os_linux.cpp revision 7424:0a8469ebc3d9
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/macros.hpp"
72#include "utilities/vmError.hpp"
73
74// put OS-includes here
75# include <sys/types.h>
76# include <sys/mman.h>
77# include <sys/stat.h>
78# include <sys/select.h>
79# include <pthread.h>
80# include <signal.h>
81# include <errno.h>
82# include <dlfcn.h>
83# include <stdio.h>
84# include <unistd.h>
85# include <sys/resource.h>
86# include <pthread.h>
87# include <sys/stat.h>
88# include <sys/time.h>
89# include <sys/times.h>
90# include <sys/utsname.h>
91# include <sys/socket.h>
92# include <sys/wait.h>
93# include <pwd.h>
94# include <poll.h>
95# include <semaphore.h>
96# include <fcntl.h>
97# include <string.h>
98# include <syscall.h>
99# include <sys/sysinfo.h>
100# include <gnu/libc-version.h>
101# include <sys/ipc.h>
102# include <sys/shm.h>
103# include <link.h>
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107
108PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
109
110// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
111// getrusage() is prepared to handle the associated failure.
112#ifndef RUSAGE_THREAD
113  #define RUSAGE_THREAD   (1)               /* only the calling thread */
114#endif
115
116#define MAX_PATH    (2 * K)
117
118#define MAX_SECS 100000000
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123#define LARGEPAGES_BIT (1 << 6)
124////////////////////////////////////////////////////////////////////////////////
125// global variables
126julong os::Linux::_physical_memory = 0;
127
128address   os::Linux::_initial_thread_stack_bottom = NULL;
129uintptr_t os::Linux::_initial_thread_stack_size   = 0;
130
131int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
133int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
134Mutex* os::Linux::_createThread_lock = NULL;
135pthread_t os::Linux::_main_thread;
136int os::Linux::_page_size = -1;
137const int os::Linux::_vm_default_page_size = (8 * K);
138bool os::Linux::_is_floating_stack = false;
139bool os::Linux::_is_NPTL = false;
140bool os::Linux::_supports_fast_thread_cpu_time = false;
141const char * os::Linux::_glibc_version = NULL;
142const char * os::Linux::_libpthread_version = NULL;
143pthread_condattr_t os::Linux::_condattr[1];
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161// Used to protect dlsym() calls
162static pthread_mutex_t dl_mutex;
163
164// Declarations
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167#ifdef JAVASE_EMBEDDED
168class MemNotifyThread: public Thread {
169  friend class VMStructs;
170 public:
171  virtual void run();
172
173 private:
174  static MemNotifyThread* _memnotify_thread;
175  int _fd;
176
177 public:
178
179  // Constructor
180  MemNotifyThread(int fd);
181
182  // Tester
183  bool is_memnotify_thread() const { return true; }
184
185  // Printing
186  char* name() const { return (char*)"Linux MemNotify Thread"; }
187
188  // Returns the single instance of the MemNotifyThread
189  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
190
191  // Create and start the single instance of MemNotifyThread
192  static void start();
193};
194#endif // JAVASE_EMBEDDED
195
196// utility functions
197
198static int SR_initialize();
199
200julong os::available_memory() {
201  return Linux::available_memory();
202}
203
204julong os::Linux::available_memory() {
205  // values in struct sysinfo are "unsigned long"
206  struct sysinfo si;
207  sysinfo(&si);
208
209  return (julong)si.freeram * si.mem_unit;
210}
211
212julong os::physical_memory() {
213  return Linux::physical_memory();
214}
215
216////////////////////////////////////////////////////////////////////////////////
217// environment support
218
219bool os::getenv(const char* name, char* buf, int len) {
220  const char* val = ::getenv(name);
221  if (val != NULL && strlen(val) < (size_t)len) {
222    strcpy(buf, val);
223    return true;
224  }
225  if (len > 0) buf[0] = 0;  // return a null string
226  return false;
227}
228
229
230// Return true if user is running as root.
231
232bool os::have_special_privileges() {
233  static bool init = false;
234  static bool privileges = false;
235  if (!init) {
236    privileges = (getuid() != geteuid()) || (getgid() != getegid());
237    init = true;
238  }
239  return privileges;
240}
241
242
243#ifndef SYS_gettid
244// i386: 224, ia64: 1105, amd64: 186, sparc 143
245  #ifdef __ia64__
246    #define SYS_gettid 1105
247  #elif __i386__
248    #define SYS_gettid 224
249  #elif __amd64__
250    #define SYS_gettid 186
251  #elif __sparc__
252    #define SYS_gettid 143
253  #else
254    #error define gettid for the arch
255  #endif
256#endif
257
258// Cpu architecture string
259#if   defined(ZERO)
260static char cpu_arch[] = ZERO_LIBARCH;
261#elif defined(IA64)
262static char cpu_arch[] = "ia64";
263#elif defined(IA32)
264static char cpu_arch[] = "i386";
265#elif defined(AMD64)
266static char cpu_arch[] = "amd64";
267#elif defined(ARM)
268static char cpu_arch[] = "arm";
269#elif defined(PPC32)
270static char cpu_arch[] = "ppc";
271#elif defined(PPC64)
272static char cpu_arch[] = "ppc64";
273#elif defined(SPARC)
274  #ifdef _LP64
275static char cpu_arch[] = "sparcv9";
276  #else
277static char cpu_arch[] = "sparc";
278  #endif
279#else
280  #error Add appropriate cpu_arch setting
281#endif
282
283
284// pid_t gettid()
285//
286// Returns the kernel thread id of the currently running thread. Kernel
287// thread id is used to access /proc.
288//
289// (Note that getpid() on LinuxThreads returns kernel thread id too; but
290// on NPTL, it returns the same pid for all threads, as required by POSIX.)
291//
292pid_t os::Linux::gettid() {
293  int rslt = syscall(SYS_gettid);
294  if (rslt == -1) {
295    // old kernel, no NPTL support
296    return getpid();
297  } else {
298    return (pid_t)rslt;
299  }
300}
301
302// Most versions of linux have a bug where the number of processors are
303// determined by looking at the /proc file system.  In a chroot environment,
304// the system call returns 1.  This causes the VM to act as if it is
305// a single processor and elide locking (see is_MP() call).
306static bool unsafe_chroot_detected = false;
307static const char *unstable_chroot_error = "/proc file system not found.\n"
308                     "Java may be unstable running multithreaded in a chroot "
309                     "environment on Linux when /proc filesystem is not mounted.";
310
311void os::Linux::initialize_system_info() {
312  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
313  if (processor_count() == 1) {
314    pid_t pid = os::Linux::gettid();
315    char fname[32];
316    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
317    FILE *fp = fopen(fname, "r");
318    if (fp == NULL) {
319      unsafe_chroot_detected = true;
320    } else {
321      fclose(fp);
322    }
323  }
324  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
325  assert(processor_count() > 0, "linux error");
326}
327
328void os::init_system_properties_values() {
329  // The next steps are taken in the product version:
330  //
331  // Obtain the JAVA_HOME value from the location of libjvm.so.
332  // This library should be located at:
333  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
334  //
335  // If "/jre/lib/" appears at the right place in the path, then we
336  // assume libjvm.so is installed in a JDK and we use this path.
337  //
338  // Otherwise exit with message: "Could not create the Java virtual machine."
339  //
340  // The following extra steps are taken in the debugging version:
341  //
342  // If "/jre/lib/" does NOT appear at the right place in the path
343  // instead of exit check for $JAVA_HOME environment variable.
344  //
345  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
346  // then we append a fake suffix "hotspot/libjvm.so" to this path so
347  // it looks like libjvm.so is installed there
348  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
349  //
350  // Otherwise exit.
351  //
352  // Important note: if the location of libjvm.so changes this
353  // code needs to be changed accordingly.
354
355  // See ld(1):
356  //      The linker uses the following search paths to locate required
357  //      shared libraries:
358  //        1: ...
359  //        ...
360  //        7: The default directories, normally /lib and /usr/lib.
361#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
362  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
363#else
364  #define DEFAULT_LIBPATH "/lib:/usr/lib"
365#endif
366
367// Base path of extensions installed on the system.
368#define SYS_EXT_DIR     "/usr/java/packages"
369#define EXTENSIONS_DIR  "/lib/ext"
370#define ENDORSED_DIR    "/lib/endorsed"
371
372  // Buffer that fits several sprintfs.
373  // Note that the space for the colon and the trailing null are provided
374  // by the nulls included by the sizeof operator.
375  const size_t bufsize =
376    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
377         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
378         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
379  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
380
381  // sysclasspath, java_home, dll_dir
382  {
383    char *pslash;
384    os::jvm_path(buf, bufsize);
385
386    // Found the full path to libjvm.so.
387    // Now cut the path to <java_home>/jre if we can.
388    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
389    pslash = strrchr(buf, '/');
390    if (pslash != NULL) {
391      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
392    }
393    Arguments::set_dll_dir(buf);
394
395    if (pslash != NULL) {
396      pslash = strrchr(buf, '/');
397      if (pslash != NULL) {
398        *pslash = '\0';          // Get rid of /<arch>.
399        pslash = strrchr(buf, '/');
400        if (pslash != NULL) {
401          *pslash = '\0';        // Get rid of /lib.
402        }
403      }
404    }
405    Arguments::set_java_home(buf);
406    set_boot_path('/', ':');
407  }
408
409  // Where to look for native libraries.
410  //
411  // Note: Due to a legacy implementation, most of the library path
412  // is set in the launcher. This was to accomodate linking restrictions
413  // on legacy Linux implementations (which are no longer supported).
414  // Eventually, all the library path setting will be done here.
415  //
416  // However, to prevent the proliferation of improperly built native
417  // libraries, the new path component /usr/java/packages is added here.
418  // Eventually, all the library path setting will be done here.
419  {
420    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
421    // should always exist (until the legacy problem cited above is
422    // addressed).
423    const char *v = ::getenv("LD_LIBRARY_PATH");
424    const char *v_colon = ":";
425    if (v == NULL) { v = ""; v_colon = ""; }
426    // That's +1 for the colon and +1 for the trailing '\0'.
427    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
428                                                     strlen(v) + 1 +
429                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
430                                                     mtInternal);
431    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
432    Arguments::set_library_path(ld_library_path);
433    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
434  }
435
436  // Extensions directories.
437  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
438  Arguments::set_ext_dirs(buf);
439
440  // Endorsed standards default directory.
441  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
442  Arguments::set_endorsed_dirs(buf);
443
444  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
445
446#undef DEFAULT_LIBPATH
447#undef SYS_EXT_DIR
448#undef EXTENSIONS_DIR
449#undef ENDORSED_DIR
450}
451
452////////////////////////////////////////////////////////////////////////////////
453// breakpoint support
454
455void os::breakpoint() {
456  BREAKPOINT;
457}
458
459extern "C" void breakpoint() {
460  // use debugger to set breakpoint here
461}
462
463////////////////////////////////////////////////////////////////////////////////
464// signal support
465
466debug_only(static bool signal_sets_initialized = false);
467static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
468
469bool os::Linux::is_sig_ignored(int sig) {
470  struct sigaction oact;
471  sigaction(sig, (struct sigaction*)NULL, &oact);
472  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
473                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
474  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
475    return true;
476  } else {
477    return false;
478  }
479}
480
481void os::Linux::signal_sets_init() {
482  // Should also have an assertion stating we are still single-threaded.
483  assert(!signal_sets_initialized, "Already initialized");
484  // Fill in signals that are necessarily unblocked for all threads in
485  // the VM. Currently, we unblock the following signals:
486  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
487  //                         by -Xrs (=ReduceSignalUsage));
488  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
489  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
490  // the dispositions or masks wrt these signals.
491  // Programs embedding the VM that want to use the above signals for their
492  // own purposes must, at this time, use the "-Xrs" option to prevent
493  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
494  // (See bug 4345157, and other related bugs).
495  // In reality, though, unblocking these signals is really a nop, since
496  // these signals are not blocked by default.
497  sigemptyset(&unblocked_sigs);
498  sigemptyset(&allowdebug_blocked_sigs);
499  sigaddset(&unblocked_sigs, SIGILL);
500  sigaddset(&unblocked_sigs, SIGSEGV);
501  sigaddset(&unblocked_sigs, SIGBUS);
502  sigaddset(&unblocked_sigs, SIGFPE);
503#if defined(PPC64)
504  sigaddset(&unblocked_sigs, SIGTRAP);
505#endif
506  sigaddset(&unblocked_sigs, SR_signum);
507
508  if (!ReduceSignalUsage) {
509    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
510      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
511      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
512    }
513    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
514      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
515      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
516    }
517    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
518      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
519      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
520    }
521  }
522  // Fill in signals that are blocked by all but the VM thread.
523  sigemptyset(&vm_sigs);
524  if (!ReduceSignalUsage) {
525    sigaddset(&vm_sigs, BREAK_SIGNAL);
526  }
527  debug_only(signal_sets_initialized = true);
528
529}
530
531// These are signals that are unblocked while a thread is running Java.
532// (For some reason, they get blocked by default.)
533sigset_t* os::Linux::unblocked_signals() {
534  assert(signal_sets_initialized, "Not initialized");
535  return &unblocked_sigs;
536}
537
538// These are the signals that are blocked while a (non-VM) thread is
539// running Java. Only the VM thread handles these signals.
540sigset_t* os::Linux::vm_signals() {
541  assert(signal_sets_initialized, "Not initialized");
542  return &vm_sigs;
543}
544
545// These are signals that are blocked during cond_wait to allow debugger in
546sigset_t* os::Linux::allowdebug_blocked_signals() {
547  assert(signal_sets_initialized, "Not initialized");
548  return &allowdebug_blocked_sigs;
549}
550
551void os::Linux::hotspot_sigmask(Thread* thread) {
552
553  //Save caller's signal mask before setting VM signal mask
554  sigset_t caller_sigmask;
555  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
556
557  OSThread* osthread = thread->osthread();
558  osthread->set_caller_sigmask(caller_sigmask);
559
560  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
561
562  if (!ReduceSignalUsage) {
563    if (thread->is_VM_thread()) {
564      // Only the VM thread handles BREAK_SIGNAL ...
565      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
566    } else {
567      // ... all other threads block BREAK_SIGNAL
568      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
569    }
570  }
571}
572
573//////////////////////////////////////////////////////////////////////////////
574// detecting pthread library
575
576void os::Linux::libpthread_init() {
577  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
578  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
579  // generic name for earlier versions.
580  // Define macros here so we can build HotSpot on old systems.
581#ifndef _CS_GNU_LIBC_VERSION
582  #define _CS_GNU_LIBC_VERSION 2
583#endif
584#ifndef _CS_GNU_LIBPTHREAD_VERSION
585  #define _CS_GNU_LIBPTHREAD_VERSION 3
586#endif
587
588  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
589  if (n > 0) {
590    char *str = (char *)malloc(n, mtInternal);
591    confstr(_CS_GNU_LIBC_VERSION, str, n);
592    os::Linux::set_glibc_version(str);
593  } else {
594    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
595    static char _gnu_libc_version[32];
596    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
597                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
598    os::Linux::set_glibc_version(_gnu_libc_version);
599  }
600
601  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
602  if (n > 0) {
603    char *str = (char *)malloc(n, mtInternal);
604    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
605    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
606    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
607    // is the case. LinuxThreads has a hard limit on max number of threads.
608    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
609    // On the other hand, NPTL does not have such a limit, sysconf()
610    // will return -1 and errno is not changed. Check if it is really NPTL.
611    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
612        strstr(str, "NPTL") &&
613        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
614      free(str);
615      os::Linux::set_libpthread_version("linuxthreads");
616    } else {
617      os::Linux::set_libpthread_version(str);
618    }
619  } else {
620    // glibc before 2.3.2 only has LinuxThreads.
621    os::Linux::set_libpthread_version("linuxthreads");
622  }
623
624  if (strstr(libpthread_version(), "NPTL")) {
625    os::Linux::set_is_NPTL();
626  } else {
627    os::Linux::set_is_LinuxThreads();
628  }
629
630  // LinuxThreads have two flavors: floating-stack mode, which allows variable
631  // stack size; and fixed-stack mode. NPTL is always floating-stack.
632  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
633    os::Linux::set_is_floating_stack();
634  }
635}
636
637/////////////////////////////////////////////////////////////////////////////
638// thread stack
639
640// Force Linux kernel to expand current thread stack. If "bottom" is close
641// to the stack guard, caller should block all signals.
642//
643// MAP_GROWSDOWN:
644//   A special mmap() flag that is used to implement thread stacks. It tells
645//   kernel that the memory region should extend downwards when needed. This
646//   allows early versions of LinuxThreads to only mmap the first few pages
647//   when creating a new thread. Linux kernel will automatically expand thread
648//   stack as needed (on page faults).
649//
650//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
651//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
652//   region, it's hard to tell if the fault is due to a legitimate stack
653//   access or because of reading/writing non-exist memory (e.g. buffer
654//   overrun). As a rule, if the fault happens below current stack pointer,
655//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
656//   application (see Linux kernel fault.c).
657//
658//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
659//   stack overflow detection.
660//
661//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
662//   not use this flag. However, the stack of initial thread is not created
663//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
664//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
665//   and then attach the thread to JVM.
666//
667// To get around the problem and allow stack banging on Linux, we need to
668// manually expand thread stack after receiving the SIGSEGV.
669//
670// There are two ways to expand thread stack to address "bottom", we used
671// both of them in JVM before 1.5:
672//   1. adjust stack pointer first so that it is below "bottom", and then
673//      touch "bottom"
674//   2. mmap() the page in question
675//
676// Now alternate signal stack is gone, it's harder to use 2. For instance,
677// if current sp is already near the lower end of page 101, and we need to
678// call mmap() to map page 100, it is possible that part of the mmap() frame
679// will be placed in page 100. When page 100 is mapped, it is zero-filled.
680// That will destroy the mmap() frame and cause VM to crash.
681//
682// The following code works by adjusting sp first, then accessing the "bottom"
683// page to force a page fault. Linux kernel will then automatically expand the
684// stack mapping.
685//
686// _expand_stack_to() assumes its frame size is less than page size, which
687// should always be true if the function is not inlined.
688
689#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
690  #define NOINLINE
691#else
692  #define NOINLINE __attribute__ ((noinline))
693#endif
694
695static void _expand_stack_to(address bottom) NOINLINE;
696
697static void _expand_stack_to(address bottom) {
698  address sp;
699  size_t size;
700  volatile char *p;
701
702  // Adjust bottom to point to the largest address within the same page, it
703  // gives us a one-page buffer if alloca() allocates slightly more memory.
704  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
705  bottom += os::Linux::page_size() - 1;
706
707  // sp might be slightly above current stack pointer; if that's the case, we
708  // will alloca() a little more space than necessary, which is OK. Don't use
709  // os::current_stack_pointer(), as its result can be slightly below current
710  // stack pointer, causing us to not alloca enough to reach "bottom".
711  sp = (address)&sp;
712
713  if (sp > bottom) {
714    size = sp - bottom;
715    p = (volatile char *)alloca(size);
716    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
717    p[0] = '\0';
718  }
719}
720
721bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
722  assert(t!=NULL, "just checking");
723  assert(t->osthread()->expanding_stack(), "expand should be set");
724  assert(t->stack_base() != NULL, "stack_base was not initialized");
725
726  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
727    sigset_t mask_all, old_sigset;
728    sigfillset(&mask_all);
729    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
730    _expand_stack_to(addr);
731    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
732    return true;
733  }
734  return false;
735}
736
737//////////////////////////////////////////////////////////////////////////////
738// create new thread
739
740static address highest_vm_reserved_address();
741
742// check if it's safe to start a new thread
743static bool _thread_safety_check(Thread* thread) {
744  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
745    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
746    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
747    //   allocated (MAP_FIXED) from high address space. Every thread stack
748    //   occupies a fixed size slot (usually 2Mbytes, but user can change
749    //   it to other values if they rebuild LinuxThreads).
750    //
751    // Problem with MAP_FIXED is that mmap() can still succeed even part of
752    // the memory region has already been mmap'ed. That means if we have too
753    // many threads and/or very large heap, eventually thread stack will
754    // collide with heap.
755    //
756    // Here we try to prevent heap/stack collision by comparing current
757    // stack bottom with the highest address that has been mmap'ed by JVM
758    // plus a safety margin for memory maps created by native code.
759    //
760    // This feature can be disabled by setting ThreadSafetyMargin to 0
761    //
762    if (ThreadSafetyMargin > 0) {
763      address stack_bottom = os::current_stack_base() - os::current_stack_size();
764
765      // not safe if our stack extends below the safety margin
766      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
767    } else {
768      return true;
769    }
770  } else {
771    // Floating stack LinuxThreads or NPTL:
772    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
773    //   there's not enough space left, pthread_create() will fail. If we come
774    //   here, that means enough space has been reserved for stack.
775    return true;
776  }
777}
778
779// Thread start routine for all newly created threads
780static void *java_start(Thread *thread) {
781  // Try to randomize the cache line index of hot stack frames.
782  // This helps when threads of the same stack traces evict each other's
783  // cache lines. The threads can be either from the same JVM instance, or
784  // from different JVM instances. The benefit is especially true for
785  // processors with hyperthreading technology.
786  static int counter = 0;
787  int pid = os::current_process_id();
788  alloca(((pid ^ counter++) & 7) * 128);
789
790  ThreadLocalStorage::set_thread(thread);
791
792  OSThread* osthread = thread->osthread();
793  Monitor* sync = osthread->startThread_lock();
794
795  // non floating stack LinuxThreads needs extra check, see above
796  if (!_thread_safety_check(thread)) {
797    // notify parent thread
798    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
799    osthread->set_state(ZOMBIE);
800    sync->notify_all();
801    return NULL;
802  }
803
804  // thread_id is kernel thread id (similar to Solaris LWP id)
805  osthread->set_thread_id(os::Linux::gettid());
806
807  if (UseNUMA) {
808    int lgrp_id = os::numa_get_group_id();
809    if (lgrp_id != -1) {
810      thread->set_lgrp_id(lgrp_id);
811    }
812  }
813  // initialize signal mask for this thread
814  os::Linux::hotspot_sigmask(thread);
815
816  // initialize floating point control register
817  os::Linux::init_thread_fpu_state();
818
819  // handshaking with parent thread
820  {
821    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
822
823    // notify parent thread
824    osthread->set_state(INITIALIZED);
825    sync->notify_all();
826
827    // wait until os::start_thread()
828    while (osthread->get_state() == INITIALIZED) {
829      sync->wait(Mutex::_no_safepoint_check_flag);
830    }
831  }
832
833  // call one more level start routine
834  thread->run();
835
836  return 0;
837}
838
839bool os::create_thread(Thread* thread, ThreadType thr_type,
840                       size_t stack_size) {
841  assert(thread->osthread() == NULL, "caller responsible");
842
843  // Allocate the OSThread object
844  OSThread* osthread = new OSThread(NULL, NULL);
845  if (osthread == NULL) {
846    return false;
847  }
848
849  // set the correct thread state
850  osthread->set_thread_type(thr_type);
851
852  // Initial state is ALLOCATED but not INITIALIZED
853  osthread->set_state(ALLOCATED);
854
855  thread->set_osthread(osthread);
856
857  // init thread attributes
858  pthread_attr_t attr;
859  pthread_attr_init(&attr);
860  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
861
862  // stack size
863  if (os::Linux::supports_variable_stack_size()) {
864    // calculate stack size if it's not specified by caller
865    if (stack_size == 0) {
866      stack_size = os::Linux::default_stack_size(thr_type);
867
868      switch (thr_type) {
869      case os::java_thread:
870        // Java threads use ThreadStackSize which default value can be
871        // changed with the flag -Xss
872        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
873        stack_size = JavaThread::stack_size_at_create();
874        break;
875      case os::compiler_thread:
876        if (CompilerThreadStackSize > 0) {
877          stack_size = (size_t)(CompilerThreadStackSize * K);
878          break;
879        } // else fall through:
880          // use VMThreadStackSize if CompilerThreadStackSize is not defined
881      case os::vm_thread:
882      case os::pgc_thread:
883      case os::cgc_thread:
884      case os::watcher_thread:
885        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
886        break;
887      }
888    }
889
890    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
891    pthread_attr_setstacksize(&attr, stack_size);
892  } else {
893    // let pthread_create() pick the default value.
894  }
895
896  // glibc guard page
897  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
898
899  ThreadState state;
900
901  {
902    // Serialize thread creation if we are running with fixed stack LinuxThreads
903    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
904    if (lock) {
905      os::Linux::createThread_lock()->lock_without_safepoint_check();
906    }
907
908    pthread_t tid;
909    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
910
911    pthread_attr_destroy(&attr);
912
913    if (ret != 0) {
914      if (PrintMiscellaneous && (Verbose || WizardMode)) {
915        perror("pthread_create()");
916      }
917      // Need to clean up stuff we've allocated so far
918      thread->set_osthread(NULL);
919      delete osthread;
920      if (lock) os::Linux::createThread_lock()->unlock();
921      return false;
922    }
923
924    // Store pthread info into the OSThread
925    osthread->set_pthread_id(tid);
926
927    // Wait until child thread is either initialized or aborted
928    {
929      Monitor* sync_with_child = osthread->startThread_lock();
930      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
931      while ((state = osthread->get_state()) == ALLOCATED) {
932        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
933      }
934    }
935
936    if (lock) {
937      os::Linux::createThread_lock()->unlock();
938    }
939  }
940
941  // Aborted due to thread limit being reached
942  if (state == ZOMBIE) {
943    thread->set_osthread(NULL);
944    delete osthread;
945    return false;
946  }
947
948  // The thread is returned suspended (in state INITIALIZED),
949  // and is started higher up in the call chain
950  assert(state == INITIALIZED, "race condition");
951  return true;
952}
953
954/////////////////////////////////////////////////////////////////////////////
955// attach existing thread
956
957// bootstrap the main thread
958bool os::create_main_thread(JavaThread* thread) {
959  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
960  return create_attached_thread(thread);
961}
962
963bool os::create_attached_thread(JavaThread* thread) {
964#ifdef ASSERT
965  thread->verify_not_published();
966#endif
967
968  // Allocate the OSThread object
969  OSThread* osthread = new OSThread(NULL, NULL);
970
971  if (osthread == NULL) {
972    return false;
973  }
974
975  // Store pthread info into the OSThread
976  osthread->set_thread_id(os::Linux::gettid());
977  osthread->set_pthread_id(::pthread_self());
978
979  // initialize floating point control register
980  os::Linux::init_thread_fpu_state();
981
982  // Initial thread state is RUNNABLE
983  osthread->set_state(RUNNABLE);
984
985  thread->set_osthread(osthread);
986
987  if (UseNUMA) {
988    int lgrp_id = os::numa_get_group_id();
989    if (lgrp_id != -1) {
990      thread->set_lgrp_id(lgrp_id);
991    }
992  }
993
994  if (os::Linux::is_initial_thread()) {
995    // If current thread is initial thread, its stack is mapped on demand,
996    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
997    // the entire stack region to avoid SEGV in stack banging.
998    // It is also useful to get around the heap-stack-gap problem on SuSE
999    // kernel (see 4821821 for details). We first expand stack to the top
1000    // of yellow zone, then enable stack yellow zone (order is significant,
1001    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1002    // is no gap between the last two virtual memory regions.
1003
1004    JavaThread *jt = (JavaThread *)thread;
1005    address addr = jt->stack_yellow_zone_base();
1006    assert(addr != NULL, "initialization problem?");
1007    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1008
1009    osthread->set_expanding_stack();
1010    os::Linux::manually_expand_stack(jt, addr);
1011    osthread->clear_expanding_stack();
1012  }
1013
1014  // initialize signal mask for this thread
1015  // and save the caller's signal mask
1016  os::Linux::hotspot_sigmask(thread);
1017
1018  return true;
1019}
1020
1021void os::pd_start_thread(Thread* thread) {
1022  OSThread * osthread = thread->osthread();
1023  assert(osthread->get_state() != INITIALIZED, "just checking");
1024  Monitor* sync_with_child = osthread->startThread_lock();
1025  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1026  sync_with_child->notify();
1027}
1028
1029// Free Linux resources related to the OSThread
1030void os::free_thread(OSThread* osthread) {
1031  assert(osthread != NULL, "osthread not set");
1032
1033  if (Thread::current()->osthread() == osthread) {
1034    // Restore caller's signal mask
1035    sigset_t sigmask = osthread->caller_sigmask();
1036    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1037  }
1038
1039  delete osthread;
1040}
1041
1042//////////////////////////////////////////////////////////////////////////////
1043// thread local storage
1044
1045// Restore the thread pointer if the destructor is called. This is in case
1046// someone from JNI code sets up a destructor with pthread_key_create to run
1047// detachCurrentThread on thread death. Unless we restore the thread pointer we
1048// will hang or crash. When detachCurrentThread is called the key will be set
1049// to null and we will not be called again. If detachCurrentThread is never
1050// called we could loop forever depending on the pthread implementation.
1051static void restore_thread_pointer(void* p) {
1052  Thread* thread = (Thread*) p;
1053  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1054}
1055
1056int os::allocate_thread_local_storage() {
1057  pthread_key_t key;
1058  int rslt = pthread_key_create(&key, restore_thread_pointer);
1059  assert(rslt == 0, "cannot allocate thread local storage");
1060  return (int)key;
1061}
1062
1063// Note: This is currently not used by VM, as we don't destroy TLS key
1064// on VM exit.
1065void os::free_thread_local_storage(int index) {
1066  int rslt = pthread_key_delete((pthread_key_t)index);
1067  assert(rslt == 0, "invalid index");
1068}
1069
1070void os::thread_local_storage_at_put(int index, void* value) {
1071  int rslt = pthread_setspecific((pthread_key_t)index, value);
1072  assert(rslt == 0, "pthread_setspecific failed");
1073}
1074
1075extern "C" Thread* get_thread() {
1076  return ThreadLocalStorage::thread();
1077}
1078
1079//////////////////////////////////////////////////////////////////////////////
1080// initial thread
1081
1082// Check if current thread is the initial thread, similar to Solaris thr_main.
1083bool os::Linux::is_initial_thread(void) {
1084  char dummy;
1085  // If called before init complete, thread stack bottom will be null.
1086  // Can be called if fatal error occurs before initialization.
1087  if (initial_thread_stack_bottom() == NULL) return false;
1088  assert(initial_thread_stack_bottom() != NULL &&
1089         initial_thread_stack_size()   != 0,
1090         "os::init did not locate initial thread's stack region");
1091  if ((address)&dummy >= initial_thread_stack_bottom() &&
1092      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1093    return true;
1094  } else {
1095    return false;
1096  }
1097}
1098
1099// Find the virtual memory area that contains addr
1100static bool find_vma(address addr, address* vma_low, address* vma_high) {
1101  FILE *fp = fopen("/proc/self/maps", "r");
1102  if (fp) {
1103    address low, high;
1104    while (!feof(fp)) {
1105      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1106        if (low <= addr && addr < high) {
1107          if (vma_low)  *vma_low  = low;
1108          if (vma_high) *vma_high = high;
1109          fclose(fp);
1110          return true;
1111        }
1112      }
1113      for (;;) {
1114        int ch = fgetc(fp);
1115        if (ch == EOF || ch == (int)'\n') break;
1116      }
1117    }
1118    fclose(fp);
1119  }
1120  return false;
1121}
1122
1123// Locate initial thread stack. This special handling of initial thread stack
1124// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1125// bogus value for initial thread.
1126void os::Linux::capture_initial_stack(size_t max_size) {
1127  // stack size is the easy part, get it from RLIMIT_STACK
1128  size_t stack_size;
1129  struct rlimit rlim;
1130  getrlimit(RLIMIT_STACK, &rlim);
1131  stack_size = rlim.rlim_cur;
1132
1133  // 6308388: a bug in ld.so will relocate its own .data section to the
1134  //   lower end of primordial stack; reduce ulimit -s value a little bit
1135  //   so we won't install guard page on ld.so's data section.
1136  stack_size -= 2 * page_size();
1137
1138  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1139  //   7.1, in both cases we will get 2G in return value.
1140  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1141  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1142  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1143  //   in case other parts in glibc still assumes 2M max stack size.
1144  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1145  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1146  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1147    stack_size = 2 * K * K IA64_ONLY(*2);
1148  }
1149  // Try to figure out where the stack base (top) is. This is harder.
1150  //
1151  // When an application is started, glibc saves the initial stack pointer in
1152  // a global variable "__libc_stack_end", which is then used by system
1153  // libraries. __libc_stack_end should be pretty close to stack top. The
1154  // variable is available since the very early days. However, because it is
1155  // a private interface, it could disappear in the future.
1156  //
1157  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1158  // to __libc_stack_end, it is very close to stack top, but isn't the real
1159  // stack top. Note that /proc may not exist if VM is running as a chroot
1160  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1161  // /proc/<pid>/stat could change in the future (though unlikely).
1162  //
1163  // We try __libc_stack_end first. If that doesn't work, look for
1164  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1165  // as a hint, which should work well in most cases.
1166
1167  uintptr_t stack_start;
1168
1169  // try __libc_stack_end first
1170  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1171  if (p && *p) {
1172    stack_start = *p;
1173  } else {
1174    // see if we can get the start_stack field from /proc/self/stat
1175    FILE *fp;
1176    int pid;
1177    char state;
1178    int ppid;
1179    int pgrp;
1180    int session;
1181    int nr;
1182    int tpgrp;
1183    unsigned long flags;
1184    unsigned long minflt;
1185    unsigned long cminflt;
1186    unsigned long majflt;
1187    unsigned long cmajflt;
1188    unsigned long utime;
1189    unsigned long stime;
1190    long cutime;
1191    long cstime;
1192    long prio;
1193    long nice;
1194    long junk;
1195    long it_real;
1196    uintptr_t start;
1197    uintptr_t vsize;
1198    intptr_t rss;
1199    uintptr_t rsslim;
1200    uintptr_t scodes;
1201    uintptr_t ecode;
1202    int i;
1203
1204    // Figure what the primordial thread stack base is. Code is inspired
1205    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1206    // followed by command name surrounded by parentheses, state, etc.
1207    char stat[2048];
1208    int statlen;
1209
1210    fp = fopen("/proc/self/stat", "r");
1211    if (fp) {
1212      statlen = fread(stat, 1, 2047, fp);
1213      stat[statlen] = '\0';
1214      fclose(fp);
1215
1216      // Skip pid and the command string. Note that we could be dealing with
1217      // weird command names, e.g. user could decide to rename java launcher
1218      // to "java 1.4.2 :)", then the stat file would look like
1219      //                1234 (java 1.4.2 :)) R ... ...
1220      // We don't really need to know the command string, just find the last
1221      // occurrence of ")" and then start parsing from there. See bug 4726580.
1222      char * s = strrchr(stat, ')');
1223
1224      i = 0;
1225      if (s) {
1226        // Skip blank chars
1227        do s++; while (isspace(*s));
1228
1229#define _UFM UINTX_FORMAT
1230#define _DFM INTX_FORMAT
1231
1232        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1233        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1234        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1235                   &state,          // 3  %c
1236                   &ppid,           // 4  %d
1237                   &pgrp,           // 5  %d
1238                   &session,        // 6  %d
1239                   &nr,             // 7  %d
1240                   &tpgrp,          // 8  %d
1241                   &flags,          // 9  %lu
1242                   &minflt,         // 10 %lu
1243                   &cminflt,        // 11 %lu
1244                   &majflt,         // 12 %lu
1245                   &cmajflt,        // 13 %lu
1246                   &utime,          // 14 %lu
1247                   &stime,          // 15 %lu
1248                   &cutime,         // 16 %ld
1249                   &cstime,         // 17 %ld
1250                   &prio,           // 18 %ld
1251                   &nice,           // 19 %ld
1252                   &junk,           // 20 %ld
1253                   &it_real,        // 21 %ld
1254                   &start,          // 22 UINTX_FORMAT
1255                   &vsize,          // 23 UINTX_FORMAT
1256                   &rss,            // 24 INTX_FORMAT
1257                   &rsslim,         // 25 UINTX_FORMAT
1258                   &scodes,         // 26 UINTX_FORMAT
1259                   &ecode,          // 27 UINTX_FORMAT
1260                   &stack_start);   // 28 UINTX_FORMAT
1261      }
1262
1263#undef _UFM
1264#undef _DFM
1265
1266      if (i != 28 - 2) {
1267        assert(false, "Bad conversion from /proc/self/stat");
1268        // product mode - assume we are the initial thread, good luck in the
1269        // embedded case.
1270        warning("Can't detect initial thread stack location - bad conversion");
1271        stack_start = (uintptr_t) &rlim;
1272      }
1273    } else {
1274      // For some reason we can't open /proc/self/stat (for example, running on
1275      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1276      // most cases, so don't abort:
1277      warning("Can't detect initial thread stack location - no /proc/self/stat");
1278      stack_start = (uintptr_t) &rlim;
1279    }
1280  }
1281
1282  // Now we have a pointer (stack_start) very close to the stack top, the
1283  // next thing to do is to figure out the exact location of stack top. We
1284  // can find out the virtual memory area that contains stack_start by
1285  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1286  // and its upper limit is the real stack top. (again, this would fail if
1287  // running inside chroot, because /proc may not exist.)
1288
1289  uintptr_t stack_top;
1290  address low, high;
1291  if (find_vma((address)stack_start, &low, &high)) {
1292    // success, "high" is the true stack top. (ignore "low", because initial
1293    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1294    stack_top = (uintptr_t)high;
1295  } else {
1296    // failed, likely because /proc/self/maps does not exist
1297    warning("Can't detect initial thread stack location - find_vma failed");
1298    // best effort: stack_start is normally within a few pages below the real
1299    // stack top, use it as stack top, and reduce stack size so we won't put
1300    // guard page outside stack.
1301    stack_top = stack_start;
1302    stack_size -= 16 * page_size();
1303  }
1304
1305  // stack_top could be partially down the page so align it
1306  stack_top = align_size_up(stack_top, page_size());
1307
1308  if (max_size && stack_size > max_size) {
1309    _initial_thread_stack_size = max_size;
1310  } else {
1311    _initial_thread_stack_size = stack_size;
1312  }
1313
1314  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1315  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1316}
1317
1318////////////////////////////////////////////////////////////////////////////////
1319// time support
1320
1321// Time since start-up in seconds to a fine granularity.
1322// Used by VMSelfDestructTimer and the MemProfiler.
1323double os::elapsedTime() {
1324
1325  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1326}
1327
1328jlong os::elapsed_counter() {
1329  return javaTimeNanos() - initial_time_count;
1330}
1331
1332jlong os::elapsed_frequency() {
1333  return NANOSECS_PER_SEC; // nanosecond resolution
1334}
1335
1336bool os::supports_vtime() { return true; }
1337bool os::enable_vtime()   { return false; }
1338bool os::vtime_enabled()  { return false; }
1339
1340double os::elapsedVTime() {
1341  struct rusage usage;
1342  int retval = getrusage(RUSAGE_THREAD, &usage);
1343  if (retval == 0) {
1344    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1345  } else {
1346    // better than nothing, but not much
1347    return elapsedTime();
1348  }
1349}
1350
1351jlong os::javaTimeMillis() {
1352  timeval time;
1353  int status = gettimeofday(&time, NULL);
1354  assert(status != -1, "linux error");
1355  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1356}
1357
1358#ifndef CLOCK_MONOTONIC
1359  #define CLOCK_MONOTONIC (1)
1360#endif
1361
1362void os::Linux::clock_init() {
1363  // we do dlopen's in this particular order due to bug in linux
1364  // dynamical loader (see 6348968) leading to crash on exit
1365  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1366  if (handle == NULL) {
1367    handle = dlopen("librt.so", RTLD_LAZY);
1368  }
1369
1370  if (handle) {
1371    int (*clock_getres_func)(clockid_t, struct timespec*) =
1372           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1373    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1374           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1375    if (clock_getres_func && clock_gettime_func) {
1376      // See if monotonic clock is supported by the kernel. Note that some
1377      // early implementations simply return kernel jiffies (updated every
1378      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1379      // for nano time (though the monotonic property is still nice to have).
1380      // It's fixed in newer kernels, however clock_getres() still returns
1381      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1382      // resolution for now. Hopefully as people move to new kernels, this
1383      // won't be a problem.
1384      struct timespec res;
1385      struct timespec tp;
1386      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1387          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1388        // yes, monotonic clock is supported
1389        _clock_gettime = clock_gettime_func;
1390        return;
1391      } else {
1392        // close librt if there is no monotonic clock
1393        dlclose(handle);
1394      }
1395    }
1396  }
1397  warning("No monotonic clock was available - timed services may " \
1398          "be adversely affected if the time-of-day clock changes");
1399}
1400
1401#ifndef SYS_clock_getres
1402  #if defined(IA32) || defined(AMD64)
1403    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1404    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1405  #else
1406    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1407    #define sys_clock_getres(x,y)  -1
1408  #endif
1409#else
1410  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1411#endif
1412
1413void os::Linux::fast_thread_clock_init() {
1414  if (!UseLinuxPosixThreadCPUClocks) {
1415    return;
1416  }
1417  clockid_t clockid;
1418  struct timespec tp;
1419  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1420      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1421
1422  // Switch to using fast clocks for thread cpu time if
1423  // the sys_clock_getres() returns 0 error code.
1424  // Note, that some kernels may support the current thread
1425  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1426  // returned by the pthread_getcpuclockid().
1427  // If the fast Posix clocks are supported then the sys_clock_getres()
1428  // must return at least tp.tv_sec == 0 which means a resolution
1429  // better than 1 sec. This is extra check for reliability.
1430
1431  if (pthread_getcpuclockid_func &&
1432      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1433      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1434    _supports_fast_thread_cpu_time = true;
1435    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1436  }
1437}
1438
1439jlong os::javaTimeNanos() {
1440  if (os::supports_monotonic_clock()) {
1441    struct timespec tp;
1442    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1443    assert(status == 0, "gettime error");
1444    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1445    return result;
1446  } else {
1447    timeval time;
1448    int status = gettimeofday(&time, NULL);
1449    assert(status != -1, "linux error");
1450    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1451    return 1000 * usecs;
1452  }
1453}
1454
1455void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1456  if (os::supports_monotonic_clock()) {
1457    info_ptr->max_value = ALL_64_BITS;
1458
1459    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1460    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1461    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1462  } else {
1463    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1464    info_ptr->max_value = ALL_64_BITS;
1465
1466    // gettimeofday is a real time clock so it skips
1467    info_ptr->may_skip_backward = true;
1468    info_ptr->may_skip_forward = true;
1469  }
1470
1471  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1472}
1473
1474// Return the real, user, and system times in seconds from an
1475// arbitrary fixed point in the past.
1476bool os::getTimesSecs(double* process_real_time,
1477                      double* process_user_time,
1478                      double* process_system_time) {
1479  struct tms ticks;
1480  clock_t real_ticks = times(&ticks);
1481
1482  if (real_ticks == (clock_t) (-1)) {
1483    return false;
1484  } else {
1485    double ticks_per_second = (double) clock_tics_per_sec;
1486    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1487    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1488    *process_real_time = ((double) real_ticks) / ticks_per_second;
1489
1490    return true;
1491  }
1492}
1493
1494
1495char * os::local_time_string(char *buf, size_t buflen) {
1496  struct tm t;
1497  time_t long_time;
1498  time(&long_time);
1499  localtime_r(&long_time, &t);
1500  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1501               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1502               t.tm_hour, t.tm_min, t.tm_sec);
1503  return buf;
1504}
1505
1506struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1507  return localtime_r(clock, res);
1508}
1509
1510////////////////////////////////////////////////////////////////////////////////
1511// runtime exit support
1512
1513// Note: os::shutdown() might be called very early during initialization, or
1514// called from signal handler. Before adding something to os::shutdown(), make
1515// sure it is async-safe and can handle partially initialized VM.
1516void os::shutdown() {
1517
1518  // allow PerfMemory to attempt cleanup of any persistent resources
1519  perfMemory_exit();
1520
1521  // needs to remove object in file system
1522  AttachListener::abort();
1523
1524  // flush buffered output, finish log files
1525  ostream_abort();
1526
1527  // Check for abort hook
1528  abort_hook_t abort_hook = Arguments::abort_hook();
1529  if (abort_hook != NULL) {
1530    abort_hook();
1531  }
1532
1533}
1534
1535// Note: os::abort() might be called very early during initialization, or
1536// called from signal handler. Before adding something to os::abort(), make
1537// sure it is async-safe and can handle partially initialized VM.
1538void os::abort(bool dump_core) {
1539  os::shutdown();
1540  if (dump_core) {
1541#ifndef PRODUCT
1542    fdStream out(defaultStream::output_fd());
1543    out.print_raw("Current thread is ");
1544    char buf[16];
1545    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1546    out.print_raw_cr(buf);
1547    out.print_raw_cr("Dumping core ...");
1548#endif
1549    ::abort(); // dump core
1550  }
1551
1552  ::exit(1);
1553}
1554
1555// Die immediately, no exit hook, no abort hook, no cleanup.
1556void os::die() {
1557  // _exit() on LinuxThreads only kills current thread
1558  ::abort();
1559}
1560
1561
1562// This method is a copy of JDK's sysGetLastErrorString
1563// from src/solaris/hpi/src/system_md.c
1564
1565size_t os::lasterror(char *buf, size_t len) {
1566  if (errno == 0)  return 0;
1567
1568  const char *s = ::strerror(errno);
1569  size_t n = ::strlen(s);
1570  if (n >= len) {
1571    n = len - 1;
1572  }
1573  ::strncpy(buf, s, n);
1574  buf[n] = '\0';
1575  return n;
1576}
1577
1578intx os::current_thread_id() { return (intx)pthread_self(); }
1579int os::current_process_id() {
1580
1581  // Under the old linux thread library, linux gives each thread
1582  // its own process id. Because of this each thread will return
1583  // a different pid if this method were to return the result
1584  // of getpid(2). Linux provides no api that returns the pid
1585  // of the launcher thread for the vm. This implementation
1586  // returns a unique pid, the pid of the launcher thread
1587  // that starts the vm 'process'.
1588
1589  // Under the NPTL, getpid() returns the same pid as the
1590  // launcher thread rather than a unique pid per thread.
1591  // Use gettid() if you want the old pre NPTL behaviour.
1592
1593  // if you are looking for the result of a call to getpid() that
1594  // returns a unique pid for the calling thread, then look at the
1595  // OSThread::thread_id() method in osThread_linux.hpp file
1596
1597  return (int)(_initial_pid ? _initial_pid : getpid());
1598}
1599
1600// DLL functions
1601
1602const char* os::dll_file_extension() { return ".so"; }
1603
1604// This must be hard coded because it's the system's temporary
1605// directory not the java application's temp directory, ala java.io.tmpdir.
1606const char* os::get_temp_directory() { return "/tmp"; }
1607
1608static bool file_exists(const char* filename) {
1609  struct stat statbuf;
1610  if (filename == NULL || strlen(filename) == 0) {
1611    return false;
1612  }
1613  return os::stat(filename, &statbuf) == 0;
1614}
1615
1616bool os::dll_build_name(char* buffer, size_t buflen,
1617                        const char* pname, const char* fname) {
1618  bool retval = false;
1619  // Copied from libhpi
1620  const size_t pnamelen = pname ? strlen(pname) : 0;
1621
1622  // Return error on buffer overflow.
1623  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1624    return retval;
1625  }
1626
1627  if (pnamelen == 0) {
1628    snprintf(buffer, buflen, "lib%s.so", fname);
1629    retval = true;
1630  } else if (strchr(pname, *os::path_separator()) != NULL) {
1631    int n;
1632    char** pelements = split_path(pname, &n);
1633    if (pelements == NULL) {
1634      return false;
1635    }
1636    for (int i = 0; i < n; i++) {
1637      // Really shouldn't be NULL, but check can't hurt
1638      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1639        continue; // skip the empty path values
1640      }
1641      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1642      if (file_exists(buffer)) {
1643        retval = true;
1644        break;
1645      }
1646    }
1647    // release the storage
1648    for (int i = 0; i < n; i++) {
1649      if (pelements[i] != NULL) {
1650        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1651      }
1652    }
1653    if (pelements != NULL) {
1654      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1655    }
1656  } else {
1657    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1658    retval = true;
1659  }
1660  return retval;
1661}
1662
1663// check if addr is inside libjvm.so
1664bool os::address_is_in_vm(address addr) {
1665  static address libjvm_base_addr;
1666  Dl_info dlinfo;
1667
1668  if (libjvm_base_addr == NULL) {
1669    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1670      libjvm_base_addr = (address)dlinfo.dli_fbase;
1671    }
1672    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1673  }
1674
1675  if (dladdr((void *)addr, &dlinfo) != 0) {
1676    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1677  }
1678
1679  return false;
1680}
1681
1682bool os::dll_address_to_function_name(address addr, char *buf,
1683                                      int buflen, int *offset) {
1684  // buf is not optional, but offset is optional
1685  assert(buf != NULL, "sanity check");
1686
1687  Dl_info dlinfo;
1688
1689  if (dladdr((void*)addr, &dlinfo) != 0) {
1690    // see if we have a matching symbol
1691    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1692      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1693        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1694      }
1695      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1696      return true;
1697    }
1698    // no matching symbol so try for just file info
1699    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1700      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1701                          buf, buflen, offset, dlinfo.dli_fname)) {
1702        return true;
1703      }
1704    }
1705  }
1706
1707  buf[0] = '\0';
1708  if (offset != NULL) *offset = -1;
1709  return false;
1710}
1711
1712struct _address_to_library_name {
1713  address addr;          // input : memory address
1714  size_t  buflen;        //         size of fname
1715  char*   fname;         // output: library name
1716  address base;          //         library base addr
1717};
1718
1719static int address_to_library_name_callback(struct dl_phdr_info *info,
1720                                            size_t size, void *data) {
1721  int i;
1722  bool found = false;
1723  address libbase = NULL;
1724  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1725
1726  // iterate through all loadable segments
1727  for (i = 0; i < info->dlpi_phnum; i++) {
1728    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1729    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1730      // base address of a library is the lowest address of its loaded
1731      // segments.
1732      if (libbase == NULL || libbase > segbase) {
1733        libbase = segbase;
1734      }
1735      // see if 'addr' is within current segment
1736      if (segbase <= d->addr &&
1737          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1738        found = true;
1739      }
1740    }
1741  }
1742
1743  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1744  // so dll_address_to_library_name() can fall through to use dladdr() which
1745  // can figure out executable name from argv[0].
1746  if (found && info->dlpi_name && info->dlpi_name[0]) {
1747    d->base = libbase;
1748    if (d->fname) {
1749      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1750    }
1751    return 1;
1752  }
1753  return 0;
1754}
1755
1756bool os::dll_address_to_library_name(address addr, char* buf,
1757                                     int buflen, int* offset) {
1758  // buf is not optional, but offset is optional
1759  assert(buf != NULL, "sanity check");
1760
1761  Dl_info dlinfo;
1762  struct _address_to_library_name data;
1763
1764  // There is a bug in old glibc dladdr() implementation that it could resolve
1765  // to wrong library name if the .so file has a base address != NULL. Here
1766  // we iterate through the program headers of all loaded libraries to find
1767  // out which library 'addr' really belongs to. This workaround can be
1768  // removed once the minimum requirement for glibc is moved to 2.3.x.
1769  data.addr = addr;
1770  data.fname = buf;
1771  data.buflen = buflen;
1772  data.base = NULL;
1773  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1774
1775  if (rslt) {
1776    // buf already contains library name
1777    if (offset) *offset = addr - data.base;
1778    return true;
1779  }
1780  if (dladdr((void*)addr, &dlinfo) != 0) {
1781    if (dlinfo.dli_fname != NULL) {
1782      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1783    }
1784    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1785      *offset = addr - (address)dlinfo.dli_fbase;
1786    }
1787    return true;
1788  }
1789
1790  buf[0] = '\0';
1791  if (offset) *offset = -1;
1792  return false;
1793}
1794
1795// Loads .dll/.so and
1796// in case of error it checks if .dll/.so was built for the
1797// same architecture as Hotspot is running on
1798
1799
1800// Remember the stack's state. The Linux dynamic linker will change
1801// the stack to 'executable' at most once, so we must safepoint only once.
1802bool os::Linux::_stack_is_executable = false;
1803
1804// VM operation that loads a library.  This is necessary if stack protection
1805// of the Java stacks can be lost during loading the library.  If we
1806// do not stop the Java threads, they can stack overflow before the stacks
1807// are protected again.
1808class VM_LinuxDllLoad: public VM_Operation {
1809 private:
1810  const char *_filename;
1811  char *_ebuf;
1812  int _ebuflen;
1813  void *_lib;
1814 public:
1815  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1816    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1817  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1818  void doit() {
1819    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1820    os::Linux::_stack_is_executable = true;
1821  }
1822  void* loaded_library() { return _lib; }
1823};
1824
1825void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1826  void * result = NULL;
1827  bool load_attempted = false;
1828
1829  // Check whether the library to load might change execution rights
1830  // of the stack. If they are changed, the protection of the stack
1831  // guard pages will be lost. We need a safepoint to fix this.
1832  //
1833  // See Linux man page execstack(8) for more info.
1834  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1835    ElfFile ef(filename);
1836    if (!ef.specifies_noexecstack()) {
1837      if (!is_init_completed()) {
1838        os::Linux::_stack_is_executable = true;
1839        // This is OK - No Java threads have been created yet, and hence no
1840        // stack guard pages to fix.
1841        //
1842        // This should happen only when you are building JDK7 using a very
1843        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1844        //
1845        // Dynamic loader will make all stacks executable after
1846        // this function returns, and will not do that again.
1847        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1848      } else {
1849        warning("You have loaded library %s which might have disabled stack guard. "
1850                "The VM will try to fix the stack guard now.\n"
1851                "It's highly recommended that you fix the library with "
1852                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1853                filename);
1854
1855        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1856        JavaThread *jt = JavaThread::current();
1857        if (jt->thread_state() != _thread_in_native) {
1858          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1859          // that requires ExecStack. Cannot enter safe point. Let's give up.
1860          warning("Unable to fix stack guard. Giving up.");
1861        } else {
1862          if (!LoadExecStackDllInVMThread) {
1863            // This is for the case where the DLL has an static
1864            // constructor function that executes JNI code. We cannot
1865            // load such DLLs in the VMThread.
1866            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1867          }
1868
1869          ThreadInVMfromNative tiv(jt);
1870          debug_only(VMNativeEntryWrapper vew;)
1871
1872          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1873          VMThread::execute(&op);
1874          if (LoadExecStackDllInVMThread) {
1875            result = op.loaded_library();
1876          }
1877          load_attempted = true;
1878        }
1879      }
1880    }
1881  }
1882
1883  if (!load_attempted) {
1884    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1885  }
1886
1887  if (result != NULL) {
1888    // Successful loading
1889    return result;
1890  }
1891
1892  Elf32_Ehdr elf_head;
1893  int diag_msg_max_length=ebuflen-strlen(ebuf);
1894  char* diag_msg_buf=ebuf+strlen(ebuf);
1895
1896  if (diag_msg_max_length==0) {
1897    // No more space in ebuf for additional diagnostics message
1898    return NULL;
1899  }
1900
1901
1902  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1903
1904  if (file_descriptor < 0) {
1905    // Can't open library, report dlerror() message
1906    return NULL;
1907  }
1908
1909  bool failed_to_read_elf_head=
1910    (sizeof(elf_head)!=
1911     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1912
1913  ::close(file_descriptor);
1914  if (failed_to_read_elf_head) {
1915    // file i/o error - report dlerror() msg
1916    return NULL;
1917  }
1918
1919  typedef struct {
1920    Elf32_Half  code;         // Actual value as defined in elf.h
1921    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1922    char        elf_class;    // 32 or 64 bit
1923    char        endianess;    // MSB or LSB
1924    char*       name;         // String representation
1925  } arch_t;
1926
1927#ifndef EM_486
1928  #define EM_486          6               /* Intel 80486 */
1929#endif
1930
1931  static const arch_t arch_array[]={
1932    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1933    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1934    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1935    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1936    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1937    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1938    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1939    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1940#if defined(VM_LITTLE_ENDIAN)
1941    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1942#else
1943    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1944#endif
1945    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1946    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1947    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1948    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1949    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1950    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1951    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1952  };
1953
1954#if  (defined IA32)
1955  static  Elf32_Half running_arch_code=EM_386;
1956#elif   (defined AMD64)
1957  static  Elf32_Half running_arch_code=EM_X86_64;
1958#elif  (defined IA64)
1959  static  Elf32_Half running_arch_code=EM_IA_64;
1960#elif  (defined __sparc) && (defined _LP64)
1961  static  Elf32_Half running_arch_code=EM_SPARCV9;
1962#elif  (defined __sparc) && (!defined _LP64)
1963  static  Elf32_Half running_arch_code=EM_SPARC;
1964#elif  (defined __powerpc64__)
1965  static  Elf32_Half running_arch_code=EM_PPC64;
1966#elif  (defined __powerpc__)
1967  static  Elf32_Half running_arch_code=EM_PPC;
1968#elif  (defined ARM)
1969  static  Elf32_Half running_arch_code=EM_ARM;
1970#elif  (defined S390)
1971  static  Elf32_Half running_arch_code=EM_S390;
1972#elif  (defined ALPHA)
1973  static  Elf32_Half running_arch_code=EM_ALPHA;
1974#elif  (defined MIPSEL)
1975  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1976#elif  (defined PARISC)
1977  static  Elf32_Half running_arch_code=EM_PARISC;
1978#elif  (defined MIPS)
1979  static  Elf32_Half running_arch_code=EM_MIPS;
1980#elif  (defined M68K)
1981  static  Elf32_Half running_arch_code=EM_68K;
1982#else
1983    #error Method os::dll_load requires that one of following is defined:\
1984         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1985#endif
1986
1987  // Identify compatability class for VM's architecture and library's architecture
1988  // Obtain string descriptions for architectures
1989
1990  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1991  int running_arch_index=-1;
1992
1993  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1994    if (running_arch_code == arch_array[i].code) {
1995      running_arch_index    = i;
1996    }
1997    if (lib_arch.code == arch_array[i].code) {
1998      lib_arch.compat_class = arch_array[i].compat_class;
1999      lib_arch.name         = arch_array[i].name;
2000    }
2001  }
2002
2003  assert(running_arch_index != -1,
2004         "Didn't find running architecture code (running_arch_code) in arch_array");
2005  if (running_arch_index == -1) {
2006    // Even though running architecture detection failed
2007    // we may still continue with reporting dlerror() message
2008    return NULL;
2009  }
2010
2011  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2012    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2013    return NULL;
2014  }
2015
2016#ifndef S390
2017  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2018    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2019    return NULL;
2020  }
2021#endif // !S390
2022
2023  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2024    if (lib_arch.name!=NULL) {
2025      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2026                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2027                 lib_arch.name, arch_array[running_arch_index].name);
2028    } else {
2029      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2030                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2031                 lib_arch.code,
2032                 arch_array[running_arch_index].name);
2033    }
2034  }
2035
2036  return NULL;
2037}
2038
2039void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2040                                int ebuflen) {
2041  void * result = ::dlopen(filename, RTLD_LAZY);
2042  if (result == NULL) {
2043    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2044    ebuf[ebuflen-1] = '\0';
2045  }
2046  return result;
2047}
2048
2049void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2050                                       int ebuflen) {
2051  void * result = NULL;
2052  if (LoadExecStackDllInVMThread) {
2053    result = dlopen_helper(filename, ebuf, ebuflen);
2054  }
2055
2056  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2057  // library that requires an executable stack, or which does not have this
2058  // stack attribute set, dlopen changes the stack attribute to executable. The
2059  // read protection of the guard pages gets lost.
2060  //
2061  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2062  // may have been queued at the same time.
2063
2064  if (!_stack_is_executable) {
2065    JavaThread *jt = Threads::first();
2066
2067    while (jt) {
2068      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2069          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2070        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2071                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2072          warning("Attempt to reguard stack yellow zone failed.");
2073        }
2074      }
2075      jt = jt->next();
2076    }
2077  }
2078
2079  return result;
2080}
2081
2082// glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2083// chances are you might want to run the generated bits against glibc-2.0
2084// libdl.so, so always use locking for any version of glibc.
2085//
2086void* os::dll_lookup(void* handle, const char* name) {
2087  pthread_mutex_lock(&dl_mutex);
2088  void* res = dlsym(handle, name);
2089  pthread_mutex_unlock(&dl_mutex);
2090  return res;
2091}
2092
2093void* os::get_default_process_handle() {
2094  return (void*)::dlopen(NULL, RTLD_LAZY);
2095}
2096
2097static bool _print_ascii_file(const char* filename, outputStream* st) {
2098  int fd = ::open(filename, O_RDONLY);
2099  if (fd == -1) {
2100    return false;
2101  }
2102
2103  char buf[32];
2104  int bytes;
2105  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2106    st->print_raw(buf, bytes);
2107  }
2108
2109  ::close(fd);
2110
2111  return true;
2112}
2113
2114void os::print_dll_info(outputStream *st) {
2115  st->print_cr("Dynamic libraries:");
2116
2117  char fname[32];
2118  pid_t pid = os::Linux::gettid();
2119
2120  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2121
2122  if (!_print_ascii_file(fname, st)) {
2123    st->print("Can not get library information for pid = %d\n", pid);
2124  }
2125}
2126
2127int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2128  FILE *procmapsFile = NULL;
2129
2130  // Open the procfs maps file for the current process
2131  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2132    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2133    char line[PATH_MAX + 100];
2134
2135    // Read line by line from 'file'
2136    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2137      u8 base, top, offset, inode;
2138      char permissions[5];
2139      char device[6];
2140      char name[PATH_MAX + 1];
2141
2142      // Parse fields from line
2143      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2144
2145      // Filter by device id '00:00' so that we only get file system mapped files.
2146      if (strcmp(device, "00:00") != 0) {
2147
2148        // Call callback with the fields of interest
2149        if(callback(name, (address)base, (address)top, param)) {
2150          // Oops abort, callback aborted
2151          fclose(procmapsFile);
2152          return 1;
2153        }
2154      }
2155    }
2156    fclose(procmapsFile);
2157  }
2158  return 0;
2159}
2160
2161void os::print_os_info_brief(outputStream* st) {
2162  os::Linux::print_distro_info(st);
2163
2164  os::Posix::print_uname_info(st);
2165
2166  os::Linux::print_libversion_info(st);
2167
2168}
2169
2170void os::print_os_info(outputStream* st) {
2171  st->print("OS:");
2172
2173  os::Linux::print_distro_info(st);
2174
2175  os::Posix::print_uname_info(st);
2176
2177  // Print warning if unsafe chroot environment detected
2178  if (unsafe_chroot_detected) {
2179    st->print("WARNING!! ");
2180    st->print_cr("%s", unstable_chroot_error);
2181  }
2182
2183  os::Linux::print_libversion_info(st);
2184
2185  os::Posix::print_rlimit_info(st);
2186
2187  os::Posix::print_load_average(st);
2188
2189  os::Linux::print_full_memory_info(st);
2190}
2191
2192// Try to identify popular distros.
2193// Most Linux distributions have a /etc/XXX-release file, which contains
2194// the OS version string. Newer Linux distributions have a /etc/lsb-release
2195// file that also contains the OS version string. Some have more than one
2196// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2197// /etc/redhat-release.), so the order is important.
2198// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2199// their own specific XXX-release file as well as a redhat-release file.
2200// Because of this the XXX-release file needs to be searched for before the
2201// redhat-release file.
2202// Since Red Hat has a lsb-release file that is not very descriptive the
2203// search for redhat-release needs to be before lsb-release.
2204// Since the lsb-release file is the new standard it needs to be searched
2205// before the older style release files.
2206// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2207// next to last resort.  The os-release file is a new standard that contains
2208// distribution information and the system-release file seems to be an old
2209// standard that has been replaced by the lsb-release and os-release files.
2210// Searching for the debian_version file is the last resort.  It contains
2211// an informative string like "6.0.6" or "wheezy/sid". Because of this
2212// "Debian " is printed before the contents of the debian_version file.
2213void os::Linux::print_distro_info(outputStream* st) {
2214  if (!_print_ascii_file("/etc/oracle-release", st) &&
2215      !_print_ascii_file("/etc/mandriva-release", st) &&
2216      !_print_ascii_file("/etc/mandrake-release", st) &&
2217      !_print_ascii_file("/etc/sun-release", st) &&
2218      !_print_ascii_file("/etc/redhat-release", st) &&
2219      !_print_ascii_file("/etc/lsb-release", st) &&
2220      !_print_ascii_file("/etc/SuSE-release", st) &&
2221      !_print_ascii_file("/etc/turbolinux-release", st) &&
2222      !_print_ascii_file("/etc/gentoo-release", st) &&
2223      !_print_ascii_file("/etc/ltib-release", st) &&
2224      !_print_ascii_file("/etc/angstrom-version", st) &&
2225      !_print_ascii_file("/etc/system-release", st) &&
2226      !_print_ascii_file("/etc/os-release", st)) {
2227
2228    if (file_exists("/etc/debian_version")) {
2229      st->print("Debian ");
2230      _print_ascii_file("/etc/debian_version", st);
2231    } else {
2232      st->print("Linux");
2233    }
2234  }
2235  st->cr();
2236}
2237
2238void os::Linux::print_libversion_info(outputStream* st) {
2239  // libc, pthread
2240  st->print("libc:");
2241  st->print("%s ", os::Linux::glibc_version());
2242  st->print("%s ", os::Linux::libpthread_version());
2243  if (os::Linux::is_LinuxThreads()) {
2244    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2245  }
2246  st->cr();
2247}
2248
2249void os::Linux::print_full_memory_info(outputStream* st) {
2250  st->print("\n/proc/meminfo:\n");
2251  _print_ascii_file("/proc/meminfo", st);
2252  st->cr();
2253}
2254
2255void os::print_memory_info(outputStream* st) {
2256
2257  st->print("Memory:");
2258  st->print(" %dk page", os::vm_page_size()>>10);
2259
2260  // values in struct sysinfo are "unsigned long"
2261  struct sysinfo si;
2262  sysinfo(&si);
2263
2264  st->print(", physical " UINT64_FORMAT "k",
2265            os::physical_memory() >> 10);
2266  st->print("(" UINT64_FORMAT "k free)",
2267            os::available_memory() >> 10);
2268  st->print(", swap " UINT64_FORMAT "k",
2269            ((jlong)si.totalswap * si.mem_unit) >> 10);
2270  st->print("(" UINT64_FORMAT "k free)",
2271            ((jlong)si.freeswap * si.mem_unit) >> 10);
2272  st->cr();
2273}
2274
2275void os::pd_print_cpu_info(outputStream* st) {
2276  st->print("\n/proc/cpuinfo:\n");
2277  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2278    st->print("  <Not Available>");
2279  }
2280  st->cr();
2281}
2282
2283void os::print_siginfo(outputStream* st, void* siginfo) {
2284  const siginfo_t* si = (const siginfo_t*)siginfo;
2285
2286  os::Posix::print_siginfo_brief(st, si);
2287#if INCLUDE_CDS
2288  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2289      UseSharedSpaces) {
2290    FileMapInfo* mapinfo = FileMapInfo::current_info();
2291    if (mapinfo->is_in_shared_space(si->si_addr)) {
2292      st->print("\n\nError accessing class data sharing archive."   \
2293                " Mapped file inaccessible during execution, "      \
2294                " possible disk/network problem.");
2295    }
2296  }
2297#endif
2298  st->cr();
2299}
2300
2301
2302static void print_signal_handler(outputStream* st, int sig,
2303                                 char* buf, size_t buflen);
2304
2305void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2306  st->print_cr("Signal Handlers:");
2307  print_signal_handler(st, SIGSEGV, buf, buflen);
2308  print_signal_handler(st, SIGBUS , buf, buflen);
2309  print_signal_handler(st, SIGFPE , buf, buflen);
2310  print_signal_handler(st, SIGPIPE, buf, buflen);
2311  print_signal_handler(st, SIGXFSZ, buf, buflen);
2312  print_signal_handler(st, SIGILL , buf, buflen);
2313  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2314  print_signal_handler(st, SR_signum, buf, buflen);
2315  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2316  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2317  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2318  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2319#if defined(PPC64)
2320  print_signal_handler(st, SIGTRAP, buf, buflen);
2321#endif
2322}
2323
2324static char saved_jvm_path[MAXPATHLEN] = {0};
2325
2326// Find the full path to the current module, libjvm.so
2327void os::jvm_path(char *buf, jint buflen) {
2328  // Error checking.
2329  if (buflen < MAXPATHLEN) {
2330    assert(false, "must use a large-enough buffer");
2331    buf[0] = '\0';
2332    return;
2333  }
2334  // Lazy resolve the path to current module.
2335  if (saved_jvm_path[0] != 0) {
2336    strcpy(buf, saved_jvm_path);
2337    return;
2338  }
2339
2340  char dli_fname[MAXPATHLEN];
2341  bool ret = dll_address_to_library_name(
2342                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2343                                         dli_fname, sizeof(dli_fname), NULL);
2344  assert(ret, "cannot locate libjvm");
2345  char *rp = NULL;
2346  if (ret && dli_fname[0] != '\0') {
2347    rp = realpath(dli_fname, buf);
2348  }
2349  if (rp == NULL) {
2350    return;
2351  }
2352
2353  if (Arguments::sun_java_launcher_is_altjvm()) {
2354    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2355    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2356    // If "/jre/lib/" appears at the right place in the string, then
2357    // assume we are installed in a JDK and we're done. Otherwise, check
2358    // for a JAVA_HOME environment variable and fix up the path so it
2359    // looks like libjvm.so is installed there (append a fake suffix
2360    // hotspot/libjvm.so).
2361    const char *p = buf + strlen(buf) - 1;
2362    for (int count = 0; p > buf && count < 5; ++count) {
2363      for (--p; p > buf && *p != '/'; --p)
2364        /* empty */ ;
2365    }
2366
2367    if (strncmp(p, "/jre/lib/", 9) != 0) {
2368      // Look for JAVA_HOME in the environment.
2369      char* java_home_var = ::getenv("JAVA_HOME");
2370      if (java_home_var != NULL && java_home_var[0] != 0) {
2371        char* jrelib_p;
2372        int len;
2373
2374        // Check the current module name "libjvm.so".
2375        p = strrchr(buf, '/');
2376        assert(strstr(p, "/libjvm") == p, "invalid library name");
2377
2378        rp = realpath(java_home_var, buf);
2379        if (rp == NULL) {
2380          return;
2381        }
2382
2383        // determine if this is a legacy image or modules image
2384        // modules image doesn't have "jre" subdirectory
2385        len = strlen(buf);
2386        assert(len < buflen, "Ran out of buffer room");
2387        jrelib_p = buf + len;
2388        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2389        if (0 != access(buf, F_OK)) {
2390          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2391        }
2392
2393        if (0 == access(buf, F_OK)) {
2394          // Use current module name "libjvm.so"
2395          len = strlen(buf);
2396          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2397        } else {
2398          // Go back to path of .so
2399          rp = realpath(dli_fname, buf);
2400          if (rp == NULL) {
2401            return;
2402          }
2403        }
2404      }
2405    }
2406  }
2407
2408  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2409}
2410
2411void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2412  // no prefix required, not even "_"
2413}
2414
2415void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2416  // no suffix required
2417}
2418
2419////////////////////////////////////////////////////////////////////////////////
2420// sun.misc.Signal support
2421
2422static volatile jint sigint_count = 0;
2423
2424static void UserHandler(int sig, void *siginfo, void *context) {
2425  // 4511530 - sem_post is serialized and handled by the manager thread. When
2426  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2427  // don't want to flood the manager thread with sem_post requests.
2428  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2429    return;
2430  }
2431
2432  // Ctrl-C is pressed during error reporting, likely because the error
2433  // handler fails to abort. Let VM die immediately.
2434  if (sig == SIGINT && is_error_reported()) {
2435    os::die();
2436  }
2437
2438  os::signal_notify(sig);
2439}
2440
2441void* os::user_handler() {
2442  return CAST_FROM_FN_PTR(void*, UserHandler);
2443}
2444
2445class Semaphore : public StackObj {
2446 public:
2447  Semaphore();
2448  ~Semaphore();
2449  void signal();
2450  void wait();
2451  bool trywait();
2452  bool timedwait(unsigned int sec, int nsec);
2453 private:
2454  sem_t _semaphore;
2455};
2456
2457Semaphore::Semaphore() {
2458  sem_init(&_semaphore, 0, 0);
2459}
2460
2461Semaphore::~Semaphore() {
2462  sem_destroy(&_semaphore);
2463}
2464
2465void Semaphore::signal() {
2466  sem_post(&_semaphore);
2467}
2468
2469void Semaphore::wait() {
2470  sem_wait(&_semaphore);
2471}
2472
2473bool Semaphore::trywait() {
2474  return sem_trywait(&_semaphore) == 0;
2475}
2476
2477bool Semaphore::timedwait(unsigned int sec, int nsec) {
2478
2479  struct timespec ts;
2480  // Semaphore's are always associated with CLOCK_REALTIME
2481  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2482  // see unpackTime for discussion on overflow checking
2483  if (sec >= MAX_SECS) {
2484    ts.tv_sec += MAX_SECS;
2485    ts.tv_nsec = 0;
2486  } else {
2487    ts.tv_sec += sec;
2488    ts.tv_nsec += nsec;
2489    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2490      ts.tv_nsec -= NANOSECS_PER_SEC;
2491      ++ts.tv_sec; // note: this must be <= max_secs
2492    }
2493  }
2494
2495  while (1) {
2496    int result = sem_timedwait(&_semaphore, &ts);
2497    if (result == 0) {
2498      return true;
2499    } else if (errno == EINTR) {
2500      continue;
2501    } else if (errno == ETIMEDOUT) {
2502      return false;
2503    } else {
2504      return false;
2505    }
2506  }
2507}
2508
2509extern "C" {
2510  typedef void (*sa_handler_t)(int);
2511  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2512}
2513
2514void* os::signal(int signal_number, void* handler) {
2515  struct sigaction sigAct, oldSigAct;
2516
2517  sigfillset(&(sigAct.sa_mask));
2518  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2519  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2520
2521  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2522    // -1 means registration failed
2523    return (void *)-1;
2524  }
2525
2526  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2527}
2528
2529void os::signal_raise(int signal_number) {
2530  ::raise(signal_number);
2531}
2532
2533// The following code is moved from os.cpp for making this
2534// code platform specific, which it is by its very nature.
2535
2536// Will be modified when max signal is changed to be dynamic
2537int os::sigexitnum_pd() {
2538  return NSIG;
2539}
2540
2541// a counter for each possible signal value
2542static volatile jint pending_signals[NSIG+1] = { 0 };
2543
2544// Linux(POSIX) specific hand shaking semaphore.
2545static sem_t sig_sem;
2546static Semaphore sr_semaphore;
2547
2548void os::signal_init_pd() {
2549  // Initialize signal structures
2550  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2551
2552  // Initialize signal semaphore
2553  ::sem_init(&sig_sem, 0, 0);
2554}
2555
2556void os::signal_notify(int sig) {
2557  Atomic::inc(&pending_signals[sig]);
2558  ::sem_post(&sig_sem);
2559}
2560
2561static int check_pending_signals(bool wait) {
2562  Atomic::store(0, &sigint_count);
2563  for (;;) {
2564    for (int i = 0; i < NSIG + 1; i++) {
2565      jint n = pending_signals[i];
2566      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2567        return i;
2568      }
2569    }
2570    if (!wait) {
2571      return -1;
2572    }
2573    JavaThread *thread = JavaThread::current();
2574    ThreadBlockInVM tbivm(thread);
2575
2576    bool threadIsSuspended;
2577    do {
2578      thread->set_suspend_equivalent();
2579      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2580      ::sem_wait(&sig_sem);
2581
2582      // were we externally suspended while we were waiting?
2583      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2584      if (threadIsSuspended) {
2585        // The semaphore has been incremented, but while we were waiting
2586        // another thread suspended us. We don't want to continue running
2587        // while suspended because that would surprise the thread that
2588        // suspended us.
2589        ::sem_post(&sig_sem);
2590
2591        thread->java_suspend_self();
2592      }
2593    } while (threadIsSuspended);
2594  }
2595}
2596
2597int os::signal_lookup() {
2598  return check_pending_signals(false);
2599}
2600
2601int os::signal_wait() {
2602  return check_pending_signals(true);
2603}
2604
2605////////////////////////////////////////////////////////////////////////////////
2606// Virtual Memory
2607
2608int os::vm_page_size() {
2609  // Seems redundant as all get out
2610  assert(os::Linux::page_size() != -1, "must call os::init");
2611  return os::Linux::page_size();
2612}
2613
2614// Solaris allocates memory by pages.
2615int os::vm_allocation_granularity() {
2616  assert(os::Linux::page_size() != -1, "must call os::init");
2617  return os::Linux::page_size();
2618}
2619
2620// Rationale behind this function:
2621//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2622//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2623//  samples for JITted code. Here we create private executable mapping over the code cache
2624//  and then we can use standard (well, almost, as mapping can change) way to provide
2625//  info for the reporting script by storing timestamp and location of symbol
2626void linux_wrap_code(char* base, size_t size) {
2627  static volatile jint cnt = 0;
2628
2629  if (!UseOprofile) {
2630    return;
2631  }
2632
2633  char buf[PATH_MAX+1];
2634  int num = Atomic::add(1, &cnt);
2635
2636  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2637           os::get_temp_directory(), os::current_process_id(), num);
2638  unlink(buf);
2639
2640  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2641
2642  if (fd != -1) {
2643    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2644    if (rv != (off_t)-1) {
2645      if (::write(fd, "", 1) == 1) {
2646        mmap(base, size,
2647             PROT_READ|PROT_WRITE|PROT_EXEC,
2648             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2649      }
2650    }
2651    ::close(fd);
2652    unlink(buf);
2653  }
2654}
2655
2656static bool recoverable_mmap_error(int err) {
2657  // See if the error is one we can let the caller handle. This
2658  // list of errno values comes from JBS-6843484. I can't find a
2659  // Linux man page that documents this specific set of errno
2660  // values so while this list currently matches Solaris, it may
2661  // change as we gain experience with this failure mode.
2662  switch (err) {
2663  case EBADF:
2664  case EINVAL:
2665  case ENOTSUP:
2666    // let the caller deal with these errors
2667    return true;
2668
2669  default:
2670    // Any remaining errors on this OS can cause our reserved mapping
2671    // to be lost. That can cause confusion where different data
2672    // structures think they have the same memory mapped. The worst
2673    // scenario is if both the VM and a library think they have the
2674    // same memory mapped.
2675    return false;
2676  }
2677}
2678
2679static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2680                                    int err) {
2681  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2682          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2683          strerror(err), err);
2684}
2685
2686static void warn_fail_commit_memory(char* addr, size_t size,
2687                                    size_t alignment_hint, bool exec,
2688                                    int err) {
2689  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2690          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2691          alignment_hint, exec, strerror(err), err);
2692}
2693
2694// NOTE: Linux kernel does not really reserve the pages for us.
2695//       All it does is to check if there are enough free pages
2696//       left at the time of mmap(). This could be a potential
2697//       problem.
2698int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2699  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2700  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2701                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2702  if (res != (uintptr_t) MAP_FAILED) {
2703    if (UseNUMAInterleaving) {
2704      numa_make_global(addr, size);
2705    }
2706    return 0;
2707  }
2708
2709  int err = errno;  // save errno from mmap() call above
2710
2711  if (!recoverable_mmap_error(err)) {
2712    warn_fail_commit_memory(addr, size, exec, err);
2713    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2714  }
2715
2716  return err;
2717}
2718
2719bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2720  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2721}
2722
2723void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2724                                  const char* mesg) {
2725  assert(mesg != NULL, "mesg must be specified");
2726  int err = os::Linux::commit_memory_impl(addr, size, exec);
2727  if (err != 0) {
2728    // the caller wants all commit errors to exit with the specified mesg:
2729    warn_fail_commit_memory(addr, size, exec, err);
2730    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2731  }
2732}
2733
2734// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2735#ifndef MAP_HUGETLB
2736  #define MAP_HUGETLB 0x40000
2737#endif
2738
2739// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2740#ifndef MADV_HUGEPAGE
2741  #define MADV_HUGEPAGE 14
2742#endif
2743
2744int os::Linux::commit_memory_impl(char* addr, size_t size,
2745                                  size_t alignment_hint, bool exec) {
2746  int err = os::Linux::commit_memory_impl(addr, size, exec);
2747  if (err == 0) {
2748    realign_memory(addr, size, alignment_hint);
2749  }
2750  return err;
2751}
2752
2753bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2754                          bool exec) {
2755  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2756}
2757
2758void os::pd_commit_memory_or_exit(char* addr, size_t size,
2759                                  size_t alignment_hint, bool exec,
2760                                  const char* mesg) {
2761  assert(mesg != NULL, "mesg must be specified");
2762  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2763  if (err != 0) {
2764    // the caller wants all commit errors to exit with the specified mesg:
2765    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2766    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2767  }
2768}
2769
2770void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2771  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2772    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2773    // be supported or the memory may already be backed by huge pages.
2774    ::madvise(addr, bytes, MADV_HUGEPAGE);
2775  }
2776}
2777
2778void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2779  // This method works by doing an mmap over an existing mmaping and effectively discarding
2780  // the existing pages. However it won't work for SHM-based large pages that cannot be
2781  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2782  // small pages on top of the SHM segment. This method always works for small pages, so we
2783  // allow that in any case.
2784  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2785    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2786  }
2787}
2788
2789void os::numa_make_global(char *addr, size_t bytes) {
2790  Linux::numa_interleave_memory(addr, bytes);
2791}
2792
2793// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2794// bind policy to MPOL_PREFERRED for the current thread.
2795#define USE_MPOL_PREFERRED 0
2796
2797void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2798  // To make NUMA and large pages more robust when both enabled, we need to ease
2799  // the requirements on where the memory should be allocated. MPOL_BIND is the
2800  // default policy and it will force memory to be allocated on the specified
2801  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2802  // the specified node, but will not force it. Using this policy will prevent
2803  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2804  // free large pages.
2805  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2806  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2807}
2808
2809bool os::numa_topology_changed() { return false; }
2810
2811size_t os::numa_get_groups_num() {
2812  int max_node = Linux::numa_max_node();
2813  return max_node > 0 ? max_node + 1 : 1;
2814}
2815
2816int os::numa_get_group_id() {
2817  int cpu_id = Linux::sched_getcpu();
2818  if (cpu_id != -1) {
2819    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2820    if (lgrp_id != -1) {
2821      return lgrp_id;
2822    }
2823  }
2824  return 0;
2825}
2826
2827size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2828  for (size_t i = 0; i < size; i++) {
2829    ids[i] = i;
2830  }
2831  return size;
2832}
2833
2834bool os::get_page_info(char *start, page_info* info) {
2835  return false;
2836}
2837
2838char *os::scan_pages(char *start, char* end, page_info* page_expected,
2839                     page_info* page_found) {
2840  return end;
2841}
2842
2843
2844int os::Linux::sched_getcpu_syscall(void) {
2845  unsigned int cpu;
2846  int retval = -1;
2847
2848#if defined(IA32)
2849  #ifndef SYS_getcpu
2850    #define SYS_getcpu 318
2851  #endif
2852  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2853#elif defined(AMD64)
2854// Unfortunately we have to bring all these macros here from vsyscall.h
2855// to be able to compile on old linuxes.
2856  #define __NR_vgetcpu 2
2857  #define VSYSCALL_START (-10UL << 20)
2858  #define VSYSCALL_SIZE 1024
2859  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2860  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2861  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2862  retval = vgetcpu(&cpu, NULL, NULL);
2863#endif
2864
2865  return (retval == -1) ? retval : cpu;
2866}
2867
2868// Something to do with the numa-aware allocator needs these symbols
2869extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2870extern "C" JNIEXPORT void numa_error(char *where) { }
2871extern "C" JNIEXPORT int fork1() { return fork(); }
2872
2873
2874// If we are running with libnuma version > 2, then we should
2875// be trying to use symbols with versions 1.1
2876// If we are running with earlier version, which did not have symbol versions,
2877// we should use the base version.
2878void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2879  void *f = dlvsym(handle, name, "libnuma_1.1");
2880  if (f == NULL) {
2881    f = dlsym(handle, name);
2882  }
2883  return f;
2884}
2885
2886bool os::Linux::libnuma_init() {
2887  // sched_getcpu() should be in libc.
2888  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2889                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2890
2891  // If it's not, try a direct syscall.
2892  if (sched_getcpu() == -1) {
2893    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2894                                    (void*)&sched_getcpu_syscall));
2895  }
2896
2897  if (sched_getcpu() != -1) { // Does it work?
2898    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2899    if (handle != NULL) {
2900      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2901                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2902      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2903                                       libnuma_dlsym(handle, "numa_max_node")));
2904      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2905                                        libnuma_dlsym(handle, "numa_available")));
2906      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2907                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2908      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2909                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2910      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2911                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2912
2913
2914      if (numa_available() != -1) {
2915        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2916        // Create a cpu -> node mapping
2917        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2918        rebuild_cpu_to_node_map();
2919        return true;
2920      }
2921    }
2922  }
2923  return false;
2924}
2925
2926// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2927// The table is later used in get_node_by_cpu().
2928void os::Linux::rebuild_cpu_to_node_map() {
2929  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2930                              // in libnuma (possible values are starting from 16,
2931                              // and continuing up with every other power of 2, but less
2932                              // than the maximum number of CPUs supported by kernel), and
2933                              // is a subject to change (in libnuma version 2 the requirements
2934                              // are more reasonable) we'll just hardcode the number they use
2935                              // in the library.
2936  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2937
2938  size_t cpu_num = os::active_processor_count();
2939  size_t cpu_map_size = NCPUS / BitsPerCLong;
2940  size_t cpu_map_valid_size =
2941    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2942
2943  cpu_to_node()->clear();
2944  cpu_to_node()->at_grow(cpu_num - 1);
2945  size_t node_num = numa_get_groups_num();
2946
2947  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2948  for (size_t i = 0; i < node_num; i++) {
2949    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2950      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2951        if (cpu_map[j] != 0) {
2952          for (size_t k = 0; k < BitsPerCLong; k++) {
2953            if (cpu_map[j] & (1UL << k)) {
2954              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2955            }
2956          }
2957        }
2958      }
2959    }
2960  }
2961  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2962}
2963
2964int os::Linux::get_node_by_cpu(int cpu_id) {
2965  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2966    return cpu_to_node()->at(cpu_id);
2967  }
2968  return -1;
2969}
2970
2971GrowableArray<int>* os::Linux::_cpu_to_node;
2972os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2973os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2974os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2975os::Linux::numa_available_func_t os::Linux::_numa_available;
2976os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2977os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2978os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2979unsigned long* os::Linux::_numa_all_nodes;
2980
2981bool os::pd_uncommit_memory(char* addr, size_t size) {
2982  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2983                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2984  return res  != (uintptr_t) MAP_FAILED;
2985}
2986
2987static address get_stack_commited_bottom(address bottom, size_t size) {
2988  address nbot = bottom;
2989  address ntop = bottom + size;
2990
2991  size_t page_sz = os::vm_page_size();
2992  unsigned pages = size / page_sz;
2993
2994  unsigned char vec[1];
2995  unsigned imin = 1, imax = pages + 1, imid;
2996  int mincore_return_value = 0;
2997
2998  assert(imin <= imax, "Unexpected page size");
2999
3000  while (imin < imax) {
3001    imid = (imax + imin) / 2;
3002    nbot = ntop - (imid * page_sz);
3003
3004    // Use a trick with mincore to check whether the page is mapped or not.
3005    // mincore sets vec to 1 if page resides in memory and to 0 if page
3006    // is swapped output but if page we are asking for is unmapped
3007    // it returns -1,ENOMEM
3008    mincore_return_value = mincore(nbot, page_sz, vec);
3009
3010    if (mincore_return_value == -1) {
3011      // Page is not mapped go up
3012      // to find first mapped page
3013      if (errno != EAGAIN) {
3014        assert(errno == ENOMEM, "Unexpected mincore errno");
3015        imax = imid;
3016      }
3017    } else {
3018      // Page is mapped go down
3019      // to find first not mapped page
3020      imin = imid + 1;
3021    }
3022  }
3023
3024  nbot = nbot + page_sz;
3025
3026  // Adjust stack bottom one page up if last checked page is not mapped
3027  if (mincore_return_value == -1) {
3028    nbot = nbot + page_sz;
3029  }
3030
3031  return nbot;
3032}
3033
3034
3035// Linux uses a growable mapping for the stack, and if the mapping for
3036// the stack guard pages is not removed when we detach a thread the
3037// stack cannot grow beyond the pages where the stack guard was
3038// mapped.  If at some point later in the process the stack expands to
3039// that point, the Linux kernel cannot expand the stack any further
3040// because the guard pages are in the way, and a segfault occurs.
3041//
3042// However, it's essential not to split the stack region by unmapping
3043// a region (leaving a hole) that's already part of the stack mapping,
3044// so if the stack mapping has already grown beyond the guard pages at
3045// the time we create them, we have to truncate the stack mapping.
3046// So, we need to know the extent of the stack mapping when
3047// create_stack_guard_pages() is called.
3048
3049// We only need this for stacks that are growable: at the time of
3050// writing thread stacks don't use growable mappings (i.e. those
3051// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3052// only applies to the main thread.
3053
3054// If the (growable) stack mapping already extends beyond the point
3055// where we're going to put our guard pages, truncate the mapping at
3056// that point by munmap()ping it.  This ensures that when we later
3057// munmap() the guard pages we don't leave a hole in the stack
3058// mapping. This only affects the main/initial thread
3059
3060bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3061  if (os::Linux::is_initial_thread()) {
3062    // As we manually grow stack up to bottom inside create_attached_thread(),
3063    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3064    // we don't need to do anything special.
3065    // Check it first, before calling heavy function.
3066    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3067    unsigned char vec[1];
3068
3069    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3070      // Fallback to slow path on all errors, including EAGAIN
3071      stack_extent = (uintptr_t) get_stack_commited_bottom(
3072                                                           os::Linux::initial_thread_stack_bottom(),
3073                                                           (size_t)addr - stack_extent);
3074    }
3075
3076    if (stack_extent < (uintptr_t)addr) {
3077      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3078    }
3079  }
3080
3081  return os::commit_memory(addr, size, !ExecMem);
3082}
3083
3084// If this is a growable mapping, remove the guard pages entirely by
3085// munmap()ping them.  If not, just call uncommit_memory(). This only
3086// affects the main/initial thread, but guard against future OS changes
3087// It's safe to always unmap guard pages for initial thread because we
3088// always place it right after end of the mapped region
3089
3090bool os::remove_stack_guard_pages(char* addr, size_t size) {
3091  uintptr_t stack_extent, stack_base;
3092
3093  if (os::Linux::is_initial_thread()) {
3094    return ::munmap(addr, size) == 0;
3095  }
3096
3097  return os::uncommit_memory(addr, size);
3098}
3099
3100static address _highest_vm_reserved_address = NULL;
3101
3102// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3103// at 'requested_addr'. If there are existing memory mappings at the same
3104// location, however, they will be overwritten. If 'fixed' is false,
3105// 'requested_addr' is only treated as a hint, the return value may or
3106// may not start from the requested address. Unlike Linux mmap(), this
3107// function returns NULL to indicate failure.
3108static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3109  char * addr;
3110  int flags;
3111
3112  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3113  if (fixed) {
3114    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3115    flags |= MAP_FIXED;
3116  }
3117
3118  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3119  // touch an uncommitted page. Otherwise, the read/write might
3120  // succeed if we have enough swap space to back the physical page.
3121  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3122                       flags, -1, 0);
3123
3124  if (addr != MAP_FAILED) {
3125    // anon_mmap() should only get called during VM initialization,
3126    // don't need lock (actually we can skip locking even it can be called
3127    // from multiple threads, because _highest_vm_reserved_address is just a
3128    // hint about the upper limit of non-stack memory regions.)
3129    if ((address)addr + bytes > _highest_vm_reserved_address) {
3130      _highest_vm_reserved_address = (address)addr + bytes;
3131    }
3132  }
3133
3134  return addr == MAP_FAILED ? NULL : addr;
3135}
3136
3137// Don't update _highest_vm_reserved_address, because there might be memory
3138// regions above addr + size. If so, releasing a memory region only creates
3139// a hole in the address space, it doesn't help prevent heap-stack collision.
3140//
3141static int anon_munmap(char * addr, size_t size) {
3142  return ::munmap(addr, size) == 0;
3143}
3144
3145char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3146                            size_t alignment_hint) {
3147  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3148}
3149
3150bool os::pd_release_memory(char* addr, size_t size) {
3151  return anon_munmap(addr, size);
3152}
3153
3154static address highest_vm_reserved_address() {
3155  return _highest_vm_reserved_address;
3156}
3157
3158static bool linux_mprotect(char* addr, size_t size, int prot) {
3159  // Linux wants the mprotect address argument to be page aligned.
3160  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3161
3162  // According to SUSv3, mprotect() should only be used with mappings
3163  // established by mmap(), and mmap() always maps whole pages. Unaligned
3164  // 'addr' likely indicates problem in the VM (e.g. trying to change
3165  // protection of malloc'ed or statically allocated memory). Check the
3166  // caller if you hit this assert.
3167  assert(addr == bottom, "sanity check");
3168
3169  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3170  return ::mprotect(bottom, size, prot) == 0;
3171}
3172
3173// Set protections specified
3174bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3175                        bool is_committed) {
3176  unsigned int p = 0;
3177  switch (prot) {
3178  case MEM_PROT_NONE: p = PROT_NONE; break;
3179  case MEM_PROT_READ: p = PROT_READ; break;
3180  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3181  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3182  default:
3183    ShouldNotReachHere();
3184  }
3185  // is_committed is unused.
3186  return linux_mprotect(addr, bytes, p);
3187}
3188
3189bool os::guard_memory(char* addr, size_t size) {
3190  return linux_mprotect(addr, size, PROT_NONE);
3191}
3192
3193bool os::unguard_memory(char* addr, size_t size) {
3194  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3195}
3196
3197bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3198                                                    size_t page_size) {
3199  bool result = false;
3200  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3201                 MAP_ANONYMOUS|MAP_PRIVATE,
3202                 -1, 0);
3203  if (p != MAP_FAILED) {
3204    void *aligned_p = align_ptr_up(p, page_size);
3205
3206    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3207
3208    munmap(p, page_size * 2);
3209  }
3210
3211  if (warn && !result) {
3212    warning("TransparentHugePages is not supported by the operating system.");
3213  }
3214
3215  return result;
3216}
3217
3218bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3219  bool result = false;
3220  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3221                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3222                 -1, 0);
3223
3224  if (p != MAP_FAILED) {
3225    // We don't know if this really is a huge page or not.
3226    FILE *fp = fopen("/proc/self/maps", "r");
3227    if (fp) {
3228      while (!feof(fp)) {
3229        char chars[257];
3230        long x = 0;
3231        if (fgets(chars, sizeof(chars), fp)) {
3232          if (sscanf(chars, "%lx-%*x", &x) == 1
3233              && x == (long)p) {
3234            if (strstr (chars, "hugepage")) {
3235              result = true;
3236              break;
3237            }
3238          }
3239        }
3240      }
3241      fclose(fp);
3242    }
3243    munmap(p, page_size);
3244  }
3245
3246  if (warn && !result) {
3247    warning("HugeTLBFS is not supported by the operating system.");
3248  }
3249
3250  return result;
3251}
3252
3253// Set the coredump_filter bits to include largepages in core dump (bit 6)
3254//
3255// From the coredump_filter documentation:
3256//
3257// - (bit 0) anonymous private memory
3258// - (bit 1) anonymous shared memory
3259// - (bit 2) file-backed private memory
3260// - (bit 3) file-backed shared memory
3261// - (bit 4) ELF header pages in file-backed private memory areas (it is
3262//           effective only if the bit 2 is cleared)
3263// - (bit 5) hugetlb private memory
3264// - (bit 6) hugetlb shared memory
3265//
3266static void set_coredump_filter(void) {
3267  FILE *f;
3268  long cdm;
3269
3270  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3271    return;
3272  }
3273
3274  if (fscanf(f, "%lx", &cdm) != 1) {
3275    fclose(f);
3276    return;
3277  }
3278
3279  rewind(f);
3280
3281  if ((cdm & LARGEPAGES_BIT) == 0) {
3282    cdm |= LARGEPAGES_BIT;
3283    fprintf(f, "%#lx", cdm);
3284  }
3285
3286  fclose(f);
3287}
3288
3289// Large page support
3290
3291static size_t _large_page_size = 0;
3292
3293size_t os::Linux::find_large_page_size() {
3294  size_t large_page_size = 0;
3295
3296  // large_page_size on Linux is used to round up heap size. x86 uses either
3297  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3298  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3299  // page as large as 256M.
3300  //
3301  // Here we try to figure out page size by parsing /proc/meminfo and looking
3302  // for a line with the following format:
3303  //    Hugepagesize:     2048 kB
3304  //
3305  // If we can't determine the value (e.g. /proc is not mounted, or the text
3306  // format has been changed), we'll use the largest page size supported by
3307  // the processor.
3308
3309#ifndef ZERO
3310  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3311                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3312#endif // ZERO
3313
3314  FILE *fp = fopen("/proc/meminfo", "r");
3315  if (fp) {
3316    while (!feof(fp)) {
3317      int x = 0;
3318      char buf[16];
3319      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3320        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3321          large_page_size = x * K;
3322          break;
3323        }
3324      } else {
3325        // skip to next line
3326        for (;;) {
3327          int ch = fgetc(fp);
3328          if (ch == EOF || ch == (int)'\n') break;
3329        }
3330      }
3331    }
3332    fclose(fp);
3333  }
3334
3335  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3336    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3337            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3338            proper_unit_for_byte_size(large_page_size));
3339  }
3340
3341  return large_page_size;
3342}
3343
3344size_t os::Linux::setup_large_page_size() {
3345  _large_page_size = Linux::find_large_page_size();
3346  const size_t default_page_size = (size_t)Linux::page_size();
3347  if (_large_page_size > default_page_size) {
3348    _page_sizes[0] = _large_page_size;
3349    _page_sizes[1] = default_page_size;
3350    _page_sizes[2] = 0;
3351  }
3352
3353  return _large_page_size;
3354}
3355
3356bool os::Linux::setup_large_page_type(size_t page_size) {
3357  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3358      FLAG_IS_DEFAULT(UseSHM) &&
3359      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3360
3361    // The type of large pages has not been specified by the user.
3362
3363    // Try UseHugeTLBFS and then UseSHM.
3364    UseHugeTLBFS = UseSHM = true;
3365
3366    // Don't try UseTransparentHugePages since there are known
3367    // performance issues with it turned on. This might change in the future.
3368    UseTransparentHugePages = false;
3369  }
3370
3371  if (UseTransparentHugePages) {
3372    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3373    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3374      UseHugeTLBFS = false;
3375      UseSHM = false;
3376      return true;
3377    }
3378    UseTransparentHugePages = false;
3379  }
3380
3381  if (UseHugeTLBFS) {
3382    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3383    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3384      UseSHM = false;
3385      return true;
3386    }
3387    UseHugeTLBFS = false;
3388  }
3389
3390  return UseSHM;
3391}
3392
3393void os::large_page_init() {
3394  if (!UseLargePages &&
3395      !UseTransparentHugePages &&
3396      !UseHugeTLBFS &&
3397      !UseSHM) {
3398    // Not using large pages.
3399    return;
3400  }
3401
3402  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3403    // The user explicitly turned off large pages.
3404    // Ignore the rest of the large pages flags.
3405    UseTransparentHugePages = false;
3406    UseHugeTLBFS = false;
3407    UseSHM = false;
3408    return;
3409  }
3410
3411  size_t large_page_size = Linux::setup_large_page_size();
3412  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3413
3414  set_coredump_filter();
3415}
3416
3417#ifndef SHM_HUGETLB
3418  #define SHM_HUGETLB 04000
3419#endif
3420
3421char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3422                                            char* req_addr, bool exec) {
3423  // "exec" is passed in but not used.  Creating the shared image for
3424  // the code cache doesn't have an SHM_X executable permission to check.
3425  assert(UseLargePages && UseSHM, "only for SHM large pages");
3426  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3427
3428  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3429    return NULL; // Fallback to small pages.
3430  }
3431
3432  key_t key = IPC_PRIVATE;
3433  char *addr;
3434
3435  bool warn_on_failure = UseLargePages &&
3436                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3437                         !FLAG_IS_DEFAULT(UseSHM) ||
3438                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3439  char msg[128];
3440
3441  // Create a large shared memory region to attach to based on size.
3442  // Currently, size is the total size of the heap
3443  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3444  if (shmid == -1) {
3445    // Possible reasons for shmget failure:
3446    // 1. shmmax is too small for Java heap.
3447    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3448    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3449    // 2. not enough large page memory.
3450    //    > check available large pages: cat /proc/meminfo
3451    //    > increase amount of large pages:
3452    //          echo new_value > /proc/sys/vm/nr_hugepages
3453    //      Note 1: different Linux may use different name for this property,
3454    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3455    //      Note 2: it's possible there's enough physical memory available but
3456    //            they are so fragmented after a long run that they can't
3457    //            coalesce into large pages. Try to reserve large pages when
3458    //            the system is still "fresh".
3459    if (warn_on_failure) {
3460      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3461      warning("%s", msg);
3462    }
3463    return NULL;
3464  }
3465
3466  // attach to the region
3467  addr = (char*)shmat(shmid, req_addr, 0);
3468  int err = errno;
3469
3470  // Remove shmid. If shmat() is successful, the actual shared memory segment
3471  // will be deleted when it's detached by shmdt() or when the process
3472  // terminates. If shmat() is not successful this will remove the shared
3473  // segment immediately.
3474  shmctl(shmid, IPC_RMID, NULL);
3475
3476  if ((intptr_t)addr == -1) {
3477    if (warn_on_failure) {
3478      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3479      warning("%s", msg);
3480    }
3481    return NULL;
3482  }
3483
3484  return addr;
3485}
3486
3487static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3488                                        int error) {
3489  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3490
3491  bool warn_on_failure = UseLargePages &&
3492      (!FLAG_IS_DEFAULT(UseLargePages) ||
3493       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3494       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3495
3496  if (warn_on_failure) {
3497    char msg[128];
3498    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3499                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3500    warning("%s", msg);
3501  }
3502}
3503
3504char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3505                                                        char* req_addr,
3506                                                        bool exec) {
3507  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3508  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3509  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3510
3511  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3512  char* addr = (char*)::mmap(req_addr, bytes, prot,
3513                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3514                             -1, 0);
3515
3516  if (addr == MAP_FAILED) {
3517    warn_on_large_pages_failure(req_addr, bytes, errno);
3518    return NULL;
3519  }
3520
3521  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3522
3523  return addr;
3524}
3525
3526char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3527                                                         size_t alignment,
3528                                                         char* req_addr,
3529                                                         bool exec) {
3530  size_t large_page_size = os::large_page_size();
3531
3532  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3533
3534  // Allocate small pages.
3535
3536  char* start;
3537  if (req_addr != NULL) {
3538    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3539    assert(is_size_aligned(bytes, alignment), "Must be");
3540    start = os::reserve_memory(bytes, req_addr);
3541    assert(start == NULL || start == req_addr, "Must be");
3542  } else {
3543    start = os::reserve_memory_aligned(bytes, alignment);
3544  }
3545
3546  if (start == NULL) {
3547    return NULL;
3548  }
3549
3550  assert(is_ptr_aligned(start, alignment), "Must be");
3551
3552  if (MemTracker::tracking_level() > NMT_minimal) {
3553    // os::reserve_memory_special will record this memory area.
3554    // Need to release it here to prevent overlapping reservations.
3555    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3556    tkr.record((address)start, bytes);
3557  }
3558
3559  char* end = start + bytes;
3560
3561  // Find the regions of the allocated chunk that can be promoted to large pages.
3562  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3563  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3564
3565  size_t lp_bytes = lp_end - lp_start;
3566
3567  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3568
3569  if (lp_bytes == 0) {
3570    // The mapped region doesn't even span the start and the end of a large page.
3571    // Fall back to allocate a non-special area.
3572    ::munmap(start, end - start);
3573    return NULL;
3574  }
3575
3576  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3577
3578
3579  void* result;
3580
3581  if (start != lp_start) {
3582    result = ::mmap(start, lp_start - start, prot,
3583                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3584                    -1, 0);
3585    if (result == MAP_FAILED) {
3586      ::munmap(lp_start, end - lp_start);
3587      return NULL;
3588    }
3589  }
3590
3591  result = ::mmap(lp_start, lp_bytes, prot,
3592                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3593                  -1, 0);
3594  if (result == MAP_FAILED) {
3595    warn_on_large_pages_failure(req_addr, bytes, errno);
3596    // If the mmap above fails, the large pages region will be unmapped and we
3597    // have regions before and after with small pages. Release these regions.
3598    //
3599    // |  mapped  |  unmapped  |  mapped  |
3600    // ^          ^            ^          ^
3601    // start      lp_start     lp_end     end
3602    //
3603    ::munmap(start, lp_start - start);
3604    ::munmap(lp_end, end - lp_end);
3605    return NULL;
3606  }
3607
3608  if (lp_end != end) {
3609    result = ::mmap(lp_end, end - lp_end, prot,
3610                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3611                    -1, 0);
3612    if (result == MAP_FAILED) {
3613      ::munmap(start, lp_end - start);
3614      return NULL;
3615    }
3616  }
3617
3618  return start;
3619}
3620
3621char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3622                                                   size_t alignment,
3623                                                   char* req_addr,
3624                                                   bool exec) {
3625  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3626  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3627  assert(is_power_of_2(alignment), "Must be");
3628  assert(is_power_of_2(os::large_page_size()), "Must be");
3629  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3630
3631  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3632    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3633  } else {
3634    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3635  }
3636}
3637
3638char* os::reserve_memory_special(size_t bytes, size_t alignment,
3639                                 char* req_addr, bool exec) {
3640  assert(UseLargePages, "only for large pages");
3641
3642  char* addr;
3643  if (UseSHM) {
3644    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3645  } else {
3646    assert(UseHugeTLBFS, "must be");
3647    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3648  }
3649
3650  if (addr != NULL) {
3651    if (UseNUMAInterleaving) {
3652      numa_make_global(addr, bytes);
3653    }
3654
3655    // The memory is committed
3656    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3657  }
3658
3659  return addr;
3660}
3661
3662bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3663  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3664  return shmdt(base) == 0;
3665}
3666
3667bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3668  return pd_release_memory(base, bytes);
3669}
3670
3671bool os::release_memory_special(char* base, size_t bytes) {
3672  bool res;
3673  if (MemTracker::tracking_level() > NMT_minimal) {
3674    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3675    res = os::Linux::release_memory_special_impl(base, bytes);
3676    if (res) {
3677      tkr.record((address)base, bytes);
3678    }
3679
3680  } else {
3681    res = os::Linux::release_memory_special_impl(base, bytes);
3682  }
3683  return res;
3684}
3685
3686bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3687  assert(UseLargePages, "only for large pages");
3688  bool res;
3689
3690  if (UseSHM) {
3691    res = os::Linux::release_memory_special_shm(base, bytes);
3692  } else {
3693    assert(UseHugeTLBFS, "must be");
3694    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3695  }
3696  return res;
3697}
3698
3699size_t os::large_page_size() {
3700  return _large_page_size;
3701}
3702
3703// With SysV SHM the entire memory region must be allocated as shared
3704// memory.
3705// HugeTLBFS allows application to commit large page memory on demand.
3706// However, when committing memory with HugeTLBFS fails, the region
3707// that was supposed to be committed will lose the old reservation
3708// and allow other threads to steal that memory region. Because of this
3709// behavior we can't commit HugeTLBFS memory.
3710bool os::can_commit_large_page_memory() {
3711  return UseTransparentHugePages;
3712}
3713
3714bool os::can_execute_large_page_memory() {
3715  return UseTransparentHugePages || UseHugeTLBFS;
3716}
3717
3718// Reserve memory at an arbitrary address, only if that area is
3719// available (and not reserved for something else).
3720
3721char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3722  const int max_tries = 10;
3723  char* base[max_tries];
3724  size_t size[max_tries];
3725  const size_t gap = 0x000000;
3726
3727  // Assert only that the size is a multiple of the page size, since
3728  // that's all that mmap requires, and since that's all we really know
3729  // about at this low abstraction level.  If we need higher alignment,
3730  // we can either pass an alignment to this method or verify alignment
3731  // in one of the methods further up the call chain.  See bug 5044738.
3732  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3733
3734  // Repeatedly allocate blocks until the block is allocated at the
3735  // right spot. Give up after max_tries. Note that reserve_memory() will
3736  // automatically update _highest_vm_reserved_address if the call is
3737  // successful. The variable tracks the highest memory address every reserved
3738  // by JVM. It is used to detect heap-stack collision if running with
3739  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3740  // space than needed, it could confuse the collision detecting code. To
3741  // solve the problem, save current _highest_vm_reserved_address and
3742  // calculate the correct value before return.
3743  address old_highest = _highest_vm_reserved_address;
3744
3745  // Linux mmap allows caller to pass an address as hint; give it a try first,
3746  // if kernel honors the hint then we can return immediately.
3747  char * addr = anon_mmap(requested_addr, bytes, false);
3748  if (addr == requested_addr) {
3749    return requested_addr;
3750  }
3751
3752  if (addr != NULL) {
3753    // mmap() is successful but it fails to reserve at the requested address
3754    anon_munmap(addr, bytes);
3755  }
3756
3757  int i;
3758  for (i = 0; i < max_tries; ++i) {
3759    base[i] = reserve_memory(bytes);
3760
3761    if (base[i] != NULL) {
3762      // Is this the block we wanted?
3763      if (base[i] == requested_addr) {
3764        size[i] = bytes;
3765        break;
3766      }
3767
3768      // Does this overlap the block we wanted? Give back the overlapped
3769      // parts and try again.
3770
3771      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3772      if (top_overlap >= 0 && top_overlap < bytes) {
3773        unmap_memory(base[i], top_overlap);
3774        base[i] += top_overlap;
3775        size[i] = bytes - top_overlap;
3776      } else {
3777        size_t bottom_overlap = base[i] + bytes - requested_addr;
3778        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3779          unmap_memory(requested_addr, bottom_overlap);
3780          size[i] = bytes - bottom_overlap;
3781        } else {
3782          size[i] = bytes;
3783        }
3784      }
3785    }
3786  }
3787
3788  // Give back the unused reserved pieces.
3789
3790  for (int j = 0; j < i; ++j) {
3791    if (base[j] != NULL) {
3792      unmap_memory(base[j], size[j]);
3793    }
3794  }
3795
3796  if (i < max_tries) {
3797    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3798    return requested_addr;
3799  } else {
3800    _highest_vm_reserved_address = old_highest;
3801    return NULL;
3802  }
3803}
3804
3805size_t os::read(int fd, void *buf, unsigned int nBytes) {
3806  return ::read(fd, buf, nBytes);
3807}
3808
3809// Short sleep, direct OS call.
3810//
3811// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3812// sched_yield(2) will actually give up the CPU:
3813//
3814//   * Alone on this pariticular CPU, keeps running.
3815//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3816//     (pre 2.6.39).
3817//
3818// So calling this with 0 is an alternative.
3819//
3820void os::naked_short_sleep(jlong ms) {
3821  struct timespec req;
3822
3823  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3824  req.tv_sec = 0;
3825  if (ms > 0) {
3826    req.tv_nsec = (ms % 1000) * 1000000;
3827  } else {
3828    req.tv_nsec = 1;
3829  }
3830
3831  nanosleep(&req, NULL);
3832
3833  return;
3834}
3835
3836// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3837void os::infinite_sleep() {
3838  while (true) {    // sleep forever ...
3839    ::sleep(100);   // ... 100 seconds at a time
3840  }
3841}
3842
3843// Used to convert frequent JVM_Yield() to nops
3844bool os::dont_yield() {
3845  return DontYieldALot;
3846}
3847
3848void os::naked_yield() {
3849  sched_yield();
3850}
3851
3852////////////////////////////////////////////////////////////////////////////////
3853// thread priority support
3854
3855// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3856// only supports dynamic priority, static priority must be zero. For real-time
3857// applications, Linux supports SCHED_RR which allows static priority (1-99).
3858// However, for large multi-threaded applications, SCHED_RR is not only slower
3859// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3860// of 5 runs - Sep 2005).
3861//
3862// The following code actually changes the niceness of kernel-thread/LWP. It
3863// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3864// not the entire user process, and user level threads are 1:1 mapped to kernel
3865// threads. It has always been the case, but could change in the future. For
3866// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3867// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3868
3869int os::java_to_os_priority[CriticalPriority + 1] = {
3870  19,              // 0 Entry should never be used
3871
3872   4,              // 1 MinPriority
3873   3,              // 2
3874   2,              // 3
3875
3876   1,              // 4
3877   0,              // 5 NormPriority
3878  -1,              // 6
3879
3880  -2,              // 7
3881  -3,              // 8
3882  -4,              // 9 NearMaxPriority
3883
3884  -5,              // 10 MaxPriority
3885
3886  -5               // 11 CriticalPriority
3887};
3888
3889static int prio_init() {
3890  if (ThreadPriorityPolicy == 1) {
3891    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3892    // if effective uid is not root. Perhaps, a more elegant way of doing
3893    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3894    if (geteuid() != 0) {
3895      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3896        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3897      }
3898      ThreadPriorityPolicy = 0;
3899    }
3900  }
3901  if (UseCriticalJavaThreadPriority) {
3902    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3903  }
3904  return 0;
3905}
3906
3907OSReturn os::set_native_priority(Thread* thread, int newpri) {
3908  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3909
3910  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3911  return (ret == 0) ? OS_OK : OS_ERR;
3912}
3913
3914OSReturn os::get_native_priority(const Thread* const thread,
3915                                 int *priority_ptr) {
3916  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3917    *priority_ptr = java_to_os_priority[NormPriority];
3918    return OS_OK;
3919  }
3920
3921  errno = 0;
3922  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3923  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3924}
3925
3926// Hint to the underlying OS that a task switch would not be good.
3927// Void return because it's a hint and can fail.
3928void os::hint_no_preempt() {}
3929
3930////////////////////////////////////////////////////////////////////////////////
3931// suspend/resume support
3932
3933//  the low-level signal-based suspend/resume support is a remnant from the
3934//  old VM-suspension that used to be for java-suspension, safepoints etc,
3935//  within hotspot. Now there is a single use-case for this:
3936//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3937//      that runs in the watcher thread.
3938//  The remaining code is greatly simplified from the more general suspension
3939//  code that used to be used.
3940//
3941//  The protocol is quite simple:
3942//  - suspend:
3943//      - sends a signal to the target thread
3944//      - polls the suspend state of the osthread using a yield loop
3945//      - target thread signal handler (SR_handler) sets suspend state
3946//        and blocks in sigsuspend until continued
3947//  - resume:
3948//      - sets target osthread state to continue
3949//      - sends signal to end the sigsuspend loop in the SR_handler
3950//
3951//  Note that the SR_lock plays no role in this suspend/resume protocol.
3952
3953static void resume_clear_context(OSThread *osthread) {
3954  osthread->set_ucontext(NULL);
3955  osthread->set_siginfo(NULL);
3956}
3957
3958static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3959                                 ucontext_t* context) {
3960  osthread->set_ucontext(context);
3961  osthread->set_siginfo(siginfo);
3962}
3963
3964// Handler function invoked when a thread's execution is suspended or
3965// resumed. We have to be careful that only async-safe functions are
3966// called here (Note: most pthread functions are not async safe and
3967// should be avoided.)
3968//
3969// Note: sigwait() is a more natural fit than sigsuspend() from an
3970// interface point of view, but sigwait() prevents the signal hander
3971// from being run. libpthread would get very confused by not having
3972// its signal handlers run and prevents sigwait()'s use with the
3973// mutex granting granting signal.
3974//
3975// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3976//
3977static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3978  // Save and restore errno to avoid confusing native code with EINTR
3979  // after sigsuspend.
3980  int old_errno = errno;
3981
3982  Thread* thread = Thread::current();
3983  OSThread* osthread = thread->osthread();
3984  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3985
3986  os::SuspendResume::State current = osthread->sr.state();
3987  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3988    suspend_save_context(osthread, siginfo, context);
3989
3990    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3991    os::SuspendResume::State state = osthread->sr.suspended();
3992    if (state == os::SuspendResume::SR_SUSPENDED) {
3993      sigset_t suspend_set;  // signals for sigsuspend()
3994
3995      // get current set of blocked signals and unblock resume signal
3996      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3997      sigdelset(&suspend_set, SR_signum);
3998
3999      sr_semaphore.signal();
4000      // wait here until we are resumed
4001      while (1) {
4002        sigsuspend(&suspend_set);
4003
4004        os::SuspendResume::State result = osthread->sr.running();
4005        if (result == os::SuspendResume::SR_RUNNING) {
4006          sr_semaphore.signal();
4007          break;
4008        }
4009      }
4010
4011    } else if (state == os::SuspendResume::SR_RUNNING) {
4012      // request was cancelled, continue
4013    } else {
4014      ShouldNotReachHere();
4015    }
4016
4017    resume_clear_context(osthread);
4018  } else if (current == os::SuspendResume::SR_RUNNING) {
4019    // request was cancelled, continue
4020  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4021    // ignore
4022  } else {
4023    // ignore
4024  }
4025
4026  errno = old_errno;
4027}
4028
4029
4030static int SR_initialize() {
4031  struct sigaction act;
4032  char *s;
4033  // Get signal number to use for suspend/resume
4034  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4035    int sig = ::strtol(s, 0, 10);
4036    if (sig > 0 || sig < _NSIG) {
4037      SR_signum = sig;
4038    }
4039  }
4040
4041  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4042         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4043
4044  sigemptyset(&SR_sigset);
4045  sigaddset(&SR_sigset, SR_signum);
4046
4047  // Set up signal handler for suspend/resume
4048  act.sa_flags = SA_RESTART|SA_SIGINFO;
4049  act.sa_handler = (void (*)(int)) SR_handler;
4050
4051  // SR_signum is blocked by default.
4052  // 4528190 - We also need to block pthread restart signal (32 on all
4053  // supported Linux platforms). Note that LinuxThreads need to block
4054  // this signal for all threads to work properly. So we don't have
4055  // to use hard-coded signal number when setting up the mask.
4056  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4057
4058  if (sigaction(SR_signum, &act, 0) == -1) {
4059    return -1;
4060  }
4061
4062  // Save signal flag
4063  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4064  return 0;
4065}
4066
4067static int sr_notify(OSThread* osthread) {
4068  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4069  assert_status(status == 0, status, "pthread_kill");
4070  return status;
4071}
4072
4073// "Randomly" selected value for how long we want to spin
4074// before bailing out on suspending a thread, also how often
4075// we send a signal to a thread we want to resume
4076static const int RANDOMLY_LARGE_INTEGER = 1000000;
4077static const int RANDOMLY_LARGE_INTEGER2 = 100;
4078
4079// returns true on success and false on error - really an error is fatal
4080// but this seems the normal response to library errors
4081static bool do_suspend(OSThread* osthread) {
4082  assert(osthread->sr.is_running(), "thread should be running");
4083  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4084
4085  // mark as suspended and send signal
4086  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4087    // failed to switch, state wasn't running?
4088    ShouldNotReachHere();
4089    return false;
4090  }
4091
4092  if (sr_notify(osthread) != 0) {
4093    ShouldNotReachHere();
4094  }
4095
4096  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4097  while (true) {
4098    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4099      break;
4100    } else {
4101      // timeout
4102      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4103      if (cancelled == os::SuspendResume::SR_RUNNING) {
4104        return false;
4105      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4106        // make sure that we consume the signal on the semaphore as well
4107        sr_semaphore.wait();
4108        break;
4109      } else {
4110        ShouldNotReachHere();
4111        return false;
4112      }
4113    }
4114  }
4115
4116  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4117  return true;
4118}
4119
4120static void do_resume(OSThread* osthread) {
4121  assert(osthread->sr.is_suspended(), "thread should be suspended");
4122  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4123
4124  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4125    // failed to switch to WAKEUP_REQUEST
4126    ShouldNotReachHere();
4127    return;
4128  }
4129
4130  while (true) {
4131    if (sr_notify(osthread) == 0) {
4132      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4133        if (osthread->sr.is_running()) {
4134          return;
4135        }
4136      }
4137    } else {
4138      ShouldNotReachHere();
4139    }
4140  }
4141
4142  guarantee(osthread->sr.is_running(), "Must be running!");
4143}
4144
4145///////////////////////////////////////////////////////////////////////////////////
4146// signal handling (except suspend/resume)
4147
4148// This routine may be used by user applications as a "hook" to catch signals.
4149// The user-defined signal handler must pass unrecognized signals to this
4150// routine, and if it returns true (non-zero), then the signal handler must
4151// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4152// routine will never retun false (zero), but instead will execute a VM panic
4153// routine kill the process.
4154//
4155// If this routine returns false, it is OK to call it again.  This allows
4156// the user-defined signal handler to perform checks either before or after
4157// the VM performs its own checks.  Naturally, the user code would be making
4158// a serious error if it tried to handle an exception (such as a null check
4159// or breakpoint) that the VM was generating for its own correct operation.
4160//
4161// This routine may recognize any of the following kinds of signals:
4162//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4163// It should be consulted by handlers for any of those signals.
4164//
4165// The caller of this routine must pass in the three arguments supplied
4166// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4167// field of the structure passed to sigaction().  This routine assumes that
4168// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4169//
4170// Note that the VM will print warnings if it detects conflicting signal
4171// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4172//
4173extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4174                                                 siginfo_t* siginfo,
4175                                                 void* ucontext,
4176                                                 int abort_if_unrecognized);
4177
4178void signalHandler(int sig, siginfo_t* info, void* uc) {
4179  assert(info != NULL && uc != NULL, "it must be old kernel");
4180  int orig_errno = errno;  // Preserve errno value over signal handler.
4181  JVM_handle_linux_signal(sig, info, uc, true);
4182  errno = orig_errno;
4183}
4184
4185
4186// This boolean allows users to forward their own non-matching signals
4187// to JVM_handle_linux_signal, harmlessly.
4188bool os::Linux::signal_handlers_are_installed = false;
4189
4190// For signal-chaining
4191struct sigaction os::Linux::sigact[MAXSIGNUM];
4192unsigned int os::Linux::sigs = 0;
4193bool os::Linux::libjsig_is_loaded = false;
4194typedef struct sigaction *(*get_signal_t)(int);
4195get_signal_t os::Linux::get_signal_action = NULL;
4196
4197struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4198  struct sigaction *actp = NULL;
4199
4200  if (libjsig_is_loaded) {
4201    // Retrieve the old signal handler from libjsig
4202    actp = (*get_signal_action)(sig);
4203  }
4204  if (actp == NULL) {
4205    // Retrieve the preinstalled signal handler from jvm
4206    actp = get_preinstalled_handler(sig);
4207  }
4208
4209  return actp;
4210}
4211
4212static bool call_chained_handler(struct sigaction *actp, int sig,
4213                                 siginfo_t *siginfo, void *context) {
4214  // Call the old signal handler
4215  if (actp->sa_handler == SIG_DFL) {
4216    // It's more reasonable to let jvm treat it as an unexpected exception
4217    // instead of taking the default action.
4218    return false;
4219  } else if (actp->sa_handler != SIG_IGN) {
4220    if ((actp->sa_flags & SA_NODEFER) == 0) {
4221      // automaticlly block the signal
4222      sigaddset(&(actp->sa_mask), sig);
4223    }
4224
4225    sa_handler_t hand;
4226    sa_sigaction_t sa;
4227    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4228    // retrieve the chained handler
4229    if (siginfo_flag_set) {
4230      sa = actp->sa_sigaction;
4231    } else {
4232      hand = actp->sa_handler;
4233    }
4234
4235    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4236      actp->sa_handler = SIG_DFL;
4237    }
4238
4239    // try to honor the signal mask
4240    sigset_t oset;
4241    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4242
4243    // call into the chained handler
4244    if (siginfo_flag_set) {
4245      (*sa)(sig, siginfo, context);
4246    } else {
4247      (*hand)(sig);
4248    }
4249
4250    // restore the signal mask
4251    pthread_sigmask(SIG_SETMASK, &oset, 0);
4252  }
4253  // Tell jvm's signal handler the signal is taken care of.
4254  return true;
4255}
4256
4257bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4258  bool chained = false;
4259  // signal-chaining
4260  if (UseSignalChaining) {
4261    struct sigaction *actp = get_chained_signal_action(sig);
4262    if (actp != NULL) {
4263      chained = call_chained_handler(actp, sig, siginfo, context);
4264    }
4265  }
4266  return chained;
4267}
4268
4269struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4270  if ((((unsigned int)1 << sig) & sigs) != 0) {
4271    return &sigact[sig];
4272  }
4273  return NULL;
4274}
4275
4276void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4277  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4278  sigact[sig] = oldAct;
4279  sigs |= (unsigned int)1 << sig;
4280}
4281
4282// for diagnostic
4283int os::Linux::sigflags[MAXSIGNUM];
4284
4285int os::Linux::get_our_sigflags(int sig) {
4286  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4287  return sigflags[sig];
4288}
4289
4290void os::Linux::set_our_sigflags(int sig, int flags) {
4291  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4292  sigflags[sig] = flags;
4293}
4294
4295void os::Linux::set_signal_handler(int sig, bool set_installed) {
4296  // Check for overwrite.
4297  struct sigaction oldAct;
4298  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4299
4300  void* oldhand = oldAct.sa_sigaction
4301                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4302                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4303  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4304      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4305      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4306    if (AllowUserSignalHandlers || !set_installed) {
4307      // Do not overwrite; user takes responsibility to forward to us.
4308      return;
4309    } else if (UseSignalChaining) {
4310      // save the old handler in jvm
4311      save_preinstalled_handler(sig, oldAct);
4312      // libjsig also interposes the sigaction() call below and saves the
4313      // old sigaction on it own.
4314    } else {
4315      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4316                    "%#lx for signal %d.", (long)oldhand, sig));
4317    }
4318  }
4319
4320  struct sigaction sigAct;
4321  sigfillset(&(sigAct.sa_mask));
4322  sigAct.sa_handler = SIG_DFL;
4323  if (!set_installed) {
4324    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4325  } else {
4326    sigAct.sa_sigaction = signalHandler;
4327    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4328  }
4329  // Save flags, which are set by ours
4330  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4331  sigflags[sig] = sigAct.sa_flags;
4332
4333  int ret = sigaction(sig, &sigAct, &oldAct);
4334  assert(ret == 0, "check");
4335
4336  void* oldhand2  = oldAct.sa_sigaction
4337                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4338                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4339  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4340}
4341
4342// install signal handlers for signals that HotSpot needs to
4343// handle in order to support Java-level exception handling.
4344
4345void os::Linux::install_signal_handlers() {
4346  if (!signal_handlers_are_installed) {
4347    signal_handlers_are_installed = true;
4348
4349    // signal-chaining
4350    typedef void (*signal_setting_t)();
4351    signal_setting_t begin_signal_setting = NULL;
4352    signal_setting_t end_signal_setting = NULL;
4353    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4354                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4355    if (begin_signal_setting != NULL) {
4356      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4357                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4358      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4359                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4360      libjsig_is_loaded = true;
4361      assert(UseSignalChaining, "should enable signal-chaining");
4362    }
4363    if (libjsig_is_loaded) {
4364      // Tell libjsig jvm is setting signal handlers
4365      (*begin_signal_setting)();
4366    }
4367
4368    set_signal_handler(SIGSEGV, true);
4369    set_signal_handler(SIGPIPE, true);
4370    set_signal_handler(SIGBUS, true);
4371    set_signal_handler(SIGILL, true);
4372    set_signal_handler(SIGFPE, true);
4373#if defined(PPC64)
4374    set_signal_handler(SIGTRAP, true);
4375#endif
4376    set_signal_handler(SIGXFSZ, true);
4377
4378    if (libjsig_is_loaded) {
4379      // Tell libjsig jvm finishes setting signal handlers
4380      (*end_signal_setting)();
4381    }
4382
4383    // We don't activate signal checker if libjsig is in place, we trust ourselves
4384    // and if UserSignalHandler is installed all bets are off.
4385    // Log that signal checking is off only if -verbose:jni is specified.
4386    if (CheckJNICalls) {
4387      if (libjsig_is_loaded) {
4388        if (PrintJNIResolving) {
4389          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4390        }
4391        check_signals = false;
4392      }
4393      if (AllowUserSignalHandlers) {
4394        if (PrintJNIResolving) {
4395          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4396        }
4397        check_signals = false;
4398      }
4399    }
4400  }
4401}
4402
4403// This is the fastest way to get thread cpu time on Linux.
4404// Returns cpu time (user+sys) for any thread, not only for current.
4405// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4406// It might work on 2.6.10+ with a special kernel/glibc patch.
4407// For reference, please, see IEEE Std 1003.1-2004:
4408//   http://www.unix.org/single_unix_specification
4409
4410jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4411  struct timespec tp;
4412  int rc = os::Linux::clock_gettime(clockid, &tp);
4413  assert(rc == 0, "clock_gettime is expected to return 0 code");
4414
4415  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4416}
4417
4418/////
4419// glibc on Linux platform uses non-documented flag
4420// to indicate, that some special sort of signal
4421// trampoline is used.
4422// We will never set this flag, and we should
4423// ignore this flag in our diagnostic
4424#ifdef SIGNIFICANT_SIGNAL_MASK
4425  #undef SIGNIFICANT_SIGNAL_MASK
4426#endif
4427#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4428
4429static const char* get_signal_handler_name(address handler,
4430                                           char* buf, int buflen) {
4431  int offset;
4432  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4433  if (found) {
4434    // skip directory names
4435    const char *p1, *p2;
4436    p1 = buf;
4437    size_t len = strlen(os::file_separator());
4438    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4439    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4440  } else {
4441    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4442  }
4443  return buf;
4444}
4445
4446static void print_signal_handler(outputStream* st, int sig,
4447                                 char* buf, size_t buflen) {
4448  struct sigaction sa;
4449
4450  sigaction(sig, NULL, &sa);
4451
4452  // See comment for SIGNIFICANT_SIGNAL_MASK define
4453  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4454
4455  st->print("%s: ", os::exception_name(sig, buf, buflen));
4456
4457  address handler = (sa.sa_flags & SA_SIGINFO)
4458    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4459    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4460
4461  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4462    st->print("SIG_DFL");
4463  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4464    st->print("SIG_IGN");
4465  } else {
4466    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4467  }
4468
4469  st->print(", sa_mask[0]=");
4470  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4471
4472  address rh = VMError::get_resetted_sighandler(sig);
4473  // May be, handler was resetted by VMError?
4474  if (rh != NULL) {
4475    handler = rh;
4476    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4477  }
4478
4479  st->print(", sa_flags=");
4480  os::Posix::print_sa_flags(st, sa.sa_flags);
4481
4482  // Check: is it our handler?
4483  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4484      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4485    // It is our signal handler
4486    // check for flags, reset system-used one!
4487    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4488      st->print(
4489                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4490                os::Linux::get_our_sigflags(sig));
4491    }
4492  }
4493  st->cr();
4494}
4495
4496
4497#define DO_SIGNAL_CHECK(sig)                      \
4498  do {                                            \
4499    if (!sigismember(&check_signal_done, sig)) {  \
4500      os::Linux::check_signal_handler(sig);       \
4501    }                                             \
4502  } while (0)
4503
4504// This method is a periodic task to check for misbehaving JNI applications
4505// under CheckJNI, we can add any periodic checks here
4506
4507void os::run_periodic_checks() {
4508  if (check_signals == false) return;
4509
4510  // SEGV and BUS if overridden could potentially prevent
4511  // generation of hs*.log in the event of a crash, debugging
4512  // such a case can be very challenging, so we absolutely
4513  // check the following for a good measure:
4514  DO_SIGNAL_CHECK(SIGSEGV);
4515  DO_SIGNAL_CHECK(SIGILL);
4516  DO_SIGNAL_CHECK(SIGFPE);
4517  DO_SIGNAL_CHECK(SIGBUS);
4518  DO_SIGNAL_CHECK(SIGPIPE);
4519  DO_SIGNAL_CHECK(SIGXFSZ);
4520#if defined(PPC64)
4521  DO_SIGNAL_CHECK(SIGTRAP);
4522#endif
4523
4524  // ReduceSignalUsage allows the user to override these handlers
4525  // see comments at the very top and jvm_solaris.h
4526  if (!ReduceSignalUsage) {
4527    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4528    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4529    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4530    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4531  }
4532
4533  DO_SIGNAL_CHECK(SR_signum);
4534  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4535}
4536
4537typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4538
4539static os_sigaction_t os_sigaction = NULL;
4540
4541void os::Linux::check_signal_handler(int sig) {
4542  char buf[O_BUFLEN];
4543  address jvmHandler = NULL;
4544
4545
4546  struct sigaction act;
4547  if (os_sigaction == NULL) {
4548    // only trust the default sigaction, in case it has been interposed
4549    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4550    if (os_sigaction == NULL) return;
4551  }
4552
4553  os_sigaction(sig, (struct sigaction*)NULL, &act);
4554
4555
4556  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4557
4558  address thisHandler = (act.sa_flags & SA_SIGINFO)
4559    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4560    : CAST_FROM_FN_PTR(address, act.sa_handler);
4561
4562
4563  switch (sig) {
4564  case SIGSEGV:
4565  case SIGBUS:
4566  case SIGFPE:
4567  case SIGPIPE:
4568  case SIGILL:
4569  case SIGXFSZ:
4570    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4571    break;
4572
4573  case SHUTDOWN1_SIGNAL:
4574  case SHUTDOWN2_SIGNAL:
4575  case SHUTDOWN3_SIGNAL:
4576  case BREAK_SIGNAL:
4577    jvmHandler = (address)user_handler();
4578    break;
4579
4580  case INTERRUPT_SIGNAL:
4581    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4582    break;
4583
4584  default:
4585    if (sig == SR_signum) {
4586      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4587    } else {
4588      return;
4589    }
4590    break;
4591  }
4592
4593  if (thisHandler != jvmHandler) {
4594    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4595    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4596    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4597    // No need to check this sig any longer
4598    sigaddset(&check_signal_done, sig);
4599    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4600    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4601      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4602                    exception_name(sig, buf, O_BUFLEN));
4603    }
4604  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4605    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4606    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4607    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4608    // No need to check this sig any longer
4609    sigaddset(&check_signal_done, sig);
4610  }
4611
4612  // Dump all the signal
4613  if (sigismember(&check_signal_done, sig)) {
4614    print_signal_handlers(tty, buf, O_BUFLEN);
4615  }
4616}
4617
4618extern void report_error(char* file_name, int line_no, char* title,
4619                         char* format, ...);
4620
4621extern bool signal_name(int signo, char* buf, size_t len);
4622
4623const char* os::exception_name(int exception_code, char* buf, size_t size) {
4624  if (0 < exception_code && exception_code <= SIGRTMAX) {
4625    // signal
4626    if (!signal_name(exception_code, buf, size)) {
4627      jio_snprintf(buf, size, "SIG%d", exception_code);
4628    }
4629    return buf;
4630  } else {
4631    return NULL;
4632  }
4633}
4634
4635// this is called _before_ the most of global arguments have been parsed
4636void os::init(void) {
4637  char dummy;   // used to get a guess on initial stack address
4638//  first_hrtime = gethrtime();
4639
4640  // With LinuxThreads the JavaMain thread pid (primordial thread)
4641  // is different than the pid of the java launcher thread.
4642  // So, on Linux, the launcher thread pid is passed to the VM
4643  // via the sun.java.launcher.pid property.
4644  // Use this property instead of getpid() if it was correctly passed.
4645  // See bug 6351349.
4646  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4647
4648  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4649
4650  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4651
4652  init_random(1234567);
4653
4654  ThreadCritical::initialize();
4655
4656  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4657  if (Linux::page_size() == -1) {
4658    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4659                  strerror(errno)));
4660  }
4661  init_page_sizes((size_t) Linux::page_size());
4662
4663  Linux::initialize_system_info();
4664
4665  // main_thread points to the aboriginal thread
4666  Linux::_main_thread = pthread_self();
4667
4668  Linux::clock_init();
4669  initial_time_count = javaTimeNanos();
4670
4671  // pthread_condattr initialization for monotonic clock
4672  int status;
4673  pthread_condattr_t* _condattr = os::Linux::condAttr();
4674  if ((status = pthread_condattr_init(_condattr)) != 0) {
4675    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4676  }
4677  // Only set the clock if CLOCK_MONOTONIC is available
4678  if (os::supports_monotonic_clock()) {
4679    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4680      if (status == EINVAL) {
4681        warning("Unable to use monotonic clock with relative timed-waits" \
4682                " - changes to the time-of-day clock may have adverse affects");
4683      } else {
4684        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4685      }
4686    }
4687  }
4688  // else it defaults to CLOCK_REALTIME
4689
4690  pthread_mutex_init(&dl_mutex, NULL);
4691
4692  // If the pagesize of the VM is greater than 8K determine the appropriate
4693  // number of initial guard pages.  The user can change this with the
4694  // command line arguments, if needed.
4695  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4696    StackYellowPages = 1;
4697    StackRedPages = 1;
4698    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4699  }
4700
4701  // retrieve entry point for pthread_setname_np
4702  Linux::_pthread_setname_np =
4703    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4704
4705}
4706
4707// To install functions for atexit system call
4708extern "C" {
4709  static void perfMemory_exit_helper() {
4710    perfMemory_exit();
4711  }
4712}
4713
4714// this is called _after_ the global arguments have been parsed
4715jint os::init_2(void) {
4716  Linux::fast_thread_clock_init();
4717
4718  // Allocate a single page and mark it as readable for safepoint polling
4719  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4720  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4721
4722  os::set_polling_page(polling_page);
4723
4724#ifndef PRODUCT
4725  if (Verbose && PrintMiscellaneous) {
4726    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4727               (intptr_t)polling_page);
4728  }
4729#endif
4730
4731  if (!UseMembar) {
4732    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4733    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4734    os::set_memory_serialize_page(mem_serialize_page);
4735
4736#ifndef PRODUCT
4737    if (Verbose && PrintMiscellaneous) {
4738      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4739                 (intptr_t)mem_serialize_page);
4740    }
4741#endif
4742  }
4743
4744  // initialize suspend/resume support - must do this before signal_sets_init()
4745  if (SR_initialize() != 0) {
4746    perror("SR_initialize failed");
4747    return JNI_ERR;
4748  }
4749
4750  Linux::signal_sets_init();
4751  Linux::install_signal_handlers();
4752
4753  // Check minimum allowable stack size for thread creation and to initialize
4754  // the java system classes, including StackOverflowError - depends on page
4755  // size.  Add a page for compiler2 recursion in main thread.
4756  // Add in 2*BytesPerWord times page size to account for VM stack during
4757  // class initialization depending on 32 or 64 bit VM.
4758  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4759                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4760                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4761
4762  size_t threadStackSizeInBytes = ThreadStackSize * K;
4763  if (threadStackSizeInBytes != 0 &&
4764      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4765    tty->print_cr("\nThe stack size specified is too small, "
4766                  "Specify at least %dk",
4767                  os::Linux::min_stack_allowed/ K);
4768    return JNI_ERR;
4769  }
4770
4771  // Make the stack size a multiple of the page size so that
4772  // the yellow/red zones can be guarded.
4773  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4774                                                vm_page_size()));
4775
4776  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4777
4778#if defined(IA32)
4779  workaround_expand_exec_shield_cs_limit();
4780#endif
4781
4782  Linux::libpthread_init();
4783  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4784    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4785                  Linux::glibc_version(), Linux::libpthread_version(),
4786                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4787  }
4788
4789  if (UseNUMA) {
4790    if (!Linux::libnuma_init()) {
4791      UseNUMA = false;
4792    } else {
4793      if ((Linux::numa_max_node() < 1)) {
4794        // There's only one node(they start from 0), disable NUMA.
4795        UseNUMA = false;
4796      }
4797    }
4798    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4799    // we can make the adaptive lgrp chunk resizing work. If the user specified
4800    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4801    // disable adaptive resizing.
4802    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4803      if (FLAG_IS_DEFAULT(UseNUMA)) {
4804        UseNUMA = false;
4805      } else {
4806        if (FLAG_IS_DEFAULT(UseLargePages) &&
4807            FLAG_IS_DEFAULT(UseSHM) &&
4808            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4809          UseLargePages = false;
4810        } else {
4811          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4812          UseAdaptiveSizePolicy = false;
4813          UseAdaptiveNUMAChunkSizing = false;
4814        }
4815      }
4816    }
4817    if (!UseNUMA && ForceNUMA) {
4818      UseNUMA = true;
4819    }
4820  }
4821
4822  if (MaxFDLimit) {
4823    // set the number of file descriptors to max. print out error
4824    // if getrlimit/setrlimit fails but continue regardless.
4825    struct rlimit nbr_files;
4826    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4827    if (status != 0) {
4828      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4829        perror("os::init_2 getrlimit failed");
4830      }
4831    } else {
4832      nbr_files.rlim_cur = nbr_files.rlim_max;
4833      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4834      if (status != 0) {
4835        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4836          perror("os::init_2 setrlimit failed");
4837        }
4838      }
4839    }
4840  }
4841
4842  // Initialize lock used to serialize thread creation (see os::create_thread)
4843  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4844
4845  // at-exit methods are called in the reverse order of their registration.
4846  // atexit functions are called on return from main or as a result of a
4847  // call to exit(3C). There can be only 32 of these functions registered
4848  // and atexit() does not set errno.
4849
4850  if (PerfAllowAtExitRegistration) {
4851    // only register atexit functions if PerfAllowAtExitRegistration is set.
4852    // atexit functions can be delayed until process exit time, which
4853    // can be problematic for embedded VM situations. Embedded VMs should
4854    // call DestroyJavaVM() to assure that VM resources are released.
4855
4856    // note: perfMemory_exit_helper atexit function may be removed in
4857    // the future if the appropriate cleanup code can be added to the
4858    // VM_Exit VMOperation's doit method.
4859    if (atexit(perfMemory_exit_helper) != 0) {
4860      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4861    }
4862  }
4863
4864  // initialize thread priority policy
4865  prio_init();
4866
4867  return JNI_OK;
4868}
4869
4870// this is called at the end of vm_initialization
4871void os::init_3(void) {
4872#ifdef JAVASE_EMBEDDED
4873  // Start the MemNotifyThread
4874  if (LowMemoryProtection) {
4875    MemNotifyThread::start();
4876  }
4877  return;
4878#endif
4879}
4880
4881// Mark the polling page as unreadable
4882void os::make_polling_page_unreadable(void) {
4883  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4884    fatal("Could not disable polling page");
4885  }
4886}
4887
4888// Mark the polling page as readable
4889void os::make_polling_page_readable(void) {
4890  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4891    fatal("Could not enable polling page");
4892  }
4893}
4894
4895int os::active_processor_count() {
4896  // Linux doesn't yet have a (official) notion of processor sets,
4897  // so just return the number of online processors.
4898  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4899  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4900  return online_cpus;
4901}
4902
4903void os::set_native_thread_name(const char *name) {
4904  if (Linux::_pthread_setname_np) {
4905    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4906    snprintf(buf, sizeof(buf), "%s", name);
4907    buf[sizeof(buf) - 1] = '\0';
4908    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4909    // ERANGE should not happen; all other errors should just be ignored.
4910    assert(rc != ERANGE, "pthread_setname_np failed");
4911  }
4912}
4913
4914bool os::distribute_processes(uint length, uint* distribution) {
4915  // Not yet implemented.
4916  return false;
4917}
4918
4919bool os::bind_to_processor(uint processor_id) {
4920  // Not yet implemented.
4921  return false;
4922}
4923
4924///
4925
4926void os::SuspendedThreadTask::internal_do_task() {
4927  if (do_suspend(_thread->osthread())) {
4928    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4929    do_task(context);
4930    do_resume(_thread->osthread());
4931  }
4932}
4933
4934class PcFetcher : public os::SuspendedThreadTask {
4935 public:
4936  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4937  ExtendedPC result();
4938 protected:
4939  void do_task(const os::SuspendedThreadTaskContext& context);
4940 private:
4941  ExtendedPC _epc;
4942};
4943
4944ExtendedPC PcFetcher::result() {
4945  guarantee(is_done(), "task is not done yet.");
4946  return _epc;
4947}
4948
4949void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4950  Thread* thread = context.thread();
4951  OSThread* osthread = thread->osthread();
4952  if (osthread->ucontext() != NULL) {
4953    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4954  } else {
4955    // NULL context is unexpected, double-check this is the VMThread
4956    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4957  }
4958}
4959
4960// Suspends the target using the signal mechanism and then grabs the PC before
4961// resuming the target. Used by the flat-profiler only
4962ExtendedPC os::get_thread_pc(Thread* thread) {
4963  // Make sure that it is called by the watcher for the VMThread
4964  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4965  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4966
4967  PcFetcher fetcher(thread);
4968  fetcher.run();
4969  return fetcher.result();
4970}
4971
4972int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4973                                   pthread_mutex_t *_mutex,
4974                                   const struct timespec *_abstime) {
4975  if (is_NPTL()) {
4976    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4977  } else {
4978    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4979    // word back to default 64bit precision if condvar is signaled. Java
4980    // wants 53bit precision.  Save and restore current value.
4981    int fpu = get_fpu_control_word();
4982    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4983    set_fpu_control_word(fpu);
4984    return status;
4985  }
4986}
4987
4988////////////////////////////////////////////////////////////////////////////////
4989// debug support
4990
4991bool os::find(address addr, outputStream* st) {
4992  Dl_info dlinfo;
4993  memset(&dlinfo, 0, sizeof(dlinfo));
4994  if (dladdr(addr, &dlinfo) != 0) {
4995    st->print(PTR_FORMAT ": ", addr);
4996    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4997      st->print("%s+%#x", dlinfo.dli_sname,
4998                addr - (intptr_t)dlinfo.dli_saddr);
4999    } else if (dlinfo.dli_fbase != NULL) {
5000      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5001    } else {
5002      st->print("<absolute address>");
5003    }
5004    if (dlinfo.dli_fname != NULL) {
5005      st->print(" in %s", dlinfo.dli_fname);
5006    }
5007    if (dlinfo.dli_fbase != NULL) {
5008      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5009    }
5010    st->cr();
5011
5012    if (Verbose) {
5013      // decode some bytes around the PC
5014      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5015      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5016      address       lowest = (address) dlinfo.dli_sname;
5017      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5018      if (begin < lowest)  begin = lowest;
5019      Dl_info dlinfo2;
5020      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5021          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5022        end = (address) dlinfo2.dli_saddr;
5023      }
5024      Disassembler::decode(begin, end, st);
5025    }
5026    return true;
5027  }
5028  return false;
5029}
5030
5031////////////////////////////////////////////////////////////////////////////////
5032// misc
5033
5034// This does not do anything on Linux. This is basically a hook for being
5035// able to use structured exception handling (thread-local exception filters)
5036// on, e.g., Win32.
5037void
5038os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5039                         JavaCallArguments* args, Thread* thread) {
5040  f(value, method, args, thread);
5041}
5042
5043void os::print_statistics() {
5044}
5045
5046int os::message_box(const char* title, const char* message) {
5047  int i;
5048  fdStream err(defaultStream::error_fd());
5049  for (i = 0; i < 78; i++) err.print_raw("=");
5050  err.cr();
5051  err.print_raw_cr(title);
5052  for (i = 0; i < 78; i++) err.print_raw("-");
5053  err.cr();
5054  err.print_raw_cr(message);
5055  for (i = 0; i < 78; i++) err.print_raw("=");
5056  err.cr();
5057
5058  char buf[16];
5059  // Prevent process from exiting upon "read error" without consuming all CPU
5060  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5061
5062  return buf[0] == 'y' || buf[0] == 'Y';
5063}
5064
5065int os::stat(const char *path, struct stat *sbuf) {
5066  char pathbuf[MAX_PATH];
5067  if (strlen(path) > MAX_PATH - 1) {
5068    errno = ENAMETOOLONG;
5069    return -1;
5070  }
5071  os::native_path(strcpy(pathbuf, path));
5072  return ::stat(pathbuf, sbuf);
5073}
5074
5075bool os::check_heap(bool force) {
5076  return true;
5077}
5078
5079// Is a (classpath) directory empty?
5080bool os::dir_is_empty(const char* path) {
5081  DIR *dir = NULL;
5082  struct dirent *ptr;
5083
5084  dir = opendir(path);
5085  if (dir == NULL) return true;
5086
5087  // Scan the directory
5088  bool result = true;
5089  char buf[sizeof(struct dirent) + MAX_PATH];
5090  while (result && (ptr = ::readdir(dir)) != NULL) {
5091    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5092      result = false;
5093    }
5094  }
5095  closedir(dir);
5096  return result;
5097}
5098
5099// This code originates from JDK's sysOpen and open64_w
5100// from src/solaris/hpi/src/system_md.c
5101
5102int os::open(const char *path, int oflag, int mode) {
5103  if (strlen(path) > MAX_PATH - 1) {
5104    errno = ENAMETOOLONG;
5105    return -1;
5106  }
5107  int fd;
5108
5109  fd = ::open64(path, oflag, mode);
5110  if (fd == -1) return -1;
5111
5112  //If the open succeeded, the file might still be a directory
5113  {
5114    struct stat64 buf64;
5115    int ret = ::fstat64(fd, &buf64);
5116    int st_mode = buf64.st_mode;
5117
5118    if (ret != -1) {
5119      if ((st_mode & S_IFMT) == S_IFDIR) {
5120        errno = EISDIR;
5121        ::close(fd);
5122        return -1;
5123      }
5124    } else {
5125      ::close(fd);
5126      return -1;
5127    }
5128  }
5129
5130  // All file descriptors that are opened in the JVM and not
5131  // specifically destined for a subprocess should have the
5132  // close-on-exec flag set.  If we don't set it, then careless 3rd
5133  // party native code might fork and exec without closing all
5134  // appropriate file descriptors (e.g. as we do in closeDescriptors in
5135  // UNIXProcess.c), and this in turn might:
5136  //
5137  // - cause end-of-file to fail to be detected on some file
5138  //   descriptors, resulting in mysterious hangs, or
5139  //
5140  // - might cause an fopen in the subprocess to fail on a system
5141  //   suffering from bug 1085341.
5142  //
5143  // (Yes, the default setting of the close-on-exec flag is a Unix
5144  // design flaw)
5145  //
5146  // See:
5147  // 1085341: 32-bit stdio routines should support file descriptors >255
5148  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5149  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5150  //
5151#ifdef FD_CLOEXEC
5152  {
5153    int flags = ::fcntl(fd, F_GETFD);
5154    if (flags != -1) {
5155      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5156    }
5157  }
5158#endif
5159
5160  return fd;
5161}
5162
5163
5164// create binary file, rewriting existing file if required
5165int os::create_binary_file(const char* path, bool rewrite_existing) {
5166  int oflags = O_WRONLY | O_CREAT;
5167  if (!rewrite_existing) {
5168    oflags |= O_EXCL;
5169  }
5170  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5171}
5172
5173// return current position of file pointer
5174jlong os::current_file_offset(int fd) {
5175  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5176}
5177
5178// move file pointer to the specified offset
5179jlong os::seek_to_file_offset(int fd, jlong offset) {
5180  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5181}
5182
5183// This code originates from JDK's sysAvailable
5184// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5185
5186int os::available(int fd, jlong *bytes) {
5187  jlong cur, end;
5188  int mode;
5189  struct stat64 buf64;
5190
5191  if (::fstat64(fd, &buf64) >= 0) {
5192    mode = buf64.st_mode;
5193    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5194      // XXX: is the following call interruptible? If so, this might
5195      // need to go through the INTERRUPT_IO() wrapper as for other
5196      // blocking, interruptible calls in this file.
5197      int n;
5198      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5199        *bytes = n;
5200        return 1;
5201      }
5202    }
5203  }
5204  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5205    return 0;
5206  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5207    return 0;
5208  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5209    return 0;
5210  }
5211  *bytes = end - cur;
5212  return 1;
5213}
5214
5215// Map a block of memory.
5216char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5217                        char *addr, size_t bytes, bool read_only,
5218                        bool allow_exec) {
5219  int prot;
5220  int flags = MAP_PRIVATE;
5221
5222  if (read_only) {
5223    prot = PROT_READ;
5224  } else {
5225    prot = PROT_READ | PROT_WRITE;
5226  }
5227
5228  if (allow_exec) {
5229    prot |= PROT_EXEC;
5230  }
5231
5232  if (addr != NULL) {
5233    flags |= MAP_FIXED;
5234  }
5235
5236  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5237                                     fd, file_offset);
5238  if (mapped_address == MAP_FAILED) {
5239    return NULL;
5240  }
5241  return mapped_address;
5242}
5243
5244
5245// Remap a block of memory.
5246char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5247                          char *addr, size_t bytes, bool read_only,
5248                          bool allow_exec) {
5249  // same as map_memory() on this OS
5250  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5251                        allow_exec);
5252}
5253
5254
5255// Unmap a block of memory.
5256bool os::pd_unmap_memory(char* addr, size_t bytes) {
5257  return munmap(addr, bytes) == 0;
5258}
5259
5260static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5261
5262static clockid_t thread_cpu_clockid(Thread* thread) {
5263  pthread_t tid = thread->osthread()->pthread_id();
5264  clockid_t clockid;
5265
5266  // Get thread clockid
5267  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5268  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5269  return clockid;
5270}
5271
5272// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5273// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5274// of a thread.
5275//
5276// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5277// the fast estimate available on the platform.
5278
5279jlong os::current_thread_cpu_time() {
5280  if (os::Linux::supports_fast_thread_cpu_time()) {
5281    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5282  } else {
5283    // return user + sys since the cost is the same
5284    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5285  }
5286}
5287
5288jlong os::thread_cpu_time(Thread* thread) {
5289  // consistent with what current_thread_cpu_time() returns
5290  if (os::Linux::supports_fast_thread_cpu_time()) {
5291    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5292  } else {
5293    return slow_thread_cpu_time(thread, true /* user + sys */);
5294  }
5295}
5296
5297jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5298  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5299    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5300  } else {
5301    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5302  }
5303}
5304
5305jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5306  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5307    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5308  } else {
5309    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5310  }
5311}
5312
5313//  -1 on error.
5314static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5315  pid_t  tid = thread->osthread()->thread_id();
5316  char *s;
5317  char stat[2048];
5318  int statlen;
5319  char proc_name[64];
5320  int count;
5321  long sys_time, user_time;
5322  char cdummy;
5323  int idummy;
5324  long ldummy;
5325  FILE *fp;
5326
5327  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5328  fp = fopen(proc_name, "r");
5329  if (fp == NULL) return -1;
5330  statlen = fread(stat, 1, 2047, fp);
5331  stat[statlen] = '\0';
5332  fclose(fp);
5333
5334  // Skip pid and the command string. Note that we could be dealing with
5335  // weird command names, e.g. user could decide to rename java launcher
5336  // to "java 1.4.2 :)", then the stat file would look like
5337  //                1234 (java 1.4.2 :)) R ... ...
5338  // We don't really need to know the command string, just find the last
5339  // occurrence of ")" and then start parsing from there. See bug 4726580.
5340  s = strrchr(stat, ')');
5341  if (s == NULL) return -1;
5342
5343  // Skip blank chars
5344  do s++; while (isspace(*s));
5345
5346  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5347                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5348                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5349                 &user_time, &sys_time);
5350  if (count != 13) return -1;
5351  if (user_sys_cpu_time) {
5352    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5353  } else {
5354    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5355  }
5356}
5357
5358void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5359  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5360  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5361  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5362  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5363}
5364
5365void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5366  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5367  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5368  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5369  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5370}
5371
5372bool os::is_thread_cpu_time_supported() {
5373  return true;
5374}
5375
5376// System loadavg support.  Returns -1 if load average cannot be obtained.
5377// Linux doesn't yet have a (official) notion of processor sets,
5378// so just return the system wide load average.
5379int os::loadavg(double loadavg[], int nelem) {
5380  return ::getloadavg(loadavg, nelem);
5381}
5382
5383void os::pause() {
5384  char filename[MAX_PATH];
5385  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5386    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5387  } else {
5388    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5389  }
5390
5391  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5392  if (fd != -1) {
5393    struct stat buf;
5394    ::close(fd);
5395    while (::stat(filename, &buf) == 0) {
5396      (void)::poll(NULL, 0, 100);
5397    }
5398  } else {
5399    jio_fprintf(stderr,
5400                "Could not open pause file '%s', continuing immediately.\n", filename);
5401  }
5402}
5403
5404
5405// Refer to the comments in os_solaris.cpp park-unpark.
5406//
5407// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5408// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5409// For specifics regarding the bug see GLIBC BUGID 261237 :
5410//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5411// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5412// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5413// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5414// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5415// and monitorenter when we're using 1-0 locking.  All those operations may result in
5416// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5417// of libpthread avoids the problem, but isn't practical.
5418//
5419// Possible remedies:
5420//
5421// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5422//      This is palliative and probabilistic, however.  If the thread is preempted
5423//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5424//      than the minimum period may have passed, and the abstime may be stale (in the
5425//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5426//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5427//
5428// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5429//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5430//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5431//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5432//      thread.
5433//
5434// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5435//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5436//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5437//      This also works well.  In fact it avoids kernel-level scalability impediments
5438//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5439//      timers in a graceful fashion.
5440//
5441// 4.   When the abstime value is in the past it appears that control returns
5442//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5443//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5444//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5445//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5446//      It may be possible to avoid reinitialization by checking the return
5447//      value from pthread_cond_timedwait().  In addition to reinitializing the
5448//      condvar we must establish the invariant that cond_signal() is only called
5449//      within critical sections protected by the adjunct mutex.  This prevents
5450//      cond_signal() from "seeing" a condvar that's in the midst of being
5451//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5452//      desirable signal-after-unlock optimization that avoids futile context switching.
5453//
5454//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5455//      structure when a condvar is used or initialized.  cond_destroy()  would
5456//      release the helper structure.  Our reinitialize-after-timedwait fix
5457//      put excessive stress on malloc/free and locks protecting the c-heap.
5458//
5459// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5460// It may be possible to refine (4) by checking the kernel and NTPL verisons
5461// and only enabling the work-around for vulnerable environments.
5462
5463// utility to compute the abstime argument to timedwait:
5464// millis is the relative timeout time
5465// abstime will be the absolute timeout time
5466// TODO: replace compute_abstime() with unpackTime()
5467
5468static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5469  if (millis < 0)  millis = 0;
5470
5471  jlong seconds = millis / 1000;
5472  millis %= 1000;
5473  if (seconds > 50000000) { // see man cond_timedwait(3T)
5474    seconds = 50000000;
5475  }
5476
5477  if (os::supports_monotonic_clock()) {
5478    struct timespec now;
5479    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5480    assert_status(status == 0, status, "clock_gettime");
5481    abstime->tv_sec = now.tv_sec  + seconds;
5482    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5483    if (nanos >= NANOSECS_PER_SEC) {
5484      abstime->tv_sec += 1;
5485      nanos -= NANOSECS_PER_SEC;
5486    }
5487    abstime->tv_nsec = nanos;
5488  } else {
5489    struct timeval now;
5490    int status = gettimeofday(&now, NULL);
5491    assert(status == 0, "gettimeofday");
5492    abstime->tv_sec = now.tv_sec  + seconds;
5493    long usec = now.tv_usec + millis * 1000;
5494    if (usec >= 1000000) {
5495      abstime->tv_sec += 1;
5496      usec -= 1000000;
5497    }
5498    abstime->tv_nsec = usec * 1000;
5499  }
5500  return abstime;
5501}
5502
5503void os::PlatformEvent::park() {       // AKA "down()"
5504  // Invariant: Only the thread associated with the Event/PlatformEvent
5505  // may call park().
5506  // TODO: assert that _Assoc != NULL or _Assoc == Self
5507  assert(_nParked == 0, "invariant");
5508
5509  int v;
5510  for (;;) {
5511    v = _Event;
5512    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5513  }
5514  guarantee(v >= 0, "invariant");
5515  if (v == 0) {
5516    // Do this the hard way by blocking ...
5517    int status = pthread_mutex_lock(_mutex);
5518    assert_status(status == 0, status, "mutex_lock");
5519    guarantee(_nParked == 0, "invariant");
5520    ++_nParked;
5521    while (_Event < 0) {
5522      status = pthread_cond_wait(_cond, _mutex);
5523      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5524      // Treat this the same as if the wait was interrupted
5525      if (status == ETIME) { status = EINTR; }
5526      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5527    }
5528    --_nParked;
5529
5530    _Event = 0;
5531    status = pthread_mutex_unlock(_mutex);
5532    assert_status(status == 0, status, "mutex_unlock");
5533    // Paranoia to ensure our locked and lock-free paths interact
5534    // correctly with each other.
5535    OrderAccess::fence();
5536  }
5537  guarantee(_Event >= 0, "invariant");
5538}
5539
5540int os::PlatformEvent::park(jlong millis) {
5541  guarantee(_nParked == 0, "invariant");
5542
5543  int v;
5544  for (;;) {
5545    v = _Event;
5546    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5547  }
5548  guarantee(v >= 0, "invariant");
5549  if (v != 0) return OS_OK;
5550
5551  // We do this the hard way, by blocking the thread.
5552  // Consider enforcing a minimum timeout value.
5553  struct timespec abst;
5554  compute_abstime(&abst, millis);
5555
5556  int ret = OS_TIMEOUT;
5557  int status = pthread_mutex_lock(_mutex);
5558  assert_status(status == 0, status, "mutex_lock");
5559  guarantee(_nParked == 0, "invariant");
5560  ++_nParked;
5561
5562  // Object.wait(timo) will return because of
5563  // (a) notification
5564  // (b) timeout
5565  // (c) thread.interrupt
5566  //
5567  // Thread.interrupt and object.notify{All} both call Event::set.
5568  // That is, we treat thread.interrupt as a special case of notification.
5569  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5570  // We assume all ETIME returns are valid.
5571  //
5572  // TODO: properly differentiate simultaneous notify+interrupt.
5573  // In that case, we should propagate the notify to another waiter.
5574
5575  while (_Event < 0) {
5576    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5577    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5578      pthread_cond_destroy(_cond);
5579      pthread_cond_init(_cond, os::Linux::condAttr());
5580    }
5581    assert_status(status == 0 || status == EINTR ||
5582                  status == ETIME || status == ETIMEDOUT,
5583                  status, "cond_timedwait");
5584    if (!FilterSpuriousWakeups) break;                 // previous semantics
5585    if (status == ETIME || status == ETIMEDOUT) break;
5586    // We consume and ignore EINTR and spurious wakeups.
5587  }
5588  --_nParked;
5589  if (_Event >= 0) {
5590    ret = OS_OK;
5591  }
5592  _Event = 0;
5593  status = pthread_mutex_unlock(_mutex);
5594  assert_status(status == 0, status, "mutex_unlock");
5595  assert(_nParked == 0, "invariant");
5596  // Paranoia to ensure our locked and lock-free paths interact
5597  // correctly with each other.
5598  OrderAccess::fence();
5599  return ret;
5600}
5601
5602void os::PlatformEvent::unpark() {
5603  // Transitions for _Event:
5604  //    0 :=> 1
5605  //    1 :=> 1
5606  //   -1 :=> either 0 or 1; must signal target thread
5607  //          That is, we can safely transition _Event from -1 to either
5608  //          0 or 1.
5609  // See also: "Semaphores in Plan 9" by Mullender & Cox
5610  //
5611  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5612  // that it will take two back-to-back park() calls for the owning
5613  // thread to block. This has the benefit of forcing a spurious return
5614  // from the first park() call after an unpark() call which will help
5615  // shake out uses of park() and unpark() without condition variables.
5616
5617  if (Atomic::xchg(1, &_Event) >= 0) return;
5618
5619  // Wait for the thread associated with the event to vacate
5620  int status = pthread_mutex_lock(_mutex);
5621  assert_status(status == 0, status, "mutex_lock");
5622  int AnyWaiters = _nParked;
5623  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5624  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5625    AnyWaiters = 0;
5626    pthread_cond_signal(_cond);
5627  }
5628  status = pthread_mutex_unlock(_mutex);
5629  assert_status(status == 0, status, "mutex_unlock");
5630  if (AnyWaiters != 0) {
5631    status = pthread_cond_signal(_cond);
5632    assert_status(status == 0, status, "cond_signal");
5633  }
5634
5635  // Note that we signal() _after dropping the lock for "immortal" Events.
5636  // This is safe and avoids a common class of  futile wakeups.  In rare
5637  // circumstances this can cause a thread to return prematurely from
5638  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5639  // simply re-test the condition and re-park itself.
5640}
5641
5642
5643// JSR166
5644// -------------------------------------------------------
5645
5646// The solaris and linux implementations of park/unpark are fairly
5647// conservative for now, but can be improved. They currently use a
5648// mutex/condvar pair, plus a a count.
5649// Park decrements count if > 0, else does a condvar wait.  Unpark
5650// sets count to 1 and signals condvar.  Only one thread ever waits
5651// on the condvar. Contention seen when trying to park implies that someone
5652// is unparking you, so don't wait. And spurious returns are fine, so there
5653// is no need to track notifications.
5654
5655// This code is common to linux and solaris and will be moved to a
5656// common place in dolphin.
5657//
5658// The passed in time value is either a relative time in nanoseconds
5659// or an absolute time in milliseconds. Either way it has to be unpacked
5660// into suitable seconds and nanoseconds components and stored in the
5661// given timespec structure.
5662// Given time is a 64-bit value and the time_t used in the timespec is only
5663// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5664// overflow if times way in the future are given. Further on Solaris versions
5665// prior to 10 there is a restriction (see cond_timedwait) that the specified
5666// number of seconds, in abstime, is less than current_time  + 100,000,000.
5667// As it will be 28 years before "now + 100000000" will overflow we can
5668// ignore overflow and just impose a hard-limit on seconds using the value
5669// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5670// years from "now".
5671
5672static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5673  assert(time > 0, "convertTime");
5674  time_t max_secs = 0;
5675
5676  if (!os::supports_monotonic_clock() || isAbsolute) {
5677    struct timeval now;
5678    int status = gettimeofday(&now, NULL);
5679    assert(status == 0, "gettimeofday");
5680
5681    max_secs = now.tv_sec + MAX_SECS;
5682
5683    if (isAbsolute) {
5684      jlong secs = time / 1000;
5685      if (secs > max_secs) {
5686        absTime->tv_sec = max_secs;
5687      } else {
5688        absTime->tv_sec = secs;
5689      }
5690      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5691    } else {
5692      jlong secs = time / NANOSECS_PER_SEC;
5693      if (secs >= MAX_SECS) {
5694        absTime->tv_sec = max_secs;
5695        absTime->tv_nsec = 0;
5696      } else {
5697        absTime->tv_sec = now.tv_sec + secs;
5698        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5699        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5700          absTime->tv_nsec -= NANOSECS_PER_SEC;
5701          ++absTime->tv_sec; // note: this must be <= max_secs
5702        }
5703      }
5704    }
5705  } else {
5706    // must be relative using monotonic clock
5707    struct timespec now;
5708    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5709    assert_status(status == 0, status, "clock_gettime");
5710    max_secs = now.tv_sec + MAX_SECS;
5711    jlong secs = time / NANOSECS_PER_SEC;
5712    if (secs >= MAX_SECS) {
5713      absTime->tv_sec = max_secs;
5714      absTime->tv_nsec = 0;
5715    } else {
5716      absTime->tv_sec = now.tv_sec + secs;
5717      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5718      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5719        absTime->tv_nsec -= NANOSECS_PER_SEC;
5720        ++absTime->tv_sec; // note: this must be <= max_secs
5721      }
5722    }
5723  }
5724  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5725  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5726  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5727  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5728}
5729
5730void Parker::park(bool isAbsolute, jlong time) {
5731  // Ideally we'd do something useful while spinning, such
5732  // as calling unpackTime().
5733
5734  // Optional fast-path check:
5735  // Return immediately if a permit is available.
5736  // We depend on Atomic::xchg() having full barrier semantics
5737  // since we are doing a lock-free update to _counter.
5738  if (Atomic::xchg(0, &_counter) > 0) return;
5739
5740  Thread* thread = Thread::current();
5741  assert(thread->is_Java_thread(), "Must be JavaThread");
5742  JavaThread *jt = (JavaThread *)thread;
5743
5744  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5745  // Check interrupt before trying to wait
5746  if (Thread::is_interrupted(thread, false)) {
5747    return;
5748  }
5749
5750  // Next, demultiplex/decode time arguments
5751  timespec absTime;
5752  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5753    return;
5754  }
5755  if (time > 0) {
5756    unpackTime(&absTime, isAbsolute, time);
5757  }
5758
5759
5760  // Enter safepoint region
5761  // Beware of deadlocks such as 6317397.
5762  // The per-thread Parker:: mutex is a classic leaf-lock.
5763  // In particular a thread must never block on the Threads_lock while
5764  // holding the Parker:: mutex.  If safepoints are pending both the
5765  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5766  ThreadBlockInVM tbivm(jt);
5767
5768  // Don't wait if cannot get lock since interference arises from
5769  // unblocking.  Also. check interrupt before trying wait
5770  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5771    return;
5772  }
5773
5774  int status;
5775  if (_counter > 0)  { // no wait needed
5776    _counter = 0;
5777    status = pthread_mutex_unlock(_mutex);
5778    assert(status == 0, "invariant");
5779    // Paranoia to ensure our locked and lock-free paths interact
5780    // correctly with each other and Java-level accesses.
5781    OrderAccess::fence();
5782    return;
5783  }
5784
5785#ifdef ASSERT
5786  // Don't catch signals while blocked; let the running threads have the signals.
5787  // (This allows a debugger to break into the running thread.)
5788  sigset_t oldsigs;
5789  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5790  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5791#endif
5792
5793  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5794  jt->set_suspend_equivalent();
5795  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5796
5797  assert(_cur_index == -1, "invariant");
5798  if (time == 0) {
5799    _cur_index = REL_INDEX; // arbitrary choice when not timed
5800    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5801  } else {
5802    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5803    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5804    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5805      pthread_cond_destroy(&_cond[_cur_index]);
5806      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5807    }
5808  }
5809  _cur_index = -1;
5810  assert_status(status == 0 || status == EINTR ||
5811                status == ETIME || status == ETIMEDOUT,
5812                status, "cond_timedwait");
5813
5814#ifdef ASSERT
5815  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5816#endif
5817
5818  _counter = 0;
5819  status = pthread_mutex_unlock(_mutex);
5820  assert_status(status == 0, status, "invariant");
5821  // Paranoia to ensure our locked and lock-free paths interact
5822  // correctly with each other and Java-level accesses.
5823  OrderAccess::fence();
5824
5825  // If externally suspended while waiting, re-suspend
5826  if (jt->handle_special_suspend_equivalent_condition()) {
5827    jt->java_suspend_self();
5828  }
5829}
5830
5831void Parker::unpark() {
5832  int status = pthread_mutex_lock(_mutex);
5833  assert(status == 0, "invariant");
5834  const int s = _counter;
5835  _counter = 1;
5836  if (s < 1) {
5837    // thread might be parked
5838    if (_cur_index != -1) {
5839      // thread is definitely parked
5840      if (WorkAroundNPTLTimedWaitHang) {
5841        status = pthread_cond_signal(&_cond[_cur_index]);
5842        assert(status == 0, "invariant");
5843        status = pthread_mutex_unlock(_mutex);
5844        assert(status == 0, "invariant");
5845      } else {
5846        status = pthread_mutex_unlock(_mutex);
5847        assert(status == 0, "invariant");
5848        status = pthread_cond_signal(&_cond[_cur_index]);
5849        assert(status == 0, "invariant");
5850      }
5851    } else {
5852      pthread_mutex_unlock(_mutex);
5853      assert(status == 0, "invariant");
5854    }
5855  } else {
5856    pthread_mutex_unlock(_mutex);
5857    assert(status == 0, "invariant");
5858  }
5859}
5860
5861
5862extern char** environ;
5863
5864#ifndef __NR_fork
5865  #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5866#endif
5867
5868#ifndef __NR_execve
5869  #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5870#endif
5871
5872// Run the specified command in a separate process. Return its exit value,
5873// or -1 on failure (e.g. can't fork a new process).
5874// Unlike system(), this function can be called from signal handler. It
5875// doesn't block SIGINT et al.
5876int os::fork_and_exec(char* cmd) {
5877  const char * argv[4] = {"sh", "-c", cmd, NULL};
5878
5879  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5880  // pthread_atfork handlers and reset pthread library. All we need is a
5881  // separate process to execve. Make a direct syscall to fork process.
5882  // On IA64 there's no fork syscall, we have to use fork() and hope for
5883  // the best...
5884  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5885  IA64_ONLY(fork();)
5886
5887  if (pid < 0) {
5888    // fork failed
5889    return -1;
5890
5891  } else if (pid == 0) {
5892    // child process
5893
5894    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5895    // first to kill every thread on the thread list. Because this list is
5896    // not reset by fork() (see notes above), execve() will instead kill
5897    // every thread in the parent process. We know this is the only thread
5898    // in the new process, so make a system call directly.
5899    // IA64 should use normal execve() from glibc to match the glibc fork()
5900    // above.
5901    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5902    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5903
5904    // execve failed
5905    _exit(-1);
5906
5907  } else  {
5908    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5909    // care about the actual exit code, for now.
5910
5911    int status;
5912
5913    // Wait for the child process to exit.  This returns immediately if
5914    // the child has already exited. */
5915    while (waitpid(pid, &status, 0) < 0) {
5916      switch (errno) {
5917      case ECHILD: return 0;
5918      case EINTR: break;
5919      default: return -1;
5920      }
5921    }
5922
5923    if (WIFEXITED(status)) {
5924      // The child exited normally; get its exit code.
5925      return WEXITSTATUS(status);
5926    } else if (WIFSIGNALED(status)) {
5927      // The child exited because of a signal
5928      // The best value to return is 0x80 + signal number,
5929      // because that is what all Unix shells do, and because
5930      // it allows callers to distinguish between process exit and
5931      // process death by signal.
5932      return 0x80 + WTERMSIG(status);
5933    } else {
5934      // Unknown exit code; pass it through
5935      return status;
5936    }
5937  }
5938}
5939
5940// is_headless_jre()
5941//
5942// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5943// in order to report if we are running in a headless jre
5944//
5945// Since JDK8 xawt/libmawt.so was moved into the same directory
5946// as libawt.so, and renamed libawt_xawt.so
5947//
5948bool os::is_headless_jre() {
5949  struct stat statbuf;
5950  char buf[MAXPATHLEN];
5951  char libmawtpath[MAXPATHLEN];
5952  const char *xawtstr  = "/xawt/libmawt.so";
5953  const char *new_xawtstr = "/libawt_xawt.so";
5954  char *p;
5955
5956  // Get path to libjvm.so
5957  os::jvm_path(buf, sizeof(buf));
5958
5959  // Get rid of libjvm.so
5960  p = strrchr(buf, '/');
5961  if (p == NULL) {
5962    return false;
5963  } else {
5964    *p = '\0';
5965  }
5966
5967  // Get rid of client or server
5968  p = strrchr(buf, '/');
5969  if (p == NULL) {
5970    return false;
5971  } else {
5972    *p = '\0';
5973  }
5974
5975  // check xawt/libmawt.so
5976  strcpy(libmawtpath, buf);
5977  strcat(libmawtpath, xawtstr);
5978  if (::stat(libmawtpath, &statbuf) == 0) return false;
5979
5980  // check libawt_xawt.so
5981  strcpy(libmawtpath, buf);
5982  strcat(libmawtpath, new_xawtstr);
5983  if (::stat(libmawtpath, &statbuf) == 0) return false;
5984
5985  return true;
5986}
5987
5988// Get the default path to the core file
5989// Returns the length of the string
5990int os::get_core_path(char* buffer, size_t bufferSize) {
5991  const char* p = get_current_directory(buffer, bufferSize);
5992
5993  if (p == NULL) {
5994    assert(p != NULL, "failed to get current directory");
5995    return 0;
5996  }
5997
5998  return strlen(buffer);
5999}
6000
6001#ifdef JAVASE_EMBEDDED
6002//
6003// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6004//
6005MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6006
6007// ctor
6008//
6009MemNotifyThread::MemNotifyThread(int fd): Thread() {
6010  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6011  _fd = fd;
6012
6013  if (os::create_thread(this, os::os_thread)) {
6014    _memnotify_thread = this;
6015    os::set_priority(this, NearMaxPriority);
6016    os::start_thread(this);
6017  }
6018}
6019
6020// Where all the work gets done
6021//
6022void MemNotifyThread::run() {
6023  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6024
6025  // Set up the select arguments
6026  fd_set rfds;
6027  if (_fd != -1) {
6028    FD_ZERO(&rfds);
6029    FD_SET(_fd, &rfds);
6030  }
6031
6032  // Now wait for the mem_notify device to wake up
6033  while (1) {
6034    // Wait for the mem_notify device to signal us..
6035    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6036    if (rc == -1) {
6037      perror("select!\n");
6038      break;
6039    } else if (rc) {
6040      //ssize_t free_before = os::available_memory();
6041      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6042
6043      // The kernel is telling us there is not much memory left...
6044      // try to do something about that
6045
6046      // If we are not already in a GC, try one.
6047      if (!Universe::heap()->is_gc_active()) {
6048        Universe::heap()->collect(GCCause::_allocation_failure);
6049
6050        //ssize_t free_after = os::available_memory();
6051        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6052        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6053      }
6054      // We might want to do something like the following if we find the GC's are not helping...
6055      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6056    }
6057  }
6058}
6059
6060// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6061//
6062void MemNotifyThread::start() {
6063  int fd;
6064  fd = open("/dev/mem_notify", O_RDONLY, 0);
6065  if (fd < 0) {
6066    return;
6067  }
6068
6069  if (memnotify_thread() == NULL) {
6070    new MemNotifyThread(fd);
6071  }
6072}
6073
6074#endif // JAVASE_EMBEDDED
6075
6076
6077/////////////// Unit tests ///////////////
6078
6079#ifndef PRODUCT
6080
6081#define test_log(...)              \
6082  do {                             \
6083    if (VerboseInternalVMTests) {  \
6084      tty->print_cr(__VA_ARGS__);  \
6085      tty->flush();                \
6086    }                              \
6087  } while (false)
6088
6089class TestReserveMemorySpecial : AllStatic {
6090 public:
6091  static void small_page_write(void* addr, size_t size) {
6092    size_t page_size = os::vm_page_size();
6093
6094    char* end = (char*)addr + size;
6095    for (char* p = (char*)addr; p < end; p += page_size) {
6096      *p = 1;
6097    }
6098  }
6099
6100  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6101    if (!UseHugeTLBFS) {
6102      return;
6103    }
6104
6105    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6106
6107    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6108
6109    if (addr != NULL) {
6110      small_page_write(addr, size);
6111
6112      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6113    }
6114  }
6115
6116  static void test_reserve_memory_special_huge_tlbfs_only() {
6117    if (!UseHugeTLBFS) {
6118      return;
6119    }
6120
6121    size_t lp = os::large_page_size();
6122
6123    for (size_t size = lp; size <= lp * 10; size += lp) {
6124      test_reserve_memory_special_huge_tlbfs_only(size);
6125    }
6126  }
6127
6128  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6129    if (!UseHugeTLBFS) {
6130      return;
6131    }
6132
6133    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6134             size, alignment);
6135
6136    assert(size >= os::large_page_size(), "Incorrect input to test");
6137
6138    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6139
6140    if (addr != NULL) {
6141      small_page_write(addr, size);
6142
6143      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6144    }
6145  }
6146
6147  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6148    size_t lp = os::large_page_size();
6149    size_t ag = os::vm_allocation_granularity();
6150
6151    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6152      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6153    }
6154  }
6155
6156  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6157    size_t lp = os::large_page_size();
6158    size_t ag = os::vm_allocation_granularity();
6159
6160    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6161    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6162    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6163    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6164    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6165    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6166    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6167    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6168    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6169  }
6170
6171  static void test_reserve_memory_special_huge_tlbfs() {
6172    if (!UseHugeTLBFS) {
6173      return;
6174    }
6175
6176    test_reserve_memory_special_huge_tlbfs_only();
6177    test_reserve_memory_special_huge_tlbfs_mixed();
6178  }
6179
6180  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6181    if (!UseSHM) {
6182      return;
6183    }
6184
6185    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6186
6187    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6188
6189    if (addr != NULL) {
6190      assert(is_ptr_aligned(addr, alignment), "Check");
6191      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6192
6193      small_page_write(addr, size);
6194
6195      os::Linux::release_memory_special_shm(addr, size);
6196    }
6197  }
6198
6199  static void test_reserve_memory_special_shm() {
6200    size_t lp = os::large_page_size();
6201    size_t ag = os::vm_allocation_granularity();
6202
6203    for (size_t size = ag; size < lp * 3; size += ag) {
6204      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6205        test_reserve_memory_special_shm(size, alignment);
6206      }
6207    }
6208  }
6209
6210  static void test() {
6211    test_reserve_memory_special_huge_tlbfs();
6212    test_reserve_memory_special_shm();
6213  }
6214};
6215
6216void TestReserveMemorySpecial_test() {
6217  TestReserveMemorySpecial::test();
6218}
6219
6220#endif
6221