os_linux.cpp revision 7765:fca33371ff0b
1139825Simp/*
225164Speter * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
325164Speter * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
425164Speter *
525164Speter * This code is free software; you can redistribute it and/or modify it
625164Speter * under the terms of the GNU General Public License version 2 only, as
725164Speter * published by the Free Software Foundation.
825164Speter *
950477Speter * This code is distributed in the hope that it will be useful, but WITHOUT
1025164Speter * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1125164Speter * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1276078Sjhb * version 2 for more details (a copy is included in the LICENSE file that
1376078Sjhb * accompanied this code).
1425164Speter *
1555205Speter * You should have received a copy of the GNU General Public License version
1625164Speter * 2 along with this work; if not, write to the Free Software Foundation,
1776078Sjhb * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1825517Sfsmp *
19222813Sattilio * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20222813Sattilio * or visit www.oracle.com if you need additional information or have any
21117005Sjeff * questions.
22117005Sjeff *
23117005Sjeff */
24117005Sjeff
25117005Sjeff// no precompiled headers
26117005Sjeff#include "classfile/classLoader.hpp"
27117005Sjeff#include "classfile/systemDictionary.hpp"
28117005Sjeff#include "classfile/vmSymbols.hpp"
29117005Sjeff#include "code/icBuffer.hpp"
30117005Sjeff#include "code/vtableStubs.hpp"
31117005Sjeff#include "compiler/compileBroker.hpp"
32117005Sjeff#include "compiler/disassembler.hpp"
33117005Sjeff#include "interpreter/interpreter.hpp"
34117005Sjeff#include "jvm_linux.h"
35176734Sjeff#include "memory/allocation.inline.hpp"
36176734Sjeff#include "memory/filemap.hpp"
37222813Sattilio#include "mutex_linux.inline.hpp"
38222200Sattilio#include "oops/oop.inline.hpp"
39222200Sattilio#include "os_linux.inline.hpp"
40176734Sjeff#include "os_share_linux.hpp"
41176734Sjeff#include "prims/jniFastGetField.hpp"
42117005Sjeff#include "prims/jvm.h"
43117005Sjeff#include "prims/jvm_misc.hpp"
44215159Snwhitehorn#include "runtime/arguments.hpp"
45215159Snwhitehorn#include "runtime/atomic.inline.hpp"
46176734Sjeff#include "runtime/extendedPC.hpp"
47176734Sjeff#include "runtime/globals.hpp"
48176734Sjeff#include "runtime/interfaceSupport.hpp"
49176734Sjeff#include "runtime/init.hpp"
50176734Sjeff#include "runtime/java.hpp"
51176734Sjeff#include "runtime/javaCalls.hpp"
52176734Sjeff#include "runtime/mutexLocker.hpp"
53176734Sjeff#include "runtime/objectMonitor.hpp"
54117005Sjeff#include "runtime/orderAccess.inline.hpp"
55176734Sjeff#include "runtime/osThread.hpp"
56176734Sjeff#include "runtime/perfMemory.hpp"
57176734Sjeff#include "runtime/sharedRuntime.hpp"
58176734Sjeff#include "runtime/statSampler.hpp"
59191643Sjeff#include "runtime/stubRoutines.hpp"
60191643Sjeff#include "runtime/thread.inline.hpp"
61176734Sjeff#include "runtime/threadCritical.hpp"
62176734Sjeff#include "runtime/timer.hpp"
63176734Sjeff#include "services/attachListener.hpp"
64176734Sjeff#include "services/memTracker.hpp"
65215159Snwhitehorn#include "services/runtimeService.hpp"
66176734Sjeff#include "utilities/decoder.hpp"
67176734Sjeff#include "utilities/defaultStream.hpp"
68176734Sjeff#include "utilities/events.hpp"
69176734Sjeff#include "utilities/elfFile.hpp"
70176734Sjeff#include "utilities/growableArray.hpp"
71176734Sjeff#include "utilities/macros.hpp"
72176734Sjeff#include "utilities/vmError.hpp"
7376078Sjhb
7476078Sjhb// put OS-includes here
7576078Sjhb# include <sys/types.h>
76222813Sattilio# include <sys/mman.h>
77222813Sattilio# include <sys/stat.h>
78236772Siwasaki# include <sys/select.h>
79222813Sattilio# include <pthread.h>
80222813Sattilio# include <signal.h>
81123125Sjhb# include <errno.h>
82123125Sjhb# include <dlfcn.h>
8391673Sjeff# include <stdio.h>
84134689Sjulian# include <unistd.h>
85123125Sjhb# include <sys/resource.h>
86123125Sjhb# include <pthread.h>
8727728Sfsmp# include <sys/stat.h>
88222813Sattilio# include <sys/time.h>
89134591Sjulian# include <sys/times.h>
9027002Sfsmp# include <sys/utsname.h>
9180779Sbmilekic# include <sys/socket.h>
9280779Sbmilekic# include <sys/wait.h>
9380779Sbmilekic# include <pwd.h>
9480779Sbmilekic# include <poll.h>
95222813Sattilio# include <semaphore.h>
9680779Sbmilekic# include <fcntl.h>
97209050Sjhb# include <string.h>
98209050Sjhb# include <syscall.h>
99209050Sjhb# include <sys/sysinfo.h>
100209050Sjhb# include <gnu/libc-version.h>
101209050Sjhb# include <sys/ipc.h>
102209050Sjhb# include <sys/shm.h>
103209050Sjhb# include <link.h>
104209050Sjhb# include <stdint.h>
105209050Sjhb# include <inttypes.h>
106209050Sjhb# include <sys/ioctl.h>
107209050Sjhb
108209050SjhbPRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
109209050Sjhb
110209050Sjhb// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
111209050Sjhb// getrusage() is prepared to handle the associated failure.
112209050Sjhb#ifndef RUSAGE_THREAD
113209050Sjhb  #define RUSAGE_THREAD   (1)               /* only the calling thread */
114209050Sjhb#endif
115209050Sjhb
116209050Sjhb#define MAX_PATH    (2 * K)
117209050Sjhb
118209050Sjhb#define MAX_SECS 100000000
119209050Sjhb
120209050Sjhb// for timer info max values which include all bits
121209050Sjhb#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122209050Sjhb
123209050Sjhb#define LARGEPAGES_BIT (1 << 6)
124209050Sjhb////////////////////////////////////////////////////////////////////////////////
125209050Sjhb// global variables
126209050Sjhbjulong os::Linux::_physical_memory = 0;
127209050Sjhb
128209050Sjhbaddress   os::Linux::_initial_thread_stack_bottom = NULL;
129209050Sjhbuintptr_t os::Linux::_initial_thread_stack_size   = 0;
130209050Sjhb
131209050Sjhbint (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132209050Sjhbint (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
133209050Sjhbint (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
134209050SjhbMutex* os::Linux::_createThread_lock = NULL;
135123125Sjhbpthread_t os::Linux::_main_thread;
13680779Sbmilekicint os::Linux::_page_size = -1;
13776078Sjhbconst int os::Linux::_vm_default_page_size = (8 * K);
13876078Sjhbbool os::Linux::_is_floating_stack = false;
13976078Sjhbbool os::Linux::_is_NPTL = false;
14076078Sjhbbool os::Linux::_supports_fast_thread_cpu_time = false;
14176078Sjhbconst char * os::Linux::_glibc_version = NULL;
14276078Sjhbconst char * os::Linux::_libpthread_version = NULL;
14376078Sjhbpthread_condattr_t os::Linux::_condattr[1];
14476078Sjhb
14576078Sjhbstatic jlong initial_time_count=0;
14676078Sjhb
14776078Sjhbstatic int clock_tics_per_sec = 100;
14876078Sjhb
149122947Sjhb// For diagnostics to print a message once. see run_periodic_checks
150122947Sjhbstatic sigset_t check_signal_done;
151122947Sjhbstatic bool check_signals = true;
152122947Sjhb
153123126Sjhbstatic pid_t _initial_pid = 0;
15427002Sfsmp
15596999Sjake// Signal number used to suspend/resume a thread
15696999Sjake
157176734Sjeff// do not use any signal number less than SIGSEGV, see 4355769
15876078Sjhbstatic int SR_signum = SIGUSR2;
15976078Sjhbsigset_t SR_sigset;
160122947Sjhb
16176078Sjhb// Used to protect dlsym() calls
16227002Sfsmpstatic pthread_mutex_t dl_mutex;
16383366Sjulian
164222813Sattilio// Declarations
165222813Sattiliostatic void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166222813Sattilio
167235622Siwasaki// utility functions
168222813Sattilio
169189903Sjkimstatic int SR_initialize();
17076078Sjhb
171134416Sobrienjulong os::available_memory() {
172145727Sdwhite  return Linux::available_memory();
173123125Sjhb}
174179230Sjb
17576078Sjhbjulong os::Linux::available_memory() {
17676078Sjhb  // values in struct sysinfo are "unsigned long"
17776078Sjhb  struct sysinfo si;
17876078Sjhb  sysinfo(&si);
179222813Sattilio
180179230Sjb  return (julong)si.freeram * si.mem_unit;
181179230Sjb}
182179230Sjb
183179230Sjbjulong os::physical_memory() {
18427728Sfsmp  return Linux::physical_memory();
18555205Speter}
18676078Sjhb
187////////////////////////////////////////////////////////////////////////////////
188// environment support
189
190bool os::getenv(const char* name, char* buf, int len) {
191  const char* val = ::getenv(name);
192  if (val != NULL && strlen(val) < (size_t)len) {
193    strcpy(buf, val);
194    return true;
195  }
196  if (len > 0) buf[0] = 0;  // return a null string
197  return false;
198}
199
200
201// Return true if user is running as root.
202
203bool os::have_special_privileges() {
204  static bool init = false;
205  static bool privileges = false;
206  if (!init) {
207    privileges = (getuid() != geteuid()) || (getgid() != getegid());
208    init = true;
209  }
210  return privileges;
211}
212
213
214#ifndef SYS_gettid
215// i386: 224, ia64: 1105, amd64: 186, sparc 143
216  #ifdef __ia64__
217    #define SYS_gettid 1105
218  #elif __i386__
219    #define SYS_gettid 224
220  #elif __amd64__
221    #define SYS_gettid 186
222  #elif __sparc__
223    #define SYS_gettid 143
224  #else
225    #error define gettid for the arch
226  #endif
227#endif
228
229// Cpu architecture string
230#if   defined(ZERO)
231static char cpu_arch[] = ZERO_LIBARCH;
232#elif defined(IA64)
233static char cpu_arch[] = "ia64";
234#elif defined(IA32)
235static char cpu_arch[] = "i386";
236#elif defined(AMD64)
237static char cpu_arch[] = "amd64";
238#elif defined(ARM)
239static char cpu_arch[] = "arm";
240#elif defined(PPC32)
241static char cpu_arch[] = "ppc";
242#elif defined(PPC64)
243static char cpu_arch[] = "ppc64";
244#elif defined(SPARC)
245  #ifdef _LP64
246static char cpu_arch[] = "sparcv9";
247  #else
248static char cpu_arch[] = "sparc";
249  #endif
250#else
251  #error Add appropriate cpu_arch setting
252#endif
253
254
255// pid_t gettid()
256//
257// Returns the kernel thread id of the currently running thread. Kernel
258// thread id is used to access /proc.
259//
260// (Note that getpid() on LinuxThreads returns kernel thread id too; but
261// on NPTL, it returns the same pid for all threads, as required by POSIX.)
262//
263pid_t os::Linux::gettid() {
264  int rslt = syscall(SYS_gettid);
265  if (rslt == -1) {
266    // old kernel, no NPTL support
267    return getpid();
268  } else {
269    return (pid_t)rslt;
270  }
271}
272
273// Most versions of linux have a bug where the number of processors are
274// determined by looking at the /proc file system.  In a chroot environment,
275// the system call returns 1.  This causes the VM to act as if it is
276// a single processor and elide locking (see is_MP() call).
277static bool unsafe_chroot_detected = false;
278static const char *unstable_chroot_error = "/proc file system not found.\n"
279                     "Java may be unstable running multithreaded in a chroot "
280                     "environment on Linux when /proc filesystem is not mounted.";
281
282void os::Linux::initialize_system_info() {
283  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
284  if (processor_count() == 1) {
285    pid_t pid = os::Linux::gettid();
286    char fname[32];
287    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
288    FILE *fp = fopen(fname, "r");
289    if (fp == NULL) {
290      unsafe_chroot_detected = true;
291    } else {
292      fclose(fp);
293    }
294  }
295  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
296  assert(processor_count() > 0, "linux error");
297}
298
299void os::init_system_properties_values() {
300  // The next steps are taken in the product version:
301  //
302  // Obtain the JAVA_HOME value from the location of libjvm.so.
303  // This library should be located at:
304  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
305  //
306  // If "/jre/lib/" appears at the right place in the path, then we
307  // assume libjvm.so is installed in a JDK and we use this path.
308  //
309  // Otherwise exit with message: "Could not create the Java virtual machine."
310  //
311  // The following extra steps are taken in the debugging version:
312  //
313  // If "/jre/lib/" does NOT appear at the right place in the path
314  // instead of exit check for $JAVA_HOME environment variable.
315  //
316  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
317  // then we append a fake suffix "hotspot/libjvm.so" to this path so
318  // it looks like libjvm.so is installed there
319  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
320  //
321  // Otherwise exit.
322  //
323  // Important note: if the location of libjvm.so changes this
324  // code needs to be changed accordingly.
325
326  // See ld(1):
327  //      The linker uses the following search paths to locate required
328  //      shared libraries:
329  //        1: ...
330  //        ...
331  //        7: The default directories, normally /lib and /usr/lib.
332#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
333  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
334#else
335  #define DEFAULT_LIBPATH "/lib:/usr/lib"
336#endif
337
338// Base path of extensions installed on the system.
339#define SYS_EXT_DIR     "/usr/java/packages"
340#define EXTENSIONS_DIR  "/lib/ext"
341
342  // Buffer that fits several sprintfs.
343  // Note that the space for the colon and the trailing null are provided
344  // by the nulls included by the sizeof operator.
345  const size_t bufsize =
346    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
347         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
348  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
349
350  // sysclasspath, java_home, dll_dir
351  {
352    char *pslash;
353    os::jvm_path(buf, bufsize);
354
355    // Found the full path to libjvm.so.
356    // Now cut the path to <java_home>/jre if we can.
357    pslash = strrchr(buf, '/');
358    if (pslash != NULL) {
359      *pslash = '\0';            // Get rid of /libjvm.so.
360    }
361    pslash = strrchr(buf, '/');
362    if (pslash != NULL) {
363      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
364    }
365    Arguments::set_dll_dir(buf);
366
367    if (pslash != NULL) {
368      pslash = strrchr(buf, '/');
369      if (pslash != NULL) {
370        *pslash = '\0';          // Get rid of /<arch>.
371        pslash = strrchr(buf, '/');
372        if (pslash != NULL) {
373          *pslash = '\0';        // Get rid of /lib.
374        }
375      }
376    }
377    Arguments::set_java_home(buf);
378    set_boot_path('/', ':');
379  }
380
381  // Where to look for native libraries.
382  //
383  // Note: Due to a legacy implementation, most of the library path
384  // is set in the launcher. This was to accomodate linking restrictions
385  // on legacy Linux implementations (which are no longer supported).
386  // Eventually, all the library path setting will be done here.
387  //
388  // However, to prevent the proliferation of improperly built native
389  // libraries, the new path component /usr/java/packages is added here.
390  // Eventually, all the library path setting will be done here.
391  {
392    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
393    // should always exist (until the legacy problem cited above is
394    // addressed).
395    const char *v = ::getenv("LD_LIBRARY_PATH");
396    const char *v_colon = ":";
397    if (v == NULL) { v = ""; v_colon = ""; }
398    // That's +1 for the colon and +1 for the trailing '\0'.
399    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
400                                                     strlen(v) + 1 +
401                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
402                                                     mtInternal);
403    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
404    Arguments::set_library_path(ld_library_path);
405    FREE_C_HEAP_ARRAY(char, ld_library_path);
406  }
407
408  // Extensions directories.
409  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
410  Arguments::set_ext_dirs(buf);
411
412  FREE_C_HEAP_ARRAY(char, buf);
413
414#undef DEFAULT_LIBPATH
415#undef SYS_EXT_DIR
416#undef EXTENSIONS_DIR
417}
418
419////////////////////////////////////////////////////////////////////////////////
420// breakpoint support
421
422void os::breakpoint() {
423  BREAKPOINT;
424}
425
426extern "C" void breakpoint() {
427  // use debugger to set breakpoint here
428}
429
430////////////////////////////////////////////////////////////////////////////////
431// signal support
432
433debug_only(static bool signal_sets_initialized = false);
434static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
435
436bool os::Linux::is_sig_ignored(int sig) {
437  struct sigaction oact;
438  sigaction(sig, (struct sigaction*)NULL, &oact);
439  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
440                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
441  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
442    return true;
443  } else {
444    return false;
445  }
446}
447
448void os::Linux::signal_sets_init() {
449  // Should also have an assertion stating we are still single-threaded.
450  assert(!signal_sets_initialized, "Already initialized");
451  // Fill in signals that are necessarily unblocked for all threads in
452  // the VM. Currently, we unblock the following signals:
453  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
454  //                         by -Xrs (=ReduceSignalUsage));
455  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
456  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
457  // the dispositions or masks wrt these signals.
458  // Programs embedding the VM that want to use the above signals for their
459  // own purposes must, at this time, use the "-Xrs" option to prevent
460  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
461  // (See bug 4345157, and other related bugs).
462  // In reality, though, unblocking these signals is really a nop, since
463  // these signals are not blocked by default.
464  sigemptyset(&unblocked_sigs);
465  sigemptyset(&allowdebug_blocked_sigs);
466  sigaddset(&unblocked_sigs, SIGILL);
467  sigaddset(&unblocked_sigs, SIGSEGV);
468  sigaddset(&unblocked_sigs, SIGBUS);
469  sigaddset(&unblocked_sigs, SIGFPE);
470#if defined(PPC64)
471  sigaddset(&unblocked_sigs, SIGTRAP);
472#endif
473  sigaddset(&unblocked_sigs, SR_signum);
474
475  if (!ReduceSignalUsage) {
476    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
477      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
478      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
479    }
480    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
481      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
482      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
483    }
484    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
485      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
486      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
487    }
488  }
489  // Fill in signals that are blocked by all but the VM thread.
490  sigemptyset(&vm_sigs);
491  if (!ReduceSignalUsage) {
492    sigaddset(&vm_sigs, BREAK_SIGNAL);
493  }
494  debug_only(signal_sets_initialized = true);
495
496}
497
498// These are signals that are unblocked while a thread is running Java.
499// (For some reason, they get blocked by default.)
500sigset_t* os::Linux::unblocked_signals() {
501  assert(signal_sets_initialized, "Not initialized");
502  return &unblocked_sigs;
503}
504
505// These are the signals that are blocked while a (non-VM) thread is
506// running Java. Only the VM thread handles these signals.
507sigset_t* os::Linux::vm_signals() {
508  assert(signal_sets_initialized, "Not initialized");
509  return &vm_sigs;
510}
511
512// These are signals that are blocked during cond_wait to allow debugger in
513sigset_t* os::Linux::allowdebug_blocked_signals() {
514  assert(signal_sets_initialized, "Not initialized");
515  return &allowdebug_blocked_sigs;
516}
517
518void os::Linux::hotspot_sigmask(Thread* thread) {
519
520  //Save caller's signal mask before setting VM signal mask
521  sigset_t caller_sigmask;
522  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
523
524  OSThread* osthread = thread->osthread();
525  osthread->set_caller_sigmask(caller_sigmask);
526
527  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
528
529  if (!ReduceSignalUsage) {
530    if (thread->is_VM_thread()) {
531      // Only the VM thread handles BREAK_SIGNAL ...
532      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
533    } else {
534      // ... all other threads block BREAK_SIGNAL
535      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
536    }
537  }
538}
539
540//////////////////////////////////////////////////////////////////////////////
541// detecting pthread library
542
543void os::Linux::libpthread_init() {
544  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
545  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
546  // generic name for earlier versions.
547  // Define macros here so we can build HotSpot on old systems.
548#ifndef _CS_GNU_LIBC_VERSION
549  #define _CS_GNU_LIBC_VERSION 2
550#endif
551#ifndef _CS_GNU_LIBPTHREAD_VERSION
552  #define _CS_GNU_LIBPTHREAD_VERSION 3
553#endif
554
555  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
556  if (n > 0) {
557    char *str = (char *)malloc(n, mtInternal);
558    confstr(_CS_GNU_LIBC_VERSION, str, n);
559    os::Linux::set_glibc_version(str);
560  } else {
561    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
562    static char _gnu_libc_version[32];
563    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
564                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
565    os::Linux::set_glibc_version(_gnu_libc_version);
566  }
567
568  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
569  if (n > 0) {
570    char *str = (char *)malloc(n, mtInternal);
571    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
572    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
573    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
574    // is the case. LinuxThreads has a hard limit on max number of threads.
575    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
576    // On the other hand, NPTL does not have such a limit, sysconf()
577    // will return -1 and errno is not changed. Check if it is really NPTL.
578    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
579        strstr(str, "NPTL") &&
580        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
581      free(str);
582      os::Linux::set_libpthread_version("linuxthreads");
583    } else {
584      os::Linux::set_libpthread_version(str);
585    }
586  } else {
587    // glibc before 2.3.2 only has LinuxThreads.
588    os::Linux::set_libpthread_version("linuxthreads");
589  }
590
591  if (strstr(libpthread_version(), "NPTL")) {
592    os::Linux::set_is_NPTL();
593  } else {
594    os::Linux::set_is_LinuxThreads();
595  }
596
597  // LinuxThreads have two flavors: floating-stack mode, which allows variable
598  // stack size; and fixed-stack mode. NPTL is always floating-stack.
599  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
600    os::Linux::set_is_floating_stack();
601  }
602}
603
604/////////////////////////////////////////////////////////////////////////////
605// thread stack
606
607// Force Linux kernel to expand current thread stack. If "bottom" is close
608// to the stack guard, caller should block all signals.
609//
610// MAP_GROWSDOWN:
611//   A special mmap() flag that is used to implement thread stacks. It tells
612//   kernel that the memory region should extend downwards when needed. This
613//   allows early versions of LinuxThreads to only mmap the first few pages
614//   when creating a new thread. Linux kernel will automatically expand thread
615//   stack as needed (on page faults).
616//
617//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
618//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
619//   region, it's hard to tell if the fault is due to a legitimate stack
620//   access or because of reading/writing non-exist memory (e.g. buffer
621//   overrun). As a rule, if the fault happens below current stack pointer,
622//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
623//   application (see Linux kernel fault.c).
624//
625//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
626//   stack overflow detection.
627//
628//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
629//   not use this flag. However, the stack of initial thread is not created
630//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
631//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
632//   and then attach the thread to JVM.
633//
634// To get around the problem and allow stack banging on Linux, we need to
635// manually expand thread stack after receiving the SIGSEGV.
636//
637// There are two ways to expand thread stack to address "bottom", we used
638// both of them in JVM before 1.5:
639//   1. adjust stack pointer first so that it is below "bottom", and then
640//      touch "bottom"
641//   2. mmap() the page in question
642//
643// Now alternate signal stack is gone, it's harder to use 2. For instance,
644// if current sp is already near the lower end of page 101, and we need to
645// call mmap() to map page 100, it is possible that part of the mmap() frame
646// will be placed in page 100. When page 100 is mapped, it is zero-filled.
647// That will destroy the mmap() frame and cause VM to crash.
648//
649// The following code works by adjusting sp first, then accessing the "bottom"
650// page to force a page fault. Linux kernel will then automatically expand the
651// stack mapping.
652//
653// _expand_stack_to() assumes its frame size is less than page size, which
654// should always be true if the function is not inlined.
655
656#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
657  #define NOINLINE
658#else
659  #define NOINLINE __attribute__ ((noinline))
660#endif
661
662static void _expand_stack_to(address bottom) NOINLINE;
663
664static void _expand_stack_to(address bottom) {
665  address sp;
666  size_t size;
667  volatile char *p;
668
669  // Adjust bottom to point to the largest address within the same page, it
670  // gives us a one-page buffer if alloca() allocates slightly more memory.
671  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
672  bottom += os::Linux::page_size() - 1;
673
674  // sp might be slightly above current stack pointer; if that's the case, we
675  // will alloca() a little more space than necessary, which is OK. Don't use
676  // os::current_stack_pointer(), as its result can be slightly below current
677  // stack pointer, causing us to not alloca enough to reach "bottom".
678  sp = (address)&sp;
679
680  if (sp > bottom) {
681    size = sp - bottom;
682    p = (volatile char *)alloca(size);
683    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
684    p[0] = '\0';
685  }
686}
687
688bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
689  assert(t!=NULL, "just checking");
690  assert(t->osthread()->expanding_stack(), "expand should be set");
691  assert(t->stack_base() != NULL, "stack_base was not initialized");
692
693  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
694    sigset_t mask_all, old_sigset;
695    sigfillset(&mask_all);
696    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
697    _expand_stack_to(addr);
698    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
699    return true;
700  }
701  return false;
702}
703
704//////////////////////////////////////////////////////////////////////////////
705// create new thread
706
707static address highest_vm_reserved_address();
708
709// check if it's safe to start a new thread
710static bool _thread_safety_check(Thread* thread) {
711  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
712    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
713    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
714    //   allocated (MAP_FIXED) from high address space. Every thread stack
715    //   occupies a fixed size slot (usually 2Mbytes, but user can change
716    //   it to other values if they rebuild LinuxThreads).
717    //
718    // Problem with MAP_FIXED is that mmap() can still succeed even part of
719    // the memory region has already been mmap'ed. That means if we have too
720    // many threads and/or very large heap, eventually thread stack will
721    // collide with heap.
722    //
723    // Here we try to prevent heap/stack collision by comparing current
724    // stack bottom with the highest address that has been mmap'ed by JVM
725    // plus a safety margin for memory maps created by native code.
726    //
727    // This feature can be disabled by setting ThreadSafetyMargin to 0
728    //
729    if (ThreadSafetyMargin > 0) {
730      address stack_bottom = os::current_stack_base() - os::current_stack_size();
731
732      // not safe if our stack extends below the safety margin
733      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
734    } else {
735      return true;
736    }
737  } else {
738    // Floating stack LinuxThreads or NPTL:
739    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
740    //   there's not enough space left, pthread_create() will fail. If we come
741    //   here, that means enough space has been reserved for stack.
742    return true;
743  }
744}
745
746// Thread start routine for all newly created threads
747static void *java_start(Thread *thread) {
748  // Try to randomize the cache line index of hot stack frames.
749  // This helps when threads of the same stack traces evict each other's
750  // cache lines. The threads can be either from the same JVM instance, or
751  // from different JVM instances. The benefit is especially true for
752  // processors with hyperthreading technology.
753  static int counter = 0;
754  int pid = os::current_process_id();
755  alloca(((pid ^ counter++) & 7) * 128);
756
757  ThreadLocalStorage::set_thread(thread);
758
759  OSThread* osthread = thread->osthread();
760  Monitor* sync = osthread->startThread_lock();
761
762  // non floating stack LinuxThreads needs extra check, see above
763  if (!_thread_safety_check(thread)) {
764    // notify parent thread
765    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
766    osthread->set_state(ZOMBIE);
767    sync->notify_all();
768    return NULL;
769  }
770
771  // thread_id is kernel thread id (similar to Solaris LWP id)
772  osthread->set_thread_id(os::Linux::gettid());
773
774  if (UseNUMA) {
775    int lgrp_id = os::numa_get_group_id();
776    if (lgrp_id != -1) {
777      thread->set_lgrp_id(lgrp_id);
778    }
779  }
780  // initialize signal mask for this thread
781  os::Linux::hotspot_sigmask(thread);
782
783  // initialize floating point control register
784  os::Linux::init_thread_fpu_state();
785
786  // handshaking with parent thread
787  {
788    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
789
790    // notify parent thread
791    osthread->set_state(INITIALIZED);
792    sync->notify_all();
793
794    // wait until os::start_thread()
795    while (osthread->get_state() == INITIALIZED) {
796      sync->wait(Mutex::_no_safepoint_check_flag);
797    }
798  }
799
800  // call one more level start routine
801  thread->run();
802
803  return 0;
804}
805
806bool os::create_thread(Thread* thread, ThreadType thr_type,
807                       size_t stack_size) {
808  assert(thread->osthread() == NULL, "caller responsible");
809
810  // Allocate the OSThread object
811  OSThread* osthread = new OSThread(NULL, NULL);
812  if (osthread == NULL) {
813    return false;
814  }
815
816  // set the correct thread state
817  osthread->set_thread_type(thr_type);
818
819  // Initial state is ALLOCATED but not INITIALIZED
820  osthread->set_state(ALLOCATED);
821
822  thread->set_osthread(osthread);
823
824  // init thread attributes
825  pthread_attr_t attr;
826  pthread_attr_init(&attr);
827  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
828
829  // stack size
830  if (os::Linux::supports_variable_stack_size()) {
831    // calculate stack size if it's not specified by caller
832    if (stack_size == 0) {
833      stack_size = os::Linux::default_stack_size(thr_type);
834
835      switch (thr_type) {
836      case os::java_thread:
837        // Java threads use ThreadStackSize which default value can be
838        // changed with the flag -Xss
839        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
840        stack_size = JavaThread::stack_size_at_create();
841        break;
842      case os::compiler_thread:
843        if (CompilerThreadStackSize > 0) {
844          stack_size = (size_t)(CompilerThreadStackSize * K);
845          break;
846        } // else fall through:
847          // use VMThreadStackSize if CompilerThreadStackSize is not defined
848      case os::vm_thread:
849      case os::pgc_thread:
850      case os::cgc_thread:
851      case os::watcher_thread:
852        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
853        break;
854      }
855    }
856
857    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
858    pthread_attr_setstacksize(&attr, stack_size);
859  } else {
860    // let pthread_create() pick the default value.
861  }
862
863  // glibc guard page
864  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
865
866  ThreadState state;
867
868  {
869    // Serialize thread creation if we are running with fixed stack LinuxThreads
870    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
871    if (lock) {
872      os::Linux::createThread_lock()->lock_without_safepoint_check();
873    }
874
875    pthread_t tid;
876    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
877
878    pthread_attr_destroy(&attr);
879
880    if (ret != 0) {
881      if (PrintMiscellaneous && (Verbose || WizardMode)) {
882        perror("pthread_create()");
883      }
884      // Need to clean up stuff we've allocated so far
885      thread->set_osthread(NULL);
886      delete osthread;
887      if (lock) os::Linux::createThread_lock()->unlock();
888      return false;
889    }
890
891    // Store pthread info into the OSThread
892    osthread->set_pthread_id(tid);
893
894    // Wait until child thread is either initialized or aborted
895    {
896      Monitor* sync_with_child = osthread->startThread_lock();
897      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
898      while ((state = osthread->get_state()) == ALLOCATED) {
899        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
900      }
901    }
902
903    if (lock) {
904      os::Linux::createThread_lock()->unlock();
905    }
906  }
907
908  // Aborted due to thread limit being reached
909  if (state == ZOMBIE) {
910    thread->set_osthread(NULL);
911    delete osthread;
912    return false;
913  }
914
915  // The thread is returned suspended (in state INITIALIZED),
916  // and is started higher up in the call chain
917  assert(state == INITIALIZED, "race condition");
918  return true;
919}
920
921/////////////////////////////////////////////////////////////////////////////
922// attach existing thread
923
924// bootstrap the main thread
925bool os::create_main_thread(JavaThread* thread) {
926  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
927  return create_attached_thread(thread);
928}
929
930bool os::create_attached_thread(JavaThread* thread) {
931#ifdef ASSERT
932  thread->verify_not_published();
933#endif
934
935  // Allocate the OSThread object
936  OSThread* osthread = new OSThread(NULL, NULL);
937
938  if (osthread == NULL) {
939    return false;
940  }
941
942  // Store pthread info into the OSThread
943  osthread->set_thread_id(os::Linux::gettid());
944  osthread->set_pthread_id(::pthread_self());
945
946  // initialize floating point control register
947  os::Linux::init_thread_fpu_state();
948
949  // Initial thread state is RUNNABLE
950  osthread->set_state(RUNNABLE);
951
952  thread->set_osthread(osthread);
953
954  if (UseNUMA) {
955    int lgrp_id = os::numa_get_group_id();
956    if (lgrp_id != -1) {
957      thread->set_lgrp_id(lgrp_id);
958    }
959  }
960
961  if (os::Linux::is_initial_thread()) {
962    // If current thread is initial thread, its stack is mapped on demand,
963    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
964    // the entire stack region to avoid SEGV in stack banging.
965    // It is also useful to get around the heap-stack-gap problem on SuSE
966    // kernel (see 4821821 for details). We first expand stack to the top
967    // of yellow zone, then enable stack yellow zone (order is significant,
968    // enabling yellow zone first will crash JVM on SuSE Linux), so there
969    // is no gap between the last two virtual memory regions.
970
971    JavaThread *jt = (JavaThread *)thread;
972    address addr = jt->stack_yellow_zone_base();
973    assert(addr != NULL, "initialization problem?");
974    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
975
976    osthread->set_expanding_stack();
977    os::Linux::manually_expand_stack(jt, addr);
978    osthread->clear_expanding_stack();
979  }
980
981  // initialize signal mask for this thread
982  // and save the caller's signal mask
983  os::Linux::hotspot_sigmask(thread);
984
985  return true;
986}
987
988void os::pd_start_thread(Thread* thread) {
989  OSThread * osthread = thread->osthread();
990  assert(osthread->get_state() != INITIALIZED, "just checking");
991  Monitor* sync_with_child = osthread->startThread_lock();
992  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
993  sync_with_child->notify();
994}
995
996// Free Linux resources related to the OSThread
997void os::free_thread(OSThread* osthread) {
998  assert(osthread != NULL, "osthread not set");
999
1000  if (Thread::current()->osthread() == osthread) {
1001    // Restore caller's signal mask
1002    sigset_t sigmask = osthread->caller_sigmask();
1003    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1004  }
1005
1006  delete osthread;
1007}
1008
1009//////////////////////////////////////////////////////////////////////////////
1010// thread local storage
1011
1012// Restore the thread pointer if the destructor is called. This is in case
1013// someone from JNI code sets up a destructor with pthread_key_create to run
1014// detachCurrentThread on thread death. Unless we restore the thread pointer we
1015// will hang or crash. When detachCurrentThread is called the key will be set
1016// to null and we will not be called again. If detachCurrentThread is never
1017// called we could loop forever depending on the pthread implementation.
1018static void restore_thread_pointer(void* p) {
1019  Thread* thread = (Thread*) p;
1020  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1021}
1022
1023int os::allocate_thread_local_storage() {
1024  pthread_key_t key;
1025  int rslt = pthread_key_create(&key, restore_thread_pointer);
1026  assert(rslt == 0, "cannot allocate thread local storage");
1027  return (int)key;
1028}
1029
1030// Note: This is currently not used by VM, as we don't destroy TLS key
1031// on VM exit.
1032void os::free_thread_local_storage(int index) {
1033  int rslt = pthread_key_delete((pthread_key_t)index);
1034  assert(rslt == 0, "invalid index");
1035}
1036
1037void os::thread_local_storage_at_put(int index, void* value) {
1038  int rslt = pthread_setspecific((pthread_key_t)index, value);
1039  assert(rslt == 0, "pthread_setspecific failed");
1040}
1041
1042extern "C" Thread* get_thread() {
1043  return ThreadLocalStorage::thread();
1044}
1045
1046//////////////////////////////////////////////////////////////////////////////
1047// initial thread
1048
1049// Check if current thread is the initial thread, similar to Solaris thr_main.
1050bool os::Linux::is_initial_thread(void) {
1051  char dummy;
1052  // If called before init complete, thread stack bottom will be null.
1053  // Can be called if fatal error occurs before initialization.
1054  if (initial_thread_stack_bottom() == NULL) return false;
1055  assert(initial_thread_stack_bottom() != NULL &&
1056         initial_thread_stack_size()   != 0,
1057         "os::init did not locate initial thread's stack region");
1058  if ((address)&dummy >= initial_thread_stack_bottom() &&
1059      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1060    return true;
1061  } else {
1062    return false;
1063  }
1064}
1065
1066// Find the virtual memory area that contains addr
1067static bool find_vma(address addr, address* vma_low, address* vma_high) {
1068  FILE *fp = fopen("/proc/self/maps", "r");
1069  if (fp) {
1070    address low, high;
1071    while (!feof(fp)) {
1072      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1073        if (low <= addr && addr < high) {
1074          if (vma_low)  *vma_low  = low;
1075          if (vma_high) *vma_high = high;
1076          fclose(fp);
1077          return true;
1078        }
1079      }
1080      for (;;) {
1081        int ch = fgetc(fp);
1082        if (ch == EOF || ch == (int)'\n') break;
1083      }
1084    }
1085    fclose(fp);
1086  }
1087  return false;
1088}
1089
1090// Locate initial thread stack. This special handling of initial thread stack
1091// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1092// bogus value for initial thread.
1093void os::Linux::capture_initial_stack(size_t max_size) {
1094  // stack size is the easy part, get it from RLIMIT_STACK
1095  size_t stack_size;
1096  struct rlimit rlim;
1097  getrlimit(RLIMIT_STACK, &rlim);
1098  stack_size = rlim.rlim_cur;
1099
1100  // 6308388: a bug in ld.so will relocate its own .data section to the
1101  //   lower end of primordial stack; reduce ulimit -s value a little bit
1102  //   so we won't install guard page on ld.so's data section.
1103  stack_size -= 2 * page_size();
1104
1105  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1106  //   7.1, in both cases we will get 2G in return value.
1107  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1108  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1109  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1110  //   in case other parts in glibc still assumes 2M max stack size.
1111  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1112  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1113  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1114    stack_size = 2 * K * K IA64_ONLY(*2);
1115  }
1116  // Try to figure out where the stack base (top) is. This is harder.
1117  //
1118  // When an application is started, glibc saves the initial stack pointer in
1119  // a global variable "__libc_stack_end", which is then used by system
1120  // libraries. __libc_stack_end should be pretty close to stack top. The
1121  // variable is available since the very early days. However, because it is
1122  // a private interface, it could disappear in the future.
1123  //
1124  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1125  // to __libc_stack_end, it is very close to stack top, but isn't the real
1126  // stack top. Note that /proc may not exist if VM is running as a chroot
1127  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1128  // /proc/<pid>/stat could change in the future (though unlikely).
1129  //
1130  // We try __libc_stack_end first. If that doesn't work, look for
1131  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1132  // as a hint, which should work well in most cases.
1133
1134  uintptr_t stack_start;
1135
1136  // try __libc_stack_end first
1137  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1138  if (p && *p) {
1139    stack_start = *p;
1140  } else {
1141    // see if we can get the start_stack field from /proc/self/stat
1142    FILE *fp;
1143    int pid;
1144    char state;
1145    int ppid;
1146    int pgrp;
1147    int session;
1148    int nr;
1149    int tpgrp;
1150    unsigned long flags;
1151    unsigned long minflt;
1152    unsigned long cminflt;
1153    unsigned long majflt;
1154    unsigned long cmajflt;
1155    unsigned long utime;
1156    unsigned long stime;
1157    long cutime;
1158    long cstime;
1159    long prio;
1160    long nice;
1161    long junk;
1162    long it_real;
1163    uintptr_t start;
1164    uintptr_t vsize;
1165    intptr_t rss;
1166    uintptr_t rsslim;
1167    uintptr_t scodes;
1168    uintptr_t ecode;
1169    int i;
1170
1171    // Figure what the primordial thread stack base is. Code is inspired
1172    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1173    // followed by command name surrounded by parentheses, state, etc.
1174    char stat[2048];
1175    int statlen;
1176
1177    fp = fopen("/proc/self/stat", "r");
1178    if (fp) {
1179      statlen = fread(stat, 1, 2047, fp);
1180      stat[statlen] = '\0';
1181      fclose(fp);
1182
1183      // Skip pid and the command string. Note that we could be dealing with
1184      // weird command names, e.g. user could decide to rename java launcher
1185      // to "java 1.4.2 :)", then the stat file would look like
1186      //                1234 (java 1.4.2 :)) R ... ...
1187      // We don't really need to know the command string, just find the last
1188      // occurrence of ")" and then start parsing from there. See bug 4726580.
1189      char * s = strrchr(stat, ')');
1190
1191      i = 0;
1192      if (s) {
1193        // Skip blank chars
1194        do { s++; } while (s && isspace(*s));
1195
1196#define _UFM UINTX_FORMAT
1197#define _DFM INTX_FORMAT
1198
1199        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1200        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1201        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1202                   &state,          // 3  %c
1203                   &ppid,           // 4  %d
1204                   &pgrp,           // 5  %d
1205                   &session,        // 6  %d
1206                   &nr,             // 7  %d
1207                   &tpgrp,          // 8  %d
1208                   &flags,          // 9  %lu
1209                   &minflt,         // 10 %lu
1210                   &cminflt,        // 11 %lu
1211                   &majflt,         // 12 %lu
1212                   &cmajflt,        // 13 %lu
1213                   &utime,          // 14 %lu
1214                   &stime,          // 15 %lu
1215                   &cutime,         // 16 %ld
1216                   &cstime,         // 17 %ld
1217                   &prio,           // 18 %ld
1218                   &nice,           // 19 %ld
1219                   &junk,           // 20 %ld
1220                   &it_real,        // 21 %ld
1221                   &start,          // 22 UINTX_FORMAT
1222                   &vsize,          // 23 UINTX_FORMAT
1223                   &rss,            // 24 INTX_FORMAT
1224                   &rsslim,         // 25 UINTX_FORMAT
1225                   &scodes,         // 26 UINTX_FORMAT
1226                   &ecode,          // 27 UINTX_FORMAT
1227                   &stack_start);   // 28 UINTX_FORMAT
1228      }
1229
1230#undef _UFM
1231#undef _DFM
1232
1233      if (i != 28 - 2) {
1234        assert(false, "Bad conversion from /proc/self/stat");
1235        // product mode - assume we are the initial thread, good luck in the
1236        // embedded case.
1237        warning("Can't detect initial thread stack location - bad conversion");
1238        stack_start = (uintptr_t) &rlim;
1239      }
1240    } else {
1241      // For some reason we can't open /proc/self/stat (for example, running on
1242      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1243      // most cases, so don't abort:
1244      warning("Can't detect initial thread stack location - no /proc/self/stat");
1245      stack_start = (uintptr_t) &rlim;
1246    }
1247  }
1248
1249  // Now we have a pointer (stack_start) very close to the stack top, the
1250  // next thing to do is to figure out the exact location of stack top. We
1251  // can find out the virtual memory area that contains stack_start by
1252  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1253  // and its upper limit is the real stack top. (again, this would fail if
1254  // running inside chroot, because /proc may not exist.)
1255
1256  uintptr_t stack_top;
1257  address low, high;
1258  if (find_vma((address)stack_start, &low, &high)) {
1259    // success, "high" is the true stack top. (ignore "low", because initial
1260    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1261    stack_top = (uintptr_t)high;
1262  } else {
1263    // failed, likely because /proc/self/maps does not exist
1264    warning("Can't detect initial thread stack location - find_vma failed");
1265    // best effort: stack_start is normally within a few pages below the real
1266    // stack top, use it as stack top, and reduce stack size so we won't put
1267    // guard page outside stack.
1268    stack_top = stack_start;
1269    stack_size -= 16 * page_size();
1270  }
1271
1272  // stack_top could be partially down the page so align it
1273  stack_top = align_size_up(stack_top, page_size());
1274
1275  if (max_size && stack_size > max_size) {
1276    _initial_thread_stack_size = max_size;
1277  } else {
1278    _initial_thread_stack_size = stack_size;
1279  }
1280
1281  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1282  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1283}
1284
1285////////////////////////////////////////////////////////////////////////////////
1286// time support
1287
1288// Time since start-up in seconds to a fine granularity.
1289// Used by VMSelfDestructTimer and the MemProfiler.
1290double os::elapsedTime() {
1291
1292  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1293}
1294
1295jlong os::elapsed_counter() {
1296  return javaTimeNanos() - initial_time_count;
1297}
1298
1299jlong os::elapsed_frequency() {
1300  return NANOSECS_PER_SEC; // nanosecond resolution
1301}
1302
1303bool os::supports_vtime() { return true; }
1304bool os::enable_vtime()   { return false; }
1305bool os::vtime_enabled()  { return false; }
1306
1307double os::elapsedVTime() {
1308  struct rusage usage;
1309  int retval = getrusage(RUSAGE_THREAD, &usage);
1310  if (retval == 0) {
1311    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1312  } else {
1313    // better than nothing, but not much
1314    return elapsedTime();
1315  }
1316}
1317
1318jlong os::javaTimeMillis() {
1319  timeval time;
1320  int status = gettimeofday(&time, NULL);
1321  assert(status != -1, "linux error");
1322  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1323}
1324
1325void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1326  timeval time;
1327  int status = gettimeofday(&time, NULL);
1328  assert(status != -1, "linux error");
1329  seconds = jlong(time.tv_sec);
1330  nanos = jlong(time.tv_usec) * 1000;
1331}
1332
1333
1334#ifndef CLOCK_MONOTONIC
1335  #define CLOCK_MONOTONIC (1)
1336#endif
1337
1338void os::Linux::clock_init() {
1339  // we do dlopen's in this particular order due to bug in linux
1340  // dynamical loader (see 6348968) leading to crash on exit
1341  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1342  if (handle == NULL) {
1343    handle = dlopen("librt.so", RTLD_LAZY);
1344  }
1345
1346  if (handle) {
1347    int (*clock_getres_func)(clockid_t, struct timespec*) =
1348           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1349    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1350           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1351    if (clock_getres_func && clock_gettime_func) {
1352      // See if monotonic clock is supported by the kernel. Note that some
1353      // early implementations simply return kernel jiffies (updated every
1354      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1355      // for nano time (though the monotonic property is still nice to have).
1356      // It's fixed in newer kernels, however clock_getres() still returns
1357      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1358      // resolution for now. Hopefully as people move to new kernels, this
1359      // won't be a problem.
1360      struct timespec res;
1361      struct timespec tp;
1362      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1363          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1364        // yes, monotonic clock is supported
1365        _clock_gettime = clock_gettime_func;
1366        return;
1367      } else {
1368        // close librt if there is no monotonic clock
1369        dlclose(handle);
1370      }
1371    }
1372  }
1373  warning("No monotonic clock was available - timed services may " \
1374          "be adversely affected if the time-of-day clock changes");
1375}
1376
1377#ifndef SYS_clock_getres
1378  #if defined(IA32) || defined(AMD64)
1379    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1380    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1381  #else
1382    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1383    #define sys_clock_getres(x,y)  -1
1384  #endif
1385#else
1386  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1387#endif
1388
1389void os::Linux::fast_thread_clock_init() {
1390  if (!UseLinuxPosixThreadCPUClocks) {
1391    return;
1392  }
1393  clockid_t clockid;
1394  struct timespec tp;
1395  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1396      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1397
1398  // Switch to using fast clocks for thread cpu time if
1399  // the sys_clock_getres() returns 0 error code.
1400  // Note, that some kernels may support the current thread
1401  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1402  // returned by the pthread_getcpuclockid().
1403  // If the fast Posix clocks are supported then the sys_clock_getres()
1404  // must return at least tp.tv_sec == 0 which means a resolution
1405  // better than 1 sec. This is extra check for reliability.
1406
1407  if (pthread_getcpuclockid_func &&
1408      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1409      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1410    _supports_fast_thread_cpu_time = true;
1411    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1412  }
1413}
1414
1415jlong os::javaTimeNanos() {
1416  if (os::supports_monotonic_clock()) {
1417    struct timespec tp;
1418    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1419    assert(status == 0, "gettime error");
1420    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1421    return result;
1422  } else {
1423    timeval time;
1424    int status = gettimeofday(&time, NULL);
1425    assert(status != -1, "linux error");
1426    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1427    return 1000 * usecs;
1428  }
1429}
1430
1431void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1432  if (os::supports_monotonic_clock()) {
1433    info_ptr->max_value = ALL_64_BITS;
1434
1435    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1436    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1437    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1438  } else {
1439    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1440    info_ptr->max_value = ALL_64_BITS;
1441
1442    // gettimeofday is a real time clock so it skips
1443    info_ptr->may_skip_backward = true;
1444    info_ptr->may_skip_forward = true;
1445  }
1446
1447  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1448}
1449
1450// Return the real, user, and system times in seconds from an
1451// arbitrary fixed point in the past.
1452bool os::getTimesSecs(double* process_real_time,
1453                      double* process_user_time,
1454                      double* process_system_time) {
1455  struct tms ticks;
1456  clock_t real_ticks = times(&ticks);
1457
1458  if (real_ticks == (clock_t) (-1)) {
1459    return false;
1460  } else {
1461    double ticks_per_second = (double) clock_tics_per_sec;
1462    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1463    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1464    *process_real_time = ((double) real_ticks) / ticks_per_second;
1465
1466    return true;
1467  }
1468}
1469
1470
1471char * os::local_time_string(char *buf, size_t buflen) {
1472  struct tm t;
1473  time_t long_time;
1474  time(&long_time);
1475  localtime_r(&long_time, &t);
1476  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1477               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1478               t.tm_hour, t.tm_min, t.tm_sec);
1479  return buf;
1480}
1481
1482struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1483  return localtime_r(clock, res);
1484}
1485
1486////////////////////////////////////////////////////////////////////////////////
1487// runtime exit support
1488
1489// Note: os::shutdown() might be called very early during initialization, or
1490// called from signal handler. Before adding something to os::shutdown(), make
1491// sure it is async-safe and can handle partially initialized VM.
1492void os::shutdown() {
1493
1494  // allow PerfMemory to attempt cleanup of any persistent resources
1495  perfMemory_exit();
1496
1497  // needs to remove object in file system
1498  AttachListener::abort();
1499
1500  // flush buffered output, finish log files
1501  ostream_abort();
1502
1503  // Check for abort hook
1504  abort_hook_t abort_hook = Arguments::abort_hook();
1505  if (abort_hook != NULL) {
1506    abort_hook();
1507  }
1508
1509}
1510
1511// Note: os::abort() might be called very early during initialization, or
1512// called from signal handler. Before adding something to os::abort(), make
1513// sure it is async-safe and can handle partially initialized VM.
1514void os::abort(bool dump_core) {
1515  os::shutdown();
1516  if (dump_core) {
1517#ifndef PRODUCT
1518    fdStream out(defaultStream::output_fd());
1519    out.print_raw("Current thread is ");
1520    char buf[16];
1521    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1522    out.print_raw_cr(buf);
1523    out.print_raw_cr("Dumping core ...");
1524#endif
1525    ::abort(); // dump core
1526  }
1527
1528  ::exit(1);
1529}
1530
1531// Die immediately, no exit hook, no abort hook, no cleanup.
1532void os::die() {
1533  // _exit() on LinuxThreads only kills current thread
1534  ::abort();
1535}
1536
1537
1538// This method is a copy of JDK's sysGetLastErrorString
1539// from src/solaris/hpi/src/system_md.c
1540
1541size_t os::lasterror(char *buf, size_t len) {
1542  if (errno == 0)  return 0;
1543
1544  const char *s = ::strerror(errno);
1545  size_t n = ::strlen(s);
1546  if (n >= len) {
1547    n = len - 1;
1548  }
1549  ::strncpy(buf, s, n);
1550  buf[n] = '\0';
1551  return n;
1552}
1553
1554intx os::current_thread_id() { return (intx)pthread_self(); }
1555int os::current_process_id() {
1556
1557  // Under the old linux thread library, linux gives each thread
1558  // its own process id. Because of this each thread will return
1559  // a different pid if this method were to return the result
1560  // of getpid(2). Linux provides no api that returns the pid
1561  // of the launcher thread for the vm. This implementation
1562  // returns a unique pid, the pid of the launcher thread
1563  // that starts the vm 'process'.
1564
1565  // Under the NPTL, getpid() returns the same pid as the
1566  // launcher thread rather than a unique pid per thread.
1567  // Use gettid() if you want the old pre NPTL behaviour.
1568
1569  // if you are looking for the result of a call to getpid() that
1570  // returns a unique pid for the calling thread, then look at the
1571  // OSThread::thread_id() method in osThread_linux.hpp file
1572
1573  return (int)(_initial_pid ? _initial_pid : getpid());
1574}
1575
1576// DLL functions
1577
1578const char* os::dll_file_extension() { return ".so"; }
1579
1580// This must be hard coded because it's the system's temporary
1581// directory not the java application's temp directory, ala java.io.tmpdir.
1582const char* os::get_temp_directory() { return "/tmp"; }
1583
1584static bool file_exists(const char* filename) {
1585  struct stat statbuf;
1586  if (filename == NULL || strlen(filename) == 0) {
1587    return false;
1588  }
1589  return os::stat(filename, &statbuf) == 0;
1590}
1591
1592bool os::dll_build_name(char* buffer, size_t buflen,
1593                        const char* pname, const char* fname) {
1594  bool retval = false;
1595  // Copied from libhpi
1596  const size_t pnamelen = pname ? strlen(pname) : 0;
1597
1598  // Return error on buffer overflow.
1599  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1600    return retval;
1601  }
1602
1603  if (pnamelen == 0) {
1604    snprintf(buffer, buflen, "lib%s.so", fname);
1605    retval = true;
1606  } else if (strchr(pname, *os::path_separator()) != NULL) {
1607    int n;
1608    char** pelements = split_path(pname, &n);
1609    if (pelements == NULL) {
1610      return false;
1611    }
1612    for (int i = 0; i < n; i++) {
1613      // Really shouldn't be NULL, but check can't hurt
1614      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1615        continue; // skip the empty path values
1616      }
1617      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1618      if (file_exists(buffer)) {
1619        retval = true;
1620        break;
1621      }
1622    }
1623    // release the storage
1624    for (int i = 0; i < n; i++) {
1625      if (pelements[i] != NULL) {
1626        FREE_C_HEAP_ARRAY(char, pelements[i]);
1627      }
1628    }
1629    if (pelements != NULL) {
1630      FREE_C_HEAP_ARRAY(char*, pelements);
1631    }
1632  } else {
1633    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1634    retval = true;
1635  }
1636  return retval;
1637}
1638
1639// check if addr is inside libjvm.so
1640bool os::address_is_in_vm(address addr) {
1641  static address libjvm_base_addr;
1642  Dl_info dlinfo;
1643
1644  if (libjvm_base_addr == NULL) {
1645    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1646      libjvm_base_addr = (address)dlinfo.dli_fbase;
1647    }
1648    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1649  }
1650
1651  if (dladdr((void *)addr, &dlinfo) != 0) {
1652    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1653  }
1654
1655  return false;
1656}
1657
1658bool os::dll_address_to_function_name(address addr, char *buf,
1659                                      int buflen, int *offset) {
1660  // buf is not optional, but offset is optional
1661  assert(buf != NULL, "sanity check");
1662
1663  Dl_info dlinfo;
1664
1665  if (dladdr((void*)addr, &dlinfo) != 0) {
1666    // see if we have a matching symbol
1667    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1668      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1669        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1670      }
1671      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1672      return true;
1673    }
1674    // no matching symbol so try for just file info
1675    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1676      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1677                          buf, buflen, offset, dlinfo.dli_fname)) {
1678        return true;
1679      }
1680    }
1681  }
1682
1683  buf[0] = '\0';
1684  if (offset != NULL) *offset = -1;
1685  return false;
1686}
1687
1688struct _address_to_library_name {
1689  address addr;          // input : memory address
1690  size_t  buflen;        //         size of fname
1691  char*   fname;         // output: library name
1692  address base;          //         library base addr
1693};
1694
1695static int address_to_library_name_callback(struct dl_phdr_info *info,
1696                                            size_t size, void *data) {
1697  int i;
1698  bool found = false;
1699  address libbase = NULL;
1700  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1701
1702  // iterate through all loadable segments
1703  for (i = 0; i < info->dlpi_phnum; i++) {
1704    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1705    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1706      // base address of a library is the lowest address of its loaded
1707      // segments.
1708      if (libbase == NULL || libbase > segbase) {
1709        libbase = segbase;
1710      }
1711      // see if 'addr' is within current segment
1712      if (segbase <= d->addr &&
1713          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1714        found = true;
1715      }
1716    }
1717  }
1718
1719  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1720  // so dll_address_to_library_name() can fall through to use dladdr() which
1721  // can figure out executable name from argv[0].
1722  if (found && info->dlpi_name && info->dlpi_name[0]) {
1723    d->base = libbase;
1724    if (d->fname) {
1725      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1726    }
1727    return 1;
1728  }
1729  return 0;
1730}
1731
1732bool os::dll_address_to_library_name(address addr, char* buf,
1733                                     int buflen, int* offset) {
1734  // buf is not optional, but offset is optional
1735  assert(buf != NULL, "sanity check");
1736
1737  Dl_info dlinfo;
1738  struct _address_to_library_name data;
1739
1740  // There is a bug in old glibc dladdr() implementation that it could resolve
1741  // to wrong library name if the .so file has a base address != NULL. Here
1742  // we iterate through the program headers of all loaded libraries to find
1743  // out which library 'addr' really belongs to. This workaround can be
1744  // removed once the minimum requirement for glibc is moved to 2.3.x.
1745  data.addr = addr;
1746  data.fname = buf;
1747  data.buflen = buflen;
1748  data.base = NULL;
1749  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1750
1751  if (rslt) {
1752    // buf already contains library name
1753    if (offset) *offset = addr - data.base;
1754    return true;
1755  }
1756  if (dladdr((void*)addr, &dlinfo) != 0) {
1757    if (dlinfo.dli_fname != NULL) {
1758      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1759    }
1760    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1761      *offset = addr - (address)dlinfo.dli_fbase;
1762    }
1763    return true;
1764  }
1765
1766  buf[0] = '\0';
1767  if (offset) *offset = -1;
1768  return false;
1769}
1770
1771// Loads .dll/.so and
1772// in case of error it checks if .dll/.so was built for the
1773// same architecture as Hotspot is running on
1774
1775
1776// Remember the stack's state. The Linux dynamic linker will change
1777// the stack to 'executable' at most once, so we must safepoint only once.
1778bool os::Linux::_stack_is_executable = false;
1779
1780// VM operation that loads a library.  This is necessary if stack protection
1781// of the Java stacks can be lost during loading the library.  If we
1782// do not stop the Java threads, they can stack overflow before the stacks
1783// are protected again.
1784class VM_LinuxDllLoad: public VM_Operation {
1785 private:
1786  const char *_filename;
1787  char *_ebuf;
1788  int _ebuflen;
1789  void *_lib;
1790 public:
1791  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1792    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1793  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1794  void doit() {
1795    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1796    os::Linux::_stack_is_executable = true;
1797  }
1798  void* loaded_library() { return _lib; }
1799};
1800
1801void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1802  void * result = NULL;
1803  bool load_attempted = false;
1804
1805  // Check whether the library to load might change execution rights
1806  // of the stack. If they are changed, the protection of the stack
1807  // guard pages will be lost. We need a safepoint to fix this.
1808  //
1809  // See Linux man page execstack(8) for more info.
1810  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1811    ElfFile ef(filename);
1812    if (!ef.specifies_noexecstack()) {
1813      if (!is_init_completed()) {
1814        os::Linux::_stack_is_executable = true;
1815        // This is OK - No Java threads have been created yet, and hence no
1816        // stack guard pages to fix.
1817        //
1818        // This should happen only when you are building JDK7 using a very
1819        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1820        //
1821        // Dynamic loader will make all stacks executable after
1822        // this function returns, and will not do that again.
1823        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1824      } else {
1825        warning("You have loaded library %s which might have disabled stack guard. "
1826                "The VM will try to fix the stack guard now.\n"
1827                "It's highly recommended that you fix the library with "
1828                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1829                filename);
1830
1831        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1832        JavaThread *jt = JavaThread::current();
1833        if (jt->thread_state() != _thread_in_native) {
1834          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1835          // that requires ExecStack. Cannot enter safe point. Let's give up.
1836          warning("Unable to fix stack guard. Giving up.");
1837        } else {
1838          if (!LoadExecStackDllInVMThread) {
1839            // This is for the case where the DLL has an static
1840            // constructor function that executes JNI code. We cannot
1841            // load such DLLs in the VMThread.
1842            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1843          }
1844
1845          ThreadInVMfromNative tiv(jt);
1846          debug_only(VMNativeEntryWrapper vew;)
1847
1848          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1849          VMThread::execute(&op);
1850          if (LoadExecStackDllInVMThread) {
1851            result = op.loaded_library();
1852          }
1853          load_attempted = true;
1854        }
1855      }
1856    }
1857  }
1858
1859  if (!load_attempted) {
1860    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1861  }
1862
1863  if (result != NULL) {
1864    // Successful loading
1865    return result;
1866  }
1867
1868  Elf32_Ehdr elf_head;
1869  int diag_msg_max_length=ebuflen-strlen(ebuf);
1870  char* diag_msg_buf=ebuf+strlen(ebuf);
1871
1872  if (diag_msg_max_length==0) {
1873    // No more space in ebuf for additional diagnostics message
1874    return NULL;
1875  }
1876
1877
1878  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1879
1880  if (file_descriptor < 0) {
1881    // Can't open library, report dlerror() message
1882    return NULL;
1883  }
1884
1885  bool failed_to_read_elf_head=
1886    (sizeof(elf_head)!=
1887     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1888
1889  ::close(file_descriptor);
1890  if (failed_to_read_elf_head) {
1891    // file i/o error - report dlerror() msg
1892    return NULL;
1893  }
1894
1895  typedef struct {
1896    Elf32_Half  code;         // Actual value as defined in elf.h
1897    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1898    char        elf_class;    // 32 or 64 bit
1899    char        endianess;    // MSB or LSB
1900    char*       name;         // String representation
1901  } arch_t;
1902
1903#ifndef EM_486
1904  #define EM_486          6               /* Intel 80486 */
1905#endif
1906
1907  static const arch_t arch_array[]={
1908    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1909    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1910    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1911    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1912    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1913    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1914    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1915    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1916#if defined(VM_LITTLE_ENDIAN)
1917    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1918#else
1919    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1920#endif
1921    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1922    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1923    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1924    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1925    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1926    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1927    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1928  };
1929
1930#if  (defined IA32)
1931  static  Elf32_Half running_arch_code=EM_386;
1932#elif   (defined AMD64)
1933  static  Elf32_Half running_arch_code=EM_X86_64;
1934#elif  (defined IA64)
1935  static  Elf32_Half running_arch_code=EM_IA_64;
1936#elif  (defined __sparc) && (defined _LP64)
1937  static  Elf32_Half running_arch_code=EM_SPARCV9;
1938#elif  (defined __sparc) && (!defined _LP64)
1939  static  Elf32_Half running_arch_code=EM_SPARC;
1940#elif  (defined __powerpc64__)
1941  static  Elf32_Half running_arch_code=EM_PPC64;
1942#elif  (defined __powerpc__)
1943  static  Elf32_Half running_arch_code=EM_PPC;
1944#elif  (defined ARM)
1945  static  Elf32_Half running_arch_code=EM_ARM;
1946#elif  (defined S390)
1947  static  Elf32_Half running_arch_code=EM_S390;
1948#elif  (defined ALPHA)
1949  static  Elf32_Half running_arch_code=EM_ALPHA;
1950#elif  (defined MIPSEL)
1951  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1952#elif  (defined PARISC)
1953  static  Elf32_Half running_arch_code=EM_PARISC;
1954#elif  (defined MIPS)
1955  static  Elf32_Half running_arch_code=EM_MIPS;
1956#elif  (defined M68K)
1957  static  Elf32_Half running_arch_code=EM_68K;
1958#else
1959    #error Method os::dll_load requires that one of following is defined:\
1960         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1961#endif
1962
1963  // Identify compatability class for VM's architecture and library's architecture
1964  // Obtain string descriptions for architectures
1965
1966  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1967  int running_arch_index=-1;
1968
1969  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1970    if (running_arch_code == arch_array[i].code) {
1971      running_arch_index    = i;
1972    }
1973    if (lib_arch.code == arch_array[i].code) {
1974      lib_arch.compat_class = arch_array[i].compat_class;
1975      lib_arch.name         = arch_array[i].name;
1976    }
1977  }
1978
1979  assert(running_arch_index != -1,
1980         "Didn't find running architecture code (running_arch_code) in arch_array");
1981  if (running_arch_index == -1) {
1982    // Even though running architecture detection failed
1983    // we may still continue with reporting dlerror() message
1984    return NULL;
1985  }
1986
1987  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1988    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1989    return NULL;
1990  }
1991
1992#ifndef S390
1993  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1994    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1995    return NULL;
1996  }
1997#endif // !S390
1998
1999  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2000    if (lib_arch.name!=NULL) {
2001      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2002                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2003                 lib_arch.name, arch_array[running_arch_index].name);
2004    } else {
2005      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2006                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2007                 lib_arch.code,
2008                 arch_array[running_arch_index].name);
2009    }
2010  }
2011
2012  return NULL;
2013}
2014
2015void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2016                                int ebuflen) {
2017  void * result = ::dlopen(filename, RTLD_LAZY);
2018  if (result == NULL) {
2019    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2020    ebuf[ebuflen-1] = '\0';
2021  }
2022  return result;
2023}
2024
2025void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2026                                       int ebuflen) {
2027  void * result = NULL;
2028  if (LoadExecStackDllInVMThread) {
2029    result = dlopen_helper(filename, ebuf, ebuflen);
2030  }
2031
2032  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2033  // library that requires an executable stack, or which does not have this
2034  // stack attribute set, dlopen changes the stack attribute to executable. The
2035  // read protection of the guard pages gets lost.
2036  //
2037  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2038  // may have been queued at the same time.
2039
2040  if (!_stack_is_executable) {
2041    JavaThread *jt = Threads::first();
2042
2043    while (jt) {
2044      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2045          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2046        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2047                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2048          warning("Attempt to reguard stack yellow zone failed.");
2049        }
2050      }
2051      jt = jt->next();
2052    }
2053  }
2054
2055  return result;
2056}
2057
2058// glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2059// chances are you might want to run the generated bits against glibc-2.0
2060// libdl.so, so always use locking for any version of glibc.
2061//
2062void* os::dll_lookup(void* handle, const char* name) {
2063  pthread_mutex_lock(&dl_mutex);
2064  void* res = dlsym(handle, name);
2065  pthread_mutex_unlock(&dl_mutex);
2066  return res;
2067}
2068
2069void* os::get_default_process_handle() {
2070  return (void*)::dlopen(NULL, RTLD_LAZY);
2071}
2072
2073static bool _print_ascii_file(const char* filename, outputStream* st) {
2074  int fd = ::open(filename, O_RDONLY);
2075  if (fd == -1) {
2076    return false;
2077  }
2078
2079  char buf[32];
2080  int bytes;
2081  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2082    st->print_raw(buf, bytes);
2083  }
2084
2085  ::close(fd);
2086
2087  return true;
2088}
2089
2090void os::print_dll_info(outputStream *st) {
2091  st->print_cr("Dynamic libraries:");
2092
2093  char fname[32];
2094  pid_t pid = os::Linux::gettid();
2095
2096  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2097
2098  if (!_print_ascii_file(fname, st)) {
2099    st->print("Can not get library information for pid = %d\n", pid);
2100  }
2101}
2102
2103int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2104  FILE *procmapsFile = NULL;
2105
2106  // Open the procfs maps file for the current process
2107  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2108    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2109    char line[PATH_MAX + 100];
2110
2111    // Read line by line from 'file'
2112    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2113      u8 base, top, offset, inode;
2114      char permissions[5];
2115      char device[6];
2116      char name[PATH_MAX + 1];
2117
2118      // Parse fields from line
2119      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2120
2121      // Filter by device id '00:00' so that we only get file system mapped files.
2122      if (strcmp(device, "00:00") != 0) {
2123
2124        // Call callback with the fields of interest
2125        if(callback(name, (address)base, (address)top, param)) {
2126          // Oops abort, callback aborted
2127          fclose(procmapsFile);
2128          return 1;
2129        }
2130      }
2131    }
2132    fclose(procmapsFile);
2133  }
2134  return 0;
2135}
2136
2137void os::print_os_info_brief(outputStream* st) {
2138  os::Linux::print_distro_info(st);
2139
2140  os::Posix::print_uname_info(st);
2141
2142  os::Linux::print_libversion_info(st);
2143
2144}
2145
2146void os::print_os_info(outputStream* st) {
2147  st->print("OS:");
2148
2149  os::Linux::print_distro_info(st);
2150
2151  os::Posix::print_uname_info(st);
2152
2153  // Print warning if unsafe chroot environment detected
2154  if (unsafe_chroot_detected) {
2155    st->print("WARNING!! ");
2156    st->print_cr("%s", unstable_chroot_error);
2157  }
2158
2159  os::Linux::print_libversion_info(st);
2160
2161  os::Posix::print_rlimit_info(st);
2162
2163  os::Posix::print_load_average(st);
2164
2165  os::Linux::print_full_memory_info(st);
2166}
2167
2168// Try to identify popular distros.
2169// Most Linux distributions have a /etc/XXX-release file, which contains
2170// the OS version string. Newer Linux distributions have a /etc/lsb-release
2171// file that also contains the OS version string. Some have more than one
2172// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2173// /etc/redhat-release.), so the order is important.
2174// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2175// their own specific XXX-release file as well as a redhat-release file.
2176// Because of this the XXX-release file needs to be searched for before the
2177// redhat-release file.
2178// Since Red Hat has a lsb-release file that is not very descriptive the
2179// search for redhat-release needs to be before lsb-release.
2180// Since the lsb-release file is the new standard it needs to be searched
2181// before the older style release files.
2182// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2183// next to last resort.  The os-release file is a new standard that contains
2184// distribution information and the system-release file seems to be an old
2185// standard that has been replaced by the lsb-release and os-release files.
2186// Searching for the debian_version file is the last resort.  It contains
2187// an informative string like "6.0.6" or "wheezy/sid". Because of this
2188// "Debian " is printed before the contents of the debian_version file.
2189void os::Linux::print_distro_info(outputStream* st) {
2190  if (!_print_ascii_file("/etc/oracle-release", st) &&
2191      !_print_ascii_file("/etc/mandriva-release", st) &&
2192      !_print_ascii_file("/etc/mandrake-release", st) &&
2193      !_print_ascii_file("/etc/sun-release", st) &&
2194      !_print_ascii_file("/etc/redhat-release", st) &&
2195      !_print_ascii_file("/etc/lsb-release", st) &&
2196      !_print_ascii_file("/etc/SuSE-release", st) &&
2197      !_print_ascii_file("/etc/turbolinux-release", st) &&
2198      !_print_ascii_file("/etc/gentoo-release", st) &&
2199      !_print_ascii_file("/etc/ltib-release", st) &&
2200      !_print_ascii_file("/etc/angstrom-version", st) &&
2201      !_print_ascii_file("/etc/system-release", st) &&
2202      !_print_ascii_file("/etc/os-release", st)) {
2203
2204    if (file_exists("/etc/debian_version")) {
2205      st->print("Debian ");
2206      _print_ascii_file("/etc/debian_version", st);
2207    } else {
2208      st->print("Linux");
2209    }
2210  }
2211  st->cr();
2212}
2213
2214void os::Linux::print_libversion_info(outputStream* st) {
2215  // libc, pthread
2216  st->print("libc:");
2217  st->print("%s ", os::Linux::glibc_version());
2218  st->print("%s ", os::Linux::libpthread_version());
2219  if (os::Linux::is_LinuxThreads()) {
2220    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2221  }
2222  st->cr();
2223}
2224
2225void os::Linux::print_full_memory_info(outputStream* st) {
2226  st->print("\n/proc/meminfo:\n");
2227  _print_ascii_file("/proc/meminfo", st);
2228  st->cr();
2229}
2230
2231void os::print_memory_info(outputStream* st) {
2232
2233  st->print("Memory:");
2234  st->print(" %dk page", os::vm_page_size()>>10);
2235
2236  // values in struct sysinfo are "unsigned long"
2237  struct sysinfo si;
2238  sysinfo(&si);
2239
2240  st->print(", physical " UINT64_FORMAT "k",
2241            os::physical_memory() >> 10);
2242  st->print("(" UINT64_FORMAT "k free)",
2243            os::available_memory() >> 10);
2244  st->print(", swap " UINT64_FORMAT "k",
2245            ((jlong)si.totalswap * si.mem_unit) >> 10);
2246  st->print("(" UINT64_FORMAT "k free)",
2247            ((jlong)si.freeswap * si.mem_unit) >> 10);
2248  st->cr();
2249}
2250
2251void os::pd_print_cpu_info(outputStream* st) {
2252  st->print("\n/proc/cpuinfo:\n");
2253  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2254    st->print("  <Not Available>");
2255  }
2256  st->cr();
2257}
2258
2259void os::print_siginfo(outputStream* st, void* siginfo) {
2260  const siginfo_t* si = (const siginfo_t*)siginfo;
2261
2262  os::Posix::print_siginfo_brief(st, si);
2263#if INCLUDE_CDS
2264  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2265      UseSharedSpaces) {
2266    FileMapInfo* mapinfo = FileMapInfo::current_info();
2267    if (mapinfo->is_in_shared_space(si->si_addr)) {
2268      st->print("\n\nError accessing class data sharing archive."   \
2269                " Mapped file inaccessible during execution, "      \
2270                " possible disk/network problem.");
2271    }
2272  }
2273#endif
2274  st->cr();
2275}
2276
2277
2278static void print_signal_handler(outputStream* st, int sig,
2279                                 char* buf, size_t buflen);
2280
2281void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2282  st->print_cr("Signal Handlers:");
2283  print_signal_handler(st, SIGSEGV, buf, buflen);
2284  print_signal_handler(st, SIGBUS , buf, buflen);
2285  print_signal_handler(st, SIGFPE , buf, buflen);
2286  print_signal_handler(st, SIGPIPE, buf, buflen);
2287  print_signal_handler(st, SIGXFSZ, buf, buflen);
2288  print_signal_handler(st, SIGILL , buf, buflen);
2289  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2290  print_signal_handler(st, SR_signum, buf, buflen);
2291  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2292  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2293  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2294  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2295#if defined(PPC64)
2296  print_signal_handler(st, SIGTRAP, buf, buflen);
2297#endif
2298}
2299
2300static char saved_jvm_path[MAXPATHLEN] = {0};
2301
2302// Find the full path to the current module, libjvm.so
2303void os::jvm_path(char *buf, jint buflen) {
2304  // Error checking.
2305  if (buflen < MAXPATHLEN) {
2306    assert(false, "must use a large-enough buffer");
2307    buf[0] = '\0';
2308    return;
2309  }
2310  // Lazy resolve the path to current module.
2311  if (saved_jvm_path[0] != 0) {
2312    strcpy(buf, saved_jvm_path);
2313    return;
2314  }
2315
2316  char dli_fname[MAXPATHLEN];
2317  bool ret = dll_address_to_library_name(
2318                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2319                                         dli_fname, sizeof(dli_fname), NULL);
2320  assert(ret, "cannot locate libjvm");
2321  char *rp = NULL;
2322  if (ret && dli_fname[0] != '\0') {
2323    rp = realpath(dli_fname, buf);
2324  }
2325  if (rp == NULL) {
2326    return;
2327  }
2328
2329  if (Arguments::sun_java_launcher_is_altjvm()) {
2330    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2331    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2332    // If "/jre/lib/" appears at the right place in the string, then
2333    // assume we are installed in a JDK and we're done. Otherwise, check
2334    // for a JAVA_HOME environment variable and fix up the path so it
2335    // looks like libjvm.so is installed there (append a fake suffix
2336    // hotspot/libjvm.so).
2337    const char *p = buf + strlen(buf) - 1;
2338    for (int count = 0; p > buf && count < 5; ++count) {
2339      for (--p; p > buf && *p != '/'; --p)
2340        /* empty */ ;
2341    }
2342
2343    if (strncmp(p, "/jre/lib/", 9) != 0) {
2344      // Look for JAVA_HOME in the environment.
2345      char* java_home_var = ::getenv("JAVA_HOME");
2346      if (java_home_var != NULL && java_home_var[0] != 0) {
2347        char* jrelib_p;
2348        int len;
2349
2350        // Check the current module name "libjvm.so".
2351        p = strrchr(buf, '/');
2352        if (p == NULL) {
2353          return;
2354        }
2355        assert(strstr(p, "/libjvm") == p, "invalid library name");
2356
2357        rp = realpath(java_home_var, buf);
2358        if (rp == NULL) {
2359          return;
2360        }
2361
2362        // determine if this is a legacy image or modules image
2363        // modules image doesn't have "jre" subdirectory
2364        len = strlen(buf);
2365        assert(len < buflen, "Ran out of buffer room");
2366        jrelib_p = buf + len;
2367        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2368        if (0 != access(buf, F_OK)) {
2369          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2370        }
2371
2372        if (0 == access(buf, F_OK)) {
2373          // Use current module name "libjvm.so"
2374          len = strlen(buf);
2375          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2376        } else {
2377          // Go back to path of .so
2378          rp = realpath(dli_fname, buf);
2379          if (rp == NULL) {
2380            return;
2381          }
2382        }
2383      }
2384    }
2385  }
2386
2387  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2388  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2389}
2390
2391void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2392  // no prefix required, not even "_"
2393}
2394
2395void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2396  // no suffix required
2397}
2398
2399////////////////////////////////////////////////////////////////////////////////
2400// sun.misc.Signal support
2401
2402static volatile jint sigint_count = 0;
2403
2404static void UserHandler(int sig, void *siginfo, void *context) {
2405  // 4511530 - sem_post is serialized and handled by the manager thread. When
2406  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2407  // don't want to flood the manager thread with sem_post requests.
2408  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2409    return;
2410  }
2411
2412  // Ctrl-C is pressed during error reporting, likely because the error
2413  // handler fails to abort. Let VM die immediately.
2414  if (sig == SIGINT && is_error_reported()) {
2415    os::die();
2416  }
2417
2418  os::signal_notify(sig);
2419}
2420
2421void* os::user_handler() {
2422  return CAST_FROM_FN_PTR(void*, UserHandler);
2423}
2424
2425class Semaphore : public StackObj {
2426 public:
2427  Semaphore();
2428  ~Semaphore();
2429  void signal();
2430  void wait();
2431  bool trywait();
2432  bool timedwait(unsigned int sec, int nsec);
2433 private:
2434  sem_t _semaphore;
2435};
2436
2437Semaphore::Semaphore() {
2438  sem_init(&_semaphore, 0, 0);
2439}
2440
2441Semaphore::~Semaphore() {
2442  sem_destroy(&_semaphore);
2443}
2444
2445void Semaphore::signal() {
2446  sem_post(&_semaphore);
2447}
2448
2449void Semaphore::wait() {
2450  sem_wait(&_semaphore);
2451}
2452
2453bool Semaphore::trywait() {
2454  return sem_trywait(&_semaphore) == 0;
2455}
2456
2457bool Semaphore::timedwait(unsigned int sec, int nsec) {
2458
2459  struct timespec ts;
2460  // Semaphore's are always associated with CLOCK_REALTIME
2461  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2462  // see unpackTime for discussion on overflow checking
2463  if (sec >= MAX_SECS) {
2464    ts.tv_sec += MAX_SECS;
2465    ts.tv_nsec = 0;
2466  } else {
2467    ts.tv_sec += sec;
2468    ts.tv_nsec += nsec;
2469    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2470      ts.tv_nsec -= NANOSECS_PER_SEC;
2471      ++ts.tv_sec; // note: this must be <= max_secs
2472    }
2473  }
2474
2475  while (1) {
2476    int result = sem_timedwait(&_semaphore, &ts);
2477    if (result == 0) {
2478      return true;
2479    } else if (errno == EINTR) {
2480      continue;
2481    } else if (errno == ETIMEDOUT) {
2482      return false;
2483    } else {
2484      return false;
2485    }
2486  }
2487}
2488
2489extern "C" {
2490  typedef void (*sa_handler_t)(int);
2491  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2492}
2493
2494void* os::signal(int signal_number, void* handler) {
2495  struct sigaction sigAct, oldSigAct;
2496
2497  sigfillset(&(sigAct.sa_mask));
2498  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2499  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2500
2501  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2502    // -1 means registration failed
2503    return (void *)-1;
2504  }
2505
2506  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2507}
2508
2509void os::signal_raise(int signal_number) {
2510  ::raise(signal_number);
2511}
2512
2513// The following code is moved from os.cpp for making this
2514// code platform specific, which it is by its very nature.
2515
2516// Will be modified when max signal is changed to be dynamic
2517int os::sigexitnum_pd() {
2518  return NSIG;
2519}
2520
2521// a counter for each possible signal value
2522static volatile jint pending_signals[NSIG+1] = { 0 };
2523
2524// Linux(POSIX) specific hand shaking semaphore.
2525static sem_t sig_sem;
2526static Semaphore sr_semaphore;
2527
2528void os::signal_init_pd() {
2529  // Initialize signal structures
2530  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2531
2532  // Initialize signal semaphore
2533  ::sem_init(&sig_sem, 0, 0);
2534}
2535
2536void os::signal_notify(int sig) {
2537  Atomic::inc(&pending_signals[sig]);
2538  ::sem_post(&sig_sem);
2539}
2540
2541static int check_pending_signals(bool wait) {
2542  Atomic::store(0, &sigint_count);
2543  for (;;) {
2544    for (int i = 0; i < NSIG + 1; i++) {
2545      jint n = pending_signals[i];
2546      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2547        return i;
2548      }
2549    }
2550    if (!wait) {
2551      return -1;
2552    }
2553    JavaThread *thread = JavaThread::current();
2554    ThreadBlockInVM tbivm(thread);
2555
2556    bool threadIsSuspended;
2557    do {
2558      thread->set_suspend_equivalent();
2559      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2560      ::sem_wait(&sig_sem);
2561
2562      // were we externally suspended while we were waiting?
2563      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2564      if (threadIsSuspended) {
2565        // The semaphore has been incremented, but while we were waiting
2566        // another thread suspended us. We don't want to continue running
2567        // while suspended because that would surprise the thread that
2568        // suspended us.
2569        ::sem_post(&sig_sem);
2570
2571        thread->java_suspend_self();
2572      }
2573    } while (threadIsSuspended);
2574  }
2575}
2576
2577int os::signal_lookup() {
2578  return check_pending_signals(false);
2579}
2580
2581int os::signal_wait() {
2582  return check_pending_signals(true);
2583}
2584
2585////////////////////////////////////////////////////////////////////////////////
2586// Virtual Memory
2587
2588int os::vm_page_size() {
2589  // Seems redundant as all get out
2590  assert(os::Linux::page_size() != -1, "must call os::init");
2591  return os::Linux::page_size();
2592}
2593
2594// Solaris allocates memory by pages.
2595int os::vm_allocation_granularity() {
2596  assert(os::Linux::page_size() != -1, "must call os::init");
2597  return os::Linux::page_size();
2598}
2599
2600// Rationale behind this function:
2601//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2602//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2603//  samples for JITted code. Here we create private executable mapping over the code cache
2604//  and then we can use standard (well, almost, as mapping can change) way to provide
2605//  info for the reporting script by storing timestamp and location of symbol
2606void linux_wrap_code(char* base, size_t size) {
2607  static volatile jint cnt = 0;
2608
2609  if (!UseOprofile) {
2610    return;
2611  }
2612
2613  char buf[PATH_MAX+1];
2614  int num = Atomic::add(1, &cnt);
2615
2616  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2617           os::get_temp_directory(), os::current_process_id(), num);
2618  unlink(buf);
2619
2620  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2621
2622  if (fd != -1) {
2623    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2624    if (rv != (off_t)-1) {
2625      if (::write(fd, "", 1) == 1) {
2626        mmap(base, size,
2627             PROT_READ|PROT_WRITE|PROT_EXEC,
2628             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2629      }
2630    }
2631    ::close(fd);
2632    unlink(buf);
2633  }
2634}
2635
2636static bool recoverable_mmap_error(int err) {
2637  // See if the error is one we can let the caller handle. This
2638  // list of errno values comes from JBS-6843484. I can't find a
2639  // Linux man page that documents this specific set of errno
2640  // values so while this list currently matches Solaris, it may
2641  // change as we gain experience with this failure mode.
2642  switch (err) {
2643  case EBADF:
2644  case EINVAL:
2645  case ENOTSUP:
2646    // let the caller deal with these errors
2647    return true;
2648
2649  default:
2650    // Any remaining errors on this OS can cause our reserved mapping
2651    // to be lost. That can cause confusion where different data
2652    // structures think they have the same memory mapped. The worst
2653    // scenario is if both the VM and a library think they have the
2654    // same memory mapped.
2655    return false;
2656  }
2657}
2658
2659static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2660                                    int err) {
2661  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2662          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2663          strerror(err), err);
2664}
2665
2666static void warn_fail_commit_memory(char* addr, size_t size,
2667                                    size_t alignment_hint, bool exec,
2668                                    int err) {
2669  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2670          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2671          alignment_hint, exec, strerror(err), err);
2672}
2673
2674// NOTE: Linux kernel does not really reserve the pages for us.
2675//       All it does is to check if there are enough free pages
2676//       left at the time of mmap(). This could be a potential
2677//       problem.
2678int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2679  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2680  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2681                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2682  if (res != (uintptr_t) MAP_FAILED) {
2683    if (UseNUMAInterleaving) {
2684      numa_make_global(addr, size);
2685    }
2686    return 0;
2687  }
2688
2689  int err = errno;  // save errno from mmap() call above
2690
2691  if (!recoverable_mmap_error(err)) {
2692    warn_fail_commit_memory(addr, size, exec, err);
2693    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2694  }
2695
2696  return err;
2697}
2698
2699bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2700  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2701}
2702
2703void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2704                                  const char* mesg) {
2705  assert(mesg != NULL, "mesg must be specified");
2706  int err = os::Linux::commit_memory_impl(addr, size, exec);
2707  if (err != 0) {
2708    // the caller wants all commit errors to exit with the specified mesg:
2709    warn_fail_commit_memory(addr, size, exec, err);
2710    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2711  }
2712}
2713
2714// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2715#ifndef MAP_HUGETLB
2716  #define MAP_HUGETLB 0x40000
2717#endif
2718
2719// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2720#ifndef MADV_HUGEPAGE
2721  #define MADV_HUGEPAGE 14
2722#endif
2723
2724int os::Linux::commit_memory_impl(char* addr, size_t size,
2725                                  size_t alignment_hint, bool exec) {
2726  int err = os::Linux::commit_memory_impl(addr, size, exec);
2727  if (err == 0) {
2728    realign_memory(addr, size, alignment_hint);
2729  }
2730  return err;
2731}
2732
2733bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2734                          bool exec) {
2735  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2736}
2737
2738void os::pd_commit_memory_or_exit(char* addr, size_t size,
2739                                  size_t alignment_hint, bool exec,
2740                                  const char* mesg) {
2741  assert(mesg != NULL, "mesg must be specified");
2742  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2743  if (err != 0) {
2744    // the caller wants all commit errors to exit with the specified mesg:
2745    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2746    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2747  }
2748}
2749
2750void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2751  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2752    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2753    // be supported or the memory may already be backed by huge pages.
2754    ::madvise(addr, bytes, MADV_HUGEPAGE);
2755  }
2756}
2757
2758void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2759  // This method works by doing an mmap over an existing mmaping and effectively discarding
2760  // the existing pages. However it won't work for SHM-based large pages that cannot be
2761  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2762  // small pages on top of the SHM segment. This method always works for small pages, so we
2763  // allow that in any case.
2764  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2765    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2766  }
2767}
2768
2769void os::numa_make_global(char *addr, size_t bytes) {
2770  Linux::numa_interleave_memory(addr, bytes);
2771}
2772
2773// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2774// bind policy to MPOL_PREFERRED for the current thread.
2775#define USE_MPOL_PREFERRED 0
2776
2777void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2778  // To make NUMA and large pages more robust when both enabled, we need to ease
2779  // the requirements on where the memory should be allocated. MPOL_BIND is the
2780  // default policy and it will force memory to be allocated on the specified
2781  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2782  // the specified node, but will not force it. Using this policy will prevent
2783  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2784  // free large pages.
2785  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2786  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2787}
2788
2789bool os::numa_topology_changed() { return false; }
2790
2791size_t os::numa_get_groups_num() {
2792  int max_node = Linux::numa_max_node();
2793  return max_node > 0 ? max_node + 1 : 1;
2794}
2795
2796int os::numa_get_group_id() {
2797  int cpu_id = Linux::sched_getcpu();
2798  if (cpu_id != -1) {
2799    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2800    if (lgrp_id != -1) {
2801      return lgrp_id;
2802    }
2803  }
2804  return 0;
2805}
2806
2807size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2808  for (size_t i = 0; i < size; i++) {
2809    ids[i] = i;
2810  }
2811  return size;
2812}
2813
2814bool os::get_page_info(char *start, page_info* info) {
2815  return false;
2816}
2817
2818char *os::scan_pages(char *start, char* end, page_info* page_expected,
2819                     page_info* page_found) {
2820  return end;
2821}
2822
2823
2824int os::Linux::sched_getcpu_syscall(void) {
2825  unsigned int cpu;
2826  int retval = -1;
2827
2828#if defined(IA32)
2829  #ifndef SYS_getcpu
2830    #define SYS_getcpu 318
2831  #endif
2832  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2833#elif defined(AMD64)
2834// Unfortunately we have to bring all these macros here from vsyscall.h
2835// to be able to compile on old linuxes.
2836  #define __NR_vgetcpu 2
2837  #define VSYSCALL_START (-10UL << 20)
2838  #define VSYSCALL_SIZE 1024
2839  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2840  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2841  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2842  retval = vgetcpu(&cpu, NULL, NULL);
2843#endif
2844
2845  return (retval == -1) ? retval : cpu;
2846}
2847
2848// Something to do with the numa-aware allocator needs these symbols
2849extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2850extern "C" JNIEXPORT void numa_error(char *where) { }
2851extern "C" JNIEXPORT int fork1() { return fork(); }
2852
2853
2854// If we are running with libnuma version > 2, then we should
2855// be trying to use symbols with versions 1.1
2856// If we are running with earlier version, which did not have symbol versions,
2857// we should use the base version.
2858void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2859  void *f = dlvsym(handle, name, "libnuma_1.1");
2860  if (f == NULL) {
2861    f = dlsym(handle, name);
2862  }
2863  return f;
2864}
2865
2866bool os::Linux::libnuma_init() {
2867  // sched_getcpu() should be in libc.
2868  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2869                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2870
2871  // If it's not, try a direct syscall.
2872  if (sched_getcpu() == -1) {
2873    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2874                                    (void*)&sched_getcpu_syscall));
2875  }
2876
2877  if (sched_getcpu() != -1) { // Does it work?
2878    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2879    if (handle != NULL) {
2880      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2881                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2882      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2883                                       libnuma_dlsym(handle, "numa_max_node")));
2884      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2885                                        libnuma_dlsym(handle, "numa_available")));
2886      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2887                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2888      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2889                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2890      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2891                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2892
2893
2894      if (numa_available() != -1) {
2895        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2896        // Create a cpu -> node mapping
2897        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2898        rebuild_cpu_to_node_map();
2899        return true;
2900      }
2901    }
2902  }
2903  return false;
2904}
2905
2906// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2907// The table is later used in get_node_by_cpu().
2908void os::Linux::rebuild_cpu_to_node_map() {
2909  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2910                              // in libnuma (possible values are starting from 16,
2911                              // and continuing up with every other power of 2, but less
2912                              // than the maximum number of CPUs supported by kernel), and
2913                              // is a subject to change (in libnuma version 2 the requirements
2914                              // are more reasonable) we'll just hardcode the number they use
2915                              // in the library.
2916  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2917
2918  size_t cpu_num = os::active_processor_count();
2919  size_t cpu_map_size = NCPUS / BitsPerCLong;
2920  size_t cpu_map_valid_size =
2921    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2922
2923  cpu_to_node()->clear();
2924  cpu_to_node()->at_grow(cpu_num - 1);
2925  size_t node_num = numa_get_groups_num();
2926
2927  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2928  for (size_t i = 0; i < node_num; i++) {
2929    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2930      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2931        if (cpu_map[j] != 0) {
2932          for (size_t k = 0; k < BitsPerCLong; k++) {
2933            if (cpu_map[j] & (1UL << k)) {
2934              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2935            }
2936          }
2937        }
2938      }
2939    }
2940  }
2941  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2942}
2943
2944int os::Linux::get_node_by_cpu(int cpu_id) {
2945  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2946    return cpu_to_node()->at(cpu_id);
2947  }
2948  return -1;
2949}
2950
2951GrowableArray<int>* os::Linux::_cpu_to_node;
2952os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2953os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2954os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2955os::Linux::numa_available_func_t os::Linux::_numa_available;
2956os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2957os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2958os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2959unsigned long* os::Linux::_numa_all_nodes;
2960
2961bool os::pd_uncommit_memory(char* addr, size_t size) {
2962  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2963                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2964  return res  != (uintptr_t) MAP_FAILED;
2965}
2966
2967static address get_stack_commited_bottom(address bottom, size_t size) {
2968  address nbot = bottom;
2969  address ntop = bottom + size;
2970
2971  size_t page_sz = os::vm_page_size();
2972  unsigned pages = size / page_sz;
2973
2974  unsigned char vec[1];
2975  unsigned imin = 1, imax = pages + 1, imid;
2976  int mincore_return_value = 0;
2977
2978  assert(imin <= imax, "Unexpected page size");
2979
2980  while (imin < imax) {
2981    imid = (imax + imin) / 2;
2982    nbot = ntop - (imid * page_sz);
2983
2984    // Use a trick with mincore to check whether the page is mapped or not.
2985    // mincore sets vec to 1 if page resides in memory and to 0 if page
2986    // is swapped output but if page we are asking for is unmapped
2987    // it returns -1,ENOMEM
2988    mincore_return_value = mincore(nbot, page_sz, vec);
2989
2990    if (mincore_return_value == -1) {
2991      // Page is not mapped go up
2992      // to find first mapped page
2993      if (errno != EAGAIN) {
2994        assert(errno == ENOMEM, "Unexpected mincore errno");
2995        imax = imid;
2996      }
2997    } else {
2998      // Page is mapped go down
2999      // to find first not mapped page
3000      imin = imid + 1;
3001    }
3002  }
3003
3004  nbot = nbot + page_sz;
3005
3006  // Adjust stack bottom one page up if last checked page is not mapped
3007  if (mincore_return_value == -1) {
3008    nbot = nbot + page_sz;
3009  }
3010
3011  return nbot;
3012}
3013
3014
3015// Linux uses a growable mapping for the stack, and if the mapping for
3016// the stack guard pages is not removed when we detach a thread the
3017// stack cannot grow beyond the pages where the stack guard was
3018// mapped.  If at some point later in the process the stack expands to
3019// that point, the Linux kernel cannot expand the stack any further
3020// because the guard pages are in the way, and a segfault occurs.
3021//
3022// However, it's essential not to split the stack region by unmapping
3023// a region (leaving a hole) that's already part of the stack mapping,
3024// so if the stack mapping has already grown beyond the guard pages at
3025// the time we create them, we have to truncate the stack mapping.
3026// So, we need to know the extent of the stack mapping when
3027// create_stack_guard_pages() is called.
3028
3029// We only need this for stacks that are growable: at the time of
3030// writing thread stacks don't use growable mappings (i.e. those
3031// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3032// only applies to the main thread.
3033
3034// If the (growable) stack mapping already extends beyond the point
3035// where we're going to put our guard pages, truncate the mapping at
3036// that point by munmap()ping it.  This ensures that when we later
3037// munmap() the guard pages we don't leave a hole in the stack
3038// mapping. This only affects the main/initial thread
3039
3040bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3041  if (os::Linux::is_initial_thread()) {
3042    // As we manually grow stack up to bottom inside create_attached_thread(),
3043    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3044    // we don't need to do anything special.
3045    // Check it first, before calling heavy function.
3046    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3047    unsigned char vec[1];
3048
3049    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3050      // Fallback to slow path on all errors, including EAGAIN
3051      stack_extent = (uintptr_t) get_stack_commited_bottom(
3052                                                           os::Linux::initial_thread_stack_bottom(),
3053                                                           (size_t)addr - stack_extent);
3054    }
3055
3056    if (stack_extent < (uintptr_t)addr) {
3057      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3058    }
3059  }
3060
3061  return os::commit_memory(addr, size, !ExecMem);
3062}
3063
3064// If this is a growable mapping, remove the guard pages entirely by
3065// munmap()ping them.  If not, just call uncommit_memory(). This only
3066// affects the main/initial thread, but guard against future OS changes
3067// It's safe to always unmap guard pages for initial thread because we
3068// always place it right after end of the mapped region
3069
3070bool os::remove_stack_guard_pages(char* addr, size_t size) {
3071  uintptr_t stack_extent, stack_base;
3072
3073  if (os::Linux::is_initial_thread()) {
3074    return ::munmap(addr, size) == 0;
3075  }
3076
3077  return os::uncommit_memory(addr, size);
3078}
3079
3080static address _highest_vm_reserved_address = NULL;
3081
3082// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3083// at 'requested_addr'. If there are existing memory mappings at the same
3084// location, however, they will be overwritten. If 'fixed' is false,
3085// 'requested_addr' is only treated as a hint, the return value may or
3086// may not start from the requested address. Unlike Linux mmap(), this
3087// function returns NULL to indicate failure.
3088static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3089  char * addr;
3090  int flags;
3091
3092  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3093  if (fixed) {
3094    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3095    flags |= MAP_FIXED;
3096  }
3097
3098  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3099  // touch an uncommitted page. Otherwise, the read/write might
3100  // succeed if we have enough swap space to back the physical page.
3101  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3102                       flags, -1, 0);
3103
3104  if (addr != MAP_FAILED) {
3105    // anon_mmap() should only get called during VM initialization,
3106    // don't need lock (actually we can skip locking even it can be called
3107    // from multiple threads, because _highest_vm_reserved_address is just a
3108    // hint about the upper limit of non-stack memory regions.)
3109    if ((address)addr + bytes > _highest_vm_reserved_address) {
3110      _highest_vm_reserved_address = (address)addr + bytes;
3111    }
3112  }
3113
3114  return addr == MAP_FAILED ? NULL : addr;
3115}
3116
3117// Don't update _highest_vm_reserved_address, because there might be memory
3118// regions above addr + size. If so, releasing a memory region only creates
3119// a hole in the address space, it doesn't help prevent heap-stack collision.
3120//
3121static int anon_munmap(char * addr, size_t size) {
3122  return ::munmap(addr, size) == 0;
3123}
3124
3125char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3126                            size_t alignment_hint) {
3127  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3128}
3129
3130bool os::pd_release_memory(char* addr, size_t size) {
3131  return anon_munmap(addr, size);
3132}
3133
3134static address highest_vm_reserved_address() {
3135  return _highest_vm_reserved_address;
3136}
3137
3138static bool linux_mprotect(char* addr, size_t size, int prot) {
3139  // Linux wants the mprotect address argument to be page aligned.
3140  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3141
3142  // According to SUSv3, mprotect() should only be used with mappings
3143  // established by mmap(), and mmap() always maps whole pages. Unaligned
3144  // 'addr' likely indicates problem in the VM (e.g. trying to change
3145  // protection of malloc'ed or statically allocated memory). Check the
3146  // caller if you hit this assert.
3147  assert(addr == bottom, "sanity check");
3148
3149  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3150  return ::mprotect(bottom, size, prot) == 0;
3151}
3152
3153// Set protections specified
3154bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3155                        bool is_committed) {
3156  unsigned int p = 0;
3157  switch (prot) {
3158  case MEM_PROT_NONE: p = PROT_NONE; break;
3159  case MEM_PROT_READ: p = PROT_READ; break;
3160  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3161  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3162  default:
3163    ShouldNotReachHere();
3164  }
3165  // is_committed is unused.
3166  return linux_mprotect(addr, bytes, p);
3167}
3168
3169bool os::guard_memory(char* addr, size_t size) {
3170  return linux_mprotect(addr, size, PROT_NONE);
3171}
3172
3173bool os::unguard_memory(char* addr, size_t size) {
3174  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3175}
3176
3177bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3178                                                    size_t page_size) {
3179  bool result = false;
3180  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3181                 MAP_ANONYMOUS|MAP_PRIVATE,
3182                 -1, 0);
3183  if (p != MAP_FAILED) {
3184    void *aligned_p = align_ptr_up(p, page_size);
3185
3186    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3187
3188    munmap(p, page_size * 2);
3189  }
3190
3191  if (warn && !result) {
3192    warning("TransparentHugePages is not supported by the operating system.");
3193  }
3194
3195  return result;
3196}
3197
3198bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3199  bool result = false;
3200  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3201                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3202                 -1, 0);
3203
3204  if (p != MAP_FAILED) {
3205    // We don't know if this really is a huge page or not.
3206    FILE *fp = fopen("/proc/self/maps", "r");
3207    if (fp) {
3208      while (!feof(fp)) {
3209        char chars[257];
3210        long x = 0;
3211        if (fgets(chars, sizeof(chars), fp)) {
3212          if (sscanf(chars, "%lx-%*x", &x) == 1
3213              && x == (long)p) {
3214            if (strstr (chars, "hugepage")) {
3215              result = true;
3216              break;
3217            }
3218          }
3219        }
3220      }
3221      fclose(fp);
3222    }
3223    munmap(p, page_size);
3224  }
3225
3226  if (warn && !result) {
3227    warning("HugeTLBFS is not supported by the operating system.");
3228  }
3229
3230  return result;
3231}
3232
3233// Set the coredump_filter bits to include largepages in core dump (bit 6)
3234//
3235// From the coredump_filter documentation:
3236//
3237// - (bit 0) anonymous private memory
3238// - (bit 1) anonymous shared memory
3239// - (bit 2) file-backed private memory
3240// - (bit 3) file-backed shared memory
3241// - (bit 4) ELF header pages in file-backed private memory areas (it is
3242//           effective only if the bit 2 is cleared)
3243// - (bit 5) hugetlb private memory
3244// - (bit 6) hugetlb shared memory
3245//
3246static void set_coredump_filter(void) {
3247  FILE *f;
3248  long cdm;
3249
3250  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3251    return;
3252  }
3253
3254  if (fscanf(f, "%lx", &cdm) != 1) {
3255    fclose(f);
3256    return;
3257  }
3258
3259  rewind(f);
3260
3261  if ((cdm & LARGEPAGES_BIT) == 0) {
3262    cdm |= LARGEPAGES_BIT;
3263    fprintf(f, "%#lx", cdm);
3264  }
3265
3266  fclose(f);
3267}
3268
3269// Large page support
3270
3271static size_t _large_page_size = 0;
3272
3273size_t os::Linux::find_large_page_size() {
3274  size_t large_page_size = 0;
3275
3276  // large_page_size on Linux is used to round up heap size. x86 uses either
3277  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3278  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3279  // page as large as 256M.
3280  //
3281  // Here we try to figure out page size by parsing /proc/meminfo and looking
3282  // for a line with the following format:
3283  //    Hugepagesize:     2048 kB
3284  //
3285  // If we can't determine the value (e.g. /proc is not mounted, or the text
3286  // format has been changed), we'll use the largest page size supported by
3287  // the processor.
3288
3289#ifndef ZERO
3290  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3291                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3292#endif // ZERO
3293
3294  FILE *fp = fopen("/proc/meminfo", "r");
3295  if (fp) {
3296    while (!feof(fp)) {
3297      int x = 0;
3298      char buf[16];
3299      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3300        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3301          large_page_size = x * K;
3302          break;
3303        }
3304      } else {
3305        // skip to next line
3306        for (;;) {
3307          int ch = fgetc(fp);
3308          if (ch == EOF || ch == (int)'\n') break;
3309        }
3310      }
3311    }
3312    fclose(fp);
3313  }
3314
3315  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3316    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3317            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3318            proper_unit_for_byte_size(large_page_size));
3319  }
3320
3321  return large_page_size;
3322}
3323
3324size_t os::Linux::setup_large_page_size() {
3325  _large_page_size = Linux::find_large_page_size();
3326  const size_t default_page_size = (size_t)Linux::page_size();
3327  if (_large_page_size > default_page_size) {
3328    _page_sizes[0] = _large_page_size;
3329    _page_sizes[1] = default_page_size;
3330    _page_sizes[2] = 0;
3331  }
3332
3333  return _large_page_size;
3334}
3335
3336bool os::Linux::setup_large_page_type(size_t page_size) {
3337  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3338      FLAG_IS_DEFAULT(UseSHM) &&
3339      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3340
3341    // The type of large pages has not been specified by the user.
3342
3343    // Try UseHugeTLBFS and then UseSHM.
3344    UseHugeTLBFS = UseSHM = true;
3345
3346    // Don't try UseTransparentHugePages since there are known
3347    // performance issues with it turned on. This might change in the future.
3348    UseTransparentHugePages = false;
3349  }
3350
3351  if (UseTransparentHugePages) {
3352    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3353    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3354      UseHugeTLBFS = false;
3355      UseSHM = false;
3356      return true;
3357    }
3358    UseTransparentHugePages = false;
3359  }
3360
3361  if (UseHugeTLBFS) {
3362    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3363    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3364      UseSHM = false;
3365      return true;
3366    }
3367    UseHugeTLBFS = false;
3368  }
3369
3370  return UseSHM;
3371}
3372
3373void os::large_page_init() {
3374  if (!UseLargePages &&
3375      !UseTransparentHugePages &&
3376      !UseHugeTLBFS &&
3377      !UseSHM) {
3378    // Not using large pages.
3379    return;
3380  }
3381
3382  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3383    // The user explicitly turned off large pages.
3384    // Ignore the rest of the large pages flags.
3385    UseTransparentHugePages = false;
3386    UseHugeTLBFS = false;
3387    UseSHM = false;
3388    return;
3389  }
3390
3391  size_t large_page_size = Linux::setup_large_page_size();
3392  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3393
3394  set_coredump_filter();
3395}
3396
3397#ifndef SHM_HUGETLB
3398  #define SHM_HUGETLB 04000
3399#endif
3400
3401char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3402                                            char* req_addr, bool exec) {
3403  // "exec" is passed in but not used.  Creating the shared image for
3404  // the code cache doesn't have an SHM_X executable permission to check.
3405  assert(UseLargePages && UseSHM, "only for SHM large pages");
3406  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3407
3408  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3409    return NULL; // Fallback to small pages.
3410  }
3411
3412  key_t key = IPC_PRIVATE;
3413  char *addr;
3414
3415  bool warn_on_failure = UseLargePages &&
3416                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3417                         !FLAG_IS_DEFAULT(UseSHM) ||
3418                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3419  char msg[128];
3420
3421  // Create a large shared memory region to attach to based on size.
3422  // Currently, size is the total size of the heap
3423  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3424  if (shmid == -1) {
3425    // Possible reasons for shmget failure:
3426    // 1. shmmax is too small for Java heap.
3427    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3428    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3429    // 2. not enough large page memory.
3430    //    > check available large pages: cat /proc/meminfo
3431    //    > increase amount of large pages:
3432    //          echo new_value > /proc/sys/vm/nr_hugepages
3433    //      Note 1: different Linux may use different name for this property,
3434    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3435    //      Note 2: it's possible there's enough physical memory available but
3436    //            they are so fragmented after a long run that they can't
3437    //            coalesce into large pages. Try to reserve large pages when
3438    //            the system is still "fresh".
3439    if (warn_on_failure) {
3440      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3441      warning("%s", msg);
3442    }
3443    return NULL;
3444  }
3445
3446  // attach to the region
3447  addr = (char*)shmat(shmid, req_addr, 0);
3448  int err = errno;
3449
3450  // Remove shmid. If shmat() is successful, the actual shared memory segment
3451  // will be deleted when it's detached by shmdt() or when the process
3452  // terminates. If shmat() is not successful this will remove the shared
3453  // segment immediately.
3454  shmctl(shmid, IPC_RMID, NULL);
3455
3456  if ((intptr_t)addr == -1) {
3457    if (warn_on_failure) {
3458      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3459      warning("%s", msg);
3460    }
3461    return NULL;
3462  }
3463
3464  return addr;
3465}
3466
3467static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3468                                        int error) {
3469  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3470
3471  bool warn_on_failure = UseLargePages &&
3472      (!FLAG_IS_DEFAULT(UseLargePages) ||
3473       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3474       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3475
3476  if (warn_on_failure) {
3477    char msg[128];
3478    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3479                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3480    warning("%s", msg);
3481  }
3482}
3483
3484char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3485                                                        char* req_addr,
3486                                                        bool exec) {
3487  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3488  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3489  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3490
3491  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3492  char* addr = (char*)::mmap(req_addr, bytes, prot,
3493                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3494                             -1, 0);
3495
3496  if (addr == MAP_FAILED) {
3497    warn_on_large_pages_failure(req_addr, bytes, errno);
3498    return NULL;
3499  }
3500
3501  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3502
3503  return addr;
3504}
3505
3506char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3507                                                         size_t alignment,
3508                                                         char* req_addr,
3509                                                         bool exec) {
3510  size_t large_page_size = os::large_page_size();
3511
3512  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3513
3514  // Allocate small pages.
3515
3516  char* start;
3517  if (req_addr != NULL) {
3518    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3519    assert(is_size_aligned(bytes, alignment), "Must be");
3520    start = os::reserve_memory(bytes, req_addr);
3521    assert(start == NULL || start == req_addr, "Must be");
3522  } else {
3523    start = os::reserve_memory_aligned(bytes, alignment);
3524  }
3525
3526  if (start == NULL) {
3527    return NULL;
3528  }
3529
3530  assert(is_ptr_aligned(start, alignment), "Must be");
3531
3532  if (MemTracker::tracking_level() > NMT_minimal) {
3533    // os::reserve_memory_special will record this memory area.
3534    // Need to release it here to prevent overlapping reservations.
3535    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3536    tkr.record((address)start, bytes);
3537  }
3538
3539  char* end = start + bytes;
3540
3541  // Find the regions of the allocated chunk that can be promoted to large pages.
3542  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3543  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3544
3545  size_t lp_bytes = lp_end - lp_start;
3546
3547  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3548
3549  if (lp_bytes == 0) {
3550    // The mapped region doesn't even span the start and the end of a large page.
3551    // Fall back to allocate a non-special area.
3552    ::munmap(start, end - start);
3553    return NULL;
3554  }
3555
3556  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3557
3558
3559  void* result;
3560
3561  if (start != lp_start) {
3562    result = ::mmap(start, lp_start - start, prot,
3563                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3564                    -1, 0);
3565    if (result == MAP_FAILED) {
3566      ::munmap(lp_start, end - lp_start);
3567      return NULL;
3568    }
3569  }
3570
3571  result = ::mmap(lp_start, lp_bytes, prot,
3572                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3573                  -1, 0);
3574  if (result == MAP_FAILED) {
3575    warn_on_large_pages_failure(req_addr, bytes, errno);
3576    // If the mmap above fails, the large pages region will be unmapped and we
3577    // have regions before and after with small pages. Release these regions.
3578    //
3579    // |  mapped  |  unmapped  |  mapped  |
3580    // ^          ^            ^          ^
3581    // start      lp_start     lp_end     end
3582    //
3583    ::munmap(start, lp_start - start);
3584    ::munmap(lp_end, end - lp_end);
3585    return NULL;
3586  }
3587
3588  if (lp_end != end) {
3589    result = ::mmap(lp_end, end - lp_end, prot,
3590                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3591                    -1, 0);
3592    if (result == MAP_FAILED) {
3593      ::munmap(start, lp_end - start);
3594      return NULL;
3595    }
3596  }
3597
3598  return start;
3599}
3600
3601char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3602                                                   size_t alignment,
3603                                                   char* req_addr,
3604                                                   bool exec) {
3605  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3606  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3607  assert(is_power_of_2(alignment), "Must be");
3608  assert(is_power_of_2(os::large_page_size()), "Must be");
3609  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3610
3611  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3612    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3613  } else {
3614    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3615  }
3616}
3617
3618char* os::reserve_memory_special(size_t bytes, size_t alignment,
3619                                 char* req_addr, bool exec) {
3620  assert(UseLargePages, "only for large pages");
3621
3622  char* addr;
3623  if (UseSHM) {
3624    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3625  } else {
3626    assert(UseHugeTLBFS, "must be");
3627    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3628  }
3629
3630  if (addr != NULL) {
3631    if (UseNUMAInterleaving) {
3632      numa_make_global(addr, bytes);
3633    }
3634
3635    // The memory is committed
3636    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3637  }
3638
3639  return addr;
3640}
3641
3642bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3643  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3644  return shmdt(base) == 0;
3645}
3646
3647bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3648  return pd_release_memory(base, bytes);
3649}
3650
3651bool os::release_memory_special(char* base, size_t bytes) {
3652  bool res;
3653  if (MemTracker::tracking_level() > NMT_minimal) {
3654    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3655    res = os::Linux::release_memory_special_impl(base, bytes);
3656    if (res) {
3657      tkr.record((address)base, bytes);
3658    }
3659
3660  } else {
3661    res = os::Linux::release_memory_special_impl(base, bytes);
3662  }
3663  return res;
3664}
3665
3666bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3667  assert(UseLargePages, "only for large pages");
3668  bool res;
3669
3670  if (UseSHM) {
3671    res = os::Linux::release_memory_special_shm(base, bytes);
3672  } else {
3673    assert(UseHugeTLBFS, "must be");
3674    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3675  }
3676  return res;
3677}
3678
3679size_t os::large_page_size() {
3680  return _large_page_size;
3681}
3682
3683// With SysV SHM the entire memory region must be allocated as shared
3684// memory.
3685// HugeTLBFS allows application to commit large page memory on demand.
3686// However, when committing memory with HugeTLBFS fails, the region
3687// that was supposed to be committed will lose the old reservation
3688// and allow other threads to steal that memory region. Because of this
3689// behavior we can't commit HugeTLBFS memory.
3690bool os::can_commit_large_page_memory() {
3691  return UseTransparentHugePages;
3692}
3693
3694bool os::can_execute_large_page_memory() {
3695  return UseTransparentHugePages || UseHugeTLBFS;
3696}
3697
3698// Reserve memory at an arbitrary address, only if that area is
3699// available (and not reserved for something else).
3700
3701char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3702  const int max_tries = 10;
3703  char* base[max_tries];
3704  size_t size[max_tries];
3705  const size_t gap = 0x000000;
3706
3707  // Assert only that the size is a multiple of the page size, since
3708  // that's all that mmap requires, and since that's all we really know
3709  // about at this low abstraction level.  If we need higher alignment,
3710  // we can either pass an alignment to this method or verify alignment
3711  // in one of the methods further up the call chain.  See bug 5044738.
3712  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3713
3714  // Repeatedly allocate blocks until the block is allocated at the
3715  // right spot. Give up after max_tries. Note that reserve_memory() will
3716  // automatically update _highest_vm_reserved_address if the call is
3717  // successful. The variable tracks the highest memory address every reserved
3718  // by JVM. It is used to detect heap-stack collision if running with
3719  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3720  // space than needed, it could confuse the collision detecting code. To
3721  // solve the problem, save current _highest_vm_reserved_address and
3722  // calculate the correct value before return.
3723  address old_highest = _highest_vm_reserved_address;
3724
3725  // Linux mmap allows caller to pass an address as hint; give it a try first,
3726  // if kernel honors the hint then we can return immediately.
3727  char * addr = anon_mmap(requested_addr, bytes, false);
3728  if (addr == requested_addr) {
3729    return requested_addr;
3730  }
3731
3732  if (addr != NULL) {
3733    // mmap() is successful but it fails to reserve at the requested address
3734    anon_munmap(addr, bytes);
3735  }
3736
3737  int i;
3738  for (i = 0; i < max_tries; ++i) {
3739    base[i] = reserve_memory(bytes);
3740
3741    if (base[i] != NULL) {
3742      // Is this the block we wanted?
3743      if (base[i] == requested_addr) {
3744        size[i] = bytes;
3745        break;
3746      }
3747
3748      // Does this overlap the block we wanted? Give back the overlapped
3749      // parts and try again.
3750
3751      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3752      if (top_overlap >= 0 && top_overlap < bytes) {
3753        unmap_memory(base[i], top_overlap);
3754        base[i] += top_overlap;
3755        size[i] = bytes - top_overlap;
3756      } else {
3757        size_t bottom_overlap = base[i] + bytes - requested_addr;
3758        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3759          unmap_memory(requested_addr, bottom_overlap);
3760          size[i] = bytes - bottom_overlap;
3761        } else {
3762          size[i] = bytes;
3763        }
3764      }
3765    }
3766  }
3767
3768  // Give back the unused reserved pieces.
3769
3770  for (int j = 0; j < i; ++j) {
3771    if (base[j] != NULL) {
3772      unmap_memory(base[j], size[j]);
3773    }
3774  }
3775
3776  if (i < max_tries) {
3777    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3778    return requested_addr;
3779  } else {
3780    _highest_vm_reserved_address = old_highest;
3781    return NULL;
3782  }
3783}
3784
3785size_t os::read(int fd, void *buf, unsigned int nBytes) {
3786  return ::read(fd, buf, nBytes);
3787}
3788
3789size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3790  return ::pread(fd, buf, nBytes, offset);
3791}
3792
3793// Short sleep, direct OS call.
3794//
3795// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3796// sched_yield(2) will actually give up the CPU:
3797//
3798//   * Alone on this pariticular CPU, keeps running.
3799//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3800//     (pre 2.6.39).
3801//
3802// So calling this with 0 is an alternative.
3803//
3804void os::naked_short_sleep(jlong ms) {
3805  struct timespec req;
3806
3807  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3808  req.tv_sec = 0;
3809  if (ms > 0) {
3810    req.tv_nsec = (ms % 1000) * 1000000;
3811  } else {
3812    req.tv_nsec = 1;
3813  }
3814
3815  nanosleep(&req, NULL);
3816
3817  return;
3818}
3819
3820// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3821void os::infinite_sleep() {
3822  while (true) {    // sleep forever ...
3823    ::sleep(100);   // ... 100 seconds at a time
3824  }
3825}
3826
3827// Used to convert frequent JVM_Yield() to nops
3828bool os::dont_yield() {
3829  return DontYieldALot;
3830}
3831
3832void os::naked_yield() {
3833  sched_yield();
3834}
3835
3836////////////////////////////////////////////////////////////////////////////////
3837// thread priority support
3838
3839// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3840// only supports dynamic priority, static priority must be zero. For real-time
3841// applications, Linux supports SCHED_RR which allows static priority (1-99).
3842// However, for large multi-threaded applications, SCHED_RR is not only slower
3843// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3844// of 5 runs - Sep 2005).
3845//
3846// The following code actually changes the niceness of kernel-thread/LWP. It
3847// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3848// not the entire user process, and user level threads are 1:1 mapped to kernel
3849// threads. It has always been the case, but could change in the future. For
3850// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3851// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3852
3853int os::java_to_os_priority[CriticalPriority + 1] = {
3854  19,              // 0 Entry should never be used
3855
3856   4,              // 1 MinPriority
3857   3,              // 2
3858   2,              // 3
3859
3860   1,              // 4
3861   0,              // 5 NormPriority
3862  -1,              // 6
3863
3864  -2,              // 7
3865  -3,              // 8
3866  -4,              // 9 NearMaxPriority
3867
3868  -5,              // 10 MaxPriority
3869
3870  -5               // 11 CriticalPriority
3871};
3872
3873static int prio_init() {
3874  if (ThreadPriorityPolicy == 1) {
3875    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3876    // if effective uid is not root. Perhaps, a more elegant way of doing
3877    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3878    if (geteuid() != 0) {
3879      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3880        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3881      }
3882      ThreadPriorityPolicy = 0;
3883    }
3884  }
3885  if (UseCriticalJavaThreadPriority) {
3886    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3887  }
3888  return 0;
3889}
3890
3891OSReturn os::set_native_priority(Thread* thread, int newpri) {
3892  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3893
3894  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3895  return (ret == 0) ? OS_OK : OS_ERR;
3896}
3897
3898OSReturn os::get_native_priority(const Thread* const thread,
3899                                 int *priority_ptr) {
3900  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3901    *priority_ptr = java_to_os_priority[NormPriority];
3902    return OS_OK;
3903  }
3904
3905  errno = 0;
3906  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3907  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3908}
3909
3910// Hint to the underlying OS that a task switch would not be good.
3911// Void return because it's a hint and can fail.
3912void os::hint_no_preempt() {}
3913
3914////////////////////////////////////////////////////////////////////////////////
3915// suspend/resume support
3916
3917//  the low-level signal-based suspend/resume support is a remnant from the
3918//  old VM-suspension that used to be for java-suspension, safepoints etc,
3919//  within hotspot. Now there is a single use-case for this:
3920//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3921//      that runs in the watcher thread.
3922//  The remaining code is greatly simplified from the more general suspension
3923//  code that used to be used.
3924//
3925//  The protocol is quite simple:
3926//  - suspend:
3927//      - sends a signal to the target thread
3928//      - polls the suspend state of the osthread using a yield loop
3929//      - target thread signal handler (SR_handler) sets suspend state
3930//        and blocks in sigsuspend until continued
3931//  - resume:
3932//      - sets target osthread state to continue
3933//      - sends signal to end the sigsuspend loop in the SR_handler
3934//
3935//  Note that the SR_lock plays no role in this suspend/resume protocol.
3936
3937static void resume_clear_context(OSThread *osthread) {
3938  osthread->set_ucontext(NULL);
3939  osthread->set_siginfo(NULL);
3940}
3941
3942static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3943                                 ucontext_t* context) {
3944  osthread->set_ucontext(context);
3945  osthread->set_siginfo(siginfo);
3946}
3947
3948// Handler function invoked when a thread's execution is suspended or
3949// resumed. We have to be careful that only async-safe functions are
3950// called here (Note: most pthread functions are not async safe and
3951// should be avoided.)
3952//
3953// Note: sigwait() is a more natural fit than sigsuspend() from an
3954// interface point of view, but sigwait() prevents the signal hander
3955// from being run. libpthread would get very confused by not having
3956// its signal handlers run and prevents sigwait()'s use with the
3957// mutex granting granting signal.
3958//
3959// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3960//
3961static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3962  // Save and restore errno to avoid confusing native code with EINTR
3963  // after sigsuspend.
3964  int old_errno = errno;
3965
3966  Thread* thread = Thread::current();
3967  OSThread* osthread = thread->osthread();
3968  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3969
3970  os::SuspendResume::State current = osthread->sr.state();
3971  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3972    suspend_save_context(osthread, siginfo, context);
3973
3974    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3975    os::SuspendResume::State state = osthread->sr.suspended();
3976    if (state == os::SuspendResume::SR_SUSPENDED) {
3977      sigset_t suspend_set;  // signals for sigsuspend()
3978
3979      // get current set of blocked signals and unblock resume signal
3980      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3981      sigdelset(&suspend_set, SR_signum);
3982
3983      sr_semaphore.signal();
3984      // wait here until we are resumed
3985      while (1) {
3986        sigsuspend(&suspend_set);
3987
3988        os::SuspendResume::State result = osthread->sr.running();
3989        if (result == os::SuspendResume::SR_RUNNING) {
3990          sr_semaphore.signal();
3991          break;
3992        }
3993      }
3994
3995    } else if (state == os::SuspendResume::SR_RUNNING) {
3996      // request was cancelled, continue
3997    } else {
3998      ShouldNotReachHere();
3999    }
4000
4001    resume_clear_context(osthread);
4002  } else if (current == os::SuspendResume::SR_RUNNING) {
4003    // request was cancelled, continue
4004  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4005    // ignore
4006  } else {
4007    // ignore
4008  }
4009
4010  errno = old_errno;
4011}
4012
4013
4014static int SR_initialize() {
4015  struct sigaction act;
4016  char *s;
4017  // Get signal number to use for suspend/resume
4018  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4019    int sig = ::strtol(s, 0, 10);
4020    if (sig > 0 || sig < _NSIG) {
4021      SR_signum = sig;
4022    }
4023  }
4024
4025  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4026         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4027
4028  sigemptyset(&SR_sigset);
4029  sigaddset(&SR_sigset, SR_signum);
4030
4031  // Set up signal handler for suspend/resume
4032  act.sa_flags = SA_RESTART|SA_SIGINFO;
4033  act.sa_handler = (void (*)(int)) SR_handler;
4034
4035  // SR_signum is blocked by default.
4036  // 4528190 - We also need to block pthread restart signal (32 on all
4037  // supported Linux platforms). Note that LinuxThreads need to block
4038  // this signal for all threads to work properly. So we don't have
4039  // to use hard-coded signal number when setting up the mask.
4040  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4041
4042  if (sigaction(SR_signum, &act, 0) == -1) {
4043    return -1;
4044  }
4045
4046  // Save signal flag
4047  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4048  return 0;
4049}
4050
4051static int sr_notify(OSThread* osthread) {
4052  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4053  assert_status(status == 0, status, "pthread_kill");
4054  return status;
4055}
4056
4057// "Randomly" selected value for how long we want to spin
4058// before bailing out on suspending a thread, also how often
4059// we send a signal to a thread we want to resume
4060static const int RANDOMLY_LARGE_INTEGER = 1000000;
4061static const int RANDOMLY_LARGE_INTEGER2 = 100;
4062
4063// returns true on success and false on error - really an error is fatal
4064// but this seems the normal response to library errors
4065static bool do_suspend(OSThread* osthread) {
4066  assert(osthread->sr.is_running(), "thread should be running");
4067  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4068
4069  // mark as suspended and send signal
4070  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4071    // failed to switch, state wasn't running?
4072    ShouldNotReachHere();
4073    return false;
4074  }
4075
4076  if (sr_notify(osthread) != 0) {
4077    ShouldNotReachHere();
4078  }
4079
4080  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4081  while (true) {
4082    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4083      break;
4084    } else {
4085      // timeout
4086      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4087      if (cancelled == os::SuspendResume::SR_RUNNING) {
4088        return false;
4089      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4090        // make sure that we consume the signal on the semaphore as well
4091        sr_semaphore.wait();
4092        break;
4093      } else {
4094        ShouldNotReachHere();
4095        return false;
4096      }
4097    }
4098  }
4099
4100  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4101  return true;
4102}
4103
4104static void do_resume(OSThread* osthread) {
4105  assert(osthread->sr.is_suspended(), "thread should be suspended");
4106  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4107
4108  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4109    // failed to switch to WAKEUP_REQUEST
4110    ShouldNotReachHere();
4111    return;
4112  }
4113
4114  while (true) {
4115    if (sr_notify(osthread) == 0) {
4116      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4117        if (osthread->sr.is_running()) {
4118          return;
4119        }
4120      }
4121    } else {
4122      ShouldNotReachHere();
4123    }
4124  }
4125
4126  guarantee(osthread->sr.is_running(), "Must be running!");
4127}
4128
4129///////////////////////////////////////////////////////////////////////////////////
4130// signal handling (except suspend/resume)
4131
4132// This routine may be used by user applications as a "hook" to catch signals.
4133// The user-defined signal handler must pass unrecognized signals to this
4134// routine, and if it returns true (non-zero), then the signal handler must
4135// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4136// routine will never retun false (zero), but instead will execute a VM panic
4137// routine kill the process.
4138//
4139// If this routine returns false, it is OK to call it again.  This allows
4140// the user-defined signal handler to perform checks either before or after
4141// the VM performs its own checks.  Naturally, the user code would be making
4142// a serious error if it tried to handle an exception (such as a null check
4143// or breakpoint) that the VM was generating for its own correct operation.
4144//
4145// This routine may recognize any of the following kinds of signals:
4146//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4147// It should be consulted by handlers for any of those signals.
4148//
4149// The caller of this routine must pass in the three arguments supplied
4150// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4151// field of the structure passed to sigaction().  This routine assumes that
4152// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4153//
4154// Note that the VM will print warnings if it detects conflicting signal
4155// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4156//
4157extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4158                                                 siginfo_t* siginfo,
4159                                                 void* ucontext,
4160                                                 int abort_if_unrecognized);
4161
4162void signalHandler(int sig, siginfo_t* info, void* uc) {
4163  assert(info != NULL && uc != NULL, "it must be old kernel");
4164  int orig_errno = errno;  // Preserve errno value over signal handler.
4165  JVM_handle_linux_signal(sig, info, uc, true);
4166  errno = orig_errno;
4167}
4168
4169
4170// This boolean allows users to forward their own non-matching signals
4171// to JVM_handle_linux_signal, harmlessly.
4172bool os::Linux::signal_handlers_are_installed = false;
4173
4174// For signal-chaining
4175struct sigaction os::Linux::sigact[MAXSIGNUM];
4176unsigned int os::Linux::sigs = 0;
4177bool os::Linux::libjsig_is_loaded = false;
4178typedef struct sigaction *(*get_signal_t)(int);
4179get_signal_t os::Linux::get_signal_action = NULL;
4180
4181struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4182  struct sigaction *actp = NULL;
4183
4184  if (libjsig_is_loaded) {
4185    // Retrieve the old signal handler from libjsig
4186    actp = (*get_signal_action)(sig);
4187  }
4188  if (actp == NULL) {
4189    // Retrieve the preinstalled signal handler from jvm
4190    actp = get_preinstalled_handler(sig);
4191  }
4192
4193  return actp;
4194}
4195
4196static bool call_chained_handler(struct sigaction *actp, int sig,
4197                                 siginfo_t *siginfo, void *context) {
4198  // Call the old signal handler
4199  if (actp->sa_handler == SIG_DFL) {
4200    // It's more reasonable to let jvm treat it as an unexpected exception
4201    // instead of taking the default action.
4202    return false;
4203  } else if (actp->sa_handler != SIG_IGN) {
4204    if ((actp->sa_flags & SA_NODEFER) == 0) {
4205      // automaticlly block the signal
4206      sigaddset(&(actp->sa_mask), sig);
4207    }
4208
4209    sa_handler_t hand;
4210    sa_sigaction_t sa;
4211    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4212    // retrieve the chained handler
4213    if (siginfo_flag_set) {
4214      sa = actp->sa_sigaction;
4215    } else {
4216      hand = actp->sa_handler;
4217    }
4218
4219    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4220      actp->sa_handler = SIG_DFL;
4221    }
4222
4223    // try to honor the signal mask
4224    sigset_t oset;
4225    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4226
4227    // call into the chained handler
4228    if (siginfo_flag_set) {
4229      (*sa)(sig, siginfo, context);
4230    } else {
4231      (*hand)(sig);
4232    }
4233
4234    // restore the signal mask
4235    pthread_sigmask(SIG_SETMASK, &oset, 0);
4236  }
4237  // Tell jvm's signal handler the signal is taken care of.
4238  return true;
4239}
4240
4241bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4242  bool chained = false;
4243  // signal-chaining
4244  if (UseSignalChaining) {
4245    struct sigaction *actp = get_chained_signal_action(sig);
4246    if (actp != NULL) {
4247      chained = call_chained_handler(actp, sig, siginfo, context);
4248    }
4249  }
4250  return chained;
4251}
4252
4253struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4254  if ((((unsigned int)1 << sig) & sigs) != 0) {
4255    return &sigact[sig];
4256  }
4257  return NULL;
4258}
4259
4260void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4261  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4262  sigact[sig] = oldAct;
4263  sigs |= (unsigned int)1 << sig;
4264}
4265
4266// for diagnostic
4267int os::Linux::sigflags[MAXSIGNUM];
4268
4269int os::Linux::get_our_sigflags(int sig) {
4270  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4271  return sigflags[sig];
4272}
4273
4274void os::Linux::set_our_sigflags(int sig, int flags) {
4275  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4276  sigflags[sig] = flags;
4277}
4278
4279void os::Linux::set_signal_handler(int sig, bool set_installed) {
4280  // Check for overwrite.
4281  struct sigaction oldAct;
4282  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4283
4284  void* oldhand = oldAct.sa_sigaction
4285                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4286                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4287  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4288      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4289      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4290    if (AllowUserSignalHandlers || !set_installed) {
4291      // Do not overwrite; user takes responsibility to forward to us.
4292      return;
4293    } else if (UseSignalChaining) {
4294      // save the old handler in jvm
4295      save_preinstalled_handler(sig, oldAct);
4296      // libjsig also interposes the sigaction() call below and saves the
4297      // old sigaction on it own.
4298    } else {
4299      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4300                    "%#lx for signal %d.", (long)oldhand, sig));
4301    }
4302  }
4303
4304  struct sigaction sigAct;
4305  sigfillset(&(sigAct.sa_mask));
4306  sigAct.sa_handler = SIG_DFL;
4307  if (!set_installed) {
4308    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4309  } else {
4310    sigAct.sa_sigaction = signalHandler;
4311    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4312  }
4313  // Save flags, which are set by ours
4314  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4315  sigflags[sig] = sigAct.sa_flags;
4316
4317  int ret = sigaction(sig, &sigAct, &oldAct);
4318  assert(ret == 0, "check");
4319
4320  void* oldhand2  = oldAct.sa_sigaction
4321                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4322                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4323  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4324}
4325
4326// install signal handlers for signals that HotSpot needs to
4327// handle in order to support Java-level exception handling.
4328
4329void os::Linux::install_signal_handlers() {
4330  if (!signal_handlers_are_installed) {
4331    signal_handlers_are_installed = true;
4332
4333    // signal-chaining
4334    typedef void (*signal_setting_t)();
4335    signal_setting_t begin_signal_setting = NULL;
4336    signal_setting_t end_signal_setting = NULL;
4337    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4338                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4339    if (begin_signal_setting != NULL) {
4340      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4341                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4342      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4343                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4344      libjsig_is_loaded = true;
4345      assert(UseSignalChaining, "should enable signal-chaining");
4346    }
4347    if (libjsig_is_loaded) {
4348      // Tell libjsig jvm is setting signal handlers
4349      (*begin_signal_setting)();
4350    }
4351
4352    set_signal_handler(SIGSEGV, true);
4353    set_signal_handler(SIGPIPE, true);
4354    set_signal_handler(SIGBUS, true);
4355    set_signal_handler(SIGILL, true);
4356    set_signal_handler(SIGFPE, true);
4357#if defined(PPC64)
4358    set_signal_handler(SIGTRAP, true);
4359#endif
4360    set_signal_handler(SIGXFSZ, true);
4361
4362    if (libjsig_is_loaded) {
4363      // Tell libjsig jvm finishes setting signal handlers
4364      (*end_signal_setting)();
4365    }
4366
4367    // We don't activate signal checker if libjsig is in place, we trust ourselves
4368    // and if UserSignalHandler is installed all bets are off.
4369    // Log that signal checking is off only if -verbose:jni is specified.
4370    if (CheckJNICalls) {
4371      if (libjsig_is_loaded) {
4372        if (PrintJNIResolving) {
4373          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4374        }
4375        check_signals = false;
4376      }
4377      if (AllowUserSignalHandlers) {
4378        if (PrintJNIResolving) {
4379          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4380        }
4381        check_signals = false;
4382      }
4383    }
4384  }
4385}
4386
4387// This is the fastest way to get thread cpu time on Linux.
4388// Returns cpu time (user+sys) for any thread, not only for current.
4389// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4390// It might work on 2.6.10+ with a special kernel/glibc patch.
4391// For reference, please, see IEEE Std 1003.1-2004:
4392//   http://www.unix.org/single_unix_specification
4393
4394jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4395  struct timespec tp;
4396  int rc = os::Linux::clock_gettime(clockid, &tp);
4397  assert(rc == 0, "clock_gettime is expected to return 0 code");
4398
4399  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4400}
4401
4402/////
4403// glibc on Linux platform uses non-documented flag
4404// to indicate, that some special sort of signal
4405// trampoline is used.
4406// We will never set this flag, and we should
4407// ignore this flag in our diagnostic
4408#ifdef SIGNIFICANT_SIGNAL_MASK
4409  #undef SIGNIFICANT_SIGNAL_MASK
4410#endif
4411#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4412
4413static const char* get_signal_handler_name(address handler,
4414                                           char* buf, int buflen) {
4415  int offset;
4416  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4417  if (found) {
4418    // skip directory names
4419    const char *p1, *p2;
4420    p1 = buf;
4421    size_t len = strlen(os::file_separator());
4422    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4423    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4424  } else {
4425    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4426  }
4427  return buf;
4428}
4429
4430static void print_signal_handler(outputStream* st, int sig,
4431                                 char* buf, size_t buflen) {
4432  struct sigaction sa;
4433
4434  sigaction(sig, NULL, &sa);
4435
4436  // See comment for SIGNIFICANT_SIGNAL_MASK define
4437  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4438
4439  st->print("%s: ", os::exception_name(sig, buf, buflen));
4440
4441  address handler = (sa.sa_flags & SA_SIGINFO)
4442    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4443    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4444
4445  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4446    st->print("SIG_DFL");
4447  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4448    st->print("SIG_IGN");
4449  } else {
4450    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4451  }
4452
4453  st->print(", sa_mask[0]=");
4454  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4455
4456  address rh = VMError::get_resetted_sighandler(sig);
4457  // May be, handler was resetted by VMError?
4458  if (rh != NULL) {
4459    handler = rh;
4460    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4461  }
4462
4463  st->print(", sa_flags=");
4464  os::Posix::print_sa_flags(st, sa.sa_flags);
4465
4466  // Check: is it our handler?
4467  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4468      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4469    // It is our signal handler
4470    // check for flags, reset system-used one!
4471    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4472      st->print(
4473                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4474                os::Linux::get_our_sigflags(sig));
4475    }
4476  }
4477  st->cr();
4478}
4479
4480
4481#define DO_SIGNAL_CHECK(sig)                      \
4482  do {                                            \
4483    if (!sigismember(&check_signal_done, sig)) {  \
4484      os::Linux::check_signal_handler(sig);       \
4485    }                                             \
4486  } while (0)
4487
4488// This method is a periodic task to check for misbehaving JNI applications
4489// under CheckJNI, we can add any periodic checks here
4490
4491void os::run_periodic_checks() {
4492  if (check_signals == false) return;
4493
4494  // SEGV and BUS if overridden could potentially prevent
4495  // generation of hs*.log in the event of a crash, debugging
4496  // such a case can be very challenging, so we absolutely
4497  // check the following for a good measure:
4498  DO_SIGNAL_CHECK(SIGSEGV);
4499  DO_SIGNAL_CHECK(SIGILL);
4500  DO_SIGNAL_CHECK(SIGFPE);
4501  DO_SIGNAL_CHECK(SIGBUS);
4502  DO_SIGNAL_CHECK(SIGPIPE);
4503  DO_SIGNAL_CHECK(SIGXFSZ);
4504#if defined(PPC64)
4505  DO_SIGNAL_CHECK(SIGTRAP);
4506#endif
4507
4508  // ReduceSignalUsage allows the user to override these handlers
4509  // see comments at the very top and jvm_solaris.h
4510  if (!ReduceSignalUsage) {
4511    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4512    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4513    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4514    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4515  }
4516
4517  DO_SIGNAL_CHECK(SR_signum);
4518  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4519}
4520
4521typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4522
4523static os_sigaction_t os_sigaction = NULL;
4524
4525void os::Linux::check_signal_handler(int sig) {
4526  char buf[O_BUFLEN];
4527  address jvmHandler = NULL;
4528
4529
4530  struct sigaction act;
4531  if (os_sigaction == NULL) {
4532    // only trust the default sigaction, in case it has been interposed
4533    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4534    if (os_sigaction == NULL) return;
4535  }
4536
4537  os_sigaction(sig, (struct sigaction*)NULL, &act);
4538
4539
4540  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4541
4542  address thisHandler = (act.sa_flags & SA_SIGINFO)
4543    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4544    : CAST_FROM_FN_PTR(address, act.sa_handler);
4545
4546
4547  switch (sig) {
4548  case SIGSEGV:
4549  case SIGBUS:
4550  case SIGFPE:
4551  case SIGPIPE:
4552  case SIGILL:
4553  case SIGXFSZ:
4554    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4555    break;
4556
4557  case SHUTDOWN1_SIGNAL:
4558  case SHUTDOWN2_SIGNAL:
4559  case SHUTDOWN3_SIGNAL:
4560  case BREAK_SIGNAL:
4561    jvmHandler = (address)user_handler();
4562    break;
4563
4564  case INTERRUPT_SIGNAL:
4565    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4566    break;
4567
4568  default:
4569    if (sig == SR_signum) {
4570      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4571    } else {
4572      return;
4573    }
4574    break;
4575  }
4576
4577  if (thisHandler != jvmHandler) {
4578    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4579    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4580    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4581    // No need to check this sig any longer
4582    sigaddset(&check_signal_done, sig);
4583    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4584    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4585      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4586                    exception_name(sig, buf, O_BUFLEN));
4587    }
4588  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4589    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4590    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4591    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4592    // No need to check this sig any longer
4593    sigaddset(&check_signal_done, sig);
4594  }
4595
4596  // Dump all the signal
4597  if (sigismember(&check_signal_done, sig)) {
4598    print_signal_handlers(tty, buf, O_BUFLEN);
4599  }
4600}
4601
4602extern void report_error(char* file_name, int line_no, char* title,
4603                         char* format, ...);
4604
4605extern bool signal_name(int signo, char* buf, size_t len);
4606
4607const char* os::exception_name(int exception_code, char* buf, size_t size) {
4608  if (0 < exception_code && exception_code <= SIGRTMAX) {
4609    // signal
4610    if (!signal_name(exception_code, buf, size)) {
4611      jio_snprintf(buf, size, "SIG%d", exception_code);
4612    }
4613    return buf;
4614  } else {
4615    return NULL;
4616  }
4617}
4618
4619// this is called _before_ the most of global arguments have been parsed
4620void os::init(void) {
4621  char dummy;   // used to get a guess on initial stack address
4622//  first_hrtime = gethrtime();
4623
4624  // With LinuxThreads the JavaMain thread pid (primordial thread)
4625  // is different than the pid of the java launcher thread.
4626  // So, on Linux, the launcher thread pid is passed to the VM
4627  // via the sun.java.launcher.pid property.
4628  // Use this property instead of getpid() if it was correctly passed.
4629  // See bug 6351349.
4630  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4631
4632  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4633
4634  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4635
4636  init_random(1234567);
4637
4638  ThreadCritical::initialize();
4639
4640  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4641  if (Linux::page_size() == -1) {
4642    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4643                  strerror(errno)));
4644  }
4645  init_page_sizes((size_t) Linux::page_size());
4646
4647  Linux::initialize_system_info();
4648
4649  // main_thread points to the aboriginal thread
4650  Linux::_main_thread = pthread_self();
4651
4652  Linux::clock_init();
4653  initial_time_count = javaTimeNanos();
4654
4655  // pthread_condattr initialization for monotonic clock
4656  int status;
4657  pthread_condattr_t* _condattr = os::Linux::condAttr();
4658  if ((status = pthread_condattr_init(_condattr)) != 0) {
4659    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4660  }
4661  // Only set the clock if CLOCK_MONOTONIC is available
4662  if (os::supports_monotonic_clock()) {
4663    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4664      if (status == EINVAL) {
4665        warning("Unable to use monotonic clock with relative timed-waits" \
4666                " - changes to the time-of-day clock may have adverse affects");
4667      } else {
4668        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4669      }
4670    }
4671  }
4672  // else it defaults to CLOCK_REALTIME
4673
4674  pthread_mutex_init(&dl_mutex, NULL);
4675
4676  // If the pagesize of the VM is greater than 8K determine the appropriate
4677  // number of initial guard pages.  The user can change this with the
4678  // command line arguments, if needed.
4679  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4680    StackYellowPages = 1;
4681    StackRedPages = 1;
4682    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4683  }
4684
4685  // retrieve entry point for pthread_setname_np
4686  Linux::_pthread_setname_np =
4687    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4688
4689}
4690
4691// To install functions for atexit system call
4692extern "C" {
4693  static void perfMemory_exit_helper() {
4694    perfMemory_exit();
4695  }
4696}
4697
4698// this is called _after_ the global arguments have been parsed
4699jint os::init_2(void) {
4700  Linux::fast_thread_clock_init();
4701
4702  // Allocate a single page and mark it as readable for safepoint polling
4703  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4704  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4705
4706  os::set_polling_page(polling_page);
4707
4708#ifndef PRODUCT
4709  if (Verbose && PrintMiscellaneous) {
4710    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4711               (intptr_t)polling_page);
4712  }
4713#endif
4714
4715  if (!UseMembar) {
4716    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4717    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4718    os::set_memory_serialize_page(mem_serialize_page);
4719
4720#ifndef PRODUCT
4721    if (Verbose && PrintMiscellaneous) {
4722      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4723                 (intptr_t)mem_serialize_page);
4724    }
4725#endif
4726  }
4727
4728  // initialize suspend/resume support - must do this before signal_sets_init()
4729  if (SR_initialize() != 0) {
4730    perror("SR_initialize failed");
4731    return JNI_ERR;
4732  }
4733
4734  Linux::signal_sets_init();
4735  Linux::install_signal_handlers();
4736
4737  // Check minimum allowable stack size for thread creation and to initialize
4738  // the java system classes, including StackOverflowError - depends on page
4739  // size.  Add a page for compiler2 recursion in main thread.
4740  // Add in 2*BytesPerWord times page size to account for VM stack during
4741  // class initialization depending on 32 or 64 bit VM.
4742  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4743                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4744                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4745
4746  size_t threadStackSizeInBytes = ThreadStackSize * K;
4747  if (threadStackSizeInBytes != 0 &&
4748      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4749    tty->print_cr("\nThe stack size specified is too small, "
4750                  "Specify at least %dk",
4751                  os::Linux::min_stack_allowed/ K);
4752    return JNI_ERR;
4753  }
4754
4755  // Make the stack size a multiple of the page size so that
4756  // the yellow/red zones can be guarded.
4757  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4758                                                vm_page_size()));
4759
4760  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4761
4762#if defined(IA32)
4763  workaround_expand_exec_shield_cs_limit();
4764#endif
4765
4766  Linux::libpthread_init();
4767  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4768    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4769                  Linux::glibc_version(), Linux::libpthread_version(),
4770                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4771  }
4772
4773  if (UseNUMA) {
4774    if (!Linux::libnuma_init()) {
4775      UseNUMA = false;
4776    } else {
4777      if ((Linux::numa_max_node() < 1)) {
4778        // There's only one node(they start from 0), disable NUMA.
4779        UseNUMA = false;
4780      }
4781    }
4782    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4783    // we can make the adaptive lgrp chunk resizing work. If the user specified
4784    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4785    // disable adaptive resizing.
4786    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4787      if (FLAG_IS_DEFAULT(UseNUMA)) {
4788        UseNUMA = false;
4789      } else {
4790        if (FLAG_IS_DEFAULT(UseLargePages) &&
4791            FLAG_IS_DEFAULT(UseSHM) &&
4792            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4793          UseLargePages = false;
4794        } else {
4795          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4796          UseAdaptiveSizePolicy = false;
4797          UseAdaptiveNUMAChunkSizing = false;
4798        }
4799      }
4800    }
4801    if (!UseNUMA && ForceNUMA) {
4802      UseNUMA = true;
4803    }
4804  }
4805
4806  if (MaxFDLimit) {
4807    // set the number of file descriptors to max. print out error
4808    // if getrlimit/setrlimit fails but continue regardless.
4809    struct rlimit nbr_files;
4810    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4811    if (status != 0) {
4812      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4813        perror("os::init_2 getrlimit failed");
4814      }
4815    } else {
4816      nbr_files.rlim_cur = nbr_files.rlim_max;
4817      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4818      if (status != 0) {
4819        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4820          perror("os::init_2 setrlimit failed");
4821        }
4822      }
4823    }
4824  }
4825
4826  // Initialize lock used to serialize thread creation (see os::create_thread)
4827  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4828
4829  // at-exit methods are called in the reverse order of their registration.
4830  // atexit functions are called on return from main or as a result of a
4831  // call to exit(3C). There can be only 32 of these functions registered
4832  // and atexit() does not set errno.
4833
4834  if (PerfAllowAtExitRegistration) {
4835    // only register atexit functions if PerfAllowAtExitRegistration is set.
4836    // atexit functions can be delayed until process exit time, which
4837    // can be problematic for embedded VM situations. Embedded VMs should
4838    // call DestroyJavaVM() to assure that VM resources are released.
4839
4840    // note: perfMemory_exit_helper atexit function may be removed in
4841    // the future if the appropriate cleanup code can be added to the
4842    // VM_Exit VMOperation's doit method.
4843    if (atexit(perfMemory_exit_helper) != 0) {
4844      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4845    }
4846  }
4847
4848  // initialize thread priority policy
4849  prio_init();
4850
4851  return JNI_OK;
4852}
4853
4854// Mark the polling page as unreadable
4855void os::make_polling_page_unreadable(void) {
4856  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4857    fatal("Could not disable polling page");
4858  }
4859}
4860
4861// Mark the polling page as readable
4862void os::make_polling_page_readable(void) {
4863  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4864    fatal("Could not enable polling page");
4865  }
4866}
4867
4868int os::active_processor_count() {
4869  // Linux doesn't yet have a (official) notion of processor sets,
4870  // so just return the number of online processors.
4871  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4872  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4873  return online_cpus;
4874}
4875
4876void os::set_native_thread_name(const char *name) {
4877  if (Linux::_pthread_setname_np) {
4878    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4879    snprintf(buf, sizeof(buf), "%s", name);
4880    buf[sizeof(buf) - 1] = '\0';
4881    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4882    // ERANGE should not happen; all other errors should just be ignored.
4883    assert(rc != ERANGE, "pthread_setname_np failed");
4884  }
4885}
4886
4887bool os::distribute_processes(uint length, uint* distribution) {
4888  // Not yet implemented.
4889  return false;
4890}
4891
4892bool os::bind_to_processor(uint processor_id) {
4893  // Not yet implemented.
4894  return false;
4895}
4896
4897///
4898
4899void os::SuspendedThreadTask::internal_do_task() {
4900  if (do_suspend(_thread->osthread())) {
4901    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4902    do_task(context);
4903    do_resume(_thread->osthread());
4904  }
4905}
4906
4907class PcFetcher : public os::SuspendedThreadTask {
4908 public:
4909  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4910  ExtendedPC result();
4911 protected:
4912  void do_task(const os::SuspendedThreadTaskContext& context);
4913 private:
4914  ExtendedPC _epc;
4915};
4916
4917ExtendedPC PcFetcher::result() {
4918  guarantee(is_done(), "task is not done yet.");
4919  return _epc;
4920}
4921
4922void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4923  Thread* thread = context.thread();
4924  OSThread* osthread = thread->osthread();
4925  if (osthread->ucontext() != NULL) {
4926    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4927  } else {
4928    // NULL context is unexpected, double-check this is the VMThread
4929    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4930  }
4931}
4932
4933// Suspends the target using the signal mechanism and then grabs the PC before
4934// resuming the target. Used by the flat-profiler only
4935ExtendedPC os::get_thread_pc(Thread* thread) {
4936  // Make sure that it is called by the watcher for the VMThread
4937  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4938  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4939
4940  PcFetcher fetcher(thread);
4941  fetcher.run();
4942  return fetcher.result();
4943}
4944
4945int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4946                                   pthread_mutex_t *_mutex,
4947                                   const struct timespec *_abstime) {
4948  if (is_NPTL()) {
4949    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4950  } else {
4951    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4952    // word back to default 64bit precision if condvar is signaled. Java
4953    // wants 53bit precision.  Save and restore current value.
4954    int fpu = get_fpu_control_word();
4955    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4956    set_fpu_control_word(fpu);
4957    return status;
4958  }
4959}
4960
4961////////////////////////////////////////////////////////////////////////////////
4962// debug support
4963
4964bool os::find(address addr, outputStream* st) {
4965  Dl_info dlinfo;
4966  memset(&dlinfo, 0, sizeof(dlinfo));
4967  if (dladdr(addr, &dlinfo) != 0) {
4968    st->print(PTR_FORMAT ": ", addr);
4969    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4970      st->print("%s+%#x", dlinfo.dli_sname,
4971                addr - (intptr_t)dlinfo.dli_saddr);
4972    } else if (dlinfo.dli_fbase != NULL) {
4973      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4974    } else {
4975      st->print("<absolute address>");
4976    }
4977    if (dlinfo.dli_fname != NULL) {
4978      st->print(" in %s", dlinfo.dli_fname);
4979    }
4980    if (dlinfo.dli_fbase != NULL) {
4981      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4982    }
4983    st->cr();
4984
4985    if (Verbose) {
4986      // decode some bytes around the PC
4987      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4988      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4989      address       lowest = (address) dlinfo.dli_sname;
4990      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4991      if (begin < lowest)  begin = lowest;
4992      Dl_info dlinfo2;
4993      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4994          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4995        end = (address) dlinfo2.dli_saddr;
4996      }
4997      Disassembler::decode(begin, end, st);
4998    }
4999    return true;
5000  }
5001  return false;
5002}
5003
5004////////////////////////////////////////////////////////////////////////////////
5005// misc
5006
5007// This does not do anything on Linux. This is basically a hook for being
5008// able to use structured exception handling (thread-local exception filters)
5009// on, e.g., Win32.
5010void
5011os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5012                         JavaCallArguments* args, Thread* thread) {
5013  f(value, method, args, thread);
5014}
5015
5016void os::print_statistics() {
5017}
5018
5019int os::message_box(const char* title, const char* message) {
5020  int i;
5021  fdStream err(defaultStream::error_fd());
5022  for (i = 0; i < 78; i++) err.print_raw("=");
5023  err.cr();
5024  err.print_raw_cr(title);
5025  for (i = 0; i < 78; i++) err.print_raw("-");
5026  err.cr();
5027  err.print_raw_cr(message);
5028  for (i = 0; i < 78; i++) err.print_raw("=");
5029  err.cr();
5030
5031  char buf[16];
5032  // Prevent process from exiting upon "read error" without consuming all CPU
5033  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5034
5035  return buf[0] == 'y' || buf[0] == 'Y';
5036}
5037
5038int os::stat(const char *path, struct stat *sbuf) {
5039  char pathbuf[MAX_PATH];
5040  if (strlen(path) > MAX_PATH - 1) {
5041    errno = ENAMETOOLONG;
5042    return -1;
5043  }
5044  os::native_path(strcpy(pathbuf, path));
5045  return ::stat(pathbuf, sbuf);
5046}
5047
5048bool os::check_heap(bool force) {
5049  return true;
5050}
5051
5052// Is a (classpath) directory empty?
5053bool os::dir_is_empty(const char* path) {
5054  DIR *dir = NULL;
5055  struct dirent *ptr;
5056
5057  dir = opendir(path);
5058  if (dir == NULL) return true;
5059
5060  // Scan the directory
5061  bool result = true;
5062  char buf[sizeof(struct dirent) + MAX_PATH];
5063  while (result && (ptr = ::readdir(dir)) != NULL) {
5064    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5065      result = false;
5066    }
5067  }
5068  closedir(dir);
5069  return result;
5070}
5071
5072// This code originates from JDK's sysOpen and open64_w
5073// from src/solaris/hpi/src/system_md.c
5074
5075int os::open(const char *path, int oflag, int mode) {
5076  if (strlen(path) > MAX_PATH - 1) {
5077    errno = ENAMETOOLONG;
5078    return -1;
5079  }
5080
5081  // All file descriptors that are opened in the Java process and not
5082  // specifically destined for a subprocess should have the close-on-exec
5083  // flag set.  If we don't set it, then careless 3rd party native code
5084  // might fork and exec without closing all appropriate file descriptors
5085  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5086  // turn might:
5087  //
5088  // - cause end-of-file to fail to be detected on some file
5089  //   descriptors, resulting in mysterious hangs, or
5090  //
5091  // - might cause an fopen in the subprocess to fail on a system
5092  //   suffering from bug 1085341.
5093  //
5094  // (Yes, the default setting of the close-on-exec flag is a Unix
5095  // design flaw)
5096  //
5097  // See:
5098  // 1085341: 32-bit stdio routines should support file descriptors >255
5099  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5100  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5101  //
5102  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5103  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5104  // because it saves a system call and removes a small window where the flag
5105  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5106  // and we fall back to using FD_CLOEXEC (see below).
5107#ifdef O_CLOEXEC
5108  oflag |= O_CLOEXEC;
5109#endif
5110
5111  int fd = ::open64(path, oflag, mode);
5112  if (fd == -1) return -1;
5113
5114  //If the open succeeded, the file might still be a directory
5115  {
5116    struct stat64 buf64;
5117    int ret = ::fstat64(fd, &buf64);
5118    int st_mode = buf64.st_mode;
5119
5120    if (ret != -1) {
5121      if ((st_mode & S_IFMT) == S_IFDIR) {
5122        errno = EISDIR;
5123        ::close(fd);
5124        return -1;
5125      }
5126    } else {
5127      ::close(fd);
5128      return -1;
5129    }
5130  }
5131
5132#ifdef FD_CLOEXEC
5133  // Validate that the use of the O_CLOEXEC flag on open above worked.
5134  // With recent kernels, we will perform this check exactly once.
5135  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5136  if (!O_CLOEXEC_is_known_to_work) {
5137    int flags = ::fcntl(fd, F_GETFD);
5138    if (flags != -1) {
5139      if ((flags & FD_CLOEXEC) != 0)
5140        O_CLOEXEC_is_known_to_work = 1;
5141      else
5142        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5143    }
5144  }
5145#endif
5146
5147  return fd;
5148}
5149
5150
5151// create binary file, rewriting existing file if required
5152int os::create_binary_file(const char* path, bool rewrite_existing) {
5153  int oflags = O_WRONLY | O_CREAT;
5154  if (!rewrite_existing) {
5155    oflags |= O_EXCL;
5156  }
5157  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5158}
5159
5160// return current position of file pointer
5161jlong os::current_file_offset(int fd) {
5162  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5163}
5164
5165// move file pointer to the specified offset
5166jlong os::seek_to_file_offset(int fd, jlong offset) {
5167  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5168}
5169
5170// This code originates from JDK's sysAvailable
5171// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5172
5173int os::available(int fd, jlong *bytes) {
5174  jlong cur, end;
5175  int mode;
5176  struct stat64 buf64;
5177
5178  if (::fstat64(fd, &buf64) >= 0) {
5179    mode = buf64.st_mode;
5180    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5181      // XXX: is the following call interruptible? If so, this might
5182      // need to go through the INTERRUPT_IO() wrapper as for other
5183      // blocking, interruptible calls in this file.
5184      int n;
5185      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5186        *bytes = n;
5187        return 1;
5188      }
5189    }
5190  }
5191  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5192    return 0;
5193  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5194    return 0;
5195  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5196    return 0;
5197  }
5198  *bytes = end - cur;
5199  return 1;
5200}
5201
5202// Map a block of memory.
5203char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5204                        char *addr, size_t bytes, bool read_only,
5205                        bool allow_exec) {
5206  int prot;
5207  int flags = MAP_PRIVATE;
5208
5209  if (read_only) {
5210    prot = PROT_READ;
5211  } else {
5212    prot = PROT_READ | PROT_WRITE;
5213  }
5214
5215  if (allow_exec) {
5216    prot |= PROT_EXEC;
5217  }
5218
5219  if (addr != NULL) {
5220    flags |= MAP_FIXED;
5221  }
5222
5223  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5224                                     fd, file_offset);
5225  if (mapped_address == MAP_FAILED) {
5226    return NULL;
5227  }
5228  return mapped_address;
5229}
5230
5231
5232// Remap a block of memory.
5233char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5234                          char *addr, size_t bytes, bool read_only,
5235                          bool allow_exec) {
5236  // same as map_memory() on this OS
5237  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5238                        allow_exec);
5239}
5240
5241
5242// Unmap a block of memory.
5243bool os::pd_unmap_memory(char* addr, size_t bytes) {
5244  return munmap(addr, bytes) == 0;
5245}
5246
5247static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5248
5249static clockid_t thread_cpu_clockid(Thread* thread) {
5250  pthread_t tid = thread->osthread()->pthread_id();
5251  clockid_t clockid;
5252
5253  // Get thread clockid
5254  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5255  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5256  return clockid;
5257}
5258
5259// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5260// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5261// of a thread.
5262//
5263// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5264// the fast estimate available on the platform.
5265
5266jlong os::current_thread_cpu_time() {
5267  if (os::Linux::supports_fast_thread_cpu_time()) {
5268    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5269  } else {
5270    // return user + sys since the cost is the same
5271    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5272  }
5273}
5274
5275jlong os::thread_cpu_time(Thread* thread) {
5276  // consistent with what current_thread_cpu_time() returns
5277  if (os::Linux::supports_fast_thread_cpu_time()) {
5278    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5279  } else {
5280    return slow_thread_cpu_time(thread, true /* user + sys */);
5281  }
5282}
5283
5284jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5285  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5286    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5287  } else {
5288    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5289  }
5290}
5291
5292jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5293  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5294    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5295  } else {
5296    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5297  }
5298}
5299
5300//  -1 on error.
5301static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5302  pid_t  tid = thread->osthread()->thread_id();
5303  char *s;
5304  char stat[2048];
5305  int statlen;
5306  char proc_name[64];
5307  int count;
5308  long sys_time, user_time;
5309  char cdummy;
5310  int idummy;
5311  long ldummy;
5312  FILE *fp;
5313
5314  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5315  fp = fopen(proc_name, "r");
5316  if (fp == NULL) return -1;
5317  statlen = fread(stat, 1, 2047, fp);
5318  stat[statlen] = '\0';
5319  fclose(fp);
5320
5321  // Skip pid and the command string. Note that we could be dealing with
5322  // weird command names, e.g. user could decide to rename java launcher
5323  // to "java 1.4.2 :)", then the stat file would look like
5324  //                1234 (java 1.4.2 :)) R ... ...
5325  // We don't really need to know the command string, just find the last
5326  // occurrence of ")" and then start parsing from there. See bug 4726580.
5327  s = strrchr(stat, ')');
5328  if (s == NULL) return -1;
5329
5330  // Skip blank chars
5331  do { s++; } while (s && isspace(*s));
5332
5333  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5334                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5335                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5336                 &user_time, &sys_time);
5337  if (count != 13) return -1;
5338  if (user_sys_cpu_time) {
5339    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5340  } else {
5341    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5342  }
5343}
5344
5345void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5346  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5347  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5348  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5349  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5350}
5351
5352void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5353  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5354  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5355  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5356  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5357}
5358
5359bool os::is_thread_cpu_time_supported() {
5360  return true;
5361}
5362
5363// System loadavg support.  Returns -1 if load average cannot be obtained.
5364// Linux doesn't yet have a (official) notion of processor sets,
5365// so just return the system wide load average.
5366int os::loadavg(double loadavg[], int nelem) {
5367  return ::getloadavg(loadavg, nelem);
5368}
5369
5370void os::pause() {
5371  char filename[MAX_PATH];
5372  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5373    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5374  } else {
5375    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5376  }
5377
5378  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5379  if (fd != -1) {
5380    struct stat buf;
5381    ::close(fd);
5382    while (::stat(filename, &buf) == 0) {
5383      (void)::poll(NULL, 0, 100);
5384    }
5385  } else {
5386    jio_fprintf(stderr,
5387                "Could not open pause file '%s', continuing immediately.\n", filename);
5388  }
5389}
5390
5391
5392// Refer to the comments in os_solaris.cpp park-unpark. The next two
5393// comment paragraphs are worth repeating here:
5394//
5395// Assumption:
5396//    Only one parker can exist on an event, which is why we allocate
5397//    them per-thread. Multiple unparkers can coexist.
5398//
5399// _Event serves as a restricted-range semaphore.
5400//   -1 : thread is blocked, i.e. there is a waiter
5401//    0 : neutral: thread is running or ready,
5402//        could have been signaled after a wait started
5403//    1 : signaled - thread is running or ready
5404//
5405// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5406// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5407// For specifics regarding the bug see GLIBC BUGID 261237 :
5408//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5409// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5410// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5411// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5412// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5413// and monitorenter when we're using 1-0 locking.  All those operations may result in
5414// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5415// of libpthread avoids the problem, but isn't practical.
5416//
5417// Possible remedies:
5418//
5419// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5420//      This is palliative and probabilistic, however.  If the thread is preempted
5421//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5422//      than the minimum period may have passed, and the abstime may be stale (in the
5423//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5424//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5425//
5426// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5427//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5428//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5429//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5430//      thread.
5431//
5432// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5433//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5434//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5435//      This also works well.  In fact it avoids kernel-level scalability impediments
5436//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5437//      timers in a graceful fashion.
5438//
5439// 4.   When the abstime value is in the past it appears that control returns
5440//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5441//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5442//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5443//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5444//      It may be possible to avoid reinitialization by checking the return
5445//      value from pthread_cond_timedwait().  In addition to reinitializing the
5446//      condvar we must establish the invariant that cond_signal() is only called
5447//      within critical sections protected by the adjunct mutex.  This prevents
5448//      cond_signal() from "seeing" a condvar that's in the midst of being
5449//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5450//      desirable signal-after-unlock optimization that avoids futile context switching.
5451//
5452//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5453//      structure when a condvar is used or initialized.  cond_destroy()  would
5454//      release the helper structure.  Our reinitialize-after-timedwait fix
5455//      put excessive stress on malloc/free and locks protecting the c-heap.
5456//
5457// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5458// It may be possible to refine (4) by checking the kernel and NTPL verisons
5459// and only enabling the work-around for vulnerable environments.
5460
5461// utility to compute the abstime argument to timedwait:
5462// millis is the relative timeout time
5463// abstime will be the absolute timeout time
5464// TODO: replace compute_abstime() with unpackTime()
5465
5466static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5467  if (millis < 0)  millis = 0;
5468
5469  jlong seconds = millis / 1000;
5470  millis %= 1000;
5471  if (seconds > 50000000) { // see man cond_timedwait(3T)
5472    seconds = 50000000;
5473  }
5474
5475  if (os::supports_monotonic_clock()) {
5476    struct timespec now;
5477    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5478    assert_status(status == 0, status, "clock_gettime");
5479    abstime->tv_sec = now.tv_sec  + seconds;
5480    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5481    if (nanos >= NANOSECS_PER_SEC) {
5482      abstime->tv_sec += 1;
5483      nanos -= NANOSECS_PER_SEC;
5484    }
5485    abstime->tv_nsec = nanos;
5486  } else {
5487    struct timeval now;
5488    int status = gettimeofday(&now, NULL);
5489    assert(status == 0, "gettimeofday");
5490    abstime->tv_sec = now.tv_sec  + seconds;
5491    long usec = now.tv_usec + millis * 1000;
5492    if (usec >= 1000000) {
5493      abstime->tv_sec += 1;
5494      usec -= 1000000;
5495    }
5496    abstime->tv_nsec = usec * 1000;
5497  }
5498  return abstime;
5499}
5500
5501void os::PlatformEvent::park() {       // AKA "down()"
5502  // Transitions for _Event:
5503  //   -1 => -1 : illegal
5504  //    1 =>  0 : pass - return immediately
5505  //    0 => -1 : block; then set _Event to 0 before returning
5506
5507  // Invariant: Only the thread associated with the Event/PlatformEvent
5508  // may call park().
5509  // TODO: assert that _Assoc != NULL or _Assoc == Self
5510  assert(_nParked == 0, "invariant");
5511
5512  int v;
5513  for (;;) {
5514    v = _Event;
5515    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5516  }
5517  guarantee(v >= 0, "invariant");
5518  if (v == 0) {
5519    // Do this the hard way by blocking ...
5520    int status = pthread_mutex_lock(_mutex);
5521    assert_status(status == 0, status, "mutex_lock");
5522    guarantee(_nParked == 0, "invariant");
5523    ++_nParked;
5524    while (_Event < 0) {
5525      status = pthread_cond_wait(_cond, _mutex);
5526      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5527      // Treat this the same as if the wait was interrupted
5528      if (status == ETIME) { status = EINTR; }
5529      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5530    }
5531    --_nParked;
5532
5533    _Event = 0;
5534    status = pthread_mutex_unlock(_mutex);
5535    assert_status(status == 0, status, "mutex_unlock");
5536    // Paranoia to ensure our locked and lock-free paths interact
5537    // correctly with each other.
5538    OrderAccess::fence();
5539  }
5540  guarantee(_Event >= 0, "invariant");
5541}
5542
5543int os::PlatformEvent::park(jlong millis) {
5544  // Transitions for _Event:
5545  //   -1 => -1 : illegal
5546  //    1 =>  0 : pass - return immediately
5547  //    0 => -1 : block; then set _Event to 0 before returning
5548
5549  guarantee(_nParked == 0, "invariant");
5550
5551  int v;
5552  for (;;) {
5553    v = _Event;
5554    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5555  }
5556  guarantee(v >= 0, "invariant");
5557  if (v != 0) return OS_OK;
5558
5559  // We do this the hard way, by blocking the thread.
5560  // Consider enforcing a minimum timeout value.
5561  struct timespec abst;
5562  compute_abstime(&abst, millis);
5563
5564  int ret = OS_TIMEOUT;
5565  int status = pthread_mutex_lock(_mutex);
5566  assert_status(status == 0, status, "mutex_lock");
5567  guarantee(_nParked == 0, "invariant");
5568  ++_nParked;
5569
5570  // Object.wait(timo) will return because of
5571  // (a) notification
5572  // (b) timeout
5573  // (c) thread.interrupt
5574  //
5575  // Thread.interrupt and object.notify{All} both call Event::set.
5576  // That is, we treat thread.interrupt as a special case of notification.
5577  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5578  // We assume all ETIME returns are valid.
5579  //
5580  // TODO: properly differentiate simultaneous notify+interrupt.
5581  // In that case, we should propagate the notify to another waiter.
5582
5583  while (_Event < 0) {
5584    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5585    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5586      pthread_cond_destroy(_cond);
5587      pthread_cond_init(_cond, os::Linux::condAttr());
5588    }
5589    assert_status(status == 0 || status == EINTR ||
5590                  status == ETIME || status == ETIMEDOUT,
5591                  status, "cond_timedwait");
5592    if (!FilterSpuriousWakeups) break;                 // previous semantics
5593    if (status == ETIME || status == ETIMEDOUT) break;
5594    // We consume and ignore EINTR and spurious wakeups.
5595  }
5596  --_nParked;
5597  if (_Event >= 0) {
5598    ret = OS_OK;
5599  }
5600  _Event = 0;
5601  status = pthread_mutex_unlock(_mutex);
5602  assert_status(status == 0, status, "mutex_unlock");
5603  assert(_nParked == 0, "invariant");
5604  // Paranoia to ensure our locked and lock-free paths interact
5605  // correctly with each other.
5606  OrderAccess::fence();
5607  return ret;
5608}
5609
5610void os::PlatformEvent::unpark() {
5611  // Transitions for _Event:
5612  //    0 => 1 : just return
5613  //    1 => 1 : just return
5614  //   -1 => either 0 or 1; must signal target thread
5615  //         That is, we can safely transition _Event from -1 to either
5616  //         0 or 1.
5617  // See also: "Semaphores in Plan 9" by Mullender & Cox
5618  //
5619  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5620  // that it will take two back-to-back park() calls for the owning
5621  // thread to block. This has the benefit of forcing a spurious return
5622  // from the first park() call after an unpark() call which will help
5623  // shake out uses of park() and unpark() without condition variables.
5624
5625  if (Atomic::xchg(1, &_Event) >= 0) return;
5626
5627  // Wait for the thread associated with the event to vacate
5628  int status = pthread_mutex_lock(_mutex);
5629  assert_status(status == 0, status, "mutex_lock");
5630  int AnyWaiters = _nParked;
5631  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5632  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5633    AnyWaiters = 0;
5634    pthread_cond_signal(_cond);
5635  }
5636  status = pthread_mutex_unlock(_mutex);
5637  assert_status(status == 0, status, "mutex_unlock");
5638  if (AnyWaiters != 0) {
5639    // Note that we signal() *after* dropping the lock for "immortal" Events.
5640    // This is safe and avoids a common class of  futile wakeups.  In rare
5641    // circumstances this can cause a thread to return prematurely from
5642    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5643    // will simply re-test the condition and re-park itself.
5644    // This provides particular benefit if the underlying platform does not
5645    // provide wait morphing.
5646    status = pthread_cond_signal(_cond);
5647    assert_status(status == 0, status, "cond_signal");
5648  }
5649}
5650
5651
5652// JSR166
5653// -------------------------------------------------------
5654
5655// The solaris and linux implementations of park/unpark are fairly
5656// conservative for now, but can be improved. They currently use a
5657// mutex/condvar pair, plus a a count.
5658// Park decrements count if > 0, else does a condvar wait.  Unpark
5659// sets count to 1 and signals condvar.  Only one thread ever waits
5660// on the condvar. Contention seen when trying to park implies that someone
5661// is unparking you, so don't wait. And spurious returns are fine, so there
5662// is no need to track notifications.
5663
5664// This code is common to linux and solaris and will be moved to a
5665// common place in dolphin.
5666//
5667// The passed in time value is either a relative time in nanoseconds
5668// or an absolute time in milliseconds. Either way it has to be unpacked
5669// into suitable seconds and nanoseconds components and stored in the
5670// given timespec structure.
5671// Given time is a 64-bit value and the time_t used in the timespec is only
5672// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5673// overflow if times way in the future are given. Further on Solaris versions
5674// prior to 10 there is a restriction (see cond_timedwait) that the specified
5675// number of seconds, in abstime, is less than current_time  + 100,000,000.
5676// As it will be 28 years before "now + 100000000" will overflow we can
5677// ignore overflow and just impose a hard-limit on seconds using the value
5678// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5679// years from "now".
5680
5681static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5682  assert(time > 0, "convertTime");
5683  time_t max_secs = 0;
5684
5685  if (!os::supports_monotonic_clock() || isAbsolute) {
5686    struct timeval now;
5687    int status = gettimeofday(&now, NULL);
5688    assert(status == 0, "gettimeofday");
5689
5690    max_secs = now.tv_sec + MAX_SECS;
5691
5692    if (isAbsolute) {
5693      jlong secs = time / 1000;
5694      if (secs > max_secs) {
5695        absTime->tv_sec = max_secs;
5696      } else {
5697        absTime->tv_sec = secs;
5698      }
5699      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5700    } else {
5701      jlong secs = time / NANOSECS_PER_SEC;
5702      if (secs >= MAX_SECS) {
5703        absTime->tv_sec = max_secs;
5704        absTime->tv_nsec = 0;
5705      } else {
5706        absTime->tv_sec = now.tv_sec + secs;
5707        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5708        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5709          absTime->tv_nsec -= NANOSECS_PER_SEC;
5710          ++absTime->tv_sec; // note: this must be <= max_secs
5711        }
5712      }
5713    }
5714  } else {
5715    // must be relative using monotonic clock
5716    struct timespec now;
5717    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5718    assert_status(status == 0, status, "clock_gettime");
5719    max_secs = now.tv_sec + MAX_SECS;
5720    jlong secs = time / NANOSECS_PER_SEC;
5721    if (secs >= MAX_SECS) {
5722      absTime->tv_sec = max_secs;
5723      absTime->tv_nsec = 0;
5724    } else {
5725      absTime->tv_sec = now.tv_sec + secs;
5726      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5727      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5728        absTime->tv_nsec -= NANOSECS_PER_SEC;
5729        ++absTime->tv_sec; // note: this must be <= max_secs
5730      }
5731    }
5732  }
5733  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5734  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5735  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5736  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5737}
5738
5739void Parker::park(bool isAbsolute, jlong time) {
5740  // Ideally we'd do something useful while spinning, such
5741  // as calling unpackTime().
5742
5743  // Optional fast-path check:
5744  // Return immediately if a permit is available.
5745  // We depend on Atomic::xchg() having full barrier semantics
5746  // since we are doing a lock-free update to _counter.
5747  if (Atomic::xchg(0, &_counter) > 0) return;
5748
5749  Thread* thread = Thread::current();
5750  assert(thread->is_Java_thread(), "Must be JavaThread");
5751  JavaThread *jt = (JavaThread *)thread;
5752
5753  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5754  // Check interrupt before trying to wait
5755  if (Thread::is_interrupted(thread, false)) {
5756    return;
5757  }
5758
5759  // Next, demultiplex/decode time arguments
5760  timespec absTime;
5761  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5762    return;
5763  }
5764  if (time > 0) {
5765    unpackTime(&absTime, isAbsolute, time);
5766  }
5767
5768
5769  // Enter safepoint region
5770  // Beware of deadlocks such as 6317397.
5771  // The per-thread Parker:: mutex is a classic leaf-lock.
5772  // In particular a thread must never block on the Threads_lock while
5773  // holding the Parker:: mutex.  If safepoints are pending both the
5774  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5775  ThreadBlockInVM tbivm(jt);
5776
5777  // Don't wait if cannot get lock since interference arises from
5778  // unblocking.  Also. check interrupt before trying wait
5779  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5780    return;
5781  }
5782
5783  int status;
5784  if (_counter > 0)  { // no wait needed
5785    _counter = 0;
5786    status = pthread_mutex_unlock(_mutex);
5787    assert(status == 0, "invariant");
5788    // Paranoia to ensure our locked and lock-free paths interact
5789    // correctly with each other and Java-level accesses.
5790    OrderAccess::fence();
5791    return;
5792  }
5793
5794#ifdef ASSERT
5795  // Don't catch signals while blocked; let the running threads have the signals.
5796  // (This allows a debugger to break into the running thread.)
5797  sigset_t oldsigs;
5798  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5799  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5800#endif
5801
5802  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5803  jt->set_suspend_equivalent();
5804  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5805
5806  assert(_cur_index == -1, "invariant");
5807  if (time == 0) {
5808    _cur_index = REL_INDEX; // arbitrary choice when not timed
5809    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5810  } else {
5811    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5812    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5813    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5814      pthread_cond_destroy(&_cond[_cur_index]);
5815      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5816    }
5817  }
5818  _cur_index = -1;
5819  assert_status(status == 0 || status == EINTR ||
5820                status == ETIME || status == ETIMEDOUT,
5821                status, "cond_timedwait");
5822
5823#ifdef ASSERT
5824  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5825#endif
5826
5827  _counter = 0;
5828  status = pthread_mutex_unlock(_mutex);
5829  assert_status(status == 0, status, "invariant");
5830  // Paranoia to ensure our locked and lock-free paths interact
5831  // correctly with each other and Java-level accesses.
5832  OrderAccess::fence();
5833
5834  // If externally suspended while waiting, re-suspend
5835  if (jt->handle_special_suspend_equivalent_condition()) {
5836    jt->java_suspend_self();
5837  }
5838}
5839
5840void Parker::unpark() {
5841  int status = pthread_mutex_lock(_mutex);
5842  assert(status == 0, "invariant");
5843  const int s = _counter;
5844  _counter = 1;
5845  if (s < 1) {
5846    // thread might be parked
5847    if (_cur_index != -1) {
5848      // thread is definitely parked
5849      if (WorkAroundNPTLTimedWaitHang) {
5850        status = pthread_cond_signal(&_cond[_cur_index]);
5851        assert(status == 0, "invariant");
5852        status = pthread_mutex_unlock(_mutex);
5853        assert(status == 0, "invariant");
5854      } else {
5855        status = pthread_mutex_unlock(_mutex);
5856        assert(status == 0, "invariant");
5857        status = pthread_cond_signal(&_cond[_cur_index]);
5858        assert(status == 0, "invariant");
5859      }
5860    } else {
5861      pthread_mutex_unlock(_mutex);
5862      assert(status == 0, "invariant");
5863    }
5864  } else {
5865    pthread_mutex_unlock(_mutex);
5866    assert(status == 0, "invariant");
5867  }
5868}
5869
5870
5871extern char** environ;
5872
5873#ifndef __NR_fork
5874  #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5875#endif
5876
5877#ifndef __NR_execve
5878  #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5879#endif
5880
5881// Run the specified command in a separate process. Return its exit value,
5882// or -1 on failure (e.g. can't fork a new process).
5883// Unlike system(), this function can be called from signal handler. It
5884// doesn't block SIGINT et al.
5885int os::fork_and_exec(char* cmd) {
5886  const char * argv[4] = {"sh", "-c", cmd, NULL};
5887
5888  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5889  // pthread_atfork handlers and reset pthread library. All we need is a
5890  // separate process to execve. Make a direct syscall to fork process.
5891  // On IA64 there's no fork syscall, we have to use fork() and hope for
5892  // the best...
5893  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5894  IA64_ONLY(fork();)
5895
5896  if (pid < 0) {
5897    // fork failed
5898    return -1;
5899
5900  } else if (pid == 0) {
5901    // child process
5902
5903    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5904    // first to kill every thread on the thread list. Because this list is
5905    // not reset by fork() (see notes above), execve() will instead kill
5906    // every thread in the parent process. We know this is the only thread
5907    // in the new process, so make a system call directly.
5908    // IA64 should use normal execve() from glibc to match the glibc fork()
5909    // above.
5910    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5911    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5912
5913    // execve failed
5914    _exit(-1);
5915
5916  } else  {
5917    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5918    // care about the actual exit code, for now.
5919
5920    int status;
5921
5922    // Wait for the child process to exit.  This returns immediately if
5923    // the child has already exited. */
5924    while (waitpid(pid, &status, 0) < 0) {
5925      switch (errno) {
5926      case ECHILD: return 0;
5927      case EINTR: break;
5928      default: return -1;
5929      }
5930    }
5931
5932    if (WIFEXITED(status)) {
5933      // The child exited normally; get its exit code.
5934      return WEXITSTATUS(status);
5935    } else if (WIFSIGNALED(status)) {
5936      // The child exited because of a signal
5937      // The best value to return is 0x80 + signal number,
5938      // because that is what all Unix shells do, and because
5939      // it allows callers to distinguish between process exit and
5940      // process death by signal.
5941      return 0x80 + WTERMSIG(status);
5942    } else {
5943      // Unknown exit code; pass it through
5944      return status;
5945    }
5946  }
5947}
5948
5949// is_headless_jre()
5950//
5951// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5952// in order to report if we are running in a headless jre
5953//
5954// Since JDK8 xawt/libmawt.so was moved into the same directory
5955// as libawt.so, and renamed libawt_xawt.so
5956//
5957bool os::is_headless_jre() {
5958  struct stat statbuf;
5959  char buf[MAXPATHLEN];
5960  char libmawtpath[MAXPATHLEN];
5961  const char *xawtstr  = "/xawt/libmawt.so";
5962  const char *new_xawtstr = "/libawt_xawt.so";
5963  char *p;
5964
5965  // Get path to libjvm.so
5966  os::jvm_path(buf, sizeof(buf));
5967
5968  // Get rid of libjvm.so
5969  p = strrchr(buf, '/');
5970  if (p == NULL) {
5971    return false;
5972  } else {
5973    *p = '\0';
5974  }
5975
5976  // Get rid of client or server
5977  p = strrchr(buf, '/');
5978  if (p == NULL) {
5979    return false;
5980  } else {
5981    *p = '\0';
5982  }
5983
5984  // check xawt/libmawt.so
5985  strcpy(libmawtpath, buf);
5986  strcat(libmawtpath, xawtstr);
5987  if (::stat(libmawtpath, &statbuf) == 0) return false;
5988
5989  // check libawt_xawt.so
5990  strcpy(libmawtpath, buf);
5991  strcat(libmawtpath, new_xawtstr);
5992  if (::stat(libmawtpath, &statbuf) == 0) return false;
5993
5994  return true;
5995}
5996
5997// Get the default path to the core file
5998// Returns the length of the string
5999int os::get_core_path(char* buffer, size_t bufferSize) {
6000  /*
6001   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6002   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6003   */
6004  const int core_pattern_len = 129;
6005  char core_pattern[core_pattern_len] = {0};
6006
6007  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6008  if (core_pattern_file != -1) {
6009    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6010    ::close(core_pattern_file);
6011
6012    if (ret > 0) {
6013      char *last_char = core_pattern + strlen(core_pattern) - 1;
6014
6015      if (*last_char == '\n') {
6016        *last_char = '\0';
6017      }
6018    }
6019  }
6020
6021  if (strlen(core_pattern) == 0) {
6022    return 0;
6023  }
6024
6025  char *pid_pos = strstr(core_pattern, "%p");
6026  size_t written;
6027
6028  if (core_pattern[0] == '/') {
6029    written = jio_snprintf(buffer, bufferSize, core_pattern);
6030  } else {
6031    char cwd[PATH_MAX];
6032
6033    const char* p = get_current_directory(cwd, PATH_MAX);
6034    if (p == NULL) {
6035      assert(p != NULL, "failed to get current directory");
6036      return 0;
6037    }
6038
6039    if (core_pattern[0] == '|') {
6040      written = jio_snprintf(buffer, bufferSize,
6041                        "\"%s\" (or dumping to %s/core.%d)",
6042                                     &core_pattern[1], p, current_process_id());
6043    } else {
6044      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6045    }
6046  }
6047
6048  if ((written >= 0) && (written < bufferSize)
6049            && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6050    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6051
6052    if (core_uses_pid_file != -1) {
6053      char core_uses_pid = 0;
6054      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6055      ::close(core_uses_pid_file);
6056
6057      if (core_uses_pid == '1'){
6058        jio_snprintf(buffer + written, bufferSize - written,
6059                                          ".%d", current_process_id());
6060      }
6061    }
6062  }
6063
6064  return strlen(buffer);
6065}
6066
6067/////////////// Unit tests ///////////////
6068
6069#ifndef PRODUCT
6070
6071#define test_log(...)              \
6072  do {                             \
6073    if (VerboseInternalVMTests) {  \
6074      tty->print_cr(__VA_ARGS__);  \
6075      tty->flush();                \
6076    }                              \
6077  } while (false)
6078
6079class TestReserveMemorySpecial : AllStatic {
6080 public:
6081  static void small_page_write(void* addr, size_t size) {
6082    size_t page_size = os::vm_page_size();
6083
6084    char* end = (char*)addr + size;
6085    for (char* p = (char*)addr; p < end; p += page_size) {
6086      *p = 1;
6087    }
6088  }
6089
6090  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6091    if (!UseHugeTLBFS) {
6092      return;
6093    }
6094
6095    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6096
6097    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6098
6099    if (addr != NULL) {
6100      small_page_write(addr, size);
6101
6102      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6103    }
6104  }
6105
6106  static void test_reserve_memory_special_huge_tlbfs_only() {
6107    if (!UseHugeTLBFS) {
6108      return;
6109    }
6110
6111    size_t lp = os::large_page_size();
6112
6113    for (size_t size = lp; size <= lp * 10; size += lp) {
6114      test_reserve_memory_special_huge_tlbfs_only(size);
6115    }
6116  }
6117
6118  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6119    if (!UseHugeTLBFS) {
6120      return;
6121    }
6122
6123    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6124             size, alignment);
6125
6126    assert(size >= os::large_page_size(), "Incorrect input to test");
6127
6128    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6129
6130    if (addr != NULL) {
6131      small_page_write(addr, size);
6132
6133      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6134    }
6135  }
6136
6137  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6138    size_t lp = os::large_page_size();
6139    size_t ag = os::vm_allocation_granularity();
6140
6141    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6142      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6143    }
6144  }
6145
6146  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6147    size_t lp = os::large_page_size();
6148    size_t ag = os::vm_allocation_granularity();
6149
6150    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6151    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6152    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6153    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6154    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6155    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6156    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6157    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6158    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6159  }
6160
6161  static void test_reserve_memory_special_huge_tlbfs() {
6162    if (!UseHugeTLBFS) {
6163      return;
6164    }
6165
6166    test_reserve_memory_special_huge_tlbfs_only();
6167    test_reserve_memory_special_huge_tlbfs_mixed();
6168  }
6169
6170  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6171    if (!UseSHM) {
6172      return;
6173    }
6174
6175    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6176
6177    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6178
6179    if (addr != NULL) {
6180      assert(is_ptr_aligned(addr, alignment), "Check");
6181      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6182
6183      small_page_write(addr, size);
6184
6185      os::Linux::release_memory_special_shm(addr, size);
6186    }
6187  }
6188
6189  static void test_reserve_memory_special_shm() {
6190    size_t lp = os::large_page_size();
6191    size_t ag = os::vm_allocation_granularity();
6192
6193    for (size_t size = ag; size < lp * 3; size += ag) {
6194      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6195        test_reserve_memory_special_shm(size, alignment);
6196      }
6197    }
6198  }
6199
6200  static void test() {
6201    test_reserve_memory_special_huge_tlbfs();
6202    test_reserve_memory_special_shm();
6203  }
6204};
6205
6206void TestReserveMemorySpecial_test() {
6207  TestReserveMemorySpecial::test();
6208}
6209
6210#endif
6211