os_linux.cpp revision 7890:f83851ae258e
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/macros.hpp"
72#include "utilities/vmError.hpp"
73
74// put OS-includes here
75# include <sys/types.h>
76# include <sys/mman.h>
77# include <sys/stat.h>
78# include <sys/select.h>
79# include <pthread.h>
80# include <signal.h>
81# include <errno.h>
82# include <dlfcn.h>
83# include <stdio.h>
84# include <unistd.h>
85# include <sys/resource.h>
86# include <pthread.h>
87# include <sys/stat.h>
88# include <sys/time.h>
89# include <sys/times.h>
90# include <sys/utsname.h>
91# include <sys/socket.h>
92# include <sys/wait.h>
93# include <pwd.h>
94# include <poll.h>
95# include <semaphore.h>
96# include <fcntl.h>
97# include <string.h>
98# include <syscall.h>
99# include <sys/sysinfo.h>
100# include <gnu/libc-version.h>
101# include <sys/ipc.h>
102# include <sys/shm.h>
103# include <link.h>
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107
108PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
109
110// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
111// getrusage() is prepared to handle the associated failure.
112#ifndef RUSAGE_THREAD
113  #define RUSAGE_THREAD   (1)               /* only the calling thread */
114#endif
115
116#define MAX_PATH    (2 * K)
117
118#define MAX_SECS 100000000
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123#define LARGEPAGES_BIT (1 << 6)
124////////////////////////////////////////////////////////////////////////////////
125// global variables
126julong os::Linux::_physical_memory = 0;
127
128address   os::Linux::_initial_thread_stack_bottom = NULL;
129uintptr_t os::Linux::_initial_thread_stack_size   = 0;
130
131int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
133int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
134Mutex* os::Linux::_createThread_lock = NULL;
135pthread_t os::Linux::_main_thread;
136int os::Linux::_page_size = -1;
137const int os::Linux::_vm_default_page_size = (8 * K);
138bool os::Linux::_is_floating_stack = false;
139bool os::Linux::_is_NPTL = false;
140bool os::Linux::_supports_fast_thread_cpu_time = false;
141const char * os::Linux::_glibc_version = NULL;
142const char * os::Linux::_libpthread_version = NULL;
143pthread_condattr_t os::Linux::_condattr[1];
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161// Used to protect dlsym() calls
162static pthread_mutex_t dl_mutex;
163
164// Declarations
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167// utility functions
168
169static int SR_initialize();
170
171julong os::available_memory() {
172  return Linux::available_memory();
173}
174
175julong os::Linux::available_memory() {
176  // values in struct sysinfo are "unsigned long"
177  struct sysinfo si;
178  sysinfo(&si);
179
180  return (julong)si.freeram * si.mem_unit;
181}
182
183julong os::physical_memory() {
184  return Linux::physical_memory();
185}
186
187////////////////////////////////////////////////////////////////////////////////
188// environment support
189
190bool os::getenv(const char* name, char* buf, int len) {
191  const char* val = ::getenv(name);
192  if (val != NULL && strlen(val) < (size_t)len) {
193    strcpy(buf, val);
194    return true;
195  }
196  if (len > 0) buf[0] = 0;  // return a null string
197  return false;
198}
199
200
201// Return true if user is running as root.
202
203bool os::have_special_privileges() {
204  static bool init = false;
205  static bool privileges = false;
206  if (!init) {
207    privileges = (getuid() != geteuid()) || (getgid() != getegid());
208    init = true;
209  }
210  return privileges;
211}
212
213
214#ifndef SYS_gettid
215// i386: 224, ia64: 1105, amd64: 186, sparc 143
216  #ifdef __ia64__
217    #define SYS_gettid 1105
218  #elif __i386__
219    #define SYS_gettid 224
220  #elif __amd64__
221    #define SYS_gettid 186
222  #elif __sparc__
223    #define SYS_gettid 143
224  #else
225    #error define gettid for the arch
226  #endif
227#endif
228
229// Cpu architecture string
230#if   defined(ZERO)
231static char cpu_arch[] = ZERO_LIBARCH;
232#elif defined(IA64)
233static char cpu_arch[] = "ia64";
234#elif defined(IA32)
235static char cpu_arch[] = "i386";
236#elif defined(AMD64)
237static char cpu_arch[] = "amd64";
238#elif defined(ARM)
239static char cpu_arch[] = "arm";
240#elif defined(PPC32)
241static char cpu_arch[] = "ppc";
242#elif defined(PPC64)
243static char cpu_arch[] = "ppc64";
244#elif defined(SPARC)
245  #ifdef _LP64
246static char cpu_arch[] = "sparcv9";
247  #else
248static char cpu_arch[] = "sparc";
249  #endif
250#elif defined(AARCH64)
251static char cpu_arch[] = "aarch64";
252#else
253  #error Add appropriate cpu_arch setting
254#endif
255
256
257// pid_t gettid()
258//
259// Returns the kernel thread id of the currently running thread. Kernel
260// thread id is used to access /proc.
261//
262// (Note that getpid() on LinuxThreads returns kernel thread id too; but
263// on NPTL, it returns the same pid for all threads, as required by POSIX.)
264//
265pid_t os::Linux::gettid() {
266  int rslt = syscall(SYS_gettid);
267  if (rslt == -1) {
268    // old kernel, no NPTL support
269    return getpid();
270  } else {
271    return (pid_t)rslt;
272  }
273}
274
275// Most versions of linux have a bug where the number of processors are
276// determined by looking at the /proc file system.  In a chroot environment,
277// the system call returns 1.  This causes the VM to act as if it is
278// a single processor and elide locking (see is_MP() call).
279static bool unsafe_chroot_detected = false;
280static const char *unstable_chroot_error = "/proc file system not found.\n"
281                     "Java may be unstable running multithreaded in a chroot "
282                     "environment on Linux when /proc filesystem is not mounted.";
283
284void os::Linux::initialize_system_info() {
285  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
286  if (processor_count() == 1) {
287    pid_t pid = os::Linux::gettid();
288    char fname[32];
289    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
290    FILE *fp = fopen(fname, "r");
291    if (fp == NULL) {
292      unsafe_chroot_detected = true;
293    } else {
294      fclose(fp);
295    }
296  }
297  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
298  assert(processor_count() > 0, "linux error");
299}
300
301void os::init_system_properties_values() {
302  // The next steps are taken in the product version:
303  //
304  // Obtain the JAVA_HOME value from the location of libjvm.so.
305  // This library should be located at:
306  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
307  //
308  // If "/jre/lib/" appears at the right place in the path, then we
309  // assume libjvm.so is installed in a JDK and we use this path.
310  //
311  // Otherwise exit with message: "Could not create the Java virtual machine."
312  //
313  // The following extra steps are taken in the debugging version:
314  //
315  // If "/jre/lib/" does NOT appear at the right place in the path
316  // instead of exit check for $JAVA_HOME environment variable.
317  //
318  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
319  // then we append a fake suffix "hotspot/libjvm.so" to this path so
320  // it looks like libjvm.so is installed there
321  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
322  //
323  // Otherwise exit.
324  //
325  // Important note: if the location of libjvm.so changes this
326  // code needs to be changed accordingly.
327
328  // See ld(1):
329  //      The linker uses the following search paths to locate required
330  //      shared libraries:
331  //        1: ...
332  //        ...
333  //        7: The default directories, normally /lib and /usr/lib.
334#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
335  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
336#else
337  #define DEFAULT_LIBPATH "/lib:/usr/lib"
338#endif
339
340// Base path of extensions installed on the system.
341#define SYS_EXT_DIR     "/usr/java/packages"
342#define EXTENSIONS_DIR  "/lib/ext"
343
344  // Buffer that fits several sprintfs.
345  // Note that the space for the colon and the trailing null are provided
346  // by the nulls included by the sizeof operator.
347  const size_t bufsize =
348    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
349         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
350  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
351
352  // sysclasspath, java_home, dll_dir
353  {
354    char *pslash;
355    os::jvm_path(buf, bufsize);
356
357    // Found the full path to libjvm.so.
358    // Now cut the path to <java_home>/jre if we can.
359    pslash = strrchr(buf, '/');
360    if (pslash != NULL) {
361      *pslash = '\0';            // Get rid of /libjvm.so.
362    }
363    pslash = strrchr(buf, '/');
364    if (pslash != NULL) {
365      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
366    }
367    Arguments::set_dll_dir(buf);
368
369    if (pslash != NULL) {
370      pslash = strrchr(buf, '/');
371      if (pslash != NULL) {
372        *pslash = '\0';          // Get rid of /<arch>.
373        pslash = strrchr(buf, '/');
374        if (pslash != NULL) {
375          *pslash = '\0';        // Get rid of /lib.
376        }
377      }
378    }
379    Arguments::set_java_home(buf);
380    set_boot_path('/', ':');
381  }
382
383  // Where to look for native libraries.
384  //
385  // Note: Due to a legacy implementation, most of the library path
386  // is set in the launcher. This was to accomodate linking restrictions
387  // on legacy Linux implementations (which are no longer supported).
388  // Eventually, all the library path setting will be done here.
389  //
390  // However, to prevent the proliferation of improperly built native
391  // libraries, the new path component /usr/java/packages is added here.
392  // Eventually, all the library path setting will be done here.
393  {
394    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
395    // should always exist (until the legacy problem cited above is
396    // addressed).
397    const char *v = ::getenv("LD_LIBRARY_PATH");
398    const char *v_colon = ":";
399    if (v == NULL) { v = ""; v_colon = ""; }
400    // That's +1 for the colon and +1 for the trailing '\0'.
401    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
402                                                     strlen(v) + 1 +
403                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
404                                                     mtInternal);
405    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
406    Arguments::set_library_path(ld_library_path);
407    FREE_C_HEAP_ARRAY(char, ld_library_path);
408  }
409
410  // Extensions directories.
411  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
412  Arguments::set_ext_dirs(buf);
413
414  FREE_C_HEAP_ARRAY(char, buf);
415
416#undef DEFAULT_LIBPATH
417#undef SYS_EXT_DIR
418#undef EXTENSIONS_DIR
419}
420
421////////////////////////////////////////////////////////////////////////////////
422// breakpoint support
423
424void os::breakpoint() {
425  BREAKPOINT;
426}
427
428extern "C" void breakpoint() {
429  // use debugger to set breakpoint here
430}
431
432////////////////////////////////////////////////////////////////////////////////
433// signal support
434
435debug_only(static bool signal_sets_initialized = false);
436static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
437
438bool os::Linux::is_sig_ignored(int sig) {
439  struct sigaction oact;
440  sigaction(sig, (struct sigaction*)NULL, &oact);
441  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
442                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
443  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
444    return true;
445  } else {
446    return false;
447  }
448}
449
450void os::Linux::signal_sets_init() {
451  // Should also have an assertion stating we are still single-threaded.
452  assert(!signal_sets_initialized, "Already initialized");
453  // Fill in signals that are necessarily unblocked for all threads in
454  // the VM. Currently, we unblock the following signals:
455  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
456  //                         by -Xrs (=ReduceSignalUsage));
457  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
458  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
459  // the dispositions or masks wrt these signals.
460  // Programs embedding the VM that want to use the above signals for their
461  // own purposes must, at this time, use the "-Xrs" option to prevent
462  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
463  // (See bug 4345157, and other related bugs).
464  // In reality, though, unblocking these signals is really a nop, since
465  // these signals are not blocked by default.
466  sigemptyset(&unblocked_sigs);
467  sigemptyset(&allowdebug_blocked_sigs);
468  sigaddset(&unblocked_sigs, SIGILL);
469  sigaddset(&unblocked_sigs, SIGSEGV);
470  sigaddset(&unblocked_sigs, SIGBUS);
471  sigaddset(&unblocked_sigs, SIGFPE);
472#if defined(PPC64)
473  sigaddset(&unblocked_sigs, SIGTRAP);
474#endif
475  sigaddset(&unblocked_sigs, SR_signum);
476
477  if (!ReduceSignalUsage) {
478    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
479      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
480      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
481    }
482    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
483      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
484      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
485    }
486    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
487      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
488      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
489    }
490  }
491  // Fill in signals that are blocked by all but the VM thread.
492  sigemptyset(&vm_sigs);
493  if (!ReduceSignalUsage) {
494    sigaddset(&vm_sigs, BREAK_SIGNAL);
495  }
496  debug_only(signal_sets_initialized = true);
497
498}
499
500// These are signals that are unblocked while a thread is running Java.
501// (For some reason, they get blocked by default.)
502sigset_t* os::Linux::unblocked_signals() {
503  assert(signal_sets_initialized, "Not initialized");
504  return &unblocked_sigs;
505}
506
507// These are the signals that are blocked while a (non-VM) thread is
508// running Java. Only the VM thread handles these signals.
509sigset_t* os::Linux::vm_signals() {
510  assert(signal_sets_initialized, "Not initialized");
511  return &vm_sigs;
512}
513
514// These are signals that are blocked during cond_wait to allow debugger in
515sigset_t* os::Linux::allowdebug_blocked_signals() {
516  assert(signal_sets_initialized, "Not initialized");
517  return &allowdebug_blocked_sigs;
518}
519
520void os::Linux::hotspot_sigmask(Thread* thread) {
521
522  //Save caller's signal mask before setting VM signal mask
523  sigset_t caller_sigmask;
524  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
525
526  OSThread* osthread = thread->osthread();
527  osthread->set_caller_sigmask(caller_sigmask);
528
529  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
530
531  if (!ReduceSignalUsage) {
532    if (thread->is_VM_thread()) {
533      // Only the VM thread handles BREAK_SIGNAL ...
534      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
535    } else {
536      // ... all other threads block BREAK_SIGNAL
537      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
538    }
539  }
540}
541
542//////////////////////////////////////////////////////////////////////////////
543// detecting pthread library
544
545void os::Linux::libpthread_init() {
546  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
547  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
548  // generic name for earlier versions.
549  // Define macros here so we can build HotSpot on old systems.
550#ifndef _CS_GNU_LIBC_VERSION
551  #define _CS_GNU_LIBC_VERSION 2
552#endif
553#ifndef _CS_GNU_LIBPTHREAD_VERSION
554  #define _CS_GNU_LIBPTHREAD_VERSION 3
555#endif
556
557  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
558  if (n > 0) {
559    char *str = (char *)malloc(n, mtInternal);
560    confstr(_CS_GNU_LIBC_VERSION, str, n);
561    os::Linux::set_glibc_version(str);
562  } else {
563    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
564    static char _gnu_libc_version[32];
565    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
566                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
567    os::Linux::set_glibc_version(_gnu_libc_version);
568  }
569
570  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
571  if (n > 0) {
572    char *str = (char *)malloc(n, mtInternal);
573    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
574    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
575    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
576    // is the case. LinuxThreads has a hard limit on max number of threads.
577    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
578    // On the other hand, NPTL does not have such a limit, sysconf()
579    // will return -1 and errno is not changed. Check if it is really NPTL.
580    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
581        strstr(str, "NPTL") &&
582        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
583      free(str);
584      os::Linux::set_libpthread_version("linuxthreads");
585    } else {
586      os::Linux::set_libpthread_version(str);
587    }
588  } else {
589    // glibc before 2.3.2 only has LinuxThreads.
590    os::Linux::set_libpthread_version("linuxthreads");
591  }
592
593  if (strstr(libpthread_version(), "NPTL")) {
594    os::Linux::set_is_NPTL();
595  } else {
596    os::Linux::set_is_LinuxThreads();
597  }
598
599  // LinuxThreads have two flavors: floating-stack mode, which allows variable
600  // stack size; and fixed-stack mode. NPTL is always floating-stack.
601  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
602    os::Linux::set_is_floating_stack();
603  }
604}
605
606/////////////////////////////////////////////////////////////////////////////
607// thread stack
608
609// Force Linux kernel to expand current thread stack. If "bottom" is close
610// to the stack guard, caller should block all signals.
611//
612// MAP_GROWSDOWN:
613//   A special mmap() flag that is used to implement thread stacks. It tells
614//   kernel that the memory region should extend downwards when needed. This
615//   allows early versions of LinuxThreads to only mmap the first few pages
616//   when creating a new thread. Linux kernel will automatically expand thread
617//   stack as needed (on page faults).
618//
619//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
620//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
621//   region, it's hard to tell if the fault is due to a legitimate stack
622//   access or because of reading/writing non-exist memory (e.g. buffer
623//   overrun). As a rule, if the fault happens below current stack pointer,
624//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
625//   application (see Linux kernel fault.c).
626//
627//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
628//   stack overflow detection.
629//
630//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
631//   not use this flag. However, the stack of initial thread is not created
632//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
633//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
634//   and then attach the thread to JVM.
635//
636// To get around the problem and allow stack banging on Linux, we need to
637// manually expand thread stack after receiving the SIGSEGV.
638//
639// There are two ways to expand thread stack to address "bottom", we used
640// both of them in JVM before 1.5:
641//   1. adjust stack pointer first so that it is below "bottom", and then
642//      touch "bottom"
643//   2. mmap() the page in question
644//
645// Now alternate signal stack is gone, it's harder to use 2. For instance,
646// if current sp is already near the lower end of page 101, and we need to
647// call mmap() to map page 100, it is possible that part of the mmap() frame
648// will be placed in page 100. When page 100 is mapped, it is zero-filled.
649// That will destroy the mmap() frame and cause VM to crash.
650//
651// The following code works by adjusting sp first, then accessing the "bottom"
652// page to force a page fault. Linux kernel will then automatically expand the
653// stack mapping.
654//
655// _expand_stack_to() assumes its frame size is less than page size, which
656// should always be true if the function is not inlined.
657
658#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
659  #define NOINLINE
660#else
661  #define NOINLINE __attribute__ ((noinline))
662#endif
663
664static void _expand_stack_to(address bottom) NOINLINE;
665
666static void _expand_stack_to(address bottom) {
667  address sp;
668  size_t size;
669  volatile char *p;
670
671  // Adjust bottom to point to the largest address within the same page, it
672  // gives us a one-page buffer if alloca() allocates slightly more memory.
673  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
674  bottom += os::Linux::page_size() - 1;
675
676  // sp might be slightly above current stack pointer; if that's the case, we
677  // will alloca() a little more space than necessary, which is OK. Don't use
678  // os::current_stack_pointer(), as its result can be slightly below current
679  // stack pointer, causing us to not alloca enough to reach "bottom".
680  sp = (address)&sp;
681
682  if (sp > bottom) {
683    size = sp - bottom;
684    p = (volatile char *)alloca(size);
685    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
686    p[0] = '\0';
687  }
688}
689
690bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
691  assert(t!=NULL, "just checking");
692  assert(t->osthread()->expanding_stack(), "expand should be set");
693  assert(t->stack_base() != NULL, "stack_base was not initialized");
694
695  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
696    sigset_t mask_all, old_sigset;
697    sigfillset(&mask_all);
698    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
699    _expand_stack_to(addr);
700    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
701    return true;
702  }
703  return false;
704}
705
706//////////////////////////////////////////////////////////////////////////////
707// create new thread
708
709static address highest_vm_reserved_address();
710
711// check if it's safe to start a new thread
712static bool _thread_safety_check(Thread* thread) {
713  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
714    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
715    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
716    //   allocated (MAP_FIXED) from high address space. Every thread stack
717    //   occupies a fixed size slot (usually 2Mbytes, but user can change
718    //   it to other values if they rebuild LinuxThreads).
719    //
720    // Problem with MAP_FIXED is that mmap() can still succeed even part of
721    // the memory region has already been mmap'ed. That means if we have too
722    // many threads and/or very large heap, eventually thread stack will
723    // collide with heap.
724    //
725    // Here we try to prevent heap/stack collision by comparing current
726    // stack bottom with the highest address that has been mmap'ed by JVM
727    // plus a safety margin for memory maps created by native code.
728    //
729    // This feature can be disabled by setting ThreadSafetyMargin to 0
730    //
731    if (ThreadSafetyMargin > 0) {
732      address stack_bottom = os::current_stack_base() - os::current_stack_size();
733
734      // not safe if our stack extends below the safety margin
735      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
736    } else {
737      return true;
738    }
739  } else {
740    // Floating stack LinuxThreads or NPTL:
741    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
742    //   there's not enough space left, pthread_create() will fail. If we come
743    //   here, that means enough space has been reserved for stack.
744    return true;
745  }
746}
747
748// Thread start routine for all newly created threads
749static void *java_start(Thread *thread) {
750  // Try to randomize the cache line index of hot stack frames.
751  // This helps when threads of the same stack traces evict each other's
752  // cache lines. The threads can be either from the same JVM instance, or
753  // from different JVM instances. The benefit is especially true for
754  // processors with hyperthreading technology.
755  static int counter = 0;
756  int pid = os::current_process_id();
757  alloca(((pid ^ counter++) & 7) * 128);
758
759  ThreadLocalStorage::set_thread(thread);
760
761  OSThread* osthread = thread->osthread();
762  Monitor* sync = osthread->startThread_lock();
763
764  // non floating stack LinuxThreads needs extra check, see above
765  if (!_thread_safety_check(thread)) {
766    // notify parent thread
767    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
768    osthread->set_state(ZOMBIE);
769    sync->notify_all();
770    return NULL;
771  }
772
773  // thread_id is kernel thread id (similar to Solaris LWP id)
774  osthread->set_thread_id(os::Linux::gettid());
775
776  if (UseNUMA) {
777    int lgrp_id = os::numa_get_group_id();
778    if (lgrp_id != -1) {
779      thread->set_lgrp_id(lgrp_id);
780    }
781  }
782  // initialize signal mask for this thread
783  os::Linux::hotspot_sigmask(thread);
784
785  // initialize floating point control register
786  os::Linux::init_thread_fpu_state();
787
788  // handshaking with parent thread
789  {
790    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
791
792    // notify parent thread
793    osthread->set_state(INITIALIZED);
794    sync->notify_all();
795
796    // wait until os::start_thread()
797    while (osthread->get_state() == INITIALIZED) {
798      sync->wait(Mutex::_no_safepoint_check_flag);
799    }
800  }
801
802  // call one more level start routine
803  thread->run();
804
805  return 0;
806}
807
808bool os::create_thread(Thread* thread, ThreadType thr_type,
809                       size_t stack_size) {
810  assert(thread->osthread() == NULL, "caller responsible");
811
812  // Allocate the OSThread object
813  OSThread* osthread = new OSThread(NULL, NULL);
814  if (osthread == NULL) {
815    return false;
816  }
817
818  // set the correct thread state
819  osthread->set_thread_type(thr_type);
820
821  // Initial state is ALLOCATED but not INITIALIZED
822  osthread->set_state(ALLOCATED);
823
824  thread->set_osthread(osthread);
825
826  // init thread attributes
827  pthread_attr_t attr;
828  pthread_attr_init(&attr);
829  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
830
831  // stack size
832  if (os::Linux::supports_variable_stack_size()) {
833    // calculate stack size if it's not specified by caller
834    if (stack_size == 0) {
835      stack_size = os::Linux::default_stack_size(thr_type);
836
837      switch (thr_type) {
838      case os::java_thread:
839        // Java threads use ThreadStackSize which default value can be
840        // changed with the flag -Xss
841        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
842        stack_size = JavaThread::stack_size_at_create();
843        break;
844      case os::compiler_thread:
845        if (CompilerThreadStackSize > 0) {
846          stack_size = (size_t)(CompilerThreadStackSize * K);
847          break;
848        } // else fall through:
849          // use VMThreadStackSize if CompilerThreadStackSize is not defined
850      case os::vm_thread:
851      case os::pgc_thread:
852      case os::cgc_thread:
853      case os::watcher_thread:
854        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
855        break;
856      }
857    }
858
859    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
860    pthread_attr_setstacksize(&attr, stack_size);
861  } else {
862    // let pthread_create() pick the default value.
863  }
864
865  // glibc guard page
866  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
867
868  ThreadState state;
869
870  {
871    // Serialize thread creation if we are running with fixed stack LinuxThreads
872    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
873    if (lock) {
874      os::Linux::createThread_lock()->lock_without_safepoint_check();
875    }
876
877    pthread_t tid;
878    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
879
880    pthread_attr_destroy(&attr);
881
882    if (ret != 0) {
883      if (PrintMiscellaneous && (Verbose || WizardMode)) {
884        perror("pthread_create()");
885      }
886      // Need to clean up stuff we've allocated so far
887      thread->set_osthread(NULL);
888      delete osthread;
889      if (lock) os::Linux::createThread_lock()->unlock();
890      return false;
891    }
892
893    // Store pthread info into the OSThread
894    osthread->set_pthread_id(tid);
895
896    // Wait until child thread is either initialized or aborted
897    {
898      Monitor* sync_with_child = osthread->startThread_lock();
899      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
900      while ((state = osthread->get_state()) == ALLOCATED) {
901        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
902      }
903    }
904
905    if (lock) {
906      os::Linux::createThread_lock()->unlock();
907    }
908  }
909
910  // Aborted due to thread limit being reached
911  if (state == ZOMBIE) {
912    thread->set_osthread(NULL);
913    delete osthread;
914    return false;
915  }
916
917  // The thread is returned suspended (in state INITIALIZED),
918  // and is started higher up in the call chain
919  assert(state == INITIALIZED, "race condition");
920  return true;
921}
922
923/////////////////////////////////////////////////////////////////////////////
924// attach existing thread
925
926// bootstrap the main thread
927bool os::create_main_thread(JavaThread* thread) {
928  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
929  return create_attached_thread(thread);
930}
931
932bool os::create_attached_thread(JavaThread* thread) {
933#ifdef ASSERT
934  thread->verify_not_published();
935#endif
936
937  // Allocate the OSThread object
938  OSThread* osthread = new OSThread(NULL, NULL);
939
940  if (osthread == NULL) {
941    return false;
942  }
943
944  // Store pthread info into the OSThread
945  osthread->set_thread_id(os::Linux::gettid());
946  osthread->set_pthread_id(::pthread_self());
947
948  // initialize floating point control register
949  os::Linux::init_thread_fpu_state();
950
951  // Initial thread state is RUNNABLE
952  osthread->set_state(RUNNABLE);
953
954  thread->set_osthread(osthread);
955
956  if (UseNUMA) {
957    int lgrp_id = os::numa_get_group_id();
958    if (lgrp_id != -1) {
959      thread->set_lgrp_id(lgrp_id);
960    }
961  }
962
963  if (os::Linux::is_initial_thread()) {
964    // If current thread is initial thread, its stack is mapped on demand,
965    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
966    // the entire stack region to avoid SEGV in stack banging.
967    // It is also useful to get around the heap-stack-gap problem on SuSE
968    // kernel (see 4821821 for details). We first expand stack to the top
969    // of yellow zone, then enable stack yellow zone (order is significant,
970    // enabling yellow zone first will crash JVM on SuSE Linux), so there
971    // is no gap between the last two virtual memory regions.
972
973    JavaThread *jt = (JavaThread *)thread;
974    address addr = jt->stack_yellow_zone_base();
975    assert(addr != NULL, "initialization problem?");
976    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
977
978    osthread->set_expanding_stack();
979    os::Linux::manually_expand_stack(jt, addr);
980    osthread->clear_expanding_stack();
981  }
982
983  // initialize signal mask for this thread
984  // and save the caller's signal mask
985  os::Linux::hotspot_sigmask(thread);
986
987  return true;
988}
989
990void os::pd_start_thread(Thread* thread) {
991  OSThread * osthread = thread->osthread();
992  assert(osthread->get_state() != INITIALIZED, "just checking");
993  Monitor* sync_with_child = osthread->startThread_lock();
994  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
995  sync_with_child->notify();
996}
997
998// Free Linux resources related to the OSThread
999void os::free_thread(OSThread* osthread) {
1000  assert(osthread != NULL, "osthread not set");
1001
1002  if (Thread::current()->osthread() == osthread) {
1003    // Restore caller's signal mask
1004    sigset_t sigmask = osthread->caller_sigmask();
1005    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1006  }
1007
1008  delete osthread;
1009}
1010
1011//////////////////////////////////////////////////////////////////////////////
1012// thread local storage
1013
1014// Restore the thread pointer if the destructor is called. This is in case
1015// someone from JNI code sets up a destructor with pthread_key_create to run
1016// detachCurrentThread on thread death. Unless we restore the thread pointer we
1017// will hang or crash. When detachCurrentThread is called the key will be set
1018// to null and we will not be called again. If detachCurrentThread is never
1019// called we could loop forever depending on the pthread implementation.
1020static void restore_thread_pointer(void* p) {
1021  Thread* thread = (Thread*) p;
1022  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1023}
1024
1025int os::allocate_thread_local_storage() {
1026  pthread_key_t key;
1027  int rslt = pthread_key_create(&key, restore_thread_pointer);
1028  assert(rslt == 0, "cannot allocate thread local storage");
1029  return (int)key;
1030}
1031
1032// Note: This is currently not used by VM, as we don't destroy TLS key
1033// on VM exit.
1034void os::free_thread_local_storage(int index) {
1035  int rslt = pthread_key_delete((pthread_key_t)index);
1036  assert(rslt == 0, "invalid index");
1037}
1038
1039void os::thread_local_storage_at_put(int index, void* value) {
1040  int rslt = pthread_setspecific((pthread_key_t)index, value);
1041  assert(rslt == 0, "pthread_setspecific failed");
1042}
1043
1044extern "C" Thread* get_thread() {
1045  return ThreadLocalStorage::thread();
1046}
1047
1048//////////////////////////////////////////////////////////////////////////////
1049// initial thread
1050
1051// Check if current thread is the initial thread, similar to Solaris thr_main.
1052bool os::Linux::is_initial_thread(void) {
1053  char dummy;
1054  // If called before init complete, thread stack bottom will be null.
1055  // Can be called if fatal error occurs before initialization.
1056  if (initial_thread_stack_bottom() == NULL) return false;
1057  assert(initial_thread_stack_bottom() != NULL &&
1058         initial_thread_stack_size()   != 0,
1059         "os::init did not locate initial thread's stack region");
1060  if ((address)&dummy >= initial_thread_stack_bottom() &&
1061      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1062    return true;
1063  } else {
1064    return false;
1065  }
1066}
1067
1068// Find the virtual memory area that contains addr
1069static bool find_vma(address addr, address* vma_low, address* vma_high) {
1070  FILE *fp = fopen("/proc/self/maps", "r");
1071  if (fp) {
1072    address low, high;
1073    while (!feof(fp)) {
1074      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1075        if (low <= addr && addr < high) {
1076          if (vma_low)  *vma_low  = low;
1077          if (vma_high) *vma_high = high;
1078          fclose(fp);
1079          return true;
1080        }
1081      }
1082      for (;;) {
1083        int ch = fgetc(fp);
1084        if (ch == EOF || ch == (int)'\n') break;
1085      }
1086    }
1087    fclose(fp);
1088  }
1089  return false;
1090}
1091
1092// Locate initial thread stack. This special handling of initial thread stack
1093// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1094// bogus value for initial thread.
1095void os::Linux::capture_initial_stack(size_t max_size) {
1096  // stack size is the easy part, get it from RLIMIT_STACK
1097  size_t stack_size;
1098  struct rlimit rlim;
1099  getrlimit(RLIMIT_STACK, &rlim);
1100  stack_size = rlim.rlim_cur;
1101
1102  // 6308388: a bug in ld.so will relocate its own .data section to the
1103  //   lower end of primordial stack; reduce ulimit -s value a little bit
1104  //   so we won't install guard page on ld.so's data section.
1105  stack_size -= 2 * page_size();
1106
1107  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1108  //   7.1, in both cases we will get 2G in return value.
1109  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1110  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1111  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1112  //   in case other parts in glibc still assumes 2M max stack size.
1113  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1114  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1115  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1116    stack_size = 2 * K * K IA64_ONLY(*2);
1117  }
1118  // Try to figure out where the stack base (top) is. This is harder.
1119  //
1120  // When an application is started, glibc saves the initial stack pointer in
1121  // a global variable "__libc_stack_end", which is then used by system
1122  // libraries. __libc_stack_end should be pretty close to stack top. The
1123  // variable is available since the very early days. However, because it is
1124  // a private interface, it could disappear in the future.
1125  //
1126  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1127  // to __libc_stack_end, it is very close to stack top, but isn't the real
1128  // stack top. Note that /proc may not exist if VM is running as a chroot
1129  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1130  // /proc/<pid>/stat could change in the future (though unlikely).
1131  //
1132  // We try __libc_stack_end first. If that doesn't work, look for
1133  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1134  // as a hint, which should work well in most cases.
1135
1136  uintptr_t stack_start;
1137
1138  // try __libc_stack_end first
1139  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1140  if (p && *p) {
1141    stack_start = *p;
1142  } else {
1143    // see if we can get the start_stack field from /proc/self/stat
1144    FILE *fp;
1145    int pid;
1146    char state;
1147    int ppid;
1148    int pgrp;
1149    int session;
1150    int nr;
1151    int tpgrp;
1152    unsigned long flags;
1153    unsigned long minflt;
1154    unsigned long cminflt;
1155    unsigned long majflt;
1156    unsigned long cmajflt;
1157    unsigned long utime;
1158    unsigned long stime;
1159    long cutime;
1160    long cstime;
1161    long prio;
1162    long nice;
1163    long junk;
1164    long it_real;
1165    uintptr_t start;
1166    uintptr_t vsize;
1167    intptr_t rss;
1168    uintptr_t rsslim;
1169    uintptr_t scodes;
1170    uintptr_t ecode;
1171    int i;
1172
1173    // Figure what the primordial thread stack base is. Code is inspired
1174    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1175    // followed by command name surrounded by parentheses, state, etc.
1176    char stat[2048];
1177    int statlen;
1178
1179    fp = fopen("/proc/self/stat", "r");
1180    if (fp) {
1181      statlen = fread(stat, 1, 2047, fp);
1182      stat[statlen] = '\0';
1183      fclose(fp);
1184
1185      // Skip pid and the command string. Note that we could be dealing with
1186      // weird command names, e.g. user could decide to rename java launcher
1187      // to "java 1.4.2 :)", then the stat file would look like
1188      //                1234 (java 1.4.2 :)) R ... ...
1189      // We don't really need to know the command string, just find the last
1190      // occurrence of ")" and then start parsing from there. See bug 4726580.
1191      char * s = strrchr(stat, ')');
1192
1193      i = 0;
1194      if (s) {
1195        // Skip blank chars
1196        do { s++; } while (s && isspace(*s));
1197
1198#define _UFM UINTX_FORMAT
1199#define _DFM INTX_FORMAT
1200
1201        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1202        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1203        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1204                   &state,          // 3  %c
1205                   &ppid,           // 4  %d
1206                   &pgrp,           // 5  %d
1207                   &session,        // 6  %d
1208                   &nr,             // 7  %d
1209                   &tpgrp,          // 8  %d
1210                   &flags,          // 9  %lu
1211                   &minflt,         // 10 %lu
1212                   &cminflt,        // 11 %lu
1213                   &majflt,         // 12 %lu
1214                   &cmajflt,        // 13 %lu
1215                   &utime,          // 14 %lu
1216                   &stime,          // 15 %lu
1217                   &cutime,         // 16 %ld
1218                   &cstime,         // 17 %ld
1219                   &prio,           // 18 %ld
1220                   &nice,           // 19 %ld
1221                   &junk,           // 20 %ld
1222                   &it_real,        // 21 %ld
1223                   &start,          // 22 UINTX_FORMAT
1224                   &vsize,          // 23 UINTX_FORMAT
1225                   &rss,            // 24 INTX_FORMAT
1226                   &rsslim,         // 25 UINTX_FORMAT
1227                   &scodes,         // 26 UINTX_FORMAT
1228                   &ecode,          // 27 UINTX_FORMAT
1229                   &stack_start);   // 28 UINTX_FORMAT
1230      }
1231
1232#undef _UFM
1233#undef _DFM
1234
1235      if (i != 28 - 2) {
1236        assert(false, "Bad conversion from /proc/self/stat");
1237        // product mode - assume we are the initial thread, good luck in the
1238        // embedded case.
1239        warning("Can't detect initial thread stack location - bad conversion");
1240        stack_start = (uintptr_t) &rlim;
1241      }
1242    } else {
1243      // For some reason we can't open /proc/self/stat (for example, running on
1244      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1245      // most cases, so don't abort:
1246      warning("Can't detect initial thread stack location - no /proc/self/stat");
1247      stack_start = (uintptr_t) &rlim;
1248    }
1249  }
1250
1251  // Now we have a pointer (stack_start) very close to the stack top, the
1252  // next thing to do is to figure out the exact location of stack top. We
1253  // can find out the virtual memory area that contains stack_start by
1254  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1255  // and its upper limit is the real stack top. (again, this would fail if
1256  // running inside chroot, because /proc may not exist.)
1257
1258  uintptr_t stack_top;
1259  address low, high;
1260  if (find_vma((address)stack_start, &low, &high)) {
1261    // success, "high" is the true stack top. (ignore "low", because initial
1262    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1263    stack_top = (uintptr_t)high;
1264  } else {
1265    // failed, likely because /proc/self/maps does not exist
1266    warning("Can't detect initial thread stack location - find_vma failed");
1267    // best effort: stack_start is normally within a few pages below the real
1268    // stack top, use it as stack top, and reduce stack size so we won't put
1269    // guard page outside stack.
1270    stack_top = stack_start;
1271    stack_size -= 16 * page_size();
1272  }
1273
1274  // stack_top could be partially down the page so align it
1275  stack_top = align_size_up(stack_top, page_size());
1276
1277  if (max_size && stack_size > max_size) {
1278    _initial_thread_stack_size = max_size;
1279  } else {
1280    _initial_thread_stack_size = stack_size;
1281  }
1282
1283  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1284  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1285}
1286
1287////////////////////////////////////////////////////////////////////////////////
1288// time support
1289
1290// Time since start-up in seconds to a fine granularity.
1291// Used by VMSelfDestructTimer and the MemProfiler.
1292double os::elapsedTime() {
1293
1294  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1295}
1296
1297jlong os::elapsed_counter() {
1298  return javaTimeNanos() - initial_time_count;
1299}
1300
1301jlong os::elapsed_frequency() {
1302  return NANOSECS_PER_SEC; // nanosecond resolution
1303}
1304
1305bool os::supports_vtime() { return true; }
1306bool os::enable_vtime()   { return false; }
1307bool os::vtime_enabled()  { return false; }
1308
1309double os::elapsedVTime() {
1310  struct rusage usage;
1311  int retval = getrusage(RUSAGE_THREAD, &usage);
1312  if (retval == 0) {
1313    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1314  } else {
1315    // better than nothing, but not much
1316    return elapsedTime();
1317  }
1318}
1319
1320jlong os::javaTimeMillis() {
1321  timeval time;
1322  int status = gettimeofday(&time, NULL);
1323  assert(status != -1, "linux error");
1324  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1325}
1326
1327void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1328  timeval time;
1329  int status = gettimeofday(&time, NULL);
1330  assert(status != -1, "linux error");
1331  seconds = jlong(time.tv_sec);
1332  nanos = jlong(time.tv_usec) * 1000;
1333}
1334
1335
1336#ifndef CLOCK_MONOTONIC
1337  #define CLOCK_MONOTONIC (1)
1338#endif
1339
1340void os::Linux::clock_init() {
1341  // we do dlopen's in this particular order due to bug in linux
1342  // dynamical loader (see 6348968) leading to crash on exit
1343  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1344  if (handle == NULL) {
1345    handle = dlopen("librt.so", RTLD_LAZY);
1346  }
1347
1348  if (handle) {
1349    int (*clock_getres_func)(clockid_t, struct timespec*) =
1350           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1351    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1352           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1353    if (clock_getres_func && clock_gettime_func) {
1354      // See if monotonic clock is supported by the kernel. Note that some
1355      // early implementations simply return kernel jiffies (updated every
1356      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1357      // for nano time (though the monotonic property is still nice to have).
1358      // It's fixed in newer kernels, however clock_getres() still returns
1359      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1360      // resolution for now. Hopefully as people move to new kernels, this
1361      // won't be a problem.
1362      struct timespec res;
1363      struct timespec tp;
1364      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1365          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1366        // yes, monotonic clock is supported
1367        _clock_gettime = clock_gettime_func;
1368        return;
1369      } else {
1370        // close librt if there is no monotonic clock
1371        dlclose(handle);
1372      }
1373    }
1374  }
1375  warning("No monotonic clock was available - timed services may " \
1376          "be adversely affected if the time-of-day clock changes");
1377}
1378
1379#ifndef SYS_clock_getres
1380  #if defined(IA32) || defined(AMD64)
1381    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1382    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1383  #else
1384    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1385    #define sys_clock_getres(x,y)  -1
1386  #endif
1387#else
1388  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1389#endif
1390
1391void os::Linux::fast_thread_clock_init() {
1392  if (!UseLinuxPosixThreadCPUClocks) {
1393    return;
1394  }
1395  clockid_t clockid;
1396  struct timespec tp;
1397  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1398      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1399
1400  // Switch to using fast clocks for thread cpu time if
1401  // the sys_clock_getres() returns 0 error code.
1402  // Note, that some kernels may support the current thread
1403  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1404  // returned by the pthread_getcpuclockid().
1405  // If the fast Posix clocks are supported then the sys_clock_getres()
1406  // must return at least tp.tv_sec == 0 which means a resolution
1407  // better than 1 sec. This is extra check for reliability.
1408
1409  if (pthread_getcpuclockid_func &&
1410      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1411      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1412    _supports_fast_thread_cpu_time = true;
1413    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1414  }
1415}
1416
1417jlong os::javaTimeNanos() {
1418  if (os::supports_monotonic_clock()) {
1419    struct timespec tp;
1420    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1421    assert(status == 0, "gettime error");
1422    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1423    return result;
1424  } else {
1425    timeval time;
1426    int status = gettimeofday(&time, NULL);
1427    assert(status != -1, "linux error");
1428    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1429    return 1000 * usecs;
1430  }
1431}
1432
1433void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1434  if (os::supports_monotonic_clock()) {
1435    info_ptr->max_value = ALL_64_BITS;
1436
1437    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1438    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1439    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1440  } else {
1441    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1442    info_ptr->max_value = ALL_64_BITS;
1443
1444    // gettimeofday is a real time clock so it skips
1445    info_ptr->may_skip_backward = true;
1446    info_ptr->may_skip_forward = true;
1447  }
1448
1449  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1450}
1451
1452// Return the real, user, and system times in seconds from an
1453// arbitrary fixed point in the past.
1454bool os::getTimesSecs(double* process_real_time,
1455                      double* process_user_time,
1456                      double* process_system_time) {
1457  struct tms ticks;
1458  clock_t real_ticks = times(&ticks);
1459
1460  if (real_ticks == (clock_t) (-1)) {
1461    return false;
1462  } else {
1463    double ticks_per_second = (double) clock_tics_per_sec;
1464    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1465    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1466    *process_real_time = ((double) real_ticks) / ticks_per_second;
1467
1468    return true;
1469  }
1470}
1471
1472
1473char * os::local_time_string(char *buf, size_t buflen) {
1474  struct tm t;
1475  time_t long_time;
1476  time(&long_time);
1477  localtime_r(&long_time, &t);
1478  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1479               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1480               t.tm_hour, t.tm_min, t.tm_sec);
1481  return buf;
1482}
1483
1484struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1485  return localtime_r(clock, res);
1486}
1487
1488////////////////////////////////////////////////////////////////////////////////
1489// runtime exit support
1490
1491// Note: os::shutdown() might be called very early during initialization, or
1492// called from signal handler. Before adding something to os::shutdown(), make
1493// sure it is async-safe and can handle partially initialized VM.
1494void os::shutdown() {
1495
1496  // allow PerfMemory to attempt cleanup of any persistent resources
1497  perfMemory_exit();
1498
1499  // needs to remove object in file system
1500  AttachListener::abort();
1501
1502  // flush buffered output, finish log files
1503  ostream_abort();
1504
1505  // Check for abort hook
1506  abort_hook_t abort_hook = Arguments::abort_hook();
1507  if (abort_hook != NULL) {
1508    abort_hook();
1509  }
1510
1511}
1512
1513// Note: os::abort() might be called very early during initialization, or
1514// called from signal handler. Before adding something to os::abort(), make
1515// sure it is async-safe and can handle partially initialized VM.
1516void os::abort(bool dump_core) {
1517  os::shutdown();
1518  if (dump_core) {
1519#ifndef PRODUCT
1520    fdStream out(defaultStream::output_fd());
1521    out.print_raw("Current thread is ");
1522    char buf[16];
1523    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1524    out.print_raw_cr(buf);
1525    out.print_raw_cr("Dumping core ...");
1526#endif
1527    ::abort(); // dump core
1528  }
1529
1530  ::exit(1);
1531}
1532
1533// Die immediately, no exit hook, no abort hook, no cleanup.
1534void os::die() {
1535  // _exit() on LinuxThreads only kills current thread
1536  ::abort();
1537}
1538
1539
1540// This method is a copy of JDK's sysGetLastErrorString
1541// from src/solaris/hpi/src/system_md.c
1542
1543size_t os::lasterror(char *buf, size_t len) {
1544  if (errno == 0)  return 0;
1545
1546  const char *s = ::strerror(errno);
1547  size_t n = ::strlen(s);
1548  if (n >= len) {
1549    n = len - 1;
1550  }
1551  ::strncpy(buf, s, n);
1552  buf[n] = '\0';
1553  return n;
1554}
1555
1556intx os::current_thread_id() { return (intx)pthread_self(); }
1557int os::current_process_id() {
1558
1559  // Under the old linux thread library, linux gives each thread
1560  // its own process id. Because of this each thread will return
1561  // a different pid if this method were to return the result
1562  // of getpid(2). Linux provides no api that returns the pid
1563  // of the launcher thread for the vm. This implementation
1564  // returns a unique pid, the pid of the launcher thread
1565  // that starts the vm 'process'.
1566
1567  // Under the NPTL, getpid() returns the same pid as the
1568  // launcher thread rather than a unique pid per thread.
1569  // Use gettid() if you want the old pre NPTL behaviour.
1570
1571  // if you are looking for the result of a call to getpid() that
1572  // returns a unique pid for the calling thread, then look at the
1573  // OSThread::thread_id() method in osThread_linux.hpp file
1574
1575  return (int)(_initial_pid ? _initial_pid : getpid());
1576}
1577
1578// DLL functions
1579
1580const char* os::dll_file_extension() { return ".so"; }
1581
1582// This must be hard coded because it's the system's temporary
1583// directory not the java application's temp directory, ala java.io.tmpdir.
1584const char* os::get_temp_directory() { return "/tmp"; }
1585
1586static bool file_exists(const char* filename) {
1587  struct stat statbuf;
1588  if (filename == NULL || strlen(filename) == 0) {
1589    return false;
1590  }
1591  return os::stat(filename, &statbuf) == 0;
1592}
1593
1594bool os::dll_build_name(char* buffer, size_t buflen,
1595                        const char* pname, const char* fname) {
1596  bool retval = false;
1597  // Copied from libhpi
1598  const size_t pnamelen = pname ? strlen(pname) : 0;
1599
1600  // Return error on buffer overflow.
1601  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1602    return retval;
1603  }
1604
1605  if (pnamelen == 0) {
1606    snprintf(buffer, buflen, "lib%s.so", fname);
1607    retval = true;
1608  } else if (strchr(pname, *os::path_separator()) != NULL) {
1609    int n;
1610    char** pelements = split_path(pname, &n);
1611    if (pelements == NULL) {
1612      return false;
1613    }
1614    for (int i = 0; i < n; i++) {
1615      // Really shouldn't be NULL, but check can't hurt
1616      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1617        continue; // skip the empty path values
1618      }
1619      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1620      if (file_exists(buffer)) {
1621        retval = true;
1622        break;
1623      }
1624    }
1625    // release the storage
1626    for (int i = 0; i < n; i++) {
1627      if (pelements[i] != NULL) {
1628        FREE_C_HEAP_ARRAY(char, pelements[i]);
1629      }
1630    }
1631    if (pelements != NULL) {
1632      FREE_C_HEAP_ARRAY(char*, pelements);
1633    }
1634  } else {
1635    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1636    retval = true;
1637  }
1638  return retval;
1639}
1640
1641// check if addr is inside libjvm.so
1642bool os::address_is_in_vm(address addr) {
1643  static address libjvm_base_addr;
1644  Dl_info dlinfo;
1645
1646  if (libjvm_base_addr == NULL) {
1647    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1648      libjvm_base_addr = (address)dlinfo.dli_fbase;
1649    }
1650    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1651  }
1652
1653  if (dladdr((void *)addr, &dlinfo) != 0) {
1654    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1655  }
1656
1657  return false;
1658}
1659
1660bool os::dll_address_to_function_name(address addr, char *buf,
1661                                      int buflen, int *offset) {
1662  // buf is not optional, but offset is optional
1663  assert(buf != NULL, "sanity check");
1664
1665  Dl_info dlinfo;
1666
1667  if (dladdr((void*)addr, &dlinfo) != 0) {
1668    // see if we have a matching symbol
1669    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1670      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1671        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1672      }
1673      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1674      return true;
1675    }
1676    // no matching symbol so try for just file info
1677    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1678      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1679                          buf, buflen, offset, dlinfo.dli_fname)) {
1680        return true;
1681      }
1682    }
1683  }
1684
1685  buf[0] = '\0';
1686  if (offset != NULL) *offset = -1;
1687  return false;
1688}
1689
1690struct _address_to_library_name {
1691  address addr;          // input : memory address
1692  size_t  buflen;        //         size of fname
1693  char*   fname;         // output: library name
1694  address base;          //         library base addr
1695};
1696
1697static int address_to_library_name_callback(struct dl_phdr_info *info,
1698                                            size_t size, void *data) {
1699  int i;
1700  bool found = false;
1701  address libbase = NULL;
1702  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1703
1704  // iterate through all loadable segments
1705  for (i = 0; i < info->dlpi_phnum; i++) {
1706    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1707    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1708      // base address of a library is the lowest address of its loaded
1709      // segments.
1710      if (libbase == NULL || libbase > segbase) {
1711        libbase = segbase;
1712      }
1713      // see if 'addr' is within current segment
1714      if (segbase <= d->addr &&
1715          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1716        found = true;
1717      }
1718    }
1719  }
1720
1721  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1722  // so dll_address_to_library_name() can fall through to use dladdr() which
1723  // can figure out executable name from argv[0].
1724  if (found && info->dlpi_name && info->dlpi_name[0]) {
1725    d->base = libbase;
1726    if (d->fname) {
1727      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1728    }
1729    return 1;
1730  }
1731  return 0;
1732}
1733
1734bool os::dll_address_to_library_name(address addr, char* buf,
1735                                     int buflen, int* offset) {
1736  // buf is not optional, but offset is optional
1737  assert(buf != NULL, "sanity check");
1738
1739  Dl_info dlinfo;
1740  struct _address_to_library_name data;
1741
1742  // There is a bug in old glibc dladdr() implementation that it could resolve
1743  // to wrong library name if the .so file has a base address != NULL. Here
1744  // we iterate through the program headers of all loaded libraries to find
1745  // out which library 'addr' really belongs to. This workaround can be
1746  // removed once the minimum requirement for glibc is moved to 2.3.x.
1747  data.addr = addr;
1748  data.fname = buf;
1749  data.buflen = buflen;
1750  data.base = NULL;
1751  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1752
1753  if (rslt) {
1754    // buf already contains library name
1755    if (offset) *offset = addr - data.base;
1756    return true;
1757  }
1758  if (dladdr((void*)addr, &dlinfo) != 0) {
1759    if (dlinfo.dli_fname != NULL) {
1760      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1761    }
1762    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1763      *offset = addr - (address)dlinfo.dli_fbase;
1764    }
1765    return true;
1766  }
1767
1768  buf[0] = '\0';
1769  if (offset) *offset = -1;
1770  return false;
1771}
1772
1773// Loads .dll/.so and
1774// in case of error it checks if .dll/.so was built for the
1775// same architecture as Hotspot is running on
1776
1777
1778// Remember the stack's state. The Linux dynamic linker will change
1779// the stack to 'executable' at most once, so we must safepoint only once.
1780bool os::Linux::_stack_is_executable = false;
1781
1782// VM operation that loads a library.  This is necessary if stack protection
1783// of the Java stacks can be lost during loading the library.  If we
1784// do not stop the Java threads, they can stack overflow before the stacks
1785// are protected again.
1786class VM_LinuxDllLoad: public VM_Operation {
1787 private:
1788  const char *_filename;
1789  char *_ebuf;
1790  int _ebuflen;
1791  void *_lib;
1792 public:
1793  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1794    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1795  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1796  void doit() {
1797    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1798    os::Linux::_stack_is_executable = true;
1799  }
1800  void* loaded_library() { return _lib; }
1801};
1802
1803void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1804  void * result = NULL;
1805  bool load_attempted = false;
1806
1807  // Check whether the library to load might change execution rights
1808  // of the stack. If they are changed, the protection of the stack
1809  // guard pages will be lost. We need a safepoint to fix this.
1810  //
1811  // See Linux man page execstack(8) for more info.
1812  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1813    ElfFile ef(filename);
1814    if (!ef.specifies_noexecstack()) {
1815      if (!is_init_completed()) {
1816        os::Linux::_stack_is_executable = true;
1817        // This is OK - No Java threads have been created yet, and hence no
1818        // stack guard pages to fix.
1819        //
1820        // This should happen only when you are building JDK7 using a very
1821        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1822        //
1823        // Dynamic loader will make all stacks executable after
1824        // this function returns, and will not do that again.
1825        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1826      } else {
1827        warning("You have loaded library %s which might have disabled stack guard. "
1828                "The VM will try to fix the stack guard now.\n"
1829                "It's highly recommended that you fix the library with "
1830                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1831                filename);
1832
1833        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1834        JavaThread *jt = JavaThread::current();
1835        if (jt->thread_state() != _thread_in_native) {
1836          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1837          // that requires ExecStack. Cannot enter safe point. Let's give up.
1838          warning("Unable to fix stack guard. Giving up.");
1839        } else {
1840          if (!LoadExecStackDllInVMThread) {
1841            // This is for the case where the DLL has an static
1842            // constructor function that executes JNI code. We cannot
1843            // load such DLLs in the VMThread.
1844            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1845          }
1846
1847          ThreadInVMfromNative tiv(jt);
1848          debug_only(VMNativeEntryWrapper vew;)
1849
1850          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1851          VMThread::execute(&op);
1852          if (LoadExecStackDllInVMThread) {
1853            result = op.loaded_library();
1854          }
1855          load_attempted = true;
1856        }
1857      }
1858    }
1859  }
1860
1861  if (!load_attempted) {
1862    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1863  }
1864
1865  if (result != NULL) {
1866    // Successful loading
1867    return result;
1868  }
1869
1870  Elf32_Ehdr elf_head;
1871  int diag_msg_max_length=ebuflen-strlen(ebuf);
1872  char* diag_msg_buf=ebuf+strlen(ebuf);
1873
1874  if (diag_msg_max_length==0) {
1875    // No more space in ebuf for additional diagnostics message
1876    return NULL;
1877  }
1878
1879
1880  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1881
1882  if (file_descriptor < 0) {
1883    // Can't open library, report dlerror() message
1884    return NULL;
1885  }
1886
1887  bool failed_to_read_elf_head=
1888    (sizeof(elf_head)!=
1889     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1890
1891  ::close(file_descriptor);
1892  if (failed_to_read_elf_head) {
1893    // file i/o error - report dlerror() msg
1894    return NULL;
1895  }
1896
1897  typedef struct {
1898    Elf32_Half  code;         // Actual value as defined in elf.h
1899    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1900    char        elf_class;    // 32 or 64 bit
1901    char        endianess;    // MSB or LSB
1902    char*       name;         // String representation
1903  } arch_t;
1904
1905#ifndef EM_486
1906  #define EM_486          6               /* Intel 80486 */
1907#endif
1908#ifndef EM_AARCH64
1909  #define EM_AARCH64    183               /* ARM AARCH64 */
1910#endif
1911
1912  static const arch_t arch_array[]={
1913    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1914    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1915    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1916    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1917    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1918    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1919    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1920    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1921#if defined(VM_LITTLE_ENDIAN)
1922    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1923#else
1924    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1925#endif
1926    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1927    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1928    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1929    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1930    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1931    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1932    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1933    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1934  };
1935
1936#if  (defined IA32)
1937  static  Elf32_Half running_arch_code=EM_386;
1938#elif   (defined AMD64)
1939  static  Elf32_Half running_arch_code=EM_X86_64;
1940#elif  (defined IA64)
1941  static  Elf32_Half running_arch_code=EM_IA_64;
1942#elif  (defined __sparc) && (defined _LP64)
1943  static  Elf32_Half running_arch_code=EM_SPARCV9;
1944#elif  (defined __sparc) && (!defined _LP64)
1945  static  Elf32_Half running_arch_code=EM_SPARC;
1946#elif  (defined __powerpc64__)
1947  static  Elf32_Half running_arch_code=EM_PPC64;
1948#elif  (defined __powerpc__)
1949  static  Elf32_Half running_arch_code=EM_PPC;
1950#elif  (defined ARM)
1951  static  Elf32_Half running_arch_code=EM_ARM;
1952#elif  (defined S390)
1953  static  Elf32_Half running_arch_code=EM_S390;
1954#elif  (defined ALPHA)
1955  static  Elf32_Half running_arch_code=EM_ALPHA;
1956#elif  (defined MIPSEL)
1957  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1958#elif  (defined PARISC)
1959  static  Elf32_Half running_arch_code=EM_PARISC;
1960#elif  (defined MIPS)
1961  static  Elf32_Half running_arch_code=EM_MIPS;
1962#elif  (defined M68K)
1963  static  Elf32_Half running_arch_code=EM_68K;
1964#elif  (defined AARCH64)
1965  static  Elf32_Half running_arch_code=EM_AARCH64;
1966#else
1967    #error Method os::dll_load requires that one of following is defined:\
1968         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1969#endif
1970
1971  // Identify compatability class for VM's architecture and library's architecture
1972  // Obtain string descriptions for architectures
1973
1974  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1975  int running_arch_index=-1;
1976
1977  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1978    if (running_arch_code == arch_array[i].code) {
1979      running_arch_index    = i;
1980    }
1981    if (lib_arch.code == arch_array[i].code) {
1982      lib_arch.compat_class = arch_array[i].compat_class;
1983      lib_arch.name         = arch_array[i].name;
1984    }
1985  }
1986
1987  assert(running_arch_index != -1,
1988         "Didn't find running architecture code (running_arch_code) in arch_array");
1989  if (running_arch_index == -1) {
1990    // Even though running architecture detection failed
1991    // we may still continue with reporting dlerror() message
1992    return NULL;
1993  }
1994
1995  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1996    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1997    return NULL;
1998  }
1999
2000#ifndef S390
2001  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2002    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2003    return NULL;
2004  }
2005#endif // !S390
2006
2007  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2008    if (lib_arch.name!=NULL) {
2009      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2010                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2011                 lib_arch.name, arch_array[running_arch_index].name);
2012    } else {
2013      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2014                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2015                 lib_arch.code,
2016                 arch_array[running_arch_index].name);
2017    }
2018  }
2019
2020  return NULL;
2021}
2022
2023void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2024                                int ebuflen) {
2025  void * result = ::dlopen(filename, RTLD_LAZY);
2026  if (result == NULL) {
2027    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2028    ebuf[ebuflen-1] = '\0';
2029  }
2030  return result;
2031}
2032
2033void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2034                                       int ebuflen) {
2035  void * result = NULL;
2036  if (LoadExecStackDllInVMThread) {
2037    result = dlopen_helper(filename, ebuf, ebuflen);
2038  }
2039
2040  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2041  // library that requires an executable stack, or which does not have this
2042  // stack attribute set, dlopen changes the stack attribute to executable. The
2043  // read protection of the guard pages gets lost.
2044  //
2045  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2046  // may have been queued at the same time.
2047
2048  if (!_stack_is_executable) {
2049    JavaThread *jt = Threads::first();
2050
2051    while (jt) {
2052      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2053          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2054        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2055                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2056          warning("Attempt to reguard stack yellow zone failed.");
2057        }
2058      }
2059      jt = jt->next();
2060    }
2061  }
2062
2063  return result;
2064}
2065
2066// glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2067// chances are you might want to run the generated bits against glibc-2.0
2068// libdl.so, so always use locking for any version of glibc.
2069//
2070void* os::dll_lookup(void* handle, const char* name) {
2071  pthread_mutex_lock(&dl_mutex);
2072  void* res = dlsym(handle, name);
2073  pthread_mutex_unlock(&dl_mutex);
2074  return res;
2075}
2076
2077void* os::get_default_process_handle() {
2078  return (void*)::dlopen(NULL, RTLD_LAZY);
2079}
2080
2081static bool _print_ascii_file(const char* filename, outputStream* st) {
2082  int fd = ::open(filename, O_RDONLY);
2083  if (fd == -1) {
2084    return false;
2085  }
2086
2087  char buf[32];
2088  int bytes;
2089  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2090    st->print_raw(buf, bytes);
2091  }
2092
2093  ::close(fd);
2094
2095  return true;
2096}
2097
2098void os::print_dll_info(outputStream *st) {
2099  st->print_cr("Dynamic libraries:");
2100
2101  char fname[32];
2102  pid_t pid = os::Linux::gettid();
2103
2104  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2105
2106  if (!_print_ascii_file(fname, st)) {
2107    st->print("Can not get library information for pid = %d\n", pid);
2108  }
2109}
2110
2111int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2112  FILE *procmapsFile = NULL;
2113
2114  // Open the procfs maps file for the current process
2115  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2116    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2117    char line[PATH_MAX + 100];
2118
2119    // Read line by line from 'file'
2120    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2121      u8 base, top, offset, inode;
2122      char permissions[5];
2123      char device[6];
2124      char name[PATH_MAX + 1];
2125
2126      // Parse fields from line
2127      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2128
2129      // Filter by device id '00:00' so that we only get file system mapped files.
2130      if (strcmp(device, "00:00") != 0) {
2131
2132        // Call callback with the fields of interest
2133        if(callback(name, (address)base, (address)top, param)) {
2134          // Oops abort, callback aborted
2135          fclose(procmapsFile);
2136          return 1;
2137        }
2138      }
2139    }
2140    fclose(procmapsFile);
2141  }
2142  return 0;
2143}
2144
2145void os::print_os_info_brief(outputStream* st) {
2146  os::Linux::print_distro_info(st);
2147
2148  os::Posix::print_uname_info(st);
2149
2150  os::Linux::print_libversion_info(st);
2151
2152}
2153
2154void os::print_os_info(outputStream* st) {
2155  st->print("OS:");
2156
2157  os::Linux::print_distro_info(st);
2158
2159  os::Posix::print_uname_info(st);
2160
2161  // Print warning if unsafe chroot environment detected
2162  if (unsafe_chroot_detected) {
2163    st->print("WARNING!! ");
2164    st->print_cr("%s", unstable_chroot_error);
2165  }
2166
2167  os::Linux::print_libversion_info(st);
2168
2169  os::Posix::print_rlimit_info(st);
2170
2171  os::Posix::print_load_average(st);
2172
2173  os::Linux::print_full_memory_info(st);
2174}
2175
2176// Try to identify popular distros.
2177// Most Linux distributions have a /etc/XXX-release file, which contains
2178// the OS version string. Newer Linux distributions have a /etc/lsb-release
2179// file that also contains the OS version string. Some have more than one
2180// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2181// /etc/redhat-release.), so the order is important.
2182// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2183// their own specific XXX-release file as well as a redhat-release file.
2184// Because of this the XXX-release file needs to be searched for before the
2185// redhat-release file.
2186// Since Red Hat has a lsb-release file that is not very descriptive the
2187// search for redhat-release needs to be before lsb-release.
2188// Since the lsb-release file is the new standard it needs to be searched
2189// before the older style release files.
2190// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2191// next to last resort.  The os-release file is a new standard that contains
2192// distribution information and the system-release file seems to be an old
2193// standard that has been replaced by the lsb-release and os-release files.
2194// Searching for the debian_version file is the last resort.  It contains
2195// an informative string like "6.0.6" or "wheezy/sid". Because of this
2196// "Debian " is printed before the contents of the debian_version file.
2197void os::Linux::print_distro_info(outputStream* st) {
2198  if (!_print_ascii_file("/etc/oracle-release", st) &&
2199      !_print_ascii_file("/etc/mandriva-release", st) &&
2200      !_print_ascii_file("/etc/mandrake-release", st) &&
2201      !_print_ascii_file("/etc/sun-release", st) &&
2202      !_print_ascii_file("/etc/redhat-release", st) &&
2203      !_print_ascii_file("/etc/lsb-release", st) &&
2204      !_print_ascii_file("/etc/SuSE-release", st) &&
2205      !_print_ascii_file("/etc/turbolinux-release", st) &&
2206      !_print_ascii_file("/etc/gentoo-release", st) &&
2207      !_print_ascii_file("/etc/ltib-release", st) &&
2208      !_print_ascii_file("/etc/angstrom-version", st) &&
2209      !_print_ascii_file("/etc/system-release", st) &&
2210      !_print_ascii_file("/etc/os-release", st)) {
2211
2212    if (file_exists("/etc/debian_version")) {
2213      st->print("Debian ");
2214      _print_ascii_file("/etc/debian_version", st);
2215    } else {
2216      st->print("Linux");
2217    }
2218  }
2219  st->cr();
2220}
2221
2222void os::Linux::print_libversion_info(outputStream* st) {
2223  // libc, pthread
2224  st->print("libc:");
2225  st->print("%s ", os::Linux::glibc_version());
2226  st->print("%s ", os::Linux::libpthread_version());
2227  if (os::Linux::is_LinuxThreads()) {
2228    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2229  }
2230  st->cr();
2231}
2232
2233void os::Linux::print_full_memory_info(outputStream* st) {
2234  st->print("\n/proc/meminfo:\n");
2235  _print_ascii_file("/proc/meminfo", st);
2236  st->cr();
2237}
2238
2239void os::print_memory_info(outputStream* st) {
2240
2241  st->print("Memory:");
2242  st->print(" %dk page", os::vm_page_size()>>10);
2243
2244  // values in struct sysinfo are "unsigned long"
2245  struct sysinfo si;
2246  sysinfo(&si);
2247
2248  st->print(", physical " UINT64_FORMAT "k",
2249            os::physical_memory() >> 10);
2250  st->print("(" UINT64_FORMAT "k free)",
2251            os::available_memory() >> 10);
2252  st->print(", swap " UINT64_FORMAT "k",
2253            ((jlong)si.totalswap * si.mem_unit) >> 10);
2254  st->print("(" UINT64_FORMAT "k free)",
2255            ((jlong)si.freeswap * si.mem_unit) >> 10);
2256  st->cr();
2257}
2258
2259void os::pd_print_cpu_info(outputStream* st) {
2260  st->print("\n/proc/cpuinfo:\n");
2261  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2262    st->print("  <Not Available>");
2263  }
2264  st->cr();
2265}
2266
2267void os::print_siginfo(outputStream* st, void* siginfo) {
2268  const siginfo_t* si = (const siginfo_t*)siginfo;
2269
2270  os::Posix::print_siginfo_brief(st, si);
2271#if INCLUDE_CDS
2272  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2273      UseSharedSpaces) {
2274    FileMapInfo* mapinfo = FileMapInfo::current_info();
2275    if (mapinfo->is_in_shared_space(si->si_addr)) {
2276      st->print("\n\nError accessing class data sharing archive."   \
2277                " Mapped file inaccessible during execution, "      \
2278                " possible disk/network problem.");
2279    }
2280  }
2281#endif
2282  st->cr();
2283}
2284
2285
2286static void print_signal_handler(outputStream* st, int sig,
2287                                 char* buf, size_t buflen);
2288
2289void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2290  st->print_cr("Signal Handlers:");
2291  print_signal_handler(st, SIGSEGV, buf, buflen);
2292  print_signal_handler(st, SIGBUS , buf, buflen);
2293  print_signal_handler(st, SIGFPE , buf, buflen);
2294  print_signal_handler(st, SIGPIPE, buf, buflen);
2295  print_signal_handler(st, SIGXFSZ, buf, buflen);
2296  print_signal_handler(st, SIGILL , buf, buflen);
2297  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2298  print_signal_handler(st, SR_signum, buf, buflen);
2299  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2300  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2301  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2302  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2303#if defined(PPC64)
2304  print_signal_handler(st, SIGTRAP, buf, buflen);
2305#endif
2306}
2307
2308static char saved_jvm_path[MAXPATHLEN] = {0};
2309
2310// Find the full path to the current module, libjvm.so
2311void os::jvm_path(char *buf, jint buflen) {
2312  // Error checking.
2313  if (buflen < MAXPATHLEN) {
2314    assert(false, "must use a large-enough buffer");
2315    buf[0] = '\0';
2316    return;
2317  }
2318  // Lazy resolve the path to current module.
2319  if (saved_jvm_path[0] != 0) {
2320    strcpy(buf, saved_jvm_path);
2321    return;
2322  }
2323
2324  char dli_fname[MAXPATHLEN];
2325  bool ret = dll_address_to_library_name(
2326                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2327                                         dli_fname, sizeof(dli_fname), NULL);
2328  assert(ret, "cannot locate libjvm");
2329  char *rp = NULL;
2330  if (ret && dli_fname[0] != '\0') {
2331    rp = realpath(dli_fname, buf);
2332  }
2333  if (rp == NULL) {
2334    return;
2335  }
2336
2337  if (Arguments::sun_java_launcher_is_altjvm()) {
2338    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2339    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2340    // If "/jre/lib/" appears at the right place in the string, then
2341    // assume we are installed in a JDK and we're done. Otherwise, check
2342    // for a JAVA_HOME environment variable and fix up the path so it
2343    // looks like libjvm.so is installed there (append a fake suffix
2344    // hotspot/libjvm.so).
2345    const char *p = buf + strlen(buf) - 1;
2346    for (int count = 0; p > buf && count < 5; ++count) {
2347      for (--p; p > buf && *p != '/'; --p)
2348        /* empty */ ;
2349    }
2350
2351    if (strncmp(p, "/jre/lib/", 9) != 0) {
2352      // Look for JAVA_HOME in the environment.
2353      char* java_home_var = ::getenv("JAVA_HOME");
2354      if (java_home_var != NULL && java_home_var[0] != 0) {
2355        char* jrelib_p;
2356        int len;
2357
2358        // Check the current module name "libjvm.so".
2359        p = strrchr(buf, '/');
2360        if (p == NULL) {
2361          return;
2362        }
2363        assert(strstr(p, "/libjvm") == p, "invalid library name");
2364
2365        rp = realpath(java_home_var, buf);
2366        if (rp == NULL) {
2367          return;
2368        }
2369
2370        // determine if this is a legacy image or modules image
2371        // modules image doesn't have "jre" subdirectory
2372        len = strlen(buf);
2373        assert(len < buflen, "Ran out of buffer room");
2374        jrelib_p = buf + len;
2375        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2376        if (0 != access(buf, F_OK)) {
2377          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2378        }
2379
2380        if (0 == access(buf, F_OK)) {
2381          // Use current module name "libjvm.so"
2382          len = strlen(buf);
2383          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2384        } else {
2385          // Go back to path of .so
2386          rp = realpath(dli_fname, buf);
2387          if (rp == NULL) {
2388            return;
2389          }
2390        }
2391      }
2392    }
2393  }
2394
2395  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2396  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2397}
2398
2399void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2400  // no prefix required, not even "_"
2401}
2402
2403void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2404  // no suffix required
2405}
2406
2407////////////////////////////////////////////////////////////////////////////////
2408// sun.misc.Signal support
2409
2410static volatile jint sigint_count = 0;
2411
2412static void UserHandler(int sig, void *siginfo, void *context) {
2413  // 4511530 - sem_post is serialized and handled by the manager thread. When
2414  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2415  // don't want to flood the manager thread with sem_post requests.
2416  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2417    return;
2418  }
2419
2420  // Ctrl-C is pressed during error reporting, likely because the error
2421  // handler fails to abort. Let VM die immediately.
2422  if (sig == SIGINT && is_error_reported()) {
2423    os::die();
2424  }
2425
2426  os::signal_notify(sig);
2427}
2428
2429void* os::user_handler() {
2430  return CAST_FROM_FN_PTR(void*, UserHandler);
2431}
2432
2433class Semaphore : public StackObj {
2434 public:
2435  Semaphore();
2436  ~Semaphore();
2437  void signal();
2438  void wait();
2439  bool trywait();
2440  bool timedwait(unsigned int sec, int nsec);
2441 private:
2442  sem_t _semaphore;
2443};
2444
2445Semaphore::Semaphore() {
2446  sem_init(&_semaphore, 0, 0);
2447}
2448
2449Semaphore::~Semaphore() {
2450  sem_destroy(&_semaphore);
2451}
2452
2453void Semaphore::signal() {
2454  sem_post(&_semaphore);
2455}
2456
2457void Semaphore::wait() {
2458  sem_wait(&_semaphore);
2459}
2460
2461bool Semaphore::trywait() {
2462  return sem_trywait(&_semaphore) == 0;
2463}
2464
2465bool Semaphore::timedwait(unsigned int sec, int nsec) {
2466
2467  struct timespec ts;
2468  // Semaphore's are always associated with CLOCK_REALTIME
2469  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2470  // see unpackTime for discussion on overflow checking
2471  if (sec >= MAX_SECS) {
2472    ts.tv_sec += MAX_SECS;
2473    ts.tv_nsec = 0;
2474  } else {
2475    ts.tv_sec += sec;
2476    ts.tv_nsec += nsec;
2477    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2478      ts.tv_nsec -= NANOSECS_PER_SEC;
2479      ++ts.tv_sec; // note: this must be <= max_secs
2480    }
2481  }
2482
2483  while (1) {
2484    int result = sem_timedwait(&_semaphore, &ts);
2485    if (result == 0) {
2486      return true;
2487    } else if (errno == EINTR) {
2488      continue;
2489    } else if (errno == ETIMEDOUT) {
2490      return false;
2491    } else {
2492      return false;
2493    }
2494  }
2495}
2496
2497extern "C" {
2498  typedef void (*sa_handler_t)(int);
2499  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2500}
2501
2502void* os::signal(int signal_number, void* handler) {
2503  struct sigaction sigAct, oldSigAct;
2504
2505  sigfillset(&(sigAct.sa_mask));
2506  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2507  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2508
2509  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2510    // -1 means registration failed
2511    return (void *)-1;
2512  }
2513
2514  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2515}
2516
2517void os::signal_raise(int signal_number) {
2518  ::raise(signal_number);
2519}
2520
2521// The following code is moved from os.cpp for making this
2522// code platform specific, which it is by its very nature.
2523
2524// Will be modified when max signal is changed to be dynamic
2525int os::sigexitnum_pd() {
2526  return NSIG;
2527}
2528
2529// a counter for each possible signal value
2530static volatile jint pending_signals[NSIG+1] = { 0 };
2531
2532// Linux(POSIX) specific hand shaking semaphore.
2533static sem_t sig_sem;
2534static Semaphore sr_semaphore;
2535
2536void os::signal_init_pd() {
2537  // Initialize signal structures
2538  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2539
2540  // Initialize signal semaphore
2541  ::sem_init(&sig_sem, 0, 0);
2542}
2543
2544void os::signal_notify(int sig) {
2545  Atomic::inc(&pending_signals[sig]);
2546  ::sem_post(&sig_sem);
2547}
2548
2549static int check_pending_signals(bool wait) {
2550  Atomic::store(0, &sigint_count);
2551  for (;;) {
2552    for (int i = 0; i < NSIG + 1; i++) {
2553      jint n = pending_signals[i];
2554      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2555        return i;
2556      }
2557    }
2558    if (!wait) {
2559      return -1;
2560    }
2561    JavaThread *thread = JavaThread::current();
2562    ThreadBlockInVM tbivm(thread);
2563
2564    bool threadIsSuspended;
2565    do {
2566      thread->set_suspend_equivalent();
2567      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2568      ::sem_wait(&sig_sem);
2569
2570      // were we externally suspended while we were waiting?
2571      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2572      if (threadIsSuspended) {
2573        // The semaphore has been incremented, but while we were waiting
2574        // another thread suspended us. We don't want to continue running
2575        // while suspended because that would surprise the thread that
2576        // suspended us.
2577        ::sem_post(&sig_sem);
2578
2579        thread->java_suspend_self();
2580      }
2581    } while (threadIsSuspended);
2582  }
2583}
2584
2585int os::signal_lookup() {
2586  return check_pending_signals(false);
2587}
2588
2589int os::signal_wait() {
2590  return check_pending_signals(true);
2591}
2592
2593////////////////////////////////////////////////////////////////////////////////
2594// Virtual Memory
2595
2596int os::vm_page_size() {
2597  // Seems redundant as all get out
2598  assert(os::Linux::page_size() != -1, "must call os::init");
2599  return os::Linux::page_size();
2600}
2601
2602// Solaris allocates memory by pages.
2603int os::vm_allocation_granularity() {
2604  assert(os::Linux::page_size() != -1, "must call os::init");
2605  return os::Linux::page_size();
2606}
2607
2608// Rationale behind this function:
2609//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2610//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2611//  samples for JITted code. Here we create private executable mapping over the code cache
2612//  and then we can use standard (well, almost, as mapping can change) way to provide
2613//  info for the reporting script by storing timestamp and location of symbol
2614void linux_wrap_code(char* base, size_t size) {
2615  static volatile jint cnt = 0;
2616
2617  if (!UseOprofile) {
2618    return;
2619  }
2620
2621  char buf[PATH_MAX+1];
2622  int num = Atomic::add(1, &cnt);
2623
2624  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2625           os::get_temp_directory(), os::current_process_id(), num);
2626  unlink(buf);
2627
2628  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2629
2630  if (fd != -1) {
2631    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2632    if (rv != (off_t)-1) {
2633      if (::write(fd, "", 1) == 1) {
2634        mmap(base, size,
2635             PROT_READ|PROT_WRITE|PROT_EXEC,
2636             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2637      }
2638    }
2639    ::close(fd);
2640    unlink(buf);
2641  }
2642}
2643
2644static bool recoverable_mmap_error(int err) {
2645  // See if the error is one we can let the caller handle. This
2646  // list of errno values comes from JBS-6843484. I can't find a
2647  // Linux man page that documents this specific set of errno
2648  // values so while this list currently matches Solaris, it may
2649  // change as we gain experience with this failure mode.
2650  switch (err) {
2651  case EBADF:
2652  case EINVAL:
2653  case ENOTSUP:
2654    // let the caller deal with these errors
2655    return true;
2656
2657  default:
2658    // Any remaining errors on this OS can cause our reserved mapping
2659    // to be lost. That can cause confusion where different data
2660    // structures think they have the same memory mapped. The worst
2661    // scenario is if both the VM and a library think they have the
2662    // same memory mapped.
2663    return false;
2664  }
2665}
2666
2667static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2668                                    int err) {
2669  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2670          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2671          strerror(err), err);
2672}
2673
2674static void warn_fail_commit_memory(char* addr, size_t size,
2675                                    size_t alignment_hint, bool exec,
2676                                    int err) {
2677  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2678          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2679          alignment_hint, exec, strerror(err), err);
2680}
2681
2682// NOTE: Linux kernel does not really reserve the pages for us.
2683//       All it does is to check if there are enough free pages
2684//       left at the time of mmap(). This could be a potential
2685//       problem.
2686int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2687  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2688  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2689                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2690  if (res != (uintptr_t) MAP_FAILED) {
2691    if (UseNUMAInterleaving) {
2692      numa_make_global(addr, size);
2693    }
2694    return 0;
2695  }
2696
2697  int err = errno;  // save errno from mmap() call above
2698
2699  if (!recoverable_mmap_error(err)) {
2700    warn_fail_commit_memory(addr, size, exec, err);
2701    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2702  }
2703
2704  return err;
2705}
2706
2707bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2708  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2709}
2710
2711void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2712                                  const char* mesg) {
2713  assert(mesg != NULL, "mesg must be specified");
2714  int err = os::Linux::commit_memory_impl(addr, size, exec);
2715  if (err != 0) {
2716    // the caller wants all commit errors to exit with the specified mesg:
2717    warn_fail_commit_memory(addr, size, exec, err);
2718    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2719  }
2720}
2721
2722// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2723#ifndef MAP_HUGETLB
2724  #define MAP_HUGETLB 0x40000
2725#endif
2726
2727// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2728#ifndef MADV_HUGEPAGE
2729  #define MADV_HUGEPAGE 14
2730#endif
2731
2732int os::Linux::commit_memory_impl(char* addr, size_t size,
2733                                  size_t alignment_hint, bool exec) {
2734  int err = os::Linux::commit_memory_impl(addr, size, exec);
2735  if (err == 0) {
2736    realign_memory(addr, size, alignment_hint);
2737  }
2738  return err;
2739}
2740
2741bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2742                          bool exec) {
2743  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2744}
2745
2746void os::pd_commit_memory_or_exit(char* addr, size_t size,
2747                                  size_t alignment_hint, bool exec,
2748                                  const char* mesg) {
2749  assert(mesg != NULL, "mesg must be specified");
2750  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2751  if (err != 0) {
2752    // the caller wants all commit errors to exit with the specified mesg:
2753    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2754    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2755  }
2756}
2757
2758void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2759  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2760    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2761    // be supported or the memory may already be backed by huge pages.
2762    ::madvise(addr, bytes, MADV_HUGEPAGE);
2763  }
2764}
2765
2766void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2767  // This method works by doing an mmap over an existing mmaping and effectively discarding
2768  // the existing pages. However it won't work for SHM-based large pages that cannot be
2769  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2770  // small pages on top of the SHM segment. This method always works for small pages, so we
2771  // allow that in any case.
2772  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2773    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2774  }
2775}
2776
2777void os::numa_make_global(char *addr, size_t bytes) {
2778  Linux::numa_interleave_memory(addr, bytes);
2779}
2780
2781// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2782// bind policy to MPOL_PREFERRED for the current thread.
2783#define USE_MPOL_PREFERRED 0
2784
2785void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2786  // To make NUMA and large pages more robust when both enabled, we need to ease
2787  // the requirements on where the memory should be allocated. MPOL_BIND is the
2788  // default policy and it will force memory to be allocated on the specified
2789  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2790  // the specified node, but will not force it. Using this policy will prevent
2791  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2792  // free large pages.
2793  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2794  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2795}
2796
2797bool os::numa_topology_changed() { return false; }
2798
2799size_t os::numa_get_groups_num() {
2800  int max_node = Linux::numa_max_node();
2801  return max_node > 0 ? max_node + 1 : 1;
2802}
2803
2804int os::numa_get_group_id() {
2805  int cpu_id = Linux::sched_getcpu();
2806  if (cpu_id != -1) {
2807    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2808    if (lgrp_id != -1) {
2809      return lgrp_id;
2810    }
2811  }
2812  return 0;
2813}
2814
2815size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2816  for (size_t i = 0; i < size; i++) {
2817    ids[i] = i;
2818  }
2819  return size;
2820}
2821
2822bool os::get_page_info(char *start, page_info* info) {
2823  return false;
2824}
2825
2826char *os::scan_pages(char *start, char* end, page_info* page_expected,
2827                     page_info* page_found) {
2828  return end;
2829}
2830
2831
2832int os::Linux::sched_getcpu_syscall(void) {
2833  unsigned int cpu;
2834  int retval = -1;
2835
2836#if defined(IA32)
2837  #ifndef SYS_getcpu
2838    #define SYS_getcpu 318
2839  #endif
2840  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2841#elif defined(AMD64)
2842// Unfortunately we have to bring all these macros here from vsyscall.h
2843// to be able to compile on old linuxes.
2844  #define __NR_vgetcpu 2
2845  #define VSYSCALL_START (-10UL << 20)
2846  #define VSYSCALL_SIZE 1024
2847  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2848  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2849  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2850  retval = vgetcpu(&cpu, NULL, NULL);
2851#endif
2852
2853  return (retval == -1) ? retval : cpu;
2854}
2855
2856// Something to do with the numa-aware allocator needs these symbols
2857extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2858extern "C" JNIEXPORT void numa_error(char *where) { }
2859extern "C" JNIEXPORT int fork1() { return fork(); }
2860
2861
2862// If we are running with libnuma version > 2, then we should
2863// be trying to use symbols with versions 1.1
2864// If we are running with earlier version, which did not have symbol versions,
2865// we should use the base version.
2866void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2867  void *f = dlvsym(handle, name, "libnuma_1.1");
2868  if (f == NULL) {
2869    f = dlsym(handle, name);
2870  }
2871  return f;
2872}
2873
2874bool os::Linux::libnuma_init() {
2875  // sched_getcpu() should be in libc.
2876  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2877                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2878
2879  // If it's not, try a direct syscall.
2880  if (sched_getcpu() == -1) {
2881    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2882                                    (void*)&sched_getcpu_syscall));
2883  }
2884
2885  if (sched_getcpu() != -1) { // Does it work?
2886    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2887    if (handle != NULL) {
2888      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2889                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2890      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2891                                       libnuma_dlsym(handle, "numa_max_node")));
2892      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2893                                        libnuma_dlsym(handle, "numa_available")));
2894      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2895                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2896      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2897                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2898      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2899                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2900
2901
2902      if (numa_available() != -1) {
2903        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2904        // Create a cpu -> node mapping
2905        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2906        rebuild_cpu_to_node_map();
2907        return true;
2908      }
2909    }
2910  }
2911  return false;
2912}
2913
2914// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2915// The table is later used in get_node_by_cpu().
2916void os::Linux::rebuild_cpu_to_node_map() {
2917  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2918                              // in libnuma (possible values are starting from 16,
2919                              // and continuing up with every other power of 2, but less
2920                              // than the maximum number of CPUs supported by kernel), and
2921                              // is a subject to change (in libnuma version 2 the requirements
2922                              // are more reasonable) we'll just hardcode the number they use
2923                              // in the library.
2924  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2925
2926  size_t cpu_num = os::active_processor_count();
2927  size_t cpu_map_size = NCPUS / BitsPerCLong;
2928  size_t cpu_map_valid_size =
2929    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2930
2931  cpu_to_node()->clear();
2932  cpu_to_node()->at_grow(cpu_num - 1);
2933  size_t node_num = numa_get_groups_num();
2934
2935  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2936  for (size_t i = 0; i < node_num; i++) {
2937    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2938      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2939        if (cpu_map[j] != 0) {
2940          for (size_t k = 0; k < BitsPerCLong; k++) {
2941            if (cpu_map[j] & (1UL << k)) {
2942              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2943            }
2944          }
2945        }
2946      }
2947    }
2948  }
2949  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2950}
2951
2952int os::Linux::get_node_by_cpu(int cpu_id) {
2953  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2954    return cpu_to_node()->at(cpu_id);
2955  }
2956  return -1;
2957}
2958
2959GrowableArray<int>* os::Linux::_cpu_to_node;
2960os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2961os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2962os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2963os::Linux::numa_available_func_t os::Linux::_numa_available;
2964os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2965os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2966os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2967unsigned long* os::Linux::_numa_all_nodes;
2968
2969bool os::pd_uncommit_memory(char* addr, size_t size) {
2970  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2971                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2972  return res  != (uintptr_t) MAP_FAILED;
2973}
2974
2975static address get_stack_commited_bottom(address bottom, size_t size) {
2976  address nbot = bottom;
2977  address ntop = bottom + size;
2978
2979  size_t page_sz = os::vm_page_size();
2980  unsigned pages = size / page_sz;
2981
2982  unsigned char vec[1];
2983  unsigned imin = 1, imax = pages + 1, imid;
2984  int mincore_return_value = 0;
2985
2986  assert(imin <= imax, "Unexpected page size");
2987
2988  while (imin < imax) {
2989    imid = (imax + imin) / 2;
2990    nbot = ntop - (imid * page_sz);
2991
2992    // Use a trick with mincore to check whether the page is mapped or not.
2993    // mincore sets vec to 1 if page resides in memory and to 0 if page
2994    // is swapped output but if page we are asking for is unmapped
2995    // it returns -1,ENOMEM
2996    mincore_return_value = mincore(nbot, page_sz, vec);
2997
2998    if (mincore_return_value == -1) {
2999      // Page is not mapped go up
3000      // to find first mapped page
3001      if (errno != EAGAIN) {
3002        assert(errno == ENOMEM, "Unexpected mincore errno");
3003        imax = imid;
3004      }
3005    } else {
3006      // Page is mapped go down
3007      // to find first not mapped page
3008      imin = imid + 1;
3009    }
3010  }
3011
3012  nbot = nbot + page_sz;
3013
3014  // Adjust stack bottom one page up if last checked page is not mapped
3015  if (mincore_return_value == -1) {
3016    nbot = nbot + page_sz;
3017  }
3018
3019  return nbot;
3020}
3021
3022
3023// Linux uses a growable mapping for the stack, and if the mapping for
3024// the stack guard pages is not removed when we detach a thread the
3025// stack cannot grow beyond the pages where the stack guard was
3026// mapped.  If at some point later in the process the stack expands to
3027// that point, the Linux kernel cannot expand the stack any further
3028// because the guard pages are in the way, and a segfault occurs.
3029//
3030// However, it's essential not to split the stack region by unmapping
3031// a region (leaving a hole) that's already part of the stack mapping,
3032// so if the stack mapping has already grown beyond the guard pages at
3033// the time we create them, we have to truncate the stack mapping.
3034// So, we need to know the extent of the stack mapping when
3035// create_stack_guard_pages() is called.
3036
3037// We only need this for stacks that are growable: at the time of
3038// writing thread stacks don't use growable mappings (i.e. those
3039// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3040// only applies to the main thread.
3041
3042// If the (growable) stack mapping already extends beyond the point
3043// where we're going to put our guard pages, truncate the mapping at
3044// that point by munmap()ping it.  This ensures that when we later
3045// munmap() the guard pages we don't leave a hole in the stack
3046// mapping. This only affects the main/initial thread
3047
3048bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3049  if (os::Linux::is_initial_thread()) {
3050    // As we manually grow stack up to bottom inside create_attached_thread(),
3051    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3052    // we don't need to do anything special.
3053    // Check it first, before calling heavy function.
3054    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3055    unsigned char vec[1];
3056
3057    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3058      // Fallback to slow path on all errors, including EAGAIN
3059      stack_extent = (uintptr_t) get_stack_commited_bottom(
3060                                                           os::Linux::initial_thread_stack_bottom(),
3061                                                           (size_t)addr - stack_extent);
3062    }
3063
3064    if (stack_extent < (uintptr_t)addr) {
3065      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3066    }
3067  }
3068
3069  return os::commit_memory(addr, size, !ExecMem);
3070}
3071
3072// If this is a growable mapping, remove the guard pages entirely by
3073// munmap()ping them.  If not, just call uncommit_memory(). This only
3074// affects the main/initial thread, but guard against future OS changes
3075// It's safe to always unmap guard pages for initial thread because we
3076// always place it right after end of the mapped region
3077
3078bool os::remove_stack_guard_pages(char* addr, size_t size) {
3079  uintptr_t stack_extent, stack_base;
3080
3081  if (os::Linux::is_initial_thread()) {
3082    return ::munmap(addr, size) == 0;
3083  }
3084
3085  return os::uncommit_memory(addr, size);
3086}
3087
3088static address _highest_vm_reserved_address = NULL;
3089
3090// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3091// at 'requested_addr'. If there are existing memory mappings at the same
3092// location, however, they will be overwritten. If 'fixed' is false,
3093// 'requested_addr' is only treated as a hint, the return value may or
3094// may not start from the requested address. Unlike Linux mmap(), this
3095// function returns NULL to indicate failure.
3096static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3097  char * addr;
3098  int flags;
3099
3100  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3101  if (fixed) {
3102    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3103    flags |= MAP_FIXED;
3104  }
3105
3106  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3107  // touch an uncommitted page. Otherwise, the read/write might
3108  // succeed if we have enough swap space to back the physical page.
3109  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3110                       flags, -1, 0);
3111
3112  if (addr != MAP_FAILED) {
3113    // anon_mmap() should only get called during VM initialization,
3114    // don't need lock (actually we can skip locking even it can be called
3115    // from multiple threads, because _highest_vm_reserved_address is just a
3116    // hint about the upper limit of non-stack memory regions.)
3117    if ((address)addr + bytes > _highest_vm_reserved_address) {
3118      _highest_vm_reserved_address = (address)addr + bytes;
3119    }
3120  }
3121
3122  return addr == MAP_FAILED ? NULL : addr;
3123}
3124
3125// Don't update _highest_vm_reserved_address, because there might be memory
3126// regions above addr + size. If so, releasing a memory region only creates
3127// a hole in the address space, it doesn't help prevent heap-stack collision.
3128//
3129static int anon_munmap(char * addr, size_t size) {
3130  return ::munmap(addr, size) == 0;
3131}
3132
3133char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3134                            size_t alignment_hint) {
3135  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3136}
3137
3138bool os::pd_release_memory(char* addr, size_t size) {
3139  return anon_munmap(addr, size);
3140}
3141
3142static address highest_vm_reserved_address() {
3143  return _highest_vm_reserved_address;
3144}
3145
3146static bool linux_mprotect(char* addr, size_t size, int prot) {
3147  // Linux wants the mprotect address argument to be page aligned.
3148  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3149
3150  // According to SUSv3, mprotect() should only be used with mappings
3151  // established by mmap(), and mmap() always maps whole pages. Unaligned
3152  // 'addr' likely indicates problem in the VM (e.g. trying to change
3153  // protection of malloc'ed or statically allocated memory). Check the
3154  // caller if you hit this assert.
3155  assert(addr == bottom, "sanity check");
3156
3157  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3158  return ::mprotect(bottom, size, prot) == 0;
3159}
3160
3161// Set protections specified
3162bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3163                        bool is_committed) {
3164  unsigned int p = 0;
3165  switch (prot) {
3166  case MEM_PROT_NONE: p = PROT_NONE; break;
3167  case MEM_PROT_READ: p = PROT_READ; break;
3168  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3169  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3170  default:
3171    ShouldNotReachHere();
3172  }
3173  // is_committed is unused.
3174  return linux_mprotect(addr, bytes, p);
3175}
3176
3177bool os::guard_memory(char* addr, size_t size) {
3178  return linux_mprotect(addr, size, PROT_NONE);
3179}
3180
3181bool os::unguard_memory(char* addr, size_t size) {
3182  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3183}
3184
3185bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3186                                                    size_t page_size) {
3187  bool result = false;
3188  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3189                 MAP_ANONYMOUS|MAP_PRIVATE,
3190                 -1, 0);
3191  if (p != MAP_FAILED) {
3192    void *aligned_p = align_ptr_up(p, page_size);
3193
3194    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3195
3196    munmap(p, page_size * 2);
3197  }
3198
3199  if (warn && !result) {
3200    warning("TransparentHugePages is not supported by the operating system.");
3201  }
3202
3203  return result;
3204}
3205
3206bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3207  bool result = false;
3208  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3209                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3210                 -1, 0);
3211
3212  if (p != MAP_FAILED) {
3213    // We don't know if this really is a huge page or not.
3214    FILE *fp = fopen("/proc/self/maps", "r");
3215    if (fp) {
3216      while (!feof(fp)) {
3217        char chars[257];
3218        long x = 0;
3219        if (fgets(chars, sizeof(chars), fp)) {
3220          if (sscanf(chars, "%lx-%*x", &x) == 1
3221              && x == (long)p) {
3222            if (strstr (chars, "hugepage")) {
3223              result = true;
3224              break;
3225            }
3226          }
3227        }
3228      }
3229      fclose(fp);
3230    }
3231    munmap(p, page_size);
3232  }
3233
3234  if (warn && !result) {
3235    warning("HugeTLBFS is not supported by the operating system.");
3236  }
3237
3238  return result;
3239}
3240
3241// Set the coredump_filter bits to include largepages in core dump (bit 6)
3242//
3243// From the coredump_filter documentation:
3244//
3245// - (bit 0) anonymous private memory
3246// - (bit 1) anonymous shared memory
3247// - (bit 2) file-backed private memory
3248// - (bit 3) file-backed shared memory
3249// - (bit 4) ELF header pages in file-backed private memory areas (it is
3250//           effective only if the bit 2 is cleared)
3251// - (bit 5) hugetlb private memory
3252// - (bit 6) hugetlb shared memory
3253//
3254static void set_coredump_filter(void) {
3255  FILE *f;
3256  long cdm;
3257
3258  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3259    return;
3260  }
3261
3262  if (fscanf(f, "%lx", &cdm) != 1) {
3263    fclose(f);
3264    return;
3265  }
3266
3267  rewind(f);
3268
3269  if ((cdm & LARGEPAGES_BIT) == 0) {
3270    cdm |= LARGEPAGES_BIT;
3271    fprintf(f, "%#lx", cdm);
3272  }
3273
3274  fclose(f);
3275}
3276
3277// Large page support
3278
3279static size_t _large_page_size = 0;
3280
3281size_t os::Linux::find_large_page_size() {
3282  size_t large_page_size = 0;
3283
3284  // large_page_size on Linux is used to round up heap size. x86 uses either
3285  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3286  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3287  // page as large as 256M.
3288  //
3289  // Here we try to figure out page size by parsing /proc/meminfo and looking
3290  // for a line with the following format:
3291  //    Hugepagesize:     2048 kB
3292  //
3293  // If we can't determine the value (e.g. /proc is not mounted, or the text
3294  // format has been changed), we'll use the largest page size supported by
3295  // the processor.
3296
3297#ifndef ZERO
3298  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3299                     ARM_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3300#endif // ZERO
3301
3302  FILE *fp = fopen("/proc/meminfo", "r");
3303  if (fp) {
3304    while (!feof(fp)) {
3305      int x = 0;
3306      char buf[16];
3307      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3308        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3309          large_page_size = x * K;
3310          break;
3311        }
3312      } else {
3313        // skip to next line
3314        for (;;) {
3315          int ch = fgetc(fp);
3316          if (ch == EOF || ch == (int)'\n') break;
3317        }
3318      }
3319    }
3320    fclose(fp);
3321  }
3322
3323  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3324    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3325            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3326            proper_unit_for_byte_size(large_page_size));
3327  }
3328
3329  return large_page_size;
3330}
3331
3332size_t os::Linux::setup_large_page_size() {
3333  _large_page_size = Linux::find_large_page_size();
3334  const size_t default_page_size = (size_t)Linux::page_size();
3335  if (_large_page_size > default_page_size) {
3336    _page_sizes[0] = _large_page_size;
3337    _page_sizes[1] = default_page_size;
3338    _page_sizes[2] = 0;
3339  }
3340
3341  return _large_page_size;
3342}
3343
3344bool os::Linux::setup_large_page_type(size_t page_size) {
3345  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3346      FLAG_IS_DEFAULT(UseSHM) &&
3347      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3348
3349    // The type of large pages has not been specified by the user.
3350
3351    // Try UseHugeTLBFS and then UseSHM.
3352    UseHugeTLBFS = UseSHM = true;
3353
3354    // Don't try UseTransparentHugePages since there are known
3355    // performance issues with it turned on. This might change in the future.
3356    UseTransparentHugePages = false;
3357  }
3358
3359  if (UseTransparentHugePages) {
3360    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3361    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3362      UseHugeTLBFS = false;
3363      UseSHM = false;
3364      return true;
3365    }
3366    UseTransparentHugePages = false;
3367  }
3368
3369  if (UseHugeTLBFS) {
3370    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3371    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3372      UseSHM = false;
3373      return true;
3374    }
3375    UseHugeTLBFS = false;
3376  }
3377
3378  return UseSHM;
3379}
3380
3381void os::large_page_init() {
3382  if (!UseLargePages &&
3383      !UseTransparentHugePages &&
3384      !UseHugeTLBFS &&
3385      !UseSHM) {
3386    // Not using large pages.
3387    return;
3388  }
3389
3390  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3391    // The user explicitly turned off large pages.
3392    // Ignore the rest of the large pages flags.
3393    UseTransparentHugePages = false;
3394    UseHugeTLBFS = false;
3395    UseSHM = false;
3396    return;
3397  }
3398
3399  size_t large_page_size = Linux::setup_large_page_size();
3400  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3401
3402  set_coredump_filter();
3403}
3404
3405#ifndef SHM_HUGETLB
3406  #define SHM_HUGETLB 04000
3407#endif
3408
3409char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3410                                            char* req_addr, bool exec) {
3411  // "exec" is passed in but not used.  Creating the shared image for
3412  // the code cache doesn't have an SHM_X executable permission to check.
3413  assert(UseLargePages && UseSHM, "only for SHM large pages");
3414  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3415
3416  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3417    return NULL; // Fallback to small pages.
3418  }
3419
3420  key_t key = IPC_PRIVATE;
3421  char *addr;
3422
3423  bool warn_on_failure = UseLargePages &&
3424                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3425                         !FLAG_IS_DEFAULT(UseSHM) ||
3426                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3427  char msg[128];
3428
3429  // Create a large shared memory region to attach to based on size.
3430  // Currently, size is the total size of the heap
3431  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3432  if (shmid == -1) {
3433    // Possible reasons for shmget failure:
3434    // 1. shmmax is too small for Java heap.
3435    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3436    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3437    // 2. not enough large page memory.
3438    //    > check available large pages: cat /proc/meminfo
3439    //    > increase amount of large pages:
3440    //          echo new_value > /proc/sys/vm/nr_hugepages
3441    //      Note 1: different Linux may use different name for this property,
3442    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3443    //      Note 2: it's possible there's enough physical memory available but
3444    //            they are so fragmented after a long run that they can't
3445    //            coalesce into large pages. Try to reserve large pages when
3446    //            the system is still "fresh".
3447    if (warn_on_failure) {
3448      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3449      warning("%s", msg);
3450    }
3451    return NULL;
3452  }
3453
3454  // attach to the region
3455  addr = (char*)shmat(shmid, req_addr, 0);
3456  int err = errno;
3457
3458  // Remove shmid. If shmat() is successful, the actual shared memory segment
3459  // will be deleted when it's detached by shmdt() or when the process
3460  // terminates. If shmat() is not successful this will remove the shared
3461  // segment immediately.
3462  shmctl(shmid, IPC_RMID, NULL);
3463
3464  if ((intptr_t)addr == -1) {
3465    if (warn_on_failure) {
3466      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3467      warning("%s", msg);
3468    }
3469    return NULL;
3470  }
3471
3472  return addr;
3473}
3474
3475static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3476                                        int error) {
3477  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3478
3479  bool warn_on_failure = UseLargePages &&
3480      (!FLAG_IS_DEFAULT(UseLargePages) ||
3481       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3482       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3483
3484  if (warn_on_failure) {
3485    char msg[128];
3486    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3487                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3488    warning("%s", msg);
3489  }
3490}
3491
3492char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3493                                                        char* req_addr,
3494                                                        bool exec) {
3495  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3496  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3497  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3498
3499  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3500  char* addr = (char*)::mmap(req_addr, bytes, prot,
3501                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3502                             -1, 0);
3503
3504  if (addr == MAP_FAILED) {
3505    warn_on_large_pages_failure(req_addr, bytes, errno);
3506    return NULL;
3507  }
3508
3509  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3510
3511  return addr;
3512}
3513
3514char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3515                                                         size_t alignment,
3516                                                         char* req_addr,
3517                                                         bool exec) {
3518  size_t large_page_size = os::large_page_size();
3519
3520  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3521
3522  // Allocate small pages.
3523
3524  char* start;
3525  if (req_addr != NULL) {
3526    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3527    assert(is_size_aligned(bytes, alignment), "Must be");
3528    start = os::reserve_memory(bytes, req_addr);
3529    assert(start == NULL || start == req_addr, "Must be");
3530  } else {
3531    start = os::reserve_memory_aligned(bytes, alignment);
3532  }
3533
3534  if (start == NULL) {
3535    return NULL;
3536  }
3537
3538  assert(is_ptr_aligned(start, alignment), "Must be");
3539
3540  if (MemTracker::tracking_level() > NMT_minimal) {
3541    // os::reserve_memory_special will record this memory area.
3542    // Need to release it here to prevent overlapping reservations.
3543    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3544    tkr.record((address)start, bytes);
3545  }
3546
3547  char* end = start + bytes;
3548
3549  // Find the regions of the allocated chunk that can be promoted to large pages.
3550  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3551  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3552
3553  size_t lp_bytes = lp_end - lp_start;
3554
3555  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3556
3557  if (lp_bytes == 0) {
3558    // The mapped region doesn't even span the start and the end of a large page.
3559    // Fall back to allocate a non-special area.
3560    ::munmap(start, end - start);
3561    return NULL;
3562  }
3563
3564  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3565
3566
3567  void* result;
3568
3569  if (start != lp_start) {
3570    result = ::mmap(start, lp_start - start, prot,
3571                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3572                    -1, 0);
3573    if (result == MAP_FAILED) {
3574      ::munmap(lp_start, end - lp_start);
3575      return NULL;
3576    }
3577  }
3578
3579  result = ::mmap(lp_start, lp_bytes, prot,
3580                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3581                  -1, 0);
3582  if (result == MAP_FAILED) {
3583    warn_on_large_pages_failure(req_addr, bytes, errno);
3584    // If the mmap above fails, the large pages region will be unmapped and we
3585    // have regions before and after with small pages. Release these regions.
3586    //
3587    // |  mapped  |  unmapped  |  mapped  |
3588    // ^          ^            ^          ^
3589    // start      lp_start     lp_end     end
3590    //
3591    ::munmap(start, lp_start - start);
3592    ::munmap(lp_end, end - lp_end);
3593    return NULL;
3594  }
3595
3596  if (lp_end != end) {
3597    result = ::mmap(lp_end, end - lp_end, prot,
3598                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3599                    -1, 0);
3600    if (result == MAP_FAILED) {
3601      ::munmap(start, lp_end - start);
3602      return NULL;
3603    }
3604  }
3605
3606  return start;
3607}
3608
3609char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3610                                                   size_t alignment,
3611                                                   char* req_addr,
3612                                                   bool exec) {
3613  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3614  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3615  assert(is_power_of_2(alignment), "Must be");
3616  assert(is_power_of_2(os::large_page_size()), "Must be");
3617  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3618
3619  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3620    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3621  } else {
3622    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3623  }
3624}
3625
3626char* os::reserve_memory_special(size_t bytes, size_t alignment,
3627                                 char* req_addr, bool exec) {
3628  assert(UseLargePages, "only for large pages");
3629
3630  char* addr;
3631  if (UseSHM) {
3632    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3633  } else {
3634    assert(UseHugeTLBFS, "must be");
3635    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3636  }
3637
3638  if (addr != NULL) {
3639    if (UseNUMAInterleaving) {
3640      numa_make_global(addr, bytes);
3641    }
3642
3643    // The memory is committed
3644    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3645  }
3646
3647  return addr;
3648}
3649
3650bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3651  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3652  return shmdt(base) == 0;
3653}
3654
3655bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3656  return pd_release_memory(base, bytes);
3657}
3658
3659bool os::release_memory_special(char* base, size_t bytes) {
3660  bool res;
3661  if (MemTracker::tracking_level() > NMT_minimal) {
3662    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3663    res = os::Linux::release_memory_special_impl(base, bytes);
3664    if (res) {
3665      tkr.record((address)base, bytes);
3666    }
3667
3668  } else {
3669    res = os::Linux::release_memory_special_impl(base, bytes);
3670  }
3671  return res;
3672}
3673
3674bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3675  assert(UseLargePages, "only for large pages");
3676  bool res;
3677
3678  if (UseSHM) {
3679    res = os::Linux::release_memory_special_shm(base, bytes);
3680  } else {
3681    assert(UseHugeTLBFS, "must be");
3682    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3683  }
3684  return res;
3685}
3686
3687size_t os::large_page_size() {
3688  return _large_page_size;
3689}
3690
3691// With SysV SHM the entire memory region must be allocated as shared
3692// memory.
3693// HugeTLBFS allows application to commit large page memory on demand.
3694// However, when committing memory with HugeTLBFS fails, the region
3695// that was supposed to be committed will lose the old reservation
3696// and allow other threads to steal that memory region. Because of this
3697// behavior we can't commit HugeTLBFS memory.
3698bool os::can_commit_large_page_memory() {
3699  return UseTransparentHugePages;
3700}
3701
3702bool os::can_execute_large_page_memory() {
3703  return UseTransparentHugePages || UseHugeTLBFS;
3704}
3705
3706// Reserve memory at an arbitrary address, only if that area is
3707// available (and not reserved for something else).
3708
3709char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3710  const int max_tries = 10;
3711  char* base[max_tries];
3712  size_t size[max_tries];
3713  const size_t gap = 0x000000;
3714
3715  // Assert only that the size is a multiple of the page size, since
3716  // that's all that mmap requires, and since that's all we really know
3717  // about at this low abstraction level.  If we need higher alignment,
3718  // we can either pass an alignment to this method or verify alignment
3719  // in one of the methods further up the call chain.  See bug 5044738.
3720  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3721
3722  // Repeatedly allocate blocks until the block is allocated at the
3723  // right spot. Give up after max_tries. Note that reserve_memory() will
3724  // automatically update _highest_vm_reserved_address if the call is
3725  // successful. The variable tracks the highest memory address every reserved
3726  // by JVM. It is used to detect heap-stack collision if running with
3727  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3728  // space than needed, it could confuse the collision detecting code. To
3729  // solve the problem, save current _highest_vm_reserved_address and
3730  // calculate the correct value before return.
3731  address old_highest = _highest_vm_reserved_address;
3732
3733  // Linux mmap allows caller to pass an address as hint; give it a try first,
3734  // if kernel honors the hint then we can return immediately.
3735  char * addr = anon_mmap(requested_addr, bytes, false);
3736  if (addr == requested_addr) {
3737    return requested_addr;
3738  }
3739
3740  if (addr != NULL) {
3741    // mmap() is successful but it fails to reserve at the requested address
3742    anon_munmap(addr, bytes);
3743  }
3744
3745  int i;
3746  for (i = 0; i < max_tries; ++i) {
3747    base[i] = reserve_memory(bytes);
3748
3749    if (base[i] != NULL) {
3750      // Is this the block we wanted?
3751      if (base[i] == requested_addr) {
3752        size[i] = bytes;
3753        break;
3754      }
3755
3756      // Does this overlap the block we wanted? Give back the overlapped
3757      // parts and try again.
3758
3759      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3760      if (top_overlap >= 0 && top_overlap < bytes) {
3761        unmap_memory(base[i], top_overlap);
3762        base[i] += top_overlap;
3763        size[i] = bytes - top_overlap;
3764      } else {
3765        size_t bottom_overlap = base[i] + bytes - requested_addr;
3766        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3767          unmap_memory(requested_addr, bottom_overlap);
3768          size[i] = bytes - bottom_overlap;
3769        } else {
3770          size[i] = bytes;
3771        }
3772      }
3773    }
3774  }
3775
3776  // Give back the unused reserved pieces.
3777
3778  for (int j = 0; j < i; ++j) {
3779    if (base[j] != NULL) {
3780      unmap_memory(base[j], size[j]);
3781    }
3782  }
3783
3784  if (i < max_tries) {
3785    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3786    return requested_addr;
3787  } else {
3788    _highest_vm_reserved_address = old_highest;
3789    return NULL;
3790  }
3791}
3792
3793size_t os::read(int fd, void *buf, unsigned int nBytes) {
3794  return ::read(fd, buf, nBytes);
3795}
3796
3797size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3798  return ::pread(fd, buf, nBytes, offset);
3799}
3800
3801// Short sleep, direct OS call.
3802//
3803// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3804// sched_yield(2) will actually give up the CPU:
3805//
3806//   * Alone on this pariticular CPU, keeps running.
3807//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3808//     (pre 2.6.39).
3809//
3810// So calling this with 0 is an alternative.
3811//
3812void os::naked_short_sleep(jlong ms) {
3813  struct timespec req;
3814
3815  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3816  req.tv_sec = 0;
3817  if (ms > 0) {
3818    req.tv_nsec = (ms % 1000) * 1000000;
3819  } else {
3820    req.tv_nsec = 1;
3821  }
3822
3823  nanosleep(&req, NULL);
3824
3825  return;
3826}
3827
3828// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3829void os::infinite_sleep() {
3830  while (true) {    // sleep forever ...
3831    ::sleep(100);   // ... 100 seconds at a time
3832  }
3833}
3834
3835// Used to convert frequent JVM_Yield() to nops
3836bool os::dont_yield() {
3837  return DontYieldALot;
3838}
3839
3840void os::naked_yield() {
3841  sched_yield();
3842}
3843
3844////////////////////////////////////////////////////////////////////////////////
3845// thread priority support
3846
3847// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3848// only supports dynamic priority, static priority must be zero. For real-time
3849// applications, Linux supports SCHED_RR which allows static priority (1-99).
3850// However, for large multi-threaded applications, SCHED_RR is not only slower
3851// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3852// of 5 runs - Sep 2005).
3853//
3854// The following code actually changes the niceness of kernel-thread/LWP. It
3855// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3856// not the entire user process, and user level threads are 1:1 mapped to kernel
3857// threads. It has always been the case, but could change in the future. For
3858// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3859// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3860
3861int os::java_to_os_priority[CriticalPriority + 1] = {
3862  19,              // 0 Entry should never be used
3863
3864   4,              // 1 MinPriority
3865   3,              // 2
3866   2,              // 3
3867
3868   1,              // 4
3869   0,              // 5 NormPriority
3870  -1,              // 6
3871
3872  -2,              // 7
3873  -3,              // 8
3874  -4,              // 9 NearMaxPriority
3875
3876  -5,              // 10 MaxPriority
3877
3878  -5               // 11 CriticalPriority
3879};
3880
3881static int prio_init() {
3882  if (ThreadPriorityPolicy == 1) {
3883    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3884    // if effective uid is not root. Perhaps, a more elegant way of doing
3885    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3886    if (geteuid() != 0) {
3887      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3888        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3889      }
3890      ThreadPriorityPolicy = 0;
3891    }
3892  }
3893  if (UseCriticalJavaThreadPriority) {
3894    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3895  }
3896  return 0;
3897}
3898
3899OSReturn os::set_native_priority(Thread* thread, int newpri) {
3900  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3901
3902  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3903  return (ret == 0) ? OS_OK : OS_ERR;
3904}
3905
3906OSReturn os::get_native_priority(const Thread* const thread,
3907                                 int *priority_ptr) {
3908  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3909    *priority_ptr = java_to_os_priority[NormPriority];
3910    return OS_OK;
3911  }
3912
3913  errno = 0;
3914  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3915  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3916}
3917
3918// Hint to the underlying OS that a task switch would not be good.
3919// Void return because it's a hint and can fail.
3920void os::hint_no_preempt() {}
3921
3922////////////////////////////////////////////////////////////////////////////////
3923// suspend/resume support
3924
3925//  the low-level signal-based suspend/resume support is a remnant from the
3926//  old VM-suspension that used to be for java-suspension, safepoints etc,
3927//  within hotspot. Now there is a single use-case for this:
3928//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3929//      that runs in the watcher thread.
3930//  The remaining code is greatly simplified from the more general suspension
3931//  code that used to be used.
3932//
3933//  The protocol is quite simple:
3934//  - suspend:
3935//      - sends a signal to the target thread
3936//      - polls the suspend state of the osthread using a yield loop
3937//      - target thread signal handler (SR_handler) sets suspend state
3938//        and blocks in sigsuspend until continued
3939//  - resume:
3940//      - sets target osthread state to continue
3941//      - sends signal to end the sigsuspend loop in the SR_handler
3942//
3943//  Note that the SR_lock plays no role in this suspend/resume protocol.
3944
3945static void resume_clear_context(OSThread *osthread) {
3946  osthread->set_ucontext(NULL);
3947  osthread->set_siginfo(NULL);
3948}
3949
3950static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3951                                 ucontext_t* context) {
3952  osthread->set_ucontext(context);
3953  osthread->set_siginfo(siginfo);
3954}
3955
3956// Handler function invoked when a thread's execution is suspended or
3957// resumed. We have to be careful that only async-safe functions are
3958// called here (Note: most pthread functions are not async safe and
3959// should be avoided.)
3960//
3961// Note: sigwait() is a more natural fit than sigsuspend() from an
3962// interface point of view, but sigwait() prevents the signal hander
3963// from being run. libpthread would get very confused by not having
3964// its signal handlers run and prevents sigwait()'s use with the
3965// mutex granting granting signal.
3966//
3967// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3968//
3969static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3970  // Save and restore errno to avoid confusing native code with EINTR
3971  // after sigsuspend.
3972  int old_errno = errno;
3973
3974  Thread* thread = Thread::current();
3975  OSThread* osthread = thread->osthread();
3976  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3977
3978  os::SuspendResume::State current = osthread->sr.state();
3979  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3980    suspend_save_context(osthread, siginfo, context);
3981
3982    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3983    os::SuspendResume::State state = osthread->sr.suspended();
3984    if (state == os::SuspendResume::SR_SUSPENDED) {
3985      sigset_t suspend_set;  // signals for sigsuspend()
3986
3987      // get current set of blocked signals and unblock resume signal
3988      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3989      sigdelset(&suspend_set, SR_signum);
3990
3991      sr_semaphore.signal();
3992      // wait here until we are resumed
3993      while (1) {
3994        sigsuspend(&suspend_set);
3995
3996        os::SuspendResume::State result = osthread->sr.running();
3997        if (result == os::SuspendResume::SR_RUNNING) {
3998          sr_semaphore.signal();
3999          break;
4000        }
4001      }
4002
4003    } else if (state == os::SuspendResume::SR_RUNNING) {
4004      // request was cancelled, continue
4005    } else {
4006      ShouldNotReachHere();
4007    }
4008
4009    resume_clear_context(osthread);
4010  } else if (current == os::SuspendResume::SR_RUNNING) {
4011    // request was cancelled, continue
4012  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4013    // ignore
4014  } else {
4015    // ignore
4016  }
4017
4018  errno = old_errno;
4019}
4020
4021
4022static int SR_initialize() {
4023  struct sigaction act;
4024  char *s;
4025  // Get signal number to use for suspend/resume
4026  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4027    int sig = ::strtol(s, 0, 10);
4028    if (sig > 0 || sig < _NSIG) {
4029      SR_signum = sig;
4030    }
4031  }
4032
4033  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4034         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4035
4036  sigemptyset(&SR_sigset);
4037  sigaddset(&SR_sigset, SR_signum);
4038
4039  // Set up signal handler for suspend/resume
4040  act.sa_flags = SA_RESTART|SA_SIGINFO;
4041  act.sa_handler = (void (*)(int)) SR_handler;
4042
4043  // SR_signum is blocked by default.
4044  // 4528190 - We also need to block pthread restart signal (32 on all
4045  // supported Linux platforms). Note that LinuxThreads need to block
4046  // this signal for all threads to work properly. So we don't have
4047  // to use hard-coded signal number when setting up the mask.
4048  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4049
4050  if (sigaction(SR_signum, &act, 0) == -1) {
4051    return -1;
4052  }
4053
4054  // Save signal flag
4055  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4056  return 0;
4057}
4058
4059static int sr_notify(OSThread* osthread) {
4060  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4061  assert_status(status == 0, status, "pthread_kill");
4062  return status;
4063}
4064
4065// "Randomly" selected value for how long we want to spin
4066// before bailing out on suspending a thread, also how often
4067// we send a signal to a thread we want to resume
4068static const int RANDOMLY_LARGE_INTEGER = 1000000;
4069static const int RANDOMLY_LARGE_INTEGER2 = 100;
4070
4071// returns true on success and false on error - really an error is fatal
4072// but this seems the normal response to library errors
4073static bool do_suspend(OSThread* osthread) {
4074  assert(osthread->sr.is_running(), "thread should be running");
4075  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4076
4077  // mark as suspended and send signal
4078  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4079    // failed to switch, state wasn't running?
4080    ShouldNotReachHere();
4081    return false;
4082  }
4083
4084  if (sr_notify(osthread) != 0) {
4085    ShouldNotReachHere();
4086  }
4087
4088  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4089  while (true) {
4090    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4091      break;
4092    } else {
4093      // timeout
4094      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4095      if (cancelled == os::SuspendResume::SR_RUNNING) {
4096        return false;
4097      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4098        // make sure that we consume the signal on the semaphore as well
4099        sr_semaphore.wait();
4100        break;
4101      } else {
4102        ShouldNotReachHere();
4103        return false;
4104      }
4105    }
4106  }
4107
4108  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4109  return true;
4110}
4111
4112static void do_resume(OSThread* osthread) {
4113  assert(osthread->sr.is_suspended(), "thread should be suspended");
4114  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4115
4116  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4117    // failed to switch to WAKEUP_REQUEST
4118    ShouldNotReachHere();
4119    return;
4120  }
4121
4122  while (true) {
4123    if (sr_notify(osthread) == 0) {
4124      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4125        if (osthread->sr.is_running()) {
4126          return;
4127        }
4128      }
4129    } else {
4130      ShouldNotReachHere();
4131    }
4132  }
4133
4134  guarantee(osthread->sr.is_running(), "Must be running!");
4135}
4136
4137///////////////////////////////////////////////////////////////////////////////////
4138// signal handling (except suspend/resume)
4139
4140// This routine may be used by user applications as a "hook" to catch signals.
4141// The user-defined signal handler must pass unrecognized signals to this
4142// routine, and if it returns true (non-zero), then the signal handler must
4143// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4144// routine will never retun false (zero), but instead will execute a VM panic
4145// routine kill the process.
4146//
4147// If this routine returns false, it is OK to call it again.  This allows
4148// the user-defined signal handler to perform checks either before or after
4149// the VM performs its own checks.  Naturally, the user code would be making
4150// a serious error if it tried to handle an exception (such as a null check
4151// or breakpoint) that the VM was generating for its own correct operation.
4152//
4153// This routine may recognize any of the following kinds of signals:
4154//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4155// It should be consulted by handlers for any of those signals.
4156//
4157// The caller of this routine must pass in the three arguments supplied
4158// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4159// field of the structure passed to sigaction().  This routine assumes that
4160// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4161//
4162// Note that the VM will print warnings if it detects conflicting signal
4163// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4164//
4165extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4166                                                 siginfo_t* siginfo,
4167                                                 void* ucontext,
4168                                                 int abort_if_unrecognized);
4169
4170void signalHandler(int sig, siginfo_t* info, void* uc) {
4171  assert(info != NULL && uc != NULL, "it must be old kernel");
4172  int orig_errno = errno;  // Preserve errno value over signal handler.
4173  JVM_handle_linux_signal(sig, info, uc, true);
4174  errno = orig_errno;
4175}
4176
4177
4178// This boolean allows users to forward their own non-matching signals
4179// to JVM_handle_linux_signal, harmlessly.
4180bool os::Linux::signal_handlers_are_installed = false;
4181
4182// For signal-chaining
4183struct sigaction os::Linux::sigact[MAXSIGNUM];
4184unsigned int os::Linux::sigs = 0;
4185bool os::Linux::libjsig_is_loaded = false;
4186typedef struct sigaction *(*get_signal_t)(int);
4187get_signal_t os::Linux::get_signal_action = NULL;
4188
4189struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4190  struct sigaction *actp = NULL;
4191
4192  if (libjsig_is_loaded) {
4193    // Retrieve the old signal handler from libjsig
4194    actp = (*get_signal_action)(sig);
4195  }
4196  if (actp == NULL) {
4197    // Retrieve the preinstalled signal handler from jvm
4198    actp = get_preinstalled_handler(sig);
4199  }
4200
4201  return actp;
4202}
4203
4204static bool call_chained_handler(struct sigaction *actp, int sig,
4205                                 siginfo_t *siginfo, void *context) {
4206  // Call the old signal handler
4207  if (actp->sa_handler == SIG_DFL) {
4208    // It's more reasonable to let jvm treat it as an unexpected exception
4209    // instead of taking the default action.
4210    return false;
4211  } else if (actp->sa_handler != SIG_IGN) {
4212    if ((actp->sa_flags & SA_NODEFER) == 0) {
4213      // automaticlly block the signal
4214      sigaddset(&(actp->sa_mask), sig);
4215    }
4216
4217    sa_handler_t hand;
4218    sa_sigaction_t sa;
4219    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4220    // retrieve the chained handler
4221    if (siginfo_flag_set) {
4222      sa = actp->sa_sigaction;
4223    } else {
4224      hand = actp->sa_handler;
4225    }
4226
4227    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4228      actp->sa_handler = SIG_DFL;
4229    }
4230
4231    // try to honor the signal mask
4232    sigset_t oset;
4233    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4234
4235    // call into the chained handler
4236    if (siginfo_flag_set) {
4237      (*sa)(sig, siginfo, context);
4238    } else {
4239      (*hand)(sig);
4240    }
4241
4242    // restore the signal mask
4243    pthread_sigmask(SIG_SETMASK, &oset, 0);
4244  }
4245  // Tell jvm's signal handler the signal is taken care of.
4246  return true;
4247}
4248
4249bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4250  bool chained = false;
4251  // signal-chaining
4252  if (UseSignalChaining) {
4253    struct sigaction *actp = get_chained_signal_action(sig);
4254    if (actp != NULL) {
4255      chained = call_chained_handler(actp, sig, siginfo, context);
4256    }
4257  }
4258  return chained;
4259}
4260
4261struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4262  if ((((unsigned int)1 << sig) & sigs) != 0) {
4263    return &sigact[sig];
4264  }
4265  return NULL;
4266}
4267
4268void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4269  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4270  sigact[sig] = oldAct;
4271  sigs |= (unsigned int)1 << sig;
4272}
4273
4274// for diagnostic
4275int os::Linux::sigflags[MAXSIGNUM];
4276
4277int os::Linux::get_our_sigflags(int sig) {
4278  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4279  return sigflags[sig];
4280}
4281
4282void os::Linux::set_our_sigflags(int sig, int flags) {
4283  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4284  sigflags[sig] = flags;
4285}
4286
4287void os::Linux::set_signal_handler(int sig, bool set_installed) {
4288  // Check for overwrite.
4289  struct sigaction oldAct;
4290  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4291
4292  void* oldhand = oldAct.sa_sigaction
4293                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4294                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4295  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4296      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4297      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4298    if (AllowUserSignalHandlers || !set_installed) {
4299      // Do not overwrite; user takes responsibility to forward to us.
4300      return;
4301    } else if (UseSignalChaining) {
4302      // save the old handler in jvm
4303      save_preinstalled_handler(sig, oldAct);
4304      // libjsig also interposes the sigaction() call below and saves the
4305      // old sigaction on it own.
4306    } else {
4307      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4308                    "%#lx for signal %d.", (long)oldhand, sig));
4309    }
4310  }
4311
4312  struct sigaction sigAct;
4313  sigfillset(&(sigAct.sa_mask));
4314  sigAct.sa_handler = SIG_DFL;
4315  if (!set_installed) {
4316    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4317  } else {
4318    sigAct.sa_sigaction = signalHandler;
4319    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4320  }
4321  // Save flags, which are set by ours
4322  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4323  sigflags[sig] = sigAct.sa_flags;
4324
4325  int ret = sigaction(sig, &sigAct, &oldAct);
4326  assert(ret == 0, "check");
4327
4328  void* oldhand2  = oldAct.sa_sigaction
4329                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4330                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4331  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4332}
4333
4334// install signal handlers for signals that HotSpot needs to
4335// handle in order to support Java-level exception handling.
4336
4337void os::Linux::install_signal_handlers() {
4338  if (!signal_handlers_are_installed) {
4339    signal_handlers_are_installed = true;
4340
4341    // signal-chaining
4342    typedef void (*signal_setting_t)();
4343    signal_setting_t begin_signal_setting = NULL;
4344    signal_setting_t end_signal_setting = NULL;
4345    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4346                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4347    if (begin_signal_setting != NULL) {
4348      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4349                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4350      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4351                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4352      libjsig_is_loaded = true;
4353      assert(UseSignalChaining, "should enable signal-chaining");
4354    }
4355    if (libjsig_is_loaded) {
4356      // Tell libjsig jvm is setting signal handlers
4357      (*begin_signal_setting)();
4358    }
4359
4360    set_signal_handler(SIGSEGV, true);
4361    set_signal_handler(SIGPIPE, true);
4362    set_signal_handler(SIGBUS, true);
4363    set_signal_handler(SIGILL, true);
4364    set_signal_handler(SIGFPE, true);
4365#if defined(PPC64)
4366    set_signal_handler(SIGTRAP, true);
4367#endif
4368    set_signal_handler(SIGXFSZ, true);
4369
4370    if (libjsig_is_loaded) {
4371      // Tell libjsig jvm finishes setting signal handlers
4372      (*end_signal_setting)();
4373    }
4374
4375    // We don't activate signal checker if libjsig is in place, we trust ourselves
4376    // and if UserSignalHandler is installed all bets are off.
4377    // Log that signal checking is off only if -verbose:jni is specified.
4378    if (CheckJNICalls) {
4379      if (libjsig_is_loaded) {
4380        if (PrintJNIResolving) {
4381          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4382        }
4383        check_signals = false;
4384      }
4385      if (AllowUserSignalHandlers) {
4386        if (PrintJNIResolving) {
4387          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4388        }
4389        check_signals = false;
4390      }
4391    }
4392  }
4393}
4394
4395// This is the fastest way to get thread cpu time on Linux.
4396// Returns cpu time (user+sys) for any thread, not only for current.
4397// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4398// It might work on 2.6.10+ with a special kernel/glibc patch.
4399// For reference, please, see IEEE Std 1003.1-2004:
4400//   http://www.unix.org/single_unix_specification
4401
4402jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4403  struct timespec tp;
4404  int rc = os::Linux::clock_gettime(clockid, &tp);
4405  assert(rc == 0, "clock_gettime is expected to return 0 code");
4406
4407  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4408}
4409
4410/////
4411// glibc on Linux platform uses non-documented flag
4412// to indicate, that some special sort of signal
4413// trampoline is used.
4414// We will never set this flag, and we should
4415// ignore this flag in our diagnostic
4416#ifdef SIGNIFICANT_SIGNAL_MASK
4417  #undef SIGNIFICANT_SIGNAL_MASK
4418#endif
4419#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4420
4421static const char* get_signal_handler_name(address handler,
4422                                           char* buf, int buflen) {
4423  int offset;
4424  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4425  if (found) {
4426    // skip directory names
4427    const char *p1, *p2;
4428    p1 = buf;
4429    size_t len = strlen(os::file_separator());
4430    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4431    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4432  } else {
4433    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4434  }
4435  return buf;
4436}
4437
4438static void print_signal_handler(outputStream* st, int sig,
4439                                 char* buf, size_t buflen) {
4440  struct sigaction sa;
4441
4442  sigaction(sig, NULL, &sa);
4443
4444  // See comment for SIGNIFICANT_SIGNAL_MASK define
4445  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4446
4447  st->print("%s: ", os::exception_name(sig, buf, buflen));
4448
4449  address handler = (sa.sa_flags & SA_SIGINFO)
4450    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4451    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4452
4453  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4454    st->print("SIG_DFL");
4455  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4456    st->print("SIG_IGN");
4457  } else {
4458    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4459  }
4460
4461  st->print(", sa_mask[0]=");
4462  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4463
4464  address rh = VMError::get_resetted_sighandler(sig);
4465  // May be, handler was resetted by VMError?
4466  if (rh != NULL) {
4467    handler = rh;
4468    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4469  }
4470
4471  st->print(", sa_flags=");
4472  os::Posix::print_sa_flags(st, sa.sa_flags);
4473
4474  // Check: is it our handler?
4475  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4476      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4477    // It is our signal handler
4478    // check for flags, reset system-used one!
4479    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4480      st->print(
4481                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4482                os::Linux::get_our_sigflags(sig));
4483    }
4484  }
4485  st->cr();
4486}
4487
4488
4489#define DO_SIGNAL_CHECK(sig)                      \
4490  do {                                            \
4491    if (!sigismember(&check_signal_done, sig)) {  \
4492      os::Linux::check_signal_handler(sig);       \
4493    }                                             \
4494  } while (0)
4495
4496// This method is a periodic task to check for misbehaving JNI applications
4497// under CheckJNI, we can add any periodic checks here
4498
4499void os::run_periodic_checks() {
4500  if (check_signals == false) return;
4501
4502  // SEGV and BUS if overridden could potentially prevent
4503  // generation of hs*.log in the event of a crash, debugging
4504  // such a case can be very challenging, so we absolutely
4505  // check the following for a good measure:
4506  DO_SIGNAL_CHECK(SIGSEGV);
4507  DO_SIGNAL_CHECK(SIGILL);
4508  DO_SIGNAL_CHECK(SIGFPE);
4509  DO_SIGNAL_CHECK(SIGBUS);
4510  DO_SIGNAL_CHECK(SIGPIPE);
4511  DO_SIGNAL_CHECK(SIGXFSZ);
4512#if defined(PPC64)
4513  DO_SIGNAL_CHECK(SIGTRAP);
4514#endif
4515
4516  // ReduceSignalUsage allows the user to override these handlers
4517  // see comments at the very top and jvm_solaris.h
4518  if (!ReduceSignalUsage) {
4519    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4520    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4521    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4522    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4523  }
4524
4525  DO_SIGNAL_CHECK(SR_signum);
4526  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4527}
4528
4529typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4530
4531static os_sigaction_t os_sigaction = NULL;
4532
4533void os::Linux::check_signal_handler(int sig) {
4534  char buf[O_BUFLEN];
4535  address jvmHandler = NULL;
4536
4537
4538  struct sigaction act;
4539  if (os_sigaction == NULL) {
4540    // only trust the default sigaction, in case it has been interposed
4541    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4542    if (os_sigaction == NULL) return;
4543  }
4544
4545  os_sigaction(sig, (struct sigaction*)NULL, &act);
4546
4547
4548  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4549
4550  address thisHandler = (act.sa_flags & SA_SIGINFO)
4551    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4552    : CAST_FROM_FN_PTR(address, act.sa_handler);
4553
4554
4555  switch (sig) {
4556  case SIGSEGV:
4557  case SIGBUS:
4558  case SIGFPE:
4559  case SIGPIPE:
4560  case SIGILL:
4561  case SIGXFSZ:
4562    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4563    break;
4564
4565  case SHUTDOWN1_SIGNAL:
4566  case SHUTDOWN2_SIGNAL:
4567  case SHUTDOWN3_SIGNAL:
4568  case BREAK_SIGNAL:
4569    jvmHandler = (address)user_handler();
4570    break;
4571
4572  case INTERRUPT_SIGNAL:
4573    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4574    break;
4575
4576  default:
4577    if (sig == SR_signum) {
4578      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4579    } else {
4580      return;
4581    }
4582    break;
4583  }
4584
4585  if (thisHandler != jvmHandler) {
4586    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4587    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4588    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4589    // No need to check this sig any longer
4590    sigaddset(&check_signal_done, sig);
4591    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4592    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4593      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4594                    exception_name(sig, buf, O_BUFLEN));
4595    }
4596  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4597    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4598    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4599    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4600    // No need to check this sig any longer
4601    sigaddset(&check_signal_done, sig);
4602  }
4603
4604  // Dump all the signal
4605  if (sigismember(&check_signal_done, sig)) {
4606    print_signal_handlers(tty, buf, O_BUFLEN);
4607  }
4608}
4609
4610extern void report_error(char* file_name, int line_no, char* title,
4611                         char* format, ...);
4612
4613extern bool signal_name(int signo, char* buf, size_t len);
4614
4615const char* os::exception_name(int exception_code, char* buf, size_t size) {
4616  if (0 < exception_code && exception_code <= SIGRTMAX) {
4617    // signal
4618    if (!signal_name(exception_code, buf, size)) {
4619      jio_snprintf(buf, size, "SIG%d", exception_code);
4620    }
4621    return buf;
4622  } else {
4623    return NULL;
4624  }
4625}
4626
4627// this is called _before_ the most of global arguments have been parsed
4628void os::init(void) {
4629  char dummy;   // used to get a guess on initial stack address
4630//  first_hrtime = gethrtime();
4631
4632  // With LinuxThreads the JavaMain thread pid (primordial thread)
4633  // is different than the pid of the java launcher thread.
4634  // So, on Linux, the launcher thread pid is passed to the VM
4635  // via the sun.java.launcher.pid property.
4636  // Use this property instead of getpid() if it was correctly passed.
4637  // See bug 6351349.
4638  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4639
4640  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4641
4642  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4643
4644  init_random(1234567);
4645
4646  ThreadCritical::initialize();
4647
4648  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4649  if (Linux::page_size() == -1) {
4650    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4651                  strerror(errno)));
4652  }
4653  init_page_sizes((size_t) Linux::page_size());
4654
4655  Linux::initialize_system_info();
4656
4657  // main_thread points to the aboriginal thread
4658  Linux::_main_thread = pthread_self();
4659
4660  Linux::clock_init();
4661  initial_time_count = javaTimeNanos();
4662
4663  // pthread_condattr initialization for monotonic clock
4664  int status;
4665  pthread_condattr_t* _condattr = os::Linux::condAttr();
4666  if ((status = pthread_condattr_init(_condattr)) != 0) {
4667    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4668  }
4669  // Only set the clock if CLOCK_MONOTONIC is available
4670  if (os::supports_monotonic_clock()) {
4671    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4672      if (status == EINVAL) {
4673        warning("Unable to use monotonic clock with relative timed-waits" \
4674                " - changes to the time-of-day clock may have adverse affects");
4675      } else {
4676        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4677      }
4678    }
4679  }
4680  // else it defaults to CLOCK_REALTIME
4681
4682  pthread_mutex_init(&dl_mutex, NULL);
4683
4684  // If the pagesize of the VM is greater than 8K determine the appropriate
4685  // number of initial guard pages.  The user can change this with the
4686  // command line arguments, if needed.
4687  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4688    StackYellowPages = 1;
4689    StackRedPages = 1;
4690    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4691  }
4692
4693  // retrieve entry point for pthread_setname_np
4694  Linux::_pthread_setname_np =
4695    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4696
4697}
4698
4699// To install functions for atexit system call
4700extern "C" {
4701  static void perfMemory_exit_helper() {
4702    perfMemory_exit();
4703  }
4704}
4705
4706// this is called _after_ the global arguments have been parsed
4707jint os::init_2(void) {
4708  Linux::fast_thread_clock_init();
4709
4710  // Allocate a single page and mark it as readable for safepoint polling
4711  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4712  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4713
4714  os::set_polling_page(polling_page);
4715
4716#ifndef PRODUCT
4717  if (Verbose && PrintMiscellaneous) {
4718    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4719               (intptr_t)polling_page);
4720  }
4721#endif
4722
4723  if (!UseMembar) {
4724    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4725    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4726    os::set_memory_serialize_page(mem_serialize_page);
4727
4728#ifndef PRODUCT
4729    if (Verbose && PrintMiscellaneous) {
4730      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4731                 (intptr_t)mem_serialize_page);
4732    }
4733#endif
4734  }
4735
4736  // initialize suspend/resume support - must do this before signal_sets_init()
4737  if (SR_initialize() != 0) {
4738    perror("SR_initialize failed");
4739    return JNI_ERR;
4740  }
4741
4742  Linux::signal_sets_init();
4743  Linux::install_signal_handlers();
4744
4745  // Check minimum allowable stack size for thread creation and to initialize
4746  // the java system classes, including StackOverflowError - depends on page
4747  // size.  Add a page for compiler2 recursion in main thread.
4748  // Add in 2*BytesPerWord times page size to account for VM stack during
4749  // class initialization depending on 32 or 64 bit VM.
4750  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4751                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4752                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4753
4754  size_t threadStackSizeInBytes = ThreadStackSize * K;
4755  if (threadStackSizeInBytes != 0 &&
4756      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4757    tty->print_cr("\nThe stack size specified is too small, "
4758                  "Specify at least %dk",
4759                  os::Linux::min_stack_allowed/ K);
4760    return JNI_ERR;
4761  }
4762
4763  // Make the stack size a multiple of the page size so that
4764  // the yellow/red zones can be guarded.
4765  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4766                                                vm_page_size()));
4767
4768  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4769
4770#if defined(IA32)
4771  workaround_expand_exec_shield_cs_limit();
4772#endif
4773
4774  Linux::libpthread_init();
4775  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4776    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4777                  Linux::glibc_version(), Linux::libpthread_version(),
4778                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4779  }
4780
4781  if (UseNUMA) {
4782    if (!Linux::libnuma_init()) {
4783      UseNUMA = false;
4784    } else {
4785      if ((Linux::numa_max_node() < 1)) {
4786        // There's only one node(they start from 0), disable NUMA.
4787        UseNUMA = false;
4788      }
4789    }
4790    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4791    // we can make the adaptive lgrp chunk resizing work. If the user specified
4792    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4793    // disable adaptive resizing.
4794    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4795      if (FLAG_IS_DEFAULT(UseNUMA)) {
4796        UseNUMA = false;
4797      } else {
4798        if (FLAG_IS_DEFAULT(UseLargePages) &&
4799            FLAG_IS_DEFAULT(UseSHM) &&
4800            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4801          UseLargePages = false;
4802        } else {
4803          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4804          UseAdaptiveSizePolicy = false;
4805          UseAdaptiveNUMAChunkSizing = false;
4806        }
4807      }
4808    }
4809    if (!UseNUMA && ForceNUMA) {
4810      UseNUMA = true;
4811    }
4812  }
4813
4814  if (MaxFDLimit) {
4815    // set the number of file descriptors to max. print out error
4816    // if getrlimit/setrlimit fails but continue regardless.
4817    struct rlimit nbr_files;
4818    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4819    if (status != 0) {
4820      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4821        perror("os::init_2 getrlimit failed");
4822      }
4823    } else {
4824      nbr_files.rlim_cur = nbr_files.rlim_max;
4825      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4826      if (status != 0) {
4827        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4828          perror("os::init_2 setrlimit failed");
4829        }
4830      }
4831    }
4832  }
4833
4834  // Initialize lock used to serialize thread creation (see os::create_thread)
4835  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4836
4837  // at-exit methods are called in the reverse order of their registration.
4838  // atexit functions are called on return from main or as a result of a
4839  // call to exit(3C). There can be only 32 of these functions registered
4840  // and atexit() does not set errno.
4841
4842  if (PerfAllowAtExitRegistration) {
4843    // only register atexit functions if PerfAllowAtExitRegistration is set.
4844    // atexit functions can be delayed until process exit time, which
4845    // can be problematic for embedded VM situations. Embedded VMs should
4846    // call DestroyJavaVM() to assure that VM resources are released.
4847
4848    // note: perfMemory_exit_helper atexit function may be removed in
4849    // the future if the appropriate cleanup code can be added to the
4850    // VM_Exit VMOperation's doit method.
4851    if (atexit(perfMemory_exit_helper) != 0) {
4852      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4853    }
4854  }
4855
4856  // initialize thread priority policy
4857  prio_init();
4858
4859  return JNI_OK;
4860}
4861
4862// Mark the polling page as unreadable
4863void os::make_polling_page_unreadable(void) {
4864  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4865    fatal("Could not disable polling page");
4866  }
4867}
4868
4869// Mark the polling page as readable
4870void os::make_polling_page_readable(void) {
4871  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4872    fatal("Could not enable polling page");
4873  }
4874}
4875
4876int os::active_processor_count() {
4877  // Linux doesn't yet have a (official) notion of processor sets,
4878  // so just return the number of online processors.
4879  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4880  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4881  return online_cpus;
4882}
4883
4884void os::set_native_thread_name(const char *name) {
4885  if (Linux::_pthread_setname_np) {
4886    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4887    snprintf(buf, sizeof(buf), "%s", name);
4888    buf[sizeof(buf) - 1] = '\0';
4889    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4890    // ERANGE should not happen; all other errors should just be ignored.
4891    assert(rc != ERANGE, "pthread_setname_np failed");
4892  }
4893}
4894
4895bool os::distribute_processes(uint length, uint* distribution) {
4896  // Not yet implemented.
4897  return false;
4898}
4899
4900bool os::bind_to_processor(uint processor_id) {
4901  // Not yet implemented.
4902  return false;
4903}
4904
4905///
4906
4907void os::SuspendedThreadTask::internal_do_task() {
4908  if (do_suspend(_thread->osthread())) {
4909    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4910    do_task(context);
4911    do_resume(_thread->osthread());
4912  }
4913}
4914
4915class PcFetcher : public os::SuspendedThreadTask {
4916 public:
4917  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4918  ExtendedPC result();
4919 protected:
4920  void do_task(const os::SuspendedThreadTaskContext& context);
4921 private:
4922  ExtendedPC _epc;
4923};
4924
4925ExtendedPC PcFetcher::result() {
4926  guarantee(is_done(), "task is not done yet.");
4927  return _epc;
4928}
4929
4930void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4931  Thread* thread = context.thread();
4932  OSThread* osthread = thread->osthread();
4933  if (osthread->ucontext() != NULL) {
4934    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4935  } else {
4936    // NULL context is unexpected, double-check this is the VMThread
4937    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4938  }
4939}
4940
4941// Suspends the target using the signal mechanism and then grabs the PC before
4942// resuming the target. Used by the flat-profiler only
4943ExtendedPC os::get_thread_pc(Thread* thread) {
4944  // Make sure that it is called by the watcher for the VMThread
4945  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4946  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4947
4948  PcFetcher fetcher(thread);
4949  fetcher.run();
4950  return fetcher.result();
4951}
4952
4953int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4954                                   pthread_mutex_t *_mutex,
4955                                   const struct timespec *_abstime) {
4956  if (is_NPTL()) {
4957    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4958  } else {
4959    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4960    // word back to default 64bit precision if condvar is signaled. Java
4961    // wants 53bit precision.  Save and restore current value.
4962    int fpu = get_fpu_control_word();
4963    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4964    set_fpu_control_word(fpu);
4965    return status;
4966  }
4967}
4968
4969////////////////////////////////////////////////////////////////////////////////
4970// debug support
4971
4972bool os::find(address addr, outputStream* st) {
4973  Dl_info dlinfo;
4974  memset(&dlinfo, 0, sizeof(dlinfo));
4975  if (dladdr(addr, &dlinfo) != 0) {
4976    st->print(PTR_FORMAT ": ", addr);
4977    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4978      st->print("%s+%#x", dlinfo.dli_sname,
4979                addr - (intptr_t)dlinfo.dli_saddr);
4980    } else if (dlinfo.dli_fbase != NULL) {
4981      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4982    } else {
4983      st->print("<absolute address>");
4984    }
4985    if (dlinfo.dli_fname != NULL) {
4986      st->print(" in %s", dlinfo.dli_fname);
4987    }
4988    if (dlinfo.dli_fbase != NULL) {
4989      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4990    }
4991    st->cr();
4992
4993    if (Verbose) {
4994      // decode some bytes around the PC
4995      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4996      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4997      address       lowest = (address) dlinfo.dli_sname;
4998      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4999      if (begin < lowest)  begin = lowest;
5000      Dl_info dlinfo2;
5001      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5002          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5003        end = (address) dlinfo2.dli_saddr;
5004      }
5005      Disassembler::decode(begin, end, st);
5006    }
5007    return true;
5008  }
5009  return false;
5010}
5011
5012////////////////////////////////////////////////////////////////////////////////
5013// misc
5014
5015// This does not do anything on Linux. This is basically a hook for being
5016// able to use structured exception handling (thread-local exception filters)
5017// on, e.g., Win32.
5018void
5019os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5020                         JavaCallArguments* args, Thread* thread) {
5021  f(value, method, args, thread);
5022}
5023
5024void os::print_statistics() {
5025}
5026
5027int os::message_box(const char* title, const char* message) {
5028  int i;
5029  fdStream err(defaultStream::error_fd());
5030  for (i = 0; i < 78; i++) err.print_raw("=");
5031  err.cr();
5032  err.print_raw_cr(title);
5033  for (i = 0; i < 78; i++) err.print_raw("-");
5034  err.cr();
5035  err.print_raw_cr(message);
5036  for (i = 0; i < 78; i++) err.print_raw("=");
5037  err.cr();
5038
5039  char buf[16];
5040  // Prevent process from exiting upon "read error" without consuming all CPU
5041  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5042
5043  return buf[0] == 'y' || buf[0] == 'Y';
5044}
5045
5046int os::stat(const char *path, struct stat *sbuf) {
5047  char pathbuf[MAX_PATH];
5048  if (strlen(path) > MAX_PATH - 1) {
5049    errno = ENAMETOOLONG;
5050    return -1;
5051  }
5052  os::native_path(strcpy(pathbuf, path));
5053  return ::stat(pathbuf, sbuf);
5054}
5055
5056bool os::check_heap(bool force) {
5057  return true;
5058}
5059
5060// Is a (classpath) directory empty?
5061bool os::dir_is_empty(const char* path) {
5062  DIR *dir = NULL;
5063  struct dirent *ptr;
5064
5065  dir = opendir(path);
5066  if (dir == NULL) return true;
5067
5068  // Scan the directory
5069  bool result = true;
5070  char buf[sizeof(struct dirent) + MAX_PATH];
5071  while (result && (ptr = ::readdir(dir)) != NULL) {
5072    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5073      result = false;
5074    }
5075  }
5076  closedir(dir);
5077  return result;
5078}
5079
5080// This code originates from JDK's sysOpen and open64_w
5081// from src/solaris/hpi/src/system_md.c
5082
5083int os::open(const char *path, int oflag, int mode) {
5084  if (strlen(path) > MAX_PATH - 1) {
5085    errno = ENAMETOOLONG;
5086    return -1;
5087  }
5088
5089  // All file descriptors that are opened in the Java process and not
5090  // specifically destined for a subprocess should have the close-on-exec
5091  // flag set.  If we don't set it, then careless 3rd party native code
5092  // might fork and exec without closing all appropriate file descriptors
5093  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5094  // turn might:
5095  //
5096  // - cause end-of-file to fail to be detected on some file
5097  //   descriptors, resulting in mysterious hangs, or
5098  //
5099  // - might cause an fopen in the subprocess to fail on a system
5100  //   suffering from bug 1085341.
5101  //
5102  // (Yes, the default setting of the close-on-exec flag is a Unix
5103  // design flaw)
5104  //
5105  // See:
5106  // 1085341: 32-bit stdio routines should support file descriptors >255
5107  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5108  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5109  //
5110  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5111  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5112  // because it saves a system call and removes a small window where the flag
5113  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5114  // and we fall back to using FD_CLOEXEC (see below).
5115#ifdef O_CLOEXEC
5116  oflag |= O_CLOEXEC;
5117#endif
5118
5119  int fd = ::open64(path, oflag, mode);
5120  if (fd == -1) return -1;
5121
5122  //If the open succeeded, the file might still be a directory
5123  {
5124    struct stat64 buf64;
5125    int ret = ::fstat64(fd, &buf64);
5126    int st_mode = buf64.st_mode;
5127
5128    if (ret != -1) {
5129      if ((st_mode & S_IFMT) == S_IFDIR) {
5130        errno = EISDIR;
5131        ::close(fd);
5132        return -1;
5133      }
5134    } else {
5135      ::close(fd);
5136      return -1;
5137    }
5138  }
5139
5140#ifdef FD_CLOEXEC
5141  // Validate that the use of the O_CLOEXEC flag on open above worked.
5142  // With recent kernels, we will perform this check exactly once.
5143  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5144  if (!O_CLOEXEC_is_known_to_work) {
5145    int flags = ::fcntl(fd, F_GETFD);
5146    if (flags != -1) {
5147      if ((flags & FD_CLOEXEC) != 0)
5148        O_CLOEXEC_is_known_to_work = 1;
5149      else
5150        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5151    }
5152  }
5153#endif
5154
5155  return fd;
5156}
5157
5158
5159// create binary file, rewriting existing file if required
5160int os::create_binary_file(const char* path, bool rewrite_existing) {
5161  int oflags = O_WRONLY | O_CREAT;
5162  if (!rewrite_existing) {
5163    oflags |= O_EXCL;
5164  }
5165  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5166}
5167
5168// return current position of file pointer
5169jlong os::current_file_offset(int fd) {
5170  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5171}
5172
5173// move file pointer to the specified offset
5174jlong os::seek_to_file_offset(int fd, jlong offset) {
5175  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5176}
5177
5178// This code originates from JDK's sysAvailable
5179// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5180
5181int os::available(int fd, jlong *bytes) {
5182  jlong cur, end;
5183  int mode;
5184  struct stat64 buf64;
5185
5186  if (::fstat64(fd, &buf64) >= 0) {
5187    mode = buf64.st_mode;
5188    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5189      // XXX: is the following call interruptible? If so, this might
5190      // need to go through the INTERRUPT_IO() wrapper as for other
5191      // blocking, interruptible calls in this file.
5192      int n;
5193      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5194        *bytes = n;
5195        return 1;
5196      }
5197    }
5198  }
5199  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5200    return 0;
5201  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5202    return 0;
5203  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5204    return 0;
5205  }
5206  *bytes = end - cur;
5207  return 1;
5208}
5209
5210// Map a block of memory.
5211char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5212                        char *addr, size_t bytes, bool read_only,
5213                        bool allow_exec) {
5214  int prot;
5215  int flags = MAP_PRIVATE;
5216
5217  if (read_only) {
5218    prot = PROT_READ;
5219  } else {
5220    prot = PROT_READ | PROT_WRITE;
5221  }
5222
5223  if (allow_exec) {
5224    prot |= PROT_EXEC;
5225  }
5226
5227  if (addr != NULL) {
5228    flags |= MAP_FIXED;
5229  }
5230
5231  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5232                                     fd, file_offset);
5233  if (mapped_address == MAP_FAILED) {
5234    return NULL;
5235  }
5236  return mapped_address;
5237}
5238
5239
5240// Remap a block of memory.
5241char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5242                          char *addr, size_t bytes, bool read_only,
5243                          bool allow_exec) {
5244  // same as map_memory() on this OS
5245  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5246                        allow_exec);
5247}
5248
5249
5250// Unmap a block of memory.
5251bool os::pd_unmap_memory(char* addr, size_t bytes) {
5252  return munmap(addr, bytes) == 0;
5253}
5254
5255static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5256
5257static clockid_t thread_cpu_clockid(Thread* thread) {
5258  pthread_t tid = thread->osthread()->pthread_id();
5259  clockid_t clockid;
5260
5261  // Get thread clockid
5262  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5263  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5264  return clockid;
5265}
5266
5267// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5268// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5269// of a thread.
5270//
5271// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5272// the fast estimate available on the platform.
5273
5274jlong os::current_thread_cpu_time() {
5275  if (os::Linux::supports_fast_thread_cpu_time()) {
5276    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5277  } else {
5278    // return user + sys since the cost is the same
5279    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5280  }
5281}
5282
5283jlong os::thread_cpu_time(Thread* thread) {
5284  // consistent with what current_thread_cpu_time() returns
5285  if (os::Linux::supports_fast_thread_cpu_time()) {
5286    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5287  } else {
5288    return slow_thread_cpu_time(thread, true /* user + sys */);
5289  }
5290}
5291
5292jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5293  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5294    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5295  } else {
5296    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5297  }
5298}
5299
5300jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5301  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5302    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5303  } else {
5304    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5305  }
5306}
5307
5308//  -1 on error.
5309static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5310  pid_t  tid = thread->osthread()->thread_id();
5311  char *s;
5312  char stat[2048];
5313  int statlen;
5314  char proc_name[64];
5315  int count;
5316  long sys_time, user_time;
5317  char cdummy;
5318  int idummy;
5319  long ldummy;
5320  FILE *fp;
5321
5322  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5323  fp = fopen(proc_name, "r");
5324  if (fp == NULL) return -1;
5325  statlen = fread(stat, 1, 2047, fp);
5326  stat[statlen] = '\0';
5327  fclose(fp);
5328
5329  // Skip pid and the command string. Note that we could be dealing with
5330  // weird command names, e.g. user could decide to rename java launcher
5331  // to "java 1.4.2 :)", then the stat file would look like
5332  //                1234 (java 1.4.2 :)) R ... ...
5333  // We don't really need to know the command string, just find the last
5334  // occurrence of ")" and then start parsing from there. See bug 4726580.
5335  s = strrchr(stat, ')');
5336  if (s == NULL) return -1;
5337
5338  // Skip blank chars
5339  do { s++; } while (s && isspace(*s));
5340
5341  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5342                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5343                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5344                 &user_time, &sys_time);
5345  if (count != 13) return -1;
5346  if (user_sys_cpu_time) {
5347    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5348  } else {
5349    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5350  }
5351}
5352
5353void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5354  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5355  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5356  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5357  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5358}
5359
5360void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5361  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5362  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5363  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5364  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5365}
5366
5367bool os::is_thread_cpu_time_supported() {
5368  return true;
5369}
5370
5371// System loadavg support.  Returns -1 if load average cannot be obtained.
5372// Linux doesn't yet have a (official) notion of processor sets,
5373// so just return the system wide load average.
5374int os::loadavg(double loadavg[], int nelem) {
5375  return ::getloadavg(loadavg, nelem);
5376}
5377
5378void os::pause() {
5379  char filename[MAX_PATH];
5380  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5381    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5382  } else {
5383    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5384  }
5385
5386  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5387  if (fd != -1) {
5388    struct stat buf;
5389    ::close(fd);
5390    while (::stat(filename, &buf) == 0) {
5391      (void)::poll(NULL, 0, 100);
5392    }
5393  } else {
5394    jio_fprintf(stderr,
5395                "Could not open pause file '%s', continuing immediately.\n", filename);
5396  }
5397}
5398
5399
5400// Refer to the comments in os_solaris.cpp park-unpark. The next two
5401// comment paragraphs are worth repeating here:
5402//
5403// Assumption:
5404//    Only one parker can exist on an event, which is why we allocate
5405//    them per-thread. Multiple unparkers can coexist.
5406//
5407// _Event serves as a restricted-range semaphore.
5408//   -1 : thread is blocked, i.e. there is a waiter
5409//    0 : neutral: thread is running or ready,
5410//        could have been signaled after a wait started
5411//    1 : signaled - thread is running or ready
5412//
5413// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5414// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5415// For specifics regarding the bug see GLIBC BUGID 261237 :
5416//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5417// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5418// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5419// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5420// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5421// and monitorenter when we're using 1-0 locking.  All those operations may result in
5422// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5423// of libpthread avoids the problem, but isn't practical.
5424//
5425// Possible remedies:
5426//
5427// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5428//      This is palliative and probabilistic, however.  If the thread is preempted
5429//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5430//      than the minimum period may have passed, and the abstime may be stale (in the
5431//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5432//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5433//
5434// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5435//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5436//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5437//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5438//      thread.
5439//
5440// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5441//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5442//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5443//      This also works well.  In fact it avoids kernel-level scalability impediments
5444//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5445//      timers in a graceful fashion.
5446//
5447// 4.   When the abstime value is in the past it appears that control returns
5448//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5449//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5450//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5451//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5452//      It may be possible to avoid reinitialization by checking the return
5453//      value from pthread_cond_timedwait().  In addition to reinitializing the
5454//      condvar we must establish the invariant that cond_signal() is only called
5455//      within critical sections protected by the adjunct mutex.  This prevents
5456//      cond_signal() from "seeing" a condvar that's in the midst of being
5457//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5458//      desirable signal-after-unlock optimization that avoids futile context switching.
5459//
5460//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5461//      structure when a condvar is used or initialized.  cond_destroy()  would
5462//      release the helper structure.  Our reinitialize-after-timedwait fix
5463//      put excessive stress on malloc/free and locks protecting the c-heap.
5464//
5465// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5466// It may be possible to refine (4) by checking the kernel and NTPL verisons
5467// and only enabling the work-around for vulnerable environments.
5468
5469// utility to compute the abstime argument to timedwait:
5470// millis is the relative timeout time
5471// abstime will be the absolute timeout time
5472// TODO: replace compute_abstime() with unpackTime()
5473
5474static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5475  if (millis < 0)  millis = 0;
5476
5477  jlong seconds = millis / 1000;
5478  millis %= 1000;
5479  if (seconds > 50000000) { // see man cond_timedwait(3T)
5480    seconds = 50000000;
5481  }
5482
5483  if (os::supports_monotonic_clock()) {
5484    struct timespec now;
5485    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5486    assert_status(status == 0, status, "clock_gettime");
5487    abstime->tv_sec = now.tv_sec  + seconds;
5488    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5489    if (nanos >= NANOSECS_PER_SEC) {
5490      abstime->tv_sec += 1;
5491      nanos -= NANOSECS_PER_SEC;
5492    }
5493    abstime->tv_nsec = nanos;
5494  } else {
5495    struct timeval now;
5496    int status = gettimeofday(&now, NULL);
5497    assert(status == 0, "gettimeofday");
5498    abstime->tv_sec = now.tv_sec  + seconds;
5499    long usec = now.tv_usec + millis * 1000;
5500    if (usec >= 1000000) {
5501      abstime->tv_sec += 1;
5502      usec -= 1000000;
5503    }
5504    abstime->tv_nsec = usec * 1000;
5505  }
5506  return abstime;
5507}
5508
5509void os::PlatformEvent::park() {       // AKA "down()"
5510  // Transitions for _Event:
5511  //   -1 => -1 : illegal
5512  //    1 =>  0 : pass - return immediately
5513  //    0 => -1 : block; then set _Event to 0 before returning
5514
5515  // Invariant: Only the thread associated with the Event/PlatformEvent
5516  // may call park().
5517  // TODO: assert that _Assoc != NULL or _Assoc == Self
5518  assert(_nParked == 0, "invariant");
5519
5520  int v;
5521  for (;;) {
5522    v = _Event;
5523    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5524  }
5525  guarantee(v >= 0, "invariant");
5526  if (v == 0) {
5527    // Do this the hard way by blocking ...
5528    int status = pthread_mutex_lock(_mutex);
5529    assert_status(status == 0, status, "mutex_lock");
5530    guarantee(_nParked == 0, "invariant");
5531    ++_nParked;
5532    while (_Event < 0) {
5533      status = pthread_cond_wait(_cond, _mutex);
5534      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5535      // Treat this the same as if the wait was interrupted
5536      if (status == ETIME) { status = EINTR; }
5537      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5538    }
5539    --_nParked;
5540
5541    _Event = 0;
5542    status = pthread_mutex_unlock(_mutex);
5543    assert_status(status == 0, status, "mutex_unlock");
5544    // Paranoia to ensure our locked and lock-free paths interact
5545    // correctly with each other.
5546    OrderAccess::fence();
5547  }
5548  guarantee(_Event >= 0, "invariant");
5549}
5550
5551int os::PlatformEvent::park(jlong millis) {
5552  // Transitions for _Event:
5553  //   -1 => -1 : illegal
5554  //    1 =>  0 : pass - return immediately
5555  //    0 => -1 : block; then set _Event to 0 before returning
5556
5557  guarantee(_nParked == 0, "invariant");
5558
5559  int v;
5560  for (;;) {
5561    v = _Event;
5562    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5563  }
5564  guarantee(v >= 0, "invariant");
5565  if (v != 0) return OS_OK;
5566
5567  // We do this the hard way, by blocking the thread.
5568  // Consider enforcing a minimum timeout value.
5569  struct timespec abst;
5570  compute_abstime(&abst, millis);
5571
5572  int ret = OS_TIMEOUT;
5573  int status = pthread_mutex_lock(_mutex);
5574  assert_status(status == 0, status, "mutex_lock");
5575  guarantee(_nParked == 0, "invariant");
5576  ++_nParked;
5577
5578  // Object.wait(timo) will return because of
5579  // (a) notification
5580  // (b) timeout
5581  // (c) thread.interrupt
5582  //
5583  // Thread.interrupt and object.notify{All} both call Event::set.
5584  // That is, we treat thread.interrupt as a special case of notification.
5585  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5586  // We assume all ETIME returns are valid.
5587  //
5588  // TODO: properly differentiate simultaneous notify+interrupt.
5589  // In that case, we should propagate the notify to another waiter.
5590
5591  while (_Event < 0) {
5592    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5593    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5594      pthread_cond_destroy(_cond);
5595      pthread_cond_init(_cond, os::Linux::condAttr());
5596    }
5597    assert_status(status == 0 || status == EINTR ||
5598                  status == ETIME || status == ETIMEDOUT,
5599                  status, "cond_timedwait");
5600    if (!FilterSpuriousWakeups) break;                 // previous semantics
5601    if (status == ETIME || status == ETIMEDOUT) break;
5602    // We consume and ignore EINTR and spurious wakeups.
5603  }
5604  --_nParked;
5605  if (_Event >= 0) {
5606    ret = OS_OK;
5607  }
5608  _Event = 0;
5609  status = pthread_mutex_unlock(_mutex);
5610  assert_status(status == 0, status, "mutex_unlock");
5611  assert(_nParked == 0, "invariant");
5612  // Paranoia to ensure our locked and lock-free paths interact
5613  // correctly with each other.
5614  OrderAccess::fence();
5615  return ret;
5616}
5617
5618void os::PlatformEvent::unpark() {
5619  // Transitions for _Event:
5620  //    0 => 1 : just return
5621  //    1 => 1 : just return
5622  //   -1 => either 0 or 1; must signal target thread
5623  //         That is, we can safely transition _Event from -1 to either
5624  //         0 or 1.
5625  // See also: "Semaphores in Plan 9" by Mullender & Cox
5626  //
5627  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5628  // that it will take two back-to-back park() calls for the owning
5629  // thread to block. This has the benefit of forcing a spurious return
5630  // from the first park() call after an unpark() call which will help
5631  // shake out uses of park() and unpark() without condition variables.
5632
5633  if (Atomic::xchg(1, &_Event) >= 0) return;
5634
5635  // Wait for the thread associated with the event to vacate
5636  int status = pthread_mutex_lock(_mutex);
5637  assert_status(status == 0, status, "mutex_lock");
5638  int AnyWaiters = _nParked;
5639  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5640  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5641    AnyWaiters = 0;
5642    pthread_cond_signal(_cond);
5643  }
5644  status = pthread_mutex_unlock(_mutex);
5645  assert_status(status == 0, status, "mutex_unlock");
5646  if (AnyWaiters != 0) {
5647    // Note that we signal() *after* dropping the lock for "immortal" Events.
5648    // This is safe and avoids a common class of  futile wakeups.  In rare
5649    // circumstances this can cause a thread to return prematurely from
5650    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5651    // will simply re-test the condition and re-park itself.
5652    // This provides particular benefit if the underlying platform does not
5653    // provide wait morphing.
5654    status = pthread_cond_signal(_cond);
5655    assert_status(status == 0, status, "cond_signal");
5656  }
5657}
5658
5659
5660// JSR166
5661// -------------------------------------------------------
5662
5663// The solaris and linux implementations of park/unpark are fairly
5664// conservative for now, but can be improved. They currently use a
5665// mutex/condvar pair, plus a a count.
5666// Park decrements count if > 0, else does a condvar wait.  Unpark
5667// sets count to 1 and signals condvar.  Only one thread ever waits
5668// on the condvar. Contention seen when trying to park implies that someone
5669// is unparking you, so don't wait. And spurious returns are fine, so there
5670// is no need to track notifications.
5671
5672// This code is common to linux and solaris and will be moved to a
5673// common place in dolphin.
5674//
5675// The passed in time value is either a relative time in nanoseconds
5676// or an absolute time in milliseconds. Either way it has to be unpacked
5677// into suitable seconds and nanoseconds components and stored in the
5678// given timespec structure.
5679// Given time is a 64-bit value and the time_t used in the timespec is only
5680// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5681// overflow if times way in the future are given. Further on Solaris versions
5682// prior to 10 there is a restriction (see cond_timedwait) that the specified
5683// number of seconds, in abstime, is less than current_time  + 100,000,000.
5684// As it will be 28 years before "now + 100000000" will overflow we can
5685// ignore overflow and just impose a hard-limit on seconds using the value
5686// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5687// years from "now".
5688
5689static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5690  assert(time > 0, "convertTime");
5691  time_t max_secs = 0;
5692
5693  if (!os::supports_monotonic_clock() || isAbsolute) {
5694    struct timeval now;
5695    int status = gettimeofday(&now, NULL);
5696    assert(status == 0, "gettimeofday");
5697
5698    max_secs = now.tv_sec + MAX_SECS;
5699
5700    if (isAbsolute) {
5701      jlong secs = time / 1000;
5702      if (secs > max_secs) {
5703        absTime->tv_sec = max_secs;
5704      } else {
5705        absTime->tv_sec = secs;
5706      }
5707      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5708    } else {
5709      jlong secs = time / NANOSECS_PER_SEC;
5710      if (secs >= MAX_SECS) {
5711        absTime->tv_sec = max_secs;
5712        absTime->tv_nsec = 0;
5713      } else {
5714        absTime->tv_sec = now.tv_sec + secs;
5715        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5716        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5717          absTime->tv_nsec -= NANOSECS_PER_SEC;
5718          ++absTime->tv_sec; // note: this must be <= max_secs
5719        }
5720      }
5721    }
5722  } else {
5723    // must be relative using monotonic clock
5724    struct timespec now;
5725    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5726    assert_status(status == 0, status, "clock_gettime");
5727    max_secs = now.tv_sec + MAX_SECS;
5728    jlong secs = time / NANOSECS_PER_SEC;
5729    if (secs >= MAX_SECS) {
5730      absTime->tv_sec = max_secs;
5731      absTime->tv_nsec = 0;
5732    } else {
5733      absTime->tv_sec = now.tv_sec + secs;
5734      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5735      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5736        absTime->tv_nsec -= NANOSECS_PER_SEC;
5737        ++absTime->tv_sec; // note: this must be <= max_secs
5738      }
5739    }
5740  }
5741  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5742  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5743  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5744  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5745}
5746
5747void Parker::park(bool isAbsolute, jlong time) {
5748  // Ideally we'd do something useful while spinning, such
5749  // as calling unpackTime().
5750
5751  // Optional fast-path check:
5752  // Return immediately if a permit is available.
5753  // We depend on Atomic::xchg() having full barrier semantics
5754  // since we are doing a lock-free update to _counter.
5755  if (Atomic::xchg(0, &_counter) > 0) return;
5756
5757  Thread* thread = Thread::current();
5758  assert(thread->is_Java_thread(), "Must be JavaThread");
5759  JavaThread *jt = (JavaThread *)thread;
5760
5761  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5762  // Check interrupt before trying to wait
5763  if (Thread::is_interrupted(thread, false)) {
5764    return;
5765  }
5766
5767  // Next, demultiplex/decode time arguments
5768  timespec absTime;
5769  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5770    return;
5771  }
5772  if (time > 0) {
5773    unpackTime(&absTime, isAbsolute, time);
5774  }
5775
5776
5777  // Enter safepoint region
5778  // Beware of deadlocks such as 6317397.
5779  // The per-thread Parker:: mutex is a classic leaf-lock.
5780  // In particular a thread must never block on the Threads_lock while
5781  // holding the Parker:: mutex.  If safepoints are pending both the
5782  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5783  ThreadBlockInVM tbivm(jt);
5784
5785  // Don't wait if cannot get lock since interference arises from
5786  // unblocking.  Also. check interrupt before trying wait
5787  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5788    return;
5789  }
5790
5791  int status;
5792  if (_counter > 0)  { // no wait needed
5793    _counter = 0;
5794    status = pthread_mutex_unlock(_mutex);
5795    assert(status == 0, "invariant");
5796    // Paranoia to ensure our locked and lock-free paths interact
5797    // correctly with each other and Java-level accesses.
5798    OrderAccess::fence();
5799    return;
5800  }
5801
5802#ifdef ASSERT
5803  // Don't catch signals while blocked; let the running threads have the signals.
5804  // (This allows a debugger to break into the running thread.)
5805  sigset_t oldsigs;
5806  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5807  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5808#endif
5809
5810  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5811  jt->set_suspend_equivalent();
5812  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5813
5814  assert(_cur_index == -1, "invariant");
5815  if (time == 0) {
5816    _cur_index = REL_INDEX; // arbitrary choice when not timed
5817    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5818  } else {
5819    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5820    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5821    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5822      pthread_cond_destroy(&_cond[_cur_index]);
5823      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5824    }
5825  }
5826  _cur_index = -1;
5827  assert_status(status == 0 || status == EINTR ||
5828                status == ETIME || status == ETIMEDOUT,
5829                status, "cond_timedwait");
5830
5831#ifdef ASSERT
5832  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5833#endif
5834
5835  _counter = 0;
5836  status = pthread_mutex_unlock(_mutex);
5837  assert_status(status == 0, status, "invariant");
5838  // Paranoia to ensure our locked and lock-free paths interact
5839  // correctly with each other and Java-level accesses.
5840  OrderAccess::fence();
5841
5842  // If externally suspended while waiting, re-suspend
5843  if (jt->handle_special_suspend_equivalent_condition()) {
5844    jt->java_suspend_self();
5845  }
5846}
5847
5848void Parker::unpark() {
5849  int status = pthread_mutex_lock(_mutex);
5850  assert(status == 0, "invariant");
5851  const int s = _counter;
5852  _counter = 1;
5853  if (s < 1) {
5854    // thread might be parked
5855    if (_cur_index != -1) {
5856      // thread is definitely parked
5857      if (WorkAroundNPTLTimedWaitHang) {
5858        status = pthread_cond_signal(&_cond[_cur_index]);
5859        assert(status == 0, "invariant");
5860        status = pthread_mutex_unlock(_mutex);
5861        assert(status == 0, "invariant");
5862      } else {
5863        status = pthread_mutex_unlock(_mutex);
5864        assert(status == 0, "invariant");
5865        status = pthread_cond_signal(&_cond[_cur_index]);
5866        assert(status == 0, "invariant");
5867      }
5868    } else {
5869      pthread_mutex_unlock(_mutex);
5870      assert(status == 0, "invariant");
5871    }
5872  } else {
5873    pthread_mutex_unlock(_mutex);
5874    assert(status == 0, "invariant");
5875  }
5876}
5877
5878
5879extern char** environ;
5880
5881#ifndef __NR_fork
5882  #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57) AARCH64_ONLY(1079)
5883#endif
5884
5885#ifndef __NR_execve
5886  #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59) AARCH64_ONLY(221)
5887#endif
5888
5889// Run the specified command in a separate process. Return its exit value,
5890// or -1 on failure (e.g. can't fork a new process).
5891// Unlike system(), this function can be called from signal handler. It
5892// doesn't block SIGINT et al.
5893int os::fork_and_exec(char* cmd) {
5894  const char * argv[4] = {"sh", "-c", cmd, NULL};
5895
5896  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5897  // pthread_atfork handlers and reset pthread library. All we need is a
5898  // separate process to execve. Make a direct syscall to fork process.
5899  // On IA64 there's no fork syscall, we have to use fork() and hope for
5900  // the best...
5901  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5902  IA64_ONLY(fork();)
5903
5904  if (pid < 0) {
5905    // fork failed
5906    return -1;
5907
5908  } else if (pid == 0) {
5909    // child process
5910
5911    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5912    // first to kill every thread on the thread list. Because this list is
5913    // not reset by fork() (see notes above), execve() will instead kill
5914    // every thread in the parent process. We know this is the only thread
5915    // in the new process, so make a system call directly.
5916    // IA64 should use normal execve() from glibc to match the glibc fork()
5917    // above.
5918    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5919    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5920
5921    // execve failed
5922    _exit(-1);
5923
5924  } else  {
5925    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5926    // care about the actual exit code, for now.
5927
5928    int status;
5929
5930    // Wait for the child process to exit.  This returns immediately if
5931    // the child has already exited. */
5932    while (waitpid(pid, &status, 0) < 0) {
5933      switch (errno) {
5934      case ECHILD: return 0;
5935      case EINTR: break;
5936      default: return -1;
5937      }
5938    }
5939
5940    if (WIFEXITED(status)) {
5941      // The child exited normally; get its exit code.
5942      return WEXITSTATUS(status);
5943    } else if (WIFSIGNALED(status)) {
5944      // The child exited because of a signal
5945      // The best value to return is 0x80 + signal number,
5946      // because that is what all Unix shells do, and because
5947      // it allows callers to distinguish between process exit and
5948      // process death by signal.
5949      return 0x80 + WTERMSIG(status);
5950    } else {
5951      // Unknown exit code; pass it through
5952      return status;
5953    }
5954  }
5955}
5956
5957// is_headless_jre()
5958//
5959// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5960// in order to report if we are running in a headless jre
5961//
5962// Since JDK8 xawt/libmawt.so was moved into the same directory
5963// as libawt.so, and renamed libawt_xawt.so
5964//
5965bool os::is_headless_jre() {
5966  struct stat statbuf;
5967  char buf[MAXPATHLEN];
5968  char libmawtpath[MAXPATHLEN];
5969  const char *xawtstr  = "/xawt/libmawt.so";
5970  const char *new_xawtstr = "/libawt_xawt.so";
5971  char *p;
5972
5973  // Get path to libjvm.so
5974  os::jvm_path(buf, sizeof(buf));
5975
5976  // Get rid of libjvm.so
5977  p = strrchr(buf, '/');
5978  if (p == NULL) {
5979    return false;
5980  } else {
5981    *p = '\0';
5982  }
5983
5984  // Get rid of client or server
5985  p = strrchr(buf, '/');
5986  if (p == NULL) {
5987    return false;
5988  } else {
5989    *p = '\0';
5990  }
5991
5992  // check xawt/libmawt.so
5993  strcpy(libmawtpath, buf);
5994  strcat(libmawtpath, xawtstr);
5995  if (::stat(libmawtpath, &statbuf) == 0) return false;
5996
5997  // check libawt_xawt.so
5998  strcpy(libmawtpath, buf);
5999  strcat(libmawtpath, new_xawtstr);
6000  if (::stat(libmawtpath, &statbuf) == 0) return false;
6001
6002  return true;
6003}
6004
6005// Get the default path to the core file
6006// Returns the length of the string
6007int os::get_core_path(char* buffer, size_t bufferSize) {
6008  /*
6009   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6010   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6011   */
6012  const int core_pattern_len = 129;
6013  char core_pattern[core_pattern_len] = {0};
6014
6015  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6016  if (core_pattern_file != -1) {
6017    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6018    ::close(core_pattern_file);
6019
6020    if (ret > 0) {
6021      char *last_char = core_pattern + strlen(core_pattern) - 1;
6022
6023      if (*last_char == '\n') {
6024        *last_char = '\0';
6025      }
6026    }
6027  }
6028
6029  if (strlen(core_pattern) == 0) {
6030    return 0;
6031  }
6032
6033  char *pid_pos = strstr(core_pattern, "%p");
6034  size_t written;
6035
6036  if (core_pattern[0] == '/') {
6037    written = jio_snprintf(buffer, bufferSize, core_pattern);
6038  } else {
6039    char cwd[PATH_MAX];
6040
6041    const char* p = get_current_directory(cwd, PATH_MAX);
6042    if (p == NULL) {
6043      assert(p != NULL, "failed to get current directory");
6044      return 0;
6045    }
6046
6047    if (core_pattern[0] == '|') {
6048      written = jio_snprintf(buffer, bufferSize,
6049                        "\"%s\" (or dumping to %s/core.%d)",
6050                                     &core_pattern[1], p, current_process_id());
6051    } else {
6052      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6053    }
6054  }
6055
6056  if ((written >= 0) && (written < bufferSize)
6057            && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6058    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6059
6060    if (core_uses_pid_file != -1) {
6061      char core_uses_pid = 0;
6062      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6063      ::close(core_uses_pid_file);
6064
6065      if (core_uses_pid == '1'){
6066        jio_snprintf(buffer + written, bufferSize - written,
6067                                          ".%d", current_process_id());
6068      }
6069    }
6070  }
6071
6072  return strlen(buffer);
6073}
6074
6075/////////////// Unit tests ///////////////
6076
6077#ifndef PRODUCT
6078
6079#define test_log(...)              \
6080  do {                             \
6081    if (VerboseInternalVMTests) {  \
6082      tty->print_cr(__VA_ARGS__);  \
6083      tty->flush();                \
6084    }                              \
6085  } while (false)
6086
6087class TestReserveMemorySpecial : AllStatic {
6088 public:
6089  static void small_page_write(void* addr, size_t size) {
6090    size_t page_size = os::vm_page_size();
6091
6092    char* end = (char*)addr + size;
6093    for (char* p = (char*)addr; p < end; p += page_size) {
6094      *p = 1;
6095    }
6096  }
6097
6098  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6099    if (!UseHugeTLBFS) {
6100      return;
6101    }
6102
6103    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6104
6105    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6106
6107    if (addr != NULL) {
6108      small_page_write(addr, size);
6109
6110      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6111    }
6112  }
6113
6114  static void test_reserve_memory_special_huge_tlbfs_only() {
6115    if (!UseHugeTLBFS) {
6116      return;
6117    }
6118
6119    size_t lp = os::large_page_size();
6120
6121    for (size_t size = lp; size <= lp * 10; size += lp) {
6122      test_reserve_memory_special_huge_tlbfs_only(size);
6123    }
6124  }
6125
6126  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6127    if (!UseHugeTLBFS) {
6128      return;
6129    }
6130
6131    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6132             size, alignment);
6133
6134    assert(size >= os::large_page_size(), "Incorrect input to test");
6135
6136    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6137
6138    if (addr != NULL) {
6139      small_page_write(addr, size);
6140
6141      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6142    }
6143  }
6144
6145  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6146    size_t lp = os::large_page_size();
6147    size_t ag = os::vm_allocation_granularity();
6148
6149    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6150      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6151    }
6152  }
6153
6154  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6155    size_t lp = os::large_page_size();
6156    size_t ag = os::vm_allocation_granularity();
6157
6158    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6159    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6160    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6161    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6162    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6163    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6164    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6165    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6166    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6167  }
6168
6169  static void test_reserve_memory_special_huge_tlbfs() {
6170    if (!UseHugeTLBFS) {
6171      return;
6172    }
6173
6174    test_reserve_memory_special_huge_tlbfs_only();
6175    test_reserve_memory_special_huge_tlbfs_mixed();
6176  }
6177
6178  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6179    if (!UseSHM) {
6180      return;
6181    }
6182
6183    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6184
6185    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6186
6187    if (addr != NULL) {
6188      assert(is_ptr_aligned(addr, alignment), "Check");
6189      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6190
6191      small_page_write(addr, size);
6192
6193      os::Linux::release_memory_special_shm(addr, size);
6194    }
6195  }
6196
6197  static void test_reserve_memory_special_shm() {
6198    size_t lp = os::large_page_size();
6199    size_t ag = os::vm_allocation_granularity();
6200
6201    for (size_t size = ag; size < lp * 3; size += ag) {
6202      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6203        test_reserve_memory_special_shm(size, alignment);
6204      }
6205    }
6206  }
6207
6208  static void test() {
6209    test_reserve_memory_special_huge_tlbfs();
6210    test_reserve_memory_special_shm();
6211  }
6212};
6213
6214void TestReserveMemorySpecial_test() {
6215  TestReserveMemorySpecial::test();
6216}
6217
6218#endif
6219