os_linux.cpp revision 6646:b596a1063e90
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/atomic.inline.hpp"
45#include "runtime/extendedPC.hpp"
46#include "runtime/globals.hpp"
47#include "runtime/interfaceSupport.hpp"
48#include "runtime/init.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/elfFile.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <sys/types.h>
74# include <sys/mman.h>
75# include <sys/stat.h>
76# include <sys/select.h>
77# include <pthread.h>
78# include <signal.h>
79# include <errno.h>
80# include <dlfcn.h>
81# include <stdio.h>
82# include <unistd.h>
83# include <sys/resource.h>
84# include <pthread.h>
85# include <sys/stat.h>
86# include <sys/time.h>
87# include <sys/times.h>
88# include <sys/utsname.h>
89# include <sys/socket.h>
90# include <sys/wait.h>
91# include <pwd.h>
92# include <poll.h>
93# include <semaphore.h>
94# include <fcntl.h>
95# include <string.h>
96# include <syscall.h>
97# include <sys/sysinfo.h>
98# include <gnu/libc-version.h>
99# include <sys/ipc.h>
100# include <sys/shm.h>
101# include <link.h>
102# include <stdint.h>
103# include <inttypes.h>
104# include <sys/ioctl.h>
105
106PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
107
108// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
109// getrusage() is prepared to handle the associated failure.
110#ifndef RUSAGE_THREAD
111#define RUSAGE_THREAD   (1)               /* only the calling thread */
112#endif
113
114#define MAX_PATH    (2 * K)
115
116#define MAX_SECS 100000000
117
118// for timer info max values which include all bits
119#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
120
121#define LARGEPAGES_BIT (1 << 6)
122////////////////////////////////////////////////////////////////////////////////
123// global variables
124julong os::Linux::_physical_memory = 0;
125
126address   os::Linux::_initial_thread_stack_bottom = NULL;
127uintptr_t os::Linux::_initial_thread_stack_size   = 0;
128
129int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
130int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
131Mutex* os::Linux::_createThread_lock = NULL;
132pthread_t os::Linux::_main_thread;
133int os::Linux::_page_size = -1;
134const int os::Linux::_vm_default_page_size = (8 * K);
135bool os::Linux::_is_floating_stack = false;
136bool os::Linux::_is_NPTL = false;
137bool os::Linux::_supports_fast_thread_cpu_time = false;
138const char * os::Linux::_glibc_version = NULL;
139const char * os::Linux::_libpthread_version = NULL;
140pthread_condattr_t os::Linux::_condattr[1];
141
142static jlong initial_time_count=0;
143
144static int clock_tics_per_sec = 100;
145
146// For diagnostics to print a message once. see run_periodic_checks
147static sigset_t check_signal_done;
148static bool check_signals = true;
149
150static pid_t _initial_pid = 0;
151
152/* Signal number used to suspend/resume a thread */
153
154/* do not use any signal number less than SIGSEGV, see 4355769 */
155static int SR_signum = SIGUSR2;
156sigset_t SR_sigset;
157
158/* Used to protect dlsym() calls */
159static pthread_mutex_t dl_mutex;
160
161// Declarations
162static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
163
164#ifdef JAVASE_EMBEDDED
165class MemNotifyThread: public Thread {
166  friend class VMStructs;
167 public:
168  virtual void run();
169
170 private:
171  static MemNotifyThread* _memnotify_thread;
172  int _fd;
173
174 public:
175
176  // Constructor
177  MemNotifyThread(int fd);
178
179  // Tester
180  bool is_memnotify_thread() const { return true; }
181
182  // Printing
183  char* name() const { return (char*)"Linux MemNotify Thread"; }
184
185  // Returns the single instance of the MemNotifyThread
186  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
187
188  // Create and start the single instance of MemNotifyThread
189  static void start();
190};
191#endif // JAVASE_EMBEDDED
192
193// utility functions
194
195static int SR_initialize();
196
197julong os::available_memory() {
198  return Linux::available_memory();
199}
200
201julong os::Linux::available_memory() {
202  // values in struct sysinfo are "unsigned long"
203  struct sysinfo si;
204  sysinfo(&si);
205
206  return (julong)si.freeram * si.mem_unit;
207}
208
209julong os::physical_memory() {
210  return Linux::physical_memory();
211}
212
213////////////////////////////////////////////////////////////////////////////////
214// environment support
215
216bool os::getenv(const char* name, char* buf, int len) {
217  const char* val = ::getenv(name);
218  if (val != NULL && strlen(val) < (size_t)len) {
219    strcpy(buf, val);
220    return true;
221  }
222  if (len > 0) buf[0] = 0;  // return a null string
223  return false;
224}
225
226
227// Return true if user is running as root.
228
229bool os::have_special_privileges() {
230  static bool init = false;
231  static bool privileges = false;
232  if (!init) {
233    privileges = (getuid() != geteuid()) || (getgid() != getegid());
234    init = true;
235  }
236  return privileges;
237}
238
239
240#ifndef SYS_gettid
241// i386: 224, ia64: 1105, amd64: 186, sparc 143
242#ifdef __ia64__
243#define SYS_gettid 1105
244#elif __i386__
245#define SYS_gettid 224
246#elif __amd64__
247#define SYS_gettid 186
248#elif __sparc__
249#define SYS_gettid 143
250#else
251#error define gettid for the arch
252#endif
253#endif
254
255// Cpu architecture string
256#if   defined(ZERO)
257static char cpu_arch[] = ZERO_LIBARCH;
258#elif defined(IA64)
259static char cpu_arch[] = "ia64";
260#elif defined(IA32)
261static char cpu_arch[] = "i386";
262#elif defined(AMD64)
263static char cpu_arch[] = "amd64";
264#elif defined(ARM)
265static char cpu_arch[] = "arm";
266#elif defined(PPC32)
267static char cpu_arch[] = "ppc";
268#elif defined(PPC64)
269static char cpu_arch[] = "ppc64";
270#elif defined(SPARC)
271#  ifdef _LP64
272static char cpu_arch[] = "sparcv9";
273#  else
274static char cpu_arch[] = "sparc";
275#  endif
276#else
277#error Add appropriate cpu_arch setting
278#endif
279
280
281// pid_t gettid()
282//
283// Returns the kernel thread id of the currently running thread. Kernel
284// thread id is used to access /proc.
285//
286// (Note that getpid() on LinuxThreads returns kernel thread id too; but
287// on NPTL, it returns the same pid for all threads, as required by POSIX.)
288//
289pid_t os::Linux::gettid() {
290  int rslt = syscall(SYS_gettid);
291  if (rslt == -1) {
292     // old kernel, no NPTL support
293     return getpid();
294  } else {
295     return (pid_t)rslt;
296  }
297}
298
299// Most versions of linux have a bug where the number of processors are
300// determined by looking at the /proc file system.  In a chroot environment,
301// the system call returns 1.  This causes the VM to act as if it is
302// a single processor and elide locking (see is_MP() call).
303static bool unsafe_chroot_detected = false;
304static const char *unstable_chroot_error = "/proc file system not found.\n"
305                     "Java may be unstable running multithreaded in a chroot "
306                     "environment on Linux when /proc filesystem is not mounted.";
307
308void os::Linux::initialize_system_info() {
309  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
310  if (processor_count() == 1) {
311    pid_t pid = os::Linux::gettid();
312    char fname[32];
313    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
314    FILE *fp = fopen(fname, "r");
315    if (fp == NULL) {
316      unsafe_chroot_detected = true;
317    } else {
318      fclose(fp);
319    }
320  }
321  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
322  assert(processor_count() > 0, "linux error");
323}
324
325void os::init_system_properties_values() {
326  // The next steps are taken in the product version:
327  //
328  // Obtain the JAVA_HOME value from the location of libjvm.so.
329  // This library should be located at:
330  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
331  //
332  // If "/jre/lib/" appears at the right place in the path, then we
333  // assume libjvm.so is installed in a JDK and we use this path.
334  //
335  // Otherwise exit with message: "Could not create the Java virtual machine."
336  //
337  // The following extra steps are taken in the debugging version:
338  //
339  // If "/jre/lib/" does NOT appear at the right place in the path
340  // instead of exit check for $JAVA_HOME environment variable.
341  //
342  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
343  // then we append a fake suffix "hotspot/libjvm.so" to this path so
344  // it looks like libjvm.so is installed there
345  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
346  //
347  // Otherwise exit.
348  //
349  // Important note: if the location of libjvm.so changes this
350  // code needs to be changed accordingly.
351
352// See ld(1):
353//      The linker uses the following search paths to locate required
354//      shared libraries:
355//        1: ...
356//        ...
357//        7: The default directories, normally /lib and /usr/lib.
358#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
359#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
360#else
361#define DEFAULT_LIBPATH "/lib:/usr/lib"
362#endif
363
364// Base path of extensions installed on the system.
365#define SYS_EXT_DIR     "/usr/java/packages"
366#define EXTENSIONS_DIR  "/lib/ext"
367#define ENDORSED_DIR    "/lib/endorsed"
368
369  // Buffer that fits several sprintfs.
370  // Note that the space for the colon and the trailing null are provided
371  // by the nulls included by the sizeof operator.
372  const size_t bufsize =
373    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
374         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
375         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
376  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
377
378  // sysclasspath, java_home, dll_dir
379  {
380    char *pslash;
381    os::jvm_path(buf, bufsize);
382
383    // Found the full path to libjvm.so.
384    // Now cut the path to <java_home>/jre if we can.
385    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
386    pslash = strrchr(buf, '/');
387    if (pslash != NULL) {
388      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
389    }
390    Arguments::set_dll_dir(buf);
391
392    if (pslash != NULL) {
393      pslash = strrchr(buf, '/');
394      if (pslash != NULL) {
395        *pslash = '\0';          // Get rid of /<arch>.
396        pslash = strrchr(buf, '/');
397        if (pslash != NULL) {
398          *pslash = '\0';        // Get rid of /lib.
399        }
400      }
401    }
402    Arguments::set_java_home(buf);
403    set_boot_path('/', ':');
404  }
405
406  // Where to look for native libraries.
407  //
408  // Note: Due to a legacy implementation, most of the library path
409  // is set in the launcher. This was to accomodate linking restrictions
410  // on legacy Linux implementations (which are no longer supported).
411  // Eventually, all the library path setting will be done here.
412  //
413  // However, to prevent the proliferation of improperly built native
414  // libraries, the new path component /usr/java/packages is added here.
415  // Eventually, all the library path setting will be done here.
416  {
417    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
418    // should always exist (until the legacy problem cited above is
419    // addressed).
420    const char *v = ::getenv("LD_LIBRARY_PATH");
421    const char *v_colon = ":";
422    if (v == NULL) { v = ""; v_colon = ""; }
423    // That's +1 for the colon and +1 for the trailing '\0'.
424    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
425                                                     strlen(v) + 1 +
426                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
427                                                     mtInternal);
428    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
429    Arguments::set_library_path(ld_library_path);
430    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
431  }
432
433  // Extensions directories.
434  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
435  Arguments::set_ext_dirs(buf);
436
437  // Endorsed standards default directory.
438  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
439  Arguments::set_endorsed_dirs(buf);
440
441  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
442
443#undef DEFAULT_LIBPATH
444#undef SYS_EXT_DIR
445#undef EXTENSIONS_DIR
446#undef ENDORSED_DIR
447}
448
449////////////////////////////////////////////////////////////////////////////////
450// breakpoint support
451
452void os::breakpoint() {
453  BREAKPOINT;
454}
455
456extern "C" void breakpoint() {
457  // use debugger to set breakpoint here
458}
459
460////////////////////////////////////////////////////////////////////////////////
461// signal support
462
463debug_only(static bool signal_sets_initialized = false);
464static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
465
466bool os::Linux::is_sig_ignored(int sig) {
467      struct sigaction oact;
468      sigaction(sig, (struct sigaction*)NULL, &oact);
469      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
470                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
471      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
472           return true;
473      else
474           return false;
475}
476
477void os::Linux::signal_sets_init() {
478  // Should also have an assertion stating we are still single-threaded.
479  assert(!signal_sets_initialized, "Already initialized");
480  // Fill in signals that are necessarily unblocked for all threads in
481  // the VM. Currently, we unblock the following signals:
482  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
483  //                         by -Xrs (=ReduceSignalUsage));
484  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
485  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
486  // the dispositions or masks wrt these signals.
487  // Programs embedding the VM that want to use the above signals for their
488  // own purposes must, at this time, use the "-Xrs" option to prevent
489  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
490  // (See bug 4345157, and other related bugs).
491  // In reality, though, unblocking these signals is really a nop, since
492  // these signals are not blocked by default.
493  sigemptyset(&unblocked_sigs);
494  sigemptyset(&allowdebug_blocked_sigs);
495  sigaddset(&unblocked_sigs, SIGILL);
496  sigaddset(&unblocked_sigs, SIGSEGV);
497  sigaddset(&unblocked_sigs, SIGBUS);
498  sigaddset(&unblocked_sigs, SIGFPE);
499#if defined(PPC64)
500  sigaddset(&unblocked_sigs, SIGTRAP);
501#endif
502  sigaddset(&unblocked_sigs, SR_signum);
503
504  if (!ReduceSignalUsage) {
505   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
506      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
507      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
508   }
509   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
510      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
511      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
512   }
513   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
514      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
515      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
516   }
517  }
518  // Fill in signals that are blocked by all but the VM thread.
519  sigemptyset(&vm_sigs);
520  if (!ReduceSignalUsage)
521    sigaddset(&vm_sigs, BREAK_SIGNAL);
522  debug_only(signal_sets_initialized = true);
523
524}
525
526// These are signals that are unblocked while a thread is running Java.
527// (For some reason, they get blocked by default.)
528sigset_t* os::Linux::unblocked_signals() {
529  assert(signal_sets_initialized, "Not initialized");
530  return &unblocked_sigs;
531}
532
533// These are the signals that are blocked while a (non-VM) thread is
534// running Java. Only the VM thread handles these signals.
535sigset_t* os::Linux::vm_signals() {
536  assert(signal_sets_initialized, "Not initialized");
537  return &vm_sigs;
538}
539
540// These are signals that are blocked during cond_wait to allow debugger in
541sigset_t* os::Linux::allowdebug_blocked_signals() {
542  assert(signal_sets_initialized, "Not initialized");
543  return &allowdebug_blocked_sigs;
544}
545
546void os::Linux::hotspot_sigmask(Thread* thread) {
547
548  //Save caller's signal mask before setting VM signal mask
549  sigset_t caller_sigmask;
550  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
551
552  OSThread* osthread = thread->osthread();
553  osthread->set_caller_sigmask(caller_sigmask);
554
555  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
556
557  if (!ReduceSignalUsage) {
558    if (thread->is_VM_thread()) {
559      // Only the VM thread handles BREAK_SIGNAL ...
560      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
561    } else {
562      // ... all other threads block BREAK_SIGNAL
563      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
564    }
565  }
566}
567
568//////////////////////////////////////////////////////////////////////////////
569// detecting pthread library
570
571void os::Linux::libpthread_init() {
572  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
573  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
574  // generic name for earlier versions.
575  // Define macros here so we can build HotSpot on old systems.
576# ifndef _CS_GNU_LIBC_VERSION
577# define _CS_GNU_LIBC_VERSION 2
578# endif
579# ifndef _CS_GNU_LIBPTHREAD_VERSION
580# define _CS_GNU_LIBPTHREAD_VERSION 3
581# endif
582
583  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
584  if (n > 0) {
585     char *str = (char *)malloc(n, mtInternal);
586     confstr(_CS_GNU_LIBC_VERSION, str, n);
587     os::Linux::set_glibc_version(str);
588  } else {
589     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
590     static char _gnu_libc_version[32];
591     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
592              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
593     os::Linux::set_glibc_version(_gnu_libc_version);
594  }
595
596  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
597  if (n > 0) {
598     char *str = (char *)malloc(n, mtInternal);
599     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
600     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
601     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
602     // is the case. LinuxThreads has a hard limit on max number of threads.
603     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
604     // On the other hand, NPTL does not have such a limit, sysconf()
605     // will return -1 and errno is not changed. Check if it is really NPTL.
606     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
607         strstr(str, "NPTL") &&
608         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
609       free(str);
610       os::Linux::set_libpthread_version("linuxthreads");
611     } else {
612       os::Linux::set_libpthread_version(str);
613     }
614  } else {
615    // glibc before 2.3.2 only has LinuxThreads.
616    os::Linux::set_libpthread_version("linuxthreads");
617  }
618
619  if (strstr(libpthread_version(), "NPTL")) {
620     os::Linux::set_is_NPTL();
621  } else {
622     os::Linux::set_is_LinuxThreads();
623  }
624
625  // LinuxThreads have two flavors: floating-stack mode, which allows variable
626  // stack size; and fixed-stack mode. NPTL is always floating-stack.
627  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
628     os::Linux::set_is_floating_stack();
629  }
630}
631
632/////////////////////////////////////////////////////////////////////////////
633// thread stack
634
635// Force Linux kernel to expand current thread stack. If "bottom" is close
636// to the stack guard, caller should block all signals.
637//
638// MAP_GROWSDOWN:
639//   A special mmap() flag that is used to implement thread stacks. It tells
640//   kernel that the memory region should extend downwards when needed. This
641//   allows early versions of LinuxThreads to only mmap the first few pages
642//   when creating a new thread. Linux kernel will automatically expand thread
643//   stack as needed (on page faults).
644//
645//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
646//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
647//   region, it's hard to tell if the fault is due to a legitimate stack
648//   access or because of reading/writing non-exist memory (e.g. buffer
649//   overrun). As a rule, if the fault happens below current stack pointer,
650//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
651//   application (see Linux kernel fault.c).
652//
653//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
654//   stack overflow detection.
655//
656//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
657//   not use this flag. However, the stack of initial thread is not created
658//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
659//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
660//   and then attach the thread to JVM.
661//
662// To get around the problem and allow stack banging on Linux, we need to
663// manually expand thread stack after receiving the SIGSEGV.
664//
665// There are two ways to expand thread stack to address "bottom", we used
666// both of them in JVM before 1.5:
667//   1. adjust stack pointer first so that it is below "bottom", and then
668//      touch "bottom"
669//   2. mmap() the page in question
670//
671// Now alternate signal stack is gone, it's harder to use 2. For instance,
672// if current sp is already near the lower end of page 101, and we need to
673// call mmap() to map page 100, it is possible that part of the mmap() frame
674// will be placed in page 100. When page 100 is mapped, it is zero-filled.
675// That will destroy the mmap() frame and cause VM to crash.
676//
677// The following code works by adjusting sp first, then accessing the "bottom"
678// page to force a page fault. Linux kernel will then automatically expand the
679// stack mapping.
680//
681// _expand_stack_to() assumes its frame size is less than page size, which
682// should always be true if the function is not inlined.
683
684#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
685#define NOINLINE
686#else
687#define NOINLINE __attribute__ ((noinline))
688#endif
689
690static void _expand_stack_to(address bottom) NOINLINE;
691
692static void _expand_stack_to(address bottom) {
693  address sp;
694  size_t size;
695  volatile char *p;
696
697  // Adjust bottom to point to the largest address within the same page, it
698  // gives us a one-page buffer if alloca() allocates slightly more memory.
699  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
700  bottom += os::Linux::page_size() - 1;
701
702  // sp might be slightly above current stack pointer; if that's the case, we
703  // will alloca() a little more space than necessary, which is OK. Don't use
704  // os::current_stack_pointer(), as its result can be slightly below current
705  // stack pointer, causing us to not alloca enough to reach "bottom".
706  sp = (address)&sp;
707
708  if (sp > bottom) {
709    size = sp - bottom;
710    p = (volatile char *)alloca(size);
711    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
712    p[0] = '\0';
713  }
714}
715
716bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
717  assert(t!=NULL, "just checking");
718  assert(t->osthread()->expanding_stack(), "expand should be set");
719  assert(t->stack_base() != NULL, "stack_base was not initialized");
720
721  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
722    sigset_t mask_all, old_sigset;
723    sigfillset(&mask_all);
724    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
725    _expand_stack_to(addr);
726    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
727    return true;
728  }
729  return false;
730}
731
732//////////////////////////////////////////////////////////////////////////////
733// create new thread
734
735static address highest_vm_reserved_address();
736
737// check if it's safe to start a new thread
738static bool _thread_safety_check(Thread* thread) {
739  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
740    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
741    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
742    //   allocated (MAP_FIXED) from high address space. Every thread stack
743    //   occupies a fixed size slot (usually 2Mbytes, but user can change
744    //   it to other values if they rebuild LinuxThreads).
745    //
746    // Problem with MAP_FIXED is that mmap() can still succeed even part of
747    // the memory region has already been mmap'ed. That means if we have too
748    // many threads and/or very large heap, eventually thread stack will
749    // collide with heap.
750    //
751    // Here we try to prevent heap/stack collision by comparing current
752    // stack bottom with the highest address that has been mmap'ed by JVM
753    // plus a safety margin for memory maps created by native code.
754    //
755    // This feature can be disabled by setting ThreadSafetyMargin to 0
756    //
757    if (ThreadSafetyMargin > 0) {
758      address stack_bottom = os::current_stack_base() - os::current_stack_size();
759
760      // not safe if our stack extends below the safety margin
761      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
762    } else {
763      return true;
764    }
765  } else {
766    // Floating stack LinuxThreads or NPTL:
767    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
768    //   there's not enough space left, pthread_create() will fail. If we come
769    //   here, that means enough space has been reserved for stack.
770    return true;
771  }
772}
773
774// Thread start routine for all newly created threads
775static void *java_start(Thread *thread) {
776  // Try to randomize the cache line index of hot stack frames.
777  // This helps when threads of the same stack traces evict each other's
778  // cache lines. The threads can be either from the same JVM instance, or
779  // from different JVM instances. The benefit is especially true for
780  // processors with hyperthreading technology.
781  static int counter = 0;
782  int pid = os::current_process_id();
783  alloca(((pid ^ counter++) & 7) * 128);
784
785  ThreadLocalStorage::set_thread(thread);
786
787  OSThread* osthread = thread->osthread();
788  Monitor* sync = osthread->startThread_lock();
789
790  // non floating stack LinuxThreads needs extra check, see above
791  if (!_thread_safety_check(thread)) {
792    // notify parent thread
793    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
794    osthread->set_state(ZOMBIE);
795    sync->notify_all();
796    return NULL;
797  }
798
799  // thread_id is kernel thread id (similar to Solaris LWP id)
800  osthread->set_thread_id(os::Linux::gettid());
801
802  if (UseNUMA) {
803    int lgrp_id = os::numa_get_group_id();
804    if (lgrp_id != -1) {
805      thread->set_lgrp_id(lgrp_id);
806    }
807  }
808  // initialize signal mask for this thread
809  os::Linux::hotspot_sigmask(thread);
810
811  // initialize floating point control register
812  os::Linux::init_thread_fpu_state();
813
814  // handshaking with parent thread
815  {
816    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
817
818    // notify parent thread
819    osthread->set_state(INITIALIZED);
820    sync->notify_all();
821
822    // wait until os::start_thread()
823    while (osthread->get_state() == INITIALIZED) {
824      sync->wait(Mutex::_no_safepoint_check_flag);
825    }
826  }
827
828  // call one more level start routine
829  thread->run();
830
831  return 0;
832}
833
834bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
835  assert(thread->osthread() == NULL, "caller responsible");
836
837  // Allocate the OSThread object
838  OSThread* osthread = new OSThread(NULL, NULL);
839  if (osthread == NULL) {
840    return false;
841  }
842
843  // set the correct thread state
844  osthread->set_thread_type(thr_type);
845
846  // Initial state is ALLOCATED but not INITIALIZED
847  osthread->set_state(ALLOCATED);
848
849  thread->set_osthread(osthread);
850
851  // init thread attributes
852  pthread_attr_t attr;
853  pthread_attr_init(&attr);
854  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
855
856  // stack size
857  if (os::Linux::supports_variable_stack_size()) {
858    // calculate stack size if it's not specified by caller
859    if (stack_size == 0) {
860      stack_size = os::Linux::default_stack_size(thr_type);
861
862      switch (thr_type) {
863      case os::java_thread:
864        // Java threads use ThreadStackSize which default value can be
865        // changed with the flag -Xss
866        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
867        stack_size = JavaThread::stack_size_at_create();
868        break;
869      case os::compiler_thread:
870        if (CompilerThreadStackSize > 0) {
871          stack_size = (size_t)(CompilerThreadStackSize * K);
872          break;
873        } // else fall through:
874          // use VMThreadStackSize if CompilerThreadStackSize is not defined
875      case os::vm_thread:
876      case os::pgc_thread:
877      case os::cgc_thread:
878      case os::watcher_thread:
879        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
880        break;
881      }
882    }
883
884    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
885    pthread_attr_setstacksize(&attr, stack_size);
886  } else {
887    // let pthread_create() pick the default value.
888  }
889
890  // glibc guard page
891  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
892
893  ThreadState state;
894
895  {
896    // Serialize thread creation if we are running with fixed stack LinuxThreads
897    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
898    if (lock) {
899      os::Linux::createThread_lock()->lock_without_safepoint_check();
900    }
901
902    pthread_t tid;
903    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
904
905    pthread_attr_destroy(&attr);
906
907    if (ret != 0) {
908      if (PrintMiscellaneous && (Verbose || WizardMode)) {
909        perror("pthread_create()");
910      }
911      // Need to clean up stuff we've allocated so far
912      thread->set_osthread(NULL);
913      delete osthread;
914      if (lock) os::Linux::createThread_lock()->unlock();
915      return false;
916    }
917
918    // Store pthread info into the OSThread
919    osthread->set_pthread_id(tid);
920
921    // Wait until child thread is either initialized or aborted
922    {
923      Monitor* sync_with_child = osthread->startThread_lock();
924      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
925      while ((state = osthread->get_state()) == ALLOCATED) {
926        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
927      }
928    }
929
930    if (lock) {
931      os::Linux::createThread_lock()->unlock();
932    }
933  }
934
935  // Aborted due to thread limit being reached
936  if (state == ZOMBIE) {
937      thread->set_osthread(NULL);
938      delete osthread;
939      return false;
940  }
941
942  // The thread is returned suspended (in state INITIALIZED),
943  // and is started higher up in the call chain
944  assert(state == INITIALIZED, "race condition");
945  return true;
946}
947
948/////////////////////////////////////////////////////////////////////////////
949// attach existing thread
950
951// bootstrap the main thread
952bool os::create_main_thread(JavaThread* thread) {
953  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
954  return create_attached_thread(thread);
955}
956
957bool os::create_attached_thread(JavaThread* thread) {
958#ifdef ASSERT
959    thread->verify_not_published();
960#endif
961
962  // Allocate the OSThread object
963  OSThread* osthread = new OSThread(NULL, NULL);
964
965  if (osthread == NULL) {
966    return false;
967  }
968
969  // Store pthread info into the OSThread
970  osthread->set_thread_id(os::Linux::gettid());
971  osthread->set_pthread_id(::pthread_self());
972
973  // initialize floating point control register
974  os::Linux::init_thread_fpu_state();
975
976  // Initial thread state is RUNNABLE
977  osthread->set_state(RUNNABLE);
978
979  thread->set_osthread(osthread);
980
981  if (UseNUMA) {
982    int lgrp_id = os::numa_get_group_id();
983    if (lgrp_id != -1) {
984      thread->set_lgrp_id(lgrp_id);
985    }
986  }
987
988  if (os::Linux::is_initial_thread()) {
989    // If current thread is initial thread, its stack is mapped on demand,
990    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
991    // the entire stack region to avoid SEGV in stack banging.
992    // It is also useful to get around the heap-stack-gap problem on SuSE
993    // kernel (see 4821821 for details). We first expand stack to the top
994    // of yellow zone, then enable stack yellow zone (order is significant,
995    // enabling yellow zone first will crash JVM on SuSE Linux), so there
996    // is no gap between the last two virtual memory regions.
997
998    JavaThread *jt = (JavaThread *)thread;
999    address addr = jt->stack_yellow_zone_base();
1000    assert(addr != NULL, "initialization problem?");
1001    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1002
1003    osthread->set_expanding_stack();
1004    os::Linux::manually_expand_stack(jt, addr);
1005    osthread->clear_expanding_stack();
1006  }
1007
1008  // initialize signal mask for this thread
1009  // and save the caller's signal mask
1010  os::Linux::hotspot_sigmask(thread);
1011
1012  return true;
1013}
1014
1015void os::pd_start_thread(Thread* thread) {
1016  OSThread * osthread = thread->osthread();
1017  assert(osthread->get_state() != INITIALIZED, "just checking");
1018  Monitor* sync_with_child = osthread->startThread_lock();
1019  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1020  sync_with_child->notify();
1021}
1022
1023// Free Linux resources related to the OSThread
1024void os::free_thread(OSThread* osthread) {
1025  assert(osthread != NULL, "osthread not set");
1026
1027  if (Thread::current()->osthread() == osthread) {
1028    // Restore caller's signal mask
1029    sigset_t sigmask = osthread->caller_sigmask();
1030    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1031   }
1032
1033  delete osthread;
1034}
1035
1036//////////////////////////////////////////////////////////////////////////////
1037// thread local storage
1038
1039// Restore the thread pointer if the destructor is called. This is in case
1040// someone from JNI code sets up a destructor with pthread_key_create to run
1041// detachCurrentThread on thread death. Unless we restore the thread pointer we
1042// will hang or crash. When detachCurrentThread is called the key will be set
1043// to null and we will not be called again. If detachCurrentThread is never
1044// called we could loop forever depending on the pthread implementation.
1045static void restore_thread_pointer(void* p) {
1046  Thread* thread = (Thread*) p;
1047  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1048}
1049
1050int os::allocate_thread_local_storage() {
1051  pthread_key_t key;
1052  int rslt = pthread_key_create(&key, restore_thread_pointer);
1053  assert(rslt == 0, "cannot allocate thread local storage");
1054  return (int)key;
1055}
1056
1057// Note: This is currently not used by VM, as we don't destroy TLS key
1058// on VM exit.
1059void os::free_thread_local_storage(int index) {
1060  int rslt = pthread_key_delete((pthread_key_t)index);
1061  assert(rslt == 0, "invalid index");
1062}
1063
1064void os::thread_local_storage_at_put(int index, void* value) {
1065  int rslt = pthread_setspecific((pthread_key_t)index, value);
1066  assert(rslt == 0, "pthread_setspecific failed");
1067}
1068
1069extern "C" Thread* get_thread() {
1070  return ThreadLocalStorage::thread();
1071}
1072
1073//////////////////////////////////////////////////////////////////////////////
1074// initial thread
1075
1076// Check if current thread is the initial thread, similar to Solaris thr_main.
1077bool os::Linux::is_initial_thread(void) {
1078  char dummy;
1079  // If called before init complete, thread stack bottom will be null.
1080  // Can be called if fatal error occurs before initialization.
1081  if (initial_thread_stack_bottom() == NULL) return false;
1082  assert(initial_thread_stack_bottom() != NULL &&
1083         initial_thread_stack_size()   != 0,
1084         "os::init did not locate initial thread's stack region");
1085  if ((address)&dummy >= initial_thread_stack_bottom() &&
1086      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1087       return true;
1088  else return false;
1089}
1090
1091// Find the virtual memory area that contains addr
1092static bool find_vma(address addr, address* vma_low, address* vma_high) {
1093  FILE *fp = fopen("/proc/self/maps", "r");
1094  if (fp) {
1095    address low, high;
1096    while (!feof(fp)) {
1097      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1098        if (low <= addr && addr < high) {
1099           if (vma_low)  *vma_low  = low;
1100           if (vma_high) *vma_high = high;
1101           fclose(fp);
1102           return true;
1103        }
1104      }
1105      for (;;) {
1106        int ch = fgetc(fp);
1107        if (ch == EOF || ch == (int)'\n') break;
1108      }
1109    }
1110    fclose(fp);
1111  }
1112  return false;
1113}
1114
1115// Locate initial thread stack. This special handling of initial thread stack
1116// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1117// bogus value for initial thread.
1118void os::Linux::capture_initial_stack(size_t max_size) {
1119  // stack size is the easy part, get it from RLIMIT_STACK
1120  size_t stack_size;
1121  struct rlimit rlim;
1122  getrlimit(RLIMIT_STACK, &rlim);
1123  stack_size = rlim.rlim_cur;
1124
1125  // 6308388: a bug in ld.so will relocate its own .data section to the
1126  //   lower end of primordial stack; reduce ulimit -s value a little bit
1127  //   so we won't install guard page on ld.so's data section.
1128  stack_size -= 2 * page_size();
1129
1130  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1131  //   7.1, in both cases we will get 2G in return value.
1132  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1133  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1134  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1135  //   in case other parts in glibc still assumes 2M max stack size.
1136  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1137  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1138  if (stack_size > 2 * K * K IA64_ONLY(*2))
1139      stack_size = 2 * K * K IA64_ONLY(*2);
1140  // Try to figure out where the stack base (top) is. This is harder.
1141  //
1142  // When an application is started, glibc saves the initial stack pointer in
1143  // a global variable "__libc_stack_end", which is then used by system
1144  // libraries. __libc_stack_end should be pretty close to stack top. The
1145  // variable is available since the very early days. However, because it is
1146  // a private interface, it could disappear in the future.
1147  //
1148  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1149  // to __libc_stack_end, it is very close to stack top, but isn't the real
1150  // stack top. Note that /proc may not exist if VM is running as a chroot
1151  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1152  // /proc/<pid>/stat could change in the future (though unlikely).
1153  //
1154  // We try __libc_stack_end first. If that doesn't work, look for
1155  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1156  // as a hint, which should work well in most cases.
1157
1158  uintptr_t stack_start;
1159
1160  // try __libc_stack_end first
1161  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1162  if (p && *p) {
1163    stack_start = *p;
1164  } else {
1165    // see if we can get the start_stack field from /proc/self/stat
1166    FILE *fp;
1167    int pid;
1168    char state;
1169    int ppid;
1170    int pgrp;
1171    int session;
1172    int nr;
1173    int tpgrp;
1174    unsigned long flags;
1175    unsigned long minflt;
1176    unsigned long cminflt;
1177    unsigned long majflt;
1178    unsigned long cmajflt;
1179    unsigned long utime;
1180    unsigned long stime;
1181    long cutime;
1182    long cstime;
1183    long prio;
1184    long nice;
1185    long junk;
1186    long it_real;
1187    uintptr_t start;
1188    uintptr_t vsize;
1189    intptr_t rss;
1190    uintptr_t rsslim;
1191    uintptr_t scodes;
1192    uintptr_t ecode;
1193    int i;
1194
1195    // Figure what the primordial thread stack base is. Code is inspired
1196    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1197    // followed by command name surrounded by parentheses, state, etc.
1198    char stat[2048];
1199    int statlen;
1200
1201    fp = fopen("/proc/self/stat", "r");
1202    if (fp) {
1203      statlen = fread(stat, 1, 2047, fp);
1204      stat[statlen] = '\0';
1205      fclose(fp);
1206
1207      // Skip pid and the command string. Note that we could be dealing with
1208      // weird command names, e.g. user could decide to rename java launcher
1209      // to "java 1.4.2 :)", then the stat file would look like
1210      //                1234 (java 1.4.2 :)) R ... ...
1211      // We don't really need to know the command string, just find the last
1212      // occurrence of ")" and then start parsing from there. See bug 4726580.
1213      char * s = strrchr(stat, ')');
1214
1215      i = 0;
1216      if (s) {
1217        // Skip blank chars
1218        do s++; while (isspace(*s));
1219
1220#define _UFM UINTX_FORMAT
1221#define _DFM INTX_FORMAT
1222
1223        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1224        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1225        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1226             &state,          /* 3  %c  */
1227             &ppid,           /* 4  %d  */
1228             &pgrp,           /* 5  %d  */
1229             &session,        /* 6  %d  */
1230             &nr,             /* 7  %d  */
1231             &tpgrp,          /* 8  %d  */
1232             &flags,          /* 9  %lu  */
1233             &minflt,         /* 10 %lu  */
1234             &cminflt,        /* 11 %lu  */
1235             &majflt,         /* 12 %lu  */
1236             &cmajflt,        /* 13 %lu  */
1237             &utime,          /* 14 %lu  */
1238             &stime,          /* 15 %lu  */
1239             &cutime,         /* 16 %ld  */
1240             &cstime,         /* 17 %ld  */
1241             &prio,           /* 18 %ld  */
1242             &nice,           /* 19 %ld  */
1243             &junk,           /* 20 %ld  */
1244             &it_real,        /* 21 %ld  */
1245             &start,          /* 22 UINTX_FORMAT */
1246             &vsize,          /* 23 UINTX_FORMAT */
1247             &rss,            /* 24 INTX_FORMAT  */
1248             &rsslim,         /* 25 UINTX_FORMAT */
1249             &scodes,         /* 26 UINTX_FORMAT */
1250             &ecode,          /* 27 UINTX_FORMAT */
1251             &stack_start);   /* 28 UINTX_FORMAT */
1252      }
1253
1254#undef _UFM
1255#undef _DFM
1256
1257      if (i != 28 - 2) {
1258         assert(false, "Bad conversion from /proc/self/stat");
1259         // product mode - assume we are the initial thread, good luck in the
1260         // embedded case.
1261         warning("Can't detect initial thread stack location - bad conversion");
1262         stack_start = (uintptr_t) &rlim;
1263      }
1264    } else {
1265      // For some reason we can't open /proc/self/stat (for example, running on
1266      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1267      // most cases, so don't abort:
1268      warning("Can't detect initial thread stack location - no /proc/self/stat");
1269      stack_start = (uintptr_t) &rlim;
1270    }
1271  }
1272
1273  // Now we have a pointer (stack_start) very close to the stack top, the
1274  // next thing to do is to figure out the exact location of stack top. We
1275  // can find out the virtual memory area that contains stack_start by
1276  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1277  // and its upper limit is the real stack top. (again, this would fail if
1278  // running inside chroot, because /proc may not exist.)
1279
1280  uintptr_t stack_top;
1281  address low, high;
1282  if (find_vma((address)stack_start, &low, &high)) {
1283    // success, "high" is the true stack top. (ignore "low", because initial
1284    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1285    stack_top = (uintptr_t)high;
1286  } else {
1287    // failed, likely because /proc/self/maps does not exist
1288    warning("Can't detect initial thread stack location - find_vma failed");
1289    // best effort: stack_start is normally within a few pages below the real
1290    // stack top, use it as stack top, and reduce stack size so we won't put
1291    // guard page outside stack.
1292    stack_top = stack_start;
1293    stack_size -= 16 * page_size();
1294  }
1295
1296  // stack_top could be partially down the page so align it
1297  stack_top = align_size_up(stack_top, page_size());
1298
1299  if (max_size && stack_size > max_size) {
1300     _initial_thread_stack_size = max_size;
1301  } else {
1302     _initial_thread_stack_size = stack_size;
1303  }
1304
1305  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1306  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1307}
1308
1309////////////////////////////////////////////////////////////////////////////////
1310// time support
1311
1312// Time since start-up in seconds to a fine granularity.
1313// Used by VMSelfDestructTimer and the MemProfiler.
1314double os::elapsedTime() {
1315
1316  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1317}
1318
1319jlong os::elapsed_counter() {
1320  return javaTimeNanos() - initial_time_count;
1321}
1322
1323jlong os::elapsed_frequency() {
1324  return NANOSECS_PER_SEC; // nanosecond resolution
1325}
1326
1327bool os::supports_vtime() { return true; }
1328bool os::enable_vtime()   { return false; }
1329bool os::vtime_enabled()  { return false; }
1330
1331double os::elapsedVTime() {
1332  struct rusage usage;
1333  int retval = getrusage(RUSAGE_THREAD, &usage);
1334  if (retval == 0) {
1335    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1336  } else {
1337    // better than nothing, but not much
1338    return elapsedTime();
1339  }
1340}
1341
1342jlong os::javaTimeMillis() {
1343  timeval time;
1344  int status = gettimeofday(&time, NULL);
1345  assert(status != -1, "linux error");
1346  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1347}
1348
1349#ifndef CLOCK_MONOTONIC
1350#define CLOCK_MONOTONIC (1)
1351#endif
1352
1353void os::Linux::clock_init() {
1354  // we do dlopen's in this particular order due to bug in linux
1355  // dynamical loader (see 6348968) leading to crash on exit
1356  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1357  if (handle == NULL) {
1358    handle = dlopen("librt.so", RTLD_LAZY);
1359  }
1360
1361  if (handle) {
1362    int (*clock_getres_func)(clockid_t, struct timespec*) =
1363           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1364    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1365           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1366    if (clock_getres_func && clock_gettime_func) {
1367      // See if monotonic clock is supported by the kernel. Note that some
1368      // early implementations simply return kernel jiffies (updated every
1369      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1370      // for nano time (though the monotonic property is still nice to have).
1371      // It's fixed in newer kernels, however clock_getres() still returns
1372      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1373      // resolution for now. Hopefully as people move to new kernels, this
1374      // won't be a problem.
1375      struct timespec res;
1376      struct timespec tp;
1377      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1378          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1379        // yes, monotonic clock is supported
1380        _clock_gettime = clock_gettime_func;
1381        return;
1382      } else {
1383        // close librt if there is no monotonic clock
1384        dlclose(handle);
1385      }
1386    }
1387  }
1388  warning("No monotonic clock was available - timed services may " \
1389          "be adversely affected if the time-of-day clock changes");
1390}
1391
1392#ifndef SYS_clock_getres
1393
1394#if defined(IA32) || defined(AMD64)
1395#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1396#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1397#else
1398#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1399#define sys_clock_getres(x,y)  -1
1400#endif
1401
1402#else
1403#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1404#endif
1405
1406void os::Linux::fast_thread_clock_init() {
1407  if (!UseLinuxPosixThreadCPUClocks) {
1408    return;
1409  }
1410  clockid_t clockid;
1411  struct timespec tp;
1412  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1413      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1414
1415  // Switch to using fast clocks for thread cpu time if
1416  // the sys_clock_getres() returns 0 error code.
1417  // Note, that some kernels may support the current thread
1418  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1419  // returned by the pthread_getcpuclockid().
1420  // If the fast Posix clocks are supported then the sys_clock_getres()
1421  // must return at least tp.tv_sec == 0 which means a resolution
1422  // better than 1 sec. This is extra check for reliability.
1423
1424  if (pthread_getcpuclockid_func &&
1425     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1426     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1427
1428    _supports_fast_thread_cpu_time = true;
1429    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1430  }
1431}
1432
1433jlong os::javaTimeNanos() {
1434  if (os::supports_monotonic_clock()) {
1435    struct timespec tp;
1436    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1437    assert(status == 0, "gettime error");
1438    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1439    return result;
1440  } else {
1441    timeval time;
1442    int status = gettimeofday(&time, NULL);
1443    assert(status != -1, "linux error");
1444    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1445    return 1000 * usecs;
1446  }
1447}
1448
1449void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1450  if (os::supports_monotonic_clock()) {
1451    info_ptr->max_value = ALL_64_BITS;
1452
1453    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1454    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1455    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1456  } else {
1457    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1458    info_ptr->max_value = ALL_64_BITS;
1459
1460    // gettimeofday is a real time clock so it skips
1461    info_ptr->may_skip_backward = true;
1462    info_ptr->may_skip_forward = true;
1463  }
1464
1465  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1466}
1467
1468// Return the real, user, and system times in seconds from an
1469// arbitrary fixed point in the past.
1470bool os::getTimesSecs(double* process_real_time,
1471                      double* process_user_time,
1472                      double* process_system_time) {
1473  struct tms ticks;
1474  clock_t real_ticks = times(&ticks);
1475
1476  if (real_ticks == (clock_t) (-1)) {
1477    return false;
1478  } else {
1479    double ticks_per_second = (double) clock_tics_per_sec;
1480    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1481    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1482    *process_real_time = ((double) real_ticks) / ticks_per_second;
1483
1484    return true;
1485  }
1486}
1487
1488
1489char * os::local_time_string(char *buf, size_t buflen) {
1490  struct tm t;
1491  time_t long_time;
1492  time(&long_time);
1493  localtime_r(&long_time, &t);
1494  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1495               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1496               t.tm_hour, t.tm_min, t.tm_sec);
1497  return buf;
1498}
1499
1500struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1501  return localtime_r(clock, res);
1502}
1503
1504////////////////////////////////////////////////////////////////////////////////
1505// runtime exit support
1506
1507// Note: os::shutdown() might be called very early during initialization, or
1508// called from signal handler. Before adding something to os::shutdown(), make
1509// sure it is async-safe and can handle partially initialized VM.
1510void os::shutdown() {
1511
1512  // allow PerfMemory to attempt cleanup of any persistent resources
1513  perfMemory_exit();
1514
1515  // needs to remove object in file system
1516  AttachListener::abort();
1517
1518  // flush buffered output, finish log files
1519  ostream_abort();
1520
1521  // Check for abort hook
1522  abort_hook_t abort_hook = Arguments::abort_hook();
1523  if (abort_hook != NULL) {
1524    abort_hook();
1525  }
1526
1527}
1528
1529// Note: os::abort() might be called very early during initialization, or
1530// called from signal handler. Before adding something to os::abort(), make
1531// sure it is async-safe and can handle partially initialized VM.
1532void os::abort(bool dump_core) {
1533  os::shutdown();
1534  if (dump_core) {
1535#ifndef PRODUCT
1536    fdStream out(defaultStream::output_fd());
1537    out.print_raw("Current thread is ");
1538    char buf[16];
1539    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1540    out.print_raw_cr(buf);
1541    out.print_raw_cr("Dumping core ...");
1542#endif
1543    ::abort(); // dump core
1544  }
1545
1546  ::exit(1);
1547}
1548
1549// Die immediately, no exit hook, no abort hook, no cleanup.
1550void os::die() {
1551  // _exit() on LinuxThreads only kills current thread
1552  ::abort();
1553}
1554
1555// unused on linux for now.
1556void os::set_error_file(const char *logfile) {}
1557
1558
1559// This method is a copy of JDK's sysGetLastErrorString
1560// from src/solaris/hpi/src/system_md.c
1561
1562size_t os::lasterror(char *buf, size_t len) {
1563
1564  if (errno == 0)  return 0;
1565
1566  const char *s = ::strerror(errno);
1567  size_t n = ::strlen(s);
1568  if (n >= len) {
1569    n = len - 1;
1570  }
1571  ::strncpy(buf, s, n);
1572  buf[n] = '\0';
1573  return n;
1574}
1575
1576intx os::current_thread_id() { return (intx)pthread_self(); }
1577int os::current_process_id() {
1578
1579  // Under the old linux thread library, linux gives each thread
1580  // its own process id. Because of this each thread will return
1581  // a different pid if this method were to return the result
1582  // of getpid(2). Linux provides no api that returns the pid
1583  // of the launcher thread for the vm. This implementation
1584  // returns a unique pid, the pid of the launcher thread
1585  // that starts the vm 'process'.
1586
1587  // Under the NPTL, getpid() returns the same pid as the
1588  // launcher thread rather than a unique pid per thread.
1589  // Use gettid() if you want the old pre NPTL behaviour.
1590
1591  // if you are looking for the result of a call to getpid() that
1592  // returns a unique pid for the calling thread, then look at the
1593  // OSThread::thread_id() method in osThread_linux.hpp file
1594
1595  return (int)(_initial_pid ? _initial_pid : getpid());
1596}
1597
1598// DLL functions
1599
1600const char* os::dll_file_extension() { return ".so"; }
1601
1602// This must be hard coded because it's the system's temporary
1603// directory not the java application's temp directory, ala java.io.tmpdir.
1604const char* os::get_temp_directory() { return "/tmp"; }
1605
1606static bool file_exists(const char* filename) {
1607  struct stat statbuf;
1608  if (filename == NULL || strlen(filename) == 0) {
1609    return false;
1610  }
1611  return os::stat(filename, &statbuf) == 0;
1612}
1613
1614bool os::dll_build_name(char* buffer, size_t buflen,
1615                        const char* pname, const char* fname) {
1616  bool retval = false;
1617  // Copied from libhpi
1618  const size_t pnamelen = pname ? strlen(pname) : 0;
1619
1620  // Return error on buffer overflow.
1621  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1622    return retval;
1623  }
1624
1625  if (pnamelen == 0) {
1626    snprintf(buffer, buflen, "lib%s.so", fname);
1627    retval = true;
1628  } else if (strchr(pname, *os::path_separator()) != NULL) {
1629    int n;
1630    char** pelements = split_path(pname, &n);
1631    if (pelements == NULL) {
1632      return false;
1633    }
1634    for (int i = 0; i < n; i++) {
1635      // Really shouldn't be NULL, but check can't hurt
1636      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1637        continue; // skip the empty path values
1638      }
1639      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1640      if (file_exists(buffer)) {
1641        retval = true;
1642        break;
1643      }
1644    }
1645    // release the storage
1646    for (int i = 0; i < n; i++) {
1647      if (pelements[i] != NULL) {
1648        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1649      }
1650    }
1651    if (pelements != NULL) {
1652      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1653    }
1654  } else {
1655    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1656    retval = true;
1657  }
1658  return retval;
1659}
1660
1661// check if addr is inside libjvm.so
1662bool os::address_is_in_vm(address addr) {
1663  static address libjvm_base_addr;
1664  Dl_info dlinfo;
1665
1666  if (libjvm_base_addr == NULL) {
1667    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1668      libjvm_base_addr = (address)dlinfo.dli_fbase;
1669    }
1670    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1671  }
1672
1673  if (dladdr((void *)addr, &dlinfo) != 0) {
1674    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1675  }
1676
1677  return false;
1678}
1679
1680bool os::dll_address_to_function_name(address addr, char *buf,
1681                                      int buflen, int *offset) {
1682  // buf is not optional, but offset is optional
1683  assert(buf != NULL, "sanity check");
1684
1685  Dl_info dlinfo;
1686
1687  if (dladdr((void*)addr, &dlinfo) != 0) {
1688    // see if we have a matching symbol
1689    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1690      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1691        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1692      }
1693      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1694      return true;
1695    }
1696    // no matching symbol so try for just file info
1697    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1698      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1699                          buf, buflen, offset, dlinfo.dli_fname)) {
1700        return true;
1701      }
1702    }
1703  }
1704
1705  buf[0] = '\0';
1706  if (offset != NULL) *offset = -1;
1707  return false;
1708}
1709
1710struct _address_to_library_name {
1711  address addr;          // input : memory address
1712  size_t  buflen;        //         size of fname
1713  char*   fname;         // output: library name
1714  address base;          //         library base addr
1715};
1716
1717static int address_to_library_name_callback(struct dl_phdr_info *info,
1718                                            size_t size, void *data) {
1719  int i;
1720  bool found = false;
1721  address libbase = NULL;
1722  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1723
1724  // iterate through all loadable segments
1725  for (i = 0; i < info->dlpi_phnum; i++) {
1726    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1727    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1728      // base address of a library is the lowest address of its loaded
1729      // segments.
1730      if (libbase == NULL || libbase > segbase) {
1731        libbase = segbase;
1732      }
1733      // see if 'addr' is within current segment
1734      if (segbase <= d->addr &&
1735          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1736        found = true;
1737      }
1738    }
1739  }
1740
1741  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1742  // so dll_address_to_library_name() can fall through to use dladdr() which
1743  // can figure out executable name from argv[0].
1744  if (found && info->dlpi_name && info->dlpi_name[0]) {
1745    d->base = libbase;
1746    if (d->fname) {
1747      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1748    }
1749    return 1;
1750  }
1751  return 0;
1752}
1753
1754bool os::dll_address_to_library_name(address addr, char* buf,
1755                                     int buflen, int* offset) {
1756  // buf is not optional, but offset is optional
1757  assert(buf != NULL, "sanity check");
1758
1759  Dl_info dlinfo;
1760  struct _address_to_library_name data;
1761
1762  // There is a bug in old glibc dladdr() implementation that it could resolve
1763  // to wrong library name if the .so file has a base address != NULL. Here
1764  // we iterate through the program headers of all loaded libraries to find
1765  // out which library 'addr' really belongs to. This workaround can be
1766  // removed once the minimum requirement for glibc is moved to 2.3.x.
1767  data.addr = addr;
1768  data.fname = buf;
1769  data.buflen = buflen;
1770  data.base = NULL;
1771  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1772
1773  if (rslt) {
1774     // buf already contains library name
1775     if (offset) *offset = addr - data.base;
1776     return true;
1777  }
1778  if (dladdr((void*)addr, &dlinfo) != 0) {
1779    if (dlinfo.dli_fname != NULL) {
1780      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1781    }
1782    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1783      *offset = addr - (address)dlinfo.dli_fbase;
1784    }
1785    return true;
1786  }
1787
1788  buf[0] = '\0';
1789  if (offset) *offset = -1;
1790  return false;
1791}
1792
1793  // Loads .dll/.so and
1794  // in case of error it checks if .dll/.so was built for the
1795  // same architecture as Hotspot is running on
1796
1797
1798// Remember the stack's state. The Linux dynamic linker will change
1799// the stack to 'executable' at most once, so we must safepoint only once.
1800bool os::Linux::_stack_is_executable = false;
1801
1802// VM operation that loads a library.  This is necessary if stack protection
1803// of the Java stacks can be lost during loading the library.  If we
1804// do not stop the Java threads, they can stack overflow before the stacks
1805// are protected again.
1806class VM_LinuxDllLoad: public VM_Operation {
1807 private:
1808  const char *_filename;
1809  char *_ebuf;
1810  int _ebuflen;
1811  void *_lib;
1812 public:
1813  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1814    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1815  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1816  void doit() {
1817    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1818    os::Linux::_stack_is_executable = true;
1819  }
1820  void* loaded_library() { return _lib; }
1821};
1822
1823void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1824{
1825  void * result = NULL;
1826  bool load_attempted = false;
1827
1828  // Check whether the library to load might change execution rights
1829  // of the stack. If they are changed, the protection of the stack
1830  // guard pages will be lost. We need a safepoint to fix this.
1831  //
1832  // See Linux man page execstack(8) for more info.
1833  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1834    ElfFile ef(filename);
1835    if (!ef.specifies_noexecstack()) {
1836      if (!is_init_completed()) {
1837        os::Linux::_stack_is_executable = true;
1838        // This is OK - No Java threads have been created yet, and hence no
1839        // stack guard pages to fix.
1840        //
1841        // This should happen only when you are building JDK7 using a very
1842        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1843        //
1844        // Dynamic loader will make all stacks executable after
1845        // this function returns, and will not do that again.
1846        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1847      } else {
1848        warning("You have loaded library %s which might have disabled stack guard. "
1849                "The VM will try to fix the stack guard now.\n"
1850                "It's highly recommended that you fix the library with "
1851                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1852                filename);
1853
1854        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1855        JavaThread *jt = JavaThread::current();
1856        if (jt->thread_state() != _thread_in_native) {
1857          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1858          // that requires ExecStack. Cannot enter safe point. Let's give up.
1859          warning("Unable to fix stack guard. Giving up.");
1860        } else {
1861          if (!LoadExecStackDllInVMThread) {
1862            // This is for the case where the DLL has an static
1863            // constructor function that executes JNI code. We cannot
1864            // load such DLLs in the VMThread.
1865            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1866          }
1867
1868          ThreadInVMfromNative tiv(jt);
1869          debug_only(VMNativeEntryWrapper vew;)
1870
1871          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1872          VMThread::execute(&op);
1873          if (LoadExecStackDllInVMThread) {
1874            result = op.loaded_library();
1875          }
1876          load_attempted = true;
1877        }
1878      }
1879    }
1880  }
1881
1882  if (!load_attempted) {
1883    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1884  }
1885
1886  if (result != NULL) {
1887    // Successful loading
1888    return result;
1889  }
1890
1891  Elf32_Ehdr elf_head;
1892  int diag_msg_max_length=ebuflen-strlen(ebuf);
1893  char* diag_msg_buf=ebuf+strlen(ebuf);
1894
1895  if (diag_msg_max_length==0) {
1896    // No more space in ebuf for additional diagnostics message
1897    return NULL;
1898  }
1899
1900
1901  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1902
1903  if (file_descriptor < 0) {
1904    // Can't open library, report dlerror() message
1905    return NULL;
1906  }
1907
1908  bool failed_to_read_elf_head=
1909    (sizeof(elf_head)!=
1910        (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1911
1912  ::close(file_descriptor);
1913  if (failed_to_read_elf_head) {
1914    // file i/o error - report dlerror() msg
1915    return NULL;
1916  }
1917
1918  typedef struct {
1919    Elf32_Half  code;         // Actual value as defined in elf.h
1920    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1921    char        elf_class;    // 32 or 64 bit
1922    char        endianess;    // MSB or LSB
1923    char*       name;         // String representation
1924  } arch_t;
1925
1926  #ifndef EM_486
1927  #define EM_486          6               /* Intel 80486 */
1928  #endif
1929
1930  static const arch_t arch_array[]={
1931    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1932    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1933    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1934    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1935    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1936    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1937    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1938    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1939#if defined(VM_LITTLE_ENDIAN)
1940    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1941#else
1942    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1943#endif
1944    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1945    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1946    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1947    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1948    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1949    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1950    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1951  };
1952
1953  #if  (defined IA32)
1954    static  Elf32_Half running_arch_code=EM_386;
1955  #elif   (defined AMD64)
1956    static  Elf32_Half running_arch_code=EM_X86_64;
1957  #elif  (defined IA64)
1958    static  Elf32_Half running_arch_code=EM_IA_64;
1959  #elif  (defined __sparc) && (defined _LP64)
1960    static  Elf32_Half running_arch_code=EM_SPARCV9;
1961  #elif  (defined __sparc) && (!defined _LP64)
1962    static  Elf32_Half running_arch_code=EM_SPARC;
1963  #elif  (defined __powerpc64__)
1964    static  Elf32_Half running_arch_code=EM_PPC64;
1965  #elif  (defined __powerpc__)
1966    static  Elf32_Half running_arch_code=EM_PPC;
1967  #elif  (defined ARM)
1968    static  Elf32_Half running_arch_code=EM_ARM;
1969  #elif  (defined S390)
1970    static  Elf32_Half running_arch_code=EM_S390;
1971  #elif  (defined ALPHA)
1972    static  Elf32_Half running_arch_code=EM_ALPHA;
1973  #elif  (defined MIPSEL)
1974    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1975  #elif  (defined PARISC)
1976    static  Elf32_Half running_arch_code=EM_PARISC;
1977  #elif  (defined MIPS)
1978    static  Elf32_Half running_arch_code=EM_MIPS;
1979  #elif  (defined M68K)
1980    static  Elf32_Half running_arch_code=EM_68K;
1981  #else
1982    #error Method os::dll_load requires that one of following is defined:\
1983         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1984  #endif
1985
1986  // Identify compatability class for VM's architecture and library's architecture
1987  // Obtain string descriptions for architectures
1988
1989  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1990  int running_arch_index=-1;
1991
1992  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1993    if (running_arch_code == arch_array[i].code) {
1994      running_arch_index    = i;
1995    }
1996    if (lib_arch.code == arch_array[i].code) {
1997      lib_arch.compat_class = arch_array[i].compat_class;
1998      lib_arch.name         = arch_array[i].name;
1999    }
2000  }
2001
2002  assert(running_arch_index != -1,
2003    "Didn't find running architecture code (running_arch_code) in arch_array");
2004  if (running_arch_index == -1) {
2005    // Even though running architecture detection failed
2006    // we may still continue with reporting dlerror() message
2007    return NULL;
2008  }
2009
2010  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2011    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2012    return NULL;
2013  }
2014
2015#ifndef S390
2016  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2017    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2018    return NULL;
2019  }
2020#endif // !S390
2021
2022  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2023    if (lib_arch.name!=NULL) {
2024      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2025        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2026        lib_arch.name, arch_array[running_arch_index].name);
2027    } else {
2028      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2029      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2030        lib_arch.code,
2031        arch_array[running_arch_index].name);
2032    }
2033  }
2034
2035  return NULL;
2036}
2037
2038void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2039  void * result = ::dlopen(filename, RTLD_LAZY);
2040  if (result == NULL) {
2041    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2042    ebuf[ebuflen-1] = '\0';
2043  }
2044  return result;
2045}
2046
2047void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2048  void * result = NULL;
2049  if (LoadExecStackDllInVMThread) {
2050    result = dlopen_helper(filename, ebuf, ebuflen);
2051  }
2052
2053  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2054  // library that requires an executable stack, or which does not have this
2055  // stack attribute set, dlopen changes the stack attribute to executable. The
2056  // read protection of the guard pages gets lost.
2057  //
2058  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2059  // may have been queued at the same time.
2060
2061  if (!_stack_is_executable) {
2062    JavaThread *jt = Threads::first();
2063
2064    while (jt) {
2065      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2066          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2067        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2068                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2069          warning("Attempt to reguard stack yellow zone failed.");
2070        }
2071      }
2072      jt = jt->next();
2073    }
2074  }
2075
2076  return result;
2077}
2078
2079/*
2080 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2081 * chances are you might want to run the generated bits against glibc-2.0
2082 * libdl.so, so always use locking for any version of glibc.
2083 */
2084void* os::dll_lookup(void* handle, const char* name) {
2085  pthread_mutex_lock(&dl_mutex);
2086  void* res = dlsym(handle, name);
2087  pthread_mutex_unlock(&dl_mutex);
2088  return res;
2089}
2090
2091void* os::get_default_process_handle() {
2092  return (void*)::dlopen(NULL, RTLD_LAZY);
2093}
2094
2095static bool _print_ascii_file(const char* filename, outputStream* st) {
2096  int fd = ::open(filename, O_RDONLY);
2097  if (fd == -1) {
2098     return false;
2099  }
2100
2101  char buf[32];
2102  int bytes;
2103  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2104    st->print_raw(buf, bytes);
2105  }
2106
2107  ::close(fd);
2108
2109  return true;
2110}
2111
2112void os::print_dll_info(outputStream *st) {
2113   st->print_cr("Dynamic libraries:");
2114
2115   char fname[32];
2116   pid_t pid = os::Linux::gettid();
2117
2118   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2119
2120   if (!_print_ascii_file(fname, st)) {
2121     st->print("Can not get library information for pid = %d\n", pid);
2122   }
2123}
2124
2125void os::print_os_info_brief(outputStream* st) {
2126  os::Linux::print_distro_info(st);
2127
2128  os::Posix::print_uname_info(st);
2129
2130  os::Linux::print_libversion_info(st);
2131
2132}
2133
2134void os::print_os_info(outputStream* st) {
2135  st->print("OS:");
2136
2137  os::Linux::print_distro_info(st);
2138
2139  os::Posix::print_uname_info(st);
2140
2141  // Print warning if unsafe chroot environment detected
2142  if (unsafe_chroot_detected) {
2143    st->print("WARNING!! ");
2144    st->print_cr("%s", unstable_chroot_error);
2145  }
2146
2147  os::Linux::print_libversion_info(st);
2148
2149  os::Posix::print_rlimit_info(st);
2150
2151  os::Posix::print_load_average(st);
2152
2153  os::Linux::print_full_memory_info(st);
2154}
2155
2156// Try to identify popular distros.
2157// Most Linux distributions have a /etc/XXX-release file, which contains
2158// the OS version string. Newer Linux distributions have a /etc/lsb-release
2159// file that also contains the OS version string. Some have more than one
2160// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2161// /etc/redhat-release.), so the order is important.
2162// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2163// their own specific XXX-release file as well as a redhat-release file.
2164// Because of this the XXX-release file needs to be searched for before the
2165// redhat-release file.
2166// Since Red Hat has a lsb-release file that is not very descriptive the
2167// search for redhat-release needs to be before lsb-release.
2168// Since the lsb-release file is the new standard it needs to be searched
2169// before the older style release files.
2170// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2171// next to last resort.  The os-release file is a new standard that contains
2172// distribution information and the system-release file seems to be an old
2173// standard that has been replaced by the lsb-release and os-release files.
2174// Searching for the debian_version file is the last resort.  It contains
2175// an informative string like "6.0.6" or "wheezy/sid". Because of this
2176// "Debian " is printed before the contents of the debian_version file.
2177void os::Linux::print_distro_info(outputStream* st) {
2178   if (!_print_ascii_file("/etc/oracle-release", st) &&
2179       !_print_ascii_file("/etc/mandriva-release", st) &&
2180       !_print_ascii_file("/etc/mandrake-release", st) &&
2181       !_print_ascii_file("/etc/sun-release", st) &&
2182       !_print_ascii_file("/etc/redhat-release", st) &&
2183       !_print_ascii_file("/etc/lsb-release", st) &&
2184       !_print_ascii_file("/etc/SuSE-release", st) &&
2185       !_print_ascii_file("/etc/turbolinux-release", st) &&
2186       !_print_ascii_file("/etc/gentoo-release", st) &&
2187       !_print_ascii_file("/etc/ltib-release", st) &&
2188       !_print_ascii_file("/etc/angstrom-version", st) &&
2189       !_print_ascii_file("/etc/system-release", st) &&
2190       !_print_ascii_file("/etc/os-release", st)) {
2191
2192       if (file_exists("/etc/debian_version")) {
2193         st->print("Debian ");
2194         _print_ascii_file("/etc/debian_version", st);
2195       } else {
2196         st->print("Linux");
2197       }
2198   }
2199   st->cr();
2200}
2201
2202void os::Linux::print_libversion_info(outputStream* st) {
2203  // libc, pthread
2204  st->print("libc:");
2205  st->print("%s ", os::Linux::glibc_version());
2206  st->print("%s ", os::Linux::libpthread_version());
2207  if (os::Linux::is_LinuxThreads()) {
2208     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2209  }
2210  st->cr();
2211}
2212
2213void os::Linux::print_full_memory_info(outputStream* st) {
2214   st->print("\n/proc/meminfo:\n");
2215   _print_ascii_file("/proc/meminfo", st);
2216   st->cr();
2217}
2218
2219void os::print_memory_info(outputStream* st) {
2220
2221  st->print("Memory:");
2222  st->print(" %dk page", os::vm_page_size()>>10);
2223
2224  // values in struct sysinfo are "unsigned long"
2225  struct sysinfo si;
2226  sysinfo(&si);
2227
2228  st->print(", physical " UINT64_FORMAT "k",
2229            os::physical_memory() >> 10);
2230  st->print("(" UINT64_FORMAT "k free)",
2231            os::available_memory() >> 10);
2232  st->print(", swap " UINT64_FORMAT "k",
2233            ((jlong)si.totalswap * si.mem_unit) >> 10);
2234  st->print("(" UINT64_FORMAT "k free)",
2235            ((jlong)si.freeswap * si.mem_unit) >> 10);
2236  st->cr();
2237}
2238
2239void os::pd_print_cpu_info(outputStream* st) {
2240  st->print("\n/proc/cpuinfo:\n");
2241  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2242    st->print("  <Not Available>");
2243  }
2244  st->cr();
2245}
2246
2247void os::print_siginfo(outputStream* st, void* siginfo) {
2248  const siginfo_t* si = (const siginfo_t*)siginfo;
2249
2250  os::Posix::print_siginfo_brief(st, si);
2251
2252  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2253      UseSharedSpaces) {
2254    FileMapInfo* mapinfo = FileMapInfo::current_info();
2255    if (mapinfo->is_in_shared_space(si->si_addr)) {
2256      st->print("\n\nError accessing class data sharing archive."   \
2257                " Mapped file inaccessible during execution, "      \
2258                " possible disk/network problem.");
2259    }
2260  }
2261  st->cr();
2262}
2263
2264
2265static void print_signal_handler(outputStream* st, int sig,
2266                                 char* buf, size_t buflen);
2267
2268void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2269  st->print_cr("Signal Handlers:");
2270  print_signal_handler(st, SIGSEGV, buf, buflen);
2271  print_signal_handler(st, SIGBUS , buf, buflen);
2272  print_signal_handler(st, SIGFPE , buf, buflen);
2273  print_signal_handler(st, SIGPIPE, buf, buflen);
2274  print_signal_handler(st, SIGXFSZ, buf, buflen);
2275  print_signal_handler(st, SIGILL , buf, buflen);
2276  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2277  print_signal_handler(st, SR_signum, buf, buflen);
2278  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2279  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2280  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2281  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2282#if defined(PPC64)
2283  print_signal_handler(st, SIGTRAP, buf, buflen);
2284#endif
2285}
2286
2287static char saved_jvm_path[MAXPATHLEN] = {0};
2288
2289// Find the full path to the current module, libjvm.so
2290void os::jvm_path(char *buf, jint buflen) {
2291  // Error checking.
2292  if (buflen < MAXPATHLEN) {
2293    assert(false, "must use a large-enough buffer");
2294    buf[0] = '\0';
2295    return;
2296  }
2297  // Lazy resolve the path to current module.
2298  if (saved_jvm_path[0] != 0) {
2299    strcpy(buf, saved_jvm_path);
2300    return;
2301  }
2302
2303  char dli_fname[MAXPATHLEN];
2304  bool ret = dll_address_to_library_name(
2305                CAST_FROM_FN_PTR(address, os::jvm_path),
2306                dli_fname, sizeof(dli_fname), NULL);
2307  assert(ret, "cannot locate libjvm");
2308  char *rp = NULL;
2309  if (ret && dli_fname[0] != '\0') {
2310    rp = realpath(dli_fname, buf);
2311  }
2312  if (rp == NULL)
2313    return;
2314
2315  if (Arguments::sun_java_launcher_is_altjvm()) {
2316    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2317    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2318    // If "/jre/lib/" appears at the right place in the string, then
2319    // assume we are installed in a JDK and we're done. Otherwise, check
2320    // for a JAVA_HOME environment variable and fix up the path so it
2321    // looks like libjvm.so is installed there (append a fake suffix
2322    // hotspot/libjvm.so).
2323    const char *p = buf + strlen(buf) - 1;
2324    for (int count = 0; p > buf && count < 5; ++count) {
2325      for (--p; p > buf && *p != '/'; --p)
2326        /* empty */ ;
2327    }
2328
2329    if (strncmp(p, "/jre/lib/", 9) != 0) {
2330      // Look for JAVA_HOME in the environment.
2331      char* java_home_var = ::getenv("JAVA_HOME");
2332      if (java_home_var != NULL && java_home_var[0] != 0) {
2333        char* jrelib_p;
2334        int len;
2335
2336        // Check the current module name "libjvm.so".
2337        p = strrchr(buf, '/');
2338        assert(strstr(p, "/libjvm") == p, "invalid library name");
2339
2340        rp = realpath(java_home_var, buf);
2341        if (rp == NULL)
2342          return;
2343
2344        // determine if this is a legacy image or modules image
2345        // modules image doesn't have "jre" subdirectory
2346        len = strlen(buf);
2347        jrelib_p = buf + len;
2348        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2349        if (0 != access(buf, F_OK)) {
2350          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2351        }
2352
2353        if (0 == access(buf, F_OK)) {
2354          // Use current module name "libjvm.so"
2355          len = strlen(buf);
2356          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2357        } else {
2358          // Go back to path of .so
2359          rp = realpath(dli_fname, buf);
2360          if (rp == NULL)
2361            return;
2362        }
2363      }
2364    }
2365  }
2366
2367  strcpy(saved_jvm_path, buf);
2368}
2369
2370void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2371  // no prefix required, not even "_"
2372}
2373
2374void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2375  // no suffix required
2376}
2377
2378////////////////////////////////////////////////////////////////////////////////
2379// sun.misc.Signal support
2380
2381static volatile jint sigint_count = 0;
2382
2383static void
2384UserHandler(int sig, void *siginfo, void *context) {
2385  // 4511530 - sem_post is serialized and handled by the manager thread. When
2386  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2387  // don't want to flood the manager thread with sem_post requests.
2388  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2389      return;
2390
2391  // Ctrl-C is pressed during error reporting, likely because the error
2392  // handler fails to abort. Let VM die immediately.
2393  if (sig == SIGINT && is_error_reported()) {
2394     os::die();
2395  }
2396
2397  os::signal_notify(sig);
2398}
2399
2400void* os::user_handler() {
2401  return CAST_FROM_FN_PTR(void*, UserHandler);
2402}
2403
2404class Semaphore : public StackObj {
2405  public:
2406    Semaphore();
2407    ~Semaphore();
2408    void signal();
2409    void wait();
2410    bool trywait();
2411    bool timedwait(unsigned int sec, int nsec);
2412  private:
2413    sem_t _semaphore;
2414};
2415
2416Semaphore::Semaphore() {
2417  sem_init(&_semaphore, 0, 0);
2418}
2419
2420Semaphore::~Semaphore() {
2421  sem_destroy(&_semaphore);
2422}
2423
2424void Semaphore::signal() {
2425  sem_post(&_semaphore);
2426}
2427
2428void Semaphore::wait() {
2429  sem_wait(&_semaphore);
2430}
2431
2432bool Semaphore::trywait() {
2433  return sem_trywait(&_semaphore) == 0;
2434}
2435
2436bool Semaphore::timedwait(unsigned int sec, int nsec) {
2437
2438  struct timespec ts;
2439  // Semaphore's are always associated with CLOCK_REALTIME
2440  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2441  // see unpackTime for discussion on overflow checking
2442  if (sec >= MAX_SECS) {
2443    ts.tv_sec += MAX_SECS;
2444    ts.tv_nsec = 0;
2445  } else {
2446    ts.tv_sec += sec;
2447    ts.tv_nsec += nsec;
2448    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2449      ts.tv_nsec -= NANOSECS_PER_SEC;
2450      ++ts.tv_sec; // note: this must be <= max_secs
2451    }
2452  }
2453
2454  while (1) {
2455    int result = sem_timedwait(&_semaphore, &ts);
2456    if (result == 0) {
2457      return true;
2458    } else if (errno == EINTR) {
2459      continue;
2460    } else if (errno == ETIMEDOUT) {
2461      return false;
2462    } else {
2463      return false;
2464    }
2465  }
2466}
2467
2468extern "C" {
2469  typedef void (*sa_handler_t)(int);
2470  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2471}
2472
2473void* os::signal(int signal_number, void* handler) {
2474  struct sigaction sigAct, oldSigAct;
2475
2476  sigfillset(&(sigAct.sa_mask));
2477  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2478  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2479
2480  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2481    // -1 means registration failed
2482    return (void *)-1;
2483  }
2484
2485  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2486}
2487
2488void os::signal_raise(int signal_number) {
2489  ::raise(signal_number);
2490}
2491
2492/*
2493 * The following code is moved from os.cpp for making this
2494 * code platform specific, which it is by its very nature.
2495 */
2496
2497// Will be modified when max signal is changed to be dynamic
2498int os::sigexitnum_pd() {
2499  return NSIG;
2500}
2501
2502// a counter for each possible signal value
2503static volatile jint pending_signals[NSIG+1] = { 0 };
2504
2505// Linux(POSIX) specific hand shaking semaphore.
2506static sem_t sig_sem;
2507static Semaphore sr_semaphore;
2508
2509void os::signal_init_pd() {
2510  // Initialize signal structures
2511  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2512
2513  // Initialize signal semaphore
2514  ::sem_init(&sig_sem, 0, 0);
2515}
2516
2517void os::signal_notify(int sig) {
2518  Atomic::inc(&pending_signals[sig]);
2519  ::sem_post(&sig_sem);
2520}
2521
2522static int check_pending_signals(bool wait) {
2523  Atomic::store(0, &sigint_count);
2524  for (;;) {
2525    for (int i = 0; i < NSIG + 1; i++) {
2526      jint n = pending_signals[i];
2527      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2528        return i;
2529      }
2530    }
2531    if (!wait) {
2532      return -1;
2533    }
2534    JavaThread *thread = JavaThread::current();
2535    ThreadBlockInVM tbivm(thread);
2536
2537    bool threadIsSuspended;
2538    do {
2539      thread->set_suspend_equivalent();
2540      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2541      ::sem_wait(&sig_sem);
2542
2543      // were we externally suspended while we were waiting?
2544      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2545      if (threadIsSuspended) {
2546        //
2547        // The semaphore has been incremented, but while we were waiting
2548        // another thread suspended us. We don't want to continue running
2549        // while suspended because that would surprise the thread that
2550        // suspended us.
2551        //
2552        ::sem_post(&sig_sem);
2553
2554        thread->java_suspend_self();
2555      }
2556    } while (threadIsSuspended);
2557  }
2558}
2559
2560int os::signal_lookup() {
2561  return check_pending_signals(false);
2562}
2563
2564int os::signal_wait() {
2565  return check_pending_signals(true);
2566}
2567
2568////////////////////////////////////////////////////////////////////////////////
2569// Virtual Memory
2570
2571int os::vm_page_size() {
2572  // Seems redundant as all get out
2573  assert(os::Linux::page_size() != -1, "must call os::init");
2574  return os::Linux::page_size();
2575}
2576
2577// Solaris allocates memory by pages.
2578int os::vm_allocation_granularity() {
2579  assert(os::Linux::page_size() != -1, "must call os::init");
2580  return os::Linux::page_size();
2581}
2582
2583// Rationale behind this function:
2584//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2585//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2586//  samples for JITted code. Here we create private executable mapping over the code cache
2587//  and then we can use standard (well, almost, as mapping can change) way to provide
2588//  info for the reporting script by storing timestamp and location of symbol
2589void linux_wrap_code(char* base, size_t size) {
2590  static volatile jint cnt = 0;
2591
2592  if (!UseOprofile) {
2593    return;
2594  }
2595
2596  char buf[PATH_MAX+1];
2597  int num = Atomic::add(1, &cnt);
2598
2599  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2600           os::get_temp_directory(), os::current_process_id(), num);
2601  unlink(buf);
2602
2603  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2604
2605  if (fd != -1) {
2606    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2607    if (rv != (off_t)-1) {
2608      if (::write(fd, "", 1) == 1) {
2609        mmap(base, size,
2610             PROT_READ|PROT_WRITE|PROT_EXEC,
2611             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2612      }
2613    }
2614    ::close(fd);
2615    unlink(buf);
2616  }
2617}
2618
2619static bool recoverable_mmap_error(int err) {
2620  // See if the error is one we can let the caller handle. This
2621  // list of errno values comes from JBS-6843484. I can't find a
2622  // Linux man page that documents this specific set of errno
2623  // values so while this list currently matches Solaris, it may
2624  // change as we gain experience with this failure mode.
2625  switch (err) {
2626  case EBADF:
2627  case EINVAL:
2628  case ENOTSUP:
2629    // let the caller deal with these errors
2630    return true;
2631
2632  default:
2633    // Any remaining errors on this OS can cause our reserved mapping
2634    // to be lost. That can cause confusion where different data
2635    // structures think they have the same memory mapped. The worst
2636    // scenario is if both the VM and a library think they have the
2637    // same memory mapped.
2638    return false;
2639  }
2640}
2641
2642static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2643                                    int err) {
2644  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2645          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2646          strerror(err), err);
2647}
2648
2649static void warn_fail_commit_memory(char* addr, size_t size,
2650                                    size_t alignment_hint, bool exec,
2651                                    int err) {
2652  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2653          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2654          alignment_hint, exec, strerror(err), err);
2655}
2656
2657// NOTE: Linux kernel does not really reserve the pages for us.
2658//       All it does is to check if there are enough free pages
2659//       left at the time of mmap(). This could be a potential
2660//       problem.
2661int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2662  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2663  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2664                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2665  if (res != (uintptr_t) MAP_FAILED) {
2666    if (UseNUMAInterleaving) {
2667      numa_make_global(addr, size);
2668    }
2669    return 0;
2670  }
2671
2672  int err = errno;  // save errno from mmap() call above
2673
2674  if (!recoverable_mmap_error(err)) {
2675    warn_fail_commit_memory(addr, size, exec, err);
2676    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2677  }
2678
2679  return err;
2680}
2681
2682bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2683  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2684}
2685
2686void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2687                                  const char* mesg) {
2688  assert(mesg != NULL, "mesg must be specified");
2689  int err = os::Linux::commit_memory_impl(addr, size, exec);
2690  if (err != 0) {
2691    // the caller wants all commit errors to exit with the specified mesg:
2692    warn_fail_commit_memory(addr, size, exec, err);
2693    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2694  }
2695}
2696
2697// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2698#ifndef MAP_HUGETLB
2699#define MAP_HUGETLB 0x40000
2700#endif
2701
2702// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2703#ifndef MADV_HUGEPAGE
2704#define MADV_HUGEPAGE 14
2705#endif
2706
2707int os::Linux::commit_memory_impl(char* addr, size_t size,
2708                                  size_t alignment_hint, bool exec) {
2709  int err = os::Linux::commit_memory_impl(addr, size, exec);
2710  if (err == 0) {
2711    realign_memory(addr, size, alignment_hint);
2712  }
2713  return err;
2714}
2715
2716bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2717                          bool exec) {
2718  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2719}
2720
2721void os::pd_commit_memory_or_exit(char* addr, size_t size,
2722                                  size_t alignment_hint, bool exec,
2723                                  const char* mesg) {
2724  assert(mesg != NULL, "mesg must be specified");
2725  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2726  if (err != 0) {
2727    // the caller wants all commit errors to exit with the specified mesg:
2728    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2729    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2730  }
2731}
2732
2733void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2734  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2735    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2736    // be supported or the memory may already be backed by huge pages.
2737    ::madvise(addr, bytes, MADV_HUGEPAGE);
2738  }
2739}
2740
2741void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2742  // This method works by doing an mmap over an existing mmaping and effectively discarding
2743  // the existing pages. However it won't work for SHM-based large pages that cannot be
2744  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2745  // small pages on top of the SHM segment. This method always works for small pages, so we
2746  // allow that in any case.
2747  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2748    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2749  }
2750}
2751
2752void os::numa_make_global(char *addr, size_t bytes) {
2753  Linux::numa_interleave_memory(addr, bytes);
2754}
2755
2756// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2757// bind policy to MPOL_PREFERRED for the current thread.
2758#define USE_MPOL_PREFERRED 0
2759
2760void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2761  // To make NUMA and large pages more robust when both enabled, we need to ease
2762  // the requirements on where the memory should be allocated. MPOL_BIND is the
2763  // default policy and it will force memory to be allocated on the specified
2764  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2765  // the specified node, but will not force it. Using this policy will prevent
2766  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2767  // free large pages.
2768  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2769  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2770}
2771
2772bool os::numa_topology_changed()   { return false; }
2773
2774size_t os::numa_get_groups_num() {
2775  int max_node = Linux::numa_max_node();
2776  return max_node > 0 ? max_node + 1 : 1;
2777}
2778
2779int os::numa_get_group_id() {
2780  int cpu_id = Linux::sched_getcpu();
2781  if (cpu_id != -1) {
2782    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2783    if (lgrp_id != -1) {
2784      return lgrp_id;
2785    }
2786  }
2787  return 0;
2788}
2789
2790size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2791  for (size_t i = 0; i < size; i++) {
2792    ids[i] = i;
2793  }
2794  return size;
2795}
2796
2797bool os::get_page_info(char *start, page_info* info) {
2798  return false;
2799}
2800
2801char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2802  return end;
2803}
2804
2805
2806int os::Linux::sched_getcpu_syscall(void) {
2807  unsigned int cpu;
2808  int retval = -1;
2809
2810#if defined(IA32)
2811# ifndef SYS_getcpu
2812# define SYS_getcpu 318
2813# endif
2814  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2815#elif defined(AMD64)
2816// Unfortunately we have to bring all these macros here from vsyscall.h
2817// to be able to compile on old linuxes.
2818# define __NR_vgetcpu 2
2819# define VSYSCALL_START (-10UL << 20)
2820# define VSYSCALL_SIZE 1024
2821# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2822  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2823  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2824  retval = vgetcpu(&cpu, NULL, NULL);
2825#endif
2826
2827  return (retval == -1) ? retval : cpu;
2828}
2829
2830// Something to do with the numa-aware allocator needs these symbols
2831extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2832extern "C" JNIEXPORT void numa_error(char *where) { }
2833extern "C" JNIEXPORT int fork1() { return fork(); }
2834
2835
2836// If we are running with libnuma version > 2, then we should
2837// be trying to use symbols with versions 1.1
2838// If we are running with earlier version, which did not have symbol versions,
2839// we should use the base version.
2840void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2841  void *f = dlvsym(handle, name, "libnuma_1.1");
2842  if (f == NULL) {
2843    f = dlsym(handle, name);
2844  }
2845  return f;
2846}
2847
2848bool os::Linux::libnuma_init() {
2849  // sched_getcpu() should be in libc.
2850  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2851                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2852
2853  // If it's not, try a direct syscall.
2854  if (sched_getcpu() == -1)
2855    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2856
2857  if (sched_getcpu() != -1) { // Does it work?
2858    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2859    if (handle != NULL) {
2860      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2861                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2862      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2863                                       libnuma_dlsym(handle, "numa_max_node")));
2864      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2865                                        libnuma_dlsym(handle, "numa_available")));
2866      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2867                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2868      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2869                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2870      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2871                                            libnuma_dlsym(handle, "numa_set_bind_policy")));
2872
2873
2874      if (numa_available() != -1) {
2875        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2876        // Create a cpu -> node mapping
2877        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2878        rebuild_cpu_to_node_map();
2879        return true;
2880      }
2881    }
2882  }
2883  return false;
2884}
2885
2886// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2887// The table is later used in get_node_by_cpu().
2888void os::Linux::rebuild_cpu_to_node_map() {
2889  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2890                              // in libnuma (possible values are starting from 16,
2891                              // and continuing up with every other power of 2, but less
2892                              // than the maximum number of CPUs supported by kernel), and
2893                              // is a subject to change (in libnuma version 2 the requirements
2894                              // are more reasonable) we'll just hardcode the number they use
2895                              // in the library.
2896  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2897
2898  size_t cpu_num = os::active_processor_count();
2899  size_t cpu_map_size = NCPUS / BitsPerCLong;
2900  size_t cpu_map_valid_size =
2901    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2902
2903  cpu_to_node()->clear();
2904  cpu_to_node()->at_grow(cpu_num - 1);
2905  size_t node_num = numa_get_groups_num();
2906
2907  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2908  for (size_t i = 0; i < node_num; i++) {
2909    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2910      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2911        if (cpu_map[j] != 0) {
2912          for (size_t k = 0; k < BitsPerCLong; k++) {
2913            if (cpu_map[j] & (1UL << k)) {
2914              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2915            }
2916          }
2917        }
2918      }
2919    }
2920  }
2921  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2922}
2923
2924int os::Linux::get_node_by_cpu(int cpu_id) {
2925  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2926    return cpu_to_node()->at(cpu_id);
2927  }
2928  return -1;
2929}
2930
2931GrowableArray<int>* os::Linux::_cpu_to_node;
2932os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2933os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2934os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2935os::Linux::numa_available_func_t os::Linux::_numa_available;
2936os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2937os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2938os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2939unsigned long* os::Linux::_numa_all_nodes;
2940
2941bool os::pd_uncommit_memory(char* addr, size_t size) {
2942  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2943                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2944  return res  != (uintptr_t) MAP_FAILED;
2945}
2946
2947static
2948address get_stack_commited_bottom(address bottom, size_t size) {
2949  address nbot = bottom;
2950  address ntop = bottom + size;
2951
2952  size_t page_sz = os::vm_page_size();
2953  unsigned pages = size / page_sz;
2954
2955  unsigned char vec[1];
2956  unsigned imin = 1, imax = pages + 1, imid;
2957  int mincore_return_value = 0;
2958
2959  assert(imin <= imax, "Unexpected page size");
2960
2961  while (imin < imax) {
2962    imid = (imax + imin) / 2;
2963    nbot = ntop - (imid * page_sz);
2964
2965    // Use a trick with mincore to check whether the page is mapped or not.
2966    // mincore sets vec to 1 if page resides in memory and to 0 if page
2967    // is swapped output but if page we are asking for is unmapped
2968    // it returns -1,ENOMEM
2969    mincore_return_value = mincore(nbot, page_sz, vec);
2970
2971    if (mincore_return_value == -1) {
2972      // Page is not mapped go up
2973      // to find first mapped page
2974      if (errno != EAGAIN) {
2975        assert(errno == ENOMEM, "Unexpected mincore errno");
2976        imax = imid;
2977      }
2978    } else {
2979      // Page is mapped go down
2980      // to find first not mapped page
2981      imin = imid + 1;
2982    }
2983  }
2984
2985  nbot = nbot + page_sz;
2986
2987  // Adjust stack bottom one page up if last checked page is not mapped
2988  if (mincore_return_value == -1) {
2989    nbot = nbot + page_sz;
2990  }
2991
2992  return nbot;
2993}
2994
2995
2996// Linux uses a growable mapping for the stack, and if the mapping for
2997// the stack guard pages is not removed when we detach a thread the
2998// stack cannot grow beyond the pages where the stack guard was
2999// mapped.  If at some point later in the process the stack expands to
3000// that point, the Linux kernel cannot expand the stack any further
3001// because the guard pages are in the way, and a segfault occurs.
3002//
3003// However, it's essential not to split the stack region by unmapping
3004// a region (leaving a hole) that's already part of the stack mapping,
3005// so if the stack mapping has already grown beyond the guard pages at
3006// the time we create them, we have to truncate the stack mapping.
3007// So, we need to know the extent of the stack mapping when
3008// create_stack_guard_pages() is called.
3009
3010// We only need this for stacks that are growable: at the time of
3011// writing thread stacks don't use growable mappings (i.e. those
3012// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3013// only applies to the main thread.
3014
3015// If the (growable) stack mapping already extends beyond the point
3016// where we're going to put our guard pages, truncate the mapping at
3017// that point by munmap()ping it.  This ensures that when we later
3018// munmap() the guard pages we don't leave a hole in the stack
3019// mapping. This only affects the main/initial thread
3020
3021bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3022
3023  if (os::Linux::is_initial_thread()) {
3024    // As we manually grow stack up to bottom inside create_attached_thread(),
3025    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3026    // we don't need to do anything special.
3027    // Check it first, before calling heavy function.
3028    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3029    unsigned char vec[1];
3030
3031    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3032      // Fallback to slow path on all errors, including EAGAIN
3033      stack_extent = (uintptr_t) get_stack_commited_bottom(
3034                                    os::Linux::initial_thread_stack_bottom(),
3035                                    (size_t)addr - stack_extent);
3036    }
3037
3038    if (stack_extent < (uintptr_t)addr) {
3039      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3040    }
3041  }
3042
3043  return os::commit_memory(addr, size, !ExecMem);
3044}
3045
3046// If this is a growable mapping, remove the guard pages entirely by
3047// munmap()ping them.  If not, just call uncommit_memory(). This only
3048// affects the main/initial thread, but guard against future OS changes
3049// It's safe to always unmap guard pages for initial thread because we
3050// always place it right after end of the mapped region
3051
3052bool os::remove_stack_guard_pages(char* addr, size_t size) {
3053  uintptr_t stack_extent, stack_base;
3054
3055  if (os::Linux::is_initial_thread()) {
3056    return ::munmap(addr, size) == 0;
3057  }
3058
3059  return os::uncommit_memory(addr, size);
3060}
3061
3062static address _highest_vm_reserved_address = NULL;
3063
3064// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3065// at 'requested_addr'. If there are existing memory mappings at the same
3066// location, however, they will be overwritten. If 'fixed' is false,
3067// 'requested_addr' is only treated as a hint, the return value may or
3068// may not start from the requested address. Unlike Linux mmap(), this
3069// function returns NULL to indicate failure.
3070static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3071  char * addr;
3072  int flags;
3073
3074  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3075  if (fixed) {
3076    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3077    flags |= MAP_FIXED;
3078  }
3079
3080  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3081  // touch an uncommitted page. Otherwise, the read/write might
3082  // succeed if we have enough swap space to back the physical page.
3083  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3084                       flags, -1, 0);
3085
3086  if (addr != MAP_FAILED) {
3087    // anon_mmap() should only get called during VM initialization,
3088    // don't need lock (actually we can skip locking even it can be called
3089    // from multiple threads, because _highest_vm_reserved_address is just a
3090    // hint about the upper limit of non-stack memory regions.)
3091    if ((address)addr + bytes > _highest_vm_reserved_address) {
3092      _highest_vm_reserved_address = (address)addr + bytes;
3093    }
3094  }
3095
3096  return addr == MAP_FAILED ? NULL : addr;
3097}
3098
3099// Don't update _highest_vm_reserved_address, because there might be memory
3100// regions above addr + size. If so, releasing a memory region only creates
3101// a hole in the address space, it doesn't help prevent heap-stack collision.
3102//
3103static int anon_munmap(char * addr, size_t size) {
3104  return ::munmap(addr, size) == 0;
3105}
3106
3107char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3108                         size_t alignment_hint) {
3109  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3110}
3111
3112bool os::pd_release_memory(char* addr, size_t size) {
3113  return anon_munmap(addr, size);
3114}
3115
3116static address highest_vm_reserved_address() {
3117  return _highest_vm_reserved_address;
3118}
3119
3120static bool linux_mprotect(char* addr, size_t size, int prot) {
3121  // Linux wants the mprotect address argument to be page aligned.
3122  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3123
3124  // According to SUSv3, mprotect() should only be used with mappings
3125  // established by mmap(), and mmap() always maps whole pages. Unaligned
3126  // 'addr' likely indicates problem in the VM (e.g. trying to change
3127  // protection of malloc'ed or statically allocated memory). Check the
3128  // caller if you hit this assert.
3129  assert(addr == bottom, "sanity check");
3130
3131  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3132  return ::mprotect(bottom, size, prot) == 0;
3133}
3134
3135// Set protections specified
3136bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3137                        bool is_committed) {
3138  unsigned int p = 0;
3139  switch (prot) {
3140  case MEM_PROT_NONE: p = PROT_NONE; break;
3141  case MEM_PROT_READ: p = PROT_READ; break;
3142  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3143  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3144  default:
3145    ShouldNotReachHere();
3146  }
3147  // is_committed is unused.
3148  return linux_mprotect(addr, bytes, p);
3149}
3150
3151bool os::guard_memory(char* addr, size_t size) {
3152  return linux_mprotect(addr, size, PROT_NONE);
3153}
3154
3155bool os::unguard_memory(char* addr, size_t size) {
3156  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3157}
3158
3159bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3160  bool result = false;
3161  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3162                 MAP_ANONYMOUS|MAP_PRIVATE,
3163                 -1, 0);
3164  if (p != MAP_FAILED) {
3165    void *aligned_p = align_ptr_up(p, page_size);
3166
3167    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3168
3169    munmap(p, page_size * 2);
3170  }
3171
3172  if (warn && !result) {
3173    warning("TransparentHugePages is not supported by the operating system.");
3174  }
3175
3176  return result;
3177}
3178
3179bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3180  bool result = false;
3181  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3182                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3183                 -1, 0);
3184
3185  if (p != MAP_FAILED) {
3186    // We don't know if this really is a huge page or not.
3187    FILE *fp = fopen("/proc/self/maps", "r");
3188    if (fp) {
3189      while (!feof(fp)) {
3190        char chars[257];
3191        long x = 0;
3192        if (fgets(chars, sizeof(chars), fp)) {
3193          if (sscanf(chars, "%lx-%*x", &x) == 1
3194              && x == (long)p) {
3195            if (strstr (chars, "hugepage")) {
3196              result = true;
3197              break;
3198            }
3199          }
3200        }
3201      }
3202      fclose(fp);
3203    }
3204    munmap(p, page_size);
3205  }
3206
3207  if (warn && !result) {
3208    warning("HugeTLBFS is not supported by the operating system.");
3209  }
3210
3211  return result;
3212}
3213
3214/*
3215* Set the coredump_filter bits to include largepages in core dump (bit 6)
3216*
3217* From the coredump_filter documentation:
3218*
3219* - (bit 0) anonymous private memory
3220* - (bit 1) anonymous shared memory
3221* - (bit 2) file-backed private memory
3222* - (bit 3) file-backed shared memory
3223* - (bit 4) ELF header pages in file-backed private memory areas (it is
3224*           effective only if the bit 2 is cleared)
3225* - (bit 5) hugetlb private memory
3226* - (bit 6) hugetlb shared memory
3227*/
3228static void set_coredump_filter(void) {
3229  FILE *f;
3230  long cdm;
3231
3232  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3233    return;
3234  }
3235
3236  if (fscanf(f, "%lx", &cdm) != 1) {
3237    fclose(f);
3238    return;
3239  }
3240
3241  rewind(f);
3242
3243  if ((cdm & LARGEPAGES_BIT) == 0) {
3244    cdm |= LARGEPAGES_BIT;
3245    fprintf(f, "%#lx", cdm);
3246  }
3247
3248  fclose(f);
3249}
3250
3251// Large page support
3252
3253static size_t _large_page_size = 0;
3254
3255size_t os::Linux::find_large_page_size() {
3256  size_t large_page_size = 0;
3257
3258  // large_page_size on Linux is used to round up heap size. x86 uses either
3259  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3260  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3261  // page as large as 256M.
3262  //
3263  // Here we try to figure out page size by parsing /proc/meminfo and looking
3264  // for a line with the following format:
3265  //    Hugepagesize:     2048 kB
3266  //
3267  // If we can't determine the value (e.g. /proc is not mounted, or the text
3268  // format has been changed), we'll use the largest page size supported by
3269  // the processor.
3270
3271#ifndef ZERO
3272  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3273                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3274#endif // ZERO
3275
3276  FILE *fp = fopen("/proc/meminfo", "r");
3277  if (fp) {
3278    while (!feof(fp)) {
3279      int x = 0;
3280      char buf[16];
3281      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3282        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3283          large_page_size = x * K;
3284          break;
3285        }
3286      } else {
3287        // skip to next line
3288        for (;;) {
3289          int ch = fgetc(fp);
3290          if (ch == EOF || ch == (int)'\n') break;
3291        }
3292      }
3293    }
3294    fclose(fp);
3295  }
3296
3297  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3298    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3299        SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3300        proper_unit_for_byte_size(large_page_size));
3301  }
3302
3303  return large_page_size;
3304}
3305
3306size_t os::Linux::setup_large_page_size() {
3307  _large_page_size = Linux::find_large_page_size();
3308  const size_t default_page_size = (size_t)Linux::page_size();
3309  if (_large_page_size > default_page_size) {
3310    _page_sizes[0] = _large_page_size;
3311    _page_sizes[1] = default_page_size;
3312    _page_sizes[2] = 0;
3313  }
3314
3315  return _large_page_size;
3316}
3317
3318bool os::Linux::setup_large_page_type(size_t page_size) {
3319  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3320      FLAG_IS_DEFAULT(UseSHM) &&
3321      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3322
3323    // The type of large pages has not been specified by the user.
3324
3325    // Try UseHugeTLBFS and then UseSHM.
3326    UseHugeTLBFS = UseSHM = true;
3327
3328    // Don't try UseTransparentHugePages since there are known
3329    // performance issues with it turned on. This might change in the future.
3330    UseTransparentHugePages = false;
3331  }
3332
3333  if (UseTransparentHugePages) {
3334    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3335    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3336      UseHugeTLBFS = false;
3337      UseSHM = false;
3338      return true;
3339    }
3340    UseTransparentHugePages = false;
3341  }
3342
3343  if (UseHugeTLBFS) {
3344    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3345    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3346      UseSHM = false;
3347      return true;
3348    }
3349    UseHugeTLBFS = false;
3350  }
3351
3352  return UseSHM;
3353}
3354
3355void os::large_page_init() {
3356  if (!UseLargePages &&
3357      !UseTransparentHugePages &&
3358      !UseHugeTLBFS &&
3359      !UseSHM) {
3360    // Not using large pages.
3361    return;
3362  }
3363
3364  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3365    // The user explicitly turned off large pages.
3366    // Ignore the rest of the large pages flags.
3367    UseTransparentHugePages = false;
3368    UseHugeTLBFS = false;
3369    UseSHM = false;
3370    return;
3371  }
3372
3373  size_t large_page_size = Linux::setup_large_page_size();
3374  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3375
3376  set_coredump_filter();
3377}
3378
3379#ifndef SHM_HUGETLB
3380#define SHM_HUGETLB 04000
3381#endif
3382
3383char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3384  // "exec" is passed in but not used.  Creating the shared image for
3385  // the code cache doesn't have an SHM_X executable permission to check.
3386  assert(UseLargePages && UseSHM, "only for SHM large pages");
3387  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3388
3389  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3390    return NULL; // Fallback to small pages.
3391  }
3392
3393  key_t key = IPC_PRIVATE;
3394  char *addr;
3395
3396  bool warn_on_failure = UseLargePages &&
3397                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3398                         !FLAG_IS_DEFAULT(UseSHM) ||
3399                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3400                        );
3401  char msg[128];
3402
3403  // Create a large shared memory region to attach to based on size.
3404  // Currently, size is the total size of the heap
3405  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3406  if (shmid == -1) {
3407     // Possible reasons for shmget failure:
3408     // 1. shmmax is too small for Java heap.
3409     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3410     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3411     // 2. not enough large page memory.
3412     //    > check available large pages: cat /proc/meminfo
3413     //    > increase amount of large pages:
3414     //          echo new_value > /proc/sys/vm/nr_hugepages
3415     //      Note 1: different Linux may use different name for this property,
3416     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3417     //      Note 2: it's possible there's enough physical memory available but
3418     //            they are so fragmented after a long run that they can't
3419     //            coalesce into large pages. Try to reserve large pages when
3420     //            the system is still "fresh".
3421     if (warn_on_failure) {
3422       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3423       warning("%s", msg);
3424     }
3425     return NULL;
3426  }
3427
3428  // attach to the region
3429  addr = (char*)shmat(shmid, req_addr, 0);
3430  int err = errno;
3431
3432  // Remove shmid. If shmat() is successful, the actual shared memory segment
3433  // will be deleted when it's detached by shmdt() or when the process
3434  // terminates. If shmat() is not successful this will remove the shared
3435  // segment immediately.
3436  shmctl(shmid, IPC_RMID, NULL);
3437
3438  if ((intptr_t)addr == -1) {
3439     if (warn_on_failure) {
3440       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3441       warning("%s", msg);
3442     }
3443     return NULL;
3444  }
3445
3446  return addr;
3447}
3448
3449static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3450  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3451
3452  bool warn_on_failure = UseLargePages &&
3453      (!FLAG_IS_DEFAULT(UseLargePages) ||
3454       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3455       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3456
3457  if (warn_on_failure) {
3458    char msg[128];
3459    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3460        PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3461    warning("%s", msg);
3462  }
3463}
3464
3465char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3466  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3467  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3468  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3469
3470  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3471  char* addr = (char*)::mmap(req_addr, bytes, prot,
3472                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3473                             -1, 0);
3474
3475  if (addr == MAP_FAILED) {
3476    warn_on_large_pages_failure(req_addr, bytes, errno);
3477    return NULL;
3478  }
3479
3480  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3481
3482  return addr;
3483}
3484
3485char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3486  size_t large_page_size = os::large_page_size();
3487
3488  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3489
3490  // Allocate small pages.
3491
3492  char* start;
3493  if (req_addr != NULL) {
3494    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3495    assert(is_size_aligned(bytes, alignment), "Must be");
3496    start = os::reserve_memory(bytes, req_addr);
3497    assert(start == NULL || start == req_addr, "Must be");
3498  } else {
3499    start = os::reserve_memory_aligned(bytes, alignment);
3500  }
3501
3502  if (start == NULL) {
3503    return NULL;
3504  }
3505
3506  assert(is_ptr_aligned(start, alignment), "Must be");
3507
3508  // os::reserve_memory_special will record this memory area.
3509  // Need to release it here to prevent overlapping reservations.
3510  MemTracker::record_virtual_memory_release((address)start, bytes);
3511
3512  char* end = start + bytes;
3513
3514  // Find the regions of the allocated chunk that can be promoted to large pages.
3515  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3516  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3517
3518  size_t lp_bytes = lp_end - lp_start;
3519
3520  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3521
3522  if (lp_bytes == 0) {
3523    // The mapped region doesn't even span the start and the end of a large page.
3524    // Fall back to allocate a non-special area.
3525    ::munmap(start, end - start);
3526    return NULL;
3527  }
3528
3529  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3530
3531
3532  void* result;
3533
3534  if (start != lp_start) {
3535    result = ::mmap(start, lp_start - start, prot,
3536                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3537                    -1, 0);
3538    if (result == MAP_FAILED) {
3539      ::munmap(lp_start, end - lp_start);
3540      return NULL;
3541    }
3542  }
3543
3544  result = ::mmap(lp_start, lp_bytes, prot,
3545                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3546                  -1, 0);
3547  if (result == MAP_FAILED) {
3548    warn_on_large_pages_failure(req_addr, bytes, errno);
3549    // If the mmap above fails, the large pages region will be unmapped and we
3550    // have regions before and after with small pages. Release these regions.
3551    //
3552    // |  mapped  |  unmapped  |  mapped  |
3553    // ^          ^            ^          ^
3554    // start      lp_start     lp_end     end
3555    //
3556    ::munmap(start, lp_start - start);
3557    ::munmap(lp_end, end - lp_end);
3558    return NULL;
3559  }
3560
3561  if (lp_end != end) {
3562      result = ::mmap(lp_end, end - lp_end, prot,
3563                      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3564                      -1, 0);
3565    if (result == MAP_FAILED) {
3566      ::munmap(start, lp_end - start);
3567      return NULL;
3568    }
3569  }
3570
3571  return start;
3572}
3573
3574char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3575  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3576  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3577  assert(is_power_of_2(alignment), "Must be");
3578  assert(is_power_of_2(os::large_page_size()), "Must be");
3579  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3580
3581  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3582    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3583  } else {
3584    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3585  }
3586}
3587
3588char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3589  assert(UseLargePages, "only for large pages");
3590
3591  char* addr;
3592  if (UseSHM) {
3593    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3594  } else {
3595    assert(UseHugeTLBFS, "must be");
3596    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3597  }
3598
3599  if (addr != NULL) {
3600    if (UseNUMAInterleaving) {
3601      numa_make_global(addr, bytes);
3602    }
3603
3604    // The memory is committed
3605    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3606  }
3607
3608  return addr;
3609}
3610
3611bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3612  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3613  return shmdt(base) == 0;
3614}
3615
3616bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3617  return pd_release_memory(base, bytes);
3618}
3619
3620bool os::release_memory_special(char* base, size_t bytes) {
3621  assert(UseLargePages, "only for large pages");
3622
3623  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3624
3625  bool res;
3626  if (UseSHM) {
3627    res = os::Linux::release_memory_special_shm(base, bytes);
3628  } else {
3629    assert(UseHugeTLBFS, "must be");
3630    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3631  }
3632
3633  if (res) {
3634    tkr.record((address)base, bytes);
3635  } else {
3636    tkr.discard();
3637  }
3638
3639  return res;
3640}
3641
3642size_t os::large_page_size() {
3643  return _large_page_size;
3644}
3645
3646// With SysV SHM the entire memory region must be allocated as shared
3647// memory.
3648// HugeTLBFS allows application to commit large page memory on demand.
3649// However, when committing memory with HugeTLBFS fails, the region
3650// that was supposed to be committed will lose the old reservation
3651// and allow other threads to steal that memory region. Because of this
3652// behavior we can't commit HugeTLBFS memory.
3653bool os::can_commit_large_page_memory() {
3654  return UseTransparentHugePages;
3655}
3656
3657bool os::can_execute_large_page_memory() {
3658  return UseTransparentHugePages || UseHugeTLBFS;
3659}
3660
3661// Reserve memory at an arbitrary address, only if that area is
3662// available (and not reserved for something else).
3663
3664char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3665  const int max_tries = 10;
3666  char* base[max_tries];
3667  size_t size[max_tries];
3668  const size_t gap = 0x000000;
3669
3670  // Assert only that the size is a multiple of the page size, since
3671  // that's all that mmap requires, and since that's all we really know
3672  // about at this low abstraction level.  If we need higher alignment,
3673  // we can either pass an alignment to this method or verify alignment
3674  // in one of the methods further up the call chain.  See bug 5044738.
3675  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3676
3677  // Repeatedly allocate blocks until the block is allocated at the
3678  // right spot. Give up after max_tries. Note that reserve_memory() will
3679  // automatically update _highest_vm_reserved_address if the call is
3680  // successful. The variable tracks the highest memory address every reserved
3681  // by JVM. It is used to detect heap-stack collision if running with
3682  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3683  // space than needed, it could confuse the collision detecting code. To
3684  // solve the problem, save current _highest_vm_reserved_address and
3685  // calculate the correct value before return.
3686  address old_highest = _highest_vm_reserved_address;
3687
3688  // Linux mmap allows caller to pass an address as hint; give it a try first,
3689  // if kernel honors the hint then we can return immediately.
3690  char * addr = anon_mmap(requested_addr, bytes, false);
3691  if (addr == requested_addr) {
3692     return requested_addr;
3693  }
3694
3695  if (addr != NULL) {
3696     // mmap() is successful but it fails to reserve at the requested address
3697     anon_munmap(addr, bytes);
3698  }
3699
3700  int i;
3701  for (i = 0; i < max_tries; ++i) {
3702    base[i] = reserve_memory(bytes);
3703
3704    if (base[i] != NULL) {
3705      // Is this the block we wanted?
3706      if (base[i] == requested_addr) {
3707        size[i] = bytes;
3708        break;
3709      }
3710
3711      // Does this overlap the block we wanted? Give back the overlapped
3712      // parts and try again.
3713
3714      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3715      if (top_overlap >= 0 && top_overlap < bytes) {
3716        unmap_memory(base[i], top_overlap);
3717        base[i] += top_overlap;
3718        size[i] = bytes - top_overlap;
3719      } else {
3720        size_t bottom_overlap = base[i] + bytes - requested_addr;
3721        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3722          unmap_memory(requested_addr, bottom_overlap);
3723          size[i] = bytes - bottom_overlap;
3724        } else {
3725          size[i] = bytes;
3726        }
3727      }
3728    }
3729  }
3730
3731  // Give back the unused reserved pieces.
3732
3733  for (int j = 0; j < i; ++j) {
3734    if (base[j] != NULL) {
3735      unmap_memory(base[j], size[j]);
3736    }
3737  }
3738
3739  if (i < max_tries) {
3740    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3741    return requested_addr;
3742  } else {
3743    _highest_vm_reserved_address = old_highest;
3744    return NULL;
3745  }
3746}
3747
3748size_t os::read(int fd, void *buf, unsigned int nBytes) {
3749  return ::read(fd, buf, nBytes);
3750}
3751
3752//
3753// Short sleep, direct OS call.
3754//
3755// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3756// sched_yield(2) will actually give up the CPU:
3757//
3758//   * Alone on this pariticular CPU, keeps running.
3759//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3760//     (pre 2.6.39).
3761//
3762// So calling this with 0 is an alternative.
3763//
3764void os::naked_short_sleep(jlong ms) {
3765  struct timespec req;
3766
3767  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3768  req.tv_sec = 0;
3769  if (ms > 0) {
3770    req.tv_nsec = (ms % 1000) * 1000000;
3771  }
3772  else {
3773    req.tv_nsec = 1;
3774  }
3775
3776  nanosleep(&req, NULL);
3777
3778  return;
3779}
3780
3781// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3782void os::infinite_sleep() {
3783  while (true) {    // sleep forever ...
3784    ::sleep(100);   // ... 100 seconds at a time
3785  }
3786}
3787
3788// Used to convert frequent JVM_Yield() to nops
3789bool os::dont_yield() {
3790  return DontYieldALot;
3791}
3792
3793void os::yield() {
3794  sched_yield();
3795}
3796
3797os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }
3798
3799void os::yield_all() {
3800  // Yields to all threads, including threads with lower priorities
3801  // Threads on Linux are all with same priority. The Solaris style
3802  // os::yield_all() with nanosleep(1ms) is not necessary.
3803  sched_yield();
3804}
3805
3806////////////////////////////////////////////////////////////////////////////////
3807// thread priority support
3808
3809// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3810// only supports dynamic priority, static priority must be zero. For real-time
3811// applications, Linux supports SCHED_RR which allows static priority (1-99).
3812// However, for large multi-threaded applications, SCHED_RR is not only slower
3813// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3814// of 5 runs - Sep 2005).
3815//
3816// The following code actually changes the niceness of kernel-thread/LWP. It
3817// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3818// not the entire user process, and user level threads are 1:1 mapped to kernel
3819// threads. It has always been the case, but could change in the future. For
3820// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3821// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3822
3823int os::java_to_os_priority[CriticalPriority + 1] = {
3824  19,              // 0 Entry should never be used
3825
3826   4,              // 1 MinPriority
3827   3,              // 2
3828   2,              // 3
3829
3830   1,              // 4
3831   0,              // 5 NormPriority
3832  -1,              // 6
3833
3834  -2,              // 7
3835  -3,              // 8
3836  -4,              // 9 NearMaxPriority
3837
3838  -5,              // 10 MaxPriority
3839
3840  -5               // 11 CriticalPriority
3841};
3842
3843static int prio_init() {
3844  if (ThreadPriorityPolicy == 1) {
3845    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3846    // if effective uid is not root. Perhaps, a more elegant way of doing
3847    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3848    if (geteuid() != 0) {
3849      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3850        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3851      }
3852      ThreadPriorityPolicy = 0;
3853    }
3854  }
3855  if (UseCriticalJavaThreadPriority) {
3856    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3857  }
3858  return 0;
3859}
3860
3861OSReturn os::set_native_priority(Thread* thread, int newpri) {
3862  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3863
3864  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3865  return (ret == 0) ? OS_OK : OS_ERR;
3866}
3867
3868OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3869  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3870    *priority_ptr = java_to_os_priority[NormPriority];
3871    return OS_OK;
3872  }
3873
3874  errno = 0;
3875  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3876  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3877}
3878
3879// Hint to the underlying OS that a task switch would not be good.
3880// Void return because it's a hint and can fail.
3881void os::hint_no_preempt() {}
3882
3883////////////////////////////////////////////////////////////////////////////////
3884// suspend/resume support
3885
3886//  the low-level signal-based suspend/resume support is a remnant from the
3887//  old VM-suspension that used to be for java-suspension, safepoints etc,
3888//  within hotspot. Now there is a single use-case for this:
3889//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3890//      that runs in the watcher thread.
3891//  The remaining code is greatly simplified from the more general suspension
3892//  code that used to be used.
3893//
3894//  The protocol is quite simple:
3895//  - suspend:
3896//      - sends a signal to the target thread
3897//      - polls the suspend state of the osthread using a yield loop
3898//      - target thread signal handler (SR_handler) sets suspend state
3899//        and blocks in sigsuspend until continued
3900//  - resume:
3901//      - sets target osthread state to continue
3902//      - sends signal to end the sigsuspend loop in the SR_handler
3903//
3904//  Note that the SR_lock plays no role in this suspend/resume protocol.
3905//
3906
3907static void resume_clear_context(OSThread *osthread) {
3908  osthread->set_ucontext(NULL);
3909  osthread->set_siginfo(NULL);
3910}
3911
3912static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3913  osthread->set_ucontext(context);
3914  osthread->set_siginfo(siginfo);
3915}
3916
3917//
3918// Handler function invoked when a thread's execution is suspended or
3919// resumed. We have to be careful that only async-safe functions are
3920// called here (Note: most pthread functions are not async safe and
3921// should be avoided.)
3922//
3923// Note: sigwait() is a more natural fit than sigsuspend() from an
3924// interface point of view, but sigwait() prevents the signal hander
3925// from being run. libpthread would get very confused by not having
3926// its signal handlers run and prevents sigwait()'s use with the
3927// mutex granting granting signal.
3928//
3929// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3930//
3931static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3932  // Save and restore errno to avoid confusing native code with EINTR
3933  // after sigsuspend.
3934  int old_errno = errno;
3935
3936  Thread* thread = Thread::current();
3937  OSThread* osthread = thread->osthread();
3938  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3939
3940  os::SuspendResume::State current = osthread->sr.state();
3941  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3942    suspend_save_context(osthread, siginfo, context);
3943
3944    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3945    os::SuspendResume::State state = osthread->sr.suspended();
3946    if (state == os::SuspendResume::SR_SUSPENDED) {
3947      sigset_t suspend_set;  // signals for sigsuspend()
3948
3949      // get current set of blocked signals and unblock resume signal
3950      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3951      sigdelset(&suspend_set, SR_signum);
3952
3953      sr_semaphore.signal();
3954      // wait here until we are resumed
3955      while (1) {
3956        sigsuspend(&suspend_set);
3957
3958        os::SuspendResume::State result = osthread->sr.running();
3959        if (result == os::SuspendResume::SR_RUNNING) {
3960          sr_semaphore.signal();
3961          break;
3962        }
3963      }
3964
3965    } else if (state == os::SuspendResume::SR_RUNNING) {
3966      // request was cancelled, continue
3967    } else {
3968      ShouldNotReachHere();
3969    }
3970
3971    resume_clear_context(osthread);
3972  } else if (current == os::SuspendResume::SR_RUNNING) {
3973    // request was cancelled, continue
3974  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3975    // ignore
3976  } else {
3977    // ignore
3978  }
3979
3980  errno = old_errno;
3981}
3982
3983
3984static int SR_initialize() {
3985  struct sigaction act;
3986  char *s;
3987  /* Get signal number to use for suspend/resume */
3988  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3989    int sig = ::strtol(s, 0, 10);
3990    if (sig > 0 || sig < _NSIG) {
3991        SR_signum = sig;
3992    }
3993  }
3994
3995  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3996        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3997
3998  sigemptyset(&SR_sigset);
3999  sigaddset(&SR_sigset, SR_signum);
4000
4001  /* Set up signal handler for suspend/resume */
4002  act.sa_flags = SA_RESTART|SA_SIGINFO;
4003  act.sa_handler = (void (*)(int)) SR_handler;
4004
4005  // SR_signum is blocked by default.
4006  // 4528190 - We also need to block pthread restart signal (32 on all
4007  // supported Linux platforms). Note that LinuxThreads need to block
4008  // this signal for all threads to work properly. So we don't have
4009  // to use hard-coded signal number when setting up the mask.
4010  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4011
4012  if (sigaction(SR_signum, &act, 0) == -1) {
4013    return -1;
4014  }
4015
4016  // Save signal flag
4017  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4018  return 0;
4019}
4020
4021static int sr_notify(OSThread* osthread) {
4022  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4023  assert_status(status == 0, status, "pthread_kill");
4024  return status;
4025}
4026
4027// "Randomly" selected value for how long we want to spin
4028// before bailing out on suspending a thread, also how often
4029// we send a signal to a thread we want to resume
4030static const int RANDOMLY_LARGE_INTEGER = 1000000;
4031static const int RANDOMLY_LARGE_INTEGER2 = 100;
4032
4033// returns true on success and false on error - really an error is fatal
4034// but this seems the normal response to library errors
4035static bool do_suspend(OSThread* osthread) {
4036  assert(osthread->sr.is_running(), "thread should be running");
4037  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4038
4039  // mark as suspended and send signal
4040  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4041    // failed to switch, state wasn't running?
4042    ShouldNotReachHere();
4043    return false;
4044  }
4045
4046  if (sr_notify(osthread) != 0) {
4047    ShouldNotReachHere();
4048  }
4049
4050  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4051  while (true) {
4052    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4053      break;
4054    } else {
4055      // timeout
4056      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4057      if (cancelled == os::SuspendResume::SR_RUNNING) {
4058        return false;
4059      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4060        // make sure that we consume the signal on the semaphore as well
4061        sr_semaphore.wait();
4062        break;
4063      } else {
4064        ShouldNotReachHere();
4065        return false;
4066      }
4067    }
4068  }
4069
4070  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4071  return true;
4072}
4073
4074static void do_resume(OSThread* osthread) {
4075  assert(osthread->sr.is_suspended(), "thread should be suspended");
4076  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4077
4078  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4079    // failed to switch to WAKEUP_REQUEST
4080    ShouldNotReachHere();
4081    return;
4082  }
4083
4084  while (true) {
4085    if (sr_notify(osthread) == 0) {
4086      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4087        if (osthread->sr.is_running()) {
4088          return;
4089        }
4090      }
4091    } else {
4092      ShouldNotReachHere();
4093    }
4094  }
4095
4096  guarantee(osthread->sr.is_running(), "Must be running!");
4097}
4098
4099///////////////////////////////////////////////////////////////////////////////////
4100// signal handling (except suspend/resume)
4101
4102// This routine may be used by user applications as a "hook" to catch signals.
4103// The user-defined signal handler must pass unrecognized signals to this
4104// routine, and if it returns true (non-zero), then the signal handler must
4105// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4106// routine will never retun false (zero), but instead will execute a VM panic
4107// routine kill the process.
4108//
4109// If this routine returns false, it is OK to call it again.  This allows
4110// the user-defined signal handler to perform checks either before or after
4111// the VM performs its own checks.  Naturally, the user code would be making
4112// a serious error if it tried to handle an exception (such as a null check
4113// or breakpoint) that the VM was generating for its own correct operation.
4114//
4115// This routine may recognize any of the following kinds of signals:
4116//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4117// It should be consulted by handlers for any of those signals.
4118//
4119// The caller of this routine must pass in the three arguments supplied
4120// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4121// field of the structure passed to sigaction().  This routine assumes that
4122// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4123//
4124// Note that the VM will print warnings if it detects conflicting signal
4125// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4126//
4127extern "C" JNIEXPORT int
4128JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4129                        void* ucontext, int abort_if_unrecognized);
4130
4131void signalHandler(int sig, siginfo_t* info, void* uc) {
4132  assert(info != NULL && uc != NULL, "it must be old kernel");
4133  int orig_errno = errno;  // Preserve errno value over signal handler.
4134  JVM_handle_linux_signal(sig, info, uc, true);
4135  errno = orig_errno;
4136}
4137
4138
4139// This boolean allows users to forward their own non-matching signals
4140// to JVM_handle_linux_signal, harmlessly.
4141bool os::Linux::signal_handlers_are_installed = false;
4142
4143// For signal-chaining
4144struct sigaction os::Linux::sigact[MAXSIGNUM];
4145unsigned int os::Linux::sigs = 0;
4146bool os::Linux::libjsig_is_loaded = false;
4147typedef struct sigaction *(*get_signal_t)(int);
4148get_signal_t os::Linux::get_signal_action = NULL;
4149
4150struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4151  struct sigaction *actp = NULL;
4152
4153  if (libjsig_is_loaded) {
4154    // Retrieve the old signal handler from libjsig
4155    actp = (*get_signal_action)(sig);
4156  }
4157  if (actp == NULL) {
4158    // Retrieve the preinstalled signal handler from jvm
4159    actp = get_preinstalled_handler(sig);
4160  }
4161
4162  return actp;
4163}
4164
4165static bool call_chained_handler(struct sigaction *actp, int sig,
4166                                 siginfo_t *siginfo, void *context) {
4167  // Call the old signal handler
4168  if (actp->sa_handler == SIG_DFL) {
4169    // It's more reasonable to let jvm treat it as an unexpected exception
4170    // instead of taking the default action.
4171    return false;
4172  } else if (actp->sa_handler != SIG_IGN) {
4173    if ((actp->sa_flags & SA_NODEFER) == 0) {
4174      // automaticlly block the signal
4175      sigaddset(&(actp->sa_mask), sig);
4176    }
4177
4178    sa_handler_t hand;
4179    sa_sigaction_t sa;
4180    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4181    // retrieve the chained handler
4182    if (siginfo_flag_set) {
4183      sa = actp->sa_sigaction;
4184    } else {
4185      hand = actp->sa_handler;
4186    }
4187
4188    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4189      actp->sa_handler = SIG_DFL;
4190    }
4191
4192    // try to honor the signal mask
4193    sigset_t oset;
4194    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4195
4196    // call into the chained handler
4197    if (siginfo_flag_set) {
4198      (*sa)(sig, siginfo, context);
4199    } else {
4200      (*hand)(sig);
4201    }
4202
4203    // restore the signal mask
4204    pthread_sigmask(SIG_SETMASK, &oset, 0);
4205  }
4206  // Tell jvm's signal handler the signal is taken care of.
4207  return true;
4208}
4209
4210bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4211  bool chained = false;
4212  // signal-chaining
4213  if (UseSignalChaining) {
4214    struct sigaction *actp = get_chained_signal_action(sig);
4215    if (actp != NULL) {
4216      chained = call_chained_handler(actp, sig, siginfo, context);
4217    }
4218  }
4219  return chained;
4220}
4221
4222struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4223  if ((((unsigned int)1 << sig) & sigs) != 0) {
4224    return &sigact[sig];
4225  }
4226  return NULL;
4227}
4228
4229void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4230  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4231  sigact[sig] = oldAct;
4232  sigs |= (unsigned int)1 << sig;
4233}
4234
4235// for diagnostic
4236int os::Linux::sigflags[MAXSIGNUM];
4237
4238int os::Linux::get_our_sigflags(int sig) {
4239  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4240  return sigflags[sig];
4241}
4242
4243void os::Linux::set_our_sigflags(int sig, int flags) {
4244  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4245  sigflags[sig] = flags;
4246}
4247
4248void os::Linux::set_signal_handler(int sig, bool set_installed) {
4249  // Check for overwrite.
4250  struct sigaction oldAct;
4251  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4252
4253  void* oldhand = oldAct.sa_sigaction
4254                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4255                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4256  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4257      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4258      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4259    if (AllowUserSignalHandlers || !set_installed) {
4260      // Do not overwrite; user takes responsibility to forward to us.
4261      return;
4262    } else if (UseSignalChaining) {
4263      // save the old handler in jvm
4264      save_preinstalled_handler(sig, oldAct);
4265      // libjsig also interposes the sigaction() call below and saves the
4266      // old sigaction on it own.
4267    } else {
4268      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4269                    "%#lx for signal %d.", (long)oldhand, sig));
4270    }
4271  }
4272
4273  struct sigaction sigAct;
4274  sigfillset(&(sigAct.sa_mask));
4275  sigAct.sa_handler = SIG_DFL;
4276  if (!set_installed) {
4277    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4278  } else {
4279    sigAct.sa_sigaction = signalHandler;
4280    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4281  }
4282  // Save flags, which are set by ours
4283  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4284  sigflags[sig] = sigAct.sa_flags;
4285
4286  int ret = sigaction(sig, &sigAct, &oldAct);
4287  assert(ret == 0, "check");
4288
4289  void* oldhand2  = oldAct.sa_sigaction
4290                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4291                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4292  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4293}
4294
4295// install signal handlers for signals that HotSpot needs to
4296// handle in order to support Java-level exception handling.
4297
4298void os::Linux::install_signal_handlers() {
4299  if (!signal_handlers_are_installed) {
4300    signal_handlers_are_installed = true;
4301
4302    // signal-chaining
4303    typedef void (*signal_setting_t)();
4304    signal_setting_t begin_signal_setting = NULL;
4305    signal_setting_t end_signal_setting = NULL;
4306    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4307                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4308    if (begin_signal_setting != NULL) {
4309      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4310                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4311      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4312                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4313      libjsig_is_loaded = true;
4314      assert(UseSignalChaining, "should enable signal-chaining");
4315    }
4316    if (libjsig_is_loaded) {
4317      // Tell libjsig jvm is setting signal handlers
4318      (*begin_signal_setting)();
4319    }
4320
4321    set_signal_handler(SIGSEGV, true);
4322    set_signal_handler(SIGPIPE, true);
4323    set_signal_handler(SIGBUS, true);
4324    set_signal_handler(SIGILL, true);
4325    set_signal_handler(SIGFPE, true);
4326#if defined(PPC64)
4327    set_signal_handler(SIGTRAP, true);
4328#endif
4329    set_signal_handler(SIGXFSZ, true);
4330
4331    if (libjsig_is_loaded) {
4332      // Tell libjsig jvm finishes setting signal handlers
4333      (*end_signal_setting)();
4334    }
4335
4336    // We don't activate signal checker if libjsig is in place, we trust ourselves
4337    // and if UserSignalHandler is installed all bets are off.
4338    // Log that signal checking is off only if -verbose:jni is specified.
4339    if (CheckJNICalls) {
4340      if (libjsig_is_loaded) {
4341        if (PrintJNIResolving) {
4342          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4343        }
4344        check_signals = false;
4345      }
4346      if (AllowUserSignalHandlers) {
4347        if (PrintJNIResolving) {
4348          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4349        }
4350        check_signals = false;
4351      }
4352    }
4353  }
4354}
4355
4356// This is the fastest way to get thread cpu time on Linux.
4357// Returns cpu time (user+sys) for any thread, not only for current.
4358// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4359// It might work on 2.6.10+ with a special kernel/glibc patch.
4360// For reference, please, see IEEE Std 1003.1-2004:
4361//   http://www.unix.org/single_unix_specification
4362
4363jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4364  struct timespec tp;
4365  int rc = os::Linux::clock_gettime(clockid, &tp);
4366  assert(rc == 0, "clock_gettime is expected to return 0 code");
4367
4368  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4369}
4370
4371/////
4372// glibc on Linux platform uses non-documented flag
4373// to indicate, that some special sort of signal
4374// trampoline is used.
4375// We will never set this flag, and we should
4376// ignore this flag in our diagnostic
4377#ifdef SIGNIFICANT_SIGNAL_MASK
4378#undef SIGNIFICANT_SIGNAL_MASK
4379#endif
4380#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4381
4382static const char* get_signal_handler_name(address handler,
4383                                           char* buf, int buflen) {
4384  int offset;
4385  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4386  if (found) {
4387    // skip directory names
4388    const char *p1, *p2;
4389    p1 = buf;
4390    size_t len = strlen(os::file_separator());
4391    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4392    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4393  } else {
4394    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4395  }
4396  return buf;
4397}
4398
4399static void print_signal_handler(outputStream* st, int sig,
4400                                 char* buf, size_t buflen) {
4401  struct sigaction sa;
4402
4403  sigaction(sig, NULL, &sa);
4404
4405  // See comment for SIGNIFICANT_SIGNAL_MASK define
4406  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4407
4408  st->print("%s: ", os::exception_name(sig, buf, buflen));
4409
4410  address handler = (sa.sa_flags & SA_SIGINFO)
4411    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4412    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4413
4414  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4415    st->print("SIG_DFL");
4416  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4417    st->print("SIG_IGN");
4418  } else {
4419    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4420  }
4421
4422  st->print(", sa_mask[0]=");
4423  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4424
4425  address rh = VMError::get_resetted_sighandler(sig);
4426  // May be, handler was resetted by VMError?
4427  if (rh != NULL) {
4428    handler = rh;
4429    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4430  }
4431
4432  st->print(", sa_flags=");
4433  os::Posix::print_sa_flags(st, sa.sa_flags);
4434
4435  // Check: is it our handler?
4436  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4437     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4438    // It is our signal handler
4439    // check for flags, reset system-used one!
4440    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4441      st->print(
4442                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4443                os::Linux::get_our_sigflags(sig));
4444    }
4445  }
4446  st->cr();
4447}
4448
4449
4450#define DO_SIGNAL_CHECK(sig) \
4451  if (!sigismember(&check_signal_done, sig)) \
4452    os::Linux::check_signal_handler(sig)
4453
4454// This method is a periodic task to check for misbehaving JNI applications
4455// under CheckJNI, we can add any periodic checks here
4456
4457void os::run_periodic_checks() {
4458
4459  if (check_signals == false) return;
4460
4461  // SEGV and BUS if overridden could potentially prevent
4462  // generation of hs*.log in the event of a crash, debugging
4463  // such a case can be very challenging, so we absolutely
4464  // check the following for a good measure:
4465  DO_SIGNAL_CHECK(SIGSEGV);
4466  DO_SIGNAL_CHECK(SIGILL);
4467  DO_SIGNAL_CHECK(SIGFPE);
4468  DO_SIGNAL_CHECK(SIGBUS);
4469  DO_SIGNAL_CHECK(SIGPIPE);
4470  DO_SIGNAL_CHECK(SIGXFSZ);
4471#if defined(PPC64)
4472  DO_SIGNAL_CHECK(SIGTRAP);
4473#endif
4474
4475  // ReduceSignalUsage allows the user to override these handlers
4476  // see comments at the very top and jvm_solaris.h
4477  if (!ReduceSignalUsage) {
4478    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4479    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4480    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4481    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4482  }
4483
4484  DO_SIGNAL_CHECK(SR_signum);
4485  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4486}
4487
4488typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4489
4490static os_sigaction_t os_sigaction = NULL;
4491
4492void os::Linux::check_signal_handler(int sig) {
4493  char buf[O_BUFLEN];
4494  address jvmHandler = NULL;
4495
4496
4497  struct sigaction act;
4498  if (os_sigaction == NULL) {
4499    // only trust the default sigaction, in case it has been interposed
4500    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4501    if (os_sigaction == NULL) return;
4502  }
4503
4504  os_sigaction(sig, (struct sigaction*)NULL, &act);
4505
4506
4507  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4508
4509  address thisHandler = (act.sa_flags & SA_SIGINFO)
4510    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4511    : CAST_FROM_FN_PTR(address, act.sa_handler);
4512
4513
4514  switch (sig) {
4515  case SIGSEGV:
4516  case SIGBUS:
4517  case SIGFPE:
4518  case SIGPIPE:
4519  case SIGILL:
4520  case SIGXFSZ:
4521    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4522    break;
4523
4524  case SHUTDOWN1_SIGNAL:
4525  case SHUTDOWN2_SIGNAL:
4526  case SHUTDOWN3_SIGNAL:
4527  case BREAK_SIGNAL:
4528    jvmHandler = (address)user_handler();
4529    break;
4530
4531  case INTERRUPT_SIGNAL:
4532    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4533    break;
4534
4535  default:
4536    if (sig == SR_signum) {
4537      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4538    } else {
4539      return;
4540    }
4541    break;
4542  }
4543
4544  if (thisHandler != jvmHandler) {
4545    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4546    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4547    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4548    // No need to check this sig any longer
4549    sigaddset(&check_signal_done, sig);
4550    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4551    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4552      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4553                    exception_name(sig, buf, O_BUFLEN));
4554    }
4555  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4556    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4557    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4558    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4559    // No need to check this sig any longer
4560    sigaddset(&check_signal_done, sig);
4561  }
4562
4563  // Dump all the signal
4564  if (sigismember(&check_signal_done, sig)) {
4565    print_signal_handlers(tty, buf, O_BUFLEN);
4566  }
4567}
4568
4569extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4570
4571extern bool signal_name(int signo, char* buf, size_t len);
4572
4573const char* os::exception_name(int exception_code, char* buf, size_t size) {
4574  if (0 < exception_code && exception_code <= SIGRTMAX) {
4575    // signal
4576    if (!signal_name(exception_code, buf, size)) {
4577      jio_snprintf(buf, size, "SIG%d", exception_code);
4578    }
4579    return buf;
4580  } else {
4581    return NULL;
4582  }
4583}
4584
4585// this is called _before_ the most of global arguments have been parsed
4586void os::init(void) {
4587  char dummy;   /* used to get a guess on initial stack address */
4588//  first_hrtime = gethrtime();
4589
4590  // With LinuxThreads the JavaMain thread pid (primordial thread)
4591  // is different than the pid of the java launcher thread.
4592  // So, on Linux, the launcher thread pid is passed to the VM
4593  // via the sun.java.launcher.pid property.
4594  // Use this property instead of getpid() if it was correctly passed.
4595  // See bug 6351349.
4596  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4597
4598  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4599
4600  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4601
4602  init_random(1234567);
4603
4604  ThreadCritical::initialize();
4605
4606  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4607  if (Linux::page_size() == -1) {
4608    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4609                  strerror(errno)));
4610  }
4611  init_page_sizes((size_t) Linux::page_size());
4612
4613  Linux::initialize_system_info();
4614
4615  // main_thread points to the aboriginal thread
4616  Linux::_main_thread = pthread_self();
4617
4618  Linux::clock_init();
4619  initial_time_count = javaTimeNanos();
4620
4621  // pthread_condattr initialization for monotonic clock
4622  int status;
4623  pthread_condattr_t* _condattr = os::Linux::condAttr();
4624  if ((status = pthread_condattr_init(_condattr)) != 0) {
4625    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4626  }
4627  // Only set the clock if CLOCK_MONOTONIC is available
4628  if (os::supports_monotonic_clock()) {
4629    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4630      if (status == EINVAL) {
4631        warning("Unable to use monotonic clock with relative timed-waits" \
4632                " - changes to the time-of-day clock may have adverse affects");
4633      } else {
4634        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4635      }
4636    }
4637  }
4638  // else it defaults to CLOCK_REALTIME
4639
4640  pthread_mutex_init(&dl_mutex, NULL);
4641
4642  // If the pagesize of the VM is greater than 8K determine the appropriate
4643  // number of initial guard pages.  The user can change this with the
4644  // command line arguments, if needed.
4645  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4646    StackYellowPages = 1;
4647    StackRedPages = 1;
4648    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4649  }
4650}
4651
4652// To install functions for atexit system call
4653extern "C" {
4654  static void perfMemory_exit_helper() {
4655    perfMemory_exit();
4656  }
4657}
4658
4659// this is called _after_ the global arguments have been parsed
4660jint os::init_2(void)
4661{
4662  Linux::fast_thread_clock_init();
4663
4664  // Allocate a single page and mark it as readable for safepoint polling
4665  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4666  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4667
4668  os::set_polling_page(polling_page);
4669
4670#ifndef PRODUCT
4671  if (Verbose && PrintMiscellaneous)
4672    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4673#endif
4674
4675  if (!UseMembar) {
4676    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4677    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4678    os::set_memory_serialize_page(mem_serialize_page);
4679
4680#ifndef PRODUCT
4681    if (Verbose && PrintMiscellaneous)
4682      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4683#endif
4684  }
4685
4686  // initialize suspend/resume support - must do this before signal_sets_init()
4687  if (SR_initialize() != 0) {
4688    perror("SR_initialize failed");
4689    return JNI_ERR;
4690  }
4691
4692  Linux::signal_sets_init();
4693  Linux::install_signal_handlers();
4694
4695  // Check minimum allowable stack size for thread creation and to initialize
4696  // the java system classes, including StackOverflowError - depends on page
4697  // size.  Add a page for compiler2 recursion in main thread.
4698  // Add in 2*BytesPerWord times page size to account for VM stack during
4699  // class initialization depending on 32 or 64 bit VM.
4700  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4701            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4702                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4703
4704  size_t threadStackSizeInBytes = ThreadStackSize * K;
4705  if (threadStackSizeInBytes != 0 &&
4706      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4707        tty->print_cr("\nThe stack size specified is too small, "
4708                      "Specify at least %dk",
4709                      os::Linux::min_stack_allowed/ K);
4710        return JNI_ERR;
4711  }
4712
4713  // Make the stack size a multiple of the page size so that
4714  // the yellow/red zones can be guarded.
4715  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4716        vm_page_size()));
4717
4718  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4719
4720#if defined(IA32)
4721  workaround_expand_exec_shield_cs_limit();
4722#endif
4723
4724  Linux::libpthread_init();
4725  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4726     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4727          Linux::glibc_version(), Linux::libpthread_version(),
4728          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4729  }
4730
4731  if (UseNUMA) {
4732    if (!Linux::libnuma_init()) {
4733      UseNUMA = false;
4734    } else {
4735      if ((Linux::numa_max_node() < 1)) {
4736        // There's only one node(they start from 0), disable NUMA.
4737        UseNUMA = false;
4738      }
4739    }
4740    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4741    // we can make the adaptive lgrp chunk resizing work. If the user specified
4742    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4743    // disable adaptive resizing.
4744    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4745      if (FLAG_IS_DEFAULT(UseNUMA)) {
4746        UseNUMA = false;
4747      } else {
4748        if (FLAG_IS_DEFAULT(UseLargePages) &&
4749            FLAG_IS_DEFAULT(UseSHM) &&
4750            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4751          UseLargePages = false;
4752        } else {
4753          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4754          UseAdaptiveSizePolicy = false;
4755          UseAdaptiveNUMAChunkSizing = false;
4756        }
4757      }
4758    }
4759    if (!UseNUMA && ForceNUMA) {
4760      UseNUMA = true;
4761    }
4762  }
4763
4764  if (MaxFDLimit) {
4765    // set the number of file descriptors to max. print out error
4766    // if getrlimit/setrlimit fails but continue regardless.
4767    struct rlimit nbr_files;
4768    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4769    if (status != 0) {
4770      if (PrintMiscellaneous && (Verbose || WizardMode))
4771        perror("os::init_2 getrlimit failed");
4772    } else {
4773      nbr_files.rlim_cur = nbr_files.rlim_max;
4774      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4775      if (status != 0) {
4776        if (PrintMiscellaneous && (Verbose || WizardMode))
4777          perror("os::init_2 setrlimit failed");
4778      }
4779    }
4780  }
4781
4782  // Initialize lock used to serialize thread creation (see os::create_thread)
4783  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4784
4785  // at-exit methods are called in the reverse order of their registration.
4786  // atexit functions are called on return from main or as a result of a
4787  // call to exit(3C). There can be only 32 of these functions registered
4788  // and atexit() does not set errno.
4789
4790  if (PerfAllowAtExitRegistration) {
4791    // only register atexit functions if PerfAllowAtExitRegistration is set.
4792    // atexit functions can be delayed until process exit time, which
4793    // can be problematic for embedded VM situations. Embedded VMs should
4794    // call DestroyJavaVM() to assure that VM resources are released.
4795
4796    // note: perfMemory_exit_helper atexit function may be removed in
4797    // the future if the appropriate cleanup code can be added to the
4798    // VM_Exit VMOperation's doit method.
4799    if (atexit(perfMemory_exit_helper) != 0) {
4800      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4801    }
4802  }
4803
4804  // initialize thread priority policy
4805  prio_init();
4806
4807  return JNI_OK;
4808}
4809
4810// this is called at the end of vm_initialization
4811void os::init_3(void) {
4812#ifdef JAVASE_EMBEDDED
4813  // Start the MemNotifyThread
4814  if (LowMemoryProtection) {
4815    MemNotifyThread::start();
4816  }
4817  return;
4818#endif
4819}
4820
4821// Mark the polling page as unreadable
4822void os::make_polling_page_unreadable(void) {
4823  if (!guard_memory((char*)_polling_page, Linux::page_size()))
4824    fatal("Could not disable polling page");
4825};
4826
4827// Mark the polling page as readable
4828void os::make_polling_page_readable(void) {
4829  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4830    fatal("Could not enable polling page");
4831  }
4832};
4833
4834int os::active_processor_count() {
4835  // Linux doesn't yet have a (official) notion of processor sets,
4836  // so just return the number of online processors.
4837  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4838  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4839  return online_cpus;
4840}
4841
4842void os::set_native_thread_name(const char *name) {
4843  // Not yet implemented.
4844  return;
4845}
4846
4847bool os::distribute_processes(uint length, uint* distribution) {
4848  // Not yet implemented.
4849  return false;
4850}
4851
4852bool os::bind_to_processor(uint processor_id) {
4853  // Not yet implemented.
4854  return false;
4855}
4856
4857///
4858
4859void os::SuspendedThreadTask::internal_do_task() {
4860  if (do_suspend(_thread->osthread())) {
4861    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4862    do_task(context);
4863    do_resume(_thread->osthread());
4864  }
4865}
4866
4867class PcFetcher : public os::SuspendedThreadTask {
4868public:
4869  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4870  ExtendedPC result();
4871protected:
4872  void do_task(const os::SuspendedThreadTaskContext& context);
4873private:
4874  ExtendedPC _epc;
4875};
4876
4877ExtendedPC PcFetcher::result() {
4878  guarantee(is_done(), "task is not done yet.");
4879  return _epc;
4880}
4881
4882void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4883  Thread* thread = context.thread();
4884  OSThread* osthread = thread->osthread();
4885  if (osthread->ucontext() != NULL) {
4886    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4887  } else {
4888    // NULL context is unexpected, double-check this is the VMThread
4889    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4890  }
4891}
4892
4893// Suspends the target using the signal mechanism and then grabs the PC before
4894// resuming the target. Used by the flat-profiler only
4895ExtendedPC os::get_thread_pc(Thread* thread) {
4896  // Make sure that it is called by the watcher for the VMThread
4897  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4898  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4899
4900  PcFetcher fetcher(thread);
4901  fetcher.run();
4902  return fetcher.result();
4903}
4904
4905int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4906{
4907   if (is_NPTL()) {
4908      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4909   } else {
4910      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4911      // word back to default 64bit precision if condvar is signaled. Java
4912      // wants 53bit precision.  Save and restore current value.
4913      int fpu = get_fpu_control_word();
4914      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4915      set_fpu_control_word(fpu);
4916      return status;
4917   }
4918}
4919
4920////////////////////////////////////////////////////////////////////////////////
4921// debug support
4922
4923bool os::find(address addr, outputStream* st) {
4924  Dl_info dlinfo;
4925  memset(&dlinfo, 0, sizeof(dlinfo));
4926  if (dladdr(addr, &dlinfo) != 0) {
4927    st->print(PTR_FORMAT ": ", addr);
4928    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4929      st->print("%s+%#x", dlinfo.dli_sname,
4930                 addr - (intptr_t)dlinfo.dli_saddr);
4931    } else if (dlinfo.dli_fbase != NULL) {
4932      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4933    } else {
4934      st->print("<absolute address>");
4935    }
4936    if (dlinfo.dli_fname != NULL) {
4937      st->print(" in %s", dlinfo.dli_fname);
4938    }
4939    if (dlinfo.dli_fbase != NULL) {
4940      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4941    }
4942    st->cr();
4943
4944    if (Verbose) {
4945      // decode some bytes around the PC
4946      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4947      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4948      address       lowest = (address) dlinfo.dli_sname;
4949      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4950      if (begin < lowest)  begin = lowest;
4951      Dl_info dlinfo2;
4952      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4953          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4954        end = (address) dlinfo2.dli_saddr;
4955      Disassembler::decode(begin, end, st);
4956    }
4957    return true;
4958  }
4959  return false;
4960}
4961
4962////////////////////////////////////////////////////////////////////////////////
4963// misc
4964
4965// This does not do anything on Linux. This is basically a hook for being
4966// able to use structured exception handling (thread-local exception filters)
4967// on, e.g., Win32.
4968void
4969os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4970                         JavaCallArguments* args, Thread* thread) {
4971  f(value, method, args, thread);
4972}
4973
4974void os::print_statistics() {
4975}
4976
4977int os::message_box(const char* title, const char* message) {
4978  int i;
4979  fdStream err(defaultStream::error_fd());
4980  for (i = 0; i < 78; i++) err.print_raw("=");
4981  err.cr();
4982  err.print_raw_cr(title);
4983  for (i = 0; i < 78; i++) err.print_raw("-");
4984  err.cr();
4985  err.print_raw_cr(message);
4986  for (i = 0; i < 78; i++) err.print_raw("=");
4987  err.cr();
4988
4989  char buf[16];
4990  // Prevent process from exiting upon "read error" without consuming all CPU
4991  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4992
4993  return buf[0] == 'y' || buf[0] == 'Y';
4994}
4995
4996int os::stat(const char *path, struct stat *sbuf) {
4997  char pathbuf[MAX_PATH];
4998  if (strlen(path) > MAX_PATH - 1) {
4999    errno = ENAMETOOLONG;
5000    return -1;
5001  }
5002  os::native_path(strcpy(pathbuf, path));
5003  return ::stat(pathbuf, sbuf);
5004}
5005
5006bool os::check_heap(bool force) {
5007  return true;
5008}
5009
5010int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5011  return ::vsnprintf(buf, count, format, args);
5012}
5013
5014// Is a (classpath) directory empty?
5015bool os::dir_is_empty(const char* path) {
5016  DIR *dir = NULL;
5017  struct dirent *ptr;
5018
5019  dir = opendir(path);
5020  if (dir == NULL) return true;
5021
5022  /* Scan the directory */
5023  bool result = true;
5024  char buf[sizeof(struct dirent) + MAX_PATH];
5025  while (result && (ptr = ::readdir(dir)) != NULL) {
5026    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5027      result = false;
5028    }
5029  }
5030  closedir(dir);
5031  return result;
5032}
5033
5034// This code originates from JDK's sysOpen and open64_w
5035// from src/solaris/hpi/src/system_md.c
5036
5037#ifndef O_DELETE
5038#define O_DELETE 0x10000
5039#endif
5040
5041// Open a file. Unlink the file immediately after open returns
5042// if the specified oflag has the O_DELETE flag set.
5043// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5044
5045int os::open(const char *path, int oflag, int mode) {
5046
5047  if (strlen(path) > MAX_PATH - 1) {
5048    errno = ENAMETOOLONG;
5049    return -1;
5050  }
5051  int fd;
5052  int o_delete = (oflag & O_DELETE);
5053  oflag = oflag & ~O_DELETE;
5054
5055  fd = ::open64(path, oflag, mode);
5056  if (fd == -1) return -1;
5057
5058  //If the open succeeded, the file might still be a directory
5059  {
5060    struct stat64 buf64;
5061    int ret = ::fstat64(fd, &buf64);
5062    int st_mode = buf64.st_mode;
5063
5064    if (ret != -1) {
5065      if ((st_mode & S_IFMT) == S_IFDIR) {
5066        errno = EISDIR;
5067        ::close(fd);
5068        return -1;
5069      }
5070    } else {
5071      ::close(fd);
5072      return -1;
5073    }
5074  }
5075
5076    /*
5077     * All file descriptors that are opened in the JVM and not
5078     * specifically destined for a subprocess should have the
5079     * close-on-exec flag set.  If we don't set it, then careless 3rd
5080     * party native code might fork and exec without closing all
5081     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5082     * UNIXProcess.c), and this in turn might:
5083     *
5084     * - cause end-of-file to fail to be detected on some file
5085     *   descriptors, resulting in mysterious hangs, or
5086     *
5087     * - might cause an fopen in the subprocess to fail on a system
5088     *   suffering from bug 1085341.
5089     *
5090     * (Yes, the default setting of the close-on-exec flag is a Unix
5091     * design flaw)
5092     *
5093     * See:
5094     * 1085341: 32-bit stdio routines should support file descriptors >255
5095     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5096     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5097     */
5098#ifdef FD_CLOEXEC
5099    {
5100        int flags = ::fcntl(fd, F_GETFD);
5101        if (flags != -1)
5102            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5103    }
5104#endif
5105
5106  if (o_delete != 0) {
5107    ::unlink(path);
5108  }
5109  return fd;
5110}
5111
5112
5113// create binary file, rewriting existing file if required
5114int os::create_binary_file(const char* path, bool rewrite_existing) {
5115  int oflags = O_WRONLY | O_CREAT;
5116  if (!rewrite_existing) {
5117    oflags |= O_EXCL;
5118  }
5119  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5120}
5121
5122// return current position of file pointer
5123jlong os::current_file_offset(int fd) {
5124  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5125}
5126
5127// move file pointer to the specified offset
5128jlong os::seek_to_file_offset(int fd, jlong offset) {
5129  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5130}
5131
5132// This code originates from JDK's sysAvailable
5133// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5134
5135int os::available(int fd, jlong *bytes) {
5136  jlong cur, end;
5137  int mode;
5138  struct stat64 buf64;
5139
5140  if (::fstat64(fd, &buf64) >= 0) {
5141    mode = buf64.st_mode;
5142    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5143      /*
5144      * XXX: is the following call interruptible? If so, this might
5145      * need to go through the INTERRUPT_IO() wrapper as for other
5146      * blocking, interruptible calls in this file.
5147      */
5148      int n;
5149      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5150        *bytes = n;
5151        return 1;
5152      }
5153    }
5154  }
5155  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5156    return 0;
5157  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5158    return 0;
5159  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5160    return 0;
5161  }
5162  *bytes = end - cur;
5163  return 1;
5164}
5165
5166int os::socket_available(int fd, jint *pbytes) {
5167  // Linux doc says EINTR not returned, unlike Solaris
5168  int ret = ::ioctl(fd, FIONREAD, pbytes);
5169
5170  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5171  // is expected to return 0 on failure and 1 on success to the jdk.
5172  return (ret < 0) ? 0 : 1;
5173}
5174
5175// Map a block of memory.
5176char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5177                     char *addr, size_t bytes, bool read_only,
5178                     bool allow_exec) {
5179  int prot;
5180  int flags = MAP_PRIVATE;
5181
5182  if (read_only) {
5183    prot = PROT_READ;
5184  } else {
5185    prot = PROT_READ | PROT_WRITE;
5186  }
5187
5188  if (allow_exec) {
5189    prot |= PROT_EXEC;
5190  }
5191
5192  if (addr != NULL) {
5193    flags |= MAP_FIXED;
5194  }
5195
5196  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5197                                     fd, file_offset);
5198  if (mapped_address == MAP_FAILED) {
5199    return NULL;
5200  }
5201  return mapped_address;
5202}
5203
5204
5205// Remap a block of memory.
5206char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5207                       char *addr, size_t bytes, bool read_only,
5208                       bool allow_exec) {
5209  // same as map_memory() on this OS
5210  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5211                        allow_exec);
5212}
5213
5214
5215// Unmap a block of memory.
5216bool os::pd_unmap_memory(char* addr, size_t bytes) {
5217  return munmap(addr, bytes) == 0;
5218}
5219
5220static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5221
5222static clockid_t thread_cpu_clockid(Thread* thread) {
5223  pthread_t tid = thread->osthread()->pthread_id();
5224  clockid_t clockid;
5225
5226  // Get thread clockid
5227  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5228  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5229  return clockid;
5230}
5231
5232// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5233// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5234// of a thread.
5235//
5236// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5237// the fast estimate available on the platform.
5238
5239jlong os::current_thread_cpu_time() {
5240  if (os::Linux::supports_fast_thread_cpu_time()) {
5241    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5242  } else {
5243    // return user + sys since the cost is the same
5244    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5245  }
5246}
5247
5248jlong os::thread_cpu_time(Thread* thread) {
5249  // consistent with what current_thread_cpu_time() returns
5250  if (os::Linux::supports_fast_thread_cpu_time()) {
5251    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5252  } else {
5253    return slow_thread_cpu_time(thread, true /* user + sys */);
5254  }
5255}
5256
5257jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5258  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5259    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5260  } else {
5261    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5262  }
5263}
5264
5265jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5266  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5267    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5268  } else {
5269    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5270  }
5271}
5272
5273//
5274//  -1 on error.
5275//
5276
5277static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5278  pid_t  tid = thread->osthread()->thread_id();
5279  char *s;
5280  char stat[2048];
5281  int statlen;
5282  char proc_name[64];
5283  int count;
5284  long sys_time, user_time;
5285  char cdummy;
5286  int idummy;
5287  long ldummy;
5288  FILE *fp;
5289
5290  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5291  fp = fopen(proc_name, "r");
5292  if (fp == NULL) return -1;
5293  statlen = fread(stat, 1, 2047, fp);
5294  stat[statlen] = '\0';
5295  fclose(fp);
5296
5297  // Skip pid and the command string. Note that we could be dealing with
5298  // weird command names, e.g. user could decide to rename java launcher
5299  // to "java 1.4.2 :)", then the stat file would look like
5300  //                1234 (java 1.4.2 :)) R ... ...
5301  // We don't really need to know the command string, just find the last
5302  // occurrence of ")" and then start parsing from there. See bug 4726580.
5303  s = strrchr(stat, ')');
5304  if (s == NULL) return -1;
5305
5306  // Skip blank chars
5307  do s++; while (isspace(*s));
5308
5309  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5310                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5311                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5312                 &user_time, &sys_time);
5313  if (count != 13) return -1;
5314  if (user_sys_cpu_time) {
5315    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5316  } else {
5317    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5318  }
5319}
5320
5321void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5322  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5323  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5324  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5325  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5326}
5327
5328void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5329  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5330  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5331  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5332  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5333}
5334
5335bool os::is_thread_cpu_time_supported() {
5336  return true;
5337}
5338
5339// System loadavg support.  Returns -1 if load average cannot be obtained.
5340// Linux doesn't yet have a (official) notion of processor sets,
5341// so just return the system wide load average.
5342int os::loadavg(double loadavg[], int nelem) {
5343  return ::getloadavg(loadavg, nelem);
5344}
5345
5346void os::pause() {
5347  char filename[MAX_PATH];
5348  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5349    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5350  } else {
5351    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5352  }
5353
5354  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5355  if (fd != -1) {
5356    struct stat buf;
5357    ::close(fd);
5358    while (::stat(filename, &buf) == 0) {
5359      (void)::poll(NULL, 0, 100);
5360    }
5361  } else {
5362    jio_fprintf(stderr,
5363      "Could not open pause file '%s', continuing immediately.\n", filename);
5364  }
5365}
5366
5367
5368// Refer to the comments in os_solaris.cpp park-unpark.
5369//
5370// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5371// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5372// For specifics regarding the bug see GLIBC BUGID 261237 :
5373//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5374// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5375// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5376// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5377// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5378// and monitorenter when we're using 1-0 locking.  All those operations may result in
5379// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5380// of libpthread avoids the problem, but isn't practical.
5381//
5382// Possible remedies:
5383//
5384// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5385//      This is palliative and probabilistic, however.  If the thread is preempted
5386//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5387//      than the minimum period may have passed, and the abstime may be stale (in the
5388//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5389//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5390//
5391// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5392//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5393//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5394//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5395//      thread.
5396//
5397// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5398//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5399//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5400//      This also works well.  In fact it avoids kernel-level scalability impediments
5401//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5402//      timers in a graceful fashion.
5403//
5404// 4.   When the abstime value is in the past it appears that control returns
5405//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5406//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5407//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5408//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5409//      It may be possible to avoid reinitialization by checking the return
5410//      value from pthread_cond_timedwait().  In addition to reinitializing the
5411//      condvar we must establish the invariant that cond_signal() is only called
5412//      within critical sections protected by the adjunct mutex.  This prevents
5413//      cond_signal() from "seeing" a condvar that's in the midst of being
5414//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5415//      desirable signal-after-unlock optimization that avoids futile context switching.
5416//
5417//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5418//      structure when a condvar is used or initialized.  cond_destroy()  would
5419//      release the helper structure.  Our reinitialize-after-timedwait fix
5420//      put excessive stress on malloc/free and locks protecting the c-heap.
5421//
5422// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5423// It may be possible to refine (4) by checking the kernel and NTPL verisons
5424// and only enabling the work-around for vulnerable environments.
5425
5426// utility to compute the abstime argument to timedwait:
5427// millis is the relative timeout time
5428// abstime will be the absolute timeout time
5429// TODO: replace compute_abstime() with unpackTime()
5430
5431static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5432  if (millis < 0)  millis = 0;
5433
5434  jlong seconds = millis / 1000;
5435  millis %= 1000;
5436  if (seconds > 50000000) { // see man cond_timedwait(3T)
5437    seconds = 50000000;
5438  }
5439
5440  if (os::supports_monotonic_clock()) {
5441    struct timespec now;
5442    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5443    assert_status(status == 0, status, "clock_gettime");
5444    abstime->tv_sec = now.tv_sec  + seconds;
5445    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5446    if (nanos >= NANOSECS_PER_SEC) {
5447      abstime->tv_sec += 1;
5448      nanos -= NANOSECS_PER_SEC;
5449    }
5450    abstime->tv_nsec = nanos;
5451  } else {
5452    struct timeval now;
5453    int status = gettimeofday(&now, NULL);
5454    assert(status == 0, "gettimeofday");
5455    abstime->tv_sec = now.tv_sec  + seconds;
5456    long usec = now.tv_usec + millis * 1000;
5457    if (usec >= 1000000) {
5458      abstime->tv_sec += 1;
5459      usec -= 1000000;
5460    }
5461    abstime->tv_nsec = usec * 1000;
5462  }
5463  return abstime;
5464}
5465
5466
5467// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5468// Conceptually TryPark() should be equivalent to park(0).
5469
5470int os::PlatformEvent::TryPark() {
5471  for (;;) {
5472    const int v = _Event;
5473    guarantee((v == 0) || (v == 1), "invariant");
5474    if (Atomic::cmpxchg(0, &_Event, v) == v) return v;
5475  }
5476}
5477
5478void os::PlatformEvent::park() {       // AKA "down()"
5479  // Invariant: Only the thread associated with the Event/PlatformEvent
5480  // may call park().
5481  // TODO: assert that _Assoc != NULL or _Assoc == Self
5482  int v;
5483  for (;;) {
5484      v = _Event;
5485      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5486  }
5487  guarantee(v >= 0, "invariant");
5488  if (v == 0) {
5489     // Do this the hard way by blocking ...
5490     int status = pthread_mutex_lock(_mutex);
5491     assert_status(status == 0, status, "mutex_lock");
5492     guarantee(_nParked == 0, "invariant");
5493     ++_nParked;
5494     while (_Event < 0) {
5495        status = pthread_cond_wait(_cond, _mutex);
5496        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5497        // Treat this the same as if the wait was interrupted
5498        if (status == ETIME) { status = EINTR; }
5499        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5500     }
5501     --_nParked;
5502
5503    _Event = 0;
5504     status = pthread_mutex_unlock(_mutex);
5505     assert_status(status == 0, status, "mutex_unlock");
5506    // Paranoia to ensure our locked and lock-free paths interact
5507    // correctly with each other.
5508    OrderAccess::fence();
5509  }
5510  guarantee(_Event >= 0, "invariant");
5511}
5512
5513int os::PlatformEvent::park(jlong millis) {
5514  guarantee(_nParked == 0, "invariant");
5515
5516  int v;
5517  for (;;) {
5518      v = _Event;
5519      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5520  }
5521  guarantee(v >= 0, "invariant");
5522  if (v != 0) return OS_OK;
5523
5524  // We do this the hard way, by blocking the thread.
5525  // Consider enforcing a minimum timeout value.
5526  struct timespec abst;
5527  compute_abstime(&abst, millis);
5528
5529  int ret = OS_TIMEOUT;
5530  int status = pthread_mutex_lock(_mutex);
5531  assert_status(status == 0, status, "mutex_lock");
5532  guarantee(_nParked == 0, "invariant");
5533  ++_nParked;
5534
5535  // Object.wait(timo) will return because of
5536  // (a) notification
5537  // (b) timeout
5538  // (c) thread.interrupt
5539  //
5540  // Thread.interrupt and object.notify{All} both call Event::set.
5541  // That is, we treat thread.interrupt as a special case of notification.
5542  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5543  // We assume all ETIME returns are valid.
5544  //
5545  // TODO: properly differentiate simultaneous notify+interrupt.
5546  // In that case, we should propagate the notify to another waiter.
5547
5548  while (_Event < 0) {
5549    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5550    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5551      pthread_cond_destroy(_cond);
5552      pthread_cond_init(_cond, os::Linux::condAttr());
5553    }
5554    assert_status(status == 0 || status == EINTR ||
5555                  status == ETIME || status == ETIMEDOUT,
5556                  status, "cond_timedwait");
5557    if (!FilterSpuriousWakeups) break;                 // previous semantics
5558    if (status == ETIME || status == ETIMEDOUT) break;
5559    // We consume and ignore EINTR and spurious wakeups.
5560  }
5561  --_nParked;
5562  if (_Event >= 0) {
5563     ret = OS_OK;
5564  }
5565  _Event = 0;
5566  status = pthread_mutex_unlock(_mutex);
5567  assert_status(status == 0, status, "mutex_unlock");
5568  assert(_nParked == 0, "invariant");
5569  // Paranoia to ensure our locked and lock-free paths interact
5570  // correctly with each other.
5571  OrderAccess::fence();
5572  return ret;
5573}
5574
5575void os::PlatformEvent::unpark() {
5576  // Transitions for _Event:
5577  //    0 :=> 1
5578  //    1 :=> 1
5579  //   -1 :=> either 0 or 1; must signal target thread
5580  //          That is, we can safely transition _Event from -1 to either
5581  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5582  //          unpark() calls.
5583  // See also: "Semaphores in Plan 9" by Mullender & Cox
5584  //
5585  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5586  // that it will take two back-to-back park() calls for the owning
5587  // thread to block. This has the benefit of forcing a spurious return
5588  // from the first park() call after an unpark() call which will help
5589  // shake out uses of park() and unpark() without condition variables.
5590
5591  if (Atomic::xchg(1, &_Event) >= 0) return;
5592
5593  // Wait for the thread associated with the event to vacate
5594  int status = pthread_mutex_lock(_mutex);
5595  assert_status(status == 0, status, "mutex_lock");
5596  int AnyWaiters = _nParked;
5597  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5598  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5599    AnyWaiters = 0;
5600    pthread_cond_signal(_cond);
5601  }
5602  status = pthread_mutex_unlock(_mutex);
5603  assert_status(status == 0, status, "mutex_unlock");
5604  if (AnyWaiters != 0) {
5605    status = pthread_cond_signal(_cond);
5606    assert_status(status == 0, status, "cond_signal");
5607  }
5608
5609  // Note that we signal() _after dropping the lock for "immortal" Events.
5610  // This is safe and avoids a common class of  futile wakeups.  In rare
5611  // circumstances this can cause a thread to return prematurely from
5612  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5613  // simply re-test the condition and re-park itself.
5614}
5615
5616
5617// JSR166
5618// -------------------------------------------------------
5619
5620/*
5621 * The solaris and linux implementations of park/unpark are fairly
5622 * conservative for now, but can be improved. They currently use a
5623 * mutex/condvar pair, plus a a count.
5624 * Park decrements count if > 0, else does a condvar wait.  Unpark
5625 * sets count to 1 and signals condvar.  Only one thread ever waits
5626 * on the condvar. Contention seen when trying to park implies that someone
5627 * is unparking you, so don't wait. And spurious returns are fine, so there
5628 * is no need to track notifications.
5629 */
5630
5631/*
5632 * This code is common to linux and solaris and will be moved to a
5633 * common place in dolphin.
5634 *
5635 * The passed in time value is either a relative time in nanoseconds
5636 * or an absolute time in milliseconds. Either way it has to be unpacked
5637 * into suitable seconds and nanoseconds components and stored in the
5638 * given timespec structure.
5639 * Given time is a 64-bit value and the time_t used in the timespec is only
5640 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5641 * overflow if times way in the future are given. Further on Solaris versions
5642 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5643 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5644 * As it will be 28 years before "now + 100000000" will overflow we can
5645 * ignore overflow and just impose a hard-limit on seconds using the value
5646 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5647 * years from "now".
5648 */
5649
5650static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5651  assert(time > 0, "convertTime");
5652  time_t max_secs = 0;
5653
5654  if (!os::supports_monotonic_clock() || isAbsolute) {
5655    struct timeval now;
5656    int status = gettimeofday(&now, NULL);
5657    assert(status == 0, "gettimeofday");
5658
5659    max_secs = now.tv_sec + MAX_SECS;
5660
5661    if (isAbsolute) {
5662      jlong secs = time / 1000;
5663      if (secs > max_secs) {
5664        absTime->tv_sec = max_secs;
5665      } else {
5666        absTime->tv_sec = secs;
5667      }
5668      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5669    } else {
5670      jlong secs = time / NANOSECS_PER_SEC;
5671      if (secs >= MAX_SECS) {
5672        absTime->tv_sec = max_secs;
5673        absTime->tv_nsec = 0;
5674      } else {
5675        absTime->tv_sec = now.tv_sec + secs;
5676        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5677        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5678          absTime->tv_nsec -= NANOSECS_PER_SEC;
5679          ++absTime->tv_sec; // note: this must be <= max_secs
5680        }
5681      }
5682    }
5683  } else {
5684    // must be relative using monotonic clock
5685    struct timespec now;
5686    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5687    assert_status(status == 0, status, "clock_gettime");
5688    max_secs = now.tv_sec + MAX_SECS;
5689    jlong secs = time / NANOSECS_PER_SEC;
5690    if (secs >= MAX_SECS) {
5691      absTime->tv_sec = max_secs;
5692      absTime->tv_nsec = 0;
5693    } else {
5694      absTime->tv_sec = now.tv_sec + secs;
5695      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5696      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5697        absTime->tv_nsec -= NANOSECS_PER_SEC;
5698        ++absTime->tv_sec; // note: this must be <= max_secs
5699      }
5700    }
5701  }
5702  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5703  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5704  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5705  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5706}
5707
5708void Parker::park(bool isAbsolute, jlong time) {
5709  // Ideally we'd do something useful while spinning, such
5710  // as calling unpackTime().
5711
5712  // Optional fast-path check:
5713  // Return immediately if a permit is available.
5714  // We depend on Atomic::xchg() having full barrier semantics
5715  // since we are doing a lock-free update to _counter.
5716  if (Atomic::xchg(0, &_counter) > 0) return;
5717
5718  Thread* thread = Thread::current();
5719  assert(thread->is_Java_thread(), "Must be JavaThread");
5720  JavaThread *jt = (JavaThread *)thread;
5721
5722  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5723  // Check interrupt before trying to wait
5724  if (Thread::is_interrupted(thread, false)) {
5725    return;
5726  }
5727
5728  // Next, demultiplex/decode time arguments
5729  timespec absTime;
5730  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5731    return;
5732  }
5733  if (time > 0) {
5734    unpackTime(&absTime, isAbsolute, time);
5735  }
5736
5737
5738  // Enter safepoint region
5739  // Beware of deadlocks such as 6317397.
5740  // The per-thread Parker:: mutex is a classic leaf-lock.
5741  // In particular a thread must never block on the Threads_lock while
5742  // holding the Parker:: mutex.  If safepoints are pending both the
5743  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5744  ThreadBlockInVM tbivm(jt);
5745
5746  // Don't wait if cannot get lock since interference arises from
5747  // unblocking.  Also. check interrupt before trying wait
5748  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5749    return;
5750  }
5751
5752  int status;
5753  if (_counter > 0)  { // no wait needed
5754    _counter = 0;
5755    status = pthread_mutex_unlock(_mutex);
5756    assert(status == 0, "invariant");
5757    // Paranoia to ensure our locked and lock-free paths interact
5758    // correctly with each other and Java-level accesses.
5759    OrderAccess::fence();
5760    return;
5761  }
5762
5763#ifdef ASSERT
5764  // Don't catch signals while blocked; let the running threads have the signals.
5765  // (This allows a debugger to break into the running thread.)
5766  sigset_t oldsigs;
5767  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5768  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5769#endif
5770
5771  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5772  jt->set_suspend_equivalent();
5773  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5774
5775  assert(_cur_index == -1, "invariant");
5776  if (time == 0) {
5777    _cur_index = REL_INDEX; // arbitrary choice when not timed
5778    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5779  } else {
5780    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5781    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5782    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5783      pthread_cond_destroy(&_cond[_cur_index]);
5784      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5785    }
5786  }
5787  _cur_index = -1;
5788  assert_status(status == 0 || status == EINTR ||
5789                status == ETIME || status == ETIMEDOUT,
5790                status, "cond_timedwait");
5791
5792#ifdef ASSERT
5793  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5794#endif
5795
5796  _counter = 0;
5797  status = pthread_mutex_unlock(_mutex);
5798  assert_status(status == 0, status, "invariant");
5799  // Paranoia to ensure our locked and lock-free paths interact
5800  // correctly with each other and Java-level accesses.
5801  OrderAccess::fence();
5802
5803  // If externally suspended while waiting, re-suspend
5804  if (jt->handle_special_suspend_equivalent_condition()) {
5805    jt->java_suspend_self();
5806  }
5807}
5808
5809void Parker::unpark() {
5810  int s, status;
5811  status = pthread_mutex_lock(_mutex);
5812  assert(status == 0, "invariant");
5813  s = _counter;
5814  _counter = 1;
5815  if (s < 1) {
5816    // thread might be parked
5817    if (_cur_index != -1) {
5818      // thread is definitely parked
5819      if (WorkAroundNPTLTimedWaitHang) {
5820        status = pthread_cond_signal (&_cond[_cur_index]);
5821        assert(status == 0, "invariant");
5822        status = pthread_mutex_unlock(_mutex);
5823        assert(status == 0, "invariant");
5824      } else {
5825        status = pthread_mutex_unlock(_mutex);
5826        assert(status == 0, "invariant");
5827        status = pthread_cond_signal (&_cond[_cur_index]);
5828        assert(status == 0, "invariant");
5829      }
5830    } else {
5831      pthread_mutex_unlock(_mutex);
5832      assert(status == 0, "invariant");
5833    }
5834  } else {
5835    pthread_mutex_unlock(_mutex);
5836    assert(status == 0, "invariant");
5837  }
5838}
5839
5840
5841extern char** environ;
5842
5843#ifndef __NR_fork
5844#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5845#endif
5846
5847#ifndef __NR_execve
5848#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5849#endif
5850
5851// Run the specified command in a separate process. Return its exit value,
5852// or -1 on failure (e.g. can't fork a new process).
5853// Unlike system(), this function can be called from signal handler. It
5854// doesn't block SIGINT et al.
5855int os::fork_and_exec(char* cmd) {
5856  const char * argv[4] = {"sh", "-c", cmd, NULL};
5857
5858  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5859  // pthread_atfork handlers and reset pthread library. All we need is a
5860  // separate process to execve. Make a direct syscall to fork process.
5861  // On IA64 there's no fork syscall, we have to use fork() and hope for
5862  // the best...
5863  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5864              IA64_ONLY(fork();)
5865
5866  if (pid < 0) {
5867    // fork failed
5868    return -1;
5869
5870  } else if (pid == 0) {
5871    // child process
5872
5873    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5874    // first to kill every thread on the thread list. Because this list is
5875    // not reset by fork() (see notes above), execve() will instead kill
5876    // every thread in the parent process. We know this is the only thread
5877    // in the new process, so make a system call directly.
5878    // IA64 should use normal execve() from glibc to match the glibc fork()
5879    // above.
5880    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5881    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5882
5883    // execve failed
5884    _exit(-1);
5885
5886  } else  {
5887    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5888    // care about the actual exit code, for now.
5889
5890    int status;
5891
5892    // Wait for the child process to exit.  This returns immediately if
5893    // the child has already exited. */
5894    while (waitpid(pid, &status, 0) < 0) {
5895        switch (errno) {
5896        case ECHILD: return 0;
5897        case EINTR: break;
5898        default: return -1;
5899        }
5900    }
5901
5902    if (WIFEXITED(status)) {
5903       // The child exited normally; get its exit code.
5904       return WEXITSTATUS(status);
5905    } else if (WIFSIGNALED(status)) {
5906       // The child exited because of a signal
5907       // The best value to return is 0x80 + signal number,
5908       // because that is what all Unix shells do, and because
5909       // it allows callers to distinguish between process exit and
5910       // process death by signal.
5911       return 0x80 + WTERMSIG(status);
5912    } else {
5913       // Unknown exit code; pass it through
5914       return status;
5915    }
5916  }
5917}
5918
5919// is_headless_jre()
5920//
5921// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5922// in order to report if we are running in a headless jre
5923//
5924// Since JDK8 xawt/libmawt.so was moved into the same directory
5925// as libawt.so, and renamed libawt_xawt.so
5926//
5927bool os::is_headless_jre() {
5928    struct stat statbuf;
5929    char buf[MAXPATHLEN];
5930    char libmawtpath[MAXPATHLEN];
5931    const char *xawtstr  = "/xawt/libmawt.so";
5932    const char *new_xawtstr = "/libawt_xawt.so";
5933    char *p;
5934
5935    // Get path to libjvm.so
5936    os::jvm_path(buf, sizeof(buf));
5937
5938    // Get rid of libjvm.so
5939    p = strrchr(buf, '/');
5940    if (p == NULL) return false;
5941    else *p = '\0';
5942
5943    // Get rid of client or server
5944    p = strrchr(buf, '/');
5945    if (p == NULL) return false;
5946    else *p = '\0';
5947
5948    // check xawt/libmawt.so
5949    strcpy(libmawtpath, buf);
5950    strcat(libmawtpath, xawtstr);
5951    if (::stat(libmawtpath, &statbuf) == 0) return false;
5952
5953    // check libawt_xawt.so
5954    strcpy(libmawtpath, buf);
5955    strcat(libmawtpath, new_xawtstr);
5956    if (::stat(libmawtpath, &statbuf) == 0) return false;
5957
5958    return true;
5959}
5960
5961// Get the default path to the core file
5962// Returns the length of the string
5963int os::get_core_path(char* buffer, size_t bufferSize) {
5964  const char* p = get_current_directory(buffer, bufferSize);
5965
5966  if (p == NULL) {
5967    assert(p != NULL, "failed to get current directory");
5968    return 0;
5969  }
5970
5971  return strlen(buffer);
5972}
5973
5974#ifdef JAVASE_EMBEDDED
5975//
5976// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5977//
5978MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5979
5980// ctor
5981//
5982MemNotifyThread::MemNotifyThread(int fd): Thread() {
5983  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5984  _fd = fd;
5985
5986  if (os::create_thread(this, os::os_thread)) {
5987    _memnotify_thread = this;
5988    os::set_priority(this, NearMaxPriority);
5989    os::start_thread(this);
5990  }
5991}
5992
5993// Where all the work gets done
5994//
5995void MemNotifyThread::run() {
5996  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5997
5998  // Set up the select arguments
5999  fd_set rfds;
6000  if (_fd != -1) {
6001    FD_ZERO(&rfds);
6002    FD_SET(_fd, &rfds);
6003  }
6004
6005  // Now wait for the mem_notify device to wake up
6006  while (1) {
6007    // Wait for the mem_notify device to signal us..
6008    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6009    if (rc == -1) {
6010      perror("select!\n");
6011      break;
6012    } else if (rc) {
6013      //ssize_t free_before = os::available_memory();
6014      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6015
6016      // The kernel is telling us there is not much memory left...
6017      // try to do something about that
6018
6019      // If we are not already in a GC, try one.
6020      if (!Universe::heap()->is_gc_active()) {
6021        Universe::heap()->collect(GCCause::_allocation_failure);
6022
6023        //ssize_t free_after = os::available_memory();
6024        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6025        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6026      }
6027      // We might want to do something like the following if we find the GC's are not helping...
6028      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6029    }
6030  }
6031}
6032
6033//
6034// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6035//
6036void MemNotifyThread::start() {
6037  int    fd;
6038  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6039  if (fd < 0) {
6040      return;
6041  }
6042
6043  if (memnotify_thread() == NULL) {
6044    new MemNotifyThread(fd);
6045  }
6046}
6047
6048#endif // JAVASE_EMBEDDED
6049
6050
6051/////////////// Unit tests ///////////////
6052
6053#ifndef PRODUCT
6054
6055#define test_log(...) \
6056  do {\
6057    if (VerboseInternalVMTests) { \
6058      tty->print_cr(__VA_ARGS__); \
6059      tty->flush(); \
6060    }\
6061  } while (false)
6062
6063class TestReserveMemorySpecial : AllStatic {
6064 public:
6065  static void small_page_write(void* addr, size_t size) {
6066    size_t page_size = os::vm_page_size();
6067
6068    char* end = (char*)addr + size;
6069    for (char* p = (char*)addr; p < end; p += page_size) {
6070      *p = 1;
6071    }
6072  }
6073
6074  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6075    if (!UseHugeTLBFS) {
6076      return;
6077    }
6078
6079    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6080
6081    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6082
6083    if (addr != NULL) {
6084      small_page_write(addr, size);
6085
6086      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6087    }
6088  }
6089
6090  static void test_reserve_memory_special_huge_tlbfs_only() {
6091    if (!UseHugeTLBFS) {
6092      return;
6093    }
6094
6095    size_t lp = os::large_page_size();
6096
6097    for (size_t size = lp; size <= lp * 10; size += lp) {
6098      test_reserve_memory_special_huge_tlbfs_only(size);
6099    }
6100  }
6101
6102  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6103    if (!UseHugeTLBFS) {
6104        return;
6105    }
6106
6107    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6108        size, alignment);
6109
6110    assert(size >= os::large_page_size(), "Incorrect input to test");
6111
6112    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6113
6114    if (addr != NULL) {
6115      small_page_write(addr, size);
6116
6117      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6118    }
6119  }
6120
6121  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6122    size_t lp = os::large_page_size();
6123    size_t ag = os::vm_allocation_granularity();
6124
6125    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6126      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6127    }
6128  }
6129
6130  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6131    size_t lp = os::large_page_size();
6132    size_t ag = os::vm_allocation_granularity();
6133
6134    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6135    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6136    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6137    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6138    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6139    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6140    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6141    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6142    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6143  }
6144
6145  static void test_reserve_memory_special_huge_tlbfs() {
6146    if (!UseHugeTLBFS) {
6147      return;
6148    }
6149
6150    test_reserve_memory_special_huge_tlbfs_only();
6151    test_reserve_memory_special_huge_tlbfs_mixed();
6152  }
6153
6154  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6155    if (!UseSHM) {
6156      return;
6157    }
6158
6159    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6160
6161    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6162
6163    if (addr != NULL) {
6164      assert(is_ptr_aligned(addr, alignment), "Check");
6165      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6166
6167      small_page_write(addr, size);
6168
6169      os::Linux::release_memory_special_shm(addr, size);
6170    }
6171  }
6172
6173  static void test_reserve_memory_special_shm() {
6174    size_t lp = os::large_page_size();
6175    size_t ag = os::vm_allocation_granularity();
6176
6177    for (size_t size = ag; size < lp * 3; size += ag) {
6178      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6179        test_reserve_memory_special_shm(size, alignment);
6180      }
6181    }
6182  }
6183
6184  static void test() {
6185    test_reserve_memory_special_huge_tlbfs();
6186    test_reserve_memory_special_shm();
6187  }
6188};
6189
6190void TestReserveMemorySpecial_test() {
6191  TestReserveMemorySpecial::test();
6192}
6193
6194#endif
6195