os_linux.cpp revision 8225:eb02bcd73927
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/macros.hpp"
72#include "utilities/vmError.hpp"
73
74// put OS-includes here
75# include <sys/types.h>
76# include <sys/mman.h>
77# include <sys/stat.h>
78# include <sys/select.h>
79# include <pthread.h>
80# include <signal.h>
81# include <errno.h>
82# include <dlfcn.h>
83# include <stdio.h>
84# include <unistd.h>
85# include <sys/resource.h>
86# include <pthread.h>
87# include <sys/stat.h>
88# include <sys/time.h>
89# include <sys/times.h>
90# include <sys/utsname.h>
91# include <sys/socket.h>
92# include <sys/wait.h>
93# include <pwd.h>
94# include <poll.h>
95# include <semaphore.h>
96# include <fcntl.h>
97# include <string.h>
98# include <syscall.h>
99# include <sys/sysinfo.h>
100# include <gnu/libc-version.h>
101# include <sys/ipc.h>
102# include <sys/shm.h>
103# include <link.h>
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107
108PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
109
110// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
111// getrusage() is prepared to handle the associated failure.
112#ifndef RUSAGE_THREAD
113  #define RUSAGE_THREAD   (1)               /* only the calling thread */
114#endif
115
116#define MAX_PATH    (2 * K)
117
118#define MAX_SECS 100000000
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123#define LARGEPAGES_BIT (1 << 6)
124////////////////////////////////////////////////////////////////////////////////
125// global variables
126julong os::Linux::_physical_memory = 0;
127
128address   os::Linux::_initial_thread_stack_bottom = NULL;
129uintptr_t os::Linux::_initial_thread_stack_size   = 0;
130
131int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
133int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
134Mutex* os::Linux::_createThread_lock = NULL;
135pthread_t os::Linux::_main_thread;
136int os::Linux::_page_size = -1;
137const int os::Linux::_vm_default_page_size = (8 * K);
138bool os::Linux::_is_floating_stack = false;
139bool os::Linux::_is_NPTL = false;
140bool os::Linux::_supports_fast_thread_cpu_time = false;
141const char * os::Linux::_glibc_version = NULL;
142const char * os::Linux::_libpthread_version = NULL;
143pthread_condattr_t os::Linux::_condattr[1];
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161// Declarations
162static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
163
164// utility functions
165
166static int SR_initialize();
167
168julong os::available_memory() {
169  return Linux::available_memory();
170}
171
172julong os::Linux::available_memory() {
173  // values in struct sysinfo are "unsigned long"
174  struct sysinfo si;
175  sysinfo(&si);
176
177  return (julong)si.freeram * si.mem_unit;
178}
179
180julong os::physical_memory() {
181  return Linux::physical_memory();
182}
183
184// Return true if user is running as root.
185
186bool os::have_special_privileges() {
187  static bool init = false;
188  static bool privileges = false;
189  if (!init) {
190    privileges = (getuid() != geteuid()) || (getgid() != getegid());
191    init = true;
192  }
193  return privileges;
194}
195
196
197#ifndef SYS_gettid
198// i386: 224, ia64: 1105, amd64: 186, sparc 143
199  #ifdef __ia64__
200    #define SYS_gettid 1105
201  #elif __i386__
202    #define SYS_gettid 224
203  #elif __amd64__
204    #define SYS_gettid 186
205  #elif __sparc__
206    #define SYS_gettid 143
207  #else
208    #error define gettid for the arch
209  #endif
210#endif
211
212// Cpu architecture string
213static char cpu_arch[] = HOTSPOT_LIB_ARCH;
214
215
216// pid_t gettid()
217//
218// Returns the kernel thread id of the currently running thread. Kernel
219// thread id is used to access /proc.
220//
221// (Note that getpid() on LinuxThreads returns kernel thread id too; but
222// on NPTL, it returns the same pid for all threads, as required by POSIX.)
223//
224pid_t os::Linux::gettid() {
225  int rslt = syscall(SYS_gettid);
226  if (rslt == -1) {
227    // old kernel, no NPTL support
228    return getpid();
229  } else {
230    return (pid_t)rslt;
231  }
232}
233
234// Most versions of linux have a bug where the number of processors are
235// determined by looking at the /proc file system.  In a chroot environment,
236// the system call returns 1.  This causes the VM to act as if it is
237// a single processor and elide locking (see is_MP() call).
238static bool unsafe_chroot_detected = false;
239static const char *unstable_chroot_error = "/proc file system not found.\n"
240                     "Java may be unstable running multithreaded in a chroot "
241                     "environment on Linux when /proc filesystem is not mounted.";
242
243void os::Linux::initialize_system_info() {
244  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
245  if (processor_count() == 1) {
246    pid_t pid = os::Linux::gettid();
247    char fname[32];
248    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
249    FILE *fp = fopen(fname, "r");
250    if (fp == NULL) {
251      unsafe_chroot_detected = true;
252    } else {
253      fclose(fp);
254    }
255  }
256  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
257  assert(processor_count() > 0, "linux error");
258}
259
260void os::init_system_properties_values() {
261  // The next steps are taken in the product version:
262  //
263  // Obtain the JAVA_HOME value from the location of libjvm.so.
264  // This library should be located at:
265  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
266  //
267  // If "/jre/lib/" appears at the right place in the path, then we
268  // assume libjvm.so is installed in a JDK and we use this path.
269  //
270  // Otherwise exit with message: "Could not create the Java virtual machine."
271  //
272  // The following extra steps are taken in the debugging version:
273  //
274  // If "/jre/lib/" does NOT appear at the right place in the path
275  // instead of exit check for $JAVA_HOME environment variable.
276  //
277  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
278  // then we append a fake suffix "hotspot/libjvm.so" to this path so
279  // it looks like libjvm.so is installed there
280  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
281  //
282  // Otherwise exit.
283  //
284  // Important note: if the location of libjvm.so changes this
285  // code needs to be changed accordingly.
286
287  // See ld(1):
288  //      The linker uses the following search paths to locate required
289  //      shared libraries:
290  //        1: ...
291  //        ...
292  //        7: The default directories, normally /lib and /usr/lib.
293#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
294  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
295#else
296  #define DEFAULT_LIBPATH "/lib:/usr/lib"
297#endif
298
299// Base path of extensions installed on the system.
300#define SYS_EXT_DIR     "/usr/java/packages"
301#define EXTENSIONS_DIR  "/lib/ext"
302
303  // Buffer that fits several sprintfs.
304  // Note that the space for the colon and the trailing null are provided
305  // by the nulls included by the sizeof operator.
306  const size_t bufsize =
307    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
308         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
309  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
310
311  // sysclasspath, java_home, dll_dir
312  {
313    char *pslash;
314    os::jvm_path(buf, bufsize);
315
316    // Found the full path to libjvm.so.
317    // Now cut the path to <java_home>/jre if we can.
318    pslash = strrchr(buf, '/');
319    if (pslash != NULL) {
320      *pslash = '\0';            // Get rid of /libjvm.so.
321    }
322    pslash = strrchr(buf, '/');
323    if (pslash != NULL) {
324      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
325    }
326    Arguments::set_dll_dir(buf);
327
328    if (pslash != NULL) {
329      pslash = strrchr(buf, '/');
330      if (pslash != NULL) {
331        *pslash = '\0';          // Get rid of /<arch>.
332        pslash = strrchr(buf, '/');
333        if (pslash != NULL) {
334          *pslash = '\0';        // Get rid of /lib.
335        }
336      }
337    }
338    Arguments::set_java_home(buf);
339    set_boot_path('/', ':');
340  }
341
342  // Where to look for native libraries.
343  //
344  // Note: Due to a legacy implementation, most of the library path
345  // is set in the launcher. This was to accomodate linking restrictions
346  // on legacy Linux implementations (which are no longer supported).
347  // Eventually, all the library path setting will be done here.
348  //
349  // However, to prevent the proliferation of improperly built native
350  // libraries, the new path component /usr/java/packages is added here.
351  // Eventually, all the library path setting will be done here.
352  {
353    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
354    // should always exist (until the legacy problem cited above is
355    // addressed).
356    const char *v = ::getenv("LD_LIBRARY_PATH");
357    const char *v_colon = ":";
358    if (v == NULL) { v = ""; v_colon = ""; }
359    // That's +1 for the colon and +1 for the trailing '\0'.
360    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
361                                                     strlen(v) + 1 +
362                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
363                                                     mtInternal);
364    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
365    Arguments::set_library_path(ld_library_path);
366    FREE_C_HEAP_ARRAY(char, ld_library_path);
367  }
368
369  // Extensions directories.
370  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
371  Arguments::set_ext_dirs(buf);
372
373  FREE_C_HEAP_ARRAY(char, buf);
374
375#undef DEFAULT_LIBPATH
376#undef SYS_EXT_DIR
377#undef EXTENSIONS_DIR
378}
379
380////////////////////////////////////////////////////////////////////////////////
381// breakpoint support
382
383void os::breakpoint() {
384  BREAKPOINT;
385}
386
387extern "C" void breakpoint() {
388  // use debugger to set breakpoint here
389}
390
391////////////////////////////////////////////////////////////////////////////////
392// signal support
393
394debug_only(static bool signal_sets_initialized = false);
395static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
396
397bool os::Linux::is_sig_ignored(int sig) {
398  struct sigaction oact;
399  sigaction(sig, (struct sigaction*)NULL, &oact);
400  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
401                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
402  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
403    return true;
404  } else {
405    return false;
406  }
407}
408
409void os::Linux::signal_sets_init() {
410  // Should also have an assertion stating we are still single-threaded.
411  assert(!signal_sets_initialized, "Already initialized");
412  // Fill in signals that are necessarily unblocked for all threads in
413  // the VM. Currently, we unblock the following signals:
414  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
415  //                         by -Xrs (=ReduceSignalUsage));
416  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
417  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
418  // the dispositions or masks wrt these signals.
419  // Programs embedding the VM that want to use the above signals for their
420  // own purposes must, at this time, use the "-Xrs" option to prevent
421  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
422  // (See bug 4345157, and other related bugs).
423  // In reality, though, unblocking these signals is really a nop, since
424  // these signals are not blocked by default.
425  sigemptyset(&unblocked_sigs);
426  sigemptyset(&allowdebug_blocked_sigs);
427  sigaddset(&unblocked_sigs, SIGILL);
428  sigaddset(&unblocked_sigs, SIGSEGV);
429  sigaddset(&unblocked_sigs, SIGBUS);
430  sigaddset(&unblocked_sigs, SIGFPE);
431#if defined(PPC64)
432  sigaddset(&unblocked_sigs, SIGTRAP);
433#endif
434  sigaddset(&unblocked_sigs, SR_signum);
435
436  if (!ReduceSignalUsage) {
437    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
438      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
439      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
440    }
441    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
442      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
443      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
444    }
445    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
446      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
447      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
448    }
449  }
450  // Fill in signals that are blocked by all but the VM thread.
451  sigemptyset(&vm_sigs);
452  if (!ReduceSignalUsage) {
453    sigaddset(&vm_sigs, BREAK_SIGNAL);
454  }
455  debug_only(signal_sets_initialized = true);
456
457}
458
459// These are signals that are unblocked while a thread is running Java.
460// (For some reason, they get blocked by default.)
461sigset_t* os::Linux::unblocked_signals() {
462  assert(signal_sets_initialized, "Not initialized");
463  return &unblocked_sigs;
464}
465
466// These are the signals that are blocked while a (non-VM) thread is
467// running Java. Only the VM thread handles these signals.
468sigset_t* os::Linux::vm_signals() {
469  assert(signal_sets_initialized, "Not initialized");
470  return &vm_sigs;
471}
472
473// These are signals that are blocked during cond_wait to allow debugger in
474sigset_t* os::Linux::allowdebug_blocked_signals() {
475  assert(signal_sets_initialized, "Not initialized");
476  return &allowdebug_blocked_sigs;
477}
478
479void os::Linux::hotspot_sigmask(Thread* thread) {
480
481  //Save caller's signal mask before setting VM signal mask
482  sigset_t caller_sigmask;
483  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
484
485  OSThread* osthread = thread->osthread();
486  osthread->set_caller_sigmask(caller_sigmask);
487
488  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
489
490  if (!ReduceSignalUsage) {
491    if (thread->is_VM_thread()) {
492      // Only the VM thread handles BREAK_SIGNAL ...
493      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
494    } else {
495      // ... all other threads block BREAK_SIGNAL
496      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
497    }
498  }
499}
500
501//////////////////////////////////////////////////////////////////////////////
502// detecting pthread library
503
504void os::Linux::libpthread_init() {
505  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
506  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
507  // generic name for earlier versions.
508  // Define macros here so we can build HotSpot on old systems.
509#ifndef _CS_GNU_LIBC_VERSION
510  #define _CS_GNU_LIBC_VERSION 2
511#endif
512#ifndef _CS_GNU_LIBPTHREAD_VERSION
513  #define _CS_GNU_LIBPTHREAD_VERSION 3
514#endif
515
516  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
517  if (n > 0) {
518    char *str = (char *)malloc(n, mtInternal);
519    confstr(_CS_GNU_LIBC_VERSION, str, n);
520    os::Linux::set_glibc_version(str);
521  } else {
522    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
523    static char _gnu_libc_version[32];
524    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
525                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
526    os::Linux::set_glibc_version(_gnu_libc_version);
527  }
528
529  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
530  if (n > 0) {
531    char *str = (char *)malloc(n, mtInternal);
532    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
533    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
534    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
535    // is the case. LinuxThreads has a hard limit on max number of threads.
536    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
537    // On the other hand, NPTL does not have such a limit, sysconf()
538    // will return -1 and errno is not changed. Check if it is really NPTL.
539    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
540        strstr(str, "NPTL") &&
541        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
542      free(str);
543      os::Linux::set_libpthread_version("linuxthreads");
544    } else {
545      os::Linux::set_libpthread_version(str);
546    }
547  } else {
548    // glibc before 2.3.2 only has LinuxThreads.
549    os::Linux::set_libpthread_version("linuxthreads");
550  }
551
552  if (strstr(libpthread_version(), "NPTL")) {
553    os::Linux::set_is_NPTL();
554  } else {
555    os::Linux::set_is_LinuxThreads();
556  }
557
558  // LinuxThreads have two flavors: floating-stack mode, which allows variable
559  // stack size; and fixed-stack mode. NPTL is always floating-stack.
560  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
561    os::Linux::set_is_floating_stack();
562  }
563}
564
565/////////////////////////////////////////////////////////////////////////////
566// thread stack
567
568// Force Linux kernel to expand current thread stack. If "bottom" is close
569// to the stack guard, caller should block all signals.
570//
571// MAP_GROWSDOWN:
572//   A special mmap() flag that is used to implement thread stacks. It tells
573//   kernel that the memory region should extend downwards when needed. This
574//   allows early versions of LinuxThreads to only mmap the first few pages
575//   when creating a new thread. Linux kernel will automatically expand thread
576//   stack as needed (on page faults).
577//
578//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
579//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
580//   region, it's hard to tell if the fault is due to a legitimate stack
581//   access or because of reading/writing non-exist memory (e.g. buffer
582//   overrun). As a rule, if the fault happens below current stack pointer,
583//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
584//   application (see Linux kernel fault.c).
585//
586//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
587//   stack overflow detection.
588//
589//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
590//   not use this flag. However, the stack of initial thread is not created
591//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
592//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
593//   and then attach the thread to JVM.
594//
595// To get around the problem and allow stack banging on Linux, we need to
596// manually expand thread stack after receiving the SIGSEGV.
597//
598// There are two ways to expand thread stack to address "bottom", we used
599// both of them in JVM before 1.5:
600//   1. adjust stack pointer first so that it is below "bottom", and then
601//      touch "bottom"
602//   2. mmap() the page in question
603//
604// Now alternate signal stack is gone, it's harder to use 2. For instance,
605// if current sp is already near the lower end of page 101, and we need to
606// call mmap() to map page 100, it is possible that part of the mmap() frame
607// will be placed in page 100. When page 100 is mapped, it is zero-filled.
608// That will destroy the mmap() frame and cause VM to crash.
609//
610// The following code works by adjusting sp first, then accessing the "bottom"
611// page to force a page fault. Linux kernel will then automatically expand the
612// stack mapping.
613//
614// _expand_stack_to() assumes its frame size is less than page size, which
615// should always be true if the function is not inlined.
616
617#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
618  #define NOINLINE
619#else
620  #define NOINLINE __attribute__ ((noinline))
621#endif
622
623static void _expand_stack_to(address bottom) NOINLINE;
624
625static void _expand_stack_to(address bottom) {
626  address sp;
627  size_t size;
628  volatile char *p;
629
630  // Adjust bottom to point to the largest address within the same page, it
631  // gives us a one-page buffer if alloca() allocates slightly more memory.
632  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
633  bottom += os::Linux::page_size() - 1;
634
635  // sp might be slightly above current stack pointer; if that's the case, we
636  // will alloca() a little more space than necessary, which is OK. Don't use
637  // os::current_stack_pointer(), as its result can be slightly below current
638  // stack pointer, causing us to not alloca enough to reach "bottom".
639  sp = (address)&sp;
640
641  if (sp > bottom) {
642    size = sp - bottom;
643    p = (volatile char *)alloca(size);
644    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
645    p[0] = '\0';
646  }
647}
648
649bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
650  assert(t!=NULL, "just checking");
651  assert(t->osthread()->expanding_stack(), "expand should be set");
652  assert(t->stack_base() != NULL, "stack_base was not initialized");
653
654  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
655    sigset_t mask_all, old_sigset;
656    sigfillset(&mask_all);
657    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
658    _expand_stack_to(addr);
659    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
660    return true;
661  }
662  return false;
663}
664
665//////////////////////////////////////////////////////////////////////////////
666// create new thread
667
668static address highest_vm_reserved_address();
669
670// check if it's safe to start a new thread
671static bool _thread_safety_check(Thread* thread) {
672  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
673    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
674    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
675    //   allocated (MAP_FIXED) from high address space. Every thread stack
676    //   occupies a fixed size slot (usually 2Mbytes, but user can change
677    //   it to other values if they rebuild LinuxThreads).
678    //
679    // Problem with MAP_FIXED is that mmap() can still succeed even part of
680    // the memory region has already been mmap'ed. That means if we have too
681    // many threads and/or very large heap, eventually thread stack will
682    // collide with heap.
683    //
684    // Here we try to prevent heap/stack collision by comparing current
685    // stack bottom with the highest address that has been mmap'ed by JVM
686    // plus a safety margin for memory maps created by native code.
687    //
688    // This feature can be disabled by setting ThreadSafetyMargin to 0
689    //
690    if (ThreadSafetyMargin > 0) {
691      address stack_bottom = os::current_stack_base() - os::current_stack_size();
692
693      // not safe if our stack extends below the safety margin
694      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
695    } else {
696      return true;
697    }
698  } else {
699    // Floating stack LinuxThreads or NPTL:
700    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
701    //   there's not enough space left, pthread_create() will fail. If we come
702    //   here, that means enough space has been reserved for stack.
703    return true;
704  }
705}
706
707// Thread start routine for all newly created threads
708static void *java_start(Thread *thread) {
709  // Try to randomize the cache line index of hot stack frames.
710  // This helps when threads of the same stack traces evict each other's
711  // cache lines. The threads can be either from the same JVM instance, or
712  // from different JVM instances. The benefit is especially true for
713  // processors with hyperthreading technology.
714  static int counter = 0;
715  int pid = os::current_process_id();
716  alloca(((pid ^ counter++) & 7) * 128);
717
718  ThreadLocalStorage::set_thread(thread);
719
720  OSThread* osthread = thread->osthread();
721  Monitor* sync = osthread->startThread_lock();
722
723  // non floating stack LinuxThreads needs extra check, see above
724  if (!_thread_safety_check(thread)) {
725    // notify parent thread
726    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
727    osthread->set_state(ZOMBIE);
728    sync->notify_all();
729    return NULL;
730  }
731
732  // thread_id is kernel thread id (similar to Solaris LWP id)
733  osthread->set_thread_id(os::Linux::gettid());
734
735  if (UseNUMA) {
736    int lgrp_id = os::numa_get_group_id();
737    if (lgrp_id != -1) {
738      thread->set_lgrp_id(lgrp_id);
739    }
740  }
741  // initialize signal mask for this thread
742  os::Linux::hotspot_sigmask(thread);
743
744  // initialize floating point control register
745  os::Linux::init_thread_fpu_state();
746
747  // handshaking with parent thread
748  {
749    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
750
751    // notify parent thread
752    osthread->set_state(INITIALIZED);
753    sync->notify_all();
754
755    // wait until os::start_thread()
756    while (osthread->get_state() == INITIALIZED) {
757      sync->wait(Mutex::_no_safepoint_check_flag);
758    }
759  }
760
761  // call one more level start routine
762  thread->run();
763
764  return 0;
765}
766
767bool os::create_thread(Thread* thread, ThreadType thr_type,
768                       size_t stack_size) {
769  assert(thread->osthread() == NULL, "caller responsible");
770
771  // Allocate the OSThread object
772  OSThread* osthread = new OSThread(NULL, NULL);
773  if (osthread == NULL) {
774    return false;
775  }
776
777  // set the correct thread state
778  osthread->set_thread_type(thr_type);
779
780  // Initial state is ALLOCATED but not INITIALIZED
781  osthread->set_state(ALLOCATED);
782
783  thread->set_osthread(osthread);
784
785  // init thread attributes
786  pthread_attr_t attr;
787  pthread_attr_init(&attr);
788  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
789
790  // stack size
791  if (os::Linux::supports_variable_stack_size()) {
792    // calculate stack size if it's not specified by caller
793    if (stack_size == 0) {
794      stack_size = os::Linux::default_stack_size(thr_type);
795
796      switch (thr_type) {
797      case os::java_thread:
798        // Java threads use ThreadStackSize which default value can be
799        // changed with the flag -Xss
800        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
801        stack_size = JavaThread::stack_size_at_create();
802        break;
803      case os::compiler_thread:
804        if (CompilerThreadStackSize > 0) {
805          stack_size = (size_t)(CompilerThreadStackSize * K);
806          break;
807        } // else fall through:
808          // use VMThreadStackSize if CompilerThreadStackSize is not defined
809      case os::vm_thread:
810      case os::pgc_thread:
811      case os::cgc_thread:
812      case os::watcher_thread:
813        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
814        break;
815      }
816    }
817
818    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
819    pthread_attr_setstacksize(&attr, stack_size);
820  } else {
821    // let pthread_create() pick the default value.
822  }
823
824  // glibc guard page
825  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
826
827  ThreadState state;
828
829  {
830    // Serialize thread creation if we are running with fixed stack LinuxThreads
831    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
832    if (lock) {
833      os::Linux::createThread_lock()->lock_without_safepoint_check();
834    }
835
836    pthread_t tid;
837    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
838
839    pthread_attr_destroy(&attr);
840
841    if (ret != 0) {
842      if (PrintMiscellaneous && (Verbose || WizardMode)) {
843        perror("pthread_create()");
844      }
845      // Need to clean up stuff we've allocated so far
846      thread->set_osthread(NULL);
847      delete osthread;
848      if (lock) os::Linux::createThread_lock()->unlock();
849      return false;
850    }
851
852    // Store pthread info into the OSThread
853    osthread->set_pthread_id(tid);
854
855    // Wait until child thread is either initialized or aborted
856    {
857      Monitor* sync_with_child = osthread->startThread_lock();
858      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
859      while ((state = osthread->get_state()) == ALLOCATED) {
860        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
861      }
862    }
863
864    if (lock) {
865      os::Linux::createThread_lock()->unlock();
866    }
867  }
868
869  // Aborted due to thread limit being reached
870  if (state == ZOMBIE) {
871    thread->set_osthread(NULL);
872    delete osthread;
873    return false;
874  }
875
876  // The thread is returned suspended (in state INITIALIZED),
877  // and is started higher up in the call chain
878  assert(state == INITIALIZED, "race condition");
879  return true;
880}
881
882/////////////////////////////////////////////////////////////////////////////
883// attach existing thread
884
885// bootstrap the main thread
886bool os::create_main_thread(JavaThread* thread) {
887  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
888  return create_attached_thread(thread);
889}
890
891bool os::create_attached_thread(JavaThread* thread) {
892#ifdef ASSERT
893  thread->verify_not_published();
894#endif
895
896  // Allocate the OSThread object
897  OSThread* osthread = new OSThread(NULL, NULL);
898
899  if (osthread == NULL) {
900    return false;
901  }
902
903  // Store pthread info into the OSThread
904  osthread->set_thread_id(os::Linux::gettid());
905  osthread->set_pthread_id(::pthread_self());
906
907  // initialize floating point control register
908  os::Linux::init_thread_fpu_state();
909
910  // Initial thread state is RUNNABLE
911  osthread->set_state(RUNNABLE);
912
913  thread->set_osthread(osthread);
914
915  if (UseNUMA) {
916    int lgrp_id = os::numa_get_group_id();
917    if (lgrp_id != -1) {
918      thread->set_lgrp_id(lgrp_id);
919    }
920  }
921
922  if (os::Linux::is_initial_thread()) {
923    // If current thread is initial thread, its stack is mapped on demand,
924    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
925    // the entire stack region to avoid SEGV in stack banging.
926    // It is also useful to get around the heap-stack-gap problem on SuSE
927    // kernel (see 4821821 for details). We first expand stack to the top
928    // of yellow zone, then enable stack yellow zone (order is significant,
929    // enabling yellow zone first will crash JVM on SuSE Linux), so there
930    // is no gap between the last two virtual memory regions.
931
932    JavaThread *jt = (JavaThread *)thread;
933    address addr = jt->stack_yellow_zone_base();
934    assert(addr != NULL, "initialization problem?");
935    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
936
937    osthread->set_expanding_stack();
938    os::Linux::manually_expand_stack(jt, addr);
939    osthread->clear_expanding_stack();
940  }
941
942  // initialize signal mask for this thread
943  // and save the caller's signal mask
944  os::Linux::hotspot_sigmask(thread);
945
946  return true;
947}
948
949void os::pd_start_thread(Thread* thread) {
950  OSThread * osthread = thread->osthread();
951  assert(osthread->get_state() != INITIALIZED, "just checking");
952  Monitor* sync_with_child = osthread->startThread_lock();
953  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
954  sync_with_child->notify();
955}
956
957// Free Linux resources related to the OSThread
958void os::free_thread(OSThread* osthread) {
959  assert(osthread != NULL, "osthread not set");
960
961  if (Thread::current()->osthread() == osthread) {
962    // Restore caller's signal mask
963    sigset_t sigmask = osthread->caller_sigmask();
964    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
965  }
966
967  delete osthread;
968}
969
970//////////////////////////////////////////////////////////////////////////////
971// thread local storage
972
973// Restore the thread pointer if the destructor is called. This is in case
974// someone from JNI code sets up a destructor with pthread_key_create to run
975// detachCurrentThread on thread death. Unless we restore the thread pointer we
976// will hang or crash. When detachCurrentThread is called the key will be set
977// to null and we will not be called again. If detachCurrentThread is never
978// called we could loop forever depending on the pthread implementation.
979static void restore_thread_pointer(void* p) {
980  Thread* thread = (Thread*) p;
981  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
982}
983
984int os::allocate_thread_local_storage() {
985  pthread_key_t key;
986  int rslt = pthread_key_create(&key, restore_thread_pointer);
987  assert(rslt == 0, "cannot allocate thread local storage");
988  return (int)key;
989}
990
991// Note: This is currently not used by VM, as we don't destroy TLS key
992// on VM exit.
993void os::free_thread_local_storage(int index) {
994  int rslt = pthread_key_delete((pthread_key_t)index);
995  assert(rslt == 0, "invalid index");
996}
997
998void os::thread_local_storage_at_put(int index, void* value) {
999  int rslt = pthread_setspecific((pthread_key_t)index, value);
1000  assert(rslt == 0, "pthread_setspecific failed");
1001}
1002
1003extern "C" Thread* get_thread() {
1004  return ThreadLocalStorage::thread();
1005}
1006
1007//////////////////////////////////////////////////////////////////////////////
1008// initial thread
1009
1010// Check if current thread is the initial thread, similar to Solaris thr_main.
1011bool os::Linux::is_initial_thread(void) {
1012  char dummy;
1013  // If called before init complete, thread stack bottom will be null.
1014  // Can be called if fatal error occurs before initialization.
1015  if (initial_thread_stack_bottom() == NULL) return false;
1016  assert(initial_thread_stack_bottom() != NULL &&
1017         initial_thread_stack_size()   != 0,
1018         "os::init did not locate initial thread's stack region");
1019  if ((address)&dummy >= initial_thread_stack_bottom() &&
1020      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1021    return true;
1022  } else {
1023    return false;
1024  }
1025}
1026
1027// Find the virtual memory area that contains addr
1028static bool find_vma(address addr, address* vma_low, address* vma_high) {
1029  FILE *fp = fopen("/proc/self/maps", "r");
1030  if (fp) {
1031    address low, high;
1032    while (!feof(fp)) {
1033      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1034        if (low <= addr && addr < high) {
1035          if (vma_low)  *vma_low  = low;
1036          if (vma_high) *vma_high = high;
1037          fclose(fp);
1038          return true;
1039        }
1040      }
1041      for (;;) {
1042        int ch = fgetc(fp);
1043        if (ch == EOF || ch == (int)'\n') break;
1044      }
1045    }
1046    fclose(fp);
1047  }
1048  return false;
1049}
1050
1051// Locate initial thread stack. This special handling of initial thread stack
1052// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1053// bogus value for initial thread.
1054void os::Linux::capture_initial_stack(size_t max_size) {
1055  // stack size is the easy part, get it from RLIMIT_STACK
1056  size_t stack_size;
1057  struct rlimit rlim;
1058  getrlimit(RLIMIT_STACK, &rlim);
1059  stack_size = rlim.rlim_cur;
1060
1061  // 6308388: a bug in ld.so will relocate its own .data section to the
1062  //   lower end of primordial stack; reduce ulimit -s value a little bit
1063  //   so we won't install guard page on ld.so's data section.
1064  stack_size -= 2 * page_size();
1065
1066  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1067  //   7.1, in both cases we will get 2G in return value.
1068  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1069  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1070  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1071  //   in case other parts in glibc still assumes 2M max stack size.
1072  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1073  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1074  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1075    stack_size = 2 * K * K IA64_ONLY(*2);
1076  }
1077  // Try to figure out where the stack base (top) is. This is harder.
1078  //
1079  // When an application is started, glibc saves the initial stack pointer in
1080  // a global variable "__libc_stack_end", which is then used by system
1081  // libraries. __libc_stack_end should be pretty close to stack top. The
1082  // variable is available since the very early days. However, because it is
1083  // a private interface, it could disappear in the future.
1084  //
1085  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1086  // to __libc_stack_end, it is very close to stack top, but isn't the real
1087  // stack top. Note that /proc may not exist if VM is running as a chroot
1088  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1089  // /proc/<pid>/stat could change in the future (though unlikely).
1090  //
1091  // We try __libc_stack_end first. If that doesn't work, look for
1092  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1093  // as a hint, which should work well in most cases.
1094
1095  uintptr_t stack_start;
1096
1097  // try __libc_stack_end first
1098  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1099  if (p && *p) {
1100    stack_start = *p;
1101  } else {
1102    // see if we can get the start_stack field from /proc/self/stat
1103    FILE *fp;
1104    int pid;
1105    char state;
1106    int ppid;
1107    int pgrp;
1108    int session;
1109    int nr;
1110    int tpgrp;
1111    unsigned long flags;
1112    unsigned long minflt;
1113    unsigned long cminflt;
1114    unsigned long majflt;
1115    unsigned long cmajflt;
1116    unsigned long utime;
1117    unsigned long stime;
1118    long cutime;
1119    long cstime;
1120    long prio;
1121    long nice;
1122    long junk;
1123    long it_real;
1124    uintptr_t start;
1125    uintptr_t vsize;
1126    intptr_t rss;
1127    uintptr_t rsslim;
1128    uintptr_t scodes;
1129    uintptr_t ecode;
1130    int i;
1131
1132    // Figure what the primordial thread stack base is. Code is inspired
1133    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1134    // followed by command name surrounded by parentheses, state, etc.
1135    char stat[2048];
1136    int statlen;
1137
1138    fp = fopen("/proc/self/stat", "r");
1139    if (fp) {
1140      statlen = fread(stat, 1, 2047, fp);
1141      stat[statlen] = '\0';
1142      fclose(fp);
1143
1144      // Skip pid and the command string. Note that we could be dealing with
1145      // weird command names, e.g. user could decide to rename java launcher
1146      // to "java 1.4.2 :)", then the stat file would look like
1147      //                1234 (java 1.4.2 :)) R ... ...
1148      // We don't really need to know the command string, just find the last
1149      // occurrence of ")" and then start parsing from there. See bug 4726580.
1150      char * s = strrchr(stat, ')');
1151
1152      i = 0;
1153      if (s) {
1154        // Skip blank chars
1155        do { s++; } while (s && isspace(*s));
1156
1157#define _UFM UINTX_FORMAT
1158#define _DFM INTX_FORMAT
1159
1160        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1161        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1162        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1163                   &state,          // 3  %c
1164                   &ppid,           // 4  %d
1165                   &pgrp,           // 5  %d
1166                   &session,        // 6  %d
1167                   &nr,             // 7  %d
1168                   &tpgrp,          // 8  %d
1169                   &flags,          // 9  %lu
1170                   &minflt,         // 10 %lu
1171                   &cminflt,        // 11 %lu
1172                   &majflt,         // 12 %lu
1173                   &cmajflt,        // 13 %lu
1174                   &utime,          // 14 %lu
1175                   &stime,          // 15 %lu
1176                   &cutime,         // 16 %ld
1177                   &cstime,         // 17 %ld
1178                   &prio,           // 18 %ld
1179                   &nice,           // 19 %ld
1180                   &junk,           // 20 %ld
1181                   &it_real,        // 21 %ld
1182                   &start,          // 22 UINTX_FORMAT
1183                   &vsize,          // 23 UINTX_FORMAT
1184                   &rss,            // 24 INTX_FORMAT
1185                   &rsslim,         // 25 UINTX_FORMAT
1186                   &scodes,         // 26 UINTX_FORMAT
1187                   &ecode,          // 27 UINTX_FORMAT
1188                   &stack_start);   // 28 UINTX_FORMAT
1189      }
1190
1191#undef _UFM
1192#undef _DFM
1193
1194      if (i != 28 - 2) {
1195        assert(false, "Bad conversion from /proc/self/stat");
1196        // product mode - assume we are the initial thread, good luck in the
1197        // embedded case.
1198        warning("Can't detect initial thread stack location - bad conversion");
1199        stack_start = (uintptr_t) &rlim;
1200      }
1201    } else {
1202      // For some reason we can't open /proc/self/stat (for example, running on
1203      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1204      // most cases, so don't abort:
1205      warning("Can't detect initial thread stack location - no /proc/self/stat");
1206      stack_start = (uintptr_t) &rlim;
1207    }
1208  }
1209
1210  // Now we have a pointer (stack_start) very close to the stack top, the
1211  // next thing to do is to figure out the exact location of stack top. We
1212  // can find out the virtual memory area that contains stack_start by
1213  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1214  // and its upper limit is the real stack top. (again, this would fail if
1215  // running inside chroot, because /proc may not exist.)
1216
1217  uintptr_t stack_top;
1218  address low, high;
1219  if (find_vma((address)stack_start, &low, &high)) {
1220    // success, "high" is the true stack top. (ignore "low", because initial
1221    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1222    stack_top = (uintptr_t)high;
1223  } else {
1224    // failed, likely because /proc/self/maps does not exist
1225    warning("Can't detect initial thread stack location - find_vma failed");
1226    // best effort: stack_start is normally within a few pages below the real
1227    // stack top, use it as stack top, and reduce stack size so we won't put
1228    // guard page outside stack.
1229    stack_top = stack_start;
1230    stack_size -= 16 * page_size();
1231  }
1232
1233  // stack_top could be partially down the page so align it
1234  stack_top = align_size_up(stack_top, page_size());
1235
1236  if (max_size && stack_size > max_size) {
1237    _initial_thread_stack_size = max_size;
1238  } else {
1239    _initial_thread_stack_size = stack_size;
1240  }
1241
1242  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1243  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1244}
1245
1246////////////////////////////////////////////////////////////////////////////////
1247// time support
1248
1249// Time since start-up in seconds to a fine granularity.
1250// Used by VMSelfDestructTimer and the MemProfiler.
1251double os::elapsedTime() {
1252
1253  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1254}
1255
1256jlong os::elapsed_counter() {
1257  return javaTimeNanos() - initial_time_count;
1258}
1259
1260jlong os::elapsed_frequency() {
1261  return NANOSECS_PER_SEC; // nanosecond resolution
1262}
1263
1264bool os::supports_vtime() { return true; }
1265bool os::enable_vtime()   { return false; }
1266bool os::vtime_enabled()  { return false; }
1267
1268double os::elapsedVTime() {
1269  struct rusage usage;
1270  int retval = getrusage(RUSAGE_THREAD, &usage);
1271  if (retval == 0) {
1272    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1273  } else {
1274    // better than nothing, but not much
1275    return elapsedTime();
1276  }
1277}
1278
1279jlong os::javaTimeMillis() {
1280  timeval time;
1281  int status = gettimeofday(&time, NULL);
1282  assert(status != -1, "linux error");
1283  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1284}
1285
1286void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1287  timeval time;
1288  int status = gettimeofday(&time, NULL);
1289  assert(status != -1, "linux error");
1290  seconds = jlong(time.tv_sec);
1291  nanos = jlong(time.tv_usec) * 1000;
1292}
1293
1294
1295#ifndef CLOCK_MONOTONIC
1296  #define CLOCK_MONOTONIC (1)
1297#endif
1298
1299void os::Linux::clock_init() {
1300  // we do dlopen's in this particular order due to bug in linux
1301  // dynamical loader (see 6348968) leading to crash on exit
1302  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1303  if (handle == NULL) {
1304    handle = dlopen("librt.so", RTLD_LAZY);
1305  }
1306
1307  if (handle) {
1308    int (*clock_getres_func)(clockid_t, struct timespec*) =
1309           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1310    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1311           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1312    if (clock_getres_func && clock_gettime_func) {
1313      // See if monotonic clock is supported by the kernel. Note that some
1314      // early implementations simply return kernel jiffies (updated every
1315      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1316      // for nano time (though the monotonic property is still nice to have).
1317      // It's fixed in newer kernels, however clock_getres() still returns
1318      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1319      // resolution for now. Hopefully as people move to new kernels, this
1320      // won't be a problem.
1321      struct timespec res;
1322      struct timespec tp;
1323      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1324          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1325        // yes, monotonic clock is supported
1326        _clock_gettime = clock_gettime_func;
1327        return;
1328      } else {
1329        // close librt if there is no monotonic clock
1330        dlclose(handle);
1331      }
1332    }
1333  }
1334  warning("No monotonic clock was available - timed services may " \
1335          "be adversely affected if the time-of-day clock changes");
1336}
1337
1338#ifndef SYS_clock_getres
1339  #if defined(IA32) || defined(AMD64)
1340    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1341    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1342  #else
1343    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1344    #define sys_clock_getres(x,y)  -1
1345  #endif
1346#else
1347  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1348#endif
1349
1350void os::Linux::fast_thread_clock_init() {
1351  if (!UseLinuxPosixThreadCPUClocks) {
1352    return;
1353  }
1354  clockid_t clockid;
1355  struct timespec tp;
1356  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1357      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1358
1359  // Switch to using fast clocks for thread cpu time if
1360  // the sys_clock_getres() returns 0 error code.
1361  // Note, that some kernels may support the current thread
1362  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1363  // returned by the pthread_getcpuclockid().
1364  // If the fast Posix clocks are supported then the sys_clock_getres()
1365  // must return at least tp.tv_sec == 0 which means a resolution
1366  // better than 1 sec. This is extra check for reliability.
1367
1368  if (pthread_getcpuclockid_func &&
1369      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1370      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1371    _supports_fast_thread_cpu_time = true;
1372    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1373  }
1374}
1375
1376jlong os::javaTimeNanos() {
1377  if (os::supports_monotonic_clock()) {
1378    struct timespec tp;
1379    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1380    assert(status == 0, "gettime error");
1381    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1382    return result;
1383  } else {
1384    timeval time;
1385    int status = gettimeofday(&time, NULL);
1386    assert(status != -1, "linux error");
1387    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1388    return 1000 * usecs;
1389  }
1390}
1391
1392void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1393  if (os::supports_monotonic_clock()) {
1394    info_ptr->max_value = ALL_64_BITS;
1395
1396    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1397    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1398    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1399  } else {
1400    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1401    info_ptr->max_value = ALL_64_BITS;
1402
1403    // gettimeofday is a real time clock so it skips
1404    info_ptr->may_skip_backward = true;
1405    info_ptr->may_skip_forward = true;
1406  }
1407
1408  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1409}
1410
1411// Return the real, user, and system times in seconds from an
1412// arbitrary fixed point in the past.
1413bool os::getTimesSecs(double* process_real_time,
1414                      double* process_user_time,
1415                      double* process_system_time) {
1416  struct tms ticks;
1417  clock_t real_ticks = times(&ticks);
1418
1419  if (real_ticks == (clock_t) (-1)) {
1420    return false;
1421  } else {
1422    double ticks_per_second = (double) clock_tics_per_sec;
1423    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1424    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1425    *process_real_time = ((double) real_ticks) / ticks_per_second;
1426
1427    return true;
1428  }
1429}
1430
1431
1432char * os::local_time_string(char *buf, size_t buflen) {
1433  struct tm t;
1434  time_t long_time;
1435  time(&long_time);
1436  localtime_r(&long_time, &t);
1437  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1438               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1439               t.tm_hour, t.tm_min, t.tm_sec);
1440  return buf;
1441}
1442
1443struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1444  return localtime_r(clock, res);
1445}
1446
1447////////////////////////////////////////////////////////////////////////////////
1448// runtime exit support
1449
1450// Note: os::shutdown() might be called very early during initialization, or
1451// called from signal handler. Before adding something to os::shutdown(), make
1452// sure it is async-safe and can handle partially initialized VM.
1453void os::shutdown() {
1454
1455  // allow PerfMemory to attempt cleanup of any persistent resources
1456  perfMemory_exit();
1457
1458  // needs to remove object in file system
1459  AttachListener::abort();
1460
1461  // flush buffered output, finish log files
1462  ostream_abort();
1463
1464  // Check for abort hook
1465  abort_hook_t abort_hook = Arguments::abort_hook();
1466  if (abort_hook != NULL) {
1467    abort_hook();
1468  }
1469
1470}
1471
1472// Note: os::abort() might be called very early during initialization, or
1473// called from signal handler. Before adding something to os::abort(), make
1474// sure it is async-safe and can handle partially initialized VM.
1475void os::abort(bool dump_core) {
1476  abort(dump_core, NULL, NULL);
1477}
1478
1479void os::abort(bool dump_core, void* siginfo, void* context) {
1480  os::shutdown();
1481  if (dump_core) {
1482#ifndef PRODUCT
1483    fdStream out(defaultStream::output_fd());
1484    out.print_raw("Current thread is ");
1485    char buf[16];
1486    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1487    out.print_raw_cr(buf);
1488    out.print_raw_cr("Dumping core ...");
1489#endif
1490    ::abort(); // dump core
1491  }
1492
1493  ::exit(1);
1494}
1495
1496// Die immediately, no exit hook, no abort hook, no cleanup.
1497void os::die() {
1498  // _exit() on LinuxThreads only kills current thread
1499  ::abort();
1500}
1501
1502
1503// This method is a copy of JDK's sysGetLastErrorString
1504// from src/solaris/hpi/src/system_md.c
1505
1506size_t os::lasterror(char *buf, size_t len) {
1507  if (errno == 0)  return 0;
1508
1509  const char *s = ::strerror(errno);
1510  size_t n = ::strlen(s);
1511  if (n >= len) {
1512    n = len - 1;
1513  }
1514  ::strncpy(buf, s, n);
1515  buf[n] = '\0';
1516  return n;
1517}
1518
1519intx os::current_thread_id() { return (intx)pthread_self(); }
1520int os::current_process_id() {
1521
1522  // Under the old linux thread library, linux gives each thread
1523  // its own process id. Because of this each thread will return
1524  // a different pid if this method were to return the result
1525  // of getpid(2). Linux provides no api that returns the pid
1526  // of the launcher thread for the vm. This implementation
1527  // returns a unique pid, the pid of the launcher thread
1528  // that starts the vm 'process'.
1529
1530  // Under the NPTL, getpid() returns the same pid as the
1531  // launcher thread rather than a unique pid per thread.
1532  // Use gettid() if you want the old pre NPTL behaviour.
1533
1534  // if you are looking for the result of a call to getpid() that
1535  // returns a unique pid for the calling thread, then look at the
1536  // OSThread::thread_id() method in osThread_linux.hpp file
1537
1538  return (int)(_initial_pid ? _initial_pid : getpid());
1539}
1540
1541// DLL functions
1542
1543const char* os::dll_file_extension() { return ".so"; }
1544
1545// This must be hard coded because it's the system's temporary
1546// directory not the java application's temp directory, ala java.io.tmpdir.
1547const char* os::get_temp_directory() { return "/tmp"; }
1548
1549static bool file_exists(const char* filename) {
1550  struct stat statbuf;
1551  if (filename == NULL || strlen(filename) == 0) {
1552    return false;
1553  }
1554  return os::stat(filename, &statbuf) == 0;
1555}
1556
1557bool os::dll_build_name(char* buffer, size_t buflen,
1558                        const char* pname, const char* fname) {
1559  bool retval = false;
1560  // Copied from libhpi
1561  const size_t pnamelen = pname ? strlen(pname) : 0;
1562
1563  // Return error on buffer overflow.
1564  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1565    return retval;
1566  }
1567
1568  if (pnamelen == 0) {
1569    snprintf(buffer, buflen, "lib%s.so", fname);
1570    retval = true;
1571  } else if (strchr(pname, *os::path_separator()) != NULL) {
1572    int n;
1573    char** pelements = split_path(pname, &n);
1574    if (pelements == NULL) {
1575      return false;
1576    }
1577    for (int i = 0; i < n; i++) {
1578      // Really shouldn't be NULL, but check can't hurt
1579      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1580        continue; // skip the empty path values
1581      }
1582      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1583      if (file_exists(buffer)) {
1584        retval = true;
1585        break;
1586      }
1587    }
1588    // release the storage
1589    for (int i = 0; i < n; i++) {
1590      if (pelements[i] != NULL) {
1591        FREE_C_HEAP_ARRAY(char, pelements[i]);
1592      }
1593    }
1594    if (pelements != NULL) {
1595      FREE_C_HEAP_ARRAY(char*, pelements);
1596    }
1597  } else {
1598    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1599    retval = true;
1600  }
1601  return retval;
1602}
1603
1604// check if addr is inside libjvm.so
1605bool os::address_is_in_vm(address addr) {
1606  static address libjvm_base_addr;
1607  Dl_info dlinfo;
1608
1609  if (libjvm_base_addr == NULL) {
1610    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1611      libjvm_base_addr = (address)dlinfo.dli_fbase;
1612    }
1613    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1614  }
1615
1616  if (dladdr((void *)addr, &dlinfo) != 0) {
1617    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1618  }
1619
1620  return false;
1621}
1622
1623bool os::dll_address_to_function_name(address addr, char *buf,
1624                                      int buflen, int *offset) {
1625  // buf is not optional, but offset is optional
1626  assert(buf != NULL, "sanity check");
1627
1628  Dl_info dlinfo;
1629
1630  if (dladdr((void*)addr, &dlinfo) != 0) {
1631    // see if we have a matching symbol
1632    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1633      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1634        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1635      }
1636      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1637      return true;
1638    }
1639    // no matching symbol so try for just file info
1640    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1641      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1642                          buf, buflen, offset, dlinfo.dli_fname)) {
1643        return true;
1644      }
1645    }
1646  }
1647
1648  buf[0] = '\0';
1649  if (offset != NULL) *offset = -1;
1650  return false;
1651}
1652
1653struct _address_to_library_name {
1654  address addr;          // input : memory address
1655  size_t  buflen;        //         size of fname
1656  char*   fname;         // output: library name
1657  address base;          //         library base addr
1658};
1659
1660static int address_to_library_name_callback(struct dl_phdr_info *info,
1661                                            size_t size, void *data) {
1662  int i;
1663  bool found = false;
1664  address libbase = NULL;
1665  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1666
1667  // iterate through all loadable segments
1668  for (i = 0; i < info->dlpi_phnum; i++) {
1669    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1670    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1671      // base address of a library is the lowest address of its loaded
1672      // segments.
1673      if (libbase == NULL || libbase > segbase) {
1674        libbase = segbase;
1675      }
1676      // see if 'addr' is within current segment
1677      if (segbase <= d->addr &&
1678          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1679        found = true;
1680      }
1681    }
1682  }
1683
1684  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1685  // so dll_address_to_library_name() can fall through to use dladdr() which
1686  // can figure out executable name from argv[0].
1687  if (found && info->dlpi_name && info->dlpi_name[0]) {
1688    d->base = libbase;
1689    if (d->fname) {
1690      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1691    }
1692    return 1;
1693  }
1694  return 0;
1695}
1696
1697bool os::dll_address_to_library_name(address addr, char* buf,
1698                                     int buflen, int* offset) {
1699  // buf is not optional, but offset is optional
1700  assert(buf != NULL, "sanity check");
1701
1702  Dl_info dlinfo;
1703  struct _address_to_library_name data;
1704
1705  // There is a bug in old glibc dladdr() implementation that it could resolve
1706  // to wrong library name if the .so file has a base address != NULL. Here
1707  // we iterate through the program headers of all loaded libraries to find
1708  // out which library 'addr' really belongs to. This workaround can be
1709  // removed once the minimum requirement for glibc is moved to 2.3.x.
1710  data.addr = addr;
1711  data.fname = buf;
1712  data.buflen = buflen;
1713  data.base = NULL;
1714  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1715
1716  if (rslt) {
1717    // buf already contains library name
1718    if (offset) *offset = addr - data.base;
1719    return true;
1720  }
1721  if (dladdr((void*)addr, &dlinfo) != 0) {
1722    if (dlinfo.dli_fname != NULL) {
1723      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1724    }
1725    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1726      *offset = addr - (address)dlinfo.dli_fbase;
1727    }
1728    return true;
1729  }
1730
1731  buf[0] = '\0';
1732  if (offset) *offset = -1;
1733  return false;
1734}
1735
1736// Loads .dll/.so and
1737// in case of error it checks if .dll/.so was built for the
1738// same architecture as Hotspot is running on
1739
1740
1741// Remember the stack's state. The Linux dynamic linker will change
1742// the stack to 'executable' at most once, so we must safepoint only once.
1743bool os::Linux::_stack_is_executable = false;
1744
1745// VM operation that loads a library.  This is necessary if stack protection
1746// of the Java stacks can be lost during loading the library.  If we
1747// do not stop the Java threads, they can stack overflow before the stacks
1748// are protected again.
1749class VM_LinuxDllLoad: public VM_Operation {
1750 private:
1751  const char *_filename;
1752  char *_ebuf;
1753  int _ebuflen;
1754  void *_lib;
1755 public:
1756  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1757    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1758  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1759  void doit() {
1760    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1761    os::Linux::_stack_is_executable = true;
1762  }
1763  void* loaded_library() { return _lib; }
1764};
1765
1766void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1767  void * result = NULL;
1768  bool load_attempted = false;
1769
1770  // Check whether the library to load might change execution rights
1771  // of the stack. If they are changed, the protection of the stack
1772  // guard pages will be lost. We need a safepoint to fix this.
1773  //
1774  // See Linux man page execstack(8) for more info.
1775  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1776    ElfFile ef(filename);
1777    if (!ef.specifies_noexecstack()) {
1778      if (!is_init_completed()) {
1779        os::Linux::_stack_is_executable = true;
1780        // This is OK - No Java threads have been created yet, and hence no
1781        // stack guard pages to fix.
1782        //
1783        // This should happen only when you are building JDK7 using a very
1784        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1785        //
1786        // Dynamic loader will make all stacks executable after
1787        // this function returns, and will not do that again.
1788        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1789      } else {
1790        warning("You have loaded library %s which might have disabled stack guard. "
1791                "The VM will try to fix the stack guard now.\n"
1792                "It's highly recommended that you fix the library with "
1793                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1794                filename);
1795
1796        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1797        JavaThread *jt = JavaThread::current();
1798        if (jt->thread_state() != _thread_in_native) {
1799          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1800          // that requires ExecStack. Cannot enter safe point. Let's give up.
1801          warning("Unable to fix stack guard. Giving up.");
1802        } else {
1803          if (!LoadExecStackDllInVMThread) {
1804            // This is for the case where the DLL has an static
1805            // constructor function that executes JNI code. We cannot
1806            // load such DLLs in the VMThread.
1807            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1808          }
1809
1810          ThreadInVMfromNative tiv(jt);
1811          debug_only(VMNativeEntryWrapper vew;)
1812
1813          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1814          VMThread::execute(&op);
1815          if (LoadExecStackDllInVMThread) {
1816            result = op.loaded_library();
1817          }
1818          load_attempted = true;
1819        }
1820      }
1821    }
1822  }
1823
1824  if (!load_attempted) {
1825    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1826  }
1827
1828  if (result != NULL) {
1829    // Successful loading
1830    return result;
1831  }
1832
1833  Elf32_Ehdr elf_head;
1834  int diag_msg_max_length=ebuflen-strlen(ebuf);
1835  char* diag_msg_buf=ebuf+strlen(ebuf);
1836
1837  if (diag_msg_max_length==0) {
1838    // No more space in ebuf for additional diagnostics message
1839    return NULL;
1840  }
1841
1842
1843  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1844
1845  if (file_descriptor < 0) {
1846    // Can't open library, report dlerror() message
1847    return NULL;
1848  }
1849
1850  bool failed_to_read_elf_head=
1851    (sizeof(elf_head)!=
1852     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1853
1854  ::close(file_descriptor);
1855  if (failed_to_read_elf_head) {
1856    // file i/o error - report dlerror() msg
1857    return NULL;
1858  }
1859
1860  typedef struct {
1861    Elf32_Half  code;         // Actual value as defined in elf.h
1862    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1863    char        elf_class;    // 32 or 64 bit
1864    char        endianess;    // MSB or LSB
1865    char*       name;         // String representation
1866  } arch_t;
1867
1868#ifndef EM_486
1869  #define EM_486          6               /* Intel 80486 */
1870#endif
1871#ifndef EM_AARCH64
1872  #define EM_AARCH64    183               /* ARM AARCH64 */
1873#endif
1874
1875  static const arch_t arch_array[]={
1876    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1877    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1878    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1879    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1880    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1881    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1882    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1883    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1884#if defined(VM_LITTLE_ENDIAN)
1885    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1886#else
1887    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1888#endif
1889    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1890    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1891    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1892    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1893    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1894    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1895    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1896    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1897  };
1898
1899#if  (defined IA32)
1900  static  Elf32_Half running_arch_code=EM_386;
1901#elif   (defined AMD64)
1902  static  Elf32_Half running_arch_code=EM_X86_64;
1903#elif  (defined IA64)
1904  static  Elf32_Half running_arch_code=EM_IA_64;
1905#elif  (defined __sparc) && (defined _LP64)
1906  static  Elf32_Half running_arch_code=EM_SPARCV9;
1907#elif  (defined __sparc) && (!defined _LP64)
1908  static  Elf32_Half running_arch_code=EM_SPARC;
1909#elif  (defined __powerpc64__)
1910  static  Elf32_Half running_arch_code=EM_PPC64;
1911#elif  (defined __powerpc__)
1912  static  Elf32_Half running_arch_code=EM_PPC;
1913#elif  (defined ARM)
1914  static  Elf32_Half running_arch_code=EM_ARM;
1915#elif  (defined S390)
1916  static  Elf32_Half running_arch_code=EM_S390;
1917#elif  (defined ALPHA)
1918  static  Elf32_Half running_arch_code=EM_ALPHA;
1919#elif  (defined MIPSEL)
1920  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1921#elif  (defined PARISC)
1922  static  Elf32_Half running_arch_code=EM_PARISC;
1923#elif  (defined MIPS)
1924  static  Elf32_Half running_arch_code=EM_MIPS;
1925#elif  (defined M68K)
1926  static  Elf32_Half running_arch_code=EM_68K;
1927#elif  (defined AARCH64)
1928  static  Elf32_Half running_arch_code=EM_AARCH64;
1929#else
1930    #error Method os::dll_load requires that one of following is defined:\
1931         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1932#endif
1933
1934  // Identify compatability class for VM's architecture and library's architecture
1935  // Obtain string descriptions for architectures
1936
1937  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1938  int running_arch_index=-1;
1939
1940  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1941    if (running_arch_code == arch_array[i].code) {
1942      running_arch_index    = i;
1943    }
1944    if (lib_arch.code == arch_array[i].code) {
1945      lib_arch.compat_class = arch_array[i].compat_class;
1946      lib_arch.name         = arch_array[i].name;
1947    }
1948  }
1949
1950  assert(running_arch_index != -1,
1951         "Didn't find running architecture code (running_arch_code) in arch_array");
1952  if (running_arch_index == -1) {
1953    // Even though running architecture detection failed
1954    // we may still continue with reporting dlerror() message
1955    return NULL;
1956  }
1957
1958  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1959    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1960    return NULL;
1961  }
1962
1963#ifndef S390
1964  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1965    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1966    return NULL;
1967  }
1968#endif // !S390
1969
1970  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1971    if (lib_arch.name!=NULL) {
1972      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1973                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1974                 lib_arch.name, arch_array[running_arch_index].name);
1975    } else {
1976      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1977                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1978                 lib_arch.code,
1979                 arch_array[running_arch_index].name);
1980    }
1981  }
1982
1983  return NULL;
1984}
1985
1986void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1987                                int ebuflen) {
1988  void * result = ::dlopen(filename, RTLD_LAZY);
1989  if (result == NULL) {
1990    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1991    ebuf[ebuflen-1] = '\0';
1992  }
1993  return result;
1994}
1995
1996void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1997                                       int ebuflen) {
1998  void * result = NULL;
1999  if (LoadExecStackDllInVMThread) {
2000    result = dlopen_helper(filename, ebuf, ebuflen);
2001  }
2002
2003  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2004  // library that requires an executable stack, or which does not have this
2005  // stack attribute set, dlopen changes the stack attribute to executable. The
2006  // read protection of the guard pages gets lost.
2007  //
2008  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2009  // may have been queued at the same time.
2010
2011  if (!_stack_is_executable) {
2012    JavaThread *jt = Threads::first();
2013
2014    while (jt) {
2015      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2016          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2017        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2018                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2019          warning("Attempt to reguard stack yellow zone failed.");
2020        }
2021      }
2022      jt = jt->next();
2023    }
2024  }
2025
2026  return result;
2027}
2028
2029void* os::dll_lookup(void* handle, const char* name) {
2030  void* res = dlsym(handle, name);
2031  return res;
2032}
2033
2034void* os::get_default_process_handle() {
2035  return (void*)::dlopen(NULL, RTLD_LAZY);
2036}
2037
2038static bool _print_ascii_file(const char* filename, outputStream* st) {
2039  int fd = ::open(filename, O_RDONLY);
2040  if (fd == -1) {
2041    return false;
2042  }
2043
2044  char buf[32];
2045  int bytes;
2046  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2047    st->print_raw(buf, bytes);
2048  }
2049
2050  ::close(fd);
2051
2052  return true;
2053}
2054
2055void os::print_dll_info(outputStream *st) {
2056  st->print_cr("Dynamic libraries:");
2057
2058  char fname[32];
2059  pid_t pid = os::Linux::gettid();
2060
2061  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2062
2063  if (!_print_ascii_file(fname, st)) {
2064    st->print("Can not get library information for pid = %d\n", pid);
2065  }
2066}
2067
2068int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2069  FILE *procmapsFile = NULL;
2070
2071  // Open the procfs maps file for the current process
2072  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2073    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2074    char line[PATH_MAX + 100];
2075
2076    // Read line by line from 'file'
2077    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2078      u8 base, top, offset, inode;
2079      char permissions[5];
2080      char device[6];
2081      char name[PATH_MAX + 1];
2082
2083      // Parse fields from line
2084      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2085
2086      // Filter by device id '00:00' so that we only get file system mapped files.
2087      if (strcmp(device, "00:00") != 0) {
2088
2089        // Call callback with the fields of interest
2090        if(callback(name, (address)base, (address)top, param)) {
2091          // Oops abort, callback aborted
2092          fclose(procmapsFile);
2093          return 1;
2094        }
2095      }
2096    }
2097    fclose(procmapsFile);
2098  }
2099  return 0;
2100}
2101
2102void os::print_os_info_brief(outputStream* st) {
2103  os::Linux::print_distro_info(st);
2104
2105  os::Posix::print_uname_info(st);
2106
2107  os::Linux::print_libversion_info(st);
2108
2109}
2110
2111void os::print_os_info(outputStream* st) {
2112  st->print("OS:");
2113
2114  os::Linux::print_distro_info(st);
2115
2116  os::Posix::print_uname_info(st);
2117
2118  // Print warning if unsafe chroot environment detected
2119  if (unsafe_chroot_detected) {
2120    st->print("WARNING!! ");
2121    st->print_cr("%s", unstable_chroot_error);
2122  }
2123
2124  os::Linux::print_libversion_info(st);
2125
2126  os::Posix::print_rlimit_info(st);
2127
2128  os::Posix::print_load_average(st);
2129
2130  os::Linux::print_full_memory_info(st);
2131}
2132
2133// Try to identify popular distros.
2134// Most Linux distributions have a /etc/XXX-release file, which contains
2135// the OS version string. Newer Linux distributions have a /etc/lsb-release
2136// file that also contains the OS version string. Some have more than one
2137// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2138// /etc/redhat-release.), so the order is important.
2139// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2140// their own specific XXX-release file as well as a redhat-release file.
2141// Because of this the XXX-release file needs to be searched for before the
2142// redhat-release file.
2143// Since Red Hat has a lsb-release file that is not very descriptive the
2144// search for redhat-release needs to be before lsb-release.
2145// Since the lsb-release file is the new standard it needs to be searched
2146// before the older style release files.
2147// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2148// next to last resort.  The os-release file is a new standard that contains
2149// distribution information and the system-release file seems to be an old
2150// standard that has been replaced by the lsb-release and os-release files.
2151// Searching for the debian_version file is the last resort.  It contains
2152// an informative string like "6.0.6" or "wheezy/sid". Because of this
2153// "Debian " is printed before the contents of the debian_version file.
2154void os::Linux::print_distro_info(outputStream* st) {
2155  if (!_print_ascii_file("/etc/oracle-release", st) &&
2156      !_print_ascii_file("/etc/mandriva-release", st) &&
2157      !_print_ascii_file("/etc/mandrake-release", st) &&
2158      !_print_ascii_file("/etc/sun-release", st) &&
2159      !_print_ascii_file("/etc/redhat-release", st) &&
2160      !_print_ascii_file("/etc/lsb-release", st) &&
2161      !_print_ascii_file("/etc/SuSE-release", st) &&
2162      !_print_ascii_file("/etc/turbolinux-release", st) &&
2163      !_print_ascii_file("/etc/gentoo-release", st) &&
2164      !_print_ascii_file("/etc/ltib-release", st) &&
2165      !_print_ascii_file("/etc/angstrom-version", st) &&
2166      !_print_ascii_file("/etc/system-release", st) &&
2167      !_print_ascii_file("/etc/os-release", st)) {
2168
2169    if (file_exists("/etc/debian_version")) {
2170      st->print("Debian ");
2171      _print_ascii_file("/etc/debian_version", st);
2172    } else {
2173      st->print("Linux");
2174    }
2175  }
2176  st->cr();
2177}
2178
2179void os::Linux::print_libversion_info(outputStream* st) {
2180  // libc, pthread
2181  st->print("libc:");
2182  st->print("%s ", os::Linux::glibc_version());
2183  st->print("%s ", os::Linux::libpthread_version());
2184  if (os::Linux::is_LinuxThreads()) {
2185    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2186  }
2187  st->cr();
2188}
2189
2190void os::Linux::print_full_memory_info(outputStream* st) {
2191  st->print("\n/proc/meminfo:\n");
2192  _print_ascii_file("/proc/meminfo", st);
2193  st->cr();
2194}
2195
2196void os::print_memory_info(outputStream* st) {
2197
2198  st->print("Memory:");
2199  st->print(" %dk page", os::vm_page_size()>>10);
2200
2201  // values in struct sysinfo are "unsigned long"
2202  struct sysinfo si;
2203  sysinfo(&si);
2204
2205  st->print(", physical " UINT64_FORMAT "k",
2206            os::physical_memory() >> 10);
2207  st->print("(" UINT64_FORMAT "k free)",
2208            os::available_memory() >> 10);
2209  st->print(", swap " UINT64_FORMAT "k",
2210            ((jlong)si.totalswap * si.mem_unit) >> 10);
2211  st->print("(" UINT64_FORMAT "k free)",
2212            ((jlong)si.freeswap * si.mem_unit) >> 10);
2213  st->cr();
2214}
2215
2216void os::pd_print_cpu_info(outputStream* st) {
2217  st->print("\n/proc/cpuinfo:\n");
2218  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2219    st->print("  <Not Available>");
2220  }
2221  st->cr();
2222}
2223
2224void os::print_siginfo(outputStream* st, void* siginfo) {
2225  const siginfo_t* si = (const siginfo_t*)siginfo;
2226
2227  os::Posix::print_siginfo_brief(st, si);
2228#if INCLUDE_CDS
2229  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2230      UseSharedSpaces) {
2231    FileMapInfo* mapinfo = FileMapInfo::current_info();
2232    if (mapinfo->is_in_shared_space(si->si_addr)) {
2233      st->print("\n\nError accessing class data sharing archive."   \
2234                " Mapped file inaccessible during execution, "      \
2235                " possible disk/network problem.");
2236    }
2237  }
2238#endif
2239  st->cr();
2240}
2241
2242
2243static void print_signal_handler(outputStream* st, int sig,
2244                                 char* buf, size_t buflen);
2245
2246void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2247  st->print_cr("Signal Handlers:");
2248  print_signal_handler(st, SIGSEGV, buf, buflen);
2249  print_signal_handler(st, SIGBUS , buf, buflen);
2250  print_signal_handler(st, SIGFPE , buf, buflen);
2251  print_signal_handler(st, SIGPIPE, buf, buflen);
2252  print_signal_handler(st, SIGXFSZ, buf, buflen);
2253  print_signal_handler(st, SIGILL , buf, buflen);
2254  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2255  print_signal_handler(st, SR_signum, buf, buflen);
2256  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2257  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2258  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2259  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2260#if defined(PPC64)
2261  print_signal_handler(st, SIGTRAP, buf, buflen);
2262#endif
2263}
2264
2265static char saved_jvm_path[MAXPATHLEN] = {0};
2266
2267// Find the full path to the current module, libjvm.so
2268void os::jvm_path(char *buf, jint buflen) {
2269  // Error checking.
2270  if (buflen < MAXPATHLEN) {
2271    assert(false, "must use a large-enough buffer");
2272    buf[0] = '\0';
2273    return;
2274  }
2275  // Lazy resolve the path to current module.
2276  if (saved_jvm_path[0] != 0) {
2277    strcpy(buf, saved_jvm_path);
2278    return;
2279  }
2280
2281  char dli_fname[MAXPATHLEN];
2282  bool ret = dll_address_to_library_name(
2283                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2284                                         dli_fname, sizeof(dli_fname), NULL);
2285  assert(ret, "cannot locate libjvm");
2286  char *rp = NULL;
2287  if (ret && dli_fname[0] != '\0') {
2288    rp = realpath(dli_fname, buf);
2289  }
2290  if (rp == NULL) {
2291    return;
2292  }
2293
2294  if (Arguments::sun_java_launcher_is_altjvm()) {
2295    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2296    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2297    // If "/jre/lib/" appears at the right place in the string, then
2298    // assume we are installed in a JDK and we're done. Otherwise, check
2299    // for a JAVA_HOME environment variable and fix up the path so it
2300    // looks like libjvm.so is installed there (append a fake suffix
2301    // hotspot/libjvm.so).
2302    const char *p = buf + strlen(buf) - 1;
2303    for (int count = 0; p > buf && count < 5; ++count) {
2304      for (--p; p > buf && *p != '/'; --p)
2305        /* empty */ ;
2306    }
2307
2308    if (strncmp(p, "/jre/lib/", 9) != 0) {
2309      // Look for JAVA_HOME in the environment.
2310      char* java_home_var = ::getenv("JAVA_HOME");
2311      if (java_home_var != NULL && java_home_var[0] != 0) {
2312        char* jrelib_p;
2313        int len;
2314
2315        // Check the current module name "libjvm.so".
2316        p = strrchr(buf, '/');
2317        if (p == NULL) {
2318          return;
2319        }
2320        assert(strstr(p, "/libjvm") == p, "invalid library name");
2321
2322        rp = realpath(java_home_var, buf);
2323        if (rp == NULL) {
2324          return;
2325        }
2326
2327        // determine if this is a legacy image or modules image
2328        // modules image doesn't have "jre" subdirectory
2329        len = strlen(buf);
2330        assert(len < buflen, "Ran out of buffer room");
2331        jrelib_p = buf + len;
2332        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2333        if (0 != access(buf, F_OK)) {
2334          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2335        }
2336
2337        if (0 == access(buf, F_OK)) {
2338          // Use current module name "libjvm.so"
2339          len = strlen(buf);
2340          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2341        } else {
2342          // Go back to path of .so
2343          rp = realpath(dli_fname, buf);
2344          if (rp == NULL) {
2345            return;
2346          }
2347        }
2348      }
2349    }
2350  }
2351
2352  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2353  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2354}
2355
2356void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2357  // no prefix required, not even "_"
2358}
2359
2360void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2361  // no suffix required
2362}
2363
2364////////////////////////////////////////////////////////////////////////////////
2365// sun.misc.Signal support
2366
2367static volatile jint sigint_count = 0;
2368
2369static void UserHandler(int sig, void *siginfo, void *context) {
2370  // 4511530 - sem_post is serialized and handled by the manager thread. When
2371  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2372  // don't want to flood the manager thread with sem_post requests.
2373  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2374    return;
2375  }
2376
2377  // Ctrl-C is pressed during error reporting, likely because the error
2378  // handler fails to abort. Let VM die immediately.
2379  if (sig == SIGINT && is_error_reported()) {
2380    os::die();
2381  }
2382
2383  os::signal_notify(sig);
2384}
2385
2386void* os::user_handler() {
2387  return CAST_FROM_FN_PTR(void*, UserHandler);
2388}
2389
2390class Semaphore : public StackObj {
2391 public:
2392  Semaphore();
2393  ~Semaphore();
2394  void signal();
2395  void wait();
2396  bool trywait();
2397  bool timedwait(unsigned int sec, int nsec);
2398 private:
2399  sem_t _semaphore;
2400};
2401
2402Semaphore::Semaphore() {
2403  sem_init(&_semaphore, 0, 0);
2404}
2405
2406Semaphore::~Semaphore() {
2407  sem_destroy(&_semaphore);
2408}
2409
2410void Semaphore::signal() {
2411  sem_post(&_semaphore);
2412}
2413
2414void Semaphore::wait() {
2415  sem_wait(&_semaphore);
2416}
2417
2418bool Semaphore::trywait() {
2419  return sem_trywait(&_semaphore) == 0;
2420}
2421
2422bool Semaphore::timedwait(unsigned int sec, int nsec) {
2423
2424  struct timespec ts;
2425  // Semaphore's are always associated with CLOCK_REALTIME
2426  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2427  // see unpackTime for discussion on overflow checking
2428  if (sec >= MAX_SECS) {
2429    ts.tv_sec += MAX_SECS;
2430    ts.tv_nsec = 0;
2431  } else {
2432    ts.tv_sec += sec;
2433    ts.tv_nsec += nsec;
2434    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2435      ts.tv_nsec -= NANOSECS_PER_SEC;
2436      ++ts.tv_sec; // note: this must be <= max_secs
2437    }
2438  }
2439
2440  while (1) {
2441    int result = sem_timedwait(&_semaphore, &ts);
2442    if (result == 0) {
2443      return true;
2444    } else if (errno == EINTR) {
2445      continue;
2446    } else if (errno == ETIMEDOUT) {
2447      return false;
2448    } else {
2449      return false;
2450    }
2451  }
2452}
2453
2454extern "C" {
2455  typedef void (*sa_handler_t)(int);
2456  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2457}
2458
2459void* os::signal(int signal_number, void* handler) {
2460  struct sigaction sigAct, oldSigAct;
2461
2462  sigfillset(&(sigAct.sa_mask));
2463  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2464  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2465
2466  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2467    // -1 means registration failed
2468    return (void *)-1;
2469  }
2470
2471  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2472}
2473
2474void os::signal_raise(int signal_number) {
2475  ::raise(signal_number);
2476}
2477
2478// The following code is moved from os.cpp for making this
2479// code platform specific, which it is by its very nature.
2480
2481// Will be modified when max signal is changed to be dynamic
2482int os::sigexitnum_pd() {
2483  return NSIG;
2484}
2485
2486// a counter for each possible signal value
2487static volatile jint pending_signals[NSIG+1] = { 0 };
2488
2489// Linux(POSIX) specific hand shaking semaphore.
2490static sem_t sig_sem;
2491static Semaphore sr_semaphore;
2492
2493void os::signal_init_pd() {
2494  // Initialize signal structures
2495  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2496
2497  // Initialize signal semaphore
2498  ::sem_init(&sig_sem, 0, 0);
2499}
2500
2501void os::signal_notify(int sig) {
2502  Atomic::inc(&pending_signals[sig]);
2503  ::sem_post(&sig_sem);
2504}
2505
2506static int check_pending_signals(bool wait) {
2507  Atomic::store(0, &sigint_count);
2508  for (;;) {
2509    for (int i = 0; i < NSIG + 1; i++) {
2510      jint n = pending_signals[i];
2511      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2512        return i;
2513      }
2514    }
2515    if (!wait) {
2516      return -1;
2517    }
2518    JavaThread *thread = JavaThread::current();
2519    ThreadBlockInVM tbivm(thread);
2520
2521    bool threadIsSuspended;
2522    do {
2523      thread->set_suspend_equivalent();
2524      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2525      ::sem_wait(&sig_sem);
2526
2527      // were we externally suspended while we were waiting?
2528      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2529      if (threadIsSuspended) {
2530        // The semaphore has been incremented, but while we were waiting
2531        // another thread suspended us. We don't want to continue running
2532        // while suspended because that would surprise the thread that
2533        // suspended us.
2534        ::sem_post(&sig_sem);
2535
2536        thread->java_suspend_self();
2537      }
2538    } while (threadIsSuspended);
2539  }
2540}
2541
2542int os::signal_lookup() {
2543  return check_pending_signals(false);
2544}
2545
2546int os::signal_wait() {
2547  return check_pending_signals(true);
2548}
2549
2550////////////////////////////////////////////////////////////////////////////////
2551// Virtual Memory
2552
2553int os::vm_page_size() {
2554  // Seems redundant as all get out
2555  assert(os::Linux::page_size() != -1, "must call os::init");
2556  return os::Linux::page_size();
2557}
2558
2559// Solaris allocates memory by pages.
2560int os::vm_allocation_granularity() {
2561  assert(os::Linux::page_size() != -1, "must call os::init");
2562  return os::Linux::page_size();
2563}
2564
2565// Rationale behind this function:
2566//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2567//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2568//  samples for JITted code. Here we create private executable mapping over the code cache
2569//  and then we can use standard (well, almost, as mapping can change) way to provide
2570//  info for the reporting script by storing timestamp and location of symbol
2571void linux_wrap_code(char* base, size_t size) {
2572  static volatile jint cnt = 0;
2573
2574  if (!UseOprofile) {
2575    return;
2576  }
2577
2578  char buf[PATH_MAX+1];
2579  int num = Atomic::add(1, &cnt);
2580
2581  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2582           os::get_temp_directory(), os::current_process_id(), num);
2583  unlink(buf);
2584
2585  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2586
2587  if (fd != -1) {
2588    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2589    if (rv != (off_t)-1) {
2590      if (::write(fd, "", 1) == 1) {
2591        mmap(base, size,
2592             PROT_READ|PROT_WRITE|PROT_EXEC,
2593             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2594      }
2595    }
2596    ::close(fd);
2597    unlink(buf);
2598  }
2599}
2600
2601static bool recoverable_mmap_error(int err) {
2602  // See if the error is one we can let the caller handle. This
2603  // list of errno values comes from JBS-6843484. I can't find a
2604  // Linux man page that documents this specific set of errno
2605  // values so while this list currently matches Solaris, it may
2606  // change as we gain experience with this failure mode.
2607  switch (err) {
2608  case EBADF:
2609  case EINVAL:
2610  case ENOTSUP:
2611    // let the caller deal with these errors
2612    return true;
2613
2614  default:
2615    // Any remaining errors on this OS can cause our reserved mapping
2616    // to be lost. That can cause confusion where different data
2617    // structures think they have the same memory mapped. The worst
2618    // scenario is if both the VM and a library think they have the
2619    // same memory mapped.
2620    return false;
2621  }
2622}
2623
2624static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2625                                    int err) {
2626  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2627          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2628          strerror(err), err);
2629}
2630
2631static void warn_fail_commit_memory(char* addr, size_t size,
2632                                    size_t alignment_hint, bool exec,
2633                                    int err) {
2634  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2635          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2636          alignment_hint, exec, strerror(err), err);
2637}
2638
2639// NOTE: Linux kernel does not really reserve the pages for us.
2640//       All it does is to check if there are enough free pages
2641//       left at the time of mmap(). This could be a potential
2642//       problem.
2643int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2644  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2645  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2646                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2647  if (res != (uintptr_t) MAP_FAILED) {
2648    if (UseNUMAInterleaving) {
2649      numa_make_global(addr, size);
2650    }
2651    return 0;
2652  }
2653
2654  int err = errno;  // save errno from mmap() call above
2655
2656  if (!recoverable_mmap_error(err)) {
2657    warn_fail_commit_memory(addr, size, exec, err);
2658    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2659  }
2660
2661  return err;
2662}
2663
2664bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2665  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2666}
2667
2668void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2669                                  const char* mesg) {
2670  assert(mesg != NULL, "mesg must be specified");
2671  int err = os::Linux::commit_memory_impl(addr, size, exec);
2672  if (err != 0) {
2673    // the caller wants all commit errors to exit with the specified mesg:
2674    warn_fail_commit_memory(addr, size, exec, err);
2675    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2676  }
2677}
2678
2679// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2680#ifndef MAP_HUGETLB
2681  #define MAP_HUGETLB 0x40000
2682#endif
2683
2684// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2685#ifndef MADV_HUGEPAGE
2686  #define MADV_HUGEPAGE 14
2687#endif
2688
2689int os::Linux::commit_memory_impl(char* addr, size_t size,
2690                                  size_t alignment_hint, bool exec) {
2691  int err = os::Linux::commit_memory_impl(addr, size, exec);
2692  if (err == 0) {
2693    realign_memory(addr, size, alignment_hint);
2694  }
2695  return err;
2696}
2697
2698bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2699                          bool exec) {
2700  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2701}
2702
2703void os::pd_commit_memory_or_exit(char* addr, size_t size,
2704                                  size_t alignment_hint, bool exec,
2705                                  const char* mesg) {
2706  assert(mesg != NULL, "mesg must be specified");
2707  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2708  if (err != 0) {
2709    // the caller wants all commit errors to exit with the specified mesg:
2710    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2711    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2712  }
2713}
2714
2715void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2716  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2717    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2718    // be supported or the memory may already be backed by huge pages.
2719    ::madvise(addr, bytes, MADV_HUGEPAGE);
2720  }
2721}
2722
2723void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2724  // This method works by doing an mmap over an existing mmaping and effectively discarding
2725  // the existing pages. However it won't work for SHM-based large pages that cannot be
2726  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2727  // small pages on top of the SHM segment. This method always works for small pages, so we
2728  // allow that in any case.
2729  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2730    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2731  }
2732}
2733
2734void os::numa_make_global(char *addr, size_t bytes) {
2735  Linux::numa_interleave_memory(addr, bytes);
2736}
2737
2738// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2739// bind policy to MPOL_PREFERRED for the current thread.
2740#define USE_MPOL_PREFERRED 0
2741
2742void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2743  // To make NUMA and large pages more robust when both enabled, we need to ease
2744  // the requirements on where the memory should be allocated. MPOL_BIND is the
2745  // default policy and it will force memory to be allocated on the specified
2746  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2747  // the specified node, but will not force it. Using this policy will prevent
2748  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2749  // free large pages.
2750  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2751  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2752}
2753
2754bool os::numa_topology_changed() { return false; }
2755
2756size_t os::numa_get_groups_num() {
2757  int max_node = Linux::numa_max_node();
2758  return max_node > 0 ? max_node + 1 : 1;
2759}
2760
2761int os::numa_get_group_id() {
2762  int cpu_id = Linux::sched_getcpu();
2763  if (cpu_id != -1) {
2764    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2765    if (lgrp_id != -1) {
2766      return lgrp_id;
2767    }
2768  }
2769  return 0;
2770}
2771
2772size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2773  for (size_t i = 0; i < size; i++) {
2774    ids[i] = i;
2775  }
2776  return size;
2777}
2778
2779bool os::get_page_info(char *start, page_info* info) {
2780  return false;
2781}
2782
2783char *os::scan_pages(char *start, char* end, page_info* page_expected,
2784                     page_info* page_found) {
2785  return end;
2786}
2787
2788
2789int os::Linux::sched_getcpu_syscall(void) {
2790  unsigned int cpu;
2791  int retval = -1;
2792
2793#if defined(IA32)
2794  #ifndef SYS_getcpu
2795    #define SYS_getcpu 318
2796  #endif
2797  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2798#elif defined(AMD64)
2799// Unfortunately we have to bring all these macros here from vsyscall.h
2800// to be able to compile on old linuxes.
2801  #define __NR_vgetcpu 2
2802  #define VSYSCALL_START (-10UL << 20)
2803  #define VSYSCALL_SIZE 1024
2804  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2805  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2806  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2807  retval = vgetcpu(&cpu, NULL, NULL);
2808#endif
2809
2810  return (retval == -1) ? retval : cpu;
2811}
2812
2813// Something to do with the numa-aware allocator needs these symbols
2814extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2815extern "C" JNIEXPORT void numa_error(char *where) { }
2816extern "C" JNIEXPORT int fork1() { return fork(); }
2817
2818
2819// If we are running with libnuma version > 2, then we should
2820// be trying to use symbols with versions 1.1
2821// If we are running with earlier version, which did not have symbol versions,
2822// we should use the base version.
2823void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2824  void *f = dlvsym(handle, name, "libnuma_1.1");
2825  if (f == NULL) {
2826    f = dlsym(handle, name);
2827  }
2828  return f;
2829}
2830
2831bool os::Linux::libnuma_init() {
2832  // sched_getcpu() should be in libc.
2833  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2834                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2835
2836  // If it's not, try a direct syscall.
2837  if (sched_getcpu() == -1) {
2838    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2839                                    (void*)&sched_getcpu_syscall));
2840  }
2841
2842  if (sched_getcpu() != -1) { // Does it work?
2843    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2844    if (handle != NULL) {
2845      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2846                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2847      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2848                                       libnuma_dlsym(handle, "numa_max_node")));
2849      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2850                                        libnuma_dlsym(handle, "numa_available")));
2851      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2852                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2853      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2854                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2855      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2856                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2857
2858
2859      if (numa_available() != -1) {
2860        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2861        // Create a cpu -> node mapping
2862        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2863        rebuild_cpu_to_node_map();
2864        return true;
2865      }
2866    }
2867  }
2868  return false;
2869}
2870
2871// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2872// The table is later used in get_node_by_cpu().
2873void os::Linux::rebuild_cpu_to_node_map() {
2874  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2875                              // in libnuma (possible values are starting from 16,
2876                              // and continuing up with every other power of 2, but less
2877                              // than the maximum number of CPUs supported by kernel), and
2878                              // is a subject to change (in libnuma version 2 the requirements
2879                              // are more reasonable) we'll just hardcode the number they use
2880                              // in the library.
2881  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2882
2883  size_t cpu_num = os::active_processor_count();
2884  size_t cpu_map_size = NCPUS / BitsPerCLong;
2885  size_t cpu_map_valid_size =
2886    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2887
2888  cpu_to_node()->clear();
2889  cpu_to_node()->at_grow(cpu_num - 1);
2890  size_t node_num = numa_get_groups_num();
2891
2892  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2893  for (size_t i = 0; i < node_num; i++) {
2894    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2895      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2896        if (cpu_map[j] != 0) {
2897          for (size_t k = 0; k < BitsPerCLong; k++) {
2898            if (cpu_map[j] & (1UL << k)) {
2899              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2900            }
2901          }
2902        }
2903      }
2904    }
2905  }
2906  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2907}
2908
2909int os::Linux::get_node_by_cpu(int cpu_id) {
2910  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2911    return cpu_to_node()->at(cpu_id);
2912  }
2913  return -1;
2914}
2915
2916GrowableArray<int>* os::Linux::_cpu_to_node;
2917os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2918os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2919os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2920os::Linux::numa_available_func_t os::Linux::_numa_available;
2921os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2922os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2923os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2924unsigned long* os::Linux::_numa_all_nodes;
2925
2926bool os::pd_uncommit_memory(char* addr, size_t size) {
2927  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2928                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2929  return res  != (uintptr_t) MAP_FAILED;
2930}
2931
2932static address get_stack_commited_bottom(address bottom, size_t size) {
2933  address nbot = bottom;
2934  address ntop = bottom + size;
2935
2936  size_t page_sz = os::vm_page_size();
2937  unsigned pages = size / page_sz;
2938
2939  unsigned char vec[1];
2940  unsigned imin = 1, imax = pages + 1, imid;
2941  int mincore_return_value = 0;
2942
2943  assert(imin <= imax, "Unexpected page size");
2944
2945  while (imin < imax) {
2946    imid = (imax + imin) / 2;
2947    nbot = ntop - (imid * page_sz);
2948
2949    // Use a trick with mincore to check whether the page is mapped or not.
2950    // mincore sets vec to 1 if page resides in memory and to 0 if page
2951    // is swapped output but if page we are asking for is unmapped
2952    // it returns -1,ENOMEM
2953    mincore_return_value = mincore(nbot, page_sz, vec);
2954
2955    if (mincore_return_value == -1) {
2956      // Page is not mapped go up
2957      // to find first mapped page
2958      if (errno != EAGAIN) {
2959        assert(errno == ENOMEM, "Unexpected mincore errno");
2960        imax = imid;
2961      }
2962    } else {
2963      // Page is mapped go down
2964      // to find first not mapped page
2965      imin = imid + 1;
2966    }
2967  }
2968
2969  nbot = nbot + page_sz;
2970
2971  // Adjust stack bottom one page up if last checked page is not mapped
2972  if (mincore_return_value == -1) {
2973    nbot = nbot + page_sz;
2974  }
2975
2976  return nbot;
2977}
2978
2979
2980// Linux uses a growable mapping for the stack, and if the mapping for
2981// the stack guard pages is not removed when we detach a thread the
2982// stack cannot grow beyond the pages where the stack guard was
2983// mapped.  If at some point later in the process the stack expands to
2984// that point, the Linux kernel cannot expand the stack any further
2985// because the guard pages are in the way, and a segfault occurs.
2986//
2987// However, it's essential not to split the stack region by unmapping
2988// a region (leaving a hole) that's already part of the stack mapping,
2989// so if the stack mapping has already grown beyond the guard pages at
2990// the time we create them, we have to truncate the stack mapping.
2991// So, we need to know the extent of the stack mapping when
2992// create_stack_guard_pages() is called.
2993
2994// We only need this for stacks that are growable: at the time of
2995// writing thread stacks don't use growable mappings (i.e. those
2996// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2997// only applies to the main thread.
2998
2999// If the (growable) stack mapping already extends beyond the point
3000// where we're going to put our guard pages, truncate the mapping at
3001// that point by munmap()ping it.  This ensures that when we later
3002// munmap() the guard pages we don't leave a hole in the stack
3003// mapping. This only affects the main/initial thread
3004
3005bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3006  if (os::Linux::is_initial_thread()) {
3007    // As we manually grow stack up to bottom inside create_attached_thread(),
3008    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3009    // we don't need to do anything special.
3010    // Check it first, before calling heavy function.
3011    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3012    unsigned char vec[1];
3013
3014    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3015      // Fallback to slow path on all errors, including EAGAIN
3016      stack_extent = (uintptr_t) get_stack_commited_bottom(
3017                                                           os::Linux::initial_thread_stack_bottom(),
3018                                                           (size_t)addr - stack_extent);
3019    }
3020
3021    if (stack_extent < (uintptr_t)addr) {
3022      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3023    }
3024  }
3025
3026  return os::commit_memory(addr, size, !ExecMem);
3027}
3028
3029// If this is a growable mapping, remove the guard pages entirely by
3030// munmap()ping them.  If not, just call uncommit_memory(). This only
3031// affects the main/initial thread, but guard against future OS changes
3032// It's safe to always unmap guard pages for initial thread because we
3033// always place it right after end of the mapped region
3034
3035bool os::remove_stack_guard_pages(char* addr, size_t size) {
3036  uintptr_t stack_extent, stack_base;
3037
3038  if (os::Linux::is_initial_thread()) {
3039    return ::munmap(addr, size) == 0;
3040  }
3041
3042  return os::uncommit_memory(addr, size);
3043}
3044
3045static address _highest_vm_reserved_address = NULL;
3046
3047// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3048// at 'requested_addr'. If there are existing memory mappings at the same
3049// location, however, they will be overwritten. If 'fixed' is false,
3050// 'requested_addr' is only treated as a hint, the return value may or
3051// may not start from the requested address. Unlike Linux mmap(), this
3052// function returns NULL to indicate failure.
3053static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3054  char * addr;
3055  int flags;
3056
3057  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3058  if (fixed) {
3059    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3060    flags |= MAP_FIXED;
3061  }
3062
3063  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3064  // touch an uncommitted page. Otherwise, the read/write might
3065  // succeed if we have enough swap space to back the physical page.
3066  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3067                       flags, -1, 0);
3068
3069  if (addr != MAP_FAILED) {
3070    // anon_mmap() should only get called during VM initialization,
3071    // don't need lock (actually we can skip locking even it can be called
3072    // from multiple threads, because _highest_vm_reserved_address is just a
3073    // hint about the upper limit of non-stack memory regions.)
3074    if ((address)addr + bytes > _highest_vm_reserved_address) {
3075      _highest_vm_reserved_address = (address)addr + bytes;
3076    }
3077  }
3078
3079  return addr == MAP_FAILED ? NULL : addr;
3080}
3081
3082// Don't update _highest_vm_reserved_address, because there might be memory
3083// regions above addr + size. If so, releasing a memory region only creates
3084// a hole in the address space, it doesn't help prevent heap-stack collision.
3085//
3086static int anon_munmap(char * addr, size_t size) {
3087  return ::munmap(addr, size) == 0;
3088}
3089
3090char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3091                            size_t alignment_hint) {
3092  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3093}
3094
3095bool os::pd_release_memory(char* addr, size_t size) {
3096  return anon_munmap(addr, size);
3097}
3098
3099static address highest_vm_reserved_address() {
3100  return _highest_vm_reserved_address;
3101}
3102
3103static bool linux_mprotect(char* addr, size_t size, int prot) {
3104  // Linux wants the mprotect address argument to be page aligned.
3105  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3106
3107  // According to SUSv3, mprotect() should only be used with mappings
3108  // established by mmap(), and mmap() always maps whole pages. Unaligned
3109  // 'addr' likely indicates problem in the VM (e.g. trying to change
3110  // protection of malloc'ed or statically allocated memory). Check the
3111  // caller if you hit this assert.
3112  assert(addr == bottom, "sanity check");
3113
3114  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3115  return ::mprotect(bottom, size, prot) == 0;
3116}
3117
3118// Set protections specified
3119bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3120                        bool is_committed) {
3121  unsigned int p = 0;
3122  switch (prot) {
3123  case MEM_PROT_NONE: p = PROT_NONE; break;
3124  case MEM_PROT_READ: p = PROT_READ; break;
3125  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3126  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3127  default:
3128    ShouldNotReachHere();
3129  }
3130  // is_committed is unused.
3131  return linux_mprotect(addr, bytes, p);
3132}
3133
3134bool os::guard_memory(char* addr, size_t size) {
3135  return linux_mprotect(addr, size, PROT_NONE);
3136}
3137
3138bool os::unguard_memory(char* addr, size_t size) {
3139  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3140}
3141
3142bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3143                                                    size_t page_size) {
3144  bool result = false;
3145  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3146                 MAP_ANONYMOUS|MAP_PRIVATE,
3147                 -1, 0);
3148  if (p != MAP_FAILED) {
3149    void *aligned_p = align_ptr_up(p, page_size);
3150
3151    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3152
3153    munmap(p, page_size * 2);
3154  }
3155
3156  if (warn && !result) {
3157    warning("TransparentHugePages is not supported by the operating system.");
3158  }
3159
3160  return result;
3161}
3162
3163bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3164  bool result = false;
3165  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3166                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3167                 -1, 0);
3168
3169  if (p != MAP_FAILED) {
3170    // We don't know if this really is a huge page or not.
3171    FILE *fp = fopen("/proc/self/maps", "r");
3172    if (fp) {
3173      while (!feof(fp)) {
3174        char chars[257];
3175        long x = 0;
3176        if (fgets(chars, sizeof(chars), fp)) {
3177          if (sscanf(chars, "%lx-%*x", &x) == 1
3178              && x == (long)p) {
3179            if (strstr (chars, "hugepage")) {
3180              result = true;
3181              break;
3182            }
3183          }
3184        }
3185      }
3186      fclose(fp);
3187    }
3188    munmap(p, page_size);
3189  }
3190
3191  if (warn && !result) {
3192    warning("HugeTLBFS is not supported by the operating system.");
3193  }
3194
3195  return result;
3196}
3197
3198// Set the coredump_filter bits to include largepages in core dump (bit 6)
3199//
3200// From the coredump_filter documentation:
3201//
3202// - (bit 0) anonymous private memory
3203// - (bit 1) anonymous shared memory
3204// - (bit 2) file-backed private memory
3205// - (bit 3) file-backed shared memory
3206// - (bit 4) ELF header pages in file-backed private memory areas (it is
3207//           effective only if the bit 2 is cleared)
3208// - (bit 5) hugetlb private memory
3209// - (bit 6) hugetlb shared memory
3210//
3211static void set_coredump_filter(void) {
3212  FILE *f;
3213  long cdm;
3214
3215  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3216    return;
3217  }
3218
3219  if (fscanf(f, "%lx", &cdm) != 1) {
3220    fclose(f);
3221    return;
3222  }
3223
3224  rewind(f);
3225
3226  if ((cdm & LARGEPAGES_BIT) == 0) {
3227    cdm |= LARGEPAGES_BIT;
3228    fprintf(f, "%#lx", cdm);
3229  }
3230
3231  fclose(f);
3232}
3233
3234// Large page support
3235
3236static size_t _large_page_size = 0;
3237
3238size_t os::Linux::find_large_page_size() {
3239  size_t large_page_size = 0;
3240
3241  // large_page_size on Linux is used to round up heap size. x86 uses either
3242  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3243  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3244  // page as large as 256M.
3245  //
3246  // Here we try to figure out page size by parsing /proc/meminfo and looking
3247  // for a line with the following format:
3248  //    Hugepagesize:     2048 kB
3249  //
3250  // If we can't determine the value (e.g. /proc is not mounted, or the text
3251  // format has been changed), we'll use the largest page size supported by
3252  // the processor.
3253
3254#ifndef ZERO
3255  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3256                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3257#endif // ZERO
3258
3259  FILE *fp = fopen("/proc/meminfo", "r");
3260  if (fp) {
3261    while (!feof(fp)) {
3262      int x = 0;
3263      char buf[16];
3264      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3265        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3266          large_page_size = x * K;
3267          break;
3268        }
3269      } else {
3270        // skip to next line
3271        for (;;) {
3272          int ch = fgetc(fp);
3273          if (ch == EOF || ch == (int)'\n') break;
3274        }
3275      }
3276    }
3277    fclose(fp);
3278  }
3279
3280  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3281    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3282            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3283            proper_unit_for_byte_size(large_page_size));
3284  }
3285
3286  return large_page_size;
3287}
3288
3289size_t os::Linux::setup_large_page_size() {
3290  _large_page_size = Linux::find_large_page_size();
3291  const size_t default_page_size = (size_t)Linux::page_size();
3292  if (_large_page_size > default_page_size) {
3293    _page_sizes[0] = _large_page_size;
3294    _page_sizes[1] = default_page_size;
3295    _page_sizes[2] = 0;
3296  }
3297
3298  return _large_page_size;
3299}
3300
3301bool os::Linux::setup_large_page_type(size_t page_size) {
3302  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3303      FLAG_IS_DEFAULT(UseSHM) &&
3304      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3305
3306    // The type of large pages has not been specified by the user.
3307
3308    // Try UseHugeTLBFS and then UseSHM.
3309    UseHugeTLBFS = UseSHM = true;
3310
3311    // Don't try UseTransparentHugePages since there are known
3312    // performance issues with it turned on. This might change in the future.
3313    UseTransparentHugePages = false;
3314  }
3315
3316  if (UseTransparentHugePages) {
3317    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3318    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3319      UseHugeTLBFS = false;
3320      UseSHM = false;
3321      return true;
3322    }
3323    UseTransparentHugePages = false;
3324  }
3325
3326  if (UseHugeTLBFS) {
3327    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3328    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3329      UseSHM = false;
3330      return true;
3331    }
3332    UseHugeTLBFS = false;
3333  }
3334
3335  return UseSHM;
3336}
3337
3338void os::large_page_init() {
3339  if (!UseLargePages &&
3340      !UseTransparentHugePages &&
3341      !UseHugeTLBFS &&
3342      !UseSHM) {
3343    // Not using large pages.
3344    return;
3345  }
3346
3347  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3348    // The user explicitly turned off large pages.
3349    // Ignore the rest of the large pages flags.
3350    UseTransparentHugePages = false;
3351    UseHugeTLBFS = false;
3352    UseSHM = false;
3353    return;
3354  }
3355
3356  size_t large_page_size = Linux::setup_large_page_size();
3357  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3358
3359  set_coredump_filter();
3360}
3361
3362#ifndef SHM_HUGETLB
3363  #define SHM_HUGETLB 04000
3364#endif
3365
3366char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3367                                            char* req_addr, bool exec) {
3368  // "exec" is passed in but not used.  Creating the shared image for
3369  // the code cache doesn't have an SHM_X executable permission to check.
3370  assert(UseLargePages && UseSHM, "only for SHM large pages");
3371  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3372
3373  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3374    return NULL; // Fallback to small pages.
3375  }
3376
3377  key_t key = IPC_PRIVATE;
3378  char *addr;
3379
3380  bool warn_on_failure = UseLargePages &&
3381                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3382                         !FLAG_IS_DEFAULT(UseSHM) ||
3383                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3384  char msg[128];
3385
3386  // Create a large shared memory region to attach to based on size.
3387  // Currently, size is the total size of the heap
3388  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3389  if (shmid == -1) {
3390    // Possible reasons for shmget failure:
3391    // 1. shmmax is too small for Java heap.
3392    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3393    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3394    // 2. not enough large page memory.
3395    //    > check available large pages: cat /proc/meminfo
3396    //    > increase amount of large pages:
3397    //          echo new_value > /proc/sys/vm/nr_hugepages
3398    //      Note 1: different Linux may use different name for this property,
3399    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3400    //      Note 2: it's possible there's enough physical memory available but
3401    //            they are so fragmented after a long run that they can't
3402    //            coalesce into large pages. Try to reserve large pages when
3403    //            the system is still "fresh".
3404    if (warn_on_failure) {
3405      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3406      warning("%s", msg);
3407    }
3408    return NULL;
3409  }
3410
3411  // attach to the region
3412  addr = (char*)shmat(shmid, req_addr, 0);
3413  int err = errno;
3414
3415  // Remove shmid. If shmat() is successful, the actual shared memory segment
3416  // will be deleted when it's detached by shmdt() or when the process
3417  // terminates. If shmat() is not successful this will remove the shared
3418  // segment immediately.
3419  shmctl(shmid, IPC_RMID, NULL);
3420
3421  if ((intptr_t)addr == -1) {
3422    if (warn_on_failure) {
3423      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3424      warning("%s", msg);
3425    }
3426    return NULL;
3427  }
3428
3429  return addr;
3430}
3431
3432static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3433                                        int error) {
3434  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3435
3436  bool warn_on_failure = UseLargePages &&
3437      (!FLAG_IS_DEFAULT(UseLargePages) ||
3438       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3439       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3440
3441  if (warn_on_failure) {
3442    char msg[128];
3443    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3444                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3445    warning("%s", msg);
3446  }
3447}
3448
3449char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3450                                                        char* req_addr,
3451                                                        bool exec) {
3452  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3453  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3454  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3455
3456  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3457  char* addr = (char*)::mmap(req_addr, bytes, prot,
3458                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3459                             -1, 0);
3460
3461  if (addr == MAP_FAILED) {
3462    warn_on_large_pages_failure(req_addr, bytes, errno);
3463    return NULL;
3464  }
3465
3466  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3467
3468  return addr;
3469}
3470
3471char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3472                                                         size_t alignment,
3473                                                         char* req_addr,
3474                                                         bool exec) {
3475  size_t large_page_size = os::large_page_size();
3476
3477  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3478
3479  // Allocate small pages.
3480
3481  char* start;
3482  if (req_addr != NULL) {
3483    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3484    assert(is_size_aligned(bytes, alignment), "Must be");
3485    start = os::reserve_memory(bytes, req_addr);
3486    assert(start == NULL || start == req_addr, "Must be");
3487  } else {
3488    start = os::reserve_memory_aligned(bytes, alignment);
3489  }
3490
3491  if (start == NULL) {
3492    return NULL;
3493  }
3494
3495  assert(is_ptr_aligned(start, alignment), "Must be");
3496
3497  if (MemTracker::tracking_level() > NMT_minimal) {
3498    // os::reserve_memory_special will record this memory area.
3499    // Need to release it here to prevent overlapping reservations.
3500    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3501    tkr.record((address)start, bytes);
3502  }
3503
3504  char* end = start + bytes;
3505
3506  // Find the regions of the allocated chunk that can be promoted to large pages.
3507  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3508  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3509
3510  size_t lp_bytes = lp_end - lp_start;
3511
3512  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3513
3514  if (lp_bytes == 0) {
3515    // The mapped region doesn't even span the start and the end of a large page.
3516    // Fall back to allocate a non-special area.
3517    ::munmap(start, end - start);
3518    return NULL;
3519  }
3520
3521  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3522
3523
3524  void* result;
3525
3526  if (start != lp_start) {
3527    result = ::mmap(start, lp_start - start, prot,
3528                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3529                    -1, 0);
3530    if (result == MAP_FAILED) {
3531      ::munmap(lp_start, end - lp_start);
3532      return NULL;
3533    }
3534  }
3535
3536  result = ::mmap(lp_start, lp_bytes, prot,
3537                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3538                  -1, 0);
3539  if (result == MAP_FAILED) {
3540    warn_on_large_pages_failure(req_addr, bytes, errno);
3541    // If the mmap above fails, the large pages region will be unmapped and we
3542    // have regions before and after with small pages. Release these regions.
3543    //
3544    // |  mapped  |  unmapped  |  mapped  |
3545    // ^          ^            ^          ^
3546    // start      lp_start     lp_end     end
3547    //
3548    ::munmap(start, lp_start - start);
3549    ::munmap(lp_end, end - lp_end);
3550    return NULL;
3551  }
3552
3553  if (lp_end != end) {
3554    result = ::mmap(lp_end, end - lp_end, prot,
3555                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3556                    -1, 0);
3557    if (result == MAP_FAILED) {
3558      ::munmap(start, lp_end - start);
3559      return NULL;
3560    }
3561  }
3562
3563  return start;
3564}
3565
3566char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3567                                                   size_t alignment,
3568                                                   char* req_addr,
3569                                                   bool exec) {
3570  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3571  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3572  assert(is_power_of_2(alignment), "Must be");
3573  assert(is_power_of_2(os::large_page_size()), "Must be");
3574  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3575
3576  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3577    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3578  } else {
3579    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3580  }
3581}
3582
3583char* os::reserve_memory_special(size_t bytes, size_t alignment,
3584                                 char* req_addr, bool exec) {
3585  assert(UseLargePages, "only for large pages");
3586
3587  char* addr;
3588  if (UseSHM) {
3589    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3590  } else {
3591    assert(UseHugeTLBFS, "must be");
3592    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3593  }
3594
3595  if (addr != NULL) {
3596    if (UseNUMAInterleaving) {
3597      numa_make_global(addr, bytes);
3598    }
3599
3600    // The memory is committed
3601    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3602  }
3603
3604  return addr;
3605}
3606
3607bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3608  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3609  return shmdt(base) == 0;
3610}
3611
3612bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3613  return pd_release_memory(base, bytes);
3614}
3615
3616bool os::release_memory_special(char* base, size_t bytes) {
3617  bool res;
3618  if (MemTracker::tracking_level() > NMT_minimal) {
3619    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3620    res = os::Linux::release_memory_special_impl(base, bytes);
3621    if (res) {
3622      tkr.record((address)base, bytes);
3623    }
3624
3625  } else {
3626    res = os::Linux::release_memory_special_impl(base, bytes);
3627  }
3628  return res;
3629}
3630
3631bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3632  assert(UseLargePages, "only for large pages");
3633  bool res;
3634
3635  if (UseSHM) {
3636    res = os::Linux::release_memory_special_shm(base, bytes);
3637  } else {
3638    assert(UseHugeTLBFS, "must be");
3639    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3640  }
3641  return res;
3642}
3643
3644size_t os::large_page_size() {
3645  return _large_page_size;
3646}
3647
3648// With SysV SHM the entire memory region must be allocated as shared
3649// memory.
3650// HugeTLBFS allows application to commit large page memory on demand.
3651// However, when committing memory with HugeTLBFS fails, the region
3652// that was supposed to be committed will lose the old reservation
3653// and allow other threads to steal that memory region. Because of this
3654// behavior we can't commit HugeTLBFS memory.
3655bool os::can_commit_large_page_memory() {
3656  return UseTransparentHugePages;
3657}
3658
3659bool os::can_execute_large_page_memory() {
3660  return UseTransparentHugePages || UseHugeTLBFS;
3661}
3662
3663// Reserve memory at an arbitrary address, only if that area is
3664// available (and not reserved for something else).
3665
3666char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3667  const int max_tries = 10;
3668  char* base[max_tries];
3669  size_t size[max_tries];
3670  const size_t gap = 0x000000;
3671
3672  // Assert only that the size is a multiple of the page size, since
3673  // that's all that mmap requires, and since that's all we really know
3674  // about at this low abstraction level.  If we need higher alignment,
3675  // we can either pass an alignment to this method or verify alignment
3676  // in one of the methods further up the call chain.  See bug 5044738.
3677  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3678
3679  // Repeatedly allocate blocks until the block is allocated at the
3680  // right spot. Give up after max_tries. Note that reserve_memory() will
3681  // automatically update _highest_vm_reserved_address if the call is
3682  // successful. The variable tracks the highest memory address every reserved
3683  // by JVM. It is used to detect heap-stack collision if running with
3684  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3685  // space than needed, it could confuse the collision detecting code. To
3686  // solve the problem, save current _highest_vm_reserved_address and
3687  // calculate the correct value before return.
3688  address old_highest = _highest_vm_reserved_address;
3689
3690  // Linux mmap allows caller to pass an address as hint; give it a try first,
3691  // if kernel honors the hint then we can return immediately.
3692  char * addr = anon_mmap(requested_addr, bytes, false);
3693  if (addr == requested_addr) {
3694    return requested_addr;
3695  }
3696
3697  if (addr != NULL) {
3698    // mmap() is successful but it fails to reserve at the requested address
3699    anon_munmap(addr, bytes);
3700  }
3701
3702  int i;
3703  for (i = 0; i < max_tries; ++i) {
3704    base[i] = reserve_memory(bytes);
3705
3706    if (base[i] != NULL) {
3707      // Is this the block we wanted?
3708      if (base[i] == requested_addr) {
3709        size[i] = bytes;
3710        break;
3711      }
3712
3713      // Does this overlap the block we wanted? Give back the overlapped
3714      // parts and try again.
3715
3716      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3717      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3718        unmap_memory(base[i], top_overlap);
3719        base[i] += top_overlap;
3720        size[i] = bytes - top_overlap;
3721      } else {
3722        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3723        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3724          unmap_memory(requested_addr, bottom_overlap);
3725          size[i] = bytes - bottom_overlap;
3726        } else {
3727          size[i] = bytes;
3728        }
3729      }
3730    }
3731  }
3732
3733  // Give back the unused reserved pieces.
3734
3735  for (int j = 0; j < i; ++j) {
3736    if (base[j] != NULL) {
3737      unmap_memory(base[j], size[j]);
3738    }
3739  }
3740
3741  if (i < max_tries) {
3742    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3743    return requested_addr;
3744  } else {
3745    _highest_vm_reserved_address = old_highest;
3746    return NULL;
3747  }
3748}
3749
3750size_t os::read(int fd, void *buf, unsigned int nBytes) {
3751  return ::read(fd, buf, nBytes);
3752}
3753
3754size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3755  return ::pread(fd, buf, nBytes, offset);
3756}
3757
3758// Short sleep, direct OS call.
3759//
3760// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3761// sched_yield(2) will actually give up the CPU:
3762//
3763//   * Alone on this pariticular CPU, keeps running.
3764//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3765//     (pre 2.6.39).
3766//
3767// So calling this with 0 is an alternative.
3768//
3769void os::naked_short_sleep(jlong ms) {
3770  struct timespec req;
3771
3772  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3773  req.tv_sec = 0;
3774  if (ms > 0) {
3775    req.tv_nsec = (ms % 1000) * 1000000;
3776  } else {
3777    req.tv_nsec = 1;
3778  }
3779
3780  nanosleep(&req, NULL);
3781
3782  return;
3783}
3784
3785// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3786void os::infinite_sleep() {
3787  while (true) {    // sleep forever ...
3788    ::sleep(100);   // ... 100 seconds at a time
3789  }
3790}
3791
3792// Used to convert frequent JVM_Yield() to nops
3793bool os::dont_yield() {
3794  return DontYieldALot;
3795}
3796
3797void os::naked_yield() {
3798  sched_yield();
3799}
3800
3801////////////////////////////////////////////////////////////////////////////////
3802// thread priority support
3803
3804// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3805// only supports dynamic priority, static priority must be zero. For real-time
3806// applications, Linux supports SCHED_RR which allows static priority (1-99).
3807// However, for large multi-threaded applications, SCHED_RR is not only slower
3808// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3809// of 5 runs - Sep 2005).
3810//
3811// The following code actually changes the niceness of kernel-thread/LWP. It
3812// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3813// not the entire user process, and user level threads are 1:1 mapped to kernel
3814// threads. It has always been the case, but could change in the future. For
3815// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3816// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3817
3818int os::java_to_os_priority[CriticalPriority + 1] = {
3819  19,              // 0 Entry should never be used
3820
3821   4,              // 1 MinPriority
3822   3,              // 2
3823   2,              // 3
3824
3825   1,              // 4
3826   0,              // 5 NormPriority
3827  -1,              // 6
3828
3829  -2,              // 7
3830  -3,              // 8
3831  -4,              // 9 NearMaxPriority
3832
3833  -5,              // 10 MaxPriority
3834
3835  -5               // 11 CriticalPriority
3836};
3837
3838static int prio_init() {
3839  if (ThreadPriorityPolicy == 1) {
3840    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3841    // if effective uid is not root. Perhaps, a more elegant way of doing
3842    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3843    if (geteuid() != 0) {
3844      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3845        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3846      }
3847      ThreadPriorityPolicy = 0;
3848    }
3849  }
3850  if (UseCriticalJavaThreadPriority) {
3851    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3852  }
3853  return 0;
3854}
3855
3856OSReturn os::set_native_priority(Thread* thread, int newpri) {
3857  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3858
3859  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3860  return (ret == 0) ? OS_OK : OS_ERR;
3861}
3862
3863OSReturn os::get_native_priority(const Thread* const thread,
3864                                 int *priority_ptr) {
3865  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3866    *priority_ptr = java_to_os_priority[NormPriority];
3867    return OS_OK;
3868  }
3869
3870  errno = 0;
3871  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3872  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3873}
3874
3875// Hint to the underlying OS that a task switch would not be good.
3876// Void return because it's a hint and can fail.
3877void os::hint_no_preempt() {}
3878
3879////////////////////////////////////////////////////////////////////////////////
3880// suspend/resume support
3881
3882//  the low-level signal-based suspend/resume support is a remnant from the
3883//  old VM-suspension that used to be for java-suspension, safepoints etc,
3884//  within hotspot. Now there is a single use-case for this:
3885//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3886//      that runs in the watcher thread.
3887//  The remaining code is greatly simplified from the more general suspension
3888//  code that used to be used.
3889//
3890//  The protocol is quite simple:
3891//  - suspend:
3892//      - sends a signal to the target thread
3893//      - polls the suspend state of the osthread using a yield loop
3894//      - target thread signal handler (SR_handler) sets suspend state
3895//        and blocks in sigsuspend until continued
3896//  - resume:
3897//      - sets target osthread state to continue
3898//      - sends signal to end the sigsuspend loop in the SR_handler
3899//
3900//  Note that the SR_lock plays no role in this suspend/resume protocol.
3901
3902static void resume_clear_context(OSThread *osthread) {
3903  osthread->set_ucontext(NULL);
3904  osthread->set_siginfo(NULL);
3905}
3906
3907static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3908                                 ucontext_t* context) {
3909  osthread->set_ucontext(context);
3910  osthread->set_siginfo(siginfo);
3911}
3912
3913// Handler function invoked when a thread's execution is suspended or
3914// resumed. We have to be careful that only async-safe functions are
3915// called here (Note: most pthread functions are not async safe and
3916// should be avoided.)
3917//
3918// Note: sigwait() is a more natural fit than sigsuspend() from an
3919// interface point of view, but sigwait() prevents the signal hander
3920// from being run. libpthread would get very confused by not having
3921// its signal handlers run and prevents sigwait()'s use with the
3922// mutex granting granting signal.
3923//
3924// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3925//
3926static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3927  // Save and restore errno to avoid confusing native code with EINTR
3928  // after sigsuspend.
3929  int old_errno = errno;
3930
3931  Thread* thread = Thread::current();
3932  OSThread* osthread = thread->osthread();
3933  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3934
3935  os::SuspendResume::State current = osthread->sr.state();
3936  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3937    suspend_save_context(osthread, siginfo, context);
3938
3939    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3940    os::SuspendResume::State state = osthread->sr.suspended();
3941    if (state == os::SuspendResume::SR_SUSPENDED) {
3942      sigset_t suspend_set;  // signals for sigsuspend()
3943
3944      // get current set of blocked signals and unblock resume signal
3945      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3946      sigdelset(&suspend_set, SR_signum);
3947
3948      sr_semaphore.signal();
3949      // wait here until we are resumed
3950      while (1) {
3951        sigsuspend(&suspend_set);
3952
3953        os::SuspendResume::State result = osthread->sr.running();
3954        if (result == os::SuspendResume::SR_RUNNING) {
3955          sr_semaphore.signal();
3956          break;
3957        }
3958      }
3959
3960    } else if (state == os::SuspendResume::SR_RUNNING) {
3961      // request was cancelled, continue
3962    } else {
3963      ShouldNotReachHere();
3964    }
3965
3966    resume_clear_context(osthread);
3967  } else if (current == os::SuspendResume::SR_RUNNING) {
3968    // request was cancelled, continue
3969  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3970    // ignore
3971  } else {
3972    // ignore
3973  }
3974
3975  errno = old_errno;
3976}
3977
3978
3979static int SR_initialize() {
3980  struct sigaction act;
3981  char *s;
3982  // Get signal number to use for suspend/resume
3983  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3984    int sig = ::strtol(s, 0, 10);
3985    if (sig > 0 || sig < _NSIG) {
3986      SR_signum = sig;
3987    }
3988  }
3989
3990  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3991         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3992
3993  sigemptyset(&SR_sigset);
3994  sigaddset(&SR_sigset, SR_signum);
3995
3996  // Set up signal handler for suspend/resume
3997  act.sa_flags = SA_RESTART|SA_SIGINFO;
3998  act.sa_handler = (void (*)(int)) SR_handler;
3999
4000  // SR_signum is blocked by default.
4001  // 4528190 - We also need to block pthread restart signal (32 on all
4002  // supported Linux platforms). Note that LinuxThreads need to block
4003  // this signal for all threads to work properly. So we don't have
4004  // to use hard-coded signal number when setting up the mask.
4005  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4006
4007  if (sigaction(SR_signum, &act, 0) == -1) {
4008    return -1;
4009  }
4010
4011  // Save signal flag
4012  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4013  return 0;
4014}
4015
4016static int sr_notify(OSThread* osthread) {
4017  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4018  assert_status(status == 0, status, "pthread_kill");
4019  return status;
4020}
4021
4022// "Randomly" selected value for how long we want to spin
4023// before bailing out on suspending a thread, also how often
4024// we send a signal to a thread we want to resume
4025static const int RANDOMLY_LARGE_INTEGER = 1000000;
4026static const int RANDOMLY_LARGE_INTEGER2 = 100;
4027
4028// returns true on success and false on error - really an error is fatal
4029// but this seems the normal response to library errors
4030static bool do_suspend(OSThread* osthread) {
4031  assert(osthread->sr.is_running(), "thread should be running");
4032  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4033
4034  // mark as suspended and send signal
4035  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4036    // failed to switch, state wasn't running?
4037    ShouldNotReachHere();
4038    return false;
4039  }
4040
4041  if (sr_notify(osthread) != 0) {
4042    ShouldNotReachHere();
4043  }
4044
4045  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4046  while (true) {
4047    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4048      break;
4049    } else {
4050      // timeout
4051      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4052      if (cancelled == os::SuspendResume::SR_RUNNING) {
4053        return false;
4054      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4055        // make sure that we consume the signal on the semaphore as well
4056        sr_semaphore.wait();
4057        break;
4058      } else {
4059        ShouldNotReachHere();
4060        return false;
4061      }
4062    }
4063  }
4064
4065  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4066  return true;
4067}
4068
4069static void do_resume(OSThread* osthread) {
4070  assert(osthread->sr.is_suspended(), "thread should be suspended");
4071  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4072
4073  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4074    // failed to switch to WAKEUP_REQUEST
4075    ShouldNotReachHere();
4076    return;
4077  }
4078
4079  while (true) {
4080    if (sr_notify(osthread) == 0) {
4081      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4082        if (osthread->sr.is_running()) {
4083          return;
4084        }
4085      }
4086    } else {
4087      ShouldNotReachHere();
4088    }
4089  }
4090
4091  guarantee(osthread->sr.is_running(), "Must be running!");
4092}
4093
4094///////////////////////////////////////////////////////////////////////////////////
4095// signal handling (except suspend/resume)
4096
4097// This routine may be used by user applications as a "hook" to catch signals.
4098// The user-defined signal handler must pass unrecognized signals to this
4099// routine, and if it returns true (non-zero), then the signal handler must
4100// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4101// routine will never retun false (zero), but instead will execute a VM panic
4102// routine kill the process.
4103//
4104// If this routine returns false, it is OK to call it again.  This allows
4105// the user-defined signal handler to perform checks either before or after
4106// the VM performs its own checks.  Naturally, the user code would be making
4107// a serious error if it tried to handle an exception (such as a null check
4108// or breakpoint) that the VM was generating for its own correct operation.
4109//
4110// This routine may recognize any of the following kinds of signals:
4111//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4112// It should be consulted by handlers for any of those signals.
4113//
4114// The caller of this routine must pass in the three arguments supplied
4115// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4116// field of the structure passed to sigaction().  This routine assumes that
4117// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4118//
4119// Note that the VM will print warnings if it detects conflicting signal
4120// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4121//
4122extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4123                                                 siginfo_t* siginfo,
4124                                                 void* ucontext,
4125                                                 int abort_if_unrecognized);
4126
4127void signalHandler(int sig, siginfo_t* info, void* uc) {
4128  assert(info != NULL && uc != NULL, "it must be old kernel");
4129  int orig_errno = errno;  // Preserve errno value over signal handler.
4130  JVM_handle_linux_signal(sig, info, uc, true);
4131  errno = orig_errno;
4132}
4133
4134
4135// This boolean allows users to forward their own non-matching signals
4136// to JVM_handle_linux_signal, harmlessly.
4137bool os::Linux::signal_handlers_are_installed = false;
4138
4139// For signal-chaining
4140struct sigaction os::Linux::sigact[MAXSIGNUM];
4141unsigned int os::Linux::sigs = 0;
4142bool os::Linux::libjsig_is_loaded = false;
4143typedef struct sigaction *(*get_signal_t)(int);
4144get_signal_t os::Linux::get_signal_action = NULL;
4145
4146struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4147  struct sigaction *actp = NULL;
4148
4149  if (libjsig_is_loaded) {
4150    // Retrieve the old signal handler from libjsig
4151    actp = (*get_signal_action)(sig);
4152  }
4153  if (actp == NULL) {
4154    // Retrieve the preinstalled signal handler from jvm
4155    actp = get_preinstalled_handler(sig);
4156  }
4157
4158  return actp;
4159}
4160
4161static bool call_chained_handler(struct sigaction *actp, int sig,
4162                                 siginfo_t *siginfo, void *context) {
4163  // Call the old signal handler
4164  if (actp->sa_handler == SIG_DFL) {
4165    // It's more reasonable to let jvm treat it as an unexpected exception
4166    // instead of taking the default action.
4167    return false;
4168  } else if (actp->sa_handler != SIG_IGN) {
4169    if ((actp->sa_flags & SA_NODEFER) == 0) {
4170      // automaticlly block the signal
4171      sigaddset(&(actp->sa_mask), sig);
4172    }
4173
4174    sa_handler_t hand;
4175    sa_sigaction_t sa;
4176    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4177    // retrieve the chained handler
4178    if (siginfo_flag_set) {
4179      sa = actp->sa_sigaction;
4180    } else {
4181      hand = actp->sa_handler;
4182    }
4183
4184    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4185      actp->sa_handler = SIG_DFL;
4186    }
4187
4188    // try to honor the signal mask
4189    sigset_t oset;
4190    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4191
4192    // call into the chained handler
4193    if (siginfo_flag_set) {
4194      (*sa)(sig, siginfo, context);
4195    } else {
4196      (*hand)(sig);
4197    }
4198
4199    // restore the signal mask
4200    pthread_sigmask(SIG_SETMASK, &oset, 0);
4201  }
4202  // Tell jvm's signal handler the signal is taken care of.
4203  return true;
4204}
4205
4206bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4207  bool chained = false;
4208  // signal-chaining
4209  if (UseSignalChaining) {
4210    struct sigaction *actp = get_chained_signal_action(sig);
4211    if (actp != NULL) {
4212      chained = call_chained_handler(actp, sig, siginfo, context);
4213    }
4214  }
4215  return chained;
4216}
4217
4218struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4219  if ((((unsigned int)1 << sig) & sigs) != 0) {
4220    return &sigact[sig];
4221  }
4222  return NULL;
4223}
4224
4225void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4226  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4227  sigact[sig] = oldAct;
4228  sigs |= (unsigned int)1 << sig;
4229}
4230
4231// for diagnostic
4232int os::Linux::sigflags[MAXSIGNUM];
4233
4234int os::Linux::get_our_sigflags(int sig) {
4235  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4236  return sigflags[sig];
4237}
4238
4239void os::Linux::set_our_sigflags(int sig, int flags) {
4240  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4241  sigflags[sig] = flags;
4242}
4243
4244void os::Linux::set_signal_handler(int sig, bool set_installed) {
4245  // Check for overwrite.
4246  struct sigaction oldAct;
4247  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4248
4249  void* oldhand = oldAct.sa_sigaction
4250                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4251                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4252  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4253      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4254      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4255    if (AllowUserSignalHandlers || !set_installed) {
4256      // Do not overwrite; user takes responsibility to forward to us.
4257      return;
4258    } else if (UseSignalChaining) {
4259      // save the old handler in jvm
4260      save_preinstalled_handler(sig, oldAct);
4261      // libjsig also interposes the sigaction() call below and saves the
4262      // old sigaction on it own.
4263    } else {
4264      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4265                    "%#lx for signal %d.", (long)oldhand, sig));
4266    }
4267  }
4268
4269  struct sigaction sigAct;
4270  sigfillset(&(sigAct.sa_mask));
4271  sigAct.sa_handler = SIG_DFL;
4272  if (!set_installed) {
4273    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4274  } else {
4275    sigAct.sa_sigaction = signalHandler;
4276    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4277  }
4278  // Save flags, which are set by ours
4279  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4280  sigflags[sig] = sigAct.sa_flags;
4281
4282  int ret = sigaction(sig, &sigAct, &oldAct);
4283  assert(ret == 0, "check");
4284
4285  void* oldhand2  = oldAct.sa_sigaction
4286                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4287                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4288  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4289}
4290
4291// install signal handlers for signals that HotSpot needs to
4292// handle in order to support Java-level exception handling.
4293
4294void os::Linux::install_signal_handlers() {
4295  if (!signal_handlers_are_installed) {
4296    signal_handlers_are_installed = true;
4297
4298    // signal-chaining
4299    typedef void (*signal_setting_t)();
4300    signal_setting_t begin_signal_setting = NULL;
4301    signal_setting_t end_signal_setting = NULL;
4302    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4303                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4304    if (begin_signal_setting != NULL) {
4305      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4306                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4307      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4308                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4309      libjsig_is_loaded = true;
4310      assert(UseSignalChaining, "should enable signal-chaining");
4311    }
4312    if (libjsig_is_loaded) {
4313      // Tell libjsig jvm is setting signal handlers
4314      (*begin_signal_setting)();
4315    }
4316
4317    set_signal_handler(SIGSEGV, true);
4318    set_signal_handler(SIGPIPE, true);
4319    set_signal_handler(SIGBUS, true);
4320    set_signal_handler(SIGILL, true);
4321    set_signal_handler(SIGFPE, true);
4322#if defined(PPC64)
4323    set_signal_handler(SIGTRAP, true);
4324#endif
4325    set_signal_handler(SIGXFSZ, true);
4326
4327    if (libjsig_is_loaded) {
4328      // Tell libjsig jvm finishes setting signal handlers
4329      (*end_signal_setting)();
4330    }
4331
4332    // We don't activate signal checker if libjsig is in place, we trust ourselves
4333    // and if UserSignalHandler is installed all bets are off.
4334    // Log that signal checking is off only if -verbose:jni is specified.
4335    if (CheckJNICalls) {
4336      if (libjsig_is_loaded) {
4337        if (PrintJNIResolving) {
4338          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4339        }
4340        check_signals = false;
4341      }
4342      if (AllowUserSignalHandlers) {
4343        if (PrintJNIResolving) {
4344          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4345        }
4346        check_signals = false;
4347      }
4348    }
4349  }
4350}
4351
4352// This is the fastest way to get thread cpu time on Linux.
4353// Returns cpu time (user+sys) for any thread, not only for current.
4354// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4355// It might work on 2.6.10+ with a special kernel/glibc patch.
4356// For reference, please, see IEEE Std 1003.1-2004:
4357//   http://www.unix.org/single_unix_specification
4358
4359jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4360  struct timespec tp;
4361  int rc = os::Linux::clock_gettime(clockid, &tp);
4362  assert(rc == 0, "clock_gettime is expected to return 0 code");
4363
4364  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4365}
4366
4367/////
4368// glibc on Linux platform uses non-documented flag
4369// to indicate, that some special sort of signal
4370// trampoline is used.
4371// We will never set this flag, and we should
4372// ignore this flag in our diagnostic
4373#ifdef SIGNIFICANT_SIGNAL_MASK
4374  #undef SIGNIFICANT_SIGNAL_MASK
4375#endif
4376#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4377
4378static const char* get_signal_handler_name(address handler,
4379                                           char* buf, int buflen) {
4380  int offset;
4381  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4382  if (found) {
4383    // skip directory names
4384    const char *p1, *p2;
4385    p1 = buf;
4386    size_t len = strlen(os::file_separator());
4387    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4388    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4389  } else {
4390    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4391  }
4392  return buf;
4393}
4394
4395static void print_signal_handler(outputStream* st, int sig,
4396                                 char* buf, size_t buflen) {
4397  struct sigaction sa;
4398
4399  sigaction(sig, NULL, &sa);
4400
4401  // See comment for SIGNIFICANT_SIGNAL_MASK define
4402  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4403
4404  st->print("%s: ", os::exception_name(sig, buf, buflen));
4405
4406  address handler = (sa.sa_flags & SA_SIGINFO)
4407    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4408    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4409
4410  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4411    st->print("SIG_DFL");
4412  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4413    st->print("SIG_IGN");
4414  } else {
4415    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4416  }
4417
4418  st->print(", sa_mask[0]=");
4419  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4420
4421  address rh = VMError::get_resetted_sighandler(sig);
4422  // May be, handler was resetted by VMError?
4423  if (rh != NULL) {
4424    handler = rh;
4425    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4426  }
4427
4428  st->print(", sa_flags=");
4429  os::Posix::print_sa_flags(st, sa.sa_flags);
4430
4431  // Check: is it our handler?
4432  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4433      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4434    // It is our signal handler
4435    // check for flags, reset system-used one!
4436    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4437      st->print(
4438                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4439                os::Linux::get_our_sigflags(sig));
4440    }
4441  }
4442  st->cr();
4443}
4444
4445
4446#define DO_SIGNAL_CHECK(sig)                      \
4447  do {                                            \
4448    if (!sigismember(&check_signal_done, sig)) {  \
4449      os::Linux::check_signal_handler(sig);       \
4450    }                                             \
4451  } while (0)
4452
4453// This method is a periodic task to check for misbehaving JNI applications
4454// under CheckJNI, we can add any periodic checks here
4455
4456void os::run_periodic_checks() {
4457  if (check_signals == false) return;
4458
4459  // SEGV and BUS if overridden could potentially prevent
4460  // generation of hs*.log in the event of a crash, debugging
4461  // such a case can be very challenging, so we absolutely
4462  // check the following for a good measure:
4463  DO_SIGNAL_CHECK(SIGSEGV);
4464  DO_SIGNAL_CHECK(SIGILL);
4465  DO_SIGNAL_CHECK(SIGFPE);
4466  DO_SIGNAL_CHECK(SIGBUS);
4467  DO_SIGNAL_CHECK(SIGPIPE);
4468  DO_SIGNAL_CHECK(SIGXFSZ);
4469#if defined(PPC64)
4470  DO_SIGNAL_CHECK(SIGTRAP);
4471#endif
4472
4473  // ReduceSignalUsage allows the user to override these handlers
4474  // see comments at the very top and jvm_solaris.h
4475  if (!ReduceSignalUsage) {
4476    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4477    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4478    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4479    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4480  }
4481
4482  DO_SIGNAL_CHECK(SR_signum);
4483  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4484}
4485
4486typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4487
4488static os_sigaction_t os_sigaction = NULL;
4489
4490void os::Linux::check_signal_handler(int sig) {
4491  char buf[O_BUFLEN];
4492  address jvmHandler = NULL;
4493
4494
4495  struct sigaction act;
4496  if (os_sigaction == NULL) {
4497    // only trust the default sigaction, in case it has been interposed
4498    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4499    if (os_sigaction == NULL) return;
4500  }
4501
4502  os_sigaction(sig, (struct sigaction*)NULL, &act);
4503
4504
4505  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4506
4507  address thisHandler = (act.sa_flags & SA_SIGINFO)
4508    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4509    : CAST_FROM_FN_PTR(address, act.sa_handler);
4510
4511
4512  switch (sig) {
4513  case SIGSEGV:
4514  case SIGBUS:
4515  case SIGFPE:
4516  case SIGPIPE:
4517  case SIGILL:
4518  case SIGXFSZ:
4519    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4520    break;
4521
4522  case SHUTDOWN1_SIGNAL:
4523  case SHUTDOWN2_SIGNAL:
4524  case SHUTDOWN3_SIGNAL:
4525  case BREAK_SIGNAL:
4526    jvmHandler = (address)user_handler();
4527    break;
4528
4529  case INTERRUPT_SIGNAL:
4530    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4531    break;
4532
4533  default:
4534    if (sig == SR_signum) {
4535      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4536    } else {
4537      return;
4538    }
4539    break;
4540  }
4541
4542  if (thisHandler != jvmHandler) {
4543    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4544    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4545    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4546    // No need to check this sig any longer
4547    sigaddset(&check_signal_done, sig);
4548    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4549    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4550      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4551                    exception_name(sig, buf, O_BUFLEN));
4552    }
4553  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4554    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4555    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4556    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4557    // No need to check this sig any longer
4558    sigaddset(&check_signal_done, sig);
4559  }
4560
4561  // Dump all the signal
4562  if (sigismember(&check_signal_done, sig)) {
4563    print_signal_handlers(tty, buf, O_BUFLEN);
4564  }
4565}
4566
4567extern void report_error(char* file_name, int line_no, char* title,
4568                         char* format, ...);
4569
4570extern bool signal_name(int signo, char* buf, size_t len);
4571
4572const char* os::exception_name(int exception_code, char* buf, size_t size) {
4573  if (0 < exception_code && exception_code <= SIGRTMAX) {
4574    // signal
4575    if (!signal_name(exception_code, buf, size)) {
4576      jio_snprintf(buf, size, "SIG%d", exception_code);
4577    }
4578    return buf;
4579  } else {
4580    return NULL;
4581  }
4582}
4583
4584// this is called _before_ the most of global arguments have been parsed
4585void os::init(void) {
4586  char dummy;   // used to get a guess on initial stack address
4587//  first_hrtime = gethrtime();
4588
4589  // With LinuxThreads the JavaMain thread pid (primordial thread)
4590  // is different than the pid of the java launcher thread.
4591  // So, on Linux, the launcher thread pid is passed to the VM
4592  // via the sun.java.launcher.pid property.
4593  // Use this property instead of getpid() if it was correctly passed.
4594  // See bug 6351349.
4595  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4596
4597  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4598
4599  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4600
4601  init_random(1234567);
4602
4603  ThreadCritical::initialize();
4604
4605  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4606  if (Linux::page_size() == -1) {
4607    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4608                  strerror(errno)));
4609  }
4610  init_page_sizes((size_t) Linux::page_size());
4611
4612  Linux::initialize_system_info();
4613
4614  // main_thread points to the aboriginal thread
4615  Linux::_main_thread = pthread_self();
4616
4617  Linux::clock_init();
4618  initial_time_count = javaTimeNanos();
4619
4620  // pthread_condattr initialization for monotonic clock
4621  int status;
4622  pthread_condattr_t* _condattr = os::Linux::condAttr();
4623  if ((status = pthread_condattr_init(_condattr)) != 0) {
4624    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4625  }
4626  // Only set the clock if CLOCK_MONOTONIC is available
4627  if (os::supports_monotonic_clock()) {
4628    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4629      if (status == EINVAL) {
4630        warning("Unable to use monotonic clock with relative timed-waits" \
4631                " - changes to the time-of-day clock may have adverse affects");
4632      } else {
4633        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4634      }
4635    }
4636  }
4637  // else it defaults to CLOCK_REALTIME
4638
4639  // If the pagesize of the VM is greater than 8K determine the appropriate
4640  // number of initial guard pages.  The user can change this with the
4641  // command line arguments, if needed.
4642  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4643    StackYellowPages = 1;
4644    StackRedPages = 1;
4645    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4646  }
4647
4648  // retrieve entry point for pthread_setname_np
4649  Linux::_pthread_setname_np =
4650    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4651
4652}
4653
4654// To install functions for atexit system call
4655extern "C" {
4656  static void perfMemory_exit_helper() {
4657    perfMemory_exit();
4658  }
4659}
4660
4661// this is called _after_ the global arguments have been parsed
4662jint os::init_2(void) {
4663  Linux::fast_thread_clock_init();
4664
4665  // Allocate a single page and mark it as readable for safepoint polling
4666  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4667  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4668
4669  os::set_polling_page(polling_page);
4670
4671#ifndef PRODUCT
4672  if (Verbose && PrintMiscellaneous) {
4673    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4674               (intptr_t)polling_page);
4675  }
4676#endif
4677
4678  if (!UseMembar) {
4679    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4680    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4681    os::set_memory_serialize_page(mem_serialize_page);
4682
4683#ifndef PRODUCT
4684    if (Verbose && PrintMiscellaneous) {
4685      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4686                 (intptr_t)mem_serialize_page);
4687    }
4688#endif
4689  }
4690
4691  // initialize suspend/resume support - must do this before signal_sets_init()
4692  if (SR_initialize() != 0) {
4693    perror("SR_initialize failed");
4694    return JNI_ERR;
4695  }
4696
4697  Linux::signal_sets_init();
4698  Linux::install_signal_handlers();
4699
4700  // Check minimum allowable stack size for thread creation and to initialize
4701  // the java system classes, including StackOverflowError - depends on page
4702  // size.  Add a page for compiler2 recursion in main thread.
4703  // Add in 2*BytesPerWord times page size to account for VM stack during
4704  // class initialization depending on 32 or 64 bit VM.
4705  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4706                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4707                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4708
4709  size_t threadStackSizeInBytes = ThreadStackSize * K;
4710  if (threadStackSizeInBytes != 0 &&
4711      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4712    tty->print_cr("\nThe stack size specified is too small, "
4713                  "Specify at least %dk",
4714                  os::Linux::min_stack_allowed/ K);
4715    return JNI_ERR;
4716  }
4717
4718  // Make the stack size a multiple of the page size so that
4719  // the yellow/red zones can be guarded.
4720  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4721                                                vm_page_size()));
4722
4723  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4724
4725#if defined(IA32)
4726  workaround_expand_exec_shield_cs_limit();
4727#endif
4728
4729  Linux::libpthread_init();
4730  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4731    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4732                  Linux::glibc_version(), Linux::libpthread_version(),
4733                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4734  }
4735
4736  if (UseNUMA) {
4737    if (!Linux::libnuma_init()) {
4738      UseNUMA = false;
4739    } else {
4740      if ((Linux::numa_max_node() < 1)) {
4741        // There's only one node(they start from 0), disable NUMA.
4742        UseNUMA = false;
4743      }
4744    }
4745    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4746    // we can make the adaptive lgrp chunk resizing work. If the user specified
4747    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4748    // disable adaptive resizing.
4749    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4750      if (FLAG_IS_DEFAULT(UseNUMA)) {
4751        UseNUMA = false;
4752      } else {
4753        if (FLAG_IS_DEFAULT(UseLargePages) &&
4754            FLAG_IS_DEFAULT(UseSHM) &&
4755            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4756          UseLargePages = false;
4757        } else {
4758          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4759          UseAdaptiveSizePolicy = false;
4760          UseAdaptiveNUMAChunkSizing = false;
4761        }
4762      }
4763    }
4764    if (!UseNUMA && ForceNUMA) {
4765      UseNUMA = true;
4766    }
4767  }
4768
4769  if (MaxFDLimit) {
4770    // set the number of file descriptors to max. print out error
4771    // if getrlimit/setrlimit fails but continue regardless.
4772    struct rlimit nbr_files;
4773    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4774    if (status != 0) {
4775      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4776        perror("os::init_2 getrlimit failed");
4777      }
4778    } else {
4779      nbr_files.rlim_cur = nbr_files.rlim_max;
4780      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4781      if (status != 0) {
4782        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4783          perror("os::init_2 setrlimit failed");
4784        }
4785      }
4786    }
4787  }
4788
4789  // Initialize lock used to serialize thread creation (see os::create_thread)
4790  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4791
4792  // at-exit methods are called in the reverse order of their registration.
4793  // atexit functions are called on return from main or as a result of a
4794  // call to exit(3C). There can be only 32 of these functions registered
4795  // and atexit() does not set errno.
4796
4797  if (PerfAllowAtExitRegistration) {
4798    // only register atexit functions if PerfAllowAtExitRegistration is set.
4799    // atexit functions can be delayed until process exit time, which
4800    // can be problematic for embedded VM situations. Embedded VMs should
4801    // call DestroyJavaVM() to assure that VM resources are released.
4802
4803    // note: perfMemory_exit_helper atexit function may be removed in
4804    // the future if the appropriate cleanup code can be added to the
4805    // VM_Exit VMOperation's doit method.
4806    if (atexit(perfMemory_exit_helper) != 0) {
4807      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4808    }
4809  }
4810
4811  // initialize thread priority policy
4812  prio_init();
4813
4814  return JNI_OK;
4815}
4816
4817// Mark the polling page as unreadable
4818void os::make_polling_page_unreadable(void) {
4819  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4820    fatal("Could not disable polling page");
4821  }
4822}
4823
4824// Mark the polling page as readable
4825void os::make_polling_page_readable(void) {
4826  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4827    fatal("Could not enable polling page");
4828  }
4829}
4830
4831int os::active_processor_count() {
4832  // Linux doesn't yet have a (official) notion of processor sets,
4833  // so just return the number of online processors.
4834  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4835  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4836  return online_cpus;
4837}
4838
4839void os::set_native_thread_name(const char *name) {
4840  if (Linux::_pthread_setname_np) {
4841    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4842    snprintf(buf, sizeof(buf), "%s", name);
4843    buf[sizeof(buf) - 1] = '\0';
4844    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4845    // ERANGE should not happen; all other errors should just be ignored.
4846    assert(rc != ERANGE, "pthread_setname_np failed");
4847  }
4848}
4849
4850bool os::distribute_processes(uint length, uint* distribution) {
4851  // Not yet implemented.
4852  return false;
4853}
4854
4855bool os::bind_to_processor(uint processor_id) {
4856  // Not yet implemented.
4857  return false;
4858}
4859
4860///
4861
4862void os::SuspendedThreadTask::internal_do_task() {
4863  if (do_suspend(_thread->osthread())) {
4864    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4865    do_task(context);
4866    do_resume(_thread->osthread());
4867  }
4868}
4869
4870class PcFetcher : public os::SuspendedThreadTask {
4871 public:
4872  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4873  ExtendedPC result();
4874 protected:
4875  void do_task(const os::SuspendedThreadTaskContext& context);
4876 private:
4877  ExtendedPC _epc;
4878};
4879
4880ExtendedPC PcFetcher::result() {
4881  guarantee(is_done(), "task is not done yet.");
4882  return _epc;
4883}
4884
4885void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4886  Thread* thread = context.thread();
4887  OSThread* osthread = thread->osthread();
4888  if (osthread->ucontext() != NULL) {
4889    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4890  } else {
4891    // NULL context is unexpected, double-check this is the VMThread
4892    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4893  }
4894}
4895
4896// Suspends the target using the signal mechanism and then grabs the PC before
4897// resuming the target. Used by the flat-profiler only
4898ExtendedPC os::get_thread_pc(Thread* thread) {
4899  // Make sure that it is called by the watcher for the VMThread
4900  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4901  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4902
4903  PcFetcher fetcher(thread);
4904  fetcher.run();
4905  return fetcher.result();
4906}
4907
4908int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4909                                   pthread_mutex_t *_mutex,
4910                                   const struct timespec *_abstime) {
4911  if (is_NPTL()) {
4912    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4913  } else {
4914    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4915    // word back to default 64bit precision if condvar is signaled. Java
4916    // wants 53bit precision.  Save and restore current value.
4917    int fpu = get_fpu_control_word();
4918    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4919    set_fpu_control_word(fpu);
4920    return status;
4921  }
4922}
4923
4924////////////////////////////////////////////////////////////////////////////////
4925// debug support
4926
4927bool os::find(address addr, outputStream* st) {
4928  Dl_info dlinfo;
4929  memset(&dlinfo, 0, sizeof(dlinfo));
4930  if (dladdr(addr, &dlinfo) != 0) {
4931    st->print(PTR_FORMAT ": ", addr);
4932    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4933      st->print("%s+%#x", dlinfo.dli_sname,
4934                addr - (intptr_t)dlinfo.dli_saddr);
4935    } else if (dlinfo.dli_fbase != NULL) {
4936      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4937    } else {
4938      st->print("<absolute address>");
4939    }
4940    if (dlinfo.dli_fname != NULL) {
4941      st->print(" in %s", dlinfo.dli_fname);
4942    }
4943    if (dlinfo.dli_fbase != NULL) {
4944      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4945    }
4946    st->cr();
4947
4948    if (Verbose) {
4949      // decode some bytes around the PC
4950      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4951      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4952      address       lowest = (address) dlinfo.dli_sname;
4953      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4954      if (begin < lowest)  begin = lowest;
4955      Dl_info dlinfo2;
4956      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4957          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4958        end = (address) dlinfo2.dli_saddr;
4959      }
4960      Disassembler::decode(begin, end, st);
4961    }
4962    return true;
4963  }
4964  return false;
4965}
4966
4967////////////////////////////////////////////////////////////////////////////////
4968// misc
4969
4970// This does not do anything on Linux. This is basically a hook for being
4971// able to use structured exception handling (thread-local exception filters)
4972// on, e.g., Win32.
4973void
4974os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4975                         JavaCallArguments* args, Thread* thread) {
4976  f(value, method, args, thread);
4977}
4978
4979void os::print_statistics() {
4980}
4981
4982int os::message_box(const char* title, const char* message) {
4983  int i;
4984  fdStream err(defaultStream::error_fd());
4985  for (i = 0; i < 78; i++) err.print_raw("=");
4986  err.cr();
4987  err.print_raw_cr(title);
4988  for (i = 0; i < 78; i++) err.print_raw("-");
4989  err.cr();
4990  err.print_raw_cr(message);
4991  for (i = 0; i < 78; i++) err.print_raw("=");
4992  err.cr();
4993
4994  char buf[16];
4995  // Prevent process from exiting upon "read error" without consuming all CPU
4996  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4997
4998  return buf[0] == 'y' || buf[0] == 'Y';
4999}
5000
5001int os::stat(const char *path, struct stat *sbuf) {
5002  char pathbuf[MAX_PATH];
5003  if (strlen(path) > MAX_PATH - 1) {
5004    errno = ENAMETOOLONG;
5005    return -1;
5006  }
5007  os::native_path(strcpy(pathbuf, path));
5008  return ::stat(pathbuf, sbuf);
5009}
5010
5011bool os::check_heap(bool force) {
5012  return true;
5013}
5014
5015// Is a (classpath) directory empty?
5016bool os::dir_is_empty(const char* path) {
5017  DIR *dir = NULL;
5018  struct dirent *ptr;
5019
5020  dir = opendir(path);
5021  if (dir == NULL) return true;
5022
5023  // Scan the directory
5024  bool result = true;
5025  char buf[sizeof(struct dirent) + MAX_PATH];
5026  while (result && (ptr = ::readdir(dir)) != NULL) {
5027    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5028      result = false;
5029    }
5030  }
5031  closedir(dir);
5032  return result;
5033}
5034
5035// This code originates from JDK's sysOpen and open64_w
5036// from src/solaris/hpi/src/system_md.c
5037
5038int os::open(const char *path, int oflag, int mode) {
5039  if (strlen(path) > MAX_PATH - 1) {
5040    errno = ENAMETOOLONG;
5041    return -1;
5042  }
5043
5044  // All file descriptors that are opened in the Java process and not
5045  // specifically destined for a subprocess should have the close-on-exec
5046  // flag set.  If we don't set it, then careless 3rd party native code
5047  // might fork and exec without closing all appropriate file descriptors
5048  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5049  // turn might:
5050  //
5051  // - cause end-of-file to fail to be detected on some file
5052  //   descriptors, resulting in mysterious hangs, or
5053  //
5054  // - might cause an fopen in the subprocess to fail on a system
5055  //   suffering from bug 1085341.
5056  //
5057  // (Yes, the default setting of the close-on-exec flag is a Unix
5058  // design flaw)
5059  //
5060  // See:
5061  // 1085341: 32-bit stdio routines should support file descriptors >255
5062  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5063  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5064  //
5065  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5066  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5067  // because it saves a system call and removes a small window where the flag
5068  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5069  // and we fall back to using FD_CLOEXEC (see below).
5070#ifdef O_CLOEXEC
5071  oflag |= O_CLOEXEC;
5072#endif
5073
5074  int fd = ::open64(path, oflag, mode);
5075  if (fd == -1) return -1;
5076
5077  //If the open succeeded, the file might still be a directory
5078  {
5079    struct stat64 buf64;
5080    int ret = ::fstat64(fd, &buf64);
5081    int st_mode = buf64.st_mode;
5082
5083    if (ret != -1) {
5084      if ((st_mode & S_IFMT) == S_IFDIR) {
5085        errno = EISDIR;
5086        ::close(fd);
5087        return -1;
5088      }
5089    } else {
5090      ::close(fd);
5091      return -1;
5092    }
5093  }
5094
5095#ifdef FD_CLOEXEC
5096  // Validate that the use of the O_CLOEXEC flag on open above worked.
5097  // With recent kernels, we will perform this check exactly once.
5098  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5099  if (!O_CLOEXEC_is_known_to_work) {
5100    int flags = ::fcntl(fd, F_GETFD);
5101    if (flags != -1) {
5102      if ((flags & FD_CLOEXEC) != 0)
5103        O_CLOEXEC_is_known_to_work = 1;
5104      else
5105        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5106    }
5107  }
5108#endif
5109
5110  return fd;
5111}
5112
5113
5114// create binary file, rewriting existing file if required
5115int os::create_binary_file(const char* path, bool rewrite_existing) {
5116  int oflags = O_WRONLY | O_CREAT;
5117  if (!rewrite_existing) {
5118    oflags |= O_EXCL;
5119  }
5120  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5121}
5122
5123// return current position of file pointer
5124jlong os::current_file_offset(int fd) {
5125  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5126}
5127
5128// move file pointer to the specified offset
5129jlong os::seek_to_file_offset(int fd, jlong offset) {
5130  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5131}
5132
5133// This code originates from JDK's sysAvailable
5134// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5135
5136int os::available(int fd, jlong *bytes) {
5137  jlong cur, end;
5138  int mode;
5139  struct stat64 buf64;
5140
5141  if (::fstat64(fd, &buf64) >= 0) {
5142    mode = buf64.st_mode;
5143    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5144      // XXX: is the following call interruptible? If so, this might
5145      // need to go through the INTERRUPT_IO() wrapper as for other
5146      // blocking, interruptible calls in this file.
5147      int n;
5148      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5149        *bytes = n;
5150        return 1;
5151      }
5152    }
5153  }
5154  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5155    return 0;
5156  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5157    return 0;
5158  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5159    return 0;
5160  }
5161  *bytes = end - cur;
5162  return 1;
5163}
5164
5165// Map a block of memory.
5166char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5167                        char *addr, size_t bytes, bool read_only,
5168                        bool allow_exec) {
5169  int prot;
5170  int flags = MAP_PRIVATE;
5171
5172  if (read_only) {
5173    prot = PROT_READ;
5174  } else {
5175    prot = PROT_READ | PROT_WRITE;
5176  }
5177
5178  if (allow_exec) {
5179    prot |= PROT_EXEC;
5180  }
5181
5182  if (addr != NULL) {
5183    flags |= MAP_FIXED;
5184  }
5185
5186  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5187                                     fd, file_offset);
5188  if (mapped_address == MAP_FAILED) {
5189    return NULL;
5190  }
5191  return mapped_address;
5192}
5193
5194
5195// Remap a block of memory.
5196char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5197                          char *addr, size_t bytes, bool read_only,
5198                          bool allow_exec) {
5199  // same as map_memory() on this OS
5200  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5201                        allow_exec);
5202}
5203
5204
5205// Unmap a block of memory.
5206bool os::pd_unmap_memory(char* addr, size_t bytes) {
5207  return munmap(addr, bytes) == 0;
5208}
5209
5210static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5211
5212static clockid_t thread_cpu_clockid(Thread* thread) {
5213  pthread_t tid = thread->osthread()->pthread_id();
5214  clockid_t clockid;
5215
5216  // Get thread clockid
5217  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5218  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5219  return clockid;
5220}
5221
5222// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5223// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5224// of a thread.
5225//
5226// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5227// the fast estimate available on the platform.
5228
5229jlong os::current_thread_cpu_time() {
5230  if (os::Linux::supports_fast_thread_cpu_time()) {
5231    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5232  } else {
5233    // return user + sys since the cost is the same
5234    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5235  }
5236}
5237
5238jlong os::thread_cpu_time(Thread* thread) {
5239  // consistent with what current_thread_cpu_time() returns
5240  if (os::Linux::supports_fast_thread_cpu_time()) {
5241    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5242  } else {
5243    return slow_thread_cpu_time(thread, true /* user + sys */);
5244  }
5245}
5246
5247jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5248  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5249    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5250  } else {
5251    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5252  }
5253}
5254
5255jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5256  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5257    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5258  } else {
5259    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5260  }
5261}
5262
5263//  -1 on error.
5264static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5265  pid_t  tid = thread->osthread()->thread_id();
5266  char *s;
5267  char stat[2048];
5268  int statlen;
5269  char proc_name[64];
5270  int count;
5271  long sys_time, user_time;
5272  char cdummy;
5273  int idummy;
5274  long ldummy;
5275  FILE *fp;
5276
5277  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5278  fp = fopen(proc_name, "r");
5279  if (fp == NULL) return -1;
5280  statlen = fread(stat, 1, 2047, fp);
5281  stat[statlen] = '\0';
5282  fclose(fp);
5283
5284  // Skip pid and the command string. Note that we could be dealing with
5285  // weird command names, e.g. user could decide to rename java launcher
5286  // to "java 1.4.2 :)", then the stat file would look like
5287  //                1234 (java 1.4.2 :)) R ... ...
5288  // We don't really need to know the command string, just find the last
5289  // occurrence of ")" and then start parsing from there. See bug 4726580.
5290  s = strrchr(stat, ')');
5291  if (s == NULL) return -1;
5292
5293  // Skip blank chars
5294  do { s++; } while (s && isspace(*s));
5295
5296  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5297                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5298                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5299                 &user_time, &sys_time);
5300  if (count != 13) return -1;
5301  if (user_sys_cpu_time) {
5302    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5303  } else {
5304    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5305  }
5306}
5307
5308void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5309  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5310  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5311  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5312  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5313}
5314
5315void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5316  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5317  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5318  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5319  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5320}
5321
5322bool os::is_thread_cpu_time_supported() {
5323  return true;
5324}
5325
5326// System loadavg support.  Returns -1 if load average cannot be obtained.
5327// Linux doesn't yet have a (official) notion of processor sets,
5328// so just return the system wide load average.
5329int os::loadavg(double loadavg[], int nelem) {
5330  return ::getloadavg(loadavg, nelem);
5331}
5332
5333void os::pause() {
5334  char filename[MAX_PATH];
5335  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5336    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5337  } else {
5338    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5339  }
5340
5341  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5342  if (fd != -1) {
5343    struct stat buf;
5344    ::close(fd);
5345    while (::stat(filename, &buf) == 0) {
5346      (void)::poll(NULL, 0, 100);
5347    }
5348  } else {
5349    jio_fprintf(stderr,
5350                "Could not open pause file '%s', continuing immediately.\n", filename);
5351  }
5352}
5353
5354
5355// Refer to the comments in os_solaris.cpp park-unpark. The next two
5356// comment paragraphs are worth repeating here:
5357//
5358// Assumption:
5359//    Only one parker can exist on an event, which is why we allocate
5360//    them per-thread. Multiple unparkers can coexist.
5361//
5362// _Event serves as a restricted-range semaphore.
5363//   -1 : thread is blocked, i.e. there is a waiter
5364//    0 : neutral: thread is running or ready,
5365//        could have been signaled after a wait started
5366//    1 : signaled - thread is running or ready
5367//
5368// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5369// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5370// For specifics regarding the bug see GLIBC BUGID 261237 :
5371//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5372// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5373// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5374// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5375// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5376// and monitorenter when we're using 1-0 locking.  All those operations may result in
5377// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5378// of libpthread avoids the problem, but isn't practical.
5379//
5380// Possible remedies:
5381//
5382// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5383//      This is palliative and probabilistic, however.  If the thread is preempted
5384//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5385//      than the minimum period may have passed, and the abstime may be stale (in the
5386//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5387//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5388//
5389// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5390//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5391//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5392//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5393//      thread.
5394//
5395// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5396//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5397//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5398//      This also works well.  In fact it avoids kernel-level scalability impediments
5399//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5400//      timers in a graceful fashion.
5401//
5402// 4.   When the abstime value is in the past it appears that control returns
5403//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5404//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5405//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5406//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5407//      It may be possible to avoid reinitialization by checking the return
5408//      value from pthread_cond_timedwait().  In addition to reinitializing the
5409//      condvar we must establish the invariant that cond_signal() is only called
5410//      within critical sections protected by the adjunct mutex.  This prevents
5411//      cond_signal() from "seeing" a condvar that's in the midst of being
5412//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5413//      desirable signal-after-unlock optimization that avoids futile context switching.
5414//
5415//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5416//      structure when a condvar is used or initialized.  cond_destroy()  would
5417//      release the helper structure.  Our reinitialize-after-timedwait fix
5418//      put excessive stress on malloc/free and locks protecting the c-heap.
5419//
5420// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5421// It may be possible to refine (4) by checking the kernel and NTPL verisons
5422// and only enabling the work-around for vulnerable environments.
5423
5424// utility to compute the abstime argument to timedwait:
5425// millis is the relative timeout time
5426// abstime will be the absolute timeout time
5427// TODO: replace compute_abstime() with unpackTime()
5428
5429static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5430  if (millis < 0)  millis = 0;
5431
5432  jlong seconds = millis / 1000;
5433  millis %= 1000;
5434  if (seconds > 50000000) { // see man cond_timedwait(3T)
5435    seconds = 50000000;
5436  }
5437
5438  if (os::supports_monotonic_clock()) {
5439    struct timespec now;
5440    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5441    assert_status(status == 0, status, "clock_gettime");
5442    abstime->tv_sec = now.tv_sec  + seconds;
5443    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5444    if (nanos >= NANOSECS_PER_SEC) {
5445      abstime->tv_sec += 1;
5446      nanos -= NANOSECS_PER_SEC;
5447    }
5448    abstime->tv_nsec = nanos;
5449  } else {
5450    struct timeval now;
5451    int status = gettimeofday(&now, NULL);
5452    assert(status == 0, "gettimeofday");
5453    abstime->tv_sec = now.tv_sec  + seconds;
5454    long usec = now.tv_usec + millis * 1000;
5455    if (usec >= 1000000) {
5456      abstime->tv_sec += 1;
5457      usec -= 1000000;
5458    }
5459    abstime->tv_nsec = usec * 1000;
5460  }
5461  return abstime;
5462}
5463
5464void os::PlatformEvent::park() {       // AKA "down()"
5465  // Transitions for _Event:
5466  //   -1 => -1 : illegal
5467  //    1 =>  0 : pass - return immediately
5468  //    0 => -1 : block; then set _Event to 0 before returning
5469
5470  // Invariant: Only the thread associated with the Event/PlatformEvent
5471  // may call park().
5472  // TODO: assert that _Assoc != NULL or _Assoc == Self
5473  assert(_nParked == 0, "invariant");
5474
5475  int v;
5476  for (;;) {
5477    v = _Event;
5478    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5479  }
5480  guarantee(v >= 0, "invariant");
5481  if (v == 0) {
5482    // Do this the hard way by blocking ...
5483    int status = pthread_mutex_lock(_mutex);
5484    assert_status(status == 0, status, "mutex_lock");
5485    guarantee(_nParked == 0, "invariant");
5486    ++_nParked;
5487    while (_Event < 0) {
5488      status = pthread_cond_wait(_cond, _mutex);
5489      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5490      // Treat this the same as if the wait was interrupted
5491      if (status == ETIME) { status = EINTR; }
5492      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5493    }
5494    --_nParked;
5495
5496    _Event = 0;
5497    status = pthread_mutex_unlock(_mutex);
5498    assert_status(status == 0, status, "mutex_unlock");
5499    // Paranoia to ensure our locked and lock-free paths interact
5500    // correctly with each other.
5501    OrderAccess::fence();
5502  }
5503  guarantee(_Event >= 0, "invariant");
5504}
5505
5506int os::PlatformEvent::park(jlong millis) {
5507  // Transitions for _Event:
5508  //   -1 => -1 : illegal
5509  //    1 =>  0 : pass - return immediately
5510  //    0 => -1 : block; then set _Event to 0 before returning
5511
5512  guarantee(_nParked == 0, "invariant");
5513
5514  int v;
5515  for (;;) {
5516    v = _Event;
5517    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5518  }
5519  guarantee(v >= 0, "invariant");
5520  if (v != 0) return OS_OK;
5521
5522  // We do this the hard way, by blocking the thread.
5523  // Consider enforcing a minimum timeout value.
5524  struct timespec abst;
5525  compute_abstime(&abst, millis);
5526
5527  int ret = OS_TIMEOUT;
5528  int status = pthread_mutex_lock(_mutex);
5529  assert_status(status == 0, status, "mutex_lock");
5530  guarantee(_nParked == 0, "invariant");
5531  ++_nParked;
5532
5533  // Object.wait(timo) will return because of
5534  // (a) notification
5535  // (b) timeout
5536  // (c) thread.interrupt
5537  //
5538  // Thread.interrupt and object.notify{All} both call Event::set.
5539  // That is, we treat thread.interrupt as a special case of notification.
5540  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5541  // We assume all ETIME returns are valid.
5542  //
5543  // TODO: properly differentiate simultaneous notify+interrupt.
5544  // In that case, we should propagate the notify to another waiter.
5545
5546  while (_Event < 0) {
5547    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5548    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5549      pthread_cond_destroy(_cond);
5550      pthread_cond_init(_cond, os::Linux::condAttr());
5551    }
5552    assert_status(status == 0 || status == EINTR ||
5553                  status == ETIME || status == ETIMEDOUT,
5554                  status, "cond_timedwait");
5555    if (!FilterSpuriousWakeups) break;                 // previous semantics
5556    if (status == ETIME || status == ETIMEDOUT) break;
5557    // We consume and ignore EINTR and spurious wakeups.
5558  }
5559  --_nParked;
5560  if (_Event >= 0) {
5561    ret = OS_OK;
5562  }
5563  _Event = 0;
5564  status = pthread_mutex_unlock(_mutex);
5565  assert_status(status == 0, status, "mutex_unlock");
5566  assert(_nParked == 0, "invariant");
5567  // Paranoia to ensure our locked and lock-free paths interact
5568  // correctly with each other.
5569  OrderAccess::fence();
5570  return ret;
5571}
5572
5573void os::PlatformEvent::unpark() {
5574  // Transitions for _Event:
5575  //    0 => 1 : just return
5576  //    1 => 1 : just return
5577  //   -1 => either 0 or 1; must signal target thread
5578  //         That is, we can safely transition _Event from -1 to either
5579  //         0 or 1.
5580  // See also: "Semaphores in Plan 9" by Mullender & Cox
5581  //
5582  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5583  // that it will take two back-to-back park() calls for the owning
5584  // thread to block. This has the benefit of forcing a spurious return
5585  // from the first park() call after an unpark() call which will help
5586  // shake out uses of park() and unpark() without condition variables.
5587
5588  if (Atomic::xchg(1, &_Event) >= 0) return;
5589
5590  // Wait for the thread associated with the event to vacate
5591  int status = pthread_mutex_lock(_mutex);
5592  assert_status(status == 0, status, "mutex_lock");
5593  int AnyWaiters = _nParked;
5594  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5595  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5596    AnyWaiters = 0;
5597    pthread_cond_signal(_cond);
5598  }
5599  status = pthread_mutex_unlock(_mutex);
5600  assert_status(status == 0, status, "mutex_unlock");
5601  if (AnyWaiters != 0) {
5602    // Note that we signal() *after* dropping the lock for "immortal" Events.
5603    // This is safe and avoids a common class of  futile wakeups.  In rare
5604    // circumstances this can cause a thread to return prematurely from
5605    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5606    // will simply re-test the condition and re-park itself.
5607    // This provides particular benefit if the underlying platform does not
5608    // provide wait morphing.
5609    status = pthread_cond_signal(_cond);
5610    assert_status(status == 0, status, "cond_signal");
5611  }
5612}
5613
5614
5615// JSR166
5616// -------------------------------------------------------
5617
5618// The solaris and linux implementations of park/unpark are fairly
5619// conservative for now, but can be improved. They currently use a
5620// mutex/condvar pair, plus a a count.
5621// Park decrements count if > 0, else does a condvar wait.  Unpark
5622// sets count to 1 and signals condvar.  Only one thread ever waits
5623// on the condvar. Contention seen when trying to park implies that someone
5624// is unparking you, so don't wait. And spurious returns are fine, so there
5625// is no need to track notifications.
5626
5627// This code is common to linux and solaris and will be moved to a
5628// common place in dolphin.
5629//
5630// The passed in time value is either a relative time in nanoseconds
5631// or an absolute time in milliseconds. Either way it has to be unpacked
5632// into suitable seconds and nanoseconds components and stored in the
5633// given timespec structure.
5634// Given time is a 64-bit value and the time_t used in the timespec is only
5635// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5636// overflow if times way in the future are given. Further on Solaris versions
5637// prior to 10 there is a restriction (see cond_timedwait) that the specified
5638// number of seconds, in abstime, is less than current_time  + 100,000,000.
5639// As it will be 28 years before "now + 100000000" will overflow we can
5640// ignore overflow and just impose a hard-limit on seconds using the value
5641// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5642// years from "now".
5643
5644static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5645  assert(time > 0, "convertTime");
5646  time_t max_secs = 0;
5647
5648  if (!os::supports_monotonic_clock() || isAbsolute) {
5649    struct timeval now;
5650    int status = gettimeofday(&now, NULL);
5651    assert(status == 0, "gettimeofday");
5652
5653    max_secs = now.tv_sec + MAX_SECS;
5654
5655    if (isAbsolute) {
5656      jlong secs = time / 1000;
5657      if (secs > max_secs) {
5658        absTime->tv_sec = max_secs;
5659      } else {
5660        absTime->tv_sec = secs;
5661      }
5662      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5663    } else {
5664      jlong secs = time / NANOSECS_PER_SEC;
5665      if (secs >= MAX_SECS) {
5666        absTime->tv_sec = max_secs;
5667        absTime->tv_nsec = 0;
5668      } else {
5669        absTime->tv_sec = now.tv_sec + secs;
5670        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5671        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5672          absTime->tv_nsec -= NANOSECS_PER_SEC;
5673          ++absTime->tv_sec; // note: this must be <= max_secs
5674        }
5675      }
5676    }
5677  } else {
5678    // must be relative using monotonic clock
5679    struct timespec now;
5680    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5681    assert_status(status == 0, status, "clock_gettime");
5682    max_secs = now.tv_sec + MAX_SECS;
5683    jlong secs = time / NANOSECS_PER_SEC;
5684    if (secs >= MAX_SECS) {
5685      absTime->tv_sec = max_secs;
5686      absTime->tv_nsec = 0;
5687    } else {
5688      absTime->tv_sec = now.tv_sec + secs;
5689      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5690      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5691        absTime->tv_nsec -= NANOSECS_PER_SEC;
5692        ++absTime->tv_sec; // note: this must be <= max_secs
5693      }
5694    }
5695  }
5696  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5697  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5698  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5699  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5700}
5701
5702void Parker::park(bool isAbsolute, jlong time) {
5703  // Ideally we'd do something useful while spinning, such
5704  // as calling unpackTime().
5705
5706  // Optional fast-path check:
5707  // Return immediately if a permit is available.
5708  // We depend on Atomic::xchg() having full barrier semantics
5709  // since we are doing a lock-free update to _counter.
5710  if (Atomic::xchg(0, &_counter) > 0) return;
5711
5712  Thread* thread = Thread::current();
5713  assert(thread->is_Java_thread(), "Must be JavaThread");
5714  JavaThread *jt = (JavaThread *)thread;
5715
5716  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5717  // Check interrupt before trying to wait
5718  if (Thread::is_interrupted(thread, false)) {
5719    return;
5720  }
5721
5722  // Next, demultiplex/decode time arguments
5723  timespec absTime;
5724  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5725    return;
5726  }
5727  if (time > 0) {
5728    unpackTime(&absTime, isAbsolute, time);
5729  }
5730
5731
5732  // Enter safepoint region
5733  // Beware of deadlocks such as 6317397.
5734  // The per-thread Parker:: mutex is a classic leaf-lock.
5735  // In particular a thread must never block on the Threads_lock while
5736  // holding the Parker:: mutex.  If safepoints are pending both the
5737  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5738  ThreadBlockInVM tbivm(jt);
5739
5740  // Don't wait if cannot get lock since interference arises from
5741  // unblocking.  Also. check interrupt before trying wait
5742  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5743    return;
5744  }
5745
5746  int status;
5747  if (_counter > 0)  { // no wait needed
5748    _counter = 0;
5749    status = pthread_mutex_unlock(_mutex);
5750    assert(status == 0, "invariant");
5751    // Paranoia to ensure our locked and lock-free paths interact
5752    // correctly with each other and Java-level accesses.
5753    OrderAccess::fence();
5754    return;
5755  }
5756
5757#ifdef ASSERT
5758  // Don't catch signals while blocked; let the running threads have the signals.
5759  // (This allows a debugger to break into the running thread.)
5760  sigset_t oldsigs;
5761  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5762  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5763#endif
5764
5765  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5766  jt->set_suspend_equivalent();
5767  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5768
5769  assert(_cur_index == -1, "invariant");
5770  if (time == 0) {
5771    _cur_index = REL_INDEX; // arbitrary choice when not timed
5772    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5773  } else {
5774    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5775    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5776    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5777      pthread_cond_destroy(&_cond[_cur_index]);
5778      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5779    }
5780  }
5781  _cur_index = -1;
5782  assert_status(status == 0 || status == EINTR ||
5783                status == ETIME || status == ETIMEDOUT,
5784                status, "cond_timedwait");
5785
5786#ifdef ASSERT
5787  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5788#endif
5789
5790  _counter = 0;
5791  status = pthread_mutex_unlock(_mutex);
5792  assert_status(status == 0, status, "invariant");
5793  // Paranoia to ensure our locked and lock-free paths interact
5794  // correctly with each other and Java-level accesses.
5795  OrderAccess::fence();
5796
5797  // If externally suspended while waiting, re-suspend
5798  if (jt->handle_special_suspend_equivalent_condition()) {
5799    jt->java_suspend_self();
5800  }
5801}
5802
5803void Parker::unpark() {
5804  int status = pthread_mutex_lock(_mutex);
5805  assert(status == 0, "invariant");
5806  const int s = _counter;
5807  _counter = 1;
5808  if (s < 1) {
5809    // thread might be parked
5810    if (_cur_index != -1) {
5811      // thread is definitely parked
5812      if (WorkAroundNPTLTimedWaitHang) {
5813        status = pthread_cond_signal(&_cond[_cur_index]);
5814        assert(status == 0, "invariant");
5815        status = pthread_mutex_unlock(_mutex);
5816        assert(status == 0, "invariant");
5817      } else {
5818        status = pthread_mutex_unlock(_mutex);
5819        assert(status == 0, "invariant");
5820        status = pthread_cond_signal(&_cond[_cur_index]);
5821        assert(status == 0, "invariant");
5822      }
5823    } else {
5824      pthread_mutex_unlock(_mutex);
5825      assert(status == 0, "invariant");
5826    }
5827  } else {
5828    pthread_mutex_unlock(_mutex);
5829    assert(status == 0, "invariant");
5830  }
5831}
5832
5833
5834extern char** environ;
5835
5836#ifndef __NR_fork
5837  #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57) AARCH64_ONLY(1079)
5838#endif
5839
5840#ifndef __NR_execve
5841  #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59) AARCH64_ONLY(221)
5842#endif
5843
5844// Run the specified command in a separate process. Return its exit value,
5845// or -1 on failure (e.g. can't fork a new process).
5846// Unlike system(), this function can be called from signal handler. It
5847// doesn't block SIGINT et al.
5848int os::fork_and_exec(char* cmd) {
5849  const char * argv[4] = {"sh", "-c", cmd, NULL};
5850
5851  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5852  // pthread_atfork handlers and reset pthread library. All we need is a
5853  // separate process to execve. Make a direct syscall to fork process.
5854  // On IA64 there's no fork syscall, we have to use fork() and hope for
5855  // the best...
5856  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5857  IA64_ONLY(fork();)
5858
5859  if (pid < 0) {
5860    // fork failed
5861    return -1;
5862
5863  } else if (pid == 0) {
5864    // child process
5865
5866    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5867    // first to kill every thread on the thread list. Because this list is
5868    // not reset by fork() (see notes above), execve() will instead kill
5869    // every thread in the parent process. We know this is the only thread
5870    // in the new process, so make a system call directly.
5871    // IA64 should use normal execve() from glibc to match the glibc fork()
5872    // above.
5873    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5874    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5875
5876    // execve failed
5877    _exit(-1);
5878
5879  } else  {
5880    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5881    // care about the actual exit code, for now.
5882
5883    int status;
5884
5885    // Wait for the child process to exit.  This returns immediately if
5886    // the child has already exited. */
5887    while (waitpid(pid, &status, 0) < 0) {
5888      switch (errno) {
5889      case ECHILD: return 0;
5890      case EINTR: break;
5891      default: return -1;
5892      }
5893    }
5894
5895    if (WIFEXITED(status)) {
5896      // The child exited normally; get its exit code.
5897      return WEXITSTATUS(status);
5898    } else if (WIFSIGNALED(status)) {
5899      // The child exited because of a signal
5900      // The best value to return is 0x80 + signal number,
5901      // because that is what all Unix shells do, and because
5902      // it allows callers to distinguish between process exit and
5903      // process death by signal.
5904      return 0x80 + WTERMSIG(status);
5905    } else {
5906      // Unknown exit code; pass it through
5907      return status;
5908    }
5909  }
5910}
5911
5912// is_headless_jre()
5913//
5914// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5915// in order to report if we are running in a headless jre
5916//
5917// Since JDK8 xawt/libmawt.so was moved into the same directory
5918// as libawt.so, and renamed libawt_xawt.so
5919//
5920bool os::is_headless_jre() {
5921  struct stat statbuf;
5922  char buf[MAXPATHLEN];
5923  char libmawtpath[MAXPATHLEN];
5924  const char *xawtstr  = "/xawt/libmawt.so";
5925  const char *new_xawtstr = "/libawt_xawt.so";
5926  char *p;
5927
5928  // Get path to libjvm.so
5929  os::jvm_path(buf, sizeof(buf));
5930
5931  // Get rid of libjvm.so
5932  p = strrchr(buf, '/');
5933  if (p == NULL) {
5934    return false;
5935  } else {
5936    *p = '\0';
5937  }
5938
5939  // Get rid of client or server
5940  p = strrchr(buf, '/');
5941  if (p == NULL) {
5942    return false;
5943  } else {
5944    *p = '\0';
5945  }
5946
5947  // check xawt/libmawt.so
5948  strcpy(libmawtpath, buf);
5949  strcat(libmawtpath, xawtstr);
5950  if (::stat(libmawtpath, &statbuf) == 0) return false;
5951
5952  // check libawt_xawt.so
5953  strcpy(libmawtpath, buf);
5954  strcat(libmawtpath, new_xawtstr);
5955  if (::stat(libmawtpath, &statbuf) == 0) return false;
5956
5957  return true;
5958}
5959
5960// Get the default path to the core file
5961// Returns the length of the string
5962int os::get_core_path(char* buffer, size_t bufferSize) {
5963  /*
5964   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5965   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5966   */
5967  const int core_pattern_len = 129;
5968  char core_pattern[core_pattern_len] = {0};
5969
5970  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5971  if (core_pattern_file != -1) {
5972    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5973    ::close(core_pattern_file);
5974
5975    if (ret > 0) {
5976      char *last_char = core_pattern + strlen(core_pattern) - 1;
5977
5978      if (*last_char == '\n') {
5979        *last_char = '\0';
5980      }
5981    }
5982  }
5983
5984  if (strlen(core_pattern) == 0) {
5985    return -1;
5986  }
5987
5988  char *pid_pos = strstr(core_pattern, "%p");
5989  int written;
5990
5991  if (core_pattern[0] == '/') {
5992    written = jio_snprintf(buffer, bufferSize, core_pattern);
5993  } else {
5994    char cwd[PATH_MAX];
5995
5996    const char* p = get_current_directory(cwd, PATH_MAX);
5997    if (p == NULL) {
5998      return -1;
5999    }
6000
6001    if (core_pattern[0] == '|') {
6002      written = jio_snprintf(buffer, bufferSize,
6003                        "\"%s\" (or dumping to %s/core.%d)",
6004                                     &core_pattern[1], p, current_process_id());
6005    } else {
6006      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6007    }
6008  }
6009
6010  if (written < 0) {
6011    return -1;
6012  }
6013
6014  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6015    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6016
6017    if (core_uses_pid_file != -1) {
6018      char core_uses_pid = 0;
6019      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6020      ::close(core_uses_pid_file);
6021
6022      if (core_uses_pid == '1') {
6023        jio_snprintf(buffer + written, bufferSize - written,
6024                                          ".%d", current_process_id());
6025      }
6026    }
6027  }
6028
6029  return strlen(buffer);
6030}
6031
6032/////////////// Unit tests ///////////////
6033
6034#ifndef PRODUCT
6035
6036#define test_log(...)              \
6037  do {                             \
6038    if (VerboseInternalVMTests) {  \
6039      tty->print_cr(__VA_ARGS__);  \
6040      tty->flush();                \
6041    }                              \
6042  } while (false)
6043
6044class TestReserveMemorySpecial : AllStatic {
6045 public:
6046  static void small_page_write(void* addr, size_t size) {
6047    size_t page_size = os::vm_page_size();
6048
6049    char* end = (char*)addr + size;
6050    for (char* p = (char*)addr; p < end; p += page_size) {
6051      *p = 1;
6052    }
6053  }
6054
6055  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6056    if (!UseHugeTLBFS) {
6057      return;
6058    }
6059
6060    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6061
6062    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6063
6064    if (addr != NULL) {
6065      small_page_write(addr, size);
6066
6067      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6068    }
6069  }
6070
6071  static void test_reserve_memory_special_huge_tlbfs_only() {
6072    if (!UseHugeTLBFS) {
6073      return;
6074    }
6075
6076    size_t lp = os::large_page_size();
6077
6078    for (size_t size = lp; size <= lp * 10; size += lp) {
6079      test_reserve_memory_special_huge_tlbfs_only(size);
6080    }
6081  }
6082
6083  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6084    if (!UseHugeTLBFS) {
6085      return;
6086    }
6087
6088    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6089             size, alignment);
6090
6091    assert(size >= os::large_page_size(), "Incorrect input to test");
6092
6093    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6094
6095    if (addr != NULL) {
6096      small_page_write(addr, size);
6097
6098      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6099    }
6100  }
6101
6102  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6103    size_t lp = os::large_page_size();
6104    size_t ag = os::vm_allocation_granularity();
6105
6106    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6107      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6108    }
6109  }
6110
6111  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6112    size_t lp = os::large_page_size();
6113    size_t ag = os::vm_allocation_granularity();
6114
6115    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6116    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6117    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6118    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6119    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6120    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6121    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6122    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6123    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6124  }
6125
6126  static void test_reserve_memory_special_huge_tlbfs() {
6127    if (!UseHugeTLBFS) {
6128      return;
6129    }
6130
6131    test_reserve_memory_special_huge_tlbfs_only();
6132    test_reserve_memory_special_huge_tlbfs_mixed();
6133  }
6134
6135  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6136    if (!UseSHM) {
6137      return;
6138    }
6139
6140    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6141
6142    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6143
6144    if (addr != NULL) {
6145      assert(is_ptr_aligned(addr, alignment), "Check");
6146      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6147
6148      small_page_write(addr, size);
6149
6150      os::Linux::release_memory_special_shm(addr, size);
6151    }
6152  }
6153
6154  static void test_reserve_memory_special_shm() {
6155    size_t lp = os::large_page_size();
6156    size_t ag = os::vm_allocation_granularity();
6157
6158    for (size_t size = ag; size < lp * 3; size += ag) {
6159      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6160        test_reserve_memory_special_shm(size, alignment);
6161      }
6162    }
6163  }
6164
6165  static void test() {
6166    test_reserve_memory_special_huge_tlbfs();
6167    test_reserve_memory_special_shm();
6168  }
6169};
6170
6171void TestReserveMemorySpecial_test() {
6172  TestReserveMemorySpecial::test();
6173}
6174
6175#endif
6176