os_linux.cpp revision 7052:0990a645d215
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/vmError.hpp"
72
73// put OS-includes here
74# include <sys/types.h>
75# include <sys/mman.h>
76# include <sys/stat.h>
77# include <sys/select.h>
78# include <pthread.h>
79# include <signal.h>
80# include <errno.h>
81# include <dlfcn.h>
82# include <stdio.h>
83# include <unistd.h>
84# include <sys/resource.h>
85# include <pthread.h>
86# include <sys/stat.h>
87# include <sys/time.h>
88# include <sys/times.h>
89# include <sys/utsname.h>
90# include <sys/socket.h>
91# include <sys/wait.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <syscall.h>
98# include <sys/sysinfo.h>
99# include <gnu/libc-version.h>
100# include <sys/ipc.h>
101# include <sys/shm.h>
102# include <link.h>
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106
107PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
108
109// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
110// getrusage() is prepared to handle the associated failure.
111#ifndef RUSAGE_THREAD
112  #define RUSAGE_THREAD   (1)               /* only the calling thread */
113#endif
114
115#define MAX_PATH    (2 * K)
116
117#define MAX_SECS 100000000
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122#define LARGEPAGES_BIT (1 << 6)
123////////////////////////////////////////////////////////////////////////////////
124// global variables
125julong os::Linux::_physical_memory = 0;
126
127address   os::Linux::_initial_thread_stack_bottom = NULL;
128uintptr_t os::Linux::_initial_thread_stack_size   = 0;
129
130int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
132Mutex* os::Linux::_createThread_lock = NULL;
133pthread_t os::Linux::_main_thread;
134int os::Linux::_page_size = -1;
135const int os::Linux::_vm_default_page_size = (8 * K);
136bool os::Linux::_is_floating_stack = false;
137bool os::Linux::_is_NPTL = false;
138bool os::Linux::_supports_fast_thread_cpu_time = false;
139const char * os::Linux::_glibc_version = NULL;
140const char * os::Linux::_libpthread_version = NULL;
141pthread_condattr_t os::Linux::_condattr[1];
142
143static jlong initial_time_count=0;
144
145static int clock_tics_per_sec = 100;
146
147// For diagnostics to print a message once. see run_periodic_checks
148static sigset_t check_signal_done;
149static bool check_signals = true;
150
151static pid_t _initial_pid = 0;
152
153// Signal number used to suspend/resume a thread
154
155// do not use any signal number less than SIGSEGV, see 4355769
156static int SR_signum = SIGUSR2;
157sigset_t SR_sigset;
158
159// Used to protect dlsym() calls
160static pthread_mutex_t dl_mutex;
161
162// Declarations
163static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
164
165#ifdef JAVASE_EMBEDDED
166class MemNotifyThread: public Thread {
167  friend class VMStructs;
168 public:
169  virtual void run();
170
171 private:
172  static MemNotifyThread* _memnotify_thread;
173  int _fd;
174
175 public:
176
177  // Constructor
178  MemNotifyThread(int fd);
179
180  // Tester
181  bool is_memnotify_thread() const { return true; }
182
183  // Printing
184  char* name() const { return (char*)"Linux MemNotify Thread"; }
185
186  // Returns the single instance of the MemNotifyThread
187  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
188
189  // Create and start the single instance of MemNotifyThread
190  static void start();
191};
192#endif // JAVASE_EMBEDDED
193
194// utility functions
195
196static int SR_initialize();
197
198julong os::available_memory() {
199  return Linux::available_memory();
200}
201
202julong os::Linux::available_memory() {
203  // values in struct sysinfo are "unsigned long"
204  struct sysinfo si;
205  sysinfo(&si);
206
207  return (julong)si.freeram * si.mem_unit;
208}
209
210julong os::physical_memory() {
211  return Linux::physical_memory();
212}
213
214////////////////////////////////////////////////////////////////////////////////
215// environment support
216
217bool os::getenv(const char* name, char* buf, int len) {
218  const char* val = ::getenv(name);
219  if (val != NULL && strlen(val) < (size_t)len) {
220    strcpy(buf, val);
221    return true;
222  }
223  if (len > 0) buf[0] = 0;  // return a null string
224  return false;
225}
226
227
228// Return true if user is running as root.
229
230bool os::have_special_privileges() {
231  static bool init = false;
232  static bool privileges = false;
233  if (!init) {
234    privileges = (getuid() != geteuid()) || (getgid() != getegid());
235    init = true;
236  }
237  return privileges;
238}
239
240
241#ifndef SYS_gettid
242// i386: 224, ia64: 1105, amd64: 186, sparc 143
243  #ifdef __ia64__
244    #define SYS_gettid 1105
245  #elif __i386__
246    #define SYS_gettid 224
247  #elif __amd64__
248    #define SYS_gettid 186
249  #elif __sparc__
250    #define SYS_gettid 143
251  #else
252    #error define gettid for the arch
253  #endif
254#endif
255
256// Cpu architecture string
257#if   defined(ZERO)
258static char cpu_arch[] = ZERO_LIBARCH;
259#elif defined(IA64)
260static char cpu_arch[] = "ia64";
261#elif defined(IA32)
262static char cpu_arch[] = "i386";
263#elif defined(AMD64)
264static char cpu_arch[] = "amd64";
265#elif defined(ARM)
266static char cpu_arch[] = "arm";
267#elif defined(PPC32)
268static char cpu_arch[] = "ppc";
269#elif defined(PPC64)
270static char cpu_arch[] = "ppc64";
271#elif defined(SPARC)
272  #ifdef _LP64
273static char cpu_arch[] = "sparcv9";
274  #else
275static char cpu_arch[] = "sparc";
276  #endif
277#else
278  #error Add appropriate cpu_arch setting
279#endif
280
281
282// pid_t gettid()
283//
284// Returns the kernel thread id of the currently running thread. Kernel
285// thread id is used to access /proc.
286//
287// (Note that getpid() on LinuxThreads returns kernel thread id too; but
288// on NPTL, it returns the same pid for all threads, as required by POSIX.)
289//
290pid_t os::Linux::gettid() {
291  int rslt = syscall(SYS_gettid);
292  if (rslt == -1) {
293    // old kernel, no NPTL support
294    return getpid();
295  } else {
296    return (pid_t)rslt;
297  }
298}
299
300// Most versions of linux have a bug where the number of processors are
301// determined by looking at the /proc file system.  In a chroot environment,
302// the system call returns 1.  This causes the VM to act as if it is
303// a single processor and elide locking (see is_MP() call).
304static bool unsafe_chroot_detected = false;
305static const char *unstable_chroot_error = "/proc file system not found.\n"
306                     "Java may be unstable running multithreaded in a chroot "
307                     "environment on Linux when /proc filesystem is not mounted.";
308
309void os::Linux::initialize_system_info() {
310  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
311  if (processor_count() == 1) {
312    pid_t pid = os::Linux::gettid();
313    char fname[32];
314    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
315    FILE *fp = fopen(fname, "r");
316    if (fp == NULL) {
317      unsafe_chroot_detected = true;
318    } else {
319      fclose(fp);
320    }
321  }
322  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
323  assert(processor_count() > 0, "linux error");
324}
325
326void os::init_system_properties_values() {
327  // The next steps are taken in the product version:
328  //
329  // Obtain the JAVA_HOME value from the location of libjvm.so.
330  // This library should be located at:
331  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
332  //
333  // If "/jre/lib/" appears at the right place in the path, then we
334  // assume libjvm.so is installed in a JDK and we use this path.
335  //
336  // Otherwise exit with message: "Could not create the Java virtual machine."
337  //
338  // The following extra steps are taken in the debugging version:
339  //
340  // If "/jre/lib/" does NOT appear at the right place in the path
341  // instead of exit check for $JAVA_HOME environment variable.
342  //
343  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
344  // then we append a fake suffix "hotspot/libjvm.so" to this path so
345  // it looks like libjvm.so is installed there
346  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
347  //
348  // Otherwise exit.
349  //
350  // Important note: if the location of libjvm.so changes this
351  // code needs to be changed accordingly.
352
353  // See ld(1):
354  //      The linker uses the following search paths to locate required
355  //      shared libraries:
356  //        1: ...
357  //        ...
358  //        7: The default directories, normally /lib and /usr/lib.
359#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
360  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
361#else
362  #define DEFAULT_LIBPATH "/lib:/usr/lib"
363#endif
364
365// Base path of extensions installed on the system.
366#define SYS_EXT_DIR     "/usr/java/packages"
367#define EXTENSIONS_DIR  "/lib/ext"
368#define ENDORSED_DIR    "/lib/endorsed"
369
370  // Buffer that fits several sprintfs.
371  // Note that the space for the colon and the trailing null are provided
372  // by the nulls included by the sizeof operator.
373  const size_t bufsize =
374    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
375         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
376         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
377  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
378
379  // sysclasspath, java_home, dll_dir
380  {
381    char *pslash;
382    os::jvm_path(buf, bufsize);
383
384    // Found the full path to libjvm.so.
385    // Now cut the path to <java_home>/jre if we can.
386    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
387    pslash = strrchr(buf, '/');
388    if (pslash != NULL) {
389      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
390    }
391    Arguments::set_dll_dir(buf);
392
393    if (pslash != NULL) {
394      pslash = strrchr(buf, '/');
395      if (pslash != NULL) {
396        *pslash = '\0';          // Get rid of /<arch>.
397        pslash = strrchr(buf, '/');
398        if (pslash != NULL) {
399          *pslash = '\0';        // Get rid of /lib.
400        }
401      }
402    }
403    Arguments::set_java_home(buf);
404    set_boot_path('/', ':');
405  }
406
407  // Where to look for native libraries.
408  //
409  // Note: Due to a legacy implementation, most of the library path
410  // is set in the launcher. This was to accomodate linking restrictions
411  // on legacy Linux implementations (which are no longer supported).
412  // Eventually, all the library path setting will be done here.
413  //
414  // However, to prevent the proliferation of improperly built native
415  // libraries, the new path component /usr/java/packages is added here.
416  // Eventually, all the library path setting will be done here.
417  {
418    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
419    // should always exist (until the legacy problem cited above is
420    // addressed).
421    const char *v = ::getenv("LD_LIBRARY_PATH");
422    const char *v_colon = ":";
423    if (v == NULL) { v = ""; v_colon = ""; }
424    // That's +1 for the colon and +1 for the trailing '\0'.
425    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
426                                                     strlen(v) + 1 +
427                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
428                                                     mtInternal);
429    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
430    Arguments::set_library_path(ld_library_path);
431    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
432  }
433
434  // Extensions directories.
435  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
436  Arguments::set_ext_dirs(buf);
437
438  // Endorsed standards default directory.
439  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
440  Arguments::set_endorsed_dirs(buf);
441
442  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
443
444#undef DEFAULT_LIBPATH
445#undef SYS_EXT_DIR
446#undef EXTENSIONS_DIR
447#undef ENDORSED_DIR
448}
449
450////////////////////////////////////////////////////////////////////////////////
451// breakpoint support
452
453void os::breakpoint() {
454  BREAKPOINT;
455}
456
457extern "C" void breakpoint() {
458  // use debugger to set breakpoint here
459}
460
461////////////////////////////////////////////////////////////////////////////////
462// signal support
463
464debug_only(static bool signal_sets_initialized = false);
465static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
466
467bool os::Linux::is_sig_ignored(int sig) {
468  struct sigaction oact;
469  sigaction(sig, (struct sigaction*)NULL, &oact);
470  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
471                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
472  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
473    return true;
474  } else {
475    return false;
476  }
477}
478
479void os::Linux::signal_sets_init() {
480  // Should also have an assertion stating we are still single-threaded.
481  assert(!signal_sets_initialized, "Already initialized");
482  // Fill in signals that are necessarily unblocked for all threads in
483  // the VM. Currently, we unblock the following signals:
484  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
485  //                         by -Xrs (=ReduceSignalUsage));
486  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
487  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
488  // the dispositions or masks wrt these signals.
489  // Programs embedding the VM that want to use the above signals for their
490  // own purposes must, at this time, use the "-Xrs" option to prevent
491  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
492  // (See bug 4345157, and other related bugs).
493  // In reality, though, unblocking these signals is really a nop, since
494  // these signals are not blocked by default.
495  sigemptyset(&unblocked_sigs);
496  sigemptyset(&allowdebug_blocked_sigs);
497  sigaddset(&unblocked_sigs, SIGILL);
498  sigaddset(&unblocked_sigs, SIGSEGV);
499  sigaddset(&unblocked_sigs, SIGBUS);
500  sigaddset(&unblocked_sigs, SIGFPE);
501#if defined(PPC64)
502  sigaddset(&unblocked_sigs, SIGTRAP);
503#endif
504  sigaddset(&unblocked_sigs, SR_signum);
505
506  if (!ReduceSignalUsage) {
507    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
508      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
509      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
510    }
511    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
512      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
513      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
514    }
515    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
516      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
517      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
518    }
519  }
520  // Fill in signals that are blocked by all but the VM thread.
521  sigemptyset(&vm_sigs);
522  if (!ReduceSignalUsage) {
523    sigaddset(&vm_sigs, BREAK_SIGNAL);
524  }
525  debug_only(signal_sets_initialized = true);
526
527}
528
529// These are signals that are unblocked while a thread is running Java.
530// (For some reason, they get blocked by default.)
531sigset_t* os::Linux::unblocked_signals() {
532  assert(signal_sets_initialized, "Not initialized");
533  return &unblocked_sigs;
534}
535
536// These are the signals that are blocked while a (non-VM) thread is
537// running Java. Only the VM thread handles these signals.
538sigset_t* os::Linux::vm_signals() {
539  assert(signal_sets_initialized, "Not initialized");
540  return &vm_sigs;
541}
542
543// These are signals that are blocked during cond_wait to allow debugger in
544sigset_t* os::Linux::allowdebug_blocked_signals() {
545  assert(signal_sets_initialized, "Not initialized");
546  return &allowdebug_blocked_sigs;
547}
548
549void os::Linux::hotspot_sigmask(Thread* thread) {
550
551  //Save caller's signal mask before setting VM signal mask
552  sigset_t caller_sigmask;
553  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
554
555  OSThread* osthread = thread->osthread();
556  osthread->set_caller_sigmask(caller_sigmask);
557
558  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
559
560  if (!ReduceSignalUsage) {
561    if (thread->is_VM_thread()) {
562      // Only the VM thread handles BREAK_SIGNAL ...
563      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
564    } else {
565      // ... all other threads block BREAK_SIGNAL
566      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
567    }
568  }
569}
570
571//////////////////////////////////////////////////////////////////////////////
572// detecting pthread library
573
574void os::Linux::libpthread_init() {
575  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
576  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
577  // generic name for earlier versions.
578  // Define macros here so we can build HotSpot on old systems.
579#ifndef _CS_GNU_LIBC_VERSION
580  #define _CS_GNU_LIBC_VERSION 2
581#endif
582#ifndef _CS_GNU_LIBPTHREAD_VERSION
583  #define _CS_GNU_LIBPTHREAD_VERSION 3
584#endif
585
586  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
587  if (n > 0) {
588    char *str = (char *)malloc(n, mtInternal);
589    confstr(_CS_GNU_LIBC_VERSION, str, n);
590    os::Linux::set_glibc_version(str);
591  } else {
592    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
593    static char _gnu_libc_version[32];
594    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
595                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
596    os::Linux::set_glibc_version(_gnu_libc_version);
597  }
598
599  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
600  if (n > 0) {
601    char *str = (char *)malloc(n, mtInternal);
602    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
603    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
604    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
605    // is the case. LinuxThreads has a hard limit on max number of threads.
606    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
607    // On the other hand, NPTL does not have such a limit, sysconf()
608    // will return -1 and errno is not changed. Check if it is really NPTL.
609    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
610        strstr(str, "NPTL") &&
611        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
612      free(str);
613      os::Linux::set_libpthread_version("linuxthreads");
614    } else {
615      os::Linux::set_libpthread_version(str);
616    }
617  } else {
618    // glibc before 2.3.2 only has LinuxThreads.
619    os::Linux::set_libpthread_version("linuxthreads");
620  }
621
622  if (strstr(libpthread_version(), "NPTL")) {
623    os::Linux::set_is_NPTL();
624  } else {
625    os::Linux::set_is_LinuxThreads();
626  }
627
628  // LinuxThreads have two flavors: floating-stack mode, which allows variable
629  // stack size; and fixed-stack mode. NPTL is always floating-stack.
630  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
631    os::Linux::set_is_floating_stack();
632  }
633}
634
635/////////////////////////////////////////////////////////////////////////////
636// thread stack
637
638// Force Linux kernel to expand current thread stack. If "bottom" is close
639// to the stack guard, caller should block all signals.
640//
641// MAP_GROWSDOWN:
642//   A special mmap() flag that is used to implement thread stacks. It tells
643//   kernel that the memory region should extend downwards when needed. This
644//   allows early versions of LinuxThreads to only mmap the first few pages
645//   when creating a new thread. Linux kernel will automatically expand thread
646//   stack as needed (on page faults).
647//
648//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
649//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
650//   region, it's hard to tell if the fault is due to a legitimate stack
651//   access or because of reading/writing non-exist memory (e.g. buffer
652//   overrun). As a rule, if the fault happens below current stack pointer,
653//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
654//   application (see Linux kernel fault.c).
655//
656//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
657//   stack overflow detection.
658//
659//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
660//   not use this flag. However, the stack of initial thread is not created
661//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
662//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
663//   and then attach the thread to JVM.
664//
665// To get around the problem and allow stack banging on Linux, we need to
666// manually expand thread stack after receiving the SIGSEGV.
667//
668// There are two ways to expand thread stack to address "bottom", we used
669// both of them in JVM before 1.5:
670//   1. adjust stack pointer first so that it is below "bottom", and then
671//      touch "bottom"
672//   2. mmap() the page in question
673//
674// Now alternate signal stack is gone, it's harder to use 2. For instance,
675// if current sp is already near the lower end of page 101, and we need to
676// call mmap() to map page 100, it is possible that part of the mmap() frame
677// will be placed in page 100. When page 100 is mapped, it is zero-filled.
678// That will destroy the mmap() frame and cause VM to crash.
679//
680// The following code works by adjusting sp first, then accessing the "bottom"
681// page to force a page fault. Linux kernel will then automatically expand the
682// stack mapping.
683//
684// _expand_stack_to() assumes its frame size is less than page size, which
685// should always be true if the function is not inlined.
686
687#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
688  #define NOINLINE
689#else
690  #define NOINLINE __attribute__ ((noinline))
691#endif
692
693static void _expand_stack_to(address bottom) NOINLINE;
694
695static void _expand_stack_to(address bottom) {
696  address sp;
697  size_t size;
698  volatile char *p;
699
700  // Adjust bottom to point to the largest address within the same page, it
701  // gives us a one-page buffer if alloca() allocates slightly more memory.
702  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
703  bottom += os::Linux::page_size() - 1;
704
705  // sp might be slightly above current stack pointer; if that's the case, we
706  // will alloca() a little more space than necessary, which is OK. Don't use
707  // os::current_stack_pointer(), as its result can be slightly below current
708  // stack pointer, causing us to not alloca enough to reach "bottom".
709  sp = (address)&sp;
710
711  if (sp > bottom) {
712    size = sp - bottom;
713    p = (volatile char *)alloca(size);
714    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
715    p[0] = '\0';
716  }
717}
718
719bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
720  assert(t!=NULL, "just checking");
721  assert(t->osthread()->expanding_stack(), "expand should be set");
722  assert(t->stack_base() != NULL, "stack_base was not initialized");
723
724  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
725    sigset_t mask_all, old_sigset;
726    sigfillset(&mask_all);
727    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
728    _expand_stack_to(addr);
729    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
730    return true;
731  }
732  return false;
733}
734
735//////////////////////////////////////////////////////////////////////////////
736// create new thread
737
738static address highest_vm_reserved_address();
739
740// check if it's safe to start a new thread
741static bool _thread_safety_check(Thread* thread) {
742  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
743    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
744    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
745    //   allocated (MAP_FIXED) from high address space. Every thread stack
746    //   occupies a fixed size slot (usually 2Mbytes, but user can change
747    //   it to other values if they rebuild LinuxThreads).
748    //
749    // Problem with MAP_FIXED is that mmap() can still succeed even part of
750    // the memory region has already been mmap'ed. That means if we have too
751    // many threads and/or very large heap, eventually thread stack will
752    // collide with heap.
753    //
754    // Here we try to prevent heap/stack collision by comparing current
755    // stack bottom with the highest address that has been mmap'ed by JVM
756    // plus a safety margin for memory maps created by native code.
757    //
758    // This feature can be disabled by setting ThreadSafetyMargin to 0
759    //
760    if (ThreadSafetyMargin > 0) {
761      address stack_bottom = os::current_stack_base() - os::current_stack_size();
762
763      // not safe if our stack extends below the safety margin
764      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
765    } else {
766      return true;
767    }
768  } else {
769    // Floating stack LinuxThreads or NPTL:
770    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
771    //   there's not enough space left, pthread_create() will fail. If we come
772    //   here, that means enough space has been reserved for stack.
773    return true;
774  }
775}
776
777// Thread start routine for all newly created threads
778static void *java_start(Thread *thread) {
779  // Try to randomize the cache line index of hot stack frames.
780  // This helps when threads of the same stack traces evict each other's
781  // cache lines. The threads can be either from the same JVM instance, or
782  // from different JVM instances. The benefit is especially true for
783  // processors with hyperthreading technology.
784  static int counter = 0;
785  int pid = os::current_process_id();
786  alloca(((pid ^ counter++) & 7) * 128);
787
788  ThreadLocalStorage::set_thread(thread);
789
790  OSThread* osthread = thread->osthread();
791  Monitor* sync = osthread->startThread_lock();
792
793  // non floating stack LinuxThreads needs extra check, see above
794  if (!_thread_safety_check(thread)) {
795    // notify parent thread
796    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
797    osthread->set_state(ZOMBIE);
798    sync->notify_all();
799    return NULL;
800  }
801
802  // thread_id is kernel thread id (similar to Solaris LWP id)
803  osthread->set_thread_id(os::Linux::gettid());
804
805  if (UseNUMA) {
806    int lgrp_id = os::numa_get_group_id();
807    if (lgrp_id != -1) {
808      thread->set_lgrp_id(lgrp_id);
809    }
810  }
811  // initialize signal mask for this thread
812  os::Linux::hotspot_sigmask(thread);
813
814  // initialize floating point control register
815  os::Linux::init_thread_fpu_state();
816
817  // handshaking with parent thread
818  {
819    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
820
821    // notify parent thread
822    osthread->set_state(INITIALIZED);
823    sync->notify_all();
824
825    // wait until os::start_thread()
826    while (osthread->get_state() == INITIALIZED) {
827      sync->wait(Mutex::_no_safepoint_check_flag);
828    }
829  }
830
831  // call one more level start routine
832  thread->run();
833
834  return 0;
835}
836
837bool os::create_thread(Thread* thread, ThreadType thr_type,
838                       size_t stack_size) {
839  assert(thread->osthread() == NULL, "caller responsible");
840
841  // Allocate the OSThread object
842  OSThread* osthread = new OSThread(NULL, NULL);
843  if (osthread == NULL) {
844    return false;
845  }
846
847  // set the correct thread state
848  osthread->set_thread_type(thr_type);
849
850  // Initial state is ALLOCATED but not INITIALIZED
851  osthread->set_state(ALLOCATED);
852
853  thread->set_osthread(osthread);
854
855  // init thread attributes
856  pthread_attr_t attr;
857  pthread_attr_init(&attr);
858  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
859
860  // stack size
861  if (os::Linux::supports_variable_stack_size()) {
862    // calculate stack size if it's not specified by caller
863    if (stack_size == 0) {
864      stack_size = os::Linux::default_stack_size(thr_type);
865
866      switch (thr_type) {
867      case os::java_thread:
868        // Java threads use ThreadStackSize which default value can be
869        // changed with the flag -Xss
870        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
871        stack_size = JavaThread::stack_size_at_create();
872        break;
873      case os::compiler_thread:
874        if (CompilerThreadStackSize > 0) {
875          stack_size = (size_t)(CompilerThreadStackSize * K);
876          break;
877        } // else fall through:
878          // use VMThreadStackSize if CompilerThreadStackSize is not defined
879      case os::vm_thread:
880      case os::pgc_thread:
881      case os::cgc_thread:
882      case os::watcher_thread:
883        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
884        break;
885      }
886    }
887
888    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
889    pthread_attr_setstacksize(&attr, stack_size);
890  } else {
891    // let pthread_create() pick the default value.
892  }
893
894  // glibc guard page
895  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
896
897  ThreadState state;
898
899  {
900    // Serialize thread creation if we are running with fixed stack LinuxThreads
901    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
902    if (lock) {
903      os::Linux::createThread_lock()->lock_without_safepoint_check();
904    }
905
906    pthread_t tid;
907    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
908
909    pthread_attr_destroy(&attr);
910
911    if (ret != 0) {
912      if (PrintMiscellaneous && (Verbose || WizardMode)) {
913        perror("pthread_create()");
914      }
915      // Need to clean up stuff we've allocated so far
916      thread->set_osthread(NULL);
917      delete osthread;
918      if (lock) os::Linux::createThread_lock()->unlock();
919      return false;
920    }
921
922    // Store pthread info into the OSThread
923    osthread->set_pthread_id(tid);
924
925    // Wait until child thread is either initialized or aborted
926    {
927      Monitor* sync_with_child = osthread->startThread_lock();
928      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
929      while ((state = osthread->get_state()) == ALLOCATED) {
930        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
931      }
932    }
933
934    if (lock) {
935      os::Linux::createThread_lock()->unlock();
936    }
937  }
938
939  // Aborted due to thread limit being reached
940  if (state == ZOMBIE) {
941    thread->set_osthread(NULL);
942    delete osthread;
943    return false;
944  }
945
946  // The thread is returned suspended (in state INITIALIZED),
947  // and is started higher up in the call chain
948  assert(state == INITIALIZED, "race condition");
949  return true;
950}
951
952/////////////////////////////////////////////////////////////////////////////
953// attach existing thread
954
955// bootstrap the main thread
956bool os::create_main_thread(JavaThread* thread) {
957  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
958  return create_attached_thread(thread);
959}
960
961bool os::create_attached_thread(JavaThread* thread) {
962#ifdef ASSERT
963  thread->verify_not_published();
964#endif
965
966  // Allocate the OSThread object
967  OSThread* osthread = new OSThread(NULL, NULL);
968
969  if (osthread == NULL) {
970    return false;
971  }
972
973  // Store pthread info into the OSThread
974  osthread->set_thread_id(os::Linux::gettid());
975  osthread->set_pthread_id(::pthread_self());
976
977  // initialize floating point control register
978  os::Linux::init_thread_fpu_state();
979
980  // Initial thread state is RUNNABLE
981  osthread->set_state(RUNNABLE);
982
983  thread->set_osthread(osthread);
984
985  if (UseNUMA) {
986    int lgrp_id = os::numa_get_group_id();
987    if (lgrp_id != -1) {
988      thread->set_lgrp_id(lgrp_id);
989    }
990  }
991
992  if (os::Linux::is_initial_thread()) {
993    // If current thread is initial thread, its stack is mapped on demand,
994    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
995    // the entire stack region to avoid SEGV in stack banging.
996    // It is also useful to get around the heap-stack-gap problem on SuSE
997    // kernel (see 4821821 for details). We first expand stack to the top
998    // of yellow zone, then enable stack yellow zone (order is significant,
999    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1000    // is no gap between the last two virtual memory regions.
1001
1002    JavaThread *jt = (JavaThread *)thread;
1003    address addr = jt->stack_yellow_zone_base();
1004    assert(addr != NULL, "initialization problem?");
1005    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1006
1007    osthread->set_expanding_stack();
1008    os::Linux::manually_expand_stack(jt, addr);
1009    osthread->clear_expanding_stack();
1010  }
1011
1012  // initialize signal mask for this thread
1013  // and save the caller's signal mask
1014  os::Linux::hotspot_sigmask(thread);
1015
1016  return true;
1017}
1018
1019void os::pd_start_thread(Thread* thread) {
1020  OSThread * osthread = thread->osthread();
1021  assert(osthread->get_state() != INITIALIZED, "just checking");
1022  Monitor* sync_with_child = osthread->startThread_lock();
1023  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1024  sync_with_child->notify();
1025}
1026
1027// Free Linux resources related to the OSThread
1028void os::free_thread(OSThread* osthread) {
1029  assert(osthread != NULL, "osthread not set");
1030
1031  if (Thread::current()->osthread() == osthread) {
1032    // Restore caller's signal mask
1033    sigset_t sigmask = osthread->caller_sigmask();
1034    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1035  }
1036
1037  delete osthread;
1038}
1039
1040//////////////////////////////////////////////////////////////////////////////
1041// thread local storage
1042
1043// Restore the thread pointer if the destructor is called. This is in case
1044// someone from JNI code sets up a destructor with pthread_key_create to run
1045// detachCurrentThread on thread death. Unless we restore the thread pointer we
1046// will hang or crash. When detachCurrentThread is called the key will be set
1047// to null and we will not be called again. If detachCurrentThread is never
1048// called we could loop forever depending on the pthread implementation.
1049static void restore_thread_pointer(void* p) {
1050  Thread* thread = (Thread*) p;
1051  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1052}
1053
1054int os::allocate_thread_local_storage() {
1055  pthread_key_t key;
1056  int rslt = pthread_key_create(&key, restore_thread_pointer);
1057  assert(rslt == 0, "cannot allocate thread local storage");
1058  return (int)key;
1059}
1060
1061// Note: This is currently not used by VM, as we don't destroy TLS key
1062// on VM exit.
1063void os::free_thread_local_storage(int index) {
1064  int rslt = pthread_key_delete((pthread_key_t)index);
1065  assert(rslt == 0, "invalid index");
1066}
1067
1068void os::thread_local_storage_at_put(int index, void* value) {
1069  int rslt = pthread_setspecific((pthread_key_t)index, value);
1070  assert(rslt == 0, "pthread_setspecific failed");
1071}
1072
1073extern "C" Thread* get_thread() {
1074  return ThreadLocalStorage::thread();
1075}
1076
1077//////////////////////////////////////////////////////////////////////////////
1078// initial thread
1079
1080// Check if current thread is the initial thread, similar to Solaris thr_main.
1081bool os::Linux::is_initial_thread(void) {
1082  char dummy;
1083  // If called before init complete, thread stack bottom will be null.
1084  // Can be called if fatal error occurs before initialization.
1085  if (initial_thread_stack_bottom() == NULL) return false;
1086  assert(initial_thread_stack_bottom() != NULL &&
1087         initial_thread_stack_size()   != 0,
1088         "os::init did not locate initial thread's stack region");
1089  if ((address)&dummy >= initial_thread_stack_bottom() &&
1090      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1091    return true;
1092  } else {
1093    return false;
1094  }
1095}
1096
1097// Find the virtual memory area that contains addr
1098static bool find_vma(address addr, address* vma_low, address* vma_high) {
1099  FILE *fp = fopen("/proc/self/maps", "r");
1100  if (fp) {
1101    address low, high;
1102    while (!feof(fp)) {
1103      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1104        if (low <= addr && addr < high) {
1105          if (vma_low)  *vma_low  = low;
1106          if (vma_high) *vma_high = high;
1107          fclose(fp);
1108          return true;
1109        }
1110      }
1111      for (;;) {
1112        int ch = fgetc(fp);
1113        if (ch == EOF || ch == (int)'\n') break;
1114      }
1115    }
1116    fclose(fp);
1117  }
1118  return false;
1119}
1120
1121// Locate initial thread stack. This special handling of initial thread stack
1122// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1123// bogus value for initial thread.
1124void os::Linux::capture_initial_stack(size_t max_size) {
1125  // stack size is the easy part, get it from RLIMIT_STACK
1126  size_t stack_size;
1127  struct rlimit rlim;
1128  getrlimit(RLIMIT_STACK, &rlim);
1129  stack_size = rlim.rlim_cur;
1130
1131  // 6308388: a bug in ld.so will relocate its own .data section to the
1132  //   lower end of primordial stack; reduce ulimit -s value a little bit
1133  //   so we won't install guard page on ld.so's data section.
1134  stack_size -= 2 * page_size();
1135
1136  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1137  //   7.1, in both cases we will get 2G in return value.
1138  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1139  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1140  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1141  //   in case other parts in glibc still assumes 2M max stack size.
1142  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1143  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1144  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1145    stack_size = 2 * K * K IA64_ONLY(*2);
1146  }
1147  // Try to figure out where the stack base (top) is. This is harder.
1148  //
1149  // When an application is started, glibc saves the initial stack pointer in
1150  // a global variable "__libc_stack_end", which is then used by system
1151  // libraries. __libc_stack_end should be pretty close to stack top. The
1152  // variable is available since the very early days. However, because it is
1153  // a private interface, it could disappear in the future.
1154  //
1155  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1156  // to __libc_stack_end, it is very close to stack top, but isn't the real
1157  // stack top. Note that /proc may not exist if VM is running as a chroot
1158  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1159  // /proc/<pid>/stat could change in the future (though unlikely).
1160  //
1161  // We try __libc_stack_end first. If that doesn't work, look for
1162  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1163  // as a hint, which should work well in most cases.
1164
1165  uintptr_t stack_start;
1166
1167  // try __libc_stack_end first
1168  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1169  if (p && *p) {
1170    stack_start = *p;
1171  } else {
1172    // see if we can get the start_stack field from /proc/self/stat
1173    FILE *fp;
1174    int pid;
1175    char state;
1176    int ppid;
1177    int pgrp;
1178    int session;
1179    int nr;
1180    int tpgrp;
1181    unsigned long flags;
1182    unsigned long minflt;
1183    unsigned long cminflt;
1184    unsigned long majflt;
1185    unsigned long cmajflt;
1186    unsigned long utime;
1187    unsigned long stime;
1188    long cutime;
1189    long cstime;
1190    long prio;
1191    long nice;
1192    long junk;
1193    long it_real;
1194    uintptr_t start;
1195    uintptr_t vsize;
1196    intptr_t rss;
1197    uintptr_t rsslim;
1198    uintptr_t scodes;
1199    uintptr_t ecode;
1200    int i;
1201
1202    // Figure what the primordial thread stack base is. Code is inspired
1203    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1204    // followed by command name surrounded by parentheses, state, etc.
1205    char stat[2048];
1206    int statlen;
1207
1208    fp = fopen("/proc/self/stat", "r");
1209    if (fp) {
1210      statlen = fread(stat, 1, 2047, fp);
1211      stat[statlen] = '\0';
1212      fclose(fp);
1213
1214      // Skip pid and the command string. Note that we could be dealing with
1215      // weird command names, e.g. user could decide to rename java launcher
1216      // to "java 1.4.2 :)", then the stat file would look like
1217      //                1234 (java 1.4.2 :)) R ... ...
1218      // We don't really need to know the command string, just find the last
1219      // occurrence of ")" and then start parsing from there. See bug 4726580.
1220      char * s = strrchr(stat, ')');
1221
1222      i = 0;
1223      if (s) {
1224        // Skip blank chars
1225        do s++; while (isspace(*s));
1226
1227#define _UFM UINTX_FORMAT
1228#define _DFM INTX_FORMAT
1229
1230        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1231        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1232        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1233                   &state,          // 3  %c
1234                   &ppid,           // 4  %d
1235                   &pgrp,           // 5  %d
1236                   &session,        // 6  %d
1237                   &nr,             // 7  %d
1238                   &tpgrp,          // 8  %d
1239                   &flags,          // 9  %lu
1240                   &minflt,         // 10 %lu
1241                   &cminflt,        // 11 %lu
1242                   &majflt,         // 12 %lu
1243                   &cmajflt,        // 13 %lu
1244                   &utime,          // 14 %lu
1245                   &stime,          // 15 %lu
1246                   &cutime,         // 16 %ld
1247                   &cstime,         // 17 %ld
1248                   &prio,           // 18 %ld
1249                   &nice,           // 19 %ld
1250                   &junk,           // 20 %ld
1251                   &it_real,        // 21 %ld
1252                   &start,          // 22 UINTX_FORMAT
1253                   &vsize,          // 23 UINTX_FORMAT
1254                   &rss,            // 24 INTX_FORMAT
1255                   &rsslim,         // 25 UINTX_FORMAT
1256                   &scodes,         // 26 UINTX_FORMAT
1257                   &ecode,          // 27 UINTX_FORMAT
1258                   &stack_start);   // 28 UINTX_FORMAT
1259      }
1260
1261#undef _UFM
1262#undef _DFM
1263
1264      if (i != 28 - 2) {
1265        assert(false, "Bad conversion from /proc/self/stat");
1266        // product mode - assume we are the initial thread, good luck in the
1267        // embedded case.
1268        warning("Can't detect initial thread stack location - bad conversion");
1269        stack_start = (uintptr_t) &rlim;
1270      }
1271    } else {
1272      // For some reason we can't open /proc/self/stat (for example, running on
1273      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1274      // most cases, so don't abort:
1275      warning("Can't detect initial thread stack location - no /proc/self/stat");
1276      stack_start = (uintptr_t) &rlim;
1277    }
1278  }
1279
1280  // Now we have a pointer (stack_start) very close to the stack top, the
1281  // next thing to do is to figure out the exact location of stack top. We
1282  // can find out the virtual memory area that contains stack_start by
1283  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1284  // and its upper limit is the real stack top. (again, this would fail if
1285  // running inside chroot, because /proc may not exist.)
1286
1287  uintptr_t stack_top;
1288  address low, high;
1289  if (find_vma((address)stack_start, &low, &high)) {
1290    // success, "high" is the true stack top. (ignore "low", because initial
1291    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1292    stack_top = (uintptr_t)high;
1293  } else {
1294    // failed, likely because /proc/self/maps does not exist
1295    warning("Can't detect initial thread stack location - find_vma failed");
1296    // best effort: stack_start is normally within a few pages below the real
1297    // stack top, use it as stack top, and reduce stack size so we won't put
1298    // guard page outside stack.
1299    stack_top = stack_start;
1300    stack_size -= 16 * page_size();
1301  }
1302
1303  // stack_top could be partially down the page so align it
1304  stack_top = align_size_up(stack_top, page_size());
1305
1306  if (max_size && stack_size > max_size) {
1307    _initial_thread_stack_size = max_size;
1308  } else {
1309    _initial_thread_stack_size = stack_size;
1310  }
1311
1312  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1313  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1314}
1315
1316////////////////////////////////////////////////////////////////////////////////
1317// time support
1318
1319// Time since start-up in seconds to a fine granularity.
1320// Used by VMSelfDestructTimer and the MemProfiler.
1321double os::elapsedTime() {
1322
1323  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1324}
1325
1326jlong os::elapsed_counter() {
1327  return javaTimeNanos() - initial_time_count;
1328}
1329
1330jlong os::elapsed_frequency() {
1331  return NANOSECS_PER_SEC; // nanosecond resolution
1332}
1333
1334bool os::supports_vtime() { return true; }
1335bool os::enable_vtime()   { return false; }
1336bool os::vtime_enabled()  { return false; }
1337
1338double os::elapsedVTime() {
1339  struct rusage usage;
1340  int retval = getrusage(RUSAGE_THREAD, &usage);
1341  if (retval == 0) {
1342    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1343  } else {
1344    // better than nothing, but not much
1345    return elapsedTime();
1346  }
1347}
1348
1349jlong os::javaTimeMillis() {
1350  timeval time;
1351  int status = gettimeofday(&time, NULL);
1352  assert(status != -1, "linux error");
1353  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1354}
1355
1356#ifndef CLOCK_MONOTONIC
1357  #define CLOCK_MONOTONIC (1)
1358#endif
1359
1360void os::Linux::clock_init() {
1361  // we do dlopen's in this particular order due to bug in linux
1362  // dynamical loader (see 6348968) leading to crash on exit
1363  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1364  if (handle == NULL) {
1365    handle = dlopen("librt.so", RTLD_LAZY);
1366  }
1367
1368  if (handle) {
1369    int (*clock_getres_func)(clockid_t, struct timespec*) =
1370           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1371    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1372           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1373    if (clock_getres_func && clock_gettime_func) {
1374      // See if monotonic clock is supported by the kernel. Note that some
1375      // early implementations simply return kernel jiffies (updated every
1376      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1377      // for nano time (though the monotonic property is still nice to have).
1378      // It's fixed in newer kernels, however clock_getres() still returns
1379      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1380      // resolution for now. Hopefully as people move to new kernels, this
1381      // won't be a problem.
1382      struct timespec res;
1383      struct timespec tp;
1384      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1385          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1386        // yes, monotonic clock is supported
1387        _clock_gettime = clock_gettime_func;
1388        return;
1389      } else {
1390        // close librt if there is no monotonic clock
1391        dlclose(handle);
1392      }
1393    }
1394  }
1395  warning("No monotonic clock was available - timed services may " \
1396          "be adversely affected if the time-of-day clock changes");
1397}
1398
1399#ifndef SYS_clock_getres
1400  #if defined(IA32) || defined(AMD64)
1401    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1402    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1403  #else
1404    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1405    #define sys_clock_getres(x,y)  -1
1406  #endif
1407#else
1408  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1409#endif
1410
1411void os::Linux::fast_thread_clock_init() {
1412  if (!UseLinuxPosixThreadCPUClocks) {
1413    return;
1414  }
1415  clockid_t clockid;
1416  struct timespec tp;
1417  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1418      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1419
1420  // Switch to using fast clocks for thread cpu time if
1421  // the sys_clock_getres() returns 0 error code.
1422  // Note, that some kernels may support the current thread
1423  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1424  // returned by the pthread_getcpuclockid().
1425  // If the fast Posix clocks are supported then the sys_clock_getres()
1426  // must return at least tp.tv_sec == 0 which means a resolution
1427  // better than 1 sec. This is extra check for reliability.
1428
1429  if (pthread_getcpuclockid_func &&
1430      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1431      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1432    _supports_fast_thread_cpu_time = true;
1433    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1434  }
1435}
1436
1437jlong os::javaTimeNanos() {
1438  if (os::supports_monotonic_clock()) {
1439    struct timespec tp;
1440    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1441    assert(status == 0, "gettime error");
1442    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1443    return result;
1444  } else {
1445    timeval time;
1446    int status = gettimeofday(&time, NULL);
1447    assert(status != -1, "linux error");
1448    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1449    return 1000 * usecs;
1450  }
1451}
1452
1453void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1454  if (os::supports_monotonic_clock()) {
1455    info_ptr->max_value = ALL_64_BITS;
1456
1457    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1458    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1459    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1460  } else {
1461    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1462    info_ptr->max_value = ALL_64_BITS;
1463
1464    // gettimeofday is a real time clock so it skips
1465    info_ptr->may_skip_backward = true;
1466    info_ptr->may_skip_forward = true;
1467  }
1468
1469  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1470}
1471
1472// Return the real, user, and system times in seconds from an
1473// arbitrary fixed point in the past.
1474bool os::getTimesSecs(double* process_real_time,
1475                      double* process_user_time,
1476                      double* process_system_time) {
1477  struct tms ticks;
1478  clock_t real_ticks = times(&ticks);
1479
1480  if (real_ticks == (clock_t) (-1)) {
1481    return false;
1482  } else {
1483    double ticks_per_second = (double) clock_tics_per_sec;
1484    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1485    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1486    *process_real_time = ((double) real_ticks) / ticks_per_second;
1487
1488    return true;
1489  }
1490}
1491
1492
1493char * os::local_time_string(char *buf, size_t buflen) {
1494  struct tm t;
1495  time_t long_time;
1496  time(&long_time);
1497  localtime_r(&long_time, &t);
1498  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1499               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1500               t.tm_hour, t.tm_min, t.tm_sec);
1501  return buf;
1502}
1503
1504struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1505  return localtime_r(clock, res);
1506}
1507
1508////////////////////////////////////////////////////////////////////////////////
1509// runtime exit support
1510
1511// Note: os::shutdown() might be called very early during initialization, or
1512// called from signal handler. Before adding something to os::shutdown(), make
1513// sure it is async-safe and can handle partially initialized VM.
1514void os::shutdown() {
1515
1516  // allow PerfMemory to attempt cleanup of any persistent resources
1517  perfMemory_exit();
1518
1519  // needs to remove object in file system
1520  AttachListener::abort();
1521
1522  // flush buffered output, finish log files
1523  ostream_abort();
1524
1525  // Check for abort hook
1526  abort_hook_t abort_hook = Arguments::abort_hook();
1527  if (abort_hook != NULL) {
1528    abort_hook();
1529  }
1530
1531}
1532
1533// Note: os::abort() might be called very early during initialization, or
1534// called from signal handler. Before adding something to os::abort(), make
1535// sure it is async-safe and can handle partially initialized VM.
1536void os::abort(bool dump_core) {
1537  os::shutdown();
1538  if (dump_core) {
1539#ifndef PRODUCT
1540    fdStream out(defaultStream::output_fd());
1541    out.print_raw("Current thread is ");
1542    char buf[16];
1543    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1544    out.print_raw_cr(buf);
1545    out.print_raw_cr("Dumping core ...");
1546#endif
1547    ::abort(); // dump core
1548  }
1549
1550  ::exit(1);
1551}
1552
1553// Die immediately, no exit hook, no abort hook, no cleanup.
1554void os::die() {
1555  // _exit() on LinuxThreads only kills current thread
1556  ::abort();
1557}
1558
1559
1560// This method is a copy of JDK's sysGetLastErrorString
1561// from src/solaris/hpi/src/system_md.c
1562
1563size_t os::lasterror(char *buf, size_t len) {
1564  if (errno == 0)  return 0;
1565
1566  const char *s = ::strerror(errno);
1567  size_t n = ::strlen(s);
1568  if (n >= len) {
1569    n = len - 1;
1570  }
1571  ::strncpy(buf, s, n);
1572  buf[n] = '\0';
1573  return n;
1574}
1575
1576intx os::current_thread_id() { return (intx)pthread_self(); }
1577int os::current_process_id() {
1578
1579  // Under the old linux thread library, linux gives each thread
1580  // its own process id. Because of this each thread will return
1581  // a different pid if this method were to return the result
1582  // of getpid(2). Linux provides no api that returns the pid
1583  // of the launcher thread for the vm. This implementation
1584  // returns a unique pid, the pid of the launcher thread
1585  // that starts the vm 'process'.
1586
1587  // Under the NPTL, getpid() returns the same pid as the
1588  // launcher thread rather than a unique pid per thread.
1589  // Use gettid() if you want the old pre NPTL behaviour.
1590
1591  // if you are looking for the result of a call to getpid() that
1592  // returns a unique pid for the calling thread, then look at the
1593  // OSThread::thread_id() method in osThread_linux.hpp file
1594
1595  return (int)(_initial_pid ? _initial_pid : getpid());
1596}
1597
1598// DLL functions
1599
1600const char* os::dll_file_extension() { return ".so"; }
1601
1602// This must be hard coded because it's the system's temporary
1603// directory not the java application's temp directory, ala java.io.tmpdir.
1604const char* os::get_temp_directory() { return "/tmp"; }
1605
1606static bool file_exists(const char* filename) {
1607  struct stat statbuf;
1608  if (filename == NULL || strlen(filename) == 0) {
1609    return false;
1610  }
1611  return os::stat(filename, &statbuf) == 0;
1612}
1613
1614bool os::dll_build_name(char* buffer, size_t buflen,
1615                        const char* pname, const char* fname) {
1616  bool retval = false;
1617  // Copied from libhpi
1618  const size_t pnamelen = pname ? strlen(pname) : 0;
1619
1620  // Return error on buffer overflow.
1621  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1622    return retval;
1623  }
1624
1625  if (pnamelen == 0) {
1626    snprintf(buffer, buflen, "lib%s.so", fname);
1627    retval = true;
1628  } else if (strchr(pname, *os::path_separator()) != NULL) {
1629    int n;
1630    char** pelements = split_path(pname, &n);
1631    if (pelements == NULL) {
1632      return false;
1633    }
1634    for (int i = 0; i < n; i++) {
1635      // Really shouldn't be NULL, but check can't hurt
1636      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1637        continue; // skip the empty path values
1638      }
1639      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1640      if (file_exists(buffer)) {
1641        retval = true;
1642        break;
1643      }
1644    }
1645    // release the storage
1646    for (int i = 0; i < n; i++) {
1647      if (pelements[i] != NULL) {
1648        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1649      }
1650    }
1651    if (pelements != NULL) {
1652      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1653    }
1654  } else {
1655    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1656    retval = true;
1657  }
1658  return retval;
1659}
1660
1661// check if addr is inside libjvm.so
1662bool os::address_is_in_vm(address addr) {
1663  static address libjvm_base_addr;
1664  Dl_info dlinfo;
1665
1666  if (libjvm_base_addr == NULL) {
1667    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1668      libjvm_base_addr = (address)dlinfo.dli_fbase;
1669    }
1670    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1671  }
1672
1673  if (dladdr((void *)addr, &dlinfo) != 0) {
1674    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1675  }
1676
1677  return false;
1678}
1679
1680bool os::dll_address_to_function_name(address addr, char *buf,
1681                                      int buflen, int *offset) {
1682  // buf is not optional, but offset is optional
1683  assert(buf != NULL, "sanity check");
1684
1685  Dl_info dlinfo;
1686
1687  if (dladdr((void*)addr, &dlinfo) != 0) {
1688    // see if we have a matching symbol
1689    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1690      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1691        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1692      }
1693      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1694      return true;
1695    }
1696    // no matching symbol so try for just file info
1697    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1698      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1699                          buf, buflen, offset, dlinfo.dli_fname)) {
1700        return true;
1701      }
1702    }
1703  }
1704
1705  buf[0] = '\0';
1706  if (offset != NULL) *offset = -1;
1707  return false;
1708}
1709
1710struct _address_to_library_name {
1711  address addr;          // input : memory address
1712  size_t  buflen;        //         size of fname
1713  char*   fname;         // output: library name
1714  address base;          //         library base addr
1715};
1716
1717static int address_to_library_name_callback(struct dl_phdr_info *info,
1718                                            size_t size, void *data) {
1719  int i;
1720  bool found = false;
1721  address libbase = NULL;
1722  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1723
1724  // iterate through all loadable segments
1725  for (i = 0; i < info->dlpi_phnum; i++) {
1726    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1727    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1728      // base address of a library is the lowest address of its loaded
1729      // segments.
1730      if (libbase == NULL || libbase > segbase) {
1731        libbase = segbase;
1732      }
1733      // see if 'addr' is within current segment
1734      if (segbase <= d->addr &&
1735          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1736        found = true;
1737      }
1738    }
1739  }
1740
1741  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1742  // so dll_address_to_library_name() can fall through to use dladdr() which
1743  // can figure out executable name from argv[0].
1744  if (found && info->dlpi_name && info->dlpi_name[0]) {
1745    d->base = libbase;
1746    if (d->fname) {
1747      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1748    }
1749    return 1;
1750  }
1751  return 0;
1752}
1753
1754bool os::dll_address_to_library_name(address addr, char* buf,
1755                                     int buflen, int* offset) {
1756  // buf is not optional, but offset is optional
1757  assert(buf != NULL, "sanity check");
1758
1759  Dl_info dlinfo;
1760  struct _address_to_library_name data;
1761
1762  // There is a bug in old glibc dladdr() implementation that it could resolve
1763  // to wrong library name if the .so file has a base address != NULL. Here
1764  // we iterate through the program headers of all loaded libraries to find
1765  // out which library 'addr' really belongs to. This workaround can be
1766  // removed once the minimum requirement for glibc is moved to 2.3.x.
1767  data.addr = addr;
1768  data.fname = buf;
1769  data.buflen = buflen;
1770  data.base = NULL;
1771  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1772
1773  if (rslt) {
1774    // buf already contains library name
1775    if (offset) *offset = addr - data.base;
1776    return true;
1777  }
1778  if (dladdr((void*)addr, &dlinfo) != 0) {
1779    if (dlinfo.dli_fname != NULL) {
1780      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1781    }
1782    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1783      *offset = addr - (address)dlinfo.dli_fbase;
1784    }
1785    return true;
1786  }
1787
1788  buf[0] = '\0';
1789  if (offset) *offset = -1;
1790  return false;
1791}
1792
1793// Loads .dll/.so and
1794// in case of error it checks if .dll/.so was built for the
1795// same architecture as Hotspot is running on
1796
1797
1798// Remember the stack's state. The Linux dynamic linker will change
1799// the stack to 'executable' at most once, so we must safepoint only once.
1800bool os::Linux::_stack_is_executable = false;
1801
1802// VM operation that loads a library.  This is necessary if stack protection
1803// of the Java stacks can be lost during loading the library.  If we
1804// do not stop the Java threads, they can stack overflow before the stacks
1805// are protected again.
1806class VM_LinuxDllLoad: public VM_Operation {
1807 private:
1808  const char *_filename;
1809  char *_ebuf;
1810  int _ebuflen;
1811  void *_lib;
1812 public:
1813  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1814    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1815  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1816  void doit() {
1817    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1818    os::Linux::_stack_is_executable = true;
1819  }
1820  void* loaded_library() { return _lib; }
1821};
1822
1823void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1824  void * result = NULL;
1825  bool load_attempted = false;
1826
1827  // Check whether the library to load might change execution rights
1828  // of the stack. If they are changed, the protection of the stack
1829  // guard pages will be lost. We need a safepoint to fix this.
1830  //
1831  // See Linux man page execstack(8) for more info.
1832  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1833    ElfFile ef(filename);
1834    if (!ef.specifies_noexecstack()) {
1835      if (!is_init_completed()) {
1836        os::Linux::_stack_is_executable = true;
1837        // This is OK - No Java threads have been created yet, and hence no
1838        // stack guard pages to fix.
1839        //
1840        // This should happen only when you are building JDK7 using a very
1841        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1842        //
1843        // Dynamic loader will make all stacks executable after
1844        // this function returns, and will not do that again.
1845        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1846      } else {
1847        warning("You have loaded library %s which might have disabled stack guard. "
1848                "The VM will try to fix the stack guard now.\n"
1849                "It's highly recommended that you fix the library with "
1850                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1851                filename);
1852
1853        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1854        JavaThread *jt = JavaThread::current();
1855        if (jt->thread_state() != _thread_in_native) {
1856          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1857          // that requires ExecStack. Cannot enter safe point. Let's give up.
1858          warning("Unable to fix stack guard. Giving up.");
1859        } else {
1860          if (!LoadExecStackDllInVMThread) {
1861            // This is for the case where the DLL has an static
1862            // constructor function that executes JNI code. We cannot
1863            // load such DLLs in the VMThread.
1864            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1865          }
1866
1867          ThreadInVMfromNative tiv(jt);
1868          debug_only(VMNativeEntryWrapper vew;)
1869
1870          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1871          VMThread::execute(&op);
1872          if (LoadExecStackDllInVMThread) {
1873            result = op.loaded_library();
1874          }
1875          load_attempted = true;
1876        }
1877      }
1878    }
1879  }
1880
1881  if (!load_attempted) {
1882    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1883  }
1884
1885  if (result != NULL) {
1886    // Successful loading
1887    return result;
1888  }
1889
1890  Elf32_Ehdr elf_head;
1891  int diag_msg_max_length=ebuflen-strlen(ebuf);
1892  char* diag_msg_buf=ebuf+strlen(ebuf);
1893
1894  if (diag_msg_max_length==0) {
1895    // No more space in ebuf for additional diagnostics message
1896    return NULL;
1897  }
1898
1899
1900  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1901
1902  if (file_descriptor < 0) {
1903    // Can't open library, report dlerror() message
1904    return NULL;
1905  }
1906
1907  bool failed_to_read_elf_head=
1908    (sizeof(elf_head)!=
1909     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1910
1911  ::close(file_descriptor);
1912  if (failed_to_read_elf_head) {
1913    // file i/o error - report dlerror() msg
1914    return NULL;
1915  }
1916
1917  typedef struct {
1918    Elf32_Half  code;         // Actual value as defined in elf.h
1919    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1920    char        elf_class;    // 32 or 64 bit
1921    char        endianess;    // MSB or LSB
1922    char*       name;         // String representation
1923  } arch_t;
1924
1925#ifndef EM_486
1926  #define EM_486          6               /* Intel 80486 */
1927#endif
1928
1929  static const arch_t arch_array[]={
1930    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1931    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1932    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1933    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1934    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1935    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1936    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1937    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1938#if defined(VM_LITTLE_ENDIAN)
1939    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1940#else
1941    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1942#endif
1943    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1944    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1945    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1946    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1947    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1948    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1949    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1950  };
1951
1952#if  (defined IA32)
1953  static  Elf32_Half running_arch_code=EM_386;
1954#elif   (defined AMD64)
1955  static  Elf32_Half running_arch_code=EM_X86_64;
1956#elif  (defined IA64)
1957  static  Elf32_Half running_arch_code=EM_IA_64;
1958#elif  (defined __sparc) && (defined _LP64)
1959  static  Elf32_Half running_arch_code=EM_SPARCV9;
1960#elif  (defined __sparc) && (!defined _LP64)
1961  static  Elf32_Half running_arch_code=EM_SPARC;
1962#elif  (defined __powerpc64__)
1963  static  Elf32_Half running_arch_code=EM_PPC64;
1964#elif  (defined __powerpc__)
1965  static  Elf32_Half running_arch_code=EM_PPC;
1966#elif  (defined ARM)
1967  static  Elf32_Half running_arch_code=EM_ARM;
1968#elif  (defined S390)
1969  static  Elf32_Half running_arch_code=EM_S390;
1970#elif  (defined ALPHA)
1971  static  Elf32_Half running_arch_code=EM_ALPHA;
1972#elif  (defined MIPSEL)
1973  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1974#elif  (defined PARISC)
1975  static  Elf32_Half running_arch_code=EM_PARISC;
1976#elif  (defined MIPS)
1977  static  Elf32_Half running_arch_code=EM_MIPS;
1978#elif  (defined M68K)
1979  static  Elf32_Half running_arch_code=EM_68K;
1980#else
1981    #error Method os::dll_load requires that one of following is defined:\
1982         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1983#endif
1984
1985  // Identify compatability class for VM's architecture and library's architecture
1986  // Obtain string descriptions for architectures
1987
1988  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1989  int running_arch_index=-1;
1990
1991  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1992    if (running_arch_code == arch_array[i].code) {
1993      running_arch_index    = i;
1994    }
1995    if (lib_arch.code == arch_array[i].code) {
1996      lib_arch.compat_class = arch_array[i].compat_class;
1997      lib_arch.name         = arch_array[i].name;
1998    }
1999  }
2000
2001  assert(running_arch_index != -1,
2002         "Didn't find running architecture code (running_arch_code) in arch_array");
2003  if (running_arch_index == -1) {
2004    // Even though running architecture detection failed
2005    // we may still continue with reporting dlerror() message
2006    return NULL;
2007  }
2008
2009  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2010    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2011    return NULL;
2012  }
2013
2014#ifndef S390
2015  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2016    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2017    return NULL;
2018  }
2019#endif // !S390
2020
2021  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2022    if (lib_arch.name!=NULL) {
2023      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2024                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2025                 lib_arch.name, arch_array[running_arch_index].name);
2026    } else {
2027      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2028                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2029                 lib_arch.code,
2030                 arch_array[running_arch_index].name);
2031    }
2032  }
2033
2034  return NULL;
2035}
2036
2037void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2038                                int ebuflen) {
2039  void * result = ::dlopen(filename, RTLD_LAZY);
2040  if (result == NULL) {
2041    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2042    ebuf[ebuflen-1] = '\0';
2043  }
2044  return result;
2045}
2046
2047void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2048                                       int ebuflen) {
2049  void * result = NULL;
2050  if (LoadExecStackDllInVMThread) {
2051    result = dlopen_helper(filename, ebuf, ebuflen);
2052  }
2053
2054  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2055  // library that requires an executable stack, or which does not have this
2056  // stack attribute set, dlopen changes the stack attribute to executable. The
2057  // read protection of the guard pages gets lost.
2058  //
2059  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2060  // may have been queued at the same time.
2061
2062  if (!_stack_is_executable) {
2063    JavaThread *jt = Threads::first();
2064
2065    while (jt) {
2066      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2067          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2068        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2069                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2070          warning("Attempt to reguard stack yellow zone failed.");
2071        }
2072      }
2073      jt = jt->next();
2074    }
2075  }
2076
2077  return result;
2078}
2079
2080// glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2081// chances are you might want to run the generated bits against glibc-2.0
2082// libdl.so, so always use locking for any version of glibc.
2083//
2084void* os::dll_lookup(void* handle, const char* name) {
2085  pthread_mutex_lock(&dl_mutex);
2086  void* res = dlsym(handle, name);
2087  pthread_mutex_unlock(&dl_mutex);
2088  return res;
2089}
2090
2091void* os::get_default_process_handle() {
2092  return (void*)::dlopen(NULL, RTLD_LAZY);
2093}
2094
2095static bool _print_ascii_file(const char* filename, outputStream* st) {
2096  int fd = ::open(filename, O_RDONLY);
2097  if (fd == -1) {
2098    return false;
2099  }
2100
2101  char buf[32];
2102  int bytes;
2103  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2104    st->print_raw(buf, bytes);
2105  }
2106
2107  ::close(fd);
2108
2109  return true;
2110}
2111
2112void os::print_dll_info(outputStream *st) {
2113  st->print_cr("Dynamic libraries:");
2114
2115  char fname[32];
2116  pid_t pid = os::Linux::gettid();
2117
2118  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2119
2120  if (!_print_ascii_file(fname, st)) {
2121    st->print("Can not get library information for pid = %d\n", pid);
2122  }
2123}
2124
2125int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2126  FILE *procmapsFile = NULL;
2127
2128  // Open the procfs maps file for the current process
2129  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2130    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2131    char line[PATH_MAX + 100];
2132
2133    // Read line by line from 'file'
2134    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2135      u8 base, top, offset, inode;
2136      char permissions[5];
2137      char device[6];
2138      char name[PATH_MAX + 1];
2139
2140      // Parse fields from line
2141      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2142
2143      // Filter by device id '00:00' so that we only get file system mapped files.
2144      if (strcmp(device, "00:00") != 0) {
2145
2146        // Call callback with the fields of interest
2147        if(callback(name, (address)base, (address)top, param)) {
2148          // Oops abort, callback aborted
2149          fclose(procmapsFile);
2150          return 1;
2151        }
2152      }
2153    }
2154    fclose(procmapsFile);
2155  }
2156  return 0;
2157}
2158
2159void os::print_os_info_brief(outputStream* st) {
2160  os::Linux::print_distro_info(st);
2161
2162  os::Posix::print_uname_info(st);
2163
2164  os::Linux::print_libversion_info(st);
2165
2166}
2167
2168void os::print_os_info(outputStream* st) {
2169  st->print("OS:");
2170
2171  os::Linux::print_distro_info(st);
2172
2173  os::Posix::print_uname_info(st);
2174
2175  // Print warning if unsafe chroot environment detected
2176  if (unsafe_chroot_detected) {
2177    st->print("WARNING!! ");
2178    st->print_cr("%s", unstable_chroot_error);
2179  }
2180
2181  os::Linux::print_libversion_info(st);
2182
2183  os::Posix::print_rlimit_info(st);
2184
2185  os::Posix::print_load_average(st);
2186
2187  os::Linux::print_full_memory_info(st);
2188}
2189
2190// Try to identify popular distros.
2191// Most Linux distributions have a /etc/XXX-release file, which contains
2192// the OS version string. Newer Linux distributions have a /etc/lsb-release
2193// file that also contains the OS version string. Some have more than one
2194// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2195// /etc/redhat-release.), so the order is important.
2196// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2197// their own specific XXX-release file as well as a redhat-release file.
2198// Because of this the XXX-release file needs to be searched for before the
2199// redhat-release file.
2200// Since Red Hat has a lsb-release file that is not very descriptive the
2201// search for redhat-release needs to be before lsb-release.
2202// Since the lsb-release file is the new standard it needs to be searched
2203// before the older style release files.
2204// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2205// next to last resort.  The os-release file is a new standard that contains
2206// distribution information and the system-release file seems to be an old
2207// standard that has been replaced by the lsb-release and os-release files.
2208// Searching for the debian_version file is the last resort.  It contains
2209// an informative string like "6.0.6" or "wheezy/sid". Because of this
2210// "Debian " is printed before the contents of the debian_version file.
2211void os::Linux::print_distro_info(outputStream* st) {
2212  if (!_print_ascii_file("/etc/oracle-release", st) &&
2213      !_print_ascii_file("/etc/mandriva-release", st) &&
2214      !_print_ascii_file("/etc/mandrake-release", st) &&
2215      !_print_ascii_file("/etc/sun-release", st) &&
2216      !_print_ascii_file("/etc/redhat-release", st) &&
2217      !_print_ascii_file("/etc/lsb-release", st) &&
2218      !_print_ascii_file("/etc/SuSE-release", st) &&
2219      !_print_ascii_file("/etc/turbolinux-release", st) &&
2220      !_print_ascii_file("/etc/gentoo-release", st) &&
2221      !_print_ascii_file("/etc/ltib-release", st) &&
2222      !_print_ascii_file("/etc/angstrom-version", st) &&
2223      !_print_ascii_file("/etc/system-release", st) &&
2224      !_print_ascii_file("/etc/os-release", st)) {
2225
2226    if (file_exists("/etc/debian_version")) {
2227      st->print("Debian ");
2228      _print_ascii_file("/etc/debian_version", st);
2229    } else {
2230      st->print("Linux");
2231    }
2232  }
2233  st->cr();
2234}
2235
2236void os::Linux::print_libversion_info(outputStream* st) {
2237  // libc, pthread
2238  st->print("libc:");
2239  st->print("%s ", os::Linux::glibc_version());
2240  st->print("%s ", os::Linux::libpthread_version());
2241  if (os::Linux::is_LinuxThreads()) {
2242    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2243  }
2244  st->cr();
2245}
2246
2247void os::Linux::print_full_memory_info(outputStream* st) {
2248  st->print("\n/proc/meminfo:\n");
2249  _print_ascii_file("/proc/meminfo", st);
2250  st->cr();
2251}
2252
2253void os::print_memory_info(outputStream* st) {
2254
2255  st->print("Memory:");
2256  st->print(" %dk page", os::vm_page_size()>>10);
2257
2258  // values in struct sysinfo are "unsigned long"
2259  struct sysinfo si;
2260  sysinfo(&si);
2261
2262  st->print(", physical " UINT64_FORMAT "k",
2263            os::physical_memory() >> 10);
2264  st->print("(" UINT64_FORMAT "k free)",
2265            os::available_memory() >> 10);
2266  st->print(", swap " UINT64_FORMAT "k",
2267            ((jlong)si.totalswap * si.mem_unit) >> 10);
2268  st->print("(" UINT64_FORMAT "k free)",
2269            ((jlong)si.freeswap * si.mem_unit) >> 10);
2270  st->cr();
2271}
2272
2273void os::pd_print_cpu_info(outputStream* st) {
2274  st->print("\n/proc/cpuinfo:\n");
2275  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2276    st->print("  <Not Available>");
2277  }
2278  st->cr();
2279}
2280
2281void os::print_siginfo(outputStream* st, void* siginfo) {
2282  const siginfo_t* si = (const siginfo_t*)siginfo;
2283
2284  os::Posix::print_siginfo_brief(st, si);
2285#if INCLUDE_CDS
2286  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2287      UseSharedSpaces) {
2288    FileMapInfo* mapinfo = FileMapInfo::current_info();
2289    if (mapinfo->is_in_shared_space(si->si_addr)) {
2290      st->print("\n\nError accessing class data sharing archive."   \
2291                " Mapped file inaccessible during execution, "      \
2292                " possible disk/network problem.");
2293    }
2294  }
2295#endif
2296  st->cr();
2297}
2298
2299
2300static void print_signal_handler(outputStream* st, int sig,
2301                                 char* buf, size_t buflen);
2302
2303void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2304  st->print_cr("Signal Handlers:");
2305  print_signal_handler(st, SIGSEGV, buf, buflen);
2306  print_signal_handler(st, SIGBUS , buf, buflen);
2307  print_signal_handler(st, SIGFPE , buf, buflen);
2308  print_signal_handler(st, SIGPIPE, buf, buflen);
2309  print_signal_handler(st, SIGXFSZ, buf, buflen);
2310  print_signal_handler(st, SIGILL , buf, buflen);
2311  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2312  print_signal_handler(st, SR_signum, buf, buflen);
2313  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2314  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2315  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2316  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2317#if defined(PPC64)
2318  print_signal_handler(st, SIGTRAP, buf, buflen);
2319#endif
2320}
2321
2322static char saved_jvm_path[MAXPATHLEN] = {0};
2323
2324// Find the full path to the current module, libjvm.so
2325void os::jvm_path(char *buf, jint buflen) {
2326  // Error checking.
2327  if (buflen < MAXPATHLEN) {
2328    assert(false, "must use a large-enough buffer");
2329    buf[0] = '\0';
2330    return;
2331  }
2332  // Lazy resolve the path to current module.
2333  if (saved_jvm_path[0] != 0) {
2334    strcpy(buf, saved_jvm_path);
2335    return;
2336  }
2337
2338  char dli_fname[MAXPATHLEN];
2339  bool ret = dll_address_to_library_name(
2340                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2341                                         dli_fname, sizeof(dli_fname), NULL);
2342  assert(ret, "cannot locate libjvm");
2343  char *rp = NULL;
2344  if (ret && dli_fname[0] != '\0') {
2345    rp = realpath(dli_fname, buf);
2346  }
2347  if (rp == NULL) {
2348    return;
2349  }
2350
2351  if (Arguments::sun_java_launcher_is_altjvm()) {
2352    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2353    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2354    // If "/jre/lib/" appears at the right place in the string, then
2355    // assume we are installed in a JDK and we're done. Otherwise, check
2356    // for a JAVA_HOME environment variable and fix up the path so it
2357    // looks like libjvm.so is installed there (append a fake suffix
2358    // hotspot/libjvm.so).
2359    const char *p = buf + strlen(buf) - 1;
2360    for (int count = 0; p > buf && count < 5; ++count) {
2361      for (--p; p > buf && *p != '/'; --p)
2362        /* empty */ ;
2363    }
2364
2365    if (strncmp(p, "/jre/lib/", 9) != 0) {
2366      // Look for JAVA_HOME in the environment.
2367      char* java_home_var = ::getenv("JAVA_HOME");
2368      if (java_home_var != NULL && java_home_var[0] != 0) {
2369        char* jrelib_p;
2370        int len;
2371
2372        // Check the current module name "libjvm.so".
2373        p = strrchr(buf, '/');
2374        assert(strstr(p, "/libjvm") == p, "invalid library name");
2375
2376        rp = realpath(java_home_var, buf);
2377        if (rp == NULL) {
2378          return;
2379        }
2380
2381        // determine if this is a legacy image or modules image
2382        // modules image doesn't have "jre" subdirectory
2383        len = strlen(buf);
2384        assert(len < buflen, "Ran out of buffer room");
2385        jrelib_p = buf + len;
2386        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2387        if (0 != access(buf, F_OK)) {
2388          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2389        }
2390
2391        if (0 == access(buf, F_OK)) {
2392          // Use current module name "libjvm.so"
2393          len = strlen(buf);
2394          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2395        } else {
2396          // Go back to path of .so
2397          rp = realpath(dli_fname, buf);
2398          if (rp == NULL) {
2399            return;
2400          }
2401        }
2402      }
2403    }
2404  }
2405
2406  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2407}
2408
2409void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2410  // no prefix required, not even "_"
2411}
2412
2413void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2414  // no suffix required
2415}
2416
2417////////////////////////////////////////////////////////////////////////////////
2418// sun.misc.Signal support
2419
2420static volatile jint sigint_count = 0;
2421
2422static void UserHandler(int sig, void *siginfo, void *context) {
2423  // 4511530 - sem_post is serialized and handled by the manager thread. When
2424  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2425  // don't want to flood the manager thread with sem_post requests.
2426  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2427    return;
2428  }
2429
2430  // Ctrl-C is pressed during error reporting, likely because the error
2431  // handler fails to abort. Let VM die immediately.
2432  if (sig == SIGINT && is_error_reported()) {
2433    os::die();
2434  }
2435
2436  os::signal_notify(sig);
2437}
2438
2439void* os::user_handler() {
2440  return CAST_FROM_FN_PTR(void*, UserHandler);
2441}
2442
2443class Semaphore : public StackObj {
2444 public:
2445  Semaphore();
2446  ~Semaphore();
2447  void signal();
2448  void wait();
2449  bool trywait();
2450  bool timedwait(unsigned int sec, int nsec);
2451 private:
2452  sem_t _semaphore;
2453};
2454
2455Semaphore::Semaphore() {
2456  sem_init(&_semaphore, 0, 0);
2457}
2458
2459Semaphore::~Semaphore() {
2460  sem_destroy(&_semaphore);
2461}
2462
2463void Semaphore::signal() {
2464  sem_post(&_semaphore);
2465}
2466
2467void Semaphore::wait() {
2468  sem_wait(&_semaphore);
2469}
2470
2471bool Semaphore::trywait() {
2472  return sem_trywait(&_semaphore) == 0;
2473}
2474
2475bool Semaphore::timedwait(unsigned int sec, int nsec) {
2476
2477  struct timespec ts;
2478  // Semaphore's are always associated with CLOCK_REALTIME
2479  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2480  // see unpackTime for discussion on overflow checking
2481  if (sec >= MAX_SECS) {
2482    ts.tv_sec += MAX_SECS;
2483    ts.tv_nsec = 0;
2484  } else {
2485    ts.tv_sec += sec;
2486    ts.tv_nsec += nsec;
2487    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2488      ts.tv_nsec -= NANOSECS_PER_SEC;
2489      ++ts.tv_sec; // note: this must be <= max_secs
2490    }
2491  }
2492
2493  while (1) {
2494    int result = sem_timedwait(&_semaphore, &ts);
2495    if (result == 0) {
2496      return true;
2497    } else if (errno == EINTR) {
2498      continue;
2499    } else if (errno == ETIMEDOUT) {
2500      return false;
2501    } else {
2502      return false;
2503    }
2504  }
2505}
2506
2507extern "C" {
2508  typedef void (*sa_handler_t)(int);
2509  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2510}
2511
2512void* os::signal(int signal_number, void* handler) {
2513  struct sigaction sigAct, oldSigAct;
2514
2515  sigfillset(&(sigAct.sa_mask));
2516  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2517  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2518
2519  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2520    // -1 means registration failed
2521    return (void *)-1;
2522  }
2523
2524  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2525}
2526
2527void os::signal_raise(int signal_number) {
2528  ::raise(signal_number);
2529}
2530
2531// The following code is moved from os.cpp for making this
2532// code platform specific, which it is by its very nature.
2533
2534// Will be modified when max signal is changed to be dynamic
2535int os::sigexitnum_pd() {
2536  return NSIG;
2537}
2538
2539// a counter for each possible signal value
2540static volatile jint pending_signals[NSIG+1] = { 0 };
2541
2542// Linux(POSIX) specific hand shaking semaphore.
2543static sem_t sig_sem;
2544static Semaphore sr_semaphore;
2545
2546void os::signal_init_pd() {
2547  // Initialize signal structures
2548  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2549
2550  // Initialize signal semaphore
2551  ::sem_init(&sig_sem, 0, 0);
2552}
2553
2554void os::signal_notify(int sig) {
2555  Atomic::inc(&pending_signals[sig]);
2556  ::sem_post(&sig_sem);
2557}
2558
2559static int check_pending_signals(bool wait) {
2560  Atomic::store(0, &sigint_count);
2561  for (;;) {
2562    for (int i = 0; i < NSIG + 1; i++) {
2563      jint n = pending_signals[i];
2564      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2565        return i;
2566      }
2567    }
2568    if (!wait) {
2569      return -1;
2570    }
2571    JavaThread *thread = JavaThread::current();
2572    ThreadBlockInVM tbivm(thread);
2573
2574    bool threadIsSuspended;
2575    do {
2576      thread->set_suspend_equivalent();
2577      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2578      ::sem_wait(&sig_sem);
2579
2580      // were we externally suspended while we were waiting?
2581      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2582      if (threadIsSuspended) {
2583        // The semaphore has been incremented, but while we were waiting
2584        // another thread suspended us. We don't want to continue running
2585        // while suspended because that would surprise the thread that
2586        // suspended us.
2587        ::sem_post(&sig_sem);
2588
2589        thread->java_suspend_self();
2590      }
2591    } while (threadIsSuspended);
2592  }
2593}
2594
2595int os::signal_lookup() {
2596  return check_pending_signals(false);
2597}
2598
2599int os::signal_wait() {
2600  return check_pending_signals(true);
2601}
2602
2603////////////////////////////////////////////////////////////////////////////////
2604// Virtual Memory
2605
2606int os::vm_page_size() {
2607  // Seems redundant as all get out
2608  assert(os::Linux::page_size() != -1, "must call os::init");
2609  return os::Linux::page_size();
2610}
2611
2612// Solaris allocates memory by pages.
2613int os::vm_allocation_granularity() {
2614  assert(os::Linux::page_size() != -1, "must call os::init");
2615  return os::Linux::page_size();
2616}
2617
2618// Rationale behind this function:
2619//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2620//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2621//  samples for JITted code. Here we create private executable mapping over the code cache
2622//  and then we can use standard (well, almost, as mapping can change) way to provide
2623//  info for the reporting script by storing timestamp and location of symbol
2624void linux_wrap_code(char* base, size_t size) {
2625  static volatile jint cnt = 0;
2626
2627  if (!UseOprofile) {
2628    return;
2629  }
2630
2631  char buf[PATH_MAX+1];
2632  int num = Atomic::add(1, &cnt);
2633
2634  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2635           os::get_temp_directory(), os::current_process_id(), num);
2636  unlink(buf);
2637
2638  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2639
2640  if (fd != -1) {
2641    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2642    if (rv != (off_t)-1) {
2643      if (::write(fd, "", 1) == 1) {
2644        mmap(base, size,
2645             PROT_READ|PROT_WRITE|PROT_EXEC,
2646             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2647      }
2648    }
2649    ::close(fd);
2650    unlink(buf);
2651  }
2652}
2653
2654static bool recoverable_mmap_error(int err) {
2655  // See if the error is one we can let the caller handle. This
2656  // list of errno values comes from JBS-6843484. I can't find a
2657  // Linux man page that documents this specific set of errno
2658  // values so while this list currently matches Solaris, it may
2659  // change as we gain experience with this failure mode.
2660  switch (err) {
2661  case EBADF:
2662  case EINVAL:
2663  case ENOTSUP:
2664    // let the caller deal with these errors
2665    return true;
2666
2667  default:
2668    // Any remaining errors on this OS can cause our reserved mapping
2669    // to be lost. That can cause confusion where different data
2670    // structures think they have the same memory mapped. The worst
2671    // scenario is if both the VM and a library think they have the
2672    // same memory mapped.
2673    return false;
2674  }
2675}
2676
2677static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2678                                    int err) {
2679  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2680          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2681          strerror(err), err);
2682}
2683
2684static void warn_fail_commit_memory(char* addr, size_t size,
2685                                    size_t alignment_hint, bool exec,
2686                                    int err) {
2687  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2688          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2689          alignment_hint, exec, strerror(err), err);
2690}
2691
2692// NOTE: Linux kernel does not really reserve the pages for us.
2693//       All it does is to check if there are enough free pages
2694//       left at the time of mmap(). This could be a potential
2695//       problem.
2696int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2697  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2698  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2699                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2700  if (res != (uintptr_t) MAP_FAILED) {
2701    if (UseNUMAInterleaving) {
2702      numa_make_global(addr, size);
2703    }
2704    return 0;
2705  }
2706
2707  int err = errno;  // save errno from mmap() call above
2708
2709  if (!recoverable_mmap_error(err)) {
2710    warn_fail_commit_memory(addr, size, exec, err);
2711    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2712  }
2713
2714  return err;
2715}
2716
2717bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2718  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2719}
2720
2721void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2722                                  const char* mesg) {
2723  assert(mesg != NULL, "mesg must be specified");
2724  int err = os::Linux::commit_memory_impl(addr, size, exec);
2725  if (err != 0) {
2726    // the caller wants all commit errors to exit with the specified mesg:
2727    warn_fail_commit_memory(addr, size, exec, err);
2728    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2729  }
2730}
2731
2732// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2733#ifndef MAP_HUGETLB
2734  #define MAP_HUGETLB 0x40000
2735#endif
2736
2737// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2738#ifndef MADV_HUGEPAGE
2739  #define MADV_HUGEPAGE 14
2740#endif
2741
2742int os::Linux::commit_memory_impl(char* addr, size_t size,
2743                                  size_t alignment_hint, bool exec) {
2744  int err = os::Linux::commit_memory_impl(addr, size, exec);
2745  if (err == 0) {
2746    realign_memory(addr, size, alignment_hint);
2747  }
2748  return err;
2749}
2750
2751bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2752                          bool exec) {
2753  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2754}
2755
2756void os::pd_commit_memory_or_exit(char* addr, size_t size,
2757                                  size_t alignment_hint, bool exec,
2758                                  const char* mesg) {
2759  assert(mesg != NULL, "mesg must be specified");
2760  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2761  if (err != 0) {
2762    // the caller wants all commit errors to exit with the specified mesg:
2763    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2764    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2765  }
2766}
2767
2768void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2769  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2770    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2771    // be supported or the memory may already be backed by huge pages.
2772    ::madvise(addr, bytes, MADV_HUGEPAGE);
2773  }
2774}
2775
2776void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2777  // This method works by doing an mmap over an existing mmaping and effectively discarding
2778  // the existing pages. However it won't work for SHM-based large pages that cannot be
2779  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2780  // small pages on top of the SHM segment. This method always works for small pages, so we
2781  // allow that in any case.
2782  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2783    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2784  }
2785}
2786
2787void os::numa_make_global(char *addr, size_t bytes) {
2788  Linux::numa_interleave_memory(addr, bytes);
2789}
2790
2791// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2792// bind policy to MPOL_PREFERRED for the current thread.
2793#define USE_MPOL_PREFERRED 0
2794
2795void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2796  // To make NUMA and large pages more robust when both enabled, we need to ease
2797  // the requirements on where the memory should be allocated. MPOL_BIND is the
2798  // default policy and it will force memory to be allocated on the specified
2799  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2800  // the specified node, but will not force it. Using this policy will prevent
2801  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2802  // free large pages.
2803  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2804  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2805}
2806
2807bool os::numa_topology_changed() { return false; }
2808
2809size_t os::numa_get_groups_num() {
2810  int max_node = Linux::numa_max_node();
2811  return max_node > 0 ? max_node + 1 : 1;
2812}
2813
2814int os::numa_get_group_id() {
2815  int cpu_id = Linux::sched_getcpu();
2816  if (cpu_id != -1) {
2817    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2818    if (lgrp_id != -1) {
2819      return lgrp_id;
2820    }
2821  }
2822  return 0;
2823}
2824
2825size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2826  for (size_t i = 0; i < size; i++) {
2827    ids[i] = i;
2828  }
2829  return size;
2830}
2831
2832bool os::get_page_info(char *start, page_info* info) {
2833  return false;
2834}
2835
2836char *os::scan_pages(char *start, char* end, page_info* page_expected,
2837                     page_info* page_found) {
2838  return end;
2839}
2840
2841
2842int os::Linux::sched_getcpu_syscall(void) {
2843  unsigned int cpu;
2844  int retval = -1;
2845
2846#if defined(IA32)
2847  #ifndef SYS_getcpu
2848    #define SYS_getcpu 318
2849  #endif
2850  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2851#elif defined(AMD64)
2852// Unfortunately we have to bring all these macros here from vsyscall.h
2853// to be able to compile on old linuxes.
2854  #define __NR_vgetcpu 2
2855  #define VSYSCALL_START (-10UL << 20)
2856  #define VSYSCALL_SIZE 1024
2857  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2858  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2859  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2860  retval = vgetcpu(&cpu, NULL, NULL);
2861#endif
2862
2863  return (retval == -1) ? retval : cpu;
2864}
2865
2866// Something to do with the numa-aware allocator needs these symbols
2867extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2868extern "C" JNIEXPORT void numa_error(char *where) { }
2869extern "C" JNIEXPORT int fork1() { return fork(); }
2870
2871
2872// If we are running with libnuma version > 2, then we should
2873// be trying to use symbols with versions 1.1
2874// If we are running with earlier version, which did not have symbol versions,
2875// we should use the base version.
2876void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2877  void *f = dlvsym(handle, name, "libnuma_1.1");
2878  if (f == NULL) {
2879    f = dlsym(handle, name);
2880  }
2881  return f;
2882}
2883
2884bool os::Linux::libnuma_init() {
2885  // sched_getcpu() should be in libc.
2886  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2887                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2888
2889  // If it's not, try a direct syscall.
2890  if (sched_getcpu() == -1) {
2891    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2892                                    (void*)&sched_getcpu_syscall));
2893  }
2894
2895  if (sched_getcpu() != -1) { // Does it work?
2896    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2897    if (handle != NULL) {
2898      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2899                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2900      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2901                                       libnuma_dlsym(handle, "numa_max_node")));
2902      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2903                                        libnuma_dlsym(handle, "numa_available")));
2904      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2905                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2906      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2907                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2908      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2909                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2910
2911
2912      if (numa_available() != -1) {
2913        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2914        // Create a cpu -> node mapping
2915        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2916        rebuild_cpu_to_node_map();
2917        return true;
2918      }
2919    }
2920  }
2921  return false;
2922}
2923
2924// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2925// The table is later used in get_node_by_cpu().
2926void os::Linux::rebuild_cpu_to_node_map() {
2927  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2928                              // in libnuma (possible values are starting from 16,
2929                              // and continuing up with every other power of 2, but less
2930                              // than the maximum number of CPUs supported by kernel), and
2931                              // is a subject to change (in libnuma version 2 the requirements
2932                              // are more reasonable) we'll just hardcode the number they use
2933                              // in the library.
2934  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2935
2936  size_t cpu_num = os::active_processor_count();
2937  size_t cpu_map_size = NCPUS / BitsPerCLong;
2938  size_t cpu_map_valid_size =
2939    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2940
2941  cpu_to_node()->clear();
2942  cpu_to_node()->at_grow(cpu_num - 1);
2943  size_t node_num = numa_get_groups_num();
2944
2945  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2946  for (size_t i = 0; i < node_num; i++) {
2947    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2948      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2949        if (cpu_map[j] != 0) {
2950          for (size_t k = 0; k < BitsPerCLong; k++) {
2951            if (cpu_map[j] & (1UL << k)) {
2952              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2953            }
2954          }
2955        }
2956      }
2957    }
2958  }
2959  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2960}
2961
2962int os::Linux::get_node_by_cpu(int cpu_id) {
2963  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2964    return cpu_to_node()->at(cpu_id);
2965  }
2966  return -1;
2967}
2968
2969GrowableArray<int>* os::Linux::_cpu_to_node;
2970os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2971os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2972os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2973os::Linux::numa_available_func_t os::Linux::_numa_available;
2974os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2975os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2976os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2977unsigned long* os::Linux::_numa_all_nodes;
2978
2979bool os::pd_uncommit_memory(char* addr, size_t size) {
2980  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2981                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2982  return res  != (uintptr_t) MAP_FAILED;
2983}
2984
2985static address get_stack_commited_bottom(address bottom, size_t size) {
2986  address nbot = bottom;
2987  address ntop = bottom + size;
2988
2989  size_t page_sz = os::vm_page_size();
2990  unsigned pages = size / page_sz;
2991
2992  unsigned char vec[1];
2993  unsigned imin = 1, imax = pages + 1, imid;
2994  int mincore_return_value = 0;
2995
2996  assert(imin <= imax, "Unexpected page size");
2997
2998  while (imin < imax) {
2999    imid = (imax + imin) / 2;
3000    nbot = ntop - (imid * page_sz);
3001
3002    // Use a trick with mincore to check whether the page is mapped or not.
3003    // mincore sets vec to 1 if page resides in memory and to 0 if page
3004    // is swapped output but if page we are asking for is unmapped
3005    // it returns -1,ENOMEM
3006    mincore_return_value = mincore(nbot, page_sz, vec);
3007
3008    if (mincore_return_value == -1) {
3009      // Page is not mapped go up
3010      // to find first mapped page
3011      if (errno != EAGAIN) {
3012        assert(errno == ENOMEM, "Unexpected mincore errno");
3013        imax = imid;
3014      }
3015    } else {
3016      // Page is mapped go down
3017      // to find first not mapped page
3018      imin = imid + 1;
3019    }
3020  }
3021
3022  nbot = nbot + page_sz;
3023
3024  // Adjust stack bottom one page up if last checked page is not mapped
3025  if (mincore_return_value == -1) {
3026    nbot = nbot + page_sz;
3027  }
3028
3029  return nbot;
3030}
3031
3032
3033// Linux uses a growable mapping for the stack, and if the mapping for
3034// the stack guard pages is not removed when we detach a thread the
3035// stack cannot grow beyond the pages where the stack guard was
3036// mapped.  If at some point later in the process the stack expands to
3037// that point, the Linux kernel cannot expand the stack any further
3038// because the guard pages are in the way, and a segfault occurs.
3039//
3040// However, it's essential not to split the stack region by unmapping
3041// a region (leaving a hole) that's already part of the stack mapping,
3042// so if the stack mapping has already grown beyond the guard pages at
3043// the time we create them, we have to truncate the stack mapping.
3044// So, we need to know the extent of the stack mapping when
3045// create_stack_guard_pages() is called.
3046
3047// We only need this for stacks that are growable: at the time of
3048// writing thread stacks don't use growable mappings (i.e. those
3049// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3050// only applies to the main thread.
3051
3052// If the (growable) stack mapping already extends beyond the point
3053// where we're going to put our guard pages, truncate the mapping at
3054// that point by munmap()ping it.  This ensures that when we later
3055// munmap() the guard pages we don't leave a hole in the stack
3056// mapping. This only affects the main/initial thread
3057
3058bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3059  if (os::Linux::is_initial_thread()) {
3060    // As we manually grow stack up to bottom inside create_attached_thread(),
3061    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3062    // we don't need to do anything special.
3063    // Check it first, before calling heavy function.
3064    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3065    unsigned char vec[1];
3066
3067    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3068      // Fallback to slow path on all errors, including EAGAIN
3069      stack_extent = (uintptr_t) get_stack_commited_bottom(
3070                                                           os::Linux::initial_thread_stack_bottom(),
3071                                                           (size_t)addr - stack_extent);
3072    }
3073
3074    if (stack_extent < (uintptr_t)addr) {
3075      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3076    }
3077  }
3078
3079  return os::commit_memory(addr, size, !ExecMem);
3080}
3081
3082// If this is a growable mapping, remove the guard pages entirely by
3083// munmap()ping them.  If not, just call uncommit_memory(). This only
3084// affects the main/initial thread, but guard against future OS changes
3085// It's safe to always unmap guard pages for initial thread because we
3086// always place it right after end of the mapped region
3087
3088bool os::remove_stack_guard_pages(char* addr, size_t size) {
3089  uintptr_t stack_extent, stack_base;
3090
3091  if (os::Linux::is_initial_thread()) {
3092    return ::munmap(addr, size) == 0;
3093  }
3094
3095  return os::uncommit_memory(addr, size);
3096}
3097
3098static address _highest_vm_reserved_address = NULL;
3099
3100// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3101// at 'requested_addr'. If there are existing memory mappings at the same
3102// location, however, they will be overwritten. If 'fixed' is false,
3103// 'requested_addr' is only treated as a hint, the return value may or
3104// may not start from the requested address. Unlike Linux mmap(), this
3105// function returns NULL to indicate failure.
3106static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3107  char * addr;
3108  int flags;
3109
3110  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3111  if (fixed) {
3112    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3113    flags |= MAP_FIXED;
3114  }
3115
3116  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3117  // touch an uncommitted page. Otherwise, the read/write might
3118  // succeed if we have enough swap space to back the physical page.
3119  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3120                       flags, -1, 0);
3121
3122  if (addr != MAP_FAILED) {
3123    // anon_mmap() should only get called during VM initialization,
3124    // don't need lock (actually we can skip locking even it can be called
3125    // from multiple threads, because _highest_vm_reserved_address is just a
3126    // hint about the upper limit of non-stack memory regions.)
3127    if ((address)addr + bytes > _highest_vm_reserved_address) {
3128      _highest_vm_reserved_address = (address)addr + bytes;
3129    }
3130  }
3131
3132  return addr == MAP_FAILED ? NULL : addr;
3133}
3134
3135// Don't update _highest_vm_reserved_address, because there might be memory
3136// regions above addr + size. If so, releasing a memory region only creates
3137// a hole in the address space, it doesn't help prevent heap-stack collision.
3138//
3139static int anon_munmap(char * addr, size_t size) {
3140  return ::munmap(addr, size) == 0;
3141}
3142
3143char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3144                            size_t alignment_hint) {
3145  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3146}
3147
3148bool os::pd_release_memory(char* addr, size_t size) {
3149  return anon_munmap(addr, size);
3150}
3151
3152static address highest_vm_reserved_address() {
3153  return _highest_vm_reserved_address;
3154}
3155
3156static bool linux_mprotect(char* addr, size_t size, int prot) {
3157  // Linux wants the mprotect address argument to be page aligned.
3158  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3159
3160  // According to SUSv3, mprotect() should only be used with mappings
3161  // established by mmap(), and mmap() always maps whole pages. Unaligned
3162  // 'addr' likely indicates problem in the VM (e.g. trying to change
3163  // protection of malloc'ed or statically allocated memory). Check the
3164  // caller if you hit this assert.
3165  assert(addr == bottom, "sanity check");
3166
3167  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3168  return ::mprotect(bottom, size, prot) == 0;
3169}
3170
3171// Set protections specified
3172bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3173                        bool is_committed) {
3174  unsigned int p = 0;
3175  switch (prot) {
3176  case MEM_PROT_NONE: p = PROT_NONE; break;
3177  case MEM_PROT_READ: p = PROT_READ; break;
3178  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3179  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3180  default:
3181    ShouldNotReachHere();
3182  }
3183  // is_committed is unused.
3184  return linux_mprotect(addr, bytes, p);
3185}
3186
3187bool os::guard_memory(char* addr, size_t size) {
3188  return linux_mprotect(addr, size, PROT_NONE);
3189}
3190
3191bool os::unguard_memory(char* addr, size_t size) {
3192  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3193}
3194
3195bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3196                                                    size_t page_size) {
3197  bool result = false;
3198  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3199                 MAP_ANONYMOUS|MAP_PRIVATE,
3200                 -1, 0);
3201  if (p != MAP_FAILED) {
3202    void *aligned_p = align_ptr_up(p, page_size);
3203
3204    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3205
3206    munmap(p, page_size * 2);
3207  }
3208
3209  if (warn && !result) {
3210    warning("TransparentHugePages is not supported by the operating system.");
3211  }
3212
3213  return result;
3214}
3215
3216bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3217  bool result = false;
3218  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3219                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3220                 -1, 0);
3221
3222  if (p != MAP_FAILED) {
3223    // We don't know if this really is a huge page or not.
3224    FILE *fp = fopen("/proc/self/maps", "r");
3225    if (fp) {
3226      while (!feof(fp)) {
3227        char chars[257];
3228        long x = 0;
3229        if (fgets(chars, sizeof(chars), fp)) {
3230          if (sscanf(chars, "%lx-%*x", &x) == 1
3231              && x == (long)p) {
3232            if (strstr (chars, "hugepage")) {
3233              result = true;
3234              break;
3235            }
3236          }
3237        }
3238      }
3239      fclose(fp);
3240    }
3241    munmap(p, page_size);
3242  }
3243
3244  if (warn && !result) {
3245    warning("HugeTLBFS is not supported by the operating system.");
3246  }
3247
3248  return result;
3249}
3250
3251// Set the coredump_filter bits to include largepages in core dump (bit 6)
3252//
3253// From the coredump_filter documentation:
3254//
3255// - (bit 0) anonymous private memory
3256// - (bit 1) anonymous shared memory
3257// - (bit 2) file-backed private memory
3258// - (bit 3) file-backed shared memory
3259// - (bit 4) ELF header pages in file-backed private memory areas (it is
3260//           effective only if the bit 2 is cleared)
3261// - (bit 5) hugetlb private memory
3262// - (bit 6) hugetlb shared memory
3263//
3264static void set_coredump_filter(void) {
3265  FILE *f;
3266  long cdm;
3267
3268  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3269    return;
3270  }
3271
3272  if (fscanf(f, "%lx", &cdm) != 1) {
3273    fclose(f);
3274    return;
3275  }
3276
3277  rewind(f);
3278
3279  if ((cdm & LARGEPAGES_BIT) == 0) {
3280    cdm |= LARGEPAGES_BIT;
3281    fprintf(f, "%#lx", cdm);
3282  }
3283
3284  fclose(f);
3285}
3286
3287// Large page support
3288
3289static size_t _large_page_size = 0;
3290
3291size_t os::Linux::find_large_page_size() {
3292  size_t large_page_size = 0;
3293
3294  // large_page_size on Linux is used to round up heap size. x86 uses either
3295  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3296  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3297  // page as large as 256M.
3298  //
3299  // Here we try to figure out page size by parsing /proc/meminfo and looking
3300  // for a line with the following format:
3301  //    Hugepagesize:     2048 kB
3302  //
3303  // If we can't determine the value (e.g. /proc is not mounted, or the text
3304  // format has been changed), we'll use the largest page size supported by
3305  // the processor.
3306
3307#ifndef ZERO
3308  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3309                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3310#endif // ZERO
3311
3312  FILE *fp = fopen("/proc/meminfo", "r");
3313  if (fp) {
3314    while (!feof(fp)) {
3315      int x = 0;
3316      char buf[16];
3317      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3318        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3319          large_page_size = x * K;
3320          break;
3321        }
3322      } else {
3323        // skip to next line
3324        for (;;) {
3325          int ch = fgetc(fp);
3326          if (ch == EOF || ch == (int)'\n') break;
3327        }
3328      }
3329    }
3330    fclose(fp);
3331  }
3332
3333  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3334    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3335            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3336            proper_unit_for_byte_size(large_page_size));
3337  }
3338
3339  return large_page_size;
3340}
3341
3342size_t os::Linux::setup_large_page_size() {
3343  _large_page_size = Linux::find_large_page_size();
3344  const size_t default_page_size = (size_t)Linux::page_size();
3345  if (_large_page_size > default_page_size) {
3346    _page_sizes[0] = _large_page_size;
3347    _page_sizes[1] = default_page_size;
3348    _page_sizes[2] = 0;
3349  }
3350
3351  return _large_page_size;
3352}
3353
3354bool os::Linux::setup_large_page_type(size_t page_size) {
3355  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3356      FLAG_IS_DEFAULT(UseSHM) &&
3357      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3358
3359    // The type of large pages has not been specified by the user.
3360
3361    // Try UseHugeTLBFS and then UseSHM.
3362    UseHugeTLBFS = UseSHM = true;
3363
3364    // Don't try UseTransparentHugePages since there are known
3365    // performance issues with it turned on. This might change in the future.
3366    UseTransparentHugePages = false;
3367  }
3368
3369  if (UseTransparentHugePages) {
3370    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3371    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3372      UseHugeTLBFS = false;
3373      UseSHM = false;
3374      return true;
3375    }
3376    UseTransparentHugePages = false;
3377  }
3378
3379  if (UseHugeTLBFS) {
3380    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3381    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3382      UseSHM = false;
3383      return true;
3384    }
3385    UseHugeTLBFS = false;
3386  }
3387
3388  return UseSHM;
3389}
3390
3391void os::large_page_init() {
3392  if (!UseLargePages &&
3393      !UseTransparentHugePages &&
3394      !UseHugeTLBFS &&
3395      !UseSHM) {
3396    // Not using large pages.
3397    return;
3398  }
3399
3400  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3401    // The user explicitly turned off large pages.
3402    // Ignore the rest of the large pages flags.
3403    UseTransparentHugePages = false;
3404    UseHugeTLBFS = false;
3405    UseSHM = false;
3406    return;
3407  }
3408
3409  size_t large_page_size = Linux::setup_large_page_size();
3410  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3411
3412  set_coredump_filter();
3413}
3414
3415#ifndef SHM_HUGETLB
3416  #define SHM_HUGETLB 04000
3417#endif
3418
3419char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3420                                            char* req_addr, bool exec) {
3421  // "exec" is passed in but not used.  Creating the shared image for
3422  // the code cache doesn't have an SHM_X executable permission to check.
3423  assert(UseLargePages && UseSHM, "only for SHM large pages");
3424  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3425
3426  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3427    return NULL; // Fallback to small pages.
3428  }
3429
3430  key_t key = IPC_PRIVATE;
3431  char *addr;
3432
3433  bool warn_on_failure = UseLargePages &&
3434                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3435                         !FLAG_IS_DEFAULT(UseSHM) ||
3436                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3437  char msg[128];
3438
3439  // Create a large shared memory region to attach to based on size.
3440  // Currently, size is the total size of the heap
3441  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3442  if (shmid == -1) {
3443    // Possible reasons for shmget failure:
3444    // 1. shmmax is too small for Java heap.
3445    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3446    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3447    // 2. not enough large page memory.
3448    //    > check available large pages: cat /proc/meminfo
3449    //    > increase amount of large pages:
3450    //          echo new_value > /proc/sys/vm/nr_hugepages
3451    //      Note 1: different Linux may use different name for this property,
3452    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3453    //      Note 2: it's possible there's enough physical memory available but
3454    //            they are so fragmented after a long run that they can't
3455    //            coalesce into large pages. Try to reserve large pages when
3456    //            the system is still "fresh".
3457    if (warn_on_failure) {
3458      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3459      warning("%s", msg);
3460    }
3461    return NULL;
3462  }
3463
3464  // attach to the region
3465  addr = (char*)shmat(shmid, req_addr, 0);
3466  int err = errno;
3467
3468  // Remove shmid. If shmat() is successful, the actual shared memory segment
3469  // will be deleted when it's detached by shmdt() or when the process
3470  // terminates. If shmat() is not successful this will remove the shared
3471  // segment immediately.
3472  shmctl(shmid, IPC_RMID, NULL);
3473
3474  if ((intptr_t)addr == -1) {
3475    if (warn_on_failure) {
3476      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3477      warning("%s", msg);
3478    }
3479    return NULL;
3480  }
3481
3482  return addr;
3483}
3484
3485static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3486                                        int error) {
3487  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3488
3489  bool warn_on_failure = UseLargePages &&
3490      (!FLAG_IS_DEFAULT(UseLargePages) ||
3491       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3492       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3493
3494  if (warn_on_failure) {
3495    char msg[128];
3496    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3497                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3498    warning("%s", msg);
3499  }
3500}
3501
3502char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3503                                                        char* req_addr,
3504                                                        bool exec) {
3505  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3506  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3507  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3508
3509  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3510  char* addr = (char*)::mmap(req_addr, bytes, prot,
3511                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3512                             -1, 0);
3513
3514  if (addr == MAP_FAILED) {
3515    warn_on_large_pages_failure(req_addr, bytes, errno);
3516    return NULL;
3517  }
3518
3519  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3520
3521  return addr;
3522}
3523
3524char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3525                                                         size_t alignment,
3526                                                         char* req_addr,
3527                                                         bool exec) {
3528  size_t large_page_size = os::large_page_size();
3529
3530  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3531
3532  // Allocate small pages.
3533
3534  char* start;
3535  if (req_addr != NULL) {
3536    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3537    assert(is_size_aligned(bytes, alignment), "Must be");
3538    start = os::reserve_memory(bytes, req_addr);
3539    assert(start == NULL || start == req_addr, "Must be");
3540  } else {
3541    start = os::reserve_memory_aligned(bytes, alignment);
3542  }
3543
3544  if (start == NULL) {
3545    return NULL;
3546  }
3547
3548  assert(is_ptr_aligned(start, alignment), "Must be");
3549
3550  if (MemTracker::tracking_level() > NMT_minimal) {
3551    // os::reserve_memory_special will record this memory area.
3552    // Need to release it here to prevent overlapping reservations.
3553    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3554    tkr.record((address)start, bytes);
3555  }
3556
3557  char* end = start + bytes;
3558
3559  // Find the regions of the allocated chunk that can be promoted to large pages.
3560  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3561  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3562
3563  size_t lp_bytes = lp_end - lp_start;
3564
3565  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3566
3567  if (lp_bytes == 0) {
3568    // The mapped region doesn't even span the start and the end of a large page.
3569    // Fall back to allocate a non-special area.
3570    ::munmap(start, end - start);
3571    return NULL;
3572  }
3573
3574  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3575
3576
3577  void* result;
3578
3579  if (start != lp_start) {
3580    result = ::mmap(start, lp_start - start, prot,
3581                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3582                    -1, 0);
3583    if (result == MAP_FAILED) {
3584      ::munmap(lp_start, end - lp_start);
3585      return NULL;
3586    }
3587  }
3588
3589  result = ::mmap(lp_start, lp_bytes, prot,
3590                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3591                  -1, 0);
3592  if (result == MAP_FAILED) {
3593    warn_on_large_pages_failure(req_addr, bytes, errno);
3594    // If the mmap above fails, the large pages region will be unmapped and we
3595    // have regions before and after with small pages. Release these regions.
3596    //
3597    // |  mapped  |  unmapped  |  mapped  |
3598    // ^          ^            ^          ^
3599    // start      lp_start     lp_end     end
3600    //
3601    ::munmap(start, lp_start - start);
3602    ::munmap(lp_end, end - lp_end);
3603    return NULL;
3604  }
3605
3606  if (lp_end != end) {
3607    result = ::mmap(lp_end, end - lp_end, prot,
3608                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3609                    -1, 0);
3610    if (result == MAP_FAILED) {
3611      ::munmap(start, lp_end - start);
3612      return NULL;
3613    }
3614  }
3615
3616  return start;
3617}
3618
3619char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3620                                                   size_t alignment,
3621                                                   char* req_addr,
3622                                                   bool exec) {
3623  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3624  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3625  assert(is_power_of_2(alignment), "Must be");
3626  assert(is_power_of_2(os::large_page_size()), "Must be");
3627  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3628
3629  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3630    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3631  } else {
3632    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3633  }
3634}
3635
3636char* os::reserve_memory_special(size_t bytes, size_t alignment,
3637                                 char* req_addr, bool exec) {
3638  assert(UseLargePages, "only for large pages");
3639
3640  char* addr;
3641  if (UseSHM) {
3642    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3643  } else {
3644    assert(UseHugeTLBFS, "must be");
3645    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3646  }
3647
3648  if (addr != NULL) {
3649    if (UseNUMAInterleaving) {
3650      numa_make_global(addr, bytes);
3651    }
3652
3653    // The memory is committed
3654    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3655  }
3656
3657  return addr;
3658}
3659
3660bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3661  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3662  return shmdt(base) == 0;
3663}
3664
3665bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3666  return pd_release_memory(base, bytes);
3667}
3668
3669bool os::release_memory_special(char* base, size_t bytes) {
3670  bool res;
3671  if (MemTracker::tracking_level() > NMT_minimal) {
3672    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3673    res = os::Linux::release_memory_special_impl(base, bytes);
3674    if (res) {
3675      tkr.record((address)base, bytes);
3676    }
3677
3678  } else {
3679    res = os::Linux::release_memory_special_impl(base, bytes);
3680  }
3681  return res;
3682}
3683
3684bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3685  assert(UseLargePages, "only for large pages");
3686  bool res;
3687
3688  if (UseSHM) {
3689    res = os::Linux::release_memory_special_shm(base, bytes);
3690  } else {
3691    assert(UseHugeTLBFS, "must be");
3692    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3693  }
3694  return res;
3695}
3696
3697size_t os::large_page_size() {
3698  return _large_page_size;
3699}
3700
3701// With SysV SHM the entire memory region must be allocated as shared
3702// memory.
3703// HugeTLBFS allows application to commit large page memory on demand.
3704// However, when committing memory with HugeTLBFS fails, the region
3705// that was supposed to be committed will lose the old reservation
3706// and allow other threads to steal that memory region. Because of this
3707// behavior we can't commit HugeTLBFS memory.
3708bool os::can_commit_large_page_memory() {
3709  return UseTransparentHugePages;
3710}
3711
3712bool os::can_execute_large_page_memory() {
3713  return UseTransparentHugePages || UseHugeTLBFS;
3714}
3715
3716// Reserve memory at an arbitrary address, only if that area is
3717// available (and not reserved for something else).
3718
3719char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3720  const int max_tries = 10;
3721  char* base[max_tries];
3722  size_t size[max_tries];
3723  const size_t gap = 0x000000;
3724
3725  // Assert only that the size is a multiple of the page size, since
3726  // that's all that mmap requires, and since that's all we really know
3727  // about at this low abstraction level.  If we need higher alignment,
3728  // we can either pass an alignment to this method or verify alignment
3729  // in one of the methods further up the call chain.  See bug 5044738.
3730  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3731
3732  // Repeatedly allocate blocks until the block is allocated at the
3733  // right spot. Give up after max_tries. Note that reserve_memory() will
3734  // automatically update _highest_vm_reserved_address if the call is
3735  // successful. The variable tracks the highest memory address every reserved
3736  // by JVM. It is used to detect heap-stack collision if running with
3737  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3738  // space than needed, it could confuse the collision detecting code. To
3739  // solve the problem, save current _highest_vm_reserved_address and
3740  // calculate the correct value before return.
3741  address old_highest = _highest_vm_reserved_address;
3742
3743  // Linux mmap allows caller to pass an address as hint; give it a try first,
3744  // if kernel honors the hint then we can return immediately.
3745  char * addr = anon_mmap(requested_addr, bytes, false);
3746  if (addr == requested_addr) {
3747    return requested_addr;
3748  }
3749
3750  if (addr != NULL) {
3751    // mmap() is successful but it fails to reserve at the requested address
3752    anon_munmap(addr, bytes);
3753  }
3754
3755  int i;
3756  for (i = 0; i < max_tries; ++i) {
3757    base[i] = reserve_memory(bytes);
3758
3759    if (base[i] != NULL) {
3760      // Is this the block we wanted?
3761      if (base[i] == requested_addr) {
3762        size[i] = bytes;
3763        break;
3764      }
3765
3766      // Does this overlap the block we wanted? Give back the overlapped
3767      // parts and try again.
3768
3769      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3770      if (top_overlap >= 0 && top_overlap < bytes) {
3771        unmap_memory(base[i], top_overlap);
3772        base[i] += top_overlap;
3773        size[i] = bytes - top_overlap;
3774      } else {
3775        size_t bottom_overlap = base[i] + bytes - requested_addr;
3776        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3777          unmap_memory(requested_addr, bottom_overlap);
3778          size[i] = bytes - bottom_overlap;
3779        } else {
3780          size[i] = bytes;
3781        }
3782      }
3783    }
3784  }
3785
3786  // Give back the unused reserved pieces.
3787
3788  for (int j = 0; j < i; ++j) {
3789    if (base[j] != NULL) {
3790      unmap_memory(base[j], size[j]);
3791    }
3792  }
3793
3794  if (i < max_tries) {
3795    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3796    return requested_addr;
3797  } else {
3798    _highest_vm_reserved_address = old_highest;
3799    return NULL;
3800  }
3801}
3802
3803size_t os::read(int fd, void *buf, unsigned int nBytes) {
3804  return ::read(fd, buf, nBytes);
3805}
3806
3807// Short sleep, direct OS call.
3808//
3809// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3810// sched_yield(2) will actually give up the CPU:
3811//
3812//   * Alone on this pariticular CPU, keeps running.
3813//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3814//     (pre 2.6.39).
3815//
3816// So calling this with 0 is an alternative.
3817//
3818void os::naked_short_sleep(jlong ms) {
3819  struct timespec req;
3820
3821  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3822  req.tv_sec = 0;
3823  if (ms > 0) {
3824    req.tv_nsec = (ms % 1000) * 1000000;
3825  } else {
3826    req.tv_nsec = 1;
3827  }
3828
3829  nanosleep(&req, NULL);
3830
3831  return;
3832}
3833
3834// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3835void os::infinite_sleep() {
3836  while (true) {    // sleep forever ...
3837    ::sleep(100);   // ... 100 seconds at a time
3838  }
3839}
3840
3841// Used to convert frequent JVM_Yield() to nops
3842bool os::dont_yield() {
3843  return DontYieldALot;
3844}
3845
3846void os::naked_yield() {
3847  sched_yield();
3848}
3849
3850////////////////////////////////////////////////////////////////////////////////
3851// thread priority support
3852
3853// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3854// only supports dynamic priority, static priority must be zero. For real-time
3855// applications, Linux supports SCHED_RR which allows static priority (1-99).
3856// However, for large multi-threaded applications, SCHED_RR is not only slower
3857// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3858// of 5 runs - Sep 2005).
3859//
3860// The following code actually changes the niceness of kernel-thread/LWP. It
3861// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3862// not the entire user process, and user level threads are 1:1 mapped to kernel
3863// threads. It has always been the case, but could change in the future. For
3864// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3865// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3866
3867int os::java_to_os_priority[CriticalPriority + 1] = {
3868  19,              // 0 Entry should never be used
3869
3870   4,              // 1 MinPriority
3871   3,              // 2
3872   2,              // 3
3873
3874   1,              // 4
3875   0,              // 5 NormPriority
3876  -1,              // 6
3877
3878  -2,              // 7
3879  -3,              // 8
3880  -4,              // 9 NearMaxPriority
3881
3882  -5,              // 10 MaxPriority
3883
3884  -5               // 11 CriticalPriority
3885};
3886
3887static int prio_init() {
3888  if (ThreadPriorityPolicy == 1) {
3889    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3890    // if effective uid is not root. Perhaps, a more elegant way of doing
3891    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3892    if (geteuid() != 0) {
3893      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3894        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3895      }
3896      ThreadPriorityPolicy = 0;
3897    }
3898  }
3899  if (UseCriticalJavaThreadPriority) {
3900    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3901  }
3902  return 0;
3903}
3904
3905OSReturn os::set_native_priority(Thread* thread, int newpri) {
3906  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3907
3908  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3909  return (ret == 0) ? OS_OK : OS_ERR;
3910}
3911
3912OSReturn os::get_native_priority(const Thread* const thread,
3913                                 int *priority_ptr) {
3914  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3915    *priority_ptr = java_to_os_priority[NormPriority];
3916    return OS_OK;
3917  }
3918
3919  errno = 0;
3920  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3921  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3922}
3923
3924// Hint to the underlying OS that a task switch would not be good.
3925// Void return because it's a hint and can fail.
3926void os::hint_no_preempt() {}
3927
3928////////////////////////////////////////////////////////////////////////////////
3929// suspend/resume support
3930
3931//  the low-level signal-based suspend/resume support is a remnant from the
3932//  old VM-suspension that used to be for java-suspension, safepoints etc,
3933//  within hotspot. Now there is a single use-case for this:
3934//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3935//      that runs in the watcher thread.
3936//  The remaining code is greatly simplified from the more general suspension
3937//  code that used to be used.
3938//
3939//  The protocol is quite simple:
3940//  - suspend:
3941//      - sends a signal to the target thread
3942//      - polls the suspend state of the osthread using a yield loop
3943//      - target thread signal handler (SR_handler) sets suspend state
3944//        and blocks in sigsuspend until continued
3945//  - resume:
3946//      - sets target osthread state to continue
3947//      - sends signal to end the sigsuspend loop in the SR_handler
3948//
3949//  Note that the SR_lock plays no role in this suspend/resume protocol.
3950
3951static void resume_clear_context(OSThread *osthread) {
3952  osthread->set_ucontext(NULL);
3953  osthread->set_siginfo(NULL);
3954}
3955
3956static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3957                                 ucontext_t* context) {
3958  osthread->set_ucontext(context);
3959  osthread->set_siginfo(siginfo);
3960}
3961
3962// Handler function invoked when a thread's execution is suspended or
3963// resumed. We have to be careful that only async-safe functions are
3964// called here (Note: most pthread functions are not async safe and
3965// should be avoided.)
3966//
3967// Note: sigwait() is a more natural fit than sigsuspend() from an
3968// interface point of view, but sigwait() prevents the signal hander
3969// from being run. libpthread would get very confused by not having
3970// its signal handlers run and prevents sigwait()'s use with the
3971// mutex granting granting signal.
3972//
3973// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3974//
3975static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3976  // Save and restore errno to avoid confusing native code with EINTR
3977  // after sigsuspend.
3978  int old_errno = errno;
3979
3980  Thread* thread = Thread::current();
3981  OSThread* osthread = thread->osthread();
3982  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3983
3984  os::SuspendResume::State current = osthread->sr.state();
3985  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3986    suspend_save_context(osthread, siginfo, context);
3987
3988    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3989    os::SuspendResume::State state = osthread->sr.suspended();
3990    if (state == os::SuspendResume::SR_SUSPENDED) {
3991      sigset_t suspend_set;  // signals for sigsuspend()
3992
3993      // get current set of blocked signals and unblock resume signal
3994      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3995      sigdelset(&suspend_set, SR_signum);
3996
3997      sr_semaphore.signal();
3998      // wait here until we are resumed
3999      while (1) {
4000        sigsuspend(&suspend_set);
4001
4002        os::SuspendResume::State result = osthread->sr.running();
4003        if (result == os::SuspendResume::SR_RUNNING) {
4004          sr_semaphore.signal();
4005          break;
4006        }
4007      }
4008
4009    } else if (state == os::SuspendResume::SR_RUNNING) {
4010      // request was cancelled, continue
4011    } else {
4012      ShouldNotReachHere();
4013    }
4014
4015    resume_clear_context(osthread);
4016  } else if (current == os::SuspendResume::SR_RUNNING) {
4017    // request was cancelled, continue
4018  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4019    // ignore
4020  } else {
4021    // ignore
4022  }
4023
4024  errno = old_errno;
4025}
4026
4027
4028static int SR_initialize() {
4029  struct sigaction act;
4030  char *s;
4031  // Get signal number to use for suspend/resume
4032  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4033    int sig = ::strtol(s, 0, 10);
4034    if (sig > 0 || sig < _NSIG) {
4035      SR_signum = sig;
4036    }
4037  }
4038
4039  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4040         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4041
4042  sigemptyset(&SR_sigset);
4043  sigaddset(&SR_sigset, SR_signum);
4044
4045  // Set up signal handler for suspend/resume
4046  act.sa_flags = SA_RESTART|SA_SIGINFO;
4047  act.sa_handler = (void (*)(int)) SR_handler;
4048
4049  // SR_signum is blocked by default.
4050  // 4528190 - We also need to block pthread restart signal (32 on all
4051  // supported Linux platforms). Note that LinuxThreads need to block
4052  // this signal for all threads to work properly. So we don't have
4053  // to use hard-coded signal number when setting up the mask.
4054  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4055
4056  if (sigaction(SR_signum, &act, 0) == -1) {
4057    return -1;
4058  }
4059
4060  // Save signal flag
4061  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4062  return 0;
4063}
4064
4065static int sr_notify(OSThread* osthread) {
4066  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4067  assert_status(status == 0, status, "pthread_kill");
4068  return status;
4069}
4070
4071// "Randomly" selected value for how long we want to spin
4072// before bailing out on suspending a thread, also how often
4073// we send a signal to a thread we want to resume
4074static const int RANDOMLY_LARGE_INTEGER = 1000000;
4075static const int RANDOMLY_LARGE_INTEGER2 = 100;
4076
4077// returns true on success and false on error - really an error is fatal
4078// but this seems the normal response to library errors
4079static bool do_suspend(OSThread* osthread) {
4080  assert(osthread->sr.is_running(), "thread should be running");
4081  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4082
4083  // mark as suspended and send signal
4084  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4085    // failed to switch, state wasn't running?
4086    ShouldNotReachHere();
4087    return false;
4088  }
4089
4090  if (sr_notify(osthread) != 0) {
4091    ShouldNotReachHere();
4092  }
4093
4094  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4095  while (true) {
4096    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4097      break;
4098    } else {
4099      // timeout
4100      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4101      if (cancelled == os::SuspendResume::SR_RUNNING) {
4102        return false;
4103      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4104        // make sure that we consume the signal on the semaphore as well
4105        sr_semaphore.wait();
4106        break;
4107      } else {
4108        ShouldNotReachHere();
4109        return false;
4110      }
4111    }
4112  }
4113
4114  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4115  return true;
4116}
4117
4118static void do_resume(OSThread* osthread) {
4119  assert(osthread->sr.is_suspended(), "thread should be suspended");
4120  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4121
4122  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4123    // failed to switch to WAKEUP_REQUEST
4124    ShouldNotReachHere();
4125    return;
4126  }
4127
4128  while (true) {
4129    if (sr_notify(osthread) == 0) {
4130      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4131        if (osthread->sr.is_running()) {
4132          return;
4133        }
4134      }
4135    } else {
4136      ShouldNotReachHere();
4137    }
4138  }
4139
4140  guarantee(osthread->sr.is_running(), "Must be running!");
4141}
4142
4143///////////////////////////////////////////////////////////////////////////////////
4144// signal handling (except suspend/resume)
4145
4146// This routine may be used by user applications as a "hook" to catch signals.
4147// The user-defined signal handler must pass unrecognized signals to this
4148// routine, and if it returns true (non-zero), then the signal handler must
4149// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4150// routine will never retun false (zero), but instead will execute a VM panic
4151// routine kill the process.
4152//
4153// If this routine returns false, it is OK to call it again.  This allows
4154// the user-defined signal handler to perform checks either before or after
4155// the VM performs its own checks.  Naturally, the user code would be making
4156// a serious error if it tried to handle an exception (such as a null check
4157// or breakpoint) that the VM was generating for its own correct operation.
4158//
4159// This routine may recognize any of the following kinds of signals:
4160//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4161// It should be consulted by handlers for any of those signals.
4162//
4163// The caller of this routine must pass in the three arguments supplied
4164// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4165// field of the structure passed to sigaction().  This routine assumes that
4166// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4167//
4168// Note that the VM will print warnings if it detects conflicting signal
4169// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4170//
4171extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4172                                                 siginfo_t* siginfo,
4173                                                 void* ucontext,
4174                                                 int abort_if_unrecognized);
4175
4176void signalHandler(int sig, siginfo_t* info, void* uc) {
4177  assert(info != NULL && uc != NULL, "it must be old kernel");
4178  int orig_errno = errno;  // Preserve errno value over signal handler.
4179  JVM_handle_linux_signal(sig, info, uc, true);
4180  errno = orig_errno;
4181}
4182
4183
4184// This boolean allows users to forward their own non-matching signals
4185// to JVM_handle_linux_signal, harmlessly.
4186bool os::Linux::signal_handlers_are_installed = false;
4187
4188// For signal-chaining
4189struct sigaction os::Linux::sigact[MAXSIGNUM];
4190unsigned int os::Linux::sigs = 0;
4191bool os::Linux::libjsig_is_loaded = false;
4192typedef struct sigaction *(*get_signal_t)(int);
4193get_signal_t os::Linux::get_signal_action = NULL;
4194
4195struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4196  struct sigaction *actp = NULL;
4197
4198  if (libjsig_is_loaded) {
4199    // Retrieve the old signal handler from libjsig
4200    actp = (*get_signal_action)(sig);
4201  }
4202  if (actp == NULL) {
4203    // Retrieve the preinstalled signal handler from jvm
4204    actp = get_preinstalled_handler(sig);
4205  }
4206
4207  return actp;
4208}
4209
4210static bool call_chained_handler(struct sigaction *actp, int sig,
4211                                 siginfo_t *siginfo, void *context) {
4212  // Call the old signal handler
4213  if (actp->sa_handler == SIG_DFL) {
4214    // It's more reasonable to let jvm treat it as an unexpected exception
4215    // instead of taking the default action.
4216    return false;
4217  } else if (actp->sa_handler != SIG_IGN) {
4218    if ((actp->sa_flags & SA_NODEFER) == 0) {
4219      // automaticlly block the signal
4220      sigaddset(&(actp->sa_mask), sig);
4221    }
4222
4223    sa_handler_t hand;
4224    sa_sigaction_t sa;
4225    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4226    // retrieve the chained handler
4227    if (siginfo_flag_set) {
4228      sa = actp->sa_sigaction;
4229    } else {
4230      hand = actp->sa_handler;
4231    }
4232
4233    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4234      actp->sa_handler = SIG_DFL;
4235    }
4236
4237    // try to honor the signal mask
4238    sigset_t oset;
4239    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4240
4241    // call into the chained handler
4242    if (siginfo_flag_set) {
4243      (*sa)(sig, siginfo, context);
4244    } else {
4245      (*hand)(sig);
4246    }
4247
4248    // restore the signal mask
4249    pthread_sigmask(SIG_SETMASK, &oset, 0);
4250  }
4251  // Tell jvm's signal handler the signal is taken care of.
4252  return true;
4253}
4254
4255bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4256  bool chained = false;
4257  // signal-chaining
4258  if (UseSignalChaining) {
4259    struct sigaction *actp = get_chained_signal_action(sig);
4260    if (actp != NULL) {
4261      chained = call_chained_handler(actp, sig, siginfo, context);
4262    }
4263  }
4264  return chained;
4265}
4266
4267struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4268  if ((((unsigned int)1 << sig) & sigs) != 0) {
4269    return &sigact[sig];
4270  }
4271  return NULL;
4272}
4273
4274void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4275  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4276  sigact[sig] = oldAct;
4277  sigs |= (unsigned int)1 << sig;
4278}
4279
4280// for diagnostic
4281int os::Linux::sigflags[MAXSIGNUM];
4282
4283int os::Linux::get_our_sigflags(int sig) {
4284  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4285  return sigflags[sig];
4286}
4287
4288void os::Linux::set_our_sigflags(int sig, int flags) {
4289  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4290  sigflags[sig] = flags;
4291}
4292
4293void os::Linux::set_signal_handler(int sig, bool set_installed) {
4294  // Check for overwrite.
4295  struct sigaction oldAct;
4296  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4297
4298  void* oldhand = oldAct.sa_sigaction
4299                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4300                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4301  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4302      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4303      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4304    if (AllowUserSignalHandlers || !set_installed) {
4305      // Do not overwrite; user takes responsibility to forward to us.
4306      return;
4307    } else if (UseSignalChaining) {
4308      // save the old handler in jvm
4309      save_preinstalled_handler(sig, oldAct);
4310      // libjsig also interposes the sigaction() call below and saves the
4311      // old sigaction on it own.
4312    } else {
4313      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4314                    "%#lx for signal %d.", (long)oldhand, sig));
4315    }
4316  }
4317
4318  struct sigaction sigAct;
4319  sigfillset(&(sigAct.sa_mask));
4320  sigAct.sa_handler = SIG_DFL;
4321  if (!set_installed) {
4322    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4323  } else {
4324    sigAct.sa_sigaction = signalHandler;
4325    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4326  }
4327  // Save flags, which are set by ours
4328  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4329  sigflags[sig] = sigAct.sa_flags;
4330
4331  int ret = sigaction(sig, &sigAct, &oldAct);
4332  assert(ret == 0, "check");
4333
4334  void* oldhand2  = oldAct.sa_sigaction
4335                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4336                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4337  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4338}
4339
4340// install signal handlers for signals that HotSpot needs to
4341// handle in order to support Java-level exception handling.
4342
4343void os::Linux::install_signal_handlers() {
4344  if (!signal_handlers_are_installed) {
4345    signal_handlers_are_installed = true;
4346
4347    // signal-chaining
4348    typedef void (*signal_setting_t)();
4349    signal_setting_t begin_signal_setting = NULL;
4350    signal_setting_t end_signal_setting = NULL;
4351    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4352                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4353    if (begin_signal_setting != NULL) {
4354      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4355                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4356      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4357                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4358      libjsig_is_loaded = true;
4359      assert(UseSignalChaining, "should enable signal-chaining");
4360    }
4361    if (libjsig_is_loaded) {
4362      // Tell libjsig jvm is setting signal handlers
4363      (*begin_signal_setting)();
4364    }
4365
4366    set_signal_handler(SIGSEGV, true);
4367    set_signal_handler(SIGPIPE, true);
4368    set_signal_handler(SIGBUS, true);
4369    set_signal_handler(SIGILL, true);
4370    set_signal_handler(SIGFPE, true);
4371#if defined(PPC64)
4372    set_signal_handler(SIGTRAP, true);
4373#endif
4374    set_signal_handler(SIGXFSZ, true);
4375
4376    if (libjsig_is_loaded) {
4377      // Tell libjsig jvm finishes setting signal handlers
4378      (*end_signal_setting)();
4379    }
4380
4381    // We don't activate signal checker if libjsig is in place, we trust ourselves
4382    // and if UserSignalHandler is installed all bets are off.
4383    // Log that signal checking is off only if -verbose:jni is specified.
4384    if (CheckJNICalls) {
4385      if (libjsig_is_loaded) {
4386        if (PrintJNIResolving) {
4387          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4388        }
4389        check_signals = false;
4390      }
4391      if (AllowUserSignalHandlers) {
4392        if (PrintJNIResolving) {
4393          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4394        }
4395        check_signals = false;
4396      }
4397    }
4398  }
4399}
4400
4401// This is the fastest way to get thread cpu time on Linux.
4402// Returns cpu time (user+sys) for any thread, not only for current.
4403// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4404// It might work on 2.6.10+ with a special kernel/glibc patch.
4405// For reference, please, see IEEE Std 1003.1-2004:
4406//   http://www.unix.org/single_unix_specification
4407
4408jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4409  struct timespec tp;
4410  int rc = os::Linux::clock_gettime(clockid, &tp);
4411  assert(rc == 0, "clock_gettime is expected to return 0 code");
4412
4413  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4414}
4415
4416/////
4417// glibc on Linux platform uses non-documented flag
4418// to indicate, that some special sort of signal
4419// trampoline is used.
4420// We will never set this flag, and we should
4421// ignore this flag in our diagnostic
4422#ifdef SIGNIFICANT_SIGNAL_MASK
4423  #undef SIGNIFICANT_SIGNAL_MASK
4424#endif
4425#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4426
4427static const char* get_signal_handler_name(address handler,
4428                                           char* buf, int buflen) {
4429  int offset;
4430  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4431  if (found) {
4432    // skip directory names
4433    const char *p1, *p2;
4434    p1 = buf;
4435    size_t len = strlen(os::file_separator());
4436    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4437    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4438  } else {
4439    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4440  }
4441  return buf;
4442}
4443
4444static void print_signal_handler(outputStream* st, int sig,
4445                                 char* buf, size_t buflen) {
4446  struct sigaction sa;
4447
4448  sigaction(sig, NULL, &sa);
4449
4450  // See comment for SIGNIFICANT_SIGNAL_MASK define
4451  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4452
4453  st->print("%s: ", os::exception_name(sig, buf, buflen));
4454
4455  address handler = (sa.sa_flags & SA_SIGINFO)
4456    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4457    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4458
4459  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4460    st->print("SIG_DFL");
4461  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4462    st->print("SIG_IGN");
4463  } else {
4464    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4465  }
4466
4467  st->print(", sa_mask[0]=");
4468  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4469
4470  address rh = VMError::get_resetted_sighandler(sig);
4471  // May be, handler was resetted by VMError?
4472  if (rh != NULL) {
4473    handler = rh;
4474    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4475  }
4476
4477  st->print(", sa_flags=");
4478  os::Posix::print_sa_flags(st, sa.sa_flags);
4479
4480  // Check: is it our handler?
4481  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4482      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4483    // It is our signal handler
4484    // check for flags, reset system-used one!
4485    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4486      st->print(
4487                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4488                os::Linux::get_our_sigflags(sig));
4489    }
4490  }
4491  st->cr();
4492}
4493
4494
4495#define DO_SIGNAL_CHECK(sig)                      \
4496  do {                                            \
4497    if (!sigismember(&check_signal_done, sig)) {  \
4498      os::Linux::check_signal_handler(sig);       \
4499    }                                             \
4500  } while (0)
4501
4502// This method is a periodic task to check for misbehaving JNI applications
4503// under CheckJNI, we can add any periodic checks here
4504
4505void os::run_periodic_checks() {
4506  if (check_signals == false) return;
4507
4508  // SEGV and BUS if overridden could potentially prevent
4509  // generation of hs*.log in the event of a crash, debugging
4510  // such a case can be very challenging, so we absolutely
4511  // check the following for a good measure:
4512  DO_SIGNAL_CHECK(SIGSEGV);
4513  DO_SIGNAL_CHECK(SIGILL);
4514  DO_SIGNAL_CHECK(SIGFPE);
4515  DO_SIGNAL_CHECK(SIGBUS);
4516  DO_SIGNAL_CHECK(SIGPIPE);
4517  DO_SIGNAL_CHECK(SIGXFSZ);
4518#if defined(PPC64)
4519  DO_SIGNAL_CHECK(SIGTRAP);
4520#endif
4521
4522  // ReduceSignalUsage allows the user to override these handlers
4523  // see comments at the very top and jvm_solaris.h
4524  if (!ReduceSignalUsage) {
4525    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4526    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4527    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4528    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4529  }
4530
4531  DO_SIGNAL_CHECK(SR_signum);
4532  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4533}
4534
4535typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4536
4537static os_sigaction_t os_sigaction = NULL;
4538
4539void os::Linux::check_signal_handler(int sig) {
4540  char buf[O_BUFLEN];
4541  address jvmHandler = NULL;
4542
4543
4544  struct sigaction act;
4545  if (os_sigaction == NULL) {
4546    // only trust the default sigaction, in case it has been interposed
4547    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4548    if (os_sigaction == NULL) return;
4549  }
4550
4551  os_sigaction(sig, (struct sigaction*)NULL, &act);
4552
4553
4554  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4555
4556  address thisHandler = (act.sa_flags & SA_SIGINFO)
4557    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4558    : CAST_FROM_FN_PTR(address, act.sa_handler);
4559
4560
4561  switch (sig) {
4562  case SIGSEGV:
4563  case SIGBUS:
4564  case SIGFPE:
4565  case SIGPIPE:
4566  case SIGILL:
4567  case SIGXFSZ:
4568    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4569    break;
4570
4571  case SHUTDOWN1_SIGNAL:
4572  case SHUTDOWN2_SIGNAL:
4573  case SHUTDOWN3_SIGNAL:
4574  case BREAK_SIGNAL:
4575    jvmHandler = (address)user_handler();
4576    break;
4577
4578  case INTERRUPT_SIGNAL:
4579    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4580    break;
4581
4582  default:
4583    if (sig == SR_signum) {
4584      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4585    } else {
4586      return;
4587    }
4588    break;
4589  }
4590
4591  if (thisHandler != jvmHandler) {
4592    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4593    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4594    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4595    // No need to check this sig any longer
4596    sigaddset(&check_signal_done, sig);
4597    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4598    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4599      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4600                    exception_name(sig, buf, O_BUFLEN));
4601    }
4602  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4603    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4604    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4605    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4606    // No need to check this sig any longer
4607    sigaddset(&check_signal_done, sig);
4608  }
4609
4610  // Dump all the signal
4611  if (sigismember(&check_signal_done, sig)) {
4612    print_signal_handlers(tty, buf, O_BUFLEN);
4613  }
4614}
4615
4616extern void report_error(char* file_name, int line_no, char* title,
4617                         char* format, ...);
4618
4619extern bool signal_name(int signo, char* buf, size_t len);
4620
4621const char* os::exception_name(int exception_code, char* buf, size_t size) {
4622  if (0 < exception_code && exception_code <= SIGRTMAX) {
4623    // signal
4624    if (!signal_name(exception_code, buf, size)) {
4625      jio_snprintf(buf, size, "SIG%d", exception_code);
4626    }
4627    return buf;
4628  } else {
4629    return NULL;
4630  }
4631}
4632
4633// this is called _before_ the most of global arguments have been parsed
4634void os::init(void) {
4635  char dummy;   // used to get a guess on initial stack address
4636//  first_hrtime = gethrtime();
4637
4638  // With LinuxThreads the JavaMain thread pid (primordial thread)
4639  // is different than the pid of the java launcher thread.
4640  // So, on Linux, the launcher thread pid is passed to the VM
4641  // via the sun.java.launcher.pid property.
4642  // Use this property instead of getpid() if it was correctly passed.
4643  // See bug 6351349.
4644  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4645
4646  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4647
4648  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4649
4650  init_random(1234567);
4651
4652  ThreadCritical::initialize();
4653
4654  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4655  if (Linux::page_size() == -1) {
4656    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4657                  strerror(errno)));
4658  }
4659  init_page_sizes((size_t) Linux::page_size());
4660
4661  Linux::initialize_system_info();
4662
4663  // main_thread points to the aboriginal thread
4664  Linux::_main_thread = pthread_self();
4665
4666  Linux::clock_init();
4667  initial_time_count = javaTimeNanos();
4668
4669  // pthread_condattr initialization for monotonic clock
4670  int status;
4671  pthread_condattr_t* _condattr = os::Linux::condAttr();
4672  if ((status = pthread_condattr_init(_condattr)) != 0) {
4673    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4674  }
4675  // Only set the clock if CLOCK_MONOTONIC is available
4676  if (os::supports_monotonic_clock()) {
4677    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4678      if (status == EINVAL) {
4679        warning("Unable to use monotonic clock with relative timed-waits" \
4680                " - changes to the time-of-day clock may have adverse affects");
4681      } else {
4682        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4683      }
4684    }
4685  }
4686  // else it defaults to CLOCK_REALTIME
4687
4688  pthread_mutex_init(&dl_mutex, NULL);
4689
4690  // If the pagesize of the VM is greater than 8K determine the appropriate
4691  // number of initial guard pages.  The user can change this with the
4692  // command line arguments, if needed.
4693  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4694    StackYellowPages = 1;
4695    StackRedPages = 1;
4696    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4697  }
4698}
4699
4700// To install functions for atexit system call
4701extern "C" {
4702  static void perfMemory_exit_helper() {
4703    perfMemory_exit();
4704  }
4705}
4706
4707// this is called _after_ the global arguments have been parsed
4708jint os::init_2(void) {
4709  Linux::fast_thread_clock_init();
4710
4711  // Allocate a single page and mark it as readable for safepoint polling
4712  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4713  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4714
4715  os::set_polling_page(polling_page);
4716
4717#ifndef PRODUCT
4718  if (Verbose && PrintMiscellaneous) {
4719    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4720               (intptr_t)polling_page);
4721  }
4722#endif
4723
4724  if (!UseMembar) {
4725    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4726    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4727    os::set_memory_serialize_page(mem_serialize_page);
4728
4729#ifndef PRODUCT
4730    if (Verbose && PrintMiscellaneous) {
4731      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4732                 (intptr_t)mem_serialize_page);
4733    }
4734#endif
4735  }
4736
4737  // initialize suspend/resume support - must do this before signal_sets_init()
4738  if (SR_initialize() != 0) {
4739    perror("SR_initialize failed");
4740    return JNI_ERR;
4741  }
4742
4743  Linux::signal_sets_init();
4744  Linux::install_signal_handlers();
4745
4746  // Check minimum allowable stack size for thread creation and to initialize
4747  // the java system classes, including StackOverflowError - depends on page
4748  // size.  Add a page for compiler2 recursion in main thread.
4749  // Add in 2*BytesPerWord times page size to account for VM stack during
4750  // class initialization depending on 32 or 64 bit VM.
4751  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4752                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4753                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4754
4755  size_t threadStackSizeInBytes = ThreadStackSize * K;
4756  if (threadStackSizeInBytes != 0 &&
4757      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4758    tty->print_cr("\nThe stack size specified is too small, "
4759                  "Specify at least %dk",
4760                  os::Linux::min_stack_allowed/ K);
4761    return JNI_ERR;
4762  }
4763
4764  // Make the stack size a multiple of the page size so that
4765  // the yellow/red zones can be guarded.
4766  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4767                                                vm_page_size()));
4768
4769  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4770
4771#if defined(IA32)
4772  workaround_expand_exec_shield_cs_limit();
4773#endif
4774
4775  Linux::libpthread_init();
4776  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4777    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4778                  Linux::glibc_version(), Linux::libpthread_version(),
4779                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4780  }
4781
4782  if (UseNUMA) {
4783    if (!Linux::libnuma_init()) {
4784      UseNUMA = false;
4785    } else {
4786      if ((Linux::numa_max_node() < 1)) {
4787        // There's only one node(they start from 0), disable NUMA.
4788        UseNUMA = false;
4789      }
4790    }
4791    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4792    // we can make the adaptive lgrp chunk resizing work. If the user specified
4793    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4794    // disable adaptive resizing.
4795    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4796      if (FLAG_IS_DEFAULT(UseNUMA)) {
4797        UseNUMA = false;
4798      } else {
4799        if (FLAG_IS_DEFAULT(UseLargePages) &&
4800            FLAG_IS_DEFAULT(UseSHM) &&
4801            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4802          UseLargePages = false;
4803        } else {
4804          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4805          UseAdaptiveSizePolicy = false;
4806          UseAdaptiveNUMAChunkSizing = false;
4807        }
4808      }
4809    }
4810    if (!UseNUMA && ForceNUMA) {
4811      UseNUMA = true;
4812    }
4813  }
4814
4815  if (MaxFDLimit) {
4816    // set the number of file descriptors to max. print out error
4817    // if getrlimit/setrlimit fails but continue regardless.
4818    struct rlimit nbr_files;
4819    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4820    if (status != 0) {
4821      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4822        perror("os::init_2 getrlimit failed");
4823      }
4824    } else {
4825      nbr_files.rlim_cur = nbr_files.rlim_max;
4826      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4827      if (status != 0) {
4828        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4829          perror("os::init_2 setrlimit failed");
4830        }
4831      }
4832    }
4833  }
4834
4835  // Initialize lock used to serialize thread creation (see os::create_thread)
4836  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4837
4838  // at-exit methods are called in the reverse order of their registration.
4839  // atexit functions are called on return from main or as a result of a
4840  // call to exit(3C). There can be only 32 of these functions registered
4841  // and atexit() does not set errno.
4842
4843  if (PerfAllowAtExitRegistration) {
4844    // only register atexit functions if PerfAllowAtExitRegistration is set.
4845    // atexit functions can be delayed until process exit time, which
4846    // can be problematic for embedded VM situations. Embedded VMs should
4847    // call DestroyJavaVM() to assure that VM resources are released.
4848
4849    // note: perfMemory_exit_helper atexit function may be removed in
4850    // the future if the appropriate cleanup code can be added to the
4851    // VM_Exit VMOperation's doit method.
4852    if (atexit(perfMemory_exit_helper) != 0) {
4853      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4854    }
4855  }
4856
4857  // initialize thread priority policy
4858  prio_init();
4859
4860  return JNI_OK;
4861}
4862
4863// this is called at the end of vm_initialization
4864void os::init_3(void) {
4865#ifdef JAVASE_EMBEDDED
4866  // Start the MemNotifyThread
4867  if (LowMemoryProtection) {
4868    MemNotifyThread::start();
4869  }
4870  return;
4871#endif
4872}
4873
4874// Mark the polling page as unreadable
4875void os::make_polling_page_unreadable(void) {
4876  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4877    fatal("Could not disable polling page");
4878  }
4879}
4880
4881// Mark the polling page as readable
4882void os::make_polling_page_readable(void) {
4883  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4884    fatal("Could not enable polling page");
4885  }
4886}
4887
4888int os::active_processor_count() {
4889  // Linux doesn't yet have a (official) notion of processor sets,
4890  // so just return the number of online processors.
4891  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4892  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4893  return online_cpus;
4894}
4895
4896void os::set_native_thread_name(const char *name) {
4897  // Not yet implemented.
4898  return;
4899}
4900
4901bool os::distribute_processes(uint length, uint* distribution) {
4902  // Not yet implemented.
4903  return false;
4904}
4905
4906bool os::bind_to_processor(uint processor_id) {
4907  // Not yet implemented.
4908  return false;
4909}
4910
4911///
4912
4913void os::SuspendedThreadTask::internal_do_task() {
4914  if (do_suspend(_thread->osthread())) {
4915    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4916    do_task(context);
4917    do_resume(_thread->osthread());
4918  }
4919}
4920
4921class PcFetcher : public os::SuspendedThreadTask {
4922 public:
4923  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4924  ExtendedPC result();
4925 protected:
4926  void do_task(const os::SuspendedThreadTaskContext& context);
4927 private:
4928  ExtendedPC _epc;
4929};
4930
4931ExtendedPC PcFetcher::result() {
4932  guarantee(is_done(), "task is not done yet.");
4933  return _epc;
4934}
4935
4936void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4937  Thread* thread = context.thread();
4938  OSThread* osthread = thread->osthread();
4939  if (osthread->ucontext() != NULL) {
4940    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4941  } else {
4942    // NULL context is unexpected, double-check this is the VMThread
4943    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4944  }
4945}
4946
4947// Suspends the target using the signal mechanism and then grabs the PC before
4948// resuming the target. Used by the flat-profiler only
4949ExtendedPC os::get_thread_pc(Thread* thread) {
4950  // Make sure that it is called by the watcher for the VMThread
4951  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4952  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4953
4954  PcFetcher fetcher(thread);
4955  fetcher.run();
4956  return fetcher.result();
4957}
4958
4959int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4960                                   pthread_mutex_t *_mutex,
4961                                   const struct timespec *_abstime) {
4962  if (is_NPTL()) {
4963    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4964  } else {
4965    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4966    // word back to default 64bit precision if condvar is signaled. Java
4967    // wants 53bit precision.  Save and restore current value.
4968    int fpu = get_fpu_control_word();
4969    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4970    set_fpu_control_word(fpu);
4971    return status;
4972  }
4973}
4974
4975////////////////////////////////////////////////////////////////////////////////
4976// debug support
4977
4978bool os::find(address addr, outputStream* st) {
4979  Dl_info dlinfo;
4980  memset(&dlinfo, 0, sizeof(dlinfo));
4981  if (dladdr(addr, &dlinfo) != 0) {
4982    st->print(PTR_FORMAT ": ", addr);
4983    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4984      st->print("%s+%#x", dlinfo.dli_sname,
4985                addr - (intptr_t)dlinfo.dli_saddr);
4986    } else if (dlinfo.dli_fbase != NULL) {
4987      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4988    } else {
4989      st->print("<absolute address>");
4990    }
4991    if (dlinfo.dli_fname != NULL) {
4992      st->print(" in %s", dlinfo.dli_fname);
4993    }
4994    if (dlinfo.dli_fbase != NULL) {
4995      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4996    }
4997    st->cr();
4998
4999    if (Verbose) {
5000      // decode some bytes around the PC
5001      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5002      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5003      address       lowest = (address) dlinfo.dli_sname;
5004      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5005      if (begin < lowest)  begin = lowest;
5006      Dl_info dlinfo2;
5007      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5008          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5009        end = (address) dlinfo2.dli_saddr;
5010      }
5011      Disassembler::decode(begin, end, st);
5012    }
5013    return true;
5014  }
5015  return false;
5016}
5017
5018////////////////////////////////////////////////////////////////////////////////
5019// misc
5020
5021// This does not do anything on Linux. This is basically a hook for being
5022// able to use structured exception handling (thread-local exception filters)
5023// on, e.g., Win32.
5024void
5025os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5026                         JavaCallArguments* args, Thread* thread) {
5027  f(value, method, args, thread);
5028}
5029
5030void os::print_statistics() {
5031}
5032
5033int os::message_box(const char* title, const char* message) {
5034  int i;
5035  fdStream err(defaultStream::error_fd());
5036  for (i = 0; i < 78; i++) err.print_raw("=");
5037  err.cr();
5038  err.print_raw_cr(title);
5039  for (i = 0; i < 78; i++) err.print_raw("-");
5040  err.cr();
5041  err.print_raw_cr(message);
5042  for (i = 0; i < 78; i++) err.print_raw("=");
5043  err.cr();
5044
5045  char buf[16];
5046  // Prevent process from exiting upon "read error" without consuming all CPU
5047  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5048
5049  return buf[0] == 'y' || buf[0] == 'Y';
5050}
5051
5052int os::stat(const char *path, struct stat *sbuf) {
5053  char pathbuf[MAX_PATH];
5054  if (strlen(path) > MAX_PATH - 1) {
5055    errno = ENAMETOOLONG;
5056    return -1;
5057  }
5058  os::native_path(strcpy(pathbuf, path));
5059  return ::stat(pathbuf, sbuf);
5060}
5061
5062bool os::check_heap(bool force) {
5063  return true;
5064}
5065
5066int local_vsnprintf(char* buf, size_t count, const char* format,
5067                    va_list args) {
5068  return ::vsnprintf(buf, count, format, args);
5069}
5070
5071// Is a (classpath) directory empty?
5072bool os::dir_is_empty(const char* path) {
5073  DIR *dir = NULL;
5074  struct dirent *ptr;
5075
5076  dir = opendir(path);
5077  if (dir == NULL) return true;
5078
5079  // Scan the directory
5080  bool result = true;
5081  char buf[sizeof(struct dirent) + MAX_PATH];
5082  while (result && (ptr = ::readdir(dir)) != NULL) {
5083    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5084      result = false;
5085    }
5086  }
5087  closedir(dir);
5088  return result;
5089}
5090
5091// This code originates from JDK's sysOpen and open64_w
5092// from src/solaris/hpi/src/system_md.c
5093
5094#ifndef O_DELETE
5095  #define O_DELETE 0x10000
5096#endif
5097
5098// Open a file. Unlink the file immediately after open returns
5099// if the specified oflag has the O_DELETE flag set.
5100// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5101
5102int os::open(const char *path, int oflag, int mode) {
5103  if (strlen(path) > MAX_PATH - 1) {
5104    errno = ENAMETOOLONG;
5105    return -1;
5106  }
5107  int fd;
5108  int o_delete = (oflag & O_DELETE);
5109  oflag = oflag & ~O_DELETE;
5110
5111  fd = ::open64(path, oflag, mode);
5112  if (fd == -1) return -1;
5113
5114  //If the open succeeded, the file might still be a directory
5115  {
5116    struct stat64 buf64;
5117    int ret = ::fstat64(fd, &buf64);
5118    int st_mode = buf64.st_mode;
5119
5120    if (ret != -1) {
5121      if ((st_mode & S_IFMT) == S_IFDIR) {
5122        errno = EISDIR;
5123        ::close(fd);
5124        return -1;
5125      }
5126    } else {
5127      ::close(fd);
5128      return -1;
5129    }
5130  }
5131
5132  // All file descriptors that are opened in the JVM and not
5133  // specifically destined for a subprocess should have the
5134  // close-on-exec flag set.  If we don't set it, then careless 3rd
5135  // party native code might fork and exec without closing all
5136  // appropriate file descriptors (e.g. as we do in closeDescriptors in
5137  // UNIXProcess.c), and this in turn might:
5138  //
5139  // - cause end-of-file to fail to be detected on some file
5140  //   descriptors, resulting in mysterious hangs, or
5141  //
5142  // - might cause an fopen in the subprocess to fail on a system
5143  //   suffering from bug 1085341.
5144  //
5145  // (Yes, the default setting of the close-on-exec flag is a Unix
5146  // design flaw)
5147  //
5148  // See:
5149  // 1085341: 32-bit stdio routines should support file descriptors >255
5150  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5151  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5152  //
5153#ifdef FD_CLOEXEC
5154  {
5155    int flags = ::fcntl(fd, F_GETFD);
5156    if (flags != -1) {
5157      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5158    }
5159  }
5160#endif
5161
5162  if (o_delete != 0) {
5163    ::unlink(path);
5164  }
5165  return fd;
5166}
5167
5168
5169// create binary file, rewriting existing file if required
5170int os::create_binary_file(const char* path, bool rewrite_existing) {
5171  int oflags = O_WRONLY | O_CREAT;
5172  if (!rewrite_existing) {
5173    oflags |= O_EXCL;
5174  }
5175  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5176}
5177
5178// return current position of file pointer
5179jlong os::current_file_offset(int fd) {
5180  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5181}
5182
5183// move file pointer to the specified offset
5184jlong os::seek_to_file_offset(int fd, jlong offset) {
5185  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5186}
5187
5188// This code originates from JDK's sysAvailable
5189// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5190
5191int os::available(int fd, jlong *bytes) {
5192  jlong cur, end;
5193  int mode;
5194  struct stat64 buf64;
5195
5196  if (::fstat64(fd, &buf64) >= 0) {
5197    mode = buf64.st_mode;
5198    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5199      // XXX: is the following call interruptible? If so, this might
5200      // need to go through the INTERRUPT_IO() wrapper as for other
5201      // blocking, interruptible calls in this file.
5202      int n;
5203      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5204        *bytes = n;
5205        return 1;
5206      }
5207    }
5208  }
5209  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5210    return 0;
5211  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5212    return 0;
5213  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5214    return 0;
5215  }
5216  *bytes = end - cur;
5217  return 1;
5218}
5219
5220int os::socket_available(int fd, jint *pbytes) {
5221  // Linux doc says EINTR not returned, unlike Solaris
5222  int ret = ::ioctl(fd, FIONREAD, pbytes);
5223
5224  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5225  // is expected to return 0 on failure and 1 on success to the jdk.
5226  return (ret < 0) ? 0 : 1;
5227}
5228
5229// Map a block of memory.
5230char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5231                        char *addr, size_t bytes, bool read_only,
5232                        bool allow_exec) {
5233  int prot;
5234  int flags = MAP_PRIVATE;
5235
5236  if (read_only) {
5237    prot = PROT_READ;
5238  } else {
5239    prot = PROT_READ | PROT_WRITE;
5240  }
5241
5242  if (allow_exec) {
5243    prot |= PROT_EXEC;
5244  }
5245
5246  if (addr != NULL) {
5247    flags |= MAP_FIXED;
5248  }
5249
5250  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5251                                     fd, file_offset);
5252  if (mapped_address == MAP_FAILED) {
5253    return NULL;
5254  }
5255  return mapped_address;
5256}
5257
5258
5259// Remap a block of memory.
5260char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5261                          char *addr, size_t bytes, bool read_only,
5262                          bool allow_exec) {
5263  // same as map_memory() on this OS
5264  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5265                        allow_exec);
5266}
5267
5268
5269// Unmap a block of memory.
5270bool os::pd_unmap_memory(char* addr, size_t bytes) {
5271  return munmap(addr, bytes) == 0;
5272}
5273
5274static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5275
5276static clockid_t thread_cpu_clockid(Thread* thread) {
5277  pthread_t tid = thread->osthread()->pthread_id();
5278  clockid_t clockid;
5279
5280  // Get thread clockid
5281  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5282  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5283  return clockid;
5284}
5285
5286// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5287// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5288// of a thread.
5289//
5290// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5291// the fast estimate available on the platform.
5292
5293jlong os::current_thread_cpu_time() {
5294  if (os::Linux::supports_fast_thread_cpu_time()) {
5295    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5296  } else {
5297    // return user + sys since the cost is the same
5298    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5299  }
5300}
5301
5302jlong os::thread_cpu_time(Thread* thread) {
5303  // consistent with what current_thread_cpu_time() returns
5304  if (os::Linux::supports_fast_thread_cpu_time()) {
5305    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5306  } else {
5307    return slow_thread_cpu_time(thread, true /* user + sys */);
5308  }
5309}
5310
5311jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5312  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5313    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5314  } else {
5315    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5316  }
5317}
5318
5319jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5320  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5321    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5322  } else {
5323    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5324  }
5325}
5326
5327//  -1 on error.
5328static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5329  pid_t  tid = thread->osthread()->thread_id();
5330  char *s;
5331  char stat[2048];
5332  int statlen;
5333  char proc_name[64];
5334  int count;
5335  long sys_time, user_time;
5336  char cdummy;
5337  int idummy;
5338  long ldummy;
5339  FILE *fp;
5340
5341  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5342  fp = fopen(proc_name, "r");
5343  if (fp == NULL) return -1;
5344  statlen = fread(stat, 1, 2047, fp);
5345  stat[statlen] = '\0';
5346  fclose(fp);
5347
5348  // Skip pid and the command string. Note that we could be dealing with
5349  // weird command names, e.g. user could decide to rename java launcher
5350  // to "java 1.4.2 :)", then the stat file would look like
5351  //                1234 (java 1.4.2 :)) R ... ...
5352  // We don't really need to know the command string, just find the last
5353  // occurrence of ")" and then start parsing from there. See bug 4726580.
5354  s = strrchr(stat, ')');
5355  if (s == NULL) return -1;
5356
5357  // Skip blank chars
5358  do s++; while (isspace(*s));
5359
5360  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5361                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5362                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5363                 &user_time, &sys_time);
5364  if (count != 13) return -1;
5365  if (user_sys_cpu_time) {
5366    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5367  } else {
5368    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5369  }
5370}
5371
5372void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5373  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5374  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5375  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5376  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5377}
5378
5379void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5380  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5381  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5382  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5383  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5384}
5385
5386bool os::is_thread_cpu_time_supported() {
5387  return true;
5388}
5389
5390// System loadavg support.  Returns -1 if load average cannot be obtained.
5391// Linux doesn't yet have a (official) notion of processor sets,
5392// so just return the system wide load average.
5393int os::loadavg(double loadavg[], int nelem) {
5394  return ::getloadavg(loadavg, nelem);
5395}
5396
5397void os::pause() {
5398  char filename[MAX_PATH];
5399  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5400    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5401  } else {
5402    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5403  }
5404
5405  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5406  if (fd != -1) {
5407    struct stat buf;
5408    ::close(fd);
5409    while (::stat(filename, &buf) == 0) {
5410      (void)::poll(NULL, 0, 100);
5411    }
5412  } else {
5413    jio_fprintf(stderr,
5414                "Could not open pause file '%s', continuing immediately.\n", filename);
5415  }
5416}
5417
5418
5419// Refer to the comments in os_solaris.cpp park-unpark.
5420//
5421// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5422// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5423// For specifics regarding the bug see GLIBC BUGID 261237 :
5424//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5425// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5426// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5427// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5428// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5429// and monitorenter when we're using 1-0 locking.  All those operations may result in
5430// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5431// of libpthread avoids the problem, but isn't practical.
5432//
5433// Possible remedies:
5434//
5435// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5436//      This is palliative and probabilistic, however.  If the thread is preempted
5437//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5438//      than the minimum period may have passed, and the abstime may be stale (in the
5439//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5440//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5441//
5442// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5443//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5444//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5445//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5446//      thread.
5447//
5448// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5449//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5450//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5451//      This also works well.  In fact it avoids kernel-level scalability impediments
5452//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5453//      timers in a graceful fashion.
5454//
5455// 4.   When the abstime value is in the past it appears that control returns
5456//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5457//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5458//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5459//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5460//      It may be possible to avoid reinitialization by checking the return
5461//      value from pthread_cond_timedwait().  In addition to reinitializing the
5462//      condvar we must establish the invariant that cond_signal() is only called
5463//      within critical sections protected by the adjunct mutex.  This prevents
5464//      cond_signal() from "seeing" a condvar that's in the midst of being
5465//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5466//      desirable signal-after-unlock optimization that avoids futile context switching.
5467//
5468//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5469//      structure when a condvar is used or initialized.  cond_destroy()  would
5470//      release the helper structure.  Our reinitialize-after-timedwait fix
5471//      put excessive stress on malloc/free and locks protecting the c-heap.
5472//
5473// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5474// It may be possible to refine (4) by checking the kernel and NTPL verisons
5475// and only enabling the work-around for vulnerable environments.
5476
5477// utility to compute the abstime argument to timedwait:
5478// millis is the relative timeout time
5479// abstime will be the absolute timeout time
5480// TODO: replace compute_abstime() with unpackTime()
5481
5482static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5483  if (millis < 0)  millis = 0;
5484
5485  jlong seconds = millis / 1000;
5486  millis %= 1000;
5487  if (seconds > 50000000) { // see man cond_timedwait(3T)
5488    seconds = 50000000;
5489  }
5490
5491  if (os::supports_monotonic_clock()) {
5492    struct timespec now;
5493    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5494    assert_status(status == 0, status, "clock_gettime");
5495    abstime->tv_sec = now.tv_sec  + seconds;
5496    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5497    if (nanos >= NANOSECS_PER_SEC) {
5498      abstime->tv_sec += 1;
5499      nanos -= NANOSECS_PER_SEC;
5500    }
5501    abstime->tv_nsec = nanos;
5502  } else {
5503    struct timeval now;
5504    int status = gettimeofday(&now, NULL);
5505    assert(status == 0, "gettimeofday");
5506    abstime->tv_sec = now.tv_sec  + seconds;
5507    long usec = now.tv_usec + millis * 1000;
5508    if (usec >= 1000000) {
5509      abstime->tv_sec += 1;
5510      usec -= 1000000;
5511    }
5512    abstime->tv_nsec = usec * 1000;
5513  }
5514  return abstime;
5515}
5516
5517void os::PlatformEvent::park() {       // AKA "down()"
5518  // Invariant: Only the thread associated with the Event/PlatformEvent
5519  // may call park().
5520  // TODO: assert that _Assoc != NULL or _Assoc == Self
5521  assert(_nParked == 0, "invariant");
5522
5523  int v;
5524  for (;;) {
5525    v = _Event;
5526    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5527  }
5528  guarantee(v >= 0, "invariant");
5529  if (v == 0) {
5530    // Do this the hard way by blocking ...
5531    int status = pthread_mutex_lock(_mutex);
5532    assert_status(status == 0, status, "mutex_lock");
5533    guarantee(_nParked == 0, "invariant");
5534    ++_nParked;
5535    while (_Event < 0) {
5536      status = pthread_cond_wait(_cond, _mutex);
5537      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5538      // Treat this the same as if the wait was interrupted
5539      if (status == ETIME) { status = EINTR; }
5540      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5541    }
5542    --_nParked;
5543
5544    _Event = 0;
5545    status = pthread_mutex_unlock(_mutex);
5546    assert_status(status == 0, status, "mutex_unlock");
5547    // Paranoia to ensure our locked and lock-free paths interact
5548    // correctly with each other.
5549    OrderAccess::fence();
5550  }
5551  guarantee(_Event >= 0, "invariant");
5552}
5553
5554int os::PlatformEvent::park(jlong millis) {
5555  guarantee(_nParked == 0, "invariant");
5556
5557  int v;
5558  for (;;) {
5559    v = _Event;
5560    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5561  }
5562  guarantee(v >= 0, "invariant");
5563  if (v != 0) return OS_OK;
5564
5565  // We do this the hard way, by blocking the thread.
5566  // Consider enforcing a minimum timeout value.
5567  struct timespec abst;
5568  compute_abstime(&abst, millis);
5569
5570  int ret = OS_TIMEOUT;
5571  int status = pthread_mutex_lock(_mutex);
5572  assert_status(status == 0, status, "mutex_lock");
5573  guarantee(_nParked == 0, "invariant");
5574  ++_nParked;
5575
5576  // Object.wait(timo) will return because of
5577  // (a) notification
5578  // (b) timeout
5579  // (c) thread.interrupt
5580  //
5581  // Thread.interrupt and object.notify{All} both call Event::set.
5582  // That is, we treat thread.interrupt as a special case of notification.
5583  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5584  // We assume all ETIME returns are valid.
5585  //
5586  // TODO: properly differentiate simultaneous notify+interrupt.
5587  // In that case, we should propagate the notify to another waiter.
5588
5589  while (_Event < 0) {
5590    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5591    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5592      pthread_cond_destroy(_cond);
5593      pthread_cond_init(_cond, os::Linux::condAttr());
5594    }
5595    assert_status(status == 0 || status == EINTR ||
5596                  status == ETIME || status == ETIMEDOUT,
5597                  status, "cond_timedwait");
5598    if (!FilterSpuriousWakeups) break;                 // previous semantics
5599    if (status == ETIME || status == ETIMEDOUT) break;
5600    // We consume and ignore EINTR and spurious wakeups.
5601  }
5602  --_nParked;
5603  if (_Event >= 0) {
5604    ret = OS_OK;
5605  }
5606  _Event = 0;
5607  status = pthread_mutex_unlock(_mutex);
5608  assert_status(status == 0, status, "mutex_unlock");
5609  assert(_nParked == 0, "invariant");
5610  // Paranoia to ensure our locked and lock-free paths interact
5611  // correctly with each other.
5612  OrderAccess::fence();
5613  return ret;
5614}
5615
5616void os::PlatformEvent::unpark() {
5617  // Transitions for _Event:
5618  //    0 :=> 1
5619  //    1 :=> 1
5620  //   -1 :=> either 0 or 1; must signal target thread
5621  //          That is, we can safely transition _Event from -1 to either
5622  //          0 or 1.
5623  // See also: "Semaphores in Plan 9" by Mullender & Cox
5624  //
5625  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5626  // that it will take two back-to-back park() calls for the owning
5627  // thread to block. This has the benefit of forcing a spurious return
5628  // from the first park() call after an unpark() call which will help
5629  // shake out uses of park() and unpark() without condition variables.
5630
5631  if (Atomic::xchg(1, &_Event) >= 0) return;
5632
5633  // Wait for the thread associated with the event to vacate
5634  int status = pthread_mutex_lock(_mutex);
5635  assert_status(status == 0, status, "mutex_lock");
5636  int AnyWaiters = _nParked;
5637  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5638  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5639    AnyWaiters = 0;
5640    pthread_cond_signal(_cond);
5641  }
5642  status = pthread_mutex_unlock(_mutex);
5643  assert_status(status == 0, status, "mutex_unlock");
5644  if (AnyWaiters != 0) {
5645    status = pthread_cond_signal(_cond);
5646    assert_status(status == 0, status, "cond_signal");
5647  }
5648
5649  // Note that we signal() _after dropping the lock for "immortal" Events.
5650  // This is safe and avoids a common class of  futile wakeups.  In rare
5651  // circumstances this can cause a thread to return prematurely from
5652  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5653  // simply re-test the condition and re-park itself.
5654}
5655
5656
5657// JSR166
5658// -------------------------------------------------------
5659
5660// The solaris and linux implementations of park/unpark are fairly
5661// conservative for now, but can be improved. They currently use a
5662// mutex/condvar pair, plus a a count.
5663// Park decrements count if > 0, else does a condvar wait.  Unpark
5664// sets count to 1 and signals condvar.  Only one thread ever waits
5665// on the condvar. Contention seen when trying to park implies that someone
5666// is unparking you, so don't wait. And spurious returns are fine, so there
5667// is no need to track notifications.
5668
5669// This code is common to linux and solaris and will be moved to a
5670// common place in dolphin.
5671//
5672// The passed in time value is either a relative time in nanoseconds
5673// or an absolute time in milliseconds. Either way it has to be unpacked
5674// into suitable seconds and nanoseconds components and stored in the
5675// given timespec structure.
5676// Given time is a 64-bit value and the time_t used in the timespec is only
5677// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5678// overflow if times way in the future are given. Further on Solaris versions
5679// prior to 10 there is a restriction (see cond_timedwait) that the specified
5680// number of seconds, in abstime, is less than current_time  + 100,000,000.
5681// As it will be 28 years before "now + 100000000" will overflow we can
5682// ignore overflow and just impose a hard-limit on seconds using the value
5683// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5684// years from "now".
5685
5686static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5687  assert(time > 0, "convertTime");
5688  time_t max_secs = 0;
5689
5690  if (!os::supports_monotonic_clock() || isAbsolute) {
5691    struct timeval now;
5692    int status = gettimeofday(&now, NULL);
5693    assert(status == 0, "gettimeofday");
5694
5695    max_secs = now.tv_sec + MAX_SECS;
5696
5697    if (isAbsolute) {
5698      jlong secs = time / 1000;
5699      if (secs > max_secs) {
5700        absTime->tv_sec = max_secs;
5701      } else {
5702        absTime->tv_sec = secs;
5703      }
5704      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5705    } else {
5706      jlong secs = time / NANOSECS_PER_SEC;
5707      if (secs >= MAX_SECS) {
5708        absTime->tv_sec = max_secs;
5709        absTime->tv_nsec = 0;
5710      } else {
5711        absTime->tv_sec = now.tv_sec + secs;
5712        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5713        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5714          absTime->tv_nsec -= NANOSECS_PER_SEC;
5715          ++absTime->tv_sec; // note: this must be <= max_secs
5716        }
5717      }
5718    }
5719  } else {
5720    // must be relative using monotonic clock
5721    struct timespec now;
5722    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5723    assert_status(status == 0, status, "clock_gettime");
5724    max_secs = now.tv_sec + MAX_SECS;
5725    jlong secs = time / NANOSECS_PER_SEC;
5726    if (secs >= MAX_SECS) {
5727      absTime->tv_sec = max_secs;
5728      absTime->tv_nsec = 0;
5729    } else {
5730      absTime->tv_sec = now.tv_sec + secs;
5731      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5732      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5733        absTime->tv_nsec -= NANOSECS_PER_SEC;
5734        ++absTime->tv_sec; // note: this must be <= max_secs
5735      }
5736    }
5737  }
5738  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5739  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5740  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5741  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5742}
5743
5744void Parker::park(bool isAbsolute, jlong time) {
5745  // Ideally we'd do something useful while spinning, such
5746  // as calling unpackTime().
5747
5748  // Optional fast-path check:
5749  // Return immediately if a permit is available.
5750  // We depend on Atomic::xchg() having full barrier semantics
5751  // since we are doing a lock-free update to _counter.
5752  if (Atomic::xchg(0, &_counter) > 0) return;
5753
5754  Thread* thread = Thread::current();
5755  assert(thread->is_Java_thread(), "Must be JavaThread");
5756  JavaThread *jt = (JavaThread *)thread;
5757
5758  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5759  // Check interrupt before trying to wait
5760  if (Thread::is_interrupted(thread, false)) {
5761    return;
5762  }
5763
5764  // Next, demultiplex/decode time arguments
5765  timespec absTime;
5766  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5767    return;
5768  }
5769  if (time > 0) {
5770    unpackTime(&absTime, isAbsolute, time);
5771  }
5772
5773
5774  // Enter safepoint region
5775  // Beware of deadlocks such as 6317397.
5776  // The per-thread Parker:: mutex is a classic leaf-lock.
5777  // In particular a thread must never block on the Threads_lock while
5778  // holding the Parker:: mutex.  If safepoints are pending both the
5779  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5780  ThreadBlockInVM tbivm(jt);
5781
5782  // Don't wait if cannot get lock since interference arises from
5783  // unblocking.  Also. check interrupt before trying wait
5784  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5785    return;
5786  }
5787
5788  int status;
5789  if (_counter > 0)  { // no wait needed
5790    _counter = 0;
5791    status = pthread_mutex_unlock(_mutex);
5792    assert(status == 0, "invariant");
5793    // Paranoia to ensure our locked and lock-free paths interact
5794    // correctly with each other and Java-level accesses.
5795    OrderAccess::fence();
5796    return;
5797  }
5798
5799#ifdef ASSERT
5800  // Don't catch signals while blocked; let the running threads have the signals.
5801  // (This allows a debugger to break into the running thread.)
5802  sigset_t oldsigs;
5803  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5804  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5805#endif
5806
5807  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5808  jt->set_suspend_equivalent();
5809  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5810
5811  assert(_cur_index == -1, "invariant");
5812  if (time == 0) {
5813    _cur_index = REL_INDEX; // arbitrary choice when not timed
5814    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5815  } else {
5816    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5817    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5818    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5819      pthread_cond_destroy(&_cond[_cur_index]);
5820      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5821    }
5822  }
5823  _cur_index = -1;
5824  assert_status(status == 0 || status == EINTR ||
5825                status == ETIME || status == ETIMEDOUT,
5826                status, "cond_timedwait");
5827
5828#ifdef ASSERT
5829  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5830#endif
5831
5832  _counter = 0;
5833  status = pthread_mutex_unlock(_mutex);
5834  assert_status(status == 0, status, "invariant");
5835  // Paranoia to ensure our locked and lock-free paths interact
5836  // correctly with each other and Java-level accesses.
5837  OrderAccess::fence();
5838
5839  // If externally suspended while waiting, re-suspend
5840  if (jt->handle_special_suspend_equivalent_condition()) {
5841    jt->java_suspend_self();
5842  }
5843}
5844
5845void Parker::unpark() {
5846  int status = pthread_mutex_lock(_mutex);
5847  assert(status == 0, "invariant");
5848  const int s = _counter;
5849  _counter = 1;
5850  if (s < 1) {
5851    // thread might be parked
5852    if (_cur_index != -1) {
5853      // thread is definitely parked
5854      if (WorkAroundNPTLTimedWaitHang) {
5855        status = pthread_cond_signal(&_cond[_cur_index]);
5856        assert(status == 0, "invariant");
5857        status = pthread_mutex_unlock(_mutex);
5858        assert(status == 0, "invariant");
5859      } else {
5860        status = pthread_mutex_unlock(_mutex);
5861        assert(status == 0, "invariant");
5862        status = pthread_cond_signal(&_cond[_cur_index]);
5863        assert(status == 0, "invariant");
5864      }
5865    } else {
5866      pthread_mutex_unlock(_mutex);
5867      assert(status == 0, "invariant");
5868    }
5869  } else {
5870    pthread_mutex_unlock(_mutex);
5871    assert(status == 0, "invariant");
5872  }
5873}
5874
5875
5876extern char** environ;
5877
5878#ifndef __NR_fork
5879  #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5880#endif
5881
5882#ifndef __NR_execve
5883  #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5884#endif
5885
5886// Run the specified command in a separate process. Return its exit value,
5887// or -1 on failure (e.g. can't fork a new process).
5888// Unlike system(), this function can be called from signal handler. It
5889// doesn't block SIGINT et al.
5890int os::fork_and_exec(char* cmd) {
5891  const char * argv[4] = {"sh", "-c", cmd, NULL};
5892
5893  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5894  // pthread_atfork handlers and reset pthread library. All we need is a
5895  // separate process to execve. Make a direct syscall to fork process.
5896  // On IA64 there's no fork syscall, we have to use fork() and hope for
5897  // the best...
5898  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5899  IA64_ONLY(fork();)
5900
5901  if (pid < 0) {
5902    // fork failed
5903    return -1;
5904
5905  } else if (pid == 0) {
5906    // child process
5907
5908    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5909    // first to kill every thread on the thread list. Because this list is
5910    // not reset by fork() (see notes above), execve() will instead kill
5911    // every thread in the parent process. We know this is the only thread
5912    // in the new process, so make a system call directly.
5913    // IA64 should use normal execve() from glibc to match the glibc fork()
5914    // above.
5915    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5916    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5917
5918    // execve failed
5919    _exit(-1);
5920
5921  } else  {
5922    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5923    // care about the actual exit code, for now.
5924
5925    int status;
5926
5927    // Wait for the child process to exit.  This returns immediately if
5928    // the child has already exited. */
5929    while (waitpid(pid, &status, 0) < 0) {
5930      switch (errno) {
5931      case ECHILD: return 0;
5932      case EINTR: break;
5933      default: return -1;
5934      }
5935    }
5936
5937    if (WIFEXITED(status)) {
5938      // The child exited normally; get its exit code.
5939      return WEXITSTATUS(status);
5940    } else if (WIFSIGNALED(status)) {
5941      // The child exited because of a signal
5942      // The best value to return is 0x80 + signal number,
5943      // because that is what all Unix shells do, and because
5944      // it allows callers to distinguish between process exit and
5945      // process death by signal.
5946      return 0x80 + WTERMSIG(status);
5947    } else {
5948      // Unknown exit code; pass it through
5949      return status;
5950    }
5951  }
5952}
5953
5954// is_headless_jre()
5955//
5956// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5957// in order to report if we are running in a headless jre
5958//
5959// Since JDK8 xawt/libmawt.so was moved into the same directory
5960// as libawt.so, and renamed libawt_xawt.so
5961//
5962bool os::is_headless_jre() {
5963  struct stat statbuf;
5964  char buf[MAXPATHLEN];
5965  char libmawtpath[MAXPATHLEN];
5966  const char *xawtstr  = "/xawt/libmawt.so";
5967  const char *new_xawtstr = "/libawt_xawt.so";
5968  char *p;
5969
5970  // Get path to libjvm.so
5971  os::jvm_path(buf, sizeof(buf));
5972
5973  // Get rid of libjvm.so
5974  p = strrchr(buf, '/');
5975  if (p == NULL) {
5976    return false;
5977  } else {
5978    *p = '\0';
5979  }
5980
5981  // Get rid of client or server
5982  p = strrchr(buf, '/');
5983  if (p == NULL) {
5984    return false;
5985  } else {
5986    *p = '\0';
5987  }
5988
5989  // check xawt/libmawt.so
5990  strcpy(libmawtpath, buf);
5991  strcat(libmawtpath, xawtstr);
5992  if (::stat(libmawtpath, &statbuf) == 0) return false;
5993
5994  // check libawt_xawt.so
5995  strcpy(libmawtpath, buf);
5996  strcat(libmawtpath, new_xawtstr);
5997  if (::stat(libmawtpath, &statbuf) == 0) return false;
5998
5999  return true;
6000}
6001
6002// Get the default path to the core file
6003// Returns the length of the string
6004int os::get_core_path(char* buffer, size_t bufferSize) {
6005  const char* p = get_current_directory(buffer, bufferSize);
6006
6007  if (p == NULL) {
6008    assert(p != NULL, "failed to get current directory");
6009    return 0;
6010  }
6011
6012  return strlen(buffer);
6013}
6014
6015#ifdef JAVASE_EMBEDDED
6016//
6017// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6018//
6019MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6020
6021// ctor
6022//
6023MemNotifyThread::MemNotifyThread(int fd): Thread() {
6024  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6025  _fd = fd;
6026
6027  if (os::create_thread(this, os::os_thread)) {
6028    _memnotify_thread = this;
6029    os::set_priority(this, NearMaxPriority);
6030    os::start_thread(this);
6031  }
6032}
6033
6034// Where all the work gets done
6035//
6036void MemNotifyThread::run() {
6037  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6038
6039  // Set up the select arguments
6040  fd_set rfds;
6041  if (_fd != -1) {
6042    FD_ZERO(&rfds);
6043    FD_SET(_fd, &rfds);
6044  }
6045
6046  // Now wait for the mem_notify device to wake up
6047  while (1) {
6048    // Wait for the mem_notify device to signal us..
6049    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6050    if (rc == -1) {
6051      perror("select!\n");
6052      break;
6053    } else if (rc) {
6054      //ssize_t free_before = os::available_memory();
6055      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6056
6057      // The kernel is telling us there is not much memory left...
6058      // try to do something about that
6059
6060      // If we are not already in a GC, try one.
6061      if (!Universe::heap()->is_gc_active()) {
6062        Universe::heap()->collect(GCCause::_allocation_failure);
6063
6064        //ssize_t free_after = os::available_memory();
6065        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6066        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6067      }
6068      // We might want to do something like the following if we find the GC's are not helping...
6069      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6070    }
6071  }
6072}
6073
6074// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6075//
6076void MemNotifyThread::start() {
6077  int fd;
6078  fd = open("/dev/mem_notify", O_RDONLY, 0);
6079  if (fd < 0) {
6080    return;
6081  }
6082
6083  if (memnotify_thread() == NULL) {
6084    new MemNotifyThread(fd);
6085  }
6086}
6087
6088#endif // JAVASE_EMBEDDED
6089
6090
6091/////////////// Unit tests ///////////////
6092
6093#ifndef PRODUCT
6094
6095#define test_log(...)              \
6096  do {                             \
6097    if (VerboseInternalVMTests) {  \
6098      tty->print_cr(__VA_ARGS__);  \
6099      tty->flush();                \
6100    }                              \
6101  } while (false)
6102
6103class TestReserveMemorySpecial : AllStatic {
6104 public:
6105  static void small_page_write(void* addr, size_t size) {
6106    size_t page_size = os::vm_page_size();
6107
6108    char* end = (char*)addr + size;
6109    for (char* p = (char*)addr; p < end; p += page_size) {
6110      *p = 1;
6111    }
6112  }
6113
6114  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6115    if (!UseHugeTLBFS) {
6116      return;
6117    }
6118
6119    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6120
6121    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6122
6123    if (addr != NULL) {
6124      small_page_write(addr, size);
6125
6126      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6127    }
6128  }
6129
6130  static void test_reserve_memory_special_huge_tlbfs_only() {
6131    if (!UseHugeTLBFS) {
6132      return;
6133    }
6134
6135    size_t lp = os::large_page_size();
6136
6137    for (size_t size = lp; size <= lp * 10; size += lp) {
6138      test_reserve_memory_special_huge_tlbfs_only(size);
6139    }
6140  }
6141
6142  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6143    if (!UseHugeTLBFS) {
6144      return;
6145    }
6146
6147    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6148             size, alignment);
6149
6150    assert(size >= os::large_page_size(), "Incorrect input to test");
6151
6152    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6153
6154    if (addr != NULL) {
6155      small_page_write(addr, size);
6156
6157      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6158    }
6159  }
6160
6161  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6162    size_t lp = os::large_page_size();
6163    size_t ag = os::vm_allocation_granularity();
6164
6165    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6166      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6167    }
6168  }
6169
6170  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6171    size_t lp = os::large_page_size();
6172    size_t ag = os::vm_allocation_granularity();
6173
6174    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6175    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6176    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6177    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6178    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6179    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6180    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6181    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6182    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6183  }
6184
6185  static void test_reserve_memory_special_huge_tlbfs() {
6186    if (!UseHugeTLBFS) {
6187      return;
6188    }
6189
6190    test_reserve_memory_special_huge_tlbfs_only();
6191    test_reserve_memory_special_huge_tlbfs_mixed();
6192  }
6193
6194  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6195    if (!UseSHM) {
6196      return;
6197    }
6198
6199    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6200
6201    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6202
6203    if (addr != NULL) {
6204      assert(is_ptr_aligned(addr, alignment), "Check");
6205      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6206
6207      small_page_write(addr, size);
6208
6209      os::Linux::release_memory_special_shm(addr, size);
6210    }
6211  }
6212
6213  static void test_reserve_memory_special_shm() {
6214    size_t lp = os::large_page_size();
6215    size_t ag = os::vm_allocation_granularity();
6216
6217    for (size_t size = ag; size < lp * 3; size += ag) {
6218      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6219        test_reserve_memory_special_shm(size, alignment);
6220      }
6221    }
6222  }
6223
6224  static void test() {
6225    test_reserve_memory_special_huge_tlbfs();
6226    test_reserve_memory_special_shm();
6227  }
6228};
6229
6230void TestReserveMemorySpecial_test() {
6231  TestReserveMemorySpecial::test();
6232}
6233
6234#endif
6235