os_linux.cpp revision 7344:1d29b13e8a51
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/vmError.hpp"
72
73// put OS-includes here
74# include <sys/types.h>
75# include <sys/mman.h>
76# include <sys/stat.h>
77# include <sys/select.h>
78# include <pthread.h>
79# include <signal.h>
80# include <errno.h>
81# include <dlfcn.h>
82# include <stdio.h>
83# include <unistd.h>
84# include <sys/resource.h>
85# include <pthread.h>
86# include <sys/stat.h>
87# include <sys/time.h>
88# include <sys/times.h>
89# include <sys/utsname.h>
90# include <sys/socket.h>
91# include <sys/wait.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <syscall.h>
98# include <sys/sysinfo.h>
99# include <gnu/libc-version.h>
100# include <sys/ipc.h>
101# include <sys/shm.h>
102# include <link.h>
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106
107PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
108
109// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
110// getrusage() is prepared to handle the associated failure.
111#ifndef RUSAGE_THREAD
112  #define RUSAGE_THREAD   (1)               /* only the calling thread */
113#endif
114
115#define MAX_PATH    (2 * K)
116
117#define MAX_SECS 100000000
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122#define LARGEPAGES_BIT (1 << 6)
123////////////////////////////////////////////////////////////////////////////////
124// global variables
125julong os::Linux::_physical_memory = 0;
126
127address   os::Linux::_initial_thread_stack_bottom = NULL;
128uintptr_t os::Linux::_initial_thread_stack_size   = 0;
129
130int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
132int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
133Mutex* os::Linux::_createThread_lock = NULL;
134pthread_t os::Linux::_main_thread;
135int os::Linux::_page_size = -1;
136const int os::Linux::_vm_default_page_size = (8 * K);
137bool os::Linux::_is_floating_stack = false;
138bool os::Linux::_is_NPTL = false;
139bool os::Linux::_supports_fast_thread_cpu_time = false;
140const char * os::Linux::_glibc_version = NULL;
141const char * os::Linux::_libpthread_version = NULL;
142pthread_condattr_t os::Linux::_condattr[1];
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152static pid_t _initial_pid = 0;
153
154// Signal number used to suspend/resume a thread
155
156// do not use any signal number less than SIGSEGV, see 4355769
157static int SR_signum = SIGUSR2;
158sigset_t SR_sigset;
159
160// Used to protect dlsym() calls
161static pthread_mutex_t dl_mutex;
162
163// Declarations
164static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
165
166// utility functions
167
168static int SR_initialize();
169
170julong os::available_memory() {
171  return Linux::available_memory();
172}
173
174julong os::Linux::available_memory() {
175  // values in struct sysinfo are "unsigned long"
176  struct sysinfo si;
177  sysinfo(&si);
178
179  return (julong)si.freeram * si.mem_unit;
180}
181
182julong os::physical_memory() {
183  return Linux::physical_memory();
184}
185
186////////////////////////////////////////////////////////////////////////////////
187// environment support
188
189bool os::getenv(const char* name, char* buf, int len) {
190  const char* val = ::getenv(name);
191  if (val != NULL && strlen(val) < (size_t)len) {
192    strcpy(buf, val);
193    return true;
194  }
195  if (len > 0) buf[0] = 0;  // return a null string
196  return false;
197}
198
199
200// Return true if user is running as root.
201
202bool os::have_special_privileges() {
203  static bool init = false;
204  static bool privileges = false;
205  if (!init) {
206    privileges = (getuid() != geteuid()) || (getgid() != getegid());
207    init = true;
208  }
209  return privileges;
210}
211
212
213#ifndef SYS_gettid
214// i386: 224, ia64: 1105, amd64: 186, sparc 143
215  #ifdef __ia64__
216    #define SYS_gettid 1105
217  #elif __i386__
218    #define SYS_gettid 224
219  #elif __amd64__
220    #define SYS_gettid 186
221  #elif __sparc__
222    #define SYS_gettid 143
223  #else
224    #error define gettid for the arch
225  #endif
226#endif
227
228// Cpu architecture string
229#if   defined(ZERO)
230static char cpu_arch[] = ZERO_LIBARCH;
231#elif defined(IA64)
232static char cpu_arch[] = "ia64";
233#elif defined(IA32)
234static char cpu_arch[] = "i386";
235#elif defined(AMD64)
236static char cpu_arch[] = "amd64";
237#elif defined(ARM)
238static char cpu_arch[] = "arm";
239#elif defined(PPC32)
240static char cpu_arch[] = "ppc";
241#elif defined(PPC64)
242static char cpu_arch[] = "ppc64";
243#elif defined(SPARC)
244  #ifdef _LP64
245static char cpu_arch[] = "sparcv9";
246  #else
247static char cpu_arch[] = "sparc";
248  #endif
249#else
250  #error Add appropriate cpu_arch setting
251#endif
252
253
254// pid_t gettid()
255//
256// Returns the kernel thread id of the currently running thread. Kernel
257// thread id is used to access /proc.
258//
259// (Note that getpid() on LinuxThreads returns kernel thread id too; but
260// on NPTL, it returns the same pid for all threads, as required by POSIX.)
261//
262pid_t os::Linux::gettid() {
263  int rslt = syscall(SYS_gettid);
264  if (rslt == -1) {
265    // old kernel, no NPTL support
266    return getpid();
267  } else {
268    return (pid_t)rslt;
269  }
270}
271
272// Most versions of linux have a bug where the number of processors are
273// determined by looking at the /proc file system.  In a chroot environment,
274// the system call returns 1.  This causes the VM to act as if it is
275// a single processor and elide locking (see is_MP() call).
276static bool unsafe_chroot_detected = false;
277static const char *unstable_chroot_error = "/proc file system not found.\n"
278                     "Java may be unstable running multithreaded in a chroot "
279                     "environment on Linux when /proc filesystem is not mounted.";
280
281void os::Linux::initialize_system_info() {
282  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
283  if (processor_count() == 1) {
284    pid_t pid = os::Linux::gettid();
285    char fname[32];
286    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
287    FILE *fp = fopen(fname, "r");
288    if (fp == NULL) {
289      unsafe_chroot_detected = true;
290    } else {
291      fclose(fp);
292    }
293  }
294  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
295  assert(processor_count() > 0, "linux error");
296}
297
298void os::init_system_properties_values() {
299  // The next steps are taken in the product version:
300  //
301  // Obtain the JAVA_HOME value from the location of libjvm.so.
302  // This library should be located at:
303  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
304  //
305  // If "/jre/lib/" appears at the right place in the path, then we
306  // assume libjvm.so is installed in a JDK and we use this path.
307  //
308  // Otherwise exit with message: "Could not create the Java virtual machine."
309  //
310  // The following extra steps are taken in the debugging version:
311  //
312  // If "/jre/lib/" does NOT appear at the right place in the path
313  // instead of exit check for $JAVA_HOME environment variable.
314  //
315  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
316  // then we append a fake suffix "hotspot/libjvm.so" to this path so
317  // it looks like libjvm.so is installed there
318  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
319  //
320  // Otherwise exit.
321  //
322  // Important note: if the location of libjvm.so changes this
323  // code needs to be changed accordingly.
324
325  // See ld(1):
326  //      The linker uses the following search paths to locate required
327  //      shared libraries:
328  //        1: ...
329  //        ...
330  //        7: The default directories, normally /lib and /usr/lib.
331#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
332  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
333#else
334  #define DEFAULT_LIBPATH "/lib:/usr/lib"
335#endif
336
337// Base path of extensions installed on the system.
338#define SYS_EXT_DIR     "/usr/java/packages"
339#define EXTENSIONS_DIR  "/lib/ext"
340
341  // Buffer that fits several sprintfs.
342  // Note that the space for the colon and the trailing null are provided
343  // by the nulls included by the sizeof operator.
344  const size_t bufsize =
345    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
346         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
347  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
348
349  // sysclasspath, java_home, dll_dir
350  {
351    char *pslash;
352    os::jvm_path(buf, bufsize);
353
354    // Found the full path to libjvm.so.
355    // Now cut the path to <java_home>/jre if we can.
356    pslash = strrchr(buf, '/');
357    if (pslash != NULL) {
358      *pslash = '\0';            // Get rid of /libjvm.so.
359    }
360    pslash = strrchr(buf, '/');
361    if (pslash != NULL) {
362      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
363    }
364    Arguments::set_dll_dir(buf);
365
366    if (pslash != NULL) {
367      pslash = strrchr(buf, '/');
368      if (pslash != NULL) {
369        *pslash = '\0';          // Get rid of /<arch>.
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL) {
372          *pslash = '\0';        // Get rid of /lib.
373        }
374      }
375    }
376    Arguments::set_java_home(buf);
377    set_boot_path('/', ':');
378  }
379
380  // Where to look for native libraries.
381  //
382  // Note: Due to a legacy implementation, most of the library path
383  // is set in the launcher. This was to accomodate linking restrictions
384  // on legacy Linux implementations (which are no longer supported).
385  // Eventually, all the library path setting will be done here.
386  //
387  // However, to prevent the proliferation of improperly built native
388  // libraries, the new path component /usr/java/packages is added here.
389  // Eventually, all the library path setting will be done here.
390  {
391    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
392    // should always exist (until the legacy problem cited above is
393    // addressed).
394    const char *v = ::getenv("LD_LIBRARY_PATH");
395    const char *v_colon = ":";
396    if (v == NULL) { v = ""; v_colon = ""; }
397    // That's +1 for the colon and +1 for the trailing '\0'.
398    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
399                                                     strlen(v) + 1 +
400                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
401                                                     mtInternal);
402    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
403    Arguments::set_library_path(ld_library_path);
404    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
405  }
406
407  // Extensions directories.
408  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
409  Arguments::set_ext_dirs(buf);
410
411  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
412
413#undef DEFAULT_LIBPATH
414#undef SYS_EXT_DIR
415#undef EXTENSIONS_DIR
416}
417
418////////////////////////////////////////////////////////////////////////////////
419// breakpoint support
420
421void os::breakpoint() {
422  BREAKPOINT;
423}
424
425extern "C" void breakpoint() {
426  // use debugger to set breakpoint here
427}
428
429////////////////////////////////////////////////////////////////////////////////
430// signal support
431
432debug_only(static bool signal_sets_initialized = false);
433static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
434
435bool os::Linux::is_sig_ignored(int sig) {
436  struct sigaction oact;
437  sigaction(sig, (struct sigaction*)NULL, &oact);
438  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
439                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
440  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
441    return true;
442  } else {
443    return false;
444  }
445}
446
447void os::Linux::signal_sets_init() {
448  // Should also have an assertion stating we are still single-threaded.
449  assert(!signal_sets_initialized, "Already initialized");
450  // Fill in signals that are necessarily unblocked for all threads in
451  // the VM. Currently, we unblock the following signals:
452  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
453  //                         by -Xrs (=ReduceSignalUsage));
454  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
455  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
456  // the dispositions or masks wrt these signals.
457  // Programs embedding the VM that want to use the above signals for their
458  // own purposes must, at this time, use the "-Xrs" option to prevent
459  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
460  // (See bug 4345157, and other related bugs).
461  // In reality, though, unblocking these signals is really a nop, since
462  // these signals are not blocked by default.
463  sigemptyset(&unblocked_sigs);
464  sigemptyset(&allowdebug_blocked_sigs);
465  sigaddset(&unblocked_sigs, SIGILL);
466  sigaddset(&unblocked_sigs, SIGSEGV);
467  sigaddset(&unblocked_sigs, SIGBUS);
468  sigaddset(&unblocked_sigs, SIGFPE);
469#if defined(PPC64)
470  sigaddset(&unblocked_sigs, SIGTRAP);
471#endif
472  sigaddset(&unblocked_sigs, SR_signum);
473
474  if (!ReduceSignalUsage) {
475    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
476      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
477      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
478    }
479    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
480      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
481      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
482    }
483    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
484      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
485      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
486    }
487  }
488  // Fill in signals that are blocked by all but the VM thread.
489  sigemptyset(&vm_sigs);
490  if (!ReduceSignalUsage) {
491    sigaddset(&vm_sigs, BREAK_SIGNAL);
492  }
493  debug_only(signal_sets_initialized = true);
494
495}
496
497// These are signals that are unblocked while a thread is running Java.
498// (For some reason, they get blocked by default.)
499sigset_t* os::Linux::unblocked_signals() {
500  assert(signal_sets_initialized, "Not initialized");
501  return &unblocked_sigs;
502}
503
504// These are the signals that are blocked while a (non-VM) thread is
505// running Java. Only the VM thread handles these signals.
506sigset_t* os::Linux::vm_signals() {
507  assert(signal_sets_initialized, "Not initialized");
508  return &vm_sigs;
509}
510
511// These are signals that are blocked during cond_wait to allow debugger in
512sigset_t* os::Linux::allowdebug_blocked_signals() {
513  assert(signal_sets_initialized, "Not initialized");
514  return &allowdebug_blocked_sigs;
515}
516
517void os::Linux::hotspot_sigmask(Thread* thread) {
518
519  //Save caller's signal mask before setting VM signal mask
520  sigset_t caller_sigmask;
521  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
522
523  OSThread* osthread = thread->osthread();
524  osthread->set_caller_sigmask(caller_sigmask);
525
526  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
527
528  if (!ReduceSignalUsage) {
529    if (thread->is_VM_thread()) {
530      // Only the VM thread handles BREAK_SIGNAL ...
531      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
532    } else {
533      // ... all other threads block BREAK_SIGNAL
534      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
535    }
536  }
537}
538
539//////////////////////////////////////////////////////////////////////////////
540// detecting pthread library
541
542void os::Linux::libpthread_init() {
543  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
544  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
545  // generic name for earlier versions.
546  // Define macros here so we can build HotSpot on old systems.
547#ifndef _CS_GNU_LIBC_VERSION
548  #define _CS_GNU_LIBC_VERSION 2
549#endif
550#ifndef _CS_GNU_LIBPTHREAD_VERSION
551  #define _CS_GNU_LIBPTHREAD_VERSION 3
552#endif
553
554  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
555  if (n > 0) {
556    char *str = (char *)malloc(n, mtInternal);
557    confstr(_CS_GNU_LIBC_VERSION, str, n);
558    os::Linux::set_glibc_version(str);
559  } else {
560    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
561    static char _gnu_libc_version[32];
562    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
563                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
564    os::Linux::set_glibc_version(_gnu_libc_version);
565  }
566
567  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
568  if (n > 0) {
569    char *str = (char *)malloc(n, mtInternal);
570    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
571    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
572    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
573    // is the case. LinuxThreads has a hard limit on max number of threads.
574    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
575    // On the other hand, NPTL does not have such a limit, sysconf()
576    // will return -1 and errno is not changed. Check if it is really NPTL.
577    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
578        strstr(str, "NPTL") &&
579        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
580      free(str);
581      os::Linux::set_libpthread_version("linuxthreads");
582    } else {
583      os::Linux::set_libpthread_version(str);
584    }
585  } else {
586    // glibc before 2.3.2 only has LinuxThreads.
587    os::Linux::set_libpthread_version("linuxthreads");
588  }
589
590  if (strstr(libpthread_version(), "NPTL")) {
591    os::Linux::set_is_NPTL();
592  } else {
593    os::Linux::set_is_LinuxThreads();
594  }
595
596  // LinuxThreads have two flavors: floating-stack mode, which allows variable
597  // stack size; and fixed-stack mode. NPTL is always floating-stack.
598  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
599    os::Linux::set_is_floating_stack();
600  }
601}
602
603/////////////////////////////////////////////////////////////////////////////
604// thread stack
605
606// Force Linux kernel to expand current thread stack. If "bottom" is close
607// to the stack guard, caller should block all signals.
608//
609// MAP_GROWSDOWN:
610//   A special mmap() flag that is used to implement thread stacks. It tells
611//   kernel that the memory region should extend downwards when needed. This
612//   allows early versions of LinuxThreads to only mmap the first few pages
613//   when creating a new thread. Linux kernel will automatically expand thread
614//   stack as needed (on page faults).
615//
616//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
617//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
618//   region, it's hard to tell if the fault is due to a legitimate stack
619//   access or because of reading/writing non-exist memory (e.g. buffer
620//   overrun). As a rule, if the fault happens below current stack pointer,
621//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
622//   application (see Linux kernel fault.c).
623//
624//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
625//   stack overflow detection.
626//
627//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
628//   not use this flag. However, the stack of initial thread is not created
629//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
630//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
631//   and then attach the thread to JVM.
632//
633// To get around the problem and allow stack banging on Linux, we need to
634// manually expand thread stack after receiving the SIGSEGV.
635//
636// There are two ways to expand thread stack to address "bottom", we used
637// both of them in JVM before 1.5:
638//   1. adjust stack pointer first so that it is below "bottom", and then
639//      touch "bottom"
640//   2. mmap() the page in question
641//
642// Now alternate signal stack is gone, it's harder to use 2. For instance,
643// if current sp is already near the lower end of page 101, and we need to
644// call mmap() to map page 100, it is possible that part of the mmap() frame
645// will be placed in page 100. When page 100 is mapped, it is zero-filled.
646// That will destroy the mmap() frame and cause VM to crash.
647//
648// The following code works by adjusting sp first, then accessing the "bottom"
649// page to force a page fault. Linux kernel will then automatically expand the
650// stack mapping.
651//
652// _expand_stack_to() assumes its frame size is less than page size, which
653// should always be true if the function is not inlined.
654
655#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
656  #define NOINLINE
657#else
658  #define NOINLINE __attribute__ ((noinline))
659#endif
660
661static void _expand_stack_to(address bottom) NOINLINE;
662
663static void _expand_stack_to(address bottom) {
664  address sp;
665  size_t size;
666  volatile char *p;
667
668  // Adjust bottom to point to the largest address within the same page, it
669  // gives us a one-page buffer if alloca() allocates slightly more memory.
670  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
671  bottom += os::Linux::page_size() - 1;
672
673  // sp might be slightly above current stack pointer; if that's the case, we
674  // will alloca() a little more space than necessary, which is OK. Don't use
675  // os::current_stack_pointer(), as its result can be slightly below current
676  // stack pointer, causing us to not alloca enough to reach "bottom".
677  sp = (address)&sp;
678
679  if (sp > bottom) {
680    size = sp - bottom;
681    p = (volatile char *)alloca(size);
682    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
683    p[0] = '\0';
684  }
685}
686
687bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
688  assert(t!=NULL, "just checking");
689  assert(t->osthread()->expanding_stack(), "expand should be set");
690  assert(t->stack_base() != NULL, "stack_base was not initialized");
691
692  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
693    sigset_t mask_all, old_sigset;
694    sigfillset(&mask_all);
695    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
696    _expand_stack_to(addr);
697    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
698    return true;
699  }
700  return false;
701}
702
703//////////////////////////////////////////////////////////////////////////////
704// create new thread
705
706static address highest_vm_reserved_address();
707
708// check if it's safe to start a new thread
709static bool _thread_safety_check(Thread* thread) {
710  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
711    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
712    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
713    //   allocated (MAP_FIXED) from high address space. Every thread stack
714    //   occupies a fixed size slot (usually 2Mbytes, but user can change
715    //   it to other values if they rebuild LinuxThreads).
716    //
717    // Problem with MAP_FIXED is that mmap() can still succeed even part of
718    // the memory region has already been mmap'ed. That means if we have too
719    // many threads and/or very large heap, eventually thread stack will
720    // collide with heap.
721    //
722    // Here we try to prevent heap/stack collision by comparing current
723    // stack bottom with the highest address that has been mmap'ed by JVM
724    // plus a safety margin for memory maps created by native code.
725    //
726    // This feature can be disabled by setting ThreadSafetyMargin to 0
727    //
728    if (ThreadSafetyMargin > 0) {
729      address stack_bottom = os::current_stack_base() - os::current_stack_size();
730
731      // not safe if our stack extends below the safety margin
732      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
733    } else {
734      return true;
735    }
736  } else {
737    // Floating stack LinuxThreads or NPTL:
738    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
739    //   there's not enough space left, pthread_create() will fail. If we come
740    //   here, that means enough space has been reserved for stack.
741    return true;
742  }
743}
744
745// Thread start routine for all newly created threads
746static void *java_start(Thread *thread) {
747  // Try to randomize the cache line index of hot stack frames.
748  // This helps when threads of the same stack traces evict each other's
749  // cache lines. The threads can be either from the same JVM instance, or
750  // from different JVM instances. The benefit is especially true for
751  // processors with hyperthreading technology.
752  static int counter = 0;
753  int pid = os::current_process_id();
754  alloca(((pid ^ counter++) & 7) * 128);
755
756  ThreadLocalStorage::set_thread(thread);
757
758  OSThread* osthread = thread->osthread();
759  Monitor* sync = osthread->startThread_lock();
760
761  // non floating stack LinuxThreads needs extra check, see above
762  if (!_thread_safety_check(thread)) {
763    // notify parent thread
764    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
765    osthread->set_state(ZOMBIE);
766    sync->notify_all();
767    return NULL;
768  }
769
770  // thread_id is kernel thread id (similar to Solaris LWP id)
771  osthread->set_thread_id(os::Linux::gettid());
772
773  if (UseNUMA) {
774    int lgrp_id = os::numa_get_group_id();
775    if (lgrp_id != -1) {
776      thread->set_lgrp_id(lgrp_id);
777    }
778  }
779  // initialize signal mask for this thread
780  os::Linux::hotspot_sigmask(thread);
781
782  // initialize floating point control register
783  os::Linux::init_thread_fpu_state();
784
785  // handshaking with parent thread
786  {
787    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
788
789    // notify parent thread
790    osthread->set_state(INITIALIZED);
791    sync->notify_all();
792
793    // wait until os::start_thread()
794    while (osthread->get_state() == INITIALIZED) {
795      sync->wait(Mutex::_no_safepoint_check_flag);
796    }
797  }
798
799  // call one more level start routine
800  thread->run();
801
802  return 0;
803}
804
805bool os::create_thread(Thread* thread, ThreadType thr_type,
806                       size_t stack_size) {
807  assert(thread->osthread() == NULL, "caller responsible");
808
809  // Allocate the OSThread object
810  OSThread* osthread = new OSThread(NULL, NULL);
811  if (osthread == NULL) {
812    return false;
813  }
814
815  // set the correct thread state
816  osthread->set_thread_type(thr_type);
817
818  // Initial state is ALLOCATED but not INITIALIZED
819  osthread->set_state(ALLOCATED);
820
821  thread->set_osthread(osthread);
822
823  // init thread attributes
824  pthread_attr_t attr;
825  pthread_attr_init(&attr);
826  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
827
828  // stack size
829  if (os::Linux::supports_variable_stack_size()) {
830    // calculate stack size if it's not specified by caller
831    if (stack_size == 0) {
832      stack_size = os::Linux::default_stack_size(thr_type);
833
834      switch (thr_type) {
835      case os::java_thread:
836        // Java threads use ThreadStackSize which default value can be
837        // changed with the flag -Xss
838        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
839        stack_size = JavaThread::stack_size_at_create();
840        break;
841      case os::compiler_thread:
842        if (CompilerThreadStackSize > 0) {
843          stack_size = (size_t)(CompilerThreadStackSize * K);
844          break;
845        } // else fall through:
846          // use VMThreadStackSize if CompilerThreadStackSize is not defined
847      case os::vm_thread:
848      case os::pgc_thread:
849      case os::cgc_thread:
850      case os::watcher_thread:
851        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
852        break;
853      }
854    }
855
856    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
857    pthread_attr_setstacksize(&attr, stack_size);
858  } else {
859    // let pthread_create() pick the default value.
860  }
861
862  // glibc guard page
863  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
864
865  ThreadState state;
866
867  {
868    // Serialize thread creation if we are running with fixed stack LinuxThreads
869    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
870    if (lock) {
871      os::Linux::createThread_lock()->lock_without_safepoint_check();
872    }
873
874    pthread_t tid;
875    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
876
877    pthread_attr_destroy(&attr);
878
879    if (ret != 0) {
880      if (PrintMiscellaneous && (Verbose || WizardMode)) {
881        perror("pthread_create()");
882      }
883      // Need to clean up stuff we've allocated so far
884      thread->set_osthread(NULL);
885      delete osthread;
886      if (lock) os::Linux::createThread_lock()->unlock();
887      return false;
888    }
889
890    // Store pthread info into the OSThread
891    osthread->set_pthread_id(tid);
892
893    // Wait until child thread is either initialized or aborted
894    {
895      Monitor* sync_with_child = osthread->startThread_lock();
896      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
897      while ((state = osthread->get_state()) == ALLOCATED) {
898        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
899      }
900    }
901
902    if (lock) {
903      os::Linux::createThread_lock()->unlock();
904    }
905  }
906
907  // Aborted due to thread limit being reached
908  if (state == ZOMBIE) {
909    thread->set_osthread(NULL);
910    delete osthread;
911    return false;
912  }
913
914  // The thread is returned suspended (in state INITIALIZED),
915  // and is started higher up in the call chain
916  assert(state == INITIALIZED, "race condition");
917  return true;
918}
919
920/////////////////////////////////////////////////////////////////////////////
921// attach existing thread
922
923// bootstrap the main thread
924bool os::create_main_thread(JavaThread* thread) {
925  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
926  return create_attached_thread(thread);
927}
928
929bool os::create_attached_thread(JavaThread* thread) {
930#ifdef ASSERT
931  thread->verify_not_published();
932#endif
933
934  // Allocate the OSThread object
935  OSThread* osthread = new OSThread(NULL, NULL);
936
937  if (osthread == NULL) {
938    return false;
939  }
940
941  // Store pthread info into the OSThread
942  osthread->set_thread_id(os::Linux::gettid());
943  osthread->set_pthread_id(::pthread_self());
944
945  // initialize floating point control register
946  os::Linux::init_thread_fpu_state();
947
948  // Initial thread state is RUNNABLE
949  osthread->set_state(RUNNABLE);
950
951  thread->set_osthread(osthread);
952
953  if (UseNUMA) {
954    int lgrp_id = os::numa_get_group_id();
955    if (lgrp_id != -1) {
956      thread->set_lgrp_id(lgrp_id);
957    }
958  }
959
960  if (os::Linux::is_initial_thread()) {
961    // If current thread is initial thread, its stack is mapped on demand,
962    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
963    // the entire stack region to avoid SEGV in stack banging.
964    // It is also useful to get around the heap-stack-gap problem on SuSE
965    // kernel (see 4821821 for details). We first expand stack to the top
966    // of yellow zone, then enable stack yellow zone (order is significant,
967    // enabling yellow zone first will crash JVM on SuSE Linux), so there
968    // is no gap between the last two virtual memory regions.
969
970    JavaThread *jt = (JavaThread *)thread;
971    address addr = jt->stack_yellow_zone_base();
972    assert(addr != NULL, "initialization problem?");
973    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
974
975    osthread->set_expanding_stack();
976    os::Linux::manually_expand_stack(jt, addr);
977    osthread->clear_expanding_stack();
978  }
979
980  // initialize signal mask for this thread
981  // and save the caller's signal mask
982  os::Linux::hotspot_sigmask(thread);
983
984  return true;
985}
986
987void os::pd_start_thread(Thread* thread) {
988  OSThread * osthread = thread->osthread();
989  assert(osthread->get_state() != INITIALIZED, "just checking");
990  Monitor* sync_with_child = osthread->startThread_lock();
991  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
992  sync_with_child->notify();
993}
994
995// Free Linux resources related to the OSThread
996void os::free_thread(OSThread* osthread) {
997  assert(osthread != NULL, "osthread not set");
998
999  if (Thread::current()->osthread() == osthread) {
1000    // Restore caller's signal mask
1001    sigset_t sigmask = osthread->caller_sigmask();
1002    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1003  }
1004
1005  delete osthread;
1006}
1007
1008//////////////////////////////////////////////////////////////////////////////
1009// thread local storage
1010
1011// Restore the thread pointer if the destructor is called. This is in case
1012// someone from JNI code sets up a destructor with pthread_key_create to run
1013// detachCurrentThread on thread death. Unless we restore the thread pointer we
1014// will hang or crash. When detachCurrentThread is called the key will be set
1015// to null and we will not be called again. If detachCurrentThread is never
1016// called we could loop forever depending on the pthread implementation.
1017static void restore_thread_pointer(void* p) {
1018  Thread* thread = (Thread*) p;
1019  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1020}
1021
1022int os::allocate_thread_local_storage() {
1023  pthread_key_t key;
1024  int rslt = pthread_key_create(&key, restore_thread_pointer);
1025  assert(rslt == 0, "cannot allocate thread local storage");
1026  return (int)key;
1027}
1028
1029// Note: This is currently not used by VM, as we don't destroy TLS key
1030// on VM exit.
1031void os::free_thread_local_storage(int index) {
1032  int rslt = pthread_key_delete((pthread_key_t)index);
1033  assert(rslt == 0, "invalid index");
1034}
1035
1036void os::thread_local_storage_at_put(int index, void* value) {
1037  int rslt = pthread_setspecific((pthread_key_t)index, value);
1038  assert(rslt == 0, "pthread_setspecific failed");
1039}
1040
1041extern "C" Thread* get_thread() {
1042  return ThreadLocalStorage::thread();
1043}
1044
1045//////////////////////////////////////////////////////////////////////////////
1046// initial thread
1047
1048// Check if current thread is the initial thread, similar to Solaris thr_main.
1049bool os::Linux::is_initial_thread(void) {
1050  char dummy;
1051  // If called before init complete, thread stack bottom will be null.
1052  // Can be called if fatal error occurs before initialization.
1053  if (initial_thread_stack_bottom() == NULL) return false;
1054  assert(initial_thread_stack_bottom() != NULL &&
1055         initial_thread_stack_size()   != 0,
1056         "os::init did not locate initial thread's stack region");
1057  if ((address)&dummy >= initial_thread_stack_bottom() &&
1058      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1059    return true;
1060  } else {
1061    return false;
1062  }
1063}
1064
1065// Find the virtual memory area that contains addr
1066static bool find_vma(address addr, address* vma_low, address* vma_high) {
1067  FILE *fp = fopen("/proc/self/maps", "r");
1068  if (fp) {
1069    address low, high;
1070    while (!feof(fp)) {
1071      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1072        if (low <= addr && addr < high) {
1073          if (vma_low)  *vma_low  = low;
1074          if (vma_high) *vma_high = high;
1075          fclose(fp);
1076          return true;
1077        }
1078      }
1079      for (;;) {
1080        int ch = fgetc(fp);
1081        if (ch == EOF || ch == (int)'\n') break;
1082      }
1083    }
1084    fclose(fp);
1085  }
1086  return false;
1087}
1088
1089// Locate initial thread stack. This special handling of initial thread stack
1090// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1091// bogus value for initial thread.
1092void os::Linux::capture_initial_stack(size_t max_size) {
1093  // stack size is the easy part, get it from RLIMIT_STACK
1094  size_t stack_size;
1095  struct rlimit rlim;
1096  getrlimit(RLIMIT_STACK, &rlim);
1097  stack_size = rlim.rlim_cur;
1098
1099  // 6308388: a bug in ld.so will relocate its own .data section to the
1100  //   lower end of primordial stack; reduce ulimit -s value a little bit
1101  //   so we won't install guard page on ld.so's data section.
1102  stack_size -= 2 * page_size();
1103
1104  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1105  //   7.1, in both cases we will get 2G in return value.
1106  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1107  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1108  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1109  //   in case other parts in glibc still assumes 2M max stack size.
1110  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1111  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1112  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1113    stack_size = 2 * K * K IA64_ONLY(*2);
1114  }
1115  // Try to figure out where the stack base (top) is. This is harder.
1116  //
1117  // When an application is started, glibc saves the initial stack pointer in
1118  // a global variable "__libc_stack_end", which is then used by system
1119  // libraries. __libc_stack_end should be pretty close to stack top. The
1120  // variable is available since the very early days. However, because it is
1121  // a private interface, it could disappear in the future.
1122  //
1123  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1124  // to __libc_stack_end, it is very close to stack top, but isn't the real
1125  // stack top. Note that /proc may not exist if VM is running as a chroot
1126  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1127  // /proc/<pid>/stat could change in the future (though unlikely).
1128  //
1129  // We try __libc_stack_end first. If that doesn't work, look for
1130  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1131  // as a hint, which should work well in most cases.
1132
1133  uintptr_t stack_start;
1134
1135  // try __libc_stack_end first
1136  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1137  if (p && *p) {
1138    stack_start = *p;
1139  } else {
1140    // see if we can get the start_stack field from /proc/self/stat
1141    FILE *fp;
1142    int pid;
1143    char state;
1144    int ppid;
1145    int pgrp;
1146    int session;
1147    int nr;
1148    int tpgrp;
1149    unsigned long flags;
1150    unsigned long minflt;
1151    unsigned long cminflt;
1152    unsigned long majflt;
1153    unsigned long cmajflt;
1154    unsigned long utime;
1155    unsigned long stime;
1156    long cutime;
1157    long cstime;
1158    long prio;
1159    long nice;
1160    long junk;
1161    long it_real;
1162    uintptr_t start;
1163    uintptr_t vsize;
1164    intptr_t rss;
1165    uintptr_t rsslim;
1166    uintptr_t scodes;
1167    uintptr_t ecode;
1168    int i;
1169
1170    // Figure what the primordial thread stack base is. Code is inspired
1171    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1172    // followed by command name surrounded by parentheses, state, etc.
1173    char stat[2048];
1174    int statlen;
1175
1176    fp = fopen("/proc/self/stat", "r");
1177    if (fp) {
1178      statlen = fread(stat, 1, 2047, fp);
1179      stat[statlen] = '\0';
1180      fclose(fp);
1181
1182      // Skip pid and the command string. Note that we could be dealing with
1183      // weird command names, e.g. user could decide to rename java launcher
1184      // to "java 1.4.2 :)", then the stat file would look like
1185      //                1234 (java 1.4.2 :)) R ... ...
1186      // We don't really need to know the command string, just find the last
1187      // occurrence of ")" and then start parsing from there. See bug 4726580.
1188      char * s = strrchr(stat, ')');
1189
1190      i = 0;
1191      if (s) {
1192        // Skip blank chars
1193        do { s++; } while (s && isspace(*s));
1194
1195#define _UFM UINTX_FORMAT
1196#define _DFM INTX_FORMAT
1197
1198        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1199        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1200        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1201                   &state,          // 3  %c
1202                   &ppid,           // 4  %d
1203                   &pgrp,           // 5  %d
1204                   &session,        // 6  %d
1205                   &nr,             // 7  %d
1206                   &tpgrp,          // 8  %d
1207                   &flags,          // 9  %lu
1208                   &minflt,         // 10 %lu
1209                   &cminflt,        // 11 %lu
1210                   &majflt,         // 12 %lu
1211                   &cmajflt,        // 13 %lu
1212                   &utime,          // 14 %lu
1213                   &stime,          // 15 %lu
1214                   &cutime,         // 16 %ld
1215                   &cstime,         // 17 %ld
1216                   &prio,           // 18 %ld
1217                   &nice,           // 19 %ld
1218                   &junk,           // 20 %ld
1219                   &it_real,        // 21 %ld
1220                   &start,          // 22 UINTX_FORMAT
1221                   &vsize,          // 23 UINTX_FORMAT
1222                   &rss,            // 24 INTX_FORMAT
1223                   &rsslim,         // 25 UINTX_FORMAT
1224                   &scodes,         // 26 UINTX_FORMAT
1225                   &ecode,          // 27 UINTX_FORMAT
1226                   &stack_start);   // 28 UINTX_FORMAT
1227      }
1228
1229#undef _UFM
1230#undef _DFM
1231
1232      if (i != 28 - 2) {
1233        assert(false, "Bad conversion from /proc/self/stat");
1234        // product mode - assume we are the initial thread, good luck in the
1235        // embedded case.
1236        warning("Can't detect initial thread stack location - bad conversion");
1237        stack_start = (uintptr_t) &rlim;
1238      }
1239    } else {
1240      // For some reason we can't open /proc/self/stat (for example, running on
1241      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1242      // most cases, so don't abort:
1243      warning("Can't detect initial thread stack location - no /proc/self/stat");
1244      stack_start = (uintptr_t) &rlim;
1245    }
1246  }
1247
1248  // Now we have a pointer (stack_start) very close to the stack top, the
1249  // next thing to do is to figure out the exact location of stack top. We
1250  // can find out the virtual memory area that contains stack_start by
1251  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1252  // and its upper limit is the real stack top. (again, this would fail if
1253  // running inside chroot, because /proc may not exist.)
1254
1255  uintptr_t stack_top;
1256  address low, high;
1257  if (find_vma((address)stack_start, &low, &high)) {
1258    // success, "high" is the true stack top. (ignore "low", because initial
1259    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1260    stack_top = (uintptr_t)high;
1261  } else {
1262    // failed, likely because /proc/self/maps does not exist
1263    warning("Can't detect initial thread stack location - find_vma failed");
1264    // best effort: stack_start is normally within a few pages below the real
1265    // stack top, use it as stack top, and reduce stack size so we won't put
1266    // guard page outside stack.
1267    stack_top = stack_start;
1268    stack_size -= 16 * page_size();
1269  }
1270
1271  // stack_top could be partially down the page so align it
1272  stack_top = align_size_up(stack_top, page_size());
1273
1274  if (max_size && stack_size > max_size) {
1275    _initial_thread_stack_size = max_size;
1276  } else {
1277    _initial_thread_stack_size = stack_size;
1278  }
1279
1280  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1281  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1282}
1283
1284////////////////////////////////////////////////////////////////////////////////
1285// time support
1286
1287// Time since start-up in seconds to a fine granularity.
1288// Used by VMSelfDestructTimer and the MemProfiler.
1289double os::elapsedTime() {
1290
1291  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1292}
1293
1294jlong os::elapsed_counter() {
1295  return javaTimeNanos() - initial_time_count;
1296}
1297
1298jlong os::elapsed_frequency() {
1299  return NANOSECS_PER_SEC; // nanosecond resolution
1300}
1301
1302bool os::supports_vtime() { return true; }
1303bool os::enable_vtime()   { return false; }
1304bool os::vtime_enabled()  { return false; }
1305
1306double os::elapsedVTime() {
1307  struct rusage usage;
1308  int retval = getrusage(RUSAGE_THREAD, &usage);
1309  if (retval == 0) {
1310    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1311  } else {
1312    // better than nothing, but not much
1313    return elapsedTime();
1314  }
1315}
1316
1317jlong os::javaTimeMillis() {
1318  timeval time;
1319  int status = gettimeofday(&time, NULL);
1320  assert(status != -1, "linux error");
1321  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1322}
1323
1324#ifndef CLOCK_MONOTONIC
1325  #define CLOCK_MONOTONIC (1)
1326#endif
1327
1328void os::Linux::clock_init() {
1329  // we do dlopen's in this particular order due to bug in linux
1330  // dynamical loader (see 6348968) leading to crash on exit
1331  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1332  if (handle == NULL) {
1333    handle = dlopen("librt.so", RTLD_LAZY);
1334  }
1335
1336  if (handle) {
1337    int (*clock_getres_func)(clockid_t, struct timespec*) =
1338           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1339    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1340           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1341    if (clock_getres_func && clock_gettime_func) {
1342      // See if monotonic clock is supported by the kernel. Note that some
1343      // early implementations simply return kernel jiffies (updated every
1344      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1345      // for nano time (though the monotonic property is still nice to have).
1346      // It's fixed in newer kernels, however clock_getres() still returns
1347      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1348      // resolution for now. Hopefully as people move to new kernels, this
1349      // won't be a problem.
1350      struct timespec res;
1351      struct timespec tp;
1352      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1353          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1354        // yes, monotonic clock is supported
1355        _clock_gettime = clock_gettime_func;
1356        return;
1357      } else {
1358        // close librt if there is no monotonic clock
1359        dlclose(handle);
1360      }
1361    }
1362  }
1363  warning("No monotonic clock was available - timed services may " \
1364          "be adversely affected if the time-of-day clock changes");
1365}
1366
1367#ifndef SYS_clock_getres
1368  #if defined(IA32) || defined(AMD64)
1369    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1370    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1371  #else
1372    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1373    #define sys_clock_getres(x,y)  -1
1374  #endif
1375#else
1376  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1377#endif
1378
1379void os::Linux::fast_thread_clock_init() {
1380  if (!UseLinuxPosixThreadCPUClocks) {
1381    return;
1382  }
1383  clockid_t clockid;
1384  struct timespec tp;
1385  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1386      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1387
1388  // Switch to using fast clocks for thread cpu time if
1389  // the sys_clock_getres() returns 0 error code.
1390  // Note, that some kernels may support the current thread
1391  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1392  // returned by the pthread_getcpuclockid().
1393  // If the fast Posix clocks are supported then the sys_clock_getres()
1394  // must return at least tp.tv_sec == 0 which means a resolution
1395  // better than 1 sec. This is extra check for reliability.
1396
1397  if (pthread_getcpuclockid_func &&
1398      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1399      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1400    _supports_fast_thread_cpu_time = true;
1401    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1402  }
1403}
1404
1405jlong os::javaTimeNanos() {
1406  if (os::supports_monotonic_clock()) {
1407    struct timespec tp;
1408    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1409    assert(status == 0, "gettime error");
1410    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1411    return result;
1412  } else {
1413    timeval time;
1414    int status = gettimeofday(&time, NULL);
1415    assert(status != -1, "linux error");
1416    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1417    return 1000 * usecs;
1418  }
1419}
1420
1421void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1422  if (os::supports_monotonic_clock()) {
1423    info_ptr->max_value = ALL_64_BITS;
1424
1425    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1426    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1427    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1428  } else {
1429    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1430    info_ptr->max_value = ALL_64_BITS;
1431
1432    // gettimeofday is a real time clock so it skips
1433    info_ptr->may_skip_backward = true;
1434    info_ptr->may_skip_forward = true;
1435  }
1436
1437  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1438}
1439
1440// Return the real, user, and system times in seconds from an
1441// arbitrary fixed point in the past.
1442bool os::getTimesSecs(double* process_real_time,
1443                      double* process_user_time,
1444                      double* process_system_time) {
1445  struct tms ticks;
1446  clock_t real_ticks = times(&ticks);
1447
1448  if (real_ticks == (clock_t) (-1)) {
1449    return false;
1450  } else {
1451    double ticks_per_second = (double) clock_tics_per_sec;
1452    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1453    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1454    *process_real_time = ((double) real_ticks) / ticks_per_second;
1455
1456    return true;
1457  }
1458}
1459
1460
1461char * os::local_time_string(char *buf, size_t buflen) {
1462  struct tm t;
1463  time_t long_time;
1464  time(&long_time);
1465  localtime_r(&long_time, &t);
1466  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1467               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1468               t.tm_hour, t.tm_min, t.tm_sec);
1469  return buf;
1470}
1471
1472struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1473  return localtime_r(clock, res);
1474}
1475
1476////////////////////////////////////////////////////////////////////////////////
1477// runtime exit support
1478
1479// Note: os::shutdown() might be called very early during initialization, or
1480// called from signal handler. Before adding something to os::shutdown(), make
1481// sure it is async-safe and can handle partially initialized VM.
1482void os::shutdown() {
1483
1484  // allow PerfMemory to attempt cleanup of any persistent resources
1485  perfMemory_exit();
1486
1487  // needs to remove object in file system
1488  AttachListener::abort();
1489
1490  // flush buffered output, finish log files
1491  ostream_abort();
1492
1493  // Check for abort hook
1494  abort_hook_t abort_hook = Arguments::abort_hook();
1495  if (abort_hook != NULL) {
1496    abort_hook();
1497  }
1498
1499}
1500
1501// Note: os::abort() might be called very early during initialization, or
1502// called from signal handler. Before adding something to os::abort(), make
1503// sure it is async-safe and can handle partially initialized VM.
1504void os::abort(bool dump_core) {
1505  os::shutdown();
1506  if (dump_core) {
1507#ifndef PRODUCT
1508    fdStream out(defaultStream::output_fd());
1509    out.print_raw("Current thread is ");
1510    char buf[16];
1511    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1512    out.print_raw_cr(buf);
1513    out.print_raw_cr("Dumping core ...");
1514#endif
1515    ::abort(); // dump core
1516  }
1517
1518  ::exit(1);
1519}
1520
1521// Die immediately, no exit hook, no abort hook, no cleanup.
1522void os::die() {
1523  // _exit() on LinuxThreads only kills current thread
1524  ::abort();
1525}
1526
1527
1528// This method is a copy of JDK's sysGetLastErrorString
1529// from src/solaris/hpi/src/system_md.c
1530
1531size_t os::lasterror(char *buf, size_t len) {
1532  if (errno == 0)  return 0;
1533
1534  const char *s = ::strerror(errno);
1535  size_t n = ::strlen(s);
1536  if (n >= len) {
1537    n = len - 1;
1538  }
1539  ::strncpy(buf, s, n);
1540  buf[n] = '\0';
1541  return n;
1542}
1543
1544intx os::current_thread_id() { return (intx)pthread_self(); }
1545int os::current_process_id() {
1546
1547  // Under the old linux thread library, linux gives each thread
1548  // its own process id. Because of this each thread will return
1549  // a different pid if this method were to return the result
1550  // of getpid(2). Linux provides no api that returns the pid
1551  // of the launcher thread for the vm. This implementation
1552  // returns a unique pid, the pid of the launcher thread
1553  // that starts the vm 'process'.
1554
1555  // Under the NPTL, getpid() returns the same pid as the
1556  // launcher thread rather than a unique pid per thread.
1557  // Use gettid() if you want the old pre NPTL behaviour.
1558
1559  // if you are looking for the result of a call to getpid() that
1560  // returns a unique pid for the calling thread, then look at the
1561  // OSThread::thread_id() method in osThread_linux.hpp file
1562
1563  return (int)(_initial_pid ? _initial_pid : getpid());
1564}
1565
1566// DLL functions
1567
1568const char* os::dll_file_extension() { return ".so"; }
1569
1570// This must be hard coded because it's the system's temporary
1571// directory not the java application's temp directory, ala java.io.tmpdir.
1572const char* os::get_temp_directory() { return "/tmp"; }
1573
1574static bool file_exists(const char* filename) {
1575  struct stat statbuf;
1576  if (filename == NULL || strlen(filename) == 0) {
1577    return false;
1578  }
1579  return os::stat(filename, &statbuf) == 0;
1580}
1581
1582bool os::dll_build_name(char* buffer, size_t buflen,
1583                        const char* pname, const char* fname) {
1584  bool retval = false;
1585  // Copied from libhpi
1586  const size_t pnamelen = pname ? strlen(pname) : 0;
1587
1588  // Return error on buffer overflow.
1589  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1590    return retval;
1591  }
1592
1593  if (pnamelen == 0) {
1594    snprintf(buffer, buflen, "lib%s.so", fname);
1595    retval = true;
1596  } else if (strchr(pname, *os::path_separator()) != NULL) {
1597    int n;
1598    char** pelements = split_path(pname, &n);
1599    if (pelements == NULL) {
1600      return false;
1601    }
1602    for (int i = 0; i < n; i++) {
1603      // Really shouldn't be NULL, but check can't hurt
1604      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1605        continue; // skip the empty path values
1606      }
1607      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1608      if (file_exists(buffer)) {
1609        retval = true;
1610        break;
1611      }
1612    }
1613    // release the storage
1614    for (int i = 0; i < n; i++) {
1615      if (pelements[i] != NULL) {
1616        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1617      }
1618    }
1619    if (pelements != NULL) {
1620      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1621    }
1622  } else {
1623    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1624    retval = true;
1625  }
1626  return retval;
1627}
1628
1629// check if addr is inside libjvm.so
1630bool os::address_is_in_vm(address addr) {
1631  static address libjvm_base_addr;
1632  Dl_info dlinfo;
1633
1634  if (libjvm_base_addr == NULL) {
1635    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1636      libjvm_base_addr = (address)dlinfo.dli_fbase;
1637    }
1638    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1639  }
1640
1641  if (dladdr((void *)addr, &dlinfo) != 0) {
1642    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1643  }
1644
1645  return false;
1646}
1647
1648bool os::dll_address_to_function_name(address addr, char *buf,
1649                                      int buflen, int *offset) {
1650  // buf is not optional, but offset is optional
1651  assert(buf != NULL, "sanity check");
1652
1653  Dl_info dlinfo;
1654
1655  if (dladdr((void*)addr, &dlinfo) != 0) {
1656    // see if we have a matching symbol
1657    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1658      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1659        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1660      }
1661      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1662      return true;
1663    }
1664    // no matching symbol so try for just file info
1665    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1666      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1667                          buf, buflen, offset, dlinfo.dli_fname)) {
1668        return true;
1669      }
1670    }
1671  }
1672
1673  buf[0] = '\0';
1674  if (offset != NULL) *offset = -1;
1675  return false;
1676}
1677
1678struct _address_to_library_name {
1679  address addr;          // input : memory address
1680  size_t  buflen;        //         size of fname
1681  char*   fname;         // output: library name
1682  address base;          //         library base addr
1683};
1684
1685static int address_to_library_name_callback(struct dl_phdr_info *info,
1686                                            size_t size, void *data) {
1687  int i;
1688  bool found = false;
1689  address libbase = NULL;
1690  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1691
1692  // iterate through all loadable segments
1693  for (i = 0; i < info->dlpi_phnum; i++) {
1694    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1695    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1696      // base address of a library is the lowest address of its loaded
1697      // segments.
1698      if (libbase == NULL || libbase > segbase) {
1699        libbase = segbase;
1700      }
1701      // see if 'addr' is within current segment
1702      if (segbase <= d->addr &&
1703          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1704        found = true;
1705      }
1706    }
1707  }
1708
1709  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1710  // so dll_address_to_library_name() can fall through to use dladdr() which
1711  // can figure out executable name from argv[0].
1712  if (found && info->dlpi_name && info->dlpi_name[0]) {
1713    d->base = libbase;
1714    if (d->fname) {
1715      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1716    }
1717    return 1;
1718  }
1719  return 0;
1720}
1721
1722bool os::dll_address_to_library_name(address addr, char* buf,
1723                                     int buflen, int* offset) {
1724  // buf is not optional, but offset is optional
1725  assert(buf != NULL, "sanity check");
1726
1727  Dl_info dlinfo;
1728  struct _address_to_library_name data;
1729
1730  // There is a bug in old glibc dladdr() implementation that it could resolve
1731  // to wrong library name if the .so file has a base address != NULL. Here
1732  // we iterate through the program headers of all loaded libraries to find
1733  // out which library 'addr' really belongs to. This workaround can be
1734  // removed once the minimum requirement for glibc is moved to 2.3.x.
1735  data.addr = addr;
1736  data.fname = buf;
1737  data.buflen = buflen;
1738  data.base = NULL;
1739  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1740
1741  if (rslt) {
1742    // buf already contains library name
1743    if (offset) *offset = addr - data.base;
1744    return true;
1745  }
1746  if (dladdr((void*)addr, &dlinfo) != 0) {
1747    if (dlinfo.dli_fname != NULL) {
1748      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1749    }
1750    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1751      *offset = addr - (address)dlinfo.dli_fbase;
1752    }
1753    return true;
1754  }
1755
1756  buf[0] = '\0';
1757  if (offset) *offset = -1;
1758  return false;
1759}
1760
1761// Loads .dll/.so and
1762// in case of error it checks if .dll/.so was built for the
1763// same architecture as Hotspot is running on
1764
1765
1766// Remember the stack's state. The Linux dynamic linker will change
1767// the stack to 'executable' at most once, so we must safepoint only once.
1768bool os::Linux::_stack_is_executable = false;
1769
1770// VM operation that loads a library.  This is necessary if stack protection
1771// of the Java stacks can be lost during loading the library.  If we
1772// do not stop the Java threads, they can stack overflow before the stacks
1773// are protected again.
1774class VM_LinuxDllLoad: public VM_Operation {
1775 private:
1776  const char *_filename;
1777  char *_ebuf;
1778  int _ebuflen;
1779  void *_lib;
1780 public:
1781  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1782    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1783  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1784  void doit() {
1785    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1786    os::Linux::_stack_is_executable = true;
1787  }
1788  void* loaded_library() { return _lib; }
1789};
1790
1791void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1792  void * result = NULL;
1793  bool load_attempted = false;
1794
1795  // Check whether the library to load might change execution rights
1796  // of the stack. If they are changed, the protection of the stack
1797  // guard pages will be lost. We need a safepoint to fix this.
1798  //
1799  // See Linux man page execstack(8) for more info.
1800  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1801    ElfFile ef(filename);
1802    if (!ef.specifies_noexecstack()) {
1803      if (!is_init_completed()) {
1804        os::Linux::_stack_is_executable = true;
1805        // This is OK - No Java threads have been created yet, and hence no
1806        // stack guard pages to fix.
1807        //
1808        // This should happen only when you are building JDK7 using a very
1809        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1810        //
1811        // Dynamic loader will make all stacks executable after
1812        // this function returns, and will not do that again.
1813        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1814      } else {
1815        warning("You have loaded library %s which might have disabled stack guard. "
1816                "The VM will try to fix the stack guard now.\n"
1817                "It's highly recommended that you fix the library with "
1818                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1819                filename);
1820
1821        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1822        JavaThread *jt = JavaThread::current();
1823        if (jt->thread_state() != _thread_in_native) {
1824          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1825          // that requires ExecStack. Cannot enter safe point. Let's give up.
1826          warning("Unable to fix stack guard. Giving up.");
1827        } else {
1828          if (!LoadExecStackDllInVMThread) {
1829            // This is for the case where the DLL has an static
1830            // constructor function that executes JNI code. We cannot
1831            // load such DLLs in the VMThread.
1832            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1833          }
1834
1835          ThreadInVMfromNative tiv(jt);
1836          debug_only(VMNativeEntryWrapper vew;)
1837
1838          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1839          VMThread::execute(&op);
1840          if (LoadExecStackDllInVMThread) {
1841            result = op.loaded_library();
1842          }
1843          load_attempted = true;
1844        }
1845      }
1846    }
1847  }
1848
1849  if (!load_attempted) {
1850    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1851  }
1852
1853  if (result != NULL) {
1854    // Successful loading
1855    return result;
1856  }
1857
1858  Elf32_Ehdr elf_head;
1859  int diag_msg_max_length=ebuflen-strlen(ebuf);
1860  char* diag_msg_buf=ebuf+strlen(ebuf);
1861
1862  if (diag_msg_max_length==0) {
1863    // No more space in ebuf for additional diagnostics message
1864    return NULL;
1865  }
1866
1867
1868  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1869
1870  if (file_descriptor < 0) {
1871    // Can't open library, report dlerror() message
1872    return NULL;
1873  }
1874
1875  bool failed_to_read_elf_head=
1876    (sizeof(elf_head)!=
1877     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1878
1879  ::close(file_descriptor);
1880  if (failed_to_read_elf_head) {
1881    // file i/o error - report dlerror() msg
1882    return NULL;
1883  }
1884
1885  typedef struct {
1886    Elf32_Half  code;         // Actual value as defined in elf.h
1887    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1888    char        elf_class;    // 32 or 64 bit
1889    char        endianess;    // MSB or LSB
1890    char*       name;         // String representation
1891  } arch_t;
1892
1893#ifndef EM_486
1894  #define EM_486          6               /* Intel 80486 */
1895#endif
1896
1897  static const arch_t arch_array[]={
1898    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1899    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1900    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1901    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1902    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1903    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1904    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1905    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1906#if defined(VM_LITTLE_ENDIAN)
1907    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1908#else
1909    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1910#endif
1911    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1912    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1913    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1914    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1915    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1916    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1917    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1918  };
1919
1920#if  (defined IA32)
1921  static  Elf32_Half running_arch_code=EM_386;
1922#elif   (defined AMD64)
1923  static  Elf32_Half running_arch_code=EM_X86_64;
1924#elif  (defined IA64)
1925  static  Elf32_Half running_arch_code=EM_IA_64;
1926#elif  (defined __sparc) && (defined _LP64)
1927  static  Elf32_Half running_arch_code=EM_SPARCV9;
1928#elif  (defined __sparc) && (!defined _LP64)
1929  static  Elf32_Half running_arch_code=EM_SPARC;
1930#elif  (defined __powerpc64__)
1931  static  Elf32_Half running_arch_code=EM_PPC64;
1932#elif  (defined __powerpc__)
1933  static  Elf32_Half running_arch_code=EM_PPC;
1934#elif  (defined ARM)
1935  static  Elf32_Half running_arch_code=EM_ARM;
1936#elif  (defined S390)
1937  static  Elf32_Half running_arch_code=EM_S390;
1938#elif  (defined ALPHA)
1939  static  Elf32_Half running_arch_code=EM_ALPHA;
1940#elif  (defined MIPSEL)
1941  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1942#elif  (defined PARISC)
1943  static  Elf32_Half running_arch_code=EM_PARISC;
1944#elif  (defined MIPS)
1945  static  Elf32_Half running_arch_code=EM_MIPS;
1946#elif  (defined M68K)
1947  static  Elf32_Half running_arch_code=EM_68K;
1948#else
1949    #error Method os::dll_load requires that one of following is defined:\
1950         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1951#endif
1952
1953  // Identify compatability class for VM's architecture and library's architecture
1954  // Obtain string descriptions for architectures
1955
1956  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1957  int running_arch_index=-1;
1958
1959  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1960    if (running_arch_code == arch_array[i].code) {
1961      running_arch_index    = i;
1962    }
1963    if (lib_arch.code == arch_array[i].code) {
1964      lib_arch.compat_class = arch_array[i].compat_class;
1965      lib_arch.name         = arch_array[i].name;
1966    }
1967  }
1968
1969  assert(running_arch_index != -1,
1970         "Didn't find running architecture code (running_arch_code) in arch_array");
1971  if (running_arch_index == -1) {
1972    // Even though running architecture detection failed
1973    // we may still continue with reporting dlerror() message
1974    return NULL;
1975  }
1976
1977  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1978    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1979    return NULL;
1980  }
1981
1982#ifndef S390
1983  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1984    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1985    return NULL;
1986  }
1987#endif // !S390
1988
1989  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1990    if (lib_arch.name!=NULL) {
1991      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1992                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1993                 lib_arch.name, arch_array[running_arch_index].name);
1994    } else {
1995      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1996                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1997                 lib_arch.code,
1998                 arch_array[running_arch_index].name);
1999    }
2000  }
2001
2002  return NULL;
2003}
2004
2005void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2006                                int ebuflen) {
2007  void * result = ::dlopen(filename, RTLD_LAZY);
2008  if (result == NULL) {
2009    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2010    ebuf[ebuflen-1] = '\0';
2011  }
2012  return result;
2013}
2014
2015void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2016                                       int ebuflen) {
2017  void * result = NULL;
2018  if (LoadExecStackDllInVMThread) {
2019    result = dlopen_helper(filename, ebuf, ebuflen);
2020  }
2021
2022  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2023  // library that requires an executable stack, or which does not have this
2024  // stack attribute set, dlopen changes the stack attribute to executable. The
2025  // read protection of the guard pages gets lost.
2026  //
2027  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2028  // may have been queued at the same time.
2029
2030  if (!_stack_is_executable) {
2031    JavaThread *jt = Threads::first();
2032
2033    while (jt) {
2034      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2035          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2036        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2037                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2038          warning("Attempt to reguard stack yellow zone failed.");
2039        }
2040      }
2041      jt = jt->next();
2042    }
2043  }
2044
2045  return result;
2046}
2047
2048// glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2049// chances are you might want to run the generated bits against glibc-2.0
2050// libdl.so, so always use locking for any version of glibc.
2051//
2052void* os::dll_lookup(void* handle, const char* name) {
2053  pthread_mutex_lock(&dl_mutex);
2054  void* res = dlsym(handle, name);
2055  pthread_mutex_unlock(&dl_mutex);
2056  return res;
2057}
2058
2059void* os::get_default_process_handle() {
2060  return (void*)::dlopen(NULL, RTLD_LAZY);
2061}
2062
2063static bool _print_ascii_file(const char* filename, outputStream* st) {
2064  int fd = ::open(filename, O_RDONLY);
2065  if (fd == -1) {
2066    return false;
2067  }
2068
2069  char buf[32];
2070  int bytes;
2071  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2072    st->print_raw(buf, bytes);
2073  }
2074
2075  ::close(fd);
2076
2077  return true;
2078}
2079
2080void os::print_dll_info(outputStream *st) {
2081  st->print_cr("Dynamic libraries:");
2082
2083  char fname[32];
2084  pid_t pid = os::Linux::gettid();
2085
2086  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2087
2088  if (!_print_ascii_file(fname, st)) {
2089    st->print("Can not get library information for pid = %d\n", pid);
2090  }
2091}
2092
2093int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2094  FILE *procmapsFile = NULL;
2095
2096  // Open the procfs maps file for the current process
2097  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2098    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2099    char line[PATH_MAX + 100];
2100
2101    // Read line by line from 'file'
2102    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2103      u8 base, top, offset, inode;
2104      char permissions[5];
2105      char device[6];
2106      char name[PATH_MAX + 1];
2107
2108      // Parse fields from line
2109      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2110
2111      // Filter by device id '00:00' so that we only get file system mapped files.
2112      if (strcmp(device, "00:00") != 0) {
2113
2114        // Call callback with the fields of interest
2115        if(callback(name, (address)base, (address)top, param)) {
2116          // Oops abort, callback aborted
2117          fclose(procmapsFile);
2118          return 1;
2119        }
2120      }
2121    }
2122    fclose(procmapsFile);
2123  }
2124  return 0;
2125}
2126
2127void os::print_os_info_brief(outputStream* st) {
2128  os::Linux::print_distro_info(st);
2129
2130  os::Posix::print_uname_info(st);
2131
2132  os::Linux::print_libversion_info(st);
2133
2134}
2135
2136void os::print_os_info(outputStream* st) {
2137  st->print("OS:");
2138
2139  os::Linux::print_distro_info(st);
2140
2141  os::Posix::print_uname_info(st);
2142
2143  // Print warning if unsafe chroot environment detected
2144  if (unsafe_chroot_detected) {
2145    st->print("WARNING!! ");
2146    st->print_cr("%s", unstable_chroot_error);
2147  }
2148
2149  os::Linux::print_libversion_info(st);
2150
2151  os::Posix::print_rlimit_info(st);
2152
2153  os::Posix::print_load_average(st);
2154
2155  os::Linux::print_full_memory_info(st);
2156}
2157
2158// Try to identify popular distros.
2159// Most Linux distributions have a /etc/XXX-release file, which contains
2160// the OS version string. Newer Linux distributions have a /etc/lsb-release
2161// file that also contains the OS version string. Some have more than one
2162// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2163// /etc/redhat-release.), so the order is important.
2164// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2165// their own specific XXX-release file as well as a redhat-release file.
2166// Because of this the XXX-release file needs to be searched for before the
2167// redhat-release file.
2168// Since Red Hat has a lsb-release file that is not very descriptive the
2169// search for redhat-release needs to be before lsb-release.
2170// Since the lsb-release file is the new standard it needs to be searched
2171// before the older style release files.
2172// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2173// next to last resort.  The os-release file is a new standard that contains
2174// distribution information and the system-release file seems to be an old
2175// standard that has been replaced by the lsb-release and os-release files.
2176// Searching for the debian_version file is the last resort.  It contains
2177// an informative string like "6.0.6" or "wheezy/sid". Because of this
2178// "Debian " is printed before the contents of the debian_version file.
2179void os::Linux::print_distro_info(outputStream* st) {
2180  if (!_print_ascii_file("/etc/oracle-release", st) &&
2181      !_print_ascii_file("/etc/mandriva-release", st) &&
2182      !_print_ascii_file("/etc/mandrake-release", st) &&
2183      !_print_ascii_file("/etc/sun-release", st) &&
2184      !_print_ascii_file("/etc/redhat-release", st) &&
2185      !_print_ascii_file("/etc/lsb-release", st) &&
2186      !_print_ascii_file("/etc/SuSE-release", st) &&
2187      !_print_ascii_file("/etc/turbolinux-release", st) &&
2188      !_print_ascii_file("/etc/gentoo-release", st) &&
2189      !_print_ascii_file("/etc/ltib-release", st) &&
2190      !_print_ascii_file("/etc/angstrom-version", st) &&
2191      !_print_ascii_file("/etc/system-release", st) &&
2192      !_print_ascii_file("/etc/os-release", st)) {
2193
2194    if (file_exists("/etc/debian_version")) {
2195      st->print("Debian ");
2196      _print_ascii_file("/etc/debian_version", st);
2197    } else {
2198      st->print("Linux");
2199    }
2200  }
2201  st->cr();
2202}
2203
2204void os::Linux::print_libversion_info(outputStream* st) {
2205  // libc, pthread
2206  st->print("libc:");
2207  st->print("%s ", os::Linux::glibc_version());
2208  st->print("%s ", os::Linux::libpthread_version());
2209  if (os::Linux::is_LinuxThreads()) {
2210    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2211  }
2212  st->cr();
2213}
2214
2215void os::Linux::print_full_memory_info(outputStream* st) {
2216  st->print("\n/proc/meminfo:\n");
2217  _print_ascii_file("/proc/meminfo", st);
2218  st->cr();
2219}
2220
2221void os::print_memory_info(outputStream* st) {
2222
2223  st->print("Memory:");
2224  st->print(" %dk page", os::vm_page_size()>>10);
2225
2226  // values in struct sysinfo are "unsigned long"
2227  struct sysinfo si;
2228  sysinfo(&si);
2229
2230  st->print(", physical " UINT64_FORMAT "k",
2231            os::physical_memory() >> 10);
2232  st->print("(" UINT64_FORMAT "k free)",
2233            os::available_memory() >> 10);
2234  st->print(", swap " UINT64_FORMAT "k",
2235            ((jlong)si.totalswap * si.mem_unit) >> 10);
2236  st->print("(" UINT64_FORMAT "k free)",
2237            ((jlong)si.freeswap * si.mem_unit) >> 10);
2238  st->cr();
2239}
2240
2241void os::pd_print_cpu_info(outputStream* st) {
2242  st->print("\n/proc/cpuinfo:\n");
2243  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2244    st->print("  <Not Available>");
2245  }
2246  st->cr();
2247}
2248
2249void os::print_siginfo(outputStream* st, void* siginfo) {
2250  const siginfo_t* si = (const siginfo_t*)siginfo;
2251
2252  os::Posix::print_siginfo_brief(st, si);
2253#if INCLUDE_CDS
2254  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2255      UseSharedSpaces) {
2256    FileMapInfo* mapinfo = FileMapInfo::current_info();
2257    if (mapinfo->is_in_shared_space(si->si_addr)) {
2258      st->print("\n\nError accessing class data sharing archive."   \
2259                " Mapped file inaccessible during execution, "      \
2260                " possible disk/network problem.");
2261    }
2262  }
2263#endif
2264  st->cr();
2265}
2266
2267
2268static void print_signal_handler(outputStream* st, int sig,
2269                                 char* buf, size_t buflen);
2270
2271void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2272  st->print_cr("Signal Handlers:");
2273  print_signal_handler(st, SIGSEGV, buf, buflen);
2274  print_signal_handler(st, SIGBUS , buf, buflen);
2275  print_signal_handler(st, SIGFPE , buf, buflen);
2276  print_signal_handler(st, SIGPIPE, buf, buflen);
2277  print_signal_handler(st, SIGXFSZ, buf, buflen);
2278  print_signal_handler(st, SIGILL , buf, buflen);
2279  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2280  print_signal_handler(st, SR_signum, buf, buflen);
2281  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2282  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2283  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2284  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2285#if defined(PPC64)
2286  print_signal_handler(st, SIGTRAP, buf, buflen);
2287#endif
2288}
2289
2290static char saved_jvm_path[MAXPATHLEN] = {0};
2291
2292// Find the full path to the current module, libjvm.so
2293void os::jvm_path(char *buf, jint buflen) {
2294  // Error checking.
2295  if (buflen < MAXPATHLEN) {
2296    assert(false, "must use a large-enough buffer");
2297    buf[0] = '\0';
2298    return;
2299  }
2300  // Lazy resolve the path to current module.
2301  if (saved_jvm_path[0] != 0) {
2302    strcpy(buf, saved_jvm_path);
2303    return;
2304  }
2305
2306  char dli_fname[MAXPATHLEN];
2307  bool ret = dll_address_to_library_name(
2308                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2309                                         dli_fname, sizeof(dli_fname), NULL);
2310  assert(ret, "cannot locate libjvm");
2311  char *rp = NULL;
2312  if (ret && dli_fname[0] != '\0') {
2313    rp = realpath(dli_fname, buf);
2314  }
2315  if (rp == NULL) {
2316    return;
2317  }
2318
2319  if (Arguments::sun_java_launcher_is_altjvm()) {
2320    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2321    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2322    // If "/jre/lib/" appears at the right place in the string, then
2323    // assume we are installed in a JDK and we're done. Otherwise, check
2324    // for a JAVA_HOME environment variable and fix up the path so it
2325    // looks like libjvm.so is installed there (append a fake suffix
2326    // hotspot/libjvm.so).
2327    const char *p = buf + strlen(buf) - 1;
2328    for (int count = 0; p > buf && count < 5; ++count) {
2329      for (--p; p > buf && *p != '/'; --p)
2330        /* empty */ ;
2331    }
2332
2333    if (strncmp(p, "/jre/lib/", 9) != 0) {
2334      // Look for JAVA_HOME in the environment.
2335      char* java_home_var = ::getenv("JAVA_HOME");
2336      if (java_home_var != NULL && java_home_var[0] != 0) {
2337        char* jrelib_p;
2338        int len;
2339
2340        // Check the current module name "libjvm.so".
2341        p = strrchr(buf, '/');
2342        if (p == NULL) {
2343          return;
2344        }
2345        assert(strstr(p, "/libjvm") == p, "invalid library name");
2346
2347        rp = realpath(java_home_var, buf);
2348        if (rp == NULL) {
2349          return;
2350        }
2351
2352        // determine if this is a legacy image or modules image
2353        // modules image doesn't have "jre" subdirectory
2354        len = strlen(buf);
2355        assert(len < buflen, "Ran out of buffer room");
2356        jrelib_p = buf + len;
2357        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2358        if (0 != access(buf, F_OK)) {
2359          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2360        }
2361
2362        if (0 == access(buf, F_OK)) {
2363          // Use current module name "libjvm.so"
2364          len = strlen(buf);
2365          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2366        } else {
2367          // Go back to path of .so
2368          rp = realpath(dli_fname, buf);
2369          if (rp == NULL) {
2370            return;
2371          }
2372        }
2373      }
2374    }
2375  }
2376
2377  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2378  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2379}
2380
2381void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2382  // no prefix required, not even "_"
2383}
2384
2385void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2386  // no suffix required
2387}
2388
2389////////////////////////////////////////////////////////////////////////////////
2390// sun.misc.Signal support
2391
2392static volatile jint sigint_count = 0;
2393
2394static void UserHandler(int sig, void *siginfo, void *context) {
2395  // 4511530 - sem_post is serialized and handled by the manager thread. When
2396  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2397  // don't want to flood the manager thread with sem_post requests.
2398  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2399    return;
2400  }
2401
2402  // Ctrl-C is pressed during error reporting, likely because the error
2403  // handler fails to abort. Let VM die immediately.
2404  if (sig == SIGINT && is_error_reported()) {
2405    os::die();
2406  }
2407
2408  os::signal_notify(sig);
2409}
2410
2411void* os::user_handler() {
2412  return CAST_FROM_FN_PTR(void*, UserHandler);
2413}
2414
2415class Semaphore : public StackObj {
2416 public:
2417  Semaphore();
2418  ~Semaphore();
2419  void signal();
2420  void wait();
2421  bool trywait();
2422  bool timedwait(unsigned int sec, int nsec);
2423 private:
2424  sem_t _semaphore;
2425};
2426
2427Semaphore::Semaphore() {
2428  sem_init(&_semaphore, 0, 0);
2429}
2430
2431Semaphore::~Semaphore() {
2432  sem_destroy(&_semaphore);
2433}
2434
2435void Semaphore::signal() {
2436  sem_post(&_semaphore);
2437}
2438
2439void Semaphore::wait() {
2440  sem_wait(&_semaphore);
2441}
2442
2443bool Semaphore::trywait() {
2444  return sem_trywait(&_semaphore) == 0;
2445}
2446
2447bool Semaphore::timedwait(unsigned int sec, int nsec) {
2448
2449  struct timespec ts;
2450  // Semaphore's are always associated with CLOCK_REALTIME
2451  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2452  // see unpackTime for discussion on overflow checking
2453  if (sec >= MAX_SECS) {
2454    ts.tv_sec += MAX_SECS;
2455    ts.tv_nsec = 0;
2456  } else {
2457    ts.tv_sec += sec;
2458    ts.tv_nsec += nsec;
2459    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2460      ts.tv_nsec -= NANOSECS_PER_SEC;
2461      ++ts.tv_sec; // note: this must be <= max_secs
2462    }
2463  }
2464
2465  while (1) {
2466    int result = sem_timedwait(&_semaphore, &ts);
2467    if (result == 0) {
2468      return true;
2469    } else if (errno == EINTR) {
2470      continue;
2471    } else if (errno == ETIMEDOUT) {
2472      return false;
2473    } else {
2474      return false;
2475    }
2476  }
2477}
2478
2479extern "C" {
2480  typedef void (*sa_handler_t)(int);
2481  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2482}
2483
2484void* os::signal(int signal_number, void* handler) {
2485  struct sigaction sigAct, oldSigAct;
2486
2487  sigfillset(&(sigAct.sa_mask));
2488  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2489  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2490
2491  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2492    // -1 means registration failed
2493    return (void *)-1;
2494  }
2495
2496  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2497}
2498
2499void os::signal_raise(int signal_number) {
2500  ::raise(signal_number);
2501}
2502
2503// The following code is moved from os.cpp for making this
2504// code platform specific, which it is by its very nature.
2505
2506// Will be modified when max signal is changed to be dynamic
2507int os::sigexitnum_pd() {
2508  return NSIG;
2509}
2510
2511// a counter for each possible signal value
2512static volatile jint pending_signals[NSIG+1] = { 0 };
2513
2514// Linux(POSIX) specific hand shaking semaphore.
2515static sem_t sig_sem;
2516static Semaphore sr_semaphore;
2517
2518void os::signal_init_pd() {
2519  // Initialize signal structures
2520  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2521
2522  // Initialize signal semaphore
2523  ::sem_init(&sig_sem, 0, 0);
2524}
2525
2526void os::signal_notify(int sig) {
2527  Atomic::inc(&pending_signals[sig]);
2528  ::sem_post(&sig_sem);
2529}
2530
2531static int check_pending_signals(bool wait) {
2532  Atomic::store(0, &sigint_count);
2533  for (;;) {
2534    for (int i = 0; i < NSIG + 1; i++) {
2535      jint n = pending_signals[i];
2536      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2537        return i;
2538      }
2539    }
2540    if (!wait) {
2541      return -1;
2542    }
2543    JavaThread *thread = JavaThread::current();
2544    ThreadBlockInVM tbivm(thread);
2545
2546    bool threadIsSuspended;
2547    do {
2548      thread->set_suspend_equivalent();
2549      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2550      ::sem_wait(&sig_sem);
2551
2552      // were we externally suspended while we were waiting?
2553      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2554      if (threadIsSuspended) {
2555        // The semaphore has been incremented, but while we were waiting
2556        // another thread suspended us. We don't want to continue running
2557        // while suspended because that would surprise the thread that
2558        // suspended us.
2559        ::sem_post(&sig_sem);
2560
2561        thread->java_suspend_self();
2562      }
2563    } while (threadIsSuspended);
2564  }
2565}
2566
2567int os::signal_lookup() {
2568  return check_pending_signals(false);
2569}
2570
2571int os::signal_wait() {
2572  return check_pending_signals(true);
2573}
2574
2575////////////////////////////////////////////////////////////////////////////////
2576// Virtual Memory
2577
2578int os::vm_page_size() {
2579  // Seems redundant as all get out
2580  assert(os::Linux::page_size() != -1, "must call os::init");
2581  return os::Linux::page_size();
2582}
2583
2584// Solaris allocates memory by pages.
2585int os::vm_allocation_granularity() {
2586  assert(os::Linux::page_size() != -1, "must call os::init");
2587  return os::Linux::page_size();
2588}
2589
2590// Rationale behind this function:
2591//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2592//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2593//  samples for JITted code. Here we create private executable mapping over the code cache
2594//  and then we can use standard (well, almost, as mapping can change) way to provide
2595//  info for the reporting script by storing timestamp and location of symbol
2596void linux_wrap_code(char* base, size_t size) {
2597  static volatile jint cnt = 0;
2598
2599  if (!UseOprofile) {
2600    return;
2601  }
2602
2603  char buf[PATH_MAX+1];
2604  int num = Atomic::add(1, &cnt);
2605
2606  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2607           os::get_temp_directory(), os::current_process_id(), num);
2608  unlink(buf);
2609
2610  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2611
2612  if (fd != -1) {
2613    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2614    if (rv != (off_t)-1) {
2615      if (::write(fd, "", 1) == 1) {
2616        mmap(base, size,
2617             PROT_READ|PROT_WRITE|PROT_EXEC,
2618             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2619      }
2620    }
2621    ::close(fd);
2622    unlink(buf);
2623  }
2624}
2625
2626static bool recoverable_mmap_error(int err) {
2627  // See if the error is one we can let the caller handle. This
2628  // list of errno values comes from JBS-6843484. I can't find a
2629  // Linux man page that documents this specific set of errno
2630  // values so while this list currently matches Solaris, it may
2631  // change as we gain experience with this failure mode.
2632  switch (err) {
2633  case EBADF:
2634  case EINVAL:
2635  case ENOTSUP:
2636    // let the caller deal with these errors
2637    return true;
2638
2639  default:
2640    // Any remaining errors on this OS can cause our reserved mapping
2641    // to be lost. That can cause confusion where different data
2642    // structures think they have the same memory mapped. The worst
2643    // scenario is if both the VM and a library think they have the
2644    // same memory mapped.
2645    return false;
2646  }
2647}
2648
2649static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2650                                    int err) {
2651  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2652          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2653          strerror(err), err);
2654}
2655
2656static void warn_fail_commit_memory(char* addr, size_t size,
2657                                    size_t alignment_hint, bool exec,
2658                                    int err) {
2659  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2660          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2661          alignment_hint, exec, strerror(err), err);
2662}
2663
2664// NOTE: Linux kernel does not really reserve the pages for us.
2665//       All it does is to check if there are enough free pages
2666//       left at the time of mmap(). This could be a potential
2667//       problem.
2668int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2669  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2670  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2671                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2672  if (res != (uintptr_t) MAP_FAILED) {
2673    if (UseNUMAInterleaving) {
2674      numa_make_global(addr, size);
2675    }
2676    return 0;
2677  }
2678
2679  int err = errno;  // save errno from mmap() call above
2680
2681  if (!recoverable_mmap_error(err)) {
2682    warn_fail_commit_memory(addr, size, exec, err);
2683    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2684  }
2685
2686  return err;
2687}
2688
2689bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2690  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2691}
2692
2693void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2694                                  const char* mesg) {
2695  assert(mesg != NULL, "mesg must be specified");
2696  int err = os::Linux::commit_memory_impl(addr, size, exec);
2697  if (err != 0) {
2698    // the caller wants all commit errors to exit with the specified mesg:
2699    warn_fail_commit_memory(addr, size, exec, err);
2700    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2701  }
2702}
2703
2704// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2705#ifndef MAP_HUGETLB
2706  #define MAP_HUGETLB 0x40000
2707#endif
2708
2709// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2710#ifndef MADV_HUGEPAGE
2711  #define MADV_HUGEPAGE 14
2712#endif
2713
2714int os::Linux::commit_memory_impl(char* addr, size_t size,
2715                                  size_t alignment_hint, bool exec) {
2716  int err = os::Linux::commit_memory_impl(addr, size, exec);
2717  if (err == 0) {
2718    realign_memory(addr, size, alignment_hint);
2719  }
2720  return err;
2721}
2722
2723bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2724                          bool exec) {
2725  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2726}
2727
2728void os::pd_commit_memory_or_exit(char* addr, size_t size,
2729                                  size_t alignment_hint, bool exec,
2730                                  const char* mesg) {
2731  assert(mesg != NULL, "mesg must be specified");
2732  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2733  if (err != 0) {
2734    // the caller wants all commit errors to exit with the specified mesg:
2735    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2736    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2737  }
2738}
2739
2740void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2741  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2742    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2743    // be supported or the memory may already be backed by huge pages.
2744    ::madvise(addr, bytes, MADV_HUGEPAGE);
2745  }
2746}
2747
2748void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2749  // This method works by doing an mmap over an existing mmaping and effectively discarding
2750  // the existing pages. However it won't work for SHM-based large pages that cannot be
2751  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2752  // small pages on top of the SHM segment. This method always works for small pages, so we
2753  // allow that in any case.
2754  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2755    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2756  }
2757}
2758
2759void os::numa_make_global(char *addr, size_t bytes) {
2760  Linux::numa_interleave_memory(addr, bytes);
2761}
2762
2763// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2764// bind policy to MPOL_PREFERRED for the current thread.
2765#define USE_MPOL_PREFERRED 0
2766
2767void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2768  // To make NUMA and large pages more robust when both enabled, we need to ease
2769  // the requirements on where the memory should be allocated. MPOL_BIND is the
2770  // default policy and it will force memory to be allocated on the specified
2771  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2772  // the specified node, but will not force it. Using this policy will prevent
2773  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2774  // free large pages.
2775  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2776  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2777}
2778
2779bool os::numa_topology_changed() { return false; }
2780
2781size_t os::numa_get_groups_num() {
2782  int max_node = Linux::numa_max_node();
2783  return max_node > 0 ? max_node + 1 : 1;
2784}
2785
2786int os::numa_get_group_id() {
2787  int cpu_id = Linux::sched_getcpu();
2788  if (cpu_id != -1) {
2789    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2790    if (lgrp_id != -1) {
2791      return lgrp_id;
2792    }
2793  }
2794  return 0;
2795}
2796
2797size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2798  for (size_t i = 0; i < size; i++) {
2799    ids[i] = i;
2800  }
2801  return size;
2802}
2803
2804bool os::get_page_info(char *start, page_info* info) {
2805  return false;
2806}
2807
2808char *os::scan_pages(char *start, char* end, page_info* page_expected,
2809                     page_info* page_found) {
2810  return end;
2811}
2812
2813
2814int os::Linux::sched_getcpu_syscall(void) {
2815  unsigned int cpu;
2816  int retval = -1;
2817
2818#if defined(IA32)
2819  #ifndef SYS_getcpu
2820    #define SYS_getcpu 318
2821  #endif
2822  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2823#elif defined(AMD64)
2824// Unfortunately we have to bring all these macros here from vsyscall.h
2825// to be able to compile on old linuxes.
2826  #define __NR_vgetcpu 2
2827  #define VSYSCALL_START (-10UL << 20)
2828  #define VSYSCALL_SIZE 1024
2829  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2830  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2831  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2832  retval = vgetcpu(&cpu, NULL, NULL);
2833#endif
2834
2835  return (retval == -1) ? retval : cpu;
2836}
2837
2838// Something to do with the numa-aware allocator needs these symbols
2839extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2840extern "C" JNIEXPORT void numa_error(char *where) { }
2841extern "C" JNIEXPORT int fork1() { return fork(); }
2842
2843
2844// If we are running with libnuma version > 2, then we should
2845// be trying to use symbols with versions 1.1
2846// If we are running with earlier version, which did not have symbol versions,
2847// we should use the base version.
2848void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2849  void *f = dlvsym(handle, name, "libnuma_1.1");
2850  if (f == NULL) {
2851    f = dlsym(handle, name);
2852  }
2853  return f;
2854}
2855
2856bool os::Linux::libnuma_init() {
2857  // sched_getcpu() should be in libc.
2858  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2859                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2860
2861  // If it's not, try a direct syscall.
2862  if (sched_getcpu() == -1) {
2863    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2864                                    (void*)&sched_getcpu_syscall));
2865  }
2866
2867  if (sched_getcpu() != -1) { // Does it work?
2868    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2869    if (handle != NULL) {
2870      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2871                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2872      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2873                                       libnuma_dlsym(handle, "numa_max_node")));
2874      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2875                                        libnuma_dlsym(handle, "numa_available")));
2876      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2877                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2878      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2879                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2880      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2881                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2882
2883
2884      if (numa_available() != -1) {
2885        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2886        // Create a cpu -> node mapping
2887        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2888        rebuild_cpu_to_node_map();
2889        return true;
2890      }
2891    }
2892  }
2893  return false;
2894}
2895
2896// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2897// The table is later used in get_node_by_cpu().
2898void os::Linux::rebuild_cpu_to_node_map() {
2899  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2900                              // in libnuma (possible values are starting from 16,
2901                              // and continuing up with every other power of 2, but less
2902                              // than the maximum number of CPUs supported by kernel), and
2903                              // is a subject to change (in libnuma version 2 the requirements
2904                              // are more reasonable) we'll just hardcode the number they use
2905                              // in the library.
2906  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2907
2908  size_t cpu_num = os::active_processor_count();
2909  size_t cpu_map_size = NCPUS / BitsPerCLong;
2910  size_t cpu_map_valid_size =
2911    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2912
2913  cpu_to_node()->clear();
2914  cpu_to_node()->at_grow(cpu_num - 1);
2915  size_t node_num = numa_get_groups_num();
2916
2917  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2918  for (size_t i = 0; i < node_num; i++) {
2919    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2920      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2921        if (cpu_map[j] != 0) {
2922          for (size_t k = 0; k < BitsPerCLong; k++) {
2923            if (cpu_map[j] & (1UL << k)) {
2924              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2925            }
2926          }
2927        }
2928      }
2929    }
2930  }
2931  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2932}
2933
2934int os::Linux::get_node_by_cpu(int cpu_id) {
2935  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2936    return cpu_to_node()->at(cpu_id);
2937  }
2938  return -1;
2939}
2940
2941GrowableArray<int>* os::Linux::_cpu_to_node;
2942os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2943os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2944os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2945os::Linux::numa_available_func_t os::Linux::_numa_available;
2946os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2947os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2948os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2949unsigned long* os::Linux::_numa_all_nodes;
2950
2951bool os::pd_uncommit_memory(char* addr, size_t size) {
2952  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2953                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2954  return res  != (uintptr_t) MAP_FAILED;
2955}
2956
2957static address get_stack_commited_bottom(address bottom, size_t size) {
2958  address nbot = bottom;
2959  address ntop = bottom + size;
2960
2961  size_t page_sz = os::vm_page_size();
2962  unsigned pages = size / page_sz;
2963
2964  unsigned char vec[1];
2965  unsigned imin = 1, imax = pages + 1, imid;
2966  int mincore_return_value = 0;
2967
2968  assert(imin <= imax, "Unexpected page size");
2969
2970  while (imin < imax) {
2971    imid = (imax + imin) / 2;
2972    nbot = ntop - (imid * page_sz);
2973
2974    // Use a trick with mincore to check whether the page is mapped or not.
2975    // mincore sets vec to 1 if page resides in memory and to 0 if page
2976    // is swapped output but if page we are asking for is unmapped
2977    // it returns -1,ENOMEM
2978    mincore_return_value = mincore(nbot, page_sz, vec);
2979
2980    if (mincore_return_value == -1) {
2981      // Page is not mapped go up
2982      // to find first mapped page
2983      if (errno != EAGAIN) {
2984        assert(errno == ENOMEM, "Unexpected mincore errno");
2985        imax = imid;
2986      }
2987    } else {
2988      // Page is mapped go down
2989      // to find first not mapped page
2990      imin = imid + 1;
2991    }
2992  }
2993
2994  nbot = nbot + page_sz;
2995
2996  // Adjust stack bottom one page up if last checked page is not mapped
2997  if (mincore_return_value == -1) {
2998    nbot = nbot + page_sz;
2999  }
3000
3001  return nbot;
3002}
3003
3004
3005// Linux uses a growable mapping for the stack, and if the mapping for
3006// the stack guard pages is not removed when we detach a thread the
3007// stack cannot grow beyond the pages where the stack guard was
3008// mapped.  If at some point later in the process the stack expands to
3009// that point, the Linux kernel cannot expand the stack any further
3010// because the guard pages are in the way, and a segfault occurs.
3011//
3012// However, it's essential not to split the stack region by unmapping
3013// a region (leaving a hole) that's already part of the stack mapping,
3014// so if the stack mapping has already grown beyond the guard pages at
3015// the time we create them, we have to truncate the stack mapping.
3016// So, we need to know the extent of the stack mapping when
3017// create_stack_guard_pages() is called.
3018
3019// We only need this for stacks that are growable: at the time of
3020// writing thread stacks don't use growable mappings (i.e. those
3021// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3022// only applies to the main thread.
3023
3024// If the (growable) stack mapping already extends beyond the point
3025// where we're going to put our guard pages, truncate the mapping at
3026// that point by munmap()ping it.  This ensures that when we later
3027// munmap() the guard pages we don't leave a hole in the stack
3028// mapping. This only affects the main/initial thread
3029
3030bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3031  if (os::Linux::is_initial_thread()) {
3032    // As we manually grow stack up to bottom inside create_attached_thread(),
3033    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3034    // we don't need to do anything special.
3035    // Check it first, before calling heavy function.
3036    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3037    unsigned char vec[1];
3038
3039    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3040      // Fallback to slow path on all errors, including EAGAIN
3041      stack_extent = (uintptr_t) get_stack_commited_bottom(
3042                                                           os::Linux::initial_thread_stack_bottom(),
3043                                                           (size_t)addr - stack_extent);
3044    }
3045
3046    if (stack_extent < (uintptr_t)addr) {
3047      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3048    }
3049  }
3050
3051  return os::commit_memory(addr, size, !ExecMem);
3052}
3053
3054// If this is a growable mapping, remove the guard pages entirely by
3055// munmap()ping them.  If not, just call uncommit_memory(). This only
3056// affects the main/initial thread, but guard against future OS changes
3057// It's safe to always unmap guard pages for initial thread because we
3058// always place it right after end of the mapped region
3059
3060bool os::remove_stack_guard_pages(char* addr, size_t size) {
3061  uintptr_t stack_extent, stack_base;
3062
3063  if (os::Linux::is_initial_thread()) {
3064    return ::munmap(addr, size) == 0;
3065  }
3066
3067  return os::uncommit_memory(addr, size);
3068}
3069
3070static address _highest_vm_reserved_address = NULL;
3071
3072// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3073// at 'requested_addr'. If there are existing memory mappings at the same
3074// location, however, they will be overwritten. If 'fixed' is false,
3075// 'requested_addr' is only treated as a hint, the return value may or
3076// may not start from the requested address. Unlike Linux mmap(), this
3077// function returns NULL to indicate failure.
3078static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3079  char * addr;
3080  int flags;
3081
3082  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3083  if (fixed) {
3084    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3085    flags |= MAP_FIXED;
3086  }
3087
3088  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3089  // touch an uncommitted page. Otherwise, the read/write might
3090  // succeed if we have enough swap space to back the physical page.
3091  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3092                       flags, -1, 0);
3093
3094  if (addr != MAP_FAILED) {
3095    // anon_mmap() should only get called during VM initialization,
3096    // don't need lock (actually we can skip locking even it can be called
3097    // from multiple threads, because _highest_vm_reserved_address is just a
3098    // hint about the upper limit of non-stack memory regions.)
3099    if ((address)addr + bytes > _highest_vm_reserved_address) {
3100      _highest_vm_reserved_address = (address)addr + bytes;
3101    }
3102  }
3103
3104  return addr == MAP_FAILED ? NULL : addr;
3105}
3106
3107// Don't update _highest_vm_reserved_address, because there might be memory
3108// regions above addr + size. If so, releasing a memory region only creates
3109// a hole in the address space, it doesn't help prevent heap-stack collision.
3110//
3111static int anon_munmap(char * addr, size_t size) {
3112  return ::munmap(addr, size) == 0;
3113}
3114
3115char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3116                            size_t alignment_hint) {
3117  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3118}
3119
3120bool os::pd_release_memory(char* addr, size_t size) {
3121  return anon_munmap(addr, size);
3122}
3123
3124static address highest_vm_reserved_address() {
3125  return _highest_vm_reserved_address;
3126}
3127
3128static bool linux_mprotect(char* addr, size_t size, int prot) {
3129  // Linux wants the mprotect address argument to be page aligned.
3130  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3131
3132  // According to SUSv3, mprotect() should only be used with mappings
3133  // established by mmap(), and mmap() always maps whole pages. Unaligned
3134  // 'addr' likely indicates problem in the VM (e.g. trying to change
3135  // protection of malloc'ed or statically allocated memory). Check the
3136  // caller if you hit this assert.
3137  assert(addr == bottom, "sanity check");
3138
3139  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3140  return ::mprotect(bottom, size, prot) == 0;
3141}
3142
3143// Set protections specified
3144bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3145                        bool is_committed) {
3146  unsigned int p = 0;
3147  switch (prot) {
3148  case MEM_PROT_NONE: p = PROT_NONE; break;
3149  case MEM_PROT_READ: p = PROT_READ; break;
3150  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3151  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3152  default:
3153    ShouldNotReachHere();
3154  }
3155  // is_committed is unused.
3156  return linux_mprotect(addr, bytes, p);
3157}
3158
3159bool os::guard_memory(char* addr, size_t size) {
3160  return linux_mprotect(addr, size, PROT_NONE);
3161}
3162
3163bool os::unguard_memory(char* addr, size_t size) {
3164  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3165}
3166
3167bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3168                                                    size_t page_size) {
3169  bool result = false;
3170  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3171                 MAP_ANONYMOUS|MAP_PRIVATE,
3172                 -1, 0);
3173  if (p != MAP_FAILED) {
3174    void *aligned_p = align_ptr_up(p, page_size);
3175
3176    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3177
3178    munmap(p, page_size * 2);
3179  }
3180
3181  if (warn && !result) {
3182    warning("TransparentHugePages is not supported by the operating system.");
3183  }
3184
3185  return result;
3186}
3187
3188bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3189  bool result = false;
3190  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3191                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3192                 -1, 0);
3193
3194  if (p != MAP_FAILED) {
3195    // We don't know if this really is a huge page or not.
3196    FILE *fp = fopen("/proc/self/maps", "r");
3197    if (fp) {
3198      while (!feof(fp)) {
3199        char chars[257];
3200        long x = 0;
3201        if (fgets(chars, sizeof(chars), fp)) {
3202          if (sscanf(chars, "%lx-%*x", &x) == 1
3203              && x == (long)p) {
3204            if (strstr (chars, "hugepage")) {
3205              result = true;
3206              break;
3207            }
3208          }
3209        }
3210      }
3211      fclose(fp);
3212    }
3213    munmap(p, page_size);
3214  }
3215
3216  if (warn && !result) {
3217    warning("HugeTLBFS is not supported by the operating system.");
3218  }
3219
3220  return result;
3221}
3222
3223// Set the coredump_filter bits to include largepages in core dump (bit 6)
3224//
3225// From the coredump_filter documentation:
3226//
3227// - (bit 0) anonymous private memory
3228// - (bit 1) anonymous shared memory
3229// - (bit 2) file-backed private memory
3230// - (bit 3) file-backed shared memory
3231// - (bit 4) ELF header pages in file-backed private memory areas (it is
3232//           effective only if the bit 2 is cleared)
3233// - (bit 5) hugetlb private memory
3234// - (bit 6) hugetlb shared memory
3235//
3236static void set_coredump_filter(void) {
3237  FILE *f;
3238  long cdm;
3239
3240  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3241    return;
3242  }
3243
3244  if (fscanf(f, "%lx", &cdm) != 1) {
3245    fclose(f);
3246    return;
3247  }
3248
3249  rewind(f);
3250
3251  if ((cdm & LARGEPAGES_BIT) == 0) {
3252    cdm |= LARGEPAGES_BIT;
3253    fprintf(f, "%#lx", cdm);
3254  }
3255
3256  fclose(f);
3257}
3258
3259// Large page support
3260
3261static size_t _large_page_size = 0;
3262
3263size_t os::Linux::find_large_page_size() {
3264  size_t large_page_size = 0;
3265
3266  // large_page_size on Linux is used to round up heap size. x86 uses either
3267  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3268  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3269  // page as large as 256M.
3270  //
3271  // Here we try to figure out page size by parsing /proc/meminfo and looking
3272  // for a line with the following format:
3273  //    Hugepagesize:     2048 kB
3274  //
3275  // If we can't determine the value (e.g. /proc is not mounted, or the text
3276  // format has been changed), we'll use the largest page size supported by
3277  // the processor.
3278
3279#ifndef ZERO
3280  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3281                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3282#endif // ZERO
3283
3284  FILE *fp = fopen("/proc/meminfo", "r");
3285  if (fp) {
3286    while (!feof(fp)) {
3287      int x = 0;
3288      char buf[16];
3289      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3290        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3291          large_page_size = x * K;
3292          break;
3293        }
3294      } else {
3295        // skip to next line
3296        for (;;) {
3297          int ch = fgetc(fp);
3298          if (ch == EOF || ch == (int)'\n') break;
3299        }
3300      }
3301    }
3302    fclose(fp);
3303  }
3304
3305  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3306    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3307            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3308            proper_unit_for_byte_size(large_page_size));
3309  }
3310
3311  return large_page_size;
3312}
3313
3314size_t os::Linux::setup_large_page_size() {
3315  _large_page_size = Linux::find_large_page_size();
3316  const size_t default_page_size = (size_t)Linux::page_size();
3317  if (_large_page_size > default_page_size) {
3318    _page_sizes[0] = _large_page_size;
3319    _page_sizes[1] = default_page_size;
3320    _page_sizes[2] = 0;
3321  }
3322
3323  return _large_page_size;
3324}
3325
3326bool os::Linux::setup_large_page_type(size_t page_size) {
3327  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3328      FLAG_IS_DEFAULT(UseSHM) &&
3329      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3330
3331    // The type of large pages has not been specified by the user.
3332
3333    // Try UseHugeTLBFS and then UseSHM.
3334    UseHugeTLBFS = UseSHM = true;
3335
3336    // Don't try UseTransparentHugePages since there are known
3337    // performance issues with it turned on. This might change in the future.
3338    UseTransparentHugePages = false;
3339  }
3340
3341  if (UseTransparentHugePages) {
3342    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3343    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3344      UseHugeTLBFS = false;
3345      UseSHM = false;
3346      return true;
3347    }
3348    UseTransparentHugePages = false;
3349  }
3350
3351  if (UseHugeTLBFS) {
3352    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3353    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3354      UseSHM = false;
3355      return true;
3356    }
3357    UseHugeTLBFS = false;
3358  }
3359
3360  return UseSHM;
3361}
3362
3363void os::large_page_init() {
3364  if (!UseLargePages &&
3365      !UseTransparentHugePages &&
3366      !UseHugeTLBFS &&
3367      !UseSHM) {
3368    // Not using large pages.
3369    return;
3370  }
3371
3372  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3373    // The user explicitly turned off large pages.
3374    // Ignore the rest of the large pages flags.
3375    UseTransparentHugePages = false;
3376    UseHugeTLBFS = false;
3377    UseSHM = false;
3378    return;
3379  }
3380
3381  size_t large_page_size = Linux::setup_large_page_size();
3382  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3383
3384  set_coredump_filter();
3385}
3386
3387#ifndef SHM_HUGETLB
3388  #define SHM_HUGETLB 04000
3389#endif
3390
3391char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3392                                            char* req_addr, bool exec) {
3393  // "exec" is passed in but not used.  Creating the shared image for
3394  // the code cache doesn't have an SHM_X executable permission to check.
3395  assert(UseLargePages && UseSHM, "only for SHM large pages");
3396  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3397
3398  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3399    return NULL; // Fallback to small pages.
3400  }
3401
3402  key_t key = IPC_PRIVATE;
3403  char *addr;
3404
3405  bool warn_on_failure = UseLargePages &&
3406                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3407                         !FLAG_IS_DEFAULT(UseSHM) ||
3408                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3409  char msg[128];
3410
3411  // Create a large shared memory region to attach to based on size.
3412  // Currently, size is the total size of the heap
3413  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3414  if (shmid == -1) {
3415    // Possible reasons for shmget failure:
3416    // 1. shmmax is too small for Java heap.
3417    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3418    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3419    // 2. not enough large page memory.
3420    //    > check available large pages: cat /proc/meminfo
3421    //    > increase amount of large pages:
3422    //          echo new_value > /proc/sys/vm/nr_hugepages
3423    //      Note 1: different Linux may use different name for this property,
3424    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3425    //      Note 2: it's possible there's enough physical memory available but
3426    //            they are so fragmented after a long run that they can't
3427    //            coalesce into large pages. Try to reserve large pages when
3428    //            the system is still "fresh".
3429    if (warn_on_failure) {
3430      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3431      warning("%s", msg);
3432    }
3433    return NULL;
3434  }
3435
3436  // attach to the region
3437  addr = (char*)shmat(shmid, req_addr, 0);
3438  int err = errno;
3439
3440  // Remove shmid. If shmat() is successful, the actual shared memory segment
3441  // will be deleted when it's detached by shmdt() or when the process
3442  // terminates. If shmat() is not successful this will remove the shared
3443  // segment immediately.
3444  shmctl(shmid, IPC_RMID, NULL);
3445
3446  if ((intptr_t)addr == -1) {
3447    if (warn_on_failure) {
3448      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3449      warning("%s", msg);
3450    }
3451    return NULL;
3452  }
3453
3454  return addr;
3455}
3456
3457static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3458                                        int error) {
3459  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3460
3461  bool warn_on_failure = UseLargePages &&
3462      (!FLAG_IS_DEFAULT(UseLargePages) ||
3463       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3464       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3465
3466  if (warn_on_failure) {
3467    char msg[128];
3468    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3469                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3470    warning("%s", msg);
3471  }
3472}
3473
3474char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3475                                                        char* req_addr,
3476                                                        bool exec) {
3477  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3478  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3479  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3480
3481  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3482  char* addr = (char*)::mmap(req_addr, bytes, prot,
3483                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3484                             -1, 0);
3485
3486  if (addr == MAP_FAILED) {
3487    warn_on_large_pages_failure(req_addr, bytes, errno);
3488    return NULL;
3489  }
3490
3491  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3492
3493  return addr;
3494}
3495
3496char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3497                                                         size_t alignment,
3498                                                         char* req_addr,
3499                                                         bool exec) {
3500  size_t large_page_size = os::large_page_size();
3501
3502  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3503
3504  // Allocate small pages.
3505
3506  char* start;
3507  if (req_addr != NULL) {
3508    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3509    assert(is_size_aligned(bytes, alignment), "Must be");
3510    start = os::reserve_memory(bytes, req_addr);
3511    assert(start == NULL || start == req_addr, "Must be");
3512  } else {
3513    start = os::reserve_memory_aligned(bytes, alignment);
3514  }
3515
3516  if (start == NULL) {
3517    return NULL;
3518  }
3519
3520  assert(is_ptr_aligned(start, alignment), "Must be");
3521
3522  if (MemTracker::tracking_level() > NMT_minimal) {
3523    // os::reserve_memory_special will record this memory area.
3524    // Need to release it here to prevent overlapping reservations.
3525    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3526    tkr.record((address)start, bytes);
3527  }
3528
3529  char* end = start + bytes;
3530
3531  // Find the regions of the allocated chunk that can be promoted to large pages.
3532  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3533  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3534
3535  size_t lp_bytes = lp_end - lp_start;
3536
3537  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3538
3539  if (lp_bytes == 0) {
3540    // The mapped region doesn't even span the start and the end of a large page.
3541    // Fall back to allocate a non-special area.
3542    ::munmap(start, end - start);
3543    return NULL;
3544  }
3545
3546  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3547
3548
3549  void* result;
3550
3551  if (start != lp_start) {
3552    result = ::mmap(start, lp_start - start, prot,
3553                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3554                    -1, 0);
3555    if (result == MAP_FAILED) {
3556      ::munmap(lp_start, end - lp_start);
3557      return NULL;
3558    }
3559  }
3560
3561  result = ::mmap(lp_start, lp_bytes, prot,
3562                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3563                  -1, 0);
3564  if (result == MAP_FAILED) {
3565    warn_on_large_pages_failure(req_addr, bytes, errno);
3566    // If the mmap above fails, the large pages region will be unmapped and we
3567    // have regions before and after with small pages. Release these regions.
3568    //
3569    // |  mapped  |  unmapped  |  mapped  |
3570    // ^          ^            ^          ^
3571    // start      lp_start     lp_end     end
3572    //
3573    ::munmap(start, lp_start - start);
3574    ::munmap(lp_end, end - lp_end);
3575    return NULL;
3576  }
3577
3578  if (lp_end != end) {
3579    result = ::mmap(lp_end, end - lp_end, prot,
3580                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3581                    -1, 0);
3582    if (result == MAP_FAILED) {
3583      ::munmap(start, lp_end - start);
3584      return NULL;
3585    }
3586  }
3587
3588  return start;
3589}
3590
3591char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3592                                                   size_t alignment,
3593                                                   char* req_addr,
3594                                                   bool exec) {
3595  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3596  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3597  assert(is_power_of_2(alignment), "Must be");
3598  assert(is_power_of_2(os::large_page_size()), "Must be");
3599  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3600
3601  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3602    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3603  } else {
3604    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3605  }
3606}
3607
3608char* os::reserve_memory_special(size_t bytes, size_t alignment,
3609                                 char* req_addr, bool exec) {
3610  assert(UseLargePages, "only for large pages");
3611
3612  char* addr;
3613  if (UseSHM) {
3614    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3615  } else {
3616    assert(UseHugeTLBFS, "must be");
3617    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3618  }
3619
3620  if (addr != NULL) {
3621    if (UseNUMAInterleaving) {
3622      numa_make_global(addr, bytes);
3623    }
3624
3625    // The memory is committed
3626    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3627  }
3628
3629  return addr;
3630}
3631
3632bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3633  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3634  return shmdt(base) == 0;
3635}
3636
3637bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3638  return pd_release_memory(base, bytes);
3639}
3640
3641bool os::release_memory_special(char* base, size_t bytes) {
3642  bool res;
3643  if (MemTracker::tracking_level() > NMT_minimal) {
3644    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3645    res = os::Linux::release_memory_special_impl(base, bytes);
3646    if (res) {
3647      tkr.record((address)base, bytes);
3648    }
3649
3650  } else {
3651    res = os::Linux::release_memory_special_impl(base, bytes);
3652  }
3653  return res;
3654}
3655
3656bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3657  assert(UseLargePages, "only for large pages");
3658  bool res;
3659
3660  if (UseSHM) {
3661    res = os::Linux::release_memory_special_shm(base, bytes);
3662  } else {
3663    assert(UseHugeTLBFS, "must be");
3664    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3665  }
3666  return res;
3667}
3668
3669size_t os::large_page_size() {
3670  return _large_page_size;
3671}
3672
3673// With SysV SHM the entire memory region must be allocated as shared
3674// memory.
3675// HugeTLBFS allows application to commit large page memory on demand.
3676// However, when committing memory with HugeTLBFS fails, the region
3677// that was supposed to be committed will lose the old reservation
3678// and allow other threads to steal that memory region. Because of this
3679// behavior we can't commit HugeTLBFS memory.
3680bool os::can_commit_large_page_memory() {
3681  return UseTransparentHugePages;
3682}
3683
3684bool os::can_execute_large_page_memory() {
3685  return UseTransparentHugePages || UseHugeTLBFS;
3686}
3687
3688// Reserve memory at an arbitrary address, only if that area is
3689// available (and not reserved for something else).
3690
3691char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3692  const int max_tries = 10;
3693  char* base[max_tries];
3694  size_t size[max_tries];
3695  const size_t gap = 0x000000;
3696
3697  // Assert only that the size is a multiple of the page size, since
3698  // that's all that mmap requires, and since that's all we really know
3699  // about at this low abstraction level.  If we need higher alignment,
3700  // we can either pass an alignment to this method or verify alignment
3701  // in one of the methods further up the call chain.  See bug 5044738.
3702  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3703
3704  // Repeatedly allocate blocks until the block is allocated at the
3705  // right spot. Give up after max_tries. Note that reserve_memory() will
3706  // automatically update _highest_vm_reserved_address if the call is
3707  // successful. The variable tracks the highest memory address every reserved
3708  // by JVM. It is used to detect heap-stack collision if running with
3709  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3710  // space than needed, it could confuse the collision detecting code. To
3711  // solve the problem, save current _highest_vm_reserved_address and
3712  // calculate the correct value before return.
3713  address old_highest = _highest_vm_reserved_address;
3714
3715  // Linux mmap allows caller to pass an address as hint; give it a try first,
3716  // if kernel honors the hint then we can return immediately.
3717  char * addr = anon_mmap(requested_addr, bytes, false);
3718  if (addr == requested_addr) {
3719    return requested_addr;
3720  }
3721
3722  if (addr != NULL) {
3723    // mmap() is successful but it fails to reserve at the requested address
3724    anon_munmap(addr, bytes);
3725  }
3726
3727  int i;
3728  for (i = 0; i < max_tries; ++i) {
3729    base[i] = reserve_memory(bytes);
3730
3731    if (base[i] != NULL) {
3732      // Is this the block we wanted?
3733      if (base[i] == requested_addr) {
3734        size[i] = bytes;
3735        break;
3736      }
3737
3738      // Does this overlap the block we wanted? Give back the overlapped
3739      // parts and try again.
3740
3741      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3742      if (top_overlap >= 0 && top_overlap < bytes) {
3743        unmap_memory(base[i], top_overlap);
3744        base[i] += top_overlap;
3745        size[i] = bytes - top_overlap;
3746      } else {
3747        size_t bottom_overlap = base[i] + bytes - requested_addr;
3748        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3749          unmap_memory(requested_addr, bottom_overlap);
3750          size[i] = bytes - bottom_overlap;
3751        } else {
3752          size[i] = bytes;
3753        }
3754      }
3755    }
3756  }
3757
3758  // Give back the unused reserved pieces.
3759
3760  for (int j = 0; j < i; ++j) {
3761    if (base[j] != NULL) {
3762      unmap_memory(base[j], size[j]);
3763    }
3764  }
3765
3766  if (i < max_tries) {
3767    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3768    return requested_addr;
3769  } else {
3770    _highest_vm_reserved_address = old_highest;
3771    return NULL;
3772  }
3773}
3774
3775size_t os::read(int fd, void *buf, unsigned int nBytes) {
3776  return ::read(fd, buf, nBytes);
3777}
3778
3779size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3780  return ::pread(fd, buf, nBytes, offset);
3781}
3782
3783// Short sleep, direct OS call.
3784//
3785// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3786// sched_yield(2) will actually give up the CPU:
3787//
3788//   * Alone on this pariticular CPU, keeps running.
3789//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3790//     (pre 2.6.39).
3791//
3792// So calling this with 0 is an alternative.
3793//
3794void os::naked_short_sleep(jlong ms) {
3795  struct timespec req;
3796
3797  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3798  req.tv_sec = 0;
3799  if (ms > 0) {
3800    req.tv_nsec = (ms % 1000) * 1000000;
3801  } else {
3802    req.tv_nsec = 1;
3803  }
3804
3805  nanosleep(&req, NULL);
3806
3807  return;
3808}
3809
3810// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3811void os::infinite_sleep() {
3812  while (true) {    // sleep forever ...
3813    ::sleep(100);   // ... 100 seconds at a time
3814  }
3815}
3816
3817// Used to convert frequent JVM_Yield() to nops
3818bool os::dont_yield() {
3819  return DontYieldALot;
3820}
3821
3822void os::naked_yield() {
3823  sched_yield();
3824}
3825
3826////////////////////////////////////////////////////////////////////////////////
3827// thread priority support
3828
3829// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3830// only supports dynamic priority, static priority must be zero. For real-time
3831// applications, Linux supports SCHED_RR which allows static priority (1-99).
3832// However, for large multi-threaded applications, SCHED_RR is not only slower
3833// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3834// of 5 runs - Sep 2005).
3835//
3836// The following code actually changes the niceness of kernel-thread/LWP. It
3837// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3838// not the entire user process, and user level threads are 1:1 mapped to kernel
3839// threads. It has always been the case, but could change in the future. For
3840// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3841// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3842
3843int os::java_to_os_priority[CriticalPriority + 1] = {
3844  19,              // 0 Entry should never be used
3845
3846   4,              // 1 MinPriority
3847   3,              // 2
3848   2,              // 3
3849
3850   1,              // 4
3851   0,              // 5 NormPriority
3852  -1,              // 6
3853
3854  -2,              // 7
3855  -3,              // 8
3856  -4,              // 9 NearMaxPriority
3857
3858  -5,              // 10 MaxPriority
3859
3860  -5               // 11 CriticalPriority
3861};
3862
3863static int prio_init() {
3864  if (ThreadPriorityPolicy == 1) {
3865    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3866    // if effective uid is not root. Perhaps, a more elegant way of doing
3867    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3868    if (geteuid() != 0) {
3869      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3870        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3871      }
3872      ThreadPriorityPolicy = 0;
3873    }
3874  }
3875  if (UseCriticalJavaThreadPriority) {
3876    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3877  }
3878  return 0;
3879}
3880
3881OSReturn os::set_native_priority(Thread* thread, int newpri) {
3882  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3883
3884  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3885  return (ret == 0) ? OS_OK : OS_ERR;
3886}
3887
3888OSReturn os::get_native_priority(const Thread* const thread,
3889                                 int *priority_ptr) {
3890  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3891    *priority_ptr = java_to_os_priority[NormPriority];
3892    return OS_OK;
3893  }
3894
3895  errno = 0;
3896  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3897  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3898}
3899
3900// Hint to the underlying OS that a task switch would not be good.
3901// Void return because it's a hint and can fail.
3902void os::hint_no_preempt() {}
3903
3904////////////////////////////////////////////////////////////////////////////////
3905// suspend/resume support
3906
3907//  the low-level signal-based suspend/resume support is a remnant from the
3908//  old VM-suspension that used to be for java-suspension, safepoints etc,
3909//  within hotspot. Now there is a single use-case for this:
3910//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3911//      that runs in the watcher thread.
3912//  The remaining code is greatly simplified from the more general suspension
3913//  code that used to be used.
3914//
3915//  The protocol is quite simple:
3916//  - suspend:
3917//      - sends a signal to the target thread
3918//      - polls the suspend state of the osthread using a yield loop
3919//      - target thread signal handler (SR_handler) sets suspend state
3920//        and blocks in sigsuspend until continued
3921//  - resume:
3922//      - sets target osthread state to continue
3923//      - sends signal to end the sigsuspend loop in the SR_handler
3924//
3925//  Note that the SR_lock plays no role in this suspend/resume protocol.
3926
3927static void resume_clear_context(OSThread *osthread) {
3928  osthread->set_ucontext(NULL);
3929  osthread->set_siginfo(NULL);
3930}
3931
3932static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3933                                 ucontext_t* context) {
3934  osthread->set_ucontext(context);
3935  osthread->set_siginfo(siginfo);
3936}
3937
3938// Handler function invoked when a thread's execution is suspended or
3939// resumed. We have to be careful that only async-safe functions are
3940// called here (Note: most pthread functions are not async safe and
3941// should be avoided.)
3942//
3943// Note: sigwait() is a more natural fit than sigsuspend() from an
3944// interface point of view, but sigwait() prevents the signal hander
3945// from being run. libpthread would get very confused by not having
3946// its signal handlers run and prevents sigwait()'s use with the
3947// mutex granting granting signal.
3948//
3949// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3950//
3951static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3952  // Save and restore errno to avoid confusing native code with EINTR
3953  // after sigsuspend.
3954  int old_errno = errno;
3955
3956  Thread* thread = Thread::current();
3957  OSThread* osthread = thread->osthread();
3958  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3959
3960  os::SuspendResume::State current = osthread->sr.state();
3961  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3962    suspend_save_context(osthread, siginfo, context);
3963
3964    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3965    os::SuspendResume::State state = osthread->sr.suspended();
3966    if (state == os::SuspendResume::SR_SUSPENDED) {
3967      sigset_t suspend_set;  // signals for sigsuspend()
3968
3969      // get current set of blocked signals and unblock resume signal
3970      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3971      sigdelset(&suspend_set, SR_signum);
3972
3973      sr_semaphore.signal();
3974      // wait here until we are resumed
3975      while (1) {
3976        sigsuspend(&suspend_set);
3977
3978        os::SuspendResume::State result = osthread->sr.running();
3979        if (result == os::SuspendResume::SR_RUNNING) {
3980          sr_semaphore.signal();
3981          break;
3982        }
3983      }
3984
3985    } else if (state == os::SuspendResume::SR_RUNNING) {
3986      // request was cancelled, continue
3987    } else {
3988      ShouldNotReachHere();
3989    }
3990
3991    resume_clear_context(osthread);
3992  } else if (current == os::SuspendResume::SR_RUNNING) {
3993    // request was cancelled, continue
3994  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3995    // ignore
3996  } else {
3997    // ignore
3998  }
3999
4000  errno = old_errno;
4001}
4002
4003
4004static int SR_initialize() {
4005  struct sigaction act;
4006  char *s;
4007  // Get signal number to use for suspend/resume
4008  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4009    int sig = ::strtol(s, 0, 10);
4010    if (sig > 0 || sig < _NSIG) {
4011      SR_signum = sig;
4012    }
4013  }
4014
4015  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4016         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4017
4018  sigemptyset(&SR_sigset);
4019  sigaddset(&SR_sigset, SR_signum);
4020
4021  // Set up signal handler for suspend/resume
4022  act.sa_flags = SA_RESTART|SA_SIGINFO;
4023  act.sa_handler = (void (*)(int)) SR_handler;
4024
4025  // SR_signum is blocked by default.
4026  // 4528190 - We also need to block pthread restart signal (32 on all
4027  // supported Linux platforms). Note that LinuxThreads need to block
4028  // this signal for all threads to work properly. So we don't have
4029  // to use hard-coded signal number when setting up the mask.
4030  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4031
4032  if (sigaction(SR_signum, &act, 0) == -1) {
4033    return -1;
4034  }
4035
4036  // Save signal flag
4037  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4038  return 0;
4039}
4040
4041static int sr_notify(OSThread* osthread) {
4042  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4043  assert_status(status == 0, status, "pthread_kill");
4044  return status;
4045}
4046
4047// "Randomly" selected value for how long we want to spin
4048// before bailing out on suspending a thread, also how often
4049// we send a signal to a thread we want to resume
4050static const int RANDOMLY_LARGE_INTEGER = 1000000;
4051static const int RANDOMLY_LARGE_INTEGER2 = 100;
4052
4053// returns true on success and false on error - really an error is fatal
4054// but this seems the normal response to library errors
4055static bool do_suspend(OSThread* osthread) {
4056  assert(osthread->sr.is_running(), "thread should be running");
4057  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4058
4059  // mark as suspended and send signal
4060  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4061    // failed to switch, state wasn't running?
4062    ShouldNotReachHere();
4063    return false;
4064  }
4065
4066  if (sr_notify(osthread) != 0) {
4067    ShouldNotReachHere();
4068  }
4069
4070  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4071  while (true) {
4072    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4073      break;
4074    } else {
4075      // timeout
4076      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4077      if (cancelled == os::SuspendResume::SR_RUNNING) {
4078        return false;
4079      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4080        // make sure that we consume the signal on the semaphore as well
4081        sr_semaphore.wait();
4082        break;
4083      } else {
4084        ShouldNotReachHere();
4085        return false;
4086      }
4087    }
4088  }
4089
4090  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4091  return true;
4092}
4093
4094static void do_resume(OSThread* osthread) {
4095  assert(osthread->sr.is_suspended(), "thread should be suspended");
4096  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4097
4098  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4099    // failed to switch to WAKEUP_REQUEST
4100    ShouldNotReachHere();
4101    return;
4102  }
4103
4104  while (true) {
4105    if (sr_notify(osthread) == 0) {
4106      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4107        if (osthread->sr.is_running()) {
4108          return;
4109        }
4110      }
4111    } else {
4112      ShouldNotReachHere();
4113    }
4114  }
4115
4116  guarantee(osthread->sr.is_running(), "Must be running!");
4117}
4118
4119///////////////////////////////////////////////////////////////////////////////////
4120// signal handling (except suspend/resume)
4121
4122// This routine may be used by user applications as a "hook" to catch signals.
4123// The user-defined signal handler must pass unrecognized signals to this
4124// routine, and if it returns true (non-zero), then the signal handler must
4125// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4126// routine will never retun false (zero), but instead will execute a VM panic
4127// routine kill the process.
4128//
4129// If this routine returns false, it is OK to call it again.  This allows
4130// the user-defined signal handler to perform checks either before or after
4131// the VM performs its own checks.  Naturally, the user code would be making
4132// a serious error if it tried to handle an exception (such as a null check
4133// or breakpoint) that the VM was generating for its own correct operation.
4134//
4135// This routine may recognize any of the following kinds of signals:
4136//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4137// It should be consulted by handlers for any of those signals.
4138//
4139// The caller of this routine must pass in the three arguments supplied
4140// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4141// field of the structure passed to sigaction().  This routine assumes that
4142// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4143//
4144// Note that the VM will print warnings if it detects conflicting signal
4145// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4146//
4147extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4148                                                 siginfo_t* siginfo,
4149                                                 void* ucontext,
4150                                                 int abort_if_unrecognized);
4151
4152void signalHandler(int sig, siginfo_t* info, void* uc) {
4153  assert(info != NULL && uc != NULL, "it must be old kernel");
4154  int orig_errno = errno;  // Preserve errno value over signal handler.
4155  JVM_handle_linux_signal(sig, info, uc, true);
4156  errno = orig_errno;
4157}
4158
4159
4160// This boolean allows users to forward their own non-matching signals
4161// to JVM_handle_linux_signal, harmlessly.
4162bool os::Linux::signal_handlers_are_installed = false;
4163
4164// For signal-chaining
4165struct sigaction os::Linux::sigact[MAXSIGNUM];
4166unsigned int os::Linux::sigs = 0;
4167bool os::Linux::libjsig_is_loaded = false;
4168typedef struct sigaction *(*get_signal_t)(int);
4169get_signal_t os::Linux::get_signal_action = NULL;
4170
4171struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4172  struct sigaction *actp = NULL;
4173
4174  if (libjsig_is_loaded) {
4175    // Retrieve the old signal handler from libjsig
4176    actp = (*get_signal_action)(sig);
4177  }
4178  if (actp == NULL) {
4179    // Retrieve the preinstalled signal handler from jvm
4180    actp = get_preinstalled_handler(sig);
4181  }
4182
4183  return actp;
4184}
4185
4186static bool call_chained_handler(struct sigaction *actp, int sig,
4187                                 siginfo_t *siginfo, void *context) {
4188  // Call the old signal handler
4189  if (actp->sa_handler == SIG_DFL) {
4190    // It's more reasonable to let jvm treat it as an unexpected exception
4191    // instead of taking the default action.
4192    return false;
4193  } else if (actp->sa_handler != SIG_IGN) {
4194    if ((actp->sa_flags & SA_NODEFER) == 0) {
4195      // automaticlly block the signal
4196      sigaddset(&(actp->sa_mask), sig);
4197    }
4198
4199    sa_handler_t hand;
4200    sa_sigaction_t sa;
4201    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4202    // retrieve the chained handler
4203    if (siginfo_flag_set) {
4204      sa = actp->sa_sigaction;
4205    } else {
4206      hand = actp->sa_handler;
4207    }
4208
4209    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4210      actp->sa_handler = SIG_DFL;
4211    }
4212
4213    // try to honor the signal mask
4214    sigset_t oset;
4215    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4216
4217    // call into the chained handler
4218    if (siginfo_flag_set) {
4219      (*sa)(sig, siginfo, context);
4220    } else {
4221      (*hand)(sig);
4222    }
4223
4224    // restore the signal mask
4225    pthread_sigmask(SIG_SETMASK, &oset, 0);
4226  }
4227  // Tell jvm's signal handler the signal is taken care of.
4228  return true;
4229}
4230
4231bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4232  bool chained = false;
4233  // signal-chaining
4234  if (UseSignalChaining) {
4235    struct sigaction *actp = get_chained_signal_action(sig);
4236    if (actp != NULL) {
4237      chained = call_chained_handler(actp, sig, siginfo, context);
4238    }
4239  }
4240  return chained;
4241}
4242
4243struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4244  if ((((unsigned int)1 << sig) & sigs) != 0) {
4245    return &sigact[sig];
4246  }
4247  return NULL;
4248}
4249
4250void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4251  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4252  sigact[sig] = oldAct;
4253  sigs |= (unsigned int)1 << sig;
4254}
4255
4256// for diagnostic
4257int os::Linux::sigflags[MAXSIGNUM];
4258
4259int os::Linux::get_our_sigflags(int sig) {
4260  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4261  return sigflags[sig];
4262}
4263
4264void os::Linux::set_our_sigflags(int sig, int flags) {
4265  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4266  sigflags[sig] = flags;
4267}
4268
4269void os::Linux::set_signal_handler(int sig, bool set_installed) {
4270  // Check for overwrite.
4271  struct sigaction oldAct;
4272  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4273
4274  void* oldhand = oldAct.sa_sigaction
4275                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4276                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4277  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4278      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4279      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4280    if (AllowUserSignalHandlers || !set_installed) {
4281      // Do not overwrite; user takes responsibility to forward to us.
4282      return;
4283    } else if (UseSignalChaining) {
4284      // save the old handler in jvm
4285      save_preinstalled_handler(sig, oldAct);
4286      // libjsig also interposes the sigaction() call below and saves the
4287      // old sigaction on it own.
4288    } else {
4289      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4290                    "%#lx for signal %d.", (long)oldhand, sig));
4291    }
4292  }
4293
4294  struct sigaction sigAct;
4295  sigfillset(&(sigAct.sa_mask));
4296  sigAct.sa_handler = SIG_DFL;
4297  if (!set_installed) {
4298    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4299  } else {
4300    sigAct.sa_sigaction = signalHandler;
4301    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4302  }
4303  // Save flags, which are set by ours
4304  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4305  sigflags[sig] = sigAct.sa_flags;
4306
4307  int ret = sigaction(sig, &sigAct, &oldAct);
4308  assert(ret == 0, "check");
4309
4310  void* oldhand2  = oldAct.sa_sigaction
4311                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4312                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4313  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4314}
4315
4316// install signal handlers for signals that HotSpot needs to
4317// handle in order to support Java-level exception handling.
4318
4319void os::Linux::install_signal_handlers() {
4320  if (!signal_handlers_are_installed) {
4321    signal_handlers_are_installed = true;
4322
4323    // signal-chaining
4324    typedef void (*signal_setting_t)();
4325    signal_setting_t begin_signal_setting = NULL;
4326    signal_setting_t end_signal_setting = NULL;
4327    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4328                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4329    if (begin_signal_setting != NULL) {
4330      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4331                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4332      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4333                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4334      libjsig_is_loaded = true;
4335      assert(UseSignalChaining, "should enable signal-chaining");
4336    }
4337    if (libjsig_is_loaded) {
4338      // Tell libjsig jvm is setting signal handlers
4339      (*begin_signal_setting)();
4340    }
4341
4342    set_signal_handler(SIGSEGV, true);
4343    set_signal_handler(SIGPIPE, true);
4344    set_signal_handler(SIGBUS, true);
4345    set_signal_handler(SIGILL, true);
4346    set_signal_handler(SIGFPE, true);
4347#if defined(PPC64)
4348    set_signal_handler(SIGTRAP, true);
4349#endif
4350    set_signal_handler(SIGXFSZ, true);
4351
4352    if (libjsig_is_loaded) {
4353      // Tell libjsig jvm finishes setting signal handlers
4354      (*end_signal_setting)();
4355    }
4356
4357    // We don't activate signal checker if libjsig is in place, we trust ourselves
4358    // and if UserSignalHandler is installed all bets are off.
4359    // Log that signal checking is off only if -verbose:jni is specified.
4360    if (CheckJNICalls) {
4361      if (libjsig_is_loaded) {
4362        if (PrintJNIResolving) {
4363          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4364        }
4365        check_signals = false;
4366      }
4367      if (AllowUserSignalHandlers) {
4368        if (PrintJNIResolving) {
4369          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4370        }
4371        check_signals = false;
4372      }
4373    }
4374  }
4375}
4376
4377// This is the fastest way to get thread cpu time on Linux.
4378// Returns cpu time (user+sys) for any thread, not only for current.
4379// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4380// It might work on 2.6.10+ with a special kernel/glibc patch.
4381// For reference, please, see IEEE Std 1003.1-2004:
4382//   http://www.unix.org/single_unix_specification
4383
4384jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4385  struct timespec tp;
4386  int rc = os::Linux::clock_gettime(clockid, &tp);
4387  assert(rc == 0, "clock_gettime is expected to return 0 code");
4388
4389  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4390}
4391
4392/////
4393// glibc on Linux platform uses non-documented flag
4394// to indicate, that some special sort of signal
4395// trampoline is used.
4396// We will never set this flag, and we should
4397// ignore this flag in our diagnostic
4398#ifdef SIGNIFICANT_SIGNAL_MASK
4399  #undef SIGNIFICANT_SIGNAL_MASK
4400#endif
4401#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4402
4403static const char* get_signal_handler_name(address handler,
4404                                           char* buf, int buflen) {
4405  int offset;
4406  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4407  if (found) {
4408    // skip directory names
4409    const char *p1, *p2;
4410    p1 = buf;
4411    size_t len = strlen(os::file_separator());
4412    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4413    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4414  } else {
4415    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4416  }
4417  return buf;
4418}
4419
4420static void print_signal_handler(outputStream* st, int sig,
4421                                 char* buf, size_t buflen) {
4422  struct sigaction sa;
4423
4424  sigaction(sig, NULL, &sa);
4425
4426  // See comment for SIGNIFICANT_SIGNAL_MASK define
4427  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4428
4429  st->print("%s: ", os::exception_name(sig, buf, buflen));
4430
4431  address handler = (sa.sa_flags & SA_SIGINFO)
4432    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4433    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4434
4435  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4436    st->print("SIG_DFL");
4437  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4438    st->print("SIG_IGN");
4439  } else {
4440    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4441  }
4442
4443  st->print(", sa_mask[0]=");
4444  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4445
4446  address rh = VMError::get_resetted_sighandler(sig);
4447  // May be, handler was resetted by VMError?
4448  if (rh != NULL) {
4449    handler = rh;
4450    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4451  }
4452
4453  st->print(", sa_flags=");
4454  os::Posix::print_sa_flags(st, sa.sa_flags);
4455
4456  // Check: is it our handler?
4457  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4458      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4459    // It is our signal handler
4460    // check for flags, reset system-used one!
4461    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4462      st->print(
4463                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4464                os::Linux::get_our_sigflags(sig));
4465    }
4466  }
4467  st->cr();
4468}
4469
4470
4471#define DO_SIGNAL_CHECK(sig)                      \
4472  do {                                            \
4473    if (!sigismember(&check_signal_done, sig)) {  \
4474      os::Linux::check_signal_handler(sig);       \
4475    }                                             \
4476  } while (0)
4477
4478// This method is a periodic task to check for misbehaving JNI applications
4479// under CheckJNI, we can add any periodic checks here
4480
4481void os::run_periodic_checks() {
4482  if (check_signals == false) return;
4483
4484  // SEGV and BUS if overridden could potentially prevent
4485  // generation of hs*.log in the event of a crash, debugging
4486  // such a case can be very challenging, so we absolutely
4487  // check the following for a good measure:
4488  DO_SIGNAL_CHECK(SIGSEGV);
4489  DO_SIGNAL_CHECK(SIGILL);
4490  DO_SIGNAL_CHECK(SIGFPE);
4491  DO_SIGNAL_CHECK(SIGBUS);
4492  DO_SIGNAL_CHECK(SIGPIPE);
4493  DO_SIGNAL_CHECK(SIGXFSZ);
4494#if defined(PPC64)
4495  DO_SIGNAL_CHECK(SIGTRAP);
4496#endif
4497
4498  // ReduceSignalUsage allows the user to override these handlers
4499  // see comments at the very top and jvm_solaris.h
4500  if (!ReduceSignalUsage) {
4501    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4502    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4503    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4504    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4505  }
4506
4507  DO_SIGNAL_CHECK(SR_signum);
4508  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4509}
4510
4511typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4512
4513static os_sigaction_t os_sigaction = NULL;
4514
4515void os::Linux::check_signal_handler(int sig) {
4516  char buf[O_BUFLEN];
4517  address jvmHandler = NULL;
4518
4519
4520  struct sigaction act;
4521  if (os_sigaction == NULL) {
4522    // only trust the default sigaction, in case it has been interposed
4523    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4524    if (os_sigaction == NULL) return;
4525  }
4526
4527  os_sigaction(sig, (struct sigaction*)NULL, &act);
4528
4529
4530  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4531
4532  address thisHandler = (act.sa_flags & SA_SIGINFO)
4533    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4534    : CAST_FROM_FN_PTR(address, act.sa_handler);
4535
4536
4537  switch (sig) {
4538  case SIGSEGV:
4539  case SIGBUS:
4540  case SIGFPE:
4541  case SIGPIPE:
4542  case SIGILL:
4543  case SIGXFSZ:
4544    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4545    break;
4546
4547  case SHUTDOWN1_SIGNAL:
4548  case SHUTDOWN2_SIGNAL:
4549  case SHUTDOWN3_SIGNAL:
4550  case BREAK_SIGNAL:
4551    jvmHandler = (address)user_handler();
4552    break;
4553
4554  case INTERRUPT_SIGNAL:
4555    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4556    break;
4557
4558  default:
4559    if (sig == SR_signum) {
4560      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4561    } else {
4562      return;
4563    }
4564    break;
4565  }
4566
4567  if (thisHandler != jvmHandler) {
4568    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4569    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4570    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4571    // No need to check this sig any longer
4572    sigaddset(&check_signal_done, sig);
4573    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4574    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4575      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4576                    exception_name(sig, buf, O_BUFLEN));
4577    }
4578  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4579    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4580    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4581    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4582    // No need to check this sig any longer
4583    sigaddset(&check_signal_done, sig);
4584  }
4585
4586  // Dump all the signal
4587  if (sigismember(&check_signal_done, sig)) {
4588    print_signal_handlers(tty, buf, O_BUFLEN);
4589  }
4590}
4591
4592extern void report_error(char* file_name, int line_no, char* title,
4593                         char* format, ...);
4594
4595extern bool signal_name(int signo, char* buf, size_t len);
4596
4597const char* os::exception_name(int exception_code, char* buf, size_t size) {
4598  if (0 < exception_code && exception_code <= SIGRTMAX) {
4599    // signal
4600    if (!signal_name(exception_code, buf, size)) {
4601      jio_snprintf(buf, size, "SIG%d", exception_code);
4602    }
4603    return buf;
4604  } else {
4605    return NULL;
4606  }
4607}
4608
4609// this is called _before_ the most of global arguments have been parsed
4610void os::init(void) {
4611  char dummy;   // used to get a guess on initial stack address
4612//  first_hrtime = gethrtime();
4613
4614  // With LinuxThreads the JavaMain thread pid (primordial thread)
4615  // is different than the pid of the java launcher thread.
4616  // So, on Linux, the launcher thread pid is passed to the VM
4617  // via the sun.java.launcher.pid property.
4618  // Use this property instead of getpid() if it was correctly passed.
4619  // See bug 6351349.
4620  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4621
4622  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4623
4624  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4625
4626  init_random(1234567);
4627
4628  ThreadCritical::initialize();
4629
4630  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4631  if (Linux::page_size() == -1) {
4632    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4633                  strerror(errno)));
4634  }
4635  init_page_sizes((size_t) Linux::page_size());
4636
4637  Linux::initialize_system_info();
4638
4639  // main_thread points to the aboriginal thread
4640  Linux::_main_thread = pthread_self();
4641
4642  Linux::clock_init();
4643  initial_time_count = javaTimeNanos();
4644
4645  // pthread_condattr initialization for monotonic clock
4646  int status;
4647  pthread_condattr_t* _condattr = os::Linux::condAttr();
4648  if ((status = pthread_condattr_init(_condattr)) != 0) {
4649    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4650  }
4651  // Only set the clock if CLOCK_MONOTONIC is available
4652  if (os::supports_monotonic_clock()) {
4653    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4654      if (status == EINVAL) {
4655        warning("Unable to use monotonic clock with relative timed-waits" \
4656                " - changes to the time-of-day clock may have adverse affects");
4657      } else {
4658        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4659      }
4660    }
4661  }
4662  // else it defaults to CLOCK_REALTIME
4663
4664  pthread_mutex_init(&dl_mutex, NULL);
4665
4666  // If the pagesize of the VM is greater than 8K determine the appropriate
4667  // number of initial guard pages.  The user can change this with the
4668  // command line arguments, if needed.
4669  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4670    StackYellowPages = 1;
4671    StackRedPages = 1;
4672    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4673  }
4674
4675  // retrieve entry point for pthread_setname_np
4676  Linux::_pthread_setname_np =
4677    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4678
4679}
4680
4681// To install functions for atexit system call
4682extern "C" {
4683  static void perfMemory_exit_helper() {
4684    perfMemory_exit();
4685  }
4686}
4687
4688// this is called _after_ the global arguments have been parsed
4689jint os::init_2(void) {
4690  Linux::fast_thread_clock_init();
4691
4692  // Allocate a single page and mark it as readable for safepoint polling
4693  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4694  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4695
4696  os::set_polling_page(polling_page);
4697
4698#ifndef PRODUCT
4699  if (Verbose && PrintMiscellaneous) {
4700    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4701               (intptr_t)polling_page);
4702  }
4703#endif
4704
4705  if (!UseMembar) {
4706    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4707    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4708    os::set_memory_serialize_page(mem_serialize_page);
4709
4710#ifndef PRODUCT
4711    if (Verbose && PrintMiscellaneous) {
4712      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4713                 (intptr_t)mem_serialize_page);
4714    }
4715#endif
4716  }
4717
4718  // initialize suspend/resume support - must do this before signal_sets_init()
4719  if (SR_initialize() != 0) {
4720    perror("SR_initialize failed");
4721    return JNI_ERR;
4722  }
4723
4724  Linux::signal_sets_init();
4725  Linux::install_signal_handlers();
4726
4727  // Check minimum allowable stack size for thread creation and to initialize
4728  // the java system classes, including StackOverflowError - depends on page
4729  // size.  Add a page for compiler2 recursion in main thread.
4730  // Add in 2*BytesPerWord times page size to account for VM stack during
4731  // class initialization depending on 32 or 64 bit VM.
4732  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4733                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4734                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4735
4736  size_t threadStackSizeInBytes = ThreadStackSize * K;
4737  if (threadStackSizeInBytes != 0 &&
4738      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4739    tty->print_cr("\nThe stack size specified is too small, "
4740                  "Specify at least %dk",
4741                  os::Linux::min_stack_allowed/ K);
4742    return JNI_ERR;
4743  }
4744
4745  // Make the stack size a multiple of the page size so that
4746  // the yellow/red zones can be guarded.
4747  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4748                                                vm_page_size()));
4749
4750  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4751
4752#if defined(IA32)
4753  workaround_expand_exec_shield_cs_limit();
4754#endif
4755
4756  Linux::libpthread_init();
4757  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4758    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4759                  Linux::glibc_version(), Linux::libpthread_version(),
4760                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4761  }
4762
4763  if (UseNUMA) {
4764    if (!Linux::libnuma_init()) {
4765      UseNUMA = false;
4766    } else {
4767      if ((Linux::numa_max_node() < 1)) {
4768        // There's only one node(they start from 0), disable NUMA.
4769        UseNUMA = false;
4770      }
4771    }
4772    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4773    // we can make the adaptive lgrp chunk resizing work. If the user specified
4774    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4775    // disable adaptive resizing.
4776    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4777      if (FLAG_IS_DEFAULT(UseNUMA)) {
4778        UseNUMA = false;
4779      } else {
4780        if (FLAG_IS_DEFAULT(UseLargePages) &&
4781            FLAG_IS_DEFAULT(UseSHM) &&
4782            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4783          UseLargePages = false;
4784        } else {
4785          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4786          UseAdaptiveSizePolicy = false;
4787          UseAdaptiveNUMAChunkSizing = false;
4788        }
4789      }
4790    }
4791    if (!UseNUMA && ForceNUMA) {
4792      UseNUMA = true;
4793    }
4794  }
4795
4796  if (MaxFDLimit) {
4797    // set the number of file descriptors to max. print out error
4798    // if getrlimit/setrlimit fails but continue regardless.
4799    struct rlimit nbr_files;
4800    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4801    if (status != 0) {
4802      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4803        perror("os::init_2 getrlimit failed");
4804      }
4805    } else {
4806      nbr_files.rlim_cur = nbr_files.rlim_max;
4807      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4808      if (status != 0) {
4809        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4810          perror("os::init_2 setrlimit failed");
4811        }
4812      }
4813    }
4814  }
4815
4816  // Initialize lock used to serialize thread creation (see os::create_thread)
4817  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4818
4819  // at-exit methods are called in the reverse order of their registration.
4820  // atexit functions are called on return from main or as a result of a
4821  // call to exit(3C). There can be only 32 of these functions registered
4822  // and atexit() does not set errno.
4823
4824  if (PerfAllowAtExitRegistration) {
4825    // only register atexit functions if PerfAllowAtExitRegistration is set.
4826    // atexit functions can be delayed until process exit time, which
4827    // can be problematic for embedded VM situations. Embedded VMs should
4828    // call DestroyJavaVM() to assure that VM resources are released.
4829
4830    // note: perfMemory_exit_helper atexit function may be removed in
4831    // the future if the appropriate cleanup code can be added to the
4832    // VM_Exit VMOperation's doit method.
4833    if (atexit(perfMemory_exit_helper) != 0) {
4834      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4835    }
4836  }
4837
4838  // initialize thread priority policy
4839  prio_init();
4840
4841  return JNI_OK;
4842}
4843
4844// Mark the polling page as unreadable
4845void os::make_polling_page_unreadable(void) {
4846  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4847    fatal("Could not disable polling page");
4848  }
4849}
4850
4851// Mark the polling page as readable
4852void os::make_polling_page_readable(void) {
4853  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4854    fatal("Could not enable polling page");
4855  }
4856}
4857
4858int os::active_processor_count() {
4859  // Linux doesn't yet have a (official) notion of processor sets,
4860  // so just return the number of online processors.
4861  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4862  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4863  return online_cpus;
4864}
4865
4866void os::set_native_thread_name(const char *name) {
4867  if (Linux::_pthread_setname_np) {
4868    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4869    snprintf(buf, sizeof(buf), "%s", name);
4870    buf[sizeof(buf) - 1] = '\0';
4871    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4872    // ERANGE should not happen; all other errors should just be ignored.
4873    assert(rc != ERANGE, "pthread_setname_np failed");
4874  }
4875}
4876
4877bool os::distribute_processes(uint length, uint* distribution) {
4878  // Not yet implemented.
4879  return false;
4880}
4881
4882bool os::bind_to_processor(uint processor_id) {
4883  // Not yet implemented.
4884  return false;
4885}
4886
4887///
4888
4889void os::SuspendedThreadTask::internal_do_task() {
4890  if (do_suspend(_thread->osthread())) {
4891    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4892    do_task(context);
4893    do_resume(_thread->osthread());
4894  }
4895}
4896
4897class PcFetcher : public os::SuspendedThreadTask {
4898 public:
4899  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4900  ExtendedPC result();
4901 protected:
4902  void do_task(const os::SuspendedThreadTaskContext& context);
4903 private:
4904  ExtendedPC _epc;
4905};
4906
4907ExtendedPC PcFetcher::result() {
4908  guarantee(is_done(), "task is not done yet.");
4909  return _epc;
4910}
4911
4912void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4913  Thread* thread = context.thread();
4914  OSThread* osthread = thread->osthread();
4915  if (osthread->ucontext() != NULL) {
4916    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4917  } else {
4918    // NULL context is unexpected, double-check this is the VMThread
4919    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4920  }
4921}
4922
4923// Suspends the target using the signal mechanism and then grabs the PC before
4924// resuming the target. Used by the flat-profiler only
4925ExtendedPC os::get_thread_pc(Thread* thread) {
4926  // Make sure that it is called by the watcher for the VMThread
4927  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4928  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4929
4930  PcFetcher fetcher(thread);
4931  fetcher.run();
4932  return fetcher.result();
4933}
4934
4935int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4936                                   pthread_mutex_t *_mutex,
4937                                   const struct timespec *_abstime) {
4938  if (is_NPTL()) {
4939    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4940  } else {
4941    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4942    // word back to default 64bit precision if condvar is signaled. Java
4943    // wants 53bit precision.  Save and restore current value.
4944    int fpu = get_fpu_control_word();
4945    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4946    set_fpu_control_word(fpu);
4947    return status;
4948  }
4949}
4950
4951////////////////////////////////////////////////////////////////////////////////
4952// debug support
4953
4954bool os::find(address addr, outputStream* st) {
4955  Dl_info dlinfo;
4956  memset(&dlinfo, 0, sizeof(dlinfo));
4957  if (dladdr(addr, &dlinfo) != 0) {
4958    st->print(PTR_FORMAT ": ", addr);
4959    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4960      st->print("%s+%#x", dlinfo.dli_sname,
4961                addr - (intptr_t)dlinfo.dli_saddr);
4962    } else if (dlinfo.dli_fbase != NULL) {
4963      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4964    } else {
4965      st->print("<absolute address>");
4966    }
4967    if (dlinfo.dli_fname != NULL) {
4968      st->print(" in %s", dlinfo.dli_fname);
4969    }
4970    if (dlinfo.dli_fbase != NULL) {
4971      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4972    }
4973    st->cr();
4974
4975    if (Verbose) {
4976      // decode some bytes around the PC
4977      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4978      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4979      address       lowest = (address) dlinfo.dli_sname;
4980      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4981      if (begin < lowest)  begin = lowest;
4982      Dl_info dlinfo2;
4983      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4984          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4985        end = (address) dlinfo2.dli_saddr;
4986      }
4987      Disassembler::decode(begin, end, st);
4988    }
4989    return true;
4990  }
4991  return false;
4992}
4993
4994////////////////////////////////////////////////////////////////////////////////
4995// misc
4996
4997// This does not do anything on Linux. This is basically a hook for being
4998// able to use structured exception handling (thread-local exception filters)
4999// on, e.g., Win32.
5000void
5001os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5002                         JavaCallArguments* args, Thread* thread) {
5003  f(value, method, args, thread);
5004}
5005
5006void os::print_statistics() {
5007}
5008
5009int os::message_box(const char* title, const char* message) {
5010  int i;
5011  fdStream err(defaultStream::error_fd());
5012  for (i = 0; i < 78; i++) err.print_raw("=");
5013  err.cr();
5014  err.print_raw_cr(title);
5015  for (i = 0; i < 78; i++) err.print_raw("-");
5016  err.cr();
5017  err.print_raw_cr(message);
5018  for (i = 0; i < 78; i++) err.print_raw("=");
5019  err.cr();
5020
5021  char buf[16];
5022  // Prevent process from exiting upon "read error" without consuming all CPU
5023  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5024
5025  return buf[0] == 'y' || buf[0] == 'Y';
5026}
5027
5028int os::stat(const char *path, struct stat *sbuf) {
5029  char pathbuf[MAX_PATH];
5030  if (strlen(path) > MAX_PATH - 1) {
5031    errno = ENAMETOOLONG;
5032    return -1;
5033  }
5034  os::native_path(strcpy(pathbuf, path));
5035  return ::stat(pathbuf, sbuf);
5036}
5037
5038bool os::check_heap(bool force) {
5039  return true;
5040}
5041
5042// Is a (classpath) directory empty?
5043bool os::dir_is_empty(const char* path) {
5044  DIR *dir = NULL;
5045  struct dirent *ptr;
5046
5047  dir = opendir(path);
5048  if (dir == NULL) return true;
5049
5050  // Scan the directory
5051  bool result = true;
5052  char buf[sizeof(struct dirent) + MAX_PATH];
5053  while (result && (ptr = ::readdir(dir)) != NULL) {
5054    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5055      result = false;
5056    }
5057  }
5058  closedir(dir);
5059  return result;
5060}
5061
5062// This code originates from JDK's sysOpen and open64_w
5063// from src/solaris/hpi/src/system_md.c
5064
5065int os::open(const char *path, int oflag, int mode) {
5066  if (strlen(path) > MAX_PATH - 1) {
5067    errno = ENAMETOOLONG;
5068    return -1;
5069  }
5070
5071  // All file descriptors that are opened in the Java process and not
5072  // specifically destined for a subprocess should have the close-on-exec
5073  // flag set.  If we don't set it, then careless 3rd party native code
5074  // might fork and exec without closing all appropriate file descriptors
5075  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5076  // turn might:
5077  //
5078  // - cause end-of-file to fail to be detected on some file
5079  //   descriptors, resulting in mysterious hangs, or
5080  //
5081  // - might cause an fopen in the subprocess to fail on a system
5082  //   suffering from bug 1085341.
5083  //
5084  // (Yes, the default setting of the close-on-exec flag is a Unix
5085  // design flaw)
5086  //
5087  // See:
5088  // 1085341: 32-bit stdio routines should support file descriptors >255
5089  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5090  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5091  //
5092  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5093  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5094  // because it saves a system call and removes a small window where the flag
5095  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5096  // and we fall back to using FD_CLOEXEC (see below).
5097#ifdef O_CLOEXEC
5098  oflag |= O_CLOEXEC;
5099#endif
5100
5101  int fd = ::open64(path, oflag, mode);
5102  if (fd == -1) return -1;
5103
5104  //If the open succeeded, the file might still be a directory
5105  {
5106    struct stat64 buf64;
5107    int ret = ::fstat64(fd, &buf64);
5108    int st_mode = buf64.st_mode;
5109
5110    if (ret != -1) {
5111      if ((st_mode & S_IFMT) == S_IFDIR) {
5112        errno = EISDIR;
5113        ::close(fd);
5114        return -1;
5115      }
5116    } else {
5117      ::close(fd);
5118      return -1;
5119    }
5120  }
5121
5122#ifdef FD_CLOEXEC
5123  // Validate that the use of the O_CLOEXEC flag on open above worked.
5124  // With recent kernels, we will perform this check exactly once.
5125  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5126  if (!O_CLOEXEC_is_known_to_work) {
5127    int flags = ::fcntl(fd, F_GETFD);
5128    if (flags != -1) {
5129      if ((flags & FD_CLOEXEC) != 0)
5130        O_CLOEXEC_is_known_to_work = 1;
5131      else
5132        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5133    }
5134  }
5135#endif
5136
5137  return fd;
5138}
5139
5140
5141// create binary file, rewriting existing file if required
5142int os::create_binary_file(const char* path, bool rewrite_existing) {
5143  int oflags = O_WRONLY | O_CREAT;
5144  if (!rewrite_existing) {
5145    oflags |= O_EXCL;
5146  }
5147  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5148}
5149
5150// return current position of file pointer
5151jlong os::current_file_offset(int fd) {
5152  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5153}
5154
5155// move file pointer to the specified offset
5156jlong os::seek_to_file_offset(int fd, jlong offset) {
5157  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5158}
5159
5160// This code originates from JDK's sysAvailable
5161// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5162
5163int os::available(int fd, jlong *bytes) {
5164  jlong cur, end;
5165  int mode;
5166  struct stat64 buf64;
5167
5168  if (::fstat64(fd, &buf64) >= 0) {
5169    mode = buf64.st_mode;
5170    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5171      // XXX: is the following call interruptible? If so, this might
5172      // need to go through the INTERRUPT_IO() wrapper as for other
5173      // blocking, interruptible calls in this file.
5174      int n;
5175      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5176        *bytes = n;
5177        return 1;
5178      }
5179    }
5180  }
5181  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5182    return 0;
5183  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5184    return 0;
5185  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5186    return 0;
5187  }
5188  *bytes = end - cur;
5189  return 1;
5190}
5191
5192// Map a block of memory.
5193char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5194                        char *addr, size_t bytes, bool read_only,
5195                        bool allow_exec) {
5196  int prot;
5197  int flags = MAP_PRIVATE;
5198
5199  if (read_only) {
5200    prot = PROT_READ;
5201  } else {
5202    prot = PROT_READ | PROT_WRITE;
5203  }
5204
5205  if (allow_exec) {
5206    prot |= PROT_EXEC;
5207  }
5208
5209  if (addr != NULL) {
5210    flags |= MAP_FIXED;
5211  }
5212
5213  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5214                                     fd, file_offset);
5215  if (mapped_address == MAP_FAILED) {
5216    return NULL;
5217  }
5218  return mapped_address;
5219}
5220
5221
5222// Remap a block of memory.
5223char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5224                          char *addr, size_t bytes, bool read_only,
5225                          bool allow_exec) {
5226  // same as map_memory() on this OS
5227  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5228                        allow_exec);
5229}
5230
5231
5232// Unmap a block of memory.
5233bool os::pd_unmap_memory(char* addr, size_t bytes) {
5234  return munmap(addr, bytes) == 0;
5235}
5236
5237static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5238
5239static clockid_t thread_cpu_clockid(Thread* thread) {
5240  pthread_t tid = thread->osthread()->pthread_id();
5241  clockid_t clockid;
5242
5243  // Get thread clockid
5244  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5245  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5246  return clockid;
5247}
5248
5249// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5250// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5251// of a thread.
5252//
5253// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5254// the fast estimate available on the platform.
5255
5256jlong os::current_thread_cpu_time() {
5257  if (os::Linux::supports_fast_thread_cpu_time()) {
5258    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5259  } else {
5260    // return user + sys since the cost is the same
5261    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5262  }
5263}
5264
5265jlong os::thread_cpu_time(Thread* thread) {
5266  // consistent with what current_thread_cpu_time() returns
5267  if (os::Linux::supports_fast_thread_cpu_time()) {
5268    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5269  } else {
5270    return slow_thread_cpu_time(thread, true /* user + sys */);
5271  }
5272}
5273
5274jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5275  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5276    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5277  } else {
5278    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5279  }
5280}
5281
5282jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5283  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5284    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5285  } else {
5286    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5287  }
5288}
5289
5290//  -1 on error.
5291static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5292  pid_t  tid = thread->osthread()->thread_id();
5293  char *s;
5294  char stat[2048];
5295  int statlen;
5296  char proc_name[64];
5297  int count;
5298  long sys_time, user_time;
5299  char cdummy;
5300  int idummy;
5301  long ldummy;
5302  FILE *fp;
5303
5304  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5305  fp = fopen(proc_name, "r");
5306  if (fp == NULL) return -1;
5307  statlen = fread(stat, 1, 2047, fp);
5308  stat[statlen] = '\0';
5309  fclose(fp);
5310
5311  // Skip pid and the command string. Note that we could be dealing with
5312  // weird command names, e.g. user could decide to rename java launcher
5313  // to "java 1.4.2 :)", then the stat file would look like
5314  //                1234 (java 1.4.2 :)) R ... ...
5315  // We don't really need to know the command string, just find the last
5316  // occurrence of ")" and then start parsing from there. See bug 4726580.
5317  s = strrchr(stat, ')');
5318  if (s == NULL) return -1;
5319
5320  // Skip blank chars
5321  do { s++; } while (s && isspace(*s));
5322
5323  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5324                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5325                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5326                 &user_time, &sys_time);
5327  if (count != 13) return -1;
5328  if (user_sys_cpu_time) {
5329    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5330  } else {
5331    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5332  }
5333}
5334
5335void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5336  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5337  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5338  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5339  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5340}
5341
5342void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5343  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5344  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5345  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5346  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5347}
5348
5349bool os::is_thread_cpu_time_supported() {
5350  return true;
5351}
5352
5353// System loadavg support.  Returns -1 if load average cannot be obtained.
5354// Linux doesn't yet have a (official) notion of processor sets,
5355// so just return the system wide load average.
5356int os::loadavg(double loadavg[], int nelem) {
5357  return ::getloadavg(loadavg, nelem);
5358}
5359
5360void os::pause() {
5361  char filename[MAX_PATH];
5362  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5363    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5364  } else {
5365    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5366  }
5367
5368  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5369  if (fd != -1) {
5370    struct stat buf;
5371    ::close(fd);
5372    while (::stat(filename, &buf) == 0) {
5373      (void)::poll(NULL, 0, 100);
5374    }
5375  } else {
5376    jio_fprintf(stderr,
5377                "Could not open pause file '%s', continuing immediately.\n", filename);
5378  }
5379}
5380
5381
5382// Refer to the comments in os_solaris.cpp park-unpark. The next two
5383// comment paragraphs are worth repeating here:
5384//
5385// Assumption:
5386//    Only one parker can exist on an event, which is why we allocate
5387//    them per-thread. Multiple unparkers can coexist.
5388//
5389// _Event serves as a restricted-range semaphore.
5390//   -1 : thread is blocked, i.e. there is a waiter
5391//    0 : neutral: thread is running or ready,
5392//        could have been signaled after a wait started
5393//    1 : signaled - thread is running or ready
5394//
5395// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5396// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5397// For specifics regarding the bug see GLIBC BUGID 261237 :
5398//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5399// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5400// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5401// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5402// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5403// and monitorenter when we're using 1-0 locking.  All those operations may result in
5404// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5405// of libpthread avoids the problem, but isn't practical.
5406//
5407// Possible remedies:
5408//
5409// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5410//      This is palliative and probabilistic, however.  If the thread is preempted
5411//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5412//      than the minimum period may have passed, and the abstime may be stale (in the
5413//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5414//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5415//
5416// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5417//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5418//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5419//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5420//      thread.
5421//
5422// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5423//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5424//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5425//      This also works well.  In fact it avoids kernel-level scalability impediments
5426//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5427//      timers in a graceful fashion.
5428//
5429// 4.   When the abstime value is in the past it appears that control returns
5430//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5431//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5432//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5433//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5434//      It may be possible to avoid reinitialization by checking the return
5435//      value from pthread_cond_timedwait().  In addition to reinitializing the
5436//      condvar we must establish the invariant that cond_signal() is only called
5437//      within critical sections protected by the adjunct mutex.  This prevents
5438//      cond_signal() from "seeing" a condvar that's in the midst of being
5439//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5440//      desirable signal-after-unlock optimization that avoids futile context switching.
5441//
5442//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5443//      structure when a condvar is used or initialized.  cond_destroy()  would
5444//      release the helper structure.  Our reinitialize-after-timedwait fix
5445//      put excessive stress on malloc/free and locks protecting the c-heap.
5446//
5447// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5448// It may be possible to refine (4) by checking the kernel and NTPL verisons
5449// and only enabling the work-around for vulnerable environments.
5450
5451// utility to compute the abstime argument to timedwait:
5452// millis is the relative timeout time
5453// abstime will be the absolute timeout time
5454// TODO: replace compute_abstime() with unpackTime()
5455
5456static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5457  if (millis < 0)  millis = 0;
5458
5459  jlong seconds = millis / 1000;
5460  millis %= 1000;
5461  if (seconds > 50000000) { // see man cond_timedwait(3T)
5462    seconds = 50000000;
5463  }
5464
5465  if (os::supports_monotonic_clock()) {
5466    struct timespec now;
5467    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5468    assert_status(status == 0, status, "clock_gettime");
5469    abstime->tv_sec = now.tv_sec  + seconds;
5470    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5471    if (nanos >= NANOSECS_PER_SEC) {
5472      abstime->tv_sec += 1;
5473      nanos -= NANOSECS_PER_SEC;
5474    }
5475    abstime->tv_nsec = nanos;
5476  } else {
5477    struct timeval now;
5478    int status = gettimeofday(&now, NULL);
5479    assert(status == 0, "gettimeofday");
5480    abstime->tv_sec = now.tv_sec  + seconds;
5481    long usec = now.tv_usec + millis * 1000;
5482    if (usec >= 1000000) {
5483      abstime->tv_sec += 1;
5484      usec -= 1000000;
5485    }
5486    abstime->tv_nsec = usec * 1000;
5487  }
5488  return abstime;
5489}
5490
5491void os::PlatformEvent::park() {       // AKA "down()"
5492  // Transitions for _Event:
5493  //   -1 => -1 : illegal
5494  //    1 =>  0 : pass - return immediately
5495  //    0 => -1 : block; then set _Event to 0 before returning
5496
5497  // Invariant: Only the thread associated with the Event/PlatformEvent
5498  // may call park().
5499  // TODO: assert that _Assoc != NULL or _Assoc == Self
5500  assert(_nParked == 0, "invariant");
5501
5502  int v;
5503  for (;;) {
5504    v = _Event;
5505    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5506  }
5507  guarantee(v >= 0, "invariant");
5508  if (v == 0) {
5509    // Do this the hard way by blocking ...
5510    int status = pthread_mutex_lock(_mutex);
5511    assert_status(status == 0, status, "mutex_lock");
5512    guarantee(_nParked == 0, "invariant");
5513    ++_nParked;
5514    while (_Event < 0) {
5515      status = pthread_cond_wait(_cond, _mutex);
5516      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5517      // Treat this the same as if the wait was interrupted
5518      if (status == ETIME) { status = EINTR; }
5519      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5520    }
5521    --_nParked;
5522
5523    _Event = 0;
5524    status = pthread_mutex_unlock(_mutex);
5525    assert_status(status == 0, status, "mutex_unlock");
5526    // Paranoia to ensure our locked and lock-free paths interact
5527    // correctly with each other.
5528    OrderAccess::fence();
5529  }
5530  guarantee(_Event >= 0, "invariant");
5531}
5532
5533int os::PlatformEvent::park(jlong millis) {
5534  // Transitions for _Event:
5535  //   -1 => -1 : illegal
5536  //    1 =>  0 : pass - return immediately
5537  //    0 => -1 : block; then set _Event to 0 before returning
5538
5539  guarantee(_nParked == 0, "invariant");
5540
5541  int v;
5542  for (;;) {
5543    v = _Event;
5544    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5545  }
5546  guarantee(v >= 0, "invariant");
5547  if (v != 0) return OS_OK;
5548
5549  // We do this the hard way, by blocking the thread.
5550  // Consider enforcing a minimum timeout value.
5551  struct timespec abst;
5552  compute_abstime(&abst, millis);
5553
5554  int ret = OS_TIMEOUT;
5555  int status = pthread_mutex_lock(_mutex);
5556  assert_status(status == 0, status, "mutex_lock");
5557  guarantee(_nParked == 0, "invariant");
5558  ++_nParked;
5559
5560  // Object.wait(timo) will return because of
5561  // (a) notification
5562  // (b) timeout
5563  // (c) thread.interrupt
5564  //
5565  // Thread.interrupt and object.notify{All} both call Event::set.
5566  // That is, we treat thread.interrupt as a special case of notification.
5567  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5568  // We assume all ETIME returns are valid.
5569  //
5570  // TODO: properly differentiate simultaneous notify+interrupt.
5571  // In that case, we should propagate the notify to another waiter.
5572
5573  while (_Event < 0) {
5574    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5575    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5576      pthread_cond_destroy(_cond);
5577      pthread_cond_init(_cond, os::Linux::condAttr());
5578    }
5579    assert_status(status == 0 || status == EINTR ||
5580                  status == ETIME || status == ETIMEDOUT,
5581                  status, "cond_timedwait");
5582    if (!FilterSpuriousWakeups) break;                 // previous semantics
5583    if (status == ETIME || status == ETIMEDOUT) break;
5584    // We consume and ignore EINTR and spurious wakeups.
5585  }
5586  --_nParked;
5587  if (_Event >= 0) {
5588    ret = OS_OK;
5589  }
5590  _Event = 0;
5591  status = pthread_mutex_unlock(_mutex);
5592  assert_status(status == 0, status, "mutex_unlock");
5593  assert(_nParked == 0, "invariant");
5594  // Paranoia to ensure our locked and lock-free paths interact
5595  // correctly with each other.
5596  OrderAccess::fence();
5597  return ret;
5598}
5599
5600void os::PlatformEvent::unpark() {
5601  // Transitions for _Event:
5602  //    0 => 1 : just return
5603  //    1 => 1 : just return
5604  //   -1 => either 0 or 1; must signal target thread
5605  //         That is, we can safely transition _Event from -1 to either
5606  //         0 or 1.
5607  // See also: "Semaphores in Plan 9" by Mullender & Cox
5608  //
5609  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5610  // that it will take two back-to-back park() calls for the owning
5611  // thread to block. This has the benefit of forcing a spurious return
5612  // from the first park() call after an unpark() call which will help
5613  // shake out uses of park() and unpark() without condition variables.
5614
5615  if (Atomic::xchg(1, &_Event) >= 0) return;
5616
5617  // Wait for the thread associated with the event to vacate
5618  int status = pthread_mutex_lock(_mutex);
5619  assert_status(status == 0, status, "mutex_lock");
5620  int AnyWaiters = _nParked;
5621  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5622  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5623    AnyWaiters = 0;
5624    pthread_cond_signal(_cond);
5625  }
5626  status = pthread_mutex_unlock(_mutex);
5627  assert_status(status == 0, status, "mutex_unlock");
5628  if (AnyWaiters != 0) {
5629    // Note that we signal() *after* dropping the lock for "immortal" Events.
5630    // This is safe and avoids a common class of  futile wakeups.  In rare
5631    // circumstances this can cause a thread to return prematurely from
5632    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5633    // will simply re-test the condition and re-park itself.
5634    // This provides particular benefit if the underlying platform does not
5635    // provide wait morphing.
5636    status = pthread_cond_signal(_cond);
5637    assert_status(status == 0, status, "cond_signal");
5638  }
5639}
5640
5641
5642// JSR166
5643// -------------------------------------------------------
5644
5645// The solaris and linux implementations of park/unpark are fairly
5646// conservative for now, but can be improved. They currently use a
5647// mutex/condvar pair, plus a a count.
5648// Park decrements count if > 0, else does a condvar wait.  Unpark
5649// sets count to 1 and signals condvar.  Only one thread ever waits
5650// on the condvar. Contention seen when trying to park implies that someone
5651// is unparking you, so don't wait. And spurious returns are fine, so there
5652// is no need to track notifications.
5653
5654// This code is common to linux and solaris and will be moved to a
5655// common place in dolphin.
5656//
5657// The passed in time value is either a relative time in nanoseconds
5658// or an absolute time in milliseconds. Either way it has to be unpacked
5659// into suitable seconds and nanoseconds components and stored in the
5660// given timespec structure.
5661// Given time is a 64-bit value and the time_t used in the timespec is only
5662// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5663// overflow if times way in the future are given. Further on Solaris versions
5664// prior to 10 there is a restriction (see cond_timedwait) that the specified
5665// number of seconds, in abstime, is less than current_time  + 100,000,000.
5666// As it will be 28 years before "now + 100000000" will overflow we can
5667// ignore overflow and just impose a hard-limit on seconds using the value
5668// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5669// years from "now".
5670
5671static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5672  assert(time > 0, "convertTime");
5673  time_t max_secs = 0;
5674
5675  if (!os::supports_monotonic_clock() || isAbsolute) {
5676    struct timeval now;
5677    int status = gettimeofday(&now, NULL);
5678    assert(status == 0, "gettimeofday");
5679
5680    max_secs = now.tv_sec + MAX_SECS;
5681
5682    if (isAbsolute) {
5683      jlong secs = time / 1000;
5684      if (secs > max_secs) {
5685        absTime->tv_sec = max_secs;
5686      } else {
5687        absTime->tv_sec = secs;
5688      }
5689      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5690    } else {
5691      jlong secs = time / NANOSECS_PER_SEC;
5692      if (secs >= MAX_SECS) {
5693        absTime->tv_sec = max_secs;
5694        absTime->tv_nsec = 0;
5695      } else {
5696        absTime->tv_sec = now.tv_sec + secs;
5697        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5698        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5699          absTime->tv_nsec -= NANOSECS_PER_SEC;
5700          ++absTime->tv_sec; // note: this must be <= max_secs
5701        }
5702      }
5703    }
5704  } else {
5705    // must be relative using monotonic clock
5706    struct timespec now;
5707    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5708    assert_status(status == 0, status, "clock_gettime");
5709    max_secs = now.tv_sec + MAX_SECS;
5710    jlong secs = time / NANOSECS_PER_SEC;
5711    if (secs >= MAX_SECS) {
5712      absTime->tv_sec = max_secs;
5713      absTime->tv_nsec = 0;
5714    } else {
5715      absTime->tv_sec = now.tv_sec + secs;
5716      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5717      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5718        absTime->tv_nsec -= NANOSECS_PER_SEC;
5719        ++absTime->tv_sec; // note: this must be <= max_secs
5720      }
5721    }
5722  }
5723  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5724  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5725  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5726  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5727}
5728
5729void Parker::park(bool isAbsolute, jlong time) {
5730  // Ideally we'd do something useful while spinning, such
5731  // as calling unpackTime().
5732
5733  // Optional fast-path check:
5734  // Return immediately if a permit is available.
5735  // We depend on Atomic::xchg() having full barrier semantics
5736  // since we are doing a lock-free update to _counter.
5737  if (Atomic::xchg(0, &_counter) > 0) return;
5738
5739  Thread* thread = Thread::current();
5740  assert(thread->is_Java_thread(), "Must be JavaThread");
5741  JavaThread *jt = (JavaThread *)thread;
5742
5743  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5744  // Check interrupt before trying to wait
5745  if (Thread::is_interrupted(thread, false)) {
5746    return;
5747  }
5748
5749  // Next, demultiplex/decode time arguments
5750  timespec absTime;
5751  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5752    return;
5753  }
5754  if (time > 0) {
5755    unpackTime(&absTime, isAbsolute, time);
5756  }
5757
5758
5759  // Enter safepoint region
5760  // Beware of deadlocks such as 6317397.
5761  // The per-thread Parker:: mutex is a classic leaf-lock.
5762  // In particular a thread must never block on the Threads_lock while
5763  // holding the Parker:: mutex.  If safepoints are pending both the
5764  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5765  ThreadBlockInVM tbivm(jt);
5766
5767  // Don't wait if cannot get lock since interference arises from
5768  // unblocking.  Also. check interrupt before trying wait
5769  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5770    return;
5771  }
5772
5773  int status;
5774  if (_counter > 0)  { // no wait needed
5775    _counter = 0;
5776    status = pthread_mutex_unlock(_mutex);
5777    assert(status == 0, "invariant");
5778    // Paranoia to ensure our locked and lock-free paths interact
5779    // correctly with each other and Java-level accesses.
5780    OrderAccess::fence();
5781    return;
5782  }
5783
5784#ifdef ASSERT
5785  // Don't catch signals while blocked; let the running threads have the signals.
5786  // (This allows a debugger to break into the running thread.)
5787  sigset_t oldsigs;
5788  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5789  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5790#endif
5791
5792  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5793  jt->set_suspend_equivalent();
5794  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5795
5796  assert(_cur_index == -1, "invariant");
5797  if (time == 0) {
5798    _cur_index = REL_INDEX; // arbitrary choice when not timed
5799    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5800  } else {
5801    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5802    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5803    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5804      pthread_cond_destroy(&_cond[_cur_index]);
5805      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5806    }
5807  }
5808  _cur_index = -1;
5809  assert_status(status == 0 || status == EINTR ||
5810                status == ETIME || status == ETIMEDOUT,
5811                status, "cond_timedwait");
5812
5813#ifdef ASSERT
5814  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5815#endif
5816
5817  _counter = 0;
5818  status = pthread_mutex_unlock(_mutex);
5819  assert_status(status == 0, status, "invariant");
5820  // Paranoia to ensure our locked and lock-free paths interact
5821  // correctly with each other and Java-level accesses.
5822  OrderAccess::fence();
5823
5824  // If externally suspended while waiting, re-suspend
5825  if (jt->handle_special_suspend_equivalent_condition()) {
5826    jt->java_suspend_self();
5827  }
5828}
5829
5830void Parker::unpark() {
5831  int status = pthread_mutex_lock(_mutex);
5832  assert(status == 0, "invariant");
5833  const int s = _counter;
5834  _counter = 1;
5835  if (s < 1) {
5836    // thread might be parked
5837    if (_cur_index != -1) {
5838      // thread is definitely parked
5839      if (WorkAroundNPTLTimedWaitHang) {
5840        status = pthread_cond_signal(&_cond[_cur_index]);
5841        assert(status == 0, "invariant");
5842        status = pthread_mutex_unlock(_mutex);
5843        assert(status == 0, "invariant");
5844      } else {
5845        status = pthread_mutex_unlock(_mutex);
5846        assert(status == 0, "invariant");
5847        status = pthread_cond_signal(&_cond[_cur_index]);
5848        assert(status == 0, "invariant");
5849      }
5850    } else {
5851      pthread_mutex_unlock(_mutex);
5852      assert(status == 0, "invariant");
5853    }
5854  } else {
5855    pthread_mutex_unlock(_mutex);
5856    assert(status == 0, "invariant");
5857  }
5858}
5859
5860
5861extern char** environ;
5862
5863#ifndef __NR_fork
5864  #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5865#endif
5866
5867#ifndef __NR_execve
5868  #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5869#endif
5870
5871// Run the specified command in a separate process. Return its exit value,
5872// or -1 on failure (e.g. can't fork a new process).
5873// Unlike system(), this function can be called from signal handler. It
5874// doesn't block SIGINT et al.
5875int os::fork_and_exec(char* cmd) {
5876  const char * argv[4] = {"sh", "-c", cmd, NULL};
5877
5878  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5879  // pthread_atfork handlers and reset pthread library. All we need is a
5880  // separate process to execve. Make a direct syscall to fork process.
5881  // On IA64 there's no fork syscall, we have to use fork() and hope for
5882  // the best...
5883  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5884  IA64_ONLY(fork();)
5885
5886  if (pid < 0) {
5887    // fork failed
5888    return -1;
5889
5890  } else if (pid == 0) {
5891    // child process
5892
5893    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5894    // first to kill every thread on the thread list. Because this list is
5895    // not reset by fork() (see notes above), execve() will instead kill
5896    // every thread in the parent process. We know this is the only thread
5897    // in the new process, so make a system call directly.
5898    // IA64 should use normal execve() from glibc to match the glibc fork()
5899    // above.
5900    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5901    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5902
5903    // execve failed
5904    _exit(-1);
5905
5906  } else  {
5907    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5908    // care about the actual exit code, for now.
5909
5910    int status;
5911
5912    // Wait for the child process to exit.  This returns immediately if
5913    // the child has already exited. */
5914    while (waitpid(pid, &status, 0) < 0) {
5915      switch (errno) {
5916      case ECHILD: return 0;
5917      case EINTR: break;
5918      default: return -1;
5919      }
5920    }
5921
5922    if (WIFEXITED(status)) {
5923      // The child exited normally; get its exit code.
5924      return WEXITSTATUS(status);
5925    } else if (WIFSIGNALED(status)) {
5926      // The child exited because of a signal
5927      // The best value to return is 0x80 + signal number,
5928      // because that is what all Unix shells do, and because
5929      // it allows callers to distinguish between process exit and
5930      // process death by signal.
5931      return 0x80 + WTERMSIG(status);
5932    } else {
5933      // Unknown exit code; pass it through
5934      return status;
5935    }
5936  }
5937}
5938
5939// is_headless_jre()
5940//
5941// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5942// in order to report if we are running in a headless jre
5943//
5944// Since JDK8 xawt/libmawt.so was moved into the same directory
5945// as libawt.so, and renamed libawt_xawt.so
5946//
5947bool os::is_headless_jre() {
5948  struct stat statbuf;
5949  char buf[MAXPATHLEN];
5950  char libmawtpath[MAXPATHLEN];
5951  const char *xawtstr  = "/xawt/libmawt.so";
5952  const char *new_xawtstr = "/libawt_xawt.so";
5953  char *p;
5954
5955  // Get path to libjvm.so
5956  os::jvm_path(buf, sizeof(buf));
5957
5958  // Get rid of libjvm.so
5959  p = strrchr(buf, '/');
5960  if (p == NULL) {
5961    return false;
5962  } else {
5963    *p = '\0';
5964  }
5965
5966  // Get rid of client or server
5967  p = strrchr(buf, '/');
5968  if (p == NULL) {
5969    return false;
5970  } else {
5971    *p = '\0';
5972  }
5973
5974  // check xawt/libmawt.so
5975  strcpy(libmawtpath, buf);
5976  strcat(libmawtpath, xawtstr);
5977  if (::stat(libmawtpath, &statbuf) == 0) return false;
5978
5979  // check libawt_xawt.so
5980  strcpy(libmawtpath, buf);
5981  strcat(libmawtpath, new_xawtstr);
5982  if (::stat(libmawtpath, &statbuf) == 0) return false;
5983
5984  return true;
5985}
5986
5987// Get the default path to the core file
5988// Returns the length of the string
5989int os::get_core_path(char* buffer, size_t bufferSize) {
5990  const char* p = get_current_directory(buffer, bufferSize);
5991
5992  if (p == NULL) {
5993    assert(p != NULL, "failed to get current directory");
5994    return 0;
5995  }
5996
5997  return strlen(buffer);
5998}
5999
6000/////////////// Unit tests ///////////////
6001
6002#ifndef PRODUCT
6003
6004#define test_log(...)              \
6005  do {                             \
6006    if (VerboseInternalVMTests) {  \
6007      tty->print_cr(__VA_ARGS__);  \
6008      tty->flush();                \
6009    }                              \
6010  } while (false)
6011
6012class TestReserveMemorySpecial : AllStatic {
6013 public:
6014  static void small_page_write(void* addr, size_t size) {
6015    size_t page_size = os::vm_page_size();
6016
6017    char* end = (char*)addr + size;
6018    for (char* p = (char*)addr; p < end; p += page_size) {
6019      *p = 1;
6020    }
6021  }
6022
6023  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6024    if (!UseHugeTLBFS) {
6025      return;
6026    }
6027
6028    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6029
6030    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6031
6032    if (addr != NULL) {
6033      small_page_write(addr, size);
6034
6035      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6036    }
6037  }
6038
6039  static void test_reserve_memory_special_huge_tlbfs_only() {
6040    if (!UseHugeTLBFS) {
6041      return;
6042    }
6043
6044    size_t lp = os::large_page_size();
6045
6046    for (size_t size = lp; size <= lp * 10; size += lp) {
6047      test_reserve_memory_special_huge_tlbfs_only(size);
6048    }
6049  }
6050
6051  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6052    if (!UseHugeTLBFS) {
6053      return;
6054    }
6055
6056    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6057             size, alignment);
6058
6059    assert(size >= os::large_page_size(), "Incorrect input to test");
6060
6061    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6062
6063    if (addr != NULL) {
6064      small_page_write(addr, size);
6065
6066      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6067    }
6068  }
6069
6070  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6071    size_t lp = os::large_page_size();
6072    size_t ag = os::vm_allocation_granularity();
6073
6074    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6075      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6076    }
6077  }
6078
6079  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6080    size_t lp = os::large_page_size();
6081    size_t ag = os::vm_allocation_granularity();
6082
6083    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6084    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6085    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6086    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6087    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6088    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6089    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6090    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6091    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6092  }
6093
6094  static void test_reserve_memory_special_huge_tlbfs() {
6095    if (!UseHugeTLBFS) {
6096      return;
6097    }
6098
6099    test_reserve_memory_special_huge_tlbfs_only();
6100    test_reserve_memory_special_huge_tlbfs_mixed();
6101  }
6102
6103  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6104    if (!UseSHM) {
6105      return;
6106    }
6107
6108    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6109
6110    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6111
6112    if (addr != NULL) {
6113      assert(is_ptr_aligned(addr, alignment), "Check");
6114      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6115
6116      small_page_write(addr, size);
6117
6118      os::Linux::release_memory_special_shm(addr, size);
6119    }
6120  }
6121
6122  static void test_reserve_memory_special_shm() {
6123    size_t lp = os::large_page_size();
6124    size_t ag = os::vm_allocation_granularity();
6125
6126    for (size_t size = ag; size < lp * 3; size += ag) {
6127      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6128        test_reserve_memory_special_shm(size, alignment);
6129      }
6130    }
6131  }
6132
6133  static void test() {
6134    test_reserve_memory_special_huge_tlbfs();
6135    test_reserve_memory_special_shm();
6136  }
6137};
6138
6139void TestReserveMemorySpecial_test() {
6140  TestReserveMemorySpecial::test();
6141}
6142
6143#endif
6144