os_linux.cpp revision 5245:4472884d8b37
159191Skris/*
2296341Sdelphij * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3296341Sdelphij * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4160814Ssimon *
559191Skris * This code is free software; you can redistribute it and/or modify it
659191Skris * under the terms of the GNU General Public License version 2 only, as
7160814Ssimon * published by the Free Software Foundation.
859191Skris *
959191Skris * This code is distributed in the hope that it will be useful, but WITHOUT
1059191Skris * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1159191Skris * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1259191Skris * version 2 for more details (a copy is included in the LICENSE file that
1359191Skris * accompanied this code).
14296341Sdelphij *
1559191Skris * You should have received a copy of the GNU General Public License version
1659191Skris * 2 along with this work; if not, write to the Free Software Foundation,
1759191Skris * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1859191Skris *
1959191Skris * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2059191Skris * or visit www.oracle.com if you need additional information or have any
2159191Skris * questions.
2259191Skris *
2359191Skris */
2459191Skris
2559191Skris// no precompiled headers
2659191Skris#include "classfile/classLoader.hpp"
2759191Skris#include "classfile/systemDictionary.hpp"
2859191Skris#include "classfile/vmSymbols.hpp"
2959191Skris#include "code/icBuffer.hpp"
3059191Skris#include "code/vtableStubs.hpp"
3159191Skris#include "compiler/compileBroker.hpp"
3259191Skris#include "compiler/disassembler.hpp"
3359191Skris#include "interpreter/interpreter.hpp"
3459191Skris#include "jvm_linux.h"
3559191Skris#include "memory/allocation.inline.hpp"
3659191Skris#include "memory/filemap.hpp"
3759191Skris#include "mutex_linux.inline.hpp"
3859191Skris#include "oops/oop.inline.hpp"
3959191Skris#include "os_share_linux.hpp"
4059191Skris#include "prims/jniFastGetField.hpp"
4159191Skris#include "prims/jvm.h"
4259191Skris#include "prims/jvm_misc.hpp"
4359191Skris#include "runtime/arguments.hpp"
4459191Skris#include "runtime/extendedPC.hpp"
4559191Skris#include "runtime/globals.hpp"
4659191Skris#include "runtime/interfaceSupport.hpp"
4759191Skris#include "runtime/init.hpp"
4859191Skris#include "runtime/java.hpp"
4959191Skris#include "runtime/javaCalls.hpp"
5059191Skris#include "runtime/mutexLocker.hpp"
5159191Skris#include "runtime/objectMonitor.hpp"
5259191Skris#include "runtime/osThread.hpp"
5359191Skris#include "runtime/perfMemory.hpp"
5459191Skris#include "runtime/sharedRuntime.hpp"
5559191Skris#include "runtime/statSampler.hpp"
5659191Skris#include "runtime/stubRoutines.hpp"
5759191Skris#include "runtime/thread.inline.hpp"
5859191Skris#include "runtime/threadCritical.hpp"
5959191Skris#include "runtime/timer.hpp"
6059191Skris#include "services/attachListener.hpp"
6159191Skris#include "services/memTracker.hpp"
6259191Skris#include "services/runtimeService.hpp"
6359191Skris#include "utilities/decoder.hpp"
6459191Skris#include "utilities/defaultStream.hpp"
6559191Skris#include "utilities/events.hpp"
6659191Skris#include "utilities/elfFile.hpp"
6759191Skris#include "utilities/growableArray.hpp"
68160814Ssimon#include "utilities/vmError.hpp"
69160814Ssimon
7059191Skris// put OS-includes here
7159191Skris# include <sys/types.h>
7259191Skris# include <sys/mman.h>
7359191Skris# include <sys/stat.h>
74160814Ssimon# include <sys/select.h>
7559191Skris# include <pthread.h>
76296341Sdelphij# include <signal.h>
77296341Sdelphij# include <errno.h>
78296341Sdelphij# include <dlfcn.h>
79296341Sdelphij# include <stdio.h>
80296341Sdelphij# include <unistd.h>
81296341Sdelphij# include <sys/resource.h>
82296341Sdelphij# include <pthread.h>
83296341Sdelphij# include <sys/stat.h>
84296341Sdelphij# include <sys/time.h>
8559191Skris# include <sys/times.h>
8659191Skris# include <sys/utsname.h>
8759191Skris# include <sys/socket.h>
8859191Skris# include <sys/wait.h>
89296341Sdelphij# include <pwd.h>
90296341Sdelphij# include <poll.h>
91296341Sdelphij# include <semaphore.h>
92296341Sdelphij# include <fcntl.h>
93296341Sdelphij# include <string.h>
94296341Sdelphij# include <syscall.h>
95296341Sdelphij# include <sys/sysinfo.h>
96296341Sdelphij# include <gnu/libc-version.h>
97296341Sdelphij# include <sys/ipc.h>
98296341Sdelphij# include <sys/shm.h>
99296341Sdelphij# include <link.h>
100296341Sdelphij# include <stdint.h>
101296341Sdelphij# include <inttypes.h>
102296341Sdelphij# include <sys/ioctl.h>
103296341Sdelphij
104296341Sdelphij// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
105296341Sdelphij// getrusage() is prepared to handle the associated failure.
106296341Sdelphij#ifndef RUSAGE_THREAD
107296341Sdelphij#define RUSAGE_THREAD   (1)               /* only the calling thread */
108296341Sdelphij#endif
109296341Sdelphij
110296341Sdelphij#define MAX_PATH    (2 * K)
111296341Sdelphij
112296341Sdelphij// for timer info max values which include all bits
113296341Sdelphij#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
114296341Sdelphij
115296341Sdelphij#define LARGEPAGES_BIT (1 << 6)
116296341Sdelphij////////////////////////////////////////////////////////////////////////////////
117111147Snectar// global variables
118296341Sdelphijjulong os::Linux::_physical_memory = 0;
119111147Snectar
120109998Smarkmaddress   os::Linux::_initial_thread_stack_bottom = NULL;
121296341Sdelphijuintptr_t os::Linux::_initial_thread_stack_size   = 0;
122160814Ssimon
123296341Sdelphijint (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
124296341Sdelphijint (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
12559191SkrisMutex* os::Linux::_createThread_lock = NULL;
126296341Sdelphijpthread_t os::Linux::_main_thread;
127109998Smarkmint os::Linux::_page_size = -1;
128296341Sdelphijconst int os::Linux::_vm_default_page_size = (8 * K);
129296341Sdelphijbool os::Linux::_is_floating_stack = false;
130296341Sdelphijbool os::Linux::_is_NPTL = false;
131296341Sdelphijbool os::Linux::_supports_fast_thread_cpu_time = false;
132109998Smarkmconst char * os::Linux::_glibc_version = NULL;
133296341Sdelphijconst char * os::Linux::_libpthread_version = NULL;
134296341Sdelphijpthread_condattr_t os::Linux::_condattr[1];
135109998Smarkm
136296341Sdelphijstatic jlong initial_time_count=0;
137296341Sdelphij
138296341Sdelphijstatic int clock_tics_per_sec = 100;
139296341Sdelphij
140296341Sdelphij// For diagnostics to print a message once. see run_periodic_checks
141296341Sdelphijstatic sigset_t check_signal_done;
142296341Sdelphijstatic bool check_signals = true;;
143296341Sdelphij
144296341Sdelphijstatic pid_t _initial_pid = 0;
145296341Sdelphij
146296341Sdelphij/* Signal number used to suspend/resume a thread */
147296341Sdelphij
148296341Sdelphij/* do not use any signal number less than SIGSEGV, see 4355769 */
149109998Smarkmstatic int SR_signum = SIGUSR2;
150296341Sdelphijsigset_t SR_sigset;
151296341Sdelphij
152296341Sdelphij/* Used to protect dlsym() calls */
153296341Sdelphijstatic pthread_mutex_t dl_mutex;
15459191Skris
155194206Ssimon// Declarations
156296341Sdelphijstatic void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157296341Sdelphij
158194206Ssimon#ifdef JAVASE_EMBEDDED
159109998Smarkmclass MemNotifyThread: public Thread {
160296341Sdelphij  friend class VMStructs;
161296341Sdelphij public:
162296341Sdelphij  virtual void run();
163296341Sdelphij
164296341Sdelphij private:
165296341Sdelphij  static MemNotifyThread* _memnotify_thread;
16659191Skris  int _fd;
167109998Smarkm
168296341Sdelphij public:
169296341Sdelphij
170296341Sdelphij  // Constructor
171296341Sdelphij  MemNotifyThread(int fd);
172296341Sdelphij
173296341Sdelphij  // Tester
174109998Smarkm  bool is_memnotify_thread() const { return true; }
175162911Ssimon
176296341Sdelphij  // Printing
177296341Sdelphij  char* name() const { return (char*)"Linux MemNotify Thread"; }
178296341Sdelphij
179296341Sdelphij  // Returns the single instance of the MemNotifyThread
180296341Sdelphij  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
181296341Sdelphij
182162911Ssimon  // Create and start the single instance of MemNotifyThread
183296341Sdelphij  static void start();
184296341Sdelphij};
185296341Sdelphij#endif // JAVASE_EMBEDDED
186296341Sdelphij
187296341Sdelphij// utility functions
188296341Sdelphij
189296341Sdelphijstatic int SR_initialize();
190296341Sdelphij
191296341Sdelphijjulong os::available_memory() {
192296341Sdelphij  return Linux::available_memory();
193296341Sdelphij}
194296341Sdelphij
195296341Sdelphijjulong os::Linux::available_memory() {
196296341Sdelphij  // values in struct sysinfo are "unsigned long"
197296341Sdelphij  struct sysinfo si;
198296341Sdelphij  sysinfo(&si);
199296341Sdelphij
200296341Sdelphij  return (julong)si.freeram * si.mem_unit;
201296341Sdelphij}
202296341Sdelphij
203296341Sdelphijjulong os::physical_memory() {
204296341Sdelphij  return Linux::physical_memory();
205296341Sdelphij}
206296341Sdelphij
207296341Sdelphij////////////////////////////////////////////////////////////////////////////////
208296341Sdelphij// environment support
209296341Sdelphij
210296341Sdelphijbool os::getenv(const char* name, char* buf, int len) {
211296341Sdelphij  const char* val = ::getenv(name);
212296341Sdelphij  if (val != NULL && strlen(val) < (size_t)len) {
213296341Sdelphij    strcpy(buf, val);
214296341Sdelphij    return true;
215296341Sdelphij  }
216296341Sdelphij  if (len > 0) buf[0] = 0;  // return a null string
217296341Sdelphij  return false;
218296341Sdelphij}
219296341Sdelphij
220111147Snectar
221296341Sdelphij// Return true if user is running as root.
222296341Sdelphij
223296341Sdelphijbool os::have_special_privileges() {
224296341Sdelphij  static bool init = false;
225296341Sdelphij  static bool privileges = false;
226111147Snectar  if (!init) {
227296341Sdelphij    privileges = (getuid() != geteuid()) || (getgid() != getegid());
228296341Sdelphij    init = true;
229296341Sdelphij  }
230296341Sdelphij  return privileges;
231296341Sdelphij}
232296341Sdelphij
233296341Sdelphij
234296341Sdelphij#ifndef SYS_gettid
235296341Sdelphij// i386: 224, ia64: 1105, amd64: 186, sparc 143
236296341Sdelphij#ifdef __ia64__
237296341Sdelphij#define SYS_gettid 1105
238296341Sdelphij#elif __i386__
239296341Sdelphij#define SYS_gettid 224
240296341Sdelphij#elif __amd64__
241296341Sdelphij#define SYS_gettid 186
242296341Sdelphij#elif __sparc__
243296341Sdelphij#define SYS_gettid 143
244296341Sdelphij#else
245296341Sdelphij#error define gettid for the arch
246296341Sdelphij#endif
247238405Sjkim#endif
248296341Sdelphij
249296341Sdelphij// Cpu architecture string
250296341Sdelphij#if   defined(ZERO)
251296341Sdelphijstatic char cpu_arch[] = ZERO_LIBARCH;
252296341Sdelphij#elif defined(IA64)
253296341Sdelphijstatic char cpu_arch[] = "ia64";
254296341Sdelphij#elif defined(IA32)
255296341Sdelphijstatic char cpu_arch[] = "i386";
256296341Sdelphij#elif defined(AMD64)
257296341Sdelphijstatic char cpu_arch[] = "amd64";
258296341Sdelphij#elif defined(ARM)
259296341Sdelphijstatic char cpu_arch[] = "arm";
260296341Sdelphij#elif defined(PPC)
261296341Sdelphijstatic char cpu_arch[] = "ppc";
262296341Sdelphij#elif defined(SPARC)
263296341Sdelphij#  ifdef _LP64
264296341Sdelphijstatic char cpu_arch[] = "sparcv9";
265296341Sdelphij#  else
266296341Sdelphijstatic char cpu_arch[] = "sparc";
267296341Sdelphij#  endif
268296341Sdelphij#else
269296341Sdelphij#error Add appropriate cpu_arch setting
270296341Sdelphij#endif
271296341Sdelphij
272296341Sdelphij
273296341Sdelphij// pid_t gettid()
274296341Sdelphij//
275296341Sdelphij// Returns the kernel thread id of the currently running thread. Kernel
276296341Sdelphij// thread id is used to access /proc.
277296341Sdelphij//
278296341Sdelphij// (Note that getpid() on LinuxThreads returns kernel thread id too; but
279296341Sdelphij// on NPTL, it returns the same pid for all threads, as required by POSIX.)
280296341Sdelphij//
281296341Sdelphijpid_t os::Linux::gettid() {
282296341Sdelphij  int rslt = syscall(SYS_gettid);
283296341Sdelphij  if (rslt == -1) {
284296341Sdelphij     // old kernel, no NPTL support
285296341Sdelphij     return getpid();
286296341Sdelphij  } else {
287296341Sdelphij     return (pid_t)rslt;
288296341Sdelphij  }
289296341Sdelphij}
290296341Sdelphij
291296341Sdelphij// Most versions of linux have a bug where the number of processors are
292296341Sdelphij// determined by looking at the /proc file system.  In a chroot environment,
293296341Sdelphij// the system call returns 1.  This causes the VM to act as if it is
294296341Sdelphij// a single processor and elide locking (see is_MP() call).
295296341Sdelphijstatic bool unsafe_chroot_detected = false;
296296341Sdelphijstatic const char *unstable_chroot_error = "/proc file system not found.\n"
297296341Sdelphij                     "Java may be unstable running multithreaded in a chroot "
298296341Sdelphij                     "environment on Linux when /proc filesystem is not mounted.";
299296341Sdelphij
300296341Sdelphijvoid os::Linux::initialize_system_info() {
301296341Sdelphij  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
302296341Sdelphij  if (processor_count() == 1) {
303296341Sdelphij    pid_t pid = os::Linux::gettid();
304296341Sdelphij    char fname[32];
305296341Sdelphij    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
306296341Sdelphij    FILE *fp = fopen(fname, "r");
307296341Sdelphij    if (fp == NULL) {
308296341Sdelphij      unsafe_chroot_detected = true;
309296341Sdelphij    } else {
310296341Sdelphij      fclose(fp);
311296341Sdelphij    }
312296341Sdelphij  }
313296341Sdelphij  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
314296341Sdelphij  assert(processor_count() > 0, "linux error");
315296341Sdelphij}
316296341Sdelphij
317296341Sdelphijvoid os::init_system_properties_values() {
318296341Sdelphij//  char arch[12];
319296341Sdelphij//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
320296341Sdelphij
321296341Sdelphij  // The next steps are taken in the product version:
322296341Sdelphij  //
323296341Sdelphij  // Obtain the JAVA_HOME value from the location of libjvm.so.
324296341Sdelphij  // This library should be located at:
325296341Sdelphij  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
326296341Sdelphij  //
327296341Sdelphij  // If "/jre/lib/" appears at the right place in the path, then we
328296341Sdelphij  // assume libjvm.so is installed in a JDK and we use this path.
329296341Sdelphij  //
330296341Sdelphij  // Otherwise exit with message: "Could not create the Java virtual machine."
331296341Sdelphij  //
33259191Skris  // The following extra steps are taken in the debugging version:
333296341Sdelphij  //
334296341Sdelphij  // If "/jre/lib/" does NOT appear at the right place in the path
335296341Sdelphij  // instead of exit check for $JAVA_HOME environment variable.
336296341Sdelphij  //
337160814Ssimon  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
338296341Sdelphij  // then we append a fake suffix "hotspot/libjvm.so" to this path so
339296341Sdelphij  // it looks like libjvm.so is installed there
340296341Sdelphij  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
341296341Sdelphij  //
342296341Sdelphij  // Otherwise exit.
343296341Sdelphij  //
344296341Sdelphij  // Important note: if the location of libjvm.so changes this
345296341Sdelphij  // code needs to be changed accordingly.
346296341Sdelphij
347296341Sdelphij  // The next few definitions allow the code to be verbatim:
348296341Sdelphij#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
349296341Sdelphij#define getenv(n) ::getenv(n)
350296341Sdelphij
351296341Sdelphij/*
352296341Sdelphij * See ld(1):
353296341Sdelphij *      The linker uses the following search paths to locate required
354296341Sdelphij *      shared libraries:
355296341Sdelphij *        1: ...
356296341Sdelphij *        ...
357296341Sdelphij *        7: The default directories, normally /lib and /usr/lib.
358296341Sdelphij */
359296341Sdelphij#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
360296341Sdelphij#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
361296341Sdelphij#else
362296341Sdelphij#define DEFAULT_LIBPATH "/lib:/usr/lib"
363296341Sdelphij#endif
364296341Sdelphij
365296341Sdelphij#define EXTENSIONS_DIR  "/lib/ext"
366296341Sdelphij#define ENDORSED_DIR    "/lib/endorsed"
367296341Sdelphij#define REG_DIR         "/usr/java/packages"
368296341Sdelphij
369296341Sdelphij  {
370296341Sdelphij    /* sysclasspath, java_home, dll_dir */
371296341Sdelphij    {
372296341Sdelphij        char *home_path;
373296341Sdelphij        char *dll_path;
374296341Sdelphij        char *pslash;
37559191Skris        char buf[MAXPATHLEN];
376296341Sdelphij        os::jvm_path(buf, sizeof(buf));
377296341Sdelphij
378296341Sdelphij        // Found the full path to libjvm.so.
379296341Sdelphij        // Now cut the path to <java_home>/jre if we can.
380296341Sdelphij        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
381296341Sdelphij        pslash = strrchr(buf, '/');
382296341Sdelphij        if (pslash != NULL)
383296341Sdelphij            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
384296341Sdelphij        dll_path = malloc(strlen(buf) + 1);
385109998Smarkm        if (dll_path == NULL)
386296341Sdelphij            return;
387296341Sdelphij        strcpy(dll_path, buf);
38859191Skris        Arguments::set_dll_dir(dll_path);
389194206Ssimon
390296341Sdelphij        if (pslash != NULL) {
391194206Ssimon            pslash = strrchr(buf, '/');
392109998Smarkm            if (pslash != NULL) {
393296341Sdelphij                *pslash = '\0';       /* get rid of /<arch> */
394296341Sdelphij                pslash = strrchr(buf, '/');
395296341Sdelphij                if (pslash != NULL)
39659191Skris                    *pslash = '\0';   /* get rid of /lib */
397109998Smarkm            }
398296341Sdelphij        }
399296341Sdelphij
400296341Sdelphij        home_path = malloc(strlen(buf) + 1);
401109998Smarkm        if (home_path == NULL)
402162911Ssimon            return;
403296341Sdelphij        strcpy(home_path, buf);
404296341Sdelphij        Arguments::set_java_home(home_path);
405296341Sdelphij
406162911Ssimon        if (!set_boot_path('/', ':'))
407296341Sdelphij            return;
408296341Sdelphij    }
409296341Sdelphij
410296341Sdelphij    /*
411296341Sdelphij     * Where to look for native libraries
412296341Sdelphij     *
413296341Sdelphij     * Note: Due to a legacy implementation, most of the library path
414296341Sdelphij     * is set in the launcher.  This was to accomodate linking restrictions
415296341Sdelphij     * on legacy Linux implementations (which are no longer supported).
416296341Sdelphij     * Eventually, all the library path setting will be done here.
417296341Sdelphij     *
418296341Sdelphij     * However, to prevent the proliferation of improperly built native
419296341Sdelphij     * libraries, the new path component /usr/java/packages is added here.
420296341Sdelphij     * Eventually, all the library path setting will be done here.
421296341Sdelphij     */
422296341Sdelphij    {
423296341Sdelphij        char *ld_library_path;
424296341Sdelphij
425296341Sdelphij        /*
426296341Sdelphij         * Construct the invariant part of ld_library_path. Note that the
427296341Sdelphij         * space for the colon and the trailing null are provided by the
428296341Sdelphij         * nulls included by the sizeof operator (so actually we allocate
429296341Sdelphij         * a byte more than necessary).
430296341Sdelphij         */
431296341Sdelphij        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
432296341Sdelphij            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
433296341Sdelphij        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
434296341Sdelphij
435296341Sdelphij        /*
436296341Sdelphij         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
437296341Sdelphij         * should always exist (until the legacy problem cited above is
438296341Sdelphij         * addressed).
439296341Sdelphij         */
440296341Sdelphij        char *v = getenv("LD_LIBRARY_PATH");
441296341Sdelphij        if (v != NULL) {
442296341Sdelphij            char *t = ld_library_path;
443296341Sdelphij            /* That's +1 for the colon and +1 for the trailing '\0' */
444296341Sdelphij            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
445296341Sdelphij            sprintf(ld_library_path, "%s:%s", v, t);
446296341Sdelphij        }
447296341Sdelphij        Arguments::set_library_path(ld_library_path);
448296341Sdelphij    }
449296341Sdelphij
450111147Snectar    /*
451296341Sdelphij     * Extensions directories.
452296341Sdelphij     *
453111147Snectar     * Note that the space for the colon and the trailing null are provided
454296341Sdelphij     * by the nulls included by the sizeof operator (so actually one byte more
455296341Sdelphij     * than necessary is allocated).
456296341Sdelphij     */
457296341Sdelphij    {
458296341Sdelphij        char *buf = malloc(strlen(Arguments::get_java_home()) +
459296341Sdelphij            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
460296341Sdelphij        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
461296341Sdelphij            Arguments::get_java_home());
462296341Sdelphij        Arguments::set_ext_dirs(buf);
463296341Sdelphij    }
464111147Snectar
465296341Sdelphij    /* Endorsed standards default directory. */
466111147Snectar    {
467109998Smarkm        char * buf;
468296341Sdelphij        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
469296341Sdelphij        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
470296341Sdelphij        Arguments::set_endorsed_dirs(buf);
471296341Sdelphij    }
47259191Skris  }
473296341Sdelphij
474296341Sdelphij#undef malloc
475296341Sdelphij#undef getenv
476296341Sdelphij#undef EXTENSIONS_DIR
477296341Sdelphij#undef ENDORSED_DIR
478296341Sdelphij
47959191Skris  // Done
480296341Sdelphij  return;
48159191Skris}
482296341Sdelphij
483296341Sdelphij////////////////////////////////////////////////////////////////////////////////
48459191Skris// breakpoint support
485296341Sdelphij
486296341Sdelphijvoid os::breakpoint() {
487296341Sdelphij  BREAKPOINT;
488296341Sdelphij}
489296341Sdelphij
490296341Sdelphijextern "C" void breakpoint() {
491296341Sdelphij  // use debugger to set breakpoint here
492238405Sjkim}
493296341Sdelphij
494296341Sdelphij////////////////////////////////////////////////////////////////////////////////
495296341Sdelphij// signal support
496296341Sdelphij
497296341Sdelphijdebug_only(static bool signal_sets_initialized = false);
498296341Sdelphijstatic sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
499296341Sdelphij
50059191Skrisbool os::Linux::is_sig_ignored(int sig) {
501296341Sdelphij      struct sigaction oact;
502296341Sdelphij      sigaction(sig, (struct sigaction*)NULL, &oact);
503296341Sdelphij      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
504296341Sdelphij                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
50559191Skris      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
506296341Sdelphij           return true;
507296341Sdelphij      else
50859191Skris           return false;
509296341Sdelphij}
510296341Sdelphij
511296341Sdelphijvoid os::Linux::signal_sets_init() {
512296341Sdelphij  // Should also have an assertion stating we are still single-threaded.
513296341Sdelphij  assert(!signal_sets_initialized, "Already initialized");
514296341Sdelphij  // Fill in signals that are necessarily unblocked for all threads in
515296341Sdelphij  // the VM. Currently, we unblock the following signals:
516296341Sdelphij  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
517296341Sdelphij  //                         by -Xrs (=ReduceSignalUsage));
518109998Smarkm  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
519296341Sdelphij  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
520296341Sdelphij  // the dispositions or masks wrt these signals.
521296341Sdelphij  // Programs embedding the VM that want to use the above signals for their
522296341Sdelphij  // own purposes must, at this time, use the "-Xrs" option to prevent
523296341Sdelphij  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
524296341Sdelphij  // (See bug 4345157, and other related bugs).
525296341Sdelphij  // In reality, though, unblocking these signals is really a nop, since
52659191Skris  // these signals are not blocked by default.
527296341Sdelphij  sigemptyset(&unblocked_sigs);
528296341Sdelphij  sigemptyset(&allowdebug_blocked_sigs);
529296341Sdelphij  sigaddset(&unblocked_sigs, SIGILL);
530296341Sdelphij  sigaddset(&unblocked_sigs, SIGSEGV);
531296341Sdelphij  sigaddset(&unblocked_sigs, SIGBUS);
532296341Sdelphij  sigaddset(&unblocked_sigs, SIGFPE);
533296341Sdelphij  sigaddset(&unblocked_sigs, SR_signum);
53459191Skris
535296341Sdelphij  if (!ReduceSignalUsage) {
536296341Sdelphij   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
537296341Sdelphij      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
538296341Sdelphij      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
539296341Sdelphij   }
540296341Sdelphij   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
541296341Sdelphij      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
54259191Skris      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
543296341Sdelphij   }
544296341Sdelphij   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
545296341Sdelphij      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
546296341Sdelphij      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
547296341Sdelphij   }
548296341Sdelphij  }
549296341Sdelphij  // Fill in signals that are blocked by all but the VM thread.
550296341Sdelphij  sigemptyset(&vm_sigs);
55159191Skris  if (!ReduceSignalUsage)
552296341Sdelphij    sigaddset(&vm_sigs, BREAK_SIGNAL);
553296341Sdelphij  debug_only(signal_sets_initialized = true);
554296341Sdelphij
555296341Sdelphij}
556296341Sdelphij
557296341Sdelphij// These are signals that are unblocked while a thread is running Java.
55859191Skris// (For some reason, they get blocked by default.)
559296341Sdelphijsigset_t* os::Linux::unblocked_signals() {
560296341Sdelphij  assert(signal_sets_initialized, "Not initialized");
561296341Sdelphij  return &unblocked_sigs;
562296341Sdelphij}
563296341Sdelphij
564296341Sdelphij// These are the signals that are blocked while a (non-VM) thread is
565296341Sdelphij// running Java. Only the VM thread handles these signals.
56659191Skrissigset_t* os::Linux::vm_signals() {
567296341Sdelphij  assert(signal_sets_initialized, "Not initialized");
568296341Sdelphij  return &vm_sigs;
569296341Sdelphij}
570296341Sdelphij
571296341Sdelphij// These are signals that are blocked during cond_wait to allow debugger in
572296341Sdelphijsigset_t* os::Linux::allowdebug_blocked_signals() {
573296341Sdelphij  assert(signal_sets_initialized, "Not initialized");
574296341Sdelphij  return &allowdebug_blocked_sigs;
575296341Sdelphij}
576296341Sdelphij
577296341Sdelphijvoid os::Linux::hotspot_sigmask(Thread* thread) {
578238405Sjkim
579296341Sdelphij  //Save caller's signal mask before setting VM signal mask
580296341Sdelphij  sigset_t caller_sigmask;
581296341Sdelphij  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
582296341Sdelphij
583296341Sdelphij  OSThread* osthread = thread->osthread();
584296341Sdelphij  osthread->set_caller_sigmask(caller_sigmask);
585296341Sdelphij
586296341Sdelphij  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
587296341Sdelphij
588296341Sdelphij  if (!ReduceSignalUsage) {
589296341Sdelphij    if (thread->is_VM_thread()) {
590296341Sdelphij      // Only the VM thread handles BREAK_SIGNAL ...
591238405Sjkim      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
592296341Sdelphij    } else {
593296341Sdelphij      // ... all other threads block BREAK_SIGNAL
594296341Sdelphij      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
595296341Sdelphij    }
596296341Sdelphij  }
597296341Sdelphij}
598296341Sdelphij
599109998Smarkm//////////////////////////////////////////////////////////////////////////////
600296341Sdelphij// detecting pthread library
601296341Sdelphij
602296341Sdelphijvoid os::Linux::libpthread_init() {
603296341Sdelphij  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
60468651Skris  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
605296341Sdelphij  // generic name for earlier versions.
60659191Skris  // Define macros here so we can build HotSpot on old systems.
607296341Sdelphij# ifndef _CS_GNU_LIBC_VERSION
608296341Sdelphij# define _CS_GNU_LIBC_VERSION 2
609296341Sdelphij# endif
610296341Sdelphij# ifndef _CS_GNU_LIBPTHREAD_VERSION
611296341Sdelphij# define _CS_GNU_LIBPTHREAD_VERSION 3
612296341Sdelphij# endif
613296341Sdelphij
61459191Skris  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
615296341Sdelphij  if (n > 0) {
616109998Smarkm     char *str = (char *)malloc(n, mtInternal);
617296341Sdelphij     confstr(_CS_GNU_LIBC_VERSION, str, n);
618296341Sdelphij     os::Linux::set_glibc_version(str);
619296341Sdelphij  } else {
620296341Sdelphij     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
621296341Sdelphij     static char _gnu_libc_version[32];
622296341Sdelphij     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
623296341Sdelphij              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
624296341Sdelphij     os::Linux::set_glibc_version(_gnu_libc_version);
625296341Sdelphij  }
626296341Sdelphij
627296341Sdelphij  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
628296341Sdelphij  if (n > 0) {
629296341Sdelphij     char *str = (char *)malloc(n, mtInternal);
630296341Sdelphij     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
631296341Sdelphij     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
632296341Sdelphij     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
633296341Sdelphij     // is the case. LinuxThreads has a hard limit on max number of threads.
634296341Sdelphij     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
635296341Sdelphij     // On the other hand, NPTL does not have such a limit, sysconf()
636296341Sdelphij     // will return -1 and errno is not changed. Check if it is really NPTL.
637296341Sdelphij     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
638296341Sdelphij         strstr(str, "NPTL") &&
639296341Sdelphij         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
640296341Sdelphij       free(str);
641296341Sdelphij       os::Linux::set_libpthread_version("linuxthreads");
642296341Sdelphij     } else {
643296341Sdelphij       os::Linux::set_libpthread_version(str);
644296341Sdelphij     }
645296341Sdelphij  } else {
646296341Sdelphij    // glibc before 2.3.2 only has LinuxThreads.
647296341Sdelphij    os::Linux::set_libpthread_version("linuxthreads");
648296341Sdelphij  }
649296341Sdelphij
650296341Sdelphij  if (strstr(libpthread_version(), "NPTL")) {
651296341Sdelphij     os::Linux::set_is_NPTL();
652296341Sdelphij  } else {
653296341Sdelphij     os::Linux::set_is_LinuxThreads();
654296341Sdelphij  }
655296341Sdelphij
656296341Sdelphij  // LinuxThreads have two flavors: floating-stack mode, which allows variable
657296341Sdelphij  // stack size; and fixed-stack mode. NPTL is always floating-stack.
658296341Sdelphij  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
659296341Sdelphij     os::Linux::set_is_floating_stack();
660296341Sdelphij  }
661296341Sdelphij}
662296341Sdelphij
66359191Skris/////////////////////////////////////////////////////////////////////////////
664296341Sdelphij// thread stack
665296341Sdelphij
666296341Sdelphij// Force Linux kernel to expand current thread stack. If "bottom" is close
667296341Sdelphij// to the stack guard, caller should block all signals.
66859191Skris//
669296341Sdelphij// MAP_GROWSDOWN:
670296341Sdelphij//   A special mmap() flag that is used to implement thread stacks. It tells
671296341Sdelphij//   kernel that the memory region should extend downwards when needed. This
672296341Sdelphij//   allows early versions of LinuxThreads to only mmap the first few pages
673296341Sdelphij//   when creating a new thread. Linux kernel will automatically expand thread
674296341Sdelphij//   stack as needed (on page faults).
675296341Sdelphij//
676296341Sdelphij//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
677296341Sdelphij//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
678296341Sdelphij//   region, it's hard to tell if the fault is due to a legitimate stack
679296341Sdelphij//   access or because of reading/writing non-exist memory (e.g. buffer
680296341Sdelphij//   overrun). As a rule, if the fault happens below current stack pointer,
681296341Sdelphij//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
682296341Sdelphij//   application (see Linux kernel fault.c).
683296341Sdelphij//
684296341Sdelphij//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
685296341Sdelphij//   stack overflow detection.
686296341Sdelphij//
687296341Sdelphij//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
688296341Sdelphij//   not use this flag. However, the stack of initial thread is not created
689296341Sdelphij//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
690296341Sdelphij//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
691296341Sdelphij//   and then attach the thread to JVM.
692296341Sdelphij//
693296341Sdelphij// To get around the problem and allow stack banging on Linux, we need to
694296341Sdelphij// manually expand thread stack after receiving the SIGSEGV.
695296341Sdelphij//
696296341Sdelphij// There are two ways to expand thread stack to address "bottom", we used
697296341Sdelphij// both of them in JVM before 1.5:
698296341Sdelphij//   1. adjust stack pointer first so that it is below "bottom", and then
699296341Sdelphij//      touch "bottom"
700296341Sdelphij//   2. mmap() the page in question
701296341Sdelphij//
702296341Sdelphij// Now alternate signal stack is gone, it's harder to use 2. For instance,
703296341Sdelphij// if current sp is already near the lower end of page 101, and we need to
704296341Sdelphij// call mmap() to map page 100, it is possible that part of the mmap() frame
705296341Sdelphij// will be placed in page 100. When page 100 is mapped, it is zero-filled.
706296341Sdelphij// That will destroy the mmap() frame and cause VM to crash.
707296341Sdelphij//
708296341Sdelphij// The following code works by adjusting sp first, then accessing the "bottom"
709296341Sdelphij// page to force a page fault. Linux kernel will then automatically expand the
710296341Sdelphij// stack mapping.
711296341Sdelphij//
712296341Sdelphij// _expand_stack_to() assumes its frame size is less than page size, which
713296341Sdelphij// should always be true if the function is not inlined.
714296341Sdelphij
715296341Sdelphij#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
716296341Sdelphij#define NOINLINE
717296341Sdelphij#else
718296341Sdelphij#define NOINLINE __attribute__ ((noinline))
719296341Sdelphij#endif
720296341Sdelphij
721296341Sdelphijstatic void _expand_stack_to(address bottom) NOINLINE;
722296341Sdelphij
723296341Sdelphijstatic void _expand_stack_to(address bottom) {
724296341Sdelphij  address sp;
725296341Sdelphij  size_t size;
726296341Sdelphij  volatile char *p;
727296341Sdelphij
728296341Sdelphij  // Adjust bottom to point to the largest address within the same page, it
729296341Sdelphij  // gives us a one-page buffer if alloca() allocates slightly more memory.
730296341Sdelphij  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
731296341Sdelphij  bottom += os::Linux::page_size() - 1;
732296341Sdelphij
733296341Sdelphij  // sp might be slightly above current stack pointer; if that's the case, we
734296341Sdelphij  // will alloca() a little more space than necessary, which is OK. Don't use
735296341Sdelphij  // os::current_stack_pointer(), as its result can be slightly below current
736296341Sdelphij  // stack pointer, causing us to not alloca enough to reach "bottom".
737296341Sdelphij  sp = (address)&sp;
738296341Sdelphij
73959191Skris  if (sp > bottom) {
74059191Skris    size = sp - bottom;
74159191Skris    p = (volatile char *)alloca(size);
742296341Sdelphij    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
743296341Sdelphij    p[0] = '\0';
744296341Sdelphij  }
745296341Sdelphij}
746296341Sdelphij
747296341Sdelphijbool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
748296341Sdelphij  assert(t!=NULL, "just checking");
749296341Sdelphij  assert(t->osthread()->expanding_stack(), "expand should be set");
750296341Sdelphij  assert(t->stack_base() != NULL, "stack_base was not initialized");
751296341Sdelphij
752296341Sdelphij  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
753296341Sdelphij    sigset_t mask_all, old_sigset;
754296341Sdelphij    sigfillset(&mask_all);
755160814Ssimon    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
756160814Ssimon    _expand_stack_to(addr);
757160814Ssimon    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
758160814Ssimon    return true;
759296341Sdelphij  }
760296341Sdelphij  return false;
761160814Ssimon}
762296341Sdelphij
763160814Ssimon//////////////////////////////////////////////////////////////////////////////
764296341Sdelphij// create new thread
765296341Sdelphij
766296341Sdelphijstatic address highest_vm_reserved_address();
767160814Ssimon
768296341Sdelphij// check if it's safe to start a new thread
769160814Ssimonstatic bool _thread_safety_check(Thread* thread) {
770296341Sdelphij  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
771160814Ssimon    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
772296341Sdelphij    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
773    //   allocated (MAP_FIXED) from high address space. Every thread stack
774    //   occupies a fixed size slot (usually 2Mbytes, but user can change
775    //   it to other values if they rebuild LinuxThreads).
776    //
777    // Problem with MAP_FIXED is that mmap() can still succeed even part of
778    // the memory region has already been mmap'ed. That means if we have too
779    // many threads and/or very large heap, eventually thread stack will
780    // collide with heap.
781    //
782    // Here we try to prevent heap/stack collision by comparing current
783    // stack bottom with the highest address that has been mmap'ed by JVM
784    // plus a safety margin for memory maps created by native code.
785    //
786    // This feature can be disabled by setting ThreadSafetyMargin to 0
787    //
788    if (ThreadSafetyMargin > 0) {
789      address stack_bottom = os::current_stack_base() - os::current_stack_size();
790
791      // not safe if our stack extends below the safety margin
792      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
793    } else {
794      return true;
795    }
796  } else {
797    // Floating stack LinuxThreads or NPTL:
798    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
799    //   there's not enough space left, pthread_create() will fail. If we come
800    //   here, that means enough space has been reserved for stack.
801    return true;
802  }
803}
804
805// Thread start routine for all newly created threads
806static void *java_start(Thread *thread) {
807  // Try to randomize the cache line index of hot stack frames.
808  // This helps when threads of the same stack traces evict each other's
809  // cache lines. The threads can be either from the same JVM instance, or
810  // from different JVM instances. The benefit is especially true for
811  // processors with hyperthreading technology.
812  static int counter = 0;
813  int pid = os::current_process_id();
814  alloca(((pid ^ counter++) & 7) * 128);
815
816  ThreadLocalStorage::set_thread(thread);
817
818  OSThread* osthread = thread->osthread();
819  Monitor* sync = osthread->startThread_lock();
820
821  // non floating stack LinuxThreads needs extra check, see above
822  if (!_thread_safety_check(thread)) {
823    // notify parent thread
824    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
825    osthread->set_state(ZOMBIE);
826    sync->notify_all();
827    return NULL;
828  }
829
830  // thread_id is kernel thread id (similar to Solaris LWP id)
831  osthread->set_thread_id(os::Linux::gettid());
832
833  if (UseNUMA) {
834    int lgrp_id = os::numa_get_group_id();
835    if (lgrp_id != -1) {
836      thread->set_lgrp_id(lgrp_id);
837    }
838  }
839  // initialize signal mask for this thread
840  os::Linux::hotspot_sigmask(thread);
841
842  // initialize floating point control register
843  os::Linux::init_thread_fpu_state();
844
845  // handshaking with parent thread
846  {
847    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
848
849    // notify parent thread
850    osthread->set_state(INITIALIZED);
851    sync->notify_all();
852
853    // wait until os::start_thread()
854    while (osthread->get_state() == INITIALIZED) {
855      sync->wait(Mutex::_no_safepoint_check_flag);
856    }
857  }
858
859  // call one more level start routine
860  thread->run();
861
862  return 0;
863}
864
865bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
866  assert(thread->osthread() == NULL, "caller responsible");
867
868  // Allocate the OSThread object
869  OSThread* osthread = new OSThread(NULL, NULL);
870  if (osthread == NULL) {
871    return false;
872  }
873
874  // set the correct thread state
875  osthread->set_thread_type(thr_type);
876
877  // Initial state is ALLOCATED but not INITIALIZED
878  osthread->set_state(ALLOCATED);
879
880  thread->set_osthread(osthread);
881
882  // init thread attributes
883  pthread_attr_t attr;
884  pthread_attr_init(&attr);
885  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
886
887  // stack size
888  if (os::Linux::supports_variable_stack_size()) {
889    // calculate stack size if it's not specified by caller
890    if (stack_size == 0) {
891      stack_size = os::Linux::default_stack_size(thr_type);
892
893      switch (thr_type) {
894      case os::java_thread:
895        // Java threads use ThreadStackSize which default value can be
896        // changed with the flag -Xss
897        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
898        stack_size = JavaThread::stack_size_at_create();
899        break;
900      case os::compiler_thread:
901        if (CompilerThreadStackSize > 0) {
902          stack_size = (size_t)(CompilerThreadStackSize * K);
903          break;
904        } // else fall through:
905          // use VMThreadStackSize if CompilerThreadStackSize is not defined
906      case os::vm_thread:
907      case os::pgc_thread:
908      case os::cgc_thread:
909      case os::watcher_thread:
910        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
911        break;
912      }
913    }
914
915    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
916    pthread_attr_setstacksize(&attr, stack_size);
917  } else {
918    // let pthread_create() pick the default value.
919  }
920
921  // glibc guard page
922  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
923
924  ThreadState state;
925
926  {
927    // Serialize thread creation if we are running with fixed stack LinuxThreads
928    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
929    if (lock) {
930      os::Linux::createThread_lock()->lock_without_safepoint_check();
931    }
932
933    pthread_t tid;
934    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
935
936    pthread_attr_destroy(&attr);
937
938    if (ret != 0) {
939      if (PrintMiscellaneous && (Verbose || WizardMode)) {
940        perror("pthread_create()");
941      }
942      // Need to clean up stuff we've allocated so far
943      thread->set_osthread(NULL);
944      delete osthread;
945      if (lock) os::Linux::createThread_lock()->unlock();
946      return false;
947    }
948
949    // Store pthread info into the OSThread
950    osthread->set_pthread_id(tid);
951
952    // Wait until child thread is either initialized or aborted
953    {
954      Monitor* sync_with_child = osthread->startThread_lock();
955      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
956      while ((state = osthread->get_state()) == ALLOCATED) {
957        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
958      }
959    }
960
961    if (lock) {
962      os::Linux::createThread_lock()->unlock();
963    }
964  }
965
966  // Aborted due to thread limit being reached
967  if (state == ZOMBIE) {
968      thread->set_osthread(NULL);
969      delete osthread;
970      return false;
971  }
972
973  // The thread is returned suspended (in state INITIALIZED),
974  // and is started higher up in the call chain
975  assert(state == INITIALIZED, "race condition");
976  return true;
977}
978
979/////////////////////////////////////////////////////////////////////////////
980// attach existing thread
981
982// bootstrap the main thread
983bool os::create_main_thread(JavaThread* thread) {
984  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
985  return create_attached_thread(thread);
986}
987
988bool os::create_attached_thread(JavaThread* thread) {
989#ifdef ASSERT
990    thread->verify_not_published();
991#endif
992
993  // Allocate the OSThread object
994  OSThread* osthread = new OSThread(NULL, NULL);
995
996  if (osthread == NULL) {
997    return false;
998  }
999
1000  // Store pthread info into the OSThread
1001  osthread->set_thread_id(os::Linux::gettid());
1002  osthread->set_pthread_id(::pthread_self());
1003
1004  // initialize floating point control register
1005  os::Linux::init_thread_fpu_state();
1006
1007  // Initial thread state is RUNNABLE
1008  osthread->set_state(RUNNABLE);
1009
1010  thread->set_osthread(osthread);
1011
1012  if (UseNUMA) {
1013    int lgrp_id = os::numa_get_group_id();
1014    if (lgrp_id != -1) {
1015      thread->set_lgrp_id(lgrp_id);
1016    }
1017  }
1018
1019  if (os::Linux::is_initial_thread()) {
1020    // If current thread is initial thread, its stack is mapped on demand,
1021    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1022    // the entire stack region to avoid SEGV in stack banging.
1023    // It is also useful to get around the heap-stack-gap problem on SuSE
1024    // kernel (see 4821821 for details). We first expand stack to the top
1025    // of yellow zone, then enable stack yellow zone (order is significant,
1026    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1027    // is no gap between the last two virtual memory regions.
1028
1029    JavaThread *jt = (JavaThread *)thread;
1030    address addr = jt->stack_yellow_zone_base();
1031    assert(addr != NULL, "initialization problem?");
1032    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1033
1034    osthread->set_expanding_stack();
1035    os::Linux::manually_expand_stack(jt, addr);
1036    osthread->clear_expanding_stack();
1037  }
1038
1039  // initialize signal mask for this thread
1040  // and save the caller's signal mask
1041  os::Linux::hotspot_sigmask(thread);
1042
1043  return true;
1044}
1045
1046void os::pd_start_thread(Thread* thread) {
1047  OSThread * osthread = thread->osthread();
1048  assert(osthread->get_state() != INITIALIZED, "just checking");
1049  Monitor* sync_with_child = osthread->startThread_lock();
1050  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1051  sync_with_child->notify();
1052}
1053
1054// Free Linux resources related to the OSThread
1055void os::free_thread(OSThread* osthread) {
1056  assert(osthread != NULL, "osthread not set");
1057
1058  if (Thread::current()->osthread() == osthread) {
1059    // Restore caller's signal mask
1060    sigset_t sigmask = osthread->caller_sigmask();
1061    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1062   }
1063
1064  delete osthread;
1065}
1066
1067//////////////////////////////////////////////////////////////////////////////
1068// thread local storage
1069
1070int os::allocate_thread_local_storage() {
1071  pthread_key_t key;
1072  int rslt = pthread_key_create(&key, NULL);
1073  assert(rslt == 0, "cannot allocate thread local storage");
1074  return (int)key;
1075}
1076
1077// Note: This is currently not used by VM, as we don't destroy TLS key
1078// on VM exit.
1079void os::free_thread_local_storage(int index) {
1080  int rslt = pthread_key_delete((pthread_key_t)index);
1081  assert(rslt == 0, "invalid index");
1082}
1083
1084void os::thread_local_storage_at_put(int index, void* value) {
1085  int rslt = pthread_setspecific((pthread_key_t)index, value);
1086  assert(rslt == 0, "pthread_setspecific failed");
1087}
1088
1089extern "C" Thread* get_thread() {
1090  return ThreadLocalStorage::thread();
1091}
1092
1093//////////////////////////////////////////////////////////////////////////////
1094// initial thread
1095
1096// Check if current thread is the initial thread, similar to Solaris thr_main.
1097bool os::Linux::is_initial_thread(void) {
1098  char dummy;
1099  // If called before init complete, thread stack bottom will be null.
1100  // Can be called if fatal error occurs before initialization.
1101  if (initial_thread_stack_bottom() == NULL) return false;
1102  assert(initial_thread_stack_bottom() != NULL &&
1103         initial_thread_stack_size()   != 0,
1104         "os::init did not locate initial thread's stack region");
1105  if ((address)&dummy >= initial_thread_stack_bottom() &&
1106      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1107       return true;
1108  else return false;
1109}
1110
1111// Find the virtual memory area that contains addr
1112static bool find_vma(address addr, address* vma_low, address* vma_high) {
1113  FILE *fp = fopen("/proc/self/maps", "r");
1114  if (fp) {
1115    address low, high;
1116    while (!feof(fp)) {
1117      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1118        if (low <= addr && addr < high) {
1119           if (vma_low)  *vma_low  = low;
1120           if (vma_high) *vma_high = high;
1121           fclose (fp);
1122           return true;
1123        }
1124      }
1125      for (;;) {
1126        int ch = fgetc(fp);
1127        if (ch == EOF || ch == (int)'\n') break;
1128      }
1129    }
1130    fclose(fp);
1131  }
1132  return false;
1133}
1134
1135// Locate initial thread stack. This special handling of initial thread stack
1136// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1137// bogus value for initial thread.
1138void os::Linux::capture_initial_stack(size_t max_size) {
1139  // stack size is the easy part, get it from RLIMIT_STACK
1140  size_t stack_size;
1141  struct rlimit rlim;
1142  getrlimit(RLIMIT_STACK, &rlim);
1143  stack_size = rlim.rlim_cur;
1144
1145  // 6308388: a bug in ld.so will relocate its own .data section to the
1146  //   lower end of primordial stack; reduce ulimit -s value a little bit
1147  //   so we won't install guard page on ld.so's data section.
1148  stack_size -= 2 * page_size();
1149
1150  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1151  //   7.1, in both cases we will get 2G in return value.
1152  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1153  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1154  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1155  //   in case other parts in glibc still assumes 2M max stack size.
1156  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1157  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1158  if (stack_size > 2 * K * K IA64_ONLY(*2))
1159      stack_size = 2 * K * K IA64_ONLY(*2);
1160  // Try to figure out where the stack base (top) is. This is harder.
1161  //
1162  // When an application is started, glibc saves the initial stack pointer in
1163  // a global variable "__libc_stack_end", which is then used by system
1164  // libraries. __libc_stack_end should be pretty close to stack top. The
1165  // variable is available since the very early days. However, because it is
1166  // a private interface, it could disappear in the future.
1167  //
1168  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1169  // to __libc_stack_end, it is very close to stack top, but isn't the real
1170  // stack top. Note that /proc may not exist if VM is running as a chroot
1171  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1172  // /proc/<pid>/stat could change in the future (though unlikely).
1173  //
1174  // We try __libc_stack_end first. If that doesn't work, look for
1175  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1176  // as a hint, which should work well in most cases.
1177
1178  uintptr_t stack_start;
1179
1180  // try __libc_stack_end first
1181  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1182  if (p && *p) {
1183    stack_start = *p;
1184  } else {
1185    // see if we can get the start_stack field from /proc/self/stat
1186    FILE *fp;
1187    int pid;
1188    char state;
1189    int ppid;
1190    int pgrp;
1191    int session;
1192    int nr;
1193    int tpgrp;
1194    unsigned long flags;
1195    unsigned long minflt;
1196    unsigned long cminflt;
1197    unsigned long majflt;
1198    unsigned long cmajflt;
1199    unsigned long utime;
1200    unsigned long stime;
1201    long cutime;
1202    long cstime;
1203    long prio;
1204    long nice;
1205    long junk;
1206    long it_real;
1207    uintptr_t start;
1208    uintptr_t vsize;
1209    intptr_t rss;
1210    uintptr_t rsslim;
1211    uintptr_t scodes;
1212    uintptr_t ecode;
1213    int i;
1214
1215    // Figure what the primordial thread stack base is. Code is inspired
1216    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1217    // followed by command name surrounded by parentheses, state, etc.
1218    char stat[2048];
1219    int statlen;
1220
1221    fp = fopen("/proc/self/stat", "r");
1222    if (fp) {
1223      statlen = fread(stat, 1, 2047, fp);
1224      stat[statlen] = '\0';
1225      fclose(fp);
1226
1227      // Skip pid and the command string. Note that we could be dealing with
1228      // weird command names, e.g. user could decide to rename java launcher
1229      // to "java 1.4.2 :)", then the stat file would look like
1230      //                1234 (java 1.4.2 :)) R ... ...
1231      // We don't really need to know the command string, just find the last
1232      // occurrence of ")" and then start parsing from there. See bug 4726580.
1233      char * s = strrchr(stat, ')');
1234
1235      i = 0;
1236      if (s) {
1237        // Skip blank chars
1238        do s++; while (isspace(*s));
1239
1240#define _UFM UINTX_FORMAT
1241#define _DFM INTX_FORMAT
1242
1243        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1244        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1245        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1246             &state,          /* 3  %c  */
1247             &ppid,           /* 4  %d  */
1248             &pgrp,           /* 5  %d  */
1249             &session,        /* 6  %d  */
1250             &nr,             /* 7  %d  */
1251             &tpgrp,          /* 8  %d  */
1252             &flags,          /* 9  %lu  */
1253             &minflt,         /* 10 %lu  */
1254             &cminflt,        /* 11 %lu  */
1255             &majflt,         /* 12 %lu  */
1256             &cmajflt,        /* 13 %lu  */
1257             &utime,          /* 14 %lu  */
1258             &stime,          /* 15 %lu  */
1259             &cutime,         /* 16 %ld  */
1260             &cstime,         /* 17 %ld  */
1261             &prio,           /* 18 %ld  */
1262             &nice,           /* 19 %ld  */
1263             &junk,           /* 20 %ld  */
1264             &it_real,        /* 21 %ld  */
1265             &start,          /* 22 UINTX_FORMAT */
1266             &vsize,          /* 23 UINTX_FORMAT */
1267             &rss,            /* 24 INTX_FORMAT  */
1268             &rsslim,         /* 25 UINTX_FORMAT */
1269             &scodes,         /* 26 UINTX_FORMAT */
1270             &ecode,          /* 27 UINTX_FORMAT */
1271             &stack_start);   /* 28 UINTX_FORMAT */
1272      }
1273
1274#undef _UFM
1275#undef _DFM
1276
1277      if (i != 28 - 2) {
1278         assert(false, "Bad conversion from /proc/self/stat");
1279         // product mode - assume we are the initial thread, good luck in the
1280         // embedded case.
1281         warning("Can't detect initial thread stack location - bad conversion");
1282         stack_start = (uintptr_t) &rlim;
1283      }
1284    } else {
1285      // For some reason we can't open /proc/self/stat (for example, running on
1286      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1287      // most cases, so don't abort:
1288      warning("Can't detect initial thread stack location - no /proc/self/stat");
1289      stack_start = (uintptr_t) &rlim;
1290    }
1291  }
1292
1293  // Now we have a pointer (stack_start) very close to the stack top, the
1294  // next thing to do is to figure out the exact location of stack top. We
1295  // can find out the virtual memory area that contains stack_start by
1296  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1297  // and its upper limit is the real stack top. (again, this would fail if
1298  // running inside chroot, because /proc may not exist.)
1299
1300  uintptr_t stack_top;
1301  address low, high;
1302  if (find_vma((address)stack_start, &low, &high)) {
1303    // success, "high" is the true stack top. (ignore "low", because initial
1304    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1305    stack_top = (uintptr_t)high;
1306  } else {
1307    // failed, likely because /proc/self/maps does not exist
1308    warning("Can't detect initial thread stack location - find_vma failed");
1309    // best effort: stack_start is normally within a few pages below the real
1310    // stack top, use it as stack top, and reduce stack size so we won't put
1311    // guard page outside stack.
1312    stack_top = stack_start;
1313    stack_size -= 16 * page_size();
1314  }
1315
1316  // stack_top could be partially down the page so align it
1317  stack_top = align_size_up(stack_top, page_size());
1318
1319  if (max_size && stack_size > max_size) {
1320     _initial_thread_stack_size = max_size;
1321  } else {
1322     _initial_thread_stack_size = stack_size;
1323  }
1324
1325  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1326  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1327}
1328
1329////////////////////////////////////////////////////////////////////////////////
1330// time support
1331
1332// Time since start-up in seconds to a fine granularity.
1333// Used by VMSelfDestructTimer and the MemProfiler.
1334double os::elapsedTime() {
1335
1336  return (double)(os::elapsed_counter()) * 0.000001;
1337}
1338
1339jlong os::elapsed_counter() {
1340  timeval time;
1341  int status = gettimeofday(&time, NULL);
1342  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1343}
1344
1345jlong os::elapsed_frequency() {
1346  return (1000 * 1000);
1347}
1348
1349bool os::supports_vtime() { return true; }
1350bool os::enable_vtime()   { return false; }
1351bool os::vtime_enabled()  { return false; }
1352
1353double os::elapsedVTime() {
1354  struct rusage usage;
1355  int retval = getrusage(RUSAGE_THREAD, &usage);
1356  if (retval == 0) {
1357    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1358  } else {
1359    // better than nothing, but not much
1360    return elapsedTime();
1361  }
1362}
1363
1364jlong os::javaTimeMillis() {
1365  timeval time;
1366  int status = gettimeofday(&time, NULL);
1367  assert(status != -1, "linux error");
1368  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1369}
1370
1371#ifndef CLOCK_MONOTONIC
1372#define CLOCK_MONOTONIC (1)
1373#endif
1374
1375void os::Linux::clock_init() {
1376  // we do dlopen's in this particular order due to bug in linux
1377  // dynamical loader (see 6348968) leading to crash on exit
1378  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1379  if (handle == NULL) {
1380    handle = dlopen("librt.so", RTLD_LAZY);
1381  }
1382
1383  if (handle) {
1384    int (*clock_getres_func)(clockid_t, struct timespec*) =
1385           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1386    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1387           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1388    if (clock_getres_func && clock_gettime_func) {
1389      // See if monotonic clock is supported by the kernel. Note that some
1390      // early implementations simply return kernel jiffies (updated every
1391      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1392      // for nano time (though the monotonic property is still nice to have).
1393      // It's fixed in newer kernels, however clock_getres() still returns
1394      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1395      // resolution for now. Hopefully as people move to new kernels, this
1396      // won't be a problem.
1397      struct timespec res;
1398      struct timespec tp;
1399      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1400          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1401        // yes, monotonic clock is supported
1402        _clock_gettime = clock_gettime_func;
1403        return;
1404      } else {
1405        // close librt if there is no monotonic clock
1406        dlclose(handle);
1407      }
1408    }
1409  }
1410  warning("No monotonic clock was available - timed services may " \
1411          "be adversely affected if the time-of-day clock changes");
1412}
1413
1414#ifndef SYS_clock_getres
1415
1416#if defined(IA32) || defined(AMD64)
1417#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1418#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1419#else
1420#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1421#define sys_clock_getres(x,y)  -1
1422#endif
1423
1424#else
1425#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1426#endif
1427
1428void os::Linux::fast_thread_clock_init() {
1429  if (!UseLinuxPosixThreadCPUClocks) {
1430    return;
1431  }
1432  clockid_t clockid;
1433  struct timespec tp;
1434  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1435      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1436
1437  // Switch to using fast clocks for thread cpu time if
1438  // the sys_clock_getres() returns 0 error code.
1439  // Note, that some kernels may support the current thread
1440  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1441  // returned by the pthread_getcpuclockid().
1442  // If the fast Posix clocks are supported then the sys_clock_getres()
1443  // must return at least tp.tv_sec == 0 which means a resolution
1444  // better than 1 sec. This is extra check for reliability.
1445
1446  if(pthread_getcpuclockid_func &&
1447     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1448     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1449
1450    _supports_fast_thread_cpu_time = true;
1451    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1452  }
1453}
1454
1455jlong os::javaTimeNanos() {
1456  if (Linux::supports_monotonic_clock()) {
1457    struct timespec tp;
1458    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1459    assert(status == 0, "gettime error");
1460    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1461    return result;
1462  } else {
1463    timeval time;
1464    int status = gettimeofday(&time, NULL);
1465    assert(status != -1, "linux error");
1466    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1467    return 1000 * usecs;
1468  }
1469}
1470
1471void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1472  if (Linux::supports_monotonic_clock()) {
1473    info_ptr->max_value = ALL_64_BITS;
1474
1475    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1476    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1477    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1478  } else {
1479    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1480    info_ptr->max_value = ALL_64_BITS;
1481
1482    // gettimeofday is a real time clock so it skips
1483    info_ptr->may_skip_backward = true;
1484    info_ptr->may_skip_forward = true;
1485  }
1486
1487  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1488}
1489
1490// Return the real, user, and system times in seconds from an
1491// arbitrary fixed point in the past.
1492bool os::getTimesSecs(double* process_real_time,
1493                      double* process_user_time,
1494                      double* process_system_time) {
1495  struct tms ticks;
1496  clock_t real_ticks = times(&ticks);
1497
1498  if (real_ticks == (clock_t) (-1)) {
1499    return false;
1500  } else {
1501    double ticks_per_second = (double) clock_tics_per_sec;
1502    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1503    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1504    *process_real_time = ((double) real_ticks) / ticks_per_second;
1505
1506    return true;
1507  }
1508}
1509
1510
1511char * os::local_time_string(char *buf, size_t buflen) {
1512  struct tm t;
1513  time_t long_time;
1514  time(&long_time);
1515  localtime_r(&long_time, &t);
1516  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1517               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1518               t.tm_hour, t.tm_min, t.tm_sec);
1519  return buf;
1520}
1521
1522struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1523  return localtime_r(clock, res);
1524}
1525
1526////////////////////////////////////////////////////////////////////////////////
1527// runtime exit support
1528
1529// Note: os::shutdown() might be called very early during initialization, or
1530// called from signal handler. Before adding something to os::shutdown(), make
1531// sure it is async-safe and can handle partially initialized VM.
1532void os::shutdown() {
1533
1534  // allow PerfMemory to attempt cleanup of any persistent resources
1535  perfMemory_exit();
1536
1537  // needs to remove object in file system
1538  AttachListener::abort();
1539
1540  // flush buffered output, finish log files
1541  ostream_abort();
1542
1543  // Check for abort hook
1544  abort_hook_t abort_hook = Arguments::abort_hook();
1545  if (abort_hook != NULL) {
1546    abort_hook();
1547  }
1548
1549}
1550
1551// Note: os::abort() might be called very early during initialization, or
1552// called from signal handler. Before adding something to os::abort(), make
1553// sure it is async-safe and can handle partially initialized VM.
1554void os::abort(bool dump_core) {
1555  os::shutdown();
1556  if (dump_core) {
1557#ifndef PRODUCT
1558    fdStream out(defaultStream::output_fd());
1559    out.print_raw("Current thread is ");
1560    char buf[16];
1561    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1562    out.print_raw_cr(buf);
1563    out.print_raw_cr("Dumping core ...");
1564#endif
1565    ::abort(); // dump core
1566  }
1567
1568  ::exit(1);
1569}
1570
1571// Die immediately, no exit hook, no abort hook, no cleanup.
1572void os::die() {
1573  // _exit() on LinuxThreads only kills current thread
1574  ::abort();
1575}
1576
1577// unused on linux for now.
1578void os::set_error_file(const char *logfile) {}
1579
1580
1581// This method is a copy of JDK's sysGetLastErrorString
1582// from src/solaris/hpi/src/system_md.c
1583
1584size_t os::lasterror(char *buf, size_t len) {
1585
1586  if (errno == 0)  return 0;
1587
1588  const char *s = ::strerror(errno);
1589  size_t n = ::strlen(s);
1590  if (n >= len) {
1591    n = len - 1;
1592  }
1593  ::strncpy(buf, s, n);
1594  buf[n] = '\0';
1595  return n;
1596}
1597
1598intx os::current_thread_id() { return (intx)pthread_self(); }
1599int os::current_process_id() {
1600
1601  // Under the old linux thread library, linux gives each thread
1602  // its own process id. Because of this each thread will return
1603  // a different pid if this method were to return the result
1604  // of getpid(2). Linux provides no api that returns the pid
1605  // of the launcher thread for the vm. This implementation
1606  // returns a unique pid, the pid of the launcher thread
1607  // that starts the vm 'process'.
1608
1609  // Under the NPTL, getpid() returns the same pid as the
1610  // launcher thread rather than a unique pid per thread.
1611  // Use gettid() if you want the old pre NPTL behaviour.
1612
1613  // if you are looking for the result of a call to getpid() that
1614  // returns a unique pid for the calling thread, then look at the
1615  // OSThread::thread_id() method in osThread_linux.hpp file
1616
1617  return (int)(_initial_pid ? _initial_pid : getpid());
1618}
1619
1620// DLL functions
1621
1622const char* os::dll_file_extension() { return ".so"; }
1623
1624// This must be hard coded because it's the system's temporary
1625// directory not the java application's temp directory, ala java.io.tmpdir.
1626const char* os::get_temp_directory() { return "/tmp"; }
1627
1628static bool file_exists(const char* filename) {
1629  struct stat statbuf;
1630  if (filename == NULL || strlen(filename) == 0) {
1631    return false;
1632  }
1633  return os::stat(filename, &statbuf) == 0;
1634}
1635
1636bool os::dll_build_name(char* buffer, size_t buflen,
1637                        const char* pname, const char* fname) {
1638  bool retval = false;
1639  // Copied from libhpi
1640  const size_t pnamelen = pname ? strlen(pname) : 0;
1641
1642  // Return error on buffer overflow.
1643  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1644    return retval;
1645  }
1646
1647  if (pnamelen == 0) {
1648    snprintf(buffer, buflen, "lib%s.so", fname);
1649    retval = true;
1650  } else if (strchr(pname, *os::path_separator()) != NULL) {
1651    int n;
1652    char** pelements = split_path(pname, &n);
1653    if (pelements == NULL) {
1654      return false;
1655    }
1656    for (int i = 0 ; i < n ; i++) {
1657      // Really shouldn't be NULL, but check can't hurt
1658      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1659        continue; // skip the empty path values
1660      }
1661      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1662      if (file_exists(buffer)) {
1663        retval = true;
1664        break;
1665      }
1666    }
1667    // release the storage
1668    for (int i = 0 ; i < n ; i++) {
1669      if (pelements[i] != NULL) {
1670        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1671      }
1672    }
1673    if (pelements != NULL) {
1674      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1675    }
1676  } else {
1677    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1678    retval = true;
1679  }
1680  return retval;
1681}
1682
1683// check if addr is inside libjvm.so
1684bool os::address_is_in_vm(address addr) {
1685  static address libjvm_base_addr;
1686  Dl_info dlinfo;
1687
1688  if (libjvm_base_addr == NULL) {
1689    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1690      libjvm_base_addr = (address)dlinfo.dli_fbase;
1691    }
1692    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1693  }
1694
1695  if (dladdr((void *)addr, &dlinfo) != 0) {
1696    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1697  }
1698
1699  return false;
1700}
1701
1702bool os::dll_address_to_function_name(address addr, char *buf,
1703                                      int buflen, int *offset) {
1704  // buf is not optional, but offset is optional
1705  assert(buf != NULL, "sanity check");
1706
1707  Dl_info dlinfo;
1708
1709  if (dladdr((void*)addr, &dlinfo) != 0) {
1710    // see if we have a matching symbol
1711    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1712      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1713        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1714      }
1715      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1716      return true;
1717    }
1718    // no matching symbol so try for just file info
1719    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1720      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1721                          buf, buflen, offset, dlinfo.dli_fname)) {
1722        return true;
1723      }
1724    }
1725  }
1726
1727  buf[0] = '\0';
1728  if (offset != NULL) *offset = -1;
1729  return false;
1730}
1731
1732struct _address_to_library_name {
1733  address addr;          // input : memory address
1734  size_t  buflen;        //         size of fname
1735  char*   fname;         // output: library name
1736  address base;          //         library base addr
1737};
1738
1739static int address_to_library_name_callback(struct dl_phdr_info *info,
1740                                            size_t size, void *data) {
1741  int i;
1742  bool found = false;
1743  address libbase = NULL;
1744  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1745
1746  // iterate through all loadable segments
1747  for (i = 0; i < info->dlpi_phnum; i++) {
1748    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1749    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1750      // base address of a library is the lowest address of its loaded
1751      // segments.
1752      if (libbase == NULL || libbase > segbase) {
1753        libbase = segbase;
1754      }
1755      // see if 'addr' is within current segment
1756      if (segbase <= d->addr &&
1757          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1758        found = true;
1759      }
1760    }
1761  }
1762
1763  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1764  // so dll_address_to_library_name() can fall through to use dladdr() which
1765  // can figure out executable name from argv[0].
1766  if (found && info->dlpi_name && info->dlpi_name[0]) {
1767    d->base = libbase;
1768    if (d->fname) {
1769      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1770    }
1771    return 1;
1772  }
1773  return 0;
1774}
1775
1776bool os::dll_address_to_library_name(address addr, char* buf,
1777                                     int buflen, int* offset) {
1778  // buf is not optional, but offset is optional
1779  assert(buf != NULL, "sanity check");
1780
1781  Dl_info dlinfo;
1782  struct _address_to_library_name data;
1783
1784  // There is a bug in old glibc dladdr() implementation that it could resolve
1785  // to wrong library name if the .so file has a base address != NULL. Here
1786  // we iterate through the program headers of all loaded libraries to find
1787  // out which library 'addr' really belongs to. This workaround can be
1788  // removed once the minimum requirement for glibc is moved to 2.3.x.
1789  data.addr = addr;
1790  data.fname = buf;
1791  data.buflen = buflen;
1792  data.base = NULL;
1793  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1794
1795  if (rslt) {
1796     // buf already contains library name
1797     if (offset) *offset = addr - data.base;
1798     return true;
1799  }
1800  if (dladdr((void*)addr, &dlinfo) != 0) {
1801    if (dlinfo.dli_fname != NULL) {
1802      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1803    }
1804    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1805      *offset = addr - (address)dlinfo.dli_fbase;
1806    }
1807    return true;
1808  }
1809
1810  buf[0] = '\0';
1811  if (offset) *offset = -1;
1812  return false;
1813}
1814
1815  // Loads .dll/.so and
1816  // in case of error it checks if .dll/.so was built for the
1817  // same architecture as Hotspot is running on
1818
1819
1820// Remember the stack's state. The Linux dynamic linker will change
1821// the stack to 'executable' at most once, so we must safepoint only once.
1822bool os::Linux::_stack_is_executable = false;
1823
1824// VM operation that loads a library.  This is necessary if stack protection
1825// of the Java stacks can be lost during loading the library.  If we
1826// do not stop the Java threads, they can stack overflow before the stacks
1827// are protected again.
1828class VM_LinuxDllLoad: public VM_Operation {
1829 private:
1830  const char *_filename;
1831  char *_ebuf;
1832  int _ebuflen;
1833  void *_lib;
1834 public:
1835  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1836    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1837  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1838  void doit() {
1839    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1840    os::Linux::_stack_is_executable = true;
1841  }
1842  void* loaded_library() { return _lib; }
1843};
1844
1845void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1846{
1847  void * result = NULL;
1848  bool load_attempted = false;
1849
1850  // Check whether the library to load might change execution rights
1851  // of the stack. If they are changed, the protection of the stack
1852  // guard pages will be lost. We need a safepoint to fix this.
1853  //
1854  // See Linux man page execstack(8) for more info.
1855  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1856    ElfFile ef(filename);
1857    if (!ef.specifies_noexecstack()) {
1858      if (!is_init_completed()) {
1859        os::Linux::_stack_is_executable = true;
1860        // This is OK - No Java threads have been created yet, and hence no
1861        // stack guard pages to fix.
1862        //
1863        // This should happen only when you are building JDK7 using a very
1864        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1865        //
1866        // Dynamic loader will make all stacks executable after
1867        // this function returns, and will not do that again.
1868        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1869      } else {
1870        warning("You have loaded library %s which might have disabled stack guard. "
1871                "The VM will try to fix the stack guard now.\n"
1872                "It's highly recommended that you fix the library with "
1873                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1874                filename);
1875
1876        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1877        JavaThread *jt = JavaThread::current();
1878        if (jt->thread_state() != _thread_in_native) {
1879          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1880          // that requires ExecStack. Cannot enter safe point. Let's give up.
1881          warning("Unable to fix stack guard. Giving up.");
1882        } else {
1883          if (!LoadExecStackDllInVMThread) {
1884            // This is for the case where the DLL has an static
1885            // constructor function that executes JNI code. We cannot
1886            // load such DLLs in the VMThread.
1887            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1888          }
1889
1890          ThreadInVMfromNative tiv(jt);
1891          debug_only(VMNativeEntryWrapper vew;)
1892
1893          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1894          VMThread::execute(&op);
1895          if (LoadExecStackDllInVMThread) {
1896            result = op.loaded_library();
1897          }
1898          load_attempted = true;
1899        }
1900      }
1901    }
1902  }
1903
1904  if (!load_attempted) {
1905    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1906  }
1907
1908  if (result != NULL) {
1909    // Successful loading
1910    return result;
1911  }
1912
1913  Elf32_Ehdr elf_head;
1914  int diag_msg_max_length=ebuflen-strlen(ebuf);
1915  char* diag_msg_buf=ebuf+strlen(ebuf);
1916
1917  if (diag_msg_max_length==0) {
1918    // No more space in ebuf for additional diagnostics message
1919    return NULL;
1920  }
1921
1922
1923  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1924
1925  if (file_descriptor < 0) {
1926    // Can't open library, report dlerror() message
1927    return NULL;
1928  }
1929
1930  bool failed_to_read_elf_head=
1931    (sizeof(elf_head)!=
1932        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1933
1934  ::close(file_descriptor);
1935  if (failed_to_read_elf_head) {
1936    // file i/o error - report dlerror() msg
1937    return NULL;
1938  }
1939
1940  typedef struct {
1941    Elf32_Half  code;         // Actual value as defined in elf.h
1942    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1943    char        elf_class;    // 32 or 64 bit
1944    char        endianess;    // MSB or LSB
1945    char*       name;         // String representation
1946  } arch_t;
1947
1948  #ifndef EM_486
1949  #define EM_486          6               /* Intel 80486 */
1950  #endif
1951
1952  static const arch_t arch_array[]={
1953    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1954    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1955    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1956    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1957    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1958    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1959    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1960    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1961    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1962    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1963    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1964    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1965    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1966    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1967    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1968    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1969  };
1970
1971  #if  (defined IA32)
1972    static  Elf32_Half running_arch_code=EM_386;
1973  #elif   (defined AMD64)
1974    static  Elf32_Half running_arch_code=EM_X86_64;
1975  #elif  (defined IA64)
1976    static  Elf32_Half running_arch_code=EM_IA_64;
1977  #elif  (defined __sparc) && (defined _LP64)
1978    static  Elf32_Half running_arch_code=EM_SPARCV9;
1979  #elif  (defined __sparc) && (!defined _LP64)
1980    static  Elf32_Half running_arch_code=EM_SPARC;
1981  #elif  (defined __powerpc64__)
1982    static  Elf32_Half running_arch_code=EM_PPC64;
1983  #elif  (defined __powerpc__)
1984    static  Elf32_Half running_arch_code=EM_PPC;
1985  #elif  (defined ARM)
1986    static  Elf32_Half running_arch_code=EM_ARM;
1987  #elif  (defined S390)
1988    static  Elf32_Half running_arch_code=EM_S390;
1989  #elif  (defined ALPHA)
1990    static  Elf32_Half running_arch_code=EM_ALPHA;
1991  #elif  (defined MIPSEL)
1992    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1993  #elif  (defined PARISC)
1994    static  Elf32_Half running_arch_code=EM_PARISC;
1995  #elif  (defined MIPS)
1996    static  Elf32_Half running_arch_code=EM_MIPS;
1997  #elif  (defined M68K)
1998    static  Elf32_Half running_arch_code=EM_68K;
1999  #else
2000    #error Method os::dll_load requires that one of following is defined:\
2001         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2002  #endif
2003
2004  // Identify compatability class for VM's architecture and library's architecture
2005  // Obtain string descriptions for architectures
2006
2007  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2008  int running_arch_index=-1;
2009
2010  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2011    if (running_arch_code == arch_array[i].code) {
2012      running_arch_index    = i;
2013    }
2014    if (lib_arch.code == arch_array[i].code) {
2015      lib_arch.compat_class = arch_array[i].compat_class;
2016      lib_arch.name         = arch_array[i].name;
2017    }
2018  }
2019
2020  assert(running_arch_index != -1,
2021    "Didn't find running architecture code (running_arch_code) in arch_array");
2022  if (running_arch_index == -1) {
2023    // Even though running architecture detection failed
2024    // we may still continue with reporting dlerror() message
2025    return NULL;
2026  }
2027
2028  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2029    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2030    return NULL;
2031  }
2032
2033#ifndef S390
2034  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2035    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2036    return NULL;
2037  }
2038#endif // !S390
2039
2040  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2041    if ( lib_arch.name!=NULL ) {
2042      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2043        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2044        lib_arch.name, arch_array[running_arch_index].name);
2045    } else {
2046      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2047      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2048        lib_arch.code,
2049        arch_array[running_arch_index].name);
2050    }
2051  }
2052
2053  return NULL;
2054}
2055
2056void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2057  void * result = ::dlopen(filename, RTLD_LAZY);
2058  if (result == NULL) {
2059    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2060    ebuf[ebuflen-1] = '\0';
2061  }
2062  return result;
2063}
2064
2065void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2066  void * result = NULL;
2067  if (LoadExecStackDllInVMThread) {
2068    result = dlopen_helper(filename, ebuf, ebuflen);
2069  }
2070
2071  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2072  // library that requires an executable stack, or which does not have this
2073  // stack attribute set, dlopen changes the stack attribute to executable. The
2074  // read protection of the guard pages gets lost.
2075  //
2076  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2077  // may have been queued at the same time.
2078
2079  if (!_stack_is_executable) {
2080    JavaThread *jt = Threads::first();
2081
2082    while (jt) {
2083      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2084          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2085        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2086                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2087          warning("Attempt to reguard stack yellow zone failed.");
2088        }
2089      }
2090      jt = jt->next();
2091    }
2092  }
2093
2094  return result;
2095}
2096
2097/*
2098 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2099 * chances are you might want to run the generated bits against glibc-2.0
2100 * libdl.so, so always use locking for any version of glibc.
2101 */
2102void* os::dll_lookup(void* handle, const char* name) {
2103  pthread_mutex_lock(&dl_mutex);
2104  void* res = dlsym(handle, name);
2105  pthread_mutex_unlock(&dl_mutex);
2106  return res;
2107}
2108
2109
2110static bool _print_ascii_file(const char* filename, outputStream* st) {
2111  int fd = ::open(filename, O_RDONLY);
2112  if (fd == -1) {
2113     return false;
2114  }
2115
2116  char buf[32];
2117  int bytes;
2118  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2119    st->print_raw(buf, bytes);
2120  }
2121
2122  ::close(fd);
2123
2124  return true;
2125}
2126
2127void os::print_dll_info(outputStream *st) {
2128   st->print_cr("Dynamic libraries:");
2129
2130   char fname[32];
2131   pid_t pid = os::Linux::gettid();
2132
2133   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2134
2135   if (!_print_ascii_file(fname, st)) {
2136     st->print("Can not get library information for pid = %d\n", pid);
2137   }
2138}
2139
2140void os::print_os_info_brief(outputStream* st) {
2141  os::Linux::print_distro_info(st);
2142
2143  os::Posix::print_uname_info(st);
2144
2145  os::Linux::print_libversion_info(st);
2146
2147}
2148
2149void os::print_os_info(outputStream* st) {
2150  st->print("OS:");
2151
2152  os::Linux::print_distro_info(st);
2153
2154  os::Posix::print_uname_info(st);
2155
2156  // Print warning if unsafe chroot environment detected
2157  if (unsafe_chroot_detected) {
2158    st->print("WARNING!! ");
2159    st->print_cr(unstable_chroot_error);
2160  }
2161
2162  os::Linux::print_libversion_info(st);
2163
2164  os::Posix::print_rlimit_info(st);
2165
2166  os::Posix::print_load_average(st);
2167
2168  os::Linux::print_full_memory_info(st);
2169}
2170
2171// Try to identify popular distros.
2172// Most Linux distributions have a /etc/XXX-release file, which contains
2173// the OS version string. Newer Linux distributions have a /etc/lsb-release
2174// file that also contains the OS version string. Some have more than one
2175// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2176// /etc/redhat-release.), so the order is important.
2177// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2178// their own specific XXX-release file as well as a redhat-release file.
2179// Because of this the XXX-release file needs to be searched for before the
2180// redhat-release file.
2181// Since Red Hat has a lsb-release file that is not very descriptive the
2182// search for redhat-release needs to be before lsb-release.
2183// Since the lsb-release file is the new standard it needs to be searched
2184// before the older style release files.
2185// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2186// next to last resort.  The os-release file is a new standard that contains
2187// distribution information and the system-release file seems to be an old
2188// standard that has been replaced by the lsb-release and os-release files.
2189// Searching for the debian_version file is the last resort.  It contains
2190// an informative string like "6.0.6" or "wheezy/sid". Because of this
2191// "Debian " is printed before the contents of the debian_version file.
2192void os::Linux::print_distro_info(outputStream* st) {
2193   if (!_print_ascii_file("/etc/oracle-release", st) &&
2194       !_print_ascii_file("/etc/mandriva-release", st) &&
2195       !_print_ascii_file("/etc/mandrake-release", st) &&
2196       !_print_ascii_file("/etc/sun-release", st) &&
2197       !_print_ascii_file("/etc/redhat-release", st) &&
2198       !_print_ascii_file("/etc/lsb-release", st) &&
2199       !_print_ascii_file("/etc/SuSE-release", st) &&
2200       !_print_ascii_file("/etc/turbolinux-release", st) &&
2201       !_print_ascii_file("/etc/gentoo-release", st) &&
2202       !_print_ascii_file("/etc/ltib-release", st) &&
2203       !_print_ascii_file("/etc/angstrom-version", st) &&
2204       !_print_ascii_file("/etc/system-release", st) &&
2205       !_print_ascii_file("/etc/os-release", st)) {
2206
2207       if (file_exists("/etc/debian_version")) {
2208         st->print("Debian ");
2209         _print_ascii_file("/etc/debian_version", st);
2210       } else {
2211         st->print("Linux");
2212       }
2213   }
2214   st->cr();
2215}
2216
2217void os::Linux::print_libversion_info(outputStream* st) {
2218  // libc, pthread
2219  st->print("libc:");
2220  st->print(os::Linux::glibc_version()); st->print(" ");
2221  st->print(os::Linux::libpthread_version()); st->print(" ");
2222  if (os::Linux::is_LinuxThreads()) {
2223     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2224  }
2225  st->cr();
2226}
2227
2228void os::Linux::print_full_memory_info(outputStream* st) {
2229   st->print("\n/proc/meminfo:\n");
2230   _print_ascii_file("/proc/meminfo", st);
2231   st->cr();
2232}
2233
2234void os::print_memory_info(outputStream* st) {
2235
2236  st->print("Memory:");
2237  st->print(" %dk page", os::vm_page_size()>>10);
2238
2239  // values in struct sysinfo are "unsigned long"
2240  struct sysinfo si;
2241  sysinfo(&si);
2242
2243  st->print(", physical " UINT64_FORMAT "k",
2244            os::physical_memory() >> 10);
2245  st->print("(" UINT64_FORMAT "k free)",
2246            os::available_memory() >> 10);
2247  st->print(", swap " UINT64_FORMAT "k",
2248            ((jlong)si.totalswap * si.mem_unit) >> 10);
2249  st->print("(" UINT64_FORMAT "k free)",
2250            ((jlong)si.freeswap * si.mem_unit) >> 10);
2251  st->cr();
2252}
2253
2254void os::pd_print_cpu_info(outputStream* st) {
2255  st->print("\n/proc/cpuinfo:\n");
2256  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2257    st->print("  <Not Available>");
2258  }
2259  st->cr();
2260}
2261
2262// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2263// but they're the same for all the linux arch that we support
2264// and they're the same for solaris but there's no common place to put this.
2265const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2266                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2267                          "ILL_COPROC", "ILL_BADSTK" };
2268
2269const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2270                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2271                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2272
2273const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2274
2275const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2276
2277void os::print_siginfo(outputStream* st, void* siginfo) {
2278  st->print("siginfo:");
2279
2280  const int buflen = 100;
2281  char buf[buflen];
2282  siginfo_t *si = (siginfo_t*)siginfo;
2283  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2284  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2285    st->print("si_errno=%s", buf);
2286  } else {
2287    st->print("si_errno=%d", si->si_errno);
2288  }
2289  const int c = si->si_code;
2290  assert(c > 0, "unexpected si_code");
2291  switch (si->si_signo) {
2292  case SIGILL:
2293    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2294    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2295    break;
2296  case SIGFPE:
2297    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2298    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2299    break;
2300  case SIGSEGV:
2301    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2302    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2303    break;
2304  case SIGBUS:
2305    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2306    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2307    break;
2308  default:
2309    st->print(", si_code=%d", si->si_code);
2310    // no si_addr
2311  }
2312
2313  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2314      UseSharedSpaces) {
2315    FileMapInfo* mapinfo = FileMapInfo::current_info();
2316    if (mapinfo->is_in_shared_space(si->si_addr)) {
2317      st->print("\n\nError accessing class data sharing archive."   \
2318                " Mapped file inaccessible during execution, "      \
2319                " possible disk/network problem.");
2320    }
2321  }
2322  st->cr();
2323}
2324
2325
2326static void print_signal_handler(outputStream* st, int sig,
2327                                 char* buf, size_t buflen);
2328
2329void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2330  st->print_cr("Signal Handlers:");
2331  print_signal_handler(st, SIGSEGV, buf, buflen);
2332  print_signal_handler(st, SIGBUS , buf, buflen);
2333  print_signal_handler(st, SIGFPE , buf, buflen);
2334  print_signal_handler(st, SIGPIPE, buf, buflen);
2335  print_signal_handler(st, SIGXFSZ, buf, buflen);
2336  print_signal_handler(st, SIGILL , buf, buflen);
2337  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2338  print_signal_handler(st, SR_signum, buf, buflen);
2339  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2340  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2341  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2342  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2343}
2344
2345static char saved_jvm_path[MAXPATHLEN] = {0};
2346
2347// Find the full path to the current module, libjvm.so
2348void os::jvm_path(char *buf, jint buflen) {
2349  // Error checking.
2350  if (buflen < MAXPATHLEN) {
2351    assert(false, "must use a large-enough buffer");
2352    buf[0] = '\0';
2353    return;
2354  }
2355  // Lazy resolve the path to current module.
2356  if (saved_jvm_path[0] != 0) {
2357    strcpy(buf, saved_jvm_path);
2358    return;
2359  }
2360
2361  char dli_fname[MAXPATHLEN];
2362  bool ret = dll_address_to_library_name(
2363                CAST_FROM_FN_PTR(address, os::jvm_path),
2364                dli_fname, sizeof(dli_fname), NULL);
2365  assert(ret, "cannot locate libjvm");
2366  char *rp = NULL;
2367  if (ret && dli_fname[0] != '\0') {
2368    rp = realpath(dli_fname, buf);
2369  }
2370  if (rp == NULL)
2371    return;
2372
2373  if (Arguments::created_by_gamma_launcher()) {
2374    // Support for the gamma launcher.  Typical value for buf is
2375    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2376    // the right place in the string, then assume we are installed in a JDK and
2377    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2378    // up the path so it looks like libjvm.so is installed there (append a
2379    // fake suffix hotspot/libjvm.so).
2380    const char *p = buf + strlen(buf) - 1;
2381    for (int count = 0; p > buf && count < 5; ++count) {
2382      for (--p; p > buf && *p != '/'; --p)
2383        /* empty */ ;
2384    }
2385
2386    if (strncmp(p, "/jre/lib/", 9) != 0) {
2387      // Look for JAVA_HOME in the environment.
2388      char* java_home_var = ::getenv("JAVA_HOME");
2389      if (java_home_var != NULL && java_home_var[0] != 0) {
2390        char* jrelib_p;
2391        int len;
2392
2393        // Check the current module name "libjvm.so".
2394        p = strrchr(buf, '/');
2395        assert(strstr(p, "/libjvm") == p, "invalid library name");
2396
2397        rp = realpath(java_home_var, buf);
2398        if (rp == NULL)
2399          return;
2400
2401        // determine if this is a legacy image or modules image
2402        // modules image doesn't have "jre" subdirectory
2403        len = strlen(buf);
2404        jrelib_p = buf + len;
2405        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2406        if (0 != access(buf, F_OK)) {
2407          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2408        }
2409
2410        if (0 == access(buf, F_OK)) {
2411          // Use current module name "libjvm.so"
2412          len = strlen(buf);
2413          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2414        } else {
2415          // Go back to path of .so
2416          rp = realpath(dli_fname, buf);
2417          if (rp == NULL)
2418            return;
2419        }
2420      }
2421    }
2422  }
2423
2424  strcpy(saved_jvm_path, buf);
2425}
2426
2427void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2428  // no prefix required, not even "_"
2429}
2430
2431void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2432  // no suffix required
2433}
2434
2435////////////////////////////////////////////////////////////////////////////////
2436// sun.misc.Signal support
2437
2438static volatile jint sigint_count = 0;
2439
2440static void
2441UserHandler(int sig, void *siginfo, void *context) {
2442  // 4511530 - sem_post is serialized and handled by the manager thread. When
2443  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2444  // don't want to flood the manager thread with sem_post requests.
2445  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2446      return;
2447
2448  // Ctrl-C is pressed during error reporting, likely because the error
2449  // handler fails to abort. Let VM die immediately.
2450  if (sig == SIGINT && is_error_reported()) {
2451     os::die();
2452  }
2453
2454  os::signal_notify(sig);
2455}
2456
2457void* os::user_handler() {
2458  return CAST_FROM_FN_PTR(void*, UserHandler);
2459}
2460
2461class Semaphore : public StackObj {
2462  public:
2463    Semaphore();
2464    ~Semaphore();
2465    void signal();
2466    void wait();
2467    bool trywait();
2468    bool timedwait(unsigned int sec, int nsec);
2469  private:
2470    sem_t _semaphore;
2471};
2472
2473
2474Semaphore::Semaphore() {
2475  sem_init(&_semaphore, 0, 0);
2476}
2477
2478Semaphore::~Semaphore() {
2479  sem_destroy(&_semaphore);
2480}
2481
2482void Semaphore::signal() {
2483  sem_post(&_semaphore);
2484}
2485
2486void Semaphore::wait() {
2487  sem_wait(&_semaphore);
2488}
2489
2490bool Semaphore::trywait() {
2491  return sem_trywait(&_semaphore) == 0;
2492}
2493
2494bool Semaphore::timedwait(unsigned int sec, int nsec) {
2495  struct timespec ts;
2496  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2497
2498  while (1) {
2499    int result = sem_timedwait(&_semaphore, &ts);
2500    if (result == 0) {
2501      return true;
2502    } else if (errno == EINTR) {
2503      continue;
2504    } else if (errno == ETIMEDOUT) {
2505      return false;
2506    } else {
2507      return false;
2508    }
2509  }
2510}
2511
2512extern "C" {
2513  typedef void (*sa_handler_t)(int);
2514  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2515}
2516
2517void* os::signal(int signal_number, void* handler) {
2518  struct sigaction sigAct, oldSigAct;
2519
2520  sigfillset(&(sigAct.sa_mask));
2521  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2522  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2523
2524  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2525    // -1 means registration failed
2526    return (void *)-1;
2527  }
2528
2529  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2530}
2531
2532void os::signal_raise(int signal_number) {
2533  ::raise(signal_number);
2534}
2535
2536/*
2537 * The following code is moved from os.cpp for making this
2538 * code platform specific, which it is by its very nature.
2539 */
2540
2541// Will be modified when max signal is changed to be dynamic
2542int os::sigexitnum_pd() {
2543  return NSIG;
2544}
2545
2546// a counter for each possible signal value
2547static volatile jint pending_signals[NSIG+1] = { 0 };
2548
2549// Linux(POSIX) specific hand shaking semaphore.
2550static sem_t sig_sem;
2551static Semaphore sr_semaphore;
2552
2553void os::signal_init_pd() {
2554  // Initialize signal structures
2555  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2556
2557  // Initialize signal semaphore
2558  ::sem_init(&sig_sem, 0, 0);
2559}
2560
2561void os::signal_notify(int sig) {
2562  Atomic::inc(&pending_signals[sig]);
2563  ::sem_post(&sig_sem);
2564}
2565
2566static int check_pending_signals(bool wait) {
2567  Atomic::store(0, &sigint_count);
2568  for (;;) {
2569    for (int i = 0; i < NSIG + 1; i++) {
2570      jint n = pending_signals[i];
2571      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2572        return i;
2573      }
2574    }
2575    if (!wait) {
2576      return -1;
2577    }
2578    JavaThread *thread = JavaThread::current();
2579    ThreadBlockInVM tbivm(thread);
2580
2581    bool threadIsSuspended;
2582    do {
2583      thread->set_suspend_equivalent();
2584      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2585      ::sem_wait(&sig_sem);
2586
2587      // were we externally suspended while we were waiting?
2588      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2589      if (threadIsSuspended) {
2590        //
2591        // The semaphore has been incremented, but while we were waiting
2592        // another thread suspended us. We don't want to continue running
2593        // while suspended because that would surprise the thread that
2594        // suspended us.
2595        //
2596        ::sem_post(&sig_sem);
2597
2598        thread->java_suspend_self();
2599      }
2600    } while (threadIsSuspended);
2601  }
2602}
2603
2604int os::signal_lookup() {
2605  return check_pending_signals(false);
2606}
2607
2608int os::signal_wait() {
2609  return check_pending_signals(true);
2610}
2611
2612////////////////////////////////////////////////////////////////////////////////
2613// Virtual Memory
2614
2615int os::vm_page_size() {
2616  // Seems redundant as all get out
2617  assert(os::Linux::page_size() != -1, "must call os::init");
2618  return os::Linux::page_size();
2619}
2620
2621// Solaris allocates memory by pages.
2622int os::vm_allocation_granularity() {
2623  assert(os::Linux::page_size() != -1, "must call os::init");
2624  return os::Linux::page_size();
2625}
2626
2627// Rationale behind this function:
2628//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2629//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2630//  samples for JITted code. Here we create private executable mapping over the code cache
2631//  and then we can use standard (well, almost, as mapping can change) way to provide
2632//  info for the reporting script by storing timestamp and location of symbol
2633void linux_wrap_code(char* base, size_t size) {
2634  static volatile jint cnt = 0;
2635
2636  if (!UseOprofile) {
2637    return;
2638  }
2639
2640  char buf[PATH_MAX+1];
2641  int num = Atomic::add(1, &cnt);
2642
2643  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2644           os::get_temp_directory(), os::current_process_id(), num);
2645  unlink(buf);
2646
2647  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2648
2649  if (fd != -1) {
2650    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2651    if (rv != (off_t)-1) {
2652      if (::write(fd, "", 1) == 1) {
2653        mmap(base, size,
2654             PROT_READ|PROT_WRITE|PROT_EXEC,
2655             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2656      }
2657    }
2658    ::close(fd);
2659    unlink(buf);
2660  }
2661}
2662
2663static bool recoverable_mmap_error(int err) {
2664  // See if the error is one we can let the caller handle. This
2665  // list of errno values comes from JBS-6843484. I can't find a
2666  // Linux man page that documents this specific set of errno
2667  // values so while this list currently matches Solaris, it may
2668  // change as we gain experience with this failure mode.
2669  switch (err) {
2670  case EBADF:
2671  case EINVAL:
2672  case ENOTSUP:
2673    // let the caller deal with these errors
2674    return true;
2675
2676  default:
2677    // Any remaining errors on this OS can cause our reserved mapping
2678    // to be lost. That can cause confusion where different data
2679    // structures think they have the same memory mapped. The worst
2680    // scenario is if both the VM and a library think they have the
2681    // same memory mapped.
2682    return false;
2683  }
2684}
2685
2686static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2687                                    int err) {
2688  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2689          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2690          strerror(err), err);
2691}
2692
2693static void warn_fail_commit_memory(char* addr, size_t size,
2694                                    size_t alignment_hint, bool exec,
2695                                    int err) {
2696  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2697          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2698          alignment_hint, exec, strerror(err), err);
2699}
2700
2701// NOTE: Linux kernel does not really reserve the pages for us.
2702//       All it does is to check if there are enough free pages
2703//       left at the time of mmap(). This could be a potential
2704//       problem.
2705int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2706  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2707  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2708                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2709  if (res != (uintptr_t) MAP_FAILED) {
2710    if (UseNUMAInterleaving) {
2711      numa_make_global(addr, size);
2712    }
2713    return 0;
2714  }
2715
2716  int err = errno;  // save errno from mmap() call above
2717
2718  if (!recoverable_mmap_error(err)) {
2719    warn_fail_commit_memory(addr, size, exec, err);
2720    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2721  }
2722
2723  return err;
2724}
2725
2726bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2727  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2728}
2729
2730void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2731                                  const char* mesg) {
2732  assert(mesg != NULL, "mesg must be specified");
2733  int err = os::Linux::commit_memory_impl(addr, size, exec);
2734  if (err != 0) {
2735    // the caller wants all commit errors to exit with the specified mesg:
2736    warn_fail_commit_memory(addr, size, exec, err);
2737    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2738  }
2739}
2740
2741// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2742#ifndef MAP_HUGETLB
2743#define MAP_HUGETLB 0x40000
2744#endif
2745
2746// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2747#ifndef MADV_HUGEPAGE
2748#define MADV_HUGEPAGE 14
2749#endif
2750
2751int os::Linux::commit_memory_impl(char* addr, size_t size,
2752                                  size_t alignment_hint, bool exec) {
2753  int err = os::Linux::commit_memory_impl(addr, size, exec);
2754  if (err == 0) {
2755    realign_memory(addr, size, alignment_hint);
2756  }
2757  return err;
2758}
2759
2760bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2761                          bool exec) {
2762  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2763}
2764
2765void os::pd_commit_memory_or_exit(char* addr, size_t size,
2766                                  size_t alignment_hint, bool exec,
2767                                  const char* mesg) {
2768  assert(mesg != NULL, "mesg must be specified");
2769  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2770  if (err != 0) {
2771    // the caller wants all commit errors to exit with the specified mesg:
2772    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2773    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2774  }
2775}
2776
2777void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2778  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2779    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2780    // be supported or the memory may already be backed by huge pages.
2781    ::madvise(addr, bytes, MADV_HUGEPAGE);
2782  }
2783}
2784
2785void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2786  // This method works by doing an mmap over an existing mmaping and effectively discarding
2787  // the existing pages. However it won't work for SHM-based large pages that cannot be
2788  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2789  // small pages on top of the SHM segment. This method always works for small pages, so we
2790  // allow that in any case.
2791  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2792    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2793  }
2794}
2795
2796void os::numa_make_global(char *addr, size_t bytes) {
2797  Linux::numa_interleave_memory(addr, bytes);
2798}
2799
2800// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2801// bind policy to MPOL_PREFERRED for the current thread.
2802#define USE_MPOL_PREFERRED 0
2803
2804void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2805  // To make NUMA and large pages more robust when both enabled, we need to ease
2806  // the requirements on where the memory should be allocated. MPOL_BIND is the
2807  // default policy and it will force memory to be allocated on the specified
2808  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2809  // the specified node, but will not force it. Using this policy will prevent
2810  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2811  // free large pages.
2812  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2813  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2814}
2815
2816bool os::numa_topology_changed()   { return false; }
2817
2818size_t os::numa_get_groups_num() {
2819  int max_node = Linux::numa_max_node();
2820  return max_node > 0 ? max_node + 1 : 1;
2821}
2822
2823int os::numa_get_group_id() {
2824  int cpu_id = Linux::sched_getcpu();
2825  if (cpu_id != -1) {
2826    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2827    if (lgrp_id != -1) {
2828      return lgrp_id;
2829    }
2830  }
2831  return 0;
2832}
2833
2834size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2835  for (size_t i = 0; i < size; i++) {
2836    ids[i] = i;
2837  }
2838  return size;
2839}
2840
2841bool os::get_page_info(char *start, page_info* info) {
2842  return false;
2843}
2844
2845char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2846  return end;
2847}
2848
2849
2850int os::Linux::sched_getcpu_syscall(void) {
2851  unsigned int cpu;
2852  int retval = -1;
2853
2854#if defined(IA32)
2855# ifndef SYS_getcpu
2856# define SYS_getcpu 318
2857# endif
2858  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2859#elif defined(AMD64)
2860// Unfortunately we have to bring all these macros here from vsyscall.h
2861// to be able to compile on old linuxes.
2862# define __NR_vgetcpu 2
2863# define VSYSCALL_START (-10UL << 20)
2864# define VSYSCALL_SIZE 1024
2865# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2866  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2867  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2868  retval = vgetcpu(&cpu, NULL, NULL);
2869#endif
2870
2871  return (retval == -1) ? retval : cpu;
2872}
2873
2874// Something to do with the numa-aware allocator needs these symbols
2875extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2876extern "C" JNIEXPORT void numa_error(char *where) { }
2877extern "C" JNIEXPORT int fork1() { return fork(); }
2878
2879
2880// If we are running with libnuma version > 2, then we should
2881// be trying to use symbols with versions 1.1
2882// If we are running with earlier version, which did not have symbol versions,
2883// we should use the base version.
2884void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2885  void *f = dlvsym(handle, name, "libnuma_1.1");
2886  if (f == NULL) {
2887    f = dlsym(handle, name);
2888  }
2889  return f;
2890}
2891
2892bool os::Linux::libnuma_init() {
2893  // sched_getcpu() should be in libc.
2894  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2895                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2896
2897  // If it's not, try a direct syscall.
2898  if (sched_getcpu() == -1)
2899    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2900
2901  if (sched_getcpu() != -1) { // Does it work?
2902    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2903    if (handle != NULL) {
2904      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2905                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2906      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2907                                       libnuma_dlsym(handle, "numa_max_node")));
2908      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2909                                        libnuma_dlsym(handle, "numa_available")));
2910      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2911                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2912      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2913                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2914      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2915                                            libnuma_dlsym(handle, "numa_set_bind_policy")));
2916
2917
2918      if (numa_available() != -1) {
2919        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2920        // Create a cpu -> node mapping
2921        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2922        rebuild_cpu_to_node_map();
2923        return true;
2924      }
2925    }
2926  }
2927  return false;
2928}
2929
2930// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2931// The table is later used in get_node_by_cpu().
2932void os::Linux::rebuild_cpu_to_node_map() {
2933  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2934                              // in libnuma (possible values are starting from 16,
2935                              // and continuing up with every other power of 2, but less
2936                              // than the maximum number of CPUs supported by kernel), and
2937                              // is a subject to change (in libnuma version 2 the requirements
2938                              // are more reasonable) we'll just hardcode the number they use
2939                              // in the library.
2940  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2941
2942  size_t cpu_num = os::active_processor_count();
2943  size_t cpu_map_size = NCPUS / BitsPerCLong;
2944  size_t cpu_map_valid_size =
2945    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2946
2947  cpu_to_node()->clear();
2948  cpu_to_node()->at_grow(cpu_num - 1);
2949  size_t node_num = numa_get_groups_num();
2950
2951  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2952  for (size_t i = 0; i < node_num; i++) {
2953    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2954      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2955        if (cpu_map[j] != 0) {
2956          for (size_t k = 0; k < BitsPerCLong; k++) {
2957            if (cpu_map[j] & (1UL << k)) {
2958              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2959            }
2960          }
2961        }
2962      }
2963    }
2964  }
2965  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2966}
2967
2968int os::Linux::get_node_by_cpu(int cpu_id) {
2969  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2970    return cpu_to_node()->at(cpu_id);
2971  }
2972  return -1;
2973}
2974
2975GrowableArray<int>* os::Linux::_cpu_to_node;
2976os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2977os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2978os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2979os::Linux::numa_available_func_t os::Linux::_numa_available;
2980os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2981os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2982os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2983unsigned long* os::Linux::_numa_all_nodes;
2984
2985bool os::pd_uncommit_memory(char* addr, size_t size) {
2986  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2987                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2988  return res  != (uintptr_t) MAP_FAILED;
2989}
2990
2991static
2992address get_stack_commited_bottom(address bottom, size_t size) {
2993  address nbot = bottom;
2994  address ntop = bottom + size;
2995
2996  size_t page_sz = os::vm_page_size();
2997  unsigned pages = size / page_sz;
2998
2999  unsigned char vec[1];
3000  unsigned imin = 1, imax = pages + 1, imid;
3001  int mincore_return_value;
3002
3003  while (imin < imax) {
3004    imid = (imax + imin) / 2;
3005    nbot = ntop - (imid * page_sz);
3006
3007    // Use a trick with mincore to check whether the page is mapped or not.
3008    // mincore sets vec to 1 if page resides in memory and to 0 if page
3009    // is swapped output but if page we are asking for is unmapped
3010    // it returns -1,ENOMEM
3011    mincore_return_value = mincore(nbot, page_sz, vec);
3012
3013    if (mincore_return_value == -1) {
3014      // Page is not mapped go up
3015      // to find first mapped page
3016      if (errno != EAGAIN) {
3017        assert(errno == ENOMEM, "Unexpected mincore errno");
3018        imax = imid;
3019      }
3020    } else {
3021      // Page is mapped go down
3022      // to find first not mapped page
3023      imin = imid + 1;
3024    }
3025  }
3026
3027  nbot = nbot + page_sz;
3028
3029  // Adjust stack bottom one page up if last checked page is not mapped
3030  if (mincore_return_value == -1) {
3031    nbot = nbot + page_sz;
3032  }
3033
3034  return nbot;
3035}
3036
3037
3038// Linux uses a growable mapping for the stack, and if the mapping for
3039// the stack guard pages is not removed when we detach a thread the
3040// stack cannot grow beyond the pages where the stack guard was
3041// mapped.  If at some point later in the process the stack expands to
3042// that point, the Linux kernel cannot expand the stack any further
3043// because the guard pages are in the way, and a segfault occurs.
3044//
3045// However, it's essential not to split the stack region by unmapping
3046// a region (leaving a hole) that's already part of the stack mapping,
3047// so if the stack mapping has already grown beyond the guard pages at
3048// the time we create them, we have to truncate the stack mapping.
3049// So, we need to know the extent of the stack mapping when
3050// create_stack_guard_pages() is called.
3051
3052// We only need this for stacks that are growable: at the time of
3053// writing thread stacks don't use growable mappings (i.e. those
3054// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3055// only applies to the main thread.
3056
3057// If the (growable) stack mapping already extends beyond the point
3058// where we're going to put our guard pages, truncate the mapping at
3059// that point by munmap()ping it.  This ensures that when we later
3060// munmap() the guard pages we don't leave a hole in the stack
3061// mapping. This only affects the main/initial thread
3062
3063bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3064
3065  if (os::Linux::is_initial_thread()) {
3066    // As we manually grow stack up to bottom inside create_attached_thread(),
3067    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3068    // we don't need to do anything special.
3069    // Check it first, before calling heavy function.
3070    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3071    unsigned char vec[1];
3072
3073    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3074      // Fallback to slow path on all errors, including EAGAIN
3075      stack_extent = (uintptr_t) get_stack_commited_bottom(
3076                                    os::Linux::initial_thread_stack_bottom(),
3077                                    (size_t)addr - stack_extent);
3078    }
3079
3080    if (stack_extent < (uintptr_t)addr) {
3081      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3082    }
3083  }
3084
3085  return os::commit_memory(addr, size, !ExecMem);
3086}
3087
3088// If this is a growable mapping, remove the guard pages entirely by
3089// munmap()ping them.  If not, just call uncommit_memory(). This only
3090// affects the main/initial thread, but guard against future OS changes
3091// It's safe to always unmap guard pages for initial thread because we
3092// always place it right after end of the mapped region
3093
3094bool os::remove_stack_guard_pages(char* addr, size_t size) {
3095  uintptr_t stack_extent, stack_base;
3096
3097  if (os::Linux::is_initial_thread()) {
3098    return ::munmap(addr, size) == 0;
3099  }
3100
3101  return os::uncommit_memory(addr, size);
3102}
3103
3104static address _highest_vm_reserved_address = NULL;
3105
3106// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3107// at 'requested_addr'. If there are existing memory mappings at the same
3108// location, however, they will be overwritten. If 'fixed' is false,
3109// 'requested_addr' is only treated as a hint, the return value may or
3110// may not start from the requested address. Unlike Linux mmap(), this
3111// function returns NULL to indicate failure.
3112static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3113  char * addr;
3114  int flags;
3115
3116  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3117  if (fixed) {
3118    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3119    flags |= MAP_FIXED;
3120  }
3121
3122  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3123  // touch an uncommitted page. Otherwise, the read/write might
3124  // succeed if we have enough swap space to back the physical page.
3125  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3126                       flags, -1, 0);
3127
3128  if (addr != MAP_FAILED) {
3129    // anon_mmap() should only get called during VM initialization,
3130    // don't need lock (actually we can skip locking even it can be called
3131    // from multiple threads, because _highest_vm_reserved_address is just a
3132    // hint about the upper limit of non-stack memory regions.)
3133    if ((address)addr + bytes > _highest_vm_reserved_address) {
3134      _highest_vm_reserved_address = (address)addr + bytes;
3135    }
3136  }
3137
3138  return addr == MAP_FAILED ? NULL : addr;
3139}
3140
3141// Don't update _highest_vm_reserved_address, because there might be memory
3142// regions above addr + size. If so, releasing a memory region only creates
3143// a hole in the address space, it doesn't help prevent heap-stack collision.
3144//
3145static int anon_munmap(char * addr, size_t size) {
3146  return ::munmap(addr, size) == 0;
3147}
3148
3149char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3150                         size_t alignment_hint) {
3151  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3152}
3153
3154bool os::pd_release_memory(char* addr, size_t size) {
3155  return anon_munmap(addr, size);
3156}
3157
3158static address highest_vm_reserved_address() {
3159  return _highest_vm_reserved_address;
3160}
3161
3162static bool linux_mprotect(char* addr, size_t size, int prot) {
3163  // Linux wants the mprotect address argument to be page aligned.
3164  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3165
3166  // According to SUSv3, mprotect() should only be used with mappings
3167  // established by mmap(), and mmap() always maps whole pages. Unaligned
3168  // 'addr' likely indicates problem in the VM (e.g. trying to change
3169  // protection of malloc'ed or statically allocated memory). Check the
3170  // caller if you hit this assert.
3171  assert(addr == bottom, "sanity check");
3172
3173  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3174  return ::mprotect(bottom, size, prot) == 0;
3175}
3176
3177// Set protections specified
3178bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3179                        bool is_committed) {
3180  unsigned int p = 0;
3181  switch (prot) {
3182  case MEM_PROT_NONE: p = PROT_NONE; break;
3183  case MEM_PROT_READ: p = PROT_READ; break;
3184  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3185  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3186  default:
3187    ShouldNotReachHere();
3188  }
3189  // is_committed is unused.
3190  return linux_mprotect(addr, bytes, p);
3191}
3192
3193bool os::guard_memory(char* addr, size_t size) {
3194  return linux_mprotect(addr, size, PROT_NONE);
3195}
3196
3197bool os::unguard_memory(char* addr, size_t size) {
3198  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3199}
3200
3201bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3202  bool result = false;
3203  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3204                 MAP_ANONYMOUS|MAP_PRIVATE,
3205                 -1, 0);
3206  if (p != MAP_FAILED) {
3207    void *aligned_p = align_ptr_up(p, page_size);
3208
3209    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3210
3211    munmap(p, page_size * 2);
3212  }
3213
3214  if (warn && !result) {
3215    warning("TransparentHugePages is not supported by the operating system.");
3216  }
3217
3218  return result;
3219}
3220
3221bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3222  bool result = false;
3223  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3224                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3225                 -1, 0);
3226
3227  if (p != MAP_FAILED) {
3228    // We don't know if this really is a huge page or not.
3229    FILE *fp = fopen("/proc/self/maps", "r");
3230    if (fp) {
3231      while (!feof(fp)) {
3232        char chars[257];
3233        long x = 0;
3234        if (fgets(chars, sizeof(chars), fp)) {
3235          if (sscanf(chars, "%lx-%*x", &x) == 1
3236              && x == (long)p) {
3237            if (strstr (chars, "hugepage")) {
3238              result = true;
3239              break;
3240            }
3241          }
3242        }
3243      }
3244      fclose(fp);
3245    }
3246    munmap(p, page_size);
3247  }
3248
3249  if (warn && !result) {
3250    warning("HugeTLBFS is not supported by the operating system.");
3251  }
3252
3253  return result;
3254}
3255
3256/*
3257* Set the coredump_filter bits to include largepages in core dump (bit 6)
3258*
3259* From the coredump_filter documentation:
3260*
3261* - (bit 0) anonymous private memory
3262* - (bit 1) anonymous shared memory
3263* - (bit 2) file-backed private memory
3264* - (bit 3) file-backed shared memory
3265* - (bit 4) ELF header pages in file-backed private memory areas (it is
3266*           effective only if the bit 2 is cleared)
3267* - (bit 5) hugetlb private memory
3268* - (bit 6) hugetlb shared memory
3269*/
3270static void set_coredump_filter(void) {
3271  FILE *f;
3272  long cdm;
3273
3274  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3275    return;
3276  }
3277
3278  if (fscanf(f, "%lx", &cdm) != 1) {
3279    fclose(f);
3280    return;
3281  }
3282
3283  rewind(f);
3284
3285  if ((cdm & LARGEPAGES_BIT) == 0) {
3286    cdm |= LARGEPAGES_BIT;
3287    fprintf(f, "%#lx", cdm);
3288  }
3289
3290  fclose(f);
3291}
3292
3293// Large page support
3294
3295static size_t _large_page_size = 0;
3296
3297size_t os::Linux::find_large_page_size() {
3298  size_t large_page_size = 0;
3299
3300  // large_page_size on Linux is used to round up heap size. x86 uses either
3301  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3302  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3303  // page as large as 256M.
3304  //
3305  // Here we try to figure out page size by parsing /proc/meminfo and looking
3306  // for a line with the following format:
3307  //    Hugepagesize:     2048 kB
3308  //
3309  // If we can't determine the value (e.g. /proc is not mounted, or the text
3310  // format has been changed), we'll use the largest page size supported by
3311  // the processor.
3312
3313#ifndef ZERO
3314  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3315                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3316#endif // ZERO
3317
3318  FILE *fp = fopen("/proc/meminfo", "r");
3319  if (fp) {
3320    while (!feof(fp)) {
3321      int x = 0;
3322      char buf[16];
3323      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3324        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3325          large_page_size = x * K;
3326          break;
3327        }
3328      } else {
3329        // skip to next line
3330        for (;;) {
3331          int ch = fgetc(fp);
3332          if (ch == EOF || ch == (int)'\n') break;
3333        }
3334      }
3335    }
3336    fclose(fp);
3337  }
3338
3339  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3340    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3341        SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3342        proper_unit_for_byte_size(large_page_size));
3343  }
3344
3345  return large_page_size;
3346}
3347
3348size_t os::Linux::setup_large_page_size() {
3349  _large_page_size = Linux::find_large_page_size();
3350  const size_t default_page_size = (size_t)Linux::page_size();
3351  if (_large_page_size > default_page_size) {
3352    _page_sizes[0] = _large_page_size;
3353    _page_sizes[1] = default_page_size;
3354    _page_sizes[2] = 0;
3355  }
3356
3357  return _large_page_size;
3358}
3359
3360bool os::Linux::setup_large_page_type(size_t page_size) {
3361  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3362      FLAG_IS_DEFAULT(UseSHM) &&
3363      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3364    // If UseLargePages is specified on the command line try all methods,
3365    // if it's default, then try only UseTransparentHugePages.
3366    if (FLAG_IS_DEFAULT(UseLargePages)) {
3367      UseTransparentHugePages = true;
3368    } else {
3369      UseHugeTLBFS = UseTransparentHugePages = UseSHM = true;
3370    }
3371  }
3372
3373  if (UseTransparentHugePages) {
3374    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3375    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3376      UseHugeTLBFS = false;
3377      UseSHM = false;
3378      return true;
3379    }
3380    UseTransparentHugePages = false;
3381  }
3382
3383  if (UseHugeTLBFS) {
3384    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3385    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3386      UseSHM = false;
3387      return true;
3388    }
3389    UseHugeTLBFS = false;
3390  }
3391
3392  return UseSHM;
3393}
3394
3395void os::large_page_init() {
3396  if (!UseLargePages) {
3397    UseHugeTLBFS = false;
3398    UseTransparentHugePages = false;
3399    UseSHM = false;
3400    return;
3401  }
3402
3403  size_t large_page_size = Linux::setup_large_page_size();
3404  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3405
3406  set_coredump_filter();
3407}
3408
3409#ifndef SHM_HUGETLB
3410#define SHM_HUGETLB 04000
3411#endif
3412
3413char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3414  // "exec" is passed in but not used.  Creating the shared image for
3415  // the code cache doesn't have an SHM_X executable permission to check.
3416  assert(UseLargePages && UseSHM, "only for SHM large pages");
3417  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3418
3419  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3420    return NULL; // Fallback to small pages.
3421  }
3422
3423  key_t key = IPC_PRIVATE;
3424  char *addr;
3425
3426  bool warn_on_failure = UseLargePages &&
3427                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3428                         !FLAG_IS_DEFAULT(UseSHM) ||
3429                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3430                        );
3431  char msg[128];
3432
3433  // Create a large shared memory region to attach to based on size.
3434  // Currently, size is the total size of the heap
3435  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3436  if (shmid == -1) {
3437     // Possible reasons for shmget failure:
3438     // 1. shmmax is too small for Java heap.
3439     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3440     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3441     // 2. not enough large page memory.
3442     //    > check available large pages: cat /proc/meminfo
3443     //    > increase amount of large pages:
3444     //          echo new_value > /proc/sys/vm/nr_hugepages
3445     //      Note 1: different Linux may use different name for this property,
3446     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3447     //      Note 2: it's possible there's enough physical memory available but
3448     //            they are so fragmented after a long run that they can't
3449     //            coalesce into large pages. Try to reserve large pages when
3450     //            the system is still "fresh".
3451     if (warn_on_failure) {
3452       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3453       warning(msg);
3454     }
3455     return NULL;
3456  }
3457
3458  // attach to the region
3459  addr = (char*)shmat(shmid, req_addr, 0);
3460  int err = errno;
3461
3462  // Remove shmid. If shmat() is successful, the actual shared memory segment
3463  // will be deleted when it's detached by shmdt() or when the process
3464  // terminates. If shmat() is not successful this will remove the shared
3465  // segment immediately.
3466  shmctl(shmid, IPC_RMID, NULL);
3467
3468  if ((intptr_t)addr == -1) {
3469     if (warn_on_failure) {
3470       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3471       warning(msg);
3472     }
3473     return NULL;
3474  }
3475
3476  return addr;
3477}
3478
3479static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3480  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3481
3482  bool warn_on_failure = UseLargePages &&
3483      (!FLAG_IS_DEFAULT(UseLargePages) ||
3484       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3485       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3486
3487  if (warn_on_failure) {
3488    char msg[128];
3489    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3490        PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3491    warning(msg);
3492  }
3493}
3494
3495char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3496  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3497  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3498  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3499
3500  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3501  char* addr = (char*)::mmap(req_addr, bytes, prot,
3502                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3503                             -1, 0);
3504
3505  if (addr == MAP_FAILED) {
3506    warn_on_large_pages_failure(req_addr, bytes, errno);
3507    return NULL;
3508  }
3509
3510  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3511
3512  return addr;
3513}
3514
3515char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3516  size_t large_page_size = os::large_page_size();
3517
3518  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3519
3520  // Allocate small pages.
3521
3522  char* start;
3523  if (req_addr != NULL) {
3524    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3525    assert(is_size_aligned(bytes, alignment), "Must be");
3526    start = os::reserve_memory(bytes, req_addr);
3527    assert(start == NULL || start == req_addr, "Must be");
3528  } else {
3529    start = os::reserve_memory_aligned(bytes, alignment);
3530  }
3531
3532  if (start == NULL) {
3533    return NULL;
3534  }
3535
3536  assert(is_ptr_aligned(start, alignment), "Must be");
3537
3538  // os::reserve_memory_special will record this memory area.
3539  // Need to release it here to prevent overlapping reservations.
3540  MemTracker::record_virtual_memory_release((address)start, bytes);
3541
3542  char* end = start + bytes;
3543
3544  // Find the regions of the allocated chunk that can be promoted to large pages.
3545  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3546  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3547
3548  size_t lp_bytes = lp_end - lp_start;
3549
3550  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3551
3552  if (lp_bytes == 0) {
3553    // The mapped region doesn't even span the start and the end of a large page.
3554    // Fall back to allocate a non-special area.
3555    ::munmap(start, end - start);
3556    return NULL;
3557  }
3558
3559  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3560
3561
3562  void* result;
3563
3564  if (start != lp_start) {
3565    result = ::mmap(start, lp_start - start, prot,
3566                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3567                    -1, 0);
3568    if (result == MAP_FAILED) {
3569      ::munmap(lp_start, end - lp_start);
3570      return NULL;
3571    }
3572  }
3573
3574  result = ::mmap(lp_start, lp_bytes, prot,
3575                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3576                  -1, 0);
3577  if (result == MAP_FAILED) {
3578    warn_on_large_pages_failure(req_addr, bytes, errno);
3579    // If the mmap above fails, the large pages region will be unmapped and we
3580    // have regions before and after with small pages. Release these regions.
3581    //
3582    // |  mapped  |  unmapped  |  mapped  |
3583    // ^          ^            ^          ^
3584    // start      lp_start     lp_end     end
3585    //
3586    ::munmap(start, lp_start - start);
3587    ::munmap(lp_end, end - lp_end);
3588    return NULL;
3589  }
3590
3591  if (lp_end != end) {
3592      result = ::mmap(lp_end, end - lp_end, prot,
3593                      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3594                      -1, 0);
3595    if (result == MAP_FAILED) {
3596      ::munmap(start, lp_end - start);
3597      return NULL;
3598    }
3599  }
3600
3601  return start;
3602}
3603
3604char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3605  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3606  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3607  assert(is_power_of_2(alignment), "Must be");
3608  assert(is_power_of_2(os::large_page_size()), "Must be");
3609  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3610
3611  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3612    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3613  } else {
3614    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3615  }
3616}
3617
3618char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3619  assert(UseLargePages, "only for large pages");
3620
3621  char* addr;
3622  if (UseSHM) {
3623    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3624  } else {
3625    assert(UseHugeTLBFS, "must be");
3626    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3627  }
3628
3629  if (addr != NULL) {
3630    if (UseNUMAInterleaving) {
3631      numa_make_global(addr, bytes);
3632    }
3633
3634    // The memory is committed
3635    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3636  }
3637
3638  return addr;
3639}
3640
3641bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3642  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3643  return shmdt(base) == 0;
3644}
3645
3646bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3647  return pd_release_memory(base, bytes);
3648}
3649
3650bool os::release_memory_special(char* base, size_t bytes) {
3651  assert(UseLargePages, "only for large pages");
3652
3653  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3654
3655  bool res;
3656  if (UseSHM) {
3657    res = os::Linux::release_memory_special_shm(base, bytes);
3658  } else {
3659    assert(UseHugeTLBFS, "must be");
3660    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3661  }
3662
3663  if (res) {
3664    tkr.record((address)base, bytes);
3665  } else {
3666    tkr.discard();
3667  }
3668
3669  return res;
3670}
3671
3672size_t os::large_page_size() {
3673  return _large_page_size;
3674}
3675
3676// With SysV SHM the entire memory region must be allocated as shared
3677// memory.
3678// HugeTLBFS allows application to commit large page memory on demand.
3679// However, when committing memory with HugeTLBFS fails, the region
3680// that was supposed to be committed will lose the old reservation
3681// and allow other threads to steal that memory region. Because of this
3682// behavior we can't commit HugeTLBFS memory.
3683bool os::can_commit_large_page_memory() {
3684  return UseTransparentHugePages;
3685}
3686
3687bool os::can_execute_large_page_memory() {
3688  return UseTransparentHugePages || UseHugeTLBFS;
3689}
3690
3691// Reserve memory at an arbitrary address, only if that area is
3692// available (and not reserved for something else).
3693
3694char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3695  const int max_tries = 10;
3696  char* base[max_tries];
3697  size_t size[max_tries];
3698  const size_t gap = 0x000000;
3699
3700  // Assert only that the size is a multiple of the page size, since
3701  // that's all that mmap requires, and since that's all we really know
3702  // about at this low abstraction level.  If we need higher alignment,
3703  // we can either pass an alignment to this method or verify alignment
3704  // in one of the methods further up the call chain.  See bug 5044738.
3705  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3706
3707  // Repeatedly allocate blocks until the block is allocated at the
3708  // right spot. Give up after max_tries. Note that reserve_memory() will
3709  // automatically update _highest_vm_reserved_address if the call is
3710  // successful. The variable tracks the highest memory address every reserved
3711  // by JVM. It is used to detect heap-stack collision if running with
3712  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3713  // space than needed, it could confuse the collision detecting code. To
3714  // solve the problem, save current _highest_vm_reserved_address and
3715  // calculate the correct value before return.
3716  address old_highest = _highest_vm_reserved_address;
3717
3718  // Linux mmap allows caller to pass an address as hint; give it a try first,
3719  // if kernel honors the hint then we can return immediately.
3720  char * addr = anon_mmap(requested_addr, bytes, false);
3721  if (addr == requested_addr) {
3722     return requested_addr;
3723  }
3724
3725  if (addr != NULL) {
3726     // mmap() is successful but it fails to reserve at the requested address
3727     anon_munmap(addr, bytes);
3728  }
3729
3730  int i;
3731  for (i = 0; i < max_tries; ++i) {
3732    base[i] = reserve_memory(bytes);
3733
3734    if (base[i] != NULL) {
3735      // Is this the block we wanted?
3736      if (base[i] == requested_addr) {
3737        size[i] = bytes;
3738        break;
3739      }
3740
3741      // Does this overlap the block we wanted? Give back the overlapped
3742      // parts and try again.
3743
3744      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3745      if (top_overlap >= 0 && top_overlap < bytes) {
3746        unmap_memory(base[i], top_overlap);
3747        base[i] += top_overlap;
3748        size[i] = bytes - top_overlap;
3749      } else {
3750        size_t bottom_overlap = base[i] + bytes - requested_addr;
3751        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3752          unmap_memory(requested_addr, bottom_overlap);
3753          size[i] = bytes - bottom_overlap;
3754        } else {
3755          size[i] = bytes;
3756        }
3757      }
3758    }
3759  }
3760
3761  // Give back the unused reserved pieces.
3762
3763  for (int j = 0; j < i; ++j) {
3764    if (base[j] != NULL) {
3765      unmap_memory(base[j], size[j]);
3766    }
3767  }
3768
3769  if (i < max_tries) {
3770    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3771    return requested_addr;
3772  } else {
3773    _highest_vm_reserved_address = old_highest;
3774    return NULL;
3775  }
3776}
3777
3778size_t os::read(int fd, void *buf, unsigned int nBytes) {
3779  return ::read(fd, buf, nBytes);
3780}
3781
3782// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3783// Solaris uses poll(), linux uses park().
3784// Poll() is likely a better choice, assuming that Thread.interrupt()
3785// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3786// SIGSEGV, see 4355769.
3787
3788int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3789  assert(thread == Thread::current(),  "thread consistency check");
3790
3791  ParkEvent * const slp = thread->_SleepEvent ;
3792  slp->reset() ;
3793  OrderAccess::fence() ;
3794
3795  if (interruptible) {
3796    jlong prevtime = javaTimeNanos();
3797
3798    for (;;) {
3799      if (os::is_interrupted(thread, true)) {
3800        return OS_INTRPT;
3801      }
3802
3803      jlong newtime = javaTimeNanos();
3804
3805      if (newtime - prevtime < 0) {
3806        // time moving backwards, should only happen if no monotonic clock
3807        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3808        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3809      } else {
3810        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3811      }
3812
3813      if(millis <= 0) {
3814        return OS_OK;
3815      }
3816
3817      prevtime = newtime;
3818
3819      {
3820        assert(thread->is_Java_thread(), "sanity check");
3821        JavaThread *jt = (JavaThread *) thread;
3822        ThreadBlockInVM tbivm(jt);
3823        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3824
3825        jt->set_suspend_equivalent();
3826        // cleared by handle_special_suspend_equivalent_condition() or
3827        // java_suspend_self() via check_and_wait_while_suspended()
3828
3829        slp->park(millis);
3830
3831        // were we externally suspended while we were waiting?
3832        jt->check_and_wait_while_suspended();
3833      }
3834    }
3835  } else {
3836    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3837    jlong prevtime = javaTimeNanos();
3838
3839    for (;;) {
3840      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3841      // the 1st iteration ...
3842      jlong newtime = javaTimeNanos();
3843
3844      if (newtime - prevtime < 0) {
3845        // time moving backwards, should only happen if no monotonic clock
3846        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3847        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3848      } else {
3849        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3850      }
3851
3852      if(millis <= 0) break ;
3853
3854      prevtime = newtime;
3855      slp->park(millis);
3856    }
3857    return OS_OK ;
3858  }
3859}
3860
3861int os::naked_sleep() {
3862  // %% make the sleep time an integer flag. for now use 1 millisec.
3863  return os::sleep(Thread::current(), 1, false);
3864}
3865
3866// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3867void os::infinite_sleep() {
3868  while (true) {    // sleep forever ...
3869    ::sleep(100);   // ... 100 seconds at a time
3870  }
3871}
3872
3873// Used to convert frequent JVM_Yield() to nops
3874bool os::dont_yield() {
3875  return DontYieldALot;
3876}
3877
3878void os::yield() {
3879  sched_yield();
3880}
3881
3882os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3883
3884void os::yield_all(int attempts) {
3885  // Yields to all threads, including threads with lower priorities
3886  // Threads on Linux are all with same priority. The Solaris style
3887  // os::yield_all() with nanosleep(1ms) is not necessary.
3888  sched_yield();
3889}
3890
3891// Called from the tight loops to possibly influence time-sharing heuristics
3892void os::loop_breaker(int attempts) {
3893  os::yield_all(attempts);
3894}
3895
3896////////////////////////////////////////////////////////////////////////////////
3897// thread priority support
3898
3899// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3900// only supports dynamic priority, static priority must be zero. For real-time
3901// applications, Linux supports SCHED_RR which allows static priority (1-99).
3902// However, for large multi-threaded applications, SCHED_RR is not only slower
3903// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3904// of 5 runs - Sep 2005).
3905//
3906// The following code actually changes the niceness of kernel-thread/LWP. It
3907// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3908// not the entire user process, and user level threads are 1:1 mapped to kernel
3909// threads. It has always been the case, but could change in the future. For
3910// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3911// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3912
3913int os::java_to_os_priority[CriticalPriority + 1] = {
3914  19,              // 0 Entry should never be used
3915
3916   4,              // 1 MinPriority
3917   3,              // 2
3918   2,              // 3
3919
3920   1,              // 4
3921   0,              // 5 NormPriority
3922  -1,              // 6
3923
3924  -2,              // 7
3925  -3,              // 8
3926  -4,              // 9 NearMaxPriority
3927
3928  -5,              // 10 MaxPriority
3929
3930  -5               // 11 CriticalPriority
3931};
3932
3933static int prio_init() {
3934  if (ThreadPriorityPolicy == 1) {
3935    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3936    // if effective uid is not root. Perhaps, a more elegant way of doing
3937    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3938    if (geteuid() != 0) {
3939      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3940        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3941      }
3942      ThreadPriorityPolicy = 0;
3943    }
3944  }
3945  if (UseCriticalJavaThreadPriority) {
3946    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3947  }
3948  return 0;
3949}
3950
3951OSReturn os::set_native_priority(Thread* thread, int newpri) {
3952  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3953
3954  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3955  return (ret == 0) ? OS_OK : OS_ERR;
3956}
3957
3958OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3959  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3960    *priority_ptr = java_to_os_priority[NormPriority];
3961    return OS_OK;
3962  }
3963
3964  errno = 0;
3965  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3966  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3967}
3968
3969// Hint to the underlying OS that a task switch would not be good.
3970// Void return because it's a hint and can fail.
3971void os::hint_no_preempt() {}
3972
3973////////////////////////////////////////////////////////////////////////////////
3974// suspend/resume support
3975
3976//  the low-level signal-based suspend/resume support is a remnant from the
3977//  old VM-suspension that used to be for java-suspension, safepoints etc,
3978//  within hotspot. Now there is a single use-case for this:
3979//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3980//      that runs in the watcher thread.
3981//  The remaining code is greatly simplified from the more general suspension
3982//  code that used to be used.
3983//
3984//  The protocol is quite simple:
3985//  - suspend:
3986//      - sends a signal to the target thread
3987//      - polls the suspend state of the osthread using a yield loop
3988//      - target thread signal handler (SR_handler) sets suspend state
3989//        and blocks in sigsuspend until continued
3990//  - resume:
3991//      - sets target osthread state to continue
3992//      - sends signal to end the sigsuspend loop in the SR_handler
3993//
3994//  Note that the SR_lock plays no role in this suspend/resume protocol.
3995//
3996
3997static void resume_clear_context(OSThread *osthread) {
3998  osthread->set_ucontext(NULL);
3999  osthread->set_siginfo(NULL);
4000}
4001
4002static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4003  osthread->set_ucontext(context);
4004  osthread->set_siginfo(siginfo);
4005}
4006
4007//
4008// Handler function invoked when a thread's execution is suspended or
4009// resumed. We have to be careful that only async-safe functions are
4010// called here (Note: most pthread functions are not async safe and
4011// should be avoided.)
4012//
4013// Note: sigwait() is a more natural fit than sigsuspend() from an
4014// interface point of view, but sigwait() prevents the signal hander
4015// from being run. libpthread would get very confused by not having
4016// its signal handlers run and prevents sigwait()'s use with the
4017// mutex granting granting signal.
4018//
4019// Currently only ever called on the VMThread and JavaThreads (PC sampling)
4020//
4021static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4022  // Save and restore errno to avoid confusing native code with EINTR
4023  // after sigsuspend.
4024  int old_errno = errno;
4025
4026  Thread* thread = Thread::current();
4027  OSThread* osthread = thread->osthread();
4028  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4029
4030  os::SuspendResume::State current = osthread->sr.state();
4031  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4032    suspend_save_context(osthread, siginfo, context);
4033
4034    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4035    os::SuspendResume::State state = osthread->sr.suspended();
4036    if (state == os::SuspendResume::SR_SUSPENDED) {
4037      sigset_t suspend_set;  // signals for sigsuspend()
4038
4039      // get current set of blocked signals and unblock resume signal
4040      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4041      sigdelset(&suspend_set, SR_signum);
4042
4043      sr_semaphore.signal();
4044      // wait here until we are resumed
4045      while (1) {
4046        sigsuspend(&suspend_set);
4047
4048        os::SuspendResume::State result = osthread->sr.running();
4049        if (result == os::SuspendResume::SR_RUNNING) {
4050          sr_semaphore.signal();
4051          break;
4052        }
4053      }
4054
4055    } else if (state == os::SuspendResume::SR_RUNNING) {
4056      // request was cancelled, continue
4057    } else {
4058      ShouldNotReachHere();
4059    }
4060
4061    resume_clear_context(osthread);
4062  } else if (current == os::SuspendResume::SR_RUNNING) {
4063    // request was cancelled, continue
4064  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4065    // ignore
4066  } else {
4067    // ignore
4068  }
4069
4070  errno = old_errno;
4071}
4072
4073
4074static int SR_initialize() {
4075  struct sigaction act;
4076  char *s;
4077  /* Get signal number to use for suspend/resume */
4078  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4079    int sig = ::strtol(s, 0, 10);
4080    if (sig > 0 || sig < _NSIG) {
4081        SR_signum = sig;
4082    }
4083  }
4084
4085  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4086        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4087
4088  sigemptyset(&SR_sigset);
4089  sigaddset(&SR_sigset, SR_signum);
4090
4091  /* Set up signal handler for suspend/resume */
4092  act.sa_flags = SA_RESTART|SA_SIGINFO;
4093  act.sa_handler = (void (*)(int)) SR_handler;
4094
4095  // SR_signum is blocked by default.
4096  // 4528190 - We also need to block pthread restart signal (32 on all
4097  // supported Linux platforms). Note that LinuxThreads need to block
4098  // this signal for all threads to work properly. So we don't have
4099  // to use hard-coded signal number when setting up the mask.
4100  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4101
4102  if (sigaction(SR_signum, &act, 0) == -1) {
4103    return -1;
4104  }
4105
4106  // Save signal flag
4107  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4108  return 0;
4109}
4110
4111static int sr_notify(OSThread* osthread) {
4112  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4113  assert_status(status == 0, status, "pthread_kill");
4114  return status;
4115}
4116
4117// "Randomly" selected value for how long we want to spin
4118// before bailing out on suspending a thread, also how often
4119// we send a signal to a thread we want to resume
4120static const int RANDOMLY_LARGE_INTEGER = 1000000;
4121static const int RANDOMLY_LARGE_INTEGER2 = 100;
4122
4123// returns true on success and false on error - really an error is fatal
4124// but this seems the normal response to library errors
4125static bool do_suspend(OSThread* osthread) {
4126  assert(osthread->sr.is_running(), "thread should be running");
4127  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4128
4129  // mark as suspended and send signal
4130  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4131    // failed to switch, state wasn't running?
4132    ShouldNotReachHere();
4133    return false;
4134  }
4135
4136  if (sr_notify(osthread) != 0) {
4137    ShouldNotReachHere();
4138  }
4139
4140  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4141  while (true) {
4142    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4143      break;
4144    } else {
4145      // timeout
4146      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4147      if (cancelled == os::SuspendResume::SR_RUNNING) {
4148        return false;
4149      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4150        // make sure that we consume the signal on the semaphore as well
4151        sr_semaphore.wait();
4152        break;
4153      } else {
4154        ShouldNotReachHere();
4155        return false;
4156      }
4157    }
4158  }
4159
4160  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4161  return true;
4162}
4163
4164static void do_resume(OSThread* osthread) {
4165  assert(osthread->sr.is_suspended(), "thread should be suspended");
4166  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4167
4168  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4169    // failed to switch to WAKEUP_REQUEST
4170    ShouldNotReachHere();
4171    return;
4172  }
4173
4174  while (true) {
4175    if (sr_notify(osthread) == 0) {
4176      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4177        if (osthread->sr.is_running()) {
4178          return;
4179        }
4180      }
4181    } else {
4182      ShouldNotReachHere();
4183    }
4184  }
4185
4186  guarantee(osthread->sr.is_running(), "Must be running!");
4187}
4188
4189////////////////////////////////////////////////////////////////////////////////
4190// interrupt support
4191
4192void os::interrupt(Thread* thread) {
4193  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4194    "possibility of dangling Thread pointer");
4195
4196  OSThread* osthread = thread->osthread();
4197
4198  if (!osthread->interrupted()) {
4199    osthread->set_interrupted(true);
4200    // More than one thread can get here with the same value of osthread,
4201    // resulting in multiple notifications.  We do, however, want the store
4202    // to interrupted() to be visible to other threads before we execute unpark().
4203    OrderAccess::fence();
4204    ParkEvent * const slp = thread->_SleepEvent ;
4205    if (slp != NULL) slp->unpark() ;
4206  }
4207
4208  // For JSR166. Unpark even if interrupt status already was set
4209  if (thread->is_Java_thread())
4210    ((JavaThread*)thread)->parker()->unpark();
4211
4212  ParkEvent * ev = thread->_ParkEvent ;
4213  if (ev != NULL) ev->unpark() ;
4214
4215}
4216
4217bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4218  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4219    "possibility of dangling Thread pointer");
4220
4221  OSThread* osthread = thread->osthread();
4222
4223  bool interrupted = osthread->interrupted();
4224
4225  if (interrupted && clear_interrupted) {
4226    osthread->set_interrupted(false);
4227    // consider thread->_SleepEvent->reset() ... optional optimization
4228  }
4229
4230  return interrupted;
4231}
4232
4233///////////////////////////////////////////////////////////////////////////////////
4234// signal handling (except suspend/resume)
4235
4236// This routine may be used by user applications as a "hook" to catch signals.
4237// The user-defined signal handler must pass unrecognized signals to this
4238// routine, and if it returns true (non-zero), then the signal handler must
4239// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4240// routine will never retun false (zero), but instead will execute a VM panic
4241// routine kill the process.
4242//
4243// If this routine returns false, it is OK to call it again.  This allows
4244// the user-defined signal handler to perform checks either before or after
4245// the VM performs its own checks.  Naturally, the user code would be making
4246// a serious error if it tried to handle an exception (such as a null check
4247// or breakpoint) that the VM was generating for its own correct operation.
4248//
4249// This routine may recognize any of the following kinds of signals:
4250//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4251// It should be consulted by handlers for any of those signals.
4252//
4253// The caller of this routine must pass in the three arguments supplied
4254// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4255// field of the structure passed to sigaction().  This routine assumes that
4256// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4257//
4258// Note that the VM will print warnings if it detects conflicting signal
4259// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4260//
4261extern "C" JNIEXPORT int
4262JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4263                        void* ucontext, int abort_if_unrecognized);
4264
4265void signalHandler(int sig, siginfo_t* info, void* uc) {
4266  assert(info != NULL && uc != NULL, "it must be old kernel");
4267  int orig_errno = errno;  // Preserve errno value over signal handler.
4268  JVM_handle_linux_signal(sig, info, uc, true);
4269  errno = orig_errno;
4270}
4271
4272
4273// This boolean allows users to forward their own non-matching signals
4274// to JVM_handle_linux_signal, harmlessly.
4275bool os::Linux::signal_handlers_are_installed = false;
4276
4277// For signal-chaining
4278struct sigaction os::Linux::sigact[MAXSIGNUM];
4279unsigned int os::Linux::sigs = 0;
4280bool os::Linux::libjsig_is_loaded = false;
4281typedef struct sigaction *(*get_signal_t)(int);
4282get_signal_t os::Linux::get_signal_action = NULL;
4283
4284struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4285  struct sigaction *actp = NULL;
4286
4287  if (libjsig_is_loaded) {
4288    // Retrieve the old signal handler from libjsig
4289    actp = (*get_signal_action)(sig);
4290  }
4291  if (actp == NULL) {
4292    // Retrieve the preinstalled signal handler from jvm
4293    actp = get_preinstalled_handler(sig);
4294  }
4295
4296  return actp;
4297}
4298
4299static bool call_chained_handler(struct sigaction *actp, int sig,
4300                                 siginfo_t *siginfo, void *context) {
4301  // Call the old signal handler
4302  if (actp->sa_handler == SIG_DFL) {
4303    // It's more reasonable to let jvm treat it as an unexpected exception
4304    // instead of taking the default action.
4305    return false;
4306  } else if (actp->sa_handler != SIG_IGN) {
4307    if ((actp->sa_flags & SA_NODEFER) == 0) {
4308      // automaticlly block the signal
4309      sigaddset(&(actp->sa_mask), sig);
4310    }
4311
4312    sa_handler_t hand;
4313    sa_sigaction_t sa;
4314    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4315    // retrieve the chained handler
4316    if (siginfo_flag_set) {
4317      sa = actp->sa_sigaction;
4318    } else {
4319      hand = actp->sa_handler;
4320    }
4321
4322    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4323      actp->sa_handler = SIG_DFL;
4324    }
4325
4326    // try to honor the signal mask
4327    sigset_t oset;
4328    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4329
4330    // call into the chained handler
4331    if (siginfo_flag_set) {
4332      (*sa)(sig, siginfo, context);
4333    } else {
4334      (*hand)(sig);
4335    }
4336
4337    // restore the signal mask
4338    pthread_sigmask(SIG_SETMASK, &oset, 0);
4339  }
4340  // Tell jvm's signal handler the signal is taken care of.
4341  return true;
4342}
4343
4344bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4345  bool chained = false;
4346  // signal-chaining
4347  if (UseSignalChaining) {
4348    struct sigaction *actp = get_chained_signal_action(sig);
4349    if (actp != NULL) {
4350      chained = call_chained_handler(actp, sig, siginfo, context);
4351    }
4352  }
4353  return chained;
4354}
4355
4356struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4357  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4358    return &sigact[sig];
4359  }
4360  return NULL;
4361}
4362
4363void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4364  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4365  sigact[sig] = oldAct;
4366  sigs |= (unsigned int)1 << sig;
4367}
4368
4369// for diagnostic
4370int os::Linux::sigflags[MAXSIGNUM];
4371
4372int os::Linux::get_our_sigflags(int sig) {
4373  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4374  return sigflags[sig];
4375}
4376
4377void os::Linux::set_our_sigflags(int sig, int flags) {
4378  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4379  sigflags[sig] = flags;
4380}
4381
4382void os::Linux::set_signal_handler(int sig, bool set_installed) {
4383  // Check for overwrite.
4384  struct sigaction oldAct;
4385  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4386
4387  void* oldhand = oldAct.sa_sigaction
4388                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4389                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4390  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4391      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4392      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4393    if (AllowUserSignalHandlers || !set_installed) {
4394      // Do not overwrite; user takes responsibility to forward to us.
4395      return;
4396    } else if (UseSignalChaining) {
4397      // save the old handler in jvm
4398      save_preinstalled_handler(sig, oldAct);
4399      // libjsig also interposes the sigaction() call below and saves the
4400      // old sigaction on it own.
4401    } else {
4402      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4403                    "%#lx for signal %d.", (long)oldhand, sig));
4404    }
4405  }
4406
4407  struct sigaction sigAct;
4408  sigfillset(&(sigAct.sa_mask));
4409  sigAct.sa_handler = SIG_DFL;
4410  if (!set_installed) {
4411    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4412  } else {
4413    sigAct.sa_sigaction = signalHandler;
4414    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4415  }
4416  // Save flags, which are set by ours
4417  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4418  sigflags[sig] = sigAct.sa_flags;
4419
4420  int ret = sigaction(sig, &sigAct, &oldAct);
4421  assert(ret == 0, "check");
4422
4423  void* oldhand2  = oldAct.sa_sigaction
4424                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4425                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4426  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4427}
4428
4429// install signal handlers for signals that HotSpot needs to
4430// handle in order to support Java-level exception handling.
4431
4432void os::Linux::install_signal_handlers() {
4433  if (!signal_handlers_are_installed) {
4434    signal_handlers_are_installed = true;
4435
4436    // signal-chaining
4437    typedef void (*signal_setting_t)();
4438    signal_setting_t begin_signal_setting = NULL;
4439    signal_setting_t end_signal_setting = NULL;
4440    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4441                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4442    if (begin_signal_setting != NULL) {
4443      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4444                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4445      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4446                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4447      libjsig_is_loaded = true;
4448      assert(UseSignalChaining, "should enable signal-chaining");
4449    }
4450    if (libjsig_is_loaded) {
4451      // Tell libjsig jvm is setting signal handlers
4452      (*begin_signal_setting)();
4453    }
4454
4455    set_signal_handler(SIGSEGV, true);
4456    set_signal_handler(SIGPIPE, true);
4457    set_signal_handler(SIGBUS, true);
4458    set_signal_handler(SIGILL, true);
4459    set_signal_handler(SIGFPE, true);
4460    set_signal_handler(SIGXFSZ, true);
4461
4462    if (libjsig_is_loaded) {
4463      // Tell libjsig jvm finishes setting signal handlers
4464      (*end_signal_setting)();
4465    }
4466
4467    // We don't activate signal checker if libjsig is in place, we trust ourselves
4468    // and if UserSignalHandler is installed all bets are off.
4469    // Log that signal checking is off only if -verbose:jni is specified.
4470    if (CheckJNICalls) {
4471      if (libjsig_is_loaded) {
4472        if (PrintJNIResolving) {
4473          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4474        }
4475        check_signals = false;
4476      }
4477      if (AllowUserSignalHandlers) {
4478        if (PrintJNIResolving) {
4479          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4480        }
4481        check_signals = false;
4482      }
4483    }
4484  }
4485}
4486
4487// This is the fastest way to get thread cpu time on Linux.
4488// Returns cpu time (user+sys) for any thread, not only for current.
4489// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4490// It might work on 2.6.10+ with a special kernel/glibc patch.
4491// For reference, please, see IEEE Std 1003.1-2004:
4492//   http://www.unix.org/single_unix_specification
4493
4494jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4495  struct timespec tp;
4496  int rc = os::Linux::clock_gettime(clockid, &tp);
4497  assert(rc == 0, "clock_gettime is expected to return 0 code");
4498
4499  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4500}
4501
4502/////
4503// glibc on Linux platform uses non-documented flag
4504// to indicate, that some special sort of signal
4505// trampoline is used.
4506// We will never set this flag, and we should
4507// ignore this flag in our diagnostic
4508#ifdef SIGNIFICANT_SIGNAL_MASK
4509#undef SIGNIFICANT_SIGNAL_MASK
4510#endif
4511#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4512
4513static const char* get_signal_handler_name(address handler,
4514                                           char* buf, int buflen) {
4515  int offset;
4516  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4517  if (found) {
4518    // skip directory names
4519    const char *p1, *p2;
4520    p1 = buf;
4521    size_t len = strlen(os::file_separator());
4522    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4523    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4524  } else {
4525    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4526  }
4527  return buf;
4528}
4529
4530static void print_signal_handler(outputStream* st, int sig,
4531                                 char* buf, size_t buflen) {
4532  struct sigaction sa;
4533
4534  sigaction(sig, NULL, &sa);
4535
4536  // See comment for SIGNIFICANT_SIGNAL_MASK define
4537  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4538
4539  st->print("%s: ", os::exception_name(sig, buf, buflen));
4540
4541  address handler = (sa.sa_flags & SA_SIGINFO)
4542    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4543    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4544
4545  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4546    st->print("SIG_DFL");
4547  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4548    st->print("SIG_IGN");
4549  } else {
4550    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4551  }
4552
4553  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4554
4555  address rh = VMError::get_resetted_sighandler(sig);
4556  // May be, handler was resetted by VMError?
4557  if(rh != NULL) {
4558    handler = rh;
4559    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4560  }
4561
4562  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4563
4564  // Check: is it our handler?
4565  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4566     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4567    // It is our signal handler
4568    // check for flags, reset system-used one!
4569    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4570      st->print(
4571                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4572                os::Linux::get_our_sigflags(sig));
4573    }
4574  }
4575  st->cr();
4576}
4577
4578
4579#define DO_SIGNAL_CHECK(sig) \
4580  if (!sigismember(&check_signal_done, sig)) \
4581    os::Linux::check_signal_handler(sig)
4582
4583// This method is a periodic task to check for misbehaving JNI applications
4584// under CheckJNI, we can add any periodic checks here
4585
4586void os::run_periodic_checks() {
4587
4588  if (check_signals == false) return;
4589
4590  // SEGV and BUS if overridden could potentially prevent
4591  // generation of hs*.log in the event of a crash, debugging
4592  // such a case can be very challenging, so we absolutely
4593  // check the following for a good measure:
4594  DO_SIGNAL_CHECK(SIGSEGV);
4595  DO_SIGNAL_CHECK(SIGILL);
4596  DO_SIGNAL_CHECK(SIGFPE);
4597  DO_SIGNAL_CHECK(SIGBUS);
4598  DO_SIGNAL_CHECK(SIGPIPE);
4599  DO_SIGNAL_CHECK(SIGXFSZ);
4600
4601
4602  // ReduceSignalUsage allows the user to override these handlers
4603  // see comments at the very top and jvm_solaris.h
4604  if (!ReduceSignalUsage) {
4605    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4606    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4607    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4608    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4609  }
4610
4611  DO_SIGNAL_CHECK(SR_signum);
4612  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4613}
4614
4615typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4616
4617static os_sigaction_t os_sigaction = NULL;
4618
4619void os::Linux::check_signal_handler(int sig) {
4620  char buf[O_BUFLEN];
4621  address jvmHandler = NULL;
4622
4623
4624  struct sigaction act;
4625  if (os_sigaction == NULL) {
4626    // only trust the default sigaction, in case it has been interposed
4627    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4628    if (os_sigaction == NULL) return;
4629  }
4630
4631  os_sigaction(sig, (struct sigaction*)NULL, &act);
4632
4633
4634  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4635
4636  address thisHandler = (act.sa_flags & SA_SIGINFO)
4637    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4638    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4639
4640
4641  switch(sig) {
4642  case SIGSEGV:
4643  case SIGBUS:
4644  case SIGFPE:
4645  case SIGPIPE:
4646  case SIGILL:
4647  case SIGXFSZ:
4648    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4649    break;
4650
4651  case SHUTDOWN1_SIGNAL:
4652  case SHUTDOWN2_SIGNAL:
4653  case SHUTDOWN3_SIGNAL:
4654  case BREAK_SIGNAL:
4655    jvmHandler = (address)user_handler();
4656    break;
4657
4658  case INTERRUPT_SIGNAL:
4659    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4660    break;
4661
4662  default:
4663    if (sig == SR_signum) {
4664      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4665    } else {
4666      return;
4667    }
4668    break;
4669  }
4670
4671  if (thisHandler != jvmHandler) {
4672    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4673    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4674    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4675    // No need to check this sig any longer
4676    sigaddset(&check_signal_done, sig);
4677  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4678    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4679    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4680    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4681    // No need to check this sig any longer
4682    sigaddset(&check_signal_done, sig);
4683  }
4684
4685  // Dump all the signal
4686  if (sigismember(&check_signal_done, sig)) {
4687    print_signal_handlers(tty, buf, O_BUFLEN);
4688  }
4689}
4690
4691extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4692
4693extern bool signal_name(int signo, char* buf, size_t len);
4694
4695const char* os::exception_name(int exception_code, char* buf, size_t size) {
4696  if (0 < exception_code && exception_code <= SIGRTMAX) {
4697    // signal
4698    if (!signal_name(exception_code, buf, size)) {
4699      jio_snprintf(buf, size, "SIG%d", exception_code);
4700    }
4701    return buf;
4702  } else {
4703    return NULL;
4704  }
4705}
4706
4707// this is called _before_ the most of global arguments have been parsed
4708void os::init(void) {
4709  char dummy;   /* used to get a guess on initial stack address */
4710//  first_hrtime = gethrtime();
4711
4712  // With LinuxThreads the JavaMain thread pid (primordial thread)
4713  // is different than the pid of the java launcher thread.
4714  // So, on Linux, the launcher thread pid is passed to the VM
4715  // via the sun.java.launcher.pid property.
4716  // Use this property instead of getpid() if it was correctly passed.
4717  // See bug 6351349.
4718  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4719
4720  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4721
4722  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4723
4724  init_random(1234567);
4725
4726  ThreadCritical::initialize();
4727
4728  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4729  if (Linux::page_size() == -1) {
4730    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4731                  strerror(errno)));
4732  }
4733  init_page_sizes((size_t) Linux::page_size());
4734
4735  Linux::initialize_system_info();
4736
4737  // main_thread points to the aboriginal thread
4738  Linux::_main_thread = pthread_self();
4739
4740  Linux::clock_init();
4741  initial_time_count = os::elapsed_counter();
4742
4743  // pthread_condattr initialization for monotonic clock
4744  int status;
4745  pthread_condattr_t* _condattr = os::Linux::condAttr();
4746  if ((status = pthread_condattr_init(_condattr)) != 0) {
4747    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4748  }
4749  // Only set the clock if CLOCK_MONOTONIC is available
4750  if (Linux::supports_monotonic_clock()) {
4751    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4752      if (status == EINVAL) {
4753        warning("Unable to use monotonic clock with relative timed-waits" \
4754                " - changes to the time-of-day clock may have adverse affects");
4755      } else {
4756        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4757      }
4758    }
4759  }
4760  // else it defaults to CLOCK_REALTIME
4761
4762  pthread_mutex_init(&dl_mutex, NULL);
4763
4764  // If the pagesize of the VM is greater than 8K determine the appropriate
4765  // number of initial guard pages.  The user can change this with the
4766  // command line arguments, if needed.
4767  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4768    StackYellowPages = 1;
4769    StackRedPages = 1;
4770    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4771  }
4772}
4773
4774// To install functions for atexit system call
4775extern "C" {
4776  static void perfMemory_exit_helper() {
4777    perfMemory_exit();
4778  }
4779}
4780
4781// this is called _after_ the global arguments have been parsed
4782jint os::init_2(void)
4783{
4784  Linux::fast_thread_clock_init();
4785
4786  // Allocate a single page and mark it as readable for safepoint polling
4787  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4788  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4789
4790  os::set_polling_page( polling_page );
4791
4792#ifndef PRODUCT
4793  if(Verbose && PrintMiscellaneous)
4794    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4795#endif
4796
4797  if (!UseMembar) {
4798    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4799    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4800    os::set_memory_serialize_page( mem_serialize_page );
4801
4802#ifndef PRODUCT
4803    if(Verbose && PrintMiscellaneous)
4804      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4805#endif
4806  }
4807
4808  os::large_page_init();
4809
4810  // initialize suspend/resume support - must do this before signal_sets_init()
4811  if (SR_initialize() != 0) {
4812    perror("SR_initialize failed");
4813    return JNI_ERR;
4814  }
4815
4816  Linux::signal_sets_init();
4817  Linux::install_signal_handlers();
4818
4819  // Check minimum allowable stack size for thread creation and to initialize
4820  // the java system classes, including StackOverflowError - depends on page
4821  // size.  Add a page for compiler2 recursion in main thread.
4822  // Add in 2*BytesPerWord times page size to account for VM stack during
4823  // class initialization depending on 32 or 64 bit VM.
4824  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4825            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4826                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4827
4828  size_t threadStackSizeInBytes = ThreadStackSize * K;
4829  if (threadStackSizeInBytes != 0 &&
4830      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4831        tty->print_cr("\nThe stack size specified is too small, "
4832                      "Specify at least %dk",
4833                      os::Linux::min_stack_allowed/ K);
4834        return JNI_ERR;
4835  }
4836
4837  // Make the stack size a multiple of the page size so that
4838  // the yellow/red zones can be guarded.
4839  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4840        vm_page_size()));
4841
4842  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4843
4844  Linux::libpthread_init();
4845  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4846     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4847          Linux::glibc_version(), Linux::libpthread_version(),
4848          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4849  }
4850
4851  if (UseNUMA) {
4852    if (!Linux::libnuma_init()) {
4853      UseNUMA = false;
4854    } else {
4855      if ((Linux::numa_max_node() < 1)) {
4856        // There's only one node(they start from 0), disable NUMA.
4857        UseNUMA = false;
4858      }
4859    }
4860    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4861    // we can make the adaptive lgrp chunk resizing work. If the user specified
4862    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4863    // disable adaptive resizing.
4864    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4865      if (FLAG_IS_DEFAULT(UseNUMA)) {
4866        UseNUMA = false;
4867      } else {
4868        if (FLAG_IS_DEFAULT(UseLargePages) &&
4869            FLAG_IS_DEFAULT(UseSHM) &&
4870            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4871          UseLargePages = false;
4872        } else {
4873          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4874          UseAdaptiveSizePolicy = false;
4875          UseAdaptiveNUMAChunkSizing = false;
4876        }
4877      }
4878    }
4879    if (!UseNUMA && ForceNUMA) {
4880      UseNUMA = true;
4881    }
4882  }
4883
4884  if (MaxFDLimit) {
4885    // set the number of file descriptors to max. print out error
4886    // if getrlimit/setrlimit fails but continue regardless.
4887    struct rlimit nbr_files;
4888    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4889    if (status != 0) {
4890      if (PrintMiscellaneous && (Verbose || WizardMode))
4891        perror("os::init_2 getrlimit failed");
4892    } else {
4893      nbr_files.rlim_cur = nbr_files.rlim_max;
4894      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4895      if (status != 0) {
4896        if (PrintMiscellaneous && (Verbose || WizardMode))
4897          perror("os::init_2 setrlimit failed");
4898      }
4899    }
4900  }
4901
4902  // Initialize lock used to serialize thread creation (see os::create_thread)
4903  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4904
4905  // at-exit methods are called in the reverse order of their registration.
4906  // atexit functions are called on return from main or as a result of a
4907  // call to exit(3C). There can be only 32 of these functions registered
4908  // and atexit() does not set errno.
4909
4910  if (PerfAllowAtExitRegistration) {
4911    // only register atexit functions if PerfAllowAtExitRegistration is set.
4912    // atexit functions can be delayed until process exit time, which
4913    // can be problematic for embedded VM situations. Embedded VMs should
4914    // call DestroyJavaVM() to assure that VM resources are released.
4915
4916    // note: perfMemory_exit_helper atexit function may be removed in
4917    // the future if the appropriate cleanup code can be added to the
4918    // VM_Exit VMOperation's doit method.
4919    if (atexit(perfMemory_exit_helper) != 0) {
4920      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4921    }
4922  }
4923
4924  // initialize thread priority policy
4925  prio_init();
4926
4927  return JNI_OK;
4928}
4929
4930// this is called at the end of vm_initialization
4931void os::init_3(void)
4932{
4933#ifdef JAVASE_EMBEDDED
4934  // Start the MemNotifyThread
4935  if (LowMemoryProtection) {
4936    MemNotifyThread::start();
4937  }
4938  return;
4939#endif
4940}
4941
4942// Mark the polling page as unreadable
4943void os::make_polling_page_unreadable(void) {
4944  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4945    fatal("Could not disable polling page");
4946};
4947
4948// Mark the polling page as readable
4949void os::make_polling_page_readable(void) {
4950  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4951    fatal("Could not enable polling page");
4952  }
4953};
4954
4955int os::active_processor_count() {
4956  // Linux doesn't yet have a (official) notion of processor sets,
4957  // so just return the number of online processors.
4958  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4959  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4960  return online_cpus;
4961}
4962
4963void os::set_native_thread_name(const char *name) {
4964  // Not yet implemented.
4965  return;
4966}
4967
4968bool os::distribute_processes(uint length, uint* distribution) {
4969  // Not yet implemented.
4970  return false;
4971}
4972
4973bool os::bind_to_processor(uint processor_id) {
4974  // Not yet implemented.
4975  return false;
4976}
4977
4978///
4979
4980void os::SuspendedThreadTask::internal_do_task() {
4981  if (do_suspend(_thread->osthread())) {
4982    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4983    do_task(context);
4984    do_resume(_thread->osthread());
4985  }
4986}
4987
4988class PcFetcher : public os::SuspendedThreadTask {
4989public:
4990  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4991  ExtendedPC result();
4992protected:
4993  void do_task(const os::SuspendedThreadTaskContext& context);
4994private:
4995  ExtendedPC _epc;
4996};
4997
4998ExtendedPC PcFetcher::result() {
4999  guarantee(is_done(), "task is not done yet.");
5000  return _epc;
5001}
5002
5003void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5004  Thread* thread = context.thread();
5005  OSThread* osthread = thread->osthread();
5006  if (osthread->ucontext() != NULL) {
5007    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5008  } else {
5009    // NULL context is unexpected, double-check this is the VMThread
5010    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5011  }
5012}
5013
5014// Suspends the target using the signal mechanism and then grabs the PC before
5015// resuming the target. Used by the flat-profiler only
5016ExtendedPC os::get_thread_pc(Thread* thread) {
5017  // Make sure that it is called by the watcher for the VMThread
5018  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5019  assert(thread->is_VM_thread(), "Can only be called for VMThread");
5020
5021  PcFetcher fetcher(thread);
5022  fetcher.run();
5023  return fetcher.result();
5024}
5025
5026int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5027{
5028   if (is_NPTL()) {
5029      return pthread_cond_timedwait(_cond, _mutex, _abstime);
5030   } else {
5031      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5032      // word back to default 64bit precision if condvar is signaled. Java
5033      // wants 53bit precision.  Save and restore current value.
5034      int fpu = get_fpu_control_word();
5035      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5036      set_fpu_control_word(fpu);
5037      return status;
5038   }
5039}
5040
5041////////////////////////////////////////////////////////////////////////////////
5042// debug support
5043
5044bool os::find(address addr, outputStream* st) {
5045  Dl_info dlinfo;
5046  memset(&dlinfo, 0, sizeof(dlinfo));
5047  if (dladdr(addr, &dlinfo) != 0) {
5048    st->print(PTR_FORMAT ": ", addr);
5049    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5050      st->print("%s+%#x", dlinfo.dli_sname,
5051                 addr - (intptr_t)dlinfo.dli_saddr);
5052    } else if (dlinfo.dli_fbase != NULL) {
5053      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5054    } else {
5055      st->print("<absolute address>");
5056    }
5057    if (dlinfo.dli_fname != NULL) {
5058      st->print(" in %s", dlinfo.dli_fname);
5059    }
5060    if (dlinfo.dli_fbase != NULL) {
5061      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5062    }
5063    st->cr();
5064
5065    if (Verbose) {
5066      // decode some bytes around the PC
5067      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5068      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5069      address       lowest = (address) dlinfo.dli_sname;
5070      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5071      if (begin < lowest)  begin = lowest;
5072      Dl_info dlinfo2;
5073      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5074          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5075        end = (address) dlinfo2.dli_saddr;
5076      Disassembler::decode(begin, end, st);
5077    }
5078    return true;
5079  }
5080  return false;
5081}
5082
5083////////////////////////////////////////////////////////////////////////////////
5084// misc
5085
5086// This does not do anything on Linux. This is basically a hook for being
5087// able to use structured exception handling (thread-local exception filters)
5088// on, e.g., Win32.
5089void
5090os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5091                         JavaCallArguments* args, Thread* thread) {
5092  f(value, method, args, thread);
5093}
5094
5095void os::print_statistics() {
5096}
5097
5098int os::message_box(const char* title, const char* message) {
5099  int i;
5100  fdStream err(defaultStream::error_fd());
5101  for (i = 0; i < 78; i++) err.print_raw("=");
5102  err.cr();
5103  err.print_raw_cr(title);
5104  for (i = 0; i < 78; i++) err.print_raw("-");
5105  err.cr();
5106  err.print_raw_cr(message);
5107  for (i = 0; i < 78; i++) err.print_raw("=");
5108  err.cr();
5109
5110  char buf[16];
5111  // Prevent process from exiting upon "read error" without consuming all CPU
5112  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5113
5114  return buf[0] == 'y' || buf[0] == 'Y';
5115}
5116
5117int os::stat(const char *path, struct stat *sbuf) {
5118  char pathbuf[MAX_PATH];
5119  if (strlen(path) > MAX_PATH - 1) {
5120    errno = ENAMETOOLONG;
5121    return -1;
5122  }
5123  os::native_path(strcpy(pathbuf, path));
5124  return ::stat(pathbuf, sbuf);
5125}
5126
5127bool os::check_heap(bool force) {
5128  return true;
5129}
5130
5131int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5132  return ::vsnprintf(buf, count, format, args);
5133}
5134
5135// Is a (classpath) directory empty?
5136bool os::dir_is_empty(const char* path) {
5137  DIR *dir = NULL;
5138  struct dirent *ptr;
5139
5140  dir = opendir(path);
5141  if (dir == NULL) return true;
5142
5143  /* Scan the directory */
5144  bool result = true;
5145  char buf[sizeof(struct dirent) + MAX_PATH];
5146  while (result && (ptr = ::readdir(dir)) != NULL) {
5147    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5148      result = false;
5149    }
5150  }
5151  closedir(dir);
5152  return result;
5153}
5154
5155// This code originates from JDK's sysOpen and open64_w
5156// from src/solaris/hpi/src/system_md.c
5157
5158#ifndef O_DELETE
5159#define O_DELETE 0x10000
5160#endif
5161
5162// Open a file. Unlink the file immediately after open returns
5163// if the specified oflag has the O_DELETE flag set.
5164// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5165
5166int os::open(const char *path, int oflag, int mode) {
5167
5168  if (strlen(path) > MAX_PATH - 1) {
5169    errno = ENAMETOOLONG;
5170    return -1;
5171  }
5172  int fd;
5173  int o_delete = (oflag & O_DELETE);
5174  oflag = oflag & ~O_DELETE;
5175
5176  fd = ::open64(path, oflag, mode);
5177  if (fd == -1) return -1;
5178
5179  //If the open succeeded, the file might still be a directory
5180  {
5181    struct stat64 buf64;
5182    int ret = ::fstat64(fd, &buf64);
5183    int st_mode = buf64.st_mode;
5184
5185    if (ret != -1) {
5186      if ((st_mode & S_IFMT) == S_IFDIR) {
5187        errno = EISDIR;
5188        ::close(fd);
5189        return -1;
5190      }
5191    } else {
5192      ::close(fd);
5193      return -1;
5194    }
5195  }
5196
5197    /*
5198     * All file descriptors that are opened in the JVM and not
5199     * specifically destined for a subprocess should have the
5200     * close-on-exec flag set.  If we don't set it, then careless 3rd
5201     * party native code might fork and exec without closing all
5202     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5203     * UNIXProcess.c), and this in turn might:
5204     *
5205     * - cause end-of-file to fail to be detected on some file
5206     *   descriptors, resulting in mysterious hangs, or
5207     *
5208     * - might cause an fopen in the subprocess to fail on a system
5209     *   suffering from bug 1085341.
5210     *
5211     * (Yes, the default setting of the close-on-exec flag is a Unix
5212     * design flaw)
5213     *
5214     * See:
5215     * 1085341: 32-bit stdio routines should support file descriptors >255
5216     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5217     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5218     */
5219#ifdef FD_CLOEXEC
5220    {
5221        int flags = ::fcntl(fd, F_GETFD);
5222        if (flags != -1)
5223            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5224    }
5225#endif
5226
5227  if (o_delete != 0) {
5228    ::unlink(path);
5229  }
5230  return fd;
5231}
5232
5233
5234// create binary file, rewriting existing file if required
5235int os::create_binary_file(const char* path, bool rewrite_existing) {
5236  int oflags = O_WRONLY | O_CREAT;
5237  if (!rewrite_existing) {
5238    oflags |= O_EXCL;
5239  }
5240  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5241}
5242
5243// return current position of file pointer
5244jlong os::current_file_offset(int fd) {
5245  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5246}
5247
5248// move file pointer to the specified offset
5249jlong os::seek_to_file_offset(int fd, jlong offset) {
5250  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5251}
5252
5253// This code originates from JDK's sysAvailable
5254// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5255
5256int os::available(int fd, jlong *bytes) {
5257  jlong cur, end;
5258  int mode;
5259  struct stat64 buf64;
5260
5261  if (::fstat64(fd, &buf64) >= 0) {
5262    mode = buf64.st_mode;
5263    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5264      /*
5265      * XXX: is the following call interruptible? If so, this might
5266      * need to go through the INTERRUPT_IO() wrapper as for other
5267      * blocking, interruptible calls in this file.
5268      */
5269      int n;
5270      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5271        *bytes = n;
5272        return 1;
5273      }
5274    }
5275  }
5276  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5277    return 0;
5278  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5279    return 0;
5280  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5281    return 0;
5282  }
5283  *bytes = end - cur;
5284  return 1;
5285}
5286
5287int os::socket_available(int fd, jint *pbytes) {
5288  // Linux doc says EINTR not returned, unlike Solaris
5289  int ret = ::ioctl(fd, FIONREAD, pbytes);
5290
5291  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5292  // is expected to return 0 on failure and 1 on success to the jdk.
5293  return (ret < 0) ? 0 : 1;
5294}
5295
5296// Map a block of memory.
5297char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5298                     char *addr, size_t bytes, bool read_only,
5299                     bool allow_exec) {
5300  int prot;
5301  int flags = MAP_PRIVATE;
5302
5303  if (read_only) {
5304    prot = PROT_READ;
5305  } else {
5306    prot = PROT_READ | PROT_WRITE;
5307  }
5308
5309  if (allow_exec) {
5310    prot |= PROT_EXEC;
5311  }
5312
5313  if (addr != NULL) {
5314    flags |= MAP_FIXED;
5315  }
5316
5317  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5318                                     fd, file_offset);
5319  if (mapped_address == MAP_FAILED) {
5320    return NULL;
5321  }
5322  return mapped_address;
5323}
5324
5325
5326// Remap a block of memory.
5327char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5328                       char *addr, size_t bytes, bool read_only,
5329                       bool allow_exec) {
5330  // same as map_memory() on this OS
5331  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5332                        allow_exec);
5333}
5334
5335
5336// Unmap a block of memory.
5337bool os::pd_unmap_memory(char* addr, size_t bytes) {
5338  return munmap(addr, bytes) == 0;
5339}
5340
5341static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5342
5343static clockid_t thread_cpu_clockid(Thread* thread) {
5344  pthread_t tid = thread->osthread()->pthread_id();
5345  clockid_t clockid;
5346
5347  // Get thread clockid
5348  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5349  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5350  return clockid;
5351}
5352
5353// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5354// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5355// of a thread.
5356//
5357// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5358// the fast estimate available on the platform.
5359
5360jlong os::current_thread_cpu_time() {
5361  if (os::Linux::supports_fast_thread_cpu_time()) {
5362    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5363  } else {
5364    // return user + sys since the cost is the same
5365    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5366  }
5367}
5368
5369jlong os::thread_cpu_time(Thread* thread) {
5370  // consistent with what current_thread_cpu_time() returns
5371  if (os::Linux::supports_fast_thread_cpu_time()) {
5372    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5373  } else {
5374    return slow_thread_cpu_time(thread, true /* user + sys */);
5375  }
5376}
5377
5378jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5379  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5380    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5381  } else {
5382    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5383  }
5384}
5385
5386jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5387  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5388    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5389  } else {
5390    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5391  }
5392}
5393
5394//
5395//  -1 on error.
5396//
5397
5398static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5399  static bool proc_task_unchecked = true;
5400  static const char *proc_stat_path = "/proc/%d/stat";
5401  pid_t  tid = thread->osthread()->thread_id();
5402  char *s;
5403  char stat[2048];
5404  int statlen;
5405  char proc_name[64];
5406  int count;
5407  long sys_time, user_time;
5408  char cdummy;
5409  int idummy;
5410  long ldummy;
5411  FILE *fp;
5412
5413  // The /proc/<tid>/stat aggregates per-process usage on
5414  // new Linux kernels 2.6+ where NPTL is supported.
5415  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5416  // See bug 6328462.
5417  // There possibly can be cases where there is no directory
5418  // /proc/self/task, so we check its availability.
5419  if (proc_task_unchecked && os::Linux::is_NPTL()) {
5420    // This is executed only once
5421    proc_task_unchecked = false;
5422    fp = fopen("/proc/self/task", "r");
5423    if (fp != NULL) {
5424      proc_stat_path = "/proc/self/task/%d/stat";
5425      fclose(fp);
5426    }
5427  }
5428
5429  sprintf(proc_name, proc_stat_path, tid);
5430  fp = fopen(proc_name, "r");
5431  if ( fp == NULL ) return -1;
5432  statlen = fread(stat, 1, 2047, fp);
5433  stat[statlen] = '\0';
5434  fclose(fp);
5435
5436  // Skip pid and the command string. Note that we could be dealing with
5437  // weird command names, e.g. user could decide to rename java launcher
5438  // to "java 1.4.2 :)", then the stat file would look like
5439  //                1234 (java 1.4.2 :)) R ... ...
5440  // We don't really need to know the command string, just find the last
5441  // occurrence of ")" and then start parsing from there. See bug 4726580.
5442  s = strrchr(stat, ')');
5443  if (s == NULL ) return -1;
5444
5445  // Skip blank chars
5446  do s++; while (isspace(*s));
5447
5448  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5449                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5450                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5451                 &user_time, &sys_time);
5452  if ( count != 13 ) return -1;
5453  if (user_sys_cpu_time) {
5454    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5455  } else {
5456    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5457  }
5458}
5459
5460void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5461  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5462  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5463  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5464  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5465}
5466
5467void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5468  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5469  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5470  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5471  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5472}
5473
5474bool os::is_thread_cpu_time_supported() {
5475  return true;
5476}
5477
5478// System loadavg support.  Returns -1 if load average cannot be obtained.
5479// Linux doesn't yet have a (official) notion of processor sets,
5480// so just return the system wide load average.
5481int os::loadavg(double loadavg[], int nelem) {
5482  return ::getloadavg(loadavg, nelem);
5483}
5484
5485void os::pause() {
5486  char filename[MAX_PATH];
5487  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5488    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5489  } else {
5490    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5491  }
5492
5493  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5494  if (fd != -1) {
5495    struct stat buf;
5496    ::close(fd);
5497    while (::stat(filename, &buf) == 0) {
5498      (void)::poll(NULL, 0, 100);
5499    }
5500  } else {
5501    jio_fprintf(stderr,
5502      "Could not open pause file '%s', continuing immediately.\n", filename);
5503  }
5504}
5505
5506
5507// Refer to the comments in os_solaris.cpp park-unpark.
5508//
5509// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5510// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5511// For specifics regarding the bug see GLIBC BUGID 261237 :
5512//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5513// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5514// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5515// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5516// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5517// and monitorenter when we're using 1-0 locking.  All those operations may result in
5518// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5519// of libpthread avoids the problem, but isn't practical.
5520//
5521// Possible remedies:
5522//
5523// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5524//      This is palliative and probabilistic, however.  If the thread is preempted
5525//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5526//      than the minimum period may have passed, and the abstime may be stale (in the
5527//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5528//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5529//
5530// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5531//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5532//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5533//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5534//      thread.
5535//
5536// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5537//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5538//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5539//      This also works well.  In fact it avoids kernel-level scalability impediments
5540//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5541//      timers in a graceful fashion.
5542//
5543// 4.   When the abstime value is in the past it appears that control returns
5544//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5545//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5546//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5547//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5548//      It may be possible to avoid reinitialization by checking the return
5549//      value from pthread_cond_timedwait().  In addition to reinitializing the
5550//      condvar we must establish the invariant that cond_signal() is only called
5551//      within critical sections protected by the adjunct mutex.  This prevents
5552//      cond_signal() from "seeing" a condvar that's in the midst of being
5553//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5554//      desirable signal-after-unlock optimization that avoids futile context switching.
5555//
5556//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5557//      structure when a condvar is used or initialized.  cond_destroy()  would
5558//      release the helper structure.  Our reinitialize-after-timedwait fix
5559//      put excessive stress on malloc/free and locks protecting the c-heap.
5560//
5561// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5562// It may be possible to refine (4) by checking the kernel and NTPL verisons
5563// and only enabling the work-around for vulnerable environments.
5564
5565// utility to compute the abstime argument to timedwait:
5566// millis is the relative timeout time
5567// abstime will be the absolute timeout time
5568// TODO: replace compute_abstime() with unpackTime()
5569
5570static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5571  if (millis < 0)  millis = 0;
5572
5573  jlong seconds = millis / 1000;
5574  millis %= 1000;
5575  if (seconds > 50000000) { // see man cond_timedwait(3T)
5576    seconds = 50000000;
5577  }
5578
5579  if (os::Linux::supports_monotonic_clock()) {
5580    struct timespec now;
5581    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5582    assert_status(status == 0, status, "clock_gettime");
5583    abstime->tv_sec = now.tv_sec  + seconds;
5584    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5585    if (nanos >= NANOSECS_PER_SEC) {
5586      abstime->tv_sec += 1;
5587      nanos -= NANOSECS_PER_SEC;
5588    }
5589    abstime->tv_nsec = nanos;
5590  } else {
5591    struct timeval now;
5592    int status = gettimeofday(&now, NULL);
5593    assert(status == 0, "gettimeofday");
5594    abstime->tv_sec = now.tv_sec  + seconds;
5595    long usec = now.tv_usec + millis * 1000;
5596    if (usec >= 1000000) {
5597      abstime->tv_sec += 1;
5598      usec -= 1000000;
5599    }
5600    abstime->tv_nsec = usec * 1000;
5601  }
5602  return abstime;
5603}
5604
5605
5606// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5607// Conceptually TryPark() should be equivalent to park(0).
5608
5609int os::PlatformEvent::TryPark() {
5610  for (;;) {
5611    const int v = _Event ;
5612    guarantee ((v == 0) || (v == 1), "invariant") ;
5613    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5614  }
5615}
5616
5617void os::PlatformEvent::park() {       // AKA "down()"
5618  // Invariant: Only the thread associated with the Event/PlatformEvent
5619  // may call park().
5620  // TODO: assert that _Assoc != NULL or _Assoc == Self
5621  int v ;
5622  for (;;) {
5623      v = _Event ;
5624      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5625  }
5626  guarantee (v >= 0, "invariant") ;
5627  if (v == 0) {
5628     // Do this the hard way by blocking ...
5629     int status = pthread_mutex_lock(_mutex);
5630     assert_status(status == 0, status, "mutex_lock");
5631     guarantee (_nParked == 0, "invariant") ;
5632     ++ _nParked ;
5633     while (_Event < 0) {
5634        status = pthread_cond_wait(_cond, _mutex);
5635        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5636        // Treat this the same as if the wait was interrupted
5637        if (status == ETIME) { status = EINTR; }
5638        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5639     }
5640     -- _nParked ;
5641
5642    _Event = 0 ;
5643     status = pthread_mutex_unlock(_mutex);
5644     assert_status(status == 0, status, "mutex_unlock");
5645    // Paranoia to ensure our locked and lock-free paths interact
5646    // correctly with each other.
5647    OrderAccess::fence();
5648  }
5649  guarantee (_Event >= 0, "invariant") ;
5650}
5651
5652int os::PlatformEvent::park(jlong millis) {
5653  guarantee (_nParked == 0, "invariant") ;
5654
5655  int v ;
5656  for (;;) {
5657      v = _Event ;
5658      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5659  }
5660  guarantee (v >= 0, "invariant") ;
5661  if (v != 0) return OS_OK ;
5662
5663  // We do this the hard way, by blocking the thread.
5664  // Consider enforcing a minimum timeout value.
5665  struct timespec abst;
5666  compute_abstime(&abst, millis);
5667
5668  int ret = OS_TIMEOUT;
5669  int status = pthread_mutex_lock(_mutex);
5670  assert_status(status == 0, status, "mutex_lock");
5671  guarantee (_nParked == 0, "invariant") ;
5672  ++_nParked ;
5673
5674  // Object.wait(timo) will return because of
5675  // (a) notification
5676  // (b) timeout
5677  // (c) thread.interrupt
5678  //
5679  // Thread.interrupt and object.notify{All} both call Event::set.
5680  // That is, we treat thread.interrupt as a special case of notification.
5681  // The underlying Solaris implementation, cond_timedwait, admits
5682  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5683  // JVM from making those visible to Java code.  As such, we must
5684  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5685  //
5686  // TODO: properly differentiate simultaneous notify+interrupt.
5687  // In that case, we should propagate the notify to another waiter.
5688
5689  while (_Event < 0) {
5690    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5691    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5692      pthread_cond_destroy (_cond);
5693      pthread_cond_init (_cond, os::Linux::condAttr()) ;
5694    }
5695    assert_status(status == 0 || status == EINTR ||
5696                  status == ETIME || status == ETIMEDOUT,
5697                  status, "cond_timedwait");
5698    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5699    if (status == ETIME || status == ETIMEDOUT) break ;
5700    // We consume and ignore EINTR and spurious wakeups.
5701  }
5702  --_nParked ;
5703  if (_Event >= 0) {
5704     ret = OS_OK;
5705  }
5706  _Event = 0 ;
5707  status = pthread_mutex_unlock(_mutex);
5708  assert_status(status == 0, status, "mutex_unlock");
5709  assert (_nParked == 0, "invariant") ;
5710  // Paranoia to ensure our locked and lock-free paths interact
5711  // correctly with each other.
5712  OrderAccess::fence();
5713  return ret;
5714}
5715
5716void os::PlatformEvent::unpark() {
5717  // Transitions for _Event:
5718  //    0 :=> 1
5719  //    1 :=> 1
5720  //   -1 :=> either 0 or 1; must signal target thread
5721  //          That is, we can safely transition _Event from -1 to either
5722  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5723  //          unpark() calls.
5724  // See also: "Semaphores in Plan 9" by Mullender & Cox
5725  //
5726  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5727  // that it will take two back-to-back park() calls for the owning
5728  // thread to block. This has the benefit of forcing a spurious return
5729  // from the first park() call after an unpark() call which will help
5730  // shake out uses of park() and unpark() without condition variables.
5731
5732  if (Atomic::xchg(1, &_Event) >= 0) return;
5733
5734  // Wait for the thread associated with the event to vacate
5735  int status = pthread_mutex_lock(_mutex);
5736  assert_status(status == 0, status, "mutex_lock");
5737  int AnyWaiters = _nParked;
5738  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5739  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5740    AnyWaiters = 0;
5741    pthread_cond_signal(_cond);
5742  }
5743  status = pthread_mutex_unlock(_mutex);
5744  assert_status(status == 0, status, "mutex_unlock");
5745  if (AnyWaiters != 0) {
5746    status = pthread_cond_signal(_cond);
5747    assert_status(status == 0, status, "cond_signal");
5748  }
5749
5750  // Note that we signal() _after dropping the lock for "immortal" Events.
5751  // This is safe and avoids a common class of  futile wakeups.  In rare
5752  // circumstances this can cause a thread to return prematurely from
5753  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5754  // simply re-test the condition and re-park itself.
5755}
5756
5757
5758// JSR166
5759// -------------------------------------------------------
5760
5761/*
5762 * The solaris and linux implementations of park/unpark are fairly
5763 * conservative for now, but can be improved. They currently use a
5764 * mutex/condvar pair, plus a a count.
5765 * Park decrements count if > 0, else does a condvar wait.  Unpark
5766 * sets count to 1 and signals condvar.  Only one thread ever waits
5767 * on the condvar. Contention seen when trying to park implies that someone
5768 * is unparking you, so don't wait. And spurious returns are fine, so there
5769 * is no need to track notifications.
5770 */
5771
5772#define MAX_SECS 100000000
5773/*
5774 * This code is common to linux and solaris and will be moved to a
5775 * common place in dolphin.
5776 *
5777 * The passed in time value is either a relative time in nanoseconds
5778 * or an absolute time in milliseconds. Either way it has to be unpacked
5779 * into suitable seconds and nanoseconds components and stored in the
5780 * given timespec structure.
5781 * Given time is a 64-bit value and the time_t used in the timespec is only
5782 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5783 * overflow if times way in the future are given. Further on Solaris versions
5784 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5785 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5786 * As it will be 28 years before "now + 100000000" will overflow we can
5787 * ignore overflow and just impose a hard-limit on seconds using the value
5788 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5789 * years from "now".
5790 */
5791
5792static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5793  assert (time > 0, "convertTime");
5794  time_t max_secs = 0;
5795
5796  if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5797    struct timeval now;
5798    int status = gettimeofday(&now, NULL);
5799    assert(status == 0, "gettimeofday");
5800
5801    max_secs = now.tv_sec + MAX_SECS;
5802
5803    if (isAbsolute) {
5804      jlong secs = time / 1000;
5805      if (secs > max_secs) {
5806        absTime->tv_sec = max_secs;
5807      } else {
5808        absTime->tv_sec = secs;
5809      }
5810      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5811    } else {
5812      jlong secs = time / NANOSECS_PER_SEC;
5813      if (secs >= MAX_SECS) {
5814        absTime->tv_sec = max_secs;
5815        absTime->tv_nsec = 0;
5816      } else {
5817        absTime->tv_sec = now.tv_sec + secs;
5818        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5819        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5820          absTime->tv_nsec -= NANOSECS_PER_SEC;
5821          ++absTime->tv_sec; // note: this must be <= max_secs
5822        }
5823      }
5824    }
5825  } else {
5826    // must be relative using monotonic clock
5827    struct timespec now;
5828    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5829    assert_status(status == 0, status, "clock_gettime");
5830    max_secs = now.tv_sec + MAX_SECS;
5831    jlong secs = time / NANOSECS_PER_SEC;
5832    if (secs >= MAX_SECS) {
5833      absTime->tv_sec = max_secs;
5834      absTime->tv_nsec = 0;
5835    } else {
5836      absTime->tv_sec = now.tv_sec + secs;
5837      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5838      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5839        absTime->tv_nsec -= NANOSECS_PER_SEC;
5840        ++absTime->tv_sec; // note: this must be <= max_secs
5841      }
5842    }
5843  }
5844  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5845  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5846  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5847  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5848}
5849
5850void Parker::park(bool isAbsolute, jlong time) {
5851  // Ideally we'd do something useful while spinning, such
5852  // as calling unpackTime().
5853
5854  // Optional fast-path check:
5855  // Return immediately if a permit is available.
5856  // We depend on Atomic::xchg() having full barrier semantics
5857  // since we are doing a lock-free update to _counter.
5858  if (Atomic::xchg(0, &_counter) > 0) return;
5859
5860  Thread* thread = Thread::current();
5861  assert(thread->is_Java_thread(), "Must be JavaThread");
5862  JavaThread *jt = (JavaThread *)thread;
5863
5864  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5865  // Check interrupt before trying to wait
5866  if (Thread::is_interrupted(thread, false)) {
5867    return;
5868  }
5869
5870  // Next, demultiplex/decode time arguments
5871  timespec absTime;
5872  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5873    return;
5874  }
5875  if (time > 0) {
5876    unpackTime(&absTime, isAbsolute, time);
5877  }
5878
5879
5880  // Enter safepoint region
5881  // Beware of deadlocks such as 6317397.
5882  // The per-thread Parker:: mutex is a classic leaf-lock.
5883  // In particular a thread must never block on the Threads_lock while
5884  // holding the Parker:: mutex.  If safepoints are pending both the
5885  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5886  ThreadBlockInVM tbivm(jt);
5887
5888  // Don't wait if cannot get lock since interference arises from
5889  // unblocking.  Also. check interrupt before trying wait
5890  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5891    return;
5892  }
5893
5894  int status ;
5895  if (_counter > 0)  { // no wait needed
5896    _counter = 0;
5897    status = pthread_mutex_unlock(_mutex);
5898    assert (status == 0, "invariant") ;
5899    // Paranoia to ensure our locked and lock-free paths interact
5900    // correctly with each other and Java-level accesses.
5901    OrderAccess::fence();
5902    return;
5903  }
5904
5905#ifdef ASSERT
5906  // Don't catch signals while blocked; let the running threads have the signals.
5907  // (This allows a debugger to break into the running thread.)
5908  sigset_t oldsigs;
5909  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5910  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5911#endif
5912
5913  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5914  jt->set_suspend_equivalent();
5915  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5916
5917  assert(_cur_index == -1, "invariant");
5918  if (time == 0) {
5919    _cur_index = REL_INDEX; // arbitrary choice when not timed
5920    status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5921  } else {
5922    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5923    status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5924    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5925      pthread_cond_destroy (&_cond[_cur_index]) ;
5926      pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5927    }
5928  }
5929  _cur_index = -1;
5930  assert_status(status == 0 || status == EINTR ||
5931                status == ETIME || status == ETIMEDOUT,
5932                status, "cond_timedwait");
5933
5934#ifdef ASSERT
5935  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5936#endif
5937
5938  _counter = 0 ;
5939  status = pthread_mutex_unlock(_mutex) ;
5940  assert_status(status == 0, status, "invariant") ;
5941  // Paranoia to ensure our locked and lock-free paths interact
5942  // correctly with each other and Java-level accesses.
5943  OrderAccess::fence();
5944
5945  // If externally suspended while waiting, re-suspend
5946  if (jt->handle_special_suspend_equivalent_condition()) {
5947    jt->java_suspend_self();
5948  }
5949}
5950
5951void Parker::unpark() {
5952  int s, status ;
5953  status = pthread_mutex_lock(_mutex);
5954  assert (status == 0, "invariant") ;
5955  s = _counter;
5956  _counter = 1;
5957  if (s < 1) {
5958    // thread might be parked
5959    if (_cur_index != -1) {
5960      // thread is definitely parked
5961      if (WorkAroundNPTLTimedWaitHang) {
5962        status = pthread_cond_signal (&_cond[_cur_index]);
5963        assert (status == 0, "invariant");
5964        status = pthread_mutex_unlock(_mutex);
5965        assert (status == 0, "invariant");
5966      } else {
5967        status = pthread_mutex_unlock(_mutex);
5968        assert (status == 0, "invariant");
5969        status = pthread_cond_signal (&_cond[_cur_index]);
5970        assert (status == 0, "invariant");
5971      }
5972    } else {
5973      pthread_mutex_unlock(_mutex);
5974      assert (status == 0, "invariant") ;
5975    }
5976  } else {
5977    pthread_mutex_unlock(_mutex);
5978    assert (status == 0, "invariant") ;
5979  }
5980}
5981
5982
5983extern char** environ;
5984
5985#ifndef __NR_fork
5986#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5987#endif
5988
5989#ifndef __NR_execve
5990#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5991#endif
5992
5993// Run the specified command in a separate process. Return its exit value,
5994// or -1 on failure (e.g. can't fork a new process).
5995// Unlike system(), this function can be called from signal handler. It
5996// doesn't block SIGINT et al.
5997int os::fork_and_exec(char* cmd) {
5998  const char * argv[4] = {"sh", "-c", cmd, NULL};
5999
6000  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
6001  // pthread_atfork handlers and reset pthread library. All we need is a
6002  // separate process to execve. Make a direct syscall to fork process.
6003  // On IA64 there's no fork syscall, we have to use fork() and hope for
6004  // the best...
6005  pid_t pid = NOT_IA64(syscall(__NR_fork);)
6006              IA64_ONLY(fork();)
6007
6008  if (pid < 0) {
6009    // fork failed
6010    return -1;
6011
6012  } else if (pid == 0) {
6013    // child process
6014
6015    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
6016    // first to kill every thread on the thread list. Because this list is
6017    // not reset by fork() (see notes above), execve() will instead kill
6018    // every thread in the parent process. We know this is the only thread
6019    // in the new process, so make a system call directly.
6020    // IA64 should use normal execve() from glibc to match the glibc fork()
6021    // above.
6022    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
6023    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
6024
6025    // execve failed
6026    _exit(-1);
6027
6028  } else  {
6029    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6030    // care about the actual exit code, for now.
6031
6032    int status;
6033
6034    // Wait for the child process to exit.  This returns immediately if
6035    // the child has already exited. */
6036    while (waitpid(pid, &status, 0) < 0) {
6037        switch (errno) {
6038        case ECHILD: return 0;
6039        case EINTR: break;
6040        default: return -1;
6041        }
6042    }
6043
6044    if (WIFEXITED(status)) {
6045       // The child exited normally; get its exit code.
6046       return WEXITSTATUS(status);
6047    } else if (WIFSIGNALED(status)) {
6048       // The child exited because of a signal
6049       // The best value to return is 0x80 + signal number,
6050       // because that is what all Unix shells do, and because
6051       // it allows callers to distinguish between process exit and
6052       // process death by signal.
6053       return 0x80 + WTERMSIG(status);
6054    } else {
6055       // Unknown exit code; pass it through
6056       return status;
6057    }
6058  }
6059}
6060
6061// is_headless_jre()
6062//
6063// Test for the existence of xawt/libmawt.so or libawt_xawt.so
6064// in order to report if we are running in a headless jre
6065//
6066// Since JDK8 xawt/libmawt.so was moved into the same directory
6067// as libawt.so, and renamed libawt_xawt.so
6068//
6069bool os::is_headless_jre() {
6070    struct stat statbuf;
6071    char buf[MAXPATHLEN];
6072    char libmawtpath[MAXPATHLEN];
6073    const char *xawtstr  = "/xawt/libmawt.so";
6074    const char *new_xawtstr = "/libawt_xawt.so";
6075    char *p;
6076
6077    // Get path to libjvm.so
6078    os::jvm_path(buf, sizeof(buf));
6079
6080    // Get rid of libjvm.so
6081    p = strrchr(buf, '/');
6082    if (p == NULL) return false;
6083    else *p = '\0';
6084
6085    // Get rid of client or server
6086    p = strrchr(buf, '/');
6087    if (p == NULL) return false;
6088    else *p = '\0';
6089
6090    // check xawt/libmawt.so
6091    strcpy(libmawtpath, buf);
6092    strcat(libmawtpath, xawtstr);
6093    if (::stat(libmawtpath, &statbuf) == 0) return false;
6094
6095    // check libawt_xawt.so
6096    strcpy(libmawtpath, buf);
6097    strcat(libmawtpath, new_xawtstr);
6098    if (::stat(libmawtpath, &statbuf) == 0) return false;
6099
6100    return true;
6101}
6102
6103// Get the default path to the core file
6104// Returns the length of the string
6105int os::get_core_path(char* buffer, size_t bufferSize) {
6106  const char* p = get_current_directory(buffer, bufferSize);
6107
6108  if (p == NULL) {
6109    assert(p != NULL, "failed to get current directory");
6110    return 0;
6111  }
6112
6113  return strlen(buffer);
6114}
6115
6116#ifdef JAVASE_EMBEDDED
6117//
6118// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6119//
6120MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6121
6122// ctor
6123//
6124MemNotifyThread::MemNotifyThread(int fd): Thread() {
6125  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6126  _fd = fd;
6127
6128  if (os::create_thread(this, os::os_thread)) {
6129    _memnotify_thread = this;
6130    os::set_priority(this, NearMaxPriority);
6131    os::start_thread(this);
6132  }
6133}
6134
6135// Where all the work gets done
6136//
6137void MemNotifyThread::run() {
6138  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6139
6140  // Set up the select arguments
6141  fd_set rfds;
6142  if (_fd != -1) {
6143    FD_ZERO(&rfds);
6144    FD_SET(_fd, &rfds);
6145  }
6146
6147  // Now wait for the mem_notify device to wake up
6148  while (1) {
6149    // Wait for the mem_notify device to signal us..
6150    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6151    if (rc == -1) {
6152      perror("select!\n");
6153      break;
6154    } else if (rc) {
6155      //ssize_t free_before = os::available_memory();
6156      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6157
6158      // The kernel is telling us there is not much memory left...
6159      // try to do something about that
6160
6161      // If we are not already in a GC, try one.
6162      if (!Universe::heap()->is_gc_active()) {
6163        Universe::heap()->collect(GCCause::_allocation_failure);
6164
6165        //ssize_t free_after = os::available_memory();
6166        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6167        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6168      }
6169      // We might want to do something like the following if we find the GC's are not helping...
6170      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6171    }
6172  }
6173}
6174
6175//
6176// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6177//
6178void MemNotifyThread::start() {
6179  int    fd;
6180  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6181  if (fd < 0) {
6182      return;
6183  }
6184
6185  if (memnotify_thread() == NULL) {
6186    new MemNotifyThread(fd);
6187  }
6188}
6189
6190#endif // JAVASE_EMBEDDED
6191
6192
6193/////////////// Unit tests ///////////////
6194
6195#ifndef PRODUCT
6196
6197#define test_log(...) \
6198  do {\
6199    if (VerboseInternalVMTests) { \
6200      tty->print_cr(__VA_ARGS__); \
6201      tty->flush(); \
6202    }\
6203  } while (false)
6204
6205class TestReserveMemorySpecial : AllStatic {
6206 public:
6207  static void small_page_write(void* addr, size_t size) {
6208    size_t page_size = os::vm_page_size();
6209
6210    char* end = (char*)addr + size;
6211    for (char* p = (char*)addr; p < end; p += page_size) {
6212      *p = 1;
6213    }
6214  }
6215
6216  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6217    if (!UseHugeTLBFS) {
6218      return;
6219    }
6220
6221    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6222
6223    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6224
6225    if (addr != NULL) {
6226      small_page_write(addr, size);
6227
6228      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6229    }
6230  }
6231
6232  static void test_reserve_memory_special_huge_tlbfs_only() {
6233    if (!UseHugeTLBFS) {
6234      return;
6235    }
6236
6237    size_t lp = os::large_page_size();
6238
6239    for (size_t size = lp; size <= lp * 10; size += lp) {
6240      test_reserve_memory_special_huge_tlbfs_only(size);
6241    }
6242  }
6243
6244  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6245    if (!UseHugeTLBFS) {
6246        return;
6247    }
6248
6249    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6250        size, alignment);
6251
6252    assert(size >= os::large_page_size(), "Incorrect input to test");
6253
6254    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6255
6256    if (addr != NULL) {
6257      small_page_write(addr, size);
6258
6259      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6260    }
6261  }
6262
6263  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6264    size_t lp = os::large_page_size();
6265    size_t ag = os::vm_allocation_granularity();
6266
6267    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6268      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6269    }
6270  }
6271
6272  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6273    size_t lp = os::large_page_size();
6274    size_t ag = os::vm_allocation_granularity();
6275
6276    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6277    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6278    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6279    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6280    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6281    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6282    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6283    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6284    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6285  }
6286
6287  static void test_reserve_memory_special_huge_tlbfs() {
6288    if (!UseHugeTLBFS) {
6289      return;
6290    }
6291
6292    test_reserve_memory_special_huge_tlbfs_only();
6293    test_reserve_memory_special_huge_tlbfs_mixed();
6294  }
6295
6296  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6297    if (!UseSHM) {
6298      return;
6299    }
6300
6301    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6302
6303    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6304
6305    if (addr != NULL) {
6306      assert(is_ptr_aligned(addr, alignment), "Check");
6307      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6308
6309      small_page_write(addr, size);
6310
6311      os::Linux::release_memory_special_shm(addr, size);
6312    }
6313  }
6314
6315  static void test_reserve_memory_special_shm() {
6316    size_t lp = os::large_page_size();
6317    size_t ag = os::vm_allocation_granularity();
6318
6319    for (size_t size = ag; size < lp * 3; size += ag) {
6320      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6321        test_reserve_memory_special_shm(size, alignment);
6322      }
6323    }
6324  }
6325
6326  static void test() {
6327    test_reserve_memory_special_huge_tlbfs();
6328    test_reserve_memory_special_shm();
6329  }
6330};
6331
6332void TestReserveMemorySpecial_test() {
6333  TestReserveMemorySpecial::test();
6334}
6335
6336#endif
6337