os_linux.cpp revision 6599:d9f77ba99034
1189251Ssam/*
2252726Srpaulo * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3252726Srpaulo * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4189251Ssam *
5252726Srpaulo * This code is free software; you can redistribute it and/or modify it
6252726Srpaulo * under the terms of the GNU General Public License version 2 only, as
7189251Ssam * published by the Free Software Foundation.
8189251Ssam *
9189251Ssam * This code is distributed in the hope that it will be useful, but WITHOUT
10189251Ssam * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11189251Ssam * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12189251Ssam * version 2 for more details (a copy is included in the LICENSE file that
13214734Srpaulo * accompanied this code).
14214734Srpaulo *
15214734Srpaulo * You should have received a copy of the GNU General Public License version
16214734Srpaulo * 2 along with this work; if not, write to the Free Software Foundation,
17189251Ssam * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18214734Srpaulo *
19214734Srpaulo * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20189251Ssam * or visit www.oracle.com if you need additional information or have any
21189251Ssam * questions.
22189251Ssam *
23189251Ssam */
24189251Ssam
25189251Ssam// no precompiled headers
26189251Ssam#include "classfile/classLoader.hpp"
27189251Ssam#include "classfile/systemDictionary.hpp"
28189251Ssam#include "classfile/vmSymbols.hpp"
29189251Ssam#include "code/icBuffer.hpp"
30189251Ssam#include "code/vtableStubs.hpp"
31189251Ssam#include "compiler/compileBroker.hpp"
32189251Ssam#include "compiler/disassembler.hpp"
33189251Ssam#include "interpreter/interpreter.hpp"
34189251Ssam#include "jvm_linux.h"
35189251Ssam#include "memory/allocation.inline.hpp"
36189251Ssam#include "memory/filemap.hpp"
37189251Ssam#include "mutex_linux.inline.hpp"
38189251Ssam#include "oops/oop.inline.hpp"
39189251Ssam#include "os_share_linux.hpp"
40189251Ssam#include "prims/jniFastGetField.hpp"
41189251Ssam#include "prims/jvm.h"
42189251Ssam#include "prims/jvm_misc.hpp"
43189251Ssam#include "runtime/arguments.hpp"
44189251Ssam#include "runtime/extendedPC.hpp"
45189251Ssam#include "runtime/globals.hpp"
46189251Ssam#include "runtime/interfaceSupport.hpp"
47189251Ssam#include "runtime/init.hpp"
48189251Ssam#include "runtime/java.hpp"
49189251Ssam#include "runtime/javaCalls.hpp"
50189251Ssam#include "runtime/mutexLocker.hpp"
51189251Ssam#include "runtime/objectMonitor.hpp"
52189251Ssam#include "runtime/orderAccess.inline.hpp"
53189251Ssam#include "runtime/osThread.hpp"
54189251Ssam#include "runtime/perfMemory.hpp"
55189251Ssam#include "runtime/sharedRuntime.hpp"
56189251Ssam#include "runtime/statSampler.hpp"
57189251Ssam#include "runtime/stubRoutines.hpp"
58189251Ssam#include "runtime/thread.inline.hpp"
59189251Ssam#include "runtime/threadCritical.hpp"
60189251Ssam#include "runtime/timer.hpp"
61189251Ssam#include "services/attachListener.hpp"
62189251Ssam#include "services/memTracker.hpp"
63189251Ssam#include "services/runtimeService.hpp"
64189251Ssam#include "utilities/decoder.hpp"
65189251Ssam#include "utilities/defaultStream.hpp"
66189251Ssam#include "utilities/events.hpp"
67189251Ssam#include "utilities/elfFile.hpp"
68189251Ssam#include "utilities/growableArray.hpp"
69189251Ssam#include "utilities/vmError.hpp"
70189251Ssam
71189251Ssam// put OS-includes here
72189251Ssam# include <sys/types.h>
73189251Ssam# include <sys/mman.h>
74189251Ssam# include <sys/stat.h>
75189251Ssam# include <sys/select.h>
76189251Ssam# include <pthread.h>
77189251Ssam# include <signal.h>
78189251Ssam# include <errno.h>
79189251Ssam# include <dlfcn.h>
80189251Ssam# include <stdio.h>
81189251Ssam# include <unistd.h>
82189251Ssam# include <sys/resource.h>
83189251Ssam# include <pthread.h>
84189251Ssam# include <sys/stat.h>
85189251Ssam# include <sys/time.h>
86189251Ssam# include <sys/times.h>
87189251Ssam# include <sys/utsname.h>
88189251Ssam# include <sys/socket.h>
89189251Ssam# include <sys/wait.h>
90189251Ssam# include <pwd.h>
91189251Ssam# include <poll.h>
92189251Ssam# include <semaphore.h>
93252726Srpaulo# include <fcntl.h>
94189251Ssam# include <string.h>
95189251Ssam# include <syscall.h>
96189251Ssam# include <sys/sysinfo.h>
97189251Ssam# include <gnu/libc-version.h>
98189251Ssam# include <sys/ipc.h>
99189251Ssam# include <sys/shm.h>
100189251Ssam# include <link.h>
101189251Ssam# include <stdint.h>
102189251Ssam# include <inttypes.h>
103189251Ssam# include <sys/ioctl.h>
104189251Ssam
105189251SsamPRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
106252726Srpaulo
107252726Srpaulo// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
108252726Srpaulo// getrusage() is prepared to handle the associated failure.
109252726Srpaulo#ifndef RUSAGE_THREAD
110252726Srpaulo#define RUSAGE_THREAD   (1)               /* only the calling thread */
111252726Srpaulo#endif
112252726Srpaulo
113252726Srpaulo#define MAX_PATH    (2 * K)
114252726Srpaulo
115189251Ssam#define MAX_SECS 100000000
116189251Ssam
117189251Ssam// for timer info max values which include all bits
118189251Ssam#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
119189251Ssam
120189251Ssam#define LARGEPAGES_BIT (1 << 6)
121189251Ssam////////////////////////////////////////////////////////////////////////////////
122189251Ssam// global variables
123189251Ssamjulong os::Linux::_physical_memory = 0;
124189251Ssam
125189251Ssamaddress   os::Linux::_initial_thread_stack_bottom = NULL;
126189251Ssamuintptr_t os::Linux::_initial_thread_stack_size   = 0;
127189251Ssam
128189251Ssamint (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
129189251Ssamint (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
130189251SsamMutex* os::Linux::_createThread_lock = NULL;
131189251Ssampthread_t os::Linux::_main_thread;
132189251Ssamint os::Linux::_page_size = -1;
133189251Ssamconst int os::Linux::_vm_default_page_size = (8 * K);
134189251Ssambool os::Linux::_is_floating_stack = false;
135189251Ssambool os::Linux::_is_NPTL = false;
136189251Ssambool os::Linux::_supports_fast_thread_cpu_time = false;
137189251Ssamconst char * os::Linux::_glibc_version = NULL;
138189251Ssamconst char * os::Linux::_libpthread_version = NULL;
139189251Ssampthread_condattr_t os::Linux::_condattr[1];
140189251Ssam
141189251Ssamstatic jlong initial_time_count=0;
142189251Ssam
143189251Ssamstatic int clock_tics_per_sec = 100;
144189251Ssam
145189251Ssam// For diagnostics to print a message once. see run_periodic_checks
146189251Ssamstatic sigset_t check_signal_done;
147189251Ssamstatic bool check_signals = true;
148189251Ssam
149189251Ssamstatic pid_t _initial_pid = 0;
150189251Ssam
151189251Ssam/* Signal number used to suspend/resume a thread */
152189251Ssam
153189251Ssam/* do not use any signal number less than SIGSEGV, see 4355769 */
154189251Ssamstatic int SR_signum = SIGUSR2;
155189251Ssamsigset_t SR_sigset;
156189251Ssam
157189251Ssam/* Used to protect dlsym() calls */
158189251Ssamstatic pthread_mutex_t dl_mutex;
159189251Ssam
160189251Ssam// Declarations
161189251Ssamstatic void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
162189251Ssam
163189251Ssam#ifdef JAVASE_EMBEDDED
164189251Ssamclass MemNotifyThread: public Thread {
165189251Ssam  friend class VMStructs;
166189251Ssam public:
167189251Ssam  virtual void run();
168189251Ssam
169189251Ssam private:
170189251Ssam  static MemNotifyThread* _memnotify_thread;
171189251Ssam  int _fd;
172189251Ssam
173189251Ssam public:
174189251Ssam
175189251Ssam  // Constructor
176189251Ssam  MemNotifyThread(int fd);
177189251Ssam
178189251Ssam  // Tester
179189251Ssam  bool is_memnotify_thread() const { return true; }
180189251Ssam
181189251Ssam  // Printing
182189251Ssam  char* name() const { return (char*)"Linux MemNotify Thread"; }
183189251Ssam
184189251Ssam  // Returns the single instance of the MemNotifyThread
185189251Ssam  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
186189251Ssam
187189251Ssam  // Create and start the single instance of MemNotifyThread
188189251Ssam  static void start();
189189251Ssam};
190189251Ssam#endif // JAVASE_EMBEDDED
191189251Ssam
192189251Ssam// utility functions
193189251Ssam
194189251Ssamstatic int SR_initialize();
195189251Ssam
196189251Ssamjulong os::available_memory() {
197189251Ssam  return Linux::available_memory();
198189251Ssam}
199189251Ssam
200189251Ssamjulong os::Linux::available_memory() {
201189251Ssam  // values in struct sysinfo are "unsigned long"
202189251Ssam  struct sysinfo si;
203189251Ssam  sysinfo(&si);
204189251Ssam
205189251Ssam  return (julong)si.freeram * si.mem_unit;
206189251Ssam}
207189251Ssam
208189251Ssamjulong os::physical_memory() {
209189251Ssam  return Linux::physical_memory();
210189251Ssam}
211189251Ssam
212189251Ssam////////////////////////////////////////////////////////////////////////////////
213189251Ssam// environment support
214189251Ssam
215189251Ssambool os::getenv(const char* name, char* buf, int len) {
216189251Ssam  const char* val = ::getenv(name);
217189251Ssam  if (val != NULL && strlen(val) < (size_t)len) {
218189251Ssam    strcpy(buf, val);
219189251Ssam    return true;
220189251Ssam  }
221189251Ssam  if (len > 0) buf[0] = 0;  // return a null string
222189251Ssam  return false;
223189251Ssam}
224189251Ssam
225189251Ssam
226189251Ssam// Return true if user is running as root.
227189251Ssam
228189251Ssambool os::have_special_privileges() {
229189251Ssam  static bool init = false;
230189251Ssam  static bool privileges = false;
231189251Ssam  if (!init) {
232189251Ssam    privileges = (getuid() != geteuid()) || (getgid() != getegid());
233189251Ssam    init = true;
234189251Ssam  }
235189251Ssam  return privileges;
236189251Ssam}
237189251Ssam
238189251Ssam
239189251Ssam#ifndef SYS_gettid
240252726Srpaulo// i386: 224, ia64: 1105, amd64: 186, sparc 143
241252726Srpaulo#ifdef __ia64__
242189251Ssam#define SYS_gettid 1105
243252726Srpaulo#elif __i386__
244252726Srpaulo#define SYS_gettid 224
245189251Ssam#elif __amd64__
246189251Ssam#define SYS_gettid 186
247189251Ssam#elif __sparc__
248252726Srpaulo#define SYS_gettid 143
249189251Ssam#else
250252726Srpaulo#error define gettid for the arch
251252726Srpaulo#endif
252189251Ssam#endif
253189251Ssam
254189251Ssam// Cpu architecture string
255189251Ssam#if   defined(ZERO)
256252726Srpaulostatic char cpu_arch[] = ZERO_LIBARCH;
257252726Srpaulo#elif defined(IA64)
258189251Ssamstatic char cpu_arch[] = "ia64";
259189251Ssam#elif defined(IA32)
260189251Ssamstatic char cpu_arch[] = "i386";
261189251Ssam#elif defined(AMD64)
262189251Ssamstatic char cpu_arch[] = "amd64";
263189251Ssam#elif defined(ARM)
264189251Ssamstatic char cpu_arch[] = "arm";
265252726Srpaulo#elif defined(PPC32)
266189251Ssamstatic char cpu_arch[] = "ppc";
267189251Ssam#elif defined(PPC64)
268189251Ssamstatic char cpu_arch[] = "ppc64";
269252726Srpaulo#elif defined(SPARC)
270252726Srpaulo#  ifdef _LP64
271252726Srpaulostatic char cpu_arch[] = "sparcv9";
272252726Srpaulo#  else
273252726Srpaulostatic char cpu_arch[] = "sparc";
274252726Srpaulo#  endif
275252726Srpaulo#else
276252726Srpaulo#error Add appropriate cpu_arch setting
277252726Srpaulo#endif
278189251Ssam
279252726Srpaulo
280252726Srpaulo// pid_t gettid()
281252726Srpaulo//
282252726Srpaulo// Returns the kernel thread id of the currently running thread. Kernel
283252726Srpaulo// thread id is used to access /proc.
284252726Srpaulo//
285252726Srpaulo// (Note that getpid() on LinuxThreads returns kernel thread id too; but
286252726Srpaulo// on NPTL, it returns the same pid for all threads, as required by POSIX.)
287252726Srpaulo//
288252726Srpaulopid_t os::Linux::gettid() {
289252726Srpaulo  int rslt = syscall(SYS_gettid);
290189251Ssam  if (rslt == -1) {
291189251Ssam     // old kernel, no NPTL support
292189251Ssam     return getpid();
293252726Srpaulo  } else {
294189251Ssam     return (pid_t)rslt;
295189251Ssam  }
296189251Ssam}
297189251Ssam
298252726Srpaulo// Most versions of linux have a bug where the number of processors are
299252726Srpaulo// determined by looking at the /proc file system.  In a chroot environment,
300252726Srpaulo// the system call returns 1.  This causes the VM to act as if it is
301252726Srpaulo// a single processor and elide locking (see is_MP() call).
302252726Srpaulostatic bool unsafe_chroot_detected = false;
303252726Srpaulostatic const char *unstable_chroot_error = "/proc file system not found.\n"
304189251Ssam                     "Java may be unstable running multithreaded in a chroot "
305189251Ssam                     "environment on Linux when /proc filesystem is not mounted.";
306189251Ssam
307189251Ssamvoid os::Linux::initialize_system_info() {
308189251Ssam  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
309189251Ssam  if (processor_count() == 1) {
310189251Ssam    pid_t pid = os::Linux::gettid();
311189251Ssam    char fname[32];
312252726Srpaulo    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
313189251Ssam    FILE *fp = fopen(fname, "r");
314189251Ssam    if (fp == NULL) {
315189251Ssam      unsafe_chroot_detected = true;
316189251Ssam    } else {
317189251Ssam      fclose(fp);
318189251Ssam    }
319189251Ssam  }
320189251Ssam  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
321189251Ssam  assert(processor_count() > 0, "linux error");
322189251Ssam}
323189251Ssam
324189251Ssamvoid os::init_system_properties_values() {
325189251Ssam  // The next steps are taken in the product version:
326189251Ssam  //
327189251Ssam  // Obtain the JAVA_HOME value from the location of libjvm.so.
328189251Ssam  // This library should be located at:
329189251Ssam  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
330189251Ssam  //
331189251Ssam  // If "/jre/lib/" appears at the right place in the path, then we
332189251Ssam  // assume libjvm.so is installed in a JDK and we use this path.
333189251Ssam  //
334189251Ssam  // Otherwise exit with message: "Could not create the Java virtual machine."
335189251Ssam  //
336189251Ssam  // The following extra steps are taken in the debugging version:
337189251Ssam  //
338189251Ssam  // If "/jre/lib/" does NOT appear at the right place in the path
339189251Ssam  // instead of exit check for $JAVA_HOME environment variable.
340189251Ssam  //
341189251Ssam  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
342189251Ssam  // then we append a fake suffix "hotspot/libjvm.so" to this path so
343189251Ssam  // it looks like libjvm.so is installed there
344189251Ssam  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
345189251Ssam  //
346189251Ssam  // Otherwise exit.
347189251Ssam  //
348189251Ssam  // Important note: if the location of libjvm.so changes this
349189251Ssam  // code needs to be changed accordingly.
350189251Ssam
351189251Ssam// See ld(1):
352189251Ssam//      The linker uses the following search paths to locate required
353189251Ssam//      shared libraries:
354189251Ssam//        1: ...
355189251Ssam//        ...
356189251Ssam//        7: The default directories, normally /lib and /usr/lib.
357189251Ssam#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
358189251Ssam#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
359189251Ssam#else
360189251Ssam#define DEFAULT_LIBPATH "/lib:/usr/lib"
361189251Ssam#endif
362189251Ssam
363189251Ssam// Base path of extensions installed on the system.
364189251Ssam#define SYS_EXT_DIR     "/usr/java/packages"
365189251Ssam#define EXTENSIONS_DIR  "/lib/ext"
366189251Ssam#define ENDORSED_DIR    "/lib/endorsed"
367189251Ssam
368189251Ssam  // Buffer that fits several sprintfs.
369189251Ssam  // Note that the space for the colon and the trailing null are provided
370189251Ssam  // by the nulls included by the sizeof operator.
371189251Ssam  const size_t bufsize =
372189251Ssam    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
373189251Ssam         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
374189251Ssam         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
375189251Ssam  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
376189251Ssam
377189251Ssam  // sysclasspath, java_home, dll_dir
378189251Ssam  {
379189251Ssam    char *pslash;
380189251Ssam    os::jvm_path(buf, bufsize);
381189251Ssam
382189251Ssam    // Found the full path to libjvm.so.
383189251Ssam    // Now cut the path to <java_home>/jre if we can.
384189251Ssam    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
385189251Ssam    pslash = strrchr(buf, '/');
386189251Ssam    if (pslash != NULL) {
387189251Ssam      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
388189251Ssam    }
389189251Ssam    Arguments::set_dll_dir(buf);
390189251Ssam
391189251Ssam    if (pslash != NULL) {
392189251Ssam      pslash = strrchr(buf, '/');
393189251Ssam      if (pslash != NULL) {
394189251Ssam        *pslash = '\0';          // Get rid of /<arch>.
395189251Ssam        pslash = strrchr(buf, '/');
396189251Ssam        if (pslash != NULL) {
397189251Ssam          *pslash = '\0';        // Get rid of /lib.
398189251Ssam        }
399189251Ssam      }
400189251Ssam    }
401189251Ssam    Arguments::set_java_home(buf);
402189251Ssam    set_boot_path('/', ':');
403189251Ssam  }
404189251Ssam
405189251Ssam  // Where to look for native libraries.
406189251Ssam  //
407189251Ssam  // Note: Due to a legacy implementation, most of the library path
408189251Ssam  // is set in the launcher. This was to accomodate linking restrictions
409189251Ssam  // on legacy Linux implementations (which are no longer supported).
410189251Ssam  // Eventually, all the library path setting will be done here.
411189251Ssam  //
412189251Ssam  // However, to prevent the proliferation of improperly built native
413189251Ssam  // libraries, the new path component /usr/java/packages is added here.
414189251Ssam  // Eventually, all the library path setting will be done here.
415189251Ssam  {
416189251Ssam    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
417189251Ssam    // should always exist (until the legacy problem cited above is
418189251Ssam    // addressed).
419189251Ssam    const char *v = ::getenv("LD_LIBRARY_PATH");
420189251Ssam    const char *v_colon = ":";
421189251Ssam    if (v == NULL) { v = ""; v_colon = ""; }
422189251Ssam    // That's +1 for the colon and +1 for the trailing '\0'.
423189251Ssam    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
424189251Ssam                                                     strlen(v) + 1 +
425189251Ssam                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
426189251Ssam                                                     mtInternal);
427189251Ssam    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
428189251Ssam    Arguments::set_library_path(ld_library_path);
429189251Ssam    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
430189251Ssam  }
431189251Ssam
432189251Ssam  // Extensions directories.
433189251Ssam  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
434189251Ssam  Arguments::set_ext_dirs(buf);
435189251Ssam
436189251Ssam  // Endorsed standards default directory.
437189251Ssam  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
438189251Ssam  Arguments::set_endorsed_dirs(buf);
439189251Ssam
440189251Ssam  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
441252726Srpaulo
442252726Srpaulo#undef DEFAULT_LIBPATH
443189251Ssam#undef SYS_EXT_DIR
444189251Ssam#undef EXTENSIONS_DIR
445189251Ssam#undef ENDORSED_DIR
446189251Ssam}
447189251Ssam
448189251Ssam////////////////////////////////////////////////////////////////////////////////
449189251Ssam// breakpoint support
450189251Ssam
451189251Ssamvoid os::breakpoint() {
452189251Ssam  BREAKPOINT;
453189251Ssam}
454189251Ssam
455189251Ssamextern "C" void breakpoint() {
456189251Ssam  // use debugger to set breakpoint here
457189251Ssam}
458189251Ssam
459189251Ssam////////////////////////////////////////////////////////////////////////////////
460189251Ssam// signal support
461189251Ssam
462189251Ssamdebug_only(static bool signal_sets_initialized = false);
463189251Ssamstatic sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
464189251Ssam
465189251Ssambool os::Linux::is_sig_ignored(int sig) {
466189251Ssam      struct sigaction oact;
467189251Ssam      sigaction(sig, (struct sigaction*)NULL, &oact);
468189251Ssam      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
469189251Ssam                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
470189251Ssam      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
471189251Ssam           return true;
472189251Ssam      else
473189251Ssam           return false;
474189251Ssam}
475189251Ssam
476189251Ssamvoid os::Linux::signal_sets_init() {
477189251Ssam  // Should also have an assertion stating we are still single-threaded.
478189251Ssam  assert(!signal_sets_initialized, "Already initialized");
479189251Ssam  // Fill in signals that are necessarily unblocked for all threads in
480189251Ssam  // the VM. Currently, we unblock the following signals:
481189251Ssam  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
482189251Ssam  //                         by -Xrs (=ReduceSignalUsage));
483189251Ssam  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
484189251Ssam  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
485189251Ssam  // the dispositions or masks wrt these signals.
486189251Ssam  // Programs embedding the VM that want to use the above signals for their
487189251Ssam  // own purposes must, at this time, use the "-Xrs" option to prevent
488189251Ssam  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
489189251Ssam  // (See bug 4345157, and other related bugs).
490189251Ssam  // In reality, though, unblocking these signals is really a nop, since
491189251Ssam  // these signals are not blocked by default.
492189251Ssam  sigemptyset(&unblocked_sigs);
493189251Ssam  sigemptyset(&allowdebug_blocked_sigs);
494189251Ssam  sigaddset(&unblocked_sigs, SIGILL);
495189251Ssam  sigaddset(&unblocked_sigs, SIGSEGV);
496189251Ssam  sigaddset(&unblocked_sigs, SIGBUS);
497189251Ssam  sigaddset(&unblocked_sigs, SIGFPE);
498189251Ssam#if defined(PPC64)
499189251Ssam  sigaddset(&unblocked_sigs, SIGTRAP);
500189251Ssam#endif
501189251Ssam  sigaddset(&unblocked_sigs, SR_signum);
502189251Ssam
503189251Ssam  if (!ReduceSignalUsage) {
504252726Srpaulo   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
505189251Ssam      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
506189251Ssam      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
507189251Ssam   }
508252726Srpaulo   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
509189251Ssam      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
510189251Ssam      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
511189251Ssam   }
512189251Ssam   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
513252726Srpaulo      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
514189251Ssam      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
515189251Ssam   }
516189251Ssam  }
517189251Ssam  // Fill in signals that are blocked by all but the VM thread.
518189251Ssam  sigemptyset(&vm_sigs);
519189251Ssam  if (!ReduceSignalUsage)
520189251Ssam    sigaddset(&vm_sigs, BREAK_SIGNAL);
521189251Ssam  debug_only(signal_sets_initialized = true);
522189251Ssam
523189251Ssam}
524189251Ssam
525189251Ssam// These are signals that are unblocked while a thread is running Java.
526189251Ssam// (For some reason, they get blocked by default.)
527189251Ssamsigset_t* os::Linux::unblocked_signals() {
528189251Ssam  assert(signal_sets_initialized, "Not initialized");
529189251Ssam  return &unblocked_sigs;
530189251Ssam}
531189251Ssam
532189251Ssam// These are the signals that are blocked while a (non-VM) thread is
533189251Ssam// running Java. Only the VM thread handles these signals.
534189251Ssamsigset_t* os::Linux::vm_signals() {
535189251Ssam  assert(signal_sets_initialized, "Not initialized");
536189251Ssam  return &vm_sigs;
537189251Ssam}
538189251Ssam
539189251Ssam// These are signals that are blocked during cond_wait to allow debugger in
540189251Ssamsigset_t* os::Linux::allowdebug_blocked_signals() {
541189251Ssam  assert(signal_sets_initialized, "Not initialized");
542189251Ssam  return &allowdebug_blocked_sigs;
543189251Ssam}
544189251Ssam
545189251Ssamvoid os::Linux::hotspot_sigmask(Thread* thread) {
546189251Ssam
547189251Ssam  //Save caller's signal mask before setting VM signal mask
548189251Ssam  sigset_t caller_sigmask;
549189251Ssam  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
550189251Ssam
551189251Ssam  OSThread* osthread = thread->osthread();
552189251Ssam  osthread->set_caller_sigmask(caller_sigmask);
553189251Ssam
554189251Ssam  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
555189251Ssam
556189251Ssam  if (!ReduceSignalUsage) {
557189251Ssam    if (thread->is_VM_thread()) {
558189251Ssam      // Only the VM thread handles BREAK_SIGNAL ...
559189251Ssam      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
560189251Ssam    } else {
561189251Ssam      // ... all other threads block BREAK_SIGNAL
562189251Ssam      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
563189251Ssam    }
564189251Ssam  }
565189251Ssam}
566189251Ssam
567189251Ssam//////////////////////////////////////////////////////////////////////////////
568189251Ssam// detecting pthread library
569189251Ssam
570189251Ssamvoid os::Linux::libpthread_init() {
571189251Ssam  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
572189251Ssam  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
573189251Ssam  // generic name for earlier versions.
574189251Ssam  // Define macros here so we can build HotSpot on old systems.
575189251Ssam# ifndef _CS_GNU_LIBC_VERSION
576189251Ssam# define _CS_GNU_LIBC_VERSION 2
577189251Ssam# endif
578189251Ssam# ifndef _CS_GNU_LIBPTHREAD_VERSION
579189251Ssam# define _CS_GNU_LIBPTHREAD_VERSION 3
580189251Ssam# endif
581189251Ssam
582189251Ssam  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
583189251Ssam  if (n > 0) {
584189251Ssam     char *str = (char *)malloc(n, mtInternal);
585189251Ssam     confstr(_CS_GNU_LIBC_VERSION, str, n);
586189251Ssam     os::Linux::set_glibc_version(str);
587189251Ssam  } else {
588189251Ssam     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
589189251Ssam     static char _gnu_libc_version[32];
590189251Ssam     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
591189251Ssam              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
592189251Ssam     os::Linux::set_glibc_version(_gnu_libc_version);
593189251Ssam  }
594189251Ssam
595189251Ssam  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
596189251Ssam  if (n > 0) {
597189251Ssam     char *str = (char *)malloc(n, mtInternal);
598189251Ssam     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
599189251Ssam     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
600189251Ssam     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
601189251Ssam     // is the case. LinuxThreads has a hard limit on max number of threads.
602189251Ssam     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
603189251Ssam     // On the other hand, NPTL does not have such a limit, sysconf()
604189251Ssam     // will return -1 and errno is not changed. Check if it is really NPTL.
605189251Ssam     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
606189251Ssam         strstr(str, "NPTL") &&
607189251Ssam         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
608189251Ssam       free(str);
609189251Ssam       os::Linux::set_libpthread_version("linuxthreads");
610189251Ssam     } else {
611189251Ssam       os::Linux::set_libpthread_version(str);
612189251Ssam     }
613189251Ssam  } else {
614189251Ssam    // glibc before 2.3.2 only has LinuxThreads.
615189251Ssam    os::Linux::set_libpthread_version("linuxthreads");
616189251Ssam  }
617189251Ssam
618189251Ssam  if (strstr(libpthread_version(), "NPTL")) {
619189251Ssam     os::Linux::set_is_NPTL();
620189251Ssam  } else {
621189251Ssam     os::Linux::set_is_LinuxThreads();
622189251Ssam  }
623189251Ssam
624189251Ssam  // LinuxThreads have two flavors: floating-stack mode, which allows variable
625189251Ssam  // stack size; and fixed-stack mode. NPTL is always floating-stack.
626189251Ssam  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
627189251Ssam     os::Linux::set_is_floating_stack();
628189251Ssam  }
629189251Ssam}
630189251Ssam
631189251Ssam/////////////////////////////////////////////////////////////////////////////
632189251Ssam// thread stack
633189251Ssam
634189251Ssam// Force Linux kernel to expand current thread stack. If "bottom" is close
635189251Ssam// to the stack guard, caller should block all signals.
636189251Ssam//
637189251Ssam// MAP_GROWSDOWN:
638189251Ssam//   A special mmap() flag that is used to implement thread stacks. It tells
639189251Ssam//   kernel that the memory region should extend downwards when needed. This
640189251Ssam//   allows early versions of LinuxThreads to only mmap the first few pages
641189251Ssam//   when creating a new thread. Linux kernel will automatically expand thread
642189251Ssam//   stack as needed (on page faults).
643189251Ssam//
644189251Ssam//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
645189251Ssam//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
646189251Ssam//   region, it's hard to tell if the fault is due to a legitimate stack
647189251Ssam//   access or because of reading/writing non-exist memory (e.g. buffer
648189251Ssam//   overrun). As a rule, if the fault happens below current stack pointer,
649189251Ssam//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
650189251Ssam//   application (see Linux kernel fault.c).
651189251Ssam//
652189251Ssam//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
653189251Ssam//   stack overflow detection.
654189251Ssam//
655189251Ssam//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
656189251Ssam//   not use this flag. However, the stack of initial thread is not created
657189251Ssam//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
658189251Ssam//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
659189251Ssam//   and then attach the thread to JVM.
660189251Ssam//
661189251Ssam// To get around the problem and allow stack banging on Linux, we need to
662189251Ssam// manually expand thread stack after receiving the SIGSEGV.
663189251Ssam//
664189251Ssam// There are two ways to expand thread stack to address "bottom", we used
665189251Ssam// both of them in JVM before 1.5:
666189251Ssam//   1. adjust stack pointer first so that it is below "bottom", and then
667189251Ssam//      touch "bottom"
668189251Ssam//   2. mmap() the page in question
669189251Ssam//
670189251Ssam// Now alternate signal stack is gone, it's harder to use 2. For instance,
671189251Ssam// if current sp is already near the lower end of page 101, and we need to
672189251Ssam// call mmap() to map page 100, it is possible that part of the mmap() frame
673189251Ssam// will be placed in page 100. When page 100 is mapped, it is zero-filled.
674189251Ssam// That will destroy the mmap() frame and cause VM to crash.
675189251Ssam//
676189251Ssam// The following code works by adjusting sp first, then accessing the "bottom"
677189251Ssam// page to force a page fault. Linux kernel will then automatically expand the
678189251Ssam// stack mapping.
679189251Ssam//
680189251Ssam// _expand_stack_to() assumes its frame size is less than page size, which
681189251Ssam// should always be true if the function is not inlined.
682189251Ssam
683189251Ssam#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
684189251Ssam#define NOINLINE
685189251Ssam#else
686189251Ssam#define NOINLINE __attribute__ ((noinline))
687189251Ssam#endif
688189251Ssam
689189251Ssamstatic void _expand_stack_to(address bottom) NOINLINE;
690189251Ssam
691189251Ssamstatic void _expand_stack_to(address bottom) {
692189251Ssam  address sp;
693189251Ssam  size_t size;
694189251Ssam  volatile char *p;
695189251Ssam
696189251Ssam  // Adjust bottom to point to the largest address within the same page, it
697189251Ssam  // gives us a one-page buffer if alloca() allocates slightly more memory.
698189251Ssam  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
699189251Ssam  bottom += os::Linux::page_size() - 1;
700189251Ssam
701189251Ssam  // sp might be slightly above current stack pointer; if that's the case, we
702189251Ssam  // will alloca() a little more space than necessary, which is OK. Don't use
703189251Ssam  // os::current_stack_pointer(), as its result can be slightly below current
704189251Ssam  // stack pointer, causing us to not alloca enough to reach "bottom".
705189251Ssam  sp = (address)&sp;
706189251Ssam
707189251Ssam  if (sp > bottom) {
708189251Ssam    size = sp - bottom;
709189251Ssam    p = (volatile char *)alloca(size);
710189251Ssam    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
711189251Ssam    p[0] = '\0';
712189251Ssam  }
713189251Ssam}
714189251Ssam
715189251Ssambool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
716189251Ssam  assert(t!=NULL, "just checking");
717189251Ssam  assert(t->osthread()->expanding_stack(), "expand should be set");
718189251Ssam  assert(t->stack_base() != NULL, "stack_base was not initialized");
719189251Ssam
720189251Ssam  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
721189251Ssam    sigset_t mask_all, old_sigset;
722189251Ssam    sigfillset(&mask_all);
723189251Ssam    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
724189251Ssam    _expand_stack_to(addr);
725189251Ssam    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
726189251Ssam    return true;
727189251Ssam  }
728189251Ssam  return false;
729189251Ssam}
730189251Ssam
731189251Ssam//////////////////////////////////////////////////////////////////////////////
732189251Ssam// create new thread
733189251Ssam
734189251Ssamstatic address highest_vm_reserved_address();
735189251Ssam
736189251Ssam// check if it's safe to start a new thread
737189251Ssamstatic bool _thread_safety_check(Thread* thread) {
738189251Ssam  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
739189251Ssam    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
740189251Ssam    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
741189251Ssam    //   allocated (MAP_FIXED) from high address space. Every thread stack
742189251Ssam    //   occupies a fixed size slot (usually 2Mbytes, but user can change
743189251Ssam    //   it to other values if they rebuild LinuxThreads).
744189251Ssam    //
745189251Ssam    // Problem with MAP_FIXED is that mmap() can still succeed even part of
746189251Ssam    // the memory region has already been mmap'ed. That means if we have too
747189251Ssam    // many threads and/or very large heap, eventually thread stack will
748189251Ssam    // collide with heap.
749189251Ssam    //
750189251Ssam    // Here we try to prevent heap/stack collision by comparing current
751189251Ssam    // stack bottom with the highest address that has been mmap'ed by JVM
752189251Ssam    // plus a safety margin for memory maps created by native code.
753189251Ssam    //
754189251Ssam    // This feature can be disabled by setting ThreadSafetyMargin to 0
755189251Ssam    //
756189251Ssam    if (ThreadSafetyMargin > 0) {
757189251Ssam      address stack_bottom = os::current_stack_base() - os::current_stack_size();
758189251Ssam
759189251Ssam      // not safe if our stack extends below the safety margin
760189251Ssam      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
761189251Ssam    } else {
762189251Ssam      return true;
763189251Ssam    }
764189251Ssam  } else {
765189251Ssam    // Floating stack LinuxThreads or NPTL:
766189251Ssam    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
767189251Ssam    //   there's not enough space left, pthread_create() will fail. If we come
768189251Ssam    //   here, that means enough space has been reserved for stack.
769189251Ssam    return true;
770189251Ssam  }
771189251Ssam}
772189251Ssam
773189251Ssam// Thread start routine for all newly created threads
774189251Ssamstatic void *java_start(Thread *thread) {
775189251Ssam  // Try to randomize the cache line index of hot stack frames.
776189251Ssam  // This helps when threads of the same stack traces evict each other's
777189251Ssam  // cache lines. The threads can be either from the same JVM instance, or
778189251Ssam  // from different JVM instances. The benefit is especially true for
779189251Ssam  // processors with hyperthreading technology.
780189251Ssam  static int counter = 0;
781189251Ssam  int pid = os::current_process_id();
782189251Ssam  alloca(((pid ^ counter++) & 7) * 128);
783189251Ssam
784189251Ssam  ThreadLocalStorage::set_thread(thread);
785189251Ssam
786189251Ssam  OSThread* osthread = thread->osthread();
787189251Ssam  Monitor* sync = osthread->startThread_lock();
788189251Ssam
789189251Ssam  // non floating stack LinuxThreads needs extra check, see above
790189251Ssam  if (!_thread_safety_check(thread)) {
791189251Ssam    // notify parent thread
792189251Ssam    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
793189251Ssam    osthread->set_state(ZOMBIE);
794189251Ssam    sync->notify_all();
795189251Ssam    return NULL;
796189251Ssam  }
797189251Ssam
798189251Ssam  // thread_id is kernel thread id (similar to Solaris LWP id)
799189251Ssam  osthread->set_thread_id(os::Linux::gettid());
800189251Ssam
801189251Ssam  if (UseNUMA) {
802189251Ssam    int lgrp_id = os::numa_get_group_id();
803189251Ssam    if (lgrp_id != -1) {
804189251Ssam      thread->set_lgrp_id(lgrp_id);
805189251Ssam    }
806189251Ssam  }
807189251Ssam  // initialize signal mask for this thread
808189251Ssam  os::Linux::hotspot_sigmask(thread);
809189251Ssam
810189251Ssam  // initialize floating point control register
811189251Ssam  os::Linux::init_thread_fpu_state();
812189251Ssam
813189251Ssam  // handshaking with parent thread
814189251Ssam  {
815189251Ssam    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
816189251Ssam
817189251Ssam    // notify parent thread
818189251Ssam    osthread->set_state(INITIALIZED);
819189251Ssam    sync->notify_all();
820189251Ssam
821189251Ssam    // wait until os::start_thread()
822189251Ssam    while (osthread->get_state() == INITIALIZED) {
823189251Ssam      sync->wait(Mutex::_no_safepoint_check_flag);
824189251Ssam    }
825189251Ssam  }
826189251Ssam
827189251Ssam  // call one more level start routine
828189251Ssam  thread->run();
829189251Ssam
830189251Ssam  return 0;
831189251Ssam}
832189251Ssam
833189251Ssambool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
834189251Ssam  assert(thread->osthread() == NULL, "caller responsible");
835189251Ssam
836189251Ssam  // Allocate the OSThread object
837189251Ssam  OSThread* osthread = new OSThread(NULL, NULL);
838189251Ssam  if (osthread == NULL) {
839189251Ssam    return false;
840189251Ssam  }
841189251Ssam
842189251Ssam  // set the correct thread state
843189251Ssam  osthread->set_thread_type(thr_type);
844189251Ssam
845189251Ssam  // Initial state is ALLOCATED but not INITIALIZED
846189251Ssam  osthread->set_state(ALLOCATED);
847189251Ssam
848189251Ssam  thread->set_osthread(osthread);
849189251Ssam
850189251Ssam  // init thread attributes
851189251Ssam  pthread_attr_t attr;
852189251Ssam  pthread_attr_init(&attr);
853189251Ssam  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
854189251Ssam
855189251Ssam  // stack size
856189251Ssam  if (os::Linux::supports_variable_stack_size()) {
857189251Ssam    // calculate stack size if it's not specified by caller
858189251Ssam    if (stack_size == 0) {
859189251Ssam      stack_size = os::Linux::default_stack_size(thr_type);
860189251Ssam
861189251Ssam      switch (thr_type) {
862189251Ssam      case os::java_thread:
863189251Ssam        // Java threads use ThreadStackSize which default value can be
864189251Ssam        // changed with the flag -Xss
865189251Ssam        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
866189251Ssam        stack_size = JavaThread::stack_size_at_create();
867189251Ssam        break;
868189251Ssam      case os::compiler_thread:
869189251Ssam        if (CompilerThreadStackSize > 0) {
870189251Ssam          stack_size = (size_t)(CompilerThreadStackSize * K);
871189251Ssam          break;
872189251Ssam        } // else fall through:
873189251Ssam          // use VMThreadStackSize if CompilerThreadStackSize is not defined
874189251Ssam      case os::vm_thread:
875189251Ssam      case os::pgc_thread:
876189251Ssam      case os::cgc_thread:
877189251Ssam      case os::watcher_thread:
878189251Ssam        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
879189251Ssam        break;
880189251Ssam      }
881189251Ssam    }
882189251Ssam
883189251Ssam    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
884189251Ssam    pthread_attr_setstacksize(&attr, stack_size);
885189251Ssam  } else {
886189251Ssam    // let pthread_create() pick the default value.
887189251Ssam  }
888189251Ssam
889189251Ssam  // glibc guard page
890189251Ssam  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
891189251Ssam
892189251Ssam  ThreadState state;
893189251Ssam
894189251Ssam  {
895189251Ssam    // Serialize thread creation if we are running with fixed stack LinuxThreads
896189251Ssam    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
897189251Ssam    if (lock) {
898189251Ssam      os::Linux::createThread_lock()->lock_without_safepoint_check();
899189251Ssam    }
900189251Ssam
901189251Ssam    pthread_t tid;
902189251Ssam    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
903189251Ssam
904189251Ssam    pthread_attr_destroy(&attr);
905189251Ssam
906189251Ssam    if (ret != 0) {
907189251Ssam      if (PrintMiscellaneous && (Verbose || WizardMode)) {
908189251Ssam        perror("pthread_create()");
909189251Ssam      }
910189251Ssam      // Need to clean up stuff we've allocated so far
911189251Ssam      thread->set_osthread(NULL);
912252726Srpaulo      delete osthread;
913252726Srpaulo      if (lock) os::Linux::createThread_lock()->unlock();
914252726Srpaulo      return false;
915252726Srpaulo    }
916252726Srpaulo
917189251Ssam    // Store pthread info into the OSThread
918189251Ssam    osthread->set_pthread_id(tid);
919189251Ssam
920189251Ssam    // Wait until child thread is either initialized or aborted
921189251Ssam    {
922189251Ssam      Monitor* sync_with_child = osthread->startThread_lock();
923189251Ssam      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
924189251Ssam      while ((state = osthread->get_state()) == ALLOCATED) {
925189251Ssam        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
926189251Ssam      }
927252726Srpaulo    }
928189251Ssam
929189251Ssam    if (lock) {
930189251Ssam      os::Linux::createThread_lock()->unlock();
931189251Ssam    }
932189251Ssam  }
933189251Ssam
934189251Ssam  // Aborted due to thread limit being reached
935189251Ssam  if (state == ZOMBIE) {
936189251Ssam      thread->set_osthread(NULL);
937189251Ssam      delete osthread;
938189251Ssam      return false;
939189251Ssam  }
940189251Ssam
941189251Ssam  // The thread is returned suspended (in state INITIALIZED),
942189251Ssam  // and is started higher up in the call chain
943189251Ssam  assert(state == INITIALIZED, "race condition");
944189251Ssam  return true;
945189251Ssam}
946189251Ssam
947189251Ssam/////////////////////////////////////////////////////////////////////////////
948189251Ssam// attach existing thread
949189251Ssam
950189251Ssam// bootstrap the main thread
951189251Ssambool os::create_main_thread(JavaThread* thread) {
952189251Ssam  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
953189251Ssam  return create_attached_thread(thread);
954189251Ssam}
955189251Ssam
956189251Ssambool os::create_attached_thread(JavaThread* thread) {
957189251Ssam#ifdef ASSERT
958189251Ssam    thread->verify_not_published();
959189251Ssam#endif
960189251Ssam
961189251Ssam  // Allocate the OSThread object
962189251Ssam  OSThread* osthread = new OSThread(NULL, NULL);
963189251Ssam
964189251Ssam  if (osthread == NULL) {
965189251Ssam    return false;
966189251Ssam  }
967189251Ssam
968189251Ssam  // Store pthread info into the OSThread
969189251Ssam  osthread->set_thread_id(os::Linux::gettid());
970189251Ssam  osthread->set_pthread_id(::pthread_self());
971189251Ssam
972189251Ssam  // initialize floating point control register
973189251Ssam  os::Linux::init_thread_fpu_state();
974189251Ssam
975189251Ssam  // Initial thread state is RUNNABLE
976189251Ssam  osthread->set_state(RUNNABLE);
977189251Ssam
978189251Ssam  thread->set_osthread(osthread);
979189251Ssam
980189251Ssam  if (UseNUMA) {
981189251Ssam    int lgrp_id = os::numa_get_group_id();
982189251Ssam    if (lgrp_id != -1) {
983189251Ssam      thread->set_lgrp_id(lgrp_id);
984189251Ssam    }
985189251Ssam  }
986189251Ssam
987189251Ssam  if (os::Linux::is_initial_thread()) {
988189251Ssam    // If current thread is initial thread, its stack is mapped on demand,
989189251Ssam    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
990189251Ssam    // the entire stack region to avoid SEGV in stack banging.
991189251Ssam    // It is also useful to get around the heap-stack-gap problem on SuSE
992189251Ssam    // kernel (see 4821821 for details). We first expand stack to the top
993189251Ssam    // of yellow zone, then enable stack yellow zone (order is significant,
994189251Ssam    // enabling yellow zone first will crash JVM on SuSE Linux), so there
995189251Ssam    // is no gap between the last two virtual memory regions.
996189251Ssam
997189251Ssam    JavaThread *jt = (JavaThread *)thread;
998189251Ssam    address addr = jt->stack_yellow_zone_base();
999189251Ssam    assert(addr != NULL, "initialization problem?");
1000189251Ssam    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1001189251Ssam
1002189251Ssam    osthread->set_expanding_stack();
1003189251Ssam    os::Linux::manually_expand_stack(jt, addr);
1004189251Ssam    osthread->clear_expanding_stack();
1005189251Ssam  }
1006189251Ssam
1007189251Ssam  // initialize signal mask for this thread
1008189251Ssam  // and save the caller's signal mask
1009189251Ssam  os::Linux::hotspot_sigmask(thread);
1010189251Ssam
1011189251Ssam  return true;
1012189251Ssam}
1013189251Ssam
1014189251Ssamvoid os::pd_start_thread(Thread* thread) {
1015189251Ssam  OSThread * osthread = thread->osthread();
1016189251Ssam  assert(osthread->get_state() != INITIALIZED, "just checking");
1017189251Ssam  Monitor* sync_with_child = osthread->startThread_lock();
1018189251Ssam  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1019189251Ssam  sync_with_child->notify();
1020189251Ssam}
1021189251Ssam
1022189251Ssam// Free Linux resources related to the OSThread
1023189251Ssamvoid os::free_thread(OSThread* osthread) {
1024189251Ssam  assert(osthread != NULL, "osthread not set");
1025189251Ssam
1026189251Ssam  if (Thread::current()->osthread() == osthread) {
1027189251Ssam    // Restore caller's signal mask
1028189251Ssam    sigset_t sigmask = osthread->caller_sigmask();
1029189251Ssam    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1030189251Ssam   }
1031189251Ssam
1032189251Ssam  delete osthread;
1033189251Ssam}
1034189251Ssam
1035189251Ssam//////////////////////////////////////////////////////////////////////////////
1036189251Ssam// thread local storage
1037189251Ssam
1038189251Ssam// Restore the thread pointer if the destructor is called. This is in case
1039189251Ssam// someone from JNI code sets up a destructor with pthread_key_create to run
1040189251Ssam// detachCurrentThread on thread death. Unless we restore the thread pointer we
1041189251Ssam// will hang or crash. When detachCurrentThread is called the key will be set
1042189251Ssam// to null and we will not be called again. If detachCurrentThread is never
1043189251Ssam// called we could loop forever depending on the pthread implementation.
1044189251Ssamstatic void restore_thread_pointer(void* p) {
1045189251Ssam  Thread* thread = (Thread*) p;
1046189251Ssam  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1047189251Ssam}
1048189251Ssam
1049189251Ssamint os::allocate_thread_local_storage() {
1050189251Ssam  pthread_key_t key;
1051189251Ssam  int rslt = pthread_key_create(&key, restore_thread_pointer);
1052189251Ssam  assert(rslt == 0, "cannot allocate thread local storage");
1053189251Ssam  return (int)key;
1054189251Ssam}
1055189251Ssam
1056189251Ssam// Note: This is currently not used by VM, as we don't destroy TLS key
1057189251Ssam// on VM exit.
1058189251Ssamvoid os::free_thread_local_storage(int index) {
1059189251Ssam  int rslt = pthread_key_delete((pthread_key_t)index);
1060189251Ssam  assert(rslt == 0, "invalid index");
1061189251Ssam}
1062189251Ssam
1063189251Ssamvoid os::thread_local_storage_at_put(int index, void* value) {
1064189251Ssam  int rslt = pthread_setspecific((pthread_key_t)index, value);
1065189251Ssam  assert(rslt == 0, "pthread_setspecific failed");
1066189251Ssam}
1067189251Ssam
1068189251Ssamextern "C" Thread* get_thread() {
1069189251Ssam  return ThreadLocalStorage::thread();
1070189251Ssam}
1071189251Ssam
1072189251Ssam//////////////////////////////////////////////////////////////////////////////
1073189251Ssam// initial thread
1074189251Ssam
1075189251Ssam// Check if current thread is the initial thread, similar to Solaris thr_main.
1076189251Ssambool os::Linux::is_initial_thread(void) {
1077189251Ssam  char dummy;
1078189251Ssam  // If called before init complete, thread stack bottom will be null.
1079189251Ssam  // Can be called if fatal error occurs before initialization.
1080189251Ssam  if (initial_thread_stack_bottom() == NULL) return false;
1081189251Ssam  assert(initial_thread_stack_bottom() != NULL &&
1082189251Ssam         initial_thread_stack_size()   != 0,
1083189251Ssam         "os::init did not locate initial thread's stack region");
1084189251Ssam  if ((address)&dummy >= initial_thread_stack_bottom() &&
1085189251Ssam      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1086189251Ssam       return true;
1087189251Ssam  else return false;
1088189251Ssam}
1089189251Ssam
1090189251Ssam// Find the virtual memory area that contains addr
1091189251Ssamstatic bool find_vma(address addr, address* vma_low, address* vma_high) {
1092189251Ssam  FILE *fp = fopen("/proc/self/maps", "r");
1093189251Ssam  if (fp) {
1094189251Ssam    address low, high;
1095189251Ssam    while (!feof(fp)) {
1096189251Ssam      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1097189251Ssam        if (low <= addr && addr < high) {
1098189251Ssam           if (vma_low)  *vma_low  = low;
1099189251Ssam           if (vma_high) *vma_high = high;
1100189251Ssam           fclose(fp);
1101189251Ssam           return true;
1102189251Ssam        }
1103189251Ssam      }
1104189251Ssam      for (;;) {
1105189251Ssam        int ch = fgetc(fp);
1106189251Ssam        if (ch == EOF || ch == (int)'\n') break;
1107189251Ssam      }
1108189251Ssam    }
1109189251Ssam    fclose(fp);
1110189251Ssam  }
1111189251Ssam  return false;
1112189251Ssam}
1113189251Ssam
1114189251Ssam// Locate initial thread stack. This special handling of initial thread stack
1115189251Ssam// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1116189251Ssam// bogus value for initial thread.
1117189251Ssamvoid os::Linux::capture_initial_stack(size_t max_size) {
1118189251Ssam  // stack size is the easy part, get it from RLIMIT_STACK
1119189251Ssam  size_t stack_size;
1120189251Ssam  struct rlimit rlim;
1121189251Ssam  getrlimit(RLIMIT_STACK, &rlim);
1122189251Ssam  stack_size = rlim.rlim_cur;
1123189251Ssam
1124189251Ssam  // 6308388: a bug in ld.so will relocate its own .data section to the
1125189251Ssam  //   lower end of primordial stack; reduce ulimit -s value a little bit
1126189251Ssam  //   so we won't install guard page on ld.so's data section.
1127189251Ssam  stack_size -= 2 * page_size();
1128189251Ssam
1129189251Ssam  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1130189251Ssam  //   7.1, in both cases we will get 2G in return value.
1131189251Ssam  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1132189251Ssam  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1133189251Ssam  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1134189251Ssam  //   in case other parts in glibc still assumes 2M max stack size.
1135189251Ssam  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1136189251Ssam  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1137189251Ssam  if (stack_size > 2 * K * K IA64_ONLY(*2))
1138189251Ssam      stack_size = 2 * K * K IA64_ONLY(*2);
1139189251Ssam  // Try to figure out where the stack base (top) is. This is harder.
1140189251Ssam  //
1141189251Ssam  // When an application is started, glibc saves the initial stack pointer in
1142189251Ssam  // a global variable "__libc_stack_end", which is then used by system
1143189251Ssam  // libraries. __libc_stack_end should be pretty close to stack top. The
1144252726Srpaulo  // variable is available since the very early days. However, because it is
1145252726Srpaulo  // a private interface, it could disappear in the future.
1146189251Ssam  //
1147189251Ssam  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1148189251Ssam  // to __libc_stack_end, it is very close to stack top, but isn't the real
1149189251Ssam  // stack top. Note that /proc may not exist if VM is running as a chroot
1150189251Ssam  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1151189251Ssam  // /proc/<pid>/stat could change in the future (though unlikely).
1152189251Ssam  //
1153189251Ssam  // We try __libc_stack_end first. If that doesn't work, look for
1154189251Ssam  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1155189251Ssam  // as a hint, which should work well in most cases.
1156189251Ssam
1157189251Ssam  uintptr_t stack_start;
1158189251Ssam
1159189251Ssam  // try __libc_stack_end first
1160252726Srpaulo  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1161252726Srpaulo  if (p && *p) {
1162189251Ssam    stack_start = *p;
1163189251Ssam  } else {
1164189251Ssam    // see if we can get the start_stack field from /proc/self/stat
1165189251Ssam    FILE *fp;
1166189251Ssam    int pid;
1167189251Ssam    char state;
1168189251Ssam    int ppid;
1169189251Ssam    int pgrp;
1170189251Ssam    int session;
1171189251Ssam    int nr;
1172189251Ssam    int tpgrp;
1173189251Ssam    unsigned long flags;
1174189251Ssam    unsigned long minflt;
1175189251Ssam    unsigned long cminflt;
1176189251Ssam    unsigned long majflt;
1177189251Ssam    unsigned long cmajflt;
1178189251Ssam    unsigned long utime;
1179189251Ssam    unsigned long stime;
1180189251Ssam    long cutime;
1181189251Ssam    long cstime;
1182189251Ssam    long prio;
1183189251Ssam    long nice;
1184189251Ssam    long junk;
1185189251Ssam    long it_real;
1186189251Ssam    uintptr_t start;
1187189251Ssam    uintptr_t vsize;
1188189251Ssam    intptr_t rss;
1189189251Ssam    uintptr_t rsslim;
1190189251Ssam    uintptr_t scodes;
1191189251Ssam    uintptr_t ecode;
1192189251Ssam    int i;
1193189251Ssam
1194189251Ssam    // Figure what the primordial thread stack base is. Code is inspired
1195189251Ssam    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1196189251Ssam    // followed by command name surrounded by parentheses, state, etc.
1197189251Ssam    char stat[2048];
1198189251Ssam    int statlen;
1199189251Ssam
1200189251Ssam    fp = fopen("/proc/self/stat", "r");
1201189251Ssam    if (fp) {
1202189251Ssam      statlen = fread(stat, 1, 2047, fp);
1203189251Ssam      stat[statlen] = '\0';
1204189251Ssam      fclose(fp);
1205189251Ssam
1206189251Ssam      // Skip pid and the command string. Note that we could be dealing with
1207189251Ssam      // weird command names, e.g. user could decide to rename java launcher
1208189251Ssam      // to "java 1.4.2 :)", then the stat file would look like
1209189251Ssam      //                1234 (java 1.4.2 :)) R ... ...
1210189251Ssam      // We don't really need to know the command string, just find the last
1211189251Ssam      // occurrence of ")" and then start parsing from there. See bug 4726580.
1212189251Ssam      char * s = strrchr(stat, ')');
1213189251Ssam
1214189251Ssam      i = 0;
1215189251Ssam      if (s) {
1216189251Ssam        // Skip blank chars
1217189251Ssam        do s++; while (isspace(*s));
1218189251Ssam
1219189251Ssam#define _UFM UINTX_FORMAT
1220189251Ssam#define _DFM INTX_FORMAT
1221189251Ssam
1222189251Ssam        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1223189251Ssam        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1224189251Ssam        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1225189251Ssam             &state,          /* 3  %c  */
1226189251Ssam             &ppid,           /* 4  %d  */
1227189251Ssam             &pgrp,           /* 5  %d  */
1228189251Ssam             &session,        /* 6  %d  */
1229189251Ssam             &nr,             /* 7  %d  */
1230189251Ssam             &tpgrp,          /* 8  %d  */
1231189251Ssam             &flags,          /* 9  %lu  */
1232189251Ssam             &minflt,         /* 10 %lu  */
1233189251Ssam             &cminflt,        /* 11 %lu  */
1234189251Ssam             &majflt,         /* 12 %lu  */
1235189251Ssam             &cmajflt,        /* 13 %lu  */
1236189251Ssam             &utime,          /* 14 %lu  */
1237189251Ssam             &stime,          /* 15 %lu  */
1238189251Ssam             &cutime,         /* 16 %ld  */
1239189251Ssam             &cstime,         /* 17 %ld  */
1240189251Ssam             &prio,           /* 18 %ld  */
1241189251Ssam             &nice,           /* 19 %ld  */
1242189251Ssam             &junk,           /* 20 %ld  */
1243189251Ssam             &it_real,        /* 21 %ld  */
1244189251Ssam             &start,          /* 22 UINTX_FORMAT */
1245189251Ssam             &vsize,          /* 23 UINTX_FORMAT */
1246189251Ssam             &rss,            /* 24 INTX_FORMAT  */
1247189251Ssam             &rsslim,         /* 25 UINTX_FORMAT */
1248189251Ssam             &scodes,         /* 26 UINTX_FORMAT */
1249189251Ssam             &ecode,          /* 27 UINTX_FORMAT */
1250189251Ssam             &stack_start);   /* 28 UINTX_FORMAT */
1251189251Ssam      }
1252189251Ssam
1253189251Ssam#undef _UFM
1254189251Ssam#undef _DFM
1255189251Ssam
1256189251Ssam      if (i != 28 - 2) {
1257189251Ssam         assert(false, "Bad conversion from /proc/self/stat");
1258189251Ssam         // product mode - assume we are the initial thread, good luck in the
1259189251Ssam         // embedded case.
1260189251Ssam         warning("Can't detect initial thread stack location - bad conversion");
1261189251Ssam         stack_start = (uintptr_t) &rlim;
1262189251Ssam      }
1263189251Ssam    } else {
1264189251Ssam      // For some reason we can't open /proc/self/stat (for example, running on
1265189251Ssam      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1266189251Ssam      // most cases, so don't abort:
1267189251Ssam      warning("Can't detect initial thread stack location - no /proc/self/stat");
1268189251Ssam      stack_start = (uintptr_t) &rlim;
1269189251Ssam    }
1270189251Ssam  }
1271189251Ssam
1272189251Ssam  // Now we have a pointer (stack_start) very close to the stack top, the
1273189251Ssam  // next thing to do is to figure out the exact location of stack top. We
1274189251Ssam  // can find out the virtual memory area that contains stack_start by
1275189251Ssam  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1276189251Ssam  // and its upper limit is the real stack top. (again, this would fail if
1277189251Ssam  // running inside chroot, because /proc may not exist.)
1278189251Ssam
1279252726Srpaulo  uintptr_t stack_top;
1280189251Ssam  address low, high;
1281189251Ssam  if (find_vma((address)stack_start, &low, &high)) {
1282189251Ssam    // success, "high" is the true stack top. (ignore "low", because initial
1283189251Ssam    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1284189251Ssam    stack_top = (uintptr_t)high;
1285189251Ssam  } else {
1286189251Ssam    // failed, likely because /proc/self/maps does not exist
1287189251Ssam    warning("Can't detect initial thread stack location - find_vma failed");
1288189251Ssam    // best effort: stack_start is normally within a few pages below the real
1289189251Ssam    // stack top, use it as stack top, and reduce stack size so we won't put
1290189251Ssam    // guard page outside stack.
1291189251Ssam    stack_top = stack_start;
1292189251Ssam    stack_size -= 16 * page_size();
1293189251Ssam  }
1294189251Ssam
1295189251Ssam  // stack_top could be partially down the page so align it
1296189251Ssam  stack_top = align_size_up(stack_top, page_size());
1297189251Ssam
1298189251Ssam  if (max_size && stack_size > max_size) {
1299189251Ssam     _initial_thread_stack_size = max_size;
1300189251Ssam  } else {
1301189251Ssam     _initial_thread_stack_size = stack_size;
1302189251Ssam  }
1303189251Ssam
1304189251Ssam  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1305189251Ssam  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1306189251Ssam}
1307189251Ssam
1308189251Ssam////////////////////////////////////////////////////////////////////////////////
1309189251Ssam// time support
1310189251Ssam
1311189251Ssam// Time since start-up in seconds to a fine granularity.
1312189251Ssam// Used by VMSelfDestructTimer and the MemProfiler.
1313189251Ssamdouble os::elapsedTime() {
1314189251Ssam
1315189251Ssam  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1316189251Ssam}
1317189251Ssam
1318189251Ssamjlong os::elapsed_counter() {
1319189251Ssam  return javaTimeNanos() - initial_time_count;
1320189251Ssam}
1321189251Ssam
1322189251Ssamjlong os::elapsed_frequency() {
1323189251Ssam  return NANOSECS_PER_SEC; // nanosecond resolution
1324189251Ssam}
1325189251Ssam
1326189251Ssambool os::supports_vtime() { return true; }
1327189251Ssambool os::enable_vtime()   { return false; }
1328189251Ssambool os::vtime_enabled()  { return false; }
1329189251Ssam
1330189251Ssamdouble os::elapsedVTime() {
1331189251Ssam  struct rusage usage;
1332189251Ssam  int retval = getrusage(RUSAGE_THREAD, &usage);
1333189251Ssam  if (retval == 0) {
1334189251Ssam    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1335189251Ssam  } else {
1336189251Ssam    // better than nothing, but not much
1337189251Ssam    return elapsedTime();
1338189251Ssam  }
1339189251Ssam}
1340189251Ssam
1341189251Ssamjlong os::javaTimeMillis() {
1342189251Ssam  timeval time;
1343189251Ssam  int status = gettimeofday(&time, NULL);
1344189251Ssam  assert(status != -1, "linux error");
1345189251Ssam  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1346189251Ssam}
1347189251Ssam
1348189251Ssam#ifndef CLOCK_MONOTONIC
1349189251Ssam#define CLOCK_MONOTONIC (1)
1350189251Ssam#endif
1351189251Ssam
1352189251Ssamvoid os::Linux::clock_init() {
1353189251Ssam  // we do dlopen's in this particular order due to bug in linux
1354189251Ssam  // dynamical loader (see 6348968) leading to crash on exit
1355189251Ssam  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1356189251Ssam  if (handle == NULL) {
1357189251Ssam    handle = dlopen("librt.so", RTLD_LAZY);
1358189251Ssam  }
1359189251Ssam
1360189251Ssam  if (handle) {
1361189251Ssam    int (*clock_getres_func)(clockid_t, struct timespec*) =
1362189251Ssam           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1363189251Ssam    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1364189251Ssam           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1365189251Ssam    if (clock_getres_func && clock_gettime_func) {
1366189251Ssam      // See if monotonic clock is supported by the kernel. Note that some
1367189251Ssam      // early implementations simply return kernel jiffies (updated every
1368189251Ssam      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1369189251Ssam      // for nano time (though the monotonic property is still nice to have).
1370189251Ssam      // It's fixed in newer kernels, however clock_getres() still returns
1371189251Ssam      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1372189251Ssam      // resolution for now. Hopefully as people move to new kernels, this
1373189251Ssam      // won't be a problem.
1374189251Ssam      struct timespec res;
1375189251Ssam      struct timespec tp;
1376189251Ssam      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1377189251Ssam          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1378189251Ssam        // yes, monotonic clock is supported
1379189251Ssam        _clock_gettime = clock_gettime_func;
1380189251Ssam        return;
1381189251Ssam      } else {
1382189251Ssam        // close librt if there is no monotonic clock
1383189251Ssam        dlclose(handle);
1384189251Ssam      }
1385189251Ssam    }
1386189251Ssam  }
1387189251Ssam  warning("No monotonic clock was available - timed services may " \
1388189251Ssam          "be adversely affected if the time-of-day clock changes");
1389189251Ssam}
1390189251Ssam
1391189251Ssam#ifndef SYS_clock_getres
1392189251Ssam
1393189251Ssam#if defined(IA32) || defined(AMD64)
1394189251Ssam#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1395189251Ssam#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1396189251Ssam#else
1397189251Ssam#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1398189251Ssam#define sys_clock_getres(x,y)  -1
1399189251Ssam#endif
1400189251Ssam
1401189251Ssam#else
1402189251Ssam#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1403189251Ssam#endif
1404189251Ssam
1405189251Ssamvoid os::Linux::fast_thread_clock_init() {
1406189251Ssam  if (!UseLinuxPosixThreadCPUClocks) {
1407189251Ssam    return;
1408189251Ssam  }
1409189251Ssam  clockid_t clockid;
1410189251Ssam  struct timespec tp;
1411189251Ssam  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1412189251Ssam      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1413189251Ssam
1414189251Ssam  // Switch to using fast clocks for thread cpu time if
1415189251Ssam  // the sys_clock_getres() returns 0 error code.
1416189251Ssam  // Note, that some kernels may support the current thread
1417189251Ssam  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1418189251Ssam  // returned by the pthread_getcpuclockid().
1419189251Ssam  // If the fast Posix clocks are supported then the sys_clock_getres()
1420  // must return at least tp.tv_sec == 0 which means a resolution
1421  // better than 1 sec. This is extra check for reliability.
1422
1423  if (pthread_getcpuclockid_func &&
1424     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1425     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1426
1427    _supports_fast_thread_cpu_time = true;
1428    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1429  }
1430}
1431
1432jlong os::javaTimeNanos() {
1433  if (os::supports_monotonic_clock()) {
1434    struct timespec tp;
1435    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1436    assert(status == 0, "gettime error");
1437    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1438    return result;
1439  } else {
1440    timeval time;
1441    int status = gettimeofday(&time, NULL);
1442    assert(status != -1, "linux error");
1443    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1444    return 1000 * usecs;
1445  }
1446}
1447
1448void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1449  if (os::supports_monotonic_clock()) {
1450    info_ptr->max_value = ALL_64_BITS;
1451
1452    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1453    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1454    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1455  } else {
1456    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1457    info_ptr->max_value = ALL_64_BITS;
1458
1459    // gettimeofday is a real time clock so it skips
1460    info_ptr->may_skip_backward = true;
1461    info_ptr->may_skip_forward = true;
1462  }
1463
1464  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1465}
1466
1467// Return the real, user, and system times in seconds from an
1468// arbitrary fixed point in the past.
1469bool os::getTimesSecs(double* process_real_time,
1470                      double* process_user_time,
1471                      double* process_system_time) {
1472  struct tms ticks;
1473  clock_t real_ticks = times(&ticks);
1474
1475  if (real_ticks == (clock_t) (-1)) {
1476    return false;
1477  } else {
1478    double ticks_per_second = (double) clock_tics_per_sec;
1479    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1480    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1481    *process_real_time = ((double) real_ticks) / ticks_per_second;
1482
1483    return true;
1484  }
1485}
1486
1487
1488char * os::local_time_string(char *buf, size_t buflen) {
1489  struct tm t;
1490  time_t long_time;
1491  time(&long_time);
1492  localtime_r(&long_time, &t);
1493  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1494               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1495               t.tm_hour, t.tm_min, t.tm_sec);
1496  return buf;
1497}
1498
1499struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1500  return localtime_r(clock, res);
1501}
1502
1503////////////////////////////////////////////////////////////////////////////////
1504// runtime exit support
1505
1506// Note: os::shutdown() might be called very early during initialization, or
1507// called from signal handler. Before adding something to os::shutdown(), make
1508// sure it is async-safe and can handle partially initialized VM.
1509void os::shutdown() {
1510
1511  // allow PerfMemory to attempt cleanup of any persistent resources
1512  perfMemory_exit();
1513
1514  // needs to remove object in file system
1515  AttachListener::abort();
1516
1517  // flush buffered output, finish log files
1518  ostream_abort();
1519
1520  // Check for abort hook
1521  abort_hook_t abort_hook = Arguments::abort_hook();
1522  if (abort_hook != NULL) {
1523    abort_hook();
1524  }
1525
1526}
1527
1528// Note: os::abort() might be called very early during initialization, or
1529// called from signal handler. Before adding something to os::abort(), make
1530// sure it is async-safe and can handle partially initialized VM.
1531void os::abort(bool dump_core) {
1532  os::shutdown();
1533  if (dump_core) {
1534#ifndef PRODUCT
1535    fdStream out(defaultStream::output_fd());
1536    out.print_raw("Current thread is ");
1537    char buf[16];
1538    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1539    out.print_raw_cr(buf);
1540    out.print_raw_cr("Dumping core ...");
1541#endif
1542    ::abort(); // dump core
1543  }
1544
1545  ::exit(1);
1546}
1547
1548// Die immediately, no exit hook, no abort hook, no cleanup.
1549void os::die() {
1550  // _exit() on LinuxThreads only kills current thread
1551  ::abort();
1552}
1553
1554// unused on linux for now.
1555void os::set_error_file(const char *logfile) {}
1556
1557
1558// This method is a copy of JDK's sysGetLastErrorString
1559// from src/solaris/hpi/src/system_md.c
1560
1561size_t os::lasterror(char *buf, size_t len) {
1562
1563  if (errno == 0)  return 0;
1564
1565  const char *s = ::strerror(errno);
1566  size_t n = ::strlen(s);
1567  if (n >= len) {
1568    n = len - 1;
1569  }
1570  ::strncpy(buf, s, n);
1571  buf[n] = '\0';
1572  return n;
1573}
1574
1575intx os::current_thread_id() { return (intx)pthread_self(); }
1576int os::current_process_id() {
1577
1578  // Under the old linux thread library, linux gives each thread
1579  // its own process id. Because of this each thread will return
1580  // a different pid if this method were to return the result
1581  // of getpid(2). Linux provides no api that returns the pid
1582  // of the launcher thread for the vm. This implementation
1583  // returns a unique pid, the pid of the launcher thread
1584  // that starts the vm 'process'.
1585
1586  // Under the NPTL, getpid() returns the same pid as the
1587  // launcher thread rather than a unique pid per thread.
1588  // Use gettid() if you want the old pre NPTL behaviour.
1589
1590  // if you are looking for the result of a call to getpid() that
1591  // returns a unique pid for the calling thread, then look at the
1592  // OSThread::thread_id() method in osThread_linux.hpp file
1593
1594  return (int)(_initial_pid ? _initial_pid : getpid());
1595}
1596
1597// DLL functions
1598
1599const char* os::dll_file_extension() { return ".so"; }
1600
1601// This must be hard coded because it's the system's temporary
1602// directory not the java application's temp directory, ala java.io.tmpdir.
1603const char* os::get_temp_directory() { return "/tmp"; }
1604
1605static bool file_exists(const char* filename) {
1606  struct stat statbuf;
1607  if (filename == NULL || strlen(filename) == 0) {
1608    return false;
1609  }
1610  return os::stat(filename, &statbuf) == 0;
1611}
1612
1613bool os::dll_build_name(char* buffer, size_t buflen,
1614                        const char* pname, const char* fname) {
1615  bool retval = false;
1616  // Copied from libhpi
1617  const size_t pnamelen = pname ? strlen(pname) : 0;
1618
1619  // Return error on buffer overflow.
1620  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1621    return retval;
1622  }
1623
1624  if (pnamelen == 0) {
1625    snprintf(buffer, buflen, "lib%s.so", fname);
1626    retval = true;
1627  } else if (strchr(pname, *os::path_separator()) != NULL) {
1628    int n;
1629    char** pelements = split_path(pname, &n);
1630    if (pelements == NULL) {
1631      return false;
1632    }
1633    for (int i = 0; i < n; i++) {
1634      // Really shouldn't be NULL, but check can't hurt
1635      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1636        continue; // skip the empty path values
1637      }
1638      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1639      if (file_exists(buffer)) {
1640        retval = true;
1641        break;
1642      }
1643    }
1644    // release the storage
1645    for (int i = 0; i < n; i++) {
1646      if (pelements[i] != NULL) {
1647        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1648      }
1649    }
1650    if (pelements != NULL) {
1651      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1652    }
1653  } else {
1654    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1655    retval = true;
1656  }
1657  return retval;
1658}
1659
1660// check if addr is inside libjvm.so
1661bool os::address_is_in_vm(address addr) {
1662  static address libjvm_base_addr;
1663  Dl_info dlinfo;
1664
1665  if (libjvm_base_addr == NULL) {
1666    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1667      libjvm_base_addr = (address)dlinfo.dli_fbase;
1668    }
1669    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1670  }
1671
1672  if (dladdr((void *)addr, &dlinfo) != 0) {
1673    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1674  }
1675
1676  return false;
1677}
1678
1679bool os::dll_address_to_function_name(address addr, char *buf,
1680                                      int buflen, int *offset) {
1681  // buf is not optional, but offset is optional
1682  assert(buf != NULL, "sanity check");
1683
1684  Dl_info dlinfo;
1685
1686  if (dladdr((void*)addr, &dlinfo) != 0) {
1687    // see if we have a matching symbol
1688    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1689      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1690        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1691      }
1692      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1693      return true;
1694    }
1695    // no matching symbol so try for just file info
1696    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1697      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1698                          buf, buflen, offset, dlinfo.dli_fname)) {
1699        return true;
1700      }
1701    }
1702  }
1703
1704  buf[0] = '\0';
1705  if (offset != NULL) *offset = -1;
1706  return false;
1707}
1708
1709struct _address_to_library_name {
1710  address addr;          // input : memory address
1711  size_t  buflen;        //         size of fname
1712  char*   fname;         // output: library name
1713  address base;          //         library base addr
1714};
1715
1716static int address_to_library_name_callback(struct dl_phdr_info *info,
1717                                            size_t size, void *data) {
1718  int i;
1719  bool found = false;
1720  address libbase = NULL;
1721  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1722
1723  // iterate through all loadable segments
1724  for (i = 0; i < info->dlpi_phnum; i++) {
1725    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1726    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1727      // base address of a library is the lowest address of its loaded
1728      // segments.
1729      if (libbase == NULL || libbase > segbase) {
1730        libbase = segbase;
1731      }
1732      // see if 'addr' is within current segment
1733      if (segbase <= d->addr &&
1734          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1735        found = true;
1736      }
1737    }
1738  }
1739
1740  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1741  // so dll_address_to_library_name() can fall through to use dladdr() which
1742  // can figure out executable name from argv[0].
1743  if (found && info->dlpi_name && info->dlpi_name[0]) {
1744    d->base = libbase;
1745    if (d->fname) {
1746      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1747    }
1748    return 1;
1749  }
1750  return 0;
1751}
1752
1753bool os::dll_address_to_library_name(address addr, char* buf,
1754                                     int buflen, int* offset) {
1755  // buf is not optional, but offset is optional
1756  assert(buf != NULL, "sanity check");
1757
1758  Dl_info dlinfo;
1759  struct _address_to_library_name data;
1760
1761  // There is a bug in old glibc dladdr() implementation that it could resolve
1762  // to wrong library name if the .so file has a base address != NULL. Here
1763  // we iterate through the program headers of all loaded libraries to find
1764  // out which library 'addr' really belongs to. This workaround can be
1765  // removed once the minimum requirement for glibc is moved to 2.3.x.
1766  data.addr = addr;
1767  data.fname = buf;
1768  data.buflen = buflen;
1769  data.base = NULL;
1770  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1771
1772  if (rslt) {
1773     // buf already contains library name
1774     if (offset) *offset = addr - data.base;
1775     return true;
1776  }
1777  if (dladdr((void*)addr, &dlinfo) != 0) {
1778    if (dlinfo.dli_fname != NULL) {
1779      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1780    }
1781    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1782      *offset = addr - (address)dlinfo.dli_fbase;
1783    }
1784    return true;
1785  }
1786
1787  buf[0] = '\0';
1788  if (offset) *offset = -1;
1789  return false;
1790}
1791
1792  // Loads .dll/.so and
1793  // in case of error it checks if .dll/.so was built for the
1794  // same architecture as Hotspot is running on
1795
1796
1797// Remember the stack's state. The Linux dynamic linker will change
1798// the stack to 'executable' at most once, so we must safepoint only once.
1799bool os::Linux::_stack_is_executable = false;
1800
1801// VM operation that loads a library.  This is necessary if stack protection
1802// of the Java stacks can be lost during loading the library.  If we
1803// do not stop the Java threads, they can stack overflow before the stacks
1804// are protected again.
1805class VM_LinuxDllLoad: public VM_Operation {
1806 private:
1807  const char *_filename;
1808  char *_ebuf;
1809  int _ebuflen;
1810  void *_lib;
1811 public:
1812  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1813    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1814  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1815  void doit() {
1816    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1817    os::Linux::_stack_is_executable = true;
1818  }
1819  void* loaded_library() { return _lib; }
1820};
1821
1822void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1823{
1824  void * result = NULL;
1825  bool load_attempted = false;
1826
1827  // Check whether the library to load might change execution rights
1828  // of the stack. If they are changed, the protection of the stack
1829  // guard pages will be lost. We need a safepoint to fix this.
1830  //
1831  // See Linux man page execstack(8) for more info.
1832  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1833    ElfFile ef(filename);
1834    if (!ef.specifies_noexecstack()) {
1835      if (!is_init_completed()) {
1836        os::Linux::_stack_is_executable = true;
1837        // This is OK - No Java threads have been created yet, and hence no
1838        // stack guard pages to fix.
1839        //
1840        // This should happen only when you are building JDK7 using a very
1841        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1842        //
1843        // Dynamic loader will make all stacks executable after
1844        // this function returns, and will not do that again.
1845        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1846      } else {
1847        warning("You have loaded library %s which might have disabled stack guard. "
1848                "The VM will try to fix the stack guard now.\n"
1849                "It's highly recommended that you fix the library with "
1850                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1851                filename);
1852
1853        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1854        JavaThread *jt = JavaThread::current();
1855        if (jt->thread_state() != _thread_in_native) {
1856          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1857          // that requires ExecStack. Cannot enter safe point. Let's give up.
1858          warning("Unable to fix stack guard. Giving up.");
1859        } else {
1860          if (!LoadExecStackDllInVMThread) {
1861            // This is for the case where the DLL has an static
1862            // constructor function that executes JNI code. We cannot
1863            // load such DLLs in the VMThread.
1864            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1865          }
1866
1867          ThreadInVMfromNative tiv(jt);
1868          debug_only(VMNativeEntryWrapper vew;)
1869
1870          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1871          VMThread::execute(&op);
1872          if (LoadExecStackDllInVMThread) {
1873            result = op.loaded_library();
1874          }
1875          load_attempted = true;
1876        }
1877      }
1878    }
1879  }
1880
1881  if (!load_attempted) {
1882    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1883  }
1884
1885  if (result != NULL) {
1886    // Successful loading
1887    return result;
1888  }
1889
1890  Elf32_Ehdr elf_head;
1891  int diag_msg_max_length=ebuflen-strlen(ebuf);
1892  char* diag_msg_buf=ebuf+strlen(ebuf);
1893
1894  if (diag_msg_max_length==0) {
1895    // No more space in ebuf for additional diagnostics message
1896    return NULL;
1897  }
1898
1899
1900  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1901
1902  if (file_descriptor < 0) {
1903    // Can't open library, report dlerror() message
1904    return NULL;
1905  }
1906
1907  bool failed_to_read_elf_head=
1908    (sizeof(elf_head)!=
1909        (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1910
1911  ::close(file_descriptor);
1912  if (failed_to_read_elf_head) {
1913    // file i/o error - report dlerror() msg
1914    return NULL;
1915  }
1916
1917  typedef struct {
1918    Elf32_Half  code;         // Actual value as defined in elf.h
1919    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1920    char        elf_class;    // 32 or 64 bit
1921    char        endianess;    // MSB or LSB
1922    char*       name;         // String representation
1923  } arch_t;
1924
1925  #ifndef EM_486
1926  #define EM_486          6               /* Intel 80486 */
1927  #endif
1928
1929  static const arch_t arch_array[]={
1930    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1931    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1932    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1933    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1934    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1935    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1936    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1937    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1938#if defined(VM_LITTLE_ENDIAN)
1939    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1940#else
1941    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1942#endif
1943    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1944    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1945    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1946    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1947    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1948    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1949    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1950  };
1951
1952  #if  (defined IA32)
1953    static  Elf32_Half running_arch_code=EM_386;
1954  #elif   (defined AMD64)
1955    static  Elf32_Half running_arch_code=EM_X86_64;
1956  #elif  (defined IA64)
1957    static  Elf32_Half running_arch_code=EM_IA_64;
1958  #elif  (defined __sparc) && (defined _LP64)
1959    static  Elf32_Half running_arch_code=EM_SPARCV9;
1960  #elif  (defined __sparc) && (!defined _LP64)
1961    static  Elf32_Half running_arch_code=EM_SPARC;
1962  #elif  (defined __powerpc64__)
1963    static  Elf32_Half running_arch_code=EM_PPC64;
1964  #elif  (defined __powerpc__)
1965    static  Elf32_Half running_arch_code=EM_PPC;
1966  #elif  (defined ARM)
1967    static  Elf32_Half running_arch_code=EM_ARM;
1968  #elif  (defined S390)
1969    static  Elf32_Half running_arch_code=EM_S390;
1970  #elif  (defined ALPHA)
1971    static  Elf32_Half running_arch_code=EM_ALPHA;
1972  #elif  (defined MIPSEL)
1973    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1974  #elif  (defined PARISC)
1975    static  Elf32_Half running_arch_code=EM_PARISC;
1976  #elif  (defined MIPS)
1977    static  Elf32_Half running_arch_code=EM_MIPS;
1978  #elif  (defined M68K)
1979    static  Elf32_Half running_arch_code=EM_68K;
1980  #else
1981    #error Method os::dll_load requires that one of following is defined:\
1982         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1983  #endif
1984
1985  // Identify compatability class for VM's architecture and library's architecture
1986  // Obtain string descriptions for architectures
1987
1988  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1989  int running_arch_index=-1;
1990
1991  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1992    if (running_arch_code == arch_array[i].code) {
1993      running_arch_index    = i;
1994    }
1995    if (lib_arch.code == arch_array[i].code) {
1996      lib_arch.compat_class = arch_array[i].compat_class;
1997      lib_arch.name         = arch_array[i].name;
1998    }
1999  }
2000
2001  assert(running_arch_index != -1,
2002    "Didn't find running architecture code (running_arch_code) in arch_array");
2003  if (running_arch_index == -1) {
2004    // Even though running architecture detection failed
2005    // we may still continue with reporting dlerror() message
2006    return NULL;
2007  }
2008
2009  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2010    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2011    return NULL;
2012  }
2013
2014#ifndef S390
2015  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2016    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2017    return NULL;
2018  }
2019#endif // !S390
2020
2021  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2022    if (lib_arch.name!=NULL) {
2023      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2024        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2025        lib_arch.name, arch_array[running_arch_index].name);
2026    } else {
2027      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2028      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2029        lib_arch.code,
2030        arch_array[running_arch_index].name);
2031    }
2032  }
2033
2034  return NULL;
2035}
2036
2037void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2038  void * result = ::dlopen(filename, RTLD_LAZY);
2039  if (result == NULL) {
2040    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2041    ebuf[ebuflen-1] = '\0';
2042  }
2043  return result;
2044}
2045
2046void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2047  void * result = NULL;
2048  if (LoadExecStackDllInVMThread) {
2049    result = dlopen_helper(filename, ebuf, ebuflen);
2050  }
2051
2052  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2053  // library that requires an executable stack, or which does not have this
2054  // stack attribute set, dlopen changes the stack attribute to executable. The
2055  // read protection of the guard pages gets lost.
2056  //
2057  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2058  // may have been queued at the same time.
2059
2060  if (!_stack_is_executable) {
2061    JavaThread *jt = Threads::first();
2062
2063    while (jt) {
2064      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2065          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2066        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2067                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2068          warning("Attempt to reguard stack yellow zone failed.");
2069        }
2070      }
2071      jt = jt->next();
2072    }
2073  }
2074
2075  return result;
2076}
2077
2078/*
2079 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2080 * chances are you might want to run the generated bits against glibc-2.0
2081 * libdl.so, so always use locking for any version of glibc.
2082 */
2083void* os::dll_lookup(void* handle, const char* name) {
2084  pthread_mutex_lock(&dl_mutex);
2085  void* res = dlsym(handle, name);
2086  pthread_mutex_unlock(&dl_mutex);
2087  return res;
2088}
2089
2090void* os::get_default_process_handle() {
2091  return (void*)::dlopen(NULL, RTLD_LAZY);
2092}
2093
2094static bool _print_ascii_file(const char* filename, outputStream* st) {
2095  int fd = ::open(filename, O_RDONLY);
2096  if (fd == -1) {
2097     return false;
2098  }
2099
2100  char buf[32];
2101  int bytes;
2102  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2103    st->print_raw(buf, bytes);
2104  }
2105
2106  ::close(fd);
2107
2108  return true;
2109}
2110
2111void os::print_dll_info(outputStream *st) {
2112   st->print_cr("Dynamic libraries:");
2113
2114   char fname[32];
2115   pid_t pid = os::Linux::gettid();
2116
2117   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2118
2119   if (!_print_ascii_file(fname, st)) {
2120     st->print("Can not get library information for pid = %d\n", pid);
2121   }
2122}
2123
2124void os::print_os_info_brief(outputStream* st) {
2125  os::Linux::print_distro_info(st);
2126
2127  os::Posix::print_uname_info(st);
2128
2129  os::Linux::print_libversion_info(st);
2130
2131}
2132
2133void os::print_os_info(outputStream* st) {
2134  st->print("OS:");
2135
2136  os::Linux::print_distro_info(st);
2137
2138  os::Posix::print_uname_info(st);
2139
2140  // Print warning if unsafe chroot environment detected
2141  if (unsafe_chroot_detected) {
2142    st->print("WARNING!! ");
2143    st->print_cr("%s", unstable_chroot_error);
2144  }
2145
2146  os::Linux::print_libversion_info(st);
2147
2148  os::Posix::print_rlimit_info(st);
2149
2150  os::Posix::print_load_average(st);
2151
2152  os::Linux::print_full_memory_info(st);
2153}
2154
2155// Try to identify popular distros.
2156// Most Linux distributions have a /etc/XXX-release file, which contains
2157// the OS version string. Newer Linux distributions have a /etc/lsb-release
2158// file that also contains the OS version string. Some have more than one
2159// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2160// /etc/redhat-release.), so the order is important.
2161// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2162// their own specific XXX-release file as well as a redhat-release file.
2163// Because of this the XXX-release file needs to be searched for before the
2164// redhat-release file.
2165// Since Red Hat has a lsb-release file that is not very descriptive the
2166// search for redhat-release needs to be before lsb-release.
2167// Since the lsb-release file is the new standard it needs to be searched
2168// before the older style release files.
2169// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2170// next to last resort.  The os-release file is a new standard that contains
2171// distribution information and the system-release file seems to be an old
2172// standard that has been replaced by the lsb-release and os-release files.
2173// Searching for the debian_version file is the last resort.  It contains
2174// an informative string like "6.0.6" or "wheezy/sid". Because of this
2175// "Debian " is printed before the contents of the debian_version file.
2176void os::Linux::print_distro_info(outputStream* st) {
2177   if (!_print_ascii_file("/etc/oracle-release", st) &&
2178       !_print_ascii_file("/etc/mandriva-release", st) &&
2179       !_print_ascii_file("/etc/mandrake-release", st) &&
2180       !_print_ascii_file("/etc/sun-release", st) &&
2181       !_print_ascii_file("/etc/redhat-release", st) &&
2182       !_print_ascii_file("/etc/lsb-release", st) &&
2183       !_print_ascii_file("/etc/SuSE-release", st) &&
2184       !_print_ascii_file("/etc/turbolinux-release", st) &&
2185       !_print_ascii_file("/etc/gentoo-release", st) &&
2186       !_print_ascii_file("/etc/ltib-release", st) &&
2187       !_print_ascii_file("/etc/angstrom-version", st) &&
2188       !_print_ascii_file("/etc/system-release", st) &&
2189       !_print_ascii_file("/etc/os-release", st)) {
2190
2191       if (file_exists("/etc/debian_version")) {
2192         st->print("Debian ");
2193         _print_ascii_file("/etc/debian_version", st);
2194       } else {
2195         st->print("Linux");
2196       }
2197   }
2198   st->cr();
2199}
2200
2201void os::Linux::print_libversion_info(outputStream* st) {
2202  // libc, pthread
2203  st->print("libc:");
2204  st->print("%s ", os::Linux::glibc_version());
2205  st->print("%s ", os::Linux::libpthread_version());
2206  if (os::Linux::is_LinuxThreads()) {
2207     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2208  }
2209  st->cr();
2210}
2211
2212void os::Linux::print_full_memory_info(outputStream* st) {
2213   st->print("\n/proc/meminfo:\n");
2214   _print_ascii_file("/proc/meminfo", st);
2215   st->cr();
2216}
2217
2218void os::print_memory_info(outputStream* st) {
2219
2220  st->print("Memory:");
2221  st->print(" %dk page", os::vm_page_size()>>10);
2222
2223  // values in struct sysinfo are "unsigned long"
2224  struct sysinfo si;
2225  sysinfo(&si);
2226
2227  st->print(", physical " UINT64_FORMAT "k",
2228            os::physical_memory() >> 10);
2229  st->print("(" UINT64_FORMAT "k free)",
2230            os::available_memory() >> 10);
2231  st->print(", swap " UINT64_FORMAT "k",
2232            ((jlong)si.totalswap * si.mem_unit) >> 10);
2233  st->print("(" UINT64_FORMAT "k free)",
2234            ((jlong)si.freeswap * si.mem_unit) >> 10);
2235  st->cr();
2236}
2237
2238void os::pd_print_cpu_info(outputStream* st) {
2239  st->print("\n/proc/cpuinfo:\n");
2240  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2241    st->print("  <Not Available>");
2242  }
2243  st->cr();
2244}
2245
2246void os::print_siginfo(outputStream* st, void* siginfo) {
2247  const siginfo_t* si = (const siginfo_t*)siginfo;
2248
2249  os::Posix::print_siginfo_brief(st, si);
2250
2251  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2252      UseSharedSpaces) {
2253    FileMapInfo* mapinfo = FileMapInfo::current_info();
2254    if (mapinfo->is_in_shared_space(si->si_addr)) {
2255      st->print("\n\nError accessing class data sharing archive."   \
2256                " Mapped file inaccessible during execution, "      \
2257                " possible disk/network problem.");
2258    }
2259  }
2260  st->cr();
2261}
2262
2263
2264static void print_signal_handler(outputStream* st, int sig,
2265                                 char* buf, size_t buflen);
2266
2267void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2268  st->print_cr("Signal Handlers:");
2269  print_signal_handler(st, SIGSEGV, buf, buflen);
2270  print_signal_handler(st, SIGBUS , buf, buflen);
2271  print_signal_handler(st, SIGFPE , buf, buflen);
2272  print_signal_handler(st, SIGPIPE, buf, buflen);
2273  print_signal_handler(st, SIGXFSZ, buf, buflen);
2274  print_signal_handler(st, SIGILL , buf, buflen);
2275  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2276  print_signal_handler(st, SR_signum, buf, buflen);
2277  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2278  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2279  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2280  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2281#if defined(PPC64)
2282  print_signal_handler(st, SIGTRAP, buf, buflen);
2283#endif
2284}
2285
2286static char saved_jvm_path[MAXPATHLEN] = {0};
2287
2288// Find the full path to the current module, libjvm.so
2289void os::jvm_path(char *buf, jint buflen) {
2290  // Error checking.
2291  if (buflen < MAXPATHLEN) {
2292    assert(false, "must use a large-enough buffer");
2293    buf[0] = '\0';
2294    return;
2295  }
2296  // Lazy resolve the path to current module.
2297  if (saved_jvm_path[0] != 0) {
2298    strcpy(buf, saved_jvm_path);
2299    return;
2300  }
2301
2302  char dli_fname[MAXPATHLEN];
2303  bool ret = dll_address_to_library_name(
2304                CAST_FROM_FN_PTR(address, os::jvm_path),
2305                dli_fname, sizeof(dli_fname), NULL);
2306  assert(ret, "cannot locate libjvm");
2307  char *rp = NULL;
2308  if (ret && dli_fname[0] != '\0') {
2309    rp = realpath(dli_fname, buf);
2310  }
2311  if (rp == NULL)
2312    return;
2313
2314  if (Arguments::sun_java_launcher_is_altjvm()) {
2315    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2316    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2317    // If "/jre/lib/" appears at the right place in the string, then
2318    // assume we are installed in a JDK and we're done. Otherwise, check
2319    // for a JAVA_HOME environment variable and fix up the path so it
2320    // looks like libjvm.so is installed there (append a fake suffix
2321    // hotspot/libjvm.so).
2322    const char *p = buf + strlen(buf) - 1;
2323    for (int count = 0; p > buf && count < 5; ++count) {
2324      for (--p; p > buf && *p != '/'; --p)
2325        /* empty */ ;
2326    }
2327
2328    if (strncmp(p, "/jre/lib/", 9) != 0) {
2329      // Look for JAVA_HOME in the environment.
2330      char* java_home_var = ::getenv("JAVA_HOME");
2331      if (java_home_var != NULL && java_home_var[0] != 0) {
2332        char* jrelib_p;
2333        int len;
2334
2335        // Check the current module name "libjvm.so".
2336        p = strrchr(buf, '/');
2337        assert(strstr(p, "/libjvm") == p, "invalid library name");
2338
2339        rp = realpath(java_home_var, buf);
2340        if (rp == NULL)
2341          return;
2342
2343        // determine if this is a legacy image or modules image
2344        // modules image doesn't have "jre" subdirectory
2345        len = strlen(buf);
2346        jrelib_p = buf + len;
2347        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2348        if (0 != access(buf, F_OK)) {
2349          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2350        }
2351
2352        if (0 == access(buf, F_OK)) {
2353          // Use current module name "libjvm.so"
2354          len = strlen(buf);
2355          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2356        } else {
2357          // Go back to path of .so
2358          rp = realpath(dli_fname, buf);
2359          if (rp == NULL)
2360            return;
2361        }
2362      }
2363    }
2364  }
2365
2366  strcpy(saved_jvm_path, buf);
2367}
2368
2369void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2370  // no prefix required, not even "_"
2371}
2372
2373void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2374  // no suffix required
2375}
2376
2377////////////////////////////////////////////////////////////////////////////////
2378// sun.misc.Signal support
2379
2380static volatile jint sigint_count = 0;
2381
2382static void
2383UserHandler(int sig, void *siginfo, void *context) {
2384  // 4511530 - sem_post is serialized and handled by the manager thread. When
2385  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2386  // don't want to flood the manager thread with sem_post requests.
2387  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2388      return;
2389
2390  // Ctrl-C is pressed during error reporting, likely because the error
2391  // handler fails to abort. Let VM die immediately.
2392  if (sig == SIGINT && is_error_reported()) {
2393     os::die();
2394  }
2395
2396  os::signal_notify(sig);
2397}
2398
2399void* os::user_handler() {
2400  return CAST_FROM_FN_PTR(void*, UserHandler);
2401}
2402
2403class Semaphore : public StackObj {
2404  public:
2405    Semaphore();
2406    ~Semaphore();
2407    void signal();
2408    void wait();
2409    bool trywait();
2410    bool timedwait(unsigned int sec, int nsec);
2411  private:
2412    sem_t _semaphore;
2413};
2414
2415Semaphore::Semaphore() {
2416  sem_init(&_semaphore, 0, 0);
2417}
2418
2419Semaphore::~Semaphore() {
2420  sem_destroy(&_semaphore);
2421}
2422
2423void Semaphore::signal() {
2424  sem_post(&_semaphore);
2425}
2426
2427void Semaphore::wait() {
2428  sem_wait(&_semaphore);
2429}
2430
2431bool Semaphore::trywait() {
2432  return sem_trywait(&_semaphore) == 0;
2433}
2434
2435bool Semaphore::timedwait(unsigned int sec, int nsec) {
2436
2437  struct timespec ts;
2438  // Semaphore's are always associated with CLOCK_REALTIME
2439  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2440  // see unpackTime for discussion on overflow checking
2441  if (sec >= MAX_SECS) {
2442    ts.tv_sec += MAX_SECS;
2443    ts.tv_nsec = 0;
2444  } else {
2445    ts.tv_sec += sec;
2446    ts.tv_nsec += nsec;
2447    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2448      ts.tv_nsec -= NANOSECS_PER_SEC;
2449      ++ts.tv_sec; // note: this must be <= max_secs
2450    }
2451  }
2452
2453  while (1) {
2454    int result = sem_timedwait(&_semaphore, &ts);
2455    if (result == 0) {
2456      return true;
2457    } else if (errno == EINTR) {
2458      continue;
2459    } else if (errno == ETIMEDOUT) {
2460      return false;
2461    } else {
2462      return false;
2463    }
2464  }
2465}
2466
2467extern "C" {
2468  typedef void (*sa_handler_t)(int);
2469  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2470}
2471
2472void* os::signal(int signal_number, void* handler) {
2473  struct sigaction sigAct, oldSigAct;
2474
2475  sigfillset(&(sigAct.sa_mask));
2476  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2477  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2478
2479  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2480    // -1 means registration failed
2481    return (void *)-1;
2482  }
2483
2484  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2485}
2486
2487void os::signal_raise(int signal_number) {
2488  ::raise(signal_number);
2489}
2490
2491/*
2492 * The following code is moved from os.cpp for making this
2493 * code platform specific, which it is by its very nature.
2494 */
2495
2496// Will be modified when max signal is changed to be dynamic
2497int os::sigexitnum_pd() {
2498  return NSIG;
2499}
2500
2501// a counter for each possible signal value
2502static volatile jint pending_signals[NSIG+1] = { 0 };
2503
2504// Linux(POSIX) specific hand shaking semaphore.
2505static sem_t sig_sem;
2506static Semaphore sr_semaphore;
2507
2508void os::signal_init_pd() {
2509  // Initialize signal structures
2510  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2511
2512  // Initialize signal semaphore
2513  ::sem_init(&sig_sem, 0, 0);
2514}
2515
2516void os::signal_notify(int sig) {
2517  Atomic::inc(&pending_signals[sig]);
2518  ::sem_post(&sig_sem);
2519}
2520
2521static int check_pending_signals(bool wait) {
2522  Atomic::store(0, &sigint_count);
2523  for (;;) {
2524    for (int i = 0; i < NSIG + 1; i++) {
2525      jint n = pending_signals[i];
2526      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2527        return i;
2528      }
2529    }
2530    if (!wait) {
2531      return -1;
2532    }
2533    JavaThread *thread = JavaThread::current();
2534    ThreadBlockInVM tbivm(thread);
2535
2536    bool threadIsSuspended;
2537    do {
2538      thread->set_suspend_equivalent();
2539      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2540      ::sem_wait(&sig_sem);
2541
2542      // were we externally suspended while we were waiting?
2543      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2544      if (threadIsSuspended) {
2545        //
2546        // The semaphore has been incremented, but while we were waiting
2547        // another thread suspended us. We don't want to continue running
2548        // while suspended because that would surprise the thread that
2549        // suspended us.
2550        //
2551        ::sem_post(&sig_sem);
2552
2553        thread->java_suspend_self();
2554      }
2555    } while (threadIsSuspended);
2556  }
2557}
2558
2559int os::signal_lookup() {
2560  return check_pending_signals(false);
2561}
2562
2563int os::signal_wait() {
2564  return check_pending_signals(true);
2565}
2566
2567////////////////////////////////////////////////////////////////////////////////
2568// Virtual Memory
2569
2570int os::vm_page_size() {
2571  // Seems redundant as all get out
2572  assert(os::Linux::page_size() != -1, "must call os::init");
2573  return os::Linux::page_size();
2574}
2575
2576// Solaris allocates memory by pages.
2577int os::vm_allocation_granularity() {
2578  assert(os::Linux::page_size() != -1, "must call os::init");
2579  return os::Linux::page_size();
2580}
2581
2582// Rationale behind this function:
2583//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2584//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2585//  samples for JITted code. Here we create private executable mapping over the code cache
2586//  and then we can use standard (well, almost, as mapping can change) way to provide
2587//  info for the reporting script by storing timestamp and location of symbol
2588void linux_wrap_code(char* base, size_t size) {
2589  static volatile jint cnt = 0;
2590
2591  if (!UseOprofile) {
2592    return;
2593  }
2594
2595  char buf[PATH_MAX+1];
2596  int num = Atomic::add(1, &cnt);
2597
2598  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2599           os::get_temp_directory(), os::current_process_id(), num);
2600  unlink(buf);
2601
2602  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2603
2604  if (fd != -1) {
2605    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2606    if (rv != (off_t)-1) {
2607      if (::write(fd, "", 1) == 1) {
2608        mmap(base, size,
2609             PROT_READ|PROT_WRITE|PROT_EXEC,
2610             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2611      }
2612    }
2613    ::close(fd);
2614    unlink(buf);
2615  }
2616}
2617
2618static bool recoverable_mmap_error(int err) {
2619  // See if the error is one we can let the caller handle. This
2620  // list of errno values comes from JBS-6843484. I can't find a
2621  // Linux man page that documents this specific set of errno
2622  // values so while this list currently matches Solaris, it may
2623  // change as we gain experience with this failure mode.
2624  switch (err) {
2625  case EBADF:
2626  case EINVAL:
2627  case ENOTSUP:
2628    // let the caller deal with these errors
2629    return true;
2630
2631  default:
2632    // Any remaining errors on this OS can cause our reserved mapping
2633    // to be lost. That can cause confusion where different data
2634    // structures think they have the same memory mapped. The worst
2635    // scenario is if both the VM and a library think they have the
2636    // same memory mapped.
2637    return false;
2638  }
2639}
2640
2641static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2642                                    int err) {
2643  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2644          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2645          strerror(err), err);
2646}
2647
2648static void warn_fail_commit_memory(char* addr, size_t size,
2649                                    size_t alignment_hint, bool exec,
2650                                    int err) {
2651  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2652          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2653          alignment_hint, exec, strerror(err), err);
2654}
2655
2656// NOTE: Linux kernel does not really reserve the pages for us.
2657//       All it does is to check if there are enough free pages
2658//       left at the time of mmap(). This could be a potential
2659//       problem.
2660int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2661  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2662  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2663                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2664  if (res != (uintptr_t) MAP_FAILED) {
2665    if (UseNUMAInterleaving) {
2666      numa_make_global(addr, size);
2667    }
2668    return 0;
2669  }
2670
2671  int err = errno;  // save errno from mmap() call above
2672
2673  if (!recoverable_mmap_error(err)) {
2674    warn_fail_commit_memory(addr, size, exec, err);
2675    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2676  }
2677
2678  return err;
2679}
2680
2681bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2682  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2683}
2684
2685void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2686                                  const char* mesg) {
2687  assert(mesg != NULL, "mesg must be specified");
2688  int err = os::Linux::commit_memory_impl(addr, size, exec);
2689  if (err != 0) {
2690    // the caller wants all commit errors to exit with the specified mesg:
2691    warn_fail_commit_memory(addr, size, exec, err);
2692    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2693  }
2694}
2695
2696// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2697#ifndef MAP_HUGETLB
2698#define MAP_HUGETLB 0x40000
2699#endif
2700
2701// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2702#ifndef MADV_HUGEPAGE
2703#define MADV_HUGEPAGE 14
2704#endif
2705
2706int os::Linux::commit_memory_impl(char* addr, size_t size,
2707                                  size_t alignment_hint, bool exec) {
2708  int err = os::Linux::commit_memory_impl(addr, size, exec);
2709  if (err == 0) {
2710    realign_memory(addr, size, alignment_hint);
2711  }
2712  return err;
2713}
2714
2715bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2716                          bool exec) {
2717  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2718}
2719
2720void os::pd_commit_memory_or_exit(char* addr, size_t size,
2721                                  size_t alignment_hint, bool exec,
2722                                  const char* mesg) {
2723  assert(mesg != NULL, "mesg must be specified");
2724  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2725  if (err != 0) {
2726    // the caller wants all commit errors to exit with the specified mesg:
2727    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2728    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2729  }
2730}
2731
2732void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2733  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2734    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2735    // be supported or the memory may already be backed by huge pages.
2736    ::madvise(addr, bytes, MADV_HUGEPAGE);
2737  }
2738}
2739
2740void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2741  // This method works by doing an mmap over an existing mmaping and effectively discarding
2742  // the existing pages. However it won't work for SHM-based large pages that cannot be
2743  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2744  // small pages on top of the SHM segment. This method always works for small pages, so we
2745  // allow that in any case.
2746  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2747    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2748  }
2749}
2750
2751void os::numa_make_global(char *addr, size_t bytes) {
2752  Linux::numa_interleave_memory(addr, bytes);
2753}
2754
2755// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2756// bind policy to MPOL_PREFERRED for the current thread.
2757#define USE_MPOL_PREFERRED 0
2758
2759void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2760  // To make NUMA and large pages more robust when both enabled, we need to ease
2761  // the requirements on where the memory should be allocated. MPOL_BIND is the
2762  // default policy and it will force memory to be allocated on the specified
2763  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2764  // the specified node, but will not force it. Using this policy will prevent
2765  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2766  // free large pages.
2767  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2768  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2769}
2770
2771bool os::numa_topology_changed()   { return false; }
2772
2773size_t os::numa_get_groups_num() {
2774  int max_node = Linux::numa_max_node();
2775  return max_node > 0 ? max_node + 1 : 1;
2776}
2777
2778int os::numa_get_group_id() {
2779  int cpu_id = Linux::sched_getcpu();
2780  if (cpu_id != -1) {
2781    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2782    if (lgrp_id != -1) {
2783      return lgrp_id;
2784    }
2785  }
2786  return 0;
2787}
2788
2789size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2790  for (size_t i = 0; i < size; i++) {
2791    ids[i] = i;
2792  }
2793  return size;
2794}
2795
2796bool os::get_page_info(char *start, page_info* info) {
2797  return false;
2798}
2799
2800char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2801  return end;
2802}
2803
2804
2805int os::Linux::sched_getcpu_syscall(void) {
2806  unsigned int cpu;
2807  int retval = -1;
2808
2809#if defined(IA32)
2810# ifndef SYS_getcpu
2811# define SYS_getcpu 318
2812# endif
2813  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2814#elif defined(AMD64)
2815// Unfortunately we have to bring all these macros here from vsyscall.h
2816// to be able to compile on old linuxes.
2817# define __NR_vgetcpu 2
2818# define VSYSCALL_START (-10UL << 20)
2819# define VSYSCALL_SIZE 1024
2820# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2821  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2822  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2823  retval = vgetcpu(&cpu, NULL, NULL);
2824#endif
2825
2826  return (retval == -1) ? retval : cpu;
2827}
2828
2829// Something to do with the numa-aware allocator needs these symbols
2830extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2831extern "C" JNIEXPORT void numa_error(char *where) { }
2832extern "C" JNIEXPORT int fork1() { return fork(); }
2833
2834
2835// If we are running with libnuma version > 2, then we should
2836// be trying to use symbols with versions 1.1
2837// If we are running with earlier version, which did not have symbol versions,
2838// we should use the base version.
2839void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2840  void *f = dlvsym(handle, name, "libnuma_1.1");
2841  if (f == NULL) {
2842    f = dlsym(handle, name);
2843  }
2844  return f;
2845}
2846
2847bool os::Linux::libnuma_init() {
2848  // sched_getcpu() should be in libc.
2849  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2850                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2851
2852  // If it's not, try a direct syscall.
2853  if (sched_getcpu() == -1)
2854    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2855
2856  if (sched_getcpu() != -1) { // Does it work?
2857    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2858    if (handle != NULL) {
2859      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2860                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2861      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2862                                       libnuma_dlsym(handle, "numa_max_node")));
2863      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2864                                        libnuma_dlsym(handle, "numa_available")));
2865      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2866                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2867      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2868                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2869      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2870                                            libnuma_dlsym(handle, "numa_set_bind_policy")));
2871
2872
2873      if (numa_available() != -1) {
2874        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2875        // Create a cpu -> node mapping
2876        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2877        rebuild_cpu_to_node_map();
2878        return true;
2879      }
2880    }
2881  }
2882  return false;
2883}
2884
2885// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2886// The table is later used in get_node_by_cpu().
2887void os::Linux::rebuild_cpu_to_node_map() {
2888  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2889                              // in libnuma (possible values are starting from 16,
2890                              // and continuing up with every other power of 2, but less
2891                              // than the maximum number of CPUs supported by kernel), and
2892                              // is a subject to change (in libnuma version 2 the requirements
2893                              // are more reasonable) we'll just hardcode the number they use
2894                              // in the library.
2895  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2896
2897  size_t cpu_num = os::active_processor_count();
2898  size_t cpu_map_size = NCPUS / BitsPerCLong;
2899  size_t cpu_map_valid_size =
2900    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2901
2902  cpu_to_node()->clear();
2903  cpu_to_node()->at_grow(cpu_num - 1);
2904  size_t node_num = numa_get_groups_num();
2905
2906  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2907  for (size_t i = 0; i < node_num; i++) {
2908    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2909      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2910        if (cpu_map[j] != 0) {
2911          for (size_t k = 0; k < BitsPerCLong; k++) {
2912            if (cpu_map[j] & (1UL << k)) {
2913              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2914            }
2915          }
2916        }
2917      }
2918    }
2919  }
2920  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2921}
2922
2923int os::Linux::get_node_by_cpu(int cpu_id) {
2924  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2925    return cpu_to_node()->at(cpu_id);
2926  }
2927  return -1;
2928}
2929
2930GrowableArray<int>* os::Linux::_cpu_to_node;
2931os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2932os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2933os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2934os::Linux::numa_available_func_t os::Linux::_numa_available;
2935os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2936os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2937os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2938unsigned long* os::Linux::_numa_all_nodes;
2939
2940bool os::pd_uncommit_memory(char* addr, size_t size) {
2941  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2942                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2943  return res  != (uintptr_t) MAP_FAILED;
2944}
2945
2946static
2947address get_stack_commited_bottom(address bottom, size_t size) {
2948  address nbot = bottom;
2949  address ntop = bottom + size;
2950
2951  size_t page_sz = os::vm_page_size();
2952  unsigned pages = size / page_sz;
2953
2954  unsigned char vec[1];
2955  unsigned imin = 1, imax = pages + 1, imid;
2956  int mincore_return_value = 0;
2957
2958  assert(imin <= imax, "Unexpected page size");
2959
2960  while (imin < imax) {
2961    imid = (imax + imin) / 2;
2962    nbot = ntop - (imid * page_sz);
2963
2964    // Use a trick with mincore to check whether the page is mapped or not.
2965    // mincore sets vec to 1 if page resides in memory and to 0 if page
2966    // is swapped output but if page we are asking for is unmapped
2967    // it returns -1,ENOMEM
2968    mincore_return_value = mincore(nbot, page_sz, vec);
2969
2970    if (mincore_return_value == -1) {
2971      // Page is not mapped go up
2972      // to find first mapped page
2973      if (errno != EAGAIN) {
2974        assert(errno == ENOMEM, "Unexpected mincore errno");
2975        imax = imid;
2976      }
2977    } else {
2978      // Page is mapped go down
2979      // to find first not mapped page
2980      imin = imid + 1;
2981    }
2982  }
2983
2984  nbot = nbot + page_sz;
2985
2986  // Adjust stack bottom one page up if last checked page is not mapped
2987  if (mincore_return_value == -1) {
2988    nbot = nbot + page_sz;
2989  }
2990
2991  return nbot;
2992}
2993
2994
2995// Linux uses a growable mapping for the stack, and if the mapping for
2996// the stack guard pages is not removed when we detach a thread the
2997// stack cannot grow beyond the pages where the stack guard was
2998// mapped.  If at some point later in the process the stack expands to
2999// that point, the Linux kernel cannot expand the stack any further
3000// because the guard pages are in the way, and a segfault occurs.
3001//
3002// However, it's essential not to split the stack region by unmapping
3003// a region (leaving a hole) that's already part of the stack mapping,
3004// so if the stack mapping has already grown beyond the guard pages at
3005// the time we create them, we have to truncate the stack mapping.
3006// So, we need to know the extent of the stack mapping when
3007// create_stack_guard_pages() is called.
3008
3009// We only need this for stacks that are growable: at the time of
3010// writing thread stacks don't use growable mappings (i.e. those
3011// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3012// only applies to the main thread.
3013
3014// If the (growable) stack mapping already extends beyond the point
3015// where we're going to put our guard pages, truncate the mapping at
3016// that point by munmap()ping it.  This ensures that when we later
3017// munmap() the guard pages we don't leave a hole in the stack
3018// mapping. This only affects the main/initial thread
3019
3020bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3021
3022  if (os::Linux::is_initial_thread()) {
3023    // As we manually grow stack up to bottom inside create_attached_thread(),
3024    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3025    // we don't need to do anything special.
3026    // Check it first, before calling heavy function.
3027    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3028    unsigned char vec[1];
3029
3030    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3031      // Fallback to slow path on all errors, including EAGAIN
3032      stack_extent = (uintptr_t) get_stack_commited_bottom(
3033                                    os::Linux::initial_thread_stack_bottom(),
3034                                    (size_t)addr - stack_extent);
3035    }
3036
3037    if (stack_extent < (uintptr_t)addr) {
3038      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3039    }
3040  }
3041
3042  return os::commit_memory(addr, size, !ExecMem);
3043}
3044
3045// If this is a growable mapping, remove the guard pages entirely by
3046// munmap()ping them.  If not, just call uncommit_memory(). This only
3047// affects the main/initial thread, but guard against future OS changes
3048// It's safe to always unmap guard pages for initial thread because we
3049// always place it right after end of the mapped region
3050
3051bool os::remove_stack_guard_pages(char* addr, size_t size) {
3052  uintptr_t stack_extent, stack_base;
3053
3054  if (os::Linux::is_initial_thread()) {
3055    return ::munmap(addr, size) == 0;
3056  }
3057
3058  return os::uncommit_memory(addr, size);
3059}
3060
3061static address _highest_vm_reserved_address = NULL;
3062
3063// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3064// at 'requested_addr'. If there are existing memory mappings at the same
3065// location, however, they will be overwritten. If 'fixed' is false,
3066// 'requested_addr' is only treated as a hint, the return value may or
3067// may not start from the requested address. Unlike Linux mmap(), this
3068// function returns NULL to indicate failure.
3069static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3070  char * addr;
3071  int flags;
3072
3073  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3074  if (fixed) {
3075    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3076    flags |= MAP_FIXED;
3077  }
3078
3079  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3080  // touch an uncommitted page. Otherwise, the read/write might
3081  // succeed if we have enough swap space to back the physical page.
3082  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3083                       flags, -1, 0);
3084
3085  if (addr != MAP_FAILED) {
3086    // anon_mmap() should only get called during VM initialization,
3087    // don't need lock (actually we can skip locking even it can be called
3088    // from multiple threads, because _highest_vm_reserved_address is just a
3089    // hint about the upper limit of non-stack memory regions.)
3090    if ((address)addr + bytes > _highest_vm_reserved_address) {
3091      _highest_vm_reserved_address = (address)addr + bytes;
3092    }
3093  }
3094
3095  return addr == MAP_FAILED ? NULL : addr;
3096}
3097
3098// Don't update _highest_vm_reserved_address, because there might be memory
3099// regions above addr + size. If so, releasing a memory region only creates
3100// a hole in the address space, it doesn't help prevent heap-stack collision.
3101//
3102static int anon_munmap(char * addr, size_t size) {
3103  return ::munmap(addr, size) == 0;
3104}
3105
3106char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3107                         size_t alignment_hint) {
3108  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3109}
3110
3111bool os::pd_release_memory(char* addr, size_t size) {
3112  return anon_munmap(addr, size);
3113}
3114
3115static address highest_vm_reserved_address() {
3116  return _highest_vm_reserved_address;
3117}
3118
3119static bool linux_mprotect(char* addr, size_t size, int prot) {
3120  // Linux wants the mprotect address argument to be page aligned.
3121  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3122
3123  // According to SUSv3, mprotect() should only be used with mappings
3124  // established by mmap(), and mmap() always maps whole pages. Unaligned
3125  // 'addr' likely indicates problem in the VM (e.g. trying to change
3126  // protection of malloc'ed or statically allocated memory). Check the
3127  // caller if you hit this assert.
3128  assert(addr == bottom, "sanity check");
3129
3130  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3131  return ::mprotect(bottom, size, prot) == 0;
3132}
3133
3134// Set protections specified
3135bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3136                        bool is_committed) {
3137  unsigned int p = 0;
3138  switch (prot) {
3139  case MEM_PROT_NONE: p = PROT_NONE; break;
3140  case MEM_PROT_READ: p = PROT_READ; break;
3141  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3142  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3143  default:
3144    ShouldNotReachHere();
3145  }
3146  // is_committed is unused.
3147  return linux_mprotect(addr, bytes, p);
3148}
3149
3150bool os::guard_memory(char* addr, size_t size) {
3151  return linux_mprotect(addr, size, PROT_NONE);
3152}
3153
3154bool os::unguard_memory(char* addr, size_t size) {
3155  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3156}
3157
3158bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3159  bool result = false;
3160  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3161                 MAP_ANONYMOUS|MAP_PRIVATE,
3162                 -1, 0);
3163  if (p != MAP_FAILED) {
3164    void *aligned_p = align_ptr_up(p, page_size);
3165
3166    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3167
3168    munmap(p, page_size * 2);
3169  }
3170
3171  if (warn && !result) {
3172    warning("TransparentHugePages is not supported by the operating system.");
3173  }
3174
3175  return result;
3176}
3177
3178bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3179  bool result = false;
3180  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3181                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3182                 -1, 0);
3183
3184  if (p != MAP_FAILED) {
3185    // We don't know if this really is a huge page or not.
3186    FILE *fp = fopen("/proc/self/maps", "r");
3187    if (fp) {
3188      while (!feof(fp)) {
3189        char chars[257];
3190        long x = 0;
3191        if (fgets(chars, sizeof(chars), fp)) {
3192          if (sscanf(chars, "%lx-%*x", &x) == 1
3193              && x == (long)p) {
3194            if (strstr (chars, "hugepage")) {
3195              result = true;
3196              break;
3197            }
3198          }
3199        }
3200      }
3201      fclose(fp);
3202    }
3203    munmap(p, page_size);
3204  }
3205
3206  if (warn && !result) {
3207    warning("HugeTLBFS is not supported by the operating system.");
3208  }
3209
3210  return result;
3211}
3212
3213/*
3214* Set the coredump_filter bits to include largepages in core dump (bit 6)
3215*
3216* From the coredump_filter documentation:
3217*
3218* - (bit 0) anonymous private memory
3219* - (bit 1) anonymous shared memory
3220* - (bit 2) file-backed private memory
3221* - (bit 3) file-backed shared memory
3222* - (bit 4) ELF header pages in file-backed private memory areas (it is
3223*           effective only if the bit 2 is cleared)
3224* - (bit 5) hugetlb private memory
3225* - (bit 6) hugetlb shared memory
3226*/
3227static void set_coredump_filter(void) {
3228  FILE *f;
3229  long cdm;
3230
3231  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3232    return;
3233  }
3234
3235  if (fscanf(f, "%lx", &cdm) != 1) {
3236    fclose(f);
3237    return;
3238  }
3239
3240  rewind(f);
3241
3242  if ((cdm & LARGEPAGES_BIT) == 0) {
3243    cdm |= LARGEPAGES_BIT;
3244    fprintf(f, "%#lx", cdm);
3245  }
3246
3247  fclose(f);
3248}
3249
3250// Large page support
3251
3252static size_t _large_page_size = 0;
3253
3254size_t os::Linux::find_large_page_size() {
3255  size_t large_page_size = 0;
3256
3257  // large_page_size on Linux is used to round up heap size. x86 uses either
3258  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3259  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3260  // page as large as 256M.
3261  //
3262  // Here we try to figure out page size by parsing /proc/meminfo and looking
3263  // for a line with the following format:
3264  //    Hugepagesize:     2048 kB
3265  //
3266  // If we can't determine the value (e.g. /proc is not mounted, or the text
3267  // format has been changed), we'll use the largest page size supported by
3268  // the processor.
3269
3270#ifndef ZERO
3271  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3272                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3273#endif // ZERO
3274
3275  FILE *fp = fopen("/proc/meminfo", "r");
3276  if (fp) {
3277    while (!feof(fp)) {
3278      int x = 0;
3279      char buf[16];
3280      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3281        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3282          large_page_size = x * K;
3283          break;
3284        }
3285      } else {
3286        // skip to next line
3287        for (;;) {
3288          int ch = fgetc(fp);
3289          if (ch == EOF || ch == (int)'\n') break;
3290        }
3291      }
3292    }
3293    fclose(fp);
3294  }
3295
3296  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3297    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3298        SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3299        proper_unit_for_byte_size(large_page_size));
3300  }
3301
3302  return large_page_size;
3303}
3304
3305size_t os::Linux::setup_large_page_size() {
3306  _large_page_size = Linux::find_large_page_size();
3307  const size_t default_page_size = (size_t)Linux::page_size();
3308  if (_large_page_size > default_page_size) {
3309    _page_sizes[0] = _large_page_size;
3310    _page_sizes[1] = default_page_size;
3311    _page_sizes[2] = 0;
3312  }
3313
3314  return _large_page_size;
3315}
3316
3317bool os::Linux::setup_large_page_type(size_t page_size) {
3318  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3319      FLAG_IS_DEFAULT(UseSHM) &&
3320      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3321
3322    // The type of large pages has not been specified by the user.
3323
3324    // Try UseHugeTLBFS and then UseSHM.
3325    UseHugeTLBFS = UseSHM = true;
3326
3327    // Don't try UseTransparentHugePages since there are known
3328    // performance issues with it turned on. This might change in the future.
3329    UseTransparentHugePages = false;
3330  }
3331
3332  if (UseTransparentHugePages) {
3333    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3334    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3335      UseHugeTLBFS = false;
3336      UseSHM = false;
3337      return true;
3338    }
3339    UseTransparentHugePages = false;
3340  }
3341
3342  if (UseHugeTLBFS) {
3343    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3344    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3345      UseSHM = false;
3346      return true;
3347    }
3348    UseHugeTLBFS = false;
3349  }
3350
3351  return UseSHM;
3352}
3353
3354void os::large_page_init() {
3355  if (!UseLargePages &&
3356      !UseTransparentHugePages &&
3357      !UseHugeTLBFS &&
3358      !UseSHM) {
3359    // Not using large pages.
3360    return;
3361  }
3362
3363  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3364    // The user explicitly turned off large pages.
3365    // Ignore the rest of the large pages flags.
3366    UseTransparentHugePages = false;
3367    UseHugeTLBFS = false;
3368    UseSHM = false;
3369    return;
3370  }
3371
3372  size_t large_page_size = Linux::setup_large_page_size();
3373  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3374
3375  set_coredump_filter();
3376}
3377
3378#ifndef SHM_HUGETLB
3379#define SHM_HUGETLB 04000
3380#endif
3381
3382char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3383  // "exec" is passed in but not used.  Creating the shared image for
3384  // the code cache doesn't have an SHM_X executable permission to check.
3385  assert(UseLargePages && UseSHM, "only for SHM large pages");
3386  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3387
3388  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3389    return NULL; // Fallback to small pages.
3390  }
3391
3392  key_t key = IPC_PRIVATE;
3393  char *addr;
3394
3395  bool warn_on_failure = UseLargePages &&
3396                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3397                         !FLAG_IS_DEFAULT(UseSHM) ||
3398                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3399                        );
3400  char msg[128];
3401
3402  // Create a large shared memory region to attach to based on size.
3403  // Currently, size is the total size of the heap
3404  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3405  if (shmid == -1) {
3406     // Possible reasons for shmget failure:
3407     // 1. shmmax is too small for Java heap.
3408     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3409     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3410     // 2. not enough large page memory.
3411     //    > check available large pages: cat /proc/meminfo
3412     //    > increase amount of large pages:
3413     //          echo new_value > /proc/sys/vm/nr_hugepages
3414     //      Note 1: different Linux may use different name for this property,
3415     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3416     //      Note 2: it's possible there's enough physical memory available but
3417     //            they are so fragmented after a long run that they can't
3418     //            coalesce into large pages. Try to reserve large pages when
3419     //            the system is still "fresh".
3420     if (warn_on_failure) {
3421       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3422       warning("%s", msg);
3423     }
3424     return NULL;
3425  }
3426
3427  // attach to the region
3428  addr = (char*)shmat(shmid, req_addr, 0);
3429  int err = errno;
3430
3431  // Remove shmid. If shmat() is successful, the actual shared memory segment
3432  // will be deleted when it's detached by shmdt() or when the process
3433  // terminates. If shmat() is not successful this will remove the shared
3434  // segment immediately.
3435  shmctl(shmid, IPC_RMID, NULL);
3436
3437  if ((intptr_t)addr == -1) {
3438     if (warn_on_failure) {
3439       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3440       warning("%s", msg);
3441     }
3442     return NULL;
3443  }
3444
3445  return addr;
3446}
3447
3448static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3449  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3450
3451  bool warn_on_failure = UseLargePages &&
3452      (!FLAG_IS_DEFAULT(UseLargePages) ||
3453       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3454       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3455
3456  if (warn_on_failure) {
3457    char msg[128];
3458    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3459        PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3460    warning("%s", msg);
3461  }
3462}
3463
3464char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3465  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3466  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3467  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3468
3469  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3470  char* addr = (char*)::mmap(req_addr, bytes, prot,
3471                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3472                             -1, 0);
3473
3474  if (addr == MAP_FAILED) {
3475    warn_on_large_pages_failure(req_addr, bytes, errno);
3476    return NULL;
3477  }
3478
3479  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3480
3481  return addr;
3482}
3483
3484char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3485  size_t large_page_size = os::large_page_size();
3486
3487  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3488
3489  // Allocate small pages.
3490
3491  char* start;
3492  if (req_addr != NULL) {
3493    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3494    assert(is_size_aligned(bytes, alignment), "Must be");
3495    start = os::reserve_memory(bytes, req_addr);
3496    assert(start == NULL || start == req_addr, "Must be");
3497  } else {
3498    start = os::reserve_memory_aligned(bytes, alignment);
3499  }
3500
3501  if (start == NULL) {
3502    return NULL;
3503  }
3504
3505  assert(is_ptr_aligned(start, alignment), "Must be");
3506
3507  // os::reserve_memory_special will record this memory area.
3508  // Need to release it here to prevent overlapping reservations.
3509  MemTracker::record_virtual_memory_release((address)start, bytes);
3510
3511  char* end = start + bytes;
3512
3513  // Find the regions of the allocated chunk that can be promoted to large pages.
3514  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3515  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3516
3517  size_t lp_bytes = lp_end - lp_start;
3518
3519  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3520
3521  if (lp_bytes == 0) {
3522    // The mapped region doesn't even span the start and the end of a large page.
3523    // Fall back to allocate a non-special area.
3524    ::munmap(start, end - start);
3525    return NULL;
3526  }
3527
3528  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3529
3530
3531  void* result;
3532
3533  if (start != lp_start) {
3534    result = ::mmap(start, lp_start - start, prot,
3535                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3536                    -1, 0);
3537    if (result == MAP_FAILED) {
3538      ::munmap(lp_start, end - lp_start);
3539      return NULL;
3540    }
3541  }
3542
3543  result = ::mmap(lp_start, lp_bytes, prot,
3544                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3545                  -1, 0);
3546  if (result == MAP_FAILED) {
3547    warn_on_large_pages_failure(req_addr, bytes, errno);
3548    // If the mmap above fails, the large pages region will be unmapped and we
3549    // have regions before and after with small pages. Release these regions.
3550    //
3551    // |  mapped  |  unmapped  |  mapped  |
3552    // ^          ^            ^          ^
3553    // start      lp_start     lp_end     end
3554    //
3555    ::munmap(start, lp_start - start);
3556    ::munmap(lp_end, end - lp_end);
3557    return NULL;
3558  }
3559
3560  if (lp_end != end) {
3561      result = ::mmap(lp_end, end - lp_end, prot,
3562                      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3563                      -1, 0);
3564    if (result == MAP_FAILED) {
3565      ::munmap(start, lp_end - start);
3566      return NULL;
3567    }
3568  }
3569
3570  return start;
3571}
3572
3573char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3574  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3575  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3576  assert(is_power_of_2(alignment), "Must be");
3577  assert(is_power_of_2(os::large_page_size()), "Must be");
3578  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3579
3580  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3581    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3582  } else {
3583    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3584  }
3585}
3586
3587char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3588  assert(UseLargePages, "only for large pages");
3589
3590  char* addr;
3591  if (UseSHM) {
3592    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3593  } else {
3594    assert(UseHugeTLBFS, "must be");
3595    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3596  }
3597
3598  if (addr != NULL) {
3599    if (UseNUMAInterleaving) {
3600      numa_make_global(addr, bytes);
3601    }
3602
3603    // The memory is committed
3604    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3605  }
3606
3607  return addr;
3608}
3609
3610bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3611  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3612  return shmdt(base) == 0;
3613}
3614
3615bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3616  return pd_release_memory(base, bytes);
3617}
3618
3619bool os::release_memory_special(char* base, size_t bytes) {
3620  assert(UseLargePages, "only for large pages");
3621
3622  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3623
3624  bool res;
3625  if (UseSHM) {
3626    res = os::Linux::release_memory_special_shm(base, bytes);
3627  } else {
3628    assert(UseHugeTLBFS, "must be");
3629    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3630  }
3631
3632  if (res) {
3633    tkr.record((address)base, bytes);
3634  } else {
3635    tkr.discard();
3636  }
3637
3638  return res;
3639}
3640
3641size_t os::large_page_size() {
3642  return _large_page_size;
3643}
3644
3645// With SysV SHM the entire memory region must be allocated as shared
3646// memory.
3647// HugeTLBFS allows application to commit large page memory on demand.
3648// However, when committing memory with HugeTLBFS fails, the region
3649// that was supposed to be committed will lose the old reservation
3650// and allow other threads to steal that memory region. Because of this
3651// behavior we can't commit HugeTLBFS memory.
3652bool os::can_commit_large_page_memory() {
3653  return UseTransparentHugePages;
3654}
3655
3656bool os::can_execute_large_page_memory() {
3657  return UseTransparentHugePages || UseHugeTLBFS;
3658}
3659
3660// Reserve memory at an arbitrary address, only if that area is
3661// available (and not reserved for something else).
3662
3663char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3664  const int max_tries = 10;
3665  char* base[max_tries];
3666  size_t size[max_tries];
3667  const size_t gap = 0x000000;
3668
3669  // Assert only that the size is a multiple of the page size, since
3670  // that's all that mmap requires, and since that's all we really know
3671  // about at this low abstraction level.  If we need higher alignment,
3672  // we can either pass an alignment to this method or verify alignment
3673  // in one of the methods further up the call chain.  See bug 5044738.
3674  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3675
3676  // Repeatedly allocate blocks until the block is allocated at the
3677  // right spot. Give up after max_tries. Note that reserve_memory() will
3678  // automatically update _highest_vm_reserved_address if the call is
3679  // successful. The variable tracks the highest memory address every reserved
3680  // by JVM. It is used to detect heap-stack collision if running with
3681  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3682  // space than needed, it could confuse the collision detecting code. To
3683  // solve the problem, save current _highest_vm_reserved_address and
3684  // calculate the correct value before return.
3685  address old_highest = _highest_vm_reserved_address;
3686
3687  // Linux mmap allows caller to pass an address as hint; give it a try first,
3688  // if kernel honors the hint then we can return immediately.
3689  char * addr = anon_mmap(requested_addr, bytes, false);
3690  if (addr == requested_addr) {
3691     return requested_addr;
3692  }
3693
3694  if (addr != NULL) {
3695     // mmap() is successful but it fails to reserve at the requested address
3696     anon_munmap(addr, bytes);
3697  }
3698
3699  int i;
3700  for (i = 0; i < max_tries; ++i) {
3701    base[i] = reserve_memory(bytes);
3702
3703    if (base[i] != NULL) {
3704      // Is this the block we wanted?
3705      if (base[i] == requested_addr) {
3706        size[i] = bytes;
3707        break;
3708      }
3709
3710      // Does this overlap the block we wanted? Give back the overlapped
3711      // parts and try again.
3712
3713      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3714      if (top_overlap >= 0 && top_overlap < bytes) {
3715        unmap_memory(base[i], top_overlap);
3716        base[i] += top_overlap;
3717        size[i] = bytes - top_overlap;
3718      } else {
3719        size_t bottom_overlap = base[i] + bytes - requested_addr;
3720        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3721          unmap_memory(requested_addr, bottom_overlap);
3722          size[i] = bytes - bottom_overlap;
3723        } else {
3724          size[i] = bytes;
3725        }
3726      }
3727    }
3728  }
3729
3730  // Give back the unused reserved pieces.
3731
3732  for (int j = 0; j < i; ++j) {
3733    if (base[j] != NULL) {
3734      unmap_memory(base[j], size[j]);
3735    }
3736  }
3737
3738  if (i < max_tries) {
3739    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3740    return requested_addr;
3741  } else {
3742    _highest_vm_reserved_address = old_highest;
3743    return NULL;
3744  }
3745}
3746
3747size_t os::read(int fd, void *buf, unsigned int nBytes) {
3748  return ::read(fd, buf, nBytes);
3749}
3750
3751//
3752// Short sleep, direct OS call.
3753//
3754// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3755// sched_yield(2) will actually give up the CPU:
3756//
3757//   * Alone on this pariticular CPU, keeps running.
3758//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3759//     (pre 2.6.39).
3760//
3761// So calling this with 0 is an alternative.
3762//
3763void os::naked_short_sleep(jlong ms) {
3764  struct timespec req;
3765
3766  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3767  req.tv_sec = 0;
3768  if (ms > 0) {
3769    req.tv_nsec = (ms % 1000) * 1000000;
3770  }
3771  else {
3772    req.tv_nsec = 1;
3773  }
3774
3775  nanosleep(&req, NULL);
3776
3777  return;
3778}
3779
3780// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3781void os::infinite_sleep() {
3782  while (true) {    // sleep forever ...
3783    ::sleep(100);   // ... 100 seconds at a time
3784  }
3785}
3786
3787// Used to convert frequent JVM_Yield() to nops
3788bool os::dont_yield() {
3789  return DontYieldALot;
3790}
3791
3792void os::yield() {
3793  sched_yield();
3794}
3795
3796os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }
3797
3798void os::yield_all() {
3799  // Yields to all threads, including threads with lower priorities
3800  // Threads on Linux are all with same priority. The Solaris style
3801  // os::yield_all() with nanosleep(1ms) is not necessary.
3802  sched_yield();
3803}
3804
3805////////////////////////////////////////////////////////////////////////////////
3806// thread priority support
3807
3808// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3809// only supports dynamic priority, static priority must be zero. For real-time
3810// applications, Linux supports SCHED_RR which allows static priority (1-99).
3811// However, for large multi-threaded applications, SCHED_RR is not only slower
3812// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3813// of 5 runs - Sep 2005).
3814//
3815// The following code actually changes the niceness of kernel-thread/LWP. It
3816// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3817// not the entire user process, and user level threads are 1:1 mapped to kernel
3818// threads. It has always been the case, but could change in the future. For
3819// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3820// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3821
3822int os::java_to_os_priority[CriticalPriority + 1] = {
3823  19,              // 0 Entry should never be used
3824
3825   4,              // 1 MinPriority
3826   3,              // 2
3827   2,              // 3
3828
3829   1,              // 4
3830   0,              // 5 NormPriority
3831  -1,              // 6
3832
3833  -2,              // 7
3834  -3,              // 8
3835  -4,              // 9 NearMaxPriority
3836
3837  -5,              // 10 MaxPriority
3838
3839  -5               // 11 CriticalPriority
3840};
3841
3842static int prio_init() {
3843  if (ThreadPriorityPolicy == 1) {
3844    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3845    // if effective uid is not root. Perhaps, a more elegant way of doing
3846    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3847    if (geteuid() != 0) {
3848      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3849        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3850      }
3851      ThreadPriorityPolicy = 0;
3852    }
3853  }
3854  if (UseCriticalJavaThreadPriority) {
3855    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3856  }
3857  return 0;
3858}
3859
3860OSReturn os::set_native_priority(Thread* thread, int newpri) {
3861  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3862
3863  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3864  return (ret == 0) ? OS_OK : OS_ERR;
3865}
3866
3867OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3868  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3869    *priority_ptr = java_to_os_priority[NormPriority];
3870    return OS_OK;
3871  }
3872
3873  errno = 0;
3874  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3875  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3876}
3877
3878// Hint to the underlying OS that a task switch would not be good.
3879// Void return because it's a hint and can fail.
3880void os::hint_no_preempt() {}
3881
3882////////////////////////////////////////////////////////////////////////////////
3883// suspend/resume support
3884
3885//  the low-level signal-based suspend/resume support is a remnant from the
3886//  old VM-suspension that used to be for java-suspension, safepoints etc,
3887//  within hotspot. Now there is a single use-case for this:
3888//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3889//      that runs in the watcher thread.
3890//  The remaining code is greatly simplified from the more general suspension
3891//  code that used to be used.
3892//
3893//  The protocol is quite simple:
3894//  - suspend:
3895//      - sends a signal to the target thread
3896//      - polls the suspend state of the osthread using a yield loop
3897//      - target thread signal handler (SR_handler) sets suspend state
3898//        and blocks in sigsuspend until continued
3899//  - resume:
3900//      - sets target osthread state to continue
3901//      - sends signal to end the sigsuspend loop in the SR_handler
3902//
3903//  Note that the SR_lock plays no role in this suspend/resume protocol.
3904//
3905
3906static void resume_clear_context(OSThread *osthread) {
3907  osthread->set_ucontext(NULL);
3908  osthread->set_siginfo(NULL);
3909}
3910
3911static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3912  osthread->set_ucontext(context);
3913  osthread->set_siginfo(siginfo);
3914}
3915
3916//
3917// Handler function invoked when a thread's execution is suspended or
3918// resumed. We have to be careful that only async-safe functions are
3919// called here (Note: most pthread functions are not async safe and
3920// should be avoided.)
3921//
3922// Note: sigwait() is a more natural fit than sigsuspend() from an
3923// interface point of view, but sigwait() prevents the signal hander
3924// from being run. libpthread would get very confused by not having
3925// its signal handlers run and prevents sigwait()'s use with the
3926// mutex granting granting signal.
3927//
3928// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3929//
3930static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3931  // Save and restore errno to avoid confusing native code with EINTR
3932  // after sigsuspend.
3933  int old_errno = errno;
3934
3935  Thread* thread = Thread::current();
3936  OSThread* osthread = thread->osthread();
3937  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3938
3939  os::SuspendResume::State current = osthread->sr.state();
3940  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3941    suspend_save_context(osthread, siginfo, context);
3942
3943    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3944    os::SuspendResume::State state = osthread->sr.suspended();
3945    if (state == os::SuspendResume::SR_SUSPENDED) {
3946      sigset_t suspend_set;  // signals for sigsuspend()
3947
3948      // get current set of blocked signals and unblock resume signal
3949      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3950      sigdelset(&suspend_set, SR_signum);
3951
3952      sr_semaphore.signal();
3953      // wait here until we are resumed
3954      while (1) {
3955        sigsuspend(&suspend_set);
3956
3957        os::SuspendResume::State result = osthread->sr.running();
3958        if (result == os::SuspendResume::SR_RUNNING) {
3959          sr_semaphore.signal();
3960          break;
3961        }
3962      }
3963
3964    } else if (state == os::SuspendResume::SR_RUNNING) {
3965      // request was cancelled, continue
3966    } else {
3967      ShouldNotReachHere();
3968    }
3969
3970    resume_clear_context(osthread);
3971  } else if (current == os::SuspendResume::SR_RUNNING) {
3972    // request was cancelled, continue
3973  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3974    // ignore
3975  } else {
3976    // ignore
3977  }
3978
3979  errno = old_errno;
3980}
3981
3982
3983static int SR_initialize() {
3984  struct sigaction act;
3985  char *s;
3986  /* Get signal number to use for suspend/resume */
3987  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3988    int sig = ::strtol(s, 0, 10);
3989    if (sig > 0 || sig < _NSIG) {
3990        SR_signum = sig;
3991    }
3992  }
3993
3994  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3995        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3996
3997  sigemptyset(&SR_sigset);
3998  sigaddset(&SR_sigset, SR_signum);
3999
4000  /* Set up signal handler for suspend/resume */
4001  act.sa_flags = SA_RESTART|SA_SIGINFO;
4002  act.sa_handler = (void (*)(int)) SR_handler;
4003
4004  // SR_signum is blocked by default.
4005  // 4528190 - We also need to block pthread restart signal (32 on all
4006  // supported Linux platforms). Note that LinuxThreads need to block
4007  // this signal for all threads to work properly. So we don't have
4008  // to use hard-coded signal number when setting up the mask.
4009  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4010
4011  if (sigaction(SR_signum, &act, 0) == -1) {
4012    return -1;
4013  }
4014
4015  // Save signal flag
4016  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4017  return 0;
4018}
4019
4020static int sr_notify(OSThread* osthread) {
4021  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4022  assert_status(status == 0, status, "pthread_kill");
4023  return status;
4024}
4025
4026// "Randomly" selected value for how long we want to spin
4027// before bailing out on suspending a thread, also how often
4028// we send a signal to a thread we want to resume
4029static const int RANDOMLY_LARGE_INTEGER = 1000000;
4030static const int RANDOMLY_LARGE_INTEGER2 = 100;
4031
4032// returns true on success and false on error - really an error is fatal
4033// but this seems the normal response to library errors
4034static bool do_suspend(OSThread* osthread) {
4035  assert(osthread->sr.is_running(), "thread should be running");
4036  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4037
4038  // mark as suspended and send signal
4039  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4040    // failed to switch, state wasn't running?
4041    ShouldNotReachHere();
4042    return false;
4043  }
4044
4045  if (sr_notify(osthread) != 0) {
4046    ShouldNotReachHere();
4047  }
4048
4049  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4050  while (true) {
4051    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4052      break;
4053    } else {
4054      // timeout
4055      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4056      if (cancelled == os::SuspendResume::SR_RUNNING) {
4057        return false;
4058      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4059        // make sure that we consume the signal on the semaphore as well
4060        sr_semaphore.wait();
4061        break;
4062      } else {
4063        ShouldNotReachHere();
4064        return false;
4065      }
4066    }
4067  }
4068
4069  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4070  return true;
4071}
4072
4073static void do_resume(OSThread* osthread) {
4074  assert(osthread->sr.is_suspended(), "thread should be suspended");
4075  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4076
4077  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4078    // failed to switch to WAKEUP_REQUEST
4079    ShouldNotReachHere();
4080    return;
4081  }
4082
4083  while (true) {
4084    if (sr_notify(osthread) == 0) {
4085      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4086        if (osthread->sr.is_running()) {
4087          return;
4088        }
4089      }
4090    } else {
4091      ShouldNotReachHere();
4092    }
4093  }
4094
4095  guarantee(osthread->sr.is_running(), "Must be running!");
4096}
4097
4098///////////////////////////////////////////////////////////////////////////////////
4099// signal handling (except suspend/resume)
4100
4101// This routine may be used by user applications as a "hook" to catch signals.
4102// The user-defined signal handler must pass unrecognized signals to this
4103// routine, and if it returns true (non-zero), then the signal handler must
4104// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4105// routine will never retun false (zero), but instead will execute a VM panic
4106// routine kill the process.
4107//
4108// If this routine returns false, it is OK to call it again.  This allows
4109// the user-defined signal handler to perform checks either before or after
4110// the VM performs its own checks.  Naturally, the user code would be making
4111// a serious error if it tried to handle an exception (such as a null check
4112// or breakpoint) that the VM was generating for its own correct operation.
4113//
4114// This routine may recognize any of the following kinds of signals:
4115//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4116// It should be consulted by handlers for any of those signals.
4117//
4118// The caller of this routine must pass in the three arguments supplied
4119// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4120// field of the structure passed to sigaction().  This routine assumes that
4121// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4122//
4123// Note that the VM will print warnings if it detects conflicting signal
4124// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4125//
4126extern "C" JNIEXPORT int
4127JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4128                        void* ucontext, int abort_if_unrecognized);
4129
4130void signalHandler(int sig, siginfo_t* info, void* uc) {
4131  assert(info != NULL && uc != NULL, "it must be old kernel");
4132  int orig_errno = errno;  // Preserve errno value over signal handler.
4133  JVM_handle_linux_signal(sig, info, uc, true);
4134  errno = orig_errno;
4135}
4136
4137
4138// This boolean allows users to forward their own non-matching signals
4139// to JVM_handle_linux_signal, harmlessly.
4140bool os::Linux::signal_handlers_are_installed = false;
4141
4142// For signal-chaining
4143struct sigaction os::Linux::sigact[MAXSIGNUM];
4144unsigned int os::Linux::sigs = 0;
4145bool os::Linux::libjsig_is_loaded = false;
4146typedef struct sigaction *(*get_signal_t)(int);
4147get_signal_t os::Linux::get_signal_action = NULL;
4148
4149struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4150  struct sigaction *actp = NULL;
4151
4152  if (libjsig_is_loaded) {
4153    // Retrieve the old signal handler from libjsig
4154    actp = (*get_signal_action)(sig);
4155  }
4156  if (actp == NULL) {
4157    // Retrieve the preinstalled signal handler from jvm
4158    actp = get_preinstalled_handler(sig);
4159  }
4160
4161  return actp;
4162}
4163
4164static bool call_chained_handler(struct sigaction *actp, int sig,
4165                                 siginfo_t *siginfo, void *context) {
4166  // Call the old signal handler
4167  if (actp->sa_handler == SIG_DFL) {
4168    // It's more reasonable to let jvm treat it as an unexpected exception
4169    // instead of taking the default action.
4170    return false;
4171  } else if (actp->sa_handler != SIG_IGN) {
4172    if ((actp->sa_flags & SA_NODEFER) == 0) {
4173      // automaticlly block the signal
4174      sigaddset(&(actp->sa_mask), sig);
4175    }
4176
4177    sa_handler_t hand;
4178    sa_sigaction_t sa;
4179    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4180    // retrieve the chained handler
4181    if (siginfo_flag_set) {
4182      sa = actp->sa_sigaction;
4183    } else {
4184      hand = actp->sa_handler;
4185    }
4186
4187    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4188      actp->sa_handler = SIG_DFL;
4189    }
4190
4191    // try to honor the signal mask
4192    sigset_t oset;
4193    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4194
4195    // call into the chained handler
4196    if (siginfo_flag_set) {
4197      (*sa)(sig, siginfo, context);
4198    } else {
4199      (*hand)(sig);
4200    }
4201
4202    // restore the signal mask
4203    pthread_sigmask(SIG_SETMASK, &oset, 0);
4204  }
4205  // Tell jvm's signal handler the signal is taken care of.
4206  return true;
4207}
4208
4209bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4210  bool chained = false;
4211  // signal-chaining
4212  if (UseSignalChaining) {
4213    struct sigaction *actp = get_chained_signal_action(sig);
4214    if (actp != NULL) {
4215      chained = call_chained_handler(actp, sig, siginfo, context);
4216    }
4217  }
4218  return chained;
4219}
4220
4221struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4222  if ((((unsigned int)1 << sig) & sigs) != 0) {
4223    return &sigact[sig];
4224  }
4225  return NULL;
4226}
4227
4228void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4229  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4230  sigact[sig] = oldAct;
4231  sigs |= (unsigned int)1 << sig;
4232}
4233
4234// for diagnostic
4235int os::Linux::sigflags[MAXSIGNUM];
4236
4237int os::Linux::get_our_sigflags(int sig) {
4238  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4239  return sigflags[sig];
4240}
4241
4242void os::Linux::set_our_sigflags(int sig, int flags) {
4243  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4244  sigflags[sig] = flags;
4245}
4246
4247void os::Linux::set_signal_handler(int sig, bool set_installed) {
4248  // Check for overwrite.
4249  struct sigaction oldAct;
4250  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4251
4252  void* oldhand = oldAct.sa_sigaction
4253                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4254                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4255  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4256      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4257      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4258    if (AllowUserSignalHandlers || !set_installed) {
4259      // Do not overwrite; user takes responsibility to forward to us.
4260      return;
4261    } else if (UseSignalChaining) {
4262      // save the old handler in jvm
4263      save_preinstalled_handler(sig, oldAct);
4264      // libjsig also interposes the sigaction() call below and saves the
4265      // old sigaction on it own.
4266    } else {
4267      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4268                    "%#lx for signal %d.", (long)oldhand, sig));
4269    }
4270  }
4271
4272  struct sigaction sigAct;
4273  sigfillset(&(sigAct.sa_mask));
4274  sigAct.sa_handler = SIG_DFL;
4275  if (!set_installed) {
4276    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4277  } else {
4278    sigAct.sa_sigaction = signalHandler;
4279    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4280  }
4281  // Save flags, which are set by ours
4282  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4283  sigflags[sig] = sigAct.sa_flags;
4284
4285  int ret = sigaction(sig, &sigAct, &oldAct);
4286  assert(ret == 0, "check");
4287
4288  void* oldhand2  = oldAct.sa_sigaction
4289                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4290                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4291  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4292}
4293
4294// install signal handlers for signals that HotSpot needs to
4295// handle in order to support Java-level exception handling.
4296
4297void os::Linux::install_signal_handlers() {
4298  if (!signal_handlers_are_installed) {
4299    signal_handlers_are_installed = true;
4300
4301    // signal-chaining
4302    typedef void (*signal_setting_t)();
4303    signal_setting_t begin_signal_setting = NULL;
4304    signal_setting_t end_signal_setting = NULL;
4305    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4306                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4307    if (begin_signal_setting != NULL) {
4308      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4309                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4310      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4311                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4312      libjsig_is_loaded = true;
4313      assert(UseSignalChaining, "should enable signal-chaining");
4314    }
4315    if (libjsig_is_loaded) {
4316      // Tell libjsig jvm is setting signal handlers
4317      (*begin_signal_setting)();
4318    }
4319
4320    set_signal_handler(SIGSEGV, true);
4321    set_signal_handler(SIGPIPE, true);
4322    set_signal_handler(SIGBUS, true);
4323    set_signal_handler(SIGILL, true);
4324    set_signal_handler(SIGFPE, true);
4325#if defined(PPC64)
4326    set_signal_handler(SIGTRAP, true);
4327#endif
4328    set_signal_handler(SIGXFSZ, true);
4329
4330    if (libjsig_is_loaded) {
4331      // Tell libjsig jvm finishes setting signal handlers
4332      (*end_signal_setting)();
4333    }
4334
4335    // We don't activate signal checker if libjsig is in place, we trust ourselves
4336    // and if UserSignalHandler is installed all bets are off.
4337    // Log that signal checking is off only if -verbose:jni is specified.
4338    if (CheckJNICalls) {
4339      if (libjsig_is_loaded) {
4340        if (PrintJNIResolving) {
4341          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4342        }
4343        check_signals = false;
4344      }
4345      if (AllowUserSignalHandlers) {
4346        if (PrintJNIResolving) {
4347          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4348        }
4349        check_signals = false;
4350      }
4351    }
4352  }
4353}
4354
4355// This is the fastest way to get thread cpu time on Linux.
4356// Returns cpu time (user+sys) for any thread, not only for current.
4357// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4358// It might work on 2.6.10+ with a special kernel/glibc patch.
4359// For reference, please, see IEEE Std 1003.1-2004:
4360//   http://www.unix.org/single_unix_specification
4361
4362jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4363  struct timespec tp;
4364  int rc = os::Linux::clock_gettime(clockid, &tp);
4365  assert(rc == 0, "clock_gettime is expected to return 0 code");
4366
4367  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4368}
4369
4370/////
4371// glibc on Linux platform uses non-documented flag
4372// to indicate, that some special sort of signal
4373// trampoline is used.
4374// We will never set this flag, and we should
4375// ignore this flag in our diagnostic
4376#ifdef SIGNIFICANT_SIGNAL_MASK
4377#undef SIGNIFICANT_SIGNAL_MASK
4378#endif
4379#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4380
4381static const char* get_signal_handler_name(address handler,
4382                                           char* buf, int buflen) {
4383  int offset;
4384  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4385  if (found) {
4386    // skip directory names
4387    const char *p1, *p2;
4388    p1 = buf;
4389    size_t len = strlen(os::file_separator());
4390    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4391    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4392  } else {
4393    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4394  }
4395  return buf;
4396}
4397
4398static void print_signal_handler(outputStream* st, int sig,
4399                                 char* buf, size_t buflen) {
4400  struct sigaction sa;
4401
4402  sigaction(sig, NULL, &sa);
4403
4404  // See comment for SIGNIFICANT_SIGNAL_MASK define
4405  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4406
4407  st->print("%s: ", os::exception_name(sig, buf, buflen));
4408
4409  address handler = (sa.sa_flags & SA_SIGINFO)
4410    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4411    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4412
4413  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4414    st->print("SIG_DFL");
4415  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4416    st->print("SIG_IGN");
4417  } else {
4418    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4419  }
4420
4421  st->print(", sa_mask[0]=");
4422  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4423
4424  address rh = VMError::get_resetted_sighandler(sig);
4425  // May be, handler was resetted by VMError?
4426  if (rh != NULL) {
4427    handler = rh;
4428    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4429  }
4430
4431  st->print(", sa_flags=");
4432  os::Posix::print_sa_flags(st, sa.sa_flags);
4433
4434  // Check: is it our handler?
4435  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4436     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4437    // It is our signal handler
4438    // check for flags, reset system-used one!
4439    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4440      st->print(
4441                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4442                os::Linux::get_our_sigflags(sig));
4443    }
4444  }
4445  st->cr();
4446}
4447
4448
4449#define DO_SIGNAL_CHECK(sig) \
4450  if (!sigismember(&check_signal_done, sig)) \
4451    os::Linux::check_signal_handler(sig)
4452
4453// This method is a periodic task to check for misbehaving JNI applications
4454// under CheckJNI, we can add any periodic checks here
4455
4456void os::run_periodic_checks() {
4457
4458  if (check_signals == false) return;
4459
4460  // SEGV and BUS if overridden could potentially prevent
4461  // generation of hs*.log in the event of a crash, debugging
4462  // such a case can be very challenging, so we absolutely
4463  // check the following for a good measure:
4464  DO_SIGNAL_CHECK(SIGSEGV);
4465  DO_SIGNAL_CHECK(SIGILL);
4466  DO_SIGNAL_CHECK(SIGFPE);
4467  DO_SIGNAL_CHECK(SIGBUS);
4468  DO_SIGNAL_CHECK(SIGPIPE);
4469  DO_SIGNAL_CHECK(SIGXFSZ);
4470#if defined(PPC64)
4471  DO_SIGNAL_CHECK(SIGTRAP);
4472#endif
4473
4474  // ReduceSignalUsage allows the user to override these handlers
4475  // see comments at the very top and jvm_solaris.h
4476  if (!ReduceSignalUsage) {
4477    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4478    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4479    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4480    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4481  }
4482
4483  DO_SIGNAL_CHECK(SR_signum);
4484  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4485}
4486
4487typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4488
4489static os_sigaction_t os_sigaction = NULL;
4490
4491void os::Linux::check_signal_handler(int sig) {
4492  char buf[O_BUFLEN];
4493  address jvmHandler = NULL;
4494
4495
4496  struct sigaction act;
4497  if (os_sigaction == NULL) {
4498    // only trust the default sigaction, in case it has been interposed
4499    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4500    if (os_sigaction == NULL) return;
4501  }
4502
4503  os_sigaction(sig, (struct sigaction*)NULL, &act);
4504
4505
4506  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4507
4508  address thisHandler = (act.sa_flags & SA_SIGINFO)
4509    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4510    : CAST_FROM_FN_PTR(address, act.sa_handler);
4511
4512
4513  switch (sig) {
4514  case SIGSEGV:
4515  case SIGBUS:
4516  case SIGFPE:
4517  case SIGPIPE:
4518  case SIGILL:
4519  case SIGXFSZ:
4520    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4521    break;
4522
4523  case SHUTDOWN1_SIGNAL:
4524  case SHUTDOWN2_SIGNAL:
4525  case SHUTDOWN3_SIGNAL:
4526  case BREAK_SIGNAL:
4527    jvmHandler = (address)user_handler();
4528    break;
4529
4530  case INTERRUPT_SIGNAL:
4531    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4532    break;
4533
4534  default:
4535    if (sig == SR_signum) {
4536      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4537    } else {
4538      return;
4539    }
4540    break;
4541  }
4542
4543  if (thisHandler != jvmHandler) {
4544    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4545    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4546    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4547    // No need to check this sig any longer
4548    sigaddset(&check_signal_done, sig);
4549    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4550    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4551      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4552                    exception_name(sig, buf, O_BUFLEN));
4553    }
4554  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4555    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4556    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4557    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4558    // No need to check this sig any longer
4559    sigaddset(&check_signal_done, sig);
4560  }
4561
4562  // Dump all the signal
4563  if (sigismember(&check_signal_done, sig)) {
4564    print_signal_handlers(tty, buf, O_BUFLEN);
4565  }
4566}
4567
4568extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4569
4570extern bool signal_name(int signo, char* buf, size_t len);
4571
4572const char* os::exception_name(int exception_code, char* buf, size_t size) {
4573  if (0 < exception_code && exception_code <= SIGRTMAX) {
4574    // signal
4575    if (!signal_name(exception_code, buf, size)) {
4576      jio_snprintf(buf, size, "SIG%d", exception_code);
4577    }
4578    return buf;
4579  } else {
4580    return NULL;
4581  }
4582}
4583
4584// this is called _before_ the most of global arguments have been parsed
4585void os::init(void) {
4586  char dummy;   /* used to get a guess on initial stack address */
4587//  first_hrtime = gethrtime();
4588
4589  // With LinuxThreads the JavaMain thread pid (primordial thread)
4590  // is different than the pid of the java launcher thread.
4591  // So, on Linux, the launcher thread pid is passed to the VM
4592  // via the sun.java.launcher.pid property.
4593  // Use this property instead of getpid() if it was correctly passed.
4594  // See bug 6351349.
4595  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4596
4597  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4598
4599  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4600
4601  init_random(1234567);
4602
4603  ThreadCritical::initialize();
4604
4605  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4606  if (Linux::page_size() == -1) {
4607    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4608                  strerror(errno)));
4609  }
4610  init_page_sizes((size_t) Linux::page_size());
4611
4612  Linux::initialize_system_info();
4613
4614  // main_thread points to the aboriginal thread
4615  Linux::_main_thread = pthread_self();
4616
4617  Linux::clock_init();
4618  initial_time_count = javaTimeNanos();
4619
4620  // pthread_condattr initialization for monotonic clock
4621  int status;
4622  pthread_condattr_t* _condattr = os::Linux::condAttr();
4623  if ((status = pthread_condattr_init(_condattr)) != 0) {
4624    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4625  }
4626  // Only set the clock if CLOCK_MONOTONIC is available
4627  if (os::supports_monotonic_clock()) {
4628    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4629      if (status == EINVAL) {
4630        warning("Unable to use monotonic clock with relative timed-waits" \
4631                " - changes to the time-of-day clock may have adverse affects");
4632      } else {
4633        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4634      }
4635    }
4636  }
4637  // else it defaults to CLOCK_REALTIME
4638
4639  pthread_mutex_init(&dl_mutex, NULL);
4640
4641  // If the pagesize of the VM is greater than 8K determine the appropriate
4642  // number of initial guard pages.  The user can change this with the
4643  // command line arguments, if needed.
4644  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4645    StackYellowPages = 1;
4646    StackRedPages = 1;
4647    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4648  }
4649}
4650
4651// To install functions for atexit system call
4652extern "C" {
4653  static void perfMemory_exit_helper() {
4654    perfMemory_exit();
4655  }
4656}
4657
4658// this is called _after_ the global arguments have been parsed
4659jint os::init_2(void)
4660{
4661  Linux::fast_thread_clock_init();
4662
4663  // Allocate a single page and mark it as readable for safepoint polling
4664  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4665  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4666
4667  os::set_polling_page(polling_page);
4668
4669#ifndef PRODUCT
4670  if (Verbose && PrintMiscellaneous)
4671    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4672#endif
4673
4674  if (!UseMembar) {
4675    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4676    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4677    os::set_memory_serialize_page(mem_serialize_page);
4678
4679#ifndef PRODUCT
4680    if (Verbose && PrintMiscellaneous)
4681      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4682#endif
4683  }
4684
4685  // initialize suspend/resume support - must do this before signal_sets_init()
4686  if (SR_initialize() != 0) {
4687    perror("SR_initialize failed");
4688    return JNI_ERR;
4689  }
4690
4691  Linux::signal_sets_init();
4692  Linux::install_signal_handlers();
4693
4694  // Check minimum allowable stack size for thread creation and to initialize
4695  // the java system classes, including StackOverflowError - depends on page
4696  // size.  Add a page for compiler2 recursion in main thread.
4697  // Add in 2*BytesPerWord times page size to account for VM stack during
4698  // class initialization depending on 32 or 64 bit VM.
4699  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4700            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4701                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4702
4703  size_t threadStackSizeInBytes = ThreadStackSize * K;
4704  if (threadStackSizeInBytes != 0 &&
4705      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4706        tty->print_cr("\nThe stack size specified is too small, "
4707                      "Specify at least %dk",
4708                      os::Linux::min_stack_allowed/ K);
4709        return JNI_ERR;
4710  }
4711
4712  // Make the stack size a multiple of the page size so that
4713  // the yellow/red zones can be guarded.
4714  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4715        vm_page_size()));
4716
4717  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4718
4719#if defined(IA32)
4720  workaround_expand_exec_shield_cs_limit();
4721#endif
4722
4723  Linux::libpthread_init();
4724  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4725     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4726          Linux::glibc_version(), Linux::libpthread_version(),
4727          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4728  }
4729
4730  if (UseNUMA) {
4731    if (!Linux::libnuma_init()) {
4732      UseNUMA = false;
4733    } else {
4734      if ((Linux::numa_max_node() < 1)) {
4735        // There's only one node(they start from 0), disable NUMA.
4736        UseNUMA = false;
4737      }
4738    }
4739    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4740    // we can make the adaptive lgrp chunk resizing work. If the user specified
4741    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4742    // disable adaptive resizing.
4743    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4744      if (FLAG_IS_DEFAULT(UseNUMA)) {
4745        UseNUMA = false;
4746      } else {
4747        if (FLAG_IS_DEFAULT(UseLargePages) &&
4748            FLAG_IS_DEFAULT(UseSHM) &&
4749            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4750          UseLargePages = false;
4751        } else {
4752          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4753          UseAdaptiveSizePolicy = false;
4754          UseAdaptiveNUMAChunkSizing = false;
4755        }
4756      }
4757    }
4758    if (!UseNUMA && ForceNUMA) {
4759      UseNUMA = true;
4760    }
4761  }
4762
4763  if (MaxFDLimit) {
4764    // set the number of file descriptors to max. print out error
4765    // if getrlimit/setrlimit fails but continue regardless.
4766    struct rlimit nbr_files;
4767    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4768    if (status != 0) {
4769      if (PrintMiscellaneous && (Verbose || WizardMode))
4770        perror("os::init_2 getrlimit failed");
4771    } else {
4772      nbr_files.rlim_cur = nbr_files.rlim_max;
4773      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4774      if (status != 0) {
4775        if (PrintMiscellaneous && (Verbose || WizardMode))
4776          perror("os::init_2 setrlimit failed");
4777      }
4778    }
4779  }
4780
4781  // Initialize lock used to serialize thread creation (see os::create_thread)
4782  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4783
4784  // at-exit methods are called in the reverse order of their registration.
4785  // atexit functions are called on return from main or as a result of a
4786  // call to exit(3C). There can be only 32 of these functions registered
4787  // and atexit() does not set errno.
4788
4789  if (PerfAllowAtExitRegistration) {
4790    // only register atexit functions if PerfAllowAtExitRegistration is set.
4791    // atexit functions can be delayed until process exit time, which
4792    // can be problematic for embedded VM situations. Embedded VMs should
4793    // call DestroyJavaVM() to assure that VM resources are released.
4794
4795    // note: perfMemory_exit_helper atexit function may be removed in
4796    // the future if the appropriate cleanup code can be added to the
4797    // VM_Exit VMOperation's doit method.
4798    if (atexit(perfMemory_exit_helper) != 0) {
4799      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4800    }
4801  }
4802
4803  // initialize thread priority policy
4804  prio_init();
4805
4806  return JNI_OK;
4807}
4808
4809// this is called at the end of vm_initialization
4810void os::init_3(void) {
4811#ifdef JAVASE_EMBEDDED
4812  // Start the MemNotifyThread
4813  if (LowMemoryProtection) {
4814    MemNotifyThread::start();
4815  }
4816  return;
4817#endif
4818}
4819
4820// Mark the polling page as unreadable
4821void os::make_polling_page_unreadable(void) {
4822  if (!guard_memory((char*)_polling_page, Linux::page_size()))
4823    fatal("Could not disable polling page");
4824};
4825
4826// Mark the polling page as readable
4827void os::make_polling_page_readable(void) {
4828  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4829    fatal("Could not enable polling page");
4830  }
4831};
4832
4833int os::active_processor_count() {
4834  // Linux doesn't yet have a (official) notion of processor sets,
4835  // so just return the number of online processors.
4836  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4837  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4838  return online_cpus;
4839}
4840
4841void os::set_native_thread_name(const char *name) {
4842  // Not yet implemented.
4843  return;
4844}
4845
4846bool os::distribute_processes(uint length, uint* distribution) {
4847  // Not yet implemented.
4848  return false;
4849}
4850
4851bool os::bind_to_processor(uint processor_id) {
4852  // Not yet implemented.
4853  return false;
4854}
4855
4856///
4857
4858void os::SuspendedThreadTask::internal_do_task() {
4859  if (do_suspend(_thread->osthread())) {
4860    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4861    do_task(context);
4862    do_resume(_thread->osthread());
4863  }
4864}
4865
4866class PcFetcher : public os::SuspendedThreadTask {
4867public:
4868  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4869  ExtendedPC result();
4870protected:
4871  void do_task(const os::SuspendedThreadTaskContext& context);
4872private:
4873  ExtendedPC _epc;
4874};
4875
4876ExtendedPC PcFetcher::result() {
4877  guarantee(is_done(), "task is not done yet.");
4878  return _epc;
4879}
4880
4881void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4882  Thread* thread = context.thread();
4883  OSThread* osthread = thread->osthread();
4884  if (osthread->ucontext() != NULL) {
4885    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4886  } else {
4887    // NULL context is unexpected, double-check this is the VMThread
4888    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4889  }
4890}
4891
4892// Suspends the target using the signal mechanism and then grabs the PC before
4893// resuming the target. Used by the flat-profiler only
4894ExtendedPC os::get_thread_pc(Thread* thread) {
4895  // Make sure that it is called by the watcher for the VMThread
4896  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4897  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4898
4899  PcFetcher fetcher(thread);
4900  fetcher.run();
4901  return fetcher.result();
4902}
4903
4904int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4905{
4906   if (is_NPTL()) {
4907      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4908   } else {
4909      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4910      // word back to default 64bit precision if condvar is signaled. Java
4911      // wants 53bit precision.  Save and restore current value.
4912      int fpu = get_fpu_control_word();
4913      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4914      set_fpu_control_word(fpu);
4915      return status;
4916   }
4917}
4918
4919////////////////////////////////////////////////////////////////////////////////
4920// debug support
4921
4922bool os::find(address addr, outputStream* st) {
4923  Dl_info dlinfo;
4924  memset(&dlinfo, 0, sizeof(dlinfo));
4925  if (dladdr(addr, &dlinfo) != 0) {
4926    st->print(PTR_FORMAT ": ", addr);
4927    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4928      st->print("%s+%#x", dlinfo.dli_sname,
4929                 addr - (intptr_t)dlinfo.dli_saddr);
4930    } else if (dlinfo.dli_fbase != NULL) {
4931      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4932    } else {
4933      st->print("<absolute address>");
4934    }
4935    if (dlinfo.dli_fname != NULL) {
4936      st->print(" in %s", dlinfo.dli_fname);
4937    }
4938    if (dlinfo.dli_fbase != NULL) {
4939      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4940    }
4941    st->cr();
4942
4943    if (Verbose) {
4944      // decode some bytes around the PC
4945      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4946      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4947      address       lowest = (address) dlinfo.dli_sname;
4948      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4949      if (begin < lowest)  begin = lowest;
4950      Dl_info dlinfo2;
4951      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4952          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4953        end = (address) dlinfo2.dli_saddr;
4954      Disassembler::decode(begin, end, st);
4955    }
4956    return true;
4957  }
4958  return false;
4959}
4960
4961////////////////////////////////////////////////////////////////////////////////
4962// misc
4963
4964// This does not do anything on Linux. This is basically a hook for being
4965// able to use structured exception handling (thread-local exception filters)
4966// on, e.g., Win32.
4967void
4968os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4969                         JavaCallArguments* args, Thread* thread) {
4970  f(value, method, args, thread);
4971}
4972
4973void os::print_statistics() {
4974}
4975
4976int os::message_box(const char* title, const char* message) {
4977  int i;
4978  fdStream err(defaultStream::error_fd());
4979  for (i = 0; i < 78; i++) err.print_raw("=");
4980  err.cr();
4981  err.print_raw_cr(title);
4982  for (i = 0; i < 78; i++) err.print_raw("-");
4983  err.cr();
4984  err.print_raw_cr(message);
4985  for (i = 0; i < 78; i++) err.print_raw("=");
4986  err.cr();
4987
4988  char buf[16];
4989  // Prevent process from exiting upon "read error" without consuming all CPU
4990  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4991
4992  return buf[0] == 'y' || buf[0] == 'Y';
4993}
4994
4995int os::stat(const char *path, struct stat *sbuf) {
4996  char pathbuf[MAX_PATH];
4997  if (strlen(path) > MAX_PATH - 1) {
4998    errno = ENAMETOOLONG;
4999    return -1;
5000  }
5001  os::native_path(strcpy(pathbuf, path));
5002  return ::stat(pathbuf, sbuf);
5003}
5004
5005bool os::check_heap(bool force) {
5006  return true;
5007}
5008
5009int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5010  return ::vsnprintf(buf, count, format, args);
5011}
5012
5013// Is a (classpath) directory empty?
5014bool os::dir_is_empty(const char* path) {
5015  DIR *dir = NULL;
5016  struct dirent *ptr;
5017
5018  dir = opendir(path);
5019  if (dir == NULL) return true;
5020
5021  /* Scan the directory */
5022  bool result = true;
5023  char buf[sizeof(struct dirent) + MAX_PATH];
5024  while (result && (ptr = ::readdir(dir)) != NULL) {
5025    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5026      result = false;
5027    }
5028  }
5029  closedir(dir);
5030  return result;
5031}
5032
5033// This code originates from JDK's sysOpen and open64_w
5034// from src/solaris/hpi/src/system_md.c
5035
5036#ifndef O_DELETE
5037#define O_DELETE 0x10000
5038#endif
5039
5040// Open a file. Unlink the file immediately after open returns
5041// if the specified oflag has the O_DELETE flag set.
5042// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5043
5044int os::open(const char *path, int oflag, int mode) {
5045
5046  if (strlen(path) > MAX_PATH - 1) {
5047    errno = ENAMETOOLONG;
5048    return -1;
5049  }
5050  int fd;
5051  int o_delete = (oflag & O_DELETE);
5052  oflag = oflag & ~O_DELETE;
5053
5054  fd = ::open64(path, oflag, mode);
5055  if (fd == -1) return -1;
5056
5057  //If the open succeeded, the file might still be a directory
5058  {
5059    struct stat64 buf64;
5060    int ret = ::fstat64(fd, &buf64);
5061    int st_mode = buf64.st_mode;
5062
5063    if (ret != -1) {
5064      if ((st_mode & S_IFMT) == S_IFDIR) {
5065        errno = EISDIR;
5066        ::close(fd);
5067        return -1;
5068      }
5069    } else {
5070      ::close(fd);
5071      return -1;
5072    }
5073  }
5074
5075    /*
5076     * All file descriptors that are opened in the JVM and not
5077     * specifically destined for a subprocess should have the
5078     * close-on-exec flag set.  If we don't set it, then careless 3rd
5079     * party native code might fork and exec without closing all
5080     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5081     * UNIXProcess.c), and this in turn might:
5082     *
5083     * - cause end-of-file to fail to be detected on some file
5084     *   descriptors, resulting in mysterious hangs, or
5085     *
5086     * - might cause an fopen in the subprocess to fail on a system
5087     *   suffering from bug 1085341.
5088     *
5089     * (Yes, the default setting of the close-on-exec flag is a Unix
5090     * design flaw)
5091     *
5092     * See:
5093     * 1085341: 32-bit stdio routines should support file descriptors >255
5094     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5095     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5096     */
5097#ifdef FD_CLOEXEC
5098    {
5099        int flags = ::fcntl(fd, F_GETFD);
5100        if (flags != -1)
5101            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5102    }
5103#endif
5104
5105  if (o_delete != 0) {
5106    ::unlink(path);
5107  }
5108  return fd;
5109}
5110
5111
5112// create binary file, rewriting existing file if required
5113int os::create_binary_file(const char* path, bool rewrite_existing) {
5114  int oflags = O_WRONLY | O_CREAT;
5115  if (!rewrite_existing) {
5116    oflags |= O_EXCL;
5117  }
5118  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5119}
5120
5121// return current position of file pointer
5122jlong os::current_file_offset(int fd) {
5123  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5124}
5125
5126// move file pointer to the specified offset
5127jlong os::seek_to_file_offset(int fd, jlong offset) {
5128  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5129}
5130
5131// This code originates from JDK's sysAvailable
5132// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5133
5134int os::available(int fd, jlong *bytes) {
5135  jlong cur, end;
5136  int mode;
5137  struct stat64 buf64;
5138
5139  if (::fstat64(fd, &buf64) >= 0) {
5140    mode = buf64.st_mode;
5141    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5142      /*
5143      * XXX: is the following call interruptible? If so, this might
5144      * need to go through the INTERRUPT_IO() wrapper as for other
5145      * blocking, interruptible calls in this file.
5146      */
5147      int n;
5148      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5149        *bytes = n;
5150        return 1;
5151      }
5152    }
5153  }
5154  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5155    return 0;
5156  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5157    return 0;
5158  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5159    return 0;
5160  }
5161  *bytes = end - cur;
5162  return 1;
5163}
5164
5165int os::socket_available(int fd, jint *pbytes) {
5166  // Linux doc says EINTR not returned, unlike Solaris
5167  int ret = ::ioctl(fd, FIONREAD, pbytes);
5168
5169  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5170  // is expected to return 0 on failure and 1 on success to the jdk.
5171  return (ret < 0) ? 0 : 1;
5172}
5173
5174// Map a block of memory.
5175char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5176                     char *addr, size_t bytes, bool read_only,
5177                     bool allow_exec) {
5178  int prot;
5179  int flags = MAP_PRIVATE;
5180
5181  if (read_only) {
5182    prot = PROT_READ;
5183  } else {
5184    prot = PROT_READ | PROT_WRITE;
5185  }
5186
5187  if (allow_exec) {
5188    prot |= PROT_EXEC;
5189  }
5190
5191  if (addr != NULL) {
5192    flags |= MAP_FIXED;
5193  }
5194
5195  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5196                                     fd, file_offset);
5197  if (mapped_address == MAP_FAILED) {
5198    return NULL;
5199  }
5200  return mapped_address;
5201}
5202
5203
5204// Remap a block of memory.
5205char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5206                       char *addr, size_t bytes, bool read_only,
5207                       bool allow_exec) {
5208  // same as map_memory() on this OS
5209  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5210                        allow_exec);
5211}
5212
5213
5214// Unmap a block of memory.
5215bool os::pd_unmap_memory(char* addr, size_t bytes) {
5216  return munmap(addr, bytes) == 0;
5217}
5218
5219static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5220
5221static clockid_t thread_cpu_clockid(Thread* thread) {
5222  pthread_t tid = thread->osthread()->pthread_id();
5223  clockid_t clockid;
5224
5225  // Get thread clockid
5226  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5227  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5228  return clockid;
5229}
5230
5231// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5232// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5233// of a thread.
5234//
5235// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5236// the fast estimate available on the platform.
5237
5238jlong os::current_thread_cpu_time() {
5239  if (os::Linux::supports_fast_thread_cpu_time()) {
5240    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5241  } else {
5242    // return user + sys since the cost is the same
5243    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5244  }
5245}
5246
5247jlong os::thread_cpu_time(Thread* thread) {
5248  // consistent with what current_thread_cpu_time() returns
5249  if (os::Linux::supports_fast_thread_cpu_time()) {
5250    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5251  } else {
5252    return slow_thread_cpu_time(thread, true /* user + sys */);
5253  }
5254}
5255
5256jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5257  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5258    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5259  } else {
5260    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5261  }
5262}
5263
5264jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5265  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5266    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5267  } else {
5268    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5269  }
5270}
5271
5272//
5273//  -1 on error.
5274//
5275
5276static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5277  pid_t  tid = thread->osthread()->thread_id();
5278  char *s;
5279  char stat[2048];
5280  int statlen;
5281  char proc_name[64];
5282  int count;
5283  long sys_time, user_time;
5284  char cdummy;
5285  int idummy;
5286  long ldummy;
5287  FILE *fp;
5288
5289  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5290  fp = fopen(proc_name, "r");
5291  if (fp == NULL) return -1;
5292  statlen = fread(stat, 1, 2047, fp);
5293  stat[statlen] = '\0';
5294  fclose(fp);
5295
5296  // Skip pid and the command string. Note that we could be dealing with
5297  // weird command names, e.g. user could decide to rename java launcher
5298  // to "java 1.4.2 :)", then the stat file would look like
5299  //                1234 (java 1.4.2 :)) R ... ...
5300  // We don't really need to know the command string, just find the last
5301  // occurrence of ")" and then start parsing from there. See bug 4726580.
5302  s = strrchr(stat, ')');
5303  if (s == NULL) return -1;
5304
5305  // Skip blank chars
5306  do s++; while (isspace(*s));
5307
5308  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5309                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5310                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5311                 &user_time, &sys_time);
5312  if (count != 13) return -1;
5313  if (user_sys_cpu_time) {
5314    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5315  } else {
5316    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5317  }
5318}
5319
5320void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5321  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5322  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5323  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5324  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5325}
5326
5327void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5328  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5329  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5330  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5331  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5332}
5333
5334bool os::is_thread_cpu_time_supported() {
5335  return true;
5336}
5337
5338// System loadavg support.  Returns -1 if load average cannot be obtained.
5339// Linux doesn't yet have a (official) notion of processor sets,
5340// so just return the system wide load average.
5341int os::loadavg(double loadavg[], int nelem) {
5342  return ::getloadavg(loadavg, nelem);
5343}
5344
5345void os::pause() {
5346  char filename[MAX_PATH];
5347  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5348    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5349  } else {
5350    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5351  }
5352
5353  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5354  if (fd != -1) {
5355    struct stat buf;
5356    ::close(fd);
5357    while (::stat(filename, &buf) == 0) {
5358      (void)::poll(NULL, 0, 100);
5359    }
5360  } else {
5361    jio_fprintf(stderr,
5362      "Could not open pause file '%s', continuing immediately.\n", filename);
5363  }
5364}
5365
5366
5367// Refer to the comments in os_solaris.cpp park-unpark.
5368//
5369// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5370// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5371// For specifics regarding the bug see GLIBC BUGID 261237 :
5372//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5373// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5374// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5375// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5376// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5377// and monitorenter when we're using 1-0 locking.  All those operations may result in
5378// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5379// of libpthread avoids the problem, but isn't practical.
5380//
5381// Possible remedies:
5382//
5383// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5384//      This is palliative and probabilistic, however.  If the thread is preempted
5385//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5386//      than the minimum period may have passed, and the abstime may be stale (in the
5387//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5388//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5389//
5390// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5391//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5392//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5393//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5394//      thread.
5395//
5396// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5397//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5398//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5399//      This also works well.  In fact it avoids kernel-level scalability impediments
5400//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5401//      timers in a graceful fashion.
5402//
5403// 4.   When the abstime value is in the past it appears that control returns
5404//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5405//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5406//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5407//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5408//      It may be possible to avoid reinitialization by checking the return
5409//      value from pthread_cond_timedwait().  In addition to reinitializing the
5410//      condvar we must establish the invariant that cond_signal() is only called
5411//      within critical sections protected by the adjunct mutex.  This prevents
5412//      cond_signal() from "seeing" a condvar that's in the midst of being
5413//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5414//      desirable signal-after-unlock optimization that avoids futile context switching.
5415//
5416//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5417//      structure when a condvar is used or initialized.  cond_destroy()  would
5418//      release the helper structure.  Our reinitialize-after-timedwait fix
5419//      put excessive stress on malloc/free and locks protecting the c-heap.
5420//
5421// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5422// It may be possible to refine (4) by checking the kernel and NTPL verisons
5423// and only enabling the work-around for vulnerable environments.
5424
5425// utility to compute the abstime argument to timedwait:
5426// millis is the relative timeout time
5427// abstime will be the absolute timeout time
5428// TODO: replace compute_abstime() with unpackTime()
5429
5430static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5431  if (millis < 0)  millis = 0;
5432
5433  jlong seconds = millis / 1000;
5434  millis %= 1000;
5435  if (seconds > 50000000) { // see man cond_timedwait(3T)
5436    seconds = 50000000;
5437  }
5438
5439  if (os::supports_monotonic_clock()) {
5440    struct timespec now;
5441    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5442    assert_status(status == 0, status, "clock_gettime");
5443    abstime->tv_sec = now.tv_sec  + seconds;
5444    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5445    if (nanos >= NANOSECS_PER_SEC) {
5446      abstime->tv_sec += 1;
5447      nanos -= NANOSECS_PER_SEC;
5448    }
5449    abstime->tv_nsec = nanos;
5450  } else {
5451    struct timeval now;
5452    int status = gettimeofday(&now, NULL);
5453    assert(status == 0, "gettimeofday");
5454    abstime->tv_sec = now.tv_sec  + seconds;
5455    long usec = now.tv_usec + millis * 1000;
5456    if (usec >= 1000000) {
5457      abstime->tv_sec += 1;
5458      usec -= 1000000;
5459    }
5460    abstime->tv_nsec = usec * 1000;
5461  }
5462  return abstime;
5463}
5464
5465
5466// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5467// Conceptually TryPark() should be equivalent to park(0).
5468
5469int os::PlatformEvent::TryPark() {
5470  for (;;) {
5471    const int v = _Event;
5472    guarantee((v == 0) || (v == 1), "invariant");
5473    if (Atomic::cmpxchg(0, &_Event, v) == v) return v;
5474  }
5475}
5476
5477void os::PlatformEvent::park() {       // AKA "down()"
5478  // Invariant: Only the thread associated with the Event/PlatformEvent
5479  // may call park().
5480  // TODO: assert that _Assoc != NULL or _Assoc == Self
5481  int v;
5482  for (;;) {
5483      v = _Event;
5484      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5485  }
5486  guarantee(v >= 0, "invariant");
5487  if (v == 0) {
5488     // Do this the hard way by blocking ...
5489     int status = pthread_mutex_lock(_mutex);
5490     assert_status(status == 0, status, "mutex_lock");
5491     guarantee(_nParked == 0, "invariant");
5492     ++_nParked;
5493     while (_Event < 0) {
5494        status = pthread_cond_wait(_cond, _mutex);
5495        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5496        // Treat this the same as if the wait was interrupted
5497        if (status == ETIME) { status = EINTR; }
5498        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5499     }
5500     --_nParked;
5501
5502    _Event = 0;
5503     status = pthread_mutex_unlock(_mutex);
5504     assert_status(status == 0, status, "mutex_unlock");
5505    // Paranoia to ensure our locked and lock-free paths interact
5506    // correctly with each other.
5507    OrderAccess::fence();
5508  }
5509  guarantee(_Event >= 0, "invariant");
5510}
5511
5512int os::PlatformEvent::park(jlong millis) {
5513  guarantee(_nParked == 0, "invariant");
5514
5515  int v;
5516  for (;;) {
5517      v = _Event;
5518      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5519  }
5520  guarantee(v >= 0, "invariant");
5521  if (v != 0) return OS_OK;
5522
5523  // We do this the hard way, by blocking the thread.
5524  // Consider enforcing a minimum timeout value.
5525  struct timespec abst;
5526  compute_abstime(&abst, millis);
5527
5528  int ret = OS_TIMEOUT;
5529  int status = pthread_mutex_lock(_mutex);
5530  assert_status(status == 0, status, "mutex_lock");
5531  guarantee(_nParked == 0, "invariant");
5532  ++_nParked;
5533
5534  // Object.wait(timo) will return because of
5535  // (a) notification
5536  // (b) timeout
5537  // (c) thread.interrupt
5538  //
5539  // Thread.interrupt and object.notify{All} both call Event::set.
5540  // That is, we treat thread.interrupt as a special case of notification.
5541  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5542  // We assume all ETIME returns are valid.
5543  //
5544  // TODO: properly differentiate simultaneous notify+interrupt.
5545  // In that case, we should propagate the notify to another waiter.
5546
5547  while (_Event < 0) {
5548    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5549    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5550      pthread_cond_destroy(_cond);
5551      pthread_cond_init(_cond, os::Linux::condAttr());
5552    }
5553    assert_status(status == 0 || status == EINTR ||
5554                  status == ETIME || status == ETIMEDOUT,
5555                  status, "cond_timedwait");
5556    if (!FilterSpuriousWakeups) break;                 // previous semantics
5557    if (status == ETIME || status == ETIMEDOUT) break;
5558    // We consume and ignore EINTR and spurious wakeups.
5559  }
5560  --_nParked;
5561  if (_Event >= 0) {
5562     ret = OS_OK;
5563  }
5564  _Event = 0;
5565  status = pthread_mutex_unlock(_mutex);
5566  assert_status(status == 0, status, "mutex_unlock");
5567  assert(_nParked == 0, "invariant");
5568  // Paranoia to ensure our locked and lock-free paths interact
5569  // correctly with each other.
5570  OrderAccess::fence();
5571  return ret;
5572}
5573
5574void os::PlatformEvent::unpark() {
5575  // Transitions for _Event:
5576  //    0 :=> 1
5577  //    1 :=> 1
5578  //   -1 :=> either 0 or 1; must signal target thread
5579  //          That is, we can safely transition _Event from -1 to either
5580  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5581  //          unpark() calls.
5582  // See also: "Semaphores in Plan 9" by Mullender & Cox
5583  //
5584  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5585  // that it will take two back-to-back park() calls for the owning
5586  // thread to block. This has the benefit of forcing a spurious return
5587  // from the first park() call after an unpark() call which will help
5588  // shake out uses of park() and unpark() without condition variables.
5589
5590  if (Atomic::xchg(1, &_Event) >= 0) return;
5591
5592  // Wait for the thread associated with the event to vacate
5593  int status = pthread_mutex_lock(_mutex);
5594  assert_status(status == 0, status, "mutex_lock");
5595  int AnyWaiters = _nParked;
5596  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5597  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5598    AnyWaiters = 0;
5599    pthread_cond_signal(_cond);
5600  }
5601  status = pthread_mutex_unlock(_mutex);
5602  assert_status(status == 0, status, "mutex_unlock");
5603  if (AnyWaiters != 0) {
5604    status = pthread_cond_signal(_cond);
5605    assert_status(status == 0, status, "cond_signal");
5606  }
5607
5608  // Note that we signal() _after dropping the lock for "immortal" Events.
5609  // This is safe and avoids a common class of  futile wakeups.  In rare
5610  // circumstances this can cause a thread to return prematurely from
5611  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5612  // simply re-test the condition and re-park itself.
5613}
5614
5615
5616// JSR166
5617// -------------------------------------------------------
5618
5619/*
5620 * The solaris and linux implementations of park/unpark are fairly
5621 * conservative for now, but can be improved. They currently use a
5622 * mutex/condvar pair, plus a a count.
5623 * Park decrements count if > 0, else does a condvar wait.  Unpark
5624 * sets count to 1 and signals condvar.  Only one thread ever waits
5625 * on the condvar. Contention seen when trying to park implies that someone
5626 * is unparking you, so don't wait. And spurious returns are fine, so there
5627 * is no need to track notifications.
5628 */
5629
5630/*
5631 * This code is common to linux and solaris and will be moved to a
5632 * common place in dolphin.
5633 *
5634 * The passed in time value is either a relative time in nanoseconds
5635 * or an absolute time in milliseconds. Either way it has to be unpacked
5636 * into suitable seconds and nanoseconds components and stored in the
5637 * given timespec structure.
5638 * Given time is a 64-bit value and the time_t used in the timespec is only
5639 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5640 * overflow if times way in the future are given. Further on Solaris versions
5641 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5642 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5643 * As it will be 28 years before "now + 100000000" will overflow we can
5644 * ignore overflow and just impose a hard-limit on seconds using the value
5645 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5646 * years from "now".
5647 */
5648
5649static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5650  assert(time > 0, "convertTime");
5651  time_t max_secs = 0;
5652
5653  if (!os::supports_monotonic_clock() || isAbsolute) {
5654    struct timeval now;
5655    int status = gettimeofday(&now, NULL);
5656    assert(status == 0, "gettimeofday");
5657
5658    max_secs = now.tv_sec + MAX_SECS;
5659
5660    if (isAbsolute) {
5661      jlong secs = time / 1000;
5662      if (secs > max_secs) {
5663        absTime->tv_sec = max_secs;
5664      } else {
5665        absTime->tv_sec = secs;
5666      }
5667      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5668    } else {
5669      jlong secs = time / NANOSECS_PER_SEC;
5670      if (secs >= MAX_SECS) {
5671        absTime->tv_sec = max_secs;
5672        absTime->tv_nsec = 0;
5673      } else {
5674        absTime->tv_sec = now.tv_sec + secs;
5675        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5676        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5677          absTime->tv_nsec -= NANOSECS_PER_SEC;
5678          ++absTime->tv_sec; // note: this must be <= max_secs
5679        }
5680      }
5681    }
5682  } else {
5683    // must be relative using monotonic clock
5684    struct timespec now;
5685    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5686    assert_status(status == 0, status, "clock_gettime");
5687    max_secs = now.tv_sec + MAX_SECS;
5688    jlong secs = time / NANOSECS_PER_SEC;
5689    if (secs >= MAX_SECS) {
5690      absTime->tv_sec = max_secs;
5691      absTime->tv_nsec = 0;
5692    } else {
5693      absTime->tv_sec = now.tv_sec + secs;
5694      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5695      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5696        absTime->tv_nsec -= NANOSECS_PER_SEC;
5697        ++absTime->tv_sec; // note: this must be <= max_secs
5698      }
5699    }
5700  }
5701  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5702  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5703  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5704  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5705}
5706
5707void Parker::park(bool isAbsolute, jlong time) {
5708  // Ideally we'd do something useful while spinning, such
5709  // as calling unpackTime().
5710
5711  // Optional fast-path check:
5712  // Return immediately if a permit is available.
5713  // We depend on Atomic::xchg() having full barrier semantics
5714  // since we are doing a lock-free update to _counter.
5715  if (Atomic::xchg(0, &_counter) > 0) return;
5716
5717  Thread* thread = Thread::current();
5718  assert(thread->is_Java_thread(), "Must be JavaThread");
5719  JavaThread *jt = (JavaThread *)thread;
5720
5721  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5722  // Check interrupt before trying to wait
5723  if (Thread::is_interrupted(thread, false)) {
5724    return;
5725  }
5726
5727  // Next, demultiplex/decode time arguments
5728  timespec absTime;
5729  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5730    return;
5731  }
5732  if (time > 0) {
5733    unpackTime(&absTime, isAbsolute, time);
5734  }
5735
5736
5737  // Enter safepoint region
5738  // Beware of deadlocks such as 6317397.
5739  // The per-thread Parker:: mutex is a classic leaf-lock.
5740  // In particular a thread must never block on the Threads_lock while
5741  // holding the Parker:: mutex.  If safepoints are pending both the
5742  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5743  ThreadBlockInVM tbivm(jt);
5744
5745  // Don't wait if cannot get lock since interference arises from
5746  // unblocking.  Also. check interrupt before trying wait
5747  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5748    return;
5749  }
5750
5751  int status;
5752  if (_counter > 0)  { // no wait needed
5753    _counter = 0;
5754    status = pthread_mutex_unlock(_mutex);
5755    assert(status == 0, "invariant");
5756    // Paranoia to ensure our locked and lock-free paths interact
5757    // correctly with each other and Java-level accesses.
5758    OrderAccess::fence();
5759    return;
5760  }
5761
5762#ifdef ASSERT
5763  // Don't catch signals while blocked; let the running threads have the signals.
5764  // (This allows a debugger to break into the running thread.)
5765  sigset_t oldsigs;
5766  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5767  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5768#endif
5769
5770  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5771  jt->set_suspend_equivalent();
5772  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5773
5774  assert(_cur_index == -1, "invariant");
5775  if (time == 0) {
5776    _cur_index = REL_INDEX; // arbitrary choice when not timed
5777    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5778  } else {
5779    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5780    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5781    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5782      pthread_cond_destroy(&_cond[_cur_index]);
5783      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5784    }
5785  }
5786  _cur_index = -1;
5787  assert_status(status == 0 || status == EINTR ||
5788                status == ETIME || status == ETIMEDOUT,
5789                status, "cond_timedwait");
5790
5791#ifdef ASSERT
5792  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5793#endif
5794
5795  _counter = 0;
5796  status = pthread_mutex_unlock(_mutex);
5797  assert_status(status == 0, status, "invariant");
5798  // Paranoia to ensure our locked and lock-free paths interact
5799  // correctly with each other and Java-level accesses.
5800  OrderAccess::fence();
5801
5802  // If externally suspended while waiting, re-suspend
5803  if (jt->handle_special_suspend_equivalent_condition()) {
5804    jt->java_suspend_self();
5805  }
5806}
5807
5808void Parker::unpark() {
5809  int s, status;
5810  status = pthread_mutex_lock(_mutex);
5811  assert(status == 0, "invariant");
5812  s = _counter;
5813  _counter = 1;
5814  if (s < 1) {
5815    // thread might be parked
5816    if (_cur_index != -1) {
5817      // thread is definitely parked
5818      if (WorkAroundNPTLTimedWaitHang) {
5819        status = pthread_cond_signal (&_cond[_cur_index]);
5820        assert(status == 0, "invariant");
5821        status = pthread_mutex_unlock(_mutex);
5822        assert(status == 0, "invariant");
5823      } else {
5824        status = pthread_mutex_unlock(_mutex);
5825        assert(status == 0, "invariant");
5826        status = pthread_cond_signal (&_cond[_cur_index]);
5827        assert(status == 0, "invariant");
5828      }
5829    } else {
5830      pthread_mutex_unlock(_mutex);
5831      assert(status == 0, "invariant");
5832    }
5833  } else {
5834    pthread_mutex_unlock(_mutex);
5835    assert(status == 0, "invariant");
5836  }
5837}
5838
5839
5840extern char** environ;
5841
5842#ifndef __NR_fork
5843#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5844#endif
5845
5846#ifndef __NR_execve
5847#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5848#endif
5849
5850// Run the specified command in a separate process. Return its exit value,
5851// or -1 on failure (e.g. can't fork a new process).
5852// Unlike system(), this function can be called from signal handler. It
5853// doesn't block SIGINT et al.
5854int os::fork_and_exec(char* cmd) {
5855  const char * argv[4] = {"sh", "-c", cmd, NULL};
5856
5857  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5858  // pthread_atfork handlers and reset pthread library. All we need is a
5859  // separate process to execve. Make a direct syscall to fork process.
5860  // On IA64 there's no fork syscall, we have to use fork() and hope for
5861  // the best...
5862  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5863              IA64_ONLY(fork();)
5864
5865  if (pid < 0) {
5866    // fork failed
5867    return -1;
5868
5869  } else if (pid == 0) {
5870    // child process
5871
5872    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5873    // first to kill every thread on the thread list. Because this list is
5874    // not reset by fork() (see notes above), execve() will instead kill
5875    // every thread in the parent process. We know this is the only thread
5876    // in the new process, so make a system call directly.
5877    // IA64 should use normal execve() from glibc to match the glibc fork()
5878    // above.
5879    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5880    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5881
5882    // execve failed
5883    _exit(-1);
5884
5885  } else  {
5886    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5887    // care about the actual exit code, for now.
5888
5889    int status;
5890
5891    // Wait for the child process to exit.  This returns immediately if
5892    // the child has already exited. */
5893    while (waitpid(pid, &status, 0) < 0) {
5894        switch (errno) {
5895        case ECHILD: return 0;
5896        case EINTR: break;
5897        default: return -1;
5898        }
5899    }
5900
5901    if (WIFEXITED(status)) {
5902       // The child exited normally; get its exit code.
5903       return WEXITSTATUS(status);
5904    } else if (WIFSIGNALED(status)) {
5905       // The child exited because of a signal
5906       // The best value to return is 0x80 + signal number,
5907       // because that is what all Unix shells do, and because
5908       // it allows callers to distinguish between process exit and
5909       // process death by signal.
5910       return 0x80 + WTERMSIG(status);
5911    } else {
5912       // Unknown exit code; pass it through
5913       return status;
5914    }
5915  }
5916}
5917
5918// is_headless_jre()
5919//
5920// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5921// in order to report if we are running in a headless jre
5922//
5923// Since JDK8 xawt/libmawt.so was moved into the same directory
5924// as libawt.so, and renamed libawt_xawt.so
5925//
5926bool os::is_headless_jre() {
5927    struct stat statbuf;
5928    char buf[MAXPATHLEN];
5929    char libmawtpath[MAXPATHLEN];
5930    const char *xawtstr  = "/xawt/libmawt.so";
5931    const char *new_xawtstr = "/libawt_xawt.so";
5932    char *p;
5933
5934    // Get path to libjvm.so
5935    os::jvm_path(buf, sizeof(buf));
5936
5937    // Get rid of libjvm.so
5938    p = strrchr(buf, '/');
5939    if (p == NULL) return false;
5940    else *p = '\0';
5941
5942    // Get rid of client or server
5943    p = strrchr(buf, '/');
5944    if (p == NULL) return false;
5945    else *p = '\0';
5946
5947    // check xawt/libmawt.so
5948    strcpy(libmawtpath, buf);
5949    strcat(libmawtpath, xawtstr);
5950    if (::stat(libmawtpath, &statbuf) == 0) return false;
5951
5952    // check libawt_xawt.so
5953    strcpy(libmawtpath, buf);
5954    strcat(libmawtpath, new_xawtstr);
5955    if (::stat(libmawtpath, &statbuf) == 0) return false;
5956
5957    return true;
5958}
5959
5960// Get the default path to the core file
5961// Returns the length of the string
5962int os::get_core_path(char* buffer, size_t bufferSize) {
5963  const char* p = get_current_directory(buffer, bufferSize);
5964
5965  if (p == NULL) {
5966    assert(p != NULL, "failed to get current directory");
5967    return 0;
5968  }
5969
5970  return strlen(buffer);
5971}
5972
5973#ifdef JAVASE_EMBEDDED
5974//
5975// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5976//
5977MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5978
5979// ctor
5980//
5981MemNotifyThread::MemNotifyThread(int fd): Thread() {
5982  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5983  _fd = fd;
5984
5985  if (os::create_thread(this, os::os_thread)) {
5986    _memnotify_thread = this;
5987    os::set_priority(this, NearMaxPriority);
5988    os::start_thread(this);
5989  }
5990}
5991
5992// Where all the work gets done
5993//
5994void MemNotifyThread::run() {
5995  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5996
5997  // Set up the select arguments
5998  fd_set rfds;
5999  if (_fd != -1) {
6000    FD_ZERO(&rfds);
6001    FD_SET(_fd, &rfds);
6002  }
6003
6004  // Now wait for the mem_notify device to wake up
6005  while (1) {
6006    // Wait for the mem_notify device to signal us..
6007    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6008    if (rc == -1) {
6009      perror("select!\n");
6010      break;
6011    } else if (rc) {
6012      //ssize_t free_before = os::available_memory();
6013      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6014
6015      // The kernel is telling us there is not much memory left...
6016      // try to do something about that
6017
6018      // If we are not already in a GC, try one.
6019      if (!Universe::heap()->is_gc_active()) {
6020        Universe::heap()->collect(GCCause::_allocation_failure);
6021
6022        //ssize_t free_after = os::available_memory();
6023        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6024        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6025      }
6026      // We might want to do something like the following if we find the GC's are not helping...
6027      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6028    }
6029  }
6030}
6031
6032//
6033// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6034//
6035void MemNotifyThread::start() {
6036  int    fd;
6037  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6038  if (fd < 0) {
6039      return;
6040  }
6041
6042  if (memnotify_thread() == NULL) {
6043    new MemNotifyThread(fd);
6044  }
6045}
6046
6047#endif // JAVASE_EMBEDDED
6048
6049
6050/////////////// Unit tests ///////////////
6051
6052#ifndef PRODUCT
6053
6054#define test_log(...) \
6055  do {\
6056    if (VerboseInternalVMTests) { \
6057      tty->print_cr(__VA_ARGS__); \
6058      tty->flush(); \
6059    }\
6060  } while (false)
6061
6062class TestReserveMemorySpecial : AllStatic {
6063 public:
6064  static void small_page_write(void* addr, size_t size) {
6065    size_t page_size = os::vm_page_size();
6066
6067    char* end = (char*)addr + size;
6068    for (char* p = (char*)addr; p < end; p += page_size) {
6069      *p = 1;
6070    }
6071  }
6072
6073  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6074    if (!UseHugeTLBFS) {
6075      return;
6076    }
6077
6078    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6079
6080    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6081
6082    if (addr != NULL) {
6083      small_page_write(addr, size);
6084
6085      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6086    }
6087  }
6088
6089  static void test_reserve_memory_special_huge_tlbfs_only() {
6090    if (!UseHugeTLBFS) {
6091      return;
6092    }
6093
6094    size_t lp = os::large_page_size();
6095
6096    for (size_t size = lp; size <= lp * 10; size += lp) {
6097      test_reserve_memory_special_huge_tlbfs_only(size);
6098    }
6099  }
6100
6101  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6102    if (!UseHugeTLBFS) {
6103        return;
6104    }
6105
6106    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6107        size, alignment);
6108
6109    assert(size >= os::large_page_size(), "Incorrect input to test");
6110
6111    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6112
6113    if (addr != NULL) {
6114      small_page_write(addr, size);
6115
6116      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6117    }
6118  }
6119
6120  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6121    size_t lp = os::large_page_size();
6122    size_t ag = os::vm_allocation_granularity();
6123
6124    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6125      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6126    }
6127  }
6128
6129  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6130    size_t lp = os::large_page_size();
6131    size_t ag = os::vm_allocation_granularity();
6132
6133    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6134    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6135    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6136    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6137    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6138    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6139    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6140    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6141    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6142  }
6143
6144  static void test_reserve_memory_special_huge_tlbfs() {
6145    if (!UseHugeTLBFS) {
6146      return;
6147    }
6148
6149    test_reserve_memory_special_huge_tlbfs_only();
6150    test_reserve_memory_special_huge_tlbfs_mixed();
6151  }
6152
6153  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6154    if (!UseSHM) {
6155      return;
6156    }
6157
6158    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6159
6160    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6161
6162    if (addr != NULL) {
6163      assert(is_ptr_aligned(addr, alignment), "Check");
6164      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6165
6166      small_page_write(addr, size);
6167
6168      os::Linux::release_memory_special_shm(addr, size);
6169    }
6170  }
6171
6172  static void test_reserve_memory_special_shm() {
6173    size_t lp = os::large_page_size();
6174    size_t ag = os::vm_allocation_granularity();
6175
6176    for (size_t size = ag; size < lp * 3; size += ag) {
6177      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6178        test_reserve_memory_special_shm(size, alignment);
6179      }
6180    }
6181  }
6182
6183  static void test() {
6184    test_reserve_memory_special_huge_tlbfs();
6185    test_reserve_memory_special_shm();
6186  }
6187};
6188
6189void TestReserveMemorySpecial_test() {
6190  TestReserveMemorySpecial::test();
6191}
6192
6193#endif
6194