os_linux.cpp revision 8555:c30414cbbd88
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/macros.hpp"
72#include "utilities/vmError.hpp"
73
74// put OS-includes here
75# include <sys/types.h>
76# include <sys/mman.h>
77# include <sys/stat.h>
78# include <sys/select.h>
79# include <pthread.h>
80# include <signal.h>
81# include <errno.h>
82# include <dlfcn.h>
83# include <stdio.h>
84# include <unistd.h>
85# include <sys/resource.h>
86# include <pthread.h>
87# include <sys/stat.h>
88# include <sys/time.h>
89# include <sys/times.h>
90# include <sys/utsname.h>
91# include <sys/socket.h>
92# include <sys/wait.h>
93# include <pwd.h>
94# include <poll.h>
95# include <semaphore.h>
96# include <fcntl.h>
97# include <string.h>
98# include <syscall.h>
99# include <sys/sysinfo.h>
100# include <gnu/libc-version.h>
101# include <sys/ipc.h>
102# include <sys/shm.h>
103# include <link.h>
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107
108PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
109
110// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
111// getrusage() is prepared to handle the associated failure.
112#ifndef RUSAGE_THREAD
113  #define RUSAGE_THREAD   (1)               /* only the calling thread */
114#endif
115
116#define MAX_PATH    (2 * K)
117
118#define MAX_SECS 100000000
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123#define LARGEPAGES_BIT (1 << 6)
124////////////////////////////////////////////////////////////////////////////////
125// global variables
126julong os::Linux::_physical_memory = 0;
127
128address   os::Linux::_initial_thread_stack_bottom = NULL;
129uintptr_t os::Linux::_initial_thread_stack_size   = 0;
130
131int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
133int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
134Mutex* os::Linux::_createThread_lock = NULL;
135pthread_t os::Linux::_main_thread;
136int os::Linux::_page_size = -1;
137const int os::Linux::_vm_default_page_size = (8 * K);
138bool os::Linux::_is_floating_stack = false;
139bool os::Linux::_is_NPTL = false;
140bool os::Linux::_supports_fast_thread_cpu_time = false;
141const char * os::Linux::_glibc_version = NULL;
142const char * os::Linux::_libpthread_version = NULL;
143pthread_condattr_t os::Linux::_condattr[1];
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161// Declarations
162static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
163
164// utility functions
165
166static int SR_initialize();
167
168julong os::available_memory() {
169  return Linux::available_memory();
170}
171
172julong os::Linux::available_memory() {
173  // values in struct sysinfo are "unsigned long"
174  struct sysinfo si;
175  sysinfo(&si);
176
177  return (julong)si.freeram * si.mem_unit;
178}
179
180julong os::physical_memory() {
181  return Linux::physical_memory();
182}
183
184// Return true if user is running as root.
185
186bool os::have_special_privileges() {
187  static bool init = false;
188  static bool privileges = false;
189  if (!init) {
190    privileges = (getuid() != geteuid()) || (getgid() != getegid());
191    init = true;
192  }
193  return privileges;
194}
195
196
197#ifndef SYS_gettid
198// i386: 224, ia64: 1105, amd64: 186, sparc 143
199  #ifdef __ia64__
200    #define SYS_gettid 1105
201  #else
202    #ifdef __i386__
203      #define SYS_gettid 224
204    #else
205      #ifdef __amd64__
206        #define SYS_gettid 186
207      #else
208        #ifdef __sparc__
209          #define SYS_gettid 143
210        #else
211          #error define gettid for the arch
212        #endif
213      #endif
214    #endif
215  #endif
216#endif
217
218// Cpu architecture string
219static char cpu_arch[] = HOTSPOT_LIB_ARCH;
220
221
222// pid_t gettid()
223//
224// Returns the kernel thread id of the currently running thread. Kernel
225// thread id is used to access /proc.
226//
227// (Note that getpid() on LinuxThreads returns kernel thread id too; but
228// on NPTL, it returns the same pid for all threads, as required by POSIX.)
229//
230pid_t os::Linux::gettid() {
231  int rslt = syscall(SYS_gettid);
232  if (rslt == -1) {
233    // old kernel, no NPTL support
234    return getpid();
235  } else {
236    return (pid_t)rslt;
237  }
238}
239
240// Most versions of linux have a bug where the number of processors are
241// determined by looking at the /proc file system.  In a chroot environment,
242// the system call returns 1.  This causes the VM to act as if it is
243// a single processor and elide locking (see is_MP() call).
244static bool unsafe_chroot_detected = false;
245static const char *unstable_chroot_error = "/proc file system not found.\n"
246                     "Java may be unstable running multithreaded in a chroot "
247                     "environment on Linux when /proc filesystem is not mounted.";
248
249void os::Linux::initialize_system_info() {
250  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
251  if (processor_count() == 1) {
252    pid_t pid = os::Linux::gettid();
253    char fname[32];
254    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
255    FILE *fp = fopen(fname, "r");
256    if (fp == NULL) {
257      unsafe_chroot_detected = true;
258    } else {
259      fclose(fp);
260    }
261  }
262  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
263  assert(processor_count() > 0, "linux error");
264}
265
266void os::init_system_properties_values() {
267  // The next steps are taken in the product version:
268  //
269  // Obtain the JAVA_HOME value from the location of libjvm.so.
270  // This library should be located at:
271  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
272  //
273  // If "/jre/lib/" appears at the right place in the path, then we
274  // assume libjvm.so is installed in a JDK and we use this path.
275  //
276  // Otherwise exit with message: "Could not create the Java virtual machine."
277  //
278  // The following extra steps are taken in the debugging version:
279  //
280  // If "/jre/lib/" does NOT appear at the right place in the path
281  // instead of exit check for $JAVA_HOME environment variable.
282  //
283  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
284  // then we append a fake suffix "hotspot/libjvm.so" to this path so
285  // it looks like libjvm.so is installed there
286  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
287  //
288  // Otherwise exit.
289  //
290  // Important note: if the location of libjvm.so changes this
291  // code needs to be changed accordingly.
292
293  // See ld(1):
294  //      The linker uses the following search paths to locate required
295  //      shared libraries:
296  //        1: ...
297  //        ...
298  //        7: The default directories, normally /lib and /usr/lib.
299#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
300  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
301#else
302  #define DEFAULT_LIBPATH "/lib:/usr/lib"
303#endif
304
305// Base path of extensions installed on the system.
306#define SYS_EXT_DIR     "/usr/java/packages"
307#define EXTENSIONS_DIR  "/lib/ext"
308
309  // Buffer that fits several sprintfs.
310  // Note that the space for the colon and the trailing null are provided
311  // by the nulls included by the sizeof operator.
312  const size_t bufsize =
313    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
314         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
315  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
316
317  // sysclasspath, java_home, dll_dir
318  {
319    char *pslash;
320    os::jvm_path(buf, bufsize);
321
322    // Found the full path to libjvm.so.
323    // Now cut the path to <java_home>/jre if we can.
324    pslash = strrchr(buf, '/');
325    if (pslash != NULL) {
326      *pslash = '\0';            // Get rid of /libjvm.so.
327    }
328    pslash = strrchr(buf, '/');
329    if (pslash != NULL) {
330      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
331    }
332    Arguments::set_dll_dir(buf);
333
334    if (pslash != NULL) {
335      pslash = strrchr(buf, '/');
336      if (pslash != NULL) {
337        *pslash = '\0';          // Get rid of /<arch>.
338        pslash = strrchr(buf, '/');
339        if (pslash != NULL) {
340          *pslash = '\0';        // Get rid of /lib.
341        }
342      }
343    }
344    Arguments::set_java_home(buf);
345    set_boot_path('/', ':');
346  }
347
348  // Where to look for native libraries.
349  //
350  // Note: Due to a legacy implementation, most of the library path
351  // is set in the launcher. This was to accomodate linking restrictions
352  // on legacy Linux implementations (which are no longer supported).
353  // Eventually, all the library path setting will be done here.
354  //
355  // However, to prevent the proliferation of improperly built native
356  // libraries, the new path component /usr/java/packages is added here.
357  // Eventually, all the library path setting will be done here.
358  {
359    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
360    // should always exist (until the legacy problem cited above is
361    // addressed).
362    const char *v = ::getenv("LD_LIBRARY_PATH");
363    const char *v_colon = ":";
364    if (v == NULL) { v = ""; v_colon = ""; }
365    // That's +1 for the colon and +1 for the trailing '\0'.
366    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
367                                                     strlen(v) + 1 +
368                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
369                                                     mtInternal);
370    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
371    Arguments::set_library_path(ld_library_path);
372    FREE_C_HEAP_ARRAY(char, ld_library_path);
373  }
374
375  // Extensions directories.
376  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
377  Arguments::set_ext_dirs(buf);
378
379  FREE_C_HEAP_ARRAY(char, buf);
380
381#undef DEFAULT_LIBPATH
382#undef SYS_EXT_DIR
383#undef EXTENSIONS_DIR
384}
385
386////////////////////////////////////////////////////////////////////////////////
387// breakpoint support
388
389void os::breakpoint() {
390  BREAKPOINT;
391}
392
393extern "C" void breakpoint() {
394  // use debugger to set breakpoint here
395}
396
397////////////////////////////////////////////////////////////////////////////////
398// signal support
399
400debug_only(static bool signal_sets_initialized = false);
401static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
402
403bool os::Linux::is_sig_ignored(int sig) {
404  struct sigaction oact;
405  sigaction(sig, (struct sigaction*)NULL, &oact);
406  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
407                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
408  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
409    return true;
410  } else {
411    return false;
412  }
413}
414
415void os::Linux::signal_sets_init() {
416  // Should also have an assertion stating we are still single-threaded.
417  assert(!signal_sets_initialized, "Already initialized");
418  // Fill in signals that are necessarily unblocked for all threads in
419  // the VM. Currently, we unblock the following signals:
420  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
421  //                         by -Xrs (=ReduceSignalUsage));
422  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
423  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
424  // the dispositions or masks wrt these signals.
425  // Programs embedding the VM that want to use the above signals for their
426  // own purposes must, at this time, use the "-Xrs" option to prevent
427  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
428  // (See bug 4345157, and other related bugs).
429  // In reality, though, unblocking these signals is really a nop, since
430  // these signals are not blocked by default.
431  sigemptyset(&unblocked_sigs);
432  sigemptyset(&allowdebug_blocked_sigs);
433  sigaddset(&unblocked_sigs, SIGILL);
434  sigaddset(&unblocked_sigs, SIGSEGV);
435  sigaddset(&unblocked_sigs, SIGBUS);
436  sigaddset(&unblocked_sigs, SIGFPE);
437#if defined(PPC64)
438  sigaddset(&unblocked_sigs, SIGTRAP);
439#endif
440  sigaddset(&unblocked_sigs, SR_signum);
441
442  if (!ReduceSignalUsage) {
443    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
444      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
445      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
446    }
447    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
448      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
449      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
450    }
451    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
452      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
453      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
454    }
455  }
456  // Fill in signals that are blocked by all but the VM thread.
457  sigemptyset(&vm_sigs);
458  if (!ReduceSignalUsage) {
459    sigaddset(&vm_sigs, BREAK_SIGNAL);
460  }
461  debug_only(signal_sets_initialized = true);
462
463}
464
465// These are signals that are unblocked while a thread is running Java.
466// (For some reason, they get blocked by default.)
467sigset_t* os::Linux::unblocked_signals() {
468  assert(signal_sets_initialized, "Not initialized");
469  return &unblocked_sigs;
470}
471
472// These are the signals that are blocked while a (non-VM) thread is
473// running Java. Only the VM thread handles these signals.
474sigset_t* os::Linux::vm_signals() {
475  assert(signal_sets_initialized, "Not initialized");
476  return &vm_sigs;
477}
478
479// These are signals that are blocked during cond_wait to allow debugger in
480sigset_t* os::Linux::allowdebug_blocked_signals() {
481  assert(signal_sets_initialized, "Not initialized");
482  return &allowdebug_blocked_sigs;
483}
484
485void os::Linux::hotspot_sigmask(Thread* thread) {
486
487  //Save caller's signal mask before setting VM signal mask
488  sigset_t caller_sigmask;
489  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
490
491  OSThread* osthread = thread->osthread();
492  osthread->set_caller_sigmask(caller_sigmask);
493
494  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
495
496  if (!ReduceSignalUsage) {
497    if (thread->is_VM_thread()) {
498      // Only the VM thread handles BREAK_SIGNAL ...
499      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
500    } else {
501      // ... all other threads block BREAK_SIGNAL
502      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
503    }
504  }
505}
506
507//////////////////////////////////////////////////////////////////////////////
508// detecting pthread library
509
510void os::Linux::libpthread_init() {
511  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
512  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
513  // generic name for earlier versions.
514  // Define macros here so we can build HotSpot on old systems.
515#ifndef _CS_GNU_LIBC_VERSION
516  #define _CS_GNU_LIBC_VERSION 2
517#endif
518#ifndef _CS_GNU_LIBPTHREAD_VERSION
519  #define _CS_GNU_LIBPTHREAD_VERSION 3
520#endif
521
522  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
523  if (n > 0) {
524    char *str = (char *)malloc(n, mtInternal);
525    confstr(_CS_GNU_LIBC_VERSION, str, n);
526    os::Linux::set_glibc_version(str);
527  } else {
528    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
529    static char _gnu_libc_version[32];
530    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
531                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
532    os::Linux::set_glibc_version(_gnu_libc_version);
533  }
534
535  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
536  if (n > 0) {
537    char *str = (char *)malloc(n, mtInternal);
538    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
539    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
540    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
541    // is the case. LinuxThreads has a hard limit on max number of threads.
542    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
543    // On the other hand, NPTL does not have such a limit, sysconf()
544    // will return -1 and errno is not changed. Check if it is really NPTL.
545    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
546        strstr(str, "NPTL") &&
547        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
548      free(str);
549      os::Linux::set_libpthread_version("linuxthreads");
550    } else {
551      os::Linux::set_libpthread_version(str);
552    }
553  } else {
554    // glibc before 2.3.2 only has LinuxThreads.
555    os::Linux::set_libpthread_version("linuxthreads");
556  }
557
558  if (strstr(libpthread_version(), "NPTL")) {
559    os::Linux::set_is_NPTL();
560  } else {
561    os::Linux::set_is_LinuxThreads();
562  }
563
564  // LinuxThreads have two flavors: floating-stack mode, which allows variable
565  // stack size; and fixed-stack mode. NPTL is always floating-stack.
566  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
567    os::Linux::set_is_floating_stack();
568  }
569}
570
571/////////////////////////////////////////////////////////////////////////////
572// thread stack
573
574// Force Linux kernel to expand current thread stack. If "bottom" is close
575// to the stack guard, caller should block all signals.
576//
577// MAP_GROWSDOWN:
578//   A special mmap() flag that is used to implement thread stacks. It tells
579//   kernel that the memory region should extend downwards when needed. This
580//   allows early versions of LinuxThreads to only mmap the first few pages
581//   when creating a new thread. Linux kernel will automatically expand thread
582//   stack as needed (on page faults).
583//
584//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
585//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
586//   region, it's hard to tell if the fault is due to a legitimate stack
587//   access or because of reading/writing non-exist memory (e.g. buffer
588//   overrun). As a rule, if the fault happens below current stack pointer,
589//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
590//   application (see Linux kernel fault.c).
591//
592//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
593//   stack overflow detection.
594//
595//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
596//   not use this flag. However, the stack of initial thread is not created
597//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
598//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
599//   and then attach the thread to JVM.
600//
601// To get around the problem and allow stack banging on Linux, we need to
602// manually expand thread stack after receiving the SIGSEGV.
603//
604// There are two ways to expand thread stack to address "bottom", we used
605// both of them in JVM before 1.5:
606//   1. adjust stack pointer first so that it is below "bottom", and then
607//      touch "bottom"
608//   2. mmap() the page in question
609//
610// Now alternate signal stack is gone, it's harder to use 2. For instance,
611// if current sp is already near the lower end of page 101, and we need to
612// call mmap() to map page 100, it is possible that part of the mmap() frame
613// will be placed in page 100. When page 100 is mapped, it is zero-filled.
614// That will destroy the mmap() frame and cause VM to crash.
615//
616// The following code works by adjusting sp first, then accessing the "bottom"
617// page to force a page fault. Linux kernel will then automatically expand the
618// stack mapping.
619//
620// _expand_stack_to() assumes its frame size is less than page size, which
621// should always be true if the function is not inlined.
622
623#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
624  #define NOINLINE
625#else
626  #define NOINLINE __attribute__ ((noinline))
627#endif
628
629static void _expand_stack_to(address bottom) NOINLINE;
630
631static void _expand_stack_to(address bottom) {
632  address sp;
633  size_t size;
634  volatile char *p;
635
636  // Adjust bottom to point to the largest address within the same page, it
637  // gives us a one-page buffer if alloca() allocates slightly more memory.
638  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
639  bottom += os::Linux::page_size() - 1;
640
641  // sp might be slightly above current stack pointer; if that's the case, we
642  // will alloca() a little more space than necessary, which is OK. Don't use
643  // os::current_stack_pointer(), as its result can be slightly below current
644  // stack pointer, causing us to not alloca enough to reach "bottom".
645  sp = (address)&sp;
646
647  if (sp > bottom) {
648    size = sp - bottom;
649    p = (volatile char *)alloca(size);
650    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
651    p[0] = '\0';
652  }
653}
654
655bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
656  assert(t!=NULL, "just checking");
657  assert(t->osthread()->expanding_stack(), "expand should be set");
658  assert(t->stack_base() != NULL, "stack_base was not initialized");
659
660  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
661    sigset_t mask_all, old_sigset;
662    sigfillset(&mask_all);
663    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
664    _expand_stack_to(addr);
665    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
666    return true;
667  }
668  return false;
669}
670
671//////////////////////////////////////////////////////////////////////////////
672// create new thread
673
674static address highest_vm_reserved_address();
675
676// check if it's safe to start a new thread
677static bool _thread_safety_check(Thread* thread) {
678  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
679    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
680    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
681    //   allocated (MAP_FIXED) from high address space. Every thread stack
682    //   occupies a fixed size slot (usually 2Mbytes, but user can change
683    //   it to other values if they rebuild LinuxThreads).
684    //
685    // Problem with MAP_FIXED is that mmap() can still succeed even part of
686    // the memory region has already been mmap'ed. That means if we have too
687    // many threads and/or very large heap, eventually thread stack will
688    // collide with heap.
689    //
690    // Here we try to prevent heap/stack collision by comparing current
691    // stack bottom with the highest address that has been mmap'ed by JVM
692    // plus a safety margin for memory maps created by native code.
693    //
694    // This feature can be disabled by setting ThreadSafetyMargin to 0
695    //
696    if (ThreadSafetyMargin > 0) {
697      address stack_bottom = os::current_stack_base() - os::current_stack_size();
698
699      // not safe if our stack extends below the safety margin
700      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
701    } else {
702      return true;
703    }
704  } else {
705    // Floating stack LinuxThreads or NPTL:
706    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
707    //   there's not enough space left, pthread_create() will fail. If we come
708    //   here, that means enough space has been reserved for stack.
709    return true;
710  }
711}
712
713// Thread start routine for all newly created threads
714static void *java_start(Thread *thread) {
715  // Try to randomize the cache line index of hot stack frames.
716  // This helps when threads of the same stack traces evict each other's
717  // cache lines. The threads can be either from the same JVM instance, or
718  // from different JVM instances. The benefit is especially true for
719  // processors with hyperthreading technology.
720  static int counter = 0;
721  int pid = os::current_process_id();
722  alloca(((pid ^ counter++) & 7) * 128);
723
724  ThreadLocalStorage::set_thread(thread);
725
726  OSThread* osthread = thread->osthread();
727  Monitor* sync = osthread->startThread_lock();
728
729  // non floating stack LinuxThreads needs extra check, see above
730  if (!_thread_safety_check(thread)) {
731    // notify parent thread
732    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
733    osthread->set_state(ZOMBIE);
734    sync->notify_all();
735    return NULL;
736  }
737
738  // thread_id is kernel thread id (similar to Solaris LWP id)
739  osthread->set_thread_id(os::Linux::gettid());
740
741  if (UseNUMA) {
742    int lgrp_id = os::numa_get_group_id();
743    if (lgrp_id != -1) {
744      thread->set_lgrp_id(lgrp_id);
745    }
746  }
747  // initialize signal mask for this thread
748  os::Linux::hotspot_sigmask(thread);
749
750  // initialize floating point control register
751  os::Linux::init_thread_fpu_state();
752
753  // handshaking with parent thread
754  {
755    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
756
757    // notify parent thread
758    osthread->set_state(INITIALIZED);
759    sync->notify_all();
760
761    // wait until os::start_thread()
762    while (osthread->get_state() == INITIALIZED) {
763      sync->wait(Mutex::_no_safepoint_check_flag);
764    }
765  }
766
767  // call one more level start routine
768  thread->run();
769
770  return 0;
771}
772
773bool os::create_thread(Thread* thread, ThreadType thr_type,
774                       size_t stack_size) {
775  assert(thread->osthread() == NULL, "caller responsible");
776
777  // Allocate the OSThread object
778  OSThread* osthread = new OSThread(NULL, NULL);
779  if (osthread == NULL) {
780    return false;
781  }
782
783  // set the correct thread state
784  osthread->set_thread_type(thr_type);
785
786  // Initial state is ALLOCATED but not INITIALIZED
787  osthread->set_state(ALLOCATED);
788
789  thread->set_osthread(osthread);
790
791  // init thread attributes
792  pthread_attr_t attr;
793  pthread_attr_init(&attr);
794  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
795
796  // stack size
797  if (os::Linux::supports_variable_stack_size()) {
798    // calculate stack size if it's not specified by caller
799    if (stack_size == 0) {
800      stack_size = os::Linux::default_stack_size(thr_type);
801
802      switch (thr_type) {
803      case os::java_thread:
804        // Java threads use ThreadStackSize which default value can be
805        // changed with the flag -Xss
806        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
807        stack_size = JavaThread::stack_size_at_create();
808        break;
809      case os::compiler_thread:
810        if (CompilerThreadStackSize > 0) {
811          stack_size = (size_t)(CompilerThreadStackSize * K);
812          break;
813        } // else fall through:
814          // use VMThreadStackSize if CompilerThreadStackSize is not defined
815      case os::vm_thread:
816      case os::pgc_thread:
817      case os::cgc_thread:
818      case os::watcher_thread:
819        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
820        break;
821      }
822    }
823
824    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
825    pthread_attr_setstacksize(&attr, stack_size);
826  } else {
827    // let pthread_create() pick the default value.
828  }
829
830  // glibc guard page
831  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
832
833  ThreadState state;
834
835  {
836    // Serialize thread creation if we are running with fixed stack LinuxThreads
837    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
838    if (lock) {
839      os::Linux::createThread_lock()->lock_without_safepoint_check();
840    }
841
842    pthread_t tid;
843    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
844
845    pthread_attr_destroy(&attr);
846
847    if (ret != 0) {
848      if (PrintMiscellaneous && (Verbose || WizardMode)) {
849        perror("pthread_create()");
850      }
851      // Need to clean up stuff we've allocated so far
852      thread->set_osthread(NULL);
853      delete osthread;
854      if (lock) os::Linux::createThread_lock()->unlock();
855      return false;
856    }
857
858    // Store pthread info into the OSThread
859    osthread->set_pthread_id(tid);
860
861    // Wait until child thread is either initialized or aborted
862    {
863      Monitor* sync_with_child = osthread->startThread_lock();
864      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
865      while ((state = osthread->get_state()) == ALLOCATED) {
866        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
867      }
868    }
869
870    if (lock) {
871      os::Linux::createThread_lock()->unlock();
872    }
873  }
874
875  // Aborted due to thread limit being reached
876  if (state == ZOMBIE) {
877    thread->set_osthread(NULL);
878    delete osthread;
879    return false;
880  }
881
882  // The thread is returned suspended (in state INITIALIZED),
883  // and is started higher up in the call chain
884  assert(state == INITIALIZED, "race condition");
885  return true;
886}
887
888/////////////////////////////////////////////////////////////////////////////
889// attach existing thread
890
891// bootstrap the main thread
892bool os::create_main_thread(JavaThread* thread) {
893  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
894  return create_attached_thread(thread);
895}
896
897bool os::create_attached_thread(JavaThread* thread) {
898#ifdef ASSERT
899  thread->verify_not_published();
900#endif
901
902  // Allocate the OSThread object
903  OSThread* osthread = new OSThread(NULL, NULL);
904
905  if (osthread == NULL) {
906    return false;
907  }
908
909  // Store pthread info into the OSThread
910  osthread->set_thread_id(os::Linux::gettid());
911  osthread->set_pthread_id(::pthread_self());
912
913  // initialize floating point control register
914  os::Linux::init_thread_fpu_state();
915
916  // Initial thread state is RUNNABLE
917  osthread->set_state(RUNNABLE);
918
919  thread->set_osthread(osthread);
920
921  if (UseNUMA) {
922    int lgrp_id = os::numa_get_group_id();
923    if (lgrp_id != -1) {
924      thread->set_lgrp_id(lgrp_id);
925    }
926  }
927
928  if (os::Linux::is_initial_thread()) {
929    // If current thread is initial thread, its stack is mapped on demand,
930    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
931    // the entire stack region to avoid SEGV in stack banging.
932    // It is also useful to get around the heap-stack-gap problem on SuSE
933    // kernel (see 4821821 for details). We first expand stack to the top
934    // of yellow zone, then enable stack yellow zone (order is significant,
935    // enabling yellow zone first will crash JVM on SuSE Linux), so there
936    // is no gap between the last two virtual memory regions.
937
938    JavaThread *jt = (JavaThread *)thread;
939    address addr = jt->stack_yellow_zone_base();
940    assert(addr != NULL, "initialization problem?");
941    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
942
943    osthread->set_expanding_stack();
944    os::Linux::manually_expand_stack(jt, addr);
945    osthread->clear_expanding_stack();
946  }
947
948  // initialize signal mask for this thread
949  // and save the caller's signal mask
950  os::Linux::hotspot_sigmask(thread);
951
952  return true;
953}
954
955void os::pd_start_thread(Thread* thread) {
956  OSThread * osthread = thread->osthread();
957  assert(osthread->get_state() != INITIALIZED, "just checking");
958  Monitor* sync_with_child = osthread->startThread_lock();
959  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
960  sync_with_child->notify();
961}
962
963// Free Linux resources related to the OSThread
964void os::free_thread(OSThread* osthread) {
965  assert(osthread != NULL, "osthread not set");
966
967  if (Thread::current()->osthread() == osthread) {
968    // Restore caller's signal mask
969    sigset_t sigmask = osthread->caller_sigmask();
970    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
971  }
972
973  delete osthread;
974}
975
976//////////////////////////////////////////////////////////////////////////////
977// thread local storage
978
979// Restore the thread pointer if the destructor is called. This is in case
980// someone from JNI code sets up a destructor with pthread_key_create to run
981// detachCurrentThread on thread death. Unless we restore the thread pointer we
982// will hang or crash. When detachCurrentThread is called the key will be set
983// to null and we will not be called again. If detachCurrentThread is never
984// called we could loop forever depending on the pthread implementation.
985static void restore_thread_pointer(void* p) {
986  Thread* thread = (Thread*) p;
987  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
988}
989
990int os::allocate_thread_local_storage() {
991  pthread_key_t key;
992  int rslt = pthread_key_create(&key, restore_thread_pointer);
993  assert(rslt == 0, "cannot allocate thread local storage");
994  return (int)key;
995}
996
997// Note: This is currently not used by VM, as we don't destroy TLS key
998// on VM exit.
999void os::free_thread_local_storage(int index) {
1000  int rslt = pthread_key_delete((pthread_key_t)index);
1001  assert(rslt == 0, "invalid index");
1002}
1003
1004void os::thread_local_storage_at_put(int index, void* value) {
1005  int rslt = pthread_setspecific((pthread_key_t)index, value);
1006  assert(rslt == 0, "pthread_setspecific failed");
1007}
1008
1009extern "C" Thread* get_thread() {
1010  return ThreadLocalStorage::thread();
1011}
1012
1013//////////////////////////////////////////////////////////////////////////////
1014// initial thread
1015
1016// Check if current thread is the initial thread, similar to Solaris thr_main.
1017bool os::Linux::is_initial_thread(void) {
1018  char dummy;
1019  // If called before init complete, thread stack bottom will be null.
1020  // Can be called if fatal error occurs before initialization.
1021  if (initial_thread_stack_bottom() == NULL) return false;
1022  assert(initial_thread_stack_bottom() != NULL &&
1023         initial_thread_stack_size()   != 0,
1024         "os::init did not locate initial thread's stack region");
1025  if ((address)&dummy >= initial_thread_stack_bottom() &&
1026      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1027    return true;
1028  } else {
1029    return false;
1030  }
1031}
1032
1033// Find the virtual memory area that contains addr
1034static bool find_vma(address addr, address* vma_low, address* vma_high) {
1035  FILE *fp = fopen("/proc/self/maps", "r");
1036  if (fp) {
1037    address low, high;
1038    while (!feof(fp)) {
1039      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1040        if (low <= addr && addr < high) {
1041          if (vma_low)  *vma_low  = low;
1042          if (vma_high) *vma_high = high;
1043          fclose(fp);
1044          return true;
1045        }
1046      }
1047      for (;;) {
1048        int ch = fgetc(fp);
1049        if (ch == EOF || ch == (int)'\n') break;
1050      }
1051    }
1052    fclose(fp);
1053  }
1054  return false;
1055}
1056
1057// Locate initial thread stack. This special handling of initial thread stack
1058// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1059// bogus value for initial thread.
1060void os::Linux::capture_initial_stack(size_t max_size) {
1061  // stack size is the easy part, get it from RLIMIT_STACK
1062  size_t stack_size;
1063  struct rlimit rlim;
1064  getrlimit(RLIMIT_STACK, &rlim);
1065  stack_size = rlim.rlim_cur;
1066
1067  // 6308388: a bug in ld.so will relocate its own .data section to the
1068  //   lower end of primordial stack; reduce ulimit -s value a little bit
1069  //   so we won't install guard page on ld.so's data section.
1070  stack_size -= 2 * page_size();
1071
1072  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1073  //   7.1, in both cases we will get 2G in return value.
1074  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1075  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1076  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1077  //   in case other parts in glibc still assumes 2M max stack size.
1078  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1079  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1080  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1081    stack_size = 2 * K * K IA64_ONLY(*2);
1082  }
1083  // Try to figure out where the stack base (top) is. This is harder.
1084  //
1085  // When an application is started, glibc saves the initial stack pointer in
1086  // a global variable "__libc_stack_end", which is then used by system
1087  // libraries. __libc_stack_end should be pretty close to stack top. The
1088  // variable is available since the very early days. However, because it is
1089  // a private interface, it could disappear in the future.
1090  //
1091  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1092  // to __libc_stack_end, it is very close to stack top, but isn't the real
1093  // stack top. Note that /proc may not exist if VM is running as a chroot
1094  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1095  // /proc/<pid>/stat could change in the future (though unlikely).
1096  //
1097  // We try __libc_stack_end first. If that doesn't work, look for
1098  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1099  // as a hint, which should work well in most cases.
1100
1101  uintptr_t stack_start;
1102
1103  // try __libc_stack_end first
1104  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1105  if (p && *p) {
1106    stack_start = *p;
1107  } else {
1108    // see if we can get the start_stack field from /proc/self/stat
1109    FILE *fp;
1110    int pid;
1111    char state;
1112    int ppid;
1113    int pgrp;
1114    int session;
1115    int nr;
1116    int tpgrp;
1117    unsigned long flags;
1118    unsigned long minflt;
1119    unsigned long cminflt;
1120    unsigned long majflt;
1121    unsigned long cmajflt;
1122    unsigned long utime;
1123    unsigned long stime;
1124    long cutime;
1125    long cstime;
1126    long prio;
1127    long nice;
1128    long junk;
1129    long it_real;
1130    uintptr_t start;
1131    uintptr_t vsize;
1132    intptr_t rss;
1133    uintptr_t rsslim;
1134    uintptr_t scodes;
1135    uintptr_t ecode;
1136    int i;
1137
1138    // Figure what the primordial thread stack base is. Code is inspired
1139    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1140    // followed by command name surrounded by parentheses, state, etc.
1141    char stat[2048];
1142    int statlen;
1143
1144    fp = fopen("/proc/self/stat", "r");
1145    if (fp) {
1146      statlen = fread(stat, 1, 2047, fp);
1147      stat[statlen] = '\0';
1148      fclose(fp);
1149
1150      // Skip pid and the command string. Note that we could be dealing with
1151      // weird command names, e.g. user could decide to rename java launcher
1152      // to "java 1.4.2 :)", then the stat file would look like
1153      //                1234 (java 1.4.2 :)) R ... ...
1154      // We don't really need to know the command string, just find the last
1155      // occurrence of ")" and then start parsing from there. See bug 4726580.
1156      char * s = strrchr(stat, ')');
1157
1158      i = 0;
1159      if (s) {
1160        // Skip blank chars
1161        do { s++; } while (s && isspace(*s));
1162
1163#define _UFM UINTX_FORMAT
1164#define _DFM INTX_FORMAT
1165
1166        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1167        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1168        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1169                   &state,          // 3  %c
1170                   &ppid,           // 4  %d
1171                   &pgrp,           // 5  %d
1172                   &session,        // 6  %d
1173                   &nr,             // 7  %d
1174                   &tpgrp,          // 8  %d
1175                   &flags,          // 9  %lu
1176                   &minflt,         // 10 %lu
1177                   &cminflt,        // 11 %lu
1178                   &majflt,         // 12 %lu
1179                   &cmajflt,        // 13 %lu
1180                   &utime,          // 14 %lu
1181                   &stime,          // 15 %lu
1182                   &cutime,         // 16 %ld
1183                   &cstime,         // 17 %ld
1184                   &prio,           // 18 %ld
1185                   &nice,           // 19 %ld
1186                   &junk,           // 20 %ld
1187                   &it_real,        // 21 %ld
1188                   &start,          // 22 UINTX_FORMAT
1189                   &vsize,          // 23 UINTX_FORMAT
1190                   &rss,            // 24 INTX_FORMAT
1191                   &rsslim,         // 25 UINTX_FORMAT
1192                   &scodes,         // 26 UINTX_FORMAT
1193                   &ecode,          // 27 UINTX_FORMAT
1194                   &stack_start);   // 28 UINTX_FORMAT
1195      }
1196
1197#undef _UFM
1198#undef _DFM
1199
1200      if (i != 28 - 2) {
1201        assert(false, "Bad conversion from /proc/self/stat");
1202        // product mode - assume we are the initial thread, good luck in the
1203        // embedded case.
1204        warning("Can't detect initial thread stack location - bad conversion");
1205        stack_start = (uintptr_t) &rlim;
1206      }
1207    } else {
1208      // For some reason we can't open /proc/self/stat (for example, running on
1209      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1210      // most cases, so don't abort:
1211      warning("Can't detect initial thread stack location - no /proc/self/stat");
1212      stack_start = (uintptr_t) &rlim;
1213    }
1214  }
1215
1216  // Now we have a pointer (stack_start) very close to the stack top, the
1217  // next thing to do is to figure out the exact location of stack top. We
1218  // can find out the virtual memory area that contains stack_start by
1219  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1220  // and its upper limit is the real stack top. (again, this would fail if
1221  // running inside chroot, because /proc may not exist.)
1222
1223  uintptr_t stack_top;
1224  address low, high;
1225  if (find_vma((address)stack_start, &low, &high)) {
1226    // success, "high" is the true stack top. (ignore "low", because initial
1227    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1228    stack_top = (uintptr_t)high;
1229  } else {
1230    // failed, likely because /proc/self/maps does not exist
1231    warning("Can't detect initial thread stack location - find_vma failed");
1232    // best effort: stack_start is normally within a few pages below the real
1233    // stack top, use it as stack top, and reduce stack size so we won't put
1234    // guard page outside stack.
1235    stack_top = stack_start;
1236    stack_size -= 16 * page_size();
1237  }
1238
1239  // stack_top could be partially down the page so align it
1240  stack_top = align_size_up(stack_top, page_size());
1241
1242  if (max_size && stack_size > max_size) {
1243    _initial_thread_stack_size = max_size;
1244  } else {
1245    _initial_thread_stack_size = stack_size;
1246  }
1247
1248  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1249  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1250}
1251
1252////////////////////////////////////////////////////////////////////////////////
1253// time support
1254
1255// Time since start-up in seconds to a fine granularity.
1256// Used by VMSelfDestructTimer and the MemProfiler.
1257double os::elapsedTime() {
1258
1259  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1260}
1261
1262jlong os::elapsed_counter() {
1263  return javaTimeNanos() - initial_time_count;
1264}
1265
1266jlong os::elapsed_frequency() {
1267  return NANOSECS_PER_SEC; // nanosecond resolution
1268}
1269
1270bool os::supports_vtime() { return true; }
1271bool os::enable_vtime()   { return false; }
1272bool os::vtime_enabled()  { return false; }
1273
1274double os::elapsedVTime() {
1275  struct rusage usage;
1276  int retval = getrusage(RUSAGE_THREAD, &usage);
1277  if (retval == 0) {
1278    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1279  } else {
1280    // better than nothing, but not much
1281    return elapsedTime();
1282  }
1283}
1284
1285jlong os::javaTimeMillis() {
1286  timeval time;
1287  int status = gettimeofday(&time, NULL);
1288  assert(status != -1, "linux error");
1289  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1290}
1291
1292void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1293  timeval time;
1294  int status = gettimeofday(&time, NULL);
1295  assert(status != -1, "linux error");
1296  seconds = jlong(time.tv_sec);
1297  nanos = jlong(time.tv_usec) * 1000;
1298}
1299
1300
1301#ifndef CLOCK_MONOTONIC
1302  #define CLOCK_MONOTONIC (1)
1303#endif
1304
1305void os::Linux::clock_init() {
1306  // we do dlopen's in this particular order due to bug in linux
1307  // dynamical loader (see 6348968) leading to crash on exit
1308  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1309  if (handle == NULL) {
1310    handle = dlopen("librt.so", RTLD_LAZY);
1311  }
1312
1313  if (handle) {
1314    int (*clock_getres_func)(clockid_t, struct timespec*) =
1315           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1316    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1317           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1318    if (clock_getres_func && clock_gettime_func) {
1319      // See if monotonic clock is supported by the kernel. Note that some
1320      // early implementations simply return kernel jiffies (updated every
1321      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1322      // for nano time (though the monotonic property is still nice to have).
1323      // It's fixed in newer kernels, however clock_getres() still returns
1324      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1325      // resolution for now. Hopefully as people move to new kernels, this
1326      // won't be a problem.
1327      struct timespec res;
1328      struct timespec tp;
1329      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1330          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1331        // yes, monotonic clock is supported
1332        _clock_gettime = clock_gettime_func;
1333        return;
1334      } else {
1335        // close librt if there is no monotonic clock
1336        dlclose(handle);
1337      }
1338    }
1339  }
1340  warning("No monotonic clock was available - timed services may " \
1341          "be adversely affected if the time-of-day clock changes");
1342}
1343
1344#ifndef SYS_clock_getres
1345  #if defined(IA32) || defined(AMD64)
1346    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1347    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1348  #else
1349    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1350    #define sys_clock_getres(x,y)  -1
1351  #endif
1352#else
1353  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1354#endif
1355
1356void os::Linux::fast_thread_clock_init() {
1357  if (!UseLinuxPosixThreadCPUClocks) {
1358    return;
1359  }
1360  clockid_t clockid;
1361  struct timespec tp;
1362  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1363      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1364
1365  // Switch to using fast clocks for thread cpu time if
1366  // the sys_clock_getres() returns 0 error code.
1367  // Note, that some kernels may support the current thread
1368  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1369  // returned by the pthread_getcpuclockid().
1370  // If the fast Posix clocks are supported then the sys_clock_getres()
1371  // must return at least tp.tv_sec == 0 which means a resolution
1372  // better than 1 sec. This is extra check for reliability.
1373
1374  if (pthread_getcpuclockid_func &&
1375      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1376      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1377    _supports_fast_thread_cpu_time = true;
1378    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1379  }
1380}
1381
1382jlong os::javaTimeNanos() {
1383  if (os::supports_monotonic_clock()) {
1384    struct timespec tp;
1385    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1386    assert(status == 0, "gettime error");
1387    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1388    return result;
1389  } else {
1390    timeval time;
1391    int status = gettimeofday(&time, NULL);
1392    assert(status != -1, "linux error");
1393    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1394    return 1000 * usecs;
1395  }
1396}
1397
1398void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1399  if (os::supports_monotonic_clock()) {
1400    info_ptr->max_value = ALL_64_BITS;
1401
1402    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1403    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1404    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1405  } else {
1406    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1407    info_ptr->max_value = ALL_64_BITS;
1408
1409    // gettimeofday is a real time clock so it skips
1410    info_ptr->may_skip_backward = true;
1411    info_ptr->may_skip_forward = true;
1412  }
1413
1414  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1415}
1416
1417// Return the real, user, and system times in seconds from an
1418// arbitrary fixed point in the past.
1419bool os::getTimesSecs(double* process_real_time,
1420                      double* process_user_time,
1421                      double* process_system_time) {
1422  struct tms ticks;
1423  clock_t real_ticks = times(&ticks);
1424
1425  if (real_ticks == (clock_t) (-1)) {
1426    return false;
1427  } else {
1428    double ticks_per_second = (double) clock_tics_per_sec;
1429    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1430    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1431    *process_real_time = ((double) real_ticks) / ticks_per_second;
1432
1433    return true;
1434  }
1435}
1436
1437
1438char * os::local_time_string(char *buf, size_t buflen) {
1439  struct tm t;
1440  time_t long_time;
1441  time(&long_time);
1442  localtime_r(&long_time, &t);
1443  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1444               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1445               t.tm_hour, t.tm_min, t.tm_sec);
1446  return buf;
1447}
1448
1449struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1450  return localtime_r(clock, res);
1451}
1452
1453////////////////////////////////////////////////////////////////////////////////
1454// runtime exit support
1455
1456// Note: os::shutdown() might be called very early during initialization, or
1457// called from signal handler. Before adding something to os::shutdown(), make
1458// sure it is async-safe and can handle partially initialized VM.
1459void os::shutdown() {
1460
1461  // allow PerfMemory to attempt cleanup of any persistent resources
1462  perfMemory_exit();
1463
1464  // needs to remove object in file system
1465  AttachListener::abort();
1466
1467  // flush buffered output, finish log files
1468  ostream_abort();
1469
1470  // Check for abort hook
1471  abort_hook_t abort_hook = Arguments::abort_hook();
1472  if (abort_hook != NULL) {
1473    abort_hook();
1474  }
1475
1476}
1477
1478// Note: os::abort() might be called very early during initialization, or
1479// called from signal handler. Before adding something to os::abort(), make
1480// sure it is async-safe and can handle partially initialized VM.
1481void os::abort(bool dump_core, void* siginfo, void* context) {
1482  os::shutdown();
1483  if (dump_core) {
1484#ifndef PRODUCT
1485    fdStream out(defaultStream::output_fd());
1486    out.print_raw("Current thread is ");
1487    char buf[16];
1488    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1489    out.print_raw_cr(buf);
1490    out.print_raw_cr("Dumping core ...");
1491#endif
1492    ::abort(); // dump core
1493  }
1494
1495  ::exit(1);
1496}
1497
1498// Die immediately, no exit hook, no abort hook, no cleanup.
1499void os::die() {
1500  // _exit() on LinuxThreads only kills current thread
1501  ::abort();
1502}
1503
1504
1505// This method is a copy of JDK's sysGetLastErrorString
1506// from src/solaris/hpi/src/system_md.c
1507
1508size_t os::lasterror(char *buf, size_t len) {
1509  if (errno == 0)  return 0;
1510
1511  const char *s = ::strerror(errno);
1512  size_t n = ::strlen(s);
1513  if (n >= len) {
1514    n = len - 1;
1515  }
1516  ::strncpy(buf, s, n);
1517  buf[n] = '\0';
1518  return n;
1519}
1520
1521intx os::current_thread_id() { return (intx)pthread_self(); }
1522int os::current_process_id() {
1523
1524  // Under the old linux thread library, linux gives each thread
1525  // its own process id. Because of this each thread will return
1526  // a different pid if this method were to return the result
1527  // of getpid(2). Linux provides no api that returns the pid
1528  // of the launcher thread for the vm. This implementation
1529  // returns a unique pid, the pid of the launcher thread
1530  // that starts the vm 'process'.
1531
1532  // Under the NPTL, getpid() returns the same pid as the
1533  // launcher thread rather than a unique pid per thread.
1534  // Use gettid() if you want the old pre NPTL behaviour.
1535
1536  // if you are looking for the result of a call to getpid() that
1537  // returns a unique pid for the calling thread, then look at the
1538  // OSThread::thread_id() method in osThread_linux.hpp file
1539
1540  return (int)(_initial_pid ? _initial_pid : getpid());
1541}
1542
1543// DLL functions
1544
1545const char* os::dll_file_extension() { return ".so"; }
1546
1547// This must be hard coded because it's the system's temporary
1548// directory not the java application's temp directory, ala java.io.tmpdir.
1549const char* os::get_temp_directory() { return "/tmp"; }
1550
1551static bool file_exists(const char* filename) {
1552  struct stat statbuf;
1553  if (filename == NULL || strlen(filename) == 0) {
1554    return false;
1555  }
1556  return os::stat(filename, &statbuf) == 0;
1557}
1558
1559bool os::dll_build_name(char* buffer, size_t buflen,
1560                        const char* pname, const char* fname) {
1561  bool retval = false;
1562  // Copied from libhpi
1563  const size_t pnamelen = pname ? strlen(pname) : 0;
1564
1565  // Return error on buffer overflow.
1566  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1567    return retval;
1568  }
1569
1570  if (pnamelen == 0) {
1571    snprintf(buffer, buflen, "lib%s.so", fname);
1572    retval = true;
1573  } else if (strchr(pname, *os::path_separator()) != NULL) {
1574    int n;
1575    char** pelements = split_path(pname, &n);
1576    if (pelements == NULL) {
1577      return false;
1578    }
1579    for (int i = 0; i < n; i++) {
1580      // Really shouldn't be NULL, but check can't hurt
1581      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1582        continue; // skip the empty path values
1583      }
1584      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1585      if (file_exists(buffer)) {
1586        retval = true;
1587        break;
1588      }
1589    }
1590    // release the storage
1591    for (int i = 0; i < n; i++) {
1592      if (pelements[i] != NULL) {
1593        FREE_C_HEAP_ARRAY(char, pelements[i]);
1594      }
1595    }
1596    if (pelements != NULL) {
1597      FREE_C_HEAP_ARRAY(char*, pelements);
1598    }
1599  } else {
1600    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1601    retval = true;
1602  }
1603  return retval;
1604}
1605
1606// check if addr is inside libjvm.so
1607bool os::address_is_in_vm(address addr) {
1608  static address libjvm_base_addr;
1609  Dl_info dlinfo;
1610
1611  if (libjvm_base_addr == NULL) {
1612    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1613      libjvm_base_addr = (address)dlinfo.dli_fbase;
1614    }
1615    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1616  }
1617
1618  if (dladdr((void *)addr, &dlinfo) != 0) {
1619    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1620  }
1621
1622  return false;
1623}
1624
1625bool os::dll_address_to_function_name(address addr, char *buf,
1626                                      int buflen, int *offset,
1627                                      bool demangle) {
1628  // buf is not optional, but offset is optional
1629  assert(buf != NULL, "sanity check");
1630
1631  Dl_info dlinfo;
1632
1633  if (dladdr((void*)addr, &dlinfo) != 0) {
1634    // see if we have a matching symbol
1635    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1636      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1637        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1638      }
1639      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1640      return true;
1641    }
1642    // no matching symbol so try for just file info
1643    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1644      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1645                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1646        return true;
1647      }
1648    }
1649  }
1650
1651  buf[0] = '\0';
1652  if (offset != NULL) *offset = -1;
1653  return false;
1654}
1655
1656struct _address_to_library_name {
1657  address addr;          // input : memory address
1658  size_t  buflen;        //         size of fname
1659  char*   fname;         // output: library name
1660  address base;          //         library base addr
1661};
1662
1663static int address_to_library_name_callback(struct dl_phdr_info *info,
1664                                            size_t size, void *data) {
1665  int i;
1666  bool found = false;
1667  address libbase = NULL;
1668  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1669
1670  // iterate through all loadable segments
1671  for (i = 0; i < info->dlpi_phnum; i++) {
1672    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1673    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1674      // base address of a library is the lowest address of its loaded
1675      // segments.
1676      if (libbase == NULL || libbase > segbase) {
1677        libbase = segbase;
1678      }
1679      // see if 'addr' is within current segment
1680      if (segbase <= d->addr &&
1681          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1682        found = true;
1683      }
1684    }
1685  }
1686
1687  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1688  // so dll_address_to_library_name() can fall through to use dladdr() which
1689  // can figure out executable name from argv[0].
1690  if (found && info->dlpi_name && info->dlpi_name[0]) {
1691    d->base = libbase;
1692    if (d->fname) {
1693      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1694    }
1695    return 1;
1696  }
1697  return 0;
1698}
1699
1700bool os::dll_address_to_library_name(address addr, char* buf,
1701                                     int buflen, int* offset) {
1702  // buf is not optional, but offset is optional
1703  assert(buf != NULL, "sanity check");
1704
1705  Dl_info dlinfo;
1706  struct _address_to_library_name data;
1707
1708  // There is a bug in old glibc dladdr() implementation that it could resolve
1709  // to wrong library name if the .so file has a base address != NULL. Here
1710  // we iterate through the program headers of all loaded libraries to find
1711  // out which library 'addr' really belongs to. This workaround can be
1712  // removed once the minimum requirement for glibc is moved to 2.3.x.
1713  data.addr = addr;
1714  data.fname = buf;
1715  data.buflen = buflen;
1716  data.base = NULL;
1717  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1718
1719  if (rslt) {
1720    // buf already contains library name
1721    if (offset) *offset = addr - data.base;
1722    return true;
1723  }
1724  if (dladdr((void*)addr, &dlinfo) != 0) {
1725    if (dlinfo.dli_fname != NULL) {
1726      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1727    }
1728    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1729      *offset = addr - (address)dlinfo.dli_fbase;
1730    }
1731    return true;
1732  }
1733
1734  buf[0] = '\0';
1735  if (offset) *offset = -1;
1736  return false;
1737}
1738
1739// Loads .dll/.so and
1740// in case of error it checks if .dll/.so was built for the
1741// same architecture as Hotspot is running on
1742
1743
1744// Remember the stack's state. The Linux dynamic linker will change
1745// the stack to 'executable' at most once, so we must safepoint only once.
1746bool os::Linux::_stack_is_executable = false;
1747
1748// VM operation that loads a library.  This is necessary if stack protection
1749// of the Java stacks can be lost during loading the library.  If we
1750// do not stop the Java threads, they can stack overflow before the stacks
1751// are protected again.
1752class VM_LinuxDllLoad: public VM_Operation {
1753 private:
1754  const char *_filename;
1755  char *_ebuf;
1756  int _ebuflen;
1757  void *_lib;
1758 public:
1759  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1760    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1761  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1762  void doit() {
1763    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1764    os::Linux::_stack_is_executable = true;
1765  }
1766  void* loaded_library() { return _lib; }
1767};
1768
1769void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1770  void * result = NULL;
1771  bool load_attempted = false;
1772
1773  // Check whether the library to load might change execution rights
1774  // of the stack. If they are changed, the protection of the stack
1775  // guard pages will be lost. We need a safepoint to fix this.
1776  //
1777  // See Linux man page execstack(8) for more info.
1778  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1779    ElfFile ef(filename);
1780    if (!ef.specifies_noexecstack()) {
1781      if (!is_init_completed()) {
1782        os::Linux::_stack_is_executable = true;
1783        // This is OK - No Java threads have been created yet, and hence no
1784        // stack guard pages to fix.
1785        //
1786        // This should happen only when you are building JDK7 using a very
1787        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1788        //
1789        // Dynamic loader will make all stacks executable after
1790        // this function returns, and will not do that again.
1791        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1792      } else {
1793        warning("You have loaded library %s which might have disabled stack guard. "
1794                "The VM will try to fix the stack guard now.\n"
1795                "It's highly recommended that you fix the library with "
1796                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1797                filename);
1798
1799        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1800        JavaThread *jt = JavaThread::current();
1801        if (jt->thread_state() != _thread_in_native) {
1802          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1803          // that requires ExecStack. Cannot enter safe point. Let's give up.
1804          warning("Unable to fix stack guard. Giving up.");
1805        } else {
1806          if (!LoadExecStackDllInVMThread) {
1807            // This is for the case where the DLL has an static
1808            // constructor function that executes JNI code. We cannot
1809            // load such DLLs in the VMThread.
1810            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1811          }
1812
1813          ThreadInVMfromNative tiv(jt);
1814          debug_only(VMNativeEntryWrapper vew;)
1815
1816          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1817          VMThread::execute(&op);
1818          if (LoadExecStackDllInVMThread) {
1819            result = op.loaded_library();
1820          }
1821          load_attempted = true;
1822        }
1823      }
1824    }
1825  }
1826
1827  if (!load_attempted) {
1828    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1829  }
1830
1831  if (result != NULL) {
1832    // Successful loading
1833    return result;
1834  }
1835
1836  Elf32_Ehdr elf_head;
1837  int diag_msg_max_length=ebuflen-strlen(ebuf);
1838  char* diag_msg_buf=ebuf+strlen(ebuf);
1839
1840  if (diag_msg_max_length==0) {
1841    // No more space in ebuf for additional diagnostics message
1842    return NULL;
1843  }
1844
1845
1846  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1847
1848  if (file_descriptor < 0) {
1849    // Can't open library, report dlerror() message
1850    return NULL;
1851  }
1852
1853  bool failed_to_read_elf_head=
1854    (sizeof(elf_head)!=
1855     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1856
1857  ::close(file_descriptor);
1858  if (failed_to_read_elf_head) {
1859    // file i/o error - report dlerror() msg
1860    return NULL;
1861  }
1862
1863  typedef struct {
1864    Elf32_Half  code;         // Actual value as defined in elf.h
1865    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1866    char        elf_class;    // 32 or 64 bit
1867    char        endianess;    // MSB or LSB
1868    char*       name;         // String representation
1869  } arch_t;
1870
1871#ifndef EM_486
1872  #define EM_486          6               /* Intel 80486 */
1873#endif
1874#ifndef EM_AARCH64
1875  #define EM_AARCH64    183               /* ARM AARCH64 */
1876#endif
1877
1878  static const arch_t arch_array[]={
1879    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1880    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1881    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1882    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1883    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1884    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1885    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1886    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1887#if defined(VM_LITTLE_ENDIAN)
1888    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1889#else
1890    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1891#endif
1892    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1893    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1894    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1895    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1896    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1897    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1898    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1899    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1900  };
1901
1902#if  (defined IA32)
1903  static  Elf32_Half running_arch_code=EM_386;
1904#elif   (defined AMD64)
1905  static  Elf32_Half running_arch_code=EM_X86_64;
1906#elif  (defined IA64)
1907  static  Elf32_Half running_arch_code=EM_IA_64;
1908#elif  (defined __sparc) && (defined _LP64)
1909  static  Elf32_Half running_arch_code=EM_SPARCV9;
1910#elif  (defined __sparc) && (!defined _LP64)
1911  static  Elf32_Half running_arch_code=EM_SPARC;
1912#elif  (defined __powerpc64__)
1913  static  Elf32_Half running_arch_code=EM_PPC64;
1914#elif  (defined __powerpc__)
1915  static  Elf32_Half running_arch_code=EM_PPC;
1916#elif  (defined ARM)
1917  static  Elf32_Half running_arch_code=EM_ARM;
1918#elif  (defined S390)
1919  static  Elf32_Half running_arch_code=EM_S390;
1920#elif  (defined ALPHA)
1921  static  Elf32_Half running_arch_code=EM_ALPHA;
1922#elif  (defined MIPSEL)
1923  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1924#elif  (defined PARISC)
1925  static  Elf32_Half running_arch_code=EM_PARISC;
1926#elif  (defined MIPS)
1927  static  Elf32_Half running_arch_code=EM_MIPS;
1928#elif  (defined M68K)
1929  static  Elf32_Half running_arch_code=EM_68K;
1930#elif  (defined AARCH64)
1931  static  Elf32_Half running_arch_code=EM_AARCH64;
1932#else
1933    #error Method os::dll_load requires that one of following is defined:\
1934         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1935#endif
1936
1937  // Identify compatability class for VM's architecture and library's architecture
1938  // Obtain string descriptions for architectures
1939
1940  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1941  int running_arch_index=-1;
1942
1943  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1944    if (running_arch_code == arch_array[i].code) {
1945      running_arch_index    = i;
1946    }
1947    if (lib_arch.code == arch_array[i].code) {
1948      lib_arch.compat_class = arch_array[i].compat_class;
1949      lib_arch.name         = arch_array[i].name;
1950    }
1951  }
1952
1953  assert(running_arch_index != -1,
1954         "Didn't find running architecture code (running_arch_code) in arch_array");
1955  if (running_arch_index == -1) {
1956    // Even though running architecture detection failed
1957    // we may still continue with reporting dlerror() message
1958    return NULL;
1959  }
1960
1961  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1962    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1963    return NULL;
1964  }
1965
1966#ifndef S390
1967  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1968    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1969    return NULL;
1970  }
1971#endif // !S390
1972
1973  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1974    if (lib_arch.name!=NULL) {
1975      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1976                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1977                 lib_arch.name, arch_array[running_arch_index].name);
1978    } else {
1979      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1980                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1981                 lib_arch.code,
1982                 arch_array[running_arch_index].name);
1983    }
1984  }
1985
1986  return NULL;
1987}
1988
1989void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1990                                int ebuflen) {
1991  void * result = ::dlopen(filename, RTLD_LAZY);
1992  if (result == NULL) {
1993    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1994    ebuf[ebuflen-1] = '\0';
1995  }
1996  return result;
1997}
1998
1999void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2000                                       int ebuflen) {
2001  void * result = NULL;
2002  if (LoadExecStackDllInVMThread) {
2003    result = dlopen_helper(filename, ebuf, ebuflen);
2004  }
2005
2006  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2007  // library that requires an executable stack, or which does not have this
2008  // stack attribute set, dlopen changes the stack attribute to executable. The
2009  // read protection of the guard pages gets lost.
2010  //
2011  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2012  // may have been queued at the same time.
2013
2014  if (!_stack_is_executable) {
2015    JavaThread *jt = Threads::first();
2016
2017    while (jt) {
2018      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2019          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2020        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2021                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2022          warning("Attempt to reguard stack yellow zone failed.");
2023        }
2024      }
2025      jt = jt->next();
2026    }
2027  }
2028
2029  return result;
2030}
2031
2032void* os::dll_lookup(void* handle, const char* name) {
2033  void* res = dlsym(handle, name);
2034  return res;
2035}
2036
2037void* os::get_default_process_handle() {
2038  return (void*)::dlopen(NULL, RTLD_LAZY);
2039}
2040
2041static bool _print_ascii_file(const char* filename, outputStream* st) {
2042  int fd = ::open(filename, O_RDONLY);
2043  if (fd == -1) {
2044    return false;
2045  }
2046
2047  char buf[32];
2048  int bytes;
2049  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2050    st->print_raw(buf, bytes);
2051  }
2052
2053  ::close(fd);
2054
2055  return true;
2056}
2057
2058void os::print_dll_info(outputStream *st) {
2059  st->print_cr("Dynamic libraries:");
2060
2061  char fname[32];
2062  pid_t pid = os::Linux::gettid();
2063
2064  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2065
2066  if (!_print_ascii_file(fname, st)) {
2067    st->print("Can not get library information for pid = %d\n", pid);
2068  }
2069}
2070
2071int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2072  FILE *procmapsFile = NULL;
2073
2074  // Open the procfs maps file for the current process
2075  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2076    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2077    char line[PATH_MAX + 100];
2078
2079    // Read line by line from 'file'
2080    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2081      u8 base, top, offset, inode;
2082      char permissions[5];
2083      char device[6];
2084      char name[PATH_MAX + 1];
2085
2086      // Parse fields from line
2087      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2088
2089      // Filter by device id '00:00' so that we only get file system mapped files.
2090      if (strcmp(device, "00:00") != 0) {
2091
2092        // Call callback with the fields of interest
2093        if(callback(name, (address)base, (address)top, param)) {
2094          // Oops abort, callback aborted
2095          fclose(procmapsFile);
2096          return 1;
2097        }
2098      }
2099    }
2100    fclose(procmapsFile);
2101  }
2102  return 0;
2103}
2104
2105void os::print_os_info_brief(outputStream* st) {
2106  os::Linux::print_distro_info(st);
2107
2108  os::Posix::print_uname_info(st);
2109
2110  os::Linux::print_libversion_info(st);
2111
2112}
2113
2114void os::print_os_info(outputStream* st) {
2115  st->print("OS:");
2116
2117  os::Linux::print_distro_info(st);
2118
2119  os::Posix::print_uname_info(st);
2120
2121  // Print warning if unsafe chroot environment detected
2122  if (unsafe_chroot_detected) {
2123    st->print("WARNING!! ");
2124    st->print_cr("%s", unstable_chroot_error);
2125  }
2126
2127  os::Linux::print_libversion_info(st);
2128
2129  os::Posix::print_rlimit_info(st);
2130
2131  os::Posix::print_load_average(st);
2132
2133  os::Linux::print_full_memory_info(st);
2134}
2135
2136// Try to identify popular distros.
2137// Most Linux distributions have a /etc/XXX-release file, which contains
2138// the OS version string. Newer Linux distributions have a /etc/lsb-release
2139// file that also contains the OS version string. Some have more than one
2140// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2141// /etc/redhat-release.), so the order is important.
2142// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2143// their own specific XXX-release file as well as a redhat-release file.
2144// Because of this the XXX-release file needs to be searched for before the
2145// redhat-release file.
2146// Since Red Hat has a lsb-release file that is not very descriptive the
2147// search for redhat-release needs to be before lsb-release.
2148// Since the lsb-release file is the new standard it needs to be searched
2149// before the older style release files.
2150// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2151// next to last resort.  The os-release file is a new standard that contains
2152// distribution information and the system-release file seems to be an old
2153// standard that has been replaced by the lsb-release and os-release files.
2154// Searching for the debian_version file is the last resort.  It contains
2155// an informative string like "6.0.6" or "wheezy/sid". Because of this
2156// "Debian " is printed before the contents of the debian_version file.
2157void os::Linux::print_distro_info(outputStream* st) {
2158  if (!_print_ascii_file("/etc/oracle-release", st) &&
2159      !_print_ascii_file("/etc/mandriva-release", st) &&
2160      !_print_ascii_file("/etc/mandrake-release", st) &&
2161      !_print_ascii_file("/etc/sun-release", st) &&
2162      !_print_ascii_file("/etc/redhat-release", st) &&
2163      !_print_ascii_file("/etc/lsb-release", st) &&
2164      !_print_ascii_file("/etc/SuSE-release", st) &&
2165      !_print_ascii_file("/etc/turbolinux-release", st) &&
2166      !_print_ascii_file("/etc/gentoo-release", st) &&
2167      !_print_ascii_file("/etc/ltib-release", st) &&
2168      !_print_ascii_file("/etc/angstrom-version", st) &&
2169      !_print_ascii_file("/etc/system-release", st) &&
2170      !_print_ascii_file("/etc/os-release", st)) {
2171
2172    if (file_exists("/etc/debian_version")) {
2173      st->print("Debian ");
2174      _print_ascii_file("/etc/debian_version", st);
2175    } else {
2176      st->print("Linux");
2177    }
2178  }
2179  st->cr();
2180}
2181
2182void os::Linux::print_libversion_info(outputStream* st) {
2183  // libc, pthread
2184  st->print("libc:");
2185  st->print("%s ", os::Linux::glibc_version());
2186  st->print("%s ", os::Linux::libpthread_version());
2187  if (os::Linux::is_LinuxThreads()) {
2188    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2189  }
2190  st->cr();
2191}
2192
2193void os::Linux::print_full_memory_info(outputStream* st) {
2194  st->print("\n/proc/meminfo:\n");
2195  _print_ascii_file("/proc/meminfo", st);
2196  st->cr();
2197}
2198
2199void os::print_memory_info(outputStream* st) {
2200
2201  st->print("Memory:");
2202  st->print(" %dk page", os::vm_page_size()>>10);
2203
2204  // values in struct sysinfo are "unsigned long"
2205  struct sysinfo si;
2206  sysinfo(&si);
2207
2208  st->print(", physical " UINT64_FORMAT "k",
2209            os::physical_memory() >> 10);
2210  st->print("(" UINT64_FORMAT "k free)",
2211            os::available_memory() >> 10);
2212  st->print(", swap " UINT64_FORMAT "k",
2213            ((jlong)si.totalswap * si.mem_unit) >> 10);
2214  st->print("(" UINT64_FORMAT "k free)",
2215            ((jlong)si.freeswap * si.mem_unit) >> 10);
2216  st->cr();
2217}
2218
2219// Print the first "model name" line and the first "flags" line
2220// that we find and nothing more. We assume "model name" comes
2221// before "flags" so if we find a second "model name", then the
2222// "flags" field is considered missing.
2223static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2224#if defined(IA32) || defined(AMD64)
2225  // Other platforms have less repetitive cpuinfo files
2226  FILE *fp = fopen("/proc/cpuinfo", "r");
2227  if (fp) {
2228    while (!feof(fp)) {
2229      if (fgets(buf, buflen, fp)) {
2230        // Assume model name comes before flags
2231        bool model_name_printed = false;
2232        if (strstr(buf, "model name") != NULL) {
2233          if (!model_name_printed) {
2234            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2235            st->print_raw(buf);
2236            model_name_printed = true;
2237          } else {
2238            // model name printed but not flags?  Odd, just return
2239            fclose(fp);
2240            return true;
2241          }
2242        }
2243        // print the flags line too
2244        if (strstr(buf, "flags") != NULL) {
2245          st->print_raw(buf);
2246          fclose(fp);
2247          return true;
2248        }
2249      }
2250    }
2251    fclose(fp);
2252  }
2253#endif // x86 platforms
2254  return false;
2255}
2256
2257void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2258  // Only print the model name if the platform provides this as a summary
2259  if (!print_model_name_and_flags(st, buf, buflen)) {
2260    st->print("\n/proc/cpuinfo:\n");
2261    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2262      st->print_cr("  <Not Available>");
2263    }
2264  }
2265}
2266
2267void os::print_siginfo(outputStream* st, void* siginfo) {
2268  const siginfo_t* si = (const siginfo_t*)siginfo;
2269
2270  os::Posix::print_siginfo_brief(st, si);
2271#if INCLUDE_CDS
2272  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2273      UseSharedSpaces) {
2274    FileMapInfo* mapinfo = FileMapInfo::current_info();
2275    if (mapinfo->is_in_shared_space(si->si_addr)) {
2276      st->print("\n\nError accessing class data sharing archive."   \
2277                " Mapped file inaccessible during execution, "      \
2278                " possible disk/network problem.");
2279    }
2280  }
2281#endif
2282  st->cr();
2283}
2284
2285
2286static void print_signal_handler(outputStream* st, int sig,
2287                                 char* buf, size_t buflen);
2288
2289void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2290  st->print_cr("Signal Handlers:");
2291  print_signal_handler(st, SIGSEGV, buf, buflen);
2292  print_signal_handler(st, SIGBUS , buf, buflen);
2293  print_signal_handler(st, SIGFPE , buf, buflen);
2294  print_signal_handler(st, SIGPIPE, buf, buflen);
2295  print_signal_handler(st, SIGXFSZ, buf, buflen);
2296  print_signal_handler(st, SIGILL , buf, buflen);
2297  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2298  print_signal_handler(st, SR_signum, buf, buflen);
2299  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2300  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2301  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2302  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2303#if defined(PPC64)
2304  print_signal_handler(st, SIGTRAP, buf, buflen);
2305#endif
2306}
2307
2308static char saved_jvm_path[MAXPATHLEN] = {0};
2309
2310// Find the full path to the current module, libjvm.so
2311void os::jvm_path(char *buf, jint buflen) {
2312  // Error checking.
2313  if (buflen < MAXPATHLEN) {
2314    assert(false, "must use a large-enough buffer");
2315    buf[0] = '\0';
2316    return;
2317  }
2318  // Lazy resolve the path to current module.
2319  if (saved_jvm_path[0] != 0) {
2320    strcpy(buf, saved_jvm_path);
2321    return;
2322  }
2323
2324  char dli_fname[MAXPATHLEN];
2325  bool ret = dll_address_to_library_name(
2326                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2327                                         dli_fname, sizeof(dli_fname), NULL);
2328  assert(ret, "cannot locate libjvm");
2329  char *rp = NULL;
2330  if (ret && dli_fname[0] != '\0') {
2331    rp = realpath(dli_fname, buf);
2332  }
2333  if (rp == NULL) {
2334    return;
2335  }
2336
2337  if (Arguments::sun_java_launcher_is_altjvm()) {
2338    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2339    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2340    // If "/jre/lib/" appears at the right place in the string, then
2341    // assume we are installed in a JDK and we're done. Otherwise, check
2342    // for a JAVA_HOME environment variable and fix up the path so it
2343    // looks like libjvm.so is installed there (append a fake suffix
2344    // hotspot/libjvm.so).
2345    const char *p = buf + strlen(buf) - 1;
2346    for (int count = 0; p > buf && count < 5; ++count) {
2347      for (--p; p > buf && *p != '/'; --p)
2348        /* empty */ ;
2349    }
2350
2351    if (strncmp(p, "/jre/lib/", 9) != 0) {
2352      // Look for JAVA_HOME in the environment.
2353      char* java_home_var = ::getenv("JAVA_HOME");
2354      if (java_home_var != NULL && java_home_var[0] != 0) {
2355        char* jrelib_p;
2356        int len;
2357
2358        // Check the current module name "libjvm.so".
2359        p = strrchr(buf, '/');
2360        if (p == NULL) {
2361          return;
2362        }
2363        assert(strstr(p, "/libjvm") == p, "invalid library name");
2364
2365        rp = realpath(java_home_var, buf);
2366        if (rp == NULL) {
2367          return;
2368        }
2369
2370        // determine if this is a legacy image or modules image
2371        // modules image doesn't have "jre" subdirectory
2372        len = strlen(buf);
2373        assert(len < buflen, "Ran out of buffer room");
2374        jrelib_p = buf + len;
2375        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2376        if (0 != access(buf, F_OK)) {
2377          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2378        }
2379
2380        if (0 == access(buf, F_OK)) {
2381          // Use current module name "libjvm.so"
2382          len = strlen(buf);
2383          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2384        } else {
2385          // Go back to path of .so
2386          rp = realpath(dli_fname, buf);
2387          if (rp == NULL) {
2388            return;
2389          }
2390        }
2391      }
2392    }
2393  }
2394
2395  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2396  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2397}
2398
2399void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2400  // no prefix required, not even "_"
2401}
2402
2403void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2404  // no suffix required
2405}
2406
2407////////////////////////////////////////////////////////////////////////////////
2408// sun.misc.Signal support
2409
2410static volatile jint sigint_count = 0;
2411
2412static void UserHandler(int sig, void *siginfo, void *context) {
2413  // 4511530 - sem_post is serialized and handled by the manager thread. When
2414  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2415  // don't want to flood the manager thread with sem_post requests.
2416  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2417    return;
2418  }
2419
2420  // Ctrl-C is pressed during error reporting, likely because the error
2421  // handler fails to abort. Let VM die immediately.
2422  if (sig == SIGINT && is_error_reported()) {
2423    os::die();
2424  }
2425
2426  os::signal_notify(sig);
2427}
2428
2429void* os::user_handler() {
2430  return CAST_FROM_FN_PTR(void*, UserHandler);
2431}
2432
2433class Semaphore : public StackObj {
2434 public:
2435  Semaphore();
2436  ~Semaphore();
2437  void signal();
2438  void wait();
2439  bool trywait();
2440  bool timedwait(unsigned int sec, int nsec);
2441 private:
2442  sem_t _semaphore;
2443};
2444
2445Semaphore::Semaphore() {
2446  sem_init(&_semaphore, 0, 0);
2447}
2448
2449Semaphore::~Semaphore() {
2450  sem_destroy(&_semaphore);
2451}
2452
2453void Semaphore::signal() {
2454  sem_post(&_semaphore);
2455}
2456
2457void Semaphore::wait() {
2458  sem_wait(&_semaphore);
2459}
2460
2461bool Semaphore::trywait() {
2462  return sem_trywait(&_semaphore) == 0;
2463}
2464
2465bool Semaphore::timedwait(unsigned int sec, int nsec) {
2466
2467  struct timespec ts;
2468  // Semaphore's are always associated with CLOCK_REALTIME
2469  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2470  // see unpackTime for discussion on overflow checking
2471  if (sec >= MAX_SECS) {
2472    ts.tv_sec += MAX_SECS;
2473    ts.tv_nsec = 0;
2474  } else {
2475    ts.tv_sec += sec;
2476    ts.tv_nsec += nsec;
2477    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2478      ts.tv_nsec -= NANOSECS_PER_SEC;
2479      ++ts.tv_sec; // note: this must be <= max_secs
2480    }
2481  }
2482
2483  while (1) {
2484    int result = sem_timedwait(&_semaphore, &ts);
2485    if (result == 0) {
2486      return true;
2487    } else if (errno == EINTR) {
2488      continue;
2489    } else if (errno == ETIMEDOUT) {
2490      return false;
2491    } else {
2492      return false;
2493    }
2494  }
2495}
2496
2497extern "C" {
2498  typedef void (*sa_handler_t)(int);
2499  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2500}
2501
2502void* os::signal(int signal_number, void* handler) {
2503  struct sigaction sigAct, oldSigAct;
2504
2505  sigfillset(&(sigAct.sa_mask));
2506  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2507  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2508
2509  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2510    // -1 means registration failed
2511    return (void *)-1;
2512  }
2513
2514  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2515}
2516
2517void os::signal_raise(int signal_number) {
2518  ::raise(signal_number);
2519}
2520
2521// The following code is moved from os.cpp for making this
2522// code platform specific, which it is by its very nature.
2523
2524// Will be modified when max signal is changed to be dynamic
2525int os::sigexitnum_pd() {
2526  return NSIG;
2527}
2528
2529// a counter for each possible signal value
2530static volatile jint pending_signals[NSIG+1] = { 0 };
2531
2532// Linux(POSIX) specific hand shaking semaphore.
2533static sem_t sig_sem;
2534static Semaphore sr_semaphore;
2535
2536void os::signal_init_pd() {
2537  // Initialize signal structures
2538  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2539
2540  // Initialize signal semaphore
2541  ::sem_init(&sig_sem, 0, 0);
2542}
2543
2544void os::signal_notify(int sig) {
2545  Atomic::inc(&pending_signals[sig]);
2546  ::sem_post(&sig_sem);
2547}
2548
2549static int check_pending_signals(bool wait) {
2550  Atomic::store(0, &sigint_count);
2551  for (;;) {
2552    for (int i = 0; i < NSIG + 1; i++) {
2553      jint n = pending_signals[i];
2554      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2555        return i;
2556      }
2557    }
2558    if (!wait) {
2559      return -1;
2560    }
2561    JavaThread *thread = JavaThread::current();
2562    ThreadBlockInVM tbivm(thread);
2563
2564    bool threadIsSuspended;
2565    do {
2566      thread->set_suspend_equivalent();
2567      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2568      ::sem_wait(&sig_sem);
2569
2570      // were we externally suspended while we were waiting?
2571      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2572      if (threadIsSuspended) {
2573        // The semaphore has been incremented, but while we were waiting
2574        // another thread suspended us. We don't want to continue running
2575        // while suspended because that would surprise the thread that
2576        // suspended us.
2577        ::sem_post(&sig_sem);
2578
2579        thread->java_suspend_self();
2580      }
2581    } while (threadIsSuspended);
2582  }
2583}
2584
2585int os::signal_lookup() {
2586  return check_pending_signals(false);
2587}
2588
2589int os::signal_wait() {
2590  return check_pending_signals(true);
2591}
2592
2593////////////////////////////////////////////////////////////////////////////////
2594// Virtual Memory
2595
2596int os::vm_page_size() {
2597  // Seems redundant as all get out
2598  assert(os::Linux::page_size() != -1, "must call os::init");
2599  return os::Linux::page_size();
2600}
2601
2602// Solaris allocates memory by pages.
2603int os::vm_allocation_granularity() {
2604  assert(os::Linux::page_size() != -1, "must call os::init");
2605  return os::Linux::page_size();
2606}
2607
2608// Rationale behind this function:
2609//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2610//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2611//  samples for JITted code. Here we create private executable mapping over the code cache
2612//  and then we can use standard (well, almost, as mapping can change) way to provide
2613//  info for the reporting script by storing timestamp and location of symbol
2614void linux_wrap_code(char* base, size_t size) {
2615  static volatile jint cnt = 0;
2616
2617  if (!UseOprofile) {
2618    return;
2619  }
2620
2621  char buf[PATH_MAX+1];
2622  int num = Atomic::add(1, &cnt);
2623
2624  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2625           os::get_temp_directory(), os::current_process_id(), num);
2626  unlink(buf);
2627
2628  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2629
2630  if (fd != -1) {
2631    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2632    if (rv != (off_t)-1) {
2633      if (::write(fd, "", 1) == 1) {
2634        mmap(base, size,
2635             PROT_READ|PROT_WRITE|PROT_EXEC,
2636             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2637      }
2638    }
2639    ::close(fd);
2640    unlink(buf);
2641  }
2642}
2643
2644static bool recoverable_mmap_error(int err) {
2645  // See if the error is one we can let the caller handle. This
2646  // list of errno values comes from JBS-6843484. I can't find a
2647  // Linux man page that documents this specific set of errno
2648  // values so while this list currently matches Solaris, it may
2649  // change as we gain experience with this failure mode.
2650  switch (err) {
2651  case EBADF:
2652  case EINVAL:
2653  case ENOTSUP:
2654    // let the caller deal with these errors
2655    return true;
2656
2657  default:
2658    // Any remaining errors on this OS can cause our reserved mapping
2659    // to be lost. That can cause confusion where different data
2660    // structures think they have the same memory mapped. The worst
2661    // scenario is if both the VM and a library think they have the
2662    // same memory mapped.
2663    return false;
2664  }
2665}
2666
2667static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2668                                    int err) {
2669  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2670          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2671          strerror(err), err);
2672}
2673
2674static void warn_fail_commit_memory(char* addr, size_t size,
2675                                    size_t alignment_hint, bool exec,
2676                                    int err) {
2677  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2678          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2679          alignment_hint, exec, strerror(err), err);
2680}
2681
2682// NOTE: Linux kernel does not really reserve the pages for us.
2683//       All it does is to check if there are enough free pages
2684//       left at the time of mmap(). This could be a potential
2685//       problem.
2686int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2687  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2688  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2689                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2690  if (res != (uintptr_t) MAP_FAILED) {
2691    if (UseNUMAInterleaving) {
2692      numa_make_global(addr, size);
2693    }
2694    return 0;
2695  }
2696
2697  int err = errno;  // save errno from mmap() call above
2698
2699  if (!recoverable_mmap_error(err)) {
2700    warn_fail_commit_memory(addr, size, exec, err);
2701    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2702  }
2703
2704  return err;
2705}
2706
2707bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2708  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2709}
2710
2711void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2712                                  const char* mesg) {
2713  assert(mesg != NULL, "mesg must be specified");
2714  int err = os::Linux::commit_memory_impl(addr, size, exec);
2715  if (err != 0) {
2716    // the caller wants all commit errors to exit with the specified mesg:
2717    warn_fail_commit_memory(addr, size, exec, err);
2718    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2719  }
2720}
2721
2722// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2723#ifndef MAP_HUGETLB
2724  #define MAP_HUGETLB 0x40000
2725#endif
2726
2727// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2728#ifndef MADV_HUGEPAGE
2729  #define MADV_HUGEPAGE 14
2730#endif
2731
2732int os::Linux::commit_memory_impl(char* addr, size_t size,
2733                                  size_t alignment_hint, bool exec) {
2734  int err = os::Linux::commit_memory_impl(addr, size, exec);
2735  if (err == 0) {
2736    realign_memory(addr, size, alignment_hint);
2737  }
2738  return err;
2739}
2740
2741bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2742                          bool exec) {
2743  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2744}
2745
2746void os::pd_commit_memory_or_exit(char* addr, size_t size,
2747                                  size_t alignment_hint, bool exec,
2748                                  const char* mesg) {
2749  assert(mesg != NULL, "mesg must be specified");
2750  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2751  if (err != 0) {
2752    // the caller wants all commit errors to exit with the specified mesg:
2753    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2754    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2755  }
2756}
2757
2758void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2759  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2760    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2761    // be supported or the memory may already be backed by huge pages.
2762    ::madvise(addr, bytes, MADV_HUGEPAGE);
2763  }
2764}
2765
2766void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2767  // This method works by doing an mmap over an existing mmaping and effectively discarding
2768  // the existing pages. However it won't work for SHM-based large pages that cannot be
2769  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2770  // small pages on top of the SHM segment. This method always works for small pages, so we
2771  // allow that in any case.
2772  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2773    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2774  }
2775}
2776
2777void os::numa_make_global(char *addr, size_t bytes) {
2778  Linux::numa_interleave_memory(addr, bytes);
2779}
2780
2781// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2782// bind policy to MPOL_PREFERRED for the current thread.
2783#define USE_MPOL_PREFERRED 0
2784
2785void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2786  // To make NUMA and large pages more robust when both enabled, we need to ease
2787  // the requirements on where the memory should be allocated. MPOL_BIND is the
2788  // default policy and it will force memory to be allocated on the specified
2789  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2790  // the specified node, but will not force it. Using this policy will prevent
2791  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2792  // free large pages.
2793  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2794  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2795}
2796
2797bool os::numa_topology_changed() { return false; }
2798
2799size_t os::numa_get_groups_num() {
2800  int max_node = Linux::numa_max_node();
2801  return max_node > 0 ? max_node + 1 : 1;
2802}
2803
2804int os::numa_get_group_id() {
2805  int cpu_id = Linux::sched_getcpu();
2806  if (cpu_id != -1) {
2807    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2808    if (lgrp_id != -1) {
2809      return lgrp_id;
2810    }
2811  }
2812  return 0;
2813}
2814
2815size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2816  for (size_t i = 0; i < size; i++) {
2817    ids[i] = i;
2818  }
2819  return size;
2820}
2821
2822bool os::get_page_info(char *start, page_info* info) {
2823  return false;
2824}
2825
2826char *os::scan_pages(char *start, char* end, page_info* page_expected,
2827                     page_info* page_found) {
2828  return end;
2829}
2830
2831
2832int os::Linux::sched_getcpu_syscall(void) {
2833  unsigned int cpu;
2834  int retval = -1;
2835
2836#if defined(IA32)
2837  #ifndef SYS_getcpu
2838    #define SYS_getcpu 318
2839  #endif
2840  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2841#elif defined(AMD64)
2842// Unfortunately we have to bring all these macros here from vsyscall.h
2843// to be able to compile on old linuxes.
2844  #define __NR_vgetcpu 2
2845  #define VSYSCALL_START (-10UL << 20)
2846  #define VSYSCALL_SIZE 1024
2847  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2848  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2849  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2850  retval = vgetcpu(&cpu, NULL, NULL);
2851#endif
2852
2853  return (retval == -1) ? retval : cpu;
2854}
2855
2856// Something to do with the numa-aware allocator needs these symbols
2857extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2858extern "C" JNIEXPORT void numa_error(char *where) { }
2859extern "C" JNIEXPORT int fork1() { return fork(); }
2860
2861
2862// If we are running with libnuma version > 2, then we should
2863// be trying to use symbols with versions 1.1
2864// If we are running with earlier version, which did not have symbol versions,
2865// we should use the base version.
2866void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2867  void *f = dlvsym(handle, name, "libnuma_1.1");
2868  if (f == NULL) {
2869    f = dlsym(handle, name);
2870  }
2871  return f;
2872}
2873
2874bool os::Linux::libnuma_init() {
2875  // sched_getcpu() should be in libc.
2876  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2877                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2878
2879  // If it's not, try a direct syscall.
2880  if (sched_getcpu() == -1) {
2881    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2882                                    (void*)&sched_getcpu_syscall));
2883  }
2884
2885  if (sched_getcpu() != -1) { // Does it work?
2886    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2887    if (handle != NULL) {
2888      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2889                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2890      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2891                                       libnuma_dlsym(handle, "numa_max_node")));
2892      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2893                                        libnuma_dlsym(handle, "numa_available")));
2894      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2895                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2896      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2897                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2898      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2899                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2900
2901
2902      if (numa_available() != -1) {
2903        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2904        // Create a cpu -> node mapping
2905        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2906        rebuild_cpu_to_node_map();
2907        return true;
2908      }
2909    }
2910  }
2911  return false;
2912}
2913
2914// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2915// The table is later used in get_node_by_cpu().
2916void os::Linux::rebuild_cpu_to_node_map() {
2917  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2918                              // in libnuma (possible values are starting from 16,
2919                              // and continuing up with every other power of 2, but less
2920                              // than the maximum number of CPUs supported by kernel), and
2921                              // is a subject to change (in libnuma version 2 the requirements
2922                              // are more reasonable) we'll just hardcode the number they use
2923                              // in the library.
2924  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2925
2926  size_t cpu_num = os::active_processor_count();
2927  size_t cpu_map_size = NCPUS / BitsPerCLong;
2928  size_t cpu_map_valid_size =
2929    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2930
2931  cpu_to_node()->clear();
2932  cpu_to_node()->at_grow(cpu_num - 1);
2933  size_t node_num = numa_get_groups_num();
2934
2935  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2936  for (size_t i = 0; i < node_num; i++) {
2937    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2938      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2939        if (cpu_map[j] != 0) {
2940          for (size_t k = 0; k < BitsPerCLong; k++) {
2941            if (cpu_map[j] & (1UL << k)) {
2942              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2943            }
2944          }
2945        }
2946      }
2947    }
2948  }
2949  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2950}
2951
2952int os::Linux::get_node_by_cpu(int cpu_id) {
2953  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2954    return cpu_to_node()->at(cpu_id);
2955  }
2956  return -1;
2957}
2958
2959GrowableArray<int>* os::Linux::_cpu_to_node;
2960os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2961os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2962os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2963os::Linux::numa_available_func_t os::Linux::_numa_available;
2964os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2965os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2966os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2967unsigned long* os::Linux::_numa_all_nodes;
2968
2969bool os::pd_uncommit_memory(char* addr, size_t size) {
2970  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2971                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2972  return res  != (uintptr_t) MAP_FAILED;
2973}
2974
2975static address get_stack_commited_bottom(address bottom, size_t size) {
2976  address nbot = bottom;
2977  address ntop = bottom + size;
2978
2979  size_t page_sz = os::vm_page_size();
2980  unsigned pages = size / page_sz;
2981
2982  unsigned char vec[1];
2983  unsigned imin = 1, imax = pages + 1, imid;
2984  int mincore_return_value = 0;
2985
2986  assert(imin <= imax, "Unexpected page size");
2987
2988  while (imin < imax) {
2989    imid = (imax + imin) / 2;
2990    nbot = ntop - (imid * page_sz);
2991
2992    // Use a trick with mincore to check whether the page is mapped or not.
2993    // mincore sets vec to 1 if page resides in memory and to 0 if page
2994    // is swapped output but if page we are asking for is unmapped
2995    // it returns -1,ENOMEM
2996    mincore_return_value = mincore(nbot, page_sz, vec);
2997
2998    if (mincore_return_value == -1) {
2999      // Page is not mapped go up
3000      // to find first mapped page
3001      if (errno != EAGAIN) {
3002        assert(errno == ENOMEM, "Unexpected mincore errno");
3003        imax = imid;
3004      }
3005    } else {
3006      // Page is mapped go down
3007      // to find first not mapped page
3008      imin = imid + 1;
3009    }
3010  }
3011
3012  nbot = nbot + page_sz;
3013
3014  // Adjust stack bottom one page up if last checked page is not mapped
3015  if (mincore_return_value == -1) {
3016    nbot = nbot + page_sz;
3017  }
3018
3019  return nbot;
3020}
3021
3022
3023// Linux uses a growable mapping for the stack, and if the mapping for
3024// the stack guard pages is not removed when we detach a thread the
3025// stack cannot grow beyond the pages where the stack guard was
3026// mapped.  If at some point later in the process the stack expands to
3027// that point, the Linux kernel cannot expand the stack any further
3028// because the guard pages are in the way, and a segfault occurs.
3029//
3030// However, it's essential not to split the stack region by unmapping
3031// a region (leaving a hole) that's already part of the stack mapping,
3032// so if the stack mapping has already grown beyond the guard pages at
3033// the time we create them, we have to truncate the stack mapping.
3034// So, we need to know the extent of the stack mapping when
3035// create_stack_guard_pages() is called.
3036
3037// We only need this for stacks that are growable: at the time of
3038// writing thread stacks don't use growable mappings (i.e. those
3039// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3040// only applies to the main thread.
3041
3042// If the (growable) stack mapping already extends beyond the point
3043// where we're going to put our guard pages, truncate the mapping at
3044// that point by munmap()ping it.  This ensures that when we later
3045// munmap() the guard pages we don't leave a hole in the stack
3046// mapping. This only affects the main/initial thread
3047
3048bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3049  if (os::Linux::is_initial_thread()) {
3050    // As we manually grow stack up to bottom inside create_attached_thread(),
3051    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3052    // we don't need to do anything special.
3053    // Check it first, before calling heavy function.
3054    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3055    unsigned char vec[1];
3056
3057    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3058      // Fallback to slow path on all errors, including EAGAIN
3059      stack_extent = (uintptr_t) get_stack_commited_bottom(
3060                                                           os::Linux::initial_thread_stack_bottom(),
3061                                                           (size_t)addr - stack_extent);
3062    }
3063
3064    if (stack_extent < (uintptr_t)addr) {
3065      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3066    }
3067  }
3068
3069  return os::commit_memory(addr, size, !ExecMem);
3070}
3071
3072// If this is a growable mapping, remove the guard pages entirely by
3073// munmap()ping them.  If not, just call uncommit_memory(). This only
3074// affects the main/initial thread, but guard against future OS changes
3075// It's safe to always unmap guard pages for initial thread because we
3076// always place it right after end of the mapped region
3077
3078bool os::remove_stack_guard_pages(char* addr, size_t size) {
3079  uintptr_t stack_extent, stack_base;
3080
3081  if (os::Linux::is_initial_thread()) {
3082    return ::munmap(addr, size) == 0;
3083  }
3084
3085  return os::uncommit_memory(addr, size);
3086}
3087
3088static address _highest_vm_reserved_address = NULL;
3089
3090// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3091// at 'requested_addr'. If there are existing memory mappings at the same
3092// location, however, they will be overwritten. If 'fixed' is false,
3093// 'requested_addr' is only treated as a hint, the return value may or
3094// may not start from the requested address. Unlike Linux mmap(), this
3095// function returns NULL to indicate failure.
3096static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3097  char * addr;
3098  int flags;
3099
3100  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3101  if (fixed) {
3102    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3103    flags |= MAP_FIXED;
3104  }
3105
3106  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3107  // touch an uncommitted page. Otherwise, the read/write might
3108  // succeed if we have enough swap space to back the physical page.
3109  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3110                       flags, -1, 0);
3111
3112  if (addr != MAP_FAILED) {
3113    // anon_mmap() should only get called during VM initialization,
3114    // don't need lock (actually we can skip locking even it can be called
3115    // from multiple threads, because _highest_vm_reserved_address is just a
3116    // hint about the upper limit of non-stack memory regions.)
3117    if ((address)addr + bytes > _highest_vm_reserved_address) {
3118      _highest_vm_reserved_address = (address)addr + bytes;
3119    }
3120  }
3121
3122  return addr == MAP_FAILED ? NULL : addr;
3123}
3124
3125// Don't update _highest_vm_reserved_address, because there might be memory
3126// regions above addr + size. If so, releasing a memory region only creates
3127// a hole in the address space, it doesn't help prevent heap-stack collision.
3128//
3129static int anon_munmap(char * addr, size_t size) {
3130  return ::munmap(addr, size) == 0;
3131}
3132
3133char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3134                            size_t alignment_hint) {
3135  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3136}
3137
3138bool os::pd_release_memory(char* addr, size_t size) {
3139  return anon_munmap(addr, size);
3140}
3141
3142static address highest_vm_reserved_address() {
3143  return _highest_vm_reserved_address;
3144}
3145
3146static bool linux_mprotect(char* addr, size_t size, int prot) {
3147  // Linux wants the mprotect address argument to be page aligned.
3148  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3149
3150  // According to SUSv3, mprotect() should only be used with mappings
3151  // established by mmap(), and mmap() always maps whole pages. Unaligned
3152  // 'addr' likely indicates problem in the VM (e.g. trying to change
3153  // protection of malloc'ed or statically allocated memory). Check the
3154  // caller if you hit this assert.
3155  assert(addr == bottom, "sanity check");
3156
3157  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3158  return ::mprotect(bottom, size, prot) == 0;
3159}
3160
3161// Set protections specified
3162bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3163                        bool is_committed) {
3164  unsigned int p = 0;
3165  switch (prot) {
3166  case MEM_PROT_NONE: p = PROT_NONE; break;
3167  case MEM_PROT_READ: p = PROT_READ; break;
3168  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3169  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3170  default:
3171    ShouldNotReachHere();
3172  }
3173  // is_committed is unused.
3174  return linux_mprotect(addr, bytes, p);
3175}
3176
3177bool os::guard_memory(char* addr, size_t size) {
3178  return linux_mprotect(addr, size, PROT_NONE);
3179}
3180
3181bool os::unguard_memory(char* addr, size_t size) {
3182  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3183}
3184
3185bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3186                                                    size_t page_size) {
3187  bool result = false;
3188  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3189                 MAP_ANONYMOUS|MAP_PRIVATE,
3190                 -1, 0);
3191  if (p != MAP_FAILED) {
3192    void *aligned_p = align_ptr_up(p, page_size);
3193
3194    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3195
3196    munmap(p, page_size * 2);
3197  }
3198
3199  if (warn && !result) {
3200    warning("TransparentHugePages is not supported by the operating system.");
3201  }
3202
3203  return result;
3204}
3205
3206bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3207  bool result = false;
3208  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3209                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3210                 -1, 0);
3211
3212  if (p != MAP_FAILED) {
3213    // We don't know if this really is a huge page or not.
3214    FILE *fp = fopen("/proc/self/maps", "r");
3215    if (fp) {
3216      while (!feof(fp)) {
3217        char chars[257];
3218        long x = 0;
3219        if (fgets(chars, sizeof(chars), fp)) {
3220          if (sscanf(chars, "%lx-%*x", &x) == 1
3221              && x == (long)p) {
3222            if (strstr (chars, "hugepage")) {
3223              result = true;
3224              break;
3225            }
3226          }
3227        }
3228      }
3229      fclose(fp);
3230    }
3231    munmap(p, page_size);
3232  }
3233
3234  if (warn && !result) {
3235    warning("HugeTLBFS is not supported by the operating system.");
3236  }
3237
3238  return result;
3239}
3240
3241// Set the coredump_filter bits to include largepages in core dump (bit 6)
3242//
3243// From the coredump_filter documentation:
3244//
3245// - (bit 0) anonymous private memory
3246// - (bit 1) anonymous shared memory
3247// - (bit 2) file-backed private memory
3248// - (bit 3) file-backed shared memory
3249// - (bit 4) ELF header pages in file-backed private memory areas (it is
3250//           effective only if the bit 2 is cleared)
3251// - (bit 5) hugetlb private memory
3252// - (bit 6) hugetlb shared memory
3253//
3254static void set_coredump_filter(void) {
3255  FILE *f;
3256  long cdm;
3257
3258  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3259    return;
3260  }
3261
3262  if (fscanf(f, "%lx", &cdm) != 1) {
3263    fclose(f);
3264    return;
3265  }
3266
3267  rewind(f);
3268
3269  if ((cdm & LARGEPAGES_BIT) == 0) {
3270    cdm |= LARGEPAGES_BIT;
3271    fprintf(f, "%#lx", cdm);
3272  }
3273
3274  fclose(f);
3275}
3276
3277// Large page support
3278
3279static size_t _large_page_size = 0;
3280
3281size_t os::Linux::find_large_page_size() {
3282  size_t large_page_size = 0;
3283
3284  // large_page_size on Linux is used to round up heap size. x86 uses either
3285  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3286  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3287  // page as large as 256M.
3288  //
3289  // Here we try to figure out page size by parsing /proc/meminfo and looking
3290  // for a line with the following format:
3291  //    Hugepagesize:     2048 kB
3292  //
3293  // If we can't determine the value (e.g. /proc is not mounted, or the text
3294  // format has been changed), we'll use the largest page size supported by
3295  // the processor.
3296
3297#ifndef ZERO
3298  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3299                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3300#endif // ZERO
3301
3302  FILE *fp = fopen("/proc/meminfo", "r");
3303  if (fp) {
3304    while (!feof(fp)) {
3305      int x = 0;
3306      char buf[16];
3307      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3308        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3309          large_page_size = x * K;
3310          break;
3311        }
3312      } else {
3313        // skip to next line
3314        for (;;) {
3315          int ch = fgetc(fp);
3316          if (ch == EOF || ch == (int)'\n') break;
3317        }
3318      }
3319    }
3320    fclose(fp);
3321  }
3322
3323  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3324    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3325            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3326            proper_unit_for_byte_size(large_page_size));
3327  }
3328
3329  return large_page_size;
3330}
3331
3332size_t os::Linux::setup_large_page_size() {
3333  _large_page_size = Linux::find_large_page_size();
3334  const size_t default_page_size = (size_t)Linux::page_size();
3335  if (_large_page_size > default_page_size) {
3336    _page_sizes[0] = _large_page_size;
3337    _page_sizes[1] = default_page_size;
3338    _page_sizes[2] = 0;
3339  }
3340
3341  return _large_page_size;
3342}
3343
3344bool os::Linux::setup_large_page_type(size_t page_size) {
3345  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3346      FLAG_IS_DEFAULT(UseSHM) &&
3347      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3348
3349    // The type of large pages has not been specified by the user.
3350
3351    // Try UseHugeTLBFS and then UseSHM.
3352    UseHugeTLBFS = UseSHM = true;
3353
3354    // Don't try UseTransparentHugePages since there are known
3355    // performance issues with it turned on. This might change in the future.
3356    UseTransparentHugePages = false;
3357  }
3358
3359  if (UseTransparentHugePages) {
3360    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3361    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3362      UseHugeTLBFS = false;
3363      UseSHM = false;
3364      return true;
3365    }
3366    UseTransparentHugePages = false;
3367  }
3368
3369  if (UseHugeTLBFS) {
3370    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3371    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3372      UseSHM = false;
3373      return true;
3374    }
3375    UseHugeTLBFS = false;
3376  }
3377
3378  return UseSHM;
3379}
3380
3381void os::large_page_init() {
3382  if (!UseLargePages &&
3383      !UseTransparentHugePages &&
3384      !UseHugeTLBFS &&
3385      !UseSHM) {
3386    // Not using large pages.
3387    return;
3388  }
3389
3390  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3391    // The user explicitly turned off large pages.
3392    // Ignore the rest of the large pages flags.
3393    UseTransparentHugePages = false;
3394    UseHugeTLBFS = false;
3395    UseSHM = false;
3396    return;
3397  }
3398
3399  size_t large_page_size = Linux::setup_large_page_size();
3400  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3401
3402  set_coredump_filter();
3403}
3404
3405#ifndef SHM_HUGETLB
3406  #define SHM_HUGETLB 04000
3407#endif
3408
3409char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3410                                            char* req_addr, bool exec) {
3411  // "exec" is passed in but not used.  Creating the shared image for
3412  // the code cache doesn't have an SHM_X executable permission to check.
3413  assert(UseLargePages && UseSHM, "only for SHM large pages");
3414  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3415
3416  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3417    return NULL; // Fallback to small pages.
3418  }
3419
3420  key_t key = IPC_PRIVATE;
3421  char *addr;
3422
3423  bool warn_on_failure = UseLargePages &&
3424                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3425                         !FLAG_IS_DEFAULT(UseSHM) ||
3426                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3427  char msg[128];
3428
3429  // Create a large shared memory region to attach to based on size.
3430  // Currently, size is the total size of the heap
3431  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3432  if (shmid == -1) {
3433    // Possible reasons for shmget failure:
3434    // 1. shmmax is too small for Java heap.
3435    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3436    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3437    // 2. not enough large page memory.
3438    //    > check available large pages: cat /proc/meminfo
3439    //    > increase amount of large pages:
3440    //          echo new_value > /proc/sys/vm/nr_hugepages
3441    //      Note 1: different Linux may use different name for this property,
3442    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3443    //      Note 2: it's possible there's enough physical memory available but
3444    //            they are so fragmented after a long run that they can't
3445    //            coalesce into large pages. Try to reserve large pages when
3446    //            the system is still "fresh".
3447    if (warn_on_failure) {
3448      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3449      warning("%s", msg);
3450    }
3451    return NULL;
3452  }
3453
3454  // attach to the region
3455  addr = (char*)shmat(shmid, req_addr, 0);
3456  int err = errno;
3457
3458  // Remove shmid. If shmat() is successful, the actual shared memory segment
3459  // will be deleted when it's detached by shmdt() or when the process
3460  // terminates. If shmat() is not successful this will remove the shared
3461  // segment immediately.
3462  shmctl(shmid, IPC_RMID, NULL);
3463
3464  if ((intptr_t)addr == -1) {
3465    if (warn_on_failure) {
3466      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3467      warning("%s", msg);
3468    }
3469    return NULL;
3470  }
3471
3472  return addr;
3473}
3474
3475static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3476                                        int error) {
3477  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3478
3479  bool warn_on_failure = UseLargePages &&
3480      (!FLAG_IS_DEFAULT(UseLargePages) ||
3481       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3482       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3483
3484  if (warn_on_failure) {
3485    char msg[128];
3486    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3487                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3488    warning("%s", msg);
3489  }
3490}
3491
3492char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3493                                                        char* req_addr,
3494                                                        bool exec) {
3495  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3496  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3497  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3498
3499  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3500  char* addr = (char*)::mmap(req_addr, bytes, prot,
3501                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3502                             -1, 0);
3503
3504  if (addr == MAP_FAILED) {
3505    warn_on_large_pages_failure(req_addr, bytes, errno);
3506    return NULL;
3507  }
3508
3509  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3510
3511  return addr;
3512}
3513
3514// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3515// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3516//   (req_addr != NULL) or with a given alignment.
3517//  - bytes shall be a multiple of alignment.
3518//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3519//  - alignment sets the alignment at which memory shall be allocated.
3520//     It must be a multiple of allocation granularity.
3521// Returns address of memory or NULL. If req_addr was not NULL, will only return
3522//  req_addr or NULL.
3523static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3524
3525  size_t extra_size = bytes;
3526  if (req_addr == NULL && alignment > 0) {
3527    extra_size += alignment;
3528  }
3529
3530  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3531    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3532    -1, 0);
3533  if (start == MAP_FAILED) {
3534    start = NULL;
3535  } else {
3536    if (req_addr != NULL) {
3537      if (start != req_addr) {
3538        ::munmap(start, extra_size);
3539        start = NULL;
3540      }
3541    } else {
3542      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3543      char* const end_aligned = start_aligned + bytes;
3544      char* const end = start + extra_size;
3545      if (start_aligned > start) {
3546        ::munmap(start, start_aligned - start);
3547      }
3548      if (end_aligned < end) {
3549        ::munmap(end_aligned, end - end_aligned);
3550      }
3551      start = start_aligned;
3552    }
3553  }
3554  return start;
3555
3556}
3557
3558// Reserve memory using mmap(MAP_HUGETLB).
3559//  - bytes shall be a multiple of alignment.
3560//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3561//  - alignment sets the alignment at which memory shall be allocated.
3562//     It must be a multiple of allocation granularity.
3563// Returns address of memory or NULL. If req_addr was not NULL, will only return
3564//  req_addr or NULL.
3565char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3566                                                         size_t alignment,
3567                                                         char* req_addr,
3568                                                         bool exec) {
3569  size_t large_page_size = os::large_page_size();
3570  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3571
3572  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3573  assert(is_size_aligned(bytes, alignment), "Must be");
3574
3575  // First reserve - but not commit - the address range in small pages.
3576  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3577
3578  if (start == NULL) {
3579    return NULL;
3580  }
3581
3582  assert(is_ptr_aligned(start, alignment), "Must be");
3583
3584  char* end = start + bytes;
3585
3586  // Find the regions of the allocated chunk that can be promoted to large pages.
3587  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3588  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3589
3590  size_t lp_bytes = lp_end - lp_start;
3591
3592  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3593
3594  if (lp_bytes == 0) {
3595    // The mapped region doesn't even span the start and the end of a large page.
3596    // Fall back to allocate a non-special area.
3597    ::munmap(start, end - start);
3598    return NULL;
3599  }
3600
3601  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3602
3603  void* result;
3604
3605  // Commit small-paged leading area.
3606  if (start != lp_start) {
3607    result = ::mmap(start, lp_start - start, prot,
3608                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3609                    -1, 0);
3610    if (result == MAP_FAILED) {
3611      ::munmap(lp_start, end - lp_start);
3612      return NULL;
3613    }
3614  }
3615
3616  // Commit large-paged area.
3617  result = ::mmap(lp_start, lp_bytes, prot,
3618                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3619                  -1, 0);
3620  if (result == MAP_FAILED) {
3621    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3622    // If the mmap above fails, the large pages region will be unmapped and we
3623    // have regions before and after with small pages. Release these regions.
3624    //
3625    // |  mapped  |  unmapped  |  mapped  |
3626    // ^          ^            ^          ^
3627    // start      lp_start     lp_end     end
3628    //
3629    ::munmap(start, lp_start - start);
3630    ::munmap(lp_end, end - lp_end);
3631    return NULL;
3632  }
3633
3634  // Commit small-paged trailing area.
3635  if (lp_end != end) {
3636    result = ::mmap(lp_end, end - lp_end, prot,
3637                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3638                    -1, 0);
3639    if (result == MAP_FAILED) {
3640      ::munmap(start, lp_end - start);
3641      return NULL;
3642    }
3643  }
3644
3645  return start;
3646}
3647
3648char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3649                                                   size_t alignment,
3650                                                   char* req_addr,
3651                                                   bool exec) {
3652  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3653  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3654  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3655  assert(is_power_of_2(os::large_page_size()), "Must be");
3656  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3657
3658  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3659    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3660  } else {
3661    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3662  }
3663}
3664
3665char* os::reserve_memory_special(size_t bytes, size_t alignment,
3666                                 char* req_addr, bool exec) {
3667  assert(UseLargePages, "only for large pages");
3668
3669  char* addr;
3670  if (UseSHM) {
3671    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3672  } else {
3673    assert(UseHugeTLBFS, "must be");
3674    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3675  }
3676
3677  if (addr != NULL) {
3678    if (UseNUMAInterleaving) {
3679      numa_make_global(addr, bytes);
3680    }
3681
3682    // The memory is committed
3683    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3684  }
3685
3686  return addr;
3687}
3688
3689bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3690  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3691  return shmdt(base) == 0;
3692}
3693
3694bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3695  return pd_release_memory(base, bytes);
3696}
3697
3698bool os::release_memory_special(char* base, size_t bytes) {
3699  bool res;
3700  if (MemTracker::tracking_level() > NMT_minimal) {
3701    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3702    res = os::Linux::release_memory_special_impl(base, bytes);
3703    if (res) {
3704      tkr.record((address)base, bytes);
3705    }
3706
3707  } else {
3708    res = os::Linux::release_memory_special_impl(base, bytes);
3709  }
3710  return res;
3711}
3712
3713bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3714  assert(UseLargePages, "only for large pages");
3715  bool res;
3716
3717  if (UseSHM) {
3718    res = os::Linux::release_memory_special_shm(base, bytes);
3719  } else {
3720    assert(UseHugeTLBFS, "must be");
3721    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3722  }
3723  return res;
3724}
3725
3726size_t os::large_page_size() {
3727  return _large_page_size;
3728}
3729
3730// With SysV SHM the entire memory region must be allocated as shared
3731// memory.
3732// HugeTLBFS allows application to commit large page memory on demand.
3733// However, when committing memory with HugeTLBFS fails, the region
3734// that was supposed to be committed will lose the old reservation
3735// and allow other threads to steal that memory region. Because of this
3736// behavior we can't commit HugeTLBFS memory.
3737bool os::can_commit_large_page_memory() {
3738  return UseTransparentHugePages;
3739}
3740
3741bool os::can_execute_large_page_memory() {
3742  return UseTransparentHugePages || UseHugeTLBFS;
3743}
3744
3745// Reserve memory at an arbitrary address, only if that area is
3746// available (and not reserved for something else).
3747
3748char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3749  const int max_tries = 10;
3750  char* base[max_tries];
3751  size_t size[max_tries];
3752  const size_t gap = 0x000000;
3753
3754  // Assert only that the size is a multiple of the page size, since
3755  // that's all that mmap requires, and since that's all we really know
3756  // about at this low abstraction level.  If we need higher alignment,
3757  // we can either pass an alignment to this method or verify alignment
3758  // in one of the methods further up the call chain.  See bug 5044738.
3759  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3760
3761  // Repeatedly allocate blocks until the block is allocated at the
3762  // right spot. Give up after max_tries. Note that reserve_memory() will
3763  // automatically update _highest_vm_reserved_address if the call is
3764  // successful. The variable tracks the highest memory address every reserved
3765  // by JVM. It is used to detect heap-stack collision if running with
3766  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3767  // space than needed, it could confuse the collision detecting code. To
3768  // solve the problem, save current _highest_vm_reserved_address and
3769  // calculate the correct value before return.
3770  address old_highest = _highest_vm_reserved_address;
3771
3772  // Linux mmap allows caller to pass an address as hint; give it a try first,
3773  // if kernel honors the hint then we can return immediately.
3774  char * addr = anon_mmap(requested_addr, bytes, false);
3775  if (addr == requested_addr) {
3776    return requested_addr;
3777  }
3778
3779  if (addr != NULL) {
3780    // mmap() is successful but it fails to reserve at the requested address
3781    anon_munmap(addr, bytes);
3782  }
3783
3784  int i;
3785  for (i = 0; i < max_tries; ++i) {
3786    base[i] = reserve_memory(bytes);
3787
3788    if (base[i] != NULL) {
3789      // Is this the block we wanted?
3790      if (base[i] == requested_addr) {
3791        size[i] = bytes;
3792        break;
3793      }
3794
3795      // Does this overlap the block we wanted? Give back the overlapped
3796      // parts and try again.
3797
3798      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3799      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3800        unmap_memory(base[i], top_overlap);
3801        base[i] += top_overlap;
3802        size[i] = bytes - top_overlap;
3803      } else {
3804        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3805        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3806          unmap_memory(requested_addr, bottom_overlap);
3807          size[i] = bytes - bottom_overlap;
3808        } else {
3809          size[i] = bytes;
3810        }
3811      }
3812    }
3813  }
3814
3815  // Give back the unused reserved pieces.
3816
3817  for (int j = 0; j < i; ++j) {
3818    if (base[j] != NULL) {
3819      unmap_memory(base[j], size[j]);
3820    }
3821  }
3822
3823  if (i < max_tries) {
3824    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3825    return requested_addr;
3826  } else {
3827    _highest_vm_reserved_address = old_highest;
3828    return NULL;
3829  }
3830}
3831
3832size_t os::read(int fd, void *buf, unsigned int nBytes) {
3833  return ::read(fd, buf, nBytes);
3834}
3835
3836size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3837  return ::pread(fd, buf, nBytes, offset);
3838}
3839
3840// Short sleep, direct OS call.
3841//
3842// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3843// sched_yield(2) will actually give up the CPU:
3844//
3845//   * Alone on this pariticular CPU, keeps running.
3846//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3847//     (pre 2.6.39).
3848//
3849// So calling this with 0 is an alternative.
3850//
3851void os::naked_short_sleep(jlong ms) {
3852  struct timespec req;
3853
3854  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3855  req.tv_sec = 0;
3856  if (ms > 0) {
3857    req.tv_nsec = (ms % 1000) * 1000000;
3858  } else {
3859    req.tv_nsec = 1;
3860  }
3861
3862  nanosleep(&req, NULL);
3863
3864  return;
3865}
3866
3867// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3868void os::infinite_sleep() {
3869  while (true) {    // sleep forever ...
3870    ::sleep(100);   // ... 100 seconds at a time
3871  }
3872}
3873
3874// Used to convert frequent JVM_Yield() to nops
3875bool os::dont_yield() {
3876  return DontYieldALot;
3877}
3878
3879void os::naked_yield() {
3880  sched_yield();
3881}
3882
3883////////////////////////////////////////////////////////////////////////////////
3884// thread priority support
3885
3886// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3887// only supports dynamic priority, static priority must be zero. For real-time
3888// applications, Linux supports SCHED_RR which allows static priority (1-99).
3889// However, for large multi-threaded applications, SCHED_RR is not only slower
3890// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3891// of 5 runs - Sep 2005).
3892//
3893// The following code actually changes the niceness of kernel-thread/LWP. It
3894// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3895// not the entire user process, and user level threads are 1:1 mapped to kernel
3896// threads. It has always been the case, but could change in the future. For
3897// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3898// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3899
3900int os::java_to_os_priority[CriticalPriority + 1] = {
3901  19,              // 0 Entry should never be used
3902
3903   4,              // 1 MinPriority
3904   3,              // 2
3905   2,              // 3
3906
3907   1,              // 4
3908   0,              // 5 NormPriority
3909  -1,              // 6
3910
3911  -2,              // 7
3912  -3,              // 8
3913  -4,              // 9 NearMaxPriority
3914
3915  -5,              // 10 MaxPriority
3916
3917  -5               // 11 CriticalPriority
3918};
3919
3920static int prio_init() {
3921  if (ThreadPriorityPolicy == 1) {
3922    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3923    // if effective uid is not root. Perhaps, a more elegant way of doing
3924    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3925    if (geteuid() != 0) {
3926      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3927        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3928      }
3929      ThreadPriorityPolicy = 0;
3930    }
3931  }
3932  if (UseCriticalJavaThreadPriority) {
3933    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3934  }
3935  return 0;
3936}
3937
3938OSReturn os::set_native_priority(Thread* thread, int newpri) {
3939  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3940
3941  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3942  return (ret == 0) ? OS_OK : OS_ERR;
3943}
3944
3945OSReturn os::get_native_priority(const Thread* const thread,
3946                                 int *priority_ptr) {
3947  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3948    *priority_ptr = java_to_os_priority[NormPriority];
3949    return OS_OK;
3950  }
3951
3952  errno = 0;
3953  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3954  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3955}
3956
3957// Hint to the underlying OS that a task switch would not be good.
3958// Void return because it's a hint and can fail.
3959void os::hint_no_preempt() {}
3960
3961////////////////////////////////////////////////////////////////////////////////
3962// suspend/resume support
3963
3964//  the low-level signal-based suspend/resume support is a remnant from the
3965//  old VM-suspension that used to be for java-suspension, safepoints etc,
3966//  within hotspot. Now there is a single use-case for this:
3967//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3968//      that runs in the watcher thread.
3969//  The remaining code is greatly simplified from the more general suspension
3970//  code that used to be used.
3971//
3972//  The protocol is quite simple:
3973//  - suspend:
3974//      - sends a signal to the target thread
3975//      - polls the suspend state of the osthread using a yield loop
3976//      - target thread signal handler (SR_handler) sets suspend state
3977//        and blocks in sigsuspend until continued
3978//  - resume:
3979//      - sets target osthread state to continue
3980//      - sends signal to end the sigsuspend loop in the SR_handler
3981//
3982//  Note that the SR_lock plays no role in this suspend/resume protocol.
3983
3984static void resume_clear_context(OSThread *osthread) {
3985  osthread->set_ucontext(NULL);
3986  osthread->set_siginfo(NULL);
3987}
3988
3989static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3990                                 ucontext_t* context) {
3991  osthread->set_ucontext(context);
3992  osthread->set_siginfo(siginfo);
3993}
3994
3995// Handler function invoked when a thread's execution is suspended or
3996// resumed. We have to be careful that only async-safe functions are
3997// called here (Note: most pthread functions are not async safe and
3998// should be avoided.)
3999//
4000// Note: sigwait() is a more natural fit than sigsuspend() from an
4001// interface point of view, but sigwait() prevents the signal hander
4002// from being run. libpthread would get very confused by not having
4003// its signal handlers run and prevents sigwait()'s use with the
4004// mutex granting granting signal.
4005//
4006// Currently only ever called on the VMThread and JavaThreads (PC sampling)
4007//
4008static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4009  // Save and restore errno to avoid confusing native code with EINTR
4010  // after sigsuspend.
4011  int old_errno = errno;
4012
4013  Thread* thread = Thread::current();
4014  OSThread* osthread = thread->osthread();
4015  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4016
4017  os::SuspendResume::State current = osthread->sr.state();
4018  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4019    suspend_save_context(osthread, siginfo, context);
4020
4021    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4022    os::SuspendResume::State state = osthread->sr.suspended();
4023    if (state == os::SuspendResume::SR_SUSPENDED) {
4024      sigset_t suspend_set;  // signals for sigsuspend()
4025
4026      // get current set of blocked signals and unblock resume signal
4027      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4028      sigdelset(&suspend_set, SR_signum);
4029
4030      sr_semaphore.signal();
4031      // wait here until we are resumed
4032      while (1) {
4033        sigsuspend(&suspend_set);
4034
4035        os::SuspendResume::State result = osthread->sr.running();
4036        if (result == os::SuspendResume::SR_RUNNING) {
4037          sr_semaphore.signal();
4038          break;
4039        }
4040      }
4041
4042    } else if (state == os::SuspendResume::SR_RUNNING) {
4043      // request was cancelled, continue
4044    } else {
4045      ShouldNotReachHere();
4046    }
4047
4048    resume_clear_context(osthread);
4049  } else if (current == os::SuspendResume::SR_RUNNING) {
4050    // request was cancelled, continue
4051  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4052    // ignore
4053  } else {
4054    // ignore
4055  }
4056
4057  errno = old_errno;
4058}
4059
4060
4061static int SR_initialize() {
4062  struct sigaction act;
4063  char *s;
4064  // Get signal number to use for suspend/resume
4065  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4066    int sig = ::strtol(s, 0, 10);
4067    if (sig > 0 || sig < _NSIG) {
4068      SR_signum = sig;
4069    }
4070  }
4071
4072  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4073         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4074
4075  sigemptyset(&SR_sigset);
4076  sigaddset(&SR_sigset, SR_signum);
4077
4078  // Set up signal handler for suspend/resume
4079  act.sa_flags = SA_RESTART|SA_SIGINFO;
4080  act.sa_handler = (void (*)(int)) SR_handler;
4081
4082  // SR_signum is blocked by default.
4083  // 4528190 - We also need to block pthread restart signal (32 on all
4084  // supported Linux platforms). Note that LinuxThreads need to block
4085  // this signal for all threads to work properly. So we don't have
4086  // to use hard-coded signal number when setting up the mask.
4087  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4088
4089  if (sigaction(SR_signum, &act, 0) == -1) {
4090    return -1;
4091  }
4092
4093  // Save signal flag
4094  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4095  return 0;
4096}
4097
4098static int sr_notify(OSThread* osthread) {
4099  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4100  assert_status(status == 0, status, "pthread_kill");
4101  return status;
4102}
4103
4104// "Randomly" selected value for how long we want to spin
4105// before bailing out on suspending a thread, also how often
4106// we send a signal to a thread we want to resume
4107static const int RANDOMLY_LARGE_INTEGER = 1000000;
4108static const int RANDOMLY_LARGE_INTEGER2 = 100;
4109
4110// returns true on success and false on error - really an error is fatal
4111// but this seems the normal response to library errors
4112static bool do_suspend(OSThread* osthread) {
4113  assert(osthread->sr.is_running(), "thread should be running");
4114  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4115
4116  // mark as suspended and send signal
4117  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4118    // failed to switch, state wasn't running?
4119    ShouldNotReachHere();
4120    return false;
4121  }
4122
4123  if (sr_notify(osthread) != 0) {
4124    ShouldNotReachHere();
4125  }
4126
4127  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4128  while (true) {
4129    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4130      break;
4131    } else {
4132      // timeout
4133      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4134      if (cancelled == os::SuspendResume::SR_RUNNING) {
4135        return false;
4136      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4137        // make sure that we consume the signal on the semaphore as well
4138        sr_semaphore.wait();
4139        break;
4140      } else {
4141        ShouldNotReachHere();
4142        return false;
4143      }
4144    }
4145  }
4146
4147  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4148  return true;
4149}
4150
4151static void do_resume(OSThread* osthread) {
4152  assert(osthread->sr.is_suspended(), "thread should be suspended");
4153  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4154
4155  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4156    // failed to switch to WAKEUP_REQUEST
4157    ShouldNotReachHere();
4158    return;
4159  }
4160
4161  while (true) {
4162    if (sr_notify(osthread) == 0) {
4163      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4164        if (osthread->sr.is_running()) {
4165          return;
4166        }
4167      }
4168    } else {
4169      ShouldNotReachHere();
4170    }
4171  }
4172
4173  guarantee(osthread->sr.is_running(), "Must be running!");
4174}
4175
4176///////////////////////////////////////////////////////////////////////////////////
4177// signal handling (except suspend/resume)
4178
4179// This routine may be used by user applications as a "hook" to catch signals.
4180// The user-defined signal handler must pass unrecognized signals to this
4181// routine, and if it returns true (non-zero), then the signal handler must
4182// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4183// routine will never retun false (zero), but instead will execute a VM panic
4184// routine kill the process.
4185//
4186// If this routine returns false, it is OK to call it again.  This allows
4187// the user-defined signal handler to perform checks either before or after
4188// the VM performs its own checks.  Naturally, the user code would be making
4189// a serious error if it tried to handle an exception (such as a null check
4190// or breakpoint) that the VM was generating for its own correct operation.
4191//
4192// This routine may recognize any of the following kinds of signals:
4193//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4194// It should be consulted by handlers for any of those signals.
4195//
4196// The caller of this routine must pass in the three arguments supplied
4197// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4198// field of the structure passed to sigaction().  This routine assumes that
4199// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4200//
4201// Note that the VM will print warnings if it detects conflicting signal
4202// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4203//
4204extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4205                                                 siginfo_t* siginfo,
4206                                                 void* ucontext,
4207                                                 int abort_if_unrecognized);
4208
4209void signalHandler(int sig, siginfo_t* info, void* uc) {
4210  assert(info != NULL && uc != NULL, "it must be old kernel");
4211  int orig_errno = errno;  // Preserve errno value over signal handler.
4212  JVM_handle_linux_signal(sig, info, uc, true);
4213  errno = orig_errno;
4214}
4215
4216
4217// This boolean allows users to forward their own non-matching signals
4218// to JVM_handle_linux_signal, harmlessly.
4219bool os::Linux::signal_handlers_are_installed = false;
4220
4221// For signal-chaining
4222struct sigaction os::Linux::sigact[MAXSIGNUM];
4223unsigned int os::Linux::sigs = 0;
4224bool os::Linux::libjsig_is_loaded = false;
4225typedef struct sigaction *(*get_signal_t)(int);
4226get_signal_t os::Linux::get_signal_action = NULL;
4227
4228struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4229  struct sigaction *actp = NULL;
4230
4231  if (libjsig_is_loaded) {
4232    // Retrieve the old signal handler from libjsig
4233    actp = (*get_signal_action)(sig);
4234  }
4235  if (actp == NULL) {
4236    // Retrieve the preinstalled signal handler from jvm
4237    actp = get_preinstalled_handler(sig);
4238  }
4239
4240  return actp;
4241}
4242
4243static bool call_chained_handler(struct sigaction *actp, int sig,
4244                                 siginfo_t *siginfo, void *context) {
4245  // Call the old signal handler
4246  if (actp->sa_handler == SIG_DFL) {
4247    // It's more reasonable to let jvm treat it as an unexpected exception
4248    // instead of taking the default action.
4249    return false;
4250  } else if (actp->sa_handler != SIG_IGN) {
4251    if ((actp->sa_flags & SA_NODEFER) == 0) {
4252      // automaticlly block the signal
4253      sigaddset(&(actp->sa_mask), sig);
4254    }
4255
4256    sa_handler_t hand;
4257    sa_sigaction_t sa;
4258    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4259    // retrieve the chained handler
4260    if (siginfo_flag_set) {
4261      sa = actp->sa_sigaction;
4262    } else {
4263      hand = actp->sa_handler;
4264    }
4265
4266    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4267      actp->sa_handler = SIG_DFL;
4268    }
4269
4270    // try to honor the signal mask
4271    sigset_t oset;
4272    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4273
4274    // call into the chained handler
4275    if (siginfo_flag_set) {
4276      (*sa)(sig, siginfo, context);
4277    } else {
4278      (*hand)(sig);
4279    }
4280
4281    // restore the signal mask
4282    pthread_sigmask(SIG_SETMASK, &oset, 0);
4283  }
4284  // Tell jvm's signal handler the signal is taken care of.
4285  return true;
4286}
4287
4288bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4289  bool chained = false;
4290  // signal-chaining
4291  if (UseSignalChaining) {
4292    struct sigaction *actp = get_chained_signal_action(sig);
4293    if (actp != NULL) {
4294      chained = call_chained_handler(actp, sig, siginfo, context);
4295    }
4296  }
4297  return chained;
4298}
4299
4300struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4301  if ((((unsigned int)1 << sig) & sigs) != 0) {
4302    return &sigact[sig];
4303  }
4304  return NULL;
4305}
4306
4307void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4308  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4309  sigact[sig] = oldAct;
4310  sigs |= (unsigned int)1 << sig;
4311}
4312
4313// for diagnostic
4314int os::Linux::sigflags[MAXSIGNUM];
4315
4316int os::Linux::get_our_sigflags(int sig) {
4317  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4318  return sigflags[sig];
4319}
4320
4321void os::Linux::set_our_sigflags(int sig, int flags) {
4322  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4323  sigflags[sig] = flags;
4324}
4325
4326void os::Linux::set_signal_handler(int sig, bool set_installed) {
4327  // Check for overwrite.
4328  struct sigaction oldAct;
4329  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4330
4331  void* oldhand = oldAct.sa_sigaction
4332                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4333                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4334  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4335      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4336      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4337    if (AllowUserSignalHandlers || !set_installed) {
4338      // Do not overwrite; user takes responsibility to forward to us.
4339      return;
4340    } else if (UseSignalChaining) {
4341      // save the old handler in jvm
4342      save_preinstalled_handler(sig, oldAct);
4343      // libjsig also interposes the sigaction() call below and saves the
4344      // old sigaction on it own.
4345    } else {
4346      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4347                    "%#lx for signal %d.", (long)oldhand, sig));
4348    }
4349  }
4350
4351  struct sigaction sigAct;
4352  sigfillset(&(sigAct.sa_mask));
4353  sigAct.sa_handler = SIG_DFL;
4354  if (!set_installed) {
4355    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4356  } else {
4357    sigAct.sa_sigaction = signalHandler;
4358    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4359  }
4360  // Save flags, which are set by ours
4361  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4362  sigflags[sig] = sigAct.sa_flags;
4363
4364  int ret = sigaction(sig, &sigAct, &oldAct);
4365  assert(ret == 0, "check");
4366
4367  void* oldhand2  = oldAct.sa_sigaction
4368                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4369                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4370  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4371}
4372
4373// install signal handlers for signals that HotSpot needs to
4374// handle in order to support Java-level exception handling.
4375
4376void os::Linux::install_signal_handlers() {
4377  if (!signal_handlers_are_installed) {
4378    signal_handlers_are_installed = true;
4379
4380    // signal-chaining
4381    typedef void (*signal_setting_t)();
4382    signal_setting_t begin_signal_setting = NULL;
4383    signal_setting_t end_signal_setting = NULL;
4384    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4385                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4386    if (begin_signal_setting != NULL) {
4387      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4388                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4389      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4390                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4391      libjsig_is_loaded = true;
4392      assert(UseSignalChaining, "should enable signal-chaining");
4393    }
4394    if (libjsig_is_loaded) {
4395      // Tell libjsig jvm is setting signal handlers
4396      (*begin_signal_setting)();
4397    }
4398
4399    set_signal_handler(SIGSEGV, true);
4400    set_signal_handler(SIGPIPE, true);
4401    set_signal_handler(SIGBUS, true);
4402    set_signal_handler(SIGILL, true);
4403    set_signal_handler(SIGFPE, true);
4404#if defined(PPC64)
4405    set_signal_handler(SIGTRAP, true);
4406#endif
4407    set_signal_handler(SIGXFSZ, true);
4408
4409    if (libjsig_is_loaded) {
4410      // Tell libjsig jvm finishes setting signal handlers
4411      (*end_signal_setting)();
4412    }
4413
4414    // We don't activate signal checker if libjsig is in place, we trust ourselves
4415    // and if UserSignalHandler is installed all bets are off.
4416    // Log that signal checking is off only if -verbose:jni is specified.
4417    if (CheckJNICalls) {
4418      if (libjsig_is_loaded) {
4419        if (PrintJNIResolving) {
4420          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4421        }
4422        check_signals = false;
4423      }
4424      if (AllowUserSignalHandlers) {
4425        if (PrintJNIResolving) {
4426          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4427        }
4428        check_signals = false;
4429      }
4430    }
4431  }
4432}
4433
4434// This is the fastest way to get thread cpu time on Linux.
4435// Returns cpu time (user+sys) for any thread, not only for current.
4436// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4437// It might work on 2.6.10+ with a special kernel/glibc patch.
4438// For reference, please, see IEEE Std 1003.1-2004:
4439//   http://www.unix.org/single_unix_specification
4440
4441jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4442  struct timespec tp;
4443  int rc = os::Linux::clock_gettime(clockid, &tp);
4444  assert(rc == 0, "clock_gettime is expected to return 0 code");
4445
4446  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4447}
4448
4449/////
4450// glibc on Linux platform uses non-documented flag
4451// to indicate, that some special sort of signal
4452// trampoline is used.
4453// We will never set this flag, and we should
4454// ignore this flag in our diagnostic
4455#ifdef SIGNIFICANT_SIGNAL_MASK
4456  #undef SIGNIFICANT_SIGNAL_MASK
4457#endif
4458#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4459
4460static const char* get_signal_handler_name(address handler,
4461                                           char* buf, int buflen) {
4462  int offset;
4463  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4464  if (found) {
4465    // skip directory names
4466    const char *p1, *p2;
4467    p1 = buf;
4468    size_t len = strlen(os::file_separator());
4469    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4470    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4471  } else {
4472    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4473  }
4474  return buf;
4475}
4476
4477static void print_signal_handler(outputStream* st, int sig,
4478                                 char* buf, size_t buflen) {
4479  struct sigaction sa;
4480
4481  sigaction(sig, NULL, &sa);
4482
4483  // See comment for SIGNIFICANT_SIGNAL_MASK define
4484  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4485
4486  st->print("%s: ", os::exception_name(sig, buf, buflen));
4487
4488  address handler = (sa.sa_flags & SA_SIGINFO)
4489    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4490    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4491
4492  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4493    st->print("SIG_DFL");
4494  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4495    st->print("SIG_IGN");
4496  } else {
4497    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4498  }
4499
4500  st->print(", sa_mask[0]=");
4501  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4502
4503  address rh = VMError::get_resetted_sighandler(sig);
4504  // May be, handler was resetted by VMError?
4505  if (rh != NULL) {
4506    handler = rh;
4507    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4508  }
4509
4510  st->print(", sa_flags=");
4511  os::Posix::print_sa_flags(st, sa.sa_flags);
4512
4513  // Check: is it our handler?
4514  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4515      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4516    // It is our signal handler
4517    // check for flags, reset system-used one!
4518    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4519      st->print(
4520                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4521                os::Linux::get_our_sigflags(sig));
4522    }
4523  }
4524  st->cr();
4525}
4526
4527
4528#define DO_SIGNAL_CHECK(sig)                      \
4529  do {                                            \
4530    if (!sigismember(&check_signal_done, sig)) {  \
4531      os::Linux::check_signal_handler(sig);       \
4532    }                                             \
4533  } while (0)
4534
4535// This method is a periodic task to check for misbehaving JNI applications
4536// under CheckJNI, we can add any periodic checks here
4537
4538void os::run_periodic_checks() {
4539  if (check_signals == false) return;
4540
4541  // SEGV and BUS if overridden could potentially prevent
4542  // generation of hs*.log in the event of a crash, debugging
4543  // such a case can be very challenging, so we absolutely
4544  // check the following for a good measure:
4545  DO_SIGNAL_CHECK(SIGSEGV);
4546  DO_SIGNAL_CHECK(SIGILL);
4547  DO_SIGNAL_CHECK(SIGFPE);
4548  DO_SIGNAL_CHECK(SIGBUS);
4549  DO_SIGNAL_CHECK(SIGPIPE);
4550  DO_SIGNAL_CHECK(SIGXFSZ);
4551#if defined(PPC64)
4552  DO_SIGNAL_CHECK(SIGTRAP);
4553#endif
4554
4555  // ReduceSignalUsage allows the user to override these handlers
4556  // see comments at the very top and jvm_solaris.h
4557  if (!ReduceSignalUsage) {
4558    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4559    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4560    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4561    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4562  }
4563
4564  DO_SIGNAL_CHECK(SR_signum);
4565  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4566}
4567
4568typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4569
4570static os_sigaction_t os_sigaction = NULL;
4571
4572void os::Linux::check_signal_handler(int sig) {
4573  char buf[O_BUFLEN];
4574  address jvmHandler = NULL;
4575
4576
4577  struct sigaction act;
4578  if (os_sigaction == NULL) {
4579    // only trust the default sigaction, in case it has been interposed
4580    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4581    if (os_sigaction == NULL) return;
4582  }
4583
4584  os_sigaction(sig, (struct sigaction*)NULL, &act);
4585
4586
4587  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4588
4589  address thisHandler = (act.sa_flags & SA_SIGINFO)
4590    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4591    : CAST_FROM_FN_PTR(address, act.sa_handler);
4592
4593
4594  switch (sig) {
4595  case SIGSEGV:
4596  case SIGBUS:
4597  case SIGFPE:
4598  case SIGPIPE:
4599  case SIGILL:
4600  case SIGXFSZ:
4601    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4602    break;
4603
4604  case SHUTDOWN1_SIGNAL:
4605  case SHUTDOWN2_SIGNAL:
4606  case SHUTDOWN3_SIGNAL:
4607  case BREAK_SIGNAL:
4608    jvmHandler = (address)user_handler();
4609    break;
4610
4611  case INTERRUPT_SIGNAL:
4612    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4613    break;
4614
4615  default:
4616    if (sig == SR_signum) {
4617      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4618    } else {
4619      return;
4620    }
4621    break;
4622  }
4623
4624  if (thisHandler != jvmHandler) {
4625    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4626    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4627    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4628    // No need to check this sig any longer
4629    sigaddset(&check_signal_done, sig);
4630    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4631    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4632      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4633                    exception_name(sig, buf, O_BUFLEN));
4634    }
4635  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4636    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4637    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4638    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4639    // No need to check this sig any longer
4640    sigaddset(&check_signal_done, sig);
4641  }
4642
4643  // Dump all the signal
4644  if (sigismember(&check_signal_done, sig)) {
4645    print_signal_handlers(tty, buf, O_BUFLEN);
4646  }
4647}
4648
4649extern void report_error(char* file_name, int line_no, char* title,
4650                         char* format, ...);
4651
4652extern bool signal_name(int signo, char* buf, size_t len);
4653
4654const char* os::exception_name(int exception_code, char* buf, size_t size) {
4655  if (0 < exception_code && exception_code <= SIGRTMAX) {
4656    // signal
4657    if (!signal_name(exception_code, buf, size)) {
4658      jio_snprintf(buf, size, "SIG%d", exception_code);
4659    }
4660    return buf;
4661  } else {
4662    return NULL;
4663  }
4664}
4665
4666// this is called _before_ the most of global arguments have been parsed
4667void os::init(void) {
4668  char dummy;   // used to get a guess on initial stack address
4669//  first_hrtime = gethrtime();
4670
4671  // With LinuxThreads the JavaMain thread pid (primordial thread)
4672  // is different than the pid of the java launcher thread.
4673  // So, on Linux, the launcher thread pid is passed to the VM
4674  // via the sun.java.launcher.pid property.
4675  // Use this property instead of getpid() if it was correctly passed.
4676  // See bug 6351349.
4677  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4678
4679  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4680
4681  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4682
4683  init_random(1234567);
4684
4685  ThreadCritical::initialize();
4686
4687  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4688  if (Linux::page_size() == -1) {
4689    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4690                  strerror(errno)));
4691  }
4692  init_page_sizes((size_t) Linux::page_size());
4693
4694  Linux::initialize_system_info();
4695
4696  // main_thread points to the aboriginal thread
4697  Linux::_main_thread = pthread_self();
4698
4699  Linux::clock_init();
4700  initial_time_count = javaTimeNanos();
4701
4702  // pthread_condattr initialization for monotonic clock
4703  int status;
4704  pthread_condattr_t* _condattr = os::Linux::condAttr();
4705  if ((status = pthread_condattr_init(_condattr)) != 0) {
4706    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4707  }
4708  // Only set the clock if CLOCK_MONOTONIC is available
4709  if (os::supports_monotonic_clock()) {
4710    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4711      if (status == EINVAL) {
4712        warning("Unable to use monotonic clock with relative timed-waits" \
4713                " - changes to the time-of-day clock may have adverse affects");
4714      } else {
4715        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4716      }
4717    }
4718  }
4719  // else it defaults to CLOCK_REALTIME
4720
4721  // If the pagesize of the VM is greater than 8K determine the appropriate
4722  // number of initial guard pages.  The user can change this with the
4723  // command line arguments, if needed.
4724  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4725    StackYellowPages = 1;
4726    StackRedPages = 1;
4727    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4728  }
4729
4730  // retrieve entry point for pthread_setname_np
4731  Linux::_pthread_setname_np =
4732    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4733
4734}
4735
4736// To install functions for atexit system call
4737extern "C" {
4738  static void perfMemory_exit_helper() {
4739    perfMemory_exit();
4740  }
4741}
4742
4743// this is called _after_ the global arguments have been parsed
4744jint os::init_2(void) {
4745  Linux::fast_thread_clock_init();
4746
4747  // Allocate a single page and mark it as readable for safepoint polling
4748  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4749  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4750
4751  os::set_polling_page(polling_page);
4752
4753#ifndef PRODUCT
4754  if (Verbose && PrintMiscellaneous) {
4755    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4756               (intptr_t)polling_page);
4757  }
4758#endif
4759
4760  if (!UseMembar) {
4761    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4762    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4763    os::set_memory_serialize_page(mem_serialize_page);
4764
4765#ifndef PRODUCT
4766    if (Verbose && PrintMiscellaneous) {
4767      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4768                 (intptr_t)mem_serialize_page);
4769    }
4770#endif
4771  }
4772
4773  // initialize suspend/resume support - must do this before signal_sets_init()
4774  if (SR_initialize() != 0) {
4775    perror("SR_initialize failed");
4776    return JNI_ERR;
4777  }
4778
4779  Linux::signal_sets_init();
4780  Linux::install_signal_handlers();
4781
4782  // Check minimum allowable stack size for thread creation and to initialize
4783  // the java system classes, including StackOverflowError - depends on page
4784  // size.  Add a page for compiler2 recursion in main thread.
4785  // Add in 2*BytesPerWord times page size to account for VM stack during
4786  // class initialization depending on 32 or 64 bit VM.
4787  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4788                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4789                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4790
4791  size_t threadStackSizeInBytes = ThreadStackSize * K;
4792  if (threadStackSizeInBytes != 0 &&
4793      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4794    tty->print_cr("\nThe stack size specified is too small, "
4795                  "Specify at least %dk",
4796                  os::Linux::min_stack_allowed/ K);
4797    return JNI_ERR;
4798  }
4799
4800  // Make the stack size a multiple of the page size so that
4801  // the yellow/red zones can be guarded.
4802  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4803                                                vm_page_size()));
4804
4805  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4806
4807#if defined(IA32)
4808  workaround_expand_exec_shield_cs_limit();
4809#endif
4810
4811  Linux::libpthread_init();
4812  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4813    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4814                  Linux::glibc_version(), Linux::libpthread_version(),
4815                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4816  }
4817
4818  if (UseNUMA) {
4819    if (!Linux::libnuma_init()) {
4820      UseNUMA = false;
4821    } else {
4822      if ((Linux::numa_max_node() < 1)) {
4823        // There's only one node(they start from 0), disable NUMA.
4824        UseNUMA = false;
4825      }
4826    }
4827    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4828    // we can make the adaptive lgrp chunk resizing work. If the user specified
4829    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4830    // disable adaptive resizing.
4831    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4832      if (FLAG_IS_DEFAULT(UseNUMA)) {
4833        UseNUMA = false;
4834      } else {
4835        if (FLAG_IS_DEFAULT(UseLargePages) &&
4836            FLAG_IS_DEFAULT(UseSHM) &&
4837            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4838          UseLargePages = false;
4839        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4840          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4841          UseAdaptiveSizePolicy = false;
4842          UseAdaptiveNUMAChunkSizing = false;
4843        }
4844      }
4845    }
4846    if (!UseNUMA && ForceNUMA) {
4847      UseNUMA = true;
4848    }
4849  }
4850
4851  if (MaxFDLimit) {
4852    // set the number of file descriptors to max. print out error
4853    // if getrlimit/setrlimit fails but continue regardless.
4854    struct rlimit nbr_files;
4855    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4856    if (status != 0) {
4857      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4858        perror("os::init_2 getrlimit failed");
4859      }
4860    } else {
4861      nbr_files.rlim_cur = nbr_files.rlim_max;
4862      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4863      if (status != 0) {
4864        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4865          perror("os::init_2 setrlimit failed");
4866        }
4867      }
4868    }
4869  }
4870
4871  // Initialize lock used to serialize thread creation (see os::create_thread)
4872  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4873
4874  // at-exit methods are called in the reverse order of their registration.
4875  // atexit functions are called on return from main or as a result of a
4876  // call to exit(3C). There can be only 32 of these functions registered
4877  // and atexit() does not set errno.
4878
4879  if (PerfAllowAtExitRegistration) {
4880    // only register atexit functions if PerfAllowAtExitRegistration is set.
4881    // atexit functions can be delayed until process exit time, which
4882    // can be problematic for embedded VM situations. Embedded VMs should
4883    // call DestroyJavaVM() to assure that VM resources are released.
4884
4885    // note: perfMemory_exit_helper atexit function may be removed in
4886    // the future if the appropriate cleanup code can be added to the
4887    // VM_Exit VMOperation's doit method.
4888    if (atexit(perfMemory_exit_helper) != 0) {
4889      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4890    }
4891  }
4892
4893  // initialize thread priority policy
4894  prio_init();
4895
4896  return JNI_OK;
4897}
4898
4899// Mark the polling page as unreadable
4900void os::make_polling_page_unreadable(void) {
4901  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4902    fatal("Could not disable polling page");
4903  }
4904}
4905
4906// Mark the polling page as readable
4907void os::make_polling_page_readable(void) {
4908  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4909    fatal("Could not enable polling page");
4910  }
4911}
4912
4913int os::active_processor_count() {
4914  // Linux doesn't yet have a (official) notion of processor sets,
4915  // so just return the number of online processors.
4916  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4917  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4918  return online_cpus;
4919}
4920
4921void os::set_native_thread_name(const char *name) {
4922  if (Linux::_pthread_setname_np) {
4923    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4924    snprintf(buf, sizeof(buf), "%s", name);
4925    buf[sizeof(buf) - 1] = '\0';
4926    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4927    // ERANGE should not happen; all other errors should just be ignored.
4928    assert(rc != ERANGE, "pthread_setname_np failed");
4929  }
4930}
4931
4932bool os::distribute_processes(uint length, uint* distribution) {
4933  // Not yet implemented.
4934  return false;
4935}
4936
4937bool os::bind_to_processor(uint processor_id) {
4938  // Not yet implemented.
4939  return false;
4940}
4941
4942///
4943
4944void os::SuspendedThreadTask::internal_do_task() {
4945  if (do_suspend(_thread->osthread())) {
4946    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4947    do_task(context);
4948    do_resume(_thread->osthread());
4949  }
4950}
4951
4952class PcFetcher : public os::SuspendedThreadTask {
4953 public:
4954  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4955  ExtendedPC result();
4956 protected:
4957  void do_task(const os::SuspendedThreadTaskContext& context);
4958 private:
4959  ExtendedPC _epc;
4960};
4961
4962ExtendedPC PcFetcher::result() {
4963  guarantee(is_done(), "task is not done yet.");
4964  return _epc;
4965}
4966
4967void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4968  Thread* thread = context.thread();
4969  OSThread* osthread = thread->osthread();
4970  if (osthread->ucontext() != NULL) {
4971    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4972  } else {
4973    // NULL context is unexpected, double-check this is the VMThread
4974    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4975  }
4976}
4977
4978// Suspends the target using the signal mechanism and then grabs the PC before
4979// resuming the target. Used by the flat-profiler only
4980ExtendedPC os::get_thread_pc(Thread* thread) {
4981  // Make sure that it is called by the watcher for the VMThread
4982  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4983  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4984
4985  PcFetcher fetcher(thread);
4986  fetcher.run();
4987  return fetcher.result();
4988}
4989
4990int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4991                                   pthread_mutex_t *_mutex,
4992                                   const struct timespec *_abstime) {
4993  if (is_NPTL()) {
4994    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4995  } else {
4996    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4997    // word back to default 64bit precision if condvar is signaled. Java
4998    // wants 53bit precision.  Save and restore current value.
4999    int fpu = get_fpu_control_word();
5000    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5001    set_fpu_control_word(fpu);
5002    return status;
5003  }
5004}
5005
5006////////////////////////////////////////////////////////////////////////////////
5007// debug support
5008
5009bool os::find(address addr, outputStream* st) {
5010  Dl_info dlinfo;
5011  memset(&dlinfo, 0, sizeof(dlinfo));
5012  if (dladdr(addr, &dlinfo) != 0) {
5013    st->print(PTR_FORMAT ": ", addr);
5014    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5015      st->print("%s+%#x", dlinfo.dli_sname,
5016                addr - (intptr_t)dlinfo.dli_saddr);
5017    } else if (dlinfo.dli_fbase != NULL) {
5018      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5019    } else {
5020      st->print("<absolute address>");
5021    }
5022    if (dlinfo.dli_fname != NULL) {
5023      st->print(" in %s", dlinfo.dli_fname);
5024    }
5025    if (dlinfo.dli_fbase != NULL) {
5026      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5027    }
5028    st->cr();
5029
5030    if (Verbose) {
5031      // decode some bytes around the PC
5032      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5033      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5034      address       lowest = (address) dlinfo.dli_sname;
5035      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5036      if (begin < lowest)  begin = lowest;
5037      Dl_info dlinfo2;
5038      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5039          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5040        end = (address) dlinfo2.dli_saddr;
5041      }
5042      Disassembler::decode(begin, end, st);
5043    }
5044    return true;
5045  }
5046  return false;
5047}
5048
5049////////////////////////////////////////////////////////////////////////////////
5050// misc
5051
5052// This does not do anything on Linux. This is basically a hook for being
5053// able to use structured exception handling (thread-local exception filters)
5054// on, e.g., Win32.
5055void
5056os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5057                         JavaCallArguments* args, Thread* thread) {
5058  f(value, method, args, thread);
5059}
5060
5061void os::print_statistics() {
5062}
5063
5064int os::message_box(const char* title, const char* message) {
5065  int i;
5066  fdStream err(defaultStream::error_fd());
5067  for (i = 0; i < 78; i++) err.print_raw("=");
5068  err.cr();
5069  err.print_raw_cr(title);
5070  for (i = 0; i < 78; i++) err.print_raw("-");
5071  err.cr();
5072  err.print_raw_cr(message);
5073  for (i = 0; i < 78; i++) err.print_raw("=");
5074  err.cr();
5075
5076  char buf[16];
5077  // Prevent process from exiting upon "read error" without consuming all CPU
5078  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5079
5080  return buf[0] == 'y' || buf[0] == 'Y';
5081}
5082
5083int os::stat(const char *path, struct stat *sbuf) {
5084  char pathbuf[MAX_PATH];
5085  if (strlen(path) > MAX_PATH - 1) {
5086    errno = ENAMETOOLONG;
5087    return -1;
5088  }
5089  os::native_path(strcpy(pathbuf, path));
5090  return ::stat(pathbuf, sbuf);
5091}
5092
5093bool os::check_heap(bool force) {
5094  return true;
5095}
5096
5097// Is a (classpath) directory empty?
5098bool os::dir_is_empty(const char* path) {
5099  DIR *dir = NULL;
5100  struct dirent *ptr;
5101
5102  dir = opendir(path);
5103  if (dir == NULL) return true;
5104
5105  // Scan the directory
5106  bool result = true;
5107  char buf[sizeof(struct dirent) + MAX_PATH];
5108  while (result && (ptr = ::readdir(dir)) != NULL) {
5109    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5110      result = false;
5111    }
5112  }
5113  closedir(dir);
5114  return result;
5115}
5116
5117// This code originates from JDK's sysOpen and open64_w
5118// from src/solaris/hpi/src/system_md.c
5119
5120int os::open(const char *path, int oflag, int mode) {
5121  if (strlen(path) > MAX_PATH - 1) {
5122    errno = ENAMETOOLONG;
5123    return -1;
5124  }
5125
5126  // All file descriptors that are opened in the Java process and not
5127  // specifically destined for a subprocess should have the close-on-exec
5128  // flag set.  If we don't set it, then careless 3rd party native code
5129  // might fork and exec without closing all appropriate file descriptors
5130  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5131  // turn might:
5132  //
5133  // - cause end-of-file to fail to be detected on some file
5134  //   descriptors, resulting in mysterious hangs, or
5135  //
5136  // - might cause an fopen in the subprocess to fail on a system
5137  //   suffering from bug 1085341.
5138  //
5139  // (Yes, the default setting of the close-on-exec flag is a Unix
5140  // design flaw)
5141  //
5142  // See:
5143  // 1085341: 32-bit stdio routines should support file descriptors >255
5144  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5145  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5146  //
5147  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5148  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5149  // because it saves a system call and removes a small window where the flag
5150  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5151  // and we fall back to using FD_CLOEXEC (see below).
5152#ifdef O_CLOEXEC
5153  oflag |= O_CLOEXEC;
5154#endif
5155
5156  int fd = ::open64(path, oflag, mode);
5157  if (fd == -1) return -1;
5158
5159  //If the open succeeded, the file might still be a directory
5160  {
5161    struct stat64 buf64;
5162    int ret = ::fstat64(fd, &buf64);
5163    int st_mode = buf64.st_mode;
5164
5165    if (ret != -1) {
5166      if ((st_mode & S_IFMT) == S_IFDIR) {
5167        errno = EISDIR;
5168        ::close(fd);
5169        return -1;
5170      }
5171    } else {
5172      ::close(fd);
5173      return -1;
5174    }
5175  }
5176
5177#ifdef FD_CLOEXEC
5178  // Validate that the use of the O_CLOEXEC flag on open above worked.
5179  // With recent kernels, we will perform this check exactly once.
5180  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5181  if (!O_CLOEXEC_is_known_to_work) {
5182    int flags = ::fcntl(fd, F_GETFD);
5183    if (flags != -1) {
5184      if ((flags & FD_CLOEXEC) != 0)
5185        O_CLOEXEC_is_known_to_work = 1;
5186      else
5187        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5188    }
5189  }
5190#endif
5191
5192  return fd;
5193}
5194
5195
5196// create binary file, rewriting existing file if required
5197int os::create_binary_file(const char* path, bool rewrite_existing) {
5198  int oflags = O_WRONLY | O_CREAT;
5199  if (!rewrite_existing) {
5200    oflags |= O_EXCL;
5201  }
5202  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5203}
5204
5205// return current position of file pointer
5206jlong os::current_file_offset(int fd) {
5207  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5208}
5209
5210// move file pointer to the specified offset
5211jlong os::seek_to_file_offset(int fd, jlong offset) {
5212  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5213}
5214
5215// This code originates from JDK's sysAvailable
5216// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5217
5218int os::available(int fd, jlong *bytes) {
5219  jlong cur, end;
5220  int mode;
5221  struct stat64 buf64;
5222
5223  if (::fstat64(fd, &buf64) >= 0) {
5224    mode = buf64.st_mode;
5225    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5226      // XXX: is the following call interruptible? If so, this might
5227      // need to go through the INTERRUPT_IO() wrapper as for other
5228      // blocking, interruptible calls in this file.
5229      int n;
5230      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5231        *bytes = n;
5232        return 1;
5233      }
5234    }
5235  }
5236  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5237    return 0;
5238  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5239    return 0;
5240  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5241    return 0;
5242  }
5243  *bytes = end - cur;
5244  return 1;
5245}
5246
5247// Map a block of memory.
5248char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5249                        char *addr, size_t bytes, bool read_only,
5250                        bool allow_exec) {
5251  int prot;
5252  int flags = MAP_PRIVATE;
5253
5254  if (read_only) {
5255    prot = PROT_READ;
5256  } else {
5257    prot = PROT_READ | PROT_WRITE;
5258  }
5259
5260  if (allow_exec) {
5261    prot |= PROT_EXEC;
5262  }
5263
5264  if (addr != NULL) {
5265    flags |= MAP_FIXED;
5266  }
5267
5268  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5269                                     fd, file_offset);
5270  if (mapped_address == MAP_FAILED) {
5271    return NULL;
5272  }
5273  return mapped_address;
5274}
5275
5276
5277// Remap a block of memory.
5278char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5279                          char *addr, size_t bytes, bool read_only,
5280                          bool allow_exec) {
5281  // same as map_memory() on this OS
5282  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5283                        allow_exec);
5284}
5285
5286
5287// Unmap a block of memory.
5288bool os::pd_unmap_memory(char* addr, size_t bytes) {
5289  return munmap(addr, bytes) == 0;
5290}
5291
5292static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5293
5294static clockid_t thread_cpu_clockid(Thread* thread) {
5295  pthread_t tid = thread->osthread()->pthread_id();
5296  clockid_t clockid;
5297
5298  // Get thread clockid
5299  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5300  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5301  return clockid;
5302}
5303
5304// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5305// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5306// of a thread.
5307//
5308// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5309// the fast estimate available on the platform.
5310
5311jlong os::current_thread_cpu_time() {
5312  if (os::Linux::supports_fast_thread_cpu_time()) {
5313    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5314  } else {
5315    // return user + sys since the cost is the same
5316    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5317  }
5318}
5319
5320jlong os::thread_cpu_time(Thread* thread) {
5321  // consistent with what current_thread_cpu_time() returns
5322  if (os::Linux::supports_fast_thread_cpu_time()) {
5323    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5324  } else {
5325    return slow_thread_cpu_time(thread, true /* user + sys */);
5326  }
5327}
5328
5329jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5330  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5331    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5332  } else {
5333    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5334  }
5335}
5336
5337jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5338  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5339    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5340  } else {
5341    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5342  }
5343}
5344
5345//  -1 on error.
5346static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5347  pid_t  tid = thread->osthread()->thread_id();
5348  char *s;
5349  char stat[2048];
5350  int statlen;
5351  char proc_name[64];
5352  int count;
5353  long sys_time, user_time;
5354  char cdummy;
5355  int idummy;
5356  long ldummy;
5357  FILE *fp;
5358
5359  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5360  fp = fopen(proc_name, "r");
5361  if (fp == NULL) return -1;
5362  statlen = fread(stat, 1, 2047, fp);
5363  stat[statlen] = '\0';
5364  fclose(fp);
5365
5366  // Skip pid and the command string. Note that we could be dealing with
5367  // weird command names, e.g. user could decide to rename java launcher
5368  // to "java 1.4.2 :)", then the stat file would look like
5369  //                1234 (java 1.4.2 :)) R ... ...
5370  // We don't really need to know the command string, just find the last
5371  // occurrence of ")" and then start parsing from there. See bug 4726580.
5372  s = strrchr(stat, ')');
5373  if (s == NULL) return -1;
5374
5375  // Skip blank chars
5376  do { s++; } while (s && isspace(*s));
5377
5378  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5379                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5380                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5381                 &user_time, &sys_time);
5382  if (count != 13) return -1;
5383  if (user_sys_cpu_time) {
5384    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5385  } else {
5386    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5387  }
5388}
5389
5390void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5391  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5392  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5393  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5394  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5395}
5396
5397void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5398  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5399  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5400  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5401  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5402}
5403
5404bool os::is_thread_cpu_time_supported() {
5405  return true;
5406}
5407
5408// System loadavg support.  Returns -1 if load average cannot be obtained.
5409// Linux doesn't yet have a (official) notion of processor sets,
5410// so just return the system wide load average.
5411int os::loadavg(double loadavg[], int nelem) {
5412  return ::getloadavg(loadavg, nelem);
5413}
5414
5415void os::pause() {
5416  char filename[MAX_PATH];
5417  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5418    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5419  } else {
5420    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5421  }
5422
5423  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5424  if (fd != -1) {
5425    struct stat buf;
5426    ::close(fd);
5427    while (::stat(filename, &buf) == 0) {
5428      (void)::poll(NULL, 0, 100);
5429    }
5430  } else {
5431    jio_fprintf(stderr,
5432                "Could not open pause file '%s', continuing immediately.\n", filename);
5433  }
5434}
5435
5436
5437// Refer to the comments in os_solaris.cpp park-unpark. The next two
5438// comment paragraphs are worth repeating here:
5439//
5440// Assumption:
5441//    Only one parker can exist on an event, which is why we allocate
5442//    them per-thread. Multiple unparkers can coexist.
5443//
5444// _Event serves as a restricted-range semaphore.
5445//   -1 : thread is blocked, i.e. there is a waiter
5446//    0 : neutral: thread is running or ready,
5447//        could have been signaled after a wait started
5448//    1 : signaled - thread is running or ready
5449//
5450// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5451// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5452// For specifics regarding the bug see GLIBC BUGID 261237 :
5453//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5454// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5455// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5456// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5457// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5458// and monitorenter when we're using 1-0 locking.  All those operations may result in
5459// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5460// of libpthread avoids the problem, but isn't practical.
5461//
5462// Possible remedies:
5463//
5464// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5465//      This is palliative and probabilistic, however.  If the thread is preempted
5466//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5467//      than the minimum period may have passed, and the abstime may be stale (in the
5468//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5469//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5470//
5471// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5472//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5473//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5474//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5475//      thread.
5476//
5477// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5478//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5479//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5480//      This also works well.  In fact it avoids kernel-level scalability impediments
5481//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5482//      timers in a graceful fashion.
5483//
5484// 4.   When the abstime value is in the past it appears that control returns
5485//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5486//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5487//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5488//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5489//      It may be possible to avoid reinitialization by checking the return
5490//      value from pthread_cond_timedwait().  In addition to reinitializing the
5491//      condvar we must establish the invariant that cond_signal() is only called
5492//      within critical sections protected by the adjunct mutex.  This prevents
5493//      cond_signal() from "seeing" a condvar that's in the midst of being
5494//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5495//      desirable signal-after-unlock optimization that avoids futile context switching.
5496//
5497//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5498//      structure when a condvar is used or initialized.  cond_destroy()  would
5499//      release the helper structure.  Our reinitialize-after-timedwait fix
5500//      put excessive stress on malloc/free and locks protecting the c-heap.
5501//
5502// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5503// It may be possible to refine (4) by checking the kernel and NTPL verisons
5504// and only enabling the work-around for vulnerable environments.
5505
5506// utility to compute the abstime argument to timedwait:
5507// millis is the relative timeout time
5508// abstime will be the absolute timeout time
5509// TODO: replace compute_abstime() with unpackTime()
5510
5511static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5512  if (millis < 0)  millis = 0;
5513
5514  jlong seconds = millis / 1000;
5515  millis %= 1000;
5516  if (seconds > 50000000) { // see man cond_timedwait(3T)
5517    seconds = 50000000;
5518  }
5519
5520  if (os::supports_monotonic_clock()) {
5521    struct timespec now;
5522    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5523    assert_status(status == 0, status, "clock_gettime");
5524    abstime->tv_sec = now.tv_sec  + seconds;
5525    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5526    if (nanos >= NANOSECS_PER_SEC) {
5527      abstime->tv_sec += 1;
5528      nanos -= NANOSECS_PER_SEC;
5529    }
5530    abstime->tv_nsec = nanos;
5531  } else {
5532    struct timeval now;
5533    int status = gettimeofday(&now, NULL);
5534    assert(status == 0, "gettimeofday");
5535    abstime->tv_sec = now.tv_sec  + seconds;
5536    long usec = now.tv_usec + millis * 1000;
5537    if (usec >= 1000000) {
5538      abstime->tv_sec += 1;
5539      usec -= 1000000;
5540    }
5541    abstime->tv_nsec = usec * 1000;
5542  }
5543  return abstime;
5544}
5545
5546void os::PlatformEvent::park() {       // AKA "down()"
5547  // Transitions for _Event:
5548  //   -1 => -1 : illegal
5549  //    1 =>  0 : pass - return immediately
5550  //    0 => -1 : block; then set _Event to 0 before returning
5551
5552  // Invariant: Only the thread associated with the Event/PlatformEvent
5553  // may call park().
5554  // TODO: assert that _Assoc != NULL or _Assoc == Self
5555  assert(_nParked == 0, "invariant");
5556
5557  int v;
5558  for (;;) {
5559    v = _Event;
5560    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5561  }
5562  guarantee(v >= 0, "invariant");
5563  if (v == 0) {
5564    // Do this the hard way by blocking ...
5565    int status = pthread_mutex_lock(_mutex);
5566    assert_status(status == 0, status, "mutex_lock");
5567    guarantee(_nParked == 0, "invariant");
5568    ++_nParked;
5569    while (_Event < 0) {
5570      status = pthread_cond_wait(_cond, _mutex);
5571      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5572      // Treat this the same as if the wait was interrupted
5573      if (status == ETIME) { status = EINTR; }
5574      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5575    }
5576    --_nParked;
5577
5578    _Event = 0;
5579    status = pthread_mutex_unlock(_mutex);
5580    assert_status(status == 0, status, "mutex_unlock");
5581    // Paranoia to ensure our locked and lock-free paths interact
5582    // correctly with each other.
5583    OrderAccess::fence();
5584  }
5585  guarantee(_Event >= 0, "invariant");
5586}
5587
5588int os::PlatformEvent::park(jlong millis) {
5589  // Transitions for _Event:
5590  //   -1 => -1 : illegal
5591  //    1 =>  0 : pass - return immediately
5592  //    0 => -1 : block; then set _Event to 0 before returning
5593
5594  guarantee(_nParked == 0, "invariant");
5595
5596  int v;
5597  for (;;) {
5598    v = _Event;
5599    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5600  }
5601  guarantee(v >= 0, "invariant");
5602  if (v != 0) return OS_OK;
5603
5604  // We do this the hard way, by blocking the thread.
5605  // Consider enforcing a minimum timeout value.
5606  struct timespec abst;
5607  compute_abstime(&abst, millis);
5608
5609  int ret = OS_TIMEOUT;
5610  int status = pthread_mutex_lock(_mutex);
5611  assert_status(status == 0, status, "mutex_lock");
5612  guarantee(_nParked == 0, "invariant");
5613  ++_nParked;
5614
5615  // Object.wait(timo) will return because of
5616  // (a) notification
5617  // (b) timeout
5618  // (c) thread.interrupt
5619  //
5620  // Thread.interrupt and object.notify{All} both call Event::set.
5621  // That is, we treat thread.interrupt as a special case of notification.
5622  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5623  // We assume all ETIME returns are valid.
5624  //
5625  // TODO: properly differentiate simultaneous notify+interrupt.
5626  // In that case, we should propagate the notify to another waiter.
5627
5628  while (_Event < 0) {
5629    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5630    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5631      pthread_cond_destroy(_cond);
5632      pthread_cond_init(_cond, os::Linux::condAttr());
5633    }
5634    assert_status(status == 0 || status == EINTR ||
5635                  status == ETIME || status == ETIMEDOUT,
5636                  status, "cond_timedwait");
5637    if (!FilterSpuriousWakeups) break;                 // previous semantics
5638    if (status == ETIME || status == ETIMEDOUT) break;
5639    // We consume and ignore EINTR and spurious wakeups.
5640  }
5641  --_nParked;
5642  if (_Event >= 0) {
5643    ret = OS_OK;
5644  }
5645  _Event = 0;
5646  status = pthread_mutex_unlock(_mutex);
5647  assert_status(status == 0, status, "mutex_unlock");
5648  assert(_nParked == 0, "invariant");
5649  // Paranoia to ensure our locked and lock-free paths interact
5650  // correctly with each other.
5651  OrderAccess::fence();
5652  return ret;
5653}
5654
5655void os::PlatformEvent::unpark() {
5656  // Transitions for _Event:
5657  //    0 => 1 : just return
5658  //    1 => 1 : just return
5659  //   -1 => either 0 or 1; must signal target thread
5660  //         That is, we can safely transition _Event from -1 to either
5661  //         0 or 1.
5662  // See also: "Semaphores in Plan 9" by Mullender & Cox
5663  //
5664  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5665  // that it will take two back-to-back park() calls for the owning
5666  // thread to block. This has the benefit of forcing a spurious return
5667  // from the first park() call after an unpark() call which will help
5668  // shake out uses of park() and unpark() without condition variables.
5669
5670  if (Atomic::xchg(1, &_Event) >= 0) return;
5671
5672  // Wait for the thread associated with the event to vacate
5673  int status = pthread_mutex_lock(_mutex);
5674  assert_status(status == 0, status, "mutex_lock");
5675  int AnyWaiters = _nParked;
5676  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5677  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5678    AnyWaiters = 0;
5679    pthread_cond_signal(_cond);
5680  }
5681  status = pthread_mutex_unlock(_mutex);
5682  assert_status(status == 0, status, "mutex_unlock");
5683  if (AnyWaiters != 0) {
5684    // Note that we signal() *after* dropping the lock for "immortal" Events.
5685    // This is safe and avoids a common class of  futile wakeups.  In rare
5686    // circumstances this can cause a thread to return prematurely from
5687    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5688    // will simply re-test the condition and re-park itself.
5689    // This provides particular benefit if the underlying platform does not
5690    // provide wait morphing.
5691    status = pthread_cond_signal(_cond);
5692    assert_status(status == 0, status, "cond_signal");
5693  }
5694}
5695
5696
5697// JSR166
5698// -------------------------------------------------------
5699
5700// The solaris and linux implementations of park/unpark are fairly
5701// conservative for now, but can be improved. They currently use a
5702// mutex/condvar pair, plus a a count.
5703// Park decrements count if > 0, else does a condvar wait.  Unpark
5704// sets count to 1 and signals condvar.  Only one thread ever waits
5705// on the condvar. Contention seen when trying to park implies that someone
5706// is unparking you, so don't wait. And spurious returns are fine, so there
5707// is no need to track notifications.
5708
5709// This code is common to linux and solaris and will be moved to a
5710// common place in dolphin.
5711//
5712// The passed in time value is either a relative time in nanoseconds
5713// or an absolute time in milliseconds. Either way it has to be unpacked
5714// into suitable seconds and nanoseconds components and stored in the
5715// given timespec structure.
5716// Given time is a 64-bit value and the time_t used in the timespec is only
5717// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5718// overflow if times way in the future are given. Further on Solaris versions
5719// prior to 10 there is a restriction (see cond_timedwait) that the specified
5720// number of seconds, in abstime, is less than current_time  + 100,000,000.
5721// As it will be 28 years before "now + 100000000" will overflow we can
5722// ignore overflow and just impose a hard-limit on seconds using the value
5723// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5724// years from "now".
5725
5726static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5727  assert(time > 0, "convertTime");
5728  time_t max_secs = 0;
5729
5730  if (!os::supports_monotonic_clock() || isAbsolute) {
5731    struct timeval now;
5732    int status = gettimeofday(&now, NULL);
5733    assert(status == 0, "gettimeofday");
5734
5735    max_secs = now.tv_sec + MAX_SECS;
5736
5737    if (isAbsolute) {
5738      jlong secs = time / 1000;
5739      if (secs > max_secs) {
5740        absTime->tv_sec = max_secs;
5741      } else {
5742        absTime->tv_sec = secs;
5743      }
5744      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5745    } else {
5746      jlong secs = time / NANOSECS_PER_SEC;
5747      if (secs >= MAX_SECS) {
5748        absTime->tv_sec = max_secs;
5749        absTime->tv_nsec = 0;
5750      } else {
5751        absTime->tv_sec = now.tv_sec + secs;
5752        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5753        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5754          absTime->tv_nsec -= NANOSECS_PER_SEC;
5755          ++absTime->tv_sec; // note: this must be <= max_secs
5756        }
5757      }
5758    }
5759  } else {
5760    // must be relative using monotonic clock
5761    struct timespec now;
5762    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5763    assert_status(status == 0, status, "clock_gettime");
5764    max_secs = now.tv_sec + MAX_SECS;
5765    jlong secs = time / NANOSECS_PER_SEC;
5766    if (secs >= MAX_SECS) {
5767      absTime->tv_sec = max_secs;
5768      absTime->tv_nsec = 0;
5769    } else {
5770      absTime->tv_sec = now.tv_sec + secs;
5771      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5772      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5773        absTime->tv_nsec -= NANOSECS_PER_SEC;
5774        ++absTime->tv_sec; // note: this must be <= max_secs
5775      }
5776    }
5777  }
5778  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5779  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5780  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5781  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5782}
5783
5784void Parker::park(bool isAbsolute, jlong time) {
5785  // Ideally we'd do something useful while spinning, such
5786  // as calling unpackTime().
5787
5788  // Optional fast-path check:
5789  // Return immediately if a permit is available.
5790  // We depend on Atomic::xchg() having full barrier semantics
5791  // since we are doing a lock-free update to _counter.
5792  if (Atomic::xchg(0, &_counter) > 0) return;
5793
5794  Thread* thread = Thread::current();
5795  assert(thread->is_Java_thread(), "Must be JavaThread");
5796  JavaThread *jt = (JavaThread *)thread;
5797
5798  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5799  // Check interrupt before trying to wait
5800  if (Thread::is_interrupted(thread, false)) {
5801    return;
5802  }
5803
5804  // Next, demultiplex/decode time arguments
5805  timespec absTime;
5806  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5807    return;
5808  }
5809  if (time > 0) {
5810    unpackTime(&absTime, isAbsolute, time);
5811  }
5812
5813
5814  // Enter safepoint region
5815  // Beware of deadlocks such as 6317397.
5816  // The per-thread Parker:: mutex is a classic leaf-lock.
5817  // In particular a thread must never block on the Threads_lock while
5818  // holding the Parker:: mutex.  If safepoints are pending both the
5819  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5820  ThreadBlockInVM tbivm(jt);
5821
5822  // Don't wait if cannot get lock since interference arises from
5823  // unblocking.  Also. check interrupt before trying wait
5824  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5825    return;
5826  }
5827
5828  int status;
5829  if (_counter > 0)  { // no wait needed
5830    _counter = 0;
5831    status = pthread_mutex_unlock(_mutex);
5832    assert(status == 0, "invariant");
5833    // Paranoia to ensure our locked and lock-free paths interact
5834    // correctly with each other and Java-level accesses.
5835    OrderAccess::fence();
5836    return;
5837  }
5838
5839#ifdef ASSERT
5840  // Don't catch signals while blocked; let the running threads have the signals.
5841  // (This allows a debugger to break into the running thread.)
5842  sigset_t oldsigs;
5843  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5844  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5845#endif
5846
5847  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5848  jt->set_suspend_equivalent();
5849  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5850
5851  assert(_cur_index == -1, "invariant");
5852  if (time == 0) {
5853    _cur_index = REL_INDEX; // arbitrary choice when not timed
5854    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5855  } else {
5856    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5857    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5858    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5859      pthread_cond_destroy(&_cond[_cur_index]);
5860      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5861    }
5862  }
5863  _cur_index = -1;
5864  assert_status(status == 0 || status == EINTR ||
5865                status == ETIME || status == ETIMEDOUT,
5866                status, "cond_timedwait");
5867
5868#ifdef ASSERT
5869  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5870#endif
5871
5872  _counter = 0;
5873  status = pthread_mutex_unlock(_mutex);
5874  assert_status(status == 0, status, "invariant");
5875  // Paranoia to ensure our locked and lock-free paths interact
5876  // correctly with each other and Java-level accesses.
5877  OrderAccess::fence();
5878
5879  // If externally suspended while waiting, re-suspend
5880  if (jt->handle_special_suspend_equivalent_condition()) {
5881    jt->java_suspend_self();
5882  }
5883}
5884
5885void Parker::unpark() {
5886  int status = pthread_mutex_lock(_mutex);
5887  assert(status == 0, "invariant");
5888  const int s = _counter;
5889  _counter = 1;
5890  if (s < 1) {
5891    // thread might be parked
5892    if (_cur_index != -1) {
5893      // thread is definitely parked
5894      if (WorkAroundNPTLTimedWaitHang) {
5895        status = pthread_cond_signal(&_cond[_cur_index]);
5896        assert(status == 0, "invariant");
5897        status = pthread_mutex_unlock(_mutex);
5898        assert(status == 0, "invariant");
5899      } else {
5900        status = pthread_mutex_unlock(_mutex);
5901        assert(status == 0, "invariant");
5902        status = pthread_cond_signal(&_cond[_cur_index]);
5903        assert(status == 0, "invariant");
5904      }
5905    } else {
5906      pthread_mutex_unlock(_mutex);
5907      assert(status == 0, "invariant");
5908    }
5909  } else {
5910    pthread_mutex_unlock(_mutex);
5911    assert(status == 0, "invariant");
5912  }
5913}
5914
5915
5916extern char** environ;
5917
5918// Run the specified command in a separate process. Return its exit value,
5919// or -1 on failure (e.g. can't fork a new process).
5920// Unlike system(), this function can be called from signal handler. It
5921// doesn't block SIGINT et al.
5922int os::fork_and_exec(char* cmd) {
5923  const char * argv[4] = {"sh", "-c", cmd, NULL};
5924
5925  pid_t pid = fork();
5926
5927  if (pid < 0) {
5928    // fork failed
5929    return -1;
5930
5931  } else if (pid == 0) {
5932    // child process
5933
5934    execve("/bin/sh", (char* const*)argv, environ);
5935
5936    // execve failed
5937    _exit(-1);
5938
5939  } else  {
5940    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5941    // care about the actual exit code, for now.
5942
5943    int status;
5944
5945    // Wait for the child process to exit.  This returns immediately if
5946    // the child has already exited. */
5947    while (waitpid(pid, &status, 0) < 0) {
5948      switch (errno) {
5949      case ECHILD: return 0;
5950      case EINTR: break;
5951      default: return -1;
5952      }
5953    }
5954
5955    if (WIFEXITED(status)) {
5956      // The child exited normally; get its exit code.
5957      return WEXITSTATUS(status);
5958    } else if (WIFSIGNALED(status)) {
5959      // The child exited because of a signal
5960      // The best value to return is 0x80 + signal number,
5961      // because that is what all Unix shells do, and because
5962      // it allows callers to distinguish between process exit and
5963      // process death by signal.
5964      return 0x80 + WTERMSIG(status);
5965    } else {
5966      // Unknown exit code; pass it through
5967      return status;
5968    }
5969  }
5970}
5971
5972// is_headless_jre()
5973//
5974// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5975// in order to report if we are running in a headless jre
5976//
5977// Since JDK8 xawt/libmawt.so was moved into the same directory
5978// as libawt.so, and renamed libawt_xawt.so
5979//
5980bool os::is_headless_jre() {
5981  struct stat statbuf;
5982  char buf[MAXPATHLEN];
5983  char libmawtpath[MAXPATHLEN];
5984  const char *xawtstr  = "/xawt/libmawt.so";
5985  const char *new_xawtstr = "/libawt_xawt.so";
5986  char *p;
5987
5988  // Get path to libjvm.so
5989  os::jvm_path(buf, sizeof(buf));
5990
5991  // Get rid of libjvm.so
5992  p = strrchr(buf, '/');
5993  if (p == NULL) {
5994    return false;
5995  } else {
5996    *p = '\0';
5997  }
5998
5999  // Get rid of client or server
6000  p = strrchr(buf, '/');
6001  if (p == NULL) {
6002    return false;
6003  } else {
6004    *p = '\0';
6005  }
6006
6007  // check xawt/libmawt.so
6008  strcpy(libmawtpath, buf);
6009  strcat(libmawtpath, xawtstr);
6010  if (::stat(libmawtpath, &statbuf) == 0) return false;
6011
6012  // check libawt_xawt.so
6013  strcpy(libmawtpath, buf);
6014  strcat(libmawtpath, new_xawtstr);
6015  if (::stat(libmawtpath, &statbuf) == 0) return false;
6016
6017  return true;
6018}
6019
6020// Get the default path to the core file
6021// Returns the length of the string
6022int os::get_core_path(char* buffer, size_t bufferSize) {
6023  /*
6024   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6025   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6026   */
6027  const int core_pattern_len = 129;
6028  char core_pattern[core_pattern_len] = {0};
6029
6030  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6031  if (core_pattern_file != -1) {
6032    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6033    ::close(core_pattern_file);
6034
6035    if (ret > 0) {
6036      char *last_char = core_pattern + strlen(core_pattern) - 1;
6037
6038      if (*last_char == '\n') {
6039        *last_char = '\0';
6040      }
6041    }
6042  }
6043
6044  if (strlen(core_pattern) == 0) {
6045    return -1;
6046  }
6047
6048  char *pid_pos = strstr(core_pattern, "%p");
6049  int written;
6050
6051  if (core_pattern[0] == '/') {
6052    written = jio_snprintf(buffer, bufferSize, core_pattern);
6053  } else {
6054    char cwd[PATH_MAX];
6055
6056    const char* p = get_current_directory(cwd, PATH_MAX);
6057    if (p == NULL) {
6058      return -1;
6059    }
6060
6061    if (core_pattern[0] == '|') {
6062      written = jio_snprintf(buffer, bufferSize,
6063                        "\"%s\" (or dumping to %s/core.%d)",
6064                                     &core_pattern[1], p, current_process_id());
6065    } else {
6066      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6067    }
6068  }
6069
6070  if (written < 0) {
6071    return -1;
6072  }
6073
6074  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6075    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6076
6077    if (core_uses_pid_file != -1) {
6078      char core_uses_pid = 0;
6079      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6080      ::close(core_uses_pid_file);
6081
6082      if (core_uses_pid == '1') {
6083        jio_snprintf(buffer + written, bufferSize - written,
6084                                          ".%d", current_process_id());
6085      }
6086    }
6087  }
6088
6089  return strlen(buffer);
6090}
6091
6092/////////////// Unit tests ///////////////
6093
6094#ifndef PRODUCT
6095
6096#define test_log(...)              \
6097  do {                             \
6098    if (VerboseInternalVMTests) {  \
6099      tty->print_cr(__VA_ARGS__);  \
6100      tty->flush();                \
6101    }                              \
6102  } while (false)
6103
6104class TestReserveMemorySpecial : AllStatic {
6105 public:
6106  static void small_page_write(void* addr, size_t size) {
6107    size_t page_size = os::vm_page_size();
6108
6109    char* end = (char*)addr + size;
6110    for (char* p = (char*)addr; p < end; p += page_size) {
6111      *p = 1;
6112    }
6113  }
6114
6115  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6116    if (!UseHugeTLBFS) {
6117      return;
6118    }
6119
6120    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6121
6122    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6123
6124    if (addr != NULL) {
6125      small_page_write(addr, size);
6126
6127      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6128    }
6129  }
6130
6131  static void test_reserve_memory_special_huge_tlbfs_only() {
6132    if (!UseHugeTLBFS) {
6133      return;
6134    }
6135
6136    size_t lp = os::large_page_size();
6137
6138    for (size_t size = lp; size <= lp * 10; size += lp) {
6139      test_reserve_memory_special_huge_tlbfs_only(size);
6140    }
6141  }
6142
6143  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6144    size_t lp = os::large_page_size();
6145    size_t ag = os::vm_allocation_granularity();
6146
6147    // sizes to test
6148    const size_t sizes[] = {
6149      lp, lp + ag, lp + lp / 2, lp * 2,
6150      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6151      lp * 10, lp * 10 + lp / 2
6152    };
6153    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6154
6155    // For each size/alignment combination, we test three scenarios:
6156    // 1) with req_addr == NULL
6157    // 2) with a non-null req_addr at which we expect to successfully allocate
6158    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6159    //    expect the allocation to either fail or to ignore req_addr
6160
6161    // Pre-allocate two areas; they shall be as large as the largest allocation
6162    //  and aligned to the largest alignment we will be testing.
6163    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6164    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6165      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6166      -1, 0);
6167    assert(mapping1 != MAP_FAILED, "should work");
6168
6169    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6170      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6171      -1, 0);
6172    assert(mapping2 != MAP_FAILED, "should work");
6173
6174    // Unmap the first mapping, but leave the second mapping intact: the first
6175    // mapping will serve as a value for a "good" req_addr (case 2). The second
6176    // mapping, still intact, as "bad" req_addr (case 3).
6177    ::munmap(mapping1, mapping_size);
6178
6179    // Case 1
6180    test_log("%s, req_addr NULL:", __FUNCTION__);
6181    test_log("size            align           result");
6182
6183    for (int i = 0; i < num_sizes; i++) {
6184      const size_t size = sizes[i];
6185      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6186        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6187        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6188            size, alignment, p, (p != NULL ? "" : "(failed)"));
6189        if (p != NULL) {
6190          assert(is_ptr_aligned(p, alignment), "must be");
6191          small_page_write(p, size);
6192          os::Linux::release_memory_special_huge_tlbfs(p, size);
6193        }
6194      }
6195    }
6196
6197    // Case 2
6198    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6199    test_log("size            align           req_addr         result");
6200
6201    for (int i = 0; i < num_sizes; i++) {
6202      const size_t size = sizes[i];
6203      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6204        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6205        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6206        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6207            size, alignment, req_addr, p,
6208            ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6209        if (p != NULL) {
6210          assert(p == req_addr, "must be");
6211          small_page_write(p, size);
6212          os::Linux::release_memory_special_huge_tlbfs(p, size);
6213        }
6214      }
6215    }
6216
6217    // Case 3
6218    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6219    test_log("size            align           req_addr         result");
6220
6221    for (int i = 0; i < num_sizes; i++) {
6222      const size_t size = sizes[i];
6223      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6224        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6225        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6226        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6227            size, alignment, req_addr, p,
6228            ((p != NULL ? "" : "(failed)")));
6229        // as the area around req_addr contains already existing mappings, the API should always
6230        // return NULL (as per contract, it cannot return another address)
6231        assert(p == NULL, "must be");
6232      }
6233    }
6234
6235    ::munmap(mapping2, mapping_size);
6236
6237  }
6238
6239  static void test_reserve_memory_special_huge_tlbfs() {
6240    if (!UseHugeTLBFS) {
6241      return;
6242    }
6243
6244    test_reserve_memory_special_huge_tlbfs_only();
6245    test_reserve_memory_special_huge_tlbfs_mixed();
6246  }
6247
6248  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6249    if (!UseSHM) {
6250      return;
6251    }
6252
6253    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6254
6255    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6256
6257    if (addr != NULL) {
6258      assert(is_ptr_aligned(addr, alignment), "Check");
6259      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6260
6261      small_page_write(addr, size);
6262
6263      os::Linux::release_memory_special_shm(addr, size);
6264    }
6265  }
6266
6267  static void test_reserve_memory_special_shm() {
6268    size_t lp = os::large_page_size();
6269    size_t ag = os::vm_allocation_granularity();
6270
6271    for (size_t size = ag; size < lp * 3; size += ag) {
6272      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6273        test_reserve_memory_special_shm(size, alignment);
6274      }
6275    }
6276  }
6277
6278  static void test() {
6279    test_reserve_memory_special_huge_tlbfs();
6280    test_reserve_memory_special_shm();
6281  }
6282};
6283
6284void TestReserveMemorySpecial_test() {
6285  TestReserveMemorySpecial::test();
6286}
6287
6288#endif
6289