os_linux.cpp revision 691:956304450e80
1/*
2 * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// do not include  precompiled  header file
26# include "incls/_os_linux.cpp.incl"
27
28// put OS-includes here
29# include <sys/types.h>
30# include <sys/mman.h>
31# include <pthread.h>
32# include <signal.h>
33# include <errno.h>
34# include <dlfcn.h>
35# include <stdio.h>
36# include <unistd.h>
37# include <sys/resource.h>
38# include <pthread.h>
39# include <sys/stat.h>
40# include <sys/time.h>
41# include <sys/times.h>
42# include <sys/utsname.h>
43# include <sys/socket.h>
44# include <sys/wait.h>
45# include <pwd.h>
46# include <poll.h>
47# include <semaphore.h>
48# include <fcntl.h>
49# include <string.h>
50# include <syscall.h>
51# include <sys/sysinfo.h>
52# include <gnu/libc-version.h>
53# include <sys/ipc.h>
54# include <sys/shm.h>
55# include <link.h>
56
57#define MAX_PATH    (2 * K)
58
59// for timer info max values which include all bits
60#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
61#define SEC_IN_NANOSECS  1000000000LL
62
63////////////////////////////////////////////////////////////////////////////////
64// global variables
65julong os::Linux::_physical_memory = 0;
66
67address   os::Linux::_initial_thread_stack_bottom = NULL;
68uintptr_t os::Linux::_initial_thread_stack_size   = 0;
69
70int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
71int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
72Mutex* os::Linux::_createThread_lock = NULL;
73pthread_t os::Linux::_main_thread;
74int os::Linux::_page_size = -1;
75bool os::Linux::_is_floating_stack = false;
76bool os::Linux::_is_NPTL = false;
77bool os::Linux::_supports_fast_thread_cpu_time = false;
78const char * os::Linux::_glibc_version = NULL;
79const char * os::Linux::_libpthread_version = NULL;
80
81static jlong initial_time_count=0;
82
83static int clock_tics_per_sec = 100;
84
85// For diagnostics to print a message once. see run_periodic_checks
86static sigset_t check_signal_done;
87static bool check_signals = true;;
88
89static pid_t _initial_pid = 0;
90
91/* Signal number used to suspend/resume a thread */
92
93/* do not use any signal number less than SIGSEGV, see 4355769 */
94static int SR_signum = SIGUSR2;
95sigset_t SR_sigset;
96
97/* Used to protect dlsym() calls */
98static pthread_mutex_t dl_mutex;
99
100////////////////////////////////////////////////////////////////////////////////
101// utility functions
102
103static int SR_initialize();
104static int SR_finalize();
105
106julong os::available_memory() {
107  return Linux::available_memory();
108}
109
110julong os::Linux::available_memory() {
111  // values in struct sysinfo are "unsigned long"
112  struct sysinfo si;
113  sysinfo(&si);
114
115  return (julong)si.freeram * si.mem_unit;
116}
117
118julong os::physical_memory() {
119  return Linux::physical_memory();
120}
121
122julong os::allocatable_physical_memory(julong size) {
123#ifdef _LP64
124  return size;
125#else
126  julong result = MIN2(size, (julong)3800*M);
127   if (!is_allocatable(result)) {
128     // See comments under solaris for alignment considerations
129     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
130     result =  MIN2(size, reasonable_size);
131   }
132   return result;
133#endif // _LP64
134}
135
136////////////////////////////////////////////////////////////////////////////////
137// environment support
138
139bool os::getenv(const char* name, char* buf, int len) {
140  const char* val = ::getenv(name);
141  if (val != NULL && strlen(val) < (size_t)len) {
142    strcpy(buf, val);
143    return true;
144  }
145  if (len > 0) buf[0] = 0;  // return a null string
146  return false;
147}
148
149
150// Return true if user is running as root.
151
152bool os::have_special_privileges() {
153  static bool init = false;
154  static bool privileges = false;
155  if (!init) {
156    privileges = (getuid() != geteuid()) || (getgid() != getegid());
157    init = true;
158  }
159  return privileges;
160}
161
162
163#ifndef SYS_gettid
164// i386: 224, ia64: 1105, amd64: 186, sparc 143
165#ifdef __ia64__
166#define SYS_gettid 1105
167#elif __i386__
168#define SYS_gettid 224
169#elif __amd64__
170#define SYS_gettid 186
171#elif __sparc__
172#define SYS_gettid 143
173#else
174#error define gettid for the arch
175#endif
176#endif
177
178// Cpu architecture string
179#if   defined(IA64)
180static char cpu_arch[] = "ia64";
181#elif defined(IA32)
182static char cpu_arch[] = "i386";
183#elif defined(AMD64)
184static char cpu_arch[] = "amd64";
185#elif defined(SPARC)
186#  ifdef _LP64
187static char cpu_arch[] = "sparcv9";
188#  else
189static char cpu_arch[] = "sparc";
190#  endif
191#else
192#error Add appropriate cpu_arch setting
193#endif
194
195
196// pid_t gettid()
197//
198// Returns the kernel thread id of the currently running thread. Kernel
199// thread id is used to access /proc.
200//
201// (Note that getpid() on LinuxThreads returns kernel thread id too; but
202// on NPTL, it returns the same pid for all threads, as required by POSIX.)
203//
204pid_t os::Linux::gettid() {
205  int rslt = syscall(SYS_gettid);
206  if (rslt == -1) {
207     // old kernel, no NPTL support
208     return getpid();
209  } else {
210     return (pid_t)rslt;
211  }
212}
213
214// Most versions of linux have a bug where the number of processors are
215// determined by looking at the /proc file system.  In a chroot environment,
216// the system call returns 1.  This causes the VM to act as if it is
217// a single processor and elide locking (see is_MP() call).
218static bool unsafe_chroot_detected = false;
219static const char *unstable_chroot_error = "/proc file system not found.\n"
220                     "Java may be unstable running multithreaded in a chroot "
221                     "environment on Linux when /proc filesystem is not mounted.";
222
223void os::Linux::initialize_system_info() {
224  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
225  if (_processor_count == 1) {
226    pid_t pid = os::Linux::gettid();
227    char fname[32];
228    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
229    FILE *fp = fopen(fname, "r");
230    if (fp == NULL) {
231      unsafe_chroot_detected = true;
232    } else {
233      fclose(fp);
234    }
235  }
236  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
237  assert(_processor_count > 0, "linux error");
238}
239
240void os::init_system_properties_values() {
241//  char arch[12];
242//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
243
244  // The next steps are taken in the product version:
245  //
246  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
247  // This library should be located at:
248  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
249  //
250  // If "/jre/lib/" appears at the right place in the path, then we
251  // assume libjvm[_g].so is installed in a JDK and we use this path.
252  //
253  // Otherwise exit with message: "Could not create the Java virtual machine."
254  //
255  // The following extra steps are taken in the debugging version:
256  //
257  // If "/jre/lib/" does NOT appear at the right place in the path
258  // instead of exit check for $JAVA_HOME environment variable.
259  //
260  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
261  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
262  // it looks like libjvm[_g].so is installed there
263  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
264  //
265  // Otherwise exit.
266  //
267  // Important note: if the location of libjvm.so changes this
268  // code needs to be changed accordingly.
269
270  // The next few definitions allow the code to be verbatim:
271#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
272#define getenv(n) ::getenv(n)
273
274/*
275 * See ld(1):
276 *      The linker uses the following search paths to locate required
277 *      shared libraries:
278 *        1: ...
279 *        ...
280 *        7: The default directories, normally /lib and /usr/lib.
281 */
282#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
283#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
284#else
285#define DEFAULT_LIBPATH "/lib:/usr/lib"
286#endif
287
288#define EXTENSIONS_DIR  "/lib/ext"
289#define ENDORSED_DIR    "/lib/endorsed"
290#define REG_DIR         "/usr/java/packages"
291
292  {
293    /* sysclasspath, java_home, dll_dir */
294    {
295        char *home_path;
296        char *dll_path;
297        char *pslash;
298        char buf[MAXPATHLEN];
299        os::jvm_path(buf, sizeof(buf));
300
301        // Found the full path to libjvm.so.
302        // Now cut the path to <java_home>/jre if we can.
303        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
304        pslash = strrchr(buf, '/');
305        if (pslash != NULL)
306            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
307        dll_path = malloc(strlen(buf) + 1);
308        if (dll_path == NULL)
309            return;
310        strcpy(dll_path, buf);
311        Arguments::set_dll_dir(dll_path);
312
313        if (pslash != NULL) {
314            pslash = strrchr(buf, '/');
315            if (pslash != NULL) {
316                *pslash = '\0';       /* get rid of /<arch> */
317                pslash = strrchr(buf, '/');
318                if (pslash != NULL)
319                    *pslash = '\0';   /* get rid of /lib */
320            }
321        }
322
323        home_path = malloc(strlen(buf) + 1);
324        if (home_path == NULL)
325            return;
326        strcpy(home_path, buf);
327        Arguments::set_java_home(home_path);
328
329        if (!set_boot_path('/', ':'))
330            return;
331    }
332
333    /*
334     * Where to look for native libraries
335     *
336     * Note: Due to a legacy implementation, most of the library path
337     * is set in the launcher.  This was to accomodate linking restrictions
338     * on legacy Linux implementations (which are no longer supported).
339     * Eventually, all the library path setting will be done here.
340     *
341     * However, to prevent the proliferation of improperly built native
342     * libraries, the new path component /usr/java/packages is added here.
343     * Eventually, all the library path setting will be done here.
344     */
345    {
346        char *ld_library_path;
347
348        /*
349         * Construct the invariant part of ld_library_path. Note that the
350         * space for the colon and the trailing null are provided by the
351         * nulls included by the sizeof operator (so actually we allocate
352         * a byte more than necessary).
353         */
354        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
355            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
356        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
357
358        /*
359         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
360         * should always exist (until the legacy problem cited above is
361         * addressed).
362         */
363        char *v = getenv("LD_LIBRARY_PATH");
364        if (v != NULL) {
365            char *t = ld_library_path;
366            /* That's +1 for the colon and +1 for the trailing '\0' */
367            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
368            sprintf(ld_library_path, "%s:%s", v, t);
369        }
370        Arguments::set_library_path(ld_library_path);
371    }
372
373    /*
374     * Extensions directories.
375     *
376     * Note that the space for the colon and the trailing null are provided
377     * by the nulls included by the sizeof operator (so actually one byte more
378     * than necessary is allocated).
379     */
380    {
381        char *buf = malloc(strlen(Arguments::get_java_home()) +
382            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
383        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
384            Arguments::get_java_home());
385        Arguments::set_ext_dirs(buf);
386    }
387
388    /* Endorsed standards default directory. */
389    {
390        char * buf;
391        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
392        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
393        Arguments::set_endorsed_dirs(buf);
394    }
395  }
396
397#undef malloc
398#undef getenv
399#undef EXTENSIONS_DIR
400#undef ENDORSED_DIR
401
402  // Done
403  return;
404}
405
406////////////////////////////////////////////////////////////////////////////////
407// breakpoint support
408
409void os::breakpoint() {
410  BREAKPOINT;
411}
412
413extern "C" void breakpoint() {
414  // use debugger to set breakpoint here
415}
416
417////////////////////////////////////////////////////////////////////////////////
418// signal support
419
420debug_only(static bool signal_sets_initialized = false);
421static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
422
423bool os::Linux::is_sig_ignored(int sig) {
424      struct sigaction oact;
425      sigaction(sig, (struct sigaction*)NULL, &oact);
426      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
427                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
428      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
429           return true;
430      else
431           return false;
432}
433
434void os::Linux::signal_sets_init() {
435  // Should also have an assertion stating we are still single-threaded.
436  assert(!signal_sets_initialized, "Already initialized");
437  // Fill in signals that are necessarily unblocked for all threads in
438  // the VM. Currently, we unblock the following signals:
439  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
440  //                         by -Xrs (=ReduceSignalUsage));
441  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
442  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
443  // the dispositions or masks wrt these signals.
444  // Programs embedding the VM that want to use the above signals for their
445  // own purposes must, at this time, use the "-Xrs" option to prevent
446  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
447  // (See bug 4345157, and other related bugs).
448  // In reality, though, unblocking these signals is really a nop, since
449  // these signals are not blocked by default.
450  sigemptyset(&unblocked_sigs);
451  sigemptyset(&allowdebug_blocked_sigs);
452  sigaddset(&unblocked_sigs, SIGILL);
453  sigaddset(&unblocked_sigs, SIGSEGV);
454  sigaddset(&unblocked_sigs, SIGBUS);
455  sigaddset(&unblocked_sigs, SIGFPE);
456  sigaddset(&unblocked_sigs, SR_signum);
457
458  if (!ReduceSignalUsage) {
459   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
460      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
461      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
462   }
463   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
464      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
465      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
466   }
467   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
468      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
469      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
470   }
471  }
472  // Fill in signals that are blocked by all but the VM thread.
473  sigemptyset(&vm_sigs);
474  if (!ReduceSignalUsage)
475    sigaddset(&vm_sigs, BREAK_SIGNAL);
476  debug_only(signal_sets_initialized = true);
477
478}
479
480// These are signals that are unblocked while a thread is running Java.
481// (For some reason, they get blocked by default.)
482sigset_t* os::Linux::unblocked_signals() {
483  assert(signal_sets_initialized, "Not initialized");
484  return &unblocked_sigs;
485}
486
487// These are the signals that are blocked while a (non-VM) thread is
488// running Java. Only the VM thread handles these signals.
489sigset_t* os::Linux::vm_signals() {
490  assert(signal_sets_initialized, "Not initialized");
491  return &vm_sigs;
492}
493
494// These are signals that are blocked during cond_wait to allow debugger in
495sigset_t* os::Linux::allowdebug_blocked_signals() {
496  assert(signal_sets_initialized, "Not initialized");
497  return &allowdebug_blocked_sigs;
498}
499
500void os::Linux::hotspot_sigmask(Thread* thread) {
501
502  //Save caller's signal mask before setting VM signal mask
503  sigset_t caller_sigmask;
504  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
505
506  OSThread* osthread = thread->osthread();
507  osthread->set_caller_sigmask(caller_sigmask);
508
509  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
510
511  if (!ReduceSignalUsage) {
512    if (thread->is_VM_thread()) {
513      // Only the VM thread handles BREAK_SIGNAL ...
514      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
515    } else {
516      // ... all other threads block BREAK_SIGNAL
517      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
518    }
519  }
520}
521
522//////////////////////////////////////////////////////////////////////////////
523// detecting pthread library
524
525void os::Linux::libpthread_init() {
526  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
527  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
528  // generic name for earlier versions.
529  // Define macros here so we can build HotSpot on old systems.
530# ifndef _CS_GNU_LIBC_VERSION
531# define _CS_GNU_LIBC_VERSION 2
532# endif
533# ifndef _CS_GNU_LIBPTHREAD_VERSION
534# define _CS_GNU_LIBPTHREAD_VERSION 3
535# endif
536
537  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
538  if (n > 0) {
539     char *str = (char *)malloc(n);
540     confstr(_CS_GNU_LIBC_VERSION, str, n);
541     os::Linux::set_glibc_version(str);
542  } else {
543     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
544     static char _gnu_libc_version[32];
545     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
546              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
547     os::Linux::set_glibc_version(_gnu_libc_version);
548  }
549
550  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
551  if (n > 0) {
552     char *str = (char *)malloc(n);
553     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
554     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
555     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
556     // is the case. LinuxThreads has a hard limit on max number of threads.
557     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
558     // On the other hand, NPTL does not have such a limit, sysconf()
559     // will return -1 and errno is not changed. Check if it is really NPTL.
560     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
561         strstr(str, "NPTL") &&
562         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
563       free(str);
564       os::Linux::set_libpthread_version("linuxthreads");
565     } else {
566       os::Linux::set_libpthread_version(str);
567     }
568  } else {
569    // glibc before 2.3.2 only has LinuxThreads.
570    os::Linux::set_libpthread_version("linuxthreads");
571  }
572
573  if (strstr(libpthread_version(), "NPTL")) {
574     os::Linux::set_is_NPTL();
575  } else {
576     os::Linux::set_is_LinuxThreads();
577  }
578
579  // LinuxThreads have two flavors: floating-stack mode, which allows variable
580  // stack size; and fixed-stack mode. NPTL is always floating-stack.
581  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
582     os::Linux::set_is_floating_stack();
583  }
584}
585
586/////////////////////////////////////////////////////////////////////////////
587// thread stack
588
589// Force Linux kernel to expand current thread stack. If "bottom" is close
590// to the stack guard, caller should block all signals.
591//
592// MAP_GROWSDOWN:
593//   A special mmap() flag that is used to implement thread stacks. It tells
594//   kernel that the memory region should extend downwards when needed. This
595//   allows early versions of LinuxThreads to only mmap the first few pages
596//   when creating a new thread. Linux kernel will automatically expand thread
597//   stack as needed (on page faults).
598//
599//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
600//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
601//   region, it's hard to tell if the fault is due to a legitimate stack
602//   access or because of reading/writing non-exist memory (e.g. buffer
603//   overrun). As a rule, if the fault happens below current stack pointer,
604//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
605//   application (see Linux kernel fault.c).
606//
607//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
608//   stack overflow detection.
609//
610//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
611//   not use this flag. However, the stack of initial thread is not created
612//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
613//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
614//   and then attach the thread to JVM.
615//
616// To get around the problem and allow stack banging on Linux, we need to
617// manually expand thread stack after receiving the SIGSEGV.
618//
619// There are two ways to expand thread stack to address "bottom", we used
620// both of them in JVM before 1.5:
621//   1. adjust stack pointer first so that it is below "bottom", and then
622//      touch "bottom"
623//   2. mmap() the page in question
624//
625// Now alternate signal stack is gone, it's harder to use 2. For instance,
626// if current sp is already near the lower end of page 101, and we need to
627// call mmap() to map page 100, it is possible that part of the mmap() frame
628// will be placed in page 100. When page 100 is mapped, it is zero-filled.
629// That will destroy the mmap() frame and cause VM to crash.
630//
631// The following code works by adjusting sp first, then accessing the "bottom"
632// page to force a page fault. Linux kernel will then automatically expand the
633// stack mapping.
634//
635// _expand_stack_to() assumes its frame size is less than page size, which
636// should always be true if the function is not inlined.
637
638#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
639#define NOINLINE
640#else
641#define NOINLINE __attribute__ ((noinline))
642#endif
643
644static void _expand_stack_to(address bottom) NOINLINE;
645
646static void _expand_stack_to(address bottom) {
647  address sp;
648  size_t size;
649  volatile char *p;
650
651  // Adjust bottom to point to the largest address within the same page, it
652  // gives us a one-page buffer if alloca() allocates slightly more memory.
653  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
654  bottom += os::Linux::page_size() - 1;
655
656  // sp might be slightly above current stack pointer; if that's the case, we
657  // will alloca() a little more space than necessary, which is OK. Don't use
658  // os::current_stack_pointer(), as its result can be slightly below current
659  // stack pointer, causing us to not alloca enough to reach "bottom".
660  sp = (address)&sp;
661
662  if (sp > bottom) {
663    size = sp - bottom;
664    p = (volatile char *)alloca(size);
665    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
666    p[0] = '\0';
667  }
668}
669
670bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
671  assert(t!=NULL, "just checking");
672  assert(t->osthread()->expanding_stack(), "expand should be set");
673  assert(t->stack_base() != NULL, "stack_base was not initialized");
674
675  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
676    sigset_t mask_all, old_sigset;
677    sigfillset(&mask_all);
678    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
679    _expand_stack_to(addr);
680    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
681    return true;
682  }
683  return false;
684}
685
686//////////////////////////////////////////////////////////////////////////////
687// create new thread
688
689static address highest_vm_reserved_address();
690
691// check if it's safe to start a new thread
692static bool _thread_safety_check(Thread* thread) {
693  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
694    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
695    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
696    //   allocated (MAP_FIXED) from high address space. Every thread stack
697    //   occupies a fixed size slot (usually 2Mbytes, but user can change
698    //   it to other values if they rebuild LinuxThreads).
699    //
700    // Problem with MAP_FIXED is that mmap() can still succeed even part of
701    // the memory region has already been mmap'ed. That means if we have too
702    // many threads and/or very large heap, eventually thread stack will
703    // collide with heap.
704    //
705    // Here we try to prevent heap/stack collision by comparing current
706    // stack bottom with the highest address that has been mmap'ed by JVM
707    // plus a safety margin for memory maps created by native code.
708    //
709    // This feature can be disabled by setting ThreadSafetyMargin to 0
710    //
711    if (ThreadSafetyMargin > 0) {
712      address stack_bottom = os::current_stack_base() - os::current_stack_size();
713
714      // not safe if our stack extends below the safety margin
715      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
716    } else {
717      return true;
718    }
719  } else {
720    // Floating stack LinuxThreads or NPTL:
721    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
722    //   there's not enough space left, pthread_create() will fail. If we come
723    //   here, that means enough space has been reserved for stack.
724    return true;
725  }
726}
727
728// Thread start routine for all newly created threads
729static void *java_start(Thread *thread) {
730  // Try to randomize the cache line index of hot stack frames.
731  // This helps when threads of the same stack traces evict each other's
732  // cache lines. The threads can be either from the same JVM instance, or
733  // from different JVM instances. The benefit is especially true for
734  // processors with hyperthreading technology.
735  static int counter = 0;
736  int pid = os::current_process_id();
737  alloca(((pid ^ counter++) & 7) * 128);
738
739  ThreadLocalStorage::set_thread(thread);
740
741  OSThread* osthread = thread->osthread();
742  Monitor* sync = osthread->startThread_lock();
743
744  // non floating stack LinuxThreads needs extra check, see above
745  if (!_thread_safety_check(thread)) {
746    // notify parent thread
747    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
748    osthread->set_state(ZOMBIE);
749    sync->notify_all();
750    return NULL;
751  }
752
753  // thread_id is kernel thread id (similar to Solaris LWP id)
754  osthread->set_thread_id(os::Linux::gettid());
755
756  if (UseNUMA) {
757    int lgrp_id = os::numa_get_group_id();
758    if (lgrp_id != -1) {
759      thread->set_lgrp_id(lgrp_id);
760    }
761  }
762  // initialize signal mask for this thread
763  os::Linux::hotspot_sigmask(thread);
764
765  // initialize floating point control register
766  os::Linux::init_thread_fpu_state();
767
768  // handshaking with parent thread
769  {
770    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
771
772    // notify parent thread
773    osthread->set_state(INITIALIZED);
774    sync->notify_all();
775
776    // wait until os::start_thread()
777    while (osthread->get_state() == INITIALIZED) {
778      sync->wait(Mutex::_no_safepoint_check_flag);
779    }
780  }
781
782  // call one more level start routine
783  thread->run();
784
785  return 0;
786}
787
788bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
789  assert(thread->osthread() == NULL, "caller responsible");
790
791  // Allocate the OSThread object
792  OSThread* osthread = new OSThread(NULL, NULL);
793  if (osthread == NULL) {
794    return false;
795  }
796
797  // set the correct thread state
798  osthread->set_thread_type(thr_type);
799
800  // Initial state is ALLOCATED but not INITIALIZED
801  osthread->set_state(ALLOCATED);
802
803  thread->set_osthread(osthread);
804
805  // init thread attributes
806  pthread_attr_t attr;
807  pthread_attr_init(&attr);
808  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
809
810  // stack size
811  if (os::Linux::supports_variable_stack_size()) {
812    // calculate stack size if it's not specified by caller
813    if (stack_size == 0) {
814      stack_size = os::Linux::default_stack_size(thr_type);
815
816      switch (thr_type) {
817      case os::java_thread:
818        // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
819        if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
820        break;
821      case os::compiler_thread:
822        if (CompilerThreadStackSize > 0) {
823          stack_size = (size_t)(CompilerThreadStackSize * K);
824          break;
825        } // else fall through:
826          // use VMThreadStackSize if CompilerThreadStackSize is not defined
827      case os::vm_thread:
828      case os::pgc_thread:
829      case os::cgc_thread:
830      case os::watcher_thread:
831        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
832        break;
833      }
834    }
835
836    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
837    pthread_attr_setstacksize(&attr, stack_size);
838  } else {
839    // let pthread_create() pick the default value.
840  }
841
842  // glibc guard page
843  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
844
845  ThreadState state;
846
847  {
848    // Serialize thread creation if we are running with fixed stack LinuxThreads
849    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
850    if (lock) {
851      os::Linux::createThread_lock()->lock_without_safepoint_check();
852    }
853
854    pthread_t tid;
855    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
856
857    pthread_attr_destroy(&attr);
858
859    if (ret != 0) {
860      if (PrintMiscellaneous && (Verbose || WizardMode)) {
861        perror("pthread_create()");
862      }
863      // Need to clean up stuff we've allocated so far
864      thread->set_osthread(NULL);
865      delete osthread;
866      if (lock) os::Linux::createThread_lock()->unlock();
867      return false;
868    }
869
870    // Store pthread info into the OSThread
871    osthread->set_pthread_id(tid);
872
873    // Wait until child thread is either initialized or aborted
874    {
875      Monitor* sync_with_child = osthread->startThread_lock();
876      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
877      while ((state = osthread->get_state()) == ALLOCATED) {
878        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
879      }
880    }
881
882    if (lock) {
883      os::Linux::createThread_lock()->unlock();
884    }
885  }
886
887  // Aborted due to thread limit being reached
888  if (state == ZOMBIE) {
889      thread->set_osthread(NULL);
890      delete osthread;
891      return false;
892  }
893
894  // The thread is returned suspended (in state INITIALIZED),
895  // and is started higher up in the call chain
896  assert(state == INITIALIZED, "race condition");
897  return true;
898}
899
900/////////////////////////////////////////////////////////////////////////////
901// attach existing thread
902
903// bootstrap the main thread
904bool os::create_main_thread(JavaThread* thread) {
905  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
906  return create_attached_thread(thread);
907}
908
909bool os::create_attached_thread(JavaThread* thread) {
910#ifdef ASSERT
911    thread->verify_not_published();
912#endif
913
914  // Allocate the OSThread object
915  OSThread* osthread = new OSThread(NULL, NULL);
916
917  if (osthread == NULL) {
918    return false;
919  }
920
921  // Store pthread info into the OSThread
922  osthread->set_thread_id(os::Linux::gettid());
923  osthread->set_pthread_id(::pthread_self());
924
925  // initialize floating point control register
926  os::Linux::init_thread_fpu_state();
927
928  // Initial thread state is RUNNABLE
929  osthread->set_state(RUNNABLE);
930
931  thread->set_osthread(osthread);
932
933  if (UseNUMA) {
934    int lgrp_id = os::numa_get_group_id();
935    if (lgrp_id != -1) {
936      thread->set_lgrp_id(lgrp_id);
937    }
938  }
939
940  if (os::Linux::is_initial_thread()) {
941    // If current thread is initial thread, its stack is mapped on demand,
942    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
943    // the entire stack region to avoid SEGV in stack banging.
944    // It is also useful to get around the heap-stack-gap problem on SuSE
945    // kernel (see 4821821 for details). We first expand stack to the top
946    // of yellow zone, then enable stack yellow zone (order is significant,
947    // enabling yellow zone first will crash JVM on SuSE Linux), so there
948    // is no gap between the last two virtual memory regions.
949
950    JavaThread *jt = (JavaThread *)thread;
951    address addr = jt->stack_yellow_zone_base();
952    assert(addr != NULL, "initialization problem?");
953    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
954
955    osthread->set_expanding_stack();
956    os::Linux::manually_expand_stack(jt, addr);
957    osthread->clear_expanding_stack();
958  }
959
960  // initialize signal mask for this thread
961  // and save the caller's signal mask
962  os::Linux::hotspot_sigmask(thread);
963
964  return true;
965}
966
967void os::pd_start_thread(Thread* thread) {
968  OSThread * osthread = thread->osthread();
969  assert(osthread->get_state() != INITIALIZED, "just checking");
970  Monitor* sync_with_child = osthread->startThread_lock();
971  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
972  sync_with_child->notify();
973}
974
975// Free Linux resources related to the OSThread
976void os::free_thread(OSThread* osthread) {
977  assert(osthread != NULL, "osthread not set");
978
979  if (Thread::current()->osthread() == osthread) {
980    // Restore caller's signal mask
981    sigset_t sigmask = osthread->caller_sigmask();
982    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
983   }
984
985  delete osthread;
986}
987
988//////////////////////////////////////////////////////////////////////////////
989// thread local storage
990
991int os::allocate_thread_local_storage() {
992  pthread_key_t key;
993  int rslt = pthread_key_create(&key, NULL);
994  assert(rslt == 0, "cannot allocate thread local storage");
995  return (int)key;
996}
997
998// Note: This is currently not used by VM, as we don't destroy TLS key
999// on VM exit.
1000void os::free_thread_local_storage(int index) {
1001  int rslt = pthread_key_delete((pthread_key_t)index);
1002  assert(rslt == 0, "invalid index");
1003}
1004
1005void os::thread_local_storage_at_put(int index, void* value) {
1006  int rslt = pthread_setspecific((pthread_key_t)index, value);
1007  assert(rslt == 0, "pthread_setspecific failed");
1008}
1009
1010extern "C" Thread* get_thread() {
1011  return ThreadLocalStorage::thread();
1012}
1013
1014//////////////////////////////////////////////////////////////////////////////
1015// initial thread
1016
1017// Check if current thread is the initial thread, similar to Solaris thr_main.
1018bool os::Linux::is_initial_thread(void) {
1019  char dummy;
1020  // If called before init complete, thread stack bottom will be null.
1021  // Can be called if fatal error occurs before initialization.
1022  if (initial_thread_stack_bottom() == NULL) return false;
1023  assert(initial_thread_stack_bottom() != NULL &&
1024         initial_thread_stack_size()   != 0,
1025         "os::init did not locate initial thread's stack region");
1026  if ((address)&dummy >= initial_thread_stack_bottom() &&
1027      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1028       return true;
1029  else return false;
1030}
1031
1032// Find the virtual memory area that contains addr
1033static bool find_vma(address addr, address* vma_low, address* vma_high) {
1034  FILE *fp = fopen("/proc/self/maps", "r");
1035  if (fp) {
1036    address low, high;
1037    while (!feof(fp)) {
1038      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1039        if (low <= addr && addr < high) {
1040           if (vma_low)  *vma_low  = low;
1041           if (vma_high) *vma_high = high;
1042           fclose (fp);
1043           return true;
1044        }
1045      }
1046      for (;;) {
1047        int ch = fgetc(fp);
1048        if (ch == EOF || ch == (int)'\n') break;
1049      }
1050    }
1051    fclose(fp);
1052  }
1053  return false;
1054}
1055
1056// Locate initial thread stack. This special handling of initial thread stack
1057// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1058// bogus value for initial thread.
1059void os::Linux::capture_initial_stack(size_t max_size) {
1060  // stack size is the easy part, get it from RLIMIT_STACK
1061  size_t stack_size;
1062  struct rlimit rlim;
1063  getrlimit(RLIMIT_STACK, &rlim);
1064  stack_size = rlim.rlim_cur;
1065
1066  // 6308388: a bug in ld.so will relocate its own .data section to the
1067  //   lower end of primordial stack; reduce ulimit -s value a little bit
1068  //   so we won't install guard page on ld.so's data section.
1069  stack_size -= 2 * page_size();
1070
1071  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1072  //   7.1, in both cases we will get 2G in return value.
1073  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1074  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1075  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1076  //   in case other parts in glibc still assumes 2M max stack size.
1077  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1078#ifndef IA64
1079  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1080#else
1081  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1082  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1083#endif
1084
1085  // Try to figure out where the stack base (top) is. This is harder.
1086  //
1087  // When an application is started, glibc saves the initial stack pointer in
1088  // a global variable "__libc_stack_end", which is then used by system
1089  // libraries. __libc_stack_end should be pretty close to stack top. The
1090  // variable is available since the very early days. However, because it is
1091  // a private interface, it could disappear in the future.
1092  //
1093  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1094  // to __libc_stack_end, it is very close to stack top, but isn't the real
1095  // stack top. Note that /proc may not exist if VM is running as a chroot
1096  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1097  // /proc/<pid>/stat could change in the future (though unlikely).
1098  //
1099  // We try __libc_stack_end first. If that doesn't work, look for
1100  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1101  // as a hint, which should work well in most cases.
1102
1103  uintptr_t stack_start;
1104
1105  // try __libc_stack_end first
1106  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1107  if (p && *p) {
1108    stack_start = *p;
1109  } else {
1110    // see if we can get the start_stack field from /proc/self/stat
1111    FILE *fp;
1112    int pid;
1113    char state;
1114    int ppid;
1115    int pgrp;
1116    int session;
1117    int nr;
1118    int tpgrp;
1119    unsigned long flags;
1120    unsigned long minflt;
1121    unsigned long cminflt;
1122    unsigned long majflt;
1123    unsigned long cmajflt;
1124    unsigned long utime;
1125    unsigned long stime;
1126    long cutime;
1127    long cstime;
1128    long prio;
1129    long nice;
1130    long junk;
1131    long it_real;
1132    uintptr_t start;
1133    uintptr_t vsize;
1134    uintptr_t rss;
1135    unsigned long rsslim;
1136    uintptr_t scodes;
1137    uintptr_t ecode;
1138    int i;
1139
1140    // Figure what the primordial thread stack base is. Code is inspired
1141    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1142    // followed by command name surrounded by parentheses, state, etc.
1143    char stat[2048];
1144    int statlen;
1145
1146    fp = fopen("/proc/self/stat", "r");
1147    if (fp) {
1148      statlen = fread(stat, 1, 2047, fp);
1149      stat[statlen] = '\0';
1150      fclose(fp);
1151
1152      // Skip pid and the command string. Note that we could be dealing with
1153      // weird command names, e.g. user could decide to rename java launcher
1154      // to "java 1.4.2 :)", then the stat file would look like
1155      //                1234 (java 1.4.2 :)) R ... ...
1156      // We don't really need to know the command string, just find the last
1157      // occurrence of ")" and then start parsing from there. See bug 4726580.
1158      char * s = strrchr(stat, ')');
1159
1160      i = 0;
1161      if (s) {
1162        // Skip blank chars
1163        do s++; while (isspace(*s));
1164
1165        /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
1166        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
1167        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld "
1168                   UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT
1169                   " %lu "
1170                   UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT,
1171             &state,          /* 3  %c  */
1172             &ppid,           /* 4  %d  */
1173             &pgrp,           /* 5  %d  */
1174             &session,        /* 6  %d  */
1175             &nr,             /* 7  %d  */
1176             &tpgrp,          /* 8  %d  */
1177             &flags,          /* 9  %lu  */
1178             &minflt,         /* 10 %lu  */
1179             &cminflt,        /* 11 %lu  */
1180             &majflt,         /* 12 %lu  */
1181             &cmajflt,        /* 13 %lu  */
1182             &utime,          /* 14 %lu  */
1183             &stime,          /* 15 %lu  */
1184             &cutime,         /* 16 %ld  */
1185             &cstime,         /* 17 %ld  */
1186             &prio,           /* 18 %ld  */
1187             &nice,           /* 19 %ld  */
1188             &junk,           /* 20 %ld  */
1189             &it_real,        /* 21 %ld  */
1190             &start,          /* 22 UINTX_FORMAT  */
1191             &vsize,          /* 23 UINTX_FORMAT  */
1192             &rss,            /* 24 UINTX_FORMAT  */
1193             &rsslim,         /* 25 %lu  */
1194             &scodes,         /* 26 UINTX_FORMAT  */
1195             &ecode,          /* 27 UINTX_FORMAT  */
1196             &stack_start);   /* 28 UINTX_FORMAT  */
1197      }
1198
1199      if (i != 28 - 2) {
1200         assert(false, "Bad conversion from /proc/self/stat");
1201         // product mode - assume we are the initial thread, good luck in the
1202         // embedded case.
1203         warning("Can't detect initial thread stack location - bad conversion");
1204         stack_start = (uintptr_t) &rlim;
1205      }
1206    } else {
1207      // For some reason we can't open /proc/self/stat (for example, running on
1208      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1209      // most cases, so don't abort:
1210      warning("Can't detect initial thread stack location - no /proc/self/stat");
1211      stack_start = (uintptr_t) &rlim;
1212    }
1213  }
1214
1215  // Now we have a pointer (stack_start) very close to the stack top, the
1216  // next thing to do is to figure out the exact location of stack top. We
1217  // can find out the virtual memory area that contains stack_start by
1218  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1219  // and its upper limit is the real stack top. (again, this would fail if
1220  // running inside chroot, because /proc may not exist.)
1221
1222  uintptr_t stack_top;
1223  address low, high;
1224  if (find_vma((address)stack_start, &low, &high)) {
1225    // success, "high" is the true stack top. (ignore "low", because initial
1226    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1227    stack_top = (uintptr_t)high;
1228  } else {
1229    // failed, likely because /proc/self/maps does not exist
1230    warning("Can't detect initial thread stack location - find_vma failed");
1231    // best effort: stack_start is normally within a few pages below the real
1232    // stack top, use it as stack top, and reduce stack size so we won't put
1233    // guard page outside stack.
1234    stack_top = stack_start;
1235    stack_size -= 16 * page_size();
1236  }
1237
1238  // stack_top could be partially down the page so align it
1239  stack_top = align_size_up(stack_top, page_size());
1240
1241  if (max_size && stack_size > max_size) {
1242     _initial_thread_stack_size = max_size;
1243  } else {
1244     _initial_thread_stack_size = stack_size;
1245  }
1246
1247  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1248  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1249}
1250
1251////////////////////////////////////////////////////////////////////////////////
1252// time support
1253
1254// Time since start-up in seconds to a fine granularity.
1255// Used by VMSelfDestructTimer and the MemProfiler.
1256double os::elapsedTime() {
1257
1258  return (double)(os::elapsed_counter()) * 0.000001;
1259}
1260
1261jlong os::elapsed_counter() {
1262  timeval time;
1263  int status = gettimeofday(&time, NULL);
1264  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1265}
1266
1267jlong os::elapsed_frequency() {
1268  return (1000 * 1000);
1269}
1270
1271// For now, we say that linux does not support vtime.  I have no idea
1272// whether it can actually be made to (DLD, 9/13/05).
1273
1274bool os::supports_vtime() { return false; }
1275bool os::enable_vtime()   { return false; }
1276bool os::vtime_enabled()  { return false; }
1277double os::elapsedVTime() {
1278  // better than nothing, but not much
1279  return elapsedTime();
1280}
1281
1282jlong os::javaTimeMillis() {
1283  timeval time;
1284  int status = gettimeofday(&time, NULL);
1285  assert(status != -1, "linux error");
1286  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1287}
1288
1289#ifndef CLOCK_MONOTONIC
1290#define CLOCK_MONOTONIC (1)
1291#endif
1292
1293void os::Linux::clock_init() {
1294  // we do dlopen's in this particular order due to bug in linux
1295  // dynamical loader (see 6348968) leading to crash on exit
1296  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1297  if (handle == NULL) {
1298    handle = dlopen("librt.so", RTLD_LAZY);
1299  }
1300
1301  if (handle) {
1302    int (*clock_getres_func)(clockid_t, struct timespec*) =
1303           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1304    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1305           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1306    if (clock_getres_func && clock_gettime_func) {
1307      // See if monotonic clock is supported by the kernel. Note that some
1308      // early implementations simply return kernel jiffies (updated every
1309      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1310      // for nano time (though the monotonic property is still nice to have).
1311      // It's fixed in newer kernels, however clock_getres() still returns
1312      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1313      // resolution for now. Hopefully as people move to new kernels, this
1314      // won't be a problem.
1315      struct timespec res;
1316      struct timespec tp;
1317      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1318          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1319        // yes, monotonic clock is supported
1320        _clock_gettime = clock_gettime_func;
1321      } else {
1322        // close librt if there is no monotonic clock
1323        dlclose(handle);
1324      }
1325    }
1326  }
1327}
1328
1329#ifndef SYS_clock_getres
1330
1331#if defined(IA32) || defined(AMD64)
1332#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1333#else
1334#error Value of SYS_clock_getres not known on this platform
1335#endif
1336
1337#endif
1338
1339#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1340
1341void os::Linux::fast_thread_clock_init() {
1342  if (!UseLinuxPosixThreadCPUClocks) {
1343    return;
1344  }
1345  clockid_t clockid;
1346  struct timespec tp;
1347  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1348      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1349
1350  // Switch to using fast clocks for thread cpu time if
1351  // the sys_clock_getres() returns 0 error code.
1352  // Note, that some kernels may support the current thread
1353  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1354  // returned by the pthread_getcpuclockid().
1355  // If the fast Posix clocks are supported then the sys_clock_getres()
1356  // must return at least tp.tv_sec == 0 which means a resolution
1357  // better than 1 sec. This is extra check for reliability.
1358
1359  if(pthread_getcpuclockid_func &&
1360     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1361     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1362
1363    _supports_fast_thread_cpu_time = true;
1364    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1365  }
1366}
1367
1368jlong os::javaTimeNanos() {
1369  if (Linux::supports_monotonic_clock()) {
1370    struct timespec tp;
1371    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1372    assert(status == 0, "gettime error");
1373    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1374    return result;
1375  } else {
1376    timeval time;
1377    int status = gettimeofday(&time, NULL);
1378    assert(status != -1, "linux error");
1379    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1380    return 1000 * usecs;
1381  }
1382}
1383
1384void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1385  if (Linux::supports_monotonic_clock()) {
1386    info_ptr->max_value = ALL_64_BITS;
1387
1388    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1389    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1390    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1391  } else {
1392    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1393    info_ptr->max_value = ALL_64_BITS;
1394
1395    // gettimeofday is a real time clock so it skips
1396    info_ptr->may_skip_backward = true;
1397    info_ptr->may_skip_forward = true;
1398  }
1399
1400  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1401}
1402
1403// Return the real, user, and system times in seconds from an
1404// arbitrary fixed point in the past.
1405bool os::getTimesSecs(double* process_real_time,
1406                      double* process_user_time,
1407                      double* process_system_time) {
1408  struct tms ticks;
1409  clock_t real_ticks = times(&ticks);
1410
1411  if (real_ticks == (clock_t) (-1)) {
1412    return false;
1413  } else {
1414    double ticks_per_second = (double) clock_tics_per_sec;
1415    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1416    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1417    *process_real_time = ((double) real_ticks) / ticks_per_second;
1418
1419    return true;
1420  }
1421}
1422
1423
1424char * os::local_time_string(char *buf, size_t buflen) {
1425  struct tm t;
1426  time_t long_time;
1427  time(&long_time);
1428  localtime_r(&long_time, &t);
1429  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1430               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1431               t.tm_hour, t.tm_min, t.tm_sec);
1432  return buf;
1433}
1434
1435struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1436  return localtime_r(clock, res);
1437}
1438
1439////////////////////////////////////////////////////////////////////////////////
1440// runtime exit support
1441
1442// Note: os::shutdown() might be called very early during initialization, or
1443// called from signal handler. Before adding something to os::shutdown(), make
1444// sure it is async-safe and can handle partially initialized VM.
1445void os::shutdown() {
1446
1447  // allow PerfMemory to attempt cleanup of any persistent resources
1448  perfMemory_exit();
1449
1450  // needs to remove object in file system
1451  AttachListener::abort();
1452
1453  // flush buffered output, finish log files
1454  ostream_abort();
1455
1456  // Check for abort hook
1457  abort_hook_t abort_hook = Arguments::abort_hook();
1458  if (abort_hook != NULL) {
1459    abort_hook();
1460  }
1461
1462}
1463
1464// Note: os::abort() might be called very early during initialization, or
1465// called from signal handler. Before adding something to os::abort(), make
1466// sure it is async-safe and can handle partially initialized VM.
1467void os::abort(bool dump_core) {
1468  os::shutdown();
1469  if (dump_core) {
1470#ifndef PRODUCT
1471    fdStream out(defaultStream::output_fd());
1472    out.print_raw("Current thread is ");
1473    char buf[16];
1474    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1475    out.print_raw_cr(buf);
1476    out.print_raw_cr("Dumping core ...");
1477#endif
1478    ::abort(); // dump core
1479  }
1480
1481  ::exit(1);
1482}
1483
1484// Die immediately, no exit hook, no abort hook, no cleanup.
1485void os::die() {
1486  // _exit() on LinuxThreads only kills current thread
1487  ::abort();
1488}
1489
1490// unused on linux for now.
1491void os::set_error_file(const char *logfile) {}
1492
1493intx os::current_thread_id() { return (intx)pthread_self(); }
1494int os::current_process_id() {
1495
1496  // Under the old linux thread library, linux gives each thread
1497  // its own process id. Because of this each thread will return
1498  // a different pid if this method were to return the result
1499  // of getpid(2). Linux provides no api that returns the pid
1500  // of the launcher thread for the vm. This implementation
1501  // returns a unique pid, the pid of the launcher thread
1502  // that starts the vm 'process'.
1503
1504  // Under the NPTL, getpid() returns the same pid as the
1505  // launcher thread rather than a unique pid per thread.
1506  // Use gettid() if you want the old pre NPTL behaviour.
1507
1508  // if you are looking for the result of a call to getpid() that
1509  // returns a unique pid for the calling thread, then look at the
1510  // OSThread::thread_id() method in osThread_linux.hpp file
1511
1512  return (int)(_initial_pid ? _initial_pid : getpid());
1513}
1514
1515// DLL functions
1516
1517const char* os::dll_file_extension() { return ".so"; }
1518
1519const char* os::get_temp_directory() { return "/tmp/"; }
1520
1521static bool file_exists(const char* filename) {
1522  struct stat statbuf;
1523  if (filename == NULL || strlen(filename) == 0) {
1524    return false;
1525  }
1526  return os::stat(filename, &statbuf) == 0;
1527}
1528
1529void os::dll_build_name(char* buffer, size_t buflen,
1530                        const char* pname, const char* fname) {
1531  // Copied from libhpi
1532  const size_t pnamelen = pname ? strlen(pname) : 0;
1533
1534  // Quietly truncate on buffer overflow.  Should be an error.
1535  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1536      *buffer = '\0';
1537      return;
1538  }
1539
1540  if (pnamelen == 0) {
1541    snprintf(buffer, buflen, "lib%s.so", fname);
1542  } else if (strchr(pname, *os::path_separator()) != NULL) {
1543    int n;
1544    char** pelements = split_path(pname, &n);
1545    for (int i = 0 ; i < n ; i++) {
1546      // Really shouldn't be NULL, but check can't hurt
1547      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1548        continue; // skip the empty path values
1549      }
1550      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1551      if (file_exists(buffer)) {
1552        break;
1553      }
1554    }
1555    // release the storage
1556    for (int i = 0 ; i < n ; i++) {
1557      if (pelements[i] != NULL) {
1558        FREE_C_HEAP_ARRAY(char, pelements[i]);
1559      }
1560    }
1561    if (pelements != NULL) {
1562      FREE_C_HEAP_ARRAY(char*, pelements);
1563    }
1564  } else {
1565    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1566  }
1567}
1568
1569const char* os::get_current_directory(char *buf, int buflen) {
1570  return getcwd(buf, buflen);
1571}
1572
1573// check if addr is inside libjvm[_g].so
1574bool os::address_is_in_vm(address addr) {
1575  static address libjvm_base_addr;
1576  Dl_info dlinfo;
1577
1578  if (libjvm_base_addr == NULL) {
1579    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1580    libjvm_base_addr = (address)dlinfo.dli_fbase;
1581    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1582  }
1583
1584  if (dladdr((void *)addr, &dlinfo)) {
1585    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1586  }
1587
1588  return false;
1589}
1590
1591bool os::dll_address_to_function_name(address addr, char *buf,
1592                                      int buflen, int *offset) {
1593  Dl_info dlinfo;
1594
1595  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1596    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1597    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1598    return true;
1599  } else {
1600    if (buf) buf[0] = '\0';
1601    if (offset) *offset = -1;
1602    return false;
1603  }
1604}
1605
1606struct _address_to_library_name {
1607  address addr;          // input : memory address
1608  size_t  buflen;        //         size of fname
1609  char*   fname;         // output: library name
1610  address base;          //         library base addr
1611};
1612
1613static int address_to_library_name_callback(struct dl_phdr_info *info,
1614                                            size_t size, void *data) {
1615  int i;
1616  bool found = false;
1617  address libbase = NULL;
1618  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1619
1620  // iterate through all loadable segments
1621  for (i = 0; i < info->dlpi_phnum; i++) {
1622    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1623    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1624      // base address of a library is the lowest address of its loaded
1625      // segments.
1626      if (libbase == NULL || libbase > segbase) {
1627        libbase = segbase;
1628      }
1629      // see if 'addr' is within current segment
1630      if (segbase <= d->addr &&
1631          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1632        found = true;
1633      }
1634    }
1635  }
1636
1637  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1638  // so dll_address_to_library_name() can fall through to use dladdr() which
1639  // can figure out executable name from argv[0].
1640  if (found && info->dlpi_name && info->dlpi_name[0]) {
1641    d->base = libbase;
1642    if (d->fname) {
1643      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1644    }
1645    return 1;
1646  }
1647  return 0;
1648}
1649
1650bool os::dll_address_to_library_name(address addr, char* buf,
1651                                     int buflen, int* offset) {
1652  Dl_info dlinfo;
1653  struct _address_to_library_name data;
1654
1655  // There is a bug in old glibc dladdr() implementation that it could resolve
1656  // to wrong library name if the .so file has a base address != NULL. Here
1657  // we iterate through the program headers of all loaded libraries to find
1658  // out which library 'addr' really belongs to. This workaround can be
1659  // removed once the minimum requirement for glibc is moved to 2.3.x.
1660  data.addr = addr;
1661  data.fname = buf;
1662  data.buflen = buflen;
1663  data.base = NULL;
1664  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1665
1666  if (rslt) {
1667     // buf already contains library name
1668     if (offset) *offset = addr - data.base;
1669     return true;
1670  } else if (dladdr((void*)addr, &dlinfo)){
1671     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1672     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1673     return true;
1674  } else {
1675     if (buf) buf[0] = '\0';
1676     if (offset) *offset = -1;
1677     return false;
1678  }
1679}
1680
1681  // Loads .dll/.so and
1682  // in case of error it checks if .dll/.so was built for the
1683  // same architecture as Hotspot is running on
1684
1685void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1686{
1687  void * result= ::dlopen(filename, RTLD_LAZY);
1688  if (result != NULL) {
1689    // Successful loading
1690    return result;
1691  }
1692
1693  Elf32_Ehdr elf_head;
1694
1695  // Read system error message into ebuf
1696  // It may or may not be overwritten below
1697  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1698  ebuf[ebuflen-1]='\0';
1699  int diag_msg_max_length=ebuflen-strlen(ebuf);
1700  char* diag_msg_buf=ebuf+strlen(ebuf);
1701
1702  if (diag_msg_max_length==0) {
1703    // No more space in ebuf for additional diagnostics message
1704    return NULL;
1705  }
1706
1707
1708  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1709
1710  if (file_descriptor < 0) {
1711    // Can't open library, report dlerror() message
1712    return NULL;
1713  }
1714
1715  bool failed_to_read_elf_head=
1716    (sizeof(elf_head)!=
1717        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1718
1719  ::close(file_descriptor);
1720  if (failed_to_read_elf_head) {
1721    // file i/o error - report dlerror() msg
1722    return NULL;
1723  }
1724
1725  typedef struct {
1726    Elf32_Half  code;         // Actual value as defined in elf.h
1727    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1728    char        elf_class;    // 32 or 64 bit
1729    char        endianess;    // MSB or LSB
1730    char*       name;         // String representation
1731  } arch_t;
1732
1733  #ifndef EM_486
1734  #define EM_486          6               /* Intel 80486 */
1735  #endif
1736
1737  static const arch_t arch_array[]={
1738    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1739    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1740    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1741    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1742    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1743    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1744    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1745    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1746    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1747  };
1748
1749  #if  (defined IA32)
1750    static  Elf32_Half running_arch_code=EM_386;
1751  #elif   (defined AMD64)
1752    static  Elf32_Half running_arch_code=EM_X86_64;
1753  #elif  (defined IA64)
1754    static  Elf32_Half running_arch_code=EM_IA_64;
1755  #elif  (defined __sparc) && (defined _LP64)
1756    static  Elf32_Half running_arch_code=EM_SPARCV9;
1757  #elif  (defined __sparc) && (!defined _LP64)
1758    static  Elf32_Half running_arch_code=EM_SPARC;
1759  #elif  (defined __powerpc64__)
1760    static  Elf32_Half running_arch_code=EM_PPC64;
1761  #elif  (defined __powerpc__)
1762    static  Elf32_Half running_arch_code=EM_PPC;
1763  #else
1764    #error Method os::dll_load requires that one of following is defined:\
1765         IA32, AMD64, IA64, __sparc, __powerpc__
1766  #endif
1767
1768  // Identify compatability class for VM's architecture and library's architecture
1769  // Obtain string descriptions for architectures
1770
1771  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1772  int running_arch_index=-1;
1773
1774  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1775    if (running_arch_code == arch_array[i].code) {
1776      running_arch_index    = i;
1777    }
1778    if (lib_arch.code == arch_array[i].code) {
1779      lib_arch.compat_class = arch_array[i].compat_class;
1780      lib_arch.name         = arch_array[i].name;
1781    }
1782  }
1783
1784  assert(running_arch_index != -1,
1785    "Didn't find running architecture code (running_arch_code) in arch_array");
1786  if (running_arch_index == -1) {
1787    // Even though running architecture detection failed
1788    // we may still continue with reporting dlerror() message
1789    return NULL;
1790  }
1791
1792  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1793    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1794    return NULL;
1795  }
1796
1797  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1798    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1799    return NULL;
1800  }
1801
1802  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1803    if ( lib_arch.name!=NULL ) {
1804      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1805        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1806        lib_arch.name, arch_array[running_arch_index].name);
1807    } else {
1808      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1809      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1810        lib_arch.code,
1811        arch_array[running_arch_index].name);
1812    }
1813  }
1814
1815  return NULL;
1816}
1817
1818/*
1819 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1820 * chances are you might want to run the generated bits against glibc-2.0
1821 * libdl.so, so always use locking for any version of glibc.
1822 */
1823void* os::dll_lookup(void* handle, const char* name) {
1824  pthread_mutex_lock(&dl_mutex);
1825  void* res = dlsym(handle, name);
1826  pthread_mutex_unlock(&dl_mutex);
1827  return res;
1828}
1829
1830
1831bool _print_ascii_file(const char* filename, outputStream* st) {
1832  int fd = open(filename, O_RDONLY);
1833  if (fd == -1) {
1834     return false;
1835  }
1836
1837  char buf[32];
1838  int bytes;
1839  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1840    st->print_raw(buf, bytes);
1841  }
1842
1843  close(fd);
1844
1845  return true;
1846}
1847
1848void os::print_dll_info(outputStream *st) {
1849   st->print_cr("Dynamic libraries:");
1850
1851   char fname[32];
1852   pid_t pid = os::Linux::gettid();
1853
1854   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1855
1856   if (!_print_ascii_file(fname, st)) {
1857     st->print("Can not get library information for pid = %d\n", pid);
1858   }
1859}
1860
1861
1862void os::print_os_info(outputStream* st) {
1863  st->print("OS:");
1864
1865  // Try to identify popular distros.
1866  // Most Linux distributions have /etc/XXX-release file, which contains
1867  // the OS version string. Some have more than one /etc/XXX-release file
1868  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1869  // so the order is important.
1870  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1871      !_print_ascii_file("/etc/sun-release", st) &&
1872      !_print_ascii_file("/etc/redhat-release", st) &&
1873      !_print_ascii_file("/etc/SuSE-release", st) &&
1874      !_print_ascii_file("/etc/turbolinux-release", st) &&
1875      !_print_ascii_file("/etc/gentoo-release", st) &&
1876      !_print_ascii_file("/etc/debian_version", st)) {
1877      st->print("Linux");
1878  }
1879  st->cr();
1880
1881  // kernel
1882  st->print("uname:");
1883  struct utsname name;
1884  uname(&name);
1885  st->print(name.sysname); st->print(" ");
1886  st->print(name.release); st->print(" ");
1887  st->print(name.version); st->print(" ");
1888  st->print(name.machine);
1889  st->cr();
1890
1891  // Print warning if unsafe chroot environment detected
1892  if (unsafe_chroot_detected) {
1893    st->print("WARNING!! ");
1894    st->print_cr(unstable_chroot_error);
1895  }
1896
1897  // libc, pthread
1898  st->print("libc:");
1899  st->print(os::Linux::glibc_version()); st->print(" ");
1900  st->print(os::Linux::libpthread_version()); st->print(" ");
1901  if (os::Linux::is_LinuxThreads()) {
1902     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1903  }
1904  st->cr();
1905
1906  // rlimit
1907  st->print("rlimit:");
1908  struct rlimit rlim;
1909
1910  st->print(" STACK ");
1911  getrlimit(RLIMIT_STACK, &rlim);
1912  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1913  else st->print("%uk", rlim.rlim_cur >> 10);
1914
1915  st->print(", CORE ");
1916  getrlimit(RLIMIT_CORE, &rlim);
1917  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1918  else st->print("%uk", rlim.rlim_cur >> 10);
1919
1920  st->print(", NPROC ");
1921  getrlimit(RLIMIT_NPROC, &rlim);
1922  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1923  else st->print("%d", rlim.rlim_cur);
1924
1925  st->print(", NOFILE ");
1926  getrlimit(RLIMIT_NOFILE, &rlim);
1927  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1928  else st->print("%d", rlim.rlim_cur);
1929
1930  st->print(", AS ");
1931  getrlimit(RLIMIT_AS, &rlim);
1932  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1933  else st->print("%uk", rlim.rlim_cur >> 10);
1934  st->cr();
1935
1936  // load average
1937  st->print("load average:");
1938  double loadavg[3];
1939  os::loadavg(loadavg, 3);
1940  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1941  st->cr();
1942}
1943
1944void os::print_memory_info(outputStream* st) {
1945
1946  st->print("Memory:");
1947  st->print(" %dk page", os::vm_page_size()>>10);
1948
1949  // values in struct sysinfo are "unsigned long"
1950  struct sysinfo si;
1951  sysinfo(&si);
1952
1953  st->print(", physical " UINT64_FORMAT "k",
1954            os::physical_memory() >> 10);
1955  st->print("(" UINT64_FORMAT "k free)",
1956            os::available_memory() >> 10);
1957  st->print(", swap " UINT64_FORMAT "k",
1958            ((jlong)si.totalswap * si.mem_unit) >> 10);
1959  st->print("(" UINT64_FORMAT "k free)",
1960            ((jlong)si.freeswap * si.mem_unit) >> 10);
1961  st->cr();
1962}
1963
1964// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1965// but they're the same for all the linux arch that we support
1966// and they're the same for solaris but there's no common place to put this.
1967const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1968                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1969                          "ILL_COPROC", "ILL_BADSTK" };
1970
1971const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1972                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1973                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1974
1975const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1976
1977const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1978
1979void os::print_siginfo(outputStream* st, void* siginfo) {
1980  st->print("siginfo:");
1981
1982  const int buflen = 100;
1983  char buf[buflen];
1984  siginfo_t *si = (siginfo_t*)siginfo;
1985  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1986  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1987    st->print("si_errno=%s", buf);
1988  } else {
1989    st->print("si_errno=%d", si->si_errno);
1990  }
1991  const int c = si->si_code;
1992  assert(c > 0, "unexpected si_code");
1993  switch (si->si_signo) {
1994  case SIGILL:
1995    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1996    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1997    break;
1998  case SIGFPE:
1999    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2000    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2001    break;
2002  case SIGSEGV:
2003    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2004    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2005    break;
2006  case SIGBUS:
2007    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2008    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2009    break;
2010  default:
2011    st->print(", si_code=%d", si->si_code);
2012    // no si_addr
2013  }
2014
2015  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2016      UseSharedSpaces) {
2017    FileMapInfo* mapinfo = FileMapInfo::current_info();
2018    if (mapinfo->is_in_shared_space(si->si_addr)) {
2019      st->print("\n\nError accessing class data sharing archive."   \
2020                " Mapped file inaccessible during execution, "      \
2021                " possible disk/network problem.");
2022    }
2023  }
2024  st->cr();
2025}
2026
2027
2028static void print_signal_handler(outputStream* st, int sig,
2029                                 char* buf, size_t buflen);
2030
2031void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2032  st->print_cr("Signal Handlers:");
2033  print_signal_handler(st, SIGSEGV, buf, buflen);
2034  print_signal_handler(st, SIGBUS , buf, buflen);
2035  print_signal_handler(st, SIGFPE , buf, buflen);
2036  print_signal_handler(st, SIGPIPE, buf, buflen);
2037  print_signal_handler(st, SIGXFSZ, buf, buflen);
2038  print_signal_handler(st, SIGILL , buf, buflen);
2039  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2040  print_signal_handler(st, SR_signum, buf, buflen);
2041  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2042  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2043  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2044  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2045}
2046
2047static char saved_jvm_path[MAXPATHLEN] = {0};
2048
2049// Find the full path to the current module, libjvm.so or libjvm_g.so
2050void os::jvm_path(char *buf, jint len) {
2051  // Error checking.
2052  if (len < MAXPATHLEN) {
2053    assert(false, "must use a large-enough buffer");
2054    buf[0] = '\0';
2055    return;
2056  }
2057  // Lazy resolve the path to current module.
2058  if (saved_jvm_path[0] != 0) {
2059    strcpy(buf, saved_jvm_path);
2060    return;
2061  }
2062
2063  char dli_fname[MAXPATHLEN];
2064  bool ret = dll_address_to_library_name(
2065                CAST_FROM_FN_PTR(address, os::jvm_path),
2066                dli_fname, sizeof(dli_fname), NULL);
2067  assert(ret != 0, "cannot locate libjvm");
2068  if (realpath(dli_fname, buf) == NULL)
2069    return;
2070
2071  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2072    // Support for the gamma launcher.  Typical value for buf is
2073    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2074    // the right place in the string, then assume we are installed in a JDK and
2075    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2076    // up the path so it looks like libjvm.so is installed there (append a
2077    // fake suffix hotspot/libjvm.so).
2078    const char *p = buf + strlen(buf) - 1;
2079    for (int count = 0; p > buf && count < 5; ++count) {
2080      for (--p; p > buf && *p != '/'; --p)
2081        /* empty */ ;
2082    }
2083
2084    if (strncmp(p, "/jre/lib/", 9) != 0) {
2085      // Look for JAVA_HOME in the environment.
2086      char* java_home_var = ::getenv("JAVA_HOME");
2087      if (java_home_var != NULL && java_home_var[0] != 0) {
2088        // Check the current module name "libjvm.so" or "libjvm_g.so".
2089        p = strrchr(buf, '/');
2090        assert(strstr(p, "/libjvm") == p, "invalid library name");
2091        p = strstr(p, "_g") ? "_g" : "";
2092
2093        if (realpath(java_home_var, buf) == NULL)
2094          return;
2095        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2096        if (0 == access(buf, F_OK)) {
2097          // Use current module name "libjvm[_g].so" instead of
2098          // "libjvm"debug_only("_g")".so" since for fastdebug version
2099          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2100          // It is used when we are choosing the HPI library's name
2101          // "libhpi[_g].so" in hpi::initialize_get_interface().
2102          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2103        } else {
2104          // Go back to path of .so
2105          if (realpath(dli_fname, buf) == NULL)
2106            return;
2107        }
2108      }
2109    }
2110  }
2111
2112  strcpy(saved_jvm_path, buf);
2113}
2114
2115void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2116  // no prefix required, not even "_"
2117}
2118
2119void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2120  // no suffix required
2121}
2122
2123////////////////////////////////////////////////////////////////////////////////
2124// sun.misc.Signal support
2125
2126static volatile jint sigint_count = 0;
2127
2128static void
2129UserHandler(int sig, void *siginfo, void *context) {
2130  // 4511530 - sem_post is serialized and handled by the manager thread. When
2131  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2132  // don't want to flood the manager thread with sem_post requests.
2133  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2134      return;
2135
2136  // Ctrl-C is pressed during error reporting, likely because the error
2137  // handler fails to abort. Let VM die immediately.
2138  if (sig == SIGINT && is_error_reported()) {
2139     os::die();
2140  }
2141
2142  os::signal_notify(sig);
2143}
2144
2145void* os::user_handler() {
2146  return CAST_FROM_FN_PTR(void*, UserHandler);
2147}
2148
2149extern "C" {
2150  typedef void (*sa_handler_t)(int);
2151  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2152}
2153
2154void* os::signal(int signal_number, void* handler) {
2155  struct sigaction sigAct, oldSigAct;
2156
2157  sigfillset(&(sigAct.sa_mask));
2158  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2159  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2160
2161  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2162    // -1 means registration failed
2163    return (void *)-1;
2164  }
2165
2166  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2167}
2168
2169void os::signal_raise(int signal_number) {
2170  ::raise(signal_number);
2171}
2172
2173/*
2174 * The following code is moved from os.cpp for making this
2175 * code platform specific, which it is by its very nature.
2176 */
2177
2178// Will be modified when max signal is changed to be dynamic
2179int os::sigexitnum_pd() {
2180  return NSIG;
2181}
2182
2183// a counter for each possible signal value
2184static volatile jint pending_signals[NSIG+1] = { 0 };
2185
2186// Linux(POSIX) specific hand shaking semaphore.
2187static sem_t sig_sem;
2188
2189void os::signal_init_pd() {
2190  // Initialize signal structures
2191  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2192
2193  // Initialize signal semaphore
2194  ::sem_init(&sig_sem, 0, 0);
2195}
2196
2197void os::signal_notify(int sig) {
2198  Atomic::inc(&pending_signals[sig]);
2199  ::sem_post(&sig_sem);
2200}
2201
2202static int check_pending_signals(bool wait) {
2203  Atomic::store(0, &sigint_count);
2204  for (;;) {
2205    for (int i = 0; i < NSIG + 1; i++) {
2206      jint n = pending_signals[i];
2207      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2208        return i;
2209      }
2210    }
2211    if (!wait) {
2212      return -1;
2213    }
2214    JavaThread *thread = JavaThread::current();
2215    ThreadBlockInVM tbivm(thread);
2216
2217    bool threadIsSuspended;
2218    do {
2219      thread->set_suspend_equivalent();
2220      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2221      ::sem_wait(&sig_sem);
2222
2223      // were we externally suspended while we were waiting?
2224      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2225      if (threadIsSuspended) {
2226        //
2227        // The semaphore has been incremented, but while we were waiting
2228        // another thread suspended us. We don't want to continue running
2229        // while suspended because that would surprise the thread that
2230        // suspended us.
2231        //
2232        ::sem_post(&sig_sem);
2233
2234        thread->java_suspend_self();
2235      }
2236    } while (threadIsSuspended);
2237  }
2238}
2239
2240int os::signal_lookup() {
2241  return check_pending_signals(false);
2242}
2243
2244int os::signal_wait() {
2245  return check_pending_signals(true);
2246}
2247
2248////////////////////////////////////////////////////////////////////////////////
2249// Virtual Memory
2250
2251int os::vm_page_size() {
2252  // Seems redundant as all get out
2253  assert(os::Linux::page_size() != -1, "must call os::init");
2254  return os::Linux::page_size();
2255}
2256
2257// Solaris allocates memory by pages.
2258int os::vm_allocation_granularity() {
2259  assert(os::Linux::page_size() != -1, "must call os::init");
2260  return os::Linux::page_size();
2261}
2262
2263// Rationale behind this function:
2264//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2265//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2266//  samples for JITted code. Here we create private executable mapping over the code cache
2267//  and then we can use standard (well, almost, as mapping can change) way to provide
2268//  info for the reporting script by storing timestamp and location of symbol
2269void linux_wrap_code(char* base, size_t size) {
2270  static volatile jint cnt = 0;
2271
2272  if (!UseOprofile) {
2273    return;
2274  }
2275
2276  char buf[40];
2277  int num = Atomic::add(1, &cnt);
2278
2279  sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
2280  unlink(buf);
2281
2282  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2283
2284  if (fd != -1) {
2285    off_t rv = lseek(fd, size-2, SEEK_SET);
2286    if (rv != (off_t)-1) {
2287      if (write(fd, "", 1) == 1) {
2288        mmap(base, size,
2289             PROT_READ|PROT_WRITE|PROT_EXEC,
2290             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2291      }
2292    }
2293    close(fd);
2294    unlink(buf);
2295  }
2296}
2297
2298// NOTE: Linux kernel does not really reserve the pages for us.
2299//       All it does is to check if there are enough free pages
2300//       left at the time of mmap(). This could be a potential
2301//       problem.
2302bool os::commit_memory(char* addr, size_t size, bool exec) {
2303  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2304  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2305                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2306  return res != (uintptr_t) MAP_FAILED;
2307}
2308
2309bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2310                       bool exec) {
2311  return commit_memory(addr, size, exec);
2312}
2313
2314void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2315
2316void os::free_memory(char *addr, size_t bytes) {
2317  uncommit_memory(addr, bytes);
2318}
2319
2320void os::numa_make_global(char *addr, size_t bytes) {
2321  Linux::numa_interleave_memory(addr, bytes);
2322}
2323
2324void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2325  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2326}
2327
2328bool os::numa_topology_changed()   { return false; }
2329
2330size_t os::numa_get_groups_num() {
2331  int max_node = Linux::numa_max_node();
2332  return max_node > 0 ? max_node + 1 : 1;
2333}
2334
2335int os::numa_get_group_id() {
2336  int cpu_id = Linux::sched_getcpu();
2337  if (cpu_id != -1) {
2338    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2339    if (lgrp_id != -1) {
2340      return lgrp_id;
2341    }
2342  }
2343  return 0;
2344}
2345
2346size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2347  for (size_t i = 0; i < size; i++) {
2348    ids[i] = i;
2349  }
2350  return size;
2351}
2352
2353bool os::get_page_info(char *start, page_info* info) {
2354  return false;
2355}
2356
2357char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2358  return end;
2359}
2360
2361extern "C" void numa_warn(int number, char *where, ...) { }
2362extern "C" void numa_error(char *where) { }
2363
2364bool os::Linux::libnuma_init() {
2365  // sched_getcpu() should be in libc.
2366  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2367                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2368
2369  if (sched_getcpu() != -1) { // Does it work?
2370    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2371    if (handle != NULL) {
2372      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2373                                           dlsym(handle, "numa_node_to_cpus")));
2374      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2375                                       dlsym(handle, "numa_max_node")));
2376      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2377                                        dlsym(handle, "numa_available")));
2378      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2379                                            dlsym(handle, "numa_tonode_memory")));
2380      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2381                                            dlsym(handle, "numa_interleave_memory")));
2382
2383
2384      if (numa_available() != -1) {
2385        set_numa_all_nodes((unsigned long*)dlsym(handle, "numa_all_nodes"));
2386        // Create a cpu -> node mapping
2387        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2388        rebuild_cpu_to_node_map();
2389        return true;
2390      }
2391    }
2392  }
2393  return false;
2394}
2395
2396// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2397// The table is later used in get_node_by_cpu().
2398void os::Linux::rebuild_cpu_to_node_map() {
2399  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2400                              // in libnuma (possible values are starting from 16,
2401                              // and continuing up with every other power of 2, but less
2402                              // than the maximum number of CPUs supported by kernel), and
2403                              // is a subject to change (in libnuma version 2 the requirements
2404                              // are more reasonable) we'll just hardcode the number they use
2405                              // in the library.
2406  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2407
2408  size_t cpu_num = os::active_processor_count();
2409  size_t cpu_map_size = NCPUS / BitsPerCLong;
2410  size_t cpu_map_valid_size =
2411    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2412
2413  cpu_to_node()->clear();
2414  cpu_to_node()->at_grow(cpu_num - 1);
2415  size_t node_num = numa_get_groups_num();
2416
2417  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2418  for (size_t i = 0; i < node_num; i++) {
2419    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2420      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2421        if (cpu_map[j] != 0) {
2422          for (size_t k = 0; k < BitsPerCLong; k++) {
2423            if (cpu_map[j] & (1UL << k)) {
2424              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2425            }
2426          }
2427        }
2428      }
2429    }
2430  }
2431  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2432}
2433
2434int os::Linux::get_node_by_cpu(int cpu_id) {
2435  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2436    return cpu_to_node()->at(cpu_id);
2437  }
2438  return -1;
2439}
2440
2441GrowableArray<int>* os::Linux::_cpu_to_node;
2442os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2443os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2444os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2445os::Linux::numa_available_func_t os::Linux::_numa_available;
2446os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2447os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2448unsigned long* os::Linux::_numa_all_nodes;
2449
2450bool os::uncommit_memory(char* addr, size_t size) {
2451  return ::mmap(addr, size, PROT_NONE,
2452                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
2453    != MAP_FAILED;
2454}
2455
2456static address _highest_vm_reserved_address = NULL;
2457
2458// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2459// at 'requested_addr'. If there are existing memory mappings at the same
2460// location, however, they will be overwritten. If 'fixed' is false,
2461// 'requested_addr' is only treated as a hint, the return value may or
2462// may not start from the requested address. Unlike Linux mmap(), this
2463// function returns NULL to indicate failure.
2464static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2465  char * addr;
2466  int flags;
2467
2468  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2469  if (fixed) {
2470    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2471    flags |= MAP_FIXED;
2472  }
2473
2474  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2475  // to PROT_EXEC if executable when we commit the page.
2476  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2477                       flags, -1, 0);
2478
2479  if (addr != MAP_FAILED) {
2480    // anon_mmap() should only get called during VM initialization,
2481    // don't need lock (actually we can skip locking even it can be called
2482    // from multiple threads, because _highest_vm_reserved_address is just a
2483    // hint about the upper limit of non-stack memory regions.)
2484    if ((address)addr + bytes > _highest_vm_reserved_address) {
2485      _highest_vm_reserved_address = (address)addr + bytes;
2486    }
2487  }
2488
2489  return addr == MAP_FAILED ? NULL : addr;
2490}
2491
2492// Don't update _highest_vm_reserved_address, because there might be memory
2493// regions above addr + size. If so, releasing a memory region only creates
2494// a hole in the address space, it doesn't help prevent heap-stack collision.
2495//
2496static int anon_munmap(char * addr, size_t size) {
2497  return ::munmap(addr, size) == 0;
2498}
2499
2500char* os::reserve_memory(size_t bytes, char* requested_addr,
2501                         size_t alignment_hint) {
2502  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2503}
2504
2505bool os::release_memory(char* addr, size_t size) {
2506  return anon_munmap(addr, size);
2507}
2508
2509static address highest_vm_reserved_address() {
2510  return _highest_vm_reserved_address;
2511}
2512
2513static bool linux_mprotect(char* addr, size_t size, int prot) {
2514  // Linux wants the mprotect address argument to be page aligned.
2515  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2516
2517  // According to SUSv3, mprotect() should only be used with mappings
2518  // established by mmap(), and mmap() always maps whole pages. Unaligned
2519  // 'addr' likely indicates problem in the VM (e.g. trying to change
2520  // protection of malloc'ed or statically allocated memory). Check the
2521  // caller if you hit this assert.
2522  assert(addr == bottom, "sanity check");
2523
2524  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2525  return ::mprotect(bottom, size, prot) == 0;
2526}
2527
2528// Set protections specified
2529bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2530                        bool is_committed) {
2531  unsigned int p = 0;
2532  switch (prot) {
2533  case MEM_PROT_NONE: p = PROT_NONE; break;
2534  case MEM_PROT_READ: p = PROT_READ; break;
2535  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2536  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2537  default:
2538    ShouldNotReachHere();
2539  }
2540  // is_committed is unused.
2541  return linux_mprotect(addr, bytes, p);
2542}
2543
2544bool os::guard_memory(char* addr, size_t size) {
2545  return linux_mprotect(addr, size, PROT_NONE);
2546}
2547
2548bool os::unguard_memory(char* addr, size_t size) {
2549  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2550}
2551
2552// Large page support
2553
2554static size_t _large_page_size = 0;
2555
2556bool os::large_page_init() {
2557  if (!UseLargePages) return false;
2558
2559  if (LargePageSizeInBytes) {
2560    _large_page_size = LargePageSizeInBytes;
2561  } else {
2562    // large_page_size on Linux is used to round up heap size. x86 uses either
2563    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2564    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2565    // page as large as 256M.
2566    //
2567    // Here we try to figure out page size by parsing /proc/meminfo and looking
2568    // for a line with the following format:
2569    //    Hugepagesize:     2048 kB
2570    //
2571    // If we can't determine the value (e.g. /proc is not mounted, or the text
2572    // format has been changed), we'll use the largest page size supported by
2573    // the processor.
2574
2575    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
2576
2577    FILE *fp = fopen("/proc/meminfo", "r");
2578    if (fp) {
2579      while (!feof(fp)) {
2580        int x = 0;
2581        char buf[16];
2582        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2583          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2584            _large_page_size = x * K;
2585            break;
2586          }
2587        } else {
2588          // skip to next line
2589          for (;;) {
2590            int ch = fgetc(fp);
2591            if (ch == EOF || ch == (int)'\n') break;
2592          }
2593        }
2594      }
2595      fclose(fp);
2596    }
2597  }
2598
2599  const size_t default_page_size = (size_t)Linux::page_size();
2600  if (_large_page_size > default_page_size) {
2601    _page_sizes[0] = _large_page_size;
2602    _page_sizes[1] = default_page_size;
2603    _page_sizes[2] = 0;
2604  }
2605
2606  // Large page support is available on 2.6 or newer kernel, some vendors
2607  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2608  // We optimistically assume the support is available. If later it turns out
2609  // not true, VM will automatically switch to use regular page size.
2610  return true;
2611}
2612
2613#ifndef SHM_HUGETLB
2614#define SHM_HUGETLB 04000
2615#endif
2616
2617char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2618  // "exec" is passed in but not used.  Creating the shared image for
2619  // the code cache doesn't have an SHM_X executable permission to check.
2620  assert(UseLargePages, "only for large pages");
2621
2622  key_t key = IPC_PRIVATE;
2623  char *addr;
2624
2625  bool warn_on_failure = UseLargePages &&
2626                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2627                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2628                        );
2629  char msg[128];
2630
2631  // Create a large shared memory region to attach to based on size.
2632  // Currently, size is the total size of the heap
2633  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2634  if (shmid == -1) {
2635     // Possible reasons for shmget failure:
2636     // 1. shmmax is too small for Java heap.
2637     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2638     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2639     // 2. not enough large page memory.
2640     //    > check available large pages: cat /proc/meminfo
2641     //    > increase amount of large pages:
2642     //          echo new_value > /proc/sys/vm/nr_hugepages
2643     //      Note 1: different Linux may use different name for this property,
2644     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2645     //      Note 2: it's possible there's enough physical memory available but
2646     //            they are so fragmented after a long run that they can't
2647     //            coalesce into large pages. Try to reserve large pages when
2648     //            the system is still "fresh".
2649     if (warn_on_failure) {
2650       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2651       warning(msg);
2652     }
2653     return NULL;
2654  }
2655
2656  // attach to the region
2657  addr = (char*)shmat(shmid, NULL, 0);
2658  int err = errno;
2659
2660  // Remove shmid. If shmat() is successful, the actual shared memory segment
2661  // will be deleted when it's detached by shmdt() or when the process
2662  // terminates. If shmat() is not successful this will remove the shared
2663  // segment immediately.
2664  shmctl(shmid, IPC_RMID, NULL);
2665
2666  if ((intptr_t)addr == -1) {
2667     if (warn_on_failure) {
2668       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2669       warning(msg);
2670     }
2671     return NULL;
2672  }
2673
2674  return addr;
2675}
2676
2677bool os::release_memory_special(char* base, size_t bytes) {
2678  // detaching the SHM segment will also delete it, see reserve_memory_special()
2679  int rslt = shmdt(base);
2680  return rslt == 0;
2681}
2682
2683size_t os::large_page_size() {
2684  return _large_page_size;
2685}
2686
2687// Linux does not support anonymous mmap with large page memory. The only way
2688// to reserve large page memory without file backing is through SysV shared
2689// memory API. The entire memory region is committed and pinned upfront.
2690// Hopefully this will change in the future...
2691bool os::can_commit_large_page_memory() {
2692  return false;
2693}
2694
2695bool os::can_execute_large_page_memory() {
2696  return false;
2697}
2698
2699// Reserve memory at an arbitrary address, only if that area is
2700// available (and not reserved for something else).
2701
2702char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2703  const int max_tries = 10;
2704  char* base[max_tries];
2705  size_t size[max_tries];
2706  const size_t gap = 0x000000;
2707
2708  // Assert only that the size is a multiple of the page size, since
2709  // that's all that mmap requires, and since that's all we really know
2710  // about at this low abstraction level.  If we need higher alignment,
2711  // we can either pass an alignment to this method or verify alignment
2712  // in one of the methods further up the call chain.  See bug 5044738.
2713  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2714
2715  // Repeatedly allocate blocks until the block is allocated at the
2716  // right spot. Give up after max_tries. Note that reserve_memory() will
2717  // automatically update _highest_vm_reserved_address if the call is
2718  // successful. The variable tracks the highest memory address every reserved
2719  // by JVM. It is used to detect heap-stack collision if running with
2720  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2721  // space than needed, it could confuse the collision detecting code. To
2722  // solve the problem, save current _highest_vm_reserved_address and
2723  // calculate the correct value before return.
2724  address old_highest = _highest_vm_reserved_address;
2725
2726  // Linux mmap allows caller to pass an address as hint; give it a try first,
2727  // if kernel honors the hint then we can return immediately.
2728  char * addr = anon_mmap(requested_addr, bytes, false);
2729  if (addr == requested_addr) {
2730     return requested_addr;
2731  }
2732
2733  if (addr != NULL) {
2734     // mmap() is successful but it fails to reserve at the requested address
2735     anon_munmap(addr, bytes);
2736  }
2737
2738  int i;
2739  for (i = 0; i < max_tries; ++i) {
2740    base[i] = reserve_memory(bytes);
2741
2742    if (base[i] != NULL) {
2743      // Is this the block we wanted?
2744      if (base[i] == requested_addr) {
2745        size[i] = bytes;
2746        break;
2747      }
2748
2749      // Does this overlap the block we wanted? Give back the overlapped
2750      // parts and try again.
2751
2752      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2753      if (top_overlap >= 0 && top_overlap < bytes) {
2754        unmap_memory(base[i], top_overlap);
2755        base[i] += top_overlap;
2756        size[i] = bytes - top_overlap;
2757      } else {
2758        size_t bottom_overlap = base[i] + bytes - requested_addr;
2759        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2760          unmap_memory(requested_addr, bottom_overlap);
2761          size[i] = bytes - bottom_overlap;
2762        } else {
2763          size[i] = bytes;
2764        }
2765      }
2766    }
2767  }
2768
2769  // Give back the unused reserved pieces.
2770
2771  for (int j = 0; j < i; ++j) {
2772    if (base[j] != NULL) {
2773      unmap_memory(base[j], size[j]);
2774    }
2775  }
2776
2777  if (i < max_tries) {
2778    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2779    return requested_addr;
2780  } else {
2781    _highest_vm_reserved_address = old_highest;
2782    return NULL;
2783  }
2784}
2785
2786size_t os::read(int fd, void *buf, unsigned int nBytes) {
2787  return ::read(fd, buf, nBytes);
2788}
2789
2790// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2791// Solaris uses poll(), linux uses park().
2792// Poll() is likely a better choice, assuming that Thread.interrupt()
2793// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2794// SIGSEGV, see 4355769.
2795
2796const int NANOSECS_PER_MILLISECS = 1000000;
2797
2798int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2799  assert(thread == Thread::current(),  "thread consistency check");
2800
2801  ParkEvent * const slp = thread->_SleepEvent ;
2802  slp->reset() ;
2803  OrderAccess::fence() ;
2804
2805  if (interruptible) {
2806    jlong prevtime = javaTimeNanos();
2807
2808    for (;;) {
2809      if (os::is_interrupted(thread, true)) {
2810        return OS_INTRPT;
2811      }
2812
2813      jlong newtime = javaTimeNanos();
2814
2815      if (newtime - prevtime < 0) {
2816        // time moving backwards, should only happen if no monotonic clock
2817        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2818        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2819      } else {
2820        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2821      }
2822
2823      if(millis <= 0) {
2824        return OS_OK;
2825      }
2826
2827      prevtime = newtime;
2828
2829      {
2830        assert(thread->is_Java_thread(), "sanity check");
2831        JavaThread *jt = (JavaThread *) thread;
2832        ThreadBlockInVM tbivm(jt);
2833        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2834
2835        jt->set_suspend_equivalent();
2836        // cleared by handle_special_suspend_equivalent_condition() or
2837        // java_suspend_self() via check_and_wait_while_suspended()
2838
2839        slp->park(millis);
2840
2841        // were we externally suspended while we were waiting?
2842        jt->check_and_wait_while_suspended();
2843      }
2844    }
2845  } else {
2846    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2847    jlong prevtime = javaTimeNanos();
2848
2849    for (;;) {
2850      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2851      // the 1st iteration ...
2852      jlong newtime = javaTimeNanos();
2853
2854      if (newtime - prevtime < 0) {
2855        // time moving backwards, should only happen if no monotonic clock
2856        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2857        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2858      } else {
2859        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2860      }
2861
2862      if(millis <= 0) break ;
2863
2864      prevtime = newtime;
2865      slp->park(millis);
2866    }
2867    return OS_OK ;
2868  }
2869}
2870
2871int os::naked_sleep() {
2872  // %% make the sleep time an integer flag. for now use 1 millisec.
2873  return os::sleep(Thread::current(), 1, false);
2874}
2875
2876// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2877void os::infinite_sleep() {
2878  while (true) {    // sleep forever ...
2879    ::sleep(100);   // ... 100 seconds at a time
2880  }
2881}
2882
2883// Used to convert frequent JVM_Yield() to nops
2884bool os::dont_yield() {
2885  return DontYieldALot;
2886}
2887
2888void os::yield() {
2889  sched_yield();
2890}
2891
2892os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2893
2894void os::yield_all(int attempts) {
2895  // Yields to all threads, including threads with lower priorities
2896  // Threads on Linux are all with same priority. The Solaris style
2897  // os::yield_all() with nanosleep(1ms) is not necessary.
2898  sched_yield();
2899}
2900
2901// Called from the tight loops to possibly influence time-sharing heuristics
2902void os::loop_breaker(int attempts) {
2903  os::yield_all(attempts);
2904}
2905
2906////////////////////////////////////////////////////////////////////////////////
2907// thread priority support
2908
2909// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
2910// only supports dynamic priority, static priority must be zero. For real-time
2911// applications, Linux supports SCHED_RR which allows static priority (1-99).
2912// However, for large multi-threaded applications, SCHED_RR is not only slower
2913// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2914// of 5 runs - Sep 2005).
2915//
2916// The following code actually changes the niceness of kernel-thread/LWP. It
2917// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2918// not the entire user process, and user level threads are 1:1 mapped to kernel
2919// threads. It has always been the case, but could change in the future. For
2920// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2921// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2922
2923int os::java_to_os_priority[MaxPriority + 1] = {
2924  19,              // 0 Entry should never be used
2925
2926   4,              // 1 MinPriority
2927   3,              // 2
2928   2,              // 3
2929
2930   1,              // 4
2931   0,              // 5 NormPriority
2932  -1,              // 6
2933
2934  -2,              // 7
2935  -3,              // 8
2936  -4,              // 9 NearMaxPriority
2937
2938  -5               // 10 MaxPriority
2939};
2940
2941static int prio_init() {
2942  if (ThreadPriorityPolicy == 1) {
2943    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2944    // if effective uid is not root. Perhaps, a more elegant way of doing
2945    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2946    if (geteuid() != 0) {
2947      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2948        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
2949      }
2950      ThreadPriorityPolicy = 0;
2951    }
2952  }
2953  return 0;
2954}
2955
2956OSReturn os::set_native_priority(Thread* thread, int newpri) {
2957  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2958
2959  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2960  return (ret == 0) ? OS_OK : OS_ERR;
2961}
2962
2963OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2964  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2965    *priority_ptr = java_to_os_priority[NormPriority];
2966    return OS_OK;
2967  }
2968
2969  errno = 0;
2970  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2971  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2972}
2973
2974// Hint to the underlying OS that a task switch would not be good.
2975// Void return because it's a hint and can fail.
2976void os::hint_no_preempt() {}
2977
2978////////////////////////////////////////////////////////////////////////////////
2979// suspend/resume support
2980
2981//  the low-level signal-based suspend/resume support is a remnant from the
2982//  old VM-suspension that used to be for java-suspension, safepoints etc,
2983//  within hotspot. Now there is a single use-case for this:
2984//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2985//      that runs in the watcher thread.
2986//  The remaining code is greatly simplified from the more general suspension
2987//  code that used to be used.
2988//
2989//  The protocol is quite simple:
2990//  - suspend:
2991//      - sends a signal to the target thread
2992//      - polls the suspend state of the osthread using a yield loop
2993//      - target thread signal handler (SR_handler) sets suspend state
2994//        and blocks in sigsuspend until continued
2995//  - resume:
2996//      - sets target osthread state to continue
2997//      - sends signal to end the sigsuspend loop in the SR_handler
2998//
2999//  Note that the SR_lock plays no role in this suspend/resume protocol.
3000//
3001
3002static void resume_clear_context(OSThread *osthread) {
3003  osthread->set_ucontext(NULL);
3004  osthread->set_siginfo(NULL);
3005
3006  // notify the suspend action is completed, we have now resumed
3007  osthread->sr.clear_suspended();
3008}
3009
3010static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3011  osthread->set_ucontext(context);
3012  osthread->set_siginfo(siginfo);
3013}
3014
3015//
3016// Handler function invoked when a thread's execution is suspended or
3017// resumed. We have to be careful that only async-safe functions are
3018// called here (Note: most pthread functions are not async safe and
3019// should be avoided.)
3020//
3021// Note: sigwait() is a more natural fit than sigsuspend() from an
3022// interface point of view, but sigwait() prevents the signal hander
3023// from being run. libpthread would get very confused by not having
3024// its signal handlers run and prevents sigwait()'s use with the
3025// mutex granting granting signal.
3026//
3027// Currently only ever called on the VMThread
3028//
3029static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3030  // Save and restore errno to avoid confusing native code with EINTR
3031  // after sigsuspend.
3032  int old_errno = errno;
3033
3034  Thread* thread = Thread::current();
3035  OSThread* osthread = thread->osthread();
3036  assert(thread->is_VM_thread(), "Must be VMThread");
3037  // read current suspend action
3038  int action = osthread->sr.suspend_action();
3039  if (action == SR_SUSPEND) {
3040    suspend_save_context(osthread, siginfo, context);
3041
3042    // Notify the suspend action is about to be completed. do_suspend()
3043    // waits until SR_SUSPENDED is set and then returns. We will wait
3044    // here for a resume signal and that completes the suspend-other
3045    // action. do_suspend/do_resume is always called as a pair from
3046    // the same thread - so there are no races
3047
3048    // notify the caller
3049    osthread->sr.set_suspended();
3050
3051    sigset_t suspend_set;  // signals for sigsuspend()
3052
3053    // get current set of blocked signals and unblock resume signal
3054    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3055    sigdelset(&suspend_set, SR_signum);
3056
3057    // wait here until we are resumed
3058    do {
3059      sigsuspend(&suspend_set);
3060      // ignore all returns until we get a resume signal
3061    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3062
3063    resume_clear_context(osthread);
3064
3065  } else {
3066    assert(action == SR_CONTINUE, "unexpected sr action");
3067    // nothing special to do - just leave the handler
3068  }
3069
3070  errno = old_errno;
3071}
3072
3073
3074static int SR_initialize() {
3075  struct sigaction act;
3076  char *s;
3077  /* Get signal number to use for suspend/resume */
3078  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3079    int sig = ::strtol(s, 0, 10);
3080    if (sig > 0 || sig < _NSIG) {
3081        SR_signum = sig;
3082    }
3083  }
3084
3085  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3086        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3087
3088  sigemptyset(&SR_sigset);
3089  sigaddset(&SR_sigset, SR_signum);
3090
3091  /* Set up signal handler for suspend/resume */
3092  act.sa_flags = SA_RESTART|SA_SIGINFO;
3093  act.sa_handler = (void (*)(int)) SR_handler;
3094
3095  // SR_signum is blocked by default.
3096  // 4528190 - We also need to block pthread restart signal (32 on all
3097  // supported Linux platforms). Note that LinuxThreads need to block
3098  // this signal for all threads to work properly. So we don't have
3099  // to use hard-coded signal number when setting up the mask.
3100  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3101
3102  if (sigaction(SR_signum, &act, 0) == -1) {
3103    return -1;
3104  }
3105
3106  // Save signal flag
3107  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3108  return 0;
3109}
3110
3111static int SR_finalize() {
3112  return 0;
3113}
3114
3115
3116// returns true on success and false on error - really an error is fatal
3117// but this seems the normal response to library errors
3118static bool do_suspend(OSThread* osthread) {
3119  // mark as suspended and send signal
3120  osthread->sr.set_suspend_action(SR_SUSPEND);
3121  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3122  assert_status(status == 0, status, "pthread_kill");
3123
3124  // check status and wait until notified of suspension
3125  if (status == 0) {
3126    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3127      os::yield_all(i);
3128    }
3129    osthread->sr.set_suspend_action(SR_NONE);
3130    return true;
3131  }
3132  else {
3133    osthread->sr.set_suspend_action(SR_NONE);
3134    return false;
3135  }
3136}
3137
3138static void do_resume(OSThread* osthread) {
3139  assert(osthread->sr.is_suspended(), "thread should be suspended");
3140  osthread->sr.set_suspend_action(SR_CONTINUE);
3141
3142  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3143  assert_status(status == 0, status, "pthread_kill");
3144  // check status and wait unit notified of resumption
3145  if (status == 0) {
3146    for (int i = 0; osthread->sr.is_suspended(); i++) {
3147      os::yield_all(i);
3148    }
3149  }
3150  osthread->sr.set_suspend_action(SR_NONE);
3151}
3152
3153////////////////////////////////////////////////////////////////////////////////
3154// interrupt support
3155
3156void os::interrupt(Thread* thread) {
3157  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3158    "possibility of dangling Thread pointer");
3159
3160  OSThread* osthread = thread->osthread();
3161
3162  if (!osthread->interrupted()) {
3163    osthread->set_interrupted(true);
3164    // More than one thread can get here with the same value of osthread,
3165    // resulting in multiple notifications.  We do, however, want the store
3166    // to interrupted() to be visible to other threads before we execute unpark().
3167    OrderAccess::fence();
3168    ParkEvent * const slp = thread->_SleepEvent ;
3169    if (slp != NULL) slp->unpark() ;
3170  }
3171
3172  // For JSR166. Unpark even if interrupt status already was set
3173  if (thread->is_Java_thread())
3174    ((JavaThread*)thread)->parker()->unpark();
3175
3176  ParkEvent * ev = thread->_ParkEvent ;
3177  if (ev != NULL) ev->unpark() ;
3178
3179}
3180
3181bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3182  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3183    "possibility of dangling Thread pointer");
3184
3185  OSThread* osthread = thread->osthread();
3186
3187  bool interrupted = osthread->interrupted();
3188
3189  if (interrupted && clear_interrupted) {
3190    osthread->set_interrupted(false);
3191    // consider thread->_SleepEvent->reset() ... optional optimization
3192  }
3193
3194  return interrupted;
3195}
3196
3197///////////////////////////////////////////////////////////////////////////////////
3198// signal handling (except suspend/resume)
3199
3200// This routine may be used by user applications as a "hook" to catch signals.
3201// The user-defined signal handler must pass unrecognized signals to this
3202// routine, and if it returns true (non-zero), then the signal handler must
3203// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3204// routine will never retun false (zero), but instead will execute a VM panic
3205// routine kill the process.
3206//
3207// If this routine returns false, it is OK to call it again.  This allows
3208// the user-defined signal handler to perform checks either before or after
3209// the VM performs its own checks.  Naturally, the user code would be making
3210// a serious error if it tried to handle an exception (such as a null check
3211// or breakpoint) that the VM was generating for its own correct operation.
3212//
3213// This routine may recognize any of the following kinds of signals:
3214//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3215// It should be consulted by handlers for any of those signals.
3216//
3217// The caller of this routine must pass in the three arguments supplied
3218// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3219// field of the structure passed to sigaction().  This routine assumes that
3220// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3221//
3222// Note that the VM will print warnings if it detects conflicting signal
3223// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3224//
3225extern "C" int
3226JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3227                        void* ucontext, int abort_if_unrecognized);
3228
3229void signalHandler(int sig, siginfo_t* info, void* uc) {
3230  assert(info != NULL && uc != NULL, "it must be old kernel");
3231  JVM_handle_linux_signal(sig, info, uc, true);
3232}
3233
3234
3235// This boolean allows users to forward their own non-matching signals
3236// to JVM_handle_linux_signal, harmlessly.
3237bool os::Linux::signal_handlers_are_installed = false;
3238
3239// For signal-chaining
3240struct sigaction os::Linux::sigact[MAXSIGNUM];
3241unsigned int os::Linux::sigs = 0;
3242bool os::Linux::libjsig_is_loaded = false;
3243typedef struct sigaction *(*get_signal_t)(int);
3244get_signal_t os::Linux::get_signal_action = NULL;
3245
3246struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3247  struct sigaction *actp = NULL;
3248
3249  if (libjsig_is_loaded) {
3250    // Retrieve the old signal handler from libjsig
3251    actp = (*get_signal_action)(sig);
3252  }
3253  if (actp == NULL) {
3254    // Retrieve the preinstalled signal handler from jvm
3255    actp = get_preinstalled_handler(sig);
3256  }
3257
3258  return actp;
3259}
3260
3261static bool call_chained_handler(struct sigaction *actp, int sig,
3262                                 siginfo_t *siginfo, void *context) {
3263  // Call the old signal handler
3264  if (actp->sa_handler == SIG_DFL) {
3265    // It's more reasonable to let jvm treat it as an unexpected exception
3266    // instead of taking the default action.
3267    return false;
3268  } else if (actp->sa_handler != SIG_IGN) {
3269    if ((actp->sa_flags & SA_NODEFER) == 0) {
3270      // automaticlly block the signal
3271      sigaddset(&(actp->sa_mask), sig);
3272    }
3273
3274    sa_handler_t hand;
3275    sa_sigaction_t sa;
3276    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3277    // retrieve the chained handler
3278    if (siginfo_flag_set) {
3279      sa = actp->sa_sigaction;
3280    } else {
3281      hand = actp->sa_handler;
3282    }
3283
3284    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3285      actp->sa_handler = SIG_DFL;
3286    }
3287
3288    // try to honor the signal mask
3289    sigset_t oset;
3290    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3291
3292    // call into the chained handler
3293    if (siginfo_flag_set) {
3294      (*sa)(sig, siginfo, context);
3295    } else {
3296      (*hand)(sig);
3297    }
3298
3299    // restore the signal mask
3300    pthread_sigmask(SIG_SETMASK, &oset, 0);
3301  }
3302  // Tell jvm's signal handler the signal is taken care of.
3303  return true;
3304}
3305
3306bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3307  bool chained = false;
3308  // signal-chaining
3309  if (UseSignalChaining) {
3310    struct sigaction *actp = get_chained_signal_action(sig);
3311    if (actp != NULL) {
3312      chained = call_chained_handler(actp, sig, siginfo, context);
3313    }
3314  }
3315  return chained;
3316}
3317
3318struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3319  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3320    return &sigact[sig];
3321  }
3322  return NULL;
3323}
3324
3325void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3326  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3327  sigact[sig] = oldAct;
3328  sigs |= (unsigned int)1 << sig;
3329}
3330
3331// for diagnostic
3332int os::Linux::sigflags[MAXSIGNUM];
3333
3334int os::Linux::get_our_sigflags(int sig) {
3335  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3336  return sigflags[sig];
3337}
3338
3339void os::Linux::set_our_sigflags(int sig, int flags) {
3340  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3341  sigflags[sig] = flags;
3342}
3343
3344void os::Linux::set_signal_handler(int sig, bool set_installed) {
3345  // Check for overwrite.
3346  struct sigaction oldAct;
3347  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3348
3349  void* oldhand = oldAct.sa_sigaction
3350                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3351                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3352  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3353      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3354      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3355    if (AllowUserSignalHandlers || !set_installed) {
3356      // Do not overwrite; user takes responsibility to forward to us.
3357      return;
3358    } else if (UseSignalChaining) {
3359      // save the old handler in jvm
3360      save_preinstalled_handler(sig, oldAct);
3361      // libjsig also interposes the sigaction() call below and saves the
3362      // old sigaction on it own.
3363    } else {
3364      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
3365    }
3366  }
3367
3368  struct sigaction sigAct;
3369  sigfillset(&(sigAct.sa_mask));
3370  sigAct.sa_handler = SIG_DFL;
3371  if (!set_installed) {
3372    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3373  } else {
3374    sigAct.sa_sigaction = signalHandler;
3375    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3376  }
3377  // Save flags, which are set by ours
3378  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3379  sigflags[sig] = sigAct.sa_flags;
3380
3381  int ret = sigaction(sig, &sigAct, &oldAct);
3382  assert(ret == 0, "check");
3383
3384  void* oldhand2  = oldAct.sa_sigaction
3385                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3386                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3387  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3388}
3389
3390// install signal handlers for signals that HotSpot needs to
3391// handle in order to support Java-level exception handling.
3392
3393void os::Linux::install_signal_handlers() {
3394  if (!signal_handlers_are_installed) {
3395    signal_handlers_are_installed = true;
3396
3397    // signal-chaining
3398    typedef void (*signal_setting_t)();
3399    signal_setting_t begin_signal_setting = NULL;
3400    signal_setting_t end_signal_setting = NULL;
3401    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3402                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3403    if (begin_signal_setting != NULL) {
3404      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3405                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3406      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3407                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3408      libjsig_is_loaded = true;
3409      assert(UseSignalChaining, "should enable signal-chaining");
3410    }
3411    if (libjsig_is_loaded) {
3412      // Tell libjsig jvm is setting signal handlers
3413      (*begin_signal_setting)();
3414    }
3415
3416    set_signal_handler(SIGSEGV, true);
3417    set_signal_handler(SIGPIPE, true);
3418    set_signal_handler(SIGBUS, true);
3419    set_signal_handler(SIGILL, true);
3420    set_signal_handler(SIGFPE, true);
3421    set_signal_handler(SIGXFSZ, true);
3422
3423    if (libjsig_is_loaded) {
3424      // Tell libjsig jvm finishes setting signal handlers
3425      (*end_signal_setting)();
3426    }
3427
3428    // We don't activate signal checker if libjsig is in place, we trust ourselves
3429    // and if UserSignalHandler is installed all bets are off
3430    if (CheckJNICalls) {
3431      if (libjsig_is_loaded) {
3432        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3433        check_signals = false;
3434      }
3435      if (AllowUserSignalHandlers) {
3436        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3437        check_signals = false;
3438      }
3439    }
3440  }
3441}
3442
3443// This is the fastest way to get thread cpu time on Linux.
3444// Returns cpu time (user+sys) for any thread, not only for current.
3445// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3446// It might work on 2.6.10+ with a special kernel/glibc patch.
3447// For reference, please, see IEEE Std 1003.1-2004:
3448//   http://www.unix.org/single_unix_specification
3449
3450jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3451  struct timespec tp;
3452  int rc = os::Linux::clock_gettime(clockid, &tp);
3453  assert(rc == 0, "clock_gettime is expected to return 0 code");
3454
3455  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3456}
3457
3458/////
3459// glibc on Linux platform uses non-documented flag
3460// to indicate, that some special sort of signal
3461// trampoline is used.
3462// We will never set this flag, and we should
3463// ignore this flag in our diagnostic
3464#ifdef SIGNIFICANT_SIGNAL_MASK
3465#undef SIGNIFICANT_SIGNAL_MASK
3466#endif
3467#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3468
3469static const char* get_signal_handler_name(address handler,
3470                                           char* buf, int buflen) {
3471  int offset;
3472  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3473  if (found) {
3474    // skip directory names
3475    const char *p1, *p2;
3476    p1 = buf;
3477    size_t len = strlen(os::file_separator());
3478    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3479    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3480  } else {
3481    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3482  }
3483  return buf;
3484}
3485
3486static void print_signal_handler(outputStream* st, int sig,
3487                                 char* buf, size_t buflen) {
3488  struct sigaction sa;
3489
3490  sigaction(sig, NULL, &sa);
3491
3492  // See comment for SIGNIFICANT_SIGNAL_MASK define
3493  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3494
3495  st->print("%s: ", os::exception_name(sig, buf, buflen));
3496
3497  address handler = (sa.sa_flags & SA_SIGINFO)
3498    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3499    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3500
3501  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3502    st->print("SIG_DFL");
3503  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3504    st->print("SIG_IGN");
3505  } else {
3506    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3507  }
3508
3509  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3510
3511  address rh = VMError::get_resetted_sighandler(sig);
3512  // May be, handler was resetted by VMError?
3513  if(rh != NULL) {
3514    handler = rh;
3515    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3516  }
3517
3518  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3519
3520  // Check: is it our handler?
3521  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3522     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3523    // It is our signal handler
3524    // check for flags, reset system-used one!
3525    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3526      st->print(
3527                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3528                os::Linux::get_our_sigflags(sig));
3529    }
3530  }
3531  st->cr();
3532}
3533
3534
3535#define DO_SIGNAL_CHECK(sig) \
3536  if (!sigismember(&check_signal_done, sig)) \
3537    os::Linux::check_signal_handler(sig)
3538
3539// This method is a periodic task to check for misbehaving JNI applications
3540// under CheckJNI, we can add any periodic checks here
3541
3542void os::run_periodic_checks() {
3543
3544  if (check_signals == false) return;
3545
3546  // SEGV and BUS if overridden could potentially prevent
3547  // generation of hs*.log in the event of a crash, debugging
3548  // such a case can be very challenging, so we absolutely
3549  // check the following for a good measure:
3550  DO_SIGNAL_CHECK(SIGSEGV);
3551  DO_SIGNAL_CHECK(SIGILL);
3552  DO_SIGNAL_CHECK(SIGFPE);
3553  DO_SIGNAL_CHECK(SIGBUS);
3554  DO_SIGNAL_CHECK(SIGPIPE);
3555  DO_SIGNAL_CHECK(SIGXFSZ);
3556
3557
3558  // ReduceSignalUsage allows the user to override these handlers
3559  // see comments at the very top and jvm_solaris.h
3560  if (!ReduceSignalUsage) {
3561    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3562    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3563    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3564    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3565  }
3566
3567  DO_SIGNAL_CHECK(SR_signum);
3568  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3569}
3570
3571typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3572
3573static os_sigaction_t os_sigaction = NULL;
3574
3575void os::Linux::check_signal_handler(int sig) {
3576  char buf[O_BUFLEN];
3577  address jvmHandler = NULL;
3578
3579
3580  struct sigaction act;
3581  if (os_sigaction == NULL) {
3582    // only trust the default sigaction, in case it has been interposed
3583    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3584    if (os_sigaction == NULL) return;
3585  }
3586
3587  os_sigaction(sig, (struct sigaction*)NULL, &act);
3588
3589
3590  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3591
3592  address thisHandler = (act.sa_flags & SA_SIGINFO)
3593    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3594    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3595
3596
3597  switch(sig) {
3598  case SIGSEGV:
3599  case SIGBUS:
3600  case SIGFPE:
3601  case SIGPIPE:
3602  case SIGILL:
3603  case SIGXFSZ:
3604    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3605    break;
3606
3607  case SHUTDOWN1_SIGNAL:
3608  case SHUTDOWN2_SIGNAL:
3609  case SHUTDOWN3_SIGNAL:
3610  case BREAK_SIGNAL:
3611    jvmHandler = (address)user_handler();
3612    break;
3613
3614  case INTERRUPT_SIGNAL:
3615    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3616    break;
3617
3618  default:
3619    if (sig == SR_signum) {
3620      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3621    } else {
3622      return;
3623    }
3624    break;
3625  }
3626
3627  if (thisHandler != jvmHandler) {
3628    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3629    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3630    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3631    // No need to check this sig any longer
3632    sigaddset(&check_signal_done, sig);
3633  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3634    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3635    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3636    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3637    // No need to check this sig any longer
3638    sigaddset(&check_signal_done, sig);
3639  }
3640
3641  // Dump all the signal
3642  if (sigismember(&check_signal_done, sig)) {
3643    print_signal_handlers(tty, buf, O_BUFLEN);
3644  }
3645}
3646
3647extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3648
3649extern bool signal_name(int signo, char* buf, size_t len);
3650
3651const char* os::exception_name(int exception_code, char* buf, size_t size) {
3652  if (0 < exception_code && exception_code <= SIGRTMAX) {
3653    // signal
3654    if (!signal_name(exception_code, buf, size)) {
3655      jio_snprintf(buf, size, "SIG%d", exception_code);
3656    }
3657    return buf;
3658  } else {
3659    return NULL;
3660  }
3661}
3662
3663// this is called _before_ the most of global arguments have been parsed
3664void os::init(void) {
3665  char dummy;   /* used to get a guess on initial stack address */
3666//  first_hrtime = gethrtime();
3667
3668  // With LinuxThreads the JavaMain thread pid (primordial thread)
3669  // is different than the pid of the java launcher thread.
3670  // So, on Linux, the launcher thread pid is passed to the VM
3671  // via the sun.java.launcher.pid property.
3672  // Use this property instead of getpid() if it was correctly passed.
3673  // See bug 6351349.
3674  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3675
3676  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3677
3678  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3679
3680  init_random(1234567);
3681
3682  ThreadCritical::initialize();
3683
3684  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3685  if (Linux::page_size() == -1) {
3686    fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
3687  }
3688  init_page_sizes((size_t) Linux::page_size());
3689
3690  Linux::initialize_system_info();
3691
3692  // main_thread points to the aboriginal thread
3693  Linux::_main_thread = pthread_self();
3694
3695  Linux::clock_init();
3696  initial_time_count = os::elapsed_counter();
3697  pthread_mutex_init(&dl_mutex, NULL);
3698}
3699
3700// To install functions for atexit system call
3701extern "C" {
3702  static void perfMemory_exit_helper() {
3703    perfMemory_exit();
3704  }
3705}
3706
3707// this is called _after_ the global arguments have been parsed
3708jint os::init_2(void)
3709{
3710  Linux::fast_thread_clock_init();
3711
3712  // Allocate a single page and mark it as readable for safepoint polling
3713  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3714  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3715
3716  os::set_polling_page( polling_page );
3717
3718#ifndef PRODUCT
3719  if(Verbose && PrintMiscellaneous)
3720    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3721#endif
3722
3723  if (!UseMembar) {
3724    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3725    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3726    os::set_memory_serialize_page( mem_serialize_page );
3727
3728#ifndef PRODUCT
3729    if(Verbose && PrintMiscellaneous)
3730      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3731#endif
3732  }
3733
3734  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3735
3736  // initialize suspend/resume support - must do this before signal_sets_init()
3737  if (SR_initialize() != 0) {
3738    perror("SR_initialize failed");
3739    return JNI_ERR;
3740  }
3741
3742  Linux::signal_sets_init();
3743  Linux::install_signal_handlers();
3744
3745  size_t threadStackSizeInBytes = ThreadStackSize * K;
3746  if (threadStackSizeInBytes != 0 &&
3747      threadStackSizeInBytes < Linux::min_stack_allowed) {
3748        tty->print_cr("\nThe stack size specified is too small, "
3749                      "Specify at least %dk",
3750                      Linux::min_stack_allowed / K);
3751        return JNI_ERR;
3752  }
3753
3754  // Make the stack size a multiple of the page size so that
3755  // the yellow/red zones can be guarded.
3756  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3757        vm_page_size()));
3758
3759  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3760
3761  Linux::libpthread_init();
3762  if (PrintMiscellaneous && (Verbose || WizardMode)) {
3763     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3764          Linux::glibc_version(), Linux::libpthread_version(),
3765          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3766  }
3767
3768  if (UseNUMA) {
3769    if (!Linux::libnuma_init()) {
3770      UseNUMA = false;
3771    } else {
3772      if ((Linux::numa_max_node() < 1)) {
3773        // There's only one node(they start from 0), disable NUMA.
3774        UseNUMA = false;
3775      }
3776    }
3777    if (!UseNUMA && ForceNUMA) {
3778      UseNUMA = true;
3779    }
3780  }
3781
3782  if (MaxFDLimit) {
3783    // set the number of file descriptors to max. print out error
3784    // if getrlimit/setrlimit fails but continue regardless.
3785    struct rlimit nbr_files;
3786    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3787    if (status != 0) {
3788      if (PrintMiscellaneous && (Verbose || WizardMode))
3789        perror("os::init_2 getrlimit failed");
3790    } else {
3791      nbr_files.rlim_cur = nbr_files.rlim_max;
3792      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3793      if (status != 0) {
3794        if (PrintMiscellaneous && (Verbose || WizardMode))
3795          perror("os::init_2 setrlimit failed");
3796      }
3797    }
3798  }
3799
3800  // Initialize lock used to serialize thread creation (see os::create_thread)
3801  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3802
3803  // Initialize HPI.
3804  jint hpi_result = hpi::initialize();
3805  if (hpi_result != JNI_OK) {
3806    tty->print_cr("There was an error trying to initialize the HPI library.");
3807    return hpi_result;
3808  }
3809
3810  // at-exit methods are called in the reverse order of their registration.
3811  // atexit functions are called on return from main or as a result of a
3812  // call to exit(3C). There can be only 32 of these functions registered
3813  // and atexit() does not set errno.
3814
3815  if (PerfAllowAtExitRegistration) {
3816    // only register atexit functions if PerfAllowAtExitRegistration is set.
3817    // atexit functions can be delayed until process exit time, which
3818    // can be problematic for embedded VM situations. Embedded VMs should
3819    // call DestroyJavaVM() to assure that VM resources are released.
3820
3821    // note: perfMemory_exit_helper atexit function may be removed in
3822    // the future if the appropriate cleanup code can be added to the
3823    // VM_Exit VMOperation's doit method.
3824    if (atexit(perfMemory_exit_helper) != 0) {
3825      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3826    }
3827  }
3828
3829  // initialize thread priority policy
3830  prio_init();
3831
3832  return JNI_OK;
3833}
3834
3835// Mark the polling page as unreadable
3836void os::make_polling_page_unreadable(void) {
3837  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
3838    fatal("Could not disable polling page");
3839};
3840
3841// Mark the polling page as readable
3842void os::make_polling_page_readable(void) {
3843  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
3844    fatal("Could not enable polling page");
3845  }
3846};
3847
3848int os::active_processor_count() {
3849  // Linux doesn't yet have a (official) notion of processor sets,
3850  // so just return the number of online processors.
3851  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3852  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3853  return online_cpus;
3854}
3855
3856bool os::distribute_processes(uint length, uint* distribution) {
3857  // Not yet implemented.
3858  return false;
3859}
3860
3861bool os::bind_to_processor(uint processor_id) {
3862  // Not yet implemented.
3863  return false;
3864}
3865
3866///
3867
3868// Suspends the target using the signal mechanism and then grabs the PC before
3869// resuming the target. Used by the flat-profiler only
3870ExtendedPC os::get_thread_pc(Thread* thread) {
3871  // Make sure that it is called by the watcher for the VMThread
3872  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3873  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3874
3875  ExtendedPC epc;
3876
3877  OSThread* osthread = thread->osthread();
3878  if (do_suspend(osthread)) {
3879    if (osthread->ucontext() != NULL) {
3880      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
3881    } else {
3882      // NULL context is unexpected, double-check this is the VMThread
3883      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3884    }
3885    do_resume(osthread);
3886  }
3887  // failure means pthread_kill failed for some reason - arguably this is
3888  // a fatal problem, but such problems are ignored elsewhere
3889
3890  return epc;
3891}
3892
3893int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3894{
3895   if (is_NPTL()) {
3896      return pthread_cond_timedwait(_cond, _mutex, _abstime);
3897   } else {
3898#ifndef IA64
3899      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
3900      // word back to default 64bit precision if condvar is signaled. Java
3901      // wants 53bit precision.  Save and restore current value.
3902      int fpu = get_fpu_control_word();
3903#endif // IA64
3904      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
3905#ifndef IA64
3906      set_fpu_control_word(fpu);
3907#endif // IA64
3908      return status;
3909   }
3910}
3911
3912////////////////////////////////////////////////////////////////////////////////
3913// debug support
3914
3915#ifndef PRODUCT
3916static address same_page(address x, address y) {
3917  int page_bits = -os::vm_page_size();
3918  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3919    return x;
3920  else if (x > y)
3921    return (address)(intptr_t(y) | ~page_bits) + 1;
3922  else
3923    return (address)(intptr_t(y) & page_bits);
3924}
3925
3926bool os::find(address addr) {
3927  Dl_info dlinfo;
3928  memset(&dlinfo, 0, sizeof(dlinfo));
3929  if (dladdr(addr, &dlinfo)) {
3930    tty->print(PTR_FORMAT ": ", addr);
3931    if (dlinfo.dli_sname != NULL) {
3932      tty->print("%s+%#x", dlinfo.dli_sname,
3933                 addr - (intptr_t)dlinfo.dli_saddr);
3934    } else if (dlinfo.dli_fname) {
3935      tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3936    } else {
3937      tty->print("<absolute address>");
3938    }
3939    if (dlinfo.dli_fname) {
3940      tty->print(" in %s", dlinfo.dli_fname);
3941    }
3942    if (dlinfo.dli_fbase) {
3943      tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3944    }
3945    tty->cr();
3946
3947    if (Verbose) {
3948      // decode some bytes around the PC
3949      address begin = same_page(addr-40, addr);
3950      address end   = same_page(addr+40, addr);
3951      address       lowest = (address) dlinfo.dli_sname;
3952      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3953      if (begin < lowest)  begin = lowest;
3954      Dl_info dlinfo2;
3955      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3956          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3957        end = (address) dlinfo2.dli_saddr;
3958      Disassembler::decode(begin, end);
3959    }
3960    return true;
3961  }
3962  return false;
3963}
3964
3965#endif
3966
3967////////////////////////////////////////////////////////////////////////////////
3968// misc
3969
3970// This does not do anything on Linux. This is basically a hook for being
3971// able to use structured exception handling (thread-local exception filters)
3972// on, e.g., Win32.
3973void
3974os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3975                         JavaCallArguments* args, Thread* thread) {
3976  f(value, method, args, thread);
3977}
3978
3979void os::print_statistics() {
3980}
3981
3982int os::message_box(const char* title, const char* message) {
3983  int i;
3984  fdStream err(defaultStream::error_fd());
3985  for (i = 0; i < 78; i++) err.print_raw("=");
3986  err.cr();
3987  err.print_raw_cr(title);
3988  for (i = 0; i < 78; i++) err.print_raw("-");
3989  err.cr();
3990  err.print_raw_cr(message);
3991  for (i = 0; i < 78; i++) err.print_raw("=");
3992  err.cr();
3993
3994  char buf[16];
3995  // Prevent process from exiting upon "read error" without consuming all CPU
3996  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3997
3998  return buf[0] == 'y' || buf[0] == 'Y';
3999}
4000
4001int os::stat(const char *path, struct stat *sbuf) {
4002  char pathbuf[MAX_PATH];
4003  if (strlen(path) > MAX_PATH - 1) {
4004    errno = ENAMETOOLONG;
4005    return -1;
4006  }
4007  hpi::native_path(strcpy(pathbuf, path));
4008  return ::stat(pathbuf, sbuf);
4009}
4010
4011bool os::check_heap(bool force) {
4012  return true;
4013}
4014
4015int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4016  return ::vsnprintf(buf, count, format, args);
4017}
4018
4019// Is a (classpath) directory empty?
4020bool os::dir_is_empty(const char* path) {
4021  DIR *dir = NULL;
4022  struct dirent *ptr;
4023
4024  dir = opendir(path);
4025  if (dir == NULL) return true;
4026
4027  /* Scan the directory */
4028  bool result = true;
4029  char buf[sizeof(struct dirent) + MAX_PATH];
4030  while (result && (ptr = ::readdir(dir)) != NULL) {
4031    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4032      result = false;
4033    }
4034  }
4035  closedir(dir);
4036  return result;
4037}
4038
4039// create binary file, rewriting existing file if required
4040int os::create_binary_file(const char* path, bool rewrite_existing) {
4041  int oflags = O_WRONLY | O_CREAT;
4042  if (!rewrite_existing) {
4043    oflags |= O_EXCL;
4044  }
4045  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4046}
4047
4048// return current position of file pointer
4049jlong os::current_file_offset(int fd) {
4050  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4051}
4052
4053// move file pointer to the specified offset
4054jlong os::seek_to_file_offset(int fd, jlong offset) {
4055  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4056}
4057
4058// Map a block of memory.
4059char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4060                     char *addr, size_t bytes, bool read_only,
4061                     bool allow_exec) {
4062  int prot;
4063  int flags;
4064
4065  if (read_only) {
4066    prot = PROT_READ;
4067    flags = MAP_SHARED;
4068  } else {
4069    prot = PROT_READ | PROT_WRITE;
4070    flags = MAP_PRIVATE;
4071  }
4072
4073  if (allow_exec) {
4074    prot |= PROT_EXEC;
4075  }
4076
4077  if (addr != NULL) {
4078    flags |= MAP_FIXED;
4079  }
4080
4081  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4082                                     fd, file_offset);
4083  if (mapped_address == MAP_FAILED) {
4084    return NULL;
4085  }
4086  return mapped_address;
4087}
4088
4089
4090// Remap a block of memory.
4091char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4092                       char *addr, size_t bytes, bool read_only,
4093                       bool allow_exec) {
4094  // same as map_memory() on this OS
4095  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4096                        allow_exec);
4097}
4098
4099
4100// Unmap a block of memory.
4101bool os::unmap_memory(char* addr, size_t bytes) {
4102  return munmap(addr, bytes) == 0;
4103}
4104
4105static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4106
4107static clockid_t thread_cpu_clockid(Thread* thread) {
4108  pthread_t tid = thread->osthread()->pthread_id();
4109  clockid_t clockid;
4110
4111  // Get thread clockid
4112  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4113  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4114  return clockid;
4115}
4116
4117// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4118// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4119// of a thread.
4120//
4121// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4122// the fast estimate available on the platform.
4123
4124jlong os::current_thread_cpu_time() {
4125  if (os::Linux::supports_fast_thread_cpu_time()) {
4126    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4127  } else {
4128    // return user + sys since the cost is the same
4129    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4130  }
4131}
4132
4133jlong os::thread_cpu_time(Thread* thread) {
4134  // consistent with what current_thread_cpu_time() returns
4135  if (os::Linux::supports_fast_thread_cpu_time()) {
4136    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4137  } else {
4138    return slow_thread_cpu_time(thread, true /* user + sys */);
4139  }
4140}
4141
4142jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4143  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4144    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4145  } else {
4146    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4147  }
4148}
4149
4150jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4151  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4152    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4153  } else {
4154    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4155  }
4156}
4157
4158//
4159//  -1 on error.
4160//
4161
4162static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4163  static bool proc_pid_cpu_avail = true;
4164  static bool proc_task_unchecked = true;
4165  static const char *proc_stat_path = "/proc/%d/stat";
4166  pid_t  tid = thread->osthread()->thread_id();
4167  int i;
4168  char *s;
4169  char stat[2048];
4170  int statlen;
4171  char proc_name[64];
4172  int count;
4173  long sys_time, user_time;
4174  char string[64];
4175  int idummy;
4176  long ldummy;
4177  FILE *fp;
4178
4179  // We first try accessing /proc/<pid>/cpu since this is faster to
4180  // process.  If this file is not present (linux kernels 2.5 and above)
4181  // then we open /proc/<pid>/stat.
4182  if ( proc_pid_cpu_avail ) {
4183    sprintf(proc_name, "/proc/%d/cpu", tid);
4184    fp =  fopen(proc_name, "r");
4185    if ( fp != NULL ) {
4186      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4187      fclose(fp);
4188      if ( count != 3 ) return -1;
4189
4190      if (user_sys_cpu_time) {
4191        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4192      } else {
4193        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4194      }
4195    }
4196    else proc_pid_cpu_avail = false;
4197  }
4198
4199  // The /proc/<tid>/stat aggregates per-process usage on
4200  // new Linux kernels 2.6+ where NPTL is supported.
4201  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4202  // See bug 6328462.
4203  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4204  // and possibly in some other cases, so we check its availability.
4205  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4206    // This is executed only once
4207    proc_task_unchecked = false;
4208    fp = fopen("/proc/self/task", "r");
4209    if (fp != NULL) {
4210      proc_stat_path = "/proc/self/task/%d/stat";
4211      fclose(fp);
4212    }
4213  }
4214
4215  sprintf(proc_name, proc_stat_path, tid);
4216  fp = fopen(proc_name, "r");
4217  if ( fp == NULL ) return -1;
4218  statlen = fread(stat, 1, 2047, fp);
4219  stat[statlen] = '\0';
4220  fclose(fp);
4221
4222  // Skip pid and the command string. Note that we could be dealing with
4223  // weird command names, e.g. user could decide to rename java launcher
4224  // to "java 1.4.2 :)", then the stat file would look like
4225  //                1234 (java 1.4.2 :)) R ... ...
4226  // We don't really need to know the command string, just find the last
4227  // occurrence of ")" and then start parsing from there. See bug 4726580.
4228  s = strrchr(stat, ')');
4229  i = 0;
4230  if (s == NULL ) return -1;
4231
4232  // Skip blank chars
4233  do s++; while (isspace(*s));
4234
4235  count = sscanf(s,"%*c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4236                 &idummy, &idummy, &idummy, &idummy, &idummy,
4237                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4238                 &user_time, &sys_time);
4239  if ( count != 12 ) return -1;
4240  if (user_sys_cpu_time) {
4241    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4242  } else {
4243    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4244  }
4245}
4246
4247void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4248  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4249  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4250  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4251  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4252}
4253
4254void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4255  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4256  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4257  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4258  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4259}
4260
4261bool os::is_thread_cpu_time_supported() {
4262  return true;
4263}
4264
4265// System loadavg support.  Returns -1 if load average cannot be obtained.
4266// Linux doesn't yet have a (official) notion of processor sets,
4267// so just return the system wide load average.
4268int os::loadavg(double loadavg[], int nelem) {
4269  return ::getloadavg(loadavg, nelem);
4270}
4271
4272void os::pause() {
4273  char filename[MAX_PATH];
4274  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4275    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4276  } else {
4277    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4278  }
4279
4280  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4281  if (fd != -1) {
4282    struct stat buf;
4283    close(fd);
4284    while (::stat(filename, &buf) == 0) {
4285      (void)::poll(NULL, 0, 100);
4286    }
4287  } else {
4288    jio_fprintf(stderr,
4289      "Could not open pause file '%s', continuing immediately.\n", filename);
4290  }
4291}
4292
4293extern "C" {
4294
4295/**
4296 * NOTE: the following code is to keep the green threads code
4297 * in the libjava.so happy. Once the green threads is removed,
4298 * these code will no longer be needed.
4299 */
4300int
4301jdk_waitpid(pid_t pid, int* status, int options) {
4302    return waitpid(pid, status, options);
4303}
4304
4305int
4306fork1() {
4307    return fork();
4308}
4309
4310int
4311jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4312    return sem_init(sem, pshared, value);
4313}
4314
4315int
4316jdk_sem_post(sem_t *sem) {
4317    return sem_post(sem);
4318}
4319
4320int
4321jdk_sem_wait(sem_t *sem) {
4322    return sem_wait(sem);
4323}
4324
4325int
4326jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4327    return pthread_sigmask(how , newmask, oldmask);
4328}
4329
4330}
4331
4332// Refer to the comments in os_solaris.cpp park-unpark.
4333//
4334// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4335// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4336// For specifics regarding the bug see GLIBC BUGID 261237 :
4337//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4338// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4339// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4340// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4341// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4342// and monitorenter when we're using 1-0 locking.  All those operations may result in
4343// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4344// of libpthread avoids the problem, but isn't practical.
4345//
4346// Possible remedies:
4347//
4348// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4349//      This is palliative and probabilistic, however.  If the thread is preempted
4350//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4351//      than the minimum period may have passed, and the abstime may be stale (in the
4352//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4353//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4354//
4355// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4356//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4357//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4358//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4359//      thread.
4360//
4361// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4362//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4363//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4364//      This also works well.  In fact it avoids kernel-level scalability impediments
4365//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4366//      timers in a graceful fashion.
4367//
4368// 4.   When the abstime value is in the past it appears that control returns
4369//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4370//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4371//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4372//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4373//      It may be possible to avoid reinitialization by checking the return
4374//      value from pthread_cond_timedwait().  In addition to reinitializing the
4375//      condvar we must establish the invariant that cond_signal() is only called
4376//      within critical sections protected by the adjunct mutex.  This prevents
4377//      cond_signal() from "seeing" a condvar that's in the midst of being
4378//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4379//      desirable signal-after-unlock optimization that avoids futile context switching.
4380//
4381//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4382//      structure when a condvar is used or initialized.  cond_destroy()  would
4383//      release the helper structure.  Our reinitialize-after-timedwait fix
4384//      put excessive stress on malloc/free and locks protecting the c-heap.
4385//
4386// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4387// It may be possible to refine (4) by checking the kernel and NTPL verisons
4388// and only enabling the work-around for vulnerable environments.
4389
4390// utility to compute the abstime argument to timedwait:
4391// millis is the relative timeout time
4392// abstime will be the absolute timeout time
4393// TODO: replace compute_abstime() with unpackTime()
4394
4395static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4396  if (millis < 0)  millis = 0;
4397  struct timeval now;
4398  int status = gettimeofday(&now, NULL);
4399  assert(status == 0, "gettimeofday");
4400  jlong seconds = millis / 1000;
4401  millis %= 1000;
4402  if (seconds > 50000000) { // see man cond_timedwait(3T)
4403    seconds = 50000000;
4404  }
4405  abstime->tv_sec = now.tv_sec  + seconds;
4406  long       usec = now.tv_usec + millis * 1000;
4407  if (usec >= 1000000) {
4408    abstime->tv_sec += 1;
4409    usec -= 1000000;
4410  }
4411  abstime->tv_nsec = usec * 1000;
4412  return abstime;
4413}
4414
4415
4416// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4417// Conceptually TryPark() should be equivalent to park(0).
4418
4419int os::PlatformEvent::TryPark() {
4420  for (;;) {
4421    const int v = _Event ;
4422    guarantee ((v == 0) || (v == 1), "invariant") ;
4423    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4424  }
4425}
4426
4427void os::PlatformEvent::park() {       // AKA "down()"
4428  // Invariant: Only the thread associated with the Event/PlatformEvent
4429  // may call park().
4430  // TODO: assert that _Assoc != NULL or _Assoc == Self
4431  int v ;
4432  for (;;) {
4433      v = _Event ;
4434      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4435  }
4436  guarantee (v >= 0, "invariant") ;
4437  if (v == 0) {
4438     // Do this the hard way by blocking ...
4439     int status = pthread_mutex_lock(_mutex);
4440     assert_status(status == 0, status, "mutex_lock");
4441     guarantee (_nParked == 0, "invariant") ;
4442     ++ _nParked ;
4443     while (_Event < 0) {
4444        status = pthread_cond_wait(_cond, _mutex);
4445        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4446        // Treat this the same as if the wait was interrupted
4447        if (status == ETIME) { status = EINTR; }
4448        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4449     }
4450     -- _nParked ;
4451
4452    // In theory we could move the ST of 0 into _Event past the unlock(),
4453    // but then we'd need a MEMBAR after the ST.
4454    _Event = 0 ;
4455     status = pthread_mutex_unlock(_mutex);
4456     assert_status(status == 0, status, "mutex_unlock");
4457  }
4458  guarantee (_Event >= 0, "invariant") ;
4459}
4460
4461int os::PlatformEvent::park(jlong millis) {
4462  guarantee (_nParked == 0, "invariant") ;
4463
4464  int v ;
4465  for (;;) {
4466      v = _Event ;
4467      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4468  }
4469  guarantee (v >= 0, "invariant") ;
4470  if (v != 0) return OS_OK ;
4471
4472  // We do this the hard way, by blocking the thread.
4473  // Consider enforcing a minimum timeout value.
4474  struct timespec abst;
4475  compute_abstime(&abst, millis);
4476
4477  int ret = OS_TIMEOUT;
4478  int status = pthread_mutex_lock(_mutex);
4479  assert_status(status == 0, status, "mutex_lock");
4480  guarantee (_nParked == 0, "invariant") ;
4481  ++_nParked ;
4482
4483  // Object.wait(timo) will return because of
4484  // (a) notification
4485  // (b) timeout
4486  // (c) thread.interrupt
4487  //
4488  // Thread.interrupt and object.notify{All} both call Event::set.
4489  // That is, we treat thread.interrupt as a special case of notification.
4490  // The underlying Solaris implementation, cond_timedwait, admits
4491  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4492  // JVM from making those visible to Java code.  As such, we must
4493  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4494  //
4495  // TODO: properly differentiate simultaneous notify+interrupt.
4496  // In that case, we should propagate the notify to another waiter.
4497
4498  while (_Event < 0) {
4499    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4500    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4501      pthread_cond_destroy (_cond);
4502      pthread_cond_init (_cond, NULL) ;
4503    }
4504    assert_status(status == 0 || status == EINTR ||
4505                  status == ETIME || status == ETIMEDOUT,
4506                  status, "cond_timedwait");
4507    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4508    if (status == ETIME || status == ETIMEDOUT) break ;
4509    // We consume and ignore EINTR and spurious wakeups.
4510  }
4511  --_nParked ;
4512  if (_Event >= 0) {
4513     ret = OS_OK;
4514  }
4515  _Event = 0 ;
4516  status = pthread_mutex_unlock(_mutex);
4517  assert_status(status == 0, status, "mutex_unlock");
4518  assert (_nParked == 0, "invariant") ;
4519  return ret;
4520}
4521
4522void os::PlatformEvent::unpark() {
4523  int v, AnyWaiters ;
4524  for (;;) {
4525      v = _Event ;
4526      if (v > 0) {
4527         // The LD of _Event could have reordered or be satisfied
4528         // by a read-aside from this processor's write buffer.
4529         // To avoid problems execute a barrier and then
4530         // ratify the value.
4531         OrderAccess::fence() ;
4532         if (_Event == v) return ;
4533         continue ;
4534      }
4535      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4536  }
4537  if (v < 0) {
4538     // Wait for the thread associated with the event to vacate
4539     int status = pthread_mutex_lock(_mutex);
4540     assert_status(status == 0, status, "mutex_lock");
4541     AnyWaiters = _nParked ;
4542     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4543     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4544        AnyWaiters = 0 ;
4545        pthread_cond_signal (_cond);
4546     }
4547     status = pthread_mutex_unlock(_mutex);
4548     assert_status(status == 0, status, "mutex_unlock");
4549     if (AnyWaiters != 0) {
4550        status = pthread_cond_signal(_cond);
4551        assert_status(status == 0, status, "cond_signal");
4552     }
4553  }
4554
4555  // Note that we signal() _after dropping the lock for "immortal" Events.
4556  // This is safe and avoids a common class of  futile wakeups.  In rare
4557  // circumstances this can cause a thread to return prematurely from
4558  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4559  // simply re-test the condition and re-park itself.
4560}
4561
4562
4563// JSR166
4564// -------------------------------------------------------
4565
4566/*
4567 * The solaris and linux implementations of park/unpark are fairly
4568 * conservative for now, but can be improved. They currently use a
4569 * mutex/condvar pair, plus a a count.
4570 * Park decrements count if > 0, else does a condvar wait.  Unpark
4571 * sets count to 1 and signals condvar.  Only one thread ever waits
4572 * on the condvar. Contention seen when trying to park implies that someone
4573 * is unparking you, so don't wait. And spurious returns are fine, so there
4574 * is no need to track notifications.
4575 */
4576
4577
4578#define NANOSECS_PER_SEC 1000000000
4579#define NANOSECS_PER_MILLISEC 1000000
4580#define MAX_SECS 100000000
4581/*
4582 * This code is common to linux and solaris and will be moved to a
4583 * common place in dolphin.
4584 *
4585 * The passed in time value is either a relative time in nanoseconds
4586 * or an absolute time in milliseconds. Either way it has to be unpacked
4587 * into suitable seconds and nanoseconds components and stored in the
4588 * given timespec structure.
4589 * Given time is a 64-bit value and the time_t used in the timespec is only
4590 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4591 * overflow if times way in the future are given. Further on Solaris versions
4592 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4593 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4594 * As it will be 28 years before "now + 100000000" will overflow we can
4595 * ignore overflow and just impose a hard-limit on seconds using the value
4596 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4597 * years from "now".
4598 */
4599
4600static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4601  assert (time > 0, "convertTime");
4602
4603  struct timeval now;
4604  int status = gettimeofday(&now, NULL);
4605  assert(status == 0, "gettimeofday");
4606
4607  time_t max_secs = now.tv_sec + MAX_SECS;
4608
4609  if (isAbsolute) {
4610    jlong secs = time / 1000;
4611    if (secs > max_secs) {
4612      absTime->tv_sec = max_secs;
4613    }
4614    else {
4615      absTime->tv_sec = secs;
4616    }
4617    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4618  }
4619  else {
4620    jlong secs = time / NANOSECS_PER_SEC;
4621    if (secs >= MAX_SECS) {
4622      absTime->tv_sec = max_secs;
4623      absTime->tv_nsec = 0;
4624    }
4625    else {
4626      absTime->tv_sec = now.tv_sec + secs;
4627      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4628      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4629        absTime->tv_nsec -= NANOSECS_PER_SEC;
4630        ++absTime->tv_sec; // note: this must be <= max_secs
4631      }
4632    }
4633  }
4634  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4635  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4636  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4637  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4638}
4639
4640void Parker::park(bool isAbsolute, jlong time) {
4641  // Optional fast-path check:
4642  // Return immediately if a permit is available.
4643  if (_counter > 0) {
4644      _counter = 0 ;
4645      return ;
4646  }
4647
4648  Thread* thread = Thread::current();
4649  assert(thread->is_Java_thread(), "Must be JavaThread");
4650  JavaThread *jt = (JavaThread *)thread;
4651
4652  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4653  // Check interrupt before trying to wait
4654  if (Thread::is_interrupted(thread, false)) {
4655    return;
4656  }
4657
4658  // Next, demultiplex/decode time arguments
4659  timespec absTime;
4660  if (time < 0) { // don't wait at all
4661    return;
4662  }
4663  if (time > 0) {
4664    unpackTime(&absTime, isAbsolute, time);
4665  }
4666
4667
4668  // Enter safepoint region
4669  // Beware of deadlocks such as 6317397.
4670  // The per-thread Parker:: mutex is a classic leaf-lock.
4671  // In particular a thread must never block on the Threads_lock while
4672  // holding the Parker:: mutex.  If safepoints are pending both the
4673  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4674  ThreadBlockInVM tbivm(jt);
4675
4676  // Don't wait if cannot get lock since interference arises from
4677  // unblocking.  Also. check interrupt before trying wait
4678  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4679    return;
4680  }
4681
4682  int status ;
4683  if (_counter > 0)  { // no wait needed
4684    _counter = 0;
4685    status = pthread_mutex_unlock(_mutex);
4686    assert (status == 0, "invariant") ;
4687    return;
4688  }
4689
4690#ifdef ASSERT
4691  // Don't catch signals while blocked; let the running threads have the signals.
4692  // (This allows a debugger to break into the running thread.)
4693  sigset_t oldsigs;
4694  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4695  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4696#endif
4697
4698  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4699  jt->set_suspend_equivalent();
4700  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4701
4702  if (time == 0) {
4703    status = pthread_cond_wait (_cond, _mutex) ;
4704  } else {
4705    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4706    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4707      pthread_cond_destroy (_cond) ;
4708      pthread_cond_init    (_cond, NULL);
4709    }
4710  }
4711  assert_status(status == 0 || status == EINTR ||
4712                status == ETIME || status == ETIMEDOUT,
4713                status, "cond_timedwait");
4714
4715#ifdef ASSERT
4716  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4717#endif
4718
4719  _counter = 0 ;
4720  status = pthread_mutex_unlock(_mutex) ;
4721  assert_status(status == 0, status, "invariant") ;
4722  // If externally suspended while waiting, re-suspend
4723  if (jt->handle_special_suspend_equivalent_condition()) {
4724    jt->java_suspend_self();
4725  }
4726
4727}
4728
4729void Parker::unpark() {
4730  int s, status ;
4731  status = pthread_mutex_lock(_mutex);
4732  assert (status == 0, "invariant") ;
4733  s = _counter;
4734  _counter = 1;
4735  if (s < 1) {
4736     if (WorkAroundNPTLTimedWaitHang) {
4737        status = pthread_cond_signal (_cond) ;
4738        assert (status == 0, "invariant") ;
4739        status = pthread_mutex_unlock(_mutex);
4740        assert (status == 0, "invariant") ;
4741     } else {
4742        status = pthread_mutex_unlock(_mutex);
4743        assert (status == 0, "invariant") ;
4744        status = pthread_cond_signal (_cond) ;
4745        assert (status == 0, "invariant") ;
4746     }
4747  } else {
4748    pthread_mutex_unlock(_mutex);
4749    assert (status == 0, "invariant") ;
4750  }
4751}
4752
4753
4754extern char** environ;
4755
4756#ifndef __NR_fork
4757#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4758#endif
4759
4760#ifndef __NR_execve
4761#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4762#endif
4763
4764// Run the specified command in a separate process. Return its exit value,
4765// or -1 on failure (e.g. can't fork a new process).
4766// Unlike system(), this function can be called from signal handler. It
4767// doesn't block SIGINT et al.
4768int os::fork_and_exec(char* cmd) {
4769  const char * argv[4] = {"sh", "-c", cmd, NULL};
4770
4771  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4772  // pthread_atfork handlers and reset pthread library. All we need is a
4773  // separate process to execve. Make a direct syscall to fork process.
4774  // On IA64 there's no fork syscall, we have to use fork() and hope for
4775  // the best...
4776  pid_t pid = NOT_IA64(syscall(__NR_fork);)
4777              IA64_ONLY(fork();)
4778
4779  if (pid < 0) {
4780    // fork failed
4781    return -1;
4782
4783  } else if (pid == 0) {
4784    // child process
4785
4786    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4787    // first to kill every thread on the thread list. Because this list is
4788    // not reset by fork() (see notes above), execve() will instead kill
4789    // every thread in the parent process. We know this is the only thread
4790    // in the new process, so make a system call directly.
4791    // IA64 should use normal execve() from glibc to match the glibc fork()
4792    // above.
4793    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4794    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4795
4796    // execve failed
4797    _exit(-1);
4798
4799  } else  {
4800    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4801    // care about the actual exit code, for now.
4802
4803    int status;
4804
4805    // Wait for the child process to exit.  This returns immediately if
4806    // the child has already exited. */
4807    while (waitpid(pid, &status, 0) < 0) {
4808        switch (errno) {
4809        case ECHILD: return 0;
4810        case EINTR: break;
4811        default: return -1;
4812        }
4813    }
4814
4815    if (WIFEXITED(status)) {
4816       // The child exited normally; get its exit code.
4817       return WEXITSTATUS(status);
4818    } else if (WIFSIGNALED(status)) {
4819       // The child exited because of a signal
4820       // The best value to return is 0x80 + signal number,
4821       // because that is what all Unix shells do, and because
4822       // it allows callers to distinguish between process exit and
4823       // process death by signal.
4824       return 0x80 + WTERMSIG(status);
4825    } else {
4826       // Unknown exit code; pass it through
4827       return status;
4828    }
4829  }
4830}
4831