(" in %s", dlinfo.dli_fname);
4852    }
4853    if (dlinfo.dli_fbase != NULL) {
4854      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4855    }
4856    st->cr();
4857
4858    if (Verbose) {
4859      // decode some bytes around the PC
4860      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4861      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4862      address       lowest = (address) dlinfo.dli_sname;
4863      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4864      if (begin < lowest)  begin = lowest;
4865      Dl_info dlinfo2;
4866      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4867          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4868        end = (address) dlinfo2.dli_saddr;
4869      }
4870      Disassembler::decode(begin, end, st);
4871    }
4872    return true;
4873  }
4874  return false;
4875}
4876
4877////////////////////////////////////////////////////////////////////////////////
4878// misc
4879
4880// This does not do anything on Linux. This is basically a hook for being
4881// able to use structured exception handling (thread-local exception filters)
4882// on, e.g., Win32.
4883void
4884os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4885                         JavaCallArguments* args, Thread* thread) {
4886  f(value, method, args, thread);
4887}
4888
4889void os::print_statistics() {
4890}
4891
4892int os::message_box(const char* title, const char* message) {
4893  int i;
4894  fdStream err(defaultStream::error_fd());
4895  for (i = 0; i < 78; i++) err.print_raw("=");
4896  err.cr();
4897  err.print_raw_cr(title);
4898  for (i = 0; i < 78; i++) err.print_raw("-");
4899  err.cr();
4900  err.print_raw_cr(message);
4901  for (i = 0; i < 78; i++) err.print_raw("=");
4902  err.cr();
4903
4904  char buf[16];
4905  // Prevent process from exiting upon "read error" without consuming all CPU
4906  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4907
4908  return buf[0] == 'y' || buf[0] == 'Y';
4909}
4910
4911int os::stat(const char *path, struct stat *sbuf) {
4912  char pathbuf[MAX_PATH];
4913  if (strlen(path) > MAX_PATH - 1) {
4914    errno = ENAMETOOLONG;
4915    return -1;
4916  }
4917  os::native_path(strcpy(pathbuf, path));
4918  return ::stat(pathbuf, sbuf);
4919}
4920
4921bool os::check_heap(bool force) {
4922  return true;
4923}
4924
4925// Is a (classpath) directory empty?
4926bool os::dir_is_empty(const char* path) {
4927  DIR *dir = NULL;
4928  struct dirent *ptr;
4929
4930  dir = opendir(path);
4931  if (dir == NULL) return true;
4932
4933  // Scan the directory
4934  bool result = true;
4935  char buf[sizeof(struct dirent) + MAX_PATH];
4936  while (result && (ptr = ::readdir(dir)) != NULL) {
4937    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4938      result = false;
4939    }
4940  }
4941  closedir(dir);
4942  return result;
4943}
4944
4945// This code originates from JDK's sysOpen and open64_w
4946// from src/solaris/hpi/src/system_md.c
4947
4948int os::open(const char *path, int oflag, int mode) {
4949  if (strlen(path) > MAX_PATH - 1) {
4950    errno = ENAMETOOLONG;
4951    return -1;
4952  }
4953
4954  // All file descriptors that are opened in the Java process and not
4955  // specifically destined for a subprocess should have the close-on-exec
4956  // flag set.  If we don't set it, then careless 3rd party native code
4957  // might fork and exec without closing all appropriate file descriptors
4958  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
4959  // turn might:
4960  //
4961  // - cause end-of-file to fail to be detected on some file
4962  //   descriptors, resulting in mysterious hangs, or
4963  //
4964  // - might cause an fopen in the subprocess to fail on a system
4965  //   suffering from bug 1085341.
4966  //
4967  // (Yes, the default setting of the close-on-exec flag is a Unix
4968  // design flaw)
4969  //
4970  // See:
4971  // 1085341: 32-bit stdio routines should support file descriptors >255
4972  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4973  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4974  //
4975  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
4976  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
4977  // because it saves a system call and removes a small window where the flag
4978  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
4979  // and we fall back to using FD_CLOEXEC (see below).
4980#ifdef O_CLOEXEC
4981  oflag |= O_CLOEXEC;
4982#endif
4983
4984  int fd = ::open64(path, oflag, mode);
4985  if (fd == -1) return -1;
4986
4987  //If the open succeeded, the file might still be a directory
4988  {
4989    struct stat64 buf64;
4990    int ret = ::fstat64(fd, &buf64);
4991    int st_mode = buf64.st_mode;
4992
4993    if (ret != -1) {
4994      if ((st_mode & S_IFMT) == S_IFDIR) {
4995        errno = EISDIR;
4996        ::close(fd);
4997        return -1;
4998      }
4999    } else {
5000      ::close(fd);
5001      return -1;
5002    }
5003  }
5004
5005#ifdef FD_CLOEXEC
5006  // Validate that the use of the O_CLOEXEC flag on open above worked.
5007  // With recent kernels, we will perform this check exactly once.
5008  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5009  if (!O_CLOEXEC_is_known_to_work) {
5010    int flags = ::fcntl(fd, F_GETFD);
5011    if (flags != -1) {
5012      if ((flags & FD_CLOEXEC) != 0)
5013        O_CLOEXEC_is_known_to_work = 1;
5014      else
5015        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5016    }
5017  }
5018#endif
5019
5020  return fd;
5021}
5022
5023
5024// create binary file, rewriting existing file if required
5025int os::create_binary_file(const char* path, bool rewrite_existing) {
5026  int oflags = O_WRONLY | O_CREAT;
5027  if (!rewrite_existing) {
5028    oflags |= O_EXCL;
5029  }
5030  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5031}
5032
5033// return current position of file pointer
5034jlong os::current_file_offset(int fd) {
5035  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5036}
5037
5038// move file pointer to the specified offset
5039jlong os::seek_to_file_offset(int fd, jlong offset) {
5040  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5041}
5042
5043// This code originates from JDK's sysAvailable
5044// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5045
5046int os::available(int fd, jlong *bytes) {
5047  jlong cur, end;
5048  int mode;
5049  struct stat64 buf64;
5050
5051  if (::fstat64(fd, &buf64) >= 0) {
5052    mode = buf64.st_mode;
5053    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5054      // XXX: is the following call interruptible? If so, this might
5055      // need to go through the INTERRUPT_IO() wrapper as for other
5056      // blocking, interruptible calls in this file.
5057      int n;
5058      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5059        *bytes = n;
5060        return 1;
5061      }
5062    }
5063  }
5064  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5065    return 0;
5066  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5067    return 0;
5068  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5069    return 0;
5070  }
5071  *bytes = end - cur;
5072  return 1;
5073}
5074
5075// Map a block of memory.
5076char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5077                        char *addr, size_t bytes, bool read_only,
5078                        bool allow_exec) {
5079  int prot;
5080  int flags = MAP_PRIVATE;
5081
5082  if (read_only) {
5083    prot = PROT_READ;
5084  } else {
5085    prot = PROT_READ | PROT_WRITE;
5086  }
5087
5088  if (allow_exec) {
5089    prot |= PROT_EXEC;
5090  }
5091
5092  if (addr != NULL) {
5093    flags |= MAP_FIXED;
5094  }
5095
5096  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5097                                     fd, file_offset);
5098  if (mapped_address == MAP_FAILED) {
5099    return NULL;
5100  }
5101  return mapped_address;
5102}
5103
5104
5105// Remap a block of memory.
5106char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5107                          char *addr, size_t bytes, bool read_only,
5108                          bool allow_exec) {
5109  // same as map_memory() on this OS
5110  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5111                        allow_exec);
5112}
5113
5114
5115// Unmap a block of memory.
5116bool os::pd_unmap_memory(char* addr, size_t bytes) {
5117  return munmap(addr, bytes) == 0;
5118}
5119
5120static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5121
5122static clockid_t thread_cpu_clockid(Thread* thread) {
5123  pthread_t tid = thread->osthread()->pthread_id();
5124  clockid_t clockid;
5125
5126  // Get thread clockid
5127  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5128  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5129  return clockid;
5130}
5131
5132// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5133// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5134// of a thread.
5135//
5136// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5137// the fast estimate available on the platform.
5138
5139jlong os::current_thread_cpu_time() {
5140  if (os::Linux::supports_fast_thread_cpu_time()) {
5141    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5142  } else {
5143    // return user + sys since the cost is the same
5144    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5145  }
5146}
5147
5148jlong os::thread_cpu_time(Thread* thread) {
5149  // consistent with what current_thread_cpu_time() returns
5150  if (os::Linux::supports_fast_thread_cpu_time()) {
5151    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5152  } else {
5153    return slow_thread_cpu_time(thread, true /* user + sys */);
5154  }
5155}
5156
5157jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5158  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5159    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5160  } else {
5161    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5162  }
5163}
5164
5165jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5166  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5167    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5168  } else {
5169    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5170  }
5171}
5172
5173//  -1 on error.
5174static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5175  pid_t  tid = thread->osthread()->thread_id();
5176  char *s;
5177  char stat[2048];
5178  int statlen;
5179  char proc_name[64];
5180  int count;
5181  long sys_time, user_time;
5182  char cdummy;
5183  int idummy;
5184  long ldummy;
5185  FILE *fp;
5186
5187  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5188  fp = fopen(proc_name, "r");
5189  if (fp == NULL) return -1;
5190  statlen = fread(stat, 1, 2047, fp);
5191  stat[statlen] = '\0';
5192  fclose(fp);
5193
5194  // Skip pid and the command string. Note that we could be dealing with
5195  // weird command names, e.g. user could decide to rename java launcher
5196  // to "java 1.4.2 :)", then the stat file would look like
5197  //                1234 (java 1.4.2 :)) R ... ...
5198  // We don't really need to know the command string, just find the last
5199  // occurrence of ")" and then start parsing from there. See bug 4726580.
5200  s = strrchr(stat, ')');
5201  if (s == NULL) return -1;
5202
5203  // Skip blank chars
5204  do { s++; } while (s && isspace(*s));
5205
5206  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5207                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5208                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5209                 &user_time, &sys_time);
5210  if (count != 13) return -1;
5211  if (user_sys_cpu_time) {
5212    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5213  } else {
5214    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5215  }
5216}
5217
5218void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5219  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5220  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5221  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5222  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5223}
5224
5225void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5226  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5227  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5228  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5229  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5230}
5231
5232bool os::is_thread_cpu_time_supported() {
5233  return true;
5234}
5235
5236// System loadavg support.  Returns -1 if load average cannot be obtained.
5237// Linux doesn't yet have a (official) notion of processor sets,
5238// so just return the system wide load average.
5239int os::loadavg(double loadavg[], int nelem) {
5240  return ::getloadavg(loadavg, nelem);
5241}
5242
5243void os::pause() {
5244  char filename[MAX_PATH];
5245  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5246    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5247  } else {
5248    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5249  }
5250
5251  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5252  if (fd != -1) {
5253    struct stat buf;
5254    ::close(fd);
5255    while (::stat(filename, &buf) == 0) {
5256      (void)::poll(NULL, 0, 100);
5257    }
5258  } else {
5259    jio_fprintf(stderr,
5260                "Could not open pause file '%s', continuing immediately.\n", filename);
5261  }
5262}
5263
5264
5265// Refer to the comments in os_solaris.cpp park-unpark. The next two
5266// comment paragraphs are worth repeating here:
5267//
5268// Assumption:
5269//    Only one parker can exist on an event, which is why we allocate
5270//    them per-thread. Multiple unparkers can coexist.
5271//
5272// _Event serves as a restricted-range semaphore.
5273//   -1 : thread is blocked, i.e. there is a waiter
5274//    0 : neutral: thread is running or ready,
5275//        could have been signaled after a wait started
5276//    1 : signaled - thread is running or ready
5277//
5278// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5279// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5280// For specifics regarding the bug see GLIBC BUGID 261237 :
5281//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5282// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5283// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5284// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5285// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5286// and monitorenter when we're using 1-0 locking.  All those operations may result in
5287// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5288// of libpthread avoids the problem, but isn't practical.
5289//
5290// Possible remedies:
5291//
5292// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5293//      This is palliative and probabilistic, however.  If the thread is preempted
5294//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5295//      than the minimum period may have passed, and the abstime may be stale (in the
5296//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5297//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5298//
5299// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5300//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5301//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5302//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5303//      thread.
5304//
5305// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5306//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5307//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5308//      This also works well.  In fact it avoids kernel-level scalability impediments
5309//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5310//      timers in a graceful fashion.
5311//
5312// 4.   When the abstime value is in the past it appears that control returns
5313//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5314//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5315//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5316//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5317//      It may be possible to avoid reinitialization by checking the return
5318//      value from pthread_cond_timedwait().  In addition to reinitializing the
5319//      condvar we must establish the invariant that cond_signal() is only called
5320//      within critical sections protected by the adjunct mutex.  This prevents
5321//      cond_signal() from "seeing" a condvar that's in the midst of being
5322//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5323//      desirable signal-after-unlock optimization that avoids futile context switching.
5324//
5325//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5326//      structure when a condvar is used or initialized.  cond_destroy()  would
5327//      release the helper structure.  Our reinitialize-after-timedwait fix
5328//      put excessive stress on malloc/free and locks protecting the c-heap.
5329//
5330// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5331// It may be possible to refine (4) by checking the kernel and NTPL verisons
5332// and only enabling the work-around for vulnerable environments.
5333
5334// utility to compute the abstime argument to timedwait:
5335// millis is the relative timeout time
5336// abstime will be the absolute timeout time
5337// TODO: replace compute_abstime() with unpackTime()
5338
5339static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5340  if (millis < 0)  millis = 0;
5341
5342  jlong seconds = millis / 1000;
5343  millis %= 1000;
5344  if (seconds > 50000000) { // see man cond_timedwait(3T)
5345    seconds = 50000000;
5346  }
5347
5348  if (os::supports_monotonic_clock()) {
5349    struct timespec now;
5350    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5351    assert_status(status == 0, status, "clock_gettime");
5352    abstime->tv_sec = now.tv_sec  + seconds;
5353    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5354    if (nanos >= NANOSECS_PER_SEC) {
5355      abstime->tv_sec += 1;
5356      nanos -= NANOSECS_PER_SEC;
5357    }
5358    abstime->tv_nsec = nanos;
5359  } else {
5360    struct timeval now;
5361    int status = gettimeofday(&now, NULL);
5362    assert(status == 0, "gettimeofday");
5363    abstime->tv_sec = now.tv_sec  + seconds;
5364    long usec = now.tv_usec + millis * 1000;
5365    if (usec >= 1000000) {
5366      abstime->tv_sec += 1;
5367      usec -= 1000000;
5368    }
5369    abstime->tv_nsec = usec * 1000;
5370  }
5371  return abstime;
5372}
5373
5374void os::PlatformEvent::park() {       // AKA "down()"
5375  // Transitions for _Event:
5376  //   -1 => -1 : illegal
5377  //    1 =>  0 : pass - return immediately
5378  //    0 => -1 : block; then set _Event to 0 before returning
5379
5380  // Invariant: Only the thread associated with the Event/PlatformEvent
5381  // may call park().
5382  // TODO: assert that _Assoc != NULL or _Assoc == Self
5383  assert(_nParked == 0, "invariant");
5384
5385  int v;
5386  for (;;) {
5387    v = _Event;
5388    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5389  }
5390  guarantee(v >= 0, "invariant");
5391  if (v == 0) {
5392    // Do this the hard way by blocking ...
5393    int status = pthread_mutex_lock(_mutex);
5394    assert_status(status == 0, status, "mutex_lock");
5395    guarantee(_nParked == 0, "invariant");
5396    ++_nParked;
5397    while (_Event < 0) {
5398      status = pthread_cond_wait(_cond, _mutex);
5399      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5400      // Treat this the same as if the wait was interrupted
5401      if (status == ETIME) { status = EINTR; }
5402      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5403    }
5404    --_nParked;
5405
5406    _Event = 0;
5407    status = pthread_mutex_unlock(_mutex);
5408    assert_status(status == 0, status, "mutex_unlock");
5409    // Paranoia to ensure our locked and lock-free paths interact
5410    // correctly with each other.
5411    OrderAccess::fence();
5412  }
5413  guarantee(_Event >= 0, "invariant");
5414}
5415
5416int os::PlatformEvent::park(jlong millis) {
5417  // Transitions for _Event:
5418  //   -1 => -1 : illegal
5419  //    1 =>  0 : pass - return immediately
5420  //    0 => -1 : block; then set _Event to 0 before returning
5421
5422  guarantee(_nParked == 0, "invariant");
5423
5424  int v;
5425  for (;;) {
5426    v = _Event;
5427    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5428  }
5429  guarantee(v >= 0, "invariant");
5430  if (v != 0) return OS_OK;
5431
5432  // We do this the hard way, by blocking the thread.
5433  // Consider enforcing a minimum timeout value.
5434  struct timespec abst;
5435  compute_abstime(&abst, millis);
5436
5437  int ret = OS_TIMEOUT;
5438  int status = pthread_mutex_lock(_mutex);
5439  assert_status(status == 0, status, "mutex_lock");
5440  guarantee(_nParked == 0, "invariant");
5441  ++_nParked;
5442
5443  // Object.wait(timo) will return because of
5444  // (a) notification
5445  // (b) timeout
5446  // (c) thread.interrupt
5447  //
5448  // Thread.interrupt and object.notify{All} both call Event::set.
5449  // That is, we treat thread.interrupt as a special case of notification.
5450  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5451  // We assume all ETIME returns are valid.
5452  //
5453  // TODO: properly differentiate simultaneous notify+interrupt.
5454  // In that case, we should propagate the notify to another waiter.
5455
5456  while (_Event < 0) {
5457    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5458    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5459      pthread_cond_destroy(_cond);
5460      pthread_cond_init(_cond, os::Linux::condAttr());
5461    }
5462    assert_status(status == 0 || status == EINTR ||
5463                  status == ETIME || status == ETIMEDOUT,
5464                  status, "cond_timedwait");
5465    if (!FilterSpuriousWakeups) break;                 // previous semantics
5466    if (status == ETIME || status == ETIMEDOUT) break;
5467    // We consume and ignore EINTR and spurious wakeups.
5468  }
5469  --_nParked;
5470  if (_Event >= 0) {
5471    ret = OS_OK;
5472  }
5473  _Event = 0;
5474  status = pthread_mutex_unlock(_mutex);
5475  assert_status(status == 0, status, "mutex_unlock");
5476  assert(_nParked == 0, "invariant");
5477  // Paranoia to ensure our locked and lock-free paths interact
5478  // correctly with each other.
5479  OrderAccess::fence();
5480  return ret;
5481}
5482
5483void os::PlatformEvent::unpark() {
5484  // Transitions for _Event:
5485  //    0 => 1 : just return
5486  //    1 => 1 : just return
5487  //   -1 => either 0 or 1; must signal target thread
5488  //         That is, we can safely transition _Event from -1 to either
5489  //         0 or 1.
5490  // See also: "Semaphores in Plan 9" by Mullender & Cox
5491  //
5492  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5493  // that it will take two back-to-back park() calls for the owning
5494  // thread to block. This has the benefit of forcing a spurious return
5495  // from the first park() call after an unpark() call which will help
5496  // shake out uses of park() and unpark() without condition variables.
5497
5498  if (Atomic::xchg(1, &_Event) >= 0) return;
5499
5500  // Wait for the thread associated with the event to vacate
5501  int status = pthread_mutex_lock(_mutex);
5502  assert_status(status == 0, status, "mutex_lock");
5503  int AnyWaiters = _nParked;
5504  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5505  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5506    AnyWaiters = 0;
5507    pthread_cond_signal(_cond);
5508  }
5509  status = pthread_mutex_unlock(_mutex);
5510  assert_status(status == 0, status, "mutex_unlock");
5511  if (AnyWaiters != 0) {
5512    // Note that we signal() *after* dropping the lock for "immortal" Events.
5513    // This is safe and avoids a common class of  futile wakeups.  In rare
5514    // circumstances this can cause a thread to return prematurely from
5515    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5516    // will simply re-test the condition and re-park itself.
5517    // This provides particular benefit if the underlying platform does not
5518    // provide wait morphing.
5519    status = pthread_cond_signal(_cond);
5520    assert_status(status == 0, status, "cond_signal");
5521  }
5522}
5523
5524
5525// JSR166
5526// -------------------------------------------------------
5527
5528// The solaris and linux implementations of park/unpark are fairly
5529// conservative for now, but can be improved. They currently use a
5530// mutex/condvar pair, plus a a count.
5531// Park decrements count if > 0, else does a condvar wait.  Unpark
5532// sets count to 1 and signals condvar.  Only one thread ever waits
5533// on the condvar. Contention seen when trying to park implies that someone
5534// is unparking you, so don't wait. And spurious returns are fine, so there
5535// is no need to track notifications.
5536
5537// This code is common to linux and solaris and will be moved to a
5538// common place in dolphin.
5539//
5540// The passed in time value is either a relative time in nanoseconds
5541// or an absolute time in milliseconds. Either way it has to be unpacked
5542// into suitable seconds and nanoseconds components and stored in the
5543// given timespec structure.
5544// Given time is a 64-bit value and the time_t used in the timespec is only
5545// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5546// overflow if times way in the future are given. Further on Solaris versions
5547// prior to 10 there is a restriction (see cond_timedwait) that the specified
5548// number of seconds, in abstime, is less than current_time  + 100,000,000.
5549// As it will be 28 years before "now + 100000000" will overflow we can
5550// ignore overflow and just impose a hard-limit on seconds using the value
5551// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5552// years from "now".
5553
5554static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5555  assert(time > 0, "convertTime");
5556  time_t max_secs = 0;
5557
5558  if (!os::supports_monotonic_clock() || isAbsolute) {
5559    struct timeval now;
5560    int status = gettimeofday(&now, NULL);
5561    assert(status == 0, "gettimeofday");
5562
5563    max_secs = now.tv_sec + MAX_SECS;
5564
5565    if (isAbsolute) {
5566      jlong secs = time / 1000;
5567      if (secs > max_secs) {
5568        absTime->tv_sec = max_secs;
5569      } else {
5570        absTime->tv_sec = secs;
5571      }
5572      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5573    } else {
5574      jlong secs = time / NANOSECS_PER_SEC;
5575      if (secs >= MAX_SECS) {
5576        absTime->tv_sec = max_secs;
5577        absTime->tv_nsec = 0;
5578      } else {
5579        absTime->tv_sec = now.tv_sec + secs;
5580        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5581        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5582          absTime->tv_nsec -= NANOSECS_PER_SEC;
5583          ++absTime->tv_sec; // note: this must be <= max_secs
5584        }
5585      }
5586    }
5587  } else {
5588    // must be relative using monotonic clock
5589    struct timespec now;
5590    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5591    assert_status(status == 0, status, "clock_gettime");
5592    max_secs = now.tv_sec + MAX_SECS;
5593    jlong secs = time / NANOSECS_PER_SEC;
5594    if (secs >= MAX_SECS) {
5595      absTime->tv_sec = max_secs;
5596      absTime->tv_nsec = 0;
5597    } else {
5598      absTime->tv_sec = now.tv_sec + secs;
5599      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5600      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5601        absTime->tv_nsec -= NANOSECS_PER_SEC;
5602        ++absTime->tv_sec; // note: this must be <= max_secs
5603      }
5604    }
5605  }
5606  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5607  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5608  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5609  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5610}
5611
5612void Parker::park(bool isAbsolute, jlong time) {
5613  // Ideally we'd do something useful while spinning, such
5614  // as calling unpackTime().
5615
5616  // Optional fast-path check:
5617  // Return immediately if a permit is available.
5618  // We depend on Atomic::xchg() having full barrier semantics
5619  // since we are doing a lock-free update to _counter.
5620  if (Atomic::xchg(0, &_counter) > 0) return;
5621
5622  Thread* thread = Thread::current();
5623  assert(thread->is_Java_thread(), "Must be JavaThread");
5624  JavaThread *jt = (JavaThread *)thread;
5625
5626  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5627  // Check interrupt before trying to wait
5628  if (Thread::is_interrupted(thread, false)) {
5629    return;
5630  }
5631
5632  // Next, demultiplex/decode time arguments
5633  timespec absTime;
5634  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5635    return;
5636  }
5637  if (time > 0) {
5638    unpackTime(&absTime, isAbsolute, time);
5639  }
5640
5641
5642  // Enter safepoint region
5643  // Beware of deadlocks such as 6317397.
5644  // The per-thread Parker:: mutex is a classic leaf-lock.
5645  // In particular a thread must never block on the Threads_lock while
5646  // holding the Parker:: mutex.  If safepoints are pending both the
5647  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5648  ThreadBlockInVM tbivm(jt);
5649
5650  // Don't wait if cannot get lock since interference arises from
5651  // unblocking.  Also. check interrupt before trying wait
5652  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5653    return;
5654  }
5655
5656  int status;
5657  if (_counter > 0)  { // no wait needed
5658    _counter = 0;
5659    status = pthread_mutex_unlock(_mutex);
5660    assert(status == 0, "invariant");
5661    // Paranoia to ensure our locked and lock-free paths interact
5662    // correctly with each other and Java-level accesses.
5663    OrderAccess::fence();
5664    return;
5665  }
5666
5667#ifdef ASSERT
5668  // Don't catch signals while blocked; let the running threads have the signals.
5669  // (This allows a debugger to break into the running thread.)
5670  sigset_t oldsigs;
5671  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5672  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5673#endif
5674
5675  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5676  jt->set_suspend_equivalent();
5677  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5678
5679  assert(_cur_index == -1, "invariant");
5680  if (time == 0) {
5681    _cur_index = REL_INDEX; // arbitrary choice when not timed
5682    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5683  } else {
5684    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5685    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5686    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5687      pthread_cond_destroy(&_cond[_cur_index]);
5688      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5689    }
5690  }
5691  _cur_index = -1;
5692  assert_status(status == 0 || status == EINTR ||
5693                status == ETIME || status == ETIMEDOUT,
5694                status, "cond_timedwait");
5695
5696#ifdef ASSERT
5697  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5698#endif
5699
5700  _counter = 0;
5701  status = pthread_mutex_unlock(_mutex);
5702  assert_status(status == 0, status, "invariant");
5703  // Paranoia to ensure our locked and lock-free paths interact
5704  // correctly with each other and Java-level accesses.
5705  OrderAccess::fence();
5706
5707  // If externally suspended while waiting, re-suspend
5708  if (jt->handle_special_suspend_equivalent_condition()) {
5709    jt->java_suspend_self();
5710  }
5711}
5712
5713void Parker::unpark() {
5714  int status = pthread_mutex_lock(_mutex);
5715  assert(status == 0, "invariant");
5716  const int s = _counter;
5717  _counter = 1;
5718  if (s < 1) {
5719    // thread might be parked
5720    if (_cur_index != -1) {
5721      // thread is definitely parked
5722      if (WorkAroundNPTLTimedWaitHang) {
5723        status = pthread_cond_signal(&_cond[_cur_index]);
5724        assert(status == 0, "invariant");
5725        status = pthread_mutex_unlock(_mutex);
5726        assert(status == 0, "invariant");
5727      } else {
5728        status = pthread_mutex_unlock(_mutex);
5729        assert(status == 0, "invariant");
5730        status = pthread_cond_signal(&_cond[_cur_index]);
5731        assert(status == 0, "invariant");
5732      }
5733    } else {
5734      pthread_mutex_unlock(_mutex);
5735      assert(status == 0, "invariant");
5736    }
5737  } else {
5738    pthread_mutex_unlock(_mutex);
5739    assert(status == 0, "invariant");
5740  }
5741}
5742
5743
5744extern char** environ;
5745
5746// Run the specified command in a separate process. Return its exit value,
5747// or -1 on failure (e.g. can't fork a new process).
5748// Unlike system(), this function can be called from signal handler. It
5749// doesn't block SIGINT et al.
5750int os::fork_and_exec(char* cmd) {
5751  const char * argv[4] = {"sh", "-c", cmd, NULL};
5752
5753  pid_t pid = fork();
5754
5755  if (pid < 0) {
5756    // fork failed
5757    return -1;
5758
5759  } else if (pid == 0) {
5760    // child process
5761
5762    execve("/bin/sh", (char* const*)argv, environ);
5763
5764    // execve failed
5765    _exit(-1);
5766
5767  } else  {
5768    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5769    // care about the actual exit code, for now.
5770
5771    int status;
5772
5773    // Wait for the child process to exit.  This returns immediately if
5774    // the child has already exited. */
5775    while (waitpid(pid, &status, 0) < 0) {
5776      switch (errno) {
5777      case ECHILD: return 0;
5778      case EINTR: break;
5779      default: return -1;
5780      }
5781    }
5782
5783    if (WIFEXITED(status)) {
5784      // The child exited normally; get its exit code.
5785      return WEXITSTATUS(status);
5786    } else if (WIFSIGNALED(status)) {
5787      // The child exited because of a signal
5788      // The best value to return is 0x80 + signal number,
5789      // because that is what all Unix shells do, and because
5790      // it allows callers to distinguish between process exit and
5791      // process death by signal.
5792      return 0x80 + WTERMSIG(status);
5793    } else {
5794      // Unknown exit code; pass it through
5795      return status;
5796    }
5797  }
5798}
5799
5800// is_headless_jre()
5801//
5802// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5803// in order to report if we are running in a headless jre
5804//
5805// Since JDK8 xawt/libmawt.so was moved into the same directory
5806// as libawt.so, and renamed libawt_xawt.so
5807//
5808bool os::is_headless_jre() {
5809  struct stat statbuf;
5810  char buf[MAXPATHLEN];
5811  char libmawtpath[MAXPATHLEN];
5812  const char *xawtstr  = "/xawt/libmawt.so";
5813  const char *new_xawtstr = "/libawt_xawt.so";
5814  char *p;
5815
5816  // Get path to libjvm.so
5817  os::jvm_path(buf, sizeof(buf));
5818
5819  // Get rid of libjvm.so
5820  p = strrchr(buf, '/');
5821  if (p == NULL) {
5822    return false;
5823  } else {
5824    *p = '\0';
5825  }
5826
5827  // Get rid of client or server
5828  p = strrchr(buf, '/');
5829  if (p == NULL) {
5830    return false;
5831  } else {
5832    *p = '\0';
5833  }
5834
5835  // check xawt/libmawt.so
5836  strcpy(libmawtpath, buf);
5837  strcat(libmawtpath, xawtstr);
5838  if (::stat(libmawtpath, &statbuf) == 0) return false;
5839
5840  // check libawt_xawt.so
5841  strcpy(libmawtpath, buf);
5842  strcat(libmawtpath, new_xawtstr);
5843  if (::stat(libmawtpath, &statbuf) == 0) return false;
5844
5845  return true;
5846}
5847
5848// Get the default path to the core file
5849// Returns the length of the string
5850int os::get_core_path(char* buffer, size_t bufferSize) {
5851  /*
5852   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5853   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5854   */
5855  const int core_pattern_len = 129;
5856  char core_pattern[core_pattern_len] = {0};
5857
5858  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5859  if (core_pattern_file != -1) {
5860    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5861    ::close(core_pattern_file);
5862
5863    if (ret > 0) {
5864      char *last_char = core_pattern + strlen(core_pattern) - 1;
5865
5866      if (*last_char == '\n') {
5867        *last_char = '\0';
5868      }
5869    }
5870  }
5871
5872  if (strlen(core_pattern) == 0) {
5873    return -1;
5874  }
5875
5876  char *pid_pos = strstr(core_pattern, "%p");
5877  int written;
5878
5879  if (core_pattern[0] == '/') {
5880    written = jio_snprintf(buffer, bufferSize, core_pattern);
5881  } else {
5882    char cwd[PATH_MAX];
5883
5884    const char* p = get_current_directory(cwd, PATH_MAX);
5885    if (p == NULL) {
5886      return -1;
5887    }
5888
5889    if (core_pattern[0] == '|') {
5890      written = jio_snprintf(buffer, bufferSize,
5891                        "\"%s\" (or dumping to %s/core.%d)",
5892                                     &core_pattern[1], p, current_process_id());
5893    } else {
5894      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5895    }
5896  }
5897
5898  if (written < 0) {
5899    return -1;
5900  }
5901
5902  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5903    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5904
5905    if (core_uses_pid_file != -1) {
5906      char core_uses_pid = 0;
5907      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5908      ::close(core_uses_pid_file);
5909
5910      if (core_uses_pid == '1') {
5911        jio_snprintf(buffer + written, bufferSize - written,
5912                                          ".%d", current_process_id());
5913      }
5914    }
5915  }
5916
5917  return strlen(buffer);
5918}
5919
5920/////////////// Unit tests ///////////////
5921
5922#ifndef PRODUCT
5923
5924#define test_log(...)              \
5925  do {                             \
5926    if (VerboseInternalVMTests) {  \
5927      tty->print_cr(__VA_ARGS__);  \
5928      tty->flush();                \
5929    }                              \
5930  } while (false)
5931
5932class TestReserveMemorySpecial : AllStatic {
5933 public:
5934  static void small_page_write(void* addr, size_t size) {
5935    size_t page_size = os::vm_page_size();
5936
5937    char* end = (char*)addr + size;
5938    for (char* p = (char*)addr; p < end; p += page_size) {
5939      *p = 1;
5940    }
5941  }
5942
5943  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5944    if (!UseHugeTLBFS) {
5945      return;
5946    }
5947
5948    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5949
5950    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5951
5952    if (addr != NULL) {
5953      small_page_write(addr, size);
5954
5955      os::Linux::release_memory_special_huge_tlbfs(addr, size);
5956    }
5957  }
5958
5959  static void test_reserve_memory_special_huge_tlbfs_only() {
5960    if (!UseHugeTLBFS) {
5961      return;
5962    }
5963
5964    size_t lp = os::large_page_size();
5965
5966    for (size_t size = lp; size <= lp * 10; size += lp) {
5967      test_reserve_memory_special_huge_tlbfs_only(size);
5968    }
5969  }
5970
5971  static void test_reserve_memory_special_huge_tlbfs_mixed() {
5972    size_t lp = os::large_page_size();
5973    size_t ag = os::vm_allocation_granularity();
5974
5975    // sizes to test
5976    const size_t sizes[] = {
5977      lp, lp + ag, lp + lp / 2, lp * 2,
5978      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5979      lp * 10, lp * 10 + lp / 2
5980    };
5981    const int num_sizes = sizeof(sizes) / sizeof(size_t);
5982
5983    // For each size/alignment combination, we test three scenarios:
5984    // 1) with req_addr == NULL
5985    // 2) with a non-null req_addr at which we expect to successfully allocate
5986    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5987    //    expect the allocation to either fail or to ignore req_addr
5988
5989    // Pre-allocate two areas; they shall be as large as the largest allocation
5990    //  and aligned to the largest alignment we will be testing.
5991    const size_t mapping_size = sizes[num_sizes - 1] * 2;
5992    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5993      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5994      -1, 0);
5995    assert(mapping1 != MAP_FAILED, "should work");
5996
5997    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5998      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5999      -1, 0);
6000    assert(mapping2 != MAP_FAILED, "should work");
6001
6002    // Unmap the first mapping, but leave the second mapping intact: the first
6003    // mapping will serve as a value for a "good" req_addr (case 2). The second
6004    // mapping, still intact, as "bad" req_addr (case 3).
6005    ::munmap(mapping1, mapping_size);
6006
6007    // Case 1
6008    test_log("%s, req_addr NULL:", __FUNCTION__);
6009    test_log("size            align           result");
6010
6011    for (int i = 0; i < num_sizes; i++) {
6012      const size_t size = sizes[i];
6013      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6014        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6015        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6016            size, alignment, p, (p != NULL ? "" : "(failed)"));
6017        if (p != NULL) {
6018          assert(is_ptr_aligned(p, alignment), "must be");
6019          small_page_write(p, size);
6020          os::Linux::release_memory_special_huge_tlbfs(p, size);
6021        }
6022      }
6023    }
6024
6025    // Case 2
6026    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6027    test_log("size            align           req_addr         result");
6028
6029    for (int i = 0; i < num_sizes; i++) {
6030      const size_t size = sizes[i];
6031      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6032        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6033        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6034        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6035            size, alignment, req_addr, p,
6036            ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6037        if (p != NULL) {
6038          assert(p == req_addr, "must be");
6039          small_page_write(p, size);
6040          os::Linux::release_memory_special_huge_tlbfs(p, size);
6041        }
6042      }
6043    }
6044
6045    // Case 3
6046    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6047    test_log("size            align           req_addr         result");
6048
6049    for (int i = 0; i < num_sizes; i++) {
6050      const size_t size = sizes[i];
6051      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6052        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6053        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6054        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6055            size, alignment, req_addr, p,
6056            ((p != NULL ? "" : "(failed)")));
6057        // as the area around req_addr contains already existing mappings, the API should always
6058        // return NULL (as per contract, it cannot return another address)
6059        assert(p == NULL, "must be");
6060      }
6061    }
6062
6063    ::munmap(mapping2, mapping_size);
6064
6065  }
6066
6067  static void test_reserve_memory_special_huge_tlbfs() {
6068    if (!UseHugeTLBFS) {
6069      return;
6070    }
6071
6072    test_reserve_memory_special_huge_tlbfs_only();
6073    test_reserve_memory_special_huge_tlbfs_mixed();
6074  }
6075
6076  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6077    if (!UseSHM) {
6078      return;
6079    }
6080
6081    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6082
6083    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6084
6085    if (addr != NULL) {
6086      assert(is_ptr_aligned(addr, alignment), "Check");
6087      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6088
6089      small_page_write(addr, size);
6090
6091      os::Linux::release_memory_special_shm(addr, size);
6092    }
6093  }
6094
6095  static void test_reserve_memory_special_shm() {
6096    size_t lp = os::large_page_size();
6097    size_t ag = os::vm_allocation_granularity();
6098
6099    for (size_t size = ag; size < lp * 3; size += ag) {
6100      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6101        test_reserve_memory_special_shm(size, alignment);
6102      }
6103    }
6104  }
6105
6106  static void test() {
6107    test_reserve_memory_special_huge_tlbfs();
6108    test_reserve_memory_special_shm();
6109  }
6110};
6111
6112void TestReserveMemorySpecial_test() {
6113  TestReserveMemorySpecial::test();
6114}
6115
6116#endif
6117