os_linux.cpp revision 6082:d72cee0607a3
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
105// getrusage() is prepared to handle the associated failure.
106#ifndef RUSAGE_THREAD
107#define RUSAGE_THREAD   (1)               /* only the calling thread */
108#endif
109
110#define MAX_PATH    (2 * K)
111
112// for timer info max values which include all bits
113#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
114
115#define LARGEPAGES_BIT (1 << 6)
116////////////////////////////////////////////////////////////////////////////////
117// global variables
118julong os::Linux::_physical_memory = 0;
119
120address   os::Linux::_initial_thread_stack_bottom = NULL;
121uintptr_t os::Linux::_initial_thread_stack_size   = 0;
122
123int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
124int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
125Mutex* os::Linux::_createThread_lock = NULL;
126pthread_t os::Linux::_main_thread;
127int os::Linux::_page_size = -1;
128const int os::Linux::_vm_default_page_size = (8 * K);
129bool os::Linux::_is_floating_stack = false;
130bool os::Linux::_is_NPTL = false;
131bool os::Linux::_supports_fast_thread_cpu_time = false;
132const char * os::Linux::_glibc_version = NULL;
133const char * os::Linux::_libpthread_version = NULL;
134pthread_condattr_t os::Linux::_condattr[1];
135
136static jlong initial_time_count=0;
137
138static int clock_tics_per_sec = 100;
139
140// For diagnostics to print a message once. see run_periodic_checks
141static sigset_t check_signal_done;
142static bool check_signals = true;
143
144static pid_t _initial_pid = 0;
145
146/* Signal number used to suspend/resume a thread */
147
148/* do not use any signal number less than SIGSEGV, see 4355769 */
149static int SR_signum = SIGUSR2;
150sigset_t SR_sigset;
151
152/* Used to protect dlsym() calls */
153static pthread_mutex_t dl_mutex;
154
155// Declarations
156static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157
158#ifdef JAVASE_EMBEDDED
159class MemNotifyThread: public Thread {
160  friend class VMStructs;
161 public:
162  virtual void run();
163
164 private:
165  static MemNotifyThread* _memnotify_thread;
166  int _fd;
167
168 public:
169
170  // Constructor
171  MemNotifyThread(int fd);
172
173  // Tester
174  bool is_memnotify_thread() const { return true; }
175
176  // Printing
177  char* name() const { return (char*)"Linux MemNotify Thread"; }
178
179  // Returns the single instance of the MemNotifyThread
180  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
181
182  // Create and start the single instance of MemNotifyThread
183  static void start();
184};
185#endif // JAVASE_EMBEDDED
186
187// utility functions
188
189static int SR_initialize();
190
191julong os::available_memory() {
192  return Linux::available_memory();
193}
194
195julong os::Linux::available_memory() {
196  // values in struct sysinfo are "unsigned long"
197  struct sysinfo si;
198  sysinfo(&si);
199
200  return (julong)si.freeram * si.mem_unit;
201}
202
203julong os::physical_memory() {
204  return Linux::physical_memory();
205}
206
207////////////////////////////////////////////////////////////////////////////////
208// environment support
209
210bool os::getenv(const char* name, char* buf, int len) {
211  const char* val = ::getenv(name);
212  if (val != NULL && strlen(val) < (size_t)len) {
213    strcpy(buf, val);
214    return true;
215  }
216  if (len > 0) buf[0] = 0;  // return a null string
217  return false;
218}
219
220
221// Return true if user is running as root.
222
223bool os::have_special_privileges() {
224  static bool init = false;
225  static bool privileges = false;
226  if (!init) {
227    privileges = (getuid() != geteuid()) || (getgid() != getegid());
228    init = true;
229  }
230  return privileges;
231}
232
233
234#ifndef SYS_gettid
235// i386: 224, ia64: 1105, amd64: 186, sparc 143
236#ifdef __ia64__
237#define SYS_gettid 1105
238#elif __i386__
239#define SYS_gettid 224
240#elif __amd64__
241#define SYS_gettid 186
242#elif __sparc__
243#define SYS_gettid 143
244#else
245#error define gettid for the arch
246#endif
247#endif
248
249// Cpu architecture string
250#if   defined(ZERO)
251static char cpu_arch[] = ZERO_LIBARCH;
252#elif defined(IA64)
253static char cpu_arch[] = "ia64";
254#elif defined(IA32)
255static char cpu_arch[] = "i386";
256#elif defined(AMD64)
257static char cpu_arch[] = "amd64";
258#elif defined(ARM)
259static char cpu_arch[] = "arm";
260#elif defined(PPC32)
261static char cpu_arch[] = "ppc";
262#elif defined(PPC64)
263static char cpu_arch[] = "ppc64";
264#elif defined(SPARC)
265#  ifdef _LP64
266static char cpu_arch[] = "sparcv9";
267#  else
268static char cpu_arch[] = "sparc";
269#  endif
270#else
271#error Add appropriate cpu_arch setting
272#endif
273
274
275// pid_t gettid()
276//
277// Returns the kernel thread id of the currently running thread. Kernel
278// thread id is used to access /proc.
279//
280// (Note that getpid() on LinuxThreads returns kernel thread id too; but
281// on NPTL, it returns the same pid for all threads, as required by POSIX.)
282//
283pid_t os::Linux::gettid() {
284  int rslt = syscall(SYS_gettid);
285  if (rslt == -1) {
286     // old kernel, no NPTL support
287     return getpid();
288  } else {
289     return (pid_t)rslt;
290  }
291}
292
293// Most versions of linux have a bug where the number of processors are
294// determined by looking at the /proc file system.  In a chroot environment,
295// the system call returns 1.  This causes the VM to act as if it is
296// a single processor and elide locking (see is_MP() call).
297static bool unsafe_chroot_detected = false;
298static const char *unstable_chroot_error = "/proc file system not found.\n"
299                     "Java may be unstable running multithreaded in a chroot "
300                     "environment on Linux when /proc filesystem is not mounted.";
301
302void os::Linux::initialize_system_info() {
303  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
304  if (processor_count() == 1) {
305    pid_t pid = os::Linux::gettid();
306    char fname[32];
307    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
308    FILE *fp = fopen(fname, "r");
309    if (fp == NULL) {
310      unsafe_chroot_detected = true;
311    } else {
312      fclose(fp);
313    }
314  }
315  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
316  assert(processor_count() > 0, "linux error");
317}
318
319void os::init_system_properties_values() {
320//  char arch[12];
321//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
322
323  // The next steps are taken in the product version:
324  //
325  // Obtain the JAVA_HOME value from the location of libjvm.so.
326  // This library should be located at:
327  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
328  //
329  // If "/jre/lib/" appears at the right place in the path, then we
330  // assume libjvm.so is installed in a JDK and we use this path.
331  //
332  // Otherwise exit with message: "Could not create the Java virtual machine."
333  //
334  // The following extra steps are taken in the debugging version:
335  //
336  // If "/jre/lib/" does NOT appear at the right place in the path
337  // instead of exit check for $JAVA_HOME environment variable.
338  //
339  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
340  // then we append a fake suffix "hotspot/libjvm.so" to this path so
341  // it looks like libjvm.so is installed there
342  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
343  //
344  // Otherwise exit.
345  //
346  // Important note: if the location of libjvm.so changes this
347  // code needs to be changed accordingly.
348
349  // The next few definitions allow the code to be verbatim:
350#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
351#define getenv(n) ::getenv(n)
352
353/*
354 * See ld(1):
355 *      The linker uses the following search paths to locate required
356 *      shared libraries:
357 *        1: ...
358 *        ...
359 *        7: The default directories, normally /lib and /usr/lib.
360 */
361#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
362#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
363#else
364#define DEFAULT_LIBPATH "/lib:/usr/lib"
365#endif
366
367#define EXTENSIONS_DIR  "/lib/ext"
368#define ENDORSED_DIR    "/lib/endorsed"
369#define REG_DIR         "/usr/java/packages"
370
371  {
372    /* sysclasspath, java_home, dll_dir */
373    {
374        char *home_path;
375        char *dll_path;
376        char *pslash;
377        char buf[MAXPATHLEN];
378        os::jvm_path(buf, sizeof(buf));
379
380        // Found the full path to libjvm.so.
381        // Now cut the path to <java_home>/jre if we can.
382        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
383        pslash = strrchr(buf, '/');
384        if (pslash != NULL)
385            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
386        dll_path = malloc(strlen(buf) + 1);
387        if (dll_path == NULL)
388            return;
389        strcpy(dll_path, buf);
390        Arguments::set_dll_dir(dll_path);
391
392        if (pslash != NULL) {
393            pslash = strrchr(buf, '/');
394            if (pslash != NULL) {
395                *pslash = '\0';       /* get rid of /<arch> */
396                pslash = strrchr(buf, '/');
397                if (pslash != NULL)
398                    *pslash = '\0';   /* get rid of /lib */
399            }
400        }
401
402        home_path = malloc(strlen(buf) + 1);
403        if (home_path == NULL)
404            return;
405        strcpy(home_path, buf);
406        Arguments::set_java_home(home_path);
407
408        if (!set_boot_path('/', ':'))
409            return;
410    }
411
412    /*
413     * Where to look for native libraries
414     *
415     * Note: Due to a legacy implementation, most of the library path
416     * is set in the launcher.  This was to accomodate linking restrictions
417     * on legacy Linux implementations (which are no longer supported).
418     * Eventually, all the library path setting will be done here.
419     *
420     * However, to prevent the proliferation of improperly built native
421     * libraries, the new path component /usr/java/packages is added here.
422     * Eventually, all the library path setting will be done here.
423     */
424    {
425        char *ld_library_path;
426
427        /*
428         * Construct the invariant part of ld_library_path. Note that the
429         * space for the colon and the trailing null are provided by the
430         * nulls included by the sizeof operator (so actually we allocate
431         * a byte more than necessary).
432         */
433        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
434            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
435        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
436
437        /*
438         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
439         * should always exist (until the legacy problem cited above is
440         * addressed).
441         */
442        char *v = getenv("LD_LIBRARY_PATH");
443        if (v != NULL) {
444            char *t = ld_library_path;
445            /* That's +1 for the colon and +1 for the trailing '\0' */
446            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
447            sprintf(ld_library_path, "%s:%s", v, t);
448        }
449        Arguments::set_library_path(ld_library_path);
450    }
451
452    /*
453     * Extensions directories.
454     *
455     * Note that the space for the colon and the trailing null are provided
456     * by the nulls included by the sizeof operator (so actually one byte more
457     * than necessary is allocated).
458     */
459    {
460        char *buf = malloc(strlen(Arguments::get_java_home()) +
461            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
462        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
463            Arguments::get_java_home());
464        Arguments::set_ext_dirs(buf);
465    }
466
467    /* Endorsed standards default directory. */
468    {
469        char * buf;
470        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
471        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
472        Arguments::set_endorsed_dirs(buf);
473    }
474  }
475
476#undef malloc
477#undef getenv
478#undef EXTENSIONS_DIR
479#undef ENDORSED_DIR
480
481  // Done
482  return;
483}
484
485////////////////////////////////////////////////////////////////////////////////
486// breakpoint support
487
488void os::breakpoint() {
489  BREAKPOINT;
490}
491
492extern "C" void breakpoint() {
493  // use debugger to set breakpoint here
494}
495
496////////////////////////////////////////////////////////////////////////////////
497// signal support
498
499debug_only(static bool signal_sets_initialized = false);
500static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
501
502bool os::Linux::is_sig_ignored(int sig) {
503      struct sigaction oact;
504      sigaction(sig, (struct sigaction*)NULL, &oact);
505      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
506                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
507      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
508           return true;
509      else
510           return false;
511}
512
513void os::Linux::signal_sets_init() {
514  // Should also have an assertion stating we are still single-threaded.
515  assert(!signal_sets_initialized, "Already initialized");
516  // Fill in signals that are necessarily unblocked for all threads in
517  // the VM. Currently, we unblock the following signals:
518  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
519  //                         by -Xrs (=ReduceSignalUsage));
520  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
521  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
522  // the dispositions or masks wrt these signals.
523  // Programs embedding the VM that want to use the above signals for their
524  // own purposes must, at this time, use the "-Xrs" option to prevent
525  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
526  // (See bug 4345157, and other related bugs).
527  // In reality, though, unblocking these signals is really a nop, since
528  // these signals are not blocked by default.
529  sigemptyset(&unblocked_sigs);
530  sigemptyset(&allowdebug_blocked_sigs);
531  sigaddset(&unblocked_sigs, SIGILL);
532  sigaddset(&unblocked_sigs, SIGSEGV);
533  sigaddset(&unblocked_sigs, SIGBUS);
534  sigaddset(&unblocked_sigs, SIGFPE);
535#if defined(PPC64)
536  sigaddset(&unblocked_sigs, SIGTRAP);
537#endif
538  sigaddset(&unblocked_sigs, SR_signum);
539
540  if (!ReduceSignalUsage) {
541   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
542      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
543      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
544   }
545   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
546      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
547      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
548   }
549   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
550      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
551      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
552   }
553  }
554  // Fill in signals that are blocked by all but the VM thread.
555  sigemptyset(&vm_sigs);
556  if (!ReduceSignalUsage)
557    sigaddset(&vm_sigs, BREAK_SIGNAL);
558  debug_only(signal_sets_initialized = true);
559
560}
561
562// These are signals that are unblocked while a thread is running Java.
563// (For some reason, they get blocked by default.)
564sigset_t* os::Linux::unblocked_signals() {
565  assert(signal_sets_initialized, "Not initialized");
566  return &unblocked_sigs;
567}
568
569// These are the signals that are blocked while a (non-VM) thread is
570// running Java. Only the VM thread handles these signals.
571sigset_t* os::Linux::vm_signals() {
572  assert(signal_sets_initialized, "Not initialized");
573  return &vm_sigs;
574}
575
576// These are signals that are blocked during cond_wait to allow debugger in
577sigset_t* os::Linux::allowdebug_blocked_signals() {
578  assert(signal_sets_initialized, "Not initialized");
579  return &allowdebug_blocked_sigs;
580}
581
582void os::Linux::hotspot_sigmask(Thread* thread) {
583
584  //Save caller's signal mask before setting VM signal mask
585  sigset_t caller_sigmask;
586  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
587
588  OSThread* osthread = thread->osthread();
589  osthread->set_caller_sigmask(caller_sigmask);
590
591  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
592
593  if (!ReduceSignalUsage) {
594    if (thread->is_VM_thread()) {
595      // Only the VM thread handles BREAK_SIGNAL ...
596      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
597    } else {
598      // ... all other threads block BREAK_SIGNAL
599      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
600    }
601  }
602}
603
604//////////////////////////////////////////////////////////////////////////////
605// detecting pthread library
606
607void os::Linux::libpthread_init() {
608  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
609  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
610  // generic name for earlier versions.
611  // Define macros here so we can build HotSpot on old systems.
612# ifndef _CS_GNU_LIBC_VERSION
613# define _CS_GNU_LIBC_VERSION 2
614# endif
615# ifndef _CS_GNU_LIBPTHREAD_VERSION
616# define _CS_GNU_LIBPTHREAD_VERSION 3
617# endif
618
619  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
620  if (n > 0) {
621     char *str = (char *)malloc(n, mtInternal);
622     confstr(_CS_GNU_LIBC_VERSION, str, n);
623     os::Linux::set_glibc_version(str);
624  } else {
625     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
626     static char _gnu_libc_version[32];
627     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
628              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
629     os::Linux::set_glibc_version(_gnu_libc_version);
630  }
631
632  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
633  if (n > 0) {
634     char *str = (char *)malloc(n, mtInternal);
635     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
636     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
637     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
638     // is the case. LinuxThreads has a hard limit on max number of threads.
639     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
640     // On the other hand, NPTL does not have such a limit, sysconf()
641     // will return -1 and errno is not changed. Check if it is really NPTL.
642     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
643         strstr(str, "NPTL") &&
644         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
645       free(str);
646       os::Linux::set_libpthread_version("linuxthreads");
647     } else {
648       os::Linux::set_libpthread_version(str);
649     }
650  } else {
651    // glibc before 2.3.2 only has LinuxThreads.
652    os::Linux::set_libpthread_version("linuxthreads");
653  }
654
655  if (strstr(libpthread_version(), "NPTL")) {
656     os::Linux::set_is_NPTL();
657  } else {
658     os::Linux::set_is_LinuxThreads();
659  }
660
661  // LinuxThreads have two flavors: floating-stack mode, which allows variable
662  // stack size; and fixed-stack mode. NPTL is always floating-stack.
663  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
664     os::Linux::set_is_floating_stack();
665  }
666}
667
668/////////////////////////////////////////////////////////////////////////////
669// thread stack
670
671// Force Linux kernel to expand current thread stack. If "bottom" is close
672// to the stack guard, caller should block all signals.
673//
674// MAP_GROWSDOWN:
675//   A special mmap() flag that is used to implement thread stacks. It tells
676//   kernel that the memory region should extend downwards when needed. This
677//   allows early versions of LinuxThreads to only mmap the first few pages
678//   when creating a new thread. Linux kernel will automatically expand thread
679//   stack as needed (on page faults).
680//
681//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
682//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
683//   region, it's hard to tell if the fault is due to a legitimate stack
684//   access or because of reading/writing non-exist memory (e.g. buffer
685//   overrun). As a rule, if the fault happens below current stack pointer,
686//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
687//   application (see Linux kernel fault.c).
688//
689//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
690//   stack overflow detection.
691//
692//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
693//   not use this flag. However, the stack of initial thread is not created
694//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
695//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
696//   and then attach the thread to JVM.
697//
698// To get around the problem and allow stack banging on Linux, we need to
699// manually expand thread stack after receiving the SIGSEGV.
700//
701// There are two ways to expand thread stack to address "bottom", we used
702// both of them in JVM before 1.5:
703//   1. adjust stack pointer first so that it is below "bottom", and then
704//      touch "bottom"
705//   2. mmap() the page in question
706//
707// Now alternate signal stack is gone, it's harder to use 2. For instance,
708// if current sp is already near the lower end of page 101, and we need to
709// call mmap() to map page 100, it is possible that part of the mmap() frame
710// will be placed in page 100. When page 100 is mapped, it is zero-filled.
711// That will destroy the mmap() frame and cause VM to crash.
712//
713// The following code works by adjusting sp first, then accessing the "bottom"
714// page to force a page fault. Linux kernel will then automatically expand the
715// stack mapping.
716//
717// _expand_stack_to() assumes its frame size is less than page size, which
718// should always be true if the function is not inlined.
719
720#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
721#define NOINLINE
722#else
723#define NOINLINE __attribute__ ((noinline))
724#endif
725
726static void _expand_stack_to(address bottom) NOINLINE;
727
728static void _expand_stack_to(address bottom) {
729  address sp;
730  size_t size;
731  volatile char *p;
732
733  // Adjust bottom to point to the largest address within the same page, it
734  // gives us a one-page buffer if alloca() allocates slightly more memory.
735  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
736  bottom += os::Linux::page_size() - 1;
737
738  // sp might be slightly above current stack pointer; if that's the case, we
739  // will alloca() a little more space than necessary, which is OK. Don't use
740  // os::current_stack_pointer(), as its result can be slightly below current
741  // stack pointer, causing us to not alloca enough to reach "bottom".
742  sp = (address)&sp;
743
744  if (sp > bottom) {
745    size = sp - bottom;
746    p = (volatile char *)alloca(size);
747    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
748    p[0] = '\0';
749  }
750}
751
752bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
753  assert(t!=NULL, "just checking");
754  assert(t->osthread()->expanding_stack(), "expand should be set");
755  assert(t->stack_base() != NULL, "stack_base was not initialized");
756
757  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
758    sigset_t mask_all, old_sigset;
759    sigfillset(&mask_all);
760    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
761    _expand_stack_to(addr);
762    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
763    return true;
764  }
765  return false;
766}
767
768//////////////////////////////////////////////////////////////////////////////
769// create new thread
770
771static address highest_vm_reserved_address();
772
773// check if it's safe to start a new thread
774static bool _thread_safety_check(Thread* thread) {
775  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
776    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
777    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
778    //   allocated (MAP_FIXED) from high address space. Every thread stack
779    //   occupies a fixed size slot (usually 2Mbytes, but user can change
780    //   it to other values if they rebuild LinuxThreads).
781    //
782    // Problem with MAP_FIXED is that mmap() can still succeed even part of
783    // the memory region has already been mmap'ed. That means if we have too
784    // many threads and/or very large heap, eventually thread stack will
785    // collide with heap.
786    //
787    // Here we try to prevent heap/stack collision by comparing current
788    // stack bottom with the highest address that has been mmap'ed by JVM
789    // plus a safety margin for memory maps created by native code.
790    //
791    // This feature can be disabled by setting ThreadSafetyMargin to 0
792    //
793    if (ThreadSafetyMargin > 0) {
794      address stack_bottom = os::current_stack_base() - os::current_stack_size();
795
796      // not safe if our stack extends below the safety margin
797      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
798    } else {
799      return true;
800    }
801  } else {
802    // Floating stack LinuxThreads or NPTL:
803    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
804    //   there's not enough space left, pthread_create() will fail. If we come
805    //   here, that means enough space has been reserved for stack.
806    return true;
807  }
808}
809
810// Thread start routine for all newly created threads
811static void *java_start(Thread *thread) {
812  // Try to randomize the cache line index of hot stack frames.
813  // This helps when threads of the same stack traces evict each other's
814  // cache lines. The threads can be either from the same JVM instance, or
815  // from different JVM instances. The benefit is especially true for
816  // processors with hyperthreading technology.
817  static int counter = 0;
818  int pid = os::current_process_id();
819  alloca(((pid ^ counter++) & 7) * 128);
820
821  ThreadLocalStorage::set_thread(thread);
822
823  OSThread* osthread = thread->osthread();
824  Monitor* sync = osthread->startThread_lock();
825
826  // non floating stack LinuxThreads needs extra check, see above
827  if (!_thread_safety_check(thread)) {
828    // notify parent thread
829    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
830    osthread->set_state(ZOMBIE);
831    sync->notify_all();
832    return NULL;
833  }
834
835  // thread_id is kernel thread id (similar to Solaris LWP id)
836  osthread->set_thread_id(os::Linux::gettid());
837
838  if (UseNUMA) {
839    int lgrp_id = os::numa_get_group_id();
840    if (lgrp_id != -1) {
841      thread->set_lgrp_id(lgrp_id);
842    }
843  }
844  // initialize signal mask for this thread
845  os::Linux::hotspot_sigmask(thread);
846
847  // initialize floating point control register
848  os::Linux::init_thread_fpu_state();
849
850  // handshaking with parent thread
851  {
852    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
853
854    // notify parent thread
855    osthread->set_state(INITIALIZED);
856    sync->notify_all();
857
858    // wait until os::start_thread()
859    while (osthread->get_state() == INITIALIZED) {
860      sync->wait(Mutex::_no_safepoint_check_flag);
861    }
862  }
863
864  // call one more level start routine
865  thread->run();
866
867  return 0;
868}
869
870bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
871  assert(thread->osthread() == NULL, "caller responsible");
872
873  // Allocate the OSThread object
874  OSThread* osthread = new OSThread(NULL, NULL);
875  if (osthread == NULL) {
876    return false;
877  }
878
879  // set the correct thread state
880  osthread->set_thread_type(thr_type);
881
882  // Initial state is ALLOCATED but not INITIALIZED
883  osthread->set_state(ALLOCATED);
884
885  thread->set_osthread(osthread);
886
887  // init thread attributes
888  pthread_attr_t attr;
889  pthread_attr_init(&attr);
890  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
891
892  // stack size
893  if (os::Linux::supports_variable_stack_size()) {
894    // calculate stack size if it's not specified by caller
895    if (stack_size == 0) {
896      stack_size = os::Linux::default_stack_size(thr_type);
897
898      switch (thr_type) {
899      case os::java_thread:
900        // Java threads use ThreadStackSize which default value can be
901        // changed with the flag -Xss
902        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
903        stack_size = JavaThread::stack_size_at_create();
904        break;
905      case os::compiler_thread:
906        if (CompilerThreadStackSize > 0) {
907          stack_size = (size_t)(CompilerThreadStackSize * K);
908          break;
909        } // else fall through:
910          // use VMThreadStackSize if CompilerThreadStackSize is not defined
911      case os::vm_thread:
912      case os::pgc_thread:
913      case os::cgc_thread:
914      case os::watcher_thread:
915        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
916        break;
917      }
918    }
919
920    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
921    pthread_attr_setstacksize(&attr, stack_size);
922  } else {
923    // let pthread_create() pick the default value.
924  }
925
926  // glibc guard page
927  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
928
929  ThreadState state;
930
931  {
932    // Serialize thread creation if we are running with fixed stack LinuxThreads
933    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
934    if (lock) {
935      os::Linux::createThread_lock()->lock_without_safepoint_check();
936    }
937
938    pthread_t tid;
939    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
940
941    pthread_attr_destroy(&attr);
942
943    if (ret != 0) {
944      if (PrintMiscellaneous && (Verbose || WizardMode)) {
945        perror("pthread_create()");
946      }
947      // Need to clean up stuff we've allocated so far
948      thread->set_osthread(NULL);
949      delete osthread;
950      if (lock) os::Linux::createThread_lock()->unlock();
951      return false;
952    }
953
954    // Store pthread info into the OSThread
955    osthread->set_pthread_id(tid);
956
957    // Wait until child thread is either initialized or aborted
958    {
959      Monitor* sync_with_child = osthread->startThread_lock();
960      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
961      while ((state = osthread->get_state()) == ALLOCATED) {
962        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
963      }
964    }
965
966    if (lock) {
967      os::Linux::createThread_lock()->unlock();
968    }
969  }
970
971  // Aborted due to thread limit being reached
972  if (state == ZOMBIE) {
973      thread->set_osthread(NULL);
974      delete osthread;
975      return false;
976  }
977
978  // The thread is returned suspended (in state INITIALIZED),
979  // and is started higher up in the call chain
980  assert(state == INITIALIZED, "race condition");
981  return true;
982}
983
984/////////////////////////////////////////////////////////////////////////////
985// attach existing thread
986
987// bootstrap the main thread
988bool os::create_main_thread(JavaThread* thread) {
989  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
990  return create_attached_thread(thread);
991}
992
993bool os::create_attached_thread(JavaThread* thread) {
994#ifdef ASSERT
995    thread->verify_not_published();
996#endif
997
998  // Allocate the OSThread object
999  OSThread* osthread = new OSThread(NULL, NULL);
1000
1001  if (osthread == NULL) {
1002    return false;
1003  }
1004
1005  // Store pthread info into the OSThread
1006  osthread->set_thread_id(os::Linux::gettid());
1007  osthread->set_pthread_id(::pthread_self());
1008
1009  // initialize floating point control register
1010  os::Linux::init_thread_fpu_state();
1011
1012  // Initial thread state is RUNNABLE
1013  osthread->set_state(RUNNABLE);
1014
1015  thread->set_osthread(osthread);
1016
1017  if (UseNUMA) {
1018    int lgrp_id = os::numa_get_group_id();
1019    if (lgrp_id != -1) {
1020      thread->set_lgrp_id(lgrp_id);
1021    }
1022  }
1023
1024  if (os::Linux::is_initial_thread()) {
1025    // If current thread is initial thread, its stack is mapped on demand,
1026    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1027    // the entire stack region to avoid SEGV in stack banging.
1028    // It is also useful to get around the heap-stack-gap problem on SuSE
1029    // kernel (see 4821821 for details). We first expand stack to the top
1030    // of yellow zone, then enable stack yellow zone (order is significant,
1031    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1032    // is no gap between the last two virtual memory regions.
1033
1034    JavaThread *jt = (JavaThread *)thread;
1035    address addr = jt->stack_yellow_zone_base();
1036    assert(addr != NULL, "initialization problem?");
1037    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1038
1039    osthread->set_expanding_stack();
1040    os::Linux::manually_expand_stack(jt, addr);
1041    osthread->clear_expanding_stack();
1042  }
1043
1044  // initialize signal mask for this thread
1045  // and save the caller's signal mask
1046  os::Linux::hotspot_sigmask(thread);
1047
1048  return true;
1049}
1050
1051void os::pd_start_thread(Thread* thread) {
1052  OSThread * osthread = thread->osthread();
1053  assert(osthread->get_state() != INITIALIZED, "just checking");
1054  Monitor* sync_with_child = osthread->startThread_lock();
1055  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1056  sync_with_child->notify();
1057}
1058
1059// Free Linux resources related to the OSThread
1060void os::free_thread(OSThread* osthread) {
1061  assert(osthread != NULL, "osthread not set");
1062
1063  if (Thread::current()->osthread() == osthread) {
1064    // Restore caller's signal mask
1065    sigset_t sigmask = osthread->caller_sigmask();
1066    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1067   }
1068
1069  delete osthread;
1070}
1071
1072//////////////////////////////////////////////////////////////////////////////
1073// thread local storage
1074
1075int os::allocate_thread_local_storage() {
1076  pthread_key_t key;
1077  int rslt = pthread_key_create(&key, NULL);
1078  assert(rslt == 0, "cannot allocate thread local storage");
1079  return (int)key;
1080}
1081
1082// Note: This is currently not used by VM, as we don't destroy TLS key
1083// on VM exit.
1084void os::free_thread_local_storage(int index) {
1085  int rslt = pthread_key_delete((pthread_key_t)index);
1086  assert(rslt == 0, "invalid index");
1087}
1088
1089void os::thread_local_storage_at_put(int index, void* value) {
1090  int rslt = pthread_setspecific((pthread_key_t)index, value);
1091  assert(rslt == 0, "pthread_setspecific failed");
1092}
1093
1094extern "C" Thread* get_thread() {
1095  return ThreadLocalStorage::thread();
1096}
1097
1098//////////////////////////////////////////////////////////////////////////////
1099// initial thread
1100
1101// Check if current thread is the initial thread, similar to Solaris thr_main.
1102bool os::Linux::is_initial_thread(void) {
1103  char dummy;
1104  // If called before init complete, thread stack bottom will be null.
1105  // Can be called if fatal error occurs before initialization.
1106  if (initial_thread_stack_bottom() == NULL) return false;
1107  assert(initial_thread_stack_bottom() != NULL &&
1108         initial_thread_stack_size()   != 0,
1109         "os::init did not locate initial thread's stack region");
1110  if ((address)&dummy >= initial_thread_stack_bottom() &&
1111      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1112       return true;
1113  else return false;
1114}
1115
1116// Find the virtual memory area that contains addr
1117static bool find_vma(address addr, address* vma_low, address* vma_high) {
1118  FILE *fp = fopen("/proc/self/maps", "r");
1119  if (fp) {
1120    address low, high;
1121    while (!feof(fp)) {
1122      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1123        if (low <= addr && addr < high) {
1124           if (vma_low)  *vma_low  = low;
1125           if (vma_high) *vma_high = high;
1126           fclose (fp);
1127           return true;
1128        }
1129      }
1130      for (;;) {
1131        int ch = fgetc(fp);
1132        if (ch == EOF || ch == (int)'\n') break;
1133      }
1134    }
1135    fclose(fp);
1136  }
1137  return false;
1138}
1139
1140// Locate initial thread stack. This special handling of initial thread stack
1141// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1142// bogus value for initial thread.
1143void os::Linux::capture_initial_stack(size_t max_size) {
1144  // stack size is the easy part, get it from RLIMIT_STACK
1145  size_t stack_size;
1146  struct rlimit rlim;
1147  getrlimit(RLIMIT_STACK, &rlim);
1148  stack_size = rlim.rlim_cur;
1149
1150  // 6308388: a bug in ld.so will relocate its own .data section to the
1151  //   lower end of primordial stack; reduce ulimit -s value a little bit
1152  //   so we won't install guard page on ld.so's data section.
1153  stack_size -= 2 * page_size();
1154
1155  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1156  //   7.1, in both cases we will get 2G in return value.
1157  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1158  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1159  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1160  //   in case other parts in glibc still assumes 2M max stack size.
1161  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1162  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1163  if (stack_size > 2 * K * K IA64_ONLY(*2))
1164      stack_size = 2 * K * K IA64_ONLY(*2);
1165  // Try to figure out where the stack base (top) is. This is harder.
1166  //
1167  // When an application is started, glibc saves the initial stack pointer in
1168  // a global variable "__libc_stack_end", which is then used by system
1169  // libraries. __libc_stack_end should be pretty close to stack top. The
1170  // variable is available since the very early days. However, because it is
1171  // a private interface, it could disappear in the future.
1172  //
1173  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1174  // to __libc_stack_end, it is very close to stack top, but isn't the real
1175  // stack top. Note that /proc may not exist if VM is running as a chroot
1176  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1177  // /proc/<pid>/stat could change in the future (though unlikely).
1178  //
1179  // We try __libc_stack_end first. If that doesn't work, look for
1180  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1181  // as a hint, which should work well in most cases.
1182
1183  uintptr_t stack_start;
1184
1185  // try __libc_stack_end first
1186  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1187  if (p && *p) {
1188    stack_start = *p;
1189  } else {
1190    // see if we can get the start_stack field from /proc/self/stat
1191    FILE *fp;
1192    int pid;
1193    char state;
1194    int ppid;
1195    int pgrp;
1196    int session;
1197    int nr;
1198    int tpgrp;
1199    unsigned long flags;
1200    unsigned long minflt;
1201    unsigned long cminflt;
1202    unsigned long majflt;
1203    unsigned long cmajflt;
1204    unsigned long utime;
1205    unsigned long stime;
1206    long cutime;
1207    long cstime;
1208    long prio;
1209    long nice;
1210    long junk;
1211    long it_real;
1212    uintptr_t start;
1213    uintptr_t vsize;
1214    intptr_t rss;
1215    uintptr_t rsslim;
1216    uintptr_t scodes;
1217    uintptr_t ecode;
1218    int i;
1219
1220    // Figure what the primordial thread stack base is. Code is inspired
1221    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1222    // followed by command name surrounded by parentheses, state, etc.
1223    char stat[2048];
1224    int statlen;
1225
1226    fp = fopen("/proc/self/stat", "r");
1227    if (fp) {
1228      statlen = fread(stat, 1, 2047, fp);
1229      stat[statlen] = '\0';
1230      fclose(fp);
1231
1232      // Skip pid and the command string. Note that we could be dealing with
1233      // weird command names, e.g. user could decide to rename java launcher
1234      // to "java 1.4.2 :)", then the stat file would look like
1235      //                1234 (java 1.4.2 :)) R ... ...
1236      // We don't really need to know the command string, just find the last
1237      // occurrence of ")" and then start parsing from there. See bug 4726580.
1238      char * s = strrchr(stat, ')');
1239
1240      i = 0;
1241      if (s) {
1242        // Skip blank chars
1243        do s++; while (isspace(*s));
1244
1245#define _UFM UINTX_FORMAT
1246#define _DFM INTX_FORMAT
1247
1248        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1249        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1250        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1251             &state,          /* 3  %c  */
1252             &ppid,           /* 4  %d  */
1253             &pgrp,           /* 5  %d  */
1254             &session,        /* 6  %d  */
1255             &nr,             /* 7  %d  */
1256             &tpgrp,          /* 8  %d  */
1257             &flags,          /* 9  %lu  */
1258             &minflt,         /* 10 %lu  */
1259             &cminflt,        /* 11 %lu  */
1260             &majflt,         /* 12 %lu  */
1261             &cmajflt,        /* 13 %lu  */
1262             &utime,          /* 14 %lu  */
1263             &stime,          /* 15 %lu  */
1264             &cutime,         /* 16 %ld  */
1265             &cstime,         /* 17 %ld  */
1266             &prio,           /* 18 %ld  */
1267             &nice,           /* 19 %ld  */
1268             &junk,           /* 20 %ld  */
1269             &it_real,        /* 21 %ld  */
1270             &start,          /* 22 UINTX_FORMAT */
1271             &vsize,          /* 23 UINTX_FORMAT */
1272             &rss,            /* 24 INTX_FORMAT  */
1273             &rsslim,         /* 25 UINTX_FORMAT */
1274             &scodes,         /* 26 UINTX_FORMAT */
1275             &ecode,          /* 27 UINTX_FORMAT */
1276             &stack_start);   /* 28 UINTX_FORMAT */
1277      }
1278
1279#undef _UFM
1280#undef _DFM
1281
1282      if (i != 28 - 2) {
1283         assert(false, "Bad conversion from /proc/self/stat");
1284         // product mode - assume we are the initial thread, good luck in the
1285         // embedded case.
1286         warning("Can't detect initial thread stack location - bad conversion");
1287         stack_start = (uintptr_t) &rlim;
1288      }
1289    } else {
1290      // For some reason we can't open /proc/self/stat (for example, running on
1291      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1292      // most cases, so don't abort:
1293      warning("Can't detect initial thread stack location - no /proc/self/stat");
1294      stack_start = (uintptr_t) &rlim;
1295    }
1296  }
1297
1298  // Now we have a pointer (stack_start) very close to the stack top, the
1299  // next thing to do is to figure out the exact location of stack top. We
1300  // can find out the virtual memory area that contains stack_start by
1301  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1302  // and its upper limit is the real stack top. (again, this would fail if
1303  // running inside chroot, because /proc may not exist.)
1304
1305  uintptr_t stack_top;
1306  address low, high;
1307  if (find_vma((address)stack_start, &low, &high)) {
1308    // success, "high" is the true stack top. (ignore "low", because initial
1309    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1310    stack_top = (uintptr_t)high;
1311  } else {
1312    // failed, likely because /proc/self/maps does not exist
1313    warning("Can't detect initial thread stack location - find_vma failed");
1314    // best effort: stack_start is normally within a few pages below the real
1315    // stack top, use it as stack top, and reduce stack size so we won't put
1316    // guard page outside stack.
1317    stack_top = stack_start;
1318    stack_size -= 16 * page_size();
1319  }
1320
1321  // stack_top could be partially down the page so align it
1322  stack_top = align_size_up(stack_top, page_size());
1323
1324  if (max_size && stack_size > max_size) {
1325     _initial_thread_stack_size = max_size;
1326  } else {
1327     _initial_thread_stack_size = stack_size;
1328  }
1329
1330  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1331  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1332}
1333
1334////////////////////////////////////////////////////////////////////////////////
1335// time support
1336
1337// Time since start-up in seconds to a fine granularity.
1338// Used by VMSelfDestructTimer and the MemProfiler.
1339double os::elapsedTime() {
1340
1341  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1342}
1343
1344jlong os::elapsed_counter() {
1345  return javaTimeNanos() - initial_time_count;
1346}
1347
1348jlong os::elapsed_frequency() {
1349  return NANOSECS_PER_SEC; // nanosecond resolution
1350}
1351
1352bool os::supports_vtime() { return true; }
1353bool os::enable_vtime()   { return false; }
1354bool os::vtime_enabled()  { return false; }
1355
1356double os::elapsedVTime() {
1357  struct rusage usage;
1358  int retval = getrusage(RUSAGE_THREAD, &usage);
1359  if (retval == 0) {
1360    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1361  } else {
1362    // better than nothing, but not much
1363    return elapsedTime();
1364  }
1365}
1366
1367jlong os::javaTimeMillis() {
1368  timeval time;
1369  int status = gettimeofday(&time, NULL);
1370  assert(status != -1, "linux error");
1371  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1372}
1373
1374#ifndef CLOCK_MONOTONIC
1375#define CLOCK_MONOTONIC (1)
1376#endif
1377
1378void os::Linux::clock_init() {
1379  // we do dlopen's in this particular order due to bug in linux
1380  // dynamical loader (see 6348968) leading to crash on exit
1381  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1382  if (handle == NULL) {
1383    handle = dlopen("librt.so", RTLD_LAZY);
1384  }
1385
1386  if (handle) {
1387    int (*clock_getres_func)(clockid_t, struct timespec*) =
1388           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1389    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1390           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1391    if (clock_getres_func && clock_gettime_func) {
1392      // See if monotonic clock is supported by the kernel. Note that some
1393      // early implementations simply return kernel jiffies (updated every
1394      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1395      // for nano time (though the monotonic property is still nice to have).
1396      // It's fixed in newer kernels, however clock_getres() still returns
1397      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1398      // resolution for now. Hopefully as people move to new kernels, this
1399      // won't be a problem.
1400      struct timespec res;
1401      struct timespec tp;
1402      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1403          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1404        // yes, monotonic clock is supported
1405        _clock_gettime = clock_gettime_func;
1406        return;
1407      } else {
1408        // close librt if there is no monotonic clock
1409        dlclose(handle);
1410      }
1411    }
1412  }
1413  warning("No monotonic clock was available - timed services may " \
1414          "be adversely affected if the time-of-day clock changes");
1415}
1416
1417#ifndef SYS_clock_getres
1418
1419#if defined(IA32) || defined(AMD64)
1420#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1421#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1422#else
1423#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1424#define sys_clock_getres(x,y)  -1
1425#endif
1426
1427#else
1428#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1429#endif
1430
1431void os::Linux::fast_thread_clock_init() {
1432  if (!UseLinuxPosixThreadCPUClocks) {
1433    return;
1434  }
1435  clockid_t clockid;
1436  struct timespec tp;
1437  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1438      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1439
1440  // Switch to using fast clocks for thread cpu time if
1441  // the sys_clock_getres() returns 0 error code.
1442  // Note, that some kernels may support the current thread
1443  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1444  // returned by the pthread_getcpuclockid().
1445  // If the fast Posix clocks are supported then the sys_clock_getres()
1446  // must return at least tp.tv_sec == 0 which means a resolution
1447  // better than 1 sec. This is extra check for reliability.
1448
1449  if(pthread_getcpuclockid_func &&
1450     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1451     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1452
1453    _supports_fast_thread_cpu_time = true;
1454    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1455  }
1456}
1457
1458jlong os::javaTimeNanos() {
1459  if (os::supports_monotonic_clock()) {
1460    struct timespec tp;
1461    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1462    assert(status == 0, "gettime error");
1463    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1464    return result;
1465  } else {
1466    timeval time;
1467    int status = gettimeofday(&time, NULL);
1468    assert(status != -1, "linux error");
1469    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1470    return 1000 * usecs;
1471  }
1472}
1473
1474void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1475  if (os::supports_monotonic_clock()) {
1476    info_ptr->max_value = ALL_64_BITS;
1477
1478    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1479    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1480    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1481  } else {
1482    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1483    info_ptr->max_value = ALL_64_BITS;
1484
1485    // gettimeofday is a real time clock so it skips
1486    info_ptr->may_skip_backward = true;
1487    info_ptr->may_skip_forward = true;
1488  }
1489
1490  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1491}
1492
1493// Return the real, user, and system times in seconds from an
1494// arbitrary fixed point in the past.
1495bool os::getTimesSecs(double* process_real_time,
1496                      double* process_user_time,
1497                      double* process_system_time) {
1498  struct tms ticks;
1499  clock_t real_ticks = times(&ticks);
1500
1501  if (real_ticks == (clock_t) (-1)) {
1502    return false;
1503  } else {
1504    double ticks_per_second = (double) clock_tics_per_sec;
1505    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1506    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1507    *process_real_time = ((double) real_ticks) / ticks_per_second;
1508
1509    return true;
1510  }
1511}
1512
1513
1514char * os::local_time_string(char *buf, size_t buflen) {
1515  struct tm t;
1516  time_t long_time;
1517  time(&long_time);
1518  localtime_r(&long_time, &t);
1519  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1520               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1521               t.tm_hour, t.tm_min, t.tm_sec);
1522  return buf;
1523}
1524
1525struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1526  return localtime_r(clock, res);
1527}
1528
1529////////////////////////////////////////////////////////////////////////////////
1530// runtime exit support
1531
1532// Note: os::shutdown() might be called very early during initialization, or
1533// called from signal handler. Before adding something to os::shutdown(), make
1534// sure it is async-safe and can handle partially initialized VM.
1535void os::shutdown() {
1536
1537  // allow PerfMemory to attempt cleanup of any persistent resources
1538  perfMemory_exit();
1539
1540  // needs to remove object in file system
1541  AttachListener::abort();
1542
1543  // flush buffered output, finish log files
1544  ostream_abort();
1545
1546  // Check for abort hook
1547  abort_hook_t abort_hook = Arguments::abort_hook();
1548  if (abort_hook != NULL) {
1549    abort_hook();
1550  }
1551
1552}
1553
1554// Note: os::abort() might be called very early during initialization, or
1555// called from signal handler. Before adding something to os::abort(), make
1556// sure it is async-safe and can handle partially initialized VM.
1557void os::abort(bool dump_core) {
1558  os::shutdown();
1559  if (dump_core) {
1560#ifndef PRODUCT
1561    fdStream out(defaultStream::output_fd());
1562    out.print_raw("Current thread is ");
1563    char buf[16];
1564    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1565    out.print_raw_cr(buf);
1566    out.print_raw_cr("Dumping core ...");
1567#endif
1568    ::abort(); // dump core
1569  }
1570
1571  ::exit(1);
1572}
1573
1574// Die immediately, no exit hook, no abort hook, no cleanup.
1575void os::die() {
1576  // _exit() on LinuxThreads only kills current thread
1577  ::abort();
1578}
1579
1580// unused on linux for now.
1581void os::set_error_file(const char *logfile) {}
1582
1583
1584// This method is a copy of JDK's sysGetLastErrorString
1585// from src/solaris/hpi/src/system_md.c
1586
1587size_t os::lasterror(char *buf, size_t len) {
1588
1589  if (errno == 0)  return 0;
1590
1591  const char *s = ::strerror(errno);
1592  size_t n = ::strlen(s);
1593  if (n >= len) {
1594    n = len - 1;
1595  }
1596  ::strncpy(buf, s, n);
1597  buf[n] = '\0';
1598  return n;
1599}
1600
1601intx os::current_thread_id() { return (intx)pthread_self(); }
1602int os::current_process_id() {
1603
1604  // Under the old linux thread library, linux gives each thread
1605  // its own process id. Because of this each thread will return
1606  // a different pid if this method were to return the result
1607  // of getpid(2). Linux provides no api that returns the pid
1608  // of the launcher thread for the vm. This implementation
1609  // returns a unique pid, the pid of the launcher thread
1610  // that starts the vm 'process'.
1611
1612  // Under the NPTL, getpid() returns the same pid as the
1613  // launcher thread rather than a unique pid per thread.
1614  // Use gettid() if you want the old pre NPTL behaviour.
1615
1616  // if you are looking for the result of a call to getpid() that
1617  // returns a unique pid for the calling thread, then look at the
1618  // OSThread::thread_id() method in osThread_linux.hpp file
1619
1620  return (int)(_initial_pid ? _initial_pid : getpid());
1621}
1622
1623// DLL functions
1624
1625const char* os::dll_file_extension() { return ".so"; }
1626
1627// This must be hard coded because it's the system's temporary
1628// directory not the java application's temp directory, ala java.io.tmpdir.
1629const char* os::get_temp_directory() { return "/tmp"; }
1630
1631static bool file_exists(const char* filename) {
1632  struct stat statbuf;
1633  if (filename == NULL || strlen(filename) == 0) {
1634    return false;
1635  }
1636  return os::stat(filename, &statbuf) == 0;
1637}
1638
1639bool os::dll_build_name(char* buffer, size_t buflen,
1640                        const char* pname, const char* fname) {
1641  bool retval = false;
1642  // Copied from libhpi
1643  const size_t pnamelen = pname ? strlen(pname) : 0;
1644
1645  // Return error on buffer overflow.
1646  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1647    return retval;
1648  }
1649
1650  if (pnamelen == 0) {
1651    snprintf(buffer, buflen, "lib%s.so", fname);
1652    retval = true;
1653  } else if (strchr(pname, *os::path_separator()) != NULL) {
1654    int n;
1655    char** pelements = split_path(pname, &n);
1656    if (pelements == NULL) {
1657      return false;
1658    }
1659    for (int i = 0 ; i < n ; i++) {
1660      // Really shouldn't be NULL, but check can't hurt
1661      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1662        continue; // skip the empty path values
1663      }
1664      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1665      if (file_exists(buffer)) {
1666        retval = true;
1667        break;
1668      }
1669    }
1670    // release the storage
1671    for (int i = 0 ; i < n ; i++) {
1672      if (pelements[i] != NULL) {
1673        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1674      }
1675    }
1676    if (pelements != NULL) {
1677      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1678    }
1679  } else {
1680    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1681    retval = true;
1682  }
1683  return retval;
1684}
1685
1686// check if addr is inside libjvm.so
1687bool os::address_is_in_vm(address addr) {
1688  static address libjvm_base_addr;
1689  Dl_info dlinfo;
1690
1691  if (libjvm_base_addr == NULL) {
1692    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1693      libjvm_base_addr = (address)dlinfo.dli_fbase;
1694    }
1695    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1696  }
1697
1698  if (dladdr((void *)addr, &dlinfo) != 0) {
1699    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1700  }
1701
1702  return false;
1703}
1704
1705bool os::dll_address_to_function_name(address addr, char *buf,
1706                                      int buflen, int *offset) {
1707  // buf is not optional, but offset is optional
1708  assert(buf != NULL, "sanity check");
1709
1710  Dl_info dlinfo;
1711
1712  if (dladdr((void*)addr, &dlinfo) != 0) {
1713    // see if we have a matching symbol
1714    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1715      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1716        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1717      }
1718      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1719      return true;
1720    }
1721    // no matching symbol so try for just file info
1722    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1723      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1724                          buf, buflen, offset, dlinfo.dli_fname)) {
1725        return true;
1726      }
1727    }
1728  }
1729
1730  buf[0] = '\0';
1731  if (offset != NULL) *offset = -1;
1732  return false;
1733}
1734
1735struct _address_to_library_name {
1736  address addr;          // input : memory address
1737  size_t  buflen;        //         size of fname
1738  char*   fname;         // output: library name
1739  address base;          //         library base addr
1740};
1741
1742static int address_to_library_name_callback(struct dl_phdr_info *info,
1743                                            size_t size, void *data) {
1744  int i;
1745  bool found = false;
1746  address libbase = NULL;
1747  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1748
1749  // iterate through all loadable segments
1750  for (i = 0; i < info->dlpi_phnum; i++) {
1751    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1752    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1753      // base address of a library is the lowest address of its loaded
1754      // segments.
1755      if (libbase == NULL || libbase > segbase) {
1756        libbase = segbase;
1757      }
1758      // see if 'addr' is within current segment
1759      if (segbase <= d->addr &&
1760          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1761        found = true;
1762      }
1763    }
1764  }
1765
1766  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1767  // so dll_address_to_library_name() can fall through to use dladdr() which
1768  // can figure out executable name from argv[0].
1769  if (found && info->dlpi_name && info->dlpi_name[0]) {
1770    d->base = libbase;
1771    if (d->fname) {
1772      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1773    }
1774    return 1;
1775  }
1776  return 0;
1777}
1778
1779bool os::dll_address_to_library_name(address addr, char* buf,
1780                                     int buflen, int* offset) {
1781  // buf is not optional, but offset is optional
1782  assert(buf != NULL, "sanity check");
1783
1784  Dl_info dlinfo;
1785  struct _address_to_library_name data;
1786
1787  // There is a bug in old glibc dladdr() implementation that it could resolve
1788  // to wrong library name if the .so file has a base address != NULL. Here
1789  // we iterate through the program headers of all loaded libraries to find
1790  // out which library 'addr' really belongs to. This workaround can be
1791  // removed once the minimum requirement for glibc is moved to 2.3.x.
1792  data.addr = addr;
1793  data.fname = buf;
1794  data.buflen = buflen;
1795  data.base = NULL;
1796  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1797
1798  if (rslt) {
1799     // buf already contains library name
1800     if (offset) *offset = addr - data.base;
1801     return true;
1802  }
1803  if (dladdr((void*)addr, &dlinfo) != 0) {
1804    if (dlinfo.dli_fname != NULL) {
1805      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1806    }
1807    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1808      *offset = addr - (address)dlinfo.dli_fbase;
1809    }
1810    return true;
1811  }
1812
1813  buf[0] = '\0';
1814  if (offset) *offset = -1;
1815  return false;
1816}
1817
1818  // Loads .dll/.so and
1819  // in case of error it checks if .dll/.so was built for the
1820  // same architecture as Hotspot is running on
1821
1822
1823// Remember the stack's state. The Linux dynamic linker will change
1824// the stack to 'executable' at most once, so we must safepoint only once.
1825bool os::Linux::_stack_is_executable = false;
1826
1827// VM operation that loads a library.  This is necessary if stack protection
1828// of the Java stacks can be lost during loading the library.  If we
1829// do not stop the Java threads, they can stack overflow before the stacks
1830// are protected again.
1831class VM_LinuxDllLoad: public VM_Operation {
1832 private:
1833  const char *_filename;
1834  char *_ebuf;
1835  int _ebuflen;
1836  void *_lib;
1837 public:
1838  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1839    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1840  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1841  void doit() {
1842    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1843    os::Linux::_stack_is_executable = true;
1844  }
1845  void* loaded_library() { return _lib; }
1846};
1847
1848void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1849{
1850  void * result = NULL;
1851  bool load_attempted = false;
1852
1853  // Check whether the library to load might change execution rights
1854  // of the stack. If they are changed, the protection of the stack
1855  // guard pages will be lost. We need a safepoint to fix this.
1856  //
1857  // See Linux man page execstack(8) for more info.
1858  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1859    ElfFile ef(filename);
1860    if (!ef.specifies_noexecstack()) {
1861      if (!is_init_completed()) {
1862        os::Linux::_stack_is_executable = true;
1863        // This is OK - No Java threads have been created yet, and hence no
1864        // stack guard pages to fix.
1865        //
1866        // This should happen only when you are building JDK7 using a very
1867        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1868        //
1869        // Dynamic loader will make all stacks executable after
1870        // this function returns, and will not do that again.
1871        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1872      } else {
1873        warning("You have loaded library %s which might have disabled stack guard. "
1874                "The VM will try to fix the stack guard now.\n"
1875                "It's highly recommended that you fix the library with "
1876                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1877                filename);
1878
1879        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1880        JavaThread *jt = JavaThread::current();
1881        if (jt->thread_state() != _thread_in_native) {
1882          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1883          // that requires ExecStack. Cannot enter safe point. Let's give up.
1884          warning("Unable to fix stack guard. Giving up.");
1885        } else {
1886          if (!LoadExecStackDllInVMThread) {
1887            // This is for the case where the DLL has an static
1888            // constructor function that executes JNI code. We cannot
1889            // load such DLLs in the VMThread.
1890            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1891          }
1892
1893          ThreadInVMfromNative tiv(jt);
1894          debug_only(VMNativeEntryWrapper vew;)
1895
1896          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1897          VMThread::execute(&op);
1898          if (LoadExecStackDllInVMThread) {
1899            result = op.loaded_library();
1900          }
1901          load_attempted = true;
1902        }
1903      }
1904    }
1905  }
1906
1907  if (!load_attempted) {
1908    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1909  }
1910
1911  if (result != NULL) {
1912    // Successful loading
1913    return result;
1914  }
1915
1916  Elf32_Ehdr elf_head;
1917  int diag_msg_max_length=ebuflen-strlen(ebuf);
1918  char* diag_msg_buf=ebuf+strlen(ebuf);
1919
1920  if (diag_msg_max_length==0) {
1921    // No more space in ebuf for additional diagnostics message
1922    return NULL;
1923  }
1924
1925
1926  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1927
1928  if (file_descriptor < 0) {
1929    // Can't open library, report dlerror() message
1930    return NULL;
1931  }
1932
1933  bool failed_to_read_elf_head=
1934    (sizeof(elf_head)!=
1935        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1936
1937  ::close(file_descriptor);
1938  if (failed_to_read_elf_head) {
1939    // file i/o error - report dlerror() msg
1940    return NULL;
1941  }
1942
1943  typedef struct {
1944    Elf32_Half  code;         // Actual value as defined in elf.h
1945    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1946    char        elf_class;    // 32 or 64 bit
1947    char        endianess;    // MSB or LSB
1948    char*       name;         // String representation
1949  } arch_t;
1950
1951  #ifndef EM_486
1952  #define EM_486          6               /* Intel 80486 */
1953  #endif
1954
1955  static const arch_t arch_array[]={
1956    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1957    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1958    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1959    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1960    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1961    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1962    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1963    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1964    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1965    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1966    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1967    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1968    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1969    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1970    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1971    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1972  };
1973
1974  #if  (defined IA32)
1975    static  Elf32_Half running_arch_code=EM_386;
1976  #elif   (defined AMD64)
1977    static  Elf32_Half running_arch_code=EM_X86_64;
1978  #elif  (defined IA64)
1979    static  Elf32_Half running_arch_code=EM_IA_64;
1980  #elif  (defined __sparc) && (defined _LP64)
1981    static  Elf32_Half running_arch_code=EM_SPARCV9;
1982  #elif  (defined __sparc) && (!defined _LP64)
1983    static  Elf32_Half running_arch_code=EM_SPARC;
1984  #elif  (defined __powerpc64__)
1985    static  Elf32_Half running_arch_code=EM_PPC64;
1986  #elif  (defined __powerpc__)
1987    static  Elf32_Half running_arch_code=EM_PPC;
1988  #elif  (defined ARM)
1989    static  Elf32_Half running_arch_code=EM_ARM;
1990  #elif  (defined S390)
1991    static  Elf32_Half running_arch_code=EM_S390;
1992  #elif  (defined ALPHA)
1993    static  Elf32_Half running_arch_code=EM_ALPHA;
1994  #elif  (defined MIPSEL)
1995    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1996  #elif  (defined PARISC)
1997    static  Elf32_Half running_arch_code=EM_PARISC;
1998  #elif  (defined MIPS)
1999    static  Elf32_Half running_arch_code=EM_MIPS;
2000  #elif  (defined M68K)
2001    static  Elf32_Half running_arch_code=EM_68K;
2002  #else
2003    #error Method os::dll_load requires that one of following is defined:\
2004         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2005  #endif
2006
2007  // Identify compatability class for VM's architecture and library's architecture
2008  // Obtain string descriptions for architectures
2009
2010  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2011  int running_arch_index=-1;
2012
2013  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2014    if (running_arch_code == arch_array[i].code) {
2015      running_arch_index    = i;
2016    }
2017    if (lib_arch.code == arch_array[i].code) {
2018      lib_arch.compat_class = arch_array[i].compat_class;
2019      lib_arch.name         = arch_array[i].name;
2020    }
2021  }
2022
2023  assert(running_arch_index != -1,
2024    "Didn't find running architecture code (running_arch_code) in arch_array");
2025  if (running_arch_index == -1) {
2026    // Even though running architecture detection failed
2027    // we may still continue with reporting dlerror() message
2028    return NULL;
2029  }
2030
2031  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2032    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2033    return NULL;
2034  }
2035
2036#ifndef S390
2037  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2038    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2039    return NULL;
2040  }
2041#endif // !S390
2042
2043  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2044    if ( lib_arch.name!=NULL ) {
2045      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2046        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2047        lib_arch.name, arch_array[running_arch_index].name);
2048    } else {
2049      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2050      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2051        lib_arch.code,
2052        arch_array[running_arch_index].name);
2053    }
2054  }
2055
2056  return NULL;
2057}
2058
2059void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2060  void * result = ::dlopen(filename, RTLD_LAZY);
2061  if (result == NULL) {
2062    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2063    ebuf[ebuflen-1] = '\0';
2064  }
2065  return result;
2066}
2067
2068void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2069  void * result = NULL;
2070  if (LoadExecStackDllInVMThread) {
2071    result = dlopen_helper(filename, ebuf, ebuflen);
2072  }
2073
2074  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2075  // library that requires an executable stack, or which does not have this
2076  // stack attribute set, dlopen changes the stack attribute to executable. The
2077  // read protection of the guard pages gets lost.
2078  //
2079  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2080  // may have been queued at the same time.
2081
2082  if (!_stack_is_executable) {
2083    JavaThread *jt = Threads::first();
2084
2085    while (jt) {
2086      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2087          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2088        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2089                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2090          warning("Attempt to reguard stack yellow zone failed.");
2091        }
2092      }
2093      jt = jt->next();
2094    }
2095  }
2096
2097  return result;
2098}
2099
2100/*
2101 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2102 * chances are you might want to run the generated bits against glibc-2.0
2103 * libdl.so, so always use locking for any version of glibc.
2104 */
2105void* os::dll_lookup(void* handle, const char* name) {
2106  pthread_mutex_lock(&dl_mutex);
2107  void* res = dlsym(handle, name);
2108  pthread_mutex_unlock(&dl_mutex);
2109  return res;
2110}
2111
2112void* os::get_default_process_handle() {
2113  return (void*)::dlopen(NULL, RTLD_LAZY);
2114}
2115
2116static bool _print_ascii_file(const char* filename, outputStream* st) {
2117  int fd = ::open(filename, O_RDONLY);
2118  if (fd == -1) {
2119     return false;
2120  }
2121
2122  char buf[32];
2123  int bytes;
2124  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2125    st->print_raw(buf, bytes);
2126  }
2127
2128  ::close(fd);
2129
2130  return true;
2131}
2132
2133void os::print_dll_info(outputStream *st) {
2134   st->print_cr("Dynamic libraries:");
2135
2136   char fname[32];
2137   pid_t pid = os::Linux::gettid();
2138
2139   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2140
2141   if (!_print_ascii_file(fname, st)) {
2142     st->print("Can not get library information for pid = %d\n", pid);
2143   }
2144}
2145
2146void os::print_os_info_brief(outputStream* st) {
2147  os::Linux::print_distro_info(st);
2148
2149  os::Posix::print_uname_info(st);
2150
2151  os::Linux::print_libversion_info(st);
2152
2153}
2154
2155void os::print_os_info(outputStream* st) {
2156  st->print("OS:");
2157
2158  os::Linux::print_distro_info(st);
2159
2160  os::Posix::print_uname_info(st);
2161
2162  // Print warning if unsafe chroot environment detected
2163  if (unsafe_chroot_detected) {
2164    st->print("WARNING!! ");
2165    st->print_cr(unstable_chroot_error);
2166  }
2167
2168  os::Linux::print_libversion_info(st);
2169
2170  os::Posix::print_rlimit_info(st);
2171
2172  os::Posix::print_load_average(st);
2173
2174  os::Linux::print_full_memory_info(st);
2175}
2176
2177// Try to identify popular distros.
2178// Most Linux distributions have a /etc/XXX-release file, which contains
2179// the OS version string. Newer Linux distributions have a /etc/lsb-release
2180// file that also contains the OS version string. Some have more than one
2181// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2182// /etc/redhat-release.), so the order is important.
2183// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2184// their own specific XXX-release file as well as a redhat-release file.
2185// Because of this the XXX-release file needs to be searched for before the
2186// redhat-release file.
2187// Since Red Hat has a lsb-release file that is not very descriptive the
2188// search for redhat-release needs to be before lsb-release.
2189// Since the lsb-release file is the new standard it needs to be searched
2190// before the older style release files.
2191// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2192// next to last resort.  The os-release file is a new standard that contains
2193// distribution information and the system-release file seems to be an old
2194// standard that has been replaced by the lsb-release and os-release files.
2195// Searching for the debian_version file is the last resort.  It contains
2196// an informative string like "6.0.6" or "wheezy/sid". Because of this
2197// "Debian " is printed before the contents of the debian_version file.
2198void os::Linux::print_distro_info(outputStream* st) {
2199   if (!_print_ascii_file("/etc/oracle-release", st) &&
2200       !_print_ascii_file("/etc/mandriva-release", st) &&
2201       !_print_ascii_file("/etc/mandrake-release", st) &&
2202       !_print_ascii_file("/etc/sun-release", st) &&
2203       !_print_ascii_file("/etc/redhat-release", st) &&
2204       !_print_ascii_file("/etc/lsb-release", st) &&
2205       !_print_ascii_file("/etc/SuSE-release", st) &&
2206       !_print_ascii_file("/etc/turbolinux-release", st) &&
2207       !_print_ascii_file("/etc/gentoo-release", st) &&
2208       !_print_ascii_file("/etc/ltib-release", st) &&
2209       !_print_ascii_file("/etc/angstrom-version", st) &&
2210       !_print_ascii_file("/etc/system-release", st) &&
2211       !_print_ascii_file("/etc/os-release", st)) {
2212
2213       if (file_exists("/etc/debian_version")) {
2214         st->print("Debian ");
2215         _print_ascii_file("/etc/debian_version", st);
2216       } else {
2217         st->print("Linux");
2218       }
2219   }
2220   st->cr();
2221}
2222
2223void os::Linux::print_libversion_info(outputStream* st) {
2224  // libc, pthread
2225  st->print("libc:");
2226  st->print(os::Linux::glibc_version()); st->print(" ");
2227  st->print(os::Linux::libpthread_version()); st->print(" ");
2228  if (os::Linux::is_LinuxThreads()) {
2229     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2230  }
2231  st->cr();
2232}
2233
2234void os::Linux::print_full_memory_info(outputStream* st) {
2235   st->print("\n/proc/meminfo:\n");
2236   _print_ascii_file("/proc/meminfo", st);
2237   st->cr();
2238}
2239
2240void os::print_memory_info(outputStream* st) {
2241
2242  st->print("Memory:");
2243  st->print(" %dk page", os::vm_page_size()>>10);
2244
2245  // values in struct sysinfo are "unsigned long"
2246  struct sysinfo si;
2247  sysinfo(&si);
2248
2249  st->print(", physical " UINT64_FORMAT "k",
2250            os::physical_memory() >> 10);
2251  st->print("(" UINT64_FORMAT "k free)",
2252            os::available_memory() >> 10);
2253  st->print(", swap " UINT64_FORMAT "k",
2254            ((jlong)si.totalswap * si.mem_unit) >> 10);
2255  st->print("(" UINT64_FORMAT "k free)",
2256            ((jlong)si.freeswap * si.mem_unit) >> 10);
2257  st->cr();
2258}
2259
2260void os::pd_print_cpu_info(outputStream* st) {
2261  st->print("\n/proc/cpuinfo:\n");
2262  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2263    st->print("  <Not Available>");
2264  }
2265  st->cr();
2266}
2267
2268void os::print_siginfo(outputStream* st, void* siginfo) {
2269  const siginfo_t* si = (const siginfo_t*)siginfo;
2270
2271  os::Posix::print_siginfo_brief(st, si);
2272
2273  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2274      UseSharedSpaces) {
2275    FileMapInfo* mapinfo = FileMapInfo::current_info();
2276    if (mapinfo->is_in_shared_space(si->si_addr)) {
2277      st->print("\n\nError accessing class data sharing archive."   \
2278                " Mapped file inaccessible during execution, "      \
2279                " possible disk/network problem.");
2280    }
2281  }
2282  st->cr();
2283}
2284
2285
2286static void print_signal_handler(outputStream* st, int sig,
2287                                 char* buf, size_t buflen);
2288
2289void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2290  st->print_cr("Signal Handlers:");
2291  print_signal_handler(st, SIGSEGV, buf, buflen);
2292  print_signal_handler(st, SIGBUS , buf, buflen);
2293  print_signal_handler(st, SIGFPE , buf, buflen);
2294  print_signal_handler(st, SIGPIPE, buf, buflen);
2295  print_signal_handler(st, SIGXFSZ, buf, buflen);
2296  print_signal_handler(st, SIGILL , buf, buflen);
2297  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2298  print_signal_handler(st, SR_signum, buf, buflen);
2299  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2300  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2301  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2302  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2303#if defined(PPC64)
2304  print_signal_handler(st, SIGTRAP, buf, buflen);
2305#endif
2306}
2307
2308static char saved_jvm_path[MAXPATHLEN] = {0};
2309
2310// Find the full path to the current module, libjvm.so
2311void os::jvm_path(char *buf, jint buflen) {
2312  // Error checking.
2313  if (buflen < MAXPATHLEN) {
2314    assert(false, "must use a large-enough buffer");
2315    buf[0] = '\0';
2316    return;
2317  }
2318  // Lazy resolve the path to current module.
2319  if (saved_jvm_path[0] != 0) {
2320    strcpy(buf, saved_jvm_path);
2321    return;
2322  }
2323
2324  char dli_fname[MAXPATHLEN];
2325  bool ret = dll_address_to_library_name(
2326                CAST_FROM_FN_PTR(address, os::jvm_path),
2327                dli_fname, sizeof(dli_fname), NULL);
2328  assert(ret, "cannot locate libjvm");
2329  char *rp = NULL;
2330  if (ret && dli_fname[0] != '\0') {
2331    rp = realpath(dli_fname, buf);
2332  }
2333  if (rp == NULL)
2334    return;
2335
2336  if (Arguments::sun_java_launcher_is_altjvm()) {
2337    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2338    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2339    // If "/jre/lib/" appears at the right place in the string, then
2340    // assume we are installed in a JDK and we're done. Otherwise, check
2341    // for a JAVA_HOME environment variable and fix up the path so it
2342    // looks like libjvm.so is installed there (append a fake suffix
2343    // hotspot/libjvm.so).
2344    const char *p = buf + strlen(buf) - 1;
2345    for (int count = 0; p > buf && count < 5; ++count) {
2346      for (--p; p > buf && *p != '/'; --p)
2347        /* empty */ ;
2348    }
2349
2350    if (strncmp(p, "/jre/lib/", 9) != 0) {
2351      // Look for JAVA_HOME in the environment.
2352      char* java_home_var = ::getenv("JAVA_HOME");
2353      if (java_home_var != NULL && java_home_var[0] != 0) {
2354        char* jrelib_p;
2355        int len;
2356
2357        // Check the current module name "libjvm.so".
2358        p = strrchr(buf, '/');
2359        assert(strstr(p, "/libjvm") == p, "invalid library name");
2360
2361        rp = realpath(java_home_var, buf);
2362        if (rp == NULL)
2363          return;
2364
2365        // determine if this is a legacy image or modules image
2366        // modules image doesn't have "jre" subdirectory
2367        len = strlen(buf);
2368        jrelib_p = buf + len;
2369        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2370        if (0 != access(buf, F_OK)) {
2371          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2372        }
2373
2374        if (0 == access(buf, F_OK)) {
2375          // Use current module name "libjvm.so"
2376          len = strlen(buf);
2377          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2378        } else {
2379          // Go back to path of .so
2380          rp = realpath(dli_fname, buf);
2381          if (rp == NULL)
2382            return;
2383        }
2384      }
2385    }
2386  }
2387
2388  strcpy(saved_jvm_path, buf);
2389}
2390
2391void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2392  // no prefix required, not even "_"
2393}
2394
2395void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2396  // no suffix required
2397}
2398
2399////////////////////////////////////////////////////////////////////////////////
2400// sun.misc.Signal support
2401
2402static volatile jint sigint_count = 0;
2403
2404static void
2405UserHandler(int sig, void *siginfo, void *context) {
2406  // 4511530 - sem_post is serialized and handled by the manager thread. When
2407  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2408  // don't want to flood the manager thread with sem_post requests.
2409  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2410      return;
2411
2412  // Ctrl-C is pressed during error reporting, likely because the error
2413  // handler fails to abort. Let VM die immediately.
2414  if (sig == SIGINT && is_error_reported()) {
2415     os::die();
2416  }
2417
2418  os::signal_notify(sig);
2419}
2420
2421void* os::user_handler() {
2422  return CAST_FROM_FN_PTR(void*, UserHandler);
2423}
2424
2425class Semaphore : public StackObj {
2426  public:
2427    Semaphore();
2428    ~Semaphore();
2429    void signal();
2430    void wait();
2431    bool trywait();
2432    bool timedwait(unsigned int sec, int nsec);
2433  private:
2434    sem_t _semaphore;
2435};
2436
2437
2438Semaphore::Semaphore() {
2439  sem_init(&_semaphore, 0, 0);
2440}
2441
2442Semaphore::~Semaphore() {
2443  sem_destroy(&_semaphore);
2444}
2445
2446void Semaphore::signal() {
2447  sem_post(&_semaphore);
2448}
2449
2450void Semaphore::wait() {
2451  sem_wait(&_semaphore);
2452}
2453
2454bool Semaphore::trywait() {
2455  return sem_trywait(&_semaphore) == 0;
2456}
2457
2458bool Semaphore::timedwait(unsigned int sec, int nsec) {
2459  struct timespec ts;
2460  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2461
2462  while (1) {
2463    int result = sem_timedwait(&_semaphore, &ts);
2464    if (result == 0) {
2465      return true;
2466    } else if (errno == EINTR) {
2467      continue;
2468    } else if (errno == ETIMEDOUT) {
2469      return false;
2470    } else {
2471      return false;
2472    }
2473  }
2474}
2475
2476extern "C" {
2477  typedef void (*sa_handler_t)(int);
2478  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2479}
2480
2481void* os::signal(int signal_number, void* handler) {
2482  struct sigaction sigAct, oldSigAct;
2483
2484  sigfillset(&(sigAct.sa_mask));
2485  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2486  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2487
2488  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2489    // -1 means registration failed
2490    return (void *)-1;
2491  }
2492
2493  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2494}
2495
2496void os::signal_raise(int signal_number) {
2497  ::raise(signal_number);
2498}
2499
2500/*
2501 * The following code is moved from os.cpp for making this
2502 * code platform specific, which it is by its very nature.
2503 */
2504
2505// Will be modified when max signal is changed to be dynamic
2506int os::sigexitnum_pd() {
2507  return NSIG;
2508}
2509
2510// a counter for each possible signal value
2511static volatile jint pending_signals[NSIG+1] = { 0 };
2512
2513// Linux(POSIX) specific hand shaking semaphore.
2514static sem_t sig_sem;
2515static Semaphore sr_semaphore;
2516
2517void os::signal_init_pd() {
2518  // Initialize signal structures
2519  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2520
2521  // Initialize signal semaphore
2522  ::sem_init(&sig_sem, 0, 0);
2523}
2524
2525void os::signal_notify(int sig) {
2526  Atomic::inc(&pending_signals[sig]);
2527  ::sem_post(&sig_sem);
2528}
2529
2530static int check_pending_signals(bool wait) {
2531  Atomic::store(0, &sigint_count);
2532  for (;;) {
2533    for (int i = 0; i < NSIG + 1; i++) {
2534      jint n = pending_signals[i];
2535      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2536        return i;
2537      }
2538    }
2539    if (!wait) {
2540      return -1;
2541    }
2542    JavaThread *thread = JavaThread::current();
2543    ThreadBlockInVM tbivm(thread);
2544
2545    bool threadIsSuspended;
2546    do {
2547      thread->set_suspend_equivalent();
2548      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2549      ::sem_wait(&sig_sem);
2550
2551      // were we externally suspended while we were waiting?
2552      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2553      if (threadIsSuspended) {
2554        //
2555        // The semaphore has been incremented, but while we were waiting
2556        // another thread suspended us. We don't want to continue running
2557        // while suspended because that would surprise the thread that
2558        // suspended us.
2559        //
2560        ::sem_post(&sig_sem);
2561
2562        thread->java_suspend_self();
2563      }
2564    } while (threadIsSuspended);
2565  }
2566}
2567
2568int os::signal_lookup() {
2569  return check_pending_signals(false);
2570}
2571
2572int os::signal_wait() {
2573  return check_pending_signals(true);
2574}
2575
2576////////////////////////////////////////////////////////////////////////////////
2577// Virtual Memory
2578
2579int os::vm_page_size() {
2580  // Seems redundant as all get out
2581  assert(os::Linux::page_size() != -1, "must call os::init");
2582  return os::Linux::page_size();
2583}
2584
2585// Solaris allocates memory by pages.
2586int os::vm_allocation_granularity() {
2587  assert(os::Linux::page_size() != -1, "must call os::init");
2588  return os::Linux::page_size();
2589}
2590
2591// Rationale behind this function:
2592//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2593//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2594//  samples for JITted code. Here we create private executable mapping over the code cache
2595//  and then we can use standard (well, almost, as mapping can change) way to provide
2596//  info for the reporting script by storing timestamp and location of symbol
2597void linux_wrap_code(char* base, size_t size) {
2598  static volatile jint cnt = 0;
2599
2600  if (!UseOprofile) {
2601    return;
2602  }
2603
2604  char buf[PATH_MAX+1];
2605  int num = Atomic::add(1, &cnt);
2606
2607  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2608           os::get_temp_directory(), os::current_process_id(), num);
2609  unlink(buf);
2610
2611  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2612
2613  if (fd != -1) {
2614    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2615    if (rv != (off_t)-1) {
2616      if (::write(fd, "", 1) == 1) {
2617        mmap(base, size,
2618             PROT_READ|PROT_WRITE|PROT_EXEC,
2619             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2620      }
2621    }
2622    ::close(fd);
2623    unlink(buf);
2624  }
2625}
2626
2627static bool recoverable_mmap_error(int err) {
2628  // See if the error is one we can let the caller handle. This
2629  // list of errno values comes from JBS-6843484. I can't find a
2630  // Linux man page that documents this specific set of errno
2631  // values so while this list currently matches Solaris, it may
2632  // change as we gain experience with this failure mode.
2633  switch (err) {
2634  case EBADF:
2635  case EINVAL:
2636  case ENOTSUP:
2637    // let the caller deal with these errors
2638    return true;
2639
2640  default:
2641    // Any remaining errors on this OS can cause our reserved mapping
2642    // to be lost. That can cause confusion where different data
2643    // structures think they have the same memory mapped. The worst
2644    // scenario is if both the VM and a library think they have the
2645    // same memory mapped.
2646    return false;
2647  }
2648}
2649
2650static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2651                                    int err) {
2652  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2653          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2654          strerror(err), err);
2655}
2656
2657static void warn_fail_commit_memory(char* addr, size_t size,
2658                                    size_t alignment_hint, bool exec,
2659                                    int err) {
2660  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2661          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2662          alignment_hint, exec, strerror(err), err);
2663}
2664
2665// NOTE: Linux kernel does not really reserve the pages for us.
2666//       All it does is to check if there are enough free pages
2667//       left at the time of mmap(). This could be a potential
2668//       problem.
2669int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2670  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2671  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2672                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2673  if (res != (uintptr_t) MAP_FAILED) {
2674    if (UseNUMAInterleaving) {
2675      numa_make_global(addr, size);
2676    }
2677    return 0;
2678  }
2679
2680  int err = errno;  // save errno from mmap() call above
2681
2682  if (!recoverable_mmap_error(err)) {
2683    warn_fail_commit_memory(addr, size, exec, err);
2684    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2685  }
2686
2687  return err;
2688}
2689
2690bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2691  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2692}
2693
2694void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2695                                  const char* mesg) {
2696  assert(mesg != NULL, "mesg must be specified");
2697  int err = os::Linux::commit_memory_impl(addr, size, exec);
2698  if (err != 0) {
2699    // the caller wants all commit errors to exit with the specified mesg:
2700    warn_fail_commit_memory(addr, size, exec, err);
2701    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2702  }
2703}
2704
2705// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2706#ifndef MAP_HUGETLB
2707#define MAP_HUGETLB 0x40000
2708#endif
2709
2710// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2711#ifndef MADV_HUGEPAGE
2712#define MADV_HUGEPAGE 14
2713#endif
2714
2715int os::Linux::commit_memory_impl(char* addr, size_t size,
2716                                  size_t alignment_hint, bool exec) {
2717  int err = os::Linux::commit_memory_impl(addr, size, exec);
2718  if (err == 0) {
2719    realign_memory(addr, size, alignment_hint);
2720  }
2721  return err;
2722}
2723
2724bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2725                          bool exec) {
2726  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2727}
2728
2729void os::pd_commit_memory_or_exit(char* addr, size_t size,
2730                                  size_t alignment_hint, bool exec,
2731                                  const char* mesg) {
2732  assert(mesg != NULL, "mesg must be specified");
2733  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2734  if (err != 0) {
2735    // the caller wants all commit errors to exit with the specified mesg:
2736    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2737    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2738  }
2739}
2740
2741void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2742  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2743    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2744    // be supported or the memory may already be backed by huge pages.
2745    ::madvise(addr, bytes, MADV_HUGEPAGE);
2746  }
2747}
2748
2749void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2750  // This method works by doing an mmap over an existing mmaping and effectively discarding
2751  // the existing pages. However it won't work for SHM-based large pages that cannot be
2752  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2753  // small pages on top of the SHM segment. This method always works for small pages, so we
2754  // allow that in any case.
2755  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2756    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2757  }
2758}
2759
2760void os::numa_make_global(char *addr, size_t bytes) {
2761  Linux::numa_interleave_memory(addr, bytes);
2762}
2763
2764// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2765// bind policy to MPOL_PREFERRED for the current thread.
2766#define USE_MPOL_PREFERRED 0
2767
2768void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2769  // To make NUMA and large pages more robust when both enabled, we need to ease
2770  // the requirements on where the memory should be allocated. MPOL_BIND is the
2771  // default policy and it will force memory to be allocated on the specified
2772  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2773  // the specified node, but will not force it. Using this policy will prevent
2774  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2775  // free large pages.
2776  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2777  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2778}
2779
2780bool os::numa_topology_changed()   { return false; }
2781
2782size_t os::numa_get_groups_num() {
2783  int max_node = Linux::numa_max_node();
2784  return max_node > 0 ? max_node + 1 : 1;
2785}
2786
2787int os::numa_get_group_id() {
2788  int cpu_id = Linux::sched_getcpu();
2789  if (cpu_id != -1) {
2790    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2791    if (lgrp_id != -1) {
2792      return lgrp_id;
2793    }
2794  }
2795  return 0;
2796}
2797
2798size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2799  for (size_t i = 0; i < size; i++) {
2800    ids[i] = i;
2801  }
2802  return size;
2803}
2804
2805bool os::get_page_info(char *start, page_info* info) {
2806  return false;
2807}
2808
2809char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2810  return end;
2811}
2812
2813
2814int os::Linux::sched_getcpu_syscall(void) {
2815  unsigned int cpu;
2816  int retval = -1;
2817
2818#if defined(IA32)
2819# ifndef SYS_getcpu
2820# define SYS_getcpu 318
2821# endif
2822  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2823#elif defined(AMD64)
2824// Unfortunately we have to bring all these macros here from vsyscall.h
2825// to be able to compile on old linuxes.
2826# define __NR_vgetcpu 2
2827# define VSYSCALL_START (-10UL << 20)
2828# define VSYSCALL_SIZE 1024
2829# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2830  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2831  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2832  retval = vgetcpu(&cpu, NULL, NULL);
2833#endif
2834
2835  return (retval == -1) ? retval : cpu;
2836}
2837
2838// Something to do with the numa-aware allocator needs these symbols
2839extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2840extern "C" JNIEXPORT void numa_error(char *where) { }
2841extern "C" JNIEXPORT int fork1() { return fork(); }
2842
2843
2844// If we are running with libnuma version > 2, then we should
2845// be trying to use symbols with versions 1.1
2846// If we are running with earlier version, which did not have symbol versions,
2847// we should use the base version.
2848void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2849  void *f = dlvsym(handle, name, "libnuma_1.1");
2850  if (f == NULL) {
2851    f = dlsym(handle, name);
2852  }
2853  return f;
2854}
2855
2856bool os::Linux::libnuma_init() {
2857  // sched_getcpu() should be in libc.
2858  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2859                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2860
2861  // If it's not, try a direct syscall.
2862  if (sched_getcpu() == -1)
2863    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2864
2865  if (sched_getcpu() != -1) { // Does it work?
2866    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2867    if (handle != NULL) {
2868      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2869                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2870      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2871                                       libnuma_dlsym(handle, "numa_max_node")));
2872      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2873                                        libnuma_dlsym(handle, "numa_available")));
2874      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2875                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2876      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2877                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2878      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2879                                            libnuma_dlsym(handle, "numa_set_bind_policy")));
2880
2881
2882      if (numa_available() != -1) {
2883        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2884        // Create a cpu -> node mapping
2885        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2886        rebuild_cpu_to_node_map();
2887        return true;
2888      }
2889    }
2890  }
2891  return false;
2892}
2893
2894// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2895// The table is later used in get_node_by_cpu().
2896void os::Linux::rebuild_cpu_to_node_map() {
2897  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2898                              // in libnuma (possible values are starting from 16,
2899                              // and continuing up with every other power of 2, but less
2900                              // than the maximum number of CPUs supported by kernel), and
2901                              // is a subject to change (in libnuma version 2 the requirements
2902                              // are more reasonable) we'll just hardcode the number they use
2903                              // in the library.
2904  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2905
2906  size_t cpu_num = os::active_processor_count();
2907  size_t cpu_map_size = NCPUS / BitsPerCLong;
2908  size_t cpu_map_valid_size =
2909    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2910
2911  cpu_to_node()->clear();
2912  cpu_to_node()->at_grow(cpu_num - 1);
2913  size_t node_num = numa_get_groups_num();
2914
2915  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2916  for (size_t i = 0; i < node_num; i++) {
2917    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2918      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2919        if (cpu_map[j] != 0) {
2920          for (size_t k = 0; k < BitsPerCLong; k++) {
2921            if (cpu_map[j] & (1UL << k)) {
2922              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2923            }
2924          }
2925        }
2926      }
2927    }
2928  }
2929  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2930}
2931
2932int os::Linux::get_node_by_cpu(int cpu_id) {
2933  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2934    return cpu_to_node()->at(cpu_id);
2935  }
2936  return -1;
2937}
2938
2939GrowableArray<int>* os::Linux::_cpu_to_node;
2940os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2941os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2942os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2943os::Linux::numa_available_func_t os::Linux::_numa_available;
2944os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2945os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2946os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2947unsigned long* os::Linux::_numa_all_nodes;
2948
2949bool os::pd_uncommit_memory(char* addr, size_t size) {
2950  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2951                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2952  return res  != (uintptr_t) MAP_FAILED;
2953}
2954
2955static
2956address get_stack_commited_bottom(address bottom, size_t size) {
2957  address nbot = bottom;
2958  address ntop = bottom + size;
2959
2960  size_t page_sz = os::vm_page_size();
2961  unsigned pages = size / page_sz;
2962
2963  unsigned char vec[1];
2964  unsigned imin = 1, imax = pages + 1, imid;
2965  int mincore_return_value = 0;
2966
2967  assert(imin <= imax, "Unexpected page size");
2968
2969  while (imin < imax) {
2970    imid = (imax + imin) / 2;
2971    nbot = ntop - (imid * page_sz);
2972
2973    // Use a trick with mincore to check whether the page is mapped or not.
2974    // mincore sets vec to 1 if page resides in memory and to 0 if page
2975    // is swapped output but if page we are asking for is unmapped
2976    // it returns -1,ENOMEM
2977    mincore_return_value = mincore(nbot, page_sz, vec);
2978
2979    if (mincore_return_value == -1) {
2980      // Page is not mapped go up
2981      // to find first mapped page
2982      if (errno != EAGAIN) {
2983        assert(errno == ENOMEM, "Unexpected mincore errno");
2984        imax = imid;
2985      }
2986    } else {
2987      // Page is mapped go down
2988      // to find first not mapped page
2989      imin = imid + 1;
2990    }
2991  }
2992
2993  nbot = nbot + page_sz;
2994
2995  // Adjust stack bottom one page up if last checked page is not mapped
2996  if (mincore_return_value == -1) {
2997    nbot = nbot + page_sz;
2998  }
2999
3000  return nbot;
3001}
3002
3003
3004// Linux uses a growable mapping for the stack, and if the mapping for
3005// the stack guard pages is not removed when we detach a thread the
3006// stack cannot grow beyond the pages where the stack guard was
3007// mapped.  If at some point later in the process the stack expands to
3008// that point, the Linux kernel cannot expand the stack any further
3009// because the guard pages are in the way, and a segfault occurs.
3010//
3011// However, it's essential not to split the stack region by unmapping
3012// a region (leaving a hole) that's already part of the stack mapping,
3013// so if the stack mapping has already grown beyond the guard pages at
3014// the time we create them, we have to truncate the stack mapping.
3015// So, we need to know the extent of the stack mapping when
3016// create_stack_guard_pages() is called.
3017
3018// We only need this for stacks that are growable: at the time of
3019// writing thread stacks don't use growable mappings (i.e. those
3020// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3021// only applies to the main thread.
3022
3023// If the (growable) stack mapping already extends beyond the point
3024// where we're going to put our guard pages, truncate the mapping at
3025// that point by munmap()ping it.  This ensures that when we later
3026// munmap() the guard pages we don't leave a hole in the stack
3027// mapping. This only affects the main/initial thread
3028
3029bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3030
3031  if (os::Linux::is_initial_thread()) {
3032    // As we manually grow stack up to bottom inside create_attached_thread(),
3033    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3034    // we don't need to do anything special.
3035    // Check it first, before calling heavy function.
3036    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3037    unsigned char vec[1];
3038
3039    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3040      // Fallback to slow path on all errors, including EAGAIN
3041      stack_extent = (uintptr_t) get_stack_commited_bottom(
3042                                    os::Linux::initial_thread_stack_bottom(),
3043                                    (size_t)addr - stack_extent);
3044    }
3045
3046    if (stack_extent < (uintptr_t)addr) {
3047      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3048    }
3049  }
3050
3051  return os::commit_memory(addr, size, !ExecMem);
3052}
3053
3054// If this is a growable mapping, remove the guard pages entirely by
3055// munmap()ping them.  If not, just call uncommit_memory(). This only
3056// affects the main/initial thread, but guard against future OS changes
3057// It's safe to always unmap guard pages for initial thread because we
3058// always place it right after end of the mapped region
3059
3060bool os::remove_stack_guard_pages(char* addr, size_t size) {
3061  uintptr_t stack_extent, stack_base;
3062
3063  if (os::Linux::is_initial_thread()) {
3064    return ::munmap(addr, size) == 0;
3065  }
3066
3067  return os::uncommit_memory(addr, size);
3068}
3069
3070static address _highest_vm_reserved_address = NULL;
3071
3072// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3073// at 'requested_addr'. If there are existing memory mappings at the same
3074// location, however, they will be overwritten. If 'fixed' is false,
3075// 'requested_addr' is only treated as a hint, the return value may or
3076// may not start from the requested address. Unlike Linux mmap(), this
3077// function returns NULL to indicate failure.
3078static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3079  char * addr;
3080  int flags;
3081
3082  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3083  if (fixed) {
3084    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3085    flags |= MAP_FIXED;
3086  }
3087
3088  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3089  // touch an uncommitted page. Otherwise, the read/write might
3090  // succeed if we have enough swap space to back the physical page.
3091  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3092                       flags, -1, 0);
3093
3094  if (addr != MAP_FAILED) {
3095    // anon_mmap() should only get called during VM initialization,
3096    // don't need lock (actually we can skip locking even it can be called
3097    // from multiple threads, because _highest_vm_reserved_address is just a
3098    // hint about the upper limit of non-stack memory regions.)
3099    if ((address)addr + bytes > _highest_vm_reserved_address) {
3100      _highest_vm_reserved_address = (address)addr + bytes;
3101    }
3102  }
3103
3104  return addr == MAP_FAILED ? NULL : addr;
3105}
3106
3107// Don't update _highest_vm_reserved_address, because there might be memory
3108// regions above addr + size. If so, releasing a memory region only creates
3109// a hole in the address space, it doesn't help prevent heap-stack collision.
3110//
3111static int anon_munmap(char * addr, size_t size) {
3112  return ::munmap(addr, size) == 0;
3113}
3114
3115char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3116                         size_t alignment_hint) {
3117  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3118}
3119
3120bool os::pd_release_memory(char* addr, size_t size) {
3121  return anon_munmap(addr, size);
3122}
3123
3124static address highest_vm_reserved_address() {
3125  return _highest_vm_reserved_address;
3126}
3127
3128static bool linux_mprotect(char* addr, size_t size, int prot) {
3129  // Linux wants the mprotect address argument to be page aligned.
3130  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3131
3132  // According to SUSv3, mprotect() should only be used with mappings
3133  // established by mmap(), and mmap() always maps whole pages. Unaligned
3134  // 'addr' likely indicates problem in the VM (e.g. trying to change
3135  // protection of malloc'ed or statically allocated memory). Check the
3136  // caller if you hit this assert.
3137  assert(addr == bottom, "sanity check");
3138
3139  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3140  return ::mprotect(bottom, size, prot) == 0;
3141}
3142
3143// Set protections specified
3144bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3145                        bool is_committed) {
3146  unsigned int p = 0;
3147  switch (prot) {
3148  case MEM_PROT_NONE: p = PROT_NONE; break;
3149  case MEM_PROT_READ: p = PROT_READ; break;
3150  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3151  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3152  default:
3153    ShouldNotReachHere();
3154  }
3155  // is_committed is unused.
3156  return linux_mprotect(addr, bytes, p);
3157}
3158
3159bool os::guard_memory(char* addr, size_t size) {
3160  return linux_mprotect(addr, size, PROT_NONE);
3161}
3162
3163bool os::unguard_memory(char* addr, size_t size) {
3164  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3165}
3166
3167bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3168  bool result = false;
3169  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3170                 MAP_ANONYMOUS|MAP_PRIVATE,
3171                 -1, 0);
3172  if (p != MAP_FAILED) {
3173    void *aligned_p = align_ptr_up(p, page_size);
3174
3175    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3176
3177    munmap(p, page_size * 2);
3178  }
3179
3180  if (warn && !result) {
3181    warning("TransparentHugePages is not supported by the operating system.");
3182  }
3183
3184  return result;
3185}
3186
3187bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3188  bool result = false;
3189  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3190                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3191                 -1, 0);
3192
3193  if (p != MAP_FAILED) {
3194    // We don't know if this really is a huge page or not.
3195    FILE *fp = fopen("/proc/self/maps", "r");
3196    if (fp) {
3197      while (!feof(fp)) {
3198        char chars[257];
3199        long x = 0;
3200        if (fgets(chars, sizeof(chars), fp)) {
3201          if (sscanf(chars, "%lx-%*x", &x) == 1
3202              && x == (long)p) {
3203            if (strstr (chars, "hugepage")) {
3204              result = true;
3205              break;
3206            }
3207          }
3208        }
3209      }
3210      fclose(fp);
3211    }
3212    munmap(p, page_size);
3213  }
3214
3215  if (warn && !result) {
3216    warning("HugeTLBFS is not supported by the operating system.");
3217  }
3218
3219  return result;
3220}
3221
3222/*
3223* Set the coredump_filter bits to include largepages in core dump (bit 6)
3224*
3225* From the coredump_filter documentation:
3226*
3227* - (bit 0) anonymous private memory
3228* - (bit 1) anonymous shared memory
3229* - (bit 2) file-backed private memory
3230* - (bit 3) file-backed shared memory
3231* - (bit 4) ELF header pages in file-backed private memory areas (it is
3232*           effective only if the bit 2 is cleared)
3233* - (bit 5) hugetlb private memory
3234* - (bit 6) hugetlb shared memory
3235*/
3236static void set_coredump_filter(void) {
3237  FILE *f;
3238  long cdm;
3239
3240  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3241    return;
3242  }
3243
3244  if (fscanf(f, "%lx", &cdm) != 1) {
3245    fclose(f);
3246    return;
3247  }
3248
3249  rewind(f);
3250
3251  if ((cdm & LARGEPAGES_BIT) == 0) {
3252    cdm |= LARGEPAGES_BIT;
3253    fprintf(f, "%#lx", cdm);
3254  }
3255
3256  fclose(f);
3257}
3258
3259// Large page support
3260
3261static size_t _large_page_size = 0;
3262
3263size_t os::Linux::find_large_page_size() {
3264  size_t large_page_size = 0;
3265
3266  // large_page_size on Linux is used to round up heap size. x86 uses either
3267  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3268  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3269  // page as large as 256M.
3270  //
3271  // Here we try to figure out page size by parsing /proc/meminfo and looking
3272  // for a line with the following format:
3273  //    Hugepagesize:     2048 kB
3274  //
3275  // If we can't determine the value (e.g. /proc is not mounted, or the text
3276  // format has been changed), we'll use the largest page size supported by
3277  // the processor.
3278
3279#ifndef ZERO
3280  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3281                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3282#endif // ZERO
3283
3284  FILE *fp = fopen("/proc/meminfo", "r");
3285  if (fp) {
3286    while (!feof(fp)) {
3287      int x = 0;
3288      char buf[16];
3289      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3290        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3291          large_page_size = x * K;
3292          break;
3293        }
3294      } else {
3295        // skip to next line
3296        for (;;) {
3297          int ch = fgetc(fp);
3298          if (ch == EOF || ch == (int)'\n') break;
3299        }
3300      }
3301    }
3302    fclose(fp);
3303  }
3304
3305  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3306    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3307        SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3308        proper_unit_for_byte_size(large_page_size));
3309  }
3310
3311  return large_page_size;
3312}
3313
3314size_t os::Linux::setup_large_page_size() {
3315  _large_page_size = Linux::find_large_page_size();
3316  const size_t default_page_size = (size_t)Linux::page_size();
3317  if (_large_page_size > default_page_size) {
3318    _page_sizes[0] = _large_page_size;
3319    _page_sizes[1] = default_page_size;
3320    _page_sizes[2] = 0;
3321  }
3322
3323  return _large_page_size;
3324}
3325
3326bool os::Linux::setup_large_page_type(size_t page_size) {
3327  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3328      FLAG_IS_DEFAULT(UseSHM) &&
3329      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3330
3331    // The type of large pages has not been specified by the user.
3332
3333    // Try UseHugeTLBFS and then UseSHM.
3334    UseHugeTLBFS = UseSHM = true;
3335
3336    // Don't try UseTransparentHugePages since there are known
3337    // performance issues with it turned on. This might change in the future.
3338    UseTransparentHugePages = false;
3339  }
3340
3341  if (UseTransparentHugePages) {
3342    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3343    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3344      UseHugeTLBFS = false;
3345      UseSHM = false;
3346      return true;
3347    }
3348    UseTransparentHugePages = false;
3349  }
3350
3351  if (UseHugeTLBFS) {
3352    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3353    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3354      UseSHM = false;
3355      return true;
3356    }
3357    UseHugeTLBFS = false;
3358  }
3359
3360  return UseSHM;
3361}
3362
3363void os::large_page_init() {
3364  if (!UseLargePages &&
3365      !UseTransparentHugePages &&
3366      !UseHugeTLBFS &&
3367      !UseSHM) {
3368    // Not using large pages.
3369    return;
3370  }
3371
3372  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3373    // The user explicitly turned off large pages.
3374    // Ignore the rest of the large pages flags.
3375    UseTransparentHugePages = false;
3376    UseHugeTLBFS = false;
3377    UseSHM = false;
3378    return;
3379  }
3380
3381  size_t large_page_size = Linux::setup_large_page_size();
3382  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3383
3384  set_coredump_filter();
3385}
3386
3387#ifndef SHM_HUGETLB
3388#define SHM_HUGETLB 04000
3389#endif
3390
3391char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3392  // "exec" is passed in but not used.  Creating the shared image for
3393  // the code cache doesn't have an SHM_X executable permission to check.
3394  assert(UseLargePages && UseSHM, "only for SHM large pages");
3395  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3396
3397  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3398    return NULL; // Fallback to small pages.
3399  }
3400
3401  key_t key = IPC_PRIVATE;
3402  char *addr;
3403
3404  bool warn_on_failure = UseLargePages &&
3405                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3406                         !FLAG_IS_DEFAULT(UseSHM) ||
3407                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3408                        );
3409  char msg[128];
3410
3411  // Create a large shared memory region to attach to based on size.
3412  // Currently, size is the total size of the heap
3413  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3414  if (shmid == -1) {
3415     // Possible reasons for shmget failure:
3416     // 1. shmmax is too small for Java heap.
3417     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3418     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3419     // 2. not enough large page memory.
3420     //    > check available large pages: cat /proc/meminfo
3421     //    > increase amount of large pages:
3422     //          echo new_value > /proc/sys/vm/nr_hugepages
3423     //      Note 1: different Linux may use different name for this property,
3424     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3425     //      Note 2: it's possible there's enough physical memory available but
3426     //            they are so fragmented after a long run that they can't
3427     //            coalesce into large pages. Try to reserve large pages when
3428     //            the system is still "fresh".
3429     if (warn_on_failure) {
3430       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3431       warning(msg);
3432     }
3433     return NULL;
3434  }
3435
3436  // attach to the region
3437  addr = (char*)shmat(shmid, req_addr, 0);
3438  int err = errno;
3439
3440  // Remove shmid. If shmat() is successful, the actual shared memory segment
3441  // will be deleted when it's detached by shmdt() or when the process
3442  // terminates. If shmat() is not successful this will remove the shared
3443  // segment immediately.
3444  shmctl(shmid, IPC_RMID, NULL);
3445
3446  if ((intptr_t)addr == -1) {
3447     if (warn_on_failure) {
3448       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3449       warning(msg);
3450     }
3451     return NULL;
3452  }
3453
3454  return addr;
3455}
3456
3457static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3458  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3459
3460  bool warn_on_failure = UseLargePages &&
3461      (!FLAG_IS_DEFAULT(UseLargePages) ||
3462       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3463       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3464
3465  if (warn_on_failure) {
3466    char msg[128];
3467    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3468        PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3469    warning(msg);
3470  }
3471}
3472
3473char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3474  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3475  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3476  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3477
3478  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3479  char* addr = (char*)::mmap(req_addr, bytes, prot,
3480                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3481                             -1, 0);
3482
3483  if (addr == MAP_FAILED) {
3484    warn_on_large_pages_failure(req_addr, bytes, errno);
3485    return NULL;
3486  }
3487
3488  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3489
3490  return addr;
3491}
3492
3493char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3494  size_t large_page_size = os::large_page_size();
3495
3496  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3497
3498  // Allocate small pages.
3499
3500  char* start;
3501  if (req_addr != NULL) {
3502    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3503    assert(is_size_aligned(bytes, alignment), "Must be");
3504    start = os::reserve_memory(bytes, req_addr);
3505    assert(start == NULL || start == req_addr, "Must be");
3506  } else {
3507    start = os::reserve_memory_aligned(bytes, alignment);
3508  }
3509
3510  if (start == NULL) {
3511    return NULL;
3512  }
3513
3514  assert(is_ptr_aligned(start, alignment), "Must be");
3515
3516  // os::reserve_memory_special will record this memory area.
3517  // Need to release it here to prevent overlapping reservations.
3518  MemTracker::record_virtual_memory_release((address)start, bytes);
3519
3520  char* end = start + bytes;
3521
3522  // Find the regions of the allocated chunk that can be promoted to large pages.
3523  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3524  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3525
3526  size_t lp_bytes = lp_end - lp_start;
3527
3528  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3529
3530  if (lp_bytes == 0) {
3531    // The mapped region doesn't even span the start and the end of a large page.
3532    // Fall back to allocate a non-special area.
3533    ::munmap(start, end - start);
3534    return NULL;
3535  }
3536
3537  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3538
3539
3540  void* result;
3541
3542  if (start != lp_start) {
3543    result = ::mmap(start, lp_start - start, prot,
3544                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3545                    -1, 0);
3546    if (result == MAP_FAILED) {
3547      ::munmap(lp_start, end - lp_start);
3548      return NULL;
3549    }
3550  }
3551
3552  result = ::mmap(lp_start, lp_bytes, prot,
3553                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3554                  -1, 0);
3555  if (result == MAP_FAILED) {
3556    warn_on_large_pages_failure(req_addr, bytes, errno);
3557    // If the mmap above fails, the large pages region will be unmapped and we
3558    // have regions before and after with small pages. Release these regions.
3559    //
3560    // |  mapped  |  unmapped  |  mapped  |
3561    // ^          ^            ^          ^
3562    // start      lp_start     lp_end     end
3563    //
3564    ::munmap(start, lp_start - start);
3565    ::munmap(lp_end, end - lp_end);
3566    return NULL;
3567  }
3568
3569  if (lp_end != end) {
3570      result = ::mmap(lp_end, end - lp_end, prot,
3571                      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3572                      -1, 0);
3573    if (result == MAP_FAILED) {
3574      ::munmap(start, lp_end - start);
3575      return NULL;
3576    }
3577  }
3578
3579  return start;
3580}
3581
3582char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3583  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3584  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3585  assert(is_power_of_2(alignment), "Must be");
3586  assert(is_power_of_2(os::large_page_size()), "Must be");
3587  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3588
3589  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3590    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3591  } else {
3592    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3593  }
3594}
3595
3596char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3597  assert(UseLargePages, "only for large pages");
3598
3599  char* addr;
3600  if (UseSHM) {
3601    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3602  } else {
3603    assert(UseHugeTLBFS, "must be");
3604    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3605  }
3606
3607  if (addr != NULL) {
3608    if (UseNUMAInterleaving) {
3609      numa_make_global(addr, bytes);
3610    }
3611
3612    // The memory is committed
3613    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3614  }
3615
3616  return addr;
3617}
3618
3619bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3620  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3621  return shmdt(base) == 0;
3622}
3623
3624bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3625  return pd_release_memory(base, bytes);
3626}
3627
3628bool os::release_memory_special(char* base, size_t bytes) {
3629  assert(UseLargePages, "only for large pages");
3630
3631  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3632
3633  bool res;
3634  if (UseSHM) {
3635    res = os::Linux::release_memory_special_shm(base, bytes);
3636  } else {
3637    assert(UseHugeTLBFS, "must be");
3638    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3639  }
3640
3641  if (res) {
3642    tkr.record((address)base, bytes);
3643  } else {
3644    tkr.discard();
3645  }
3646
3647  return res;
3648}
3649
3650size_t os::large_page_size() {
3651  return _large_page_size;
3652}
3653
3654// With SysV SHM the entire memory region must be allocated as shared
3655// memory.
3656// HugeTLBFS allows application to commit large page memory on demand.
3657// However, when committing memory with HugeTLBFS fails, the region
3658// that was supposed to be committed will lose the old reservation
3659// and allow other threads to steal that memory region. Because of this
3660// behavior we can't commit HugeTLBFS memory.
3661bool os::can_commit_large_page_memory() {
3662  return UseTransparentHugePages;
3663}
3664
3665bool os::can_execute_large_page_memory() {
3666  return UseTransparentHugePages || UseHugeTLBFS;
3667}
3668
3669// Reserve memory at an arbitrary address, only if that area is
3670// available (and not reserved for something else).
3671
3672char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3673  const int max_tries = 10;
3674  char* base[max_tries];
3675  size_t size[max_tries];
3676  const size_t gap = 0x000000;
3677
3678  // Assert only that the size is a multiple of the page size, since
3679  // that's all that mmap requires, and since that's all we really know
3680  // about at this low abstraction level.  If we need higher alignment,
3681  // we can either pass an alignment to this method or verify alignment
3682  // in one of the methods further up the call chain.  See bug 5044738.
3683  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3684
3685  // Repeatedly allocate blocks until the block is allocated at the
3686  // right spot. Give up after max_tries. Note that reserve_memory() will
3687  // automatically update _highest_vm_reserved_address if the call is
3688  // successful. The variable tracks the highest memory address every reserved
3689  // by JVM. It is used to detect heap-stack collision if running with
3690  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3691  // space than needed, it could confuse the collision detecting code. To
3692  // solve the problem, save current _highest_vm_reserved_address and
3693  // calculate the correct value before return.
3694  address old_highest = _highest_vm_reserved_address;
3695
3696  // Linux mmap allows caller to pass an address as hint; give it a try first,
3697  // if kernel honors the hint then we can return immediately.
3698  char * addr = anon_mmap(requested_addr, bytes, false);
3699  if (addr == requested_addr) {
3700     return requested_addr;
3701  }
3702
3703  if (addr != NULL) {
3704     // mmap() is successful but it fails to reserve at the requested address
3705     anon_munmap(addr, bytes);
3706  }
3707
3708  int i;
3709  for (i = 0; i < max_tries; ++i) {
3710    base[i] = reserve_memory(bytes);
3711
3712    if (base[i] != NULL) {
3713      // Is this the block we wanted?
3714      if (base[i] == requested_addr) {
3715        size[i] = bytes;
3716        break;
3717      }
3718
3719      // Does this overlap the block we wanted? Give back the overlapped
3720      // parts and try again.
3721
3722      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3723      if (top_overlap >= 0 && top_overlap < bytes) {
3724        unmap_memory(base[i], top_overlap);
3725        base[i] += top_overlap;
3726        size[i] = bytes - top_overlap;
3727      } else {
3728        size_t bottom_overlap = base[i] + bytes - requested_addr;
3729        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3730          unmap_memory(requested_addr, bottom_overlap);
3731          size[i] = bytes - bottom_overlap;
3732        } else {
3733          size[i] = bytes;
3734        }
3735      }
3736    }
3737  }
3738
3739  // Give back the unused reserved pieces.
3740
3741  for (int j = 0; j < i; ++j) {
3742    if (base[j] != NULL) {
3743      unmap_memory(base[j], size[j]);
3744    }
3745  }
3746
3747  if (i < max_tries) {
3748    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3749    return requested_addr;
3750  } else {
3751    _highest_vm_reserved_address = old_highest;
3752    return NULL;
3753  }
3754}
3755
3756size_t os::read(int fd, void *buf, unsigned int nBytes) {
3757  return ::read(fd, buf, nBytes);
3758}
3759
3760//
3761// Short sleep, direct OS call.
3762//
3763// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3764// sched_yield(2) will actually give up the CPU:
3765//
3766//   * Alone on this pariticular CPU, keeps running.
3767//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3768//     (pre 2.6.39).
3769//
3770// So calling this with 0 is an alternative.
3771//
3772void os::naked_short_sleep(jlong ms) {
3773  struct timespec req;
3774
3775  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3776  req.tv_sec = 0;
3777  if (ms > 0) {
3778    req.tv_nsec = (ms % 1000) * 1000000;
3779  }
3780  else {
3781    req.tv_nsec = 1;
3782  }
3783
3784  nanosleep(&req, NULL);
3785
3786  return;
3787}
3788
3789// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3790void os::infinite_sleep() {
3791  while (true) {    // sleep forever ...
3792    ::sleep(100);   // ... 100 seconds at a time
3793  }
3794}
3795
3796// Used to convert frequent JVM_Yield() to nops
3797bool os::dont_yield() {
3798  return DontYieldALot;
3799}
3800
3801void os::yield() {
3802  sched_yield();
3803}
3804
3805os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3806
3807void os::yield_all(int attempts) {
3808  // Yields to all threads, including threads with lower priorities
3809  // Threads on Linux are all with same priority. The Solaris style
3810  // os::yield_all() with nanosleep(1ms) is not necessary.
3811  sched_yield();
3812}
3813
3814// Called from the tight loops to possibly influence time-sharing heuristics
3815void os::loop_breaker(int attempts) {
3816  os::yield_all(attempts);
3817}
3818
3819////////////////////////////////////////////////////////////////////////////////
3820// thread priority support
3821
3822// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3823// only supports dynamic priority, static priority must be zero. For real-time
3824// applications, Linux supports SCHED_RR which allows static priority (1-99).
3825// However, for large multi-threaded applications, SCHED_RR is not only slower
3826// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3827// of 5 runs - Sep 2005).
3828//
3829// The following code actually changes the niceness of kernel-thread/LWP. It
3830// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3831// not the entire user process, and user level threads are 1:1 mapped to kernel
3832// threads. It has always been the case, but could change in the future. For
3833// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3834// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3835
3836int os::java_to_os_priority[CriticalPriority + 1] = {
3837  19,              // 0 Entry should never be used
3838
3839   4,              // 1 MinPriority
3840   3,              // 2
3841   2,              // 3
3842
3843   1,              // 4
3844   0,              // 5 NormPriority
3845  -1,              // 6
3846
3847  -2,              // 7
3848  -3,              // 8
3849  -4,              // 9 NearMaxPriority
3850
3851  -5,              // 10 MaxPriority
3852
3853  -5               // 11 CriticalPriority
3854};
3855
3856static int prio_init() {
3857  if (ThreadPriorityPolicy == 1) {
3858    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3859    // if effective uid is not root. Perhaps, a more elegant way of doing
3860    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3861    if (geteuid() != 0) {
3862      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3863        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3864      }
3865      ThreadPriorityPolicy = 0;
3866    }
3867  }
3868  if (UseCriticalJavaThreadPriority) {
3869    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3870  }
3871  return 0;
3872}
3873
3874OSReturn os::set_native_priority(Thread* thread, int newpri) {
3875  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3876
3877  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3878  return (ret == 0) ? OS_OK : OS_ERR;
3879}
3880
3881OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3882  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3883    *priority_ptr = java_to_os_priority[NormPriority];
3884    return OS_OK;
3885  }
3886
3887  errno = 0;
3888  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3889  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3890}
3891
3892// Hint to the underlying OS that a task switch would not be good.
3893// Void return because it's a hint and can fail.
3894void os::hint_no_preempt() {}
3895
3896////////////////////////////////////////////////////////////////////////////////
3897// suspend/resume support
3898
3899//  the low-level signal-based suspend/resume support is a remnant from the
3900//  old VM-suspension that used to be for java-suspension, safepoints etc,
3901//  within hotspot. Now there is a single use-case for this:
3902//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3903//      that runs in the watcher thread.
3904//  The remaining code is greatly simplified from the more general suspension
3905//  code that used to be used.
3906//
3907//  The protocol is quite simple:
3908//  - suspend:
3909//      - sends a signal to the target thread
3910//      - polls the suspend state of the osthread using a yield loop
3911//      - target thread signal handler (SR_handler) sets suspend state
3912//        and blocks in sigsuspend until continued
3913//  - resume:
3914//      - sets target osthread state to continue
3915//      - sends signal to end the sigsuspend loop in the SR_handler
3916//
3917//  Note that the SR_lock plays no role in this suspend/resume protocol.
3918//
3919
3920static void resume_clear_context(OSThread *osthread) {
3921  osthread->set_ucontext(NULL);
3922  osthread->set_siginfo(NULL);
3923}
3924
3925static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3926  osthread->set_ucontext(context);
3927  osthread->set_siginfo(siginfo);
3928}
3929
3930//
3931// Handler function invoked when a thread's execution is suspended or
3932// resumed. We have to be careful that only async-safe functions are
3933// called here (Note: most pthread functions are not async safe and
3934// should be avoided.)
3935//
3936// Note: sigwait() is a more natural fit than sigsuspend() from an
3937// interface point of view, but sigwait() prevents the signal hander
3938// from being run. libpthread would get very confused by not having
3939// its signal handlers run and prevents sigwait()'s use with the
3940// mutex granting granting signal.
3941//
3942// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3943//
3944static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3945  // Save and restore errno to avoid confusing native code with EINTR
3946  // after sigsuspend.
3947  int old_errno = errno;
3948
3949  Thread* thread = Thread::current();
3950  OSThread* osthread = thread->osthread();
3951  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3952
3953  os::SuspendResume::State current = osthread->sr.state();
3954  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3955    suspend_save_context(osthread, siginfo, context);
3956
3957    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3958    os::SuspendResume::State state = osthread->sr.suspended();
3959    if (state == os::SuspendResume::SR_SUSPENDED) {
3960      sigset_t suspend_set;  // signals for sigsuspend()
3961
3962      // get current set of blocked signals and unblock resume signal
3963      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3964      sigdelset(&suspend_set, SR_signum);
3965
3966      sr_semaphore.signal();
3967      // wait here until we are resumed
3968      while (1) {
3969        sigsuspend(&suspend_set);
3970
3971        os::SuspendResume::State result = osthread->sr.running();
3972        if (result == os::SuspendResume::SR_RUNNING) {
3973          sr_semaphore.signal();
3974          break;
3975        }
3976      }
3977
3978    } else if (state == os::SuspendResume::SR_RUNNING) {
3979      // request was cancelled, continue
3980    } else {
3981      ShouldNotReachHere();
3982    }
3983
3984    resume_clear_context(osthread);
3985  } else if (current == os::SuspendResume::SR_RUNNING) {
3986    // request was cancelled, continue
3987  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3988    // ignore
3989  } else {
3990    // ignore
3991  }
3992
3993  errno = old_errno;
3994}
3995
3996
3997static int SR_initialize() {
3998  struct sigaction act;
3999  char *s;
4000  /* Get signal number to use for suspend/resume */
4001  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4002    int sig = ::strtol(s, 0, 10);
4003    if (sig > 0 || sig < _NSIG) {
4004        SR_signum = sig;
4005    }
4006  }
4007
4008  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4009        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4010
4011  sigemptyset(&SR_sigset);
4012  sigaddset(&SR_sigset, SR_signum);
4013
4014  /* Set up signal handler for suspend/resume */
4015  act.sa_flags = SA_RESTART|SA_SIGINFO;
4016  act.sa_handler = (void (*)(int)) SR_handler;
4017
4018  // SR_signum is blocked by default.
4019  // 4528190 - We also need to block pthread restart signal (32 on all
4020  // supported Linux platforms). Note that LinuxThreads need to block
4021  // this signal for all threads to work properly. So we don't have
4022  // to use hard-coded signal number when setting up the mask.
4023  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4024
4025  if (sigaction(SR_signum, &act, 0) == -1) {
4026    return -1;
4027  }
4028
4029  // Save signal flag
4030  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4031  return 0;
4032}
4033
4034static int sr_notify(OSThread* osthread) {
4035  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4036  assert_status(status == 0, status, "pthread_kill");
4037  return status;
4038}
4039
4040// "Randomly" selected value for how long we want to spin
4041// before bailing out on suspending a thread, also how often
4042// we send a signal to a thread we want to resume
4043static const int RANDOMLY_LARGE_INTEGER = 1000000;
4044static const int RANDOMLY_LARGE_INTEGER2 = 100;
4045
4046// returns true on success and false on error - really an error is fatal
4047// but this seems the normal response to library errors
4048static bool do_suspend(OSThread* osthread) {
4049  assert(osthread->sr.is_running(), "thread should be running");
4050  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4051
4052  // mark as suspended and send signal
4053  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4054    // failed to switch, state wasn't running?
4055    ShouldNotReachHere();
4056    return false;
4057  }
4058
4059  if (sr_notify(osthread) != 0) {
4060    ShouldNotReachHere();
4061  }
4062
4063  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4064  while (true) {
4065    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4066      break;
4067    } else {
4068      // timeout
4069      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4070      if (cancelled == os::SuspendResume::SR_RUNNING) {
4071        return false;
4072      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4073        // make sure that we consume the signal on the semaphore as well
4074        sr_semaphore.wait();
4075        break;
4076      } else {
4077        ShouldNotReachHere();
4078        return false;
4079      }
4080    }
4081  }
4082
4083  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4084  return true;
4085}
4086
4087static void do_resume(OSThread* osthread) {
4088  assert(osthread->sr.is_suspended(), "thread should be suspended");
4089  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4090
4091  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4092    // failed to switch to WAKEUP_REQUEST
4093    ShouldNotReachHere();
4094    return;
4095  }
4096
4097  while (true) {
4098    if (sr_notify(osthread) == 0) {
4099      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4100        if (osthread->sr.is_running()) {
4101          return;
4102        }
4103      }
4104    } else {
4105      ShouldNotReachHere();
4106    }
4107  }
4108
4109  guarantee(osthread->sr.is_running(), "Must be running!");
4110}
4111
4112///////////////////////////////////////////////////////////////////////////////////
4113// signal handling (except suspend/resume)
4114
4115// This routine may be used by user applications as a "hook" to catch signals.
4116// The user-defined signal handler must pass unrecognized signals to this
4117// routine, and if it returns true (non-zero), then the signal handler must
4118// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4119// routine will never retun false (zero), but instead will execute a VM panic
4120// routine kill the process.
4121//
4122// If this routine returns false, it is OK to call it again.  This allows
4123// the user-defined signal handler to perform checks either before or after
4124// the VM performs its own checks.  Naturally, the user code would be making
4125// a serious error if it tried to handle an exception (such as a null check
4126// or breakpoint) that the VM was generating for its own correct operation.
4127//
4128// This routine may recognize any of the following kinds of signals:
4129//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4130// It should be consulted by handlers for any of those signals.
4131//
4132// The caller of this routine must pass in the three arguments supplied
4133// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4134// field of the structure passed to sigaction().  This routine assumes that
4135// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4136//
4137// Note that the VM will print warnings if it detects conflicting signal
4138// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4139//
4140extern "C" JNIEXPORT int
4141JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4142                        void* ucontext, int abort_if_unrecognized);
4143
4144void signalHandler(int sig, siginfo_t* info, void* uc) {
4145  assert(info != NULL && uc != NULL, "it must be old kernel");
4146  int orig_errno = errno;  // Preserve errno value over signal handler.
4147  JVM_handle_linux_signal(sig, info, uc, true);
4148  errno = orig_errno;
4149}
4150
4151
4152// This boolean allows users to forward their own non-matching signals
4153// to JVM_handle_linux_signal, harmlessly.
4154bool os::Linux::signal_handlers_are_installed = false;
4155
4156// For signal-chaining
4157struct sigaction os::Linux::sigact[MAXSIGNUM];
4158unsigned int os::Linux::sigs = 0;
4159bool os::Linux::libjsig_is_loaded = false;
4160typedef struct sigaction *(*get_signal_t)(int);
4161get_signal_t os::Linux::get_signal_action = NULL;
4162
4163struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4164  struct sigaction *actp = NULL;
4165
4166  if (libjsig_is_loaded) {
4167    // Retrieve the old signal handler from libjsig
4168    actp = (*get_signal_action)(sig);
4169  }
4170  if (actp == NULL) {
4171    // Retrieve the preinstalled signal handler from jvm
4172    actp = get_preinstalled_handler(sig);
4173  }
4174
4175  return actp;
4176}
4177
4178static bool call_chained_handler(struct sigaction *actp, int sig,
4179                                 siginfo_t *siginfo, void *context) {
4180  // Call the old signal handler
4181  if (actp->sa_handler == SIG_DFL) {
4182    // It's more reasonable to let jvm treat it as an unexpected exception
4183    // instead of taking the default action.
4184    return false;
4185  } else if (actp->sa_handler != SIG_IGN) {
4186    if ((actp->sa_flags & SA_NODEFER) == 0) {
4187      // automaticlly block the signal
4188      sigaddset(&(actp->sa_mask), sig);
4189    }
4190
4191    sa_handler_t hand;
4192    sa_sigaction_t sa;
4193    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4194    // retrieve the chained handler
4195    if (siginfo_flag_set) {
4196      sa = actp->sa_sigaction;
4197    } else {
4198      hand = actp->sa_handler;
4199    }
4200
4201    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4202      actp->sa_handler = SIG_DFL;
4203    }
4204
4205    // try to honor the signal mask
4206    sigset_t oset;
4207    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4208
4209    // call into the chained handler
4210    if (siginfo_flag_set) {
4211      (*sa)(sig, siginfo, context);
4212    } else {
4213      (*hand)(sig);
4214    }
4215
4216    // restore the signal mask
4217    pthread_sigmask(SIG_SETMASK, &oset, 0);
4218  }
4219  // Tell jvm's signal handler the signal is taken care of.
4220  return true;
4221}
4222
4223bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4224  bool chained = false;
4225  // signal-chaining
4226  if (UseSignalChaining) {
4227    struct sigaction *actp = get_chained_signal_action(sig);
4228    if (actp != NULL) {
4229      chained = call_chained_handler(actp, sig, siginfo, context);
4230    }
4231  }
4232  return chained;
4233}
4234
4235struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4236  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4237    return &sigact[sig];
4238  }
4239  return NULL;
4240}
4241
4242void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4243  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4244  sigact[sig] = oldAct;
4245  sigs |= (unsigned int)1 << sig;
4246}
4247
4248// for diagnostic
4249int os::Linux::sigflags[MAXSIGNUM];
4250
4251int os::Linux::get_our_sigflags(int sig) {
4252  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4253  return sigflags[sig];
4254}
4255
4256void os::Linux::set_our_sigflags(int sig, int flags) {
4257  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4258  sigflags[sig] = flags;
4259}
4260
4261void os::Linux::set_signal_handler(int sig, bool set_installed) {
4262  // Check for overwrite.
4263  struct sigaction oldAct;
4264  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4265
4266  void* oldhand = oldAct.sa_sigaction
4267                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4268                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4269  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4270      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4271      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4272    if (AllowUserSignalHandlers || !set_installed) {
4273      // Do not overwrite; user takes responsibility to forward to us.
4274      return;
4275    } else if (UseSignalChaining) {
4276      // save the old handler in jvm
4277      save_preinstalled_handler(sig, oldAct);
4278      // libjsig also interposes the sigaction() call below and saves the
4279      // old sigaction on it own.
4280    } else {
4281      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4282                    "%#lx for signal %d.", (long)oldhand, sig));
4283    }
4284  }
4285
4286  struct sigaction sigAct;
4287  sigfillset(&(sigAct.sa_mask));
4288  sigAct.sa_handler = SIG_DFL;
4289  if (!set_installed) {
4290    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4291  } else {
4292    sigAct.sa_sigaction = signalHandler;
4293    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4294  }
4295  // Save flags, which are set by ours
4296  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4297  sigflags[sig] = sigAct.sa_flags;
4298
4299  int ret = sigaction(sig, &sigAct, &oldAct);
4300  assert(ret == 0, "check");
4301
4302  void* oldhand2  = oldAct.sa_sigaction
4303                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4304                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4305  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4306}
4307
4308// install signal handlers for signals that HotSpot needs to
4309// handle in order to support Java-level exception handling.
4310
4311void os::Linux::install_signal_handlers() {
4312  if (!signal_handlers_are_installed) {
4313    signal_handlers_are_installed = true;
4314
4315    // signal-chaining
4316    typedef void (*signal_setting_t)();
4317    signal_setting_t begin_signal_setting = NULL;
4318    signal_setting_t end_signal_setting = NULL;
4319    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4320                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4321    if (begin_signal_setting != NULL) {
4322      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4323                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4324      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4325                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4326      libjsig_is_loaded = true;
4327      assert(UseSignalChaining, "should enable signal-chaining");
4328    }
4329    if (libjsig_is_loaded) {
4330      // Tell libjsig jvm is setting signal handlers
4331      (*begin_signal_setting)();
4332    }
4333
4334    set_signal_handler(SIGSEGV, true);
4335    set_signal_handler(SIGPIPE, true);
4336    set_signal_handler(SIGBUS, true);
4337    set_signal_handler(SIGILL, true);
4338    set_signal_handler(SIGFPE, true);
4339#if defined(PPC64)
4340    set_signal_handler(SIGTRAP, true);
4341#endif
4342    set_signal_handler(SIGXFSZ, true);
4343
4344    if (libjsig_is_loaded) {
4345      // Tell libjsig jvm finishes setting signal handlers
4346      (*end_signal_setting)();
4347    }
4348
4349    // We don't activate signal checker if libjsig is in place, we trust ourselves
4350    // and if UserSignalHandler is installed all bets are off.
4351    // Log that signal checking is off only if -verbose:jni is specified.
4352    if (CheckJNICalls) {
4353      if (libjsig_is_loaded) {
4354        if (PrintJNIResolving) {
4355          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4356        }
4357        check_signals = false;
4358      }
4359      if (AllowUserSignalHandlers) {
4360        if (PrintJNIResolving) {
4361          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4362        }
4363        check_signals = false;
4364      }
4365    }
4366  }
4367}
4368
4369// This is the fastest way to get thread cpu time on Linux.
4370// Returns cpu time (user+sys) for any thread, not only for current.
4371// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4372// It might work on 2.6.10+ with a special kernel/glibc patch.
4373// For reference, please, see IEEE Std 1003.1-2004:
4374//   http://www.unix.org/single_unix_specification
4375
4376jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4377  struct timespec tp;
4378  int rc = os::Linux::clock_gettime(clockid, &tp);
4379  assert(rc == 0, "clock_gettime is expected to return 0 code");
4380
4381  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4382}
4383
4384/////
4385// glibc on Linux platform uses non-documented flag
4386// to indicate, that some special sort of signal
4387// trampoline is used.
4388// We will never set this flag, and we should
4389// ignore this flag in our diagnostic
4390#ifdef SIGNIFICANT_SIGNAL_MASK
4391#undef SIGNIFICANT_SIGNAL_MASK
4392#endif
4393#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4394
4395static const char* get_signal_handler_name(address handler,
4396                                           char* buf, int buflen) {
4397  int offset;
4398  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4399  if (found) {
4400    // skip directory names
4401    const char *p1, *p2;
4402    p1 = buf;
4403    size_t len = strlen(os::file_separator());
4404    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4405    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4406  } else {
4407    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4408  }
4409  return buf;
4410}
4411
4412static void print_signal_handler(outputStream* st, int sig,
4413                                 char* buf, size_t buflen) {
4414  struct sigaction sa;
4415
4416  sigaction(sig, NULL, &sa);
4417
4418  // See comment for SIGNIFICANT_SIGNAL_MASK define
4419  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4420
4421  st->print("%s: ", os::exception_name(sig, buf, buflen));
4422
4423  address handler = (sa.sa_flags & SA_SIGINFO)
4424    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4425    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4426
4427  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4428    st->print("SIG_DFL");
4429  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4430    st->print("SIG_IGN");
4431  } else {
4432    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4433  }
4434
4435  st->print(", sa_mask[0]=");
4436  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4437
4438  address rh = VMError::get_resetted_sighandler(sig);
4439  // May be, handler was resetted by VMError?
4440  if(rh != NULL) {
4441    handler = rh;
4442    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4443  }
4444
4445  st->print(", sa_flags=");
4446  os::Posix::print_sa_flags(st, sa.sa_flags);
4447
4448  // Check: is it our handler?
4449  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4450     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4451    // It is our signal handler
4452    // check for flags, reset system-used one!
4453    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4454      st->print(
4455                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4456                os::Linux::get_our_sigflags(sig));
4457    }
4458  }
4459  st->cr();
4460}
4461
4462
4463#define DO_SIGNAL_CHECK(sig) \
4464  if (!sigismember(&check_signal_done, sig)) \
4465    os::Linux::check_signal_handler(sig)
4466
4467// This method is a periodic task to check for misbehaving JNI applications
4468// under CheckJNI, we can add any periodic checks here
4469
4470void os::run_periodic_checks() {
4471
4472  if (check_signals == false) return;
4473
4474  // SEGV and BUS if overridden could potentially prevent
4475  // generation of hs*.log in the event of a crash, debugging
4476  // such a case can be very challenging, so we absolutely
4477  // check the following for a good measure:
4478  DO_SIGNAL_CHECK(SIGSEGV);
4479  DO_SIGNAL_CHECK(SIGILL);
4480  DO_SIGNAL_CHECK(SIGFPE);
4481  DO_SIGNAL_CHECK(SIGBUS);
4482  DO_SIGNAL_CHECK(SIGPIPE);
4483  DO_SIGNAL_CHECK(SIGXFSZ);
4484#if defined(PPC64)
4485  DO_SIGNAL_CHECK(SIGTRAP);
4486#endif
4487
4488  // ReduceSignalUsage allows the user to override these handlers
4489  // see comments at the very top and jvm_solaris.h
4490  if (!ReduceSignalUsage) {
4491    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4492    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4493    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4494    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4495  }
4496
4497  DO_SIGNAL_CHECK(SR_signum);
4498  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4499}
4500
4501typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4502
4503static os_sigaction_t os_sigaction = NULL;
4504
4505void os::Linux::check_signal_handler(int sig) {
4506  char buf[O_BUFLEN];
4507  address jvmHandler = NULL;
4508
4509
4510  struct sigaction act;
4511  if (os_sigaction == NULL) {
4512    // only trust the default sigaction, in case it has been interposed
4513    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4514    if (os_sigaction == NULL) return;
4515  }
4516
4517  os_sigaction(sig, (struct sigaction*)NULL, &act);
4518
4519
4520  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4521
4522  address thisHandler = (act.sa_flags & SA_SIGINFO)
4523    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4524    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4525
4526
4527  switch(sig) {
4528  case SIGSEGV:
4529  case SIGBUS:
4530  case SIGFPE:
4531  case SIGPIPE:
4532  case SIGILL:
4533  case SIGXFSZ:
4534    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4535    break;
4536
4537  case SHUTDOWN1_SIGNAL:
4538  case SHUTDOWN2_SIGNAL:
4539  case SHUTDOWN3_SIGNAL:
4540  case BREAK_SIGNAL:
4541    jvmHandler = (address)user_handler();
4542    break;
4543
4544  case INTERRUPT_SIGNAL:
4545    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4546    break;
4547
4548  default:
4549    if (sig == SR_signum) {
4550      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4551    } else {
4552      return;
4553    }
4554    break;
4555  }
4556
4557  if (thisHandler != jvmHandler) {
4558    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4559    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4560    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4561    // No need to check this sig any longer
4562    sigaddset(&check_signal_done, sig);
4563  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4564    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4565    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4566    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4567    // No need to check this sig any longer
4568    sigaddset(&check_signal_done, sig);
4569  }
4570
4571  // Dump all the signal
4572  if (sigismember(&check_signal_done, sig)) {
4573    print_signal_handlers(tty, buf, O_BUFLEN);
4574  }
4575}
4576
4577extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4578
4579extern bool signal_name(int signo, char* buf, size_t len);
4580
4581const char* os::exception_name(int exception_code, char* buf, size_t size) {
4582  if (0 < exception_code && exception_code <= SIGRTMAX) {
4583    // signal
4584    if (!signal_name(exception_code, buf, size)) {
4585      jio_snprintf(buf, size, "SIG%d", exception_code);
4586    }
4587    return buf;
4588  } else {
4589    return NULL;
4590  }
4591}
4592
4593// this is called _before_ the most of global arguments have been parsed
4594void os::init(void) {
4595  char dummy;   /* used to get a guess on initial stack address */
4596//  first_hrtime = gethrtime();
4597
4598  // With LinuxThreads the JavaMain thread pid (primordial thread)
4599  // is different than the pid of the java launcher thread.
4600  // So, on Linux, the launcher thread pid is passed to the VM
4601  // via the sun.java.launcher.pid property.
4602  // Use this property instead of getpid() if it was correctly passed.
4603  // See bug 6351349.
4604  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4605
4606  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4607
4608  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4609
4610  init_random(1234567);
4611
4612  ThreadCritical::initialize();
4613
4614  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4615  if (Linux::page_size() == -1) {
4616    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4617                  strerror(errno)));
4618  }
4619  init_page_sizes((size_t) Linux::page_size());
4620
4621  Linux::initialize_system_info();
4622
4623  // main_thread points to the aboriginal thread
4624  Linux::_main_thread = pthread_self();
4625
4626  Linux::clock_init();
4627  initial_time_count = javaTimeNanos();
4628
4629  // pthread_condattr initialization for monotonic clock
4630  int status;
4631  pthread_condattr_t* _condattr = os::Linux::condAttr();
4632  if ((status = pthread_condattr_init(_condattr)) != 0) {
4633    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4634  }
4635  // Only set the clock if CLOCK_MONOTONIC is available
4636  if (os::supports_monotonic_clock()) {
4637    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4638      if (status == EINVAL) {
4639        warning("Unable to use monotonic clock with relative timed-waits" \
4640                " - changes to the time-of-day clock may have adverse affects");
4641      } else {
4642        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4643      }
4644    }
4645  }
4646  // else it defaults to CLOCK_REALTIME
4647
4648  pthread_mutex_init(&dl_mutex, NULL);
4649
4650  // If the pagesize of the VM is greater than 8K determine the appropriate
4651  // number of initial guard pages.  The user can change this with the
4652  // command line arguments, if needed.
4653  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4654    StackYellowPages = 1;
4655    StackRedPages = 1;
4656    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4657  }
4658}
4659
4660// To install functions for atexit system call
4661extern "C" {
4662  static void perfMemory_exit_helper() {
4663    perfMemory_exit();
4664  }
4665}
4666
4667// this is called _after_ the global arguments have been parsed
4668jint os::init_2(void)
4669{
4670  Linux::fast_thread_clock_init();
4671
4672  // Allocate a single page and mark it as readable for safepoint polling
4673  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4674  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4675
4676  os::set_polling_page( polling_page );
4677
4678#ifndef PRODUCT
4679  if(Verbose && PrintMiscellaneous)
4680    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4681#endif
4682
4683  if (!UseMembar) {
4684    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4685    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4686    os::set_memory_serialize_page( mem_serialize_page );
4687
4688#ifndef PRODUCT
4689    if(Verbose && PrintMiscellaneous)
4690      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4691#endif
4692  }
4693
4694  // initialize suspend/resume support - must do this before signal_sets_init()
4695  if (SR_initialize() != 0) {
4696    perror("SR_initialize failed");
4697    return JNI_ERR;
4698  }
4699
4700  Linux::signal_sets_init();
4701  Linux::install_signal_handlers();
4702
4703  // Check minimum allowable stack size for thread creation and to initialize
4704  // the java system classes, including StackOverflowError - depends on page
4705  // size.  Add a page for compiler2 recursion in main thread.
4706  // Add in 2*BytesPerWord times page size to account for VM stack during
4707  // class initialization depending on 32 or 64 bit VM.
4708  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4709            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4710                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4711
4712  size_t threadStackSizeInBytes = ThreadStackSize * K;
4713  if (threadStackSizeInBytes != 0 &&
4714      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4715        tty->print_cr("\nThe stack size specified is too small, "
4716                      "Specify at least %dk",
4717                      os::Linux::min_stack_allowed/ K);
4718        return JNI_ERR;
4719  }
4720
4721  // Make the stack size a multiple of the page size so that
4722  // the yellow/red zones can be guarded.
4723  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4724        vm_page_size()));
4725
4726  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4727
4728#if defined(IA32)
4729  workaround_expand_exec_shield_cs_limit();
4730#endif
4731
4732  Linux::libpthread_init();
4733  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4734     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4735          Linux::glibc_version(), Linux::libpthread_version(),
4736          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4737  }
4738
4739  if (UseNUMA) {
4740    if (!Linux::libnuma_init()) {
4741      UseNUMA = false;
4742    } else {
4743      if ((Linux::numa_max_node() < 1)) {
4744        // There's only one node(they start from 0), disable NUMA.
4745        UseNUMA = false;
4746      }
4747    }
4748    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4749    // we can make the adaptive lgrp chunk resizing work. If the user specified
4750    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4751    // disable adaptive resizing.
4752    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4753      if (FLAG_IS_DEFAULT(UseNUMA)) {
4754        UseNUMA = false;
4755      } else {
4756        if (FLAG_IS_DEFAULT(UseLargePages) &&
4757            FLAG_IS_DEFAULT(UseSHM) &&
4758            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4759          UseLargePages = false;
4760        } else {
4761          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4762          UseAdaptiveSizePolicy = false;
4763          UseAdaptiveNUMAChunkSizing = false;
4764        }
4765      }
4766    }
4767    if (!UseNUMA && ForceNUMA) {
4768      UseNUMA = true;
4769    }
4770  }
4771
4772  if (MaxFDLimit) {
4773    // set the number of file descriptors to max. print out error
4774    // if getrlimit/setrlimit fails but continue regardless.
4775    struct rlimit nbr_files;
4776    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4777    if (status != 0) {
4778      if (PrintMiscellaneous && (Verbose || WizardMode))
4779        perror("os::init_2 getrlimit failed");
4780    } else {
4781      nbr_files.rlim_cur = nbr_files.rlim_max;
4782      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4783      if (status != 0) {
4784        if (PrintMiscellaneous && (Verbose || WizardMode))
4785          perror("os::init_2 setrlimit failed");
4786      }
4787    }
4788  }
4789
4790  // Initialize lock used to serialize thread creation (see os::create_thread)
4791  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4792
4793  // at-exit methods are called in the reverse order of their registration.
4794  // atexit functions are called on return from main or as a result of a
4795  // call to exit(3C). There can be only 32 of these functions registered
4796  // and atexit() does not set errno.
4797
4798  if (PerfAllowAtExitRegistration) {
4799    // only register atexit functions if PerfAllowAtExitRegistration is set.
4800    // atexit functions can be delayed until process exit time, which
4801    // can be problematic for embedded VM situations. Embedded VMs should
4802    // call DestroyJavaVM() to assure that VM resources are released.
4803
4804    // note: perfMemory_exit_helper atexit function may be removed in
4805    // the future if the appropriate cleanup code can be added to the
4806    // VM_Exit VMOperation's doit method.
4807    if (atexit(perfMemory_exit_helper) != 0) {
4808      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4809    }
4810  }
4811
4812  // initialize thread priority policy
4813  prio_init();
4814
4815  return JNI_OK;
4816}
4817
4818// this is called at the end of vm_initialization
4819void os::init_3(void) {
4820#ifdef JAVASE_EMBEDDED
4821  // Start the MemNotifyThread
4822  if (LowMemoryProtection) {
4823    MemNotifyThread::start();
4824  }
4825  return;
4826#endif
4827}
4828
4829// Mark the polling page as unreadable
4830void os::make_polling_page_unreadable(void) {
4831  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4832    fatal("Could not disable polling page");
4833};
4834
4835// Mark the polling page as readable
4836void os::make_polling_page_readable(void) {
4837  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4838    fatal("Could not enable polling page");
4839  }
4840};
4841
4842int os::active_processor_count() {
4843  // Linux doesn't yet have a (official) notion of processor sets,
4844  // so just return the number of online processors.
4845  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4846  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4847  return online_cpus;
4848}
4849
4850void os::set_native_thread_name(const char *name) {
4851  // Not yet implemented.
4852  return;
4853}
4854
4855bool os::distribute_processes(uint length, uint* distribution) {
4856  // Not yet implemented.
4857  return false;
4858}
4859
4860bool os::bind_to_processor(uint processor_id) {
4861  // Not yet implemented.
4862  return false;
4863}
4864
4865///
4866
4867void os::SuspendedThreadTask::internal_do_task() {
4868  if (do_suspend(_thread->osthread())) {
4869    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4870    do_task(context);
4871    do_resume(_thread->osthread());
4872  }
4873}
4874
4875class PcFetcher : public os::SuspendedThreadTask {
4876public:
4877  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4878  ExtendedPC result();
4879protected:
4880  void do_task(const os::SuspendedThreadTaskContext& context);
4881private:
4882  ExtendedPC _epc;
4883};
4884
4885ExtendedPC PcFetcher::result() {
4886  guarantee(is_done(), "task is not done yet.");
4887  return _epc;
4888}
4889
4890void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4891  Thread* thread = context.thread();
4892  OSThread* osthread = thread->osthread();
4893  if (osthread->ucontext() != NULL) {
4894    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4895  } else {
4896    // NULL context is unexpected, double-check this is the VMThread
4897    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4898  }
4899}
4900
4901// Suspends the target using the signal mechanism and then grabs the PC before
4902// resuming the target. Used by the flat-profiler only
4903ExtendedPC os::get_thread_pc(Thread* thread) {
4904  // Make sure that it is called by the watcher for the VMThread
4905  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4906  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4907
4908  PcFetcher fetcher(thread);
4909  fetcher.run();
4910  return fetcher.result();
4911}
4912
4913int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4914{
4915   if (is_NPTL()) {
4916      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4917   } else {
4918      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4919      // word back to default 64bit precision if condvar is signaled. Java
4920      // wants 53bit precision.  Save and restore current value.
4921      int fpu = get_fpu_control_word();
4922      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4923      set_fpu_control_word(fpu);
4924      return status;
4925   }
4926}
4927
4928////////////////////////////////////////////////////////////////////////////////
4929// debug support
4930
4931bool os::find(address addr, outputStream* st) {
4932  Dl_info dlinfo;
4933  memset(&dlinfo, 0, sizeof(dlinfo));
4934  if (dladdr(addr, &dlinfo) != 0) {
4935    st->print(PTR_FORMAT ": ", addr);
4936    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4937      st->print("%s+%#x", dlinfo.dli_sname,
4938                 addr - (intptr_t)dlinfo.dli_saddr);
4939    } else if (dlinfo.dli_fbase != NULL) {
4940      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4941    } else {
4942      st->print("<absolute address>");
4943    }
4944    if (dlinfo.dli_fname != NULL) {
4945      st->print(" in %s", dlinfo.dli_fname);
4946    }
4947    if (dlinfo.dli_fbase != NULL) {
4948      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4949    }
4950    st->cr();
4951
4952    if (Verbose) {
4953      // decode some bytes around the PC
4954      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4955      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4956      address       lowest = (address) dlinfo.dli_sname;
4957      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4958      if (begin < lowest)  begin = lowest;
4959      Dl_info dlinfo2;
4960      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4961          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4962        end = (address) dlinfo2.dli_saddr;
4963      Disassembler::decode(begin, end, st);
4964    }
4965    return true;
4966  }
4967  return false;
4968}
4969
4970////////////////////////////////////////////////////////////////////////////////
4971// misc
4972
4973// This does not do anything on Linux. This is basically a hook for being
4974// able to use structured exception handling (thread-local exception filters)
4975// on, e.g., Win32.
4976void
4977os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4978                         JavaCallArguments* args, Thread* thread) {
4979  f(value, method, args, thread);
4980}
4981
4982void os::print_statistics() {
4983}
4984
4985int os::message_box(const char* title, const char* message) {
4986  int i;
4987  fdStream err(defaultStream::error_fd());
4988  for (i = 0; i < 78; i++) err.print_raw("=");
4989  err.cr();
4990  err.print_raw_cr(title);
4991  for (i = 0; i < 78; i++) err.print_raw("-");
4992  err.cr();
4993  err.print_raw_cr(message);
4994  for (i = 0; i < 78; i++) err.print_raw("=");
4995  err.cr();
4996
4997  char buf[16];
4998  // Prevent process from exiting upon "read error" without consuming all CPU
4999  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5000
5001  return buf[0] == 'y' || buf[0] == 'Y';
5002}
5003
5004int os::stat(const char *path, struct stat *sbuf) {
5005  char pathbuf[MAX_PATH];
5006  if (strlen(path) > MAX_PATH - 1) {
5007    errno = ENAMETOOLONG;
5008    return -1;
5009  }
5010  os::native_path(strcpy(pathbuf, path));
5011  return ::stat(pathbuf, sbuf);
5012}
5013
5014bool os::check_heap(bool force) {
5015  return true;
5016}
5017
5018int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5019  return ::vsnprintf(buf, count, format, args);
5020}
5021
5022// Is a (classpath) directory empty?
5023bool os::dir_is_empty(const char* path) {
5024  DIR *dir = NULL;
5025  struct dirent *ptr;
5026
5027  dir = opendir(path);
5028  if (dir == NULL) return true;
5029
5030  /* Scan the directory */
5031  bool result = true;
5032  char buf[sizeof(struct dirent) + MAX_PATH];
5033  while (result && (ptr = ::readdir(dir)) != NULL) {
5034    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5035      result = false;
5036    }
5037  }
5038  closedir(dir);
5039  return result;
5040}
5041
5042// This code originates from JDK's sysOpen and open64_w
5043// from src/solaris/hpi/src/system_md.c
5044
5045#ifndef O_DELETE
5046#define O_DELETE 0x10000
5047#endif
5048
5049// Open a file. Unlink the file immediately after open returns
5050// if the specified oflag has the O_DELETE flag set.
5051// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5052
5053int os::open(const char *path, int oflag, int mode) {
5054
5055  if (strlen(path) > MAX_PATH - 1) {
5056    errno = ENAMETOOLONG;
5057    return -1;
5058  }
5059  int fd;
5060  int o_delete = (oflag & O_DELETE);
5061  oflag = oflag & ~O_DELETE;
5062
5063  fd = ::open64(path, oflag, mode);
5064  if (fd == -1) return -1;
5065
5066  //If the open succeeded, the file might still be a directory
5067  {
5068    struct stat64 buf64;
5069    int ret = ::fstat64(fd, &buf64);
5070    int st_mode = buf64.st_mode;
5071
5072    if (ret != -1) {
5073      if ((st_mode & S_IFMT) == S_IFDIR) {
5074        errno = EISDIR;
5075        ::close(fd);
5076        return -1;
5077      }
5078    } else {
5079      ::close(fd);
5080      return -1;
5081    }
5082  }
5083
5084    /*
5085     * All file descriptors that are opened in the JVM and not
5086     * specifically destined for a subprocess should have the
5087     * close-on-exec flag set.  If we don't set it, then careless 3rd
5088     * party native code might fork and exec without closing all
5089     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5090     * UNIXProcess.c), and this in turn might:
5091     *
5092     * - cause end-of-file to fail to be detected on some file
5093     *   descriptors, resulting in mysterious hangs, or
5094     *
5095     * - might cause an fopen in the subprocess to fail on a system
5096     *   suffering from bug 1085341.
5097     *
5098     * (Yes, the default setting of the close-on-exec flag is a Unix
5099     * design flaw)
5100     *
5101     * See:
5102     * 1085341: 32-bit stdio routines should support file descriptors >255
5103     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5104     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5105     */
5106#ifdef FD_CLOEXEC
5107    {
5108        int flags = ::fcntl(fd, F_GETFD);
5109        if (flags != -1)
5110            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5111    }
5112#endif
5113
5114  if (o_delete != 0) {
5115    ::unlink(path);
5116  }
5117  return fd;
5118}
5119
5120
5121// create binary file, rewriting existing file if required
5122int os::create_binary_file(const char* path, bool rewrite_existing) {
5123  int oflags = O_WRONLY | O_CREAT;
5124  if (!rewrite_existing) {
5125    oflags |= O_EXCL;
5126  }
5127  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5128}
5129
5130// return current position of file pointer
5131jlong os::current_file_offset(int fd) {
5132  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5133}
5134
5135// move file pointer to the specified offset
5136jlong os::seek_to_file_offset(int fd, jlong offset) {
5137  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5138}
5139
5140// This code originates from JDK's sysAvailable
5141// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5142
5143int os::available(int fd, jlong *bytes) {
5144  jlong cur, end;
5145  int mode;
5146  struct stat64 buf64;
5147
5148  if (::fstat64(fd, &buf64) >= 0) {
5149    mode = buf64.st_mode;
5150    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5151      /*
5152      * XXX: is the following call interruptible? If so, this might
5153      * need to go through the INTERRUPT_IO() wrapper as for other
5154      * blocking, interruptible calls in this file.
5155      */
5156      int n;
5157      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5158        *bytes = n;
5159        return 1;
5160      }
5161    }
5162  }
5163  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5164    return 0;
5165  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5166    return 0;
5167  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5168    return 0;
5169  }
5170  *bytes = end - cur;
5171  return 1;
5172}
5173
5174int os::socket_available(int fd, jint *pbytes) {
5175  // Linux doc says EINTR not returned, unlike Solaris
5176  int ret = ::ioctl(fd, FIONREAD, pbytes);
5177
5178  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5179  // is expected to return 0 on failure and 1 on success to the jdk.
5180  return (ret < 0) ? 0 : 1;
5181}
5182
5183// Map a block of memory.
5184char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5185                     char *addr, size_t bytes, bool read_only,
5186                     bool allow_exec) {
5187  int prot;
5188  int flags = MAP_PRIVATE;
5189
5190  if (read_only) {
5191    prot = PROT_READ;
5192  } else {
5193    prot = PROT_READ | PROT_WRITE;
5194  }
5195
5196  if (allow_exec) {
5197    prot |= PROT_EXEC;
5198  }
5199
5200  if (addr != NULL) {
5201    flags |= MAP_FIXED;
5202  }
5203
5204  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5205                                     fd, file_offset);
5206  if (mapped_address == MAP_FAILED) {
5207    return NULL;
5208  }
5209  return mapped_address;
5210}
5211
5212
5213// Remap a block of memory.
5214char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5215                       char *addr, size_t bytes, bool read_only,
5216                       bool allow_exec) {
5217  // same as map_memory() on this OS
5218  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5219                        allow_exec);
5220}
5221
5222
5223// Unmap a block of memory.
5224bool os::pd_unmap_memory(char* addr, size_t bytes) {
5225  return munmap(addr, bytes) == 0;
5226}
5227
5228static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5229
5230static clockid_t thread_cpu_clockid(Thread* thread) {
5231  pthread_t tid = thread->osthread()->pthread_id();
5232  clockid_t clockid;
5233
5234  // Get thread clockid
5235  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5236  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5237  return clockid;
5238}
5239
5240// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5241// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5242// of a thread.
5243//
5244// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5245// the fast estimate available on the platform.
5246
5247jlong os::current_thread_cpu_time() {
5248  if (os::Linux::supports_fast_thread_cpu_time()) {
5249    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5250  } else {
5251    // return user + sys since the cost is the same
5252    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5253  }
5254}
5255
5256jlong os::thread_cpu_time(Thread* thread) {
5257  // consistent with what current_thread_cpu_time() returns
5258  if (os::Linux::supports_fast_thread_cpu_time()) {
5259    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5260  } else {
5261    return slow_thread_cpu_time(thread, true /* user + sys */);
5262  }
5263}
5264
5265jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5266  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5267    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5268  } else {
5269    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5270  }
5271}
5272
5273jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5274  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5275    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5276  } else {
5277    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5278  }
5279}
5280
5281//
5282//  -1 on error.
5283//
5284
5285static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5286  static bool proc_task_unchecked = true;
5287  pid_t  tid = thread->osthread()->thread_id();
5288  char *s;
5289  char stat[2048];
5290  int statlen;
5291  char proc_name[64];
5292  int count;
5293  long sys_time, user_time;
5294  char cdummy;
5295  int idummy;
5296  long ldummy;
5297  FILE *fp;
5298
5299  snprintf(proc_name, 64, "/proc/%d/stat", tid);
5300
5301  // The /proc/<tid>/stat aggregates per-process usage on
5302  // new Linux kernels 2.6+ where NPTL is supported.
5303  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5304  // See bug 6328462.
5305  // There possibly can be cases where there is no directory
5306  // /proc/self/task, so we check its availability.
5307  if (proc_task_unchecked && os::Linux::is_NPTL()) {
5308    // This is executed only once
5309    proc_task_unchecked = false;
5310    fp = fopen("/proc/self/task", "r");
5311    if (fp != NULL) {
5312      snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5313      fclose(fp);
5314    }
5315  }
5316
5317  fp = fopen(proc_name, "r");
5318  if ( fp == NULL ) return -1;
5319  statlen = fread(stat, 1, 2047, fp);
5320  stat[statlen] = '\0';
5321  fclose(fp);
5322
5323  // Skip pid and the command string. Note that we could be dealing with
5324  // weird command names, e.g. user could decide to rename java launcher
5325  // to "java 1.4.2 :)", then the stat file would look like
5326  //                1234 (java 1.4.2 :)) R ... ...
5327  // We don't really need to know the command string, just find the last
5328  // occurrence of ")" and then start parsing from there. See bug 4726580.
5329  s = strrchr(stat, ')');
5330  if (s == NULL ) return -1;
5331
5332  // Skip blank chars
5333  do s++; while (isspace(*s));
5334
5335  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5336                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5337                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5338                 &user_time, &sys_time);
5339  if ( count != 13 ) return -1;
5340  if (user_sys_cpu_time) {
5341    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5342  } else {
5343    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5344  }
5345}
5346
5347void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5348  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5349  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5350  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5351  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5352}
5353
5354void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5355  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5356  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5357  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5358  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5359}
5360
5361bool os::is_thread_cpu_time_supported() {
5362  return true;
5363}
5364
5365// System loadavg support.  Returns -1 if load average cannot be obtained.
5366// Linux doesn't yet have a (official) notion of processor sets,
5367// so just return the system wide load average.
5368int os::loadavg(double loadavg[], int nelem) {
5369  return ::getloadavg(loadavg, nelem);
5370}
5371
5372void os::pause() {
5373  char filename[MAX_PATH];
5374  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5375    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5376  } else {
5377    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5378  }
5379
5380  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5381  if (fd != -1) {
5382    struct stat buf;
5383    ::close(fd);
5384    while (::stat(filename, &buf) == 0) {
5385      (void)::poll(NULL, 0, 100);
5386    }
5387  } else {
5388    jio_fprintf(stderr,
5389      "Could not open pause file '%s', continuing immediately.\n", filename);
5390  }
5391}
5392
5393
5394// Refer to the comments in os_solaris.cpp park-unpark.
5395//
5396// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5397// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5398// For specifics regarding the bug see GLIBC BUGID 261237 :
5399//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5400// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5401// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5402// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5403// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5404// and monitorenter when we're using 1-0 locking.  All those operations may result in
5405// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5406// of libpthread avoids the problem, but isn't practical.
5407//
5408// Possible remedies:
5409//
5410// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5411//      This is palliative and probabilistic, however.  If the thread is preempted
5412//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5413//      than the minimum period may have passed, and the abstime may be stale (in the
5414//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5415//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5416//
5417// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5418//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5419//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5420//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5421//      thread.
5422//
5423// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5424//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5425//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5426//      This also works well.  In fact it avoids kernel-level scalability impediments
5427//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5428//      timers in a graceful fashion.
5429//
5430// 4.   When the abstime value is in the past it appears that control returns
5431//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5432//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5433//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5434//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5435//      It may be possible to avoid reinitialization by checking the return
5436//      value from pthread_cond_timedwait().  In addition to reinitializing the
5437//      condvar we must establish the invariant that cond_signal() is only called
5438//      within critical sections protected by the adjunct mutex.  This prevents
5439//      cond_signal() from "seeing" a condvar that's in the midst of being
5440//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5441//      desirable signal-after-unlock optimization that avoids futile context switching.
5442//
5443//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5444//      structure when a condvar is used or initialized.  cond_destroy()  would
5445//      release the helper structure.  Our reinitialize-after-timedwait fix
5446//      put excessive stress on malloc/free and locks protecting the c-heap.
5447//
5448// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5449// It may be possible to refine (4) by checking the kernel and NTPL verisons
5450// and only enabling the work-around for vulnerable environments.
5451
5452// utility to compute the abstime argument to timedwait:
5453// millis is the relative timeout time
5454// abstime will be the absolute timeout time
5455// TODO: replace compute_abstime() with unpackTime()
5456
5457static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5458  if (millis < 0)  millis = 0;
5459
5460  jlong seconds = millis / 1000;
5461  millis %= 1000;
5462  if (seconds > 50000000) { // see man cond_timedwait(3T)
5463    seconds = 50000000;
5464  }
5465
5466  if (os::supports_monotonic_clock()) {
5467    struct timespec now;
5468    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5469    assert_status(status == 0, status, "clock_gettime");
5470    abstime->tv_sec = now.tv_sec  + seconds;
5471    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5472    if (nanos >= NANOSECS_PER_SEC) {
5473      abstime->tv_sec += 1;
5474      nanos -= NANOSECS_PER_SEC;
5475    }
5476    abstime->tv_nsec = nanos;
5477  } else {
5478    struct timeval now;
5479    int status = gettimeofday(&now, NULL);
5480    assert(status == 0, "gettimeofday");
5481    abstime->tv_sec = now.tv_sec  + seconds;
5482    long usec = now.tv_usec + millis * 1000;
5483    if (usec >= 1000000) {
5484      abstime->tv_sec += 1;
5485      usec -= 1000000;
5486    }
5487    abstime->tv_nsec = usec * 1000;
5488  }
5489  return abstime;
5490}
5491
5492
5493// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5494// Conceptually TryPark() should be equivalent to park(0).
5495
5496int os::PlatformEvent::TryPark() {
5497  for (;;) {
5498    const int v = _Event ;
5499    guarantee ((v == 0) || (v == 1), "invariant") ;
5500    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5501  }
5502}
5503
5504void os::PlatformEvent::park() {       // AKA "down()"
5505  // Invariant: Only the thread associated with the Event/PlatformEvent
5506  // may call park().
5507  // TODO: assert that _Assoc != NULL or _Assoc == Self
5508  int v ;
5509  for (;;) {
5510      v = _Event ;
5511      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5512  }
5513  guarantee (v >= 0, "invariant") ;
5514  if (v == 0) {
5515     // Do this the hard way by blocking ...
5516     int status = pthread_mutex_lock(_mutex);
5517     assert_status(status == 0, status, "mutex_lock");
5518     guarantee (_nParked == 0, "invariant") ;
5519     ++ _nParked ;
5520     while (_Event < 0) {
5521        status = pthread_cond_wait(_cond, _mutex);
5522        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5523        // Treat this the same as if the wait was interrupted
5524        if (status == ETIME) { status = EINTR; }
5525        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5526     }
5527     -- _nParked ;
5528
5529    _Event = 0 ;
5530     status = pthread_mutex_unlock(_mutex);
5531     assert_status(status == 0, status, "mutex_unlock");
5532    // Paranoia to ensure our locked and lock-free paths interact
5533    // correctly with each other.
5534    OrderAccess::fence();
5535  }
5536  guarantee (_Event >= 0, "invariant") ;
5537}
5538
5539int os::PlatformEvent::park(jlong millis) {
5540  guarantee (_nParked == 0, "invariant") ;
5541
5542  int v ;
5543  for (;;) {
5544      v = _Event ;
5545      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5546  }
5547  guarantee (v >= 0, "invariant") ;
5548  if (v != 0) return OS_OK ;
5549
5550  // We do this the hard way, by blocking the thread.
5551  // Consider enforcing a minimum timeout value.
5552  struct timespec abst;
5553  compute_abstime(&abst, millis);
5554
5555  int ret = OS_TIMEOUT;
5556  int status = pthread_mutex_lock(_mutex);
5557  assert_status(status == 0, status, "mutex_lock");
5558  guarantee (_nParked == 0, "invariant") ;
5559  ++_nParked ;
5560
5561  // Object.wait(timo) will return because of
5562  // (a) notification
5563  // (b) timeout
5564  // (c) thread.interrupt
5565  //
5566  // Thread.interrupt and object.notify{All} both call Event::set.
5567  // That is, we treat thread.interrupt as a special case of notification.
5568  // The underlying Solaris implementation, cond_timedwait, admits
5569  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5570  // JVM from making those visible to Java code.  As such, we must
5571  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5572  //
5573  // TODO: properly differentiate simultaneous notify+interrupt.
5574  // In that case, we should propagate the notify to another waiter.
5575
5576  while (_Event < 0) {
5577    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5578    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5579      pthread_cond_destroy (_cond);
5580      pthread_cond_init (_cond, os::Linux::condAttr()) ;
5581    }
5582    assert_status(status == 0 || status == EINTR ||
5583                  status == ETIME || status == ETIMEDOUT,
5584                  status, "cond_timedwait");
5585    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5586    if (status == ETIME || status == ETIMEDOUT) break ;
5587    // We consume and ignore EINTR and spurious wakeups.
5588  }
5589  --_nParked ;
5590  if (_Event >= 0) {
5591     ret = OS_OK;
5592  }
5593  _Event = 0 ;
5594  status = pthread_mutex_unlock(_mutex);
5595  assert_status(status == 0, status, "mutex_unlock");
5596  assert (_nParked == 0, "invariant") ;
5597  // Paranoia to ensure our locked and lock-free paths interact
5598  // correctly with each other.
5599  OrderAccess::fence();
5600  return ret;
5601}
5602
5603void os::PlatformEvent::unpark() {
5604  // Transitions for _Event:
5605  //    0 :=> 1
5606  //    1 :=> 1
5607  //   -1 :=> either 0 or 1; must signal target thread
5608  //          That is, we can safely transition _Event from -1 to either
5609  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5610  //          unpark() calls.
5611  // See also: "Semaphores in Plan 9" by Mullender & Cox
5612  //
5613  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5614  // that it will take two back-to-back park() calls for the owning
5615  // thread to block. This has the benefit of forcing a spurious return
5616  // from the first park() call after an unpark() call which will help
5617  // shake out uses of park() and unpark() without condition variables.
5618
5619  if (Atomic::xchg(1, &_Event) >= 0) return;
5620
5621  // Wait for the thread associated with the event to vacate
5622  int status = pthread_mutex_lock(_mutex);
5623  assert_status(status == 0, status, "mutex_lock");
5624  int AnyWaiters = _nParked;
5625  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5626  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5627    AnyWaiters = 0;
5628    pthread_cond_signal(_cond);
5629  }
5630  status = pthread_mutex_unlock(_mutex);
5631  assert_status(status == 0, status, "mutex_unlock");
5632  if (AnyWaiters != 0) {
5633    status = pthread_cond_signal(_cond);
5634    assert_status(status == 0, status, "cond_signal");
5635  }
5636
5637  // Note that we signal() _after dropping the lock for "immortal" Events.
5638  // This is safe and avoids a common class of  futile wakeups.  In rare
5639  // circumstances this can cause a thread to return prematurely from
5640  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5641  // simply re-test the condition and re-park itself.
5642}
5643
5644
5645// JSR166
5646// -------------------------------------------------------
5647
5648/*
5649 * The solaris and linux implementations of park/unpark are fairly
5650 * conservative for now, but can be improved. They currently use a
5651 * mutex/condvar pair, plus a a count.
5652 * Park decrements count if > 0, else does a condvar wait.  Unpark
5653 * sets count to 1 and signals condvar.  Only one thread ever waits
5654 * on the condvar. Contention seen when trying to park implies that someone
5655 * is unparking you, so don't wait. And spurious returns are fine, so there
5656 * is no need to track notifications.
5657 */
5658
5659#define MAX_SECS 100000000
5660/*
5661 * This code is common to linux and solaris and will be moved to a
5662 * common place in dolphin.
5663 *
5664 * The passed in time value is either a relative time in nanoseconds
5665 * or an absolute time in milliseconds. Either way it has to be unpacked
5666 * into suitable seconds and nanoseconds components and stored in the
5667 * given timespec structure.
5668 * Given time is a 64-bit value and the time_t used in the timespec is only
5669 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5670 * overflow if times way in the future are given. Further on Solaris versions
5671 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5672 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5673 * As it will be 28 years before "now + 100000000" will overflow we can
5674 * ignore overflow and just impose a hard-limit on seconds using the value
5675 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5676 * years from "now".
5677 */
5678
5679static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5680  assert (time > 0, "convertTime");
5681  time_t max_secs = 0;
5682
5683  if (!os::supports_monotonic_clock() || isAbsolute) {
5684    struct timeval now;
5685    int status = gettimeofday(&now, NULL);
5686    assert(status == 0, "gettimeofday");
5687
5688    max_secs = now.tv_sec + MAX_SECS;
5689
5690    if (isAbsolute) {
5691      jlong secs = time / 1000;
5692      if (secs > max_secs) {
5693        absTime->tv_sec = max_secs;
5694      } else {
5695        absTime->tv_sec = secs;
5696      }
5697      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5698    } else {
5699      jlong secs = time / NANOSECS_PER_SEC;
5700      if (secs >= MAX_SECS) {
5701        absTime->tv_sec = max_secs;
5702        absTime->tv_nsec = 0;
5703      } else {
5704        absTime->tv_sec = now.tv_sec + secs;
5705        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5706        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5707          absTime->tv_nsec -= NANOSECS_PER_SEC;
5708          ++absTime->tv_sec; // note: this must be <= max_secs
5709        }
5710      }
5711    }
5712  } else {
5713    // must be relative using monotonic clock
5714    struct timespec now;
5715    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5716    assert_status(status == 0, status, "clock_gettime");
5717    max_secs = now.tv_sec + MAX_SECS;
5718    jlong secs = time / NANOSECS_PER_SEC;
5719    if (secs >= MAX_SECS) {
5720      absTime->tv_sec = max_secs;
5721      absTime->tv_nsec = 0;
5722    } else {
5723      absTime->tv_sec = now.tv_sec + secs;
5724      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5725      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5726        absTime->tv_nsec -= NANOSECS_PER_SEC;
5727        ++absTime->tv_sec; // note: this must be <= max_secs
5728      }
5729    }
5730  }
5731  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5732  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5733  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5734  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5735}
5736
5737void Parker::park(bool isAbsolute, jlong time) {
5738  // Ideally we'd do something useful while spinning, such
5739  // as calling unpackTime().
5740
5741  // Optional fast-path check:
5742  // Return immediately if a permit is available.
5743  // We depend on Atomic::xchg() having full barrier semantics
5744  // since we are doing a lock-free update to _counter.
5745  if (Atomic::xchg(0, &_counter) > 0) return;
5746
5747  Thread* thread = Thread::current();
5748  assert(thread->is_Java_thread(), "Must be JavaThread");
5749  JavaThread *jt = (JavaThread *)thread;
5750
5751  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5752  // Check interrupt before trying to wait
5753  if (Thread::is_interrupted(thread, false)) {
5754    return;
5755  }
5756
5757  // Next, demultiplex/decode time arguments
5758  timespec absTime;
5759  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5760    return;
5761  }
5762  if (time > 0) {
5763    unpackTime(&absTime, isAbsolute, time);
5764  }
5765
5766
5767  // Enter safepoint region
5768  // Beware of deadlocks such as 6317397.
5769  // The per-thread Parker:: mutex is a classic leaf-lock.
5770  // In particular a thread must never block on the Threads_lock while
5771  // holding the Parker:: mutex.  If safepoints are pending both the
5772  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5773  ThreadBlockInVM tbivm(jt);
5774
5775  // Don't wait if cannot get lock since interference arises from
5776  // unblocking.  Also. check interrupt before trying wait
5777  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5778    return;
5779  }
5780
5781  int status ;
5782  if (_counter > 0)  { // no wait needed
5783    _counter = 0;
5784    status = pthread_mutex_unlock(_mutex);
5785    assert (status == 0, "invariant") ;
5786    // Paranoia to ensure our locked and lock-free paths interact
5787    // correctly with each other and Java-level accesses.
5788    OrderAccess::fence();
5789    return;
5790  }
5791
5792#ifdef ASSERT
5793  // Don't catch signals while blocked; let the running threads have the signals.
5794  // (This allows a debugger to break into the running thread.)
5795  sigset_t oldsigs;
5796  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5797  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5798#endif
5799
5800  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5801  jt->set_suspend_equivalent();
5802  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5803
5804  assert(_cur_index == -1, "invariant");
5805  if (time == 0) {
5806    _cur_index = REL_INDEX; // arbitrary choice when not timed
5807    status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5808  } else {
5809    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5810    status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5811    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5812      pthread_cond_destroy (&_cond[_cur_index]) ;
5813      pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5814    }
5815  }
5816  _cur_index = -1;
5817  assert_status(status == 0 || status == EINTR ||
5818                status == ETIME || status == ETIMEDOUT,
5819                status, "cond_timedwait");
5820
5821#ifdef ASSERT
5822  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5823#endif
5824
5825  _counter = 0 ;
5826  status = pthread_mutex_unlock(_mutex) ;
5827  assert_status(status == 0, status, "invariant") ;
5828  // Paranoia to ensure our locked and lock-free paths interact
5829  // correctly with each other and Java-level accesses.
5830  OrderAccess::fence();
5831
5832  // If externally suspended while waiting, re-suspend
5833  if (jt->handle_special_suspend_equivalent_condition()) {
5834    jt->java_suspend_self();
5835  }
5836}
5837
5838void Parker::unpark() {
5839  int s, status ;
5840  status = pthread_mutex_lock(_mutex);
5841  assert (status == 0, "invariant") ;
5842  s = _counter;
5843  _counter = 1;
5844  if (s < 1) {
5845    // thread might be parked
5846    if (_cur_index != -1) {
5847      // thread is definitely parked
5848      if (WorkAroundNPTLTimedWaitHang) {
5849        status = pthread_cond_signal (&_cond[_cur_index]);
5850        assert (status == 0, "invariant");
5851        status = pthread_mutex_unlock(_mutex);
5852        assert (status == 0, "invariant");
5853      } else {
5854        status = pthread_mutex_unlock(_mutex);
5855        assert (status == 0, "invariant");
5856        status = pthread_cond_signal (&_cond[_cur_index]);
5857        assert (status == 0, "invariant");
5858      }
5859    } else {
5860      pthread_mutex_unlock(_mutex);
5861      assert (status == 0, "invariant") ;
5862    }
5863  } else {
5864    pthread_mutex_unlock(_mutex);
5865    assert (status == 0, "invariant") ;
5866  }
5867}
5868
5869
5870extern char** environ;
5871
5872#ifndef __NR_fork
5873#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5874#endif
5875
5876#ifndef __NR_execve
5877#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5878#endif
5879
5880// Run the specified command in a separate process. Return its exit value,
5881// or -1 on failure (e.g. can't fork a new process).
5882// Unlike system(), this function can be called from signal handler. It
5883// doesn't block SIGINT et al.
5884int os::fork_and_exec(char* cmd) {
5885  const char * argv[4] = {"sh", "-c", cmd, NULL};
5886
5887  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5888  // pthread_atfork handlers and reset pthread library. All we need is a
5889  // separate process to execve. Make a direct syscall to fork process.
5890  // On IA64 there's no fork syscall, we have to use fork() and hope for
5891  // the best...
5892  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5893              IA64_ONLY(fork();)
5894
5895  if (pid < 0) {
5896    // fork failed
5897    return -1;
5898
5899  } else if (pid == 0) {
5900    // child process
5901
5902    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5903    // first to kill every thread on the thread list. Because this list is
5904    // not reset by fork() (see notes above), execve() will instead kill
5905    // every thread in the parent process. We know this is the only thread
5906    // in the new process, so make a system call directly.
5907    // IA64 should use normal execve() from glibc to match the glibc fork()
5908    // above.
5909    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5910    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5911
5912    // execve failed
5913    _exit(-1);
5914
5915  } else  {
5916    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5917    // care about the actual exit code, for now.
5918
5919    int status;
5920
5921    // Wait for the child process to exit.  This returns immediately if
5922    // the child has already exited. */
5923    while (waitpid(pid, &status, 0) < 0) {
5924        switch (errno) {
5925        case ECHILD: return 0;
5926        case EINTR: break;
5927        default: return -1;
5928        }
5929    }
5930
5931    if (WIFEXITED(status)) {
5932       // The child exited normally; get its exit code.
5933       return WEXITSTATUS(status);
5934    } else if (WIFSIGNALED(status)) {
5935       // The child exited because of a signal
5936       // The best value to return is 0x80 + signal number,
5937       // because that is what all Unix shells do, and because
5938       // it allows callers to distinguish between process exit and
5939       // process death by signal.
5940       return 0x80 + WTERMSIG(status);
5941    } else {
5942       // Unknown exit code; pass it through
5943       return status;
5944    }
5945  }
5946}
5947
5948// is_headless_jre()
5949//
5950// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5951// in order to report if we are running in a headless jre
5952//
5953// Since JDK8 xawt/libmawt.so was moved into the same directory
5954// as libawt.so, and renamed libawt_xawt.so
5955//
5956bool os::is_headless_jre() {
5957    struct stat statbuf;
5958    char buf[MAXPATHLEN];
5959    char libmawtpath[MAXPATHLEN];
5960    const char *xawtstr  = "/xawt/libmawt.so";
5961    const char *new_xawtstr = "/libawt_xawt.so";
5962    char *p;
5963
5964    // Get path to libjvm.so
5965    os::jvm_path(buf, sizeof(buf));
5966
5967    // Get rid of libjvm.so
5968    p = strrchr(buf, '/');
5969    if (p == NULL) return false;
5970    else *p = '\0';
5971
5972    // Get rid of client or server
5973    p = strrchr(buf, '/');
5974    if (p == NULL) return false;
5975    else *p = '\0';
5976
5977    // check xawt/libmawt.so
5978    strcpy(libmawtpath, buf);
5979    strcat(libmawtpath, xawtstr);
5980    if (::stat(libmawtpath, &statbuf) == 0) return false;
5981
5982    // check libawt_xawt.so
5983    strcpy(libmawtpath, buf);
5984    strcat(libmawtpath, new_xawtstr);
5985    if (::stat(libmawtpath, &statbuf) == 0) return false;
5986
5987    return true;
5988}
5989
5990// Get the default path to the core file
5991// Returns the length of the string
5992int os::get_core_path(char* buffer, size_t bufferSize) {
5993  const char* p = get_current_directory(buffer, bufferSize);
5994
5995  if (p == NULL) {
5996    assert(p != NULL, "failed to get current directory");
5997    return 0;
5998  }
5999
6000  return strlen(buffer);
6001}
6002
6003#ifdef JAVASE_EMBEDDED
6004//
6005// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6006//
6007MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6008
6009// ctor
6010//
6011MemNotifyThread::MemNotifyThread(int fd): Thread() {
6012  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6013  _fd = fd;
6014
6015  if (os::create_thread(this, os::os_thread)) {
6016    _memnotify_thread = this;
6017    os::set_priority(this, NearMaxPriority);
6018    os::start_thread(this);
6019  }
6020}
6021
6022// Where all the work gets done
6023//
6024void MemNotifyThread::run() {
6025  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6026
6027  // Set up the select arguments
6028  fd_set rfds;
6029  if (_fd != -1) {
6030    FD_ZERO(&rfds);
6031    FD_SET(_fd, &rfds);
6032  }
6033
6034  // Now wait for the mem_notify device to wake up
6035  while (1) {
6036    // Wait for the mem_notify device to signal us..
6037    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6038    if (rc == -1) {
6039      perror("select!\n");
6040      break;
6041    } else if (rc) {
6042      //ssize_t free_before = os::available_memory();
6043      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6044
6045      // The kernel is telling us there is not much memory left...
6046      // try to do something about that
6047
6048      // If we are not already in a GC, try one.
6049      if (!Universe::heap()->is_gc_active()) {
6050        Universe::heap()->collect(GCCause::_allocation_failure);
6051
6052        //ssize_t free_after = os::available_memory();
6053        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6054        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6055      }
6056      // We might want to do something like the following if we find the GC's are not helping...
6057      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6058    }
6059  }
6060}
6061
6062//
6063// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6064//
6065void MemNotifyThread::start() {
6066  int    fd;
6067  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6068  if (fd < 0) {
6069      return;
6070  }
6071
6072  if (memnotify_thread() == NULL) {
6073    new MemNotifyThread(fd);
6074  }
6075}
6076
6077#endif // JAVASE_EMBEDDED
6078
6079
6080/////////////// Unit tests ///////////////
6081
6082#ifndef PRODUCT
6083
6084#define test_log(...) \
6085  do {\
6086    if (VerboseInternalVMTests) { \
6087      tty->print_cr(__VA_ARGS__); \
6088      tty->flush(); \
6089    }\
6090  } while (false)
6091
6092class TestReserveMemorySpecial : AllStatic {
6093 public:
6094  static void small_page_write(void* addr, size_t size) {
6095    size_t page_size = os::vm_page_size();
6096
6097    char* end = (char*)addr + size;
6098    for (char* p = (char*)addr; p < end; p += page_size) {
6099      *p = 1;
6100    }
6101  }
6102
6103  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6104    if (!UseHugeTLBFS) {
6105      return;
6106    }
6107
6108    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6109
6110    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6111
6112    if (addr != NULL) {
6113      small_page_write(addr, size);
6114
6115      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6116    }
6117  }
6118
6119  static void test_reserve_memory_special_huge_tlbfs_only() {
6120    if (!UseHugeTLBFS) {
6121      return;
6122    }
6123
6124    size_t lp = os::large_page_size();
6125
6126    for (size_t size = lp; size <= lp * 10; size += lp) {
6127      test_reserve_memory_special_huge_tlbfs_only(size);
6128    }
6129  }
6130
6131  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6132    if (!UseHugeTLBFS) {
6133        return;
6134    }
6135
6136    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6137        size, alignment);
6138
6139    assert(size >= os::large_page_size(), "Incorrect input to test");
6140
6141    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6142
6143    if (addr != NULL) {
6144      small_page_write(addr, size);
6145
6146      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6147    }
6148  }
6149
6150  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6151    size_t lp = os::large_page_size();
6152    size_t ag = os::vm_allocation_granularity();
6153
6154    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6155      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6156    }
6157  }
6158
6159  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6160    size_t lp = os::large_page_size();
6161    size_t ag = os::vm_allocation_granularity();
6162
6163    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6164    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6165    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6166    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6167    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6168    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6169    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6170    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6171    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6172  }
6173
6174  static void test_reserve_memory_special_huge_tlbfs() {
6175    if (!UseHugeTLBFS) {
6176      return;
6177    }
6178
6179    test_reserve_memory_special_huge_tlbfs_only();
6180    test_reserve_memory_special_huge_tlbfs_mixed();
6181  }
6182
6183  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6184    if (!UseSHM) {
6185      return;
6186    }
6187
6188    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6189
6190    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6191
6192    if (addr != NULL) {
6193      assert(is_ptr_aligned(addr, alignment), "Check");
6194      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6195
6196      small_page_write(addr, size);
6197
6198      os::Linux::release_memory_special_shm(addr, size);
6199    }
6200  }
6201
6202  static void test_reserve_memory_special_shm() {
6203    size_t lp = os::large_page_size();
6204    size_t ag = os::vm_allocation_granularity();
6205
6206    for (size_t size = ag; size < lp * 3; size += ag) {
6207      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6208        test_reserve_memory_special_shm(size, alignment);
6209      }
6210    }
6211  }
6212
6213  static void test() {
6214    test_reserve_memory_special_huge_tlbfs();
6215    test_reserve_memory_special_shm();
6216  }
6217};
6218
6219void TestReserveMemorySpecial_test() {
6220  TestReserveMemorySpecial::test();
6221}
6222
6223#endif
6224