os_linux.cpp revision 6270:12a20d0319fa
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
105// getrusage() is prepared to handle the associated failure.
106#ifndef RUSAGE_THREAD
107#define RUSAGE_THREAD   (1)               /* only the calling thread */
108#endif
109
110#define MAX_PATH    (2 * K)
111
112#define MAX_SECS 100000000
113
114// for timer info max values which include all bits
115#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
116
117#define LARGEPAGES_BIT (1 << 6)
118////////////////////////////////////////////////////////////////////////////////
119// global variables
120julong os::Linux::_physical_memory = 0;
121
122address   os::Linux::_initial_thread_stack_bottom = NULL;
123uintptr_t os::Linux::_initial_thread_stack_size   = 0;
124
125int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
126int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
127Mutex* os::Linux::_createThread_lock = NULL;
128pthread_t os::Linux::_main_thread;
129int os::Linux::_page_size = -1;
130const int os::Linux::_vm_default_page_size = (8 * K);
131bool os::Linux::_is_floating_stack = false;
132bool os::Linux::_is_NPTL = false;
133bool os::Linux::_supports_fast_thread_cpu_time = false;
134const char * os::Linux::_glibc_version = NULL;
135const char * os::Linux::_libpthread_version = NULL;
136pthread_condattr_t os::Linux::_condattr[1];
137
138static jlong initial_time_count=0;
139
140static int clock_tics_per_sec = 100;
141
142// For diagnostics to print a message once. see run_periodic_checks
143static sigset_t check_signal_done;
144static bool check_signals = true;
145
146static pid_t _initial_pid = 0;
147
148/* Signal number used to suspend/resume a thread */
149
150/* do not use any signal number less than SIGSEGV, see 4355769 */
151static int SR_signum = SIGUSR2;
152sigset_t SR_sigset;
153
154/* Used to protect dlsym() calls */
155static pthread_mutex_t dl_mutex;
156
157// Declarations
158static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
159
160#ifdef JAVASE_EMBEDDED
161class MemNotifyThread: public Thread {
162  friend class VMStructs;
163 public:
164  virtual void run();
165
166 private:
167  static MemNotifyThread* _memnotify_thread;
168  int _fd;
169
170 public:
171
172  // Constructor
173  MemNotifyThread(int fd);
174
175  // Tester
176  bool is_memnotify_thread() const { return true; }
177
178  // Printing
179  char* name() const { return (char*)"Linux MemNotify Thread"; }
180
181  // Returns the single instance of the MemNotifyThread
182  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
183
184  // Create and start the single instance of MemNotifyThread
185  static void start();
186};
187#endif // JAVASE_EMBEDDED
188
189// utility functions
190
191static int SR_initialize();
192
193julong os::available_memory() {
194  return Linux::available_memory();
195}
196
197julong os::Linux::available_memory() {
198  // values in struct sysinfo are "unsigned long"
199  struct sysinfo si;
200  sysinfo(&si);
201
202  return (julong)si.freeram * si.mem_unit;
203}
204
205julong os::physical_memory() {
206  return Linux::physical_memory();
207}
208
209////////////////////////////////////////////////////////////////////////////////
210// environment support
211
212bool os::getenv(const char* name, char* buf, int len) {
213  const char* val = ::getenv(name);
214  if (val != NULL && strlen(val) < (size_t)len) {
215    strcpy(buf, val);
216    return true;
217  }
218  if (len > 0) buf[0] = 0;  // return a null string
219  return false;
220}
221
222
223// Return true if user is running as root.
224
225bool os::have_special_privileges() {
226  static bool init = false;
227  static bool privileges = false;
228  if (!init) {
229    privileges = (getuid() != geteuid()) || (getgid() != getegid());
230    init = true;
231  }
232  return privileges;
233}
234
235
236#ifndef SYS_gettid
237// i386: 224, ia64: 1105, amd64: 186, sparc 143
238#ifdef __ia64__
239#define SYS_gettid 1105
240#elif __i386__
241#define SYS_gettid 224
242#elif __amd64__
243#define SYS_gettid 186
244#elif __sparc__
245#define SYS_gettid 143
246#else
247#error define gettid for the arch
248#endif
249#endif
250
251// Cpu architecture string
252#if   defined(ZERO)
253static char cpu_arch[] = ZERO_LIBARCH;
254#elif defined(IA64)
255static char cpu_arch[] = "ia64";
256#elif defined(IA32)
257static char cpu_arch[] = "i386";
258#elif defined(AMD64)
259static char cpu_arch[] = "amd64";
260#elif defined(ARM)
261static char cpu_arch[] = "arm";
262#elif defined(PPC32)
263static char cpu_arch[] = "ppc";
264#elif defined(PPC64)
265static char cpu_arch[] = "ppc64";
266#elif defined(SPARC)
267#  ifdef _LP64
268static char cpu_arch[] = "sparcv9";
269#  else
270static char cpu_arch[] = "sparc";
271#  endif
272#else
273#error Add appropriate cpu_arch setting
274#endif
275
276
277// pid_t gettid()
278//
279// Returns the kernel thread id of the currently running thread. Kernel
280// thread id is used to access /proc.
281//
282// (Note that getpid() on LinuxThreads returns kernel thread id too; but
283// on NPTL, it returns the same pid for all threads, as required by POSIX.)
284//
285pid_t os::Linux::gettid() {
286  int rslt = syscall(SYS_gettid);
287  if (rslt == -1) {
288     // old kernel, no NPTL support
289     return getpid();
290  } else {
291     return (pid_t)rslt;
292  }
293}
294
295// Most versions of linux have a bug where the number of processors are
296// determined by looking at the /proc file system.  In a chroot environment,
297// the system call returns 1.  This causes the VM to act as if it is
298// a single processor and elide locking (see is_MP() call).
299static bool unsafe_chroot_detected = false;
300static const char *unstable_chroot_error = "/proc file system not found.\n"
301                     "Java may be unstable running multithreaded in a chroot "
302                     "environment on Linux when /proc filesystem is not mounted.";
303
304void os::Linux::initialize_system_info() {
305  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
306  if (processor_count() == 1) {
307    pid_t pid = os::Linux::gettid();
308    char fname[32];
309    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
310    FILE *fp = fopen(fname, "r");
311    if (fp == NULL) {
312      unsafe_chroot_detected = true;
313    } else {
314      fclose(fp);
315    }
316  }
317  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
318  assert(processor_count() > 0, "linux error");
319}
320
321void os::init_system_properties_values() {
322  // The next steps are taken in the product version:
323  //
324  // Obtain the JAVA_HOME value from the location of libjvm.so.
325  // This library should be located at:
326  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
327  //
328  // If "/jre/lib/" appears at the right place in the path, then we
329  // assume libjvm.so is installed in a JDK and we use this path.
330  //
331  // Otherwise exit with message: "Could not create the Java virtual machine."
332  //
333  // The following extra steps are taken in the debugging version:
334  //
335  // If "/jre/lib/" does NOT appear at the right place in the path
336  // instead of exit check for $JAVA_HOME environment variable.
337  //
338  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
339  // then we append a fake suffix "hotspot/libjvm.so" to this path so
340  // it looks like libjvm.so is installed there
341  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
342  //
343  // Otherwise exit.
344  //
345  // Important note: if the location of libjvm.so changes this
346  // code needs to be changed accordingly.
347
348// See ld(1):
349//      The linker uses the following search paths to locate required
350//      shared libraries:
351//        1: ...
352//        ...
353//        7: The default directories, normally /lib and /usr/lib.
354#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
355#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
356#else
357#define DEFAULT_LIBPATH "/lib:/usr/lib"
358#endif
359
360// Base path of extensions installed on the system.
361#define SYS_EXT_DIR     "/usr/java/packages"
362#define EXTENSIONS_DIR  "/lib/ext"
363#define ENDORSED_DIR    "/lib/endorsed"
364
365  // Buffer that fits several sprintfs.
366  // Note that the space for the colon and the trailing null are provided
367  // by the nulls included by the sizeof operator.
368  const size_t bufsize =
369    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
370         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
371         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
372  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
373
374  // sysclasspath, java_home, dll_dir
375  {
376    char *pslash;
377    os::jvm_path(buf, bufsize);
378
379    // Found the full path to libjvm.so.
380    // Now cut the path to <java_home>/jre if we can.
381    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
382    pslash = strrchr(buf, '/');
383    if (pslash != NULL) {
384      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
385    }
386    Arguments::set_dll_dir(buf);
387
388    if (pslash != NULL) {
389      pslash = strrchr(buf, '/');
390      if (pslash != NULL) {
391        *pslash = '\0';          // Get rid of /<arch>.
392        pslash = strrchr(buf, '/');
393        if (pslash != NULL) {
394          *pslash = '\0';        // Get rid of /lib.
395        }
396      }
397    }
398    Arguments::set_java_home(buf);
399    set_boot_path('/', ':');
400  }
401
402  // Where to look for native libraries.
403  //
404  // Note: Due to a legacy implementation, most of the library path
405  // is set in the launcher. This was to accomodate linking restrictions
406  // on legacy Linux implementations (which are no longer supported).
407  // Eventually, all the library path setting will be done here.
408  //
409  // However, to prevent the proliferation of improperly built native
410  // libraries, the new path component /usr/java/packages is added here.
411  // Eventually, all the library path setting will be done here.
412  {
413    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
414    // should always exist (until the legacy problem cited above is
415    // addressed).
416    const char *v = ::getenv("LD_LIBRARY_PATH");
417    const char *v_colon = ":";
418    if (v == NULL) { v = ""; v_colon = ""; }
419    // That's +1 for the colon and +1 for the trailing '\0'.
420    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
421                                                     strlen(v) + 1 +
422                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
423                                                     mtInternal);
424    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
425    Arguments::set_library_path(ld_library_path);
426    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
427  }
428
429  // Extensions directories.
430  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
431  Arguments::set_ext_dirs(buf);
432
433  // Endorsed standards default directory.
434  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
435  Arguments::set_endorsed_dirs(buf);
436
437  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
438
439#undef DEFAULT_LIBPATH
440#undef SYS_EXT_DIR
441#undef EXTENSIONS_DIR
442#undef ENDORSED_DIR
443}
444
445////////////////////////////////////////////////////////////////////////////////
446// breakpoint support
447
448void os::breakpoint() {
449  BREAKPOINT;
450}
451
452extern "C" void breakpoint() {
453  // use debugger to set breakpoint here
454}
455
456////////////////////////////////////////////////////////////////////////////////
457// signal support
458
459debug_only(static bool signal_sets_initialized = false);
460static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
461
462bool os::Linux::is_sig_ignored(int sig) {
463      struct sigaction oact;
464      sigaction(sig, (struct sigaction*)NULL, &oact);
465      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
466                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
467      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
468           return true;
469      else
470           return false;
471}
472
473void os::Linux::signal_sets_init() {
474  // Should also have an assertion stating we are still single-threaded.
475  assert(!signal_sets_initialized, "Already initialized");
476  // Fill in signals that are necessarily unblocked for all threads in
477  // the VM. Currently, we unblock the following signals:
478  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
479  //                         by -Xrs (=ReduceSignalUsage));
480  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
481  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
482  // the dispositions or masks wrt these signals.
483  // Programs embedding the VM that want to use the above signals for their
484  // own purposes must, at this time, use the "-Xrs" option to prevent
485  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
486  // (See bug 4345157, and other related bugs).
487  // In reality, though, unblocking these signals is really a nop, since
488  // these signals are not blocked by default.
489  sigemptyset(&unblocked_sigs);
490  sigemptyset(&allowdebug_blocked_sigs);
491  sigaddset(&unblocked_sigs, SIGILL);
492  sigaddset(&unblocked_sigs, SIGSEGV);
493  sigaddset(&unblocked_sigs, SIGBUS);
494  sigaddset(&unblocked_sigs, SIGFPE);
495#if defined(PPC64)
496  sigaddset(&unblocked_sigs, SIGTRAP);
497#endif
498  sigaddset(&unblocked_sigs, SR_signum);
499
500  if (!ReduceSignalUsage) {
501   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
502      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
503      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
504   }
505   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
506      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
507      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
508   }
509   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
510      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
511      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
512   }
513  }
514  // Fill in signals that are blocked by all but the VM thread.
515  sigemptyset(&vm_sigs);
516  if (!ReduceSignalUsage)
517    sigaddset(&vm_sigs, BREAK_SIGNAL);
518  debug_only(signal_sets_initialized = true);
519
520}
521
522// These are signals that are unblocked while a thread is running Java.
523// (For some reason, they get blocked by default.)
524sigset_t* os::Linux::unblocked_signals() {
525  assert(signal_sets_initialized, "Not initialized");
526  return &unblocked_sigs;
527}
528
529// These are the signals that are blocked while a (non-VM) thread is
530// running Java. Only the VM thread handles these signals.
531sigset_t* os::Linux::vm_signals() {
532  assert(signal_sets_initialized, "Not initialized");
533  return &vm_sigs;
534}
535
536// These are signals that are blocked during cond_wait to allow debugger in
537sigset_t* os::Linux::allowdebug_blocked_signals() {
538  assert(signal_sets_initialized, "Not initialized");
539  return &allowdebug_blocked_sigs;
540}
541
542void os::Linux::hotspot_sigmask(Thread* thread) {
543
544  //Save caller's signal mask before setting VM signal mask
545  sigset_t caller_sigmask;
546  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
547
548  OSThread* osthread = thread->osthread();
549  osthread->set_caller_sigmask(caller_sigmask);
550
551  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
552
553  if (!ReduceSignalUsage) {
554    if (thread->is_VM_thread()) {
555      // Only the VM thread handles BREAK_SIGNAL ...
556      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
557    } else {
558      // ... all other threads block BREAK_SIGNAL
559      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
560    }
561  }
562}
563
564//////////////////////////////////////////////////////////////////////////////
565// detecting pthread library
566
567void os::Linux::libpthread_init() {
568  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
569  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
570  // generic name for earlier versions.
571  // Define macros here so we can build HotSpot on old systems.
572# ifndef _CS_GNU_LIBC_VERSION
573# define _CS_GNU_LIBC_VERSION 2
574# endif
575# ifndef _CS_GNU_LIBPTHREAD_VERSION
576# define _CS_GNU_LIBPTHREAD_VERSION 3
577# endif
578
579  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
580  if (n > 0) {
581     char *str = (char *)malloc(n, mtInternal);
582     confstr(_CS_GNU_LIBC_VERSION, str, n);
583     os::Linux::set_glibc_version(str);
584  } else {
585     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
586     static char _gnu_libc_version[32];
587     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
588              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
589     os::Linux::set_glibc_version(_gnu_libc_version);
590  }
591
592  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
593  if (n > 0) {
594     char *str = (char *)malloc(n, mtInternal);
595     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
596     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
597     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
598     // is the case. LinuxThreads has a hard limit on max number of threads.
599     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
600     // On the other hand, NPTL does not have such a limit, sysconf()
601     // will return -1 and errno is not changed. Check if it is really NPTL.
602     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
603         strstr(str, "NPTL") &&
604         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
605       free(str);
606       os::Linux::set_libpthread_version("linuxthreads");
607     } else {
608       os::Linux::set_libpthread_version(str);
609     }
610  } else {
611    // glibc before 2.3.2 only has LinuxThreads.
612    os::Linux::set_libpthread_version("linuxthreads");
613  }
614
615  if (strstr(libpthread_version(), "NPTL")) {
616     os::Linux::set_is_NPTL();
617  } else {
618     os::Linux::set_is_LinuxThreads();
619  }
620
621  // LinuxThreads have two flavors: floating-stack mode, which allows variable
622  // stack size; and fixed-stack mode. NPTL is always floating-stack.
623  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
624     os::Linux::set_is_floating_stack();
625  }
626}
627
628/////////////////////////////////////////////////////////////////////////////
629// thread stack
630
631// Force Linux kernel to expand current thread stack. If "bottom" is close
632// to the stack guard, caller should block all signals.
633//
634// MAP_GROWSDOWN:
635//   A special mmap() flag that is used to implement thread stacks. It tells
636//   kernel that the memory region should extend downwards when needed. This
637//   allows early versions of LinuxThreads to only mmap the first few pages
638//   when creating a new thread. Linux kernel will automatically expand thread
639//   stack as needed (on page faults).
640//
641//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
642//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
643//   region, it's hard to tell if the fault is due to a legitimate stack
644//   access or because of reading/writing non-exist memory (e.g. buffer
645//   overrun). As a rule, if the fault happens below current stack pointer,
646//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
647//   application (see Linux kernel fault.c).
648//
649//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
650//   stack overflow detection.
651//
652//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
653//   not use this flag. However, the stack of initial thread is not created
654//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
655//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
656//   and then attach the thread to JVM.
657//
658// To get around the problem and allow stack banging on Linux, we need to
659// manually expand thread stack after receiving the SIGSEGV.
660//
661// There are two ways to expand thread stack to address "bottom", we used
662// both of them in JVM before 1.5:
663//   1. adjust stack pointer first so that it is below "bottom", and then
664//      touch "bottom"
665//   2. mmap() the page in question
666//
667// Now alternate signal stack is gone, it's harder to use 2. For instance,
668// if current sp is already near the lower end of page 101, and we need to
669// call mmap() to map page 100, it is possible that part of the mmap() frame
670// will be placed in page 100. When page 100 is mapped, it is zero-filled.
671// That will destroy the mmap() frame and cause VM to crash.
672//
673// The following code works by adjusting sp first, then accessing the "bottom"
674// page to force a page fault. Linux kernel will then automatically expand the
675// stack mapping.
676//
677// _expand_stack_to() assumes its frame size is less than page size, which
678// should always be true if the function is not inlined.
679
680#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
681#define NOINLINE
682#else
683#define NOINLINE __attribute__ ((noinline))
684#endif
685
686static void _expand_stack_to(address bottom) NOINLINE;
687
688static void _expand_stack_to(address bottom) {
689  address sp;
690  size_t size;
691  volatile char *p;
692
693  // Adjust bottom to point to the largest address within the same page, it
694  // gives us a one-page buffer if alloca() allocates slightly more memory.
695  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
696  bottom += os::Linux::page_size() - 1;
697
698  // sp might be slightly above current stack pointer; if that's the case, we
699  // will alloca() a little more space than necessary, which is OK. Don't use
700  // os::current_stack_pointer(), as its result can be slightly below current
701  // stack pointer, causing us to not alloca enough to reach "bottom".
702  sp = (address)&sp;
703
704  if (sp > bottom) {
705    size = sp - bottom;
706    p = (volatile char *)alloca(size);
707    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
708    p[0] = '\0';
709  }
710}
711
712bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
713  assert(t!=NULL, "just checking");
714  assert(t->osthread()->expanding_stack(), "expand should be set");
715  assert(t->stack_base() != NULL, "stack_base was not initialized");
716
717  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
718    sigset_t mask_all, old_sigset;
719    sigfillset(&mask_all);
720    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
721    _expand_stack_to(addr);
722    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
723    return true;
724  }
725  return false;
726}
727
728//////////////////////////////////////////////////////////////////////////////
729// create new thread
730
731static address highest_vm_reserved_address();
732
733// check if it's safe to start a new thread
734static bool _thread_safety_check(Thread* thread) {
735  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
736    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
737    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
738    //   allocated (MAP_FIXED) from high address space. Every thread stack
739    //   occupies a fixed size slot (usually 2Mbytes, but user can change
740    //   it to other values if they rebuild LinuxThreads).
741    //
742    // Problem with MAP_FIXED is that mmap() can still succeed even part of
743    // the memory region has already been mmap'ed. That means if we have too
744    // many threads and/or very large heap, eventually thread stack will
745    // collide with heap.
746    //
747    // Here we try to prevent heap/stack collision by comparing current
748    // stack bottom with the highest address that has been mmap'ed by JVM
749    // plus a safety margin for memory maps created by native code.
750    //
751    // This feature can be disabled by setting ThreadSafetyMargin to 0
752    //
753    if (ThreadSafetyMargin > 0) {
754      address stack_bottom = os::current_stack_base() - os::current_stack_size();
755
756      // not safe if our stack extends below the safety margin
757      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
758    } else {
759      return true;
760    }
761  } else {
762    // Floating stack LinuxThreads or NPTL:
763    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
764    //   there's not enough space left, pthread_create() will fail. If we come
765    //   here, that means enough space has been reserved for stack.
766    return true;
767  }
768}
769
770// Thread start routine for all newly created threads
771static void *java_start(Thread *thread) {
772  // Try to randomize the cache line index of hot stack frames.
773  // This helps when threads of the same stack traces evict each other's
774  // cache lines. The threads can be either from the same JVM instance, or
775  // from different JVM instances. The benefit is especially true for
776  // processors with hyperthreading technology.
777  static int counter = 0;
778  int pid = os::current_process_id();
779  alloca(((pid ^ counter++) & 7) * 128);
780
781  ThreadLocalStorage::set_thread(thread);
782
783  OSThread* osthread = thread->osthread();
784  Monitor* sync = osthread->startThread_lock();
785
786  // non floating stack LinuxThreads needs extra check, see above
787  if (!_thread_safety_check(thread)) {
788    // notify parent thread
789    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
790    osthread->set_state(ZOMBIE);
791    sync->notify_all();
792    return NULL;
793  }
794
795  // thread_id is kernel thread id (similar to Solaris LWP id)
796  osthread->set_thread_id(os::Linux::gettid());
797
798  if (UseNUMA) {
799    int lgrp_id = os::numa_get_group_id();
800    if (lgrp_id != -1) {
801      thread->set_lgrp_id(lgrp_id);
802    }
803  }
804  // initialize signal mask for this thread
805  os::Linux::hotspot_sigmask(thread);
806
807  // initialize floating point control register
808  os::Linux::init_thread_fpu_state();
809
810  // handshaking with parent thread
811  {
812    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
813
814    // notify parent thread
815    osthread->set_state(INITIALIZED);
816    sync->notify_all();
817
818    // wait until os::start_thread()
819    while (osthread->get_state() == INITIALIZED) {
820      sync->wait(Mutex::_no_safepoint_check_flag);
821    }
822  }
823
824  // call one more level start routine
825  thread->run();
826
827  return 0;
828}
829
830bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
831  assert(thread->osthread() == NULL, "caller responsible");
832
833  // Allocate the OSThread object
834  OSThread* osthread = new OSThread(NULL, NULL);
835  if (osthread == NULL) {
836    return false;
837  }
838
839  // set the correct thread state
840  osthread->set_thread_type(thr_type);
841
842  // Initial state is ALLOCATED but not INITIALIZED
843  osthread->set_state(ALLOCATED);
844
845  thread->set_osthread(osthread);
846
847  // init thread attributes
848  pthread_attr_t attr;
849  pthread_attr_init(&attr);
850  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
851
852  // stack size
853  if (os::Linux::supports_variable_stack_size()) {
854    // calculate stack size if it's not specified by caller
855    if (stack_size == 0) {
856      stack_size = os::Linux::default_stack_size(thr_type);
857
858      switch (thr_type) {
859      case os::java_thread:
860        // Java threads use ThreadStackSize which default value can be
861        // changed with the flag -Xss
862        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
863        stack_size = JavaThread::stack_size_at_create();
864        break;
865      case os::compiler_thread:
866        if (CompilerThreadStackSize > 0) {
867          stack_size = (size_t)(CompilerThreadStackSize * K);
868          break;
869        } // else fall through:
870          // use VMThreadStackSize if CompilerThreadStackSize is not defined
871      case os::vm_thread:
872      case os::pgc_thread:
873      case os::cgc_thread:
874      case os::watcher_thread:
875        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
876        break;
877      }
878    }
879
880    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
881    pthread_attr_setstacksize(&attr, stack_size);
882  } else {
883    // let pthread_create() pick the default value.
884  }
885
886  // glibc guard page
887  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
888
889  ThreadState state;
890
891  {
892    // Serialize thread creation if we are running with fixed stack LinuxThreads
893    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
894    if (lock) {
895      os::Linux::createThread_lock()->lock_without_safepoint_check();
896    }
897
898    pthread_t tid;
899    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
900
901    pthread_attr_destroy(&attr);
902
903    if (ret != 0) {
904      if (PrintMiscellaneous && (Verbose || WizardMode)) {
905        perror("pthread_create()");
906      }
907      // Need to clean up stuff we've allocated so far
908      thread->set_osthread(NULL);
909      delete osthread;
910      if (lock) os::Linux::createThread_lock()->unlock();
911      return false;
912    }
913
914    // Store pthread info into the OSThread
915    osthread->set_pthread_id(tid);
916
917    // Wait until child thread is either initialized or aborted
918    {
919      Monitor* sync_with_child = osthread->startThread_lock();
920      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
921      while ((state = osthread->get_state()) == ALLOCATED) {
922        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
923      }
924    }
925
926    if (lock) {
927      os::Linux::createThread_lock()->unlock();
928    }
929  }
930
931  // Aborted due to thread limit being reached
932  if (state == ZOMBIE) {
933      thread->set_osthread(NULL);
934      delete osthread;
935      return false;
936  }
937
938  // The thread is returned suspended (in state INITIALIZED),
939  // and is started higher up in the call chain
940  assert(state == INITIALIZED, "race condition");
941  return true;
942}
943
944/////////////////////////////////////////////////////////////////////////////
945// attach existing thread
946
947// bootstrap the main thread
948bool os::create_main_thread(JavaThread* thread) {
949  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
950  return create_attached_thread(thread);
951}
952
953bool os::create_attached_thread(JavaThread* thread) {
954#ifdef ASSERT
955    thread->verify_not_published();
956#endif
957
958  // Allocate the OSThread object
959  OSThread* osthread = new OSThread(NULL, NULL);
960
961  if (osthread == NULL) {
962    return false;
963  }
964
965  // Store pthread info into the OSThread
966  osthread->set_thread_id(os::Linux::gettid());
967  osthread->set_pthread_id(::pthread_self());
968
969  // initialize floating point control register
970  os::Linux::init_thread_fpu_state();
971
972  // Initial thread state is RUNNABLE
973  osthread->set_state(RUNNABLE);
974
975  thread->set_osthread(osthread);
976
977  if (UseNUMA) {
978    int lgrp_id = os::numa_get_group_id();
979    if (lgrp_id != -1) {
980      thread->set_lgrp_id(lgrp_id);
981    }
982  }
983
984  if (os::Linux::is_initial_thread()) {
985    // If current thread is initial thread, its stack is mapped on demand,
986    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
987    // the entire stack region to avoid SEGV in stack banging.
988    // It is also useful to get around the heap-stack-gap problem on SuSE
989    // kernel (see 4821821 for details). We first expand stack to the top
990    // of yellow zone, then enable stack yellow zone (order is significant,
991    // enabling yellow zone first will crash JVM on SuSE Linux), so there
992    // is no gap between the last two virtual memory regions.
993
994    JavaThread *jt = (JavaThread *)thread;
995    address addr = jt->stack_yellow_zone_base();
996    assert(addr != NULL, "initialization problem?");
997    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
998
999    osthread->set_expanding_stack();
1000    os::Linux::manually_expand_stack(jt, addr);
1001    osthread->clear_expanding_stack();
1002  }
1003
1004  // initialize signal mask for this thread
1005  // and save the caller's signal mask
1006  os::Linux::hotspot_sigmask(thread);
1007
1008  return true;
1009}
1010
1011void os::pd_start_thread(Thread* thread) {
1012  OSThread * osthread = thread->osthread();
1013  assert(osthread->get_state() != INITIALIZED, "just checking");
1014  Monitor* sync_with_child = osthread->startThread_lock();
1015  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1016  sync_with_child->notify();
1017}
1018
1019// Free Linux resources related to the OSThread
1020void os::free_thread(OSThread* osthread) {
1021  assert(osthread != NULL, "osthread not set");
1022
1023  if (Thread::current()->osthread() == osthread) {
1024    // Restore caller's signal mask
1025    sigset_t sigmask = osthread->caller_sigmask();
1026    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1027   }
1028
1029  delete osthread;
1030}
1031
1032//////////////////////////////////////////////////////////////////////////////
1033// thread local storage
1034
1035// Restore the thread pointer if the destructor is called. This is in case
1036// someone from JNI code sets up a destructor with pthread_key_create to run
1037// detachCurrentThread on thread death. Unless we restore the thread pointer we
1038// will hang or crash. When detachCurrentThread is called the key will be set
1039// to null and we will not be called again. If detachCurrentThread is never
1040// called we could loop forever depending on the pthread implementation.
1041static void restore_thread_pointer(void* p) {
1042  Thread* thread = (Thread*) p;
1043  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1044}
1045
1046int os::allocate_thread_local_storage() {
1047  pthread_key_t key;
1048  int rslt = pthread_key_create(&key, restore_thread_pointer);
1049  assert(rslt == 0, "cannot allocate thread local storage");
1050  return (int)key;
1051}
1052
1053// Note: This is currently not used by VM, as we don't destroy TLS key
1054// on VM exit.
1055void os::free_thread_local_storage(int index) {
1056  int rslt = pthread_key_delete((pthread_key_t)index);
1057  assert(rslt == 0, "invalid index");
1058}
1059
1060void os::thread_local_storage_at_put(int index, void* value) {
1061  int rslt = pthread_setspecific((pthread_key_t)index, value);
1062  assert(rslt == 0, "pthread_setspecific failed");
1063}
1064
1065extern "C" Thread* get_thread() {
1066  return ThreadLocalStorage::thread();
1067}
1068
1069//////////////////////////////////////////////////////////////////////////////
1070// initial thread
1071
1072// Check if current thread is the initial thread, similar to Solaris thr_main.
1073bool os::Linux::is_initial_thread(void) {
1074  char dummy;
1075  // If called before init complete, thread stack bottom will be null.
1076  // Can be called if fatal error occurs before initialization.
1077  if (initial_thread_stack_bottom() == NULL) return false;
1078  assert(initial_thread_stack_bottom() != NULL &&
1079         initial_thread_stack_size()   != 0,
1080         "os::init did not locate initial thread's stack region");
1081  if ((address)&dummy >= initial_thread_stack_bottom() &&
1082      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1083       return true;
1084  else return false;
1085}
1086
1087// Find the virtual memory area that contains addr
1088static bool find_vma(address addr, address* vma_low, address* vma_high) {
1089  FILE *fp = fopen("/proc/self/maps", "r");
1090  if (fp) {
1091    address low, high;
1092    while (!feof(fp)) {
1093      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1094        if (low <= addr && addr < high) {
1095           if (vma_low)  *vma_low  = low;
1096           if (vma_high) *vma_high = high;
1097           fclose (fp);
1098           return true;
1099        }
1100      }
1101      for (;;) {
1102        int ch = fgetc(fp);
1103        if (ch == EOF || ch == (int)'\n') break;
1104      }
1105    }
1106    fclose(fp);
1107  }
1108  return false;
1109}
1110
1111// Locate initial thread stack. This special handling of initial thread stack
1112// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1113// bogus value for initial thread.
1114void os::Linux::capture_initial_stack(size_t max_size) {
1115  // stack size is the easy part, get it from RLIMIT_STACK
1116  size_t stack_size;
1117  struct rlimit rlim;
1118  getrlimit(RLIMIT_STACK, &rlim);
1119  stack_size = rlim.rlim_cur;
1120
1121  // 6308388: a bug in ld.so will relocate its own .data section to the
1122  //   lower end of primordial stack; reduce ulimit -s value a little bit
1123  //   so we won't install guard page on ld.so's data section.
1124  stack_size -= 2 * page_size();
1125
1126  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1127  //   7.1, in both cases we will get 2G in return value.
1128  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1129  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1130  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1131  //   in case other parts in glibc still assumes 2M max stack size.
1132  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1133  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1134  if (stack_size > 2 * K * K IA64_ONLY(*2))
1135      stack_size = 2 * K * K IA64_ONLY(*2);
1136  // Try to figure out where the stack base (top) is. This is harder.
1137  //
1138  // When an application is started, glibc saves the initial stack pointer in
1139  // a global variable "__libc_stack_end", which is then used by system
1140  // libraries. __libc_stack_end should be pretty close to stack top. The
1141  // variable is available since the very early days. However, because it is
1142  // a private interface, it could disappear in the future.
1143  //
1144  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1145  // to __libc_stack_end, it is very close to stack top, but isn't the real
1146  // stack top. Note that /proc may not exist if VM is running as a chroot
1147  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1148  // /proc/<pid>/stat could change in the future (though unlikely).
1149  //
1150  // We try __libc_stack_end first. If that doesn't work, look for
1151  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1152  // as a hint, which should work well in most cases.
1153
1154  uintptr_t stack_start;
1155
1156  // try __libc_stack_end first
1157  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1158  if (p && *p) {
1159    stack_start = *p;
1160  } else {
1161    // see if we can get the start_stack field from /proc/self/stat
1162    FILE *fp;
1163    int pid;
1164    char state;
1165    int ppid;
1166    int pgrp;
1167    int session;
1168    int nr;
1169    int tpgrp;
1170    unsigned long flags;
1171    unsigned long minflt;
1172    unsigned long cminflt;
1173    unsigned long majflt;
1174    unsigned long cmajflt;
1175    unsigned long utime;
1176    unsigned long stime;
1177    long cutime;
1178    long cstime;
1179    long prio;
1180    long nice;
1181    long junk;
1182    long it_real;
1183    uintptr_t start;
1184    uintptr_t vsize;
1185    intptr_t rss;
1186    uintptr_t rsslim;
1187    uintptr_t scodes;
1188    uintptr_t ecode;
1189    int i;
1190
1191    // Figure what the primordial thread stack base is. Code is inspired
1192    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1193    // followed by command name surrounded by parentheses, state, etc.
1194    char stat[2048];
1195    int statlen;
1196
1197    fp = fopen("/proc/self/stat", "r");
1198    if (fp) {
1199      statlen = fread(stat, 1, 2047, fp);
1200      stat[statlen] = '\0';
1201      fclose(fp);
1202
1203      // Skip pid and the command string. Note that we could be dealing with
1204      // weird command names, e.g. user could decide to rename java launcher
1205      // to "java 1.4.2 :)", then the stat file would look like
1206      //                1234 (java 1.4.2 :)) R ... ...
1207      // We don't really need to know the command string, just find the last
1208      // occurrence of ")" and then start parsing from there. See bug 4726580.
1209      char * s = strrchr(stat, ')');
1210
1211      i = 0;
1212      if (s) {
1213        // Skip blank chars
1214        do s++; while (isspace(*s));
1215
1216#define _UFM UINTX_FORMAT
1217#define _DFM INTX_FORMAT
1218
1219        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1220        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1221        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1222             &state,          /* 3  %c  */
1223             &ppid,           /* 4  %d  */
1224             &pgrp,           /* 5  %d  */
1225             &session,        /* 6  %d  */
1226             &nr,             /* 7  %d  */
1227             &tpgrp,          /* 8  %d  */
1228             &flags,          /* 9  %lu  */
1229             &minflt,         /* 10 %lu  */
1230             &cminflt,        /* 11 %lu  */
1231             &majflt,         /* 12 %lu  */
1232             &cmajflt,        /* 13 %lu  */
1233             &utime,          /* 14 %lu  */
1234             &stime,          /* 15 %lu  */
1235             &cutime,         /* 16 %ld  */
1236             &cstime,         /* 17 %ld  */
1237             &prio,           /* 18 %ld  */
1238             &nice,           /* 19 %ld  */
1239             &junk,           /* 20 %ld  */
1240             &it_real,        /* 21 %ld  */
1241             &start,          /* 22 UINTX_FORMAT */
1242             &vsize,          /* 23 UINTX_FORMAT */
1243             &rss,            /* 24 INTX_FORMAT  */
1244             &rsslim,         /* 25 UINTX_FORMAT */
1245             &scodes,         /* 26 UINTX_FORMAT */
1246             &ecode,          /* 27 UINTX_FORMAT */
1247             &stack_start);   /* 28 UINTX_FORMAT */
1248      }
1249
1250#undef _UFM
1251#undef _DFM
1252
1253      if (i != 28 - 2) {
1254         assert(false, "Bad conversion from /proc/self/stat");
1255         // product mode - assume we are the initial thread, good luck in the
1256         // embedded case.
1257         warning("Can't detect initial thread stack location - bad conversion");
1258         stack_start = (uintptr_t) &rlim;
1259      }
1260    } else {
1261      // For some reason we can't open /proc/self/stat (for example, running on
1262      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1263      // most cases, so don't abort:
1264      warning("Can't detect initial thread stack location - no /proc/self/stat");
1265      stack_start = (uintptr_t) &rlim;
1266    }
1267  }
1268
1269  // Now we have a pointer (stack_start) very close to the stack top, the
1270  // next thing to do is to figure out the exact location of stack top. We
1271  // can find out the virtual memory area that contains stack_start by
1272  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1273  // and its upper limit is the real stack top. (again, this would fail if
1274  // running inside chroot, because /proc may not exist.)
1275
1276  uintptr_t stack_top;
1277  address low, high;
1278  if (find_vma((address)stack_start, &low, &high)) {
1279    // success, "high" is the true stack top. (ignore "low", because initial
1280    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1281    stack_top = (uintptr_t)high;
1282  } else {
1283    // failed, likely because /proc/self/maps does not exist
1284    warning("Can't detect initial thread stack location - find_vma failed");
1285    // best effort: stack_start is normally within a few pages below the real
1286    // stack top, use it as stack top, and reduce stack size so we won't put
1287    // guard page outside stack.
1288    stack_top = stack_start;
1289    stack_size -= 16 * page_size();
1290  }
1291
1292  // stack_top could be partially down the page so align it
1293  stack_top = align_size_up(stack_top, page_size());
1294
1295  if (max_size && stack_size > max_size) {
1296     _initial_thread_stack_size = max_size;
1297  } else {
1298     _initial_thread_stack_size = stack_size;
1299  }
1300
1301  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1302  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1303}
1304
1305////////////////////////////////////////////////////////////////////////////////
1306// time support
1307
1308// Time since start-up in seconds to a fine granularity.
1309// Used by VMSelfDestructTimer and the MemProfiler.
1310double os::elapsedTime() {
1311
1312  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1313}
1314
1315jlong os::elapsed_counter() {
1316  return javaTimeNanos() - initial_time_count;
1317}
1318
1319jlong os::elapsed_frequency() {
1320  return NANOSECS_PER_SEC; // nanosecond resolution
1321}
1322
1323bool os::supports_vtime() { return true; }
1324bool os::enable_vtime()   { return false; }
1325bool os::vtime_enabled()  { return false; }
1326
1327double os::elapsedVTime() {
1328  struct rusage usage;
1329  int retval = getrusage(RUSAGE_THREAD, &usage);
1330  if (retval == 0) {
1331    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1332  } else {
1333    // better than nothing, but not much
1334    return elapsedTime();
1335  }
1336}
1337
1338jlong os::javaTimeMillis() {
1339  timeval time;
1340  int status = gettimeofday(&time, NULL);
1341  assert(status != -1, "linux error");
1342  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1343}
1344
1345#ifndef CLOCK_MONOTONIC
1346#define CLOCK_MONOTONIC (1)
1347#endif
1348
1349void os::Linux::clock_init() {
1350  // we do dlopen's in this particular order due to bug in linux
1351  // dynamical loader (see 6348968) leading to crash on exit
1352  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1353  if (handle == NULL) {
1354    handle = dlopen("librt.so", RTLD_LAZY);
1355  }
1356
1357  if (handle) {
1358    int (*clock_getres_func)(clockid_t, struct timespec*) =
1359           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1360    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1361           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1362    if (clock_getres_func && clock_gettime_func) {
1363      // See if monotonic clock is supported by the kernel. Note that some
1364      // early implementations simply return kernel jiffies (updated every
1365      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1366      // for nano time (though the monotonic property is still nice to have).
1367      // It's fixed in newer kernels, however clock_getres() still returns
1368      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1369      // resolution for now. Hopefully as people move to new kernels, this
1370      // won't be a problem.
1371      struct timespec res;
1372      struct timespec tp;
1373      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1374          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1375        // yes, monotonic clock is supported
1376        _clock_gettime = clock_gettime_func;
1377        return;
1378      } else {
1379        // close librt if there is no monotonic clock
1380        dlclose(handle);
1381      }
1382    }
1383  }
1384  warning("No monotonic clock was available - timed services may " \
1385          "be adversely affected if the time-of-day clock changes");
1386}
1387
1388#ifndef SYS_clock_getres
1389
1390#if defined(IA32) || defined(AMD64)
1391#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1392#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1393#else
1394#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1395#define sys_clock_getres(x,y)  -1
1396#endif
1397
1398#else
1399#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1400#endif
1401
1402void os::Linux::fast_thread_clock_init() {
1403  if (!UseLinuxPosixThreadCPUClocks) {
1404    return;
1405  }
1406  clockid_t clockid;
1407  struct timespec tp;
1408  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1409      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1410
1411  // Switch to using fast clocks for thread cpu time if
1412  // the sys_clock_getres() returns 0 error code.
1413  // Note, that some kernels may support the current thread
1414  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1415  // returned by the pthread_getcpuclockid().
1416  // If the fast Posix clocks are supported then the sys_clock_getres()
1417  // must return at least tp.tv_sec == 0 which means a resolution
1418  // better than 1 sec. This is extra check for reliability.
1419
1420  if(pthread_getcpuclockid_func &&
1421     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1422     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1423
1424    _supports_fast_thread_cpu_time = true;
1425    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1426  }
1427}
1428
1429jlong os::javaTimeNanos() {
1430  if (os::supports_monotonic_clock()) {
1431    struct timespec tp;
1432    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1433    assert(status == 0, "gettime error");
1434    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1435    return result;
1436  } else {
1437    timeval time;
1438    int status = gettimeofday(&time, NULL);
1439    assert(status != -1, "linux error");
1440    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1441    return 1000 * usecs;
1442  }
1443}
1444
1445void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1446  if (os::supports_monotonic_clock()) {
1447    info_ptr->max_value = ALL_64_BITS;
1448
1449    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1450    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1451    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1452  } else {
1453    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1454    info_ptr->max_value = ALL_64_BITS;
1455
1456    // gettimeofday is a real time clock so it skips
1457    info_ptr->may_skip_backward = true;
1458    info_ptr->may_skip_forward = true;
1459  }
1460
1461  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1462}
1463
1464// Return the real, user, and system times in seconds from an
1465// arbitrary fixed point in the past.
1466bool os::getTimesSecs(double* process_real_time,
1467                      double* process_user_time,
1468                      double* process_system_time) {
1469  struct tms ticks;
1470  clock_t real_ticks = times(&ticks);
1471
1472  if (real_ticks == (clock_t) (-1)) {
1473    return false;
1474  } else {
1475    double ticks_per_second = (double) clock_tics_per_sec;
1476    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1477    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1478    *process_real_time = ((double) real_ticks) / ticks_per_second;
1479
1480    return true;
1481  }
1482}
1483
1484
1485char * os::local_time_string(char *buf, size_t buflen) {
1486  struct tm t;
1487  time_t long_time;
1488  time(&long_time);
1489  localtime_r(&long_time, &t);
1490  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1491               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1492               t.tm_hour, t.tm_min, t.tm_sec);
1493  return buf;
1494}
1495
1496struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1497  return localtime_r(clock, res);
1498}
1499
1500////////////////////////////////////////////////////////////////////////////////
1501// runtime exit support
1502
1503// Note: os::shutdown() might be called very early during initialization, or
1504// called from signal handler. Before adding something to os::shutdown(), make
1505// sure it is async-safe and can handle partially initialized VM.
1506void os::shutdown() {
1507
1508  // allow PerfMemory to attempt cleanup of any persistent resources
1509  perfMemory_exit();
1510
1511  // needs to remove object in file system
1512  AttachListener::abort();
1513
1514  // flush buffered output, finish log files
1515  ostream_abort();
1516
1517  // Check for abort hook
1518  abort_hook_t abort_hook = Arguments::abort_hook();
1519  if (abort_hook != NULL) {
1520    abort_hook();
1521  }
1522
1523}
1524
1525// Note: os::abort() might be called very early during initialization, or
1526// called from signal handler. Before adding something to os::abort(), make
1527// sure it is async-safe and can handle partially initialized VM.
1528void os::abort(bool dump_core) {
1529  os::shutdown();
1530  if (dump_core) {
1531#ifndef PRODUCT
1532    fdStream out(defaultStream::output_fd());
1533    out.print_raw("Current thread is ");
1534    char buf[16];
1535    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1536    out.print_raw_cr(buf);
1537    out.print_raw_cr("Dumping core ...");
1538#endif
1539    ::abort(); // dump core
1540  }
1541
1542  ::exit(1);
1543}
1544
1545// Die immediately, no exit hook, no abort hook, no cleanup.
1546void os::die() {
1547  // _exit() on LinuxThreads only kills current thread
1548  ::abort();
1549}
1550
1551// unused on linux for now.
1552void os::set_error_file(const char *logfile) {}
1553
1554
1555// This method is a copy of JDK's sysGetLastErrorString
1556// from src/solaris/hpi/src/system_md.c
1557
1558size_t os::lasterror(char *buf, size_t len) {
1559
1560  if (errno == 0)  return 0;
1561
1562  const char *s = ::strerror(errno);
1563  size_t n = ::strlen(s);
1564  if (n >= len) {
1565    n = len - 1;
1566  }
1567  ::strncpy(buf, s, n);
1568  buf[n] = '\0';
1569  return n;
1570}
1571
1572intx os::current_thread_id() { return (intx)pthread_self(); }
1573int os::current_process_id() {
1574
1575  // Under the old linux thread library, linux gives each thread
1576  // its own process id. Because of this each thread will return
1577  // a different pid if this method were to return the result
1578  // of getpid(2). Linux provides no api that returns the pid
1579  // of the launcher thread for the vm. This implementation
1580  // returns a unique pid, the pid of the launcher thread
1581  // that starts the vm 'process'.
1582
1583  // Under the NPTL, getpid() returns the same pid as the
1584  // launcher thread rather than a unique pid per thread.
1585  // Use gettid() if you want the old pre NPTL behaviour.
1586
1587  // if you are looking for the result of a call to getpid() that
1588  // returns a unique pid for the calling thread, then look at the
1589  // OSThread::thread_id() method in osThread_linux.hpp file
1590
1591  return (int)(_initial_pid ? _initial_pid : getpid());
1592}
1593
1594// DLL functions
1595
1596const char* os::dll_file_extension() { return ".so"; }
1597
1598// This must be hard coded because it's the system's temporary
1599// directory not the java application's temp directory, ala java.io.tmpdir.
1600const char* os::get_temp_directory() { return "/tmp"; }
1601
1602static bool file_exists(const char* filename) {
1603  struct stat statbuf;
1604  if (filename == NULL || strlen(filename) == 0) {
1605    return false;
1606  }
1607  return os::stat(filename, &statbuf) == 0;
1608}
1609
1610bool os::dll_build_name(char* buffer, size_t buflen,
1611                        const char* pname, const char* fname) {
1612  bool retval = false;
1613  // Copied from libhpi
1614  const size_t pnamelen = pname ? strlen(pname) : 0;
1615
1616  // Return error on buffer overflow.
1617  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1618    return retval;
1619  }
1620
1621  if (pnamelen == 0) {
1622    snprintf(buffer, buflen, "lib%s.so", fname);
1623    retval = true;
1624  } else if (strchr(pname, *os::path_separator()) != NULL) {
1625    int n;
1626    char** pelements = split_path(pname, &n);
1627    if (pelements == NULL) {
1628      return false;
1629    }
1630    for (int i = 0 ; i < n ; i++) {
1631      // Really shouldn't be NULL, but check can't hurt
1632      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1633        continue; // skip the empty path values
1634      }
1635      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1636      if (file_exists(buffer)) {
1637        retval = true;
1638        break;
1639      }
1640    }
1641    // release the storage
1642    for (int i = 0 ; i < n ; i++) {
1643      if (pelements[i] != NULL) {
1644        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1645      }
1646    }
1647    if (pelements != NULL) {
1648      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1649    }
1650  } else {
1651    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1652    retval = true;
1653  }
1654  return retval;
1655}
1656
1657// check if addr is inside libjvm.so
1658bool os::address_is_in_vm(address addr) {
1659  static address libjvm_base_addr;
1660  Dl_info dlinfo;
1661
1662  if (libjvm_base_addr == NULL) {
1663    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1664      libjvm_base_addr = (address)dlinfo.dli_fbase;
1665    }
1666    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1667  }
1668
1669  if (dladdr((void *)addr, &dlinfo) != 0) {
1670    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1671  }
1672
1673  return false;
1674}
1675
1676bool os::dll_address_to_function_name(address addr, char *buf,
1677                                      int buflen, int *offset) {
1678  // buf is not optional, but offset is optional
1679  assert(buf != NULL, "sanity check");
1680
1681  Dl_info dlinfo;
1682
1683  if (dladdr((void*)addr, &dlinfo) != 0) {
1684    // see if we have a matching symbol
1685    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1686      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1687        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1688      }
1689      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1690      return true;
1691    }
1692    // no matching symbol so try for just file info
1693    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1694      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1695                          buf, buflen, offset, dlinfo.dli_fname)) {
1696        return true;
1697      }
1698    }
1699  }
1700
1701  buf[0] = '\0';
1702  if (offset != NULL) *offset = -1;
1703  return false;
1704}
1705
1706struct _address_to_library_name {
1707  address addr;          // input : memory address
1708  size_t  buflen;        //         size of fname
1709  char*   fname;         // output: library name
1710  address base;          //         library base addr
1711};
1712
1713static int address_to_library_name_callback(struct dl_phdr_info *info,
1714                                            size_t size, void *data) {
1715  int i;
1716  bool found = false;
1717  address libbase = NULL;
1718  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1719
1720  // iterate through all loadable segments
1721  for (i = 0; i < info->dlpi_phnum; i++) {
1722    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1723    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1724      // base address of a library is the lowest address of its loaded
1725      // segments.
1726      if (libbase == NULL || libbase > segbase) {
1727        libbase = segbase;
1728      }
1729      // see if 'addr' is within current segment
1730      if (segbase <= d->addr &&
1731          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1732        found = true;
1733      }
1734    }
1735  }
1736
1737  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1738  // so dll_address_to_library_name() can fall through to use dladdr() which
1739  // can figure out executable name from argv[0].
1740  if (found && info->dlpi_name && info->dlpi_name[0]) {
1741    d->base = libbase;
1742    if (d->fname) {
1743      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1744    }
1745    return 1;
1746  }
1747  return 0;
1748}
1749
1750bool os::dll_address_to_library_name(address addr, char* buf,
1751                                     int buflen, int* offset) {
1752  // buf is not optional, but offset is optional
1753  assert(buf != NULL, "sanity check");
1754
1755  Dl_info dlinfo;
1756  struct _address_to_library_name data;
1757
1758  // There is a bug in old glibc dladdr() implementation that it could resolve
1759  // to wrong library name if the .so file has a base address != NULL. Here
1760  // we iterate through the program headers of all loaded libraries to find
1761  // out which library 'addr' really belongs to. This workaround can be
1762  // removed once the minimum requirement for glibc is moved to 2.3.x.
1763  data.addr = addr;
1764  data.fname = buf;
1765  data.buflen = buflen;
1766  data.base = NULL;
1767  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1768
1769  if (rslt) {
1770     // buf already contains library name
1771     if (offset) *offset = addr - data.base;
1772     return true;
1773  }
1774  if (dladdr((void*)addr, &dlinfo) != 0) {
1775    if (dlinfo.dli_fname != NULL) {
1776      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1777    }
1778    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1779      *offset = addr - (address)dlinfo.dli_fbase;
1780    }
1781    return true;
1782  }
1783
1784  buf[0] = '\0';
1785  if (offset) *offset = -1;
1786  return false;
1787}
1788
1789  // Loads .dll/.so and
1790  // in case of error it checks if .dll/.so was built for the
1791  // same architecture as Hotspot is running on
1792
1793
1794// Remember the stack's state. The Linux dynamic linker will change
1795// the stack to 'executable' at most once, so we must safepoint only once.
1796bool os::Linux::_stack_is_executable = false;
1797
1798// VM operation that loads a library.  This is necessary if stack protection
1799// of the Java stacks can be lost during loading the library.  If we
1800// do not stop the Java threads, they can stack overflow before the stacks
1801// are protected again.
1802class VM_LinuxDllLoad: public VM_Operation {
1803 private:
1804  const char *_filename;
1805  char *_ebuf;
1806  int _ebuflen;
1807  void *_lib;
1808 public:
1809  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1810    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1811  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1812  void doit() {
1813    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1814    os::Linux::_stack_is_executable = true;
1815  }
1816  void* loaded_library() { return _lib; }
1817};
1818
1819void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1820{
1821  void * result = NULL;
1822  bool load_attempted = false;
1823
1824  // Check whether the library to load might change execution rights
1825  // of the stack. If they are changed, the protection of the stack
1826  // guard pages will be lost. We need a safepoint to fix this.
1827  //
1828  // See Linux man page execstack(8) for more info.
1829  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1830    ElfFile ef(filename);
1831    if (!ef.specifies_noexecstack()) {
1832      if (!is_init_completed()) {
1833        os::Linux::_stack_is_executable = true;
1834        // This is OK - No Java threads have been created yet, and hence no
1835        // stack guard pages to fix.
1836        //
1837        // This should happen only when you are building JDK7 using a very
1838        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1839        //
1840        // Dynamic loader will make all stacks executable after
1841        // this function returns, and will not do that again.
1842        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1843      } else {
1844        warning("You have loaded library %s which might have disabled stack guard. "
1845                "The VM will try to fix the stack guard now.\n"
1846                "It's highly recommended that you fix the library with "
1847                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1848                filename);
1849
1850        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1851        JavaThread *jt = JavaThread::current();
1852        if (jt->thread_state() != _thread_in_native) {
1853          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1854          // that requires ExecStack. Cannot enter safe point. Let's give up.
1855          warning("Unable to fix stack guard. Giving up.");
1856        } else {
1857          if (!LoadExecStackDllInVMThread) {
1858            // This is for the case where the DLL has an static
1859            // constructor function that executes JNI code. We cannot
1860            // load such DLLs in the VMThread.
1861            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1862          }
1863
1864          ThreadInVMfromNative tiv(jt);
1865          debug_only(VMNativeEntryWrapper vew;)
1866
1867          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1868          VMThread::execute(&op);
1869          if (LoadExecStackDllInVMThread) {
1870            result = op.loaded_library();
1871          }
1872          load_attempted = true;
1873        }
1874      }
1875    }
1876  }
1877
1878  if (!load_attempted) {
1879    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1880  }
1881
1882  if (result != NULL) {
1883    // Successful loading
1884    return result;
1885  }
1886
1887  Elf32_Ehdr elf_head;
1888  int diag_msg_max_length=ebuflen-strlen(ebuf);
1889  char* diag_msg_buf=ebuf+strlen(ebuf);
1890
1891  if (diag_msg_max_length==0) {
1892    // No more space in ebuf for additional diagnostics message
1893    return NULL;
1894  }
1895
1896
1897  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1898
1899  if (file_descriptor < 0) {
1900    // Can't open library, report dlerror() message
1901    return NULL;
1902  }
1903
1904  bool failed_to_read_elf_head=
1905    (sizeof(elf_head)!=
1906        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1907
1908  ::close(file_descriptor);
1909  if (failed_to_read_elf_head) {
1910    // file i/o error - report dlerror() msg
1911    return NULL;
1912  }
1913
1914  typedef struct {
1915    Elf32_Half  code;         // Actual value as defined in elf.h
1916    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1917    char        elf_class;    // 32 or 64 bit
1918    char        endianess;    // MSB or LSB
1919    char*       name;         // String representation
1920  } arch_t;
1921
1922  #ifndef EM_486
1923  #define EM_486          6               /* Intel 80486 */
1924  #endif
1925
1926  static const arch_t arch_array[]={
1927    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1928    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1929    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1930    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1931    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1932    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1933    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1934    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1935#if defined(VM_LITTLE_ENDIAN)
1936    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1937#else
1938    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1939#endif
1940    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1941    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1942    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1943    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1944    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1945    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1946    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1947  };
1948
1949  #if  (defined IA32)
1950    static  Elf32_Half running_arch_code=EM_386;
1951  #elif   (defined AMD64)
1952    static  Elf32_Half running_arch_code=EM_X86_64;
1953  #elif  (defined IA64)
1954    static  Elf32_Half running_arch_code=EM_IA_64;
1955  #elif  (defined __sparc) && (defined _LP64)
1956    static  Elf32_Half running_arch_code=EM_SPARCV9;
1957  #elif  (defined __sparc) && (!defined _LP64)
1958    static  Elf32_Half running_arch_code=EM_SPARC;
1959  #elif  (defined __powerpc64__)
1960    static  Elf32_Half running_arch_code=EM_PPC64;
1961  #elif  (defined __powerpc__)
1962    static  Elf32_Half running_arch_code=EM_PPC;
1963  #elif  (defined ARM)
1964    static  Elf32_Half running_arch_code=EM_ARM;
1965  #elif  (defined S390)
1966    static  Elf32_Half running_arch_code=EM_S390;
1967  #elif  (defined ALPHA)
1968    static  Elf32_Half running_arch_code=EM_ALPHA;
1969  #elif  (defined MIPSEL)
1970    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1971  #elif  (defined PARISC)
1972    static  Elf32_Half running_arch_code=EM_PARISC;
1973  #elif  (defined MIPS)
1974    static  Elf32_Half running_arch_code=EM_MIPS;
1975  #elif  (defined M68K)
1976    static  Elf32_Half running_arch_code=EM_68K;
1977  #else
1978    #error Method os::dll_load requires that one of following is defined:\
1979         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1980  #endif
1981
1982  // Identify compatability class for VM's architecture and library's architecture
1983  // Obtain string descriptions for architectures
1984
1985  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1986  int running_arch_index=-1;
1987
1988  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1989    if (running_arch_code == arch_array[i].code) {
1990      running_arch_index    = i;
1991    }
1992    if (lib_arch.code == arch_array[i].code) {
1993      lib_arch.compat_class = arch_array[i].compat_class;
1994      lib_arch.name         = arch_array[i].name;
1995    }
1996  }
1997
1998  assert(running_arch_index != -1,
1999    "Didn't find running architecture code (running_arch_code) in arch_array");
2000  if (running_arch_index == -1) {
2001    // Even though running architecture detection failed
2002    // we may still continue with reporting dlerror() message
2003    return NULL;
2004  }
2005
2006  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2007    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2008    return NULL;
2009  }
2010
2011#ifndef S390
2012  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2013    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2014    return NULL;
2015  }
2016#endif // !S390
2017
2018  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2019    if ( lib_arch.name!=NULL ) {
2020      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2021        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2022        lib_arch.name, arch_array[running_arch_index].name);
2023    } else {
2024      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2025      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2026        lib_arch.code,
2027        arch_array[running_arch_index].name);
2028    }
2029  }
2030
2031  return NULL;
2032}
2033
2034void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2035  void * result = ::dlopen(filename, RTLD_LAZY);
2036  if (result == NULL) {
2037    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2038    ebuf[ebuflen-1] = '\0';
2039  }
2040  return result;
2041}
2042
2043void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2044  void * result = NULL;
2045  if (LoadExecStackDllInVMThread) {
2046    result = dlopen_helper(filename, ebuf, ebuflen);
2047  }
2048
2049  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2050  // library that requires an executable stack, or which does not have this
2051  // stack attribute set, dlopen changes the stack attribute to executable. The
2052  // read protection of the guard pages gets lost.
2053  //
2054  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2055  // may have been queued at the same time.
2056
2057  if (!_stack_is_executable) {
2058    JavaThread *jt = Threads::first();
2059
2060    while (jt) {
2061      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2062          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2063        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2064                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2065          warning("Attempt to reguard stack yellow zone failed.");
2066        }
2067      }
2068      jt = jt->next();
2069    }
2070  }
2071
2072  return result;
2073}
2074
2075/*
2076 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2077 * chances are you might want to run the generated bits against glibc-2.0
2078 * libdl.so, so always use locking for any version of glibc.
2079 */
2080void* os::dll_lookup(void* handle, const char* name) {
2081  pthread_mutex_lock(&dl_mutex);
2082  void* res = dlsym(handle, name);
2083  pthread_mutex_unlock(&dl_mutex);
2084  return res;
2085}
2086
2087void* os::get_default_process_handle() {
2088  return (void*)::dlopen(NULL, RTLD_LAZY);
2089}
2090
2091static bool _print_ascii_file(const char* filename, outputStream* st) {
2092  int fd = ::open(filename, O_RDONLY);
2093  if (fd == -1) {
2094     return false;
2095  }
2096
2097  char buf[32];
2098  int bytes;
2099  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2100    st->print_raw(buf, bytes);
2101  }
2102
2103  ::close(fd);
2104
2105  return true;
2106}
2107
2108void os::print_dll_info(outputStream *st) {
2109   st->print_cr("Dynamic libraries:");
2110
2111   char fname[32];
2112   pid_t pid = os::Linux::gettid();
2113
2114   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2115
2116   if (!_print_ascii_file(fname, st)) {
2117     st->print("Can not get library information for pid = %d\n", pid);
2118   }
2119}
2120
2121void os::print_os_info_brief(outputStream* st) {
2122  os::Linux::print_distro_info(st);
2123
2124  os::Posix::print_uname_info(st);
2125
2126  os::Linux::print_libversion_info(st);
2127
2128}
2129
2130void os::print_os_info(outputStream* st) {
2131  st->print("OS:");
2132
2133  os::Linux::print_distro_info(st);
2134
2135  os::Posix::print_uname_info(st);
2136
2137  // Print warning if unsafe chroot environment detected
2138  if (unsafe_chroot_detected) {
2139    st->print("WARNING!! ");
2140    st->print_cr(unstable_chroot_error);
2141  }
2142
2143  os::Linux::print_libversion_info(st);
2144
2145  os::Posix::print_rlimit_info(st);
2146
2147  os::Posix::print_load_average(st);
2148
2149  os::Linux::print_full_memory_info(st);
2150}
2151
2152// Try to identify popular distros.
2153// Most Linux distributions have a /etc/XXX-release file, which contains
2154// the OS version string. Newer Linux distributions have a /etc/lsb-release
2155// file that also contains the OS version string. Some have more than one
2156// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2157// /etc/redhat-release.), so the order is important.
2158// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2159// their own specific XXX-release file as well as a redhat-release file.
2160// Because of this the XXX-release file needs to be searched for before the
2161// redhat-release file.
2162// Since Red Hat has a lsb-release file that is not very descriptive the
2163// search for redhat-release needs to be before lsb-release.
2164// Since the lsb-release file is the new standard it needs to be searched
2165// before the older style release files.
2166// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2167// next to last resort.  The os-release file is a new standard that contains
2168// distribution information and the system-release file seems to be an old
2169// standard that has been replaced by the lsb-release and os-release files.
2170// Searching for the debian_version file is the last resort.  It contains
2171// an informative string like "6.0.6" or "wheezy/sid". Because of this
2172// "Debian " is printed before the contents of the debian_version file.
2173void os::Linux::print_distro_info(outputStream* st) {
2174   if (!_print_ascii_file("/etc/oracle-release", st) &&
2175       !_print_ascii_file("/etc/mandriva-release", st) &&
2176       !_print_ascii_file("/etc/mandrake-release", st) &&
2177       !_print_ascii_file("/etc/sun-release", st) &&
2178       !_print_ascii_file("/etc/redhat-release", st) &&
2179       !_print_ascii_file("/etc/lsb-release", st) &&
2180       !_print_ascii_file("/etc/SuSE-release", st) &&
2181       !_print_ascii_file("/etc/turbolinux-release", st) &&
2182       !_print_ascii_file("/etc/gentoo-release", st) &&
2183       !_print_ascii_file("/etc/ltib-release", st) &&
2184       !_print_ascii_file("/etc/angstrom-version", st) &&
2185       !_print_ascii_file("/etc/system-release", st) &&
2186       !_print_ascii_file("/etc/os-release", st)) {
2187
2188       if (file_exists("/etc/debian_version")) {
2189         st->print("Debian ");
2190         _print_ascii_file("/etc/debian_version", st);
2191       } else {
2192         st->print("Linux");
2193       }
2194   }
2195   st->cr();
2196}
2197
2198void os::Linux::print_libversion_info(outputStream* st) {
2199  // libc, pthread
2200  st->print("libc:");
2201  st->print(os::Linux::glibc_version()); st->print(" ");
2202  st->print(os::Linux::libpthread_version()); st->print(" ");
2203  if (os::Linux::is_LinuxThreads()) {
2204     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2205  }
2206  st->cr();
2207}
2208
2209void os::Linux::print_full_memory_info(outputStream* st) {
2210   st->print("\n/proc/meminfo:\n");
2211   _print_ascii_file("/proc/meminfo", st);
2212   st->cr();
2213}
2214
2215void os::print_memory_info(outputStream* st) {
2216
2217  st->print("Memory:");
2218  st->print(" %dk page", os::vm_page_size()>>10);
2219
2220  // values in struct sysinfo are "unsigned long"
2221  struct sysinfo si;
2222  sysinfo(&si);
2223
2224  st->print(", physical " UINT64_FORMAT "k",
2225            os::physical_memory() >> 10);
2226  st->print("(" UINT64_FORMAT "k free)",
2227            os::available_memory() >> 10);
2228  st->print(", swap " UINT64_FORMAT "k",
2229            ((jlong)si.totalswap * si.mem_unit) >> 10);
2230  st->print("(" UINT64_FORMAT "k free)",
2231            ((jlong)si.freeswap * si.mem_unit) >> 10);
2232  st->cr();
2233}
2234
2235void os::pd_print_cpu_info(outputStream* st) {
2236  st->print("\n/proc/cpuinfo:\n");
2237  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2238    st->print("  <Not Available>");
2239  }
2240  st->cr();
2241}
2242
2243void os::print_siginfo(outputStream* st, void* siginfo) {
2244  const siginfo_t* si = (const siginfo_t*)siginfo;
2245
2246  os::Posix::print_siginfo_brief(st, si);
2247
2248  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2249      UseSharedSpaces) {
2250    FileMapInfo* mapinfo = FileMapInfo::current_info();
2251    if (mapinfo->is_in_shared_space(si->si_addr)) {
2252      st->print("\n\nError accessing class data sharing archive."   \
2253                " Mapped file inaccessible during execution, "      \
2254                " possible disk/network problem.");
2255    }
2256  }
2257  st->cr();
2258}
2259
2260
2261static void print_signal_handler(outputStream* st, int sig,
2262                                 char* buf, size_t buflen);
2263
2264void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2265  st->print_cr("Signal Handlers:");
2266  print_signal_handler(st, SIGSEGV, buf, buflen);
2267  print_signal_handler(st, SIGBUS , buf, buflen);
2268  print_signal_handler(st, SIGFPE , buf, buflen);
2269  print_signal_handler(st, SIGPIPE, buf, buflen);
2270  print_signal_handler(st, SIGXFSZ, buf, buflen);
2271  print_signal_handler(st, SIGILL , buf, buflen);
2272  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2273  print_signal_handler(st, SR_signum, buf, buflen);
2274  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2275  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2276  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2277  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2278#if defined(PPC64)
2279  print_signal_handler(st, SIGTRAP, buf, buflen);
2280#endif
2281}
2282
2283static char saved_jvm_path[MAXPATHLEN] = {0};
2284
2285// Find the full path to the current module, libjvm.so
2286void os::jvm_path(char *buf, jint buflen) {
2287  // Error checking.
2288  if (buflen < MAXPATHLEN) {
2289    assert(false, "must use a large-enough buffer");
2290    buf[0] = '\0';
2291    return;
2292  }
2293  // Lazy resolve the path to current module.
2294  if (saved_jvm_path[0] != 0) {
2295    strcpy(buf, saved_jvm_path);
2296    return;
2297  }
2298
2299  char dli_fname[MAXPATHLEN];
2300  bool ret = dll_address_to_library_name(
2301                CAST_FROM_FN_PTR(address, os::jvm_path),
2302                dli_fname, sizeof(dli_fname), NULL);
2303  assert(ret, "cannot locate libjvm");
2304  char *rp = NULL;
2305  if (ret && dli_fname[0] != '\0') {
2306    rp = realpath(dli_fname, buf);
2307  }
2308  if (rp == NULL)
2309    return;
2310
2311  if (Arguments::sun_java_launcher_is_altjvm()) {
2312    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2313    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2314    // If "/jre/lib/" appears at the right place in the string, then
2315    // assume we are installed in a JDK and we're done. Otherwise, check
2316    // for a JAVA_HOME environment variable and fix up the path so it
2317    // looks like libjvm.so is installed there (append a fake suffix
2318    // hotspot/libjvm.so).
2319    const char *p = buf + strlen(buf) - 1;
2320    for (int count = 0; p > buf && count < 5; ++count) {
2321      for (--p; p > buf && *p != '/'; --p)
2322        /* empty */ ;
2323    }
2324
2325    if (strncmp(p, "/jre/lib/", 9) != 0) {
2326      // Look for JAVA_HOME in the environment.
2327      char* java_home_var = ::getenv("JAVA_HOME");
2328      if (java_home_var != NULL && java_home_var[0] != 0) {
2329        char* jrelib_p;
2330        int len;
2331
2332        // Check the current module name "libjvm.so".
2333        p = strrchr(buf, '/');
2334        assert(strstr(p, "/libjvm") == p, "invalid library name");
2335
2336        rp = realpath(java_home_var, buf);
2337        if (rp == NULL)
2338          return;
2339
2340        // determine if this is a legacy image or modules image
2341        // modules image doesn't have "jre" subdirectory
2342        len = strlen(buf);
2343        jrelib_p = buf + len;
2344        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2345        if (0 != access(buf, F_OK)) {
2346          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2347        }
2348
2349        if (0 == access(buf, F_OK)) {
2350          // Use current module name "libjvm.so"
2351          len = strlen(buf);
2352          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2353        } else {
2354          // Go back to path of .so
2355          rp = realpath(dli_fname, buf);
2356          if (rp == NULL)
2357            return;
2358        }
2359      }
2360    }
2361  }
2362
2363  strcpy(saved_jvm_path, buf);
2364}
2365
2366void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2367  // no prefix required, not even "_"
2368}
2369
2370void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2371  // no suffix required
2372}
2373
2374////////////////////////////////////////////////////////////////////////////////
2375// sun.misc.Signal support
2376
2377static volatile jint sigint_count = 0;
2378
2379static void
2380UserHandler(int sig, void *siginfo, void *context) {
2381  // 4511530 - sem_post is serialized and handled by the manager thread. When
2382  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2383  // don't want to flood the manager thread with sem_post requests.
2384  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2385      return;
2386
2387  // Ctrl-C is pressed during error reporting, likely because the error
2388  // handler fails to abort. Let VM die immediately.
2389  if (sig == SIGINT && is_error_reported()) {
2390     os::die();
2391  }
2392
2393  os::signal_notify(sig);
2394}
2395
2396void* os::user_handler() {
2397  return CAST_FROM_FN_PTR(void*, UserHandler);
2398}
2399
2400class Semaphore : public StackObj {
2401  public:
2402    Semaphore();
2403    ~Semaphore();
2404    void signal();
2405    void wait();
2406    bool trywait();
2407    bool timedwait(unsigned int sec, int nsec);
2408  private:
2409    sem_t _semaphore;
2410};
2411
2412Semaphore::Semaphore() {
2413  sem_init(&_semaphore, 0, 0);
2414}
2415
2416Semaphore::~Semaphore() {
2417  sem_destroy(&_semaphore);
2418}
2419
2420void Semaphore::signal() {
2421  sem_post(&_semaphore);
2422}
2423
2424void Semaphore::wait() {
2425  sem_wait(&_semaphore);
2426}
2427
2428bool Semaphore::trywait() {
2429  return sem_trywait(&_semaphore) == 0;
2430}
2431
2432bool Semaphore::timedwait(unsigned int sec, int nsec) {
2433
2434  struct timespec ts;
2435  // Semaphore's are always associated with CLOCK_REALTIME
2436  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2437  // see unpackTime for discussion on overflow checking
2438  if (sec >= MAX_SECS) {
2439    ts.tv_sec += MAX_SECS;
2440    ts.tv_nsec = 0;
2441  } else {
2442    ts.tv_sec += sec;
2443    ts.tv_nsec += nsec;
2444    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2445      ts.tv_nsec -= NANOSECS_PER_SEC;
2446      ++ts.tv_sec; // note: this must be <= max_secs
2447    }
2448  }
2449
2450  while (1) {
2451    int result = sem_timedwait(&_semaphore, &ts);
2452    if (result == 0) {
2453      return true;
2454    } else if (errno == EINTR) {
2455      continue;
2456    } else if (errno == ETIMEDOUT) {
2457      return false;
2458    } else {
2459      return false;
2460    }
2461  }
2462}
2463
2464extern "C" {
2465  typedef void (*sa_handler_t)(int);
2466  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2467}
2468
2469void* os::signal(int signal_number, void* handler) {
2470  struct sigaction sigAct, oldSigAct;
2471
2472  sigfillset(&(sigAct.sa_mask));
2473  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2474  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2475
2476  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2477    // -1 means registration failed
2478    return (void *)-1;
2479  }
2480
2481  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2482}
2483
2484void os::signal_raise(int signal_number) {
2485  ::raise(signal_number);
2486}
2487
2488/*
2489 * The following code is moved from os.cpp for making this
2490 * code platform specific, which it is by its very nature.
2491 */
2492
2493// Will be modified when max signal is changed to be dynamic
2494int os::sigexitnum_pd() {
2495  return NSIG;
2496}
2497
2498// a counter for each possible signal value
2499static volatile jint pending_signals[NSIG+1] = { 0 };
2500
2501// Linux(POSIX) specific hand shaking semaphore.
2502static sem_t sig_sem;
2503static Semaphore sr_semaphore;
2504
2505void os::signal_init_pd() {
2506  // Initialize signal structures
2507  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2508
2509  // Initialize signal semaphore
2510  ::sem_init(&sig_sem, 0, 0);
2511}
2512
2513void os::signal_notify(int sig) {
2514  Atomic::inc(&pending_signals[sig]);
2515  ::sem_post(&sig_sem);
2516}
2517
2518static int check_pending_signals(bool wait) {
2519  Atomic::store(0, &sigint_count);
2520  for (;;) {
2521    for (int i = 0; i < NSIG + 1; i++) {
2522      jint n = pending_signals[i];
2523      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2524        return i;
2525      }
2526    }
2527    if (!wait) {
2528      return -1;
2529    }
2530    JavaThread *thread = JavaThread::current();
2531    ThreadBlockInVM tbivm(thread);
2532
2533    bool threadIsSuspended;
2534    do {
2535      thread->set_suspend_equivalent();
2536      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2537      ::sem_wait(&sig_sem);
2538
2539      // were we externally suspended while we were waiting?
2540      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2541      if (threadIsSuspended) {
2542        //
2543        // The semaphore has been incremented, but while we were waiting
2544        // another thread suspended us. We don't want to continue running
2545        // while suspended because that would surprise the thread that
2546        // suspended us.
2547        //
2548        ::sem_post(&sig_sem);
2549
2550        thread->java_suspend_self();
2551      }
2552    } while (threadIsSuspended);
2553  }
2554}
2555
2556int os::signal_lookup() {
2557  return check_pending_signals(false);
2558}
2559
2560int os::signal_wait() {
2561  return check_pending_signals(true);
2562}
2563
2564////////////////////////////////////////////////////////////////////////////////
2565// Virtual Memory
2566
2567int os::vm_page_size() {
2568  // Seems redundant as all get out
2569  assert(os::Linux::page_size() != -1, "must call os::init");
2570  return os::Linux::page_size();
2571}
2572
2573// Solaris allocates memory by pages.
2574int os::vm_allocation_granularity() {
2575  assert(os::Linux::page_size() != -1, "must call os::init");
2576  return os::Linux::page_size();
2577}
2578
2579// Rationale behind this function:
2580//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2581//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2582//  samples for JITted code. Here we create private executable mapping over the code cache
2583//  and then we can use standard (well, almost, as mapping can change) way to provide
2584//  info for the reporting script by storing timestamp and location of symbol
2585void linux_wrap_code(char* base, size_t size) {
2586  static volatile jint cnt = 0;
2587
2588  if (!UseOprofile) {
2589    return;
2590  }
2591
2592  char buf[PATH_MAX+1];
2593  int num = Atomic::add(1, &cnt);
2594
2595  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2596           os::get_temp_directory(), os::current_process_id(), num);
2597  unlink(buf);
2598
2599  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2600
2601  if (fd != -1) {
2602    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2603    if (rv != (off_t)-1) {
2604      if (::write(fd, "", 1) == 1) {
2605        mmap(base, size,
2606             PROT_READ|PROT_WRITE|PROT_EXEC,
2607             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2608      }
2609    }
2610    ::close(fd);
2611    unlink(buf);
2612  }
2613}
2614
2615static bool recoverable_mmap_error(int err) {
2616  // See if the error is one we can let the caller handle. This
2617  // list of errno values comes from JBS-6843484. I can't find a
2618  // Linux man page that documents this specific set of errno
2619  // values so while this list currently matches Solaris, it may
2620  // change as we gain experience with this failure mode.
2621  switch (err) {
2622  case EBADF:
2623  case EINVAL:
2624  case ENOTSUP:
2625    // let the caller deal with these errors
2626    return true;
2627
2628  default:
2629    // Any remaining errors on this OS can cause our reserved mapping
2630    // to be lost. That can cause confusion where different data
2631    // structures think they have the same memory mapped. The worst
2632    // scenario is if both the VM and a library think they have the
2633    // same memory mapped.
2634    return false;
2635  }
2636}
2637
2638static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2639                                    int err) {
2640  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2641          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2642          strerror(err), err);
2643}
2644
2645static void warn_fail_commit_memory(char* addr, size_t size,
2646                                    size_t alignment_hint, bool exec,
2647                                    int err) {
2648  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2649          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2650          alignment_hint, exec, strerror(err), err);
2651}
2652
2653// NOTE: Linux kernel does not really reserve the pages for us.
2654//       All it does is to check if there are enough free pages
2655//       left at the time of mmap(). This could be a potential
2656//       problem.
2657int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2658  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2659  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2660                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2661  if (res != (uintptr_t) MAP_FAILED) {
2662    if (UseNUMAInterleaving) {
2663      numa_make_global(addr, size);
2664    }
2665    return 0;
2666  }
2667
2668  int err = errno;  // save errno from mmap() call above
2669
2670  if (!recoverable_mmap_error(err)) {
2671    warn_fail_commit_memory(addr, size, exec, err);
2672    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2673  }
2674
2675  return err;
2676}
2677
2678bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2679  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2680}
2681
2682void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2683                                  const char* mesg) {
2684  assert(mesg != NULL, "mesg must be specified");
2685  int err = os::Linux::commit_memory_impl(addr, size, exec);
2686  if (err != 0) {
2687    // the caller wants all commit errors to exit with the specified mesg:
2688    warn_fail_commit_memory(addr, size, exec, err);
2689    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2690  }
2691}
2692
2693// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2694#ifndef MAP_HUGETLB
2695#define MAP_HUGETLB 0x40000
2696#endif
2697
2698// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2699#ifndef MADV_HUGEPAGE
2700#define MADV_HUGEPAGE 14
2701#endif
2702
2703int os::Linux::commit_memory_impl(char* addr, size_t size,
2704                                  size_t alignment_hint, bool exec) {
2705  int err = os::Linux::commit_memory_impl(addr, size, exec);
2706  if (err == 0) {
2707    realign_memory(addr, size, alignment_hint);
2708  }
2709  return err;
2710}
2711
2712bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2713                          bool exec) {
2714  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2715}
2716
2717void os::pd_commit_memory_or_exit(char* addr, size_t size,
2718                                  size_t alignment_hint, bool exec,
2719                                  const char* mesg) {
2720  assert(mesg != NULL, "mesg must be specified");
2721  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2722  if (err != 0) {
2723    // the caller wants all commit errors to exit with the specified mesg:
2724    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2725    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2726  }
2727}
2728
2729void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2730  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2731    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2732    // be supported or the memory may already be backed by huge pages.
2733    ::madvise(addr, bytes, MADV_HUGEPAGE);
2734  }
2735}
2736
2737void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2738  // This method works by doing an mmap over an existing mmaping and effectively discarding
2739  // the existing pages. However it won't work for SHM-based large pages that cannot be
2740  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2741  // small pages on top of the SHM segment. This method always works for small pages, so we
2742  // allow that in any case.
2743  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2744    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2745  }
2746}
2747
2748void os::numa_make_global(char *addr, size_t bytes) {
2749  Linux::numa_interleave_memory(addr, bytes);
2750}
2751
2752// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2753// bind policy to MPOL_PREFERRED for the current thread.
2754#define USE_MPOL_PREFERRED 0
2755
2756void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2757  // To make NUMA and large pages more robust when both enabled, we need to ease
2758  // the requirements on where the memory should be allocated. MPOL_BIND is the
2759  // default policy and it will force memory to be allocated on the specified
2760  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2761  // the specified node, but will not force it. Using this policy will prevent
2762  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2763  // free large pages.
2764  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2765  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2766}
2767
2768bool os::numa_topology_changed()   { return false; }
2769
2770size_t os::numa_get_groups_num() {
2771  int max_node = Linux::numa_max_node();
2772  return max_node > 0 ? max_node + 1 : 1;
2773}
2774
2775int os::numa_get_group_id() {
2776  int cpu_id = Linux::sched_getcpu();
2777  if (cpu_id != -1) {
2778    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2779    if (lgrp_id != -1) {
2780      return lgrp_id;
2781    }
2782  }
2783  return 0;
2784}
2785
2786size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2787  for (size_t i = 0; i < size; i++) {
2788    ids[i] = i;
2789  }
2790  return size;
2791}
2792
2793bool os::get_page_info(char *start, page_info* info) {
2794  return false;
2795}
2796
2797char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2798  return end;
2799}
2800
2801
2802int os::Linux::sched_getcpu_syscall(void) {
2803  unsigned int cpu;
2804  int retval = -1;
2805
2806#if defined(IA32)
2807# ifndef SYS_getcpu
2808# define SYS_getcpu 318
2809# endif
2810  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2811#elif defined(AMD64)
2812// Unfortunately we have to bring all these macros here from vsyscall.h
2813// to be able to compile on old linuxes.
2814# define __NR_vgetcpu 2
2815# define VSYSCALL_START (-10UL << 20)
2816# define VSYSCALL_SIZE 1024
2817# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2818  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2819  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2820  retval = vgetcpu(&cpu, NULL, NULL);
2821#endif
2822
2823  return (retval == -1) ? retval : cpu;
2824}
2825
2826// Something to do with the numa-aware allocator needs these symbols
2827extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2828extern "C" JNIEXPORT void numa_error(char *where) { }
2829extern "C" JNIEXPORT int fork1() { return fork(); }
2830
2831
2832// If we are running with libnuma version > 2, then we should
2833// be trying to use symbols with versions 1.1
2834// If we are running with earlier version, which did not have symbol versions,
2835// we should use the base version.
2836void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2837  void *f = dlvsym(handle, name, "libnuma_1.1");
2838  if (f == NULL) {
2839    f = dlsym(handle, name);
2840  }
2841  return f;
2842}
2843
2844bool os::Linux::libnuma_init() {
2845  // sched_getcpu() should be in libc.
2846  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2847                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2848
2849  // If it's not, try a direct syscall.
2850  if (sched_getcpu() == -1)
2851    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2852
2853  if (sched_getcpu() != -1) { // Does it work?
2854    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2855    if (handle != NULL) {
2856      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2857                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2858      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2859                                       libnuma_dlsym(handle, "numa_max_node")));
2860      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2861                                        libnuma_dlsym(handle, "numa_available")));
2862      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2863                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2864      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2865                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2866      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2867                                            libnuma_dlsym(handle, "numa_set_bind_policy")));
2868
2869
2870      if (numa_available() != -1) {
2871        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2872        // Create a cpu -> node mapping
2873        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2874        rebuild_cpu_to_node_map();
2875        return true;
2876      }
2877    }
2878  }
2879  return false;
2880}
2881
2882// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2883// The table is later used in get_node_by_cpu().
2884void os::Linux::rebuild_cpu_to_node_map() {
2885  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2886                              // in libnuma (possible values are starting from 16,
2887                              // and continuing up with every other power of 2, but less
2888                              // than the maximum number of CPUs supported by kernel), and
2889                              // is a subject to change (in libnuma version 2 the requirements
2890                              // are more reasonable) we'll just hardcode the number they use
2891                              // in the library.
2892  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2893
2894  size_t cpu_num = os::active_processor_count();
2895  size_t cpu_map_size = NCPUS / BitsPerCLong;
2896  size_t cpu_map_valid_size =
2897    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2898
2899  cpu_to_node()->clear();
2900  cpu_to_node()->at_grow(cpu_num - 1);
2901  size_t node_num = numa_get_groups_num();
2902
2903  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2904  for (size_t i = 0; i < node_num; i++) {
2905    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2906      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2907        if (cpu_map[j] != 0) {
2908          for (size_t k = 0; k < BitsPerCLong; k++) {
2909            if (cpu_map[j] & (1UL << k)) {
2910              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2911            }
2912          }
2913        }
2914      }
2915    }
2916  }
2917  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2918}
2919
2920int os::Linux::get_node_by_cpu(int cpu_id) {
2921  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2922    return cpu_to_node()->at(cpu_id);
2923  }
2924  return -1;
2925}
2926
2927GrowableArray<int>* os::Linux::_cpu_to_node;
2928os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2929os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2930os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2931os::Linux::numa_available_func_t os::Linux::_numa_available;
2932os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2933os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2934os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2935unsigned long* os::Linux::_numa_all_nodes;
2936
2937bool os::pd_uncommit_memory(char* addr, size_t size) {
2938  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2939                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2940  return res  != (uintptr_t) MAP_FAILED;
2941}
2942
2943static
2944address get_stack_commited_bottom(address bottom, size_t size) {
2945  address nbot = bottom;
2946  address ntop = bottom + size;
2947
2948  size_t page_sz = os::vm_page_size();
2949  unsigned pages = size / page_sz;
2950
2951  unsigned char vec[1];
2952  unsigned imin = 1, imax = pages + 1, imid;
2953  int mincore_return_value = 0;
2954
2955  assert(imin <= imax, "Unexpected page size");
2956
2957  while (imin < imax) {
2958    imid = (imax + imin) / 2;
2959    nbot = ntop - (imid * page_sz);
2960
2961    // Use a trick with mincore to check whether the page is mapped or not.
2962    // mincore sets vec to 1 if page resides in memory and to 0 if page
2963    // is swapped output but if page we are asking for is unmapped
2964    // it returns -1,ENOMEM
2965    mincore_return_value = mincore(nbot, page_sz, vec);
2966
2967    if (mincore_return_value == -1) {
2968      // Page is not mapped go up
2969      // to find first mapped page
2970      if (errno != EAGAIN) {
2971        assert(errno == ENOMEM, "Unexpected mincore errno");
2972        imax = imid;
2973      }
2974    } else {
2975      // Page is mapped go down
2976      // to find first not mapped page
2977      imin = imid + 1;
2978    }
2979  }
2980
2981  nbot = nbot + page_sz;
2982
2983  // Adjust stack bottom one page up if last checked page is not mapped
2984  if (mincore_return_value == -1) {
2985    nbot = nbot + page_sz;
2986  }
2987
2988  return nbot;
2989}
2990
2991
2992// Linux uses a growable mapping for the stack, and if the mapping for
2993// the stack guard pages is not removed when we detach a thread the
2994// stack cannot grow beyond the pages where the stack guard was
2995// mapped.  If at some point later in the process the stack expands to
2996// that point, the Linux kernel cannot expand the stack any further
2997// because the guard pages are in the way, and a segfault occurs.
2998//
2999// However, it's essential not to split the stack region by unmapping
3000// a region (leaving a hole) that's already part of the stack mapping,
3001// so if the stack mapping has already grown beyond the guard pages at
3002// the time we create them, we have to truncate the stack mapping.
3003// So, we need to know the extent of the stack mapping when
3004// create_stack_guard_pages() is called.
3005
3006// We only need this for stacks that are growable: at the time of
3007// writing thread stacks don't use growable mappings (i.e. those
3008// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3009// only applies to the main thread.
3010
3011// If the (growable) stack mapping already extends beyond the point
3012// where we're going to put our guard pages, truncate the mapping at
3013// that point by munmap()ping it.  This ensures that when we later
3014// munmap() the guard pages we don't leave a hole in the stack
3015// mapping. This only affects the main/initial thread
3016
3017bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3018
3019  if (os::Linux::is_initial_thread()) {
3020    // As we manually grow stack up to bottom inside create_attached_thread(),
3021    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3022    // we don't need to do anything special.
3023    // Check it first, before calling heavy function.
3024    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3025    unsigned char vec[1];
3026
3027    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3028      // Fallback to slow path on all errors, including EAGAIN
3029      stack_extent = (uintptr_t) get_stack_commited_bottom(
3030                                    os::Linux::initial_thread_stack_bottom(),
3031                                    (size_t)addr - stack_extent);
3032    }
3033
3034    if (stack_extent < (uintptr_t)addr) {
3035      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3036    }
3037  }
3038
3039  return os::commit_memory(addr, size, !ExecMem);
3040}
3041
3042// If this is a growable mapping, remove the guard pages entirely by
3043// munmap()ping them.  If not, just call uncommit_memory(). This only
3044// affects the main/initial thread, but guard against future OS changes
3045// It's safe to always unmap guard pages for initial thread because we
3046// always place it right after end of the mapped region
3047
3048bool os::remove_stack_guard_pages(char* addr, size_t size) {
3049  uintptr_t stack_extent, stack_base;
3050
3051  if (os::Linux::is_initial_thread()) {
3052    return ::munmap(addr, size) == 0;
3053  }
3054
3055  return os::uncommit_memory(addr, size);
3056}
3057
3058static address _highest_vm_reserved_address = NULL;
3059
3060// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3061// at 'requested_addr'. If there are existing memory mappings at the same
3062// location, however, they will be overwritten. If 'fixed' is false,
3063// 'requested_addr' is only treated as a hint, the return value may or
3064// may not start from the requested address. Unlike Linux mmap(), this
3065// function returns NULL to indicate failure.
3066static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3067  char * addr;
3068  int flags;
3069
3070  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3071  if (fixed) {
3072    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3073    flags |= MAP_FIXED;
3074  }
3075
3076  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3077  // touch an uncommitted page. Otherwise, the read/write might
3078  // succeed if we have enough swap space to back the physical page.
3079  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3080                       flags, -1, 0);
3081
3082  if (addr != MAP_FAILED) {
3083    // anon_mmap() should only get called during VM initialization,
3084    // don't need lock (actually we can skip locking even it can be called
3085    // from multiple threads, because _highest_vm_reserved_address is just a
3086    // hint about the upper limit of non-stack memory regions.)
3087    if ((address)addr + bytes > _highest_vm_reserved_address) {
3088      _highest_vm_reserved_address = (address)addr + bytes;
3089    }
3090  }
3091
3092  return addr == MAP_FAILED ? NULL : addr;
3093}
3094
3095// Don't update _highest_vm_reserved_address, because there might be memory
3096// regions above addr + size. If so, releasing a memory region only creates
3097// a hole in the address space, it doesn't help prevent heap-stack collision.
3098//
3099static int anon_munmap(char * addr, size_t size) {
3100  return ::munmap(addr, size) == 0;
3101}
3102
3103char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3104                         size_t alignment_hint) {
3105  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3106}
3107
3108bool os::pd_release_memory(char* addr, size_t size) {
3109  return anon_munmap(addr, size);
3110}
3111
3112static address highest_vm_reserved_address() {
3113  return _highest_vm_reserved_address;
3114}
3115
3116static bool linux_mprotect(char* addr, size_t size, int prot) {
3117  // Linux wants the mprotect address argument to be page aligned.
3118  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3119
3120  // According to SUSv3, mprotect() should only be used with mappings
3121  // established by mmap(), and mmap() always maps whole pages. Unaligned
3122  // 'addr' likely indicates problem in the VM (e.g. trying to change
3123  // protection of malloc'ed or statically allocated memory). Check the
3124  // caller if you hit this assert.
3125  assert(addr == bottom, "sanity check");
3126
3127  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3128  return ::mprotect(bottom, size, prot) == 0;
3129}
3130
3131// Set protections specified
3132bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3133                        bool is_committed) {
3134  unsigned int p = 0;
3135  switch (prot) {
3136  case MEM_PROT_NONE: p = PROT_NONE; break;
3137  case MEM_PROT_READ: p = PROT_READ; break;
3138  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3139  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3140  default:
3141    ShouldNotReachHere();
3142  }
3143  // is_committed is unused.
3144  return linux_mprotect(addr, bytes, p);
3145}
3146
3147bool os::guard_memory(char* addr, size_t size) {
3148  return linux_mprotect(addr, size, PROT_NONE);
3149}
3150
3151bool os::unguard_memory(char* addr, size_t size) {
3152  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3153}
3154
3155bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3156  bool result = false;
3157  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3158                 MAP_ANONYMOUS|MAP_PRIVATE,
3159                 -1, 0);
3160  if (p != MAP_FAILED) {
3161    void *aligned_p = align_ptr_up(p, page_size);
3162
3163    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3164
3165    munmap(p, page_size * 2);
3166  }
3167
3168  if (warn && !result) {
3169    warning("TransparentHugePages is not supported by the operating system.");
3170  }
3171
3172  return result;
3173}
3174
3175bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3176  bool result = false;
3177  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3178                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3179                 -1, 0);
3180
3181  if (p != MAP_FAILED) {
3182    // We don't know if this really is a huge page or not.
3183    FILE *fp = fopen("/proc/self/maps", "r");
3184    if (fp) {
3185      while (!feof(fp)) {
3186        char chars[257];
3187        long x = 0;
3188        if (fgets(chars, sizeof(chars), fp)) {
3189          if (sscanf(chars, "%lx-%*x", &x) == 1
3190              && x == (long)p) {
3191            if (strstr (chars, "hugepage")) {
3192              result = true;
3193              break;
3194            }
3195          }
3196        }
3197      }
3198      fclose(fp);
3199    }
3200    munmap(p, page_size);
3201  }
3202
3203  if (warn && !result) {
3204    warning("HugeTLBFS is not supported by the operating system.");
3205  }
3206
3207  return result;
3208}
3209
3210/*
3211* Set the coredump_filter bits to include largepages in core dump (bit 6)
3212*
3213* From the coredump_filter documentation:
3214*
3215* - (bit 0) anonymous private memory
3216* - (bit 1) anonymous shared memory
3217* - (bit 2) file-backed private memory
3218* - (bit 3) file-backed shared memory
3219* - (bit 4) ELF header pages in file-backed private memory areas (it is
3220*           effective only if the bit 2 is cleared)
3221* - (bit 5) hugetlb private memory
3222* - (bit 6) hugetlb shared memory
3223*/
3224static void set_coredump_filter(void) {
3225  FILE *f;
3226  long cdm;
3227
3228  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3229    return;
3230  }
3231
3232  if (fscanf(f, "%lx", &cdm) != 1) {
3233    fclose(f);
3234    return;
3235  }
3236
3237  rewind(f);
3238
3239  if ((cdm & LARGEPAGES_BIT) == 0) {
3240    cdm |= LARGEPAGES_BIT;
3241    fprintf(f, "%#lx", cdm);
3242  }
3243
3244  fclose(f);
3245}
3246
3247// Large page support
3248
3249static size_t _large_page_size = 0;
3250
3251size_t os::Linux::find_large_page_size() {
3252  size_t large_page_size = 0;
3253
3254  // large_page_size on Linux is used to round up heap size. x86 uses either
3255  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3256  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3257  // page as large as 256M.
3258  //
3259  // Here we try to figure out page size by parsing /proc/meminfo and looking
3260  // for a line with the following format:
3261  //    Hugepagesize:     2048 kB
3262  //
3263  // If we can't determine the value (e.g. /proc is not mounted, or the text
3264  // format has been changed), we'll use the largest page size supported by
3265  // the processor.
3266
3267#ifndef ZERO
3268  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3269                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3270#endif // ZERO
3271
3272  FILE *fp = fopen("/proc/meminfo", "r");
3273  if (fp) {
3274    while (!feof(fp)) {
3275      int x = 0;
3276      char buf[16];
3277      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3278        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3279          large_page_size = x * K;
3280          break;
3281        }
3282      } else {
3283        // skip to next line
3284        for (;;) {
3285          int ch = fgetc(fp);
3286          if (ch == EOF || ch == (int)'\n') break;
3287        }
3288      }
3289    }
3290    fclose(fp);
3291  }
3292
3293  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3294    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3295        SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3296        proper_unit_for_byte_size(large_page_size));
3297  }
3298
3299  return large_page_size;
3300}
3301
3302size_t os::Linux::setup_large_page_size() {
3303  _large_page_size = Linux::find_large_page_size();
3304  const size_t default_page_size = (size_t)Linux::page_size();
3305  if (_large_page_size > default_page_size) {
3306    _page_sizes[0] = _large_page_size;
3307    _page_sizes[1] = default_page_size;
3308    _page_sizes[2] = 0;
3309  }
3310
3311  return _large_page_size;
3312}
3313
3314bool os::Linux::setup_large_page_type(size_t page_size) {
3315  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3316      FLAG_IS_DEFAULT(UseSHM) &&
3317      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3318
3319    // The type of large pages has not been specified by the user.
3320
3321    // Try UseHugeTLBFS and then UseSHM.
3322    UseHugeTLBFS = UseSHM = true;
3323
3324    // Don't try UseTransparentHugePages since there are known
3325    // performance issues with it turned on. This might change in the future.
3326    UseTransparentHugePages = false;
3327  }
3328
3329  if (UseTransparentHugePages) {
3330    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3331    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3332      UseHugeTLBFS = false;
3333      UseSHM = false;
3334      return true;
3335    }
3336    UseTransparentHugePages = false;
3337  }
3338
3339  if (UseHugeTLBFS) {
3340    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3341    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3342      UseSHM = false;
3343      return true;
3344    }
3345    UseHugeTLBFS = false;
3346  }
3347
3348  return UseSHM;
3349}
3350
3351void os::large_page_init() {
3352  if (!UseLargePages &&
3353      !UseTransparentHugePages &&
3354      !UseHugeTLBFS &&
3355      !UseSHM) {
3356    // Not using large pages.
3357    return;
3358  }
3359
3360  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3361    // The user explicitly turned off large pages.
3362    // Ignore the rest of the large pages flags.
3363    UseTransparentHugePages = false;
3364    UseHugeTLBFS = false;
3365    UseSHM = false;
3366    return;
3367  }
3368
3369  size_t large_page_size = Linux::setup_large_page_size();
3370  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3371
3372  set_coredump_filter();
3373}
3374
3375#ifndef SHM_HUGETLB
3376#define SHM_HUGETLB 04000
3377#endif
3378
3379char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3380  // "exec" is passed in but not used.  Creating the shared image for
3381  // the code cache doesn't have an SHM_X executable permission to check.
3382  assert(UseLargePages && UseSHM, "only for SHM large pages");
3383  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3384
3385  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3386    return NULL; // Fallback to small pages.
3387  }
3388
3389  key_t key = IPC_PRIVATE;
3390  char *addr;
3391
3392  bool warn_on_failure = UseLargePages &&
3393                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3394                         !FLAG_IS_DEFAULT(UseSHM) ||
3395                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3396                        );
3397  char msg[128];
3398
3399  // Create a large shared memory region to attach to based on size.
3400  // Currently, size is the total size of the heap
3401  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3402  if (shmid == -1) {
3403     // Possible reasons for shmget failure:
3404     // 1. shmmax is too small for Java heap.
3405     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3406     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3407     // 2. not enough large page memory.
3408     //    > check available large pages: cat /proc/meminfo
3409     //    > increase amount of large pages:
3410     //          echo new_value > /proc/sys/vm/nr_hugepages
3411     //      Note 1: different Linux may use different name for this property,
3412     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3413     //      Note 2: it's possible there's enough physical memory available but
3414     //            they are so fragmented after a long run that they can't
3415     //            coalesce into large pages. Try to reserve large pages when
3416     //            the system is still "fresh".
3417     if (warn_on_failure) {
3418       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3419       warning(msg);
3420     }
3421     return NULL;
3422  }
3423
3424  // attach to the region
3425  addr = (char*)shmat(shmid, req_addr, 0);
3426  int err = errno;
3427
3428  // Remove shmid. If shmat() is successful, the actual shared memory segment
3429  // will be deleted when it's detached by shmdt() or when the process
3430  // terminates. If shmat() is not successful this will remove the shared
3431  // segment immediately.
3432  shmctl(shmid, IPC_RMID, NULL);
3433
3434  if ((intptr_t)addr == -1) {
3435     if (warn_on_failure) {
3436       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3437       warning(msg);
3438     }
3439     return NULL;
3440  }
3441
3442  return addr;
3443}
3444
3445static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3446  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3447
3448  bool warn_on_failure = UseLargePages &&
3449      (!FLAG_IS_DEFAULT(UseLargePages) ||
3450       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3451       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3452
3453  if (warn_on_failure) {
3454    char msg[128];
3455    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3456        PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3457    warning(msg);
3458  }
3459}
3460
3461char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3462  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3463  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3464  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3465
3466  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3467  char* addr = (char*)::mmap(req_addr, bytes, prot,
3468                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3469                             -1, 0);
3470
3471  if (addr == MAP_FAILED) {
3472    warn_on_large_pages_failure(req_addr, bytes, errno);
3473    return NULL;
3474  }
3475
3476  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3477
3478  return addr;
3479}
3480
3481char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3482  size_t large_page_size = os::large_page_size();
3483
3484  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3485
3486  // Allocate small pages.
3487
3488  char* start;
3489  if (req_addr != NULL) {
3490    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3491    assert(is_size_aligned(bytes, alignment), "Must be");
3492    start = os::reserve_memory(bytes, req_addr);
3493    assert(start == NULL || start == req_addr, "Must be");
3494  } else {
3495    start = os::reserve_memory_aligned(bytes, alignment);
3496  }
3497
3498  if (start == NULL) {
3499    return NULL;
3500  }
3501
3502  assert(is_ptr_aligned(start, alignment), "Must be");
3503
3504  // os::reserve_memory_special will record this memory area.
3505  // Need to release it here to prevent overlapping reservations.
3506  MemTracker::record_virtual_memory_release((address)start, bytes);
3507
3508  char* end = start + bytes;
3509
3510  // Find the regions of the allocated chunk that can be promoted to large pages.
3511  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3512  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3513
3514  size_t lp_bytes = lp_end - lp_start;
3515
3516  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3517
3518  if (lp_bytes == 0) {
3519    // The mapped region doesn't even span the start and the end of a large page.
3520    // Fall back to allocate a non-special area.
3521    ::munmap(start, end - start);
3522    return NULL;
3523  }
3524
3525  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3526
3527
3528  void* result;
3529
3530  if (start != lp_start) {
3531    result = ::mmap(start, lp_start - start, prot,
3532                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3533                    -1, 0);
3534    if (result == MAP_FAILED) {
3535      ::munmap(lp_start, end - lp_start);
3536      return NULL;
3537    }
3538  }
3539
3540  result = ::mmap(lp_start, lp_bytes, prot,
3541                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3542                  -1, 0);
3543  if (result == MAP_FAILED) {
3544    warn_on_large_pages_failure(req_addr, bytes, errno);
3545    // If the mmap above fails, the large pages region will be unmapped and we
3546    // have regions before and after with small pages. Release these regions.
3547    //
3548    // |  mapped  |  unmapped  |  mapped  |
3549    // ^          ^            ^          ^
3550    // start      lp_start     lp_end     end
3551    //
3552    ::munmap(start, lp_start - start);
3553    ::munmap(lp_end, end - lp_end);
3554    return NULL;
3555  }
3556
3557  if (lp_end != end) {
3558      result = ::mmap(lp_end, end - lp_end, prot,
3559                      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3560                      -1, 0);
3561    if (result == MAP_FAILED) {
3562      ::munmap(start, lp_end - start);
3563      return NULL;
3564    }
3565  }
3566
3567  return start;
3568}
3569
3570char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3571  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3572  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3573  assert(is_power_of_2(alignment), "Must be");
3574  assert(is_power_of_2(os::large_page_size()), "Must be");
3575  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3576
3577  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3578    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3579  } else {
3580    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3581  }
3582}
3583
3584char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3585  assert(UseLargePages, "only for large pages");
3586
3587  char* addr;
3588  if (UseSHM) {
3589    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3590  } else {
3591    assert(UseHugeTLBFS, "must be");
3592    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3593  }
3594
3595  if (addr != NULL) {
3596    if (UseNUMAInterleaving) {
3597      numa_make_global(addr, bytes);
3598    }
3599
3600    // The memory is committed
3601    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3602  }
3603
3604  return addr;
3605}
3606
3607bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3608  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3609  return shmdt(base) == 0;
3610}
3611
3612bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3613  return pd_release_memory(base, bytes);
3614}
3615
3616bool os::release_memory_special(char* base, size_t bytes) {
3617  assert(UseLargePages, "only for large pages");
3618
3619  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3620
3621  bool res;
3622  if (UseSHM) {
3623    res = os::Linux::release_memory_special_shm(base, bytes);
3624  } else {
3625    assert(UseHugeTLBFS, "must be");
3626    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3627  }
3628
3629  if (res) {
3630    tkr.record((address)base, bytes);
3631  } else {
3632    tkr.discard();
3633  }
3634
3635  return res;
3636}
3637
3638size_t os::large_page_size() {
3639  return _large_page_size;
3640}
3641
3642// With SysV SHM the entire memory region must be allocated as shared
3643// memory.
3644// HugeTLBFS allows application to commit large page memory on demand.
3645// However, when committing memory with HugeTLBFS fails, the region
3646// that was supposed to be committed will lose the old reservation
3647// and allow other threads to steal that memory region. Because of this
3648// behavior we can't commit HugeTLBFS memory.
3649bool os::can_commit_large_page_memory() {
3650  return UseTransparentHugePages;
3651}
3652
3653bool os::can_execute_large_page_memory() {
3654  return UseTransparentHugePages || UseHugeTLBFS;
3655}
3656
3657// Reserve memory at an arbitrary address, only if that area is
3658// available (and not reserved for something else).
3659
3660char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3661  const int max_tries = 10;
3662  char* base[max_tries];
3663  size_t size[max_tries];
3664  const size_t gap = 0x000000;
3665
3666  // Assert only that the size is a multiple of the page size, since
3667  // that's all that mmap requires, and since that's all we really know
3668  // about at this low abstraction level.  If we need higher alignment,
3669  // we can either pass an alignment to this method or verify alignment
3670  // in one of the methods further up the call chain.  See bug 5044738.
3671  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3672
3673  // Repeatedly allocate blocks until the block is allocated at the
3674  // right spot. Give up after max_tries. Note that reserve_memory() will
3675  // automatically update _highest_vm_reserved_address if the call is
3676  // successful. The variable tracks the highest memory address every reserved
3677  // by JVM. It is used to detect heap-stack collision if running with
3678  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3679  // space than needed, it could confuse the collision detecting code. To
3680  // solve the problem, save current _highest_vm_reserved_address and
3681  // calculate the correct value before return.
3682  address old_highest = _highest_vm_reserved_address;
3683
3684  // Linux mmap allows caller to pass an address as hint; give it a try first,
3685  // if kernel honors the hint then we can return immediately.
3686  char * addr = anon_mmap(requested_addr, bytes, false);
3687  if (addr == requested_addr) {
3688     return requested_addr;
3689  }
3690
3691  if (addr != NULL) {
3692     // mmap() is successful but it fails to reserve at the requested address
3693     anon_munmap(addr, bytes);
3694  }
3695
3696  int i;
3697  for (i = 0; i < max_tries; ++i) {
3698    base[i] = reserve_memory(bytes);
3699
3700    if (base[i] != NULL) {
3701      // Is this the block we wanted?
3702      if (base[i] == requested_addr) {
3703        size[i] = bytes;
3704        break;
3705      }
3706
3707      // Does this overlap the block we wanted? Give back the overlapped
3708      // parts and try again.
3709
3710      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3711      if (top_overlap >= 0 && top_overlap < bytes) {
3712        unmap_memory(base[i], top_overlap);
3713        base[i] += top_overlap;
3714        size[i] = bytes - top_overlap;
3715      } else {
3716        size_t bottom_overlap = base[i] + bytes - requested_addr;
3717        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3718          unmap_memory(requested_addr, bottom_overlap);
3719          size[i] = bytes - bottom_overlap;
3720        } else {
3721          size[i] = bytes;
3722        }
3723      }
3724    }
3725  }
3726
3727  // Give back the unused reserved pieces.
3728
3729  for (int j = 0; j < i; ++j) {
3730    if (base[j] != NULL) {
3731      unmap_memory(base[j], size[j]);
3732    }
3733  }
3734
3735  if (i < max_tries) {
3736    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3737    return requested_addr;
3738  } else {
3739    _highest_vm_reserved_address = old_highest;
3740    return NULL;
3741  }
3742}
3743
3744size_t os::read(int fd, void *buf, unsigned int nBytes) {
3745  return ::read(fd, buf, nBytes);
3746}
3747
3748//
3749// Short sleep, direct OS call.
3750//
3751// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3752// sched_yield(2) will actually give up the CPU:
3753//
3754//   * Alone on this pariticular CPU, keeps running.
3755//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3756//     (pre 2.6.39).
3757//
3758// So calling this with 0 is an alternative.
3759//
3760void os::naked_short_sleep(jlong ms) {
3761  struct timespec req;
3762
3763  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3764  req.tv_sec = 0;
3765  if (ms > 0) {
3766    req.tv_nsec = (ms % 1000) * 1000000;
3767  }
3768  else {
3769    req.tv_nsec = 1;
3770  }
3771
3772  nanosleep(&req, NULL);
3773
3774  return;
3775}
3776
3777// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3778void os::infinite_sleep() {
3779  while (true) {    // sleep forever ...
3780    ::sleep(100);   // ... 100 seconds at a time
3781  }
3782}
3783
3784// Used to convert frequent JVM_Yield() to nops
3785bool os::dont_yield() {
3786  return DontYieldALot;
3787}
3788
3789void os::yield() {
3790  sched_yield();
3791}
3792
3793os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3794
3795void os::yield_all() {
3796  // Yields to all threads, including threads with lower priorities
3797  // Threads on Linux are all with same priority. The Solaris style
3798  // os::yield_all() with nanosleep(1ms) is not necessary.
3799  sched_yield();
3800}
3801
3802////////////////////////////////////////////////////////////////////////////////
3803// thread priority support
3804
3805// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3806// only supports dynamic priority, static priority must be zero. For real-time
3807// applications, Linux supports SCHED_RR which allows static priority (1-99).
3808// However, for large multi-threaded applications, SCHED_RR is not only slower
3809// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3810// of 5 runs - Sep 2005).
3811//
3812// The following code actually changes the niceness of kernel-thread/LWP. It
3813// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3814// not the entire user process, and user level threads are 1:1 mapped to kernel
3815// threads. It has always been the case, but could change in the future. For
3816// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3817// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3818
3819int os::java_to_os_priority[CriticalPriority + 1] = {
3820  19,              // 0 Entry should never be used
3821
3822   4,              // 1 MinPriority
3823   3,              // 2
3824   2,              // 3
3825
3826   1,              // 4
3827   0,              // 5 NormPriority
3828  -1,              // 6
3829
3830  -2,              // 7
3831  -3,              // 8
3832  -4,              // 9 NearMaxPriority
3833
3834  -5,              // 10 MaxPriority
3835
3836  -5               // 11 CriticalPriority
3837};
3838
3839static int prio_init() {
3840  if (ThreadPriorityPolicy == 1) {
3841    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3842    // if effective uid is not root. Perhaps, a more elegant way of doing
3843    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3844    if (geteuid() != 0) {
3845      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3846        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3847      }
3848      ThreadPriorityPolicy = 0;
3849    }
3850  }
3851  if (UseCriticalJavaThreadPriority) {
3852    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3853  }
3854  return 0;
3855}
3856
3857OSReturn os::set_native_priority(Thread* thread, int newpri) {
3858  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3859
3860  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3861  return (ret == 0) ? OS_OK : OS_ERR;
3862}
3863
3864OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3865  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3866    *priority_ptr = java_to_os_priority[NormPriority];
3867    return OS_OK;
3868  }
3869
3870  errno = 0;
3871  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3872  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3873}
3874
3875// Hint to the underlying OS that a task switch would not be good.
3876// Void return because it's a hint and can fail.
3877void os::hint_no_preempt() {}
3878
3879////////////////////////////////////////////////////////////////////////////////
3880// suspend/resume support
3881
3882//  the low-level signal-based suspend/resume support is a remnant from the
3883//  old VM-suspension that used to be for java-suspension, safepoints etc,
3884//  within hotspot. Now there is a single use-case for this:
3885//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3886//      that runs in the watcher thread.
3887//  The remaining code is greatly simplified from the more general suspension
3888//  code that used to be used.
3889//
3890//  The protocol is quite simple:
3891//  - suspend:
3892//      - sends a signal to the target thread
3893//      - polls the suspend state of the osthread using a yield loop
3894//      - target thread signal handler (SR_handler) sets suspend state
3895//        and blocks in sigsuspend until continued
3896//  - resume:
3897//      - sets target osthread state to continue
3898//      - sends signal to end the sigsuspend loop in the SR_handler
3899//
3900//  Note that the SR_lock plays no role in this suspend/resume protocol.
3901//
3902
3903static void resume_clear_context(OSThread *osthread) {
3904  osthread->set_ucontext(NULL);
3905  osthread->set_siginfo(NULL);
3906}
3907
3908static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3909  osthread->set_ucontext(context);
3910  osthread->set_siginfo(siginfo);
3911}
3912
3913//
3914// Handler function invoked when a thread's execution is suspended or
3915// resumed. We have to be careful that only async-safe functions are
3916// called here (Note: most pthread functions are not async safe and
3917// should be avoided.)
3918//
3919// Note: sigwait() is a more natural fit than sigsuspend() from an
3920// interface point of view, but sigwait() prevents the signal hander
3921// from being run. libpthread would get very confused by not having
3922// its signal handlers run and prevents sigwait()'s use with the
3923// mutex granting granting signal.
3924//
3925// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3926//
3927static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3928  // Save and restore errno to avoid confusing native code with EINTR
3929  // after sigsuspend.
3930  int old_errno = errno;
3931
3932  Thread* thread = Thread::current();
3933  OSThread* osthread = thread->osthread();
3934  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3935
3936  os::SuspendResume::State current = osthread->sr.state();
3937  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3938    suspend_save_context(osthread, siginfo, context);
3939
3940    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3941    os::SuspendResume::State state = osthread->sr.suspended();
3942    if (state == os::SuspendResume::SR_SUSPENDED) {
3943      sigset_t suspend_set;  // signals for sigsuspend()
3944
3945      // get current set of blocked signals and unblock resume signal
3946      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3947      sigdelset(&suspend_set, SR_signum);
3948
3949      sr_semaphore.signal();
3950      // wait here until we are resumed
3951      while (1) {
3952        sigsuspend(&suspend_set);
3953
3954        os::SuspendResume::State result = osthread->sr.running();
3955        if (result == os::SuspendResume::SR_RUNNING) {
3956          sr_semaphore.signal();
3957          break;
3958        }
3959      }
3960
3961    } else if (state == os::SuspendResume::SR_RUNNING) {
3962      // request was cancelled, continue
3963    } else {
3964      ShouldNotReachHere();
3965    }
3966
3967    resume_clear_context(osthread);
3968  } else if (current == os::SuspendResume::SR_RUNNING) {
3969    // request was cancelled, continue
3970  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3971    // ignore
3972  } else {
3973    // ignore
3974  }
3975
3976  errno = old_errno;
3977}
3978
3979
3980static int SR_initialize() {
3981  struct sigaction act;
3982  char *s;
3983  /* Get signal number to use for suspend/resume */
3984  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3985    int sig = ::strtol(s, 0, 10);
3986    if (sig > 0 || sig < _NSIG) {
3987        SR_signum = sig;
3988    }
3989  }
3990
3991  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3992        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3993
3994  sigemptyset(&SR_sigset);
3995  sigaddset(&SR_sigset, SR_signum);
3996
3997  /* Set up signal handler for suspend/resume */
3998  act.sa_flags = SA_RESTART|SA_SIGINFO;
3999  act.sa_handler = (void (*)(int)) SR_handler;
4000
4001  // SR_signum is blocked by default.
4002  // 4528190 - We also need to block pthread restart signal (32 on all
4003  // supported Linux platforms). Note that LinuxThreads need to block
4004  // this signal for all threads to work properly. So we don't have
4005  // to use hard-coded signal number when setting up the mask.
4006  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4007
4008  if (sigaction(SR_signum, &act, 0) == -1) {
4009    return -1;
4010  }
4011
4012  // Save signal flag
4013  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4014  return 0;
4015}
4016
4017static int sr_notify(OSThread* osthread) {
4018  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4019  assert_status(status == 0, status, "pthread_kill");
4020  return status;
4021}
4022
4023// "Randomly" selected value for how long we want to spin
4024// before bailing out on suspending a thread, also how often
4025// we send a signal to a thread we want to resume
4026static const int RANDOMLY_LARGE_INTEGER = 1000000;
4027static const int RANDOMLY_LARGE_INTEGER2 = 100;
4028
4029// returns true on success and false on error - really an error is fatal
4030// but this seems the normal response to library errors
4031static bool do_suspend(OSThread* osthread) {
4032  assert(osthread->sr.is_running(), "thread should be running");
4033  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4034
4035  // mark as suspended and send signal
4036  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4037    // failed to switch, state wasn't running?
4038    ShouldNotReachHere();
4039    return false;
4040  }
4041
4042  if (sr_notify(osthread) != 0) {
4043    ShouldNotReachHere();
4044  }
4045
4046  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4047  while (true) {
4048    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4049      break;
4050    } else {
4051      // timeout
4052      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4053      if (cancelled == os::SuspendResume::SR_RUNNING) {
4054        return false;
4055      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4056        // make sure that we consume the signal on the semaphore as well
4057        sr_semaphore.wait();
4058        break;
4059      } else {
4060        ShouldNotReachHere();
4061        return false;
4062      }
4063    }
4064  }
4065
4066  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4067  return true;
4068}
4069
4070static void do_resume(OSThread* osthread) {
4071  assert(osthread->sr.is_suspended(), "thread should be suspended");
4072  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4073
4074  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4075    // failed to switch to WAKEUP_REQUEST
4076    ShouldNotReachHere();
4077    return;
4078  }
4079
4080  while (true) {
4081    if (sr_notify(osthread) == 0) {
4082      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4083        if (osthread->sr.is_running()) {
4084          return;
4085        }
4086      }
4087    } else {
4088      ShouldNotReachHere();
4089    }
4090  }
4091
4092  guarantee(osthread->sr.is_running(), "Must be running!");
4093}
4094
4095///////////////////////////////////////////////////////////////////////////////////
4096// signal handling (except suspend/resume)
4097
4098// This routine may be used by user applications as a "hook" to catch signals.
4099// The user-defined signal handler must pass unrecognized signals to this
4100// routine, and if it returns true (non-zero), then the signal handler must
4101// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4102// routine will never retun false (zero), but instead will execute a VM panic
4103// routine kill the process.
4104//
4105// If this routine returns false, it is OK to call it again.  This allows
4106// the user-defined signal handler to perform checks either before or after
4107// the VM performs its own checks.  Naturally, the user code would be making
4108// a serious error if it tried to handle an exception (such as a null check
4109// or breakpoint) that the VM was generating for its own correct operation.
4110//
4111// This routine may recognize any of the following kinds of signals:
4112//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4113// It should be consulted by handlers for any of those signals.
4114//
4115// The caller of this routine must pass in the three arguments supplied
4116// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4117// field of the structure passed to sigaction().  This routine assumes that
4118// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4119//
4120// Note that the VM will print warnings if it detects conflicting signal
4121// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4122//
4123extern "C" JNIEXPORT int
4124JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4125                        void* ucontext, int abort_if_unrecognized);
4126
4127void signalHandler(int sig, siginfo_t* info, void* uc) {
4128  assert(info != NULL && uc != NULL, "it must be old kernel");
4129  int orig_errno = errno;  // Preserve errno value over signal handler.
4130  JVM_handle_linux_signal(sig, info, uc, true);
4131  errno = orig_errno;
4132}
4133
4134
4135// This boolean allows users to forward their own non-matching signals
4136// to JVM_handle_linux_signal, harmlessly.
4137bool os::Linux::signal_handlers_are_installed = false;
4138
4139// For signal-chaining
4140struct sigaction os::Linux::sigact[MAXSIGNUM];
4141unsigned int os::Linux::sigs = 0;
4142bool os::Linux::libjsig_is_loaded = false;
4143typedef struct sigaction *(*get_signal_t)(int);
4144get_signal_t os::Linux::get_signal_action = NULL;
4145
4146struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4147  struct sigaction *actp = NULL;
4148
4149  if (libjsig_is_loaded) {
4150    // Retrieve the old signal handler from libjsig
4151    actp = (*get_signal_action)(sig);
4152  }
4153  if (actp == NULL) {
4154    // Retrieve the preinstalled signal handler from jvm
4155    actp = get_preinstalled_handler(sig);
4156  }
4157
4158  return actp;
4159}
4160
4161static bool call_chained_handler(struct sigaction *actp, int sig,
4162                                 siginfo_t *siginfo, void *context) {
4163  // Call the old signal handler
4164  if (actp->sa_handler == SIG_DFL) {
4165    // It's more reasonable to let jvm treat it as an unexpected exception
4166    // instead of taking the default action.
4167    return false;
4168  } else if (actp->sa_handler != SIG_IGN) {
4169    if ((actp->sa_flags & SA_NODEFER) == 0) {
4170      // automaticlly block the signal
4171      sigaddset(&(actp->sa_mask), sig);
4172    }
4173
4174    sa_handler_t hand;
4175    sa_sigaction_t sa;
4176    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4177    // retrieve the chained handler
4178    if (siginfo_flag_set) {
4179      sa = actp->sa_sigaction;
4180    } else {
4181      hand = actp->sa_handler;
4182    }
4183
4184    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4185      actp->sa_handler = SIG_DFL;
4186    }
4187
4188    // try to honor the signal mask
4189    sigset_t oset;
4190    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4191
4192    // call into the chained handler
4193    if (siginfo_flag_set) {
4194      (*sa)(sig, siginfo, context);
4195    } else {
4196      (*hand)(sig);
4197    }
4198
4199    // restore the signal mask
4200    pthread_sigmask(SIG_SETMASK, &oset, 0);
4201  }
4202  // Tell jvm's signal handler the signal is taken care of.
4203  return true;
4204}
4205
4206bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4207  bool chained = false;
4208  // signal-chaining
4209  if (UseSignalChaining) {
4210    struct sigaction *actp = get_chained_signal_action(sig);
4211    if (actp != NULL) {
4212      chained = call_chained_handler(actp, sig, siginfo, context);
4213    }
4214  }
4215  return chained;
4216}
4217
4218struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4219  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4220    return &sigact[sig];
4221  }
4222  return NULL;
4223}
4224
4225void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4226  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4227  sigact[sig] = oldAct;
4228  sigs |= (unsigned int)1 << sig;
4229}
4230
4231// for diagnostic
4232int os::Linux::sigflags[MAXSIGNUM];
4233
4234int os::Linux::get_our_sigflags(int sig) {
4235  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4236  return sigflags[sig];
4237}
4238
4239void os::Linux::set_our_sigflags(int sig, int flags) {
4240  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4241  sigflags[sig] = flags;
4242}
4243
4244void os::Linux::set_signal_handler(int sig, bool set_installed) {
4245  // Check for overwrite.
4246  struct sigaction oldAct;
4247  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4248
4249  void* oldhand = oldAct.sa_sigaction
4250                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4251                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4252  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4253      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4254      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4255    if (AllowUserSignalHandlers || !set_installed) {
4256      // Do not overwrite; user takes responsibility to forward to us.
4257      return;
4258    } else if (UseSignalChaining) {
4259      // save the old handler in jvm
4260      save_preinstalled_handler(sig, oldAct);
4261      // libjsig also interposes the sigaction() call below and saves the
4262      // old sigaction on it own.
4263    } else {
4264      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4265                    "%#lx for signal %d.", (long)oldhand, sig));
4266    }
4267  }
4268
4269  struct sigaction sigAct;
4270  sigfillset(&(sigAct.sa_mask));
4271  sigAct.sa_handler = SIG_DFL;
4272  if (!set_installed) {
4273    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4274  } else {
4275    sigAct.sa_sigaction = signalHandler;
4276    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4277  }
4278  // Save flags, which are set by ours
4279  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4280  sigflags[sig] = sigAct.sa_flags;
4281
4282  int ret = sigaction(sig, &sigAct, &oldAct);
4283  assert(ret == 0, "check");
4284
4285  void* oldhand2  = oldAct.sa_sigaction
4286                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4287                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4288  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4289}
4290
4291// install signal handlers for signals that HotSpot needs to
4292// handle in order to support Java-level exception handling.
4293
4294void os::Linux::install_signal_handlers() {
4295  if (!signal_handlers_are_installed) {
4296    signal_handlers_are_installed = true;
4297
4298    // signal-chaining
4299    typedef void (*signal_setting_t)();
4300    signal_setting_t begin_signal_setting = NULL;
4301    signal_setting_t end_signal_setting = NULL;
4302    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4303                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4304    if (begin_signal_setting != NULL) {
4305      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4306                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4307      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4308                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4309      libjsig_is_loaded = true;
4310      assert(UseSignalChaining, "should enable signal-chaining");
4311    }
4312    if (libjsig_is_loaded) {
4313      // Tell libjsig jvm is setting signal handlers
4314      (*begin_signal_setting)();
4315    }
4316
4317    set_signal_handler(SIGSEGV, true);
4318    set_signal_handler(SIGPIPE, true);
4319    set_signal_handler(SIGBUS, true);
4320    set_signal_handler(SIGILL, true);
4321    set_signal_handler(SIGFPE, true);
4322#if defined(PPC64)
4323    set_signal_handler(SIGTRAP, true);
4324#endif
4325    set_signal_handler(SIGXFSZ, true);
4326
4327    if (libjsig_is_loaded) {
4328      // Tell libjsig jvm finishes setting signal handlers
4329      (*end_signal_setting)();
4330    }
4331
4332    // We don't activate signal checker if libjsig is in place, we trust ourselves
4333    // and if UserSignalHandler is installed all bets are off.
4334    // Log that signal checking is off only if -verbose:jni is specified.
4335    if (CheckJNICalls) {
4336      if (libjsig_is_loaded) {
4337        if (PrintJNIResolving) {
4338          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4339        }
4340        check_signals = false;
4341      }
4342      if (AllowUserSignalHandlers) {
4343        if (PrintJNIResolving) {
4344          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4345        }
4346        check_signals = false;
4347      }
4348    }
4349  }
4350}
4351
4352// This is the fastest way to get thread cpu time on Linux.
4353// Returns cpu time (user+sys) for any thread, not only for current.
4354// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4355// It might work on 2.6.10+ with a special kernel/glibc patch.
4356// For reference, please, see IEEE Std 1003.1-2004:
4357//   http://www.unix.org/single_unix_specification
4358
4359jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4360  struct timespec tp;
4361  int rc = os::Linux::clock_gettime(clockid, &tp);
4362  assert(rc == 0, "clock_gettime is expected to return 0 code");
4363
4364  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4365}
4366
4367/////
4368// glibc on Linux platform uses non-documented flag
4369// to indicate, that some special sort of signal
4370// trampoline is used.
4371// We will never set this flag, and we should
4372// ignore this flag in our diagnostic
4373#ifdef SIGNIFICANT_SIGNAL_MASK
4374#undef SIGNIFICANT_SIGNAL_MASK
4375#endif
4376#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4377
4378static const char* get_signal_handler_name(address handler,
4379                                           char* buf, int buflen) {
4380  int offset;
4381  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4382  if (found) {
4383    // skip directory names
4384    const char *p1, *p2;
4385    p1 = buf;
4386    size_t len = strlen(os::file_separator());
4387    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4388    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4389  } else {
4390    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4391  }
4392  return buf;
4393}
4394
4395static void print_signal_handler(outputStream* st, int sig,
4396                                 char* buf, size_t buflen) {
4397  struct sigaction sa;
4398
4399  sigaction(sig, NULL, &sa);
4400
4401  // See comment for SIGNIFICANT_SIGNAL_MASK define
4402  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4403
4404  st->print("%s: ", os::exception_name(sig, buf, buflen));
4405
4406  address handler = (sa.sa_flags & SA_SIGINFO)
4407    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4408    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4409
4410  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4411    st->print("SIG_DFL");
4412  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4413    st->print("SIG_IGN");
4414  } else {
4415    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4416  }
4417
4418  st->print(", sa_mask[0]=");
4419  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4420
4421  address rh = VMError::get_resetted_sighandler(sig);
4422  // May be, handler was resetted by VMError?
4423  if(rh != NULL) {
4424    handler = rh;
4425    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4426  }
4427
4428  st->print(", sa_flags=");
4429  os::Posix::print_sa_flags(st, sa.sa_flags);
4430
4431  // Check: is it our handler?
4432  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4433     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4434    // It is our signal handler
4435    // check for flags, reset system-used one!
4436    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4437      st->print(
4438                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4439                os::Linux::get_our_sigflags(sig));
4440    }
4441  }
4442  st->cr();
4443}
4444
4445
4446#define DO_SIGNAL_CHECK(sig) \
4447  if (!sigismember(&check_signal_done, sig)) \
4448    os::Linux::check_signal_handler(sig)
4449
4450// This method is a periodic task to check for misbehaving JNI applications
4451// under CheckJNI, we can add any periodic checks here
4452
4453void os::run_periodic_checks() {
4454
4455  if (check_signals == false) return;
4456
4457  // SEGV and BUS if overridden could potentially prevent
4458  // generation of hs*.log in the event of a crash, debugging
4459  // such a case can be very challenging, so we absolutely
4460  // check the following for a good measure:
4461  DO_SIGNAL_CHECK(SIGSEGV);
4462  DO_SIGNAL_CHECK(SIGILL);
4463  DO_SIGNAL_CHECK(SIGFPE);
4464  DO_SIGNAL_CHECK(SIGBUS);
4465  DO_SIGNAL_CHECK(SIGPIPE);
4466  DO_SIGNAL_CHECK(SIGXFSZ);
4467#if defined(PPC64)
4468  DO_SIGNAL_CHECK(SIGTRAP);
4469#endif
4470
4471  // ReduceSignalUsage allows the user to override these handlers
4472  // see comments at the very top and jvm_solaris.h
4473  if (!ReduceSignalUsage) {
4474    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4475    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4476    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4477    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4478  }
4479
4480  DO_SIGNAL_CHECK(SR_signum);
4481  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4482}
4483
4484typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4485
4486static os_sigaction_t os_sigaction = NULL;
4487
4488void os::Linux::check_signal_handler(int sig) {
4489  char buf[O_BUFLEN];
4490  address jvmHandler = NULL;
4491
4492
4493  struct sigaction act;
4494  if (os_sigaction == NULL) {
4495    // only trust the default sigaction, in case it has been interposed
4496    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4497    if (os_sigaction == NULL) return;
4498  }
4499
4500  os_sigaction(sig, (struct sigaction*)NULL, &act);
4501
4502
4503  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4504
4505  address thisHandler = (act.sa_flags & SA_SIGINFO)
4506    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4507    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4508
4509
4510  switch(sig) {
4511  case SIGSEGV:
4512  case SIGBUS:
4513  case SIGFPE:
4514  case SIGPIPE:
4515  case SIGILL:
4516  case SIGXFSZ:
4517    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4518    break;
4519
4520  case SHUTDOWN1_SIGNAL:
4521  case SHUTDOWN2_SIGNAL:
4522  case SHUTDOWN3_SIGNAL:
4523  case BREAK_SIGNAL:
4524    jvmHandler = (address)user_handler();
4525    break;
4526
4527  case INTERRUPT_SIGNAL:
4528    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4529    break;
4530
4531  default:
4532    if (sig == SR_signum) {
4533      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4534    } else {
4535      return;
4536    }
4537    break;
4538  }
4539
4540  if (thisHandler != jvmHandler) {
4541    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4542    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4543    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4544    // No need to check this sig any longer
4545    sigaddset(&check_signal_done, sig);
4546    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4547    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4548      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4549                    exception_name(sig, buf, O_BUFLEN));
4550    }
4551  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4552    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4553    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4554    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4555    // No need to check this sig any longer
4556    sigaddset(&check_signal_done, sig);
4557  }
4558
4559  // Dump all the signal
4560  if (sigismember(&check_signal_done, sig)) {
4561    print_signal_handlers(tty, buf, O_BUFLEN);
4562  }
4563}
4564
4565extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4566
4567extern bool signal_name(int signo, char* buf, size_t len);
4568
4569const char* os::exception_name(int exception_code, char* buf, size_t size) {
4570  if (0 < exception_code && exception_code <= SIGRTMAX) {
4571    // signal
4572    if (!signal_name(exception_code, buf, size)) {
4573      jio_snprintf(buf, size, "SIG%d", exception_code);
4574    }
4575    return buf;
4576  } else {
4577    return NULL;
4578  }
4579}
4580
4581// this is called _before_ the most of global arguments have been parsed
4582void os::init(void) {
4583  char dummy;   /* used to get a guess on initial stack address */
4584//  first_hrtime = gethrtime();
4585
4586  // With LinuxThreads the JavaMain thread pid (primordial thread)
4587  // is different than the pid of the java launcher thread.
4588  // So, on Linux, the launcher thread pid is passed to the VM
4589  // via the sun.java.launcher.pid property.
4590  // Use this property instead of getpid() if it was correctly passed.
4591  // See bug 6351349.
4592  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4593
4594  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4595
4596  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4597
4598  init_random(1234567);
4599
4600  ThreadCritical::initialize();
4601
4602  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4603  if (Linux::page_size() == -1) {
4604    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4605                  strerror(errno)));
4606  }
4607  init_page_sizes((size_t) Linux::page_size());
4608
4609  Linux::initialize_system_info();
4610
4611  // main_thread points to the aboriginal thread
4612  Linux::_main_thread = pthread_self();
4613
4614  Linux::clock_init();
4615  initial_time_count = javaTimeNanos();
4616
4617  // pthread_condattr initialization for monotonic clock
4618  int status;
4619  pthread_condattr_t* _condattr = os::Linux::condAttr();
4620  if ((status = pthread_condattr_init(_condattr)) != 0) {
4621    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4622  }
4623  // Only set the clock if CLOCK_MONOTONIC is available
4624  if (os::supports_monotonic_clock()) {
4625    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4626      if (status == EINVAL) {
4627        warning("Unable to use monotonic clock with relative timed-waits" \
4628                " - changes to the time-of-day clock may have adverse affects");
4629      } else {
4630        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4631      }
4632    }
4633  }
4634  // else it defaults to CLOCK_REALTIME
4635
4636  pthread_mutex_init(&dl_mutex, NULL);
4637
4638  // If the pagesize of the VM is greater than 8K determine the appropriate
4639  // number of initial guard pages.  The user can change this with the
4640  // command line arguments, if needed.
4641  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4642    StackYellowPages = 1;
4643    StackRedPages = 1;
4644    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4645  }
4646}
4647
4648// To install functions for atexit system call
4649extern "C" {
4650  static void perfMemory_exit_helper() {
4651    perfMemory_exit();
4652  }
4653}
4654
4655// this is called _after_ the global arguments have been parsed
4656jint os::init_2(void)
4657{
4658  Linux::fast_thread_clock_init();
4659
4660  // Allocate a single page and mark it as readable for safepoint polling
4661  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4662  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4663
4664  os::set_polling_page( polling_page );
4665
4666#ifndef PRODUCT
4667  if(Verbose && PrintMiscellaneous)
4668    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4669#endif
4670
4671  if (!UseMembar) {
4672    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4673    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4674    os::set_memory_serialize_page( mem_serialize_page );
4675
4676#ifndef PRODUCT
4677    if(Verbose && PrintMiscellaneous)
4678      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4679#endif
4680  }
4681
4682  // initialize suspend/resume support - must do this before signal_sets_init()
4683  if (SR_initialize() != 0) {
4684    perror("SR_initialize failed");
4685    return JNI_ERR;
4686  }
4687
4688  Linux::signal_sets_init();
4689  Linux::install_signal_handlers();
4690
4691  // Check minimum allowable stack size for thread creation and to initialize
4692  // the java system classes, including StackOverflowError - depends on page
4693  // size.  Add a page for compiler2 recursion in main thread.
4694  // Add in 2*BytesPerWord times page size to account for VM stack during
4695  // class initialization depending on 32 or 64 bit VM.
4696  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4697            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4698                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4699
4700  size_t threadStackSizeInBytes = ThreadStackSize * K;
4701  if (threadStackSizeInBytes != 0 &&
4702      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4703        tty->print_cr("\nThe stack size specified is too small, "
4704                      "Specify at least %dk",
4705                      os::Linux::min_stack_allowed/ K);
4706        return JNI_ERR;
4707  }
4708
4709  // Make the stack size a multiple of the page size so that
4710  // the yellow/red zones can be guarded.
4711  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4712        vm_page_size()));
4713
4714  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4715
4716#if defined(IA32)
4717  workaround_expand_exec_shield_cs_limit();
4718#endif
4719
4720  Linux::libpthread_init();
4721  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4722     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4723          Linux::glibc_version(), Linux::libpthread_version(),
4724          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4725  }
4726
4727  if (UseNUMA) {
4728    if (!Linux::libnuma_init()) {
4729      UseNUMA = false;
4730    } else {
4731      if ((Linux::numa_max_node() < 1)) {
4732        // There's only one node(they start from 0), disable NUMA.
4733        UseNUMA = false;
4734      }
4735    }
4736    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4737    // we can make the adaptive lgrp chunk resizing work. If the user specified
4738    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4739    // disable adaptive resizing.
4740    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4741      if (FLAG_IS_DEFAULT(UseNUMA)) {
4742        UseNUMA = false;
4743      } else {
4744        if (FLAG_IS_DEFAULT(UseLargePages) &&
4745            FLAG_IS_DEFAULT(UseSHM) &&
4746            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4747          UseLargePages = false;
4748        } else {
4749          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4750          UseAdaptiveSizePolicy = false;
4751          UseAdaptiveNUMAChunkSizing = false;
4752        }
4753      }
4754    }
4755    if (!UseNUMA && ForceNUMA) {
4756      UseNUMA = true;
4757    }
4758  }
4759
4760  if (MaxFDLimit) {
4761    // set the number of file descriptors to max. print out error
4762    // if getrlimit/setrlimit fails but continue regardless.
4763    struct rlimit nbr_files;
4764    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4765    if (status != 0) {
4766      if (PrintMiscellaneous && (Verbose || WizardMode))
4767        perror("os::init_2 getrlimit failed");
4768    } else {
4769      nbr_files.rlim_cur = nbr_files.rlim_max;
4770      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4771      if (status != 0) {
4772        if (PrintMiscellaneous && (Verbose || WizardMode))
4773          perror("os::init_2 setrlimit failed");
4774      }
4775    }
4776  }
4777
4778  // Initialize lock used to serialize thread creation (see os::create_thread)
4779  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4780
4781  // at-exit methods are called in the reverse order of their registration.
4782  // atexit functions are called on return from main or as a result of a
4783  // call to exit(3C). There can be only 32 of these functions registered
4784  // and atexit() does not set errno.
4785
4786  if (PerfAllowAtExitRegistration) {
4787    // only register atexit functions if PerfAllowAtExitRegistration is set.
4788    // atexit functions can be delayed until process exit time, which
4789    // can be problematic for embedded VM situations. Embedded VMs should
4790    // call DestroyJavaVM() to assure that VM resources are released.
4791
4792    // note: perfMemory_exit_helper atexit function may be removed in
4793    // the future if the appropriate cleanup code can be added to the
4794    // VM_Exit VMOperation's doit method.
4795    if (atexit(perfMemory_exit_helper) != 0) {
4796      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4797    }
4798  }
4799
4800  // initialize thread priority policy
4801  prio_init();
4802
4803  return JNI_OK;
4804}
4805
4806// this is called at the end of vm_initialization
4807void os::init_3(void) {
4808#ifdef JAVASE_EMBEDDED
4809  // Start the MemNotifyThread
4810  if (LowMemoryProtection) {
4811    MemNotifyThread::start();
4812  }
4813  return;
4814#endif
4815}
4816
4817// Mark the polling page as unreadable
4818void os::make_polling_page_unreadable(void) {
4819  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4820    fatal("Could not disable polling page");
4821};
4822
4823// Mark the polling page as readable
4824void os::make_polling_page_readable(void) {
4825  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4826    fatal("Could not enable polling page");
4827  }
4828};
4829
4830int os::active_processor_count() {
4831  // Linux doesn't yet have a (official) notion of processor sets,
4832  // so just return the number of online processors.
4833  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4834  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4835  return online_cpus;
4836}
4837
4838void os::set_native_thread_name(const char *name) {
4839  // Not yet implemented.
4840  return;
4841}
4842
4843bool os::distribute_processes(uint length, uint* distribution) {
4844  // Not yet implemented.
4845  return false;
4846}
4847
4848bool os::bind_to_processor(uint processor_id) {
4849  // Not yet implemented.
4850  return false;
4851}
4852
4853///
4854
4855void os::SuspendedThreadTask::internal_do_task() {
4856  if (do_suspend(_thread->osthread())) {
4857    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4858    do_task(context);
4859    do_resume(_thread->osthread());
4860  }
4861}
4862
4863class PcFetcher : public os::SuspendedThreadTask {
4864public:
4865  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4866  ExtendedPC result();
4867protected:
4868  void do_task(const os::SuspendedThreadTaskContext& context);
4869private:
4870  ExtendedPC _epc;
4871};
4872
4873ExtendedPC PcFetcher::result() {
4874  guarantee(is_done(), "task is not done yet.");
4875  return _epc;
4876}
4877
4878void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4879  Thread* thread = context.thread();
4880  OSThread* osthread = thread->osthread();
4881  if (osthread->ucontext() != NULL) {
4882    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4883  } else {
4884    // NULL context is unexpected, double-check this is the VMThread
4885    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4886  }
4887}
4888
4889// Suspends the target using the signal mechanism and then grabs the PC before
4890// resuming the target. Used by the flat-profiler only
4891ExtendedPC os::get_thread_pc(Thread* thread) {
4892  // Make sure that it is called by the watcher for the VMThread
4893  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4894  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4895
4896  PcFetcher fetcher(thread);
4897  fetcher.run();
4898  return fetcher.result();
4899}
4900
4901int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4902{
4903   if (is_NPTL()) {
4904      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4905   } else {
4906      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4907      // word back to default 64bit precision if condvar is signaled. Java
4908      // wants 53bit precision.  Save and restore current value.
4909      int fpu = get_fpu_control_word();
4910      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4911      set_fpu_control_word(fpu);
4912      return status;
4913   }
4914}
4915
4916////////////////////////////////////////////////////////////////////////////////
4917// debug support
4918
4919bool os::find(address addr, outputStream* st) {
4920  Dl_info dlinfo;
4921  memset(&dlinfo, 0, sizeof(dlinfo));
4922  if (dladdr(addr, &dlinfo) != 0) {
4923    st->print(PTR_FORMAT ": ", addr);
4924    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4925      st->print("%s+%#x", dlinfo.dli_sname,
4926                 addr - (intptr_t)dlinfo.dli_saddr);
4927    } else if (dlinfo.dli_fbase != NULL) {
4928      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4929    } else {
4930      st->print("<absolute address>");
4931    }
4932    if (dlinfo.dli_fname != NULL) {
4933      st->print(" in %s", dlinfo.dli_fname);
4934    }
4935    if (dlinfo.dli_fbase != NULL) {
4936      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4937    }
4938    st->cr();
4939
4940    if (Verbose) {
4941      // decode some bytes around the PC
4942      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4943      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4944      address       lowest = (address) dlinfo.dli_sname;
4945      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4946      if (begin < lowest)  begin = lowest;
4947      Dl_info dlinfo2;
4948      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4949          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4950        end = (address) dlinfo2.dli_saddr;
4951      Disassembler::decode(begin, end, st);
4952    }
4953    return true;
4954  }
4955  return false;
4956}
4957
4958////////////////////////////////////////////////////////////////////////////////
4959// misc
4960
4961// This does not do anything on Linux. This is basically a hook for being
4962// able to use structured exception handling (thread-local exception filters)
4963// on, e.g., Win32.
4964void
4965os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4966                         JavaCallArguments* args, Thread* thread) {
4967  f(value, method, args, thread);
4968}
4969
4970void os::print_statistics() {
4971}
4972
4973int os::message_box(const char* title, const char* message) {
4974  int i;
4975  fdStream err(defaultStream::error_fd());
4976  for (i = 0; i < 78; i++) err.print_raw("=");
4977  err.cr();
4978  err.print_raw_cr(title);
4979  for (i = 0; i < 78; i++) err.print_raw("-");
4980  err.cr();
4981  err.print_raw_cr(message);
4982  for (i = 0; i < 78; i++) err.print_raw("=");
4983  err.cr();
4984
4985  char buf[16];
4986  // Prevent process from exiting upon "read error" without consuming all CPU
4987  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4988
4989  return buf[0] == 'y' || buf[0] == 'Y';
4990}
4991
4992int os::stat(const char *path, struct stat *sbuf) {
4993  char pathbuf[MAX_PATH];
4994  if (strlen(path) > MAX_PATH - 1) {
4995    errno = ENAMETOOLONG;
4996    return -1;
4997  }
4998  os::native_path(strcpy(pathbuf, path));
4999  return ::stat(pathbuf, sbuf);
5000}
5001
5002bool os::check_heap(bool force) {
5003  return true;
5004}
5005
5006int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5007  return ::vsnprintf(buf, count, format, args);
5008}
5009
5010// Is a (classpath) directory empty?
5011bool os::dir_is_empty(const char* path) {
5012  DIR *dir = NULL;
5013  struct dirent *ptr;
5014
5015  dir = opendir(path);
5016  if (dir == NULL) return true;
5017
5018  /* Scan the directory */
5019  bool result = true;
5020  char buf[sizeof(struct dirent) + MAX_PATH];
5021  while (result && (ptr = ::readdir(dir)) != NULL) {
5022    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5023      result = false;
5024    }
5025  }
5026  closedir(dir);
5027  return result;
5028}
5029
5030// This code originates from JDK's sysOpen and open64_w
5031// from src/solaris/hpi/src/system_md.c
5032
5033#ifndef O_DELETE
5034#define O_DELETE 0x10000
5035#endif
5036
5037// Open a file. Unlink the file immediately after open returns
5038// if the specified oflag has the O_DELETE flag set.
5039// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5040
5041int os::open(const char *path, int oflag, int mode) {
5042
5043  if (strlen(path) > MAX_PATH - 1) {
5044    errno = ENAMETOOLONG;
5045    return -1;
5046  }
5047  int fd;
5048  int o_delete = (oflag & O_DELETE);
5049  oflag = oflag & ~O_DELETE;
5050
5051  fd = ::open64(path, oflag, mode);
5052  if (fd == -1) return -1;
5053
5054  //If the open succeeded, the file might still be a directory
5055  {
5056    struct stat64 buf64;
5057    int ret = ::fstat64(fd, &buf64);
5058    int st_mode = buf64.st_mode;
5059
5060    if (ret != -1) {
5061      if ((st_mode & S_IFMT) == S_IFDIR) {
5062        errno = EISDIR;
5063        ::close(fd);
5064        return -1;
5065      }
5066    } else {
5067      ::close(fd);
5068      return -1;
5069    }
5070  }
5071
5072    /*
5073     * All file descriptors that are opened in the JVM and not
5074     * specifically destined for a subprocess should have the
5075     * close-on-exec flag set.  If we don't set it, then careless 3rd
5076     * party native code might fork and exec without closing all
5077     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5078     * UNIXProcess.c), and this in turn might:
5079     *
5080     * - cause end-of-file to fail to be detected on some file
5081     *   descriptors, resulting in mysterious hangs, or
5082     *
5083     * - might cause an fopen in the subprocess to fail on a system
5084     *   suffering from bug 1085341.
5085     *
5086     * (Yes, the default setting of the close-on-exec flag is a Unix
5087     * design flaw)
5088     *
5089     * See:
5090     * 1085341: 32-bit stdio routines should support file descriptors >255
5091     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5092     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5093     */
5094#ifdef FD_CLOEXEC
5095    {
5096        int flags = ::fcntl(fd, F_GETFD);
5097        if (flags != -1)
5098            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5099    }
5100#endif
5101
5102  if (o_delete != 0) {
5103    ::unlink(path);
5104  }
5105  return fd;
5106}
5107
5108
5109// create binary file, rewriting existing file if required
5110int os::create_binary_file(const char* path, bool rewrite_existing) {
5111  int oflags = O_WRONLY | O_CREAT;
5112  if (!rewrite_existing) {
5113    oflags |= O_EXCL;
5114  }
5115  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5116}
5117
5118// return current position of file pointer
5119jlong os::current_file_offset(int fd) {
5120  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5121}
5122
5123// move file pointer to the specified offset
5124jlong os::seek_to_file_offset(int fd, jlong offset) {
5125  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5126}
5127
5128// This code originates from JDK's sysAvailable
5129// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5130
5131int os::available(int fd, jlong *bytes) {
5132  jlong cur, end;
5133  int mode;
5134  struct stat64 buf64;
5135
5136  if (::fstat64(fd, &buf64) >= 0) {
5137    mode = buf64.st_mode;
5138    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5139      /*
5140      * XXX: is the following call interruptible? If so, this might
5141      * need to go through the INTERRUPT_IO() wrapper as for other
5142      * blocking, interruptible calls in this file.
5143      */
5144      int n;
5145      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5146        *bytes = n;
5147        return 1;
5148      }
5149    }
5150  }
5151  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5152    return 0;
5153  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5154    return 0;
5155  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5156    return 0;
5157  }
5158  *bytes = end - cur;
5159  return 1;
5160}
5161
5162int os::socket_available(int fd, jint *pbytes) {
5163  // Linux doc says EINTR not returned, unlike Solaris
5164  int ret = ::ioctl(fd, FIONREAD, pbytes);
5165
5166  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5167  // is expected to return 0 on failure and 1 on success to the jdk.
5168  return (ret < 0) ? 0 : 1;
5169}
5170
5171// Map a block of memory.
5172char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5173                     char *addr, size_t bytes, bool read_only,
5174                     bool allow_exec) {
5175  int prot;
5176  int flags = MAP_PRIVATE;
5177
5178  if (read_only) {
5179    prot = PROT_READ;
5180  } else {
5181    prot = PROT_READ | PROT_WRITE;
5182  }
5183
5184  if (allow_exec) {
5185    prot |= PROT_EXEC;
5186  }
5187
5188  if (addr != NULL) {
5189    flags |= MAP_FIXED;
5190  }
5191
5192  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5193                                     fd, file_offset);
5194  if (mapped_address == MAP_FAILED) {
5195    return NULL;
5196  }
5197  return mapped_address;
5198}
5199
5200
5201// Remap a block of memory.
5202char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5203                       char *addr, size_t bytes, bool read_only,
5204                       bool allow_exec) {
5205  // same as map_memory() on this OS
5206  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5207                        allow_exec);
5208}
5209
5210
5211// Unmap a block of memory.
5212bool os::pd_unmap_memory(char* addr, size_t bytes) {
5213  return munmap(addr, bytes) == 0;
5214}
5215
5216static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5217
5218static clockid_t thread_cpu_clockid(Thread* thread) {
5219  pthread_t tid = thread->osthread()->pthread_id();
5220  clockid_t clockid;
5221
5222  // Get thread clockid
5223  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5224  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5225  return clockid;
5226}
5227
5228// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5229// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5230// of a thread.
5231//
5232// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5233// the fast estimate available on the platform.
5234
5235jlong os::current_thread_cpu_time() {
5236  if (os::Linux::supports_fast_thread_cpu_time()) {
5237    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5238  } else {
5239    // return user + sys since the cost is the same
5240    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5241  }
5242}
5243
5244jlong os::thread_cpu_time(Thread* thread) {
5245  // consistent with what current_thread_cpu_time() returns
5246  if (os::Linux::supports_fast_thread_cpu_time()) {
5247    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5248  } else {
5249    return slow_thread_cpu_time(thread, true /* user + sys */);
5250  }
5251}
5252
5253jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5254  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5255    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5256  } else {
5257    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5258  }
5259}
5260
5261jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5262  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5263    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5264  } else {
5265    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5266  }
5267}
5268
5269//
5270//  -1 on error.
5271//
5272
5273static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5274  static bool proc_task_unchecked = true;
5275  pid_t  tid = thread->osthread()->thread_id();
5276  char *s;
5277  char stat[2048];
5278  int statlen;
5279  char proc_name[64];
5280  int count;
5281  long sys_time, user_time;
5282  char cdummy;
5283  int idummy;
5284  long ldummy;
5285  FILE *fp;
5286
5287  snprintf(proc_name, 64, "/proc/%d/stat", tid);
5288
5289  // The /proc/<tid>/stat aggregates per-process usage on
5290  // new Linux kernels 2.6+ where NPTL is supported.
5291  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5292  // See bug 6328462.
5293  // There possibly can be cases where there is no directory
5294  // /proc/self/task, so we check its availability.
5295  if (proc_task_unchecked && os::Linux::is_NPTL()) {
5296    // This is executed only once
5297    proc_task_unchecked = false;
5298    fp = fopen("/proc/self/task", "r");
5299    if (fp != NULL) {
5300      snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5301      fclose(fp);
5302    }
5303  }
5304
5305  fp = fopen(proc_name, "r");
5306  if ( fp == NULL ) return -1;
5307  statlen = fread(stat, 1, 2047, fp);
5308  stat[statlen] = '\0';
5309  fclose(fp);
5310
5311  // Skip pid and the command string. Note that we could be dealing with
5312  // weird command names, e.g. user could decide to rename java launcher
5313  // to "java 1.4.2 :)", then the stat file would look like
5314  //                1234 (java 1.4.2 :)) R ... ...
5315  // We don't really need to know the command string, just find the last
5316  // occurrence of ")" and then start parsing from there. See bug 4726580.
5317  s = strrchr(stat, ')');
5318  if (s == NULL ) return -1;
5319
5320  // Skip blank chars
5321  do s++; while (isspace(*s));
5322
5323  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5324                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5325                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5326                 &user_time, &sys_time);
5327  if ( count != 13 ) return -1;
5328  if (user_sys_cpu_time) {
5329    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5330  } else {
5331    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5332  }
5333}
5334
5335void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5336  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5337  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5338  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5339  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5340}
5341
5342void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5343  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5344  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5345  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5346  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5347}
5348
5349bool os::is_thread_cpu_time_supported() {
5350  return true;
5351}
5352
5353// System loadavg support.  Returns -1 if load average cannot be obtained.
5354// Linux doesn't yet have a (official) notion of processor sets,
5355// so just return the system wide load average.
5356int os::loadavg(double loadavg[], int nelem) {
5357  return ::getloadavg(loadavg, nelem);
5358}
5359
5360void os::pause() {
5361  char filename[MAX_PATH];
5362  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5363    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5364  } else {
5365    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5366  }
5367
5368  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5369  if (fd != -1) {
5370    struct stat buf;
5371    ::close(fd);
5372    while (::stat(filename, &buf) == 0) {
5373      (void)::poll(NULL, 0, 100);
5374    }
5375  } else {
5376    jio_fprintf(stderr,
5377      "Could not open pause file '%s', continuing immediately.\n", filename);
5378  }
5379}
5380
5381
5382// Refer to the comments in os_solaris.cpp park-unpark.
5383//
5384// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5385// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5386// For specifics regarding the bug see GLIBC BUGID 261237 :
5387//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5388// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5389// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5390// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5391// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5392// and monitorenter when we're using 1-0 locking.  All those operations may result in
5393// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5394// of libpthread avoids the problem, but isn't practical.
5395//
5396// Possible remedies:
5397//
5398// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5399//      This is palliative and probabilistic, however.  If the thread is preempted
5400//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5401//      than the minimum period may have passed, and the abstime may be stale (in the
5402//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5403//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5404//
5405// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5406//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5407//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5408//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5409//      thread.
5410//
5411// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5412//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5413//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5414//      This also works well.  In fact it avoids kernel-level scalability impediments
5415//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5416//      timers in a graceful fashion.
5417//
5418// 4.   When the abstime value is in the past it appears that control returns
5419//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5420//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5421//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5422//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5423//      It may be possible to avoid reinitialization by checking the return
5424//      value from pthread_cond_timedwait().  In addition to reinitializing the
5425//      condvar we must establish the invariant that cond_signal() is only called
5426//      within critical sections protected by the adjunct mutex.  This prevents
5427//      cond_signal() from "seeing" a condvar that's in the midst of being
5428//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5429//      desirable signal-after-unlock optimization that avoids futile context switching.
5430//
5431//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5432//      structure when a condvar is used or initialized.  cond_destroy()  would
5433//      release the helper structure.  Our reinitialize-after-timedwait fix
5434//      put excessive stress on malloc/free and locks protecting the c-heap.
5435//
5436// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5437// It may be possible to refine (4) by checking the kernel and NTPL verisons
5438// and only enabling the work-around for vulnerable environments.
5439
5440// utility to compute the abstime argument to timedwait:
5441// millis is the relative timeout time
5442// abstime will be the absolute timeout time
5443// TODO: replace compute_abstime() with unpackTime()
5444
5445static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5446  if (millis < 0)  millis = 0;
5447
5448  jlong seconds = millis / 1000;
5449  millis %= 1000;
5450  if (seconds > 50000000) { // see man cond_timedwait(3T)
5451    seconds = 50000000;
5452  }
5453
5454  if (os::supports_monotonic_clock()) {
5455    struct timespec now;
5456    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5457    assert_status(status == 0, status, "clock_gettime");
5458    abstime->tv_sec = now.tv_sec  + seconds;
5459    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5460    if (nanos >= NANOSECS_PER_SEC) {
5461      abstime->tv_sec += 1;
5462      nanos -= NANOSECS_PER_SEC;
5463    }
5464    abstime->tv_nsec = nanos;
5465  } else {
5466    struct timeval now;
5467    int status = gettimeofday(&now, NULL);
5468    assert(status == 0, "gettimeofday");
5469    abstime->tv_sec = now.tv_sec  + seconds;
5470    long usec = now.tv_usec + millis * 1000;
5471    if (usec >= 1000000) {
5472      abstime->tv_sec += 1;
5473      usec -= 1000000;
5474    }
5475    abstime->tv_nsec = usec * 1000;
5476  }
5477  return abstime;
5478}
5479
5480
5481// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5482// Conceptually TryPark() should be equivalent to park(0).
5483
5484int os::PlatformEvent::TryPark() {
5485  for (;;) {
5486    const int v = _Event ;
5487    guarantee ((v == 0) || (v == 1), "invariant") ;
5488    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5489  }
5490}
5491
5492void os::PlatformEvent::park() {       // AKA "down()"
5493  // Invariant: Only the thread associated with the Event/PlatformEvent
5494  // may call park().
5495  // TODO: assert that _Assoc != NULL or _Assoc == Self
5496  int v ;
5497  for (;;) {
5498      v = _Event ;
5499      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5500  }
5501  guarantee (v >= 0, "invariant") ;
5502  if (v == 0) {
5503     // Do this the hard way by blocking ...
5504     int status = pthread_mutex_lock(_mutex);
5505     assert_status(status == 0, status, "mutex_lock");
5506     guarantee (_nParked == 0, "invariant") ;
5507     ++ _nParked ;
5508     while (_Event < 0) {
5509        status = pthread_cond_wait(_cond, _mutex);
5510        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5511        // Treat this the same as if the wait was interrupted
5512        if (status == ETIME) { status = EINTR; }
5513        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5514     }
5515     -- _nParked ;
5516
5517    _Event = 0 ;
5518     status = pthread_mutex_unlock(_mutex);
5519     assert_status(status == 0, status, "mutex_unlock");
5520    // Paranoia to ensure our locked and lock-free paths interact
5521    // correctly with each other.
5522    OrderAccess::fence();
5523  }
5524  guarantee (_Event >= 0, "invariant") ;
5525}
5526
5527int os::PlatformEvent::park(jlong millis) {
5528  guarantee (_nParked == 0, "invariant") ;
5529
5530  int v ;
5531  for (;;) {
5532      v = _Event ;
5533      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5534  }
5535  guarantee (v >= 0, "invariant") ;
5536  if (v != 0) return OS_OK ;
5537
5538  // We do this the hard way, by blocking the thread.
5539  // Consider enforcing a minimum timeout value.
5540  struct timespec abst;
5541  compute_abstime(&abst, millis);
5542
5543  int ret = OS_TIMEOUT;
5544  int status = pthread_mutex_lock(_mutex);
5545  assert_status(status == 0, status, "mutex_lock");
5546  guarantee (_nParked == 0, "invariant") ;
5547  ++_nParked ;
5548
5549  // Object.wait(timo) will return because of
5550  // (a) notification
5551  // (b) timeout
5552  // (c) thread.interrupt
5553  //
5554  // Thread.interrupt and object.notify{All} both call Event::set.
5555  // That is, we treat thread.interrupt as a special case of notification.
5556  // The underlying Solaris implementation, cond_timedwait, admits
5557  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5558  // JVM from making those visible to Java code.  As such, we must
5559  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5560  //
5561  // TODO: properly differentiate simultaneous notify+interrupt.
5562  // In that case, we should propagate the notify to another waiter.
5563
5564  while (_Event < 0) {
5565    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5566    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5567      pthread_cond_destroy (_cond);
5568      pthread_cond_init (_cond, os::Linux::condAttr()) ;
5569    }
5570    assert_status(status == 0 || status == EINTR ||
5571                  status == ETIME || status == ETIMEDOUT,
5572                  status, "cond_timedwait");
5573    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5574    if (status == ETIME || status == ETIMEDOUT) break ;
5575    // We consume and ignore EINTR and spurious wakeups.
5576  }
5577  --_nParked ;
5578  if (_Event >= 0) {
5579     ret = OS_OK;
5580  }
5581  _Event = 0 ;
5582  status = pthread_mutex_unlock(_mutex);
5583  assert_status(status == 0, status, "mutex_unlock");
5584  assert (_nParked == 0, "invariant") ;
5585  // Paranoia to ensure our locked and lock-free paths interact
5586  // correctly with each other.
5587  OrderAccess::fence();
5588  return ret;
5589}
5590
5591void os::PlatformEvent::unpark() {
5592  // Transitions for _Event:
5593  //    0 :=> 1
5594  //    1 :=> 1
5595  //   -1 :=> either 0 or 1; must signal target thread
5596  //          That is, we can safely transition _Event from -1 to either
5597  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5598  //          unpark() calls.
5599  // See also: "Semaphores in Plan 9" by Mullender & Cox
5600  //
5601  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5602  // that it will take two back-to-back park() calls for the owning
5603  // thread to block. This has the benefit of forcing a spurious return
5604  // from the first park() call after an unpark() call which will help
5605  // shake out uses of park() and unpark() without condition variables.
5606
5607  if (Atomic::xchg(1, &_Event) >= 0) return;
5608
5609  // Wait for the thread associated with the event to vacate
5610  int status = pthread_mutex_lock(_mutex);
5611  assert_status(status == 0, status, "mutex_lock");
5612  int AnyWaiters = _nParked;
5613  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5614  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5615    AnyWaiters = 0;
5616    pthread_cond_signal(_cond);
5617  }
5618  status = pthread_mutex_unlock(_mutex);
5619  assert_status(status == 0, status, "mutex_unlock");
5620  if (AnyWaiters != 0) {
5621    status = pthread_cond_signal(_cond);
5622    assert_status(status == 0, status, "cond_signal");
5623  }
5624
5625  // Note that we signal() _after dropping the lock for "immortal" Events.
5626  // This is safe and avoids a common class of  futile wakeups.  In rare
5627  // circumstances this can cause a thread to return prematurely from
5628  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5629  // simply re-test the condition and re-park itself.
5630}
5631
5632
5633// JSR166
5634// -------------------------------------------------------
5635
5636/*
5637 * The solaris and linux implementations of park/unpark are fairly
5638 * conservative for now, but can be improved. They currently use a
5639 * mutex/condvar pair, plus a a count.
5640 * Park decrements count if > 0, else does a condvar wait.  Unpark
5641 * sets count to 1 and signals condvar.  Only one thread ever waits
5642 * on the condvar. Contention seen when trying to park implies that someone
5643 * is unparking you, so don't wait. And spurious returns are fine, so there
5644 * is no need to track notifications.
5645 */
5646
5647/*
5648 * This code is common to linux and solaris and will be moved to a
5649 * common place in dolphin.
5650 *
5651 * The passed in time value is either a relative time in nanoseconds
5652 * or an absolute time in milliseconds. Either way it has to be unpacked
5653 * into suitable seconds and nanoseconds components and stored in the
5654 * given timespec structure.
5655 * Given time is a 64-bit value and the time_t used in the timespec is only
5656 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5657 * overflow if times way in the future are given. Further on Solaris versions
5658 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5659 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5660 * As it will be 28 years before "now + 100000000" will overflow we can
5661 * ignore overflow and just impose a hard-limit on seconds using the value
5662 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5663 * years from "now".
5664 */
5665
5666static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5667  assert (time > 0, "convertTime");
5668  time_t max_secs = 0;
5669
5670  if (!os::supports_monotonic_clock() || isAbsolute) {
5671    struct timeval now;
5672    int status = gettimeofday(&now, NULL);
5673    assert(status == 0, "gettimeofday");
5674
5675    max_secs = now.tv_sec + MAX_SECS;
5676
5677    if (isAbsolute) {
5678      jlong secs = time / 1000;
5679      if (secs > max_secs) {
5680        absTime->tv_sec = max_secs;
5681      } else {
5682        absTime->tv_sec = secs;
5683      }
5684      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5685    } else {
5686      jlong secs = time / NANOSECS_PER_SEC;
5687      if (secs >= MAX_SECS) {
5688        absTime->tv_sec = max_secs;
5689        absTime->tv_nsec = 0;
5690      } else {
5691        absTime->tv_sec = now.tv_sec + secs;
5692        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5693        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5694          absTime->tv_nsec -= NANOSECS_PER_SEC;
5695          ++absTime->tv_sec; // note: this must be <= max_secs
5696        }
5697      }
5698    }
5699  } else {
5700    // must be relative using monotonic clock
5701    struct timespec now;
5702    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5703    assert_status(status == 0, status, "clock_gettime");
5704    max_secs = now.tv_sec + MAX_SECS;
5705    jlong secs = time / NANOSECS_PER_SEC;
5706    if (secs >= MAX_SECS) {
5707      absTime->tv_sec = max_secs;
5708      absTime->tv_nsec = 0;
5709    } else {
5710      absTime->tv_sec = now.tv_sec + secs;
5711      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5712      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5713        absTime->tv_nsec -= NANOSECS_PER_SEC;
5714        ++absTime->tv_sec; // note: this must be <= max_secs
5715      }
5716    }
5717  }
5718  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5719  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5720  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5721  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5722}
5723
5724void Parker::park(bool isAbsolute, jlong time) {
5725  // Ideally we'd do something useful while spinning, such
5726  // as calling unpackTime().
5727
5728  // Optional fast-path check:
5729  // Return immediately if a permit is available.
5730  // We depend on Atomic::xchg() having full barrier semantics
5731  // since we are doing a lock-free update to _counter.
5732  if (Atomic::xchg(0, &_counter) > 0) return;
5733
5734  Thread* thread = Thread::current();
5735  assert(thread->is_Java_thread(), "Must be JavaThread");
5736  JavaThread *jt = (JavaThread *)thread;
5737
5738  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5739  // Check interrupt before trying to wait
5740  if (Thread::is_interrupted(thread, false)) {
5741    return;
5742  }
5743
5744  // Next, demultiplex/decode time arguments
5745  timespec absTime;
5746  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5747    return;
5748  }
5749  if (time > 0) {
5750    unpackTime(&absTime, isAbsolute, time);
5751  }
5752
5753
5754  // Enter safepoint region
5755  // Beware of deadlocks such as 6317397.
5756  // The per-thread Parker:: mutex is a classic leaf-lock.
5757  // In particular a thread must never block on the Threads_lock while
5758  // holding the Parker:: mutex.  If safepoints are pending both the
5759  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5760  ThreadBlockInVM tbivm(jt);
5761
5762  // Don't wait if cannot get lock since interference arises from
5763  // unblocking.  Also. check interrupt before trying wait
5764  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5765    return;
5766  }
5767
5768  int status ;
5769  if (_counter > 0)  { // no wait needed
5770    _counter = 0;
5771    status = pthread_mutex_unlock(_mutex);
5772    assert (status == 0, "invariant") ;
5773    // Paranoia to ensure our locked and lock-free paths interact
5774    // correctly with each other and Java-level accesses.
5775    OrderAccess::fence();
5776    return;
5777  }
5778
5779#ifdef ASSERT
5780  // Don't catch signals while blocked; let the running threads have the signals.
5781  // (This allows a debugger to break into the running thread.)
5782  sigset_t oldsigs;
5783  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5784  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5785#endif
5786
5787  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5788  jt->set_suspend_equivalent();
5789  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5790
5791  assert(_cur_index == -1, "invariant");
5792  if (time == 0) {
5793    _cur_index = REL_INDEX; // arbitrary choice when not timed
5794    status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5795  } else {
5796    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5797    status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5798    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5799      pthread_cond_destroy (&_cond[_cur_index]) ;
5800      pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5801    }
5802  }
5803  _cur_index = -1;
5804  assert_status(status == 0 || status == EINTR ||
5805                status == ETIME || status == ETIMEDOUT,
5806                status, "cond_timedwait");
5807
5808#ifdef ASSERT
5809  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5810#endif
5811
5812  _counter = 0 ;
5813  status = pthread_mutex_unlock(_mutex) ;
5814  assert_status(status == 0, status, "invariant") ;
5815  // Paranoia to ensure our locked and lock-free paths interact
5816  // correctly with each other and Java-level accesses.
5817  OrderAccess::fence();
5818
5819  // If externally suspended while waiting, re-suspend
5820  if (jt->handle_special_suspend_equivalent_condition()) {
5821    jt->java_suspend_self();
5822  }
5823}
5824
5825void Parker::unpark() {
5826  int s, status ;
5827  status = pthread_mutex_lock(_mutex);
5828  assert (status == 0, "invariant") ;
5829  s = _counter;
5830  _counter = 1;
5831  if (s < 1) {
5832    // thread might be parked
5833    if (_cur_index != -1) {
5834      // thread is definitely parked
5835      if (WorkAroundNPTLTimedWaitHang) {
5836        status = pthread_cond_signal (&_cond[_cur_index]);
5837        assert (status == 0, "invariant");
5838        status = pthread_mutex_unlock(_mutex);
5839        assert (status == 0, "invariant");
5840      } else {
5841        status = pthread_mutex_unlock(_mutex);
5842        assert (status == 0, "invariant");
5843        status = pthread_cond_signal (&_cond[_cur_index]);
5844        assert (status == 0, "invariant");
5845      }
5846    } else {
5847      pthread_mutex_unlock(_mutex);
5848      assert (status == 0, "invariant") ;
5849    }
5850  } else {
5851    pthread_mutex_unlock(_mutex);
5852    assert (status == 0, "invariant") ;
5853  }
5854}
5855
5856
5857extern char** environ;
5858
5859#ifndef __NR_fork
5860#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5861#endif
5862
5863#ifndef __NR_execve
5864#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5865#endif
5866
5867// Run the specified command in a separate process. Return its exit value,
5868// or -1 on failure (e.g. can't fork a new process).
5869// Unlike system(), this function can be called from signal handler. It
5870// doesn't block SIGINT et al.
5871int os::fork_and_exec(char* cmd) {
5872  const char * argv[4] = {"sh", "-c", cmd, NULL};
5873
5874  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5875  // pthread_atfork handlers and reset pthread library. All we need is a
5876  // separate process to execve. Make a direct syscall to fork process.
5877  // On IA64 there's no fork syscall, we have to use fork() and hope for
5878  // the best...
5879  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5880              IA64_ONLY(fork();)
5881
5882  if (pid < 0) {
5883    // fork failed
5884    return -1;
5885
5886  } else if (pid == 0) {
5887    // child process
5888
5889    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5890    // first to kill every thread on the thread list. Because this list is
5891    // not reset by fork() (see notes above), execve() will instead kill
5892    // every thread in the parent process. We know this is the only thread
5893    // in the new process, so make a system call directly.
5894    // IA64 should use normal execve() from glibc to match the glibc fork()
5895    // above.
5896    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5897    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5898
5899    // execve failed
5900    _exit(-1);
5901
5902  } else  {
5903    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5904    // care about the actual exit code, for now.
5905
5906    int status;
5907
5908    // Wait for the child process to exit.  This returns immediately if
5909    // the child has already exited. */
5910    while (waitpid(pid, &status, 0) < 0) {
5911        switch (errno) {
5912        case ECHILD: return 0;
5913        case EINTR: break;
5914        default: return -1;
5915        }
5916    }
5917
5918    if (WIFEXITED(status)) {
5919       // The child exited normally; get its exit code.
5920       return WEXITSTATUS(status);
5921    } else if (WIFSIGNALED(status)) {
5922       // The child exited because of a signal
5923       // The best value to return is 0x80 + signal number,
5924       // because that is what all Unix shells do, and because
5925       // it allows callers to distinguish between process exit and
5926       // process death by signal.
5927       return 0x80 + WTERMSIG(status);
5928    } else {
5929       // Unknown exit code; pass it through
5930       return status;
5931    }
5932  }
5933}
5934
5935// is_headless_jre()
5936//
5937// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5938// in order to report if we are running in a headless jre
5939//
5940// Since JDK8 xawt/libmawt.so was moved into the same directory
5941// as libawt.so, and renamed libawt_xawt.so
5942//
5943bool os::is_headless_jre() {
5944    struct stat statbuf;
5945    char buf[MAXPATHLEN];
5946    char libmawtpath[MAXPATHLEN];
5947    const char *xawtstr  = "/xawt/libmawt.so";
5948    const char *new_xawtstr = "/libawt_xawt.so";
5949    char *p;
5950
5951    // Get path to libjvm.so
5952    os::jvm_path(buf, sizeof(buf));
5953
5954    // Get rid of libjvm.so
5955    p = strrchr(buf, '/');
5956    if (p == NULL) return false;
5957    else *p = '\0';
5958
5959    // Get rid of client or server
5960    p = strrchr(buf, '/');
5961    if (p == NULL) return false;
5962    else *p = '\0';
5963
5964    // check xawt/libmawt.so
5965    strcpy(libmawtpath, buf);
5966    strcat(libmawtpath, xawtstr);
5967    if (::stat(libmawtpath, &statbuf) == 0) return false;
5968
5969    // check libawt_xawt.so
5970    strcpy(libmawtpath, buf);
5971    strcat(libmawtpath, new_xawtstr);
5972    if (::stat(libmawtpath, &statbuf) == 0) return false;
5973
5974    return true;
5975}
5976
5977// Get the default path to the core file
5978// Returns the length of the string
5979int os::get_core_path(char* buffer, size_t bufferSize) {
5980  const char* p = get_current_directory(buffer, bufferSize);
5981
5982  if (p == NULL) {
5983    assert(p != NULL, "failed to get current directory");
5984    return 0;
5985  }
5986
5987  return strlen(buffer);
5988}
5989
5990#ifdef JAVASE_EMBEDDED
5991//
5992// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5993//
5994MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5995
5996// ctor
5997//
5998MemNotifyThread::MemNotifyThread(int fd): Thread() {
5999  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6000  _fd = fd;
6001
6002  if (os::create_thread(this, os::os_thread)) {
6003    _memnotify_thread = this;
6004    os::set_priority(this, NearMaxPriority);
6005    os::start_thread(this);
6006  }
6007}
6008
6009// Where all the work gets done
6010//
6011void MemNotifyThread::run() {
6012  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6013
6014  // Set up the select arguments
6015  fd_set rfds;
6016  if (_fd != -1) {
6017    FD_ZERO(&rfds);
6018    FD_SET(_fd, &rfds);
6019  }
6020
6021  // Now wait for the mem_notify device to wake up
6022  while (1) {
6023    // Wait for the mem_notify device to signal us..
6024    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6025    if (rc == -1) {
6026      perror("select!\n");
6027      break;
6028    } else if (rc) {
6029      //ssize_t free_before = os::available_memory();
6030      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6031
6032      // The kernel is telling us there is not much memory left...
6033      // try to do something about that
6034
6035      // If we are not already in a GC, try one.
6036      if (!Universe::heap()->is_gc_active()) {
6037        Universe::heap()->collect(GCCause::_allocation_failure);
6038
6039        //ssize_t free_after = os::available_memory();
6040        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6041        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6042      }
6043      // We might want to do something like the following if we find the GC's are not helping...
6044      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6045    }
6046  }
6047}
6048
6049//
6050// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6051//
6052void MemNotifyThread::start() {
6053  int    fd;
6054  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6055  if (fd < 0) {
6056      return;
6057  }
6058
6059  if (memnotify_thread() == NULL) {
6060    new MemNotifyThread(fd);
6061  }
6062}
6063
6064#endif // JAVASE_EMBEDDED
6065
6066
6067/////////////// Unit tests ///////////////
6068
6069#ifndef PRODUCT
6070
6071#define test_log(...) \
6072  do {\
6073    if (VerboseInternalVMTests) { \
6074      tty->print_cr(__VA_ARGS__); \
6075      tty->flush(); \
6076    }\
6077  } while (false)
6078
6079class TestReserveMemorySpecial : AllStatic {
6080 public:
6081  static void small_page_write(void* addr, size_t size) {
6082    size_t page_size = os::vm_page_size();
6083
6084    char* end = (char*)addr + size;
6085    for (char* p = (char*)addr; p < end; p += page_size) {
6086      *p = 1;
6087    }
6088  }
6089
6090  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6091    if (!UseHugeTLBFS) {
6092      return;
6093    }
6094
6095    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6096
6097    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6098
6099    if (addr != NULL) {
6100      small_page_write(addr, size);
6101
6102      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6103    }
6104  }
6105
6106  static void test_reserve_memory_special_huge_tlbfs_only() {
6107    if (!UseHugeTLBFS) {
6108      return;
6109    }
6110
6111    size_t lp = os::large_page_size();
6112
6113    for (size_t size = lp; size <= lp * 10; size += lp) {
6114      test_reserve_memory_special_huge_tlbfs_only(size);
6115    }
6116  }
6117
6118  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6119    if (!UseHugeTLBFS) {
6120        return;
6121    }
6122
6123    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6124        size, alignment);
6125
6126    assert(size >= os::large_page_size(), "Incorrect input to test");
6127
6128    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6129
6130    if (addr != NULL) {
6131      small_page_write(addr, size);
6132
6133      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6134    }
6135  }
6136
6137  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6138    size_t lp = os::large_page_size();
6139    size_t ag = os::vm_allocation_granularity();
6140
6141    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6142      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6143    }
6144  }
6145
6146  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6147    size_t lp = os::large_page_size();
6148    size_t ag = os::vm_allocation_granularity();
6149
6150    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6151    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6152    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6153    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6154    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6155    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6156    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6157    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6158    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6159  }
6160
6161  static void test_reserve_memory_special_huge_tlbfs() {
6162    if (!UseHugeTLBFS) {
6163      return;
6164    }
6165
6166    test_reserve_memory_special_huge_tlbfs_only();
6167    test_reserve_memory_special_huge_tlbfs_mixed();
6168  }
6169
6170  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6171    if (!UseSHM) {
6172      return;
6173    }
6174
6175    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6176
6177    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6178
6179    if (addr != NULL) {
6180      assert(is_ptr_aligned(addr, alignment), "Check");
6181      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6182
6183      small_page_write(addr, size);
6184
6185      os::Linux::release_memory_special_shm(addr, size);
6186    }
6187  }
6188
6189  static void test_reserve_memory_special_shm() {
6190    size_t lp = os::large_page_size();
6191    size_t ag = os::vm_allocation_granularity();
6192
6193    for (size_t size = ag; size < lp * 3; size += ag) {
6194      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6195        test_reserve_memory_special_shm(size, alignment);
6196      }
6197    }
6198  }
6199
6200  static void test() {
6201    test_reserve_memory_special_huge_tlbfs();
6202    test_reserve_memory_special_shm();
6203  }
6204};
6205
6206void TestReserveMemorySpecial_test() {
6207  TestReserveMemorySpecial::test();
6208}
6209
6210#endif
6211