os_linux.cpp revision 5209:88c255656030
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
105// getrusage() is prepared to handle the associated failure.
106#ifndef RUSAGE_THREAD
107#define RUSAGE_THREAD   (1)               /* only the calling thread */
108#endif
109
110#define MAX_PATH    (2 * K)
111
112// for timer info max values which include all bits
113#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
114
115#define LARGEPAGES_BIT (1 << 6)
116////////////////////////////////////////////////////////////////////////////////
117// global variables
118julong os::Linux::_physical_memory = 0;
119
120address   os::Linux::_initial_thread_stack_bottom = NULL;
121uintptr_t os::Linux::_initial_thread_stack_size   = 0;
122
123int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
124int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
125Mutex* os::Linux::_createThread_lock = NULL;
126pthread_t os::Linux::_main_thread;
127int os::Linux::_page_size = -1;
128const int os::Linux::_vm_default_page_size = (8 * K);
129bool os::Linux::_is_floating_stack = false;
130bool os::Linux::_is_NPTL = false;
131bool os::Linux::_supports_fast_thread_cpu_time = false;
132const char * os::Linux::_glibc_version = NULL;
133const char * os::Linux::_libpthread_version = NULL;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151/* Used to protect dlsym() calls */
152static pthread_mutex_t dl_mutex;
153
154// Declarations
155static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
156
157#ifdef JAVASE_EMBEDDED
158class MemNotifyThread: public Thread {
159  friend class VMStructs;
160 public:
161  virtual void run();
162
163 private:
164  static MemNotifyThread* _memnotify_thread;
165  int _fd;
166
167 public:
168
169  // Constructor
170  MemNotifyThread(int fd);
171
172  // Tester
173  bool is_memnotify_thread() const { return true; }
174
175  // Printing
176  char* name() const { return (char*)"Linux MemNotify Thread"; }
177
178  // Returns the single instance of the MemNotifyThread
179  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
180
181  // Create and start the single instance of MemNotifyThread
182  static void start();
183};
184#endif // JAVASE_EMBEDDED
185
186// utility functions
187
188static int SR_initialize();
189
190julong os::available_memory() {
191  return Linux::available_memory();
192}
193
194julong os::Linux::available_memory() {
195  // values in struct sysinfo are "unsigned long"
196  struct sysinfo si;
197  sysinfo(&si);
198
199  return (julong)si.freeram * si.mem_unit;
200}
201
202julong os::physical_memory() {
203  return Linux::physical_memory();
204}
205
206////////////////////////////////////////////////////////////////////////////////
207// environment support
208
209bool os::getenv(const char* name, char* buf, int len) {
210  const char* val = ::getenv(name);
211  if (val != NULL && strlen(val) < (size_t)len) {
212    strcpy(buf, val);
213    return true;
214  }
215  if (len > 0) buf[0] = 0;  // return a null string
216  return false;
217}
218
219
220// Return true if user is running as root.
221
222bool os::have_special_privileges() {
223  static bool init = false;
224  static bool privileges = false;
225  if (!init) {
226    privileges = (getuid() != geteuid()) || (getgid() != getegid());
227    init = true;
228  }
229  return privileges;
230}
231
232
233#ifndef SYS_gettid
234// i386: 224, ia64: 1105, amd64: 186, sparc 143
235#ifdef __ia64__
236#define SYS_gettid 1105
237#elif __i386__
238#define SYS_gettid 224
239#elif __amd64__
240#define SYS_gettid 186
241#elif __sparc__
242#define SYS_gettid 143
243#else
244#error define gettid for the arch
245#endif
246#endif
247
248// Cpu architecture string
249#if   defined(ZERO)
250static char cpu_arch[] = ZERO_LIBARCH;
251#elif defined(IA64)
252static char cpu_arch[] = "ia64";
253#elif defined(IA32)
254static char cpu_arch[] = "i386";
255#elif defined(AMD64)
256static char cpu_arch[] = "amd64";
257#elif defined(ARM)
258static char cpu_arch[] = "arm";
259#elif defined(PPC)
260static char cpu_arch[] = "ppc";
261#elif defined(SPARC)
262#  ifdef _LP64
263static char cpu_arch[] = "sparcv9";
264#  else
265static char cpu_arch[] = "sparc";
266#  endif
267#else
268#error Add appropriate cpu_arch setting
269#endif
270
271
272// pid_t gettid()
273//
274// Returns the kernel thread id of the currently running thread. Kernel
275// thread id is used to access /proc.
276//
277// (Note that getpid() on LinuxThreads returns kernel thread id too; but
278// on NPTL, it returns the same pid for all threads, as required by POSIX.)
279//
280pid_t os::Linux::gettid() {
281  int rslt = syscall(SYS_gettid);
282  if (rslt == -1) {
283     // old kernel, no NPTL support
284     return getpid();
285  } else {
286     return (pid_t)rslt;
287  }
288}
289
290// Most versions of linux have a bug where the number of processors are
291// determined by looking at the /proc file system.  In a chroot environment,
292// the system call returns 1.  This causes the VM to act as if it is
293// a single processor and elide locking (see is_MP() call).
294static bool unsafe_chroot_detected = false;
295static const char *unstable_chroot_error = "/proc file system not found.\n"
296                     "Java may be unstable running multithreaded in a chroot "
297                     "environment on Linux when /proc filesystem is not mounted.";
298
299void os::Linux::initialize_system_info() {
300  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
301  if (processor_count() == 1) {
302    pid_t pid = os::Linux::gettid();
303    char fname[32];
304    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
305    FILE *fp = fopen(fname, "r");
306    if (fp == NULL) {
307      unsafe_chroot_detected = true;
308    } else {
309      fclose(fp);
310    }
311  }
312  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
313  assert(processor_count() > 0, "linux error");
314}
315
316void os::init_system_properties_values() {
317//  char arch[12];
318//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
319
320  // The next steps are taken in the product version:
321  //
322  // Obtain the JAVA_HOME value from the location of libjvm.so.
323  // This library should be located at:
324  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
325  //
326  // If "/jre/lib/" appears at the right place in the path, then we
327  // assume libjvm.so is installed in a JDK and we use this path.
328  //
329  // Otherwise exit with message: "Could not create the Java virtual machine."
330  //
331  // The following extra steps are taken in the debugging version:
332  //
333  // If "/jre/lib/" does NOT appear at the right place in the path
334  // instead of exit check for $JAVA_HOME environment variable.
335  //
336  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
337  // then we append a fake suffix "hotspot/libjvm.so" to this path so
338  // it looks like libjvm.so is installed there
339  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
340  //
341  // Otherwise exit.
342  //
343  // Important note: if the location of libjvm.so changes this
344  // code needs to be changed accordingly.
345
346  // The next few definitions allow the code to be verbatim:
347#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
348#define getenv(n) ::getenv(n)
349
350/*
351 * See ld(1):
352 *      The linker uses the following search paths to locate required
353 *      shared libraries:
354 *        1: ...
355 *        ...
356 *        7: The default directories, normally /lib and /usr/lib.
357 */
358#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
359#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
360#else
361#define DEFAULT_LIBPATH "/lib:/usr/lib"
362#endif
363
364#define EXTENSIONS_DIR  "/lib/ext"
365#define ENDORSED_DIR    "/lib/endorsed"
366#define REG_DIR         "/usr/java/packages"
367
368  {
369    /* sysclasspath, java_home, dll_dir */
370    {
371        char *home_path;
372        char *dll_path;
373        char *pslash;
374        char buf[MAXPATHLEN];
375        os::jvm_path(buf, sizeof(buf));
376
377        // Found the full path to libjvm.so.
378        // Now cut the path to <java_home>/jre if we can.
379        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
380        pslash = strrchr(buf, '/');
381        if (pslash != NULL)
382            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
383        dll_path = malloc(strlen(buf) + 1);
384        if (dll_path == NULL)
385            return;
386        strcpy(dll_path, buf);
387        Arguments::set_dll_dir(dll_path);
388
389        if (pslash != NULL) {
390            pslash = strrchr(buf, '/');
391            if (pslash != NULL) {
392                *pslash = '\0';       /* get rid of /<arch> */
393                pslash = strrchr(buf, '/');
394                if (pslash != NULL)
395                    *pslash = '\0';   /* get rid of /lib */
396            }
397        }
398
399        home_path = malloc(strlen(buf) + 1);
400        if (home_path == NULL)
401            return;
402        strcpy(home_path, buf);
403        Arguments::set_java_home(home_path);
404
405        if (!set_boot_path('/', ':'))
406            return;
407    }
408
409    /*
410     * Where to look for native libraries
411     *
412     * Note: Due to a legacy implementation, most of the library path
413     * is set in the launcher.  This was to accomodate linking restrictions
414     * on legacy Linux implementations (which are no longer supported).
415     * Eventually, all the library path setting will be done here.
416     *
417     * However, to prevent the proliferation of improperly built native
418     * libraries, the new path component /usr/java/packages is added here.
419     * Eventually, all the library path setting will be done here.
420     */
421    {
422        char *ld_library_path;
423
424        /*
425         * Construct the invariant part of ld_library_path. Note that the
426         * space for the colon and the trailing null are provided by the
427         * nulls included by the sizeof operator (so actually we allocate
428         * a byte more than necessary).
429         */
430        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
431            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
432        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
433
434        /*
435         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
436         * should always exist (until the legacy problem cited above is
437         * addressed).
438         */
439        char *v = getenv("LD_LIBRARY_PATH");
440        if (v != NULL) {
441            char *t = ld_library_path;
442            /* That's +1 for the colon and +1 for the trailing '\0' */
443            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
444            sprintf(ld_library_path, "%s:%s", v, t);
445        }
446        Arguments::set_library_path(ld_library_path);
447    }
448
449    /*
450     * Extensions directories.
451     *
452     * Note that the space for the colon and the trailing null are provided
453     * by the nulls included by the sizeof operator (so actually one byte more
454     * than necessary is allocated).
455     */
456    {
457        char *buf = malloc(strlen(Arguments::get_java_home()) +
458            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
459        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
460            Arguments::get_java_home());
461        Arguments::set_ext_dirs(buf);
462    }
463
464    /* Endorsed standards default directory. */
465    {
466        char * buf;
467        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
468        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
469        Arguments::set_endorsed_dirs(buf);
470    }
471  }
472
473#undef malloc
474#undef getenv
475#undef EXTENSIONS_DIR
476#undef ENDORSED_DIR
477
478  // Done
479  return;
480}
481
482////////////////////////////////////////////////////////////////////////////////
483// breakpoint support
484
485void os::breakpoint() {
486  BREAKPOINT;
487}
488
489extern "C" void breakpoint() {
490  // use debugger to set breakpoint here
491}
492
493////////////////////////////////////////////////////////////////////////////////
494// signal support
495
496debug_only(static bool signal_sets_initialized = false);
497static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
498
499bool os::Linux::is_sig_ignored(int sig) {
500      struct sigaction oact;
501      sigaction(sig, (struct sigaction*)NULL, &oact);
502      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
503                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
504      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
505           return true;
506      else
507           return false;
508}
509
510void os::Linux::signal_sets_init() {
511  // Should also have an assertion stating we are still single-threaded.
512  assert(!signal_sets_initialized, "Already initialized");
513  // Fill in signals that are necessarily unblocked for all threads in
514  // the VM. Currently, we unblock the following signals:
515  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
516  //                         by -Xrs (=ReduceSignalUsage));
517  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
518  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
519  // the dispositions or masks wrt these signals.
520  // Programs embedding the VM that want to use the above signals for their
521  // own purposes must, at this time, use the "-Xrs" option to prevent
522  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
523  // (See bug 4345157, and other related bugs).
524  // In reality, though, unblocking these signals is really a nop, since
525  // these signals are not blocked by default.
526  sigemptyset(&unblocked_sigs);
527  sigemptyset(&allowdebug_blocked_sigs);
528  sigaddset(&unblocked_sigs, SIGILL);
529  sigaddset(&unblocked_sigs, SIGSEGV);
530  sigaddset(&unblocked_sigs, SIGBUS);
531  sigaddset(&unblocked_sigs, SIGFPE);
532  sigaddset(&unblocked_sigs, SR_signum);
533
534  if (!ReduceSignalUsage) {
535   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
536      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
537      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
538   }
539   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
540      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
541      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
542   }
543   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
544      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
545      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
546   }
547  }
548  // Fill in signals that are blocked by all but the VM thread.
549  sigemptyset(&vm_sigs);
550  if (!ReduceSignalUsage)
551    sigaddset(&vm_sigs, BREAK_SIGNAL);
552  debug_only(signal_sets_initialized = true);
553
554}
555
556// These are signals that are unblocked while a thread is running Java.
557// (For some reason, they get blocked by default.)
558sigset_t* os::Linux::unblocked_signals() {
559  assert(signal_sets_initialized, "Not initialized");
560  return &unblocked_sigs;
561}
562
563// These are the signals that are blocked while a (non-VM) thread is
564// running Java. Only the VM thread handles these signals.
565sigset_t* os::Linux::vm_signals() {
566  assert(signal_sets_initialized, "Not initialized");
567  return &vm_sigs;
568}
569
570// These are signals that are blocked during cond_wait to allow debugger in
571sigset_t* os::Linux::allowdebug_blocked_signals() {
572  assert(signal_sets_initialized, "Not initialized");
573  return &allowdebug_blocked_sigs;
574}
575
576void os::Linux::hotspot_sigmask(Thread* thread) {
577
578  //Save caller's signal mask before setting VM signal mask
579  sigset_t caller_sigmask;
580  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
581
582  OSThread* osthread = thread->osthread();
583  osthread->set_caller_sigmask(caller_sigmask);
584
585  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
586
587  if (!ReduceSignalUsage) {
588    if (thread->is_VM_thread()) {
589      // Only the VM thread handles BREAK_SIGNAL ...
590      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
591    } else {
592      // ... all other threads block BREAK_SIGNAL
593      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
594    }
595  }
596}
597
598//////////////////////////////////////////////////////////////////////////////
599// detecting pthread library
600
601void os::Linux::libpthread_init() {
602  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
603  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
604  // generic name for earlier versions.
605  // Define macros here so we can build HotSpot on old systems.
606# ifndef _CS_GNU_LIBC_VERSION
607# define _CS_GNU_LIBC_VERSION 2
608# endif
609# ifndef _CS_GNU_LIBPTHREAD_VERSION
610# define _CS_GNU_LIBPTHREAD_VERSION 3
611# endif
612
613  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
614  if (n > 0) {
615     char *str = (char *)malloc(n, mtInternal);
616     confstr(_CS_GNU_LIBC_VERSION, str, n);
617     os::Linux::set_glibc_version(str);
618  } else {
619     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
620     static char _gnu_libc_version[32];
621     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
622              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
623     os::Linux::set_glibc_version(_gnu_libc_version);
624  }
625
626  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
627  if (n > 0) {
628     char *str = (char *)malloc(n, mtInternal);
629     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
630     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
631     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
632     // is the case. LinuxThreads has a hard limit on max number of threads.
633     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
634     // On the other hand, NPTL does not have such a limit, sysconf()
635     // will return -1 and errno is not changed. Check if it is really NPTL.
636     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
637         strstr(str, "NPTL") &&
638         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
639       free(str);
640       os::Linux::set_libpthread_version("linuxthreads");
641     } else {
642       os::Linux::set_libpthread_version(str);
643     }
644  } else {
645    // glibc before 2.3.2 only has LinuxThreads.
646    os::Linux::set_libpthread_version("linuxthreads");
647  }
648
649  if (strstr(libpthread_version(), "NPTL")) {
650     os::Linux::set_is_NPTL();
651  } else {
652     os::Linux::set_is_LinuxThreads();
653  }
654
655  // LinuxThreads have two flavors: floating-stack mode, which allows variable
656  // stack size; and fixed-stack mode. NPTL is always floating-stack.
657  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
658     os::Linux::set_is_floating_stack();
659  }
660}
661
662/////////////////////////////////////////////////////////////////////////////
663// thread stack
664
665// Force Linux kernel to expand current thread stack. If "bottom" is close
666// to the stack guard, caller should block all signals.
667//
668// MAP_GROWSDOWN:
669//   A special mmap() flag that is used to implement thread stacks. It tells
670//   kernel that the memory region should extend downwards when needed. This
671//   allows early versions of LinuxThreads to only mmap the first few pages
672//   when creating a new thread. Linux kernel will automatically expand thread
673//   stack as needed (on page faults).
674//
675//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
676//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
677//   region, it's hard to tell if the fault is due to a legitimate stack
678//   access or because of reading/writing non-exist memory (e.g. buffer
679//   overrun). As a rule, if the fault happens below current stack pointer,
680//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
681//   application (see Linux kernel fault.c).
682//
683//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
684//   stack overflow detection.
685//
686//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
687//   not use this flag. However, the stack of initial thread is not created
688//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
689//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
690//   and then attach the thread to JVM.
691//
692// To get around the problem and allow stack banging on Linux, we need to
693// manually expand thread stack after receiving the SIGSEGV.
694//
695// There are two ways to expand thread stack to address "bottom", we used
696// both of them in JVM before 1.5:
697//   1. adjust stack pointer first so that it is below "bottom", and then
698//      touch "bottom"
699//   2. mmap() the page in question
700//
701// Now alternate signal stack is gone, it's harder to use 2. For instance,
702// if current sp is already near the lower end of page 101, and we need to
703// call mmap() to map page 100, it is possible that part of the mmap() frame
704// will be placed in page 100. When page 100 is mapped, it is zero-filled.
705// That will destroy the mmap() frame and cause VM to crash.
706//
707// The following code works by adjusting sp first, then accessing the "bottom"
708// page to force a page fault. Linux kernel will then automatically expand the
709// stack mapping.
710//
711// _expand_stack_to() assumes its frame size is less than page size, which
712// should always be true if the function is not inlined.
713
714#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
715#define NOINLINE
716#else
717#define NOINLINE __attribute__ ((noinline))
718#endif
719
720static void _expand_stack_to(address bottom) NOINLINE;
721
722static void _expand_stack_to(address bottom) {
723  address sp;
724  size_t size;
725  volatile char *p;
726
727  // Adjust bottom to point to the largest address within the same page, it
728  // gives us a one-page buffer if alloca() allocates slightly more memory.
729  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
730  bottom += os::Linux::page_size() - 1;
731
732  // sp might be slightly above current stack pointer; if that's the case, we
733  // will alloca() a little more space than necessary, which is OK. Don't use
734  // os::current_stack_pointer(), as its result can be slightly below current
735  // stack pointer, causing us to not alloca enough to reach "bottom".
736  sp = (address)&sp;
737
738  if (sp > bottom) {
739    size = sp - bottom;
740    p = (volatile char *)alloca(size);
741    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
742    p[0] = '\0';
743  }
744}
745
746bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
747  assert(t!=NULL, "just checking");
748  assert(t->osthread()->expanding_stack(), "expand should be set");
749  assert(t->stack_base() != NULL, "stack_base was not initialized");
750
751  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
752    sigset_t mask_all, old_sigset;
753    sigfillset(&mask_all);
754    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
755    _expand_stack_to(addr);
756    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
757    return true;
758  }
759  return false;
760}
761
762//////////////////////////////////////////////////////////////////////////////
763// create new thread
764
765static address highest_vm_reserved_address();
766
767// check if it's safe to start a new thread
768static bool _thread_safety_check(Thread* thread) {
769  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
770    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
771    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
772    //   allocated (MAP_FIXED) from high address space. Every thread stack
773    //   occupies a fixed size slot (usually 2Mbytes, but user can change
774    //   it to other values if they rebuild LinuxThreads).
775    //
776    // Problem with MAP_FIXED is that mmap() can still succeed even part of
777    // the memory region has already been mmap'ed. That means if we have too
778    // many threads and/or very large heap, eventually thread stack will
779    // collide with heap.
780    //
781    // Here we try to prevent heap/stack collision by comparing current
782    // stack bottom with the highest address that has been mmap'ed by JVM
783    // plus a safety margin for memory maps created by native code.
784    //
785    // This feature can be disabled by setting ThreadSafetyMargin to 0
786    //
787    if (ThreadSafetyMargin > 0) {
788      address stack_bottom = os::current_stack_base() - os::current_stack_size();
789
790      // not safe if our stack extends below the safety margin
791      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
792    } else {
793      return true;
794    }
795  } else {
796    // Floating stack LinuxThreads or NPTL:
797    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
798    //   there's not enough space left, pthread_create() will fail. If we come
799    //   here, that means enough space has been reserved for stack.
800    return true;
801  }
802}
803
804// Thread start routine for all newly created threads
805static void *java_start(Thread *thread) {
806  // Try to randomize the cache line index of hot stack frames.
807  // This helps when threads of the same stack traces evict each other's
808  // cache lines. The threads can be either from the same JVM instance, or
809  // from different JVM instances. The benefit is especially true for
810  // processors with hyperthreading technology.
811  static int counter = 0;
812  int pid = os::current_process_id();
813  alloca(((pid ^ counter++) & 7) * 128);
814
815  ThreadLocalStorage::set_thread(thread);
816
817  OSThread* osthread = thread->osthread();
818  Monitor* sync = osthread->startThread_lock();
819
820  // non floating stack LinuxThreads needs extra check, see above
821  if (!_thread_safety_check(thread)) {
822    // notify parent thread
823    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
824    osthread->set_state(ZOMBIE);
825    sync->notify_all();
826    return NULL;
827  }
828
829  // thread_id is kernel thread id (similar to Solaris LWP id)
830  osthread->set_thread_id(os::Linux::gettid());
831
832  if (UseNUMA) {
833    int lgrp_id = os::numa_get_group_id();
834    if (lgrp_id != -1) {
835      thread->set_lgrp_id(lgrp_id);
836    }
837  }
838  // initialize signal mask for this thread
839  os::Linux::hotspot_sigmask(thread);
840
841  // initialize floating point control register
842  os::Linux::init_thread_fpu_state();
843
844  // handshaking with parent thread
845  {
846    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
847
848    // notify parent thread
849    osthread->set_state(INITIALIZED);
850    sync->notify_all();
851
852    // wait until os::start_thread()
853    while (osthread->get_state() == INITIALIZED) {
854      sync->wait(Mutex::_no_safepoint_check_flag);
855    }
856  }
857
858  // call one more level start routine
859  thread->run();
860
861  return 0;
862}
863
864bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
865  assert(thread->osthread() == NULL, "caller responsible");
866
867  // Allocate the OSThread object
868  OSThread* osthread = new OSThread(NULL, NULL);
869  if (osthread == NULL) {
870    return false;
871  }
872
873  // set the correct thread state
874  osthread->set_thread_type(thr_type);
875
876  // Initial state is ALLOCATED but not INITIALIZED
877  osthread->set_state(ALLOCATED);
878
879  thread->set_osthread(osthread);
880
881  // init thread attributes
882  pthread_attr_t attr;
883  pthread_attr_init(&attr);
884  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
885
886  // stack size
887  if (os::Linux::supports_variable_stack_size()) {
888    // calculate stack size if it's not specified by caller
889    if (stack_size == 0) {
890      stack_size = os::Linux::default_stack_size(thr_type);
891
892      switch (thr_type) {
893      case os::java_thread:
894        // Java threads use ThreadStackSize which default value can be
895        // changed with the flag -Xss
896        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
897        stack_size = JavaThread::stack_size_at_create();
898        break;
899      case os::compiler_thread:
900        if (CompilerThreadStackSize > 0) {
901          stack_size = (size_t)(CompilerThreadStackSize * K);
902          break;
903        } // else fall through:
904          // use VMThreadStackSize if CompilerThreadStackSize is not defined
905      case os::vm_thread:
906      case os::pgc_thread:
907      case os::cgc_thread:
908      case os::watcher_thread:
909        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
910        break;
911      }
912    }
913
914    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
915    pthread_attr_setstacksize(&attr, stack_size);
916  } else {
917    // let pthread_create() pick the default value.
918  }
919
920  // glibc guard page
921  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
922
923  ThreadState state;
924
925  {
926    // Serialize thread creation if we are running with fixed stack LinuxThreads
927    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
928    if (lock) {
929      os::Linux::createThread_lock()->lock_without_safepoint_check();
930    }
931
932    pthread_t tid;
933    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
934
935    pthread_attr_destroy(&attr);
936
937    if (ret != 0) {
938      if (PrintMiscellaneous && (Verbose || WizardMode)) {
939        perror("pthread_create()");
940      }
941      // Need to clean up stuff we've allocated so far
942      thread->set_osthread(NULL);
943      delete osthread;
944      if (lock) os::Linux::createThread_lock()->unlock();
945      return false;
946    }
947
948    // Store pthread info into the OSThread
949    osthread->set_pthread_id(tid);
950
951    // Wait until child thread is either initialized or aborted
952    {
953      Monitor* sync_with_child = osthread->startThread_lock();
954      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
955      while ((state = osthread->get_state()) == ALLOCATED) {
956        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
957      }
958    }
959
960    if (lock) {
961      os::Linux::createThread_lock()->unlock();
962    }
963  }
964
965  // Aborted due to thread limit being reached
966  if (state == ZOMBIE) {
967      thread->set_osthread(NULL);
968      delete osthread;
969      return false;
970  }
971
972  // The thread is returned suspended (in state INITIALIZED),
973  // and is started higher up in the call chain
974  assert(state == INITIALIZED, "race condition");
975  return true;
976}
977
978/////////////////////////////////////////////////////////////////////////////
979// attach existing thread
980
981// bootstrap the main thread
982bool os::create_main_thread(JavaThread* thread) {
983  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
984  return create_attached_thread(thread);
985}
986
987bool os::create_attached_thread(JavaThread* thread) {
988#ifdef ASSERT
989    thread->verify_not_published();
990#endif
991
992  // Allocate the OSThread object
993  OSThread* osthread = new OSThread(NULL, NULL);
994
995  if (osthread == NULL) {
996    return false;
997  }
998
999  // Store pthread info into the OSThread
1000  osthread->set_thread_id(os::Linux::gettid());
1001  osthread->set_pthread_id(::pthread_self());
1002
1003  // initialize floating point control register
1004  os::Linux::init_thread_fpu_state();
1005
1006  // Initial thread state is RUNNABLE
1007  osthread->set_state(RUNNABLE);
1008
1009  thread->set_osthread(osthread);
1010
1011  if (UseNUMA) {
1012    int lgrp_id = os::numa_get_group_id();
1013    if (lgrp_id != -1) {
1014      thread->set_lgrp_id(lgrp_id);
1015    }
1016  }
1017
1018  if (os::Linux::is_initial_thread()) {
1019    // If current thread is initial thread, its stack is mapped on demand,
1020    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1021    // the entire stack region to avoid SEGV in stack banging.
1022    // It is also useful to get around the heap-stack-gap problem on SuSE
1023    // kernel (see 4821821 for details). We first expand stack to the top
1024    // of yellow zone, then enable stack yellow zone (order is significant,
1025    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1026    // is no gap between the last two virtual memory regions.
1027
1028    JavaThread *jt = (JavaThread *)thread;
1029    address addr = jt->stack_yellow_zone_base();
1030    assert(addr != NULL, "initialization problem?");
1031    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1032
1033    osthread->set_expanding_stack();
1034    os::Linux::manually_expand_stack(jt, addr);
1035    osthread->clear_expanding_stack();
1036  }
1037
1038  // initialize signal mask for this thread
1039  // and save the caller's signal mask
1040  os::Linux::hotspot_sigmask(thread);
1041
1042  return true;
1043}
1044
1045void os::pd_start_thread(Thread* thread) {
1046  OSThread * osthread = thread->osthread();
1047  assert(osthread->get_state() != INITIALIZED, "just checking");
1048  Monitor* sync_with_child = osthread->startThread_lock();
1049  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1050  sync_with_child->notify();
1051}
1052
1053// Free Linux resources related to the OSThread
1054void os::free_thread(OSThread* osthread) {
1055  assert(osthread != NULL, "osthread not set");
1056
1057  if (Thread::current()->osthread() == osthread) {
1058    // Restore caller's signal mask
1059    sigset_t sigmask = osthread->caller_sigmask();
1060    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1061   }
1062
1063  delete osthread;
1064}
1065
1066//////////////////////////////////////////////////////////////////////////////
1067// thread local storage
1068
1069int os::allocate_thread_local_storage() {
1070  pthread_key_t key;
1071  int rslt = pthread_key_create(&key, NULL);
1072  assert(rslt == 0, "cannot allocate thread local storage");
1073  return (int)key;
1074}
1075
1076// Note: This is currently not used by VM, as we don't destroy TLS key
1077// on VM exit.
1078void os::free_thread_local_storage(int index) {
1079  int rslt = pthread_key_delete((pthread_key_t)index);
1080  assert(rslt == 0, "invalid index");
1081}
1082
1083void os::thread_local_storage_at_put(int index, void* value) {
1084  int rslt = pthread_setspecific((pthread_key_t)index, value);
1085  assert(rslt == 0, "pthread_setspecific failed");
1086}
1087
1088extern "C" Thread* get_thread() {
1089  return ThreadLocalStorage::thread();
1090}
1091
1092//////////////////////////////////////////////////////////////////////////////
1093// initial thread
1094
1095// Check if current thread is the initial thread, similar to Solaris thr_main.
1096bool os::Linux::is_initial_thread(void) {
1097  char dummy;
1098  // If called before init complete, thread stack bottom will be null.
1099  // Can be called if fatal error occurs before initialization.
1100  if (initial_thread_stack_bottom() == NULL) return false;
1101  assert(initial_thread_stack_bottom() != NULL &&
1102         initial_thread_stack_size()   != 0,
1103         "os::init did not locate initial thread's stack region");
1104  if ((address)&dummy >= initial_thread_stack_bottom() &&
1105      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1106       return true;
1107  else return false;
1108}
1109
1110// Find the virtual memory area that contains addr
1111static bool find_vma(address addr, address* vma_low, address* vma_high) {
1112  FILE *fp = fopen("/proc/self/maps", "r");
1113  if (fp) {
1114    address low, high;
1115    while (!feof(fp)) {
1116      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1117        if (low <= addr && addr < high) {
1118           if (vma_low)  *vma_low  = low;
1119           if (vma_high) *vma_high = high;
1120           fclose (fp);
1121           return true;
1122        }
1123      }
1124      for (;;) {
1125        int ch = fgetc(fp);
1126        if (ch == EOF || ch == (int)'\n') break;
1127      }
1128    }
1129    fclose(fp);
1130  }
1131  return false;
1132}
1133
1134// Locate initial thread stack. This special handling of initial thread stack
1135// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1136// bogus value for initial thread.
1137void os::Linux::capture_initial_stack(size_t max_size) {
1138  // stack size is the easy part, get it from RLIMIT_STACK
1139  size_t stack_size;
1140  struct rlimit rlim;
1141  getrlimit(RLIMIT_STACK, &rlim);
1142  stack_size = rlim.rlim_cur;
1143
1144  // 6308388: a bug in ld.so will relocate its own .data section to the
1145  //   lower end of primordial stack; reduce ulimit -s value a little bit
1146  //   so we won't install guard page on ld.so's data section.
1147  stack_size -= 2 * page_size();
1148
1149  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1150  //   7.1, in both cases we will get 2G in return value.
1151  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1152  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1153  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1154  //   in case other parts in glibc still assumes 2M max stack size.
1155  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1156  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1157  if (stack_size > 2 * K * K IA64_ONLY(*2))
1158      stack_size = 2 * K * K IA64_ONLY(*2);
1159  // Try to figure out where the stack base (top) is. This is harder.
1160  //
1161  // When an application is started, glibc saves the initial stack pointer in
1162  // a global variable "__libc_stack_end", which is then used by system
1163  // libraries. __libc_stack_end should be pretty close to stack top. The
1164  // variable is available since the very early days. However, because it is
1165  // a private interface, it could disappear in the future.
1166  //
1167  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1168  // to __libc_stack_end, it is very close to stack top, but isn't the real
1169  // stack top. Note that /proc may not exist if VM is running as a chroot
1170  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1171  // /proc/<pid>/stat could change in the future (though unlikely).
1172  //
1173  // We try __libc_stack_end first. If that doesn't work, look for
1174  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1175  // as a hint, which should work well in most cases.
1176
1177  uintptr_t stack_start;
1178
1179  // try __libc_stack_end first
1180  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1181  if (p && *p) {
1182    stack_start = *p;
1183  } else {
1184    // see if we can get the start_stack field from /proc/self/stat
1185    FILE *fp;
1186    int pid;
1187    char state;
1188    int ppid;
1189    int pgrp;
1190    int session;
1191    int nr;
1192    int tpgrp;
1193    unsigned long flags;
1194    unsigned long minflt;
1195    unsigned long cminflt;
1196    unsigned long majflt;
1197    unsigned long cmajflt;
1198    unsigned long utime;
1199    unsigned long stime;
1200    long cutime;
1201    long cstime;
1202    long prio;
1203    long nice;
1204    long junk;
1205    long it_real;
1206    uintptr_t start;
1207    uintptr_t vsize;
1208    intptr_t rss;
1209    uintptr_t rsslim;
1210    uintptr_t scodes;
1211    uintptr_t ecode;
1212    int i;
1213
1214    // Figure what the primordial thread stack base is. Code is inspired
1215    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1216    // followed by command name surrounded by parentheses, state, etc.
1217    char stat[2048];
1218    int statlen;
1219
1220    fp = fopen("/proc/self/stat", "r");
1221    if (fp) {
1222      statlen = fread(stat, 1, 2047, fp);
1223      stat[statlen] = '\0';
1224      fclose(fp);
1225
1226      // Skip pid and the command string. Note that we could be dealing with
1227      // weird command names, e.g. user could decide to rename java launcher
1228      // to "java 1.4.2 :)", then the stat file would look like
1229      //                1234 (java 1.4.2 :)) R ... ...
1230      // We don't really need to know the command string, just find the last
1231      // occurrence of ")" and then start parsing from there. See bug 4726580.
1232      char * s = strrchr(stat, ')');
1233
1234      i = 0;
1235      if (s) {
1236        // Skip blank chars
1237        do s++; while (isspace(*s));
1238
1239#define _UFM UINTX_FORMAT
1240#define _DFM INTX_FORMAT
1241
1242        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1243        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1244        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1245             &state,          /* 3  %c  */
1246             &ppid,           /* 4  %d  */
1247             &pgrp,           /* 5  %d  */
1248             &session,        /* 6  %d  */
1249             &nr,             /* 7  %d  */
1250             &tpgrp,          /* 8  %d  */
1251             &flags,          /* 9  %lu  */
1252             &minflt,         /* 10 %lu  */
1253             &cminflt,        /* 11 %lu  */
1254             &majflt,         /* 12 %lu  */
1255             &cmajflt,        /* 13 %lu  */
1256             &utime,          /* 14 %lu  */
1257             &stime,          /* 15 %lu  */
1258             &cutime,         /* 16 %ld  */
1259             &cstime,         /* 17 %ld  */
1260             &prio,           /* 18 %ld  */
1261             &nice,           /* 19 %ld  */
1262             &junk,           /* 20 %ld  */
1263             &it_real,        /* 21 %ld  */
1264             &start,          /* 22 UINTX_FORMAT */
1265             &vsize,          /* 23 UINTX_FORMAT */
1266             &rss,            /* 24 INTX_FORMAT  */
1267             &rsslim,         /* 25 UINTX_FORMAT */
1268             &scodes,         /* 26 UINTX_FORMAT */
1269             &ecode,          /* 27 UINTX_FORMAT */
1270             &stack_start);   /* 28 UINTX_FORMAT */
1271      }
1272
1273#undef _UFM
1274#undef _DFM
1275
1276      if (i != 28 - 2) {
1277         assert(false, "Bad conversion from /proc/self/stat");
1278         // product mode - assume we are the initial thread, good luck in the
1279         // embedded case.
1280         warning("Can't detect initial thread stack location - bad conversion");
1281         stack_start = (uintptr_t) &rlim;
1282      }
1283    } else {
1284      // For some reason we can't open /proc/self/stat (for example, running on
1285      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1286      // most cases, so don't abort:
1287      warning("Can't detect initial thread stack location - no /proc/self/stat");
1288      stack_start = (uintptr_t) &rlim;
1289    }
1290  }
1291
1292  // Now we have a pointer (stack_start) very close to the stack top, the
1293  // next thing to do is to figure out the exact location of stack top. We
1294  // can find out the virtual memory area that contains stack_start by
1295  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1296  // and its upper limit is the real stack top. (again, this would fail if
1297  // running inside chroot, because /proc may not exist.)
1298
1299  uintptr_t stack_top;
1300  address low, high;
1301  if (find_vma((address)stack_start, &low, &high)) {
1302    // success, "high" is the true stack top. (ignore "low", because initial
1303    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1304    stack_top = (uintptr_t)high;
1305  } else {
1306    // failed, likely because /proc/self/maps does not exist
1307    warning("Can't detect initial thread stack location - find_vma failed");
1308    // best effort: stack_start is normally within a few pages below the real
1309    // stack top, use it as stack top, and reduce stack size so we won't put
1310    // guard page outside stack.
1311    stack_top = stack_start;
1312    stack_size -= 16 * page_size();
1313  }
1314
1315  // stack_top could be partially down the page so align it
1316  stack_top = align_size_up(stack_top, page_size());
1317
1318  if (max_size && stack_size > max_size) {
1319     _initial_thread_stack_size = max_size;
1320  } else {
1321     _initial_thread_stack_size = stack_size;
1322  }
1323
1324  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1325  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1326}
1327
1328////////////////////////////////////////////////////////////////////////////////
1329// time support
1330
1331// Time since start-up in seconds to a fine granularity.
1332// Used by VMSelfDestructTimer and the MemProfiler.
1333double os::elapsedTime() {
1334
1335  return (double)(os::elapsed_counter()) * 0.000001;
1336}
1337
1338jlong os::elapsed_counter() {
1339  timeval time;
1340  int status = gettimeofday(&time, NULL);
1341  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1342}
1343
1344jlong os::elapsed_frequency() {
1345  return (1000 * 1000);
1346}
1347
1348bool os::supports_vtime() { return true; }
1349bool os::enable_vtime()   { return false; }
1350bool os::vtime_enabled()  { return false; }
1351
1352double os::elapsedVTime() {
1353  struct rusage usage;
1354  int retval = getrusage(RUSAGE_THREAD, &usage);
1355  if (retval == 0) {
1356    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1357  } else {
1358    // better than nothing, but not much
1359    return elapsedTime();
1360  }
1361}
1362
1363jlong os::javaTimeMillis() {
1364  timeval time;
1365  int status = gettimeofday(&time, NULL);
1366  assert(status != -1, "linux error");
1367  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1368}
1369
1370#ifndef CLOCK_MONOTONIC
1371#define CLOCK_MONOTONIC (1)
1372#endif
1373
1374void os::Linux::clock_init() {
1375  // we do dlopen's in this particular order due to bug in linux
1376  // dynamical loader (see 6348968) leading to crash on exit
1377  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1378  if (handle == NULL) {
1379    handle = dlopen("librt.so", RTLD_LAZY);
1380  }
1381
1382  if (handle) {
1383    int (*clock_getres_func)(clockid_t, struct timespec*) =
1384           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1385    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1386           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1387    if (clock_getres_func && clock_gettime_func) {
1388      // See if monotonic clock is supported by the kernel. Note that some
1389      // early implementations simply return kernel jiffies (updated every
1390      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1391      // for nano time (though the monotonic property is still nice to have).
1392      // It's fixed in newer kernels, however clock_getres() still returns
1393      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1394      // resolution for now. Hopefully as people move to new kernels, this
1395      // won't be a problem.
1396      struct timespec res;
1397      struct timespec tp;
1398      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1399          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1400        // yes, monotonic clock is supported
1401        _clock_gettime = clock_gettime_func;
1402      } else {
1403        // close librt if there is no monotonic clock
1404        dlclose(handle);
1405      }
1406    }
1407  }
1408}
1409
1410#ifndef SYS_clock_getres
1411
1412#if defined(IA32) || defined(AMD64)
1413#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1414#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1415#else
1416#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1417#define sys_clock_getres(x,y)  -1
1418#endif
1419
1420#else
1421#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1422#endif
1423
1424void os::Linux::fast_thread_clock_init() {
1425  if (!UseLinuxPosixThreadCPUClocks) {
1426    return;
1427  }
1428  clockid_t clockid;
1429  struct timespec tp;
1430  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1431      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1432
1433  // Switch to using fast clocks for thread cpu time if
1434  // the sys_clock_getres() returns 0 error code.
1435  // Note, that some kernels may support the current thread
1436  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1437  // returned by the pthread_getcpuclockid().
1438  // If the fast Posix clocks are supported then the sys_clock_getres()
1439  // must return at least tp.tv_sec == 0 which means a resolution
1440  // better than 1 sec. This is extra check for reliability.
1441
1442  if(pthread_getcpuclockid_func &&
1443     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1444     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1445
1446    _supports_fast_thread_cpu_time = true;
1447    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1448  }
1449}
1450
1451jlong os::javaTimeNanos() {
1452  if (Linux::supports_monotonic_clock()) {
1453    struct timespec tp;
1454    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1455    assert(status == 0, "gettime error");
1456    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1457    return result;
1458  } else {
1459    timeval time;
1460    int status = gettimeofday(&time, NULL);
1461    assert(status != -1, "linux error");
1462    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1463    return 1000 * usecs;
1464  }
1465}
1466
1467void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1468  if (Linux::supports_monotonic_clock()) {
1469    info_ptr->max_value = ALL_64_BITS;
1470
1471    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1472    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1473    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1474  } else {
1475    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1476    info_ptr->max_value = ALL_64_BITS;
1477
1478    // gettimeofday is a real time clock so it skips
1479    info_ptr->may_skip_backward = true;
1480    info_ptr->may_skip_forward = true;
1481  }
1482
1483  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1484}
1485
1486// Return the real, user, and system times in seconds from an
1487// arbitrary fixed point in the past.
1488bool os::getTimesSecs(double* process_real_time,
1489                      double* process_user_time,
1490                      double* process_system_time) {
1491  struct tms ticks;
1492  clock_t real_ticks = times(&ticks);
1493
1494  if (real_ticks == (clock_t) (-1)) {
1495    return false;
1496  } else {
1497    double ticks_per_second = (double) clock_tics_per_sec;
1498    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1499    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1500    *process_real_time = ((double) real_ticks) / ticks_per_second;
1501
1502    return true;
1503  }
1504}
1505
1506
1507char * os::local_time_string(char *buf, size_t buflen) {
1508  struct tm t;
1509  time_t long_time;
1510  time(&long_time);
1511  localtime_r(&long_time, &t);
1512  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1513               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1514               t.tm_hour, t.tm_min, t.tm_sec);
1515  return buf;
1516}
1517
1518struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1519  return localtime_r(clock, res);
1520}
1521
1522////////////////////////////////////////////////////////////////////////////////
1523// runtime exit support
1524
1525// Note: os::shutdown() might be called very early during initialization, or
1526// called from signal handler. Before adding something to os::shutdown(), make
1527// sure it is async-safe and can handle partially initialized VM.
1528void os::shutdown() {
1529
1530  // allow PerfMemory to attempt cleanup of any persistent resources
1531  perfMemory_exit();
1532
1533  // needs to remove object in file system
1534  AttachListener::abort();
1535
1536  // flush buffered output, finish log files
1537  ostream_abort();
1538
1539  // Check for abort hook
1540  abort_hook_t abort_hook = Arguments::abort_hook();
1541  if (abort_hook != NULL) {
1542    abort_hook();
1543  }
1544
1545}
1546
1547// Note: os::abort() might be called very early during initialization, or
1548// called from signal handler. Before adding something to os::abort(), make
1549// sure it is async-safe and can handle partially initialized VM.
1550void os::abort(bool dump_core) {
1551  os::shutdown();
1552  if (dump_core) {
1553#ifndef PRODUCT
1554    fdStream out(defaultStream::output_fd());
1555    out.print_raw("Current thread is ");
1556    char buf[16];
1557    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1558    out.print_raw_cr(buf);
1559    out.print_raw_cr("Dumping core ...");
1560#endif
1561    ::abort(); // dump core
1562  }
1563
1564  ::exit(1);
1565}
1566
1567// Die immediately, no exit hook, no abort hook, no cleanup.
1568void os::die() {
1569  // _exit() on LinuxThreads only kills current thread
1570  ::abort();
1571}
1572
1573// unused on linux for now.
1574void os::set_error_file(const char *logfile) {}
1575
1576
1577// This method is a copy of JDK's sysGetLastErrorString
1578// from src/solaris/hpi/src/system_md.c
1579
1580size_t os::lasterror(char *buf, size_t len) {
1581
1582  if (errno == 0)  return 0;
1583
1584  const char *s = ::strerror(errno);
1585  size_t n = ::strlen(s);
1586  if (n >= len) {
1587    n = len - 1;
1588  }
1589  ::strncpy(buf, s, n);
1590  buf[n] = '\0';
1591  return n;
1592}
1593
1594intx os::current_thread_id() { return (intx)pthread_self(); }
1595int os::current_process_id() {
1596
1597  // Under the old linux thread library, linux gives each thread
1598  // its own process id. Because of this each thread will return
1599  // a different pid if this method were to return the result
1600  // of getpid(2). Linux provides no api that returns the pid
1601  // of the launcher thread for the vm. This implementation
1602  // returns a unique pid, the pid of the launcher thread
1603  // that starts the vm 'process'.
1604
1605  // Under the NPTL, getpid() returns the same pid as the
1606  // launcher thread rather than a unique pid per thread.
1607  // Use gettid() if you want the old pre NPTL behaviour.
1608
1609  // if you are looking for the result of a call to getpid() that
1610  // returns a unique pid for the calling thread, then look at the
1611  // OSThread::thread_id() method in osThread_linux.hpp file
1612
1613  return (int)(_initial_pid ? _initial_pid : getpid());
1614}
1615
1616// DLL functions
1617
1618const char* os::dll_file_extension() { return ".so"; }
1619
1620// This must be hard coded because it's the system's temporary
1621// directory not the java application's temp directory, ala java.io.tmpdir.
1622const char* os::get_temp_directory() { return "/tmp"; }
1623
1624static bool file_exists(const char* filename) {
1625  struct stat statbuf;
1626  if (filename == NULL || strlen(filename) == 0) {
1627    return false;
1628  }
1629  return os::stat(filename, &statbuf) == 0;
1630}
1631
1632bool os::dll_build_name(char* buffer, size_t buflen,
1633                        const char* pname, const char* fname) {
1634  bool retval = false;
1635  // Copied from libhpi
1636  const size_t pnamelen = pname ? strlen(pname) : 0;
1637
1638  // Return error on buffer overflow.
1639  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1640    return retval;
1641  }
1642
1643  if (pnamelen == 0) {
1644    snprintf(buffer, buflen, "lib%s.so", fname);
1645    retval = true;
1646  } else if (strchr(pname, *os::path_separator()) != NULL) {
1647    int n;
1648    char** pelements = split_path(pname, &n);
1649    if (pelements == NULL) {
1650      return false;
1651    }
1652    for (int i = 0 ; i < n ; i++) {
1653      // Really shouldn't be NULL, but check can't hurt
1654      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1655        continue; // skip the empty path values
1656      }
1657      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1658      if (file_exists(buffer)) {
1659        retval = true;
1660        break;
1661      }
1662    }
1663    // release the storage
1664    for (int i = 0 ; i < n ; i++) {
1665      if (pelements[i] != NULL) {
1666        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1667      }
1668    }
1669    if (pelements != NULL) {
1670      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1671    }
1672  } else {
1673    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1674    retval = true;
1675  }
1676  return retval;
1677}
1678
1679// check if addr is inside libjvm.so
1680bool os::address_is_in_vm(address addr) {
1681  static address libjvm_base_addr;
1682  Dl_info dlinfo;
1683
1684  if (libjvm_base_addr == NULL) {
1685    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1686      libjvm_base_addr = (address)dlinfo.dli_fbase;
1687    }
1688    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1689  }
1690
1691  if (dladdr((void *)addr, &dlinfo) != 0) {
1692    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1693  }
1694
1695  return false;
1696}
1697
1698bool os::dll_address_to_function_name(address addr, char *buf,
1699                                      int buflen, int *offset) {
1700  // buf is not optional, but offset is optional
1701  assert(buf != NULL, "sanity check");
1702
1703  Dl_info dlinfo;
1704
1705  if (dladdr((void*)addr, &dlinfo) != 0) {
1706    // see if we have a matching symbol
1707    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1708      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1709        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1710      }
1711      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1712      return true;
1713    }
1714    // no matching symbol so try for just file info
1715    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1716      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1717                          buf, buflen, offset, dlinfo.dli_fname)) {
1718        return true;
1719      }
1720    }
1721  }
1722
1723  buf[0] = '\0';
1724  if (offset != NULL) *offset = -1;
1725  return false;
1726}
1727
1728struct _address_to_library_name {
1729  address addr;          // input : memory address
1730  size_t  buflen;        //         size of fname
1731  char*   fname;         // output: library name
1732  address base;          //         library base addr
1733};
1734
1735static int address_to_library_name_callback(struct dl_phdr_info *info,
1736                                            size_t size, void *data) {
1737  int i;
1738  bool found = false;
1739  address libbase = NULL;
1740  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1741
1742  // iterate through all loadable segments
1743  for (i = 0; i < info->dlpi_phnum; i++) {
1744    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1745    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1746      // base address of a library is the lowest address of its loaded
1747      // segments.
1748      if (libbase == NULL || libbase > segbase) {
1749        libbase = segbase;
1750      }
1751      // see if 'addr' is within current segment
1752      if (segbase <= d->addr &&
1753          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1754        found = true;
1755      }
1756    }
1757  }
1758
1759  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1760  // so dll_address_to_library_name() can fall through to use dladdr() which
1761  // can figure out executable name from argv[0].
1762  if (found && info->dlpi_name && info->dlpi_name[0]) {
1763    d->base = libbase;
1764    if (d->fname) {
1765      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1766    }
1767    return 1;
1768  }
1769  return 0;
1770}
1771
1772bool os::dll_address_to_library_name(address addr, char* buf,
1773                                     int buflen, int* offset) {
1774  // buf is not optional, but offset is optional
1775  assert(buf != NULL, "sanity check");
1776
1777  Dl_info dlinfo;
1778  struct _address_to_library_name data;
1779
1780  // There is a bug in old glibc dladdr() implementation that it could resolve
1781  // to wrong library name if the .so file has a base address != NULL. Here
1782  // we iterate through the program headers of all loaded libraries to find
1783  // out which library 'addr' really belongs to. This workaround can be
1784  // removed once the minimum requirement for glibc is moved to 2.3.x.
1785  data.addr = addr;
1786  data.fname = buf;
1787  data.buflen = buflen;
1788  data.base = NULL;
1789  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1790
1791  if (rslt) {
1792     // buf already contains library name
1793     if (offset) *offset = addr - data.base;
1794     return true;
1795  }
1796  if (dladdr((void*)addr, &dlinfo) != 0) {
1797    if (dlinfo.dli_fname != NULL) {
1798      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1799    }
1800    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1801      *offset = addr - (address)dlinfo.dli_fbase;
1802    }
1803    return true;
1804  }
1805
1806  buf[0] = '\0';
1807  if (offset) *offset = -1;
1808  return false;
1809}
1810
1811  // Loads .dll/.so and
1812  // in case of error it checks if .dll/.so was built for the
1813  // same architecture as Hotspot is running on
1814
1815
1816// Remember the stack's state. The Linux dynamic linker will change
1817// the stack to 'executable' at most once, so we must safepoint only once.
1818bool os::Linux::_stack_is_executable = false;
1819
1820// VM operation that loads a library.  This is necessary if stack protection
1821// of the Java stacks can be lost during loading the library.  If we
1822// do not stop the Java threads, they can stack overflow before the stacks
1823// are protected again.
1824class VM_LinuxDllLoad: public VM_Operation {
1825 private:
1826  const char *_filename;
1827  char *_ebuf;
1828  int _ebuflen;
1829  void *_lib;
1830 public:
1831  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1832    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1833  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1834  void doit() {
1835    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1836    os::Linux::_stack_is_executable = true;
1837  }
1838  void* loaded_library() { return _lib; }
1839};
1840
1841void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1842{
1843  void * result = NULL;
1844  bool load_attempted = false;
1845
1846  // Check whether the library to load might change execution rights
1847  // of the stack. If they are changed, the protection of the stack
1848  // guard pages will be lost. We need a safepoint to fix this.
1849  //
1850  // See Linux man page execstack(8) for more info.
1851  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1852    ElfFile ef(filename);
1853    if (!ef.specifies_noexecstack()) {
1854      if (!is_init_completed()) {
1855        os::Linux::_stack_is_executable = true;
1856        // This is OK - No Java threads have been created yet, and hence no
1857        // stack guard pages to fix.
1858        //
1859        // This should happen only when you are building JDK7 using a very
1860        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1861        //
1862        // Dynamic loader will make all stacks executable after
1863        // this function returns, and will not do that again.
1864        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1865      } else {
1866        warning("You have loaded library %s which might have disabled stack guard. "
1867                "The VM will try to fix the stack guard now.\n"
1868                "It's highly recommended that you fix the library with "
1869                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1870                filename);
1871
1872        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1873        JavaThread *jt = JavaThread::current();
1874        if (jt->thread_state() != _thread_in_native) {
1875          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1876          // that requires ExecStack. Cannot enter safe point. Let's give up.
1877          warning("Unable to fix stack guard. Giving up.");
1878        } else {
1879          if (!LoadExecStackDllInVMThread) {
1880            // This is for the case where the DLL has an static
1881            // constructor function that executes JNI code. We cannot
1882            // load such DLLs in the VMThread.
1883            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1884          }
1885
1886          ThreadInVMfromNative tiv(jt);
1887          debug_only(VMNativeEntryWrapper vew;)
1888
1889          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1890          VMThread::execute(&op);
1891          if (LoadExecStackDllInVMThread) {
1892            result = op.loaded_library();
1893          }
1894          load_attempted = true;
1895        }
1896      }
1897    }
1898  }
1899
1900  if (!load_attempted) {
1901    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1902  }
1903
1904  if (result != NULL) {
1905    // Successful loading
1906    return result;
1907  }
1908
1909  Elf32_Ehdr elf_head;
1910  int diag_msg_max_length=ebuflen-strlen(ebuf);
1911  char* diag_msg_buf=ebuf+strlen(ebuf);
1912
1913  if (diag_msg_max_length==0) {
1914    // No more space in ebuf for additional diagnostics message
1915    return NULL;
1916  }
1917
1918
1919  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1920
1921  if (file_descriptor < 0) {
1922    // Can't open library, report dlerror() message
1923    return NULL;
1924  }
1925
1926  bool failed_to_read_elf_head=
1927    (sizeof(elf_head)!=
1928        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1929
1930  ::close(file_descriptor);
1931  if (failed_to_read_elf_head) {
1932    // file i/o error - report dlerror() msg
1933    return NULL;
1934  }
1935
1936  typedef struct {
1937    Elf32_Half  code;         // Actual value as defined in elf.h
1938    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1939    char        elf_class;    // 32 or 64 bit
1940    char        endianess;    // MSB or LSB
1941    char*       name;         // String representation
1942  } arch_t;
1943
1944  #ifndef EM_486
1945  #define EM_486          6               /* Intel 80486 */
1946  #endif
1947
1948  static const arch_t arch_array[]={
1949    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1950    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1951    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1952    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1953    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1954    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1955    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1956    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1957    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1958    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1959    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1960    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1961    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1962    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1963    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1964    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1965  };
1966
1967  #if  (defined IA32)
1968    static  Elf32_Half running_arch_code=EM_386;
1969  #elif   (defined AMD64)
1970    static  Elf32_Half running_arch_code=EM_X86_64;
1971  #elif  (defined IA64)
1972    static  Elf32_Half running_arch_code=EM_IA_64;
1973  #elif  (defined __sparc) && (defined _LP64)
1974    static  Elf32_Half running_arch_code=EM_SPARCV9;
1975  #elif  (defined __sparc) && (!defined _LP64)
1976    static  Elf32_Half running_arch_code=EM_SPARC;
1977  #elif  (defined __powerpc64__)
1978    static  Elf32_Half running_arch_code=EM_PPC64;
1979  #elif  (defined __powerpc__)
1980    static  Elf32_Half running_arch_code=EM_PPC;
1981  #elif  (defined ARM)
1982    static  Elf32_Half running_arch_code=EM_ARM;
1983  #elif  (defined S390)
1984    static  Elf32_Half running_arch_code=EM_S390;
1985  #elif  (defined ALPHA)
1986    static  Elf32_Half running_arch_code=EM_ALPHA;
1987  #elif  (defined MIPSEL)
1988    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1989  #elif  (defined PARISC)
1990    static  Elf32_Half running_arch_code=EM_PARISC;
1991  #elif  (defined MIPS)
1992    static  Elf32_Half running_arch_code=EM_MIPS;
1993  #elif  (defined M68K)
1994    static  Elf32_Half running_arch_code=EM_68K;
1995  #else
1996    #error Method os::dll_load requires that one of following is defined:\
1997         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1998  #endif
1999
2000  // Identify compatability class for VM's architecture and library's architecture
2001  // Obtain string descriptions for architectures
2002
2003  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2004  int running_arch_index=-1;
2005
2006  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2007    if (running_arch_code == arch_array[i].code) {
2008      running_arch_index    = i;
2009    }
2010    if (lib_arch.code == arch_array[i].code) {
2011      lib_arch.compat_class = arch_array[i].compat_class;
2012      lib_arch.name         = arch_array[i].name;
2013    }
2014  }
2015
2016  assert(running_arch_index != -1,
2017    "Didn't find running architecture code (running_arch_code) in arch_array");
2018  if (running_arch_index == -1) {
2019    // Even though running architecture detection failed
2020    // we may still continue with reporting dlerror() message
2021    return NULL;
2022  }
2023
2024  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2025    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2026    return NULL;
2027  }
2028
2029#ifndef S390
2030  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2031    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2032    return NULL;
2033  }
2034#endif // !S390
2035
2036  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2037    if ( lib_arch.name!=NULL ) {
2038      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2039        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2040        lib_arch.name, arch_array[running_arch_index].name);
2041    } else {
2042      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2043      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2044        lib_arch.code,
2045        arch_array[running_arch_index].name);
2046    }
2047  }
2048
2049  return NULL;
2050}
2051
2052void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2053  void * result = ::dlopen(filename, RTLD_LAZY);
2054  if (result == NULL) {
2055    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2056    ebuf[ebuflen-1] = '\0';
2057  }
2058  return result;
2059}
2060
2061void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2062  void * result = NULL;
2063  if (LoadExecStackDllInVMThread) {
2064    result = dlopen_helper(filename, ebuf, ebuflen);
2065  }
2066
2067  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2068  // library that requires an executable stack, or which does not have this
2069  // stack attribute set, dlopen changes the stack attribute to executable. The
2070  // read protection of the guard pages gets lost.
2071  //
2072  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2073  // may have been queued at the same time.
2074
2075  if (!_stack_is_executable) {
2076    JavaThread *jt = Threads::first();
2077
2078    while (jt) {
2079      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2080          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2081        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2082                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2083          warning("Attempt to reguard stack yellow zone failed.");
2084        }
2085      }
2086      jt = jt->next();
2087    }
2088  }
2089
2090  return result;
2091}
2092
2093/*
2094 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2095 * chances are you might want to run the generated bits against glibc-2.0
2096 * libdl.so, so always use locking for any version of glibc.
2097 */
2098void* os::dll_lookup(void* handle, const char* name) {
2099  pthread_mutex_lock(&dl_mutex);
2100  void* res = dlsym(handle, name);
2101  pthread_mutex_unlock(&dl_mutex);
2102  return res;
2103}
2104
2105
2106static bool _print_ascii_file(const char* filename, outputStream* st) {
2107  int fd = ::open(filename, O_RDONLY);
2108  if (fd == -1) {
2109     return false;
2110  }
2111
2112  char buf[32];
2113  int bytes;
2114  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2115    st->print_raw(buf, bytes);
2116  }
2117
2118  ::close(fd);
2119
2120  return true;
2121}
2122
2123void os::print_dll_info(outputStream *st) {
2124   st->print_cr("Dynamic libraries:");
2125
2126   char fname[32];
2127   pid_t pid = os::Linux::gettid();
2128
2129   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2130
2131   if (!_print_ascii_file(fname, st)) {
2132     st->print("Can not get library information for pid = %d\n", pid);
2133   }
2134}
2135
2136void os::print_os_info_brief(outputStream* st) {
2137  os::Linux::print_distro_info(st);
2138
2139  os::Posix::print_uname_info(st);
2140
2141  os::Linux::print_libversion_info(st);
2142
2143}
2144
2145void os::print_os_info(outputStream* st) {
2146  st->print("OS:");
2147
2148  os::Linux::print_distro_info(st);
2149
2150  os::Posix::print_uname_info(st);
2151
2152  // Print warning if unsafe chroot environment detected
2153  if (unsafe_chroot_detected) {
2154    st->print("WARNING!! ");
2155    st->print_cr(unstable_chroot_error);
2156  }
2157
2158  os::Linux::print_libversion_info(st);
2159
2160  os::Posix::print_rlimit_info(st);
2161
2162  os::Posix::print_load_average(st);
2163
2164  os::Linux::print_full_memory_info(st);
2165}
2166
2167// Try to identify popular distros.
2168// Most Linux distributions have /etc/XXX-release file, which contains
2169// the OS version string. Some have more than one /etc/XXX-release file
2170// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2171// so the order is important.
2172void os::Linux::print_distro_info(outputStream* st) {
2173  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2174      !_print_ascii_file("/etc/sun-release", st) &&
2175      !_print_ascii_file("/etc/redhat-release", st) &&
2176      !_print_ascii_file("/etc/SuSE-release", st) &&
2177      !_print_ascii_file("/etc/turbolinux-release", st) &&
2178      !_print_ascii_file("/etc/gentoo-release", st) &&
2179      !_print_ascii_file("/etc/debian_version", st) &&
2180      !_print_ascii_file("/etc/ltib-release", st) &&
2181      !_print_ascii_file("/etc/angstrom-version", st)) {
2182      st->print("Linux");
2183  }
2184  st->cr();
2185}
2186
2187void os::Linux::print_libversion_info(outputStream* st) {
2188  // libc, pthread
2189  st->print("libc:");
2190  st->print(os::Linux::glibc_version()); st->print(" ");
2191  st->print(os::Linux::libpthread_version()); st->print(" ");
2192  if (os::Linux::is_LinuxThreads()) {
2193     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2194  }
2195  st->cr();
2196}
2197
2198void os::Linux::print_full_memory_info(outputStream* st) {
2199   st->print("\n/proc/meminfo:\n");
2200   _print_ascii_file("/proc/meminfo", st);
2201   st->cr();
2202}
2203
2204void os::print_memory_info(outputStream* st) {
2205
2206  st->print("Memory:");
2207  st->print(" %dk page", os::vm_page_size()>>10);
2208
2209  // values in struct sysinfo are "unsigned long"
2210  struct sysinfo si;
2211  sysinfo(&si);
2212
2213  st->print(", physical " UINT64_FORMAT "k",
2214            os::physical_memory() >> 10);
2215  st->print("(" UINT64_FORMAT "k free)",
2216            os::available_memory() >> 10);
2217  st->print(", swap " UINT64_FORMAT "k",
2218            ((jlong)si.totalswap * si.mem_unit) >> 10);
2219  st->print("(" UINT64_FORMAT "k free)",
2220            ((jlong)si.freeswap * si.mem_unit) >> 10);
2221  st->cr();
2222}
2223
2224void os::pd_print_cpu_info(outputStream* st) {
2225  st->print("\n/proc/cpuinfo:\n");
2226  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2227    st->print("  <Not Available>");
2228  }
2229  st->cr();
2230}
2231
2232// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2233// but they're the same for all the linux arch that we support
2234// and they're the same for solaris but there's no common place to put this.
2235const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2236                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2237                          "ILL_COPROC", "ILL_BADSTK" };
2238
2239const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2240                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2241                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2242
2243const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2244
2245const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2246
2247void os::print_siginfo(outputStream* st, void* siginfo) {
2248  st->print("siginfo:");
2249
2250  const int buflen = 100;
2251  char buf[buflen];
2252  siginfo_t *si = (siginfo_t*)siginfo;
2253  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2254  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2255    st->print("si_errno=%s", buf);
2256  } else {
2257    st->print("si_errno=%d", si->si_errno);
2258  }
2259  const int c = si->si_code;
2260  assert(c > 0, "unexpected si_code");
2261  switch (si->si_signo) {
2262  case SIGILL:
2263    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2264    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2265    break;
2266  case SIGFPE:
2267    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2268    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2269    break;
2270  case SIGSEGV:
2271    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2272    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2273    break;
2274  case SIGBUS:
2275    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2276    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2277    break;
2278  default:
2279    st->print(", si_code=%d", si->si_code);
2280    // no si_addr
2281  }
2282
2283  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2284      UseSharedSpaces) {
2285    FileMapInfo* mapinfo = FileMapInfo::current_info();
2286    if (mapinfo->is_in_shared_space(si->si_addr)) {
2287      st->print("\n\nError accessing class data sharing archive."   \
2288                " Mapped file inaccessible during execution, "      \
2289                " possible disk/network problem.");
2290    }
2291  }
2292  st->cr();
2293}
2294
2295
2296static void print_signal_handler(outputStream* st, int sig,
2297                                 char* buf, size_t buflen);
2298
2299void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2300  st->print_cr("Signal Handlers:");
2301  print_signal_handler(st, SIGSEGV, buf, buflen);
2302  print_signal_handler(st, SIGBUS , buf, buflen);
2303  print_signal_handler(st, SIGFPE , buf, buflen);
2304  print_signal_handler(st, SIGPIPE, buf, buflen);
2305  print_signal_handler(st, SIGXFSZ, buf, buflen);
2306  print_signal_handler(st, SIGILL , buf, buflen);
2307  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2308  print_signal_handler(st, SR_signum, buf, buflen);
2309  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2310  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2311  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2312  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2313}
2314
2315static char saved_jvm_path[MAXPATHLEN] = {0};
2316
2317// Find the full path to the current module, libjvm.so
2318void os::jvm_path(char *buf, jint buflen) {
2319  // Error checking.
2320  if (buflen < MAXPATHLEN) {
2321    assert(false, "must use a large-enough buffer");
2322    buf[0] = '\0';
2323    return;
2324  }
2325  // Lazy resolve the path to current module.
2326  if (saved_jvm_path[0] != 0) {
2327    strcpy(buf, saved_jvm_path);
2328    return;
2329  }
2330
2331  char dli_fname[MAXPATHLEN];
2332  bool ret = dll_address_to_library_name(
2333                CAST_FROM_FN_PTR(address, os::jvm_path),
2334                dli_fname, sizeof(dli_fname), NULL);
2335  assert(ret, "cannot locate libjvm");
2336  char *rp = NULL;
2337  if (ret && dli_fname[0] != '\0') {
2338    rp = realpath(dli_fname, buf);
2339  }
2340  if (rp == NULL)
2341    return;
2342
2343  if (Arguments::created_by_gamma_launcher()) {
2344    // Support for the gamma launcher.  Typical value for buf is
2345    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2346    // the right place in the string, then assume we are installed in a JDK and
2347    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2348    // up the path so it looks like libjvm.so is installed there (append a
2349    // fake suffix hotspot/libjvm.so).
2350    const char *p = buf + strlen(buf) - 1;
2351    for (int count = 0; p > buf && count < 5; ++count) {
2352      for (--p; p > buf && *p != '/'; --p)
2353        /* empty */ ;
2354    }
2355
2356    if (strncmp(p, "/jre/lib/", 9) != 0) {
2357      // Look for JAVA_HOME in the environment.
2358      char* java_home_var = ::getenv("JAVA_HOME");
2359      if (java_home_var != NULL && java_home_var[0] != 0) {
2360        char* jrelib_p;
2361        int len;
2362
2363        // Check the current module name "libjvm.so".
2364        p = strrchr(buf, '/');
2365        assert(strstr(p, "/libjvm") == p, "invalid library name");
2366
2367        rp = realpath(java_home_var, buf);
2368        if (rp == NULL)
2369          return;
2370
2371        // determine if this is a legacy image or modules image
2372        // modules image doesn't have "jre" subdirectory
2373        len = strlen(buf);
2374        jrelib_p = buf + len;
2375        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2376        if (0 != access(buf, F_OK)) {
2377          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2378        }
2379
2380        if (0 == access(buf, F_OK)) {
2381          // Use current module name "libjvm.so"
2382          len = strlen(buf);
2383          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2384        } else {
2385          // Go back to path of .so
2386          rp = realpath(dli_fname, buf);
2387          if (rp == NULL)
2388            return;
2389        }
2390      }
2391    }
2392  }
2393
2394  strcpy(saved_jvm_path, buf);
2395}
2396
2397void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2398  // no prefix required, not even "_"
2399}
2400
2401void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2402  // no suffix required
2403}
2404
2405////////////////////////////////////////////////////////////////////////////////
2406// sun.misc.Signal support
2407
2408static volatile jint sigint_count = 0;
2409
2410static void
2411UserHandler(int sig, void *siginfo, void *context) {
2412  // 4511530 - sem_post is serialized and handled by the manager thread. When
2413  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2414  // don't want to flood the manager thread with sem_post requests.
2415  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2416      return;
2417
2418  // Ctrl-C is pressed during error reporting, likely because the error
2419  // handler fails to abort. Let VM die immediately.
2420  if (sig == SIGINT && is_error_reported()) {
2421     os::die();
2422  }
2423
2424  os::signal_notify(sig);
2425}
2426
2427void* os::user_handler() {
2428  return CAST_FROM_FN_PTR(void*, UserHandler);
2429}
2430
2431class Semaphore : public StackObj {
2432  public:
2433    Semaphore();
2434    ~Semaphore();
2435    void signal();
2436    void wait();
2437    bool trywait();
2438    bool timedwait(unsigned int sec, int nsec);
2439  private:
2440    sem_t _semaphore;
2441};
2442
2443
2444Semaphore::Semaphore() {
2445  sem_init(&_semaphore, 0, 0);
2446}
2447
2448Semaphore::~Semaphore() {
2449  sem_destroy(&_semaphore);
2450}
2451
2452void Semaphore::signal() {
2453  sem_post(&_semaphore);
2454}
2455
2456void Semaphore::wait() {
2457  sem_wait(&_semaphore);
2458}
2459
2460bool Semaphore::trywait() {
2461  return sem_trywait(&_semaphore) == 0;
2462}
2463
2464bool Semaphore::timedwait(unsigned int sec, int nsec) {
2465  struct timespec ts;
2466  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2467
2468  while (1) {
2469    int result = sem_timedwait(&_semaphore, &ts);
2470    if (result == 0) {
2471      return true;
2472    } else if (errno == EINTR) {
2473      continue;
2474    } else if (errno == ETIMEDOUT) {
2475      return false;
2476    } else {
2477      return false;
2478    }
2479  }
2480}
2481
2482extern "C" {
2483  typedef void (*sa_handler_t)(int);
2484  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2485}
2486
2487void* os::signal(int signal_number, void* handler) {
2488  struct sigaction sigAct, oldSigAct;
2489
2490  sigfillset(&(sigAct.sa_mask));
2491  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2492  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2493
2494  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2495    // -1 means registration failed
2496    return (void *)-1;
2497  }
2498
2499  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2500}
2501
2502void os::signal_raise(int signal_number) {
2503  ::raise(signal_number);
2504}
2505
2506/*
2507 * The following code is moved from os.cpp for making this
2508 * code platform specific, which it is by its very nature.
2509 */
2510
2511// Will be modified when max signal is changed to be dynamic
2512int os::sigexitnum_pd() {
2513  return NSIG;
2514}
2515
2516// a counter for each possible signal value
2517static volatile jint pending_signals[NSIG+1] = { 0 };
2518
2519// Linux(POSIX) specific hand shaking semaphore.
2520static sem_t sig_sem;
2521static Semaphore sr_semaphore;
2522
2523void os::signal_init_pd() {
2524  // Initialize signal structures
2525  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2526
2527  // Initialize signal semaphore
2528  ::sem_init(&sig_sem, 0, 0);
2529}
2530
2531void os::signal_notify(int sig) {
2532  Atomic::inc(&pending_signals[sig]);
2533  ::sem_post(&sig_sem);
2534}
2535
2536static int check_pending_signals(bool wait) {
2537  Atomic::store(0, &sigint_count);
2538  for (;;) {
2539    for (int i = 0; i < NSIG + 1; i++) {
2540      jint n = pending_signals[i];
2541      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2542        return i;
2543      }
2544    }
2545    if (!wait) {
2546      return -1;
2547    }
2548    JavaThread *thread = JavaThread::current();
2549    ThreadBlockInVM tbivm(thread);
2550
2551    bool threadIsSuspended;
2552    do {
2553      thread->set_suspend_equivalent();
2554      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2555      ::sem_wait(&sig_sem);
2556
2557      // were we externally suspended while we were waiting?
2558      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2559      if (threadIsSuspended) {
2560        //
2561        // The semaphore has been incremented, but while we were waiting
2562        // another thread suspended us. We don't want to continue running
2563        // while suspended because that would surprise the thread that
2564        // suspended us.
2565        //
2566        ::sem_post(&sig_sem);
2567
2568        thread->java_suspend_self();
2569      }
2570    } while (threadIsSuspended);
2571  }
2572}
2573
2574int os::signal_lookup() {
2575  return check_pending_signals(false);
2576}
2577
2578int os::signal_wait() {
2579  return check_pending_signals(true);
2580}
2581
2582////////////////////////////////////////////////////////////////////////////////
2583// Virtual Memory
2584
2585int os::vm_page_size() {
2586  // Seems redundant as all get out
2587  assert(os::Linux::page_size() != -1, "must call os::init");
2588  return os::Linux::page_size();
2589}
2590
2591// Solaris allocates memory by pages.
2592int os::vm_allocation_granularity() {
2593  assert(os::Linux::page_size() != -1, "must call os::init");
2594  return os::Linux::page_size();
2595}
2596
2597// Rationale behind this function:
2598//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2599//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2600//  samples for JITted code. Here we create private executable mapping over the code cache
2601//  and then we can use standard (well, almost, as mapping can change) way to provide
2602//  info for the reporting script by storing timestamp and location of symbol
2603void linux_wrap_code(char* base, size_t size) {
2604  static volatile jint cnt = 0;
2605
2606  if (!UseOprofile) {
2607    return;
2608  }
2609
2610  char buf[PATH_MAX+1];
2611  int num = Atomic::add(1, &cnt);
2612
2613  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2614           os::get_temp_directory(), os::current_process_id(), num);
2615  unlink(buf);
2616
2617  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2618
2619  if (fd != -1) {
2620    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2621    if (rv != (off_t)-1) {
2622      if (::write(fd, "", 1) == 1) {
2623        mmap(base, size,
2624             PROT_READ|PROT_WRITE|PROT_EXEC,
2625             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2626      }
2627    }
2628    ::close(fd);
2629    unlink(buf);
2630  }
2631}
2632
2633static bool recoverable_mmap_error(int err) {
2634  // See if the error is one we can let the caller handle. This
2635  // list of errno values comes from JBS-6843484. I can't find a
2636  // Linux man page that documents this specific set of errno
2637  // values so while this list currently matches Solaris, it may
2638  // change as we gain experience with this failure mode.
2639  switch (err) {
2640  case EBADF:
2641  case EINVAL:
2642  case ENOTSUP:
2643    // let the caller deal with these errors
2644    return true;
2645
2646  default:
2647    // Any remaining errors on this OS can cause our reserved mapping
2648    // to be lost. That can cause confusion where different data
2649    // structures think they have the same memory mapped. The worst
2650    // scenario is if both the VM and a library think they have the
2651    // same memory mapped.
2652    return false;
2653  }
2654}
2655
2656static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2657                                    int err) {
2658  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2659          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2660          strerror(err), err);
2661}
2662
2663static void warn_fail_commit_memory(char* addr, size_t size,
2664                                    size_t alignment_hint, bool exec,
2665                                    int err) {
2666  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2667          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2668          alignment_hint, exec, strerror(err), err);
2669}
2670
2671// NOTE: Linux kernel does not really reserve the pages for us.
2672//       All it does is to check if there are enough free pages
2673//       left at the time of mmap(). This could be a potential
2674//       problem.
2675int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2676  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2677  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2678                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2679  if (res != (uintptr_t) MAP_FAILED) {
2680    if (UseNUMAInterleaving) {
2681      numa_make_global(addr, size);
2682    }
2683    return 0;
2684  }
2685
2686  int err = errno;  // save errno from mmap() call above
2687
2688  if (!recoverable_mmap_error(err)) {
2689    warn_fail_commit_memory(addr, size, exec, err);
2690    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2691  }
2692
2693  return err;
2694}
2695
2696bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2697  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2698}
2699
2700void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2701                                  const char* mesg) {
2702  assert(mesg != NULL, "mesg must be specified");
2703  int err = os::Linux::commit_memory_impl(addr, size, exec);
2704  if (err != 0) {
2705    // the caller wants all commit errors to exit with the specified mesg:
2706    warn_fail_commit_memory(addr, size, exec, err);
2707    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2708  }
2709}
2710
2711// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2712#ifndef MAP_HUGETLB
2713#define MAP_HUGETLB 0x40000
2714#endif
2715
2716// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2717#ifndef MADV_HUGEPAGE
2718#define MADV_HUGEPAGE 14
2719#endif
2720
2721int os::Linux::commit_memory_impl(char* addr, size_t size,
2722                                  size_t alignment_hint, bool exec) {
2723  int err;
2724  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2725    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2726    uintptr_t res =
2727      (uintptr_t) ::mmap(addr, size, prot,
2728                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2729                         -1, 0);
2730    if (res != (uintptr_t) MAP_FAILED) {
2731      if (UseNUMAInterleaving) {
2732        numa_make_global(addr, size);
2733      }
2734      return 0;
2735    }
2736
2737    err = errno;  // save errno from mmap() call above
2738
2739    if (!recoverable_mmap_error(err)) {
2740      // However, it is not clear that this loss of our reserved mapping
2741      // happens with large pages on Linux or that we cannot recover
2742      // from the loss. For now, we just issue a warning and we don't
2743      // call vm_exit_out_of_memory(). This issue is being tracked by
2744      // JBS-8007074.
2745      warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2746//    vm_exit_out_of_memory(size, OOM_MMAP_ERROR,
2747//                          "committing reserved memory.");
2748    }
2749    // Fall through and try to use small pages
2750  }
2751
2752  err = os::Linux::commit_memory_impl(addr, size, exec);
2753  if (err == 0) {
2754    realign_memory(addr, size, alignment_hint);
2755  }
2756  return err;
2757}
2758
2759bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2760                          bool exec) {
2761  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2762}
2763
2764void os::pd_commit_memory_or_exit(char* addr, size_t size,
2765                                  size_t alignment_hint, bool exec,
2766                                  const char* mesg) {
2767  assert(mesg != NULL, "mesg must be specified");
2768  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2769  if (err != 0) {
2770    // the caller wants all commit errors to exit with the specified mesg:
2771    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2772    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2773  }
2774}
2775
2776void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2777  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2778    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2779    // be supported or the memory may already be backed by huge pages.
2780    ::madvise(addr, bytes, MADV_HUGEPAGE);
2781  }
2782}
2783
2784void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2785  // This method works by doing an mmap over an existing mmaping and effectively discarding
2786  // the existing pages. However it won't work for SHM-based large pages that cannot be
2787  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2788  // small pages on top of the SHM segment. This method always works for small pages, so we
2789  // allow that in any case.
2790  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2791    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2792  }
2793}
2794
2795void os::numa_make_global(char *addr, size_t bytes) {
2796  Linux::numa_interleave_memory(addr, bytes);
2797}
2798
2799// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2800// bind policy to MPOL_PREFERRED for the current thread.
2801#define USE_MPOL_PREFERRED 0
2802
2803void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2804  // To make NUMA and large pages more robust when both enabled, we need to ease
2805  // the requirements on where the memory should be allocated. MPOL_BIND is the
2806  // default policy and it will force memory to be allocated on the specified
2807  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2808  // the specified node, but will not force it. Using this policy will prevent
2809  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2810  // free large pages.
2811  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2812  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2813}
2814
2815bool os::numa_topology_changed()   { return false; }
2816
2817size_t os::numa_get_groups_num() {
2818  int max_node = Linux::numa_max_node();
2819  return max_node > 0 ? max_node + 1 : 1;
2820}
2821
2822int os::numa_get_group_id() {
2823  int cpu_id = Linux::sched_getcpu();
2824  if (cpu_id != -1) {
2825    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2826    if (lgrp_id != -1) {
2827      return lgrp_id;
2828    }
2829  }
2830  return 0;
2831}
2832
2833size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2834  for (size_t i = 0; i < size; i++) {
2835    ids[i] = i;
2836  }
2837  return size;
2838}
2839
2840bool os::get_page_info(char *start, page_info* info) {
2841  return false;
2842}
2843
2844char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2845  return end;
2846}
2847
2848
2849int os::Linux::sched_getcpu_syscall(void) {
2850  unsigned int cpu;
2851  int retval = -1;
2852
2853#if defined(IA32)
2854# ifndef SYS_getcpu
2855# define SYS_getcpu 318
2856# endif
2857  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2858#elif defined(AMD64)
2859// Unfortunately we have to bring all these macros here from vsyscall.h
2860// to be able to compile on old linuxes.
2861# define __NR_vgetcpu 2
2862# define VSYSCALL_START (-10UL << 20)
2863# define VSYSCALL_SIZE 1024
2864# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2865  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2866  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2867  retval = vgetcpu(&cpu, NULL, NULL);
2868#endif
2869
2870  return (retval == -1) ? retval : cpu;
2871}
2872
2873// Something to do with the numa-aware allocator needs these symbols
2874extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2875extern "C" JNIEXPORT void numa_error(char *where) { }
2876extern "C" JNIEXPORT int fork1() { return fork(); }
2877
2878
2879// If we are running with libnuma version > 2, then we should
2880// be trying to use symbols with versions 1.1
2881// If we are running with earlier version, which did not have symbol versions,
2882// we should use the base version.
2883void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2884  void *f = dlvsym(handle, name, "libnuma_1.1");
2885  if (f == NULL) {
2886    f = dlsym(handle, name);
2887  }
2888  return f;
2889}
2890
2891bool os::Linux::libnuma_init() {
2892  // sched_getcpu() should be in libc.
2893  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2894                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2895
2896  // If it's not, try a direct syscall.
2897  if (sched_getcpu() == -1)
2898    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2899
2900  if (sched_getcpu() != -1) { // Does it work?
2901    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2902    if (handle != NULL) {
2903      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2904                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2905      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2906                                       libnuma_dlsym(handle, "numa_max_node")));
2907      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2908                                        libnuma_dlsym(handle, "numa_available")));
2909      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2910                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2911      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2912                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2913      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2914                                            libnuma_dlsym(handle, "numa_set_bind_policy")));
2915
2916
2917      if (numa_available() != -1) {
2918        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2919        // Create a cpu -> node mapping
2920        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2921        rebuild_cpu_to_node_map();
2922        return true;
2923      }
2924    }
2925  }
2926  return false;
2927}
2928
2929// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2930// The table is later used in get_node_by_cpu().
2931void os::Linux::rebuild_cpu_to_node_map() {
2932  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2933                              // in libnuma (possible values are starting from 16,
2934                              // and continuing up with every other power of 2, but less
2935                              // than the maximum number of CPUs supported by kernel), and
2936                              // is a subject to change (in libnuma version 2 the requirements
2937                              // are more reasonable) we'll just hardcode the number they use
2938                              // in the library.
2939  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2940
2941  size_t cpu_num = os::active_processor_count();
2942  size_t cpu_map_size = NCPUS / BitsPerCLong;
2943  size_t cpu_map_valid_size =
2944    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2945
2946  cpu_to_node()->clear();
2947  cpu_to_node()->at_grow(cpu_num - 1);
2948  size_t node_num = numa_get_groups_num();
2949
2950  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2951  for (size_t i = 0; i < node_num; i++) {
2952    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2953      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2954        if (cpu_map[j] != 0) {
2955          for (size_t k = 0; k < BitsPerCLong; k++) {
2956            if (cpu_map[j] & (1UL << k)) {
2957              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2958            }
2959          }
2960        }
2961      }
2962    }
2963  }
2964  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2965}
2966
2967int os::Linux::get_node_by_cpu(int cpu_id) {
2968  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2969    return cpu_to_node()->at(cpu_id);
2970  }
2971  return -1;
2972}
2973
2974GrowableArray<int>* os::Linux::_cpu_to_node;
2975os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2976os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2977os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2978os::Linux::numa_available_func_t os::Linux::_numa_available;
2979os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2980os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2981os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2982unsigned long* os::Linux::_numa_all_nodes;
2983
2984bool os::pd_uncommit_memory(char* addr, size_t size) {
2985  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2986                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2987  return res  != (uintptr_t) MAP_FAILED;
2988}
2989
2990// Linux uses a growable mapping for the stack, and if the mapping for
2991// the stack guard pages is not removed when we detach a thread the
2992// stack cannot grow beyond the pages where the stack guard was
2993// mapped.  If at some point later in the process the stack expands to
2994// that point, the Linux kernel cannot expand the stack any further
2995// because the guard pages are in the way, and a segfault occurs.
2996//
2997// However, it's essential not to split the stack region by unmapping
2998// a region (leaving a hole) that's already part of the stack mapping,
2999// so if the stack mapping has already grown beyond the guard pages at
3000// the time we create them, we have to truncate the stack mapping.
3001// So, we need to know the extent of the stack mapping when
3002// create_stack_guard_pages() is called.
3003
3004// Find the bounds of the stack mapping.  Return true for success.
3005//
3006// We only need this for stacks that are growable: at the time of
3007// writing thread stacks don't use growable mappings (i.e. those
3008// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3009// only applies to the main thread.
3010
3011static
3012bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
3013
3014  char buf[128];
3015  int fd, sz;
3016
3017  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
3018    return false;
3019  }
3020
3021  const char kw[] = "[stack]";
3022  const int kwlen = sizeof(kw)-1;
3023
3024  // Address part of /proc/self/maps couldn't be more than 128 bytes
3025  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
3026     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
3027        // Extract addresses
3028        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
3029           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
3030           if (sp >= *bottom && sp <= *top) {
3031              ::close(fd);
3032              return true;
3033           }
3034        }
3035     }
3036  }
3037
3038 ::close(fd);
3039  return false;
3040}
3041
3042
3043// If the (growable) stack mapping already extends beyond the point
3044// where we're going to put our guard pages, truncate the mapping at
3045// that point by munmap()ping it.  This ensures that when we later
3046// munmap() the guard pages we don't leave a hole in the stack
3047// mapping. This only affects the main/initial thread, but guard
3048// against future OS changes
3049bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3050  uintptr_t stack_extent, stack_base;
3051  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
3052  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
3053      assert(os::Linux::is_initial_thread(),
3054           "growable stack in non-initial thread");
3055    if (stack_extent < (uintptr_t)addr)
3056      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
3057  }
3058
3059  return os::commit_memory(addr, size, !ExecMem);
3060}
3061
3062// If this is a growable mapping, remove the guard pages entirely by
3063// munmap()ping them.  If not, just call uncommit_memory(). This only
3064// affects the main/initial thread, but guard against future OS changes
3065bool os::remove_stack_guard_pages(char* addr, size_t size) {
3066  uintptr_t stack_extent, stack_base;
3067  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
3068  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
3069      assert(os::Linux::is_initial_thread(),
3070           "growable stack in non-initial thread");
3071
3072    return ::munmap(addr, size) == 0;
3073  }
3074
3075  return os::uncommit_memory(addr, size);
3076}
3077
3078static address _highest_vm_reserved_address = NULL;
3079
3080// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3081// at 'requested_addr'. If there are existing memory mappings at the same
3082// location, however, they will be overwritten. If 'fixed' is false,
3083// 'requested_addr' is only treated as a hint, the return value may or
3084// may not start from the requested address. Unlike Linux mmap(), this
3085// function returns NULL to indicate failure.
3086static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3087  char * addr;
3088  int flags;
3089
3090  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3091  if (fixed) {
3092    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3093    flags |= MAP_FIXED;
3094  }
3095
3096  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3097  // touch an uncommitted page. Otherwise, the read/write might
3098  // succeed if we have enough swap space to back the physical page.
3099  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3100                       flags, -1, 0);
3101
3102  if (addr != MAP_FAILED) {
3103    // anon_mmap() should only get called during VM initialization,
3104    // don't need lock (actually we can skip locking even it can be called
3105    // from multiple threads, because _highest_vm_reserved_address is just a
3106    // hint about the upper limit of non-stack memory regions.)
3107    if ((address)addr + bytes > _highest_vm_reserved_address) {
3108      _highest_vm_reserved_address = (address)addr + bytes;
3109    }
3110  }
3111
3112  return addr == MAP_FAILED ? NULL : addr;
3113}
3114
3115// Don't update _highest_vm_reserved_address, because there might be memory
3116// regions above addr + size. If so, releasing a memory region only creates
3117// a hole in the address space, it doesn't help prevent heap-stack collision.
3118//
3119static int anon_munmap(char * addr, size_t size) {
3120  return ::munmap(addr, size) == 0;
3121}
3122
3123char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3124                         size_t alignment_hint) {
3125  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3126}
3127
3128bool os::pd_release_memory(char* addr, size_t size) {
3129  return anon_munmap(addr, size);
3130}
3131
3132static address highest_vm_reserved_address() {
3133  return _highest_vm_reserved_address;
3134}
3135
3136static bool linux_mprotect(char* addr, size_t size, int prot) {
3137  // Linux wants the mprotect address argument to be page aligned.
3138  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3139
3140  // According to SUSv3, mprotect() should only be used with mappings
3141  // established by mmap(), and mmap() always maps whole pages. Unaligned
3142  // 'addr' likely indicates problem in the VM (e.g. trying to change
3143  // protection of malloc'ed or statically allocated memory). Check the
3144  // caller if you hit this assert.
3145  assert(addr == bottom, "sanity check");
3146
3147  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3148  return ::mprotect(bottom, size, prot) == 0;
3149}
3150
3151// Set protections specified
3152bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3153                        bool is_committed) {
3154  unsigned int p = 0;
3155  switch (prot) {
3156  case MEM_PROT_NONE: p = PROT_NONE; break;
3157  case MEM_PROT_READ: p = PROT_READ; break;
3158  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3159  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3160  default:
3161    ShouldNotReachHere();
3162  }
3163  // is_committed is unused.
3164  return linux_mprotect(addr, bytes, p);
3165}
3166
3167bool os::guard_memory(char* addr, size_t size) {
3168  return linux_mprotect(addr, size, PROT_NONE);
3169}
3170
3171bool os::unguard_memory(char* addr, size_t size) {
3172  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3173}
3174
3175bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3176  bool result = false;
3177  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3178                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3179                  -1, 0);
3180
3181  if (p != MAP_FAILED) {
3182    // We don't know if this really is a huge page or not.
3183    FILE *fp = fopen("/proc/self/maps", "r");
3184    if (fp) {
3185      while (!feof(fp)) {
3186        char chars[257];
3187        long x = 0;
3188        if (fgets(chars, sizeof(chars), fp)) {
3189          if (sscanf(chars, "%lx-%*x", &x) == 1
3190              && x == (long)p) {
3191            if (strstr (chars, "hugepage")) {
3192              result = true;
3193              break;
3194            }
3195          }
3196        }
3197      }
3198      fclose(fp);
3199    }
3200    munmap (p, page_size);
3201    if (result)
3202      return true;
3203  }
3204
3205  if (warn) {
3206    warning("HugeTLBFS is not supported by the operating system.");
3207  }
3208
3209  return result;
3210}
3211
3212/*
3213* Set the coredump_filter bits to include largepages in core dump (bit 6)
3214*
3215* From the coredump_filter documentation:
3216*
3217* - (bit 0) anonymous private memory
3218* - (bit 1) anonymous shared memory
3219* - (bit 2) file-backed private memory
3220* - (bit 3) file-backed shared memory
3221* - (bit 4) ELF header pages in file-backed private memory areas (it is
3222*           effective only if the bit 2 is cleared)
3223* - (bit 5) hugetlb private memory
3224* - (bit 6) hugetlb shared memory
3225*/
3226static void set_coredump_filter(void) {
3227  FILE *f;
3228  long cdm;
3229
3230  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3231    return;
3232  }
3233
3234  if (fscanf(f, "%lx", &cdm) != 1) {
3235    fclose(f);
3236    return;
3237  }
3238
3239  rewind(f);
3240
3241  if ((cdm & LARGEPAGES_BIT) == 0) {
3242    cdm |= LARGEPAGES_BIT;
3243    fprintf(f, "%#lx", cdm);
3244  }
3245
3246  fclose(f);
3247}
3248
3249// Large page support
3250
3251static size_t _large_page_size = 0;
3252
3253void os::large_page_init() {
3254  if (!UseLargePages) {
3255    UseHugeTLBFS = false;
3256    UseSHM = false;
3257    return;
3258  }
3259
3260  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3261    // If UseLargePages is specified on the command line try both methods,
3262    // if it's default, then try only HugeTLBFS.
3263    if (FLAG_IS_DEFAULT(UseLargePages)) {
3264      UseHugeTLBFS = true;
3265    } else {
3266      UseHugeTLBFS = UseSHM = true;
3267    }
3268  }
3269
3270  if (LargePageSizeInBytes) {
3271    _large_page_size = LargePageSizeInBytes;
3272  } else {
3273    // large_page_size on Linux is used to round up heap size. x86 uses either
3274    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3275    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3276    // page as large as 256M.
3277    //
3278    // Here we try to figure out page size by parsing /proc/meminfo and looking
3279    // for a line with the following format:
3280    //    Hugepagesize:     2048 kB
3281    //
3282    // If we can't determine the value (e.g. /proc is not mounted, or the text
3283    // format has been changed), we'll use the largest page size supported by
3284    // the processor.
3285
3286#ifndef ZERO
3287    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3288                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3289#endif // ZERO
3290
3291    FILE *fp = fopen("/proc/meminfo", "r");
3292    if (fp) {
3293      while (!feof(fp)) {
3294        int x = 0;
3295        char buf[16];
3296        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3297          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3298            _large_page_size = x * K;
3299            break;
3300          }
3301        } else {
3302          // skip to next line
3303          for (;;) {
3304            int ch = fgetc(fp);
3305            if (ch == EOF || ch == (int)'\n') break;
3306          }
3307        }
3308      }
3309      fclose(fp);
3310    }
3311  }
3312
3313  // print a warning if any large page related flag is specified on command line
3314  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3315
3316  const size_t default_page_size = (size_t)Linux::page_size();
3317  if (_large_page_size > default_page_size) {
3318    _page_sizes[0] = _large_page_size;
3319    _page_sizes[1] = default_page_size;
3320    _page_sizes[2] = 0;
3321  }
3322  UseHugeTLBFS = UseHugeTLBFS &&
3323                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3324
3325  if (UseHugeTLBFS)
3326    UseSHM = false;
3327
3328  UseLargePages = UseHugeTLBFS || UseSHM;
3329
3330  set_coredump_filter();
3331}
3332
3333#ifndef SHM_HUGETLB
3334#define SHM_HUGETLB 04000
3335#endif
3336
3337char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3338  // "exec" is passed in but not used.  Creating the shared image for
3339  // the code cache doesn't have an SHM_X executable permission to check.
3340  assert(UseLargePages && UseSHM, "only for SHM large pages");
3341
3342  key_t key = IPC_PRIVATE;
3343  char *addr;
3344
3345  bool warn_on_failure = UseLargePages &&
3346                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3347                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3348                        );
3349  char msg[128];
3350
3351  // Create a large shared memory region to attach to based on size.
3352  // Currently, size is the total size of the heap
3353  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3354  if (shmid == -1) {
3355     // Possible reasons for shmget failure:
3356     // 1. shmmax is too small for Java heap.
3357     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3358     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3359     // 2. not enough large page memory.
3360     //    > check available large pages: cat /proc/meminfo
3361     //    > increase amount of large pages:
3362     //          echo new_value > /proc/sys/vm/nr_hugepages
3363     //      Note 1: different Linux may use different name for this property,
3364     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3365     //      Note 2: it's possible there's enough physical memory available but
3366     //            they are so fragmented after a long run that they can't
3367     //            coalesce into large pages. Try to reserve large pages when
3368     //            the system is still "fresh".
3369     if (warn_on_failure) {
3370       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3371       warning(msg);
3372     }
3373     return NULL;
3374  }
3375
3376  // attach to the region
3377  addr = (char*)shmat(shmid, req_addr, 0);
3378  int err = errno;
3379
3380  // Remove shmid. If shmat() is successful, the actual shared memory segment
3381  // will be deleted when it's detached by shmdt() or when the process
3382  // terminates. If shmat() is not successful this will remove the shared
3383  // segment immediately.
3384  shmctl(shmid, IPC_RMID, NULL);
3385
3386  if ((intptr_t)addr == -1) {
3387     if (warn_on_failure) {
3388       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3389       warning(msg);
3390     }
3391     return NULL;
3392  }
3393
3394  if ((addr != NULL) && UseNUMAInterleaving) {
3395    numa_make_global(addr, bytes);
3396  }
3397
3398  // The memory is committed
3399  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3400
3401  return addr;
3402}
3403
3404bool os::release_memory_special(char* base, size_t bytes) {
3405  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3406  // detaching the SHM segment will also delete it, see reserve_memory_special()
3407  int rslt = shmdt(base);
3408  if (rslt == 0) {
3409    tkr.record((address)base, bytes);
3410    return true;
3411  } else {
3412    tkr.discard();
3413    return false;
3414  }
3415}
3416
3417size_t os::large_page_size() {
3418  return _large_page_size;
3419}
3420
3421// HugeTLBFS allows application to commit large page memory on demand;
3422// with SysV SHM the entire memory region must be allocated as shared
3423// memory.
3424bool os::can_commit_large_page_memory() {
3425  return UseHugeTLBFS;
3426}
3427
3428bool os::can_execute_large_page_memory() {
3429  return UseHugeTLBFS;
3430}
3431
3432// Reserve memory at an arbitrary address, only if that area is
3433// available (and not reserved for something else).
3434
3435char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3436  const int max_tries = 10;
3437  char* base[max_tries];
3438  size_t size[max_tries];
3439  const size_t gap = 0x000000;
3440
3441  // Assert only that the size is a multiple of the page size, since
3442  // that's all that mmap requires, and since that's all we really know
3443  // about at this low abstraction level.  If we need higher alignment,
3444  // we can either pass an alignment to this method or verify alignment
3445  // in one of the methods further up the call chain.  See bug 5044738.
3446  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3447
3448  // Repeatedly allocate blocks until the block is allocated at the
3449  // right spot. Give up after max_tries. Note that reserve_memory() will
3450  // automatically update _highest_vm_reserved_address if the call is
3451  // successful. The variable tracks the highest memory address every reserved
3452  // by JVM. It is used to detect heap-stack collision if running with
3453  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3454  // space than needed, it could confuse the collision detecting code. To
3455  // solve the problem, save current _highest_vm_reserved_address and
3456  // calculate the correct value before return.
3457  address old_highest = _highest_vm_reserved_address;
3458
3459  // Linux mmap allows caller to pass an address as hint; give it a try first,
3460  // if kernel honors the hint then we can return immediately.
3461  char * addr = anon_mmap(requested_addr, bytes, false);
3462  if (addr == requested_addr) {
3463     return requested_addr;
3464  }
3465
3466  if (addr != NULL) {
3467     // mmap() is successful but it fails to reserve at the requested address
3468     anon_munmap(addr, bytes);
3469  }
3470
3471  int i;
3472  for (i = 0; i < max_tries; ++i) {
3473    base[i] = reserve_memory(bytes);
3474
3475    if (base[i] != NULL) {
3476      // Is this the block we wanted?
3477      if (base[i] == requested_addr) {
3478        size[i] = bytes;
3479        break;
3480      }
3481
3482      // Does this overlap the block we wanted? Give back the overlapped
3483      // parts and try again.
3484
3485      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3486      if (top_overlap >= 0 && top_overlap < bytes) {
3487        unmap_memory(base[i], top_overlap);
3488        base[i] += top_overlap;
3489        size[i] = bytes - top_overlap;
3490      } else {
3491        size_t bottom_overlap = base[i] + bytes - requested_addr;
3492        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3493          unmap_memory(requested_addr, bottom_overlap);
3494          size[i] = bytes - bottom_overlap;
3495        } else {
3496          size[i] = bytes;
3497        }
3498      }
3499    }
3500  }
3501
3502  // Give back the unused reserved pieces.
3503
3504  for (int j = 0; j < i; ++j) {
3505    if (base[j] != NULL) {
3506      unmap_memory(base[j], size[j]);
3507    }
3508  }
3509
3510  if (i < max_tries) {
3511    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3512    return requested_addr;
3513  } else {
3514    _highest_vm_reserved_address = old_highest;
3515    return NULL;
3516  }
3517}
3518
3519size_t os::read(int fd, void *buf, unsigned int nBytes) {
3520  return ::read(fd, buf, nBytes);
3521}
3522
3523// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3524// Solaris uses poll(), linux uses park().
3525// Poll() is likely a better choice, assuming that Thread.interrupt()
3526// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3527// SIGSEGV, see 4355769.
3528
3529int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3530  assert(thread == Thread::current(),  "thread consistency check");
3531
3532  ParkEvent * const slp = thread->_SleepEvent ;
3533  slp->reset() ;
3534  OrderAccess::fence() ;
3535
3536  if (interruptible) {
3537    jlong prevtime = javaTimeNanos();
3538
3539    for (;;) {
3540      if (os::is_interrupted(thread, true)) {
3541        return OS_INTRPT;
3542      }
3543
3544      jlong newtime = javaTimeNanos();
3545
3546      if (newtime - prevtime < 0) {
3547        // time moving backwards, should only happen if no monotonic clock
3548        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3549        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3550      } else {
3551        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3552      }
3553
3554      if(millis <= 0) {
3555        return OS_OK;
3556      }
3557
3558      prevtime = newtime;
3559
3560      {
3561        assert(thread->is_Java_thread(), "sanity check");
3562        JavaThread *jt = (JavaThread *) thread;
3563        ThreadBlockInVM tbivm(jt);
3564        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3565
3566        jt->set_suspend_equivalent();
3567        // cleared by handle_special_suspend_equivalent_condition() or
3568        // java_suspend_self() via check_and_wait_while_suspended()
3569
3570        slp->park(millis);
3571
3572        // were we externally suspended while we were waiting?
3573        jt->check_and_wait_while_suspended();
3574      }
3575    }
3576  } else {
3577    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3578    jlong prevtime = javaTimeNanos();
3579
3580    for (;;) {
3581      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3582      // the 1st iteration ...
3583      jlong newtime = javaTimeNanos();
3584
3585      if (newtime - prevtime < 0) {
3586        // time moving backwards, should only happen if no monotonic clock
3587        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3588        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3589      } else {
3590        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3591      }
3592
3593      if(millis <= 0) break ;
3594
3595      prevtime = newtime;
3596      slp->park(millis);
3597    }
3598    return OS_OK ;
3599  }
3600}
3601
3602int os::naked_sleep() {
3603  // %% make the sleep time an integer flag. for now use 1 millisec.
3604  return os::sleep(Thread::current(), 1, false);
3605}
3606
3607// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3608void os::infinite_sleep() {
3609  while (true) {    // sleep forever ...
3610    ::sleep(100);   // ... 100 seconds at a time
3611  }
3612}
3613
3614// Used to convert frequent JVM_Yield() to nops
3615bool os::dont_yield() {
3616  return DontYieldALot;
3617}
3618
3619void os::yield() {
3620  sched_yield();
3621}
3622
3623os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3624
3625void os::yield_all(int attempts) {
3626  // Yields to all threads, including threads with lower priorities
3627  // Threads on Linux are all with same priority. The Solaris style
3628  // os::yield_all() with nanosleep(1ms) is not necessary.
3629  sched_yield();
3630}
3631
3632// Called from the tight loops to possibly influence time-sharing heuristics
3633void os::loop_breaker(int attempts) {
3634  os::yield_all(attempts);
3635}
3636
3637////////////////////////////////////////////////////////////////////////////////
3638// thread priority support
3639
3640// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3641// only supports dynamic priority, static priority must be zero. For real-time
3642// applications, Linux supports SCHED_RR which allows static priority (1-99).
3643// However, for large multi-threaded applications, SCHED_RR is not only slower
3644// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3645// of 5 runs - Sep 2005).
3646//
3647// The following code actually changes the niceness of kernel-thread/LWP. It
3648// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3649// not the entire user process, and user level threads are 1:1 mapped to kernel
3650// threads. It has always been the case, but could change in the future. For
3651// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3652// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3653
3654int os::java_to_os_priority[CriticalPriority + 1] = {
3655  19,              // 0 Entry should never be used
3656
3657   4,              // 1 MinPriority
3658   3,              // 2
3659   2,              // 3
3660
3661   1,              // 4
3662   0,              // 5 NormPriority
3663  -1,              // 6
3664
3665  -2,              // 7
3666  -3,              // 8
3667  -4,              // 9 NearMaxPriority
3668
3669  -5,              // 10 MaxPriority
3670
3671  -5               // 11 CriticalPriority
3672};
3673
3674static int prio_init() {
3675  if (ThreadPriorityPolicy == 1) {
3676    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3677    // if effective uid is not root. Perhaps, a more elegant way of doing
3678    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3679    if (geteuid() != 0) {
3680      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3681        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3682      }
3683      ThreadPriorityPolicy = 0;
3684    }
3685  }
3686  if (UseCriticalJavaThreadPriority) {
3687    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3688  }
3689  return 0;
3690}
3691
3692OSReturn os::set_native_priority(Thread* thread, int newpri) {
3693  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3694
3695  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3696  return (ret == 0) ? OS_OK : OS_ERR;
3697}
3698
3699OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3700  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3701    *priority_ptr = java_to_os_priority[NormPriority];
3702    return OS_OK;
3703  }
3704
3705  errno = 0;
3706  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3707  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3708}
3709
3710// Hint to the underlying OS that a task switch would not be good.
3711// Void return because it's a hint and can fail.
3712void os::hint_no_preempt() {}
3713
3714////////////////////////////////////////////////////////////////////////////////
3715// suspend/resume support
3716
3717//  the low-level signal-based suspend/resume support is a remnant from the
3718//  old VM-suspension that used to be for java-suspension, safepoints etc,
3719//  within hotspot. Now there is a single use-case for this:
3720//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3721//      that runs in the watcher thread.
3722//  The remaining code is greatly simplified from the more general suspension
3723//  code that used to be used.
3724//
3725//  The protocol is quite simple:
3726//  - suspend:
3727//      - sends a signal to the target thread
3728//      - polls the suspend state of the osthread using a yield loop
3729//      - target thread signal handler (SR_handler) sets suspend state
3730//        and blocks in sigsuspend until continued
3731//  - resume:
3732//      - sets target osthread state to continue
3733//      - sends signal to end the sigsuspend loop in the SR_handler
3734//
3735//  Note that the SR_lock plays no role in this suspend/resume protocol.
3736//
3737
3738static void resume_clear_context(OSThread *osthread) {
3739  osthread->set_ucontext(NULL);
3740  osthread->set_siginfo(NULL);
3741}
3742
3743static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3744  osthread->set_ucontext(context);
3745  osthread->set_siginfo(siginfo);
3746}
3747
3748//
3749// Handler function invoked when a thread's execution is suspended or
3750// resumed. We have to be careful that only async-safe functions are
3751// called here (Note: most pthread functions are not async safe and
3752// should be avoided.)
3753//
3754// Note: sigwait() is a more natural fit than sigsuspend() from an
3755// interface point of view, but sigwait() prevents the signal hander
3756// from being run. libpthread would get very confused by not having
3757// its signal handlers run and prevents sigwait()'s use with the
3758// mutex granting granting signal.
3759//
3760// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3761//
3762static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3763  // Save and restore errno to avoid confusing native code with EINTR
3764  // after sigsuspend.
3765  int old_errno = errno;
3766
3767  Thread* thread = Thread::current();
3768  OSThread* osthread = thread->osthread();
3769  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3770
3771  os::SuspendResume::State current = osthread->sr.state();
3772  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3773    suspend_save_context(osthread, siginfo, context);
3774
3775    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3776    os::SuspendResume::State state = osthread->sr.suspended();
3777    if (state == os::SuspendResume::SR_SUSPENDED) {
3778      sigset_t suspend_set;  // signals for sigsuspend()
3779
3780      // get current set of blocked signals and unblock resume signal
3781      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3782      sigdelset(&suspend_set, SR_signum);
3783
3784      sr_semaphore.signal();
3785      // wait here until we are resumed
3786      while (1) {
3787        sigsuspend(&suspend_set);
3788
3789        os::SuspendResume::State result = osthread->sr.running();
3790        if (result == os::SuspendResume::SR_RUNNING) {
3791          sr_semaphore.signal();
3792          break;
3793        }
3794      }
3795
3796    } else if (state == os::SuspendResume::SR_RUNNING) {
3797      // request was cancelled, continue
3798    } else {
3799      ShouldNotReachHere();
3800    }
3801
3802    resume_clear_context(osthread);
3803  } else if (current == os::SuspendResume::SR_RUNNING) {
3804    // request was cancelled, continue
3805  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3806    // ignore
3807  } else {
3808    // ignore
3809  }
3810
3811  errno = old_errno;
3812}
3813
3814
3815static int SR_initialize() {
3816  struct sigaction act;
3817  char *s;
3818  /* Get signal number to use for suspend/resume */
3819  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3820    int sig = ::strtol(s, 0, 10);
3821    if (sig > 0 || sig < _NSIG) {
3822        SR_signum = sig;
3823    }
3824  }
3825
3826  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3827        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3828
3829  sigemptyset(&SR_sigset);
3830  sigaddset(&SR_sigset, SR_signum);
3831
3832  /* Set up signal handler for suspend/resume */
3833  act.sa_flags = SA_RESTART|SA_SIGINFO;
3834  act.sa_handler = (void (*)(int)) SR_handler;
3835
3836  // SR_signum is blocked by default.
3837  // 4528190 - We also need to block pthread restart signal (32 on all
3838  // supported Linux platforms). Note that LinuxThreads need to block
3839  // this signal for all threads to work properly. So we don't have
3840  // to use hard-coded signal number when setting up the mask.
3841  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3842
3843  if (sigaction(SR_signum, &act, 0) == -1) {
3844    return -1;
3845  }
3846
3847  // Save signal flag
3848  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3849  return 0;
3850}
3851
3852static int sr_notify(OSThread* osthread) {
3853  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3854  assert_status(status == 0, status, "pthread_kill");
3855  return status;
3856}
3857
3858// "Randomly" selected value for how long we want to spin
3859// before bailing out on suspending a thread, also how often
3860// we send a signal to a thread we want to resume
3861static const int RANDOMLY_LARGE_INTEGER = 1000000;
3862static const int RANDOMLY_LARGE_INTEGER2 = 100;
3863
3864// returns true on success and false on error - really an error is fatal
3865// but this seems the normal response to library errors
3866static bool do_suspend(OSThread* osthread) {
3867  assert(osthread->sr.is_running(), "thread should be running");
3868  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3869
3870  // mark as suspended and send signal
3871  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3872    // failed to switch, state wasn't running?
3873    ShouldNotReachHere();
3874    return false;
3875  }
3876
3877  if (sr_notify(osthread) != 0) {
3878    ShouldNotReachHere();
3879  }
3880
3881  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3882  while (true) {
3883    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3884      break;
3885    } else {
3886      // timeout
3887      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3888      if (cancelled == os::SuspendResume::SR_RUNNING) {
3889        return false;
3890      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3891        // make sure that we consume the signal on the semaphore as well
3892        sr_semaphore.wait();
3893        break;
3894      } else {
3895        ShouldNotReachHere();
3896        return false;
3897      }
3898    }
3899  }
3900
3901  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3902  return true;
3903}
3904
3905static void do_resume(OSThread* osthread) {
3906  assert(osthread->sr.is_suspended(), "thread should be suspended");
3907  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3908
3909  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3910    // failed to switch to WAKEUP_REQUEST
3911    ShouldNotReachHere();
3912    return;
3913  }
3914
3915  while (true) {
3916    if (sr_notify(osthread) == 0) {
3917      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3918        if (osthread->sr.is_running()) {
3919          return;
3920        }
3921      }
3922    } else {
3923      ShouldNotReachHere();
3924    }
3925  }
3926
3927  guarantee(osthread->sr.is_running(), "Must be running!");
3928}
3929
3930////////////////////////////////////////////////////////////////////////////////
3931// interrupt support
3932
3933void os::interrupt(Thread* thread) {
3934  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3935    "possibility of dangling Thread pointer");
3936
3937  OSThread* osthread = thread->osthread();
3938
3939  if (!osthread->interrupted()) {
3940    osthread->set_interrupted(true);
3941    // More than one thread can get here with the same value of osthread,
3942    // resulting in multiple notifications.  We do, however, want the store
3943    // to interrupted() to be visible to other threads before we execute unpark().
3944    OrderAccess::fence();
3945    ParkEvent * const slp = thread->_SleepEvent ;
3946    if (slp != NULL) slp->unpark() ;
3947  }
3948
3949  // For JSR166. Unpark even if interrupt status already was set
3950  if (thread->is_Java_thread())
3951    ((JavaThread*)thread)->parker()->unpark();
3952
3953  ParkEvent * ev = thread->_ParkEvent ;
3954  if (ev != NULL) ev->unpark() ;
3955
3956}
3957
3958bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3959  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3960    "possibility of dangling Thread pointer");
3961
3962  OSThread* osthread = thread->osthread();
3963
3964  bool interrupted = osthread->interrupted();
3965
3966  if (interrupted && clear_interrupted) {
3967    osthread->set_interrupted(false);
3968    // consider thread->_SleepEvent->reset() ... optional optimization
3969  }
3970
3971  return interrupted;
3972}
3973
3974///////////////////////////////////////////////////////////////////////////////////
3975// signal handling (except suspend/resume)
3976
3977// This routine may be used by user applications as a "hook" to catch signals.
3978// The user-defined signal handler must pass unrecognized signals to this
3979// routine, and if it returns true (non-zero), then the signal handler must
3980// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3981// routine will never retun false (zero), but instead will execute a VM panic
3982// routine kill the process.
3983//
3984// If this routine returns false, it is OK to call it again.  This allows
3985// the user-defined signal handler to perform checks either before or after
3986// the VM performs its own checks.  Naturally, the user code would be making
3987// a serious error if it tried to handle an exception (such as a null check
3988// or breakpoint) that the VM was generating for its own correct operation.
3989//
3990// This routine may recognize any of the following kinds of signals:
3991//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3992// It should be consulted by handlers for any of those signals.
3993//
3994// The caller of this routine must pass in the three arguments supplied
3995// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3996// field of the structure passed to sigaction().  This routine assumes that
3997// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3998//
3999// Note that the VM will print warnings if it detects conflicting signal
4000// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4001//
4002extern "C" JNIEXPORT int
4003JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4004                        void* ucontext, int abort_if_unrecognized);
4005
4006void signalHandler(int sig, siginfo_t* info, void* uc) {
4007  assert(info != NULL && uc != NULL, "it must be old kernel");
4008  int orig_errno = errno;  // Preserve errno value over signal handler.
4009  JVM_handle_linux_signal(sig, info, uc, true);
4010  errno = orig_errno;
4011}
4012
4013
4014// This boolean allows users to forward their own non-matching signals
4015// to JVM_handle_linux_signal, harmlessly.
4016bool os::Linux::signal_handlers_are_installed = false;
4017
4018// For signal-chaining
4019struct sigaction os::Linux::sigact[MAXSIGNUM];
4020unsigned int os::Linux::sigs = 0;
4021bool os::Linux::libjsig_is_loaded = false;
4022typedef struct sigaction *(*get_signal_t)(int);
4023get_signal_t os::Linux::get_signal_action = NULL;
4024
4025struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4026  struct sigaction *actp = NULL;
4027
4028  if (libjsig_is_loaded) {
4029    // Retrieve the old signal handler from libjsig
4030    actp = (*get_signal_action)(sig);
4031  }
4032  if (actp == NULL) {
4033    // Retrieve the preinstalled signal handler from jvm
4034    actp = get_preinstalled_handler(sig);
4035  }
4036
4037  return actp;
4038}
4039
4040static bool call_chained_handler(struct sigaction *actp, int sig,
4041                                 siginfo_t *siginfo, void *context) {
4042  // Call the old signal handler
4043  if (actp->sa_handler == SIG_DFL) {
4044    // It's more reasonable to let jvm treat it as an unexpected exception
4045    // instead of taking the default action.
4046    return false;
4047  } else if (actp->sa_handler != SIG_IGN) {
4048    if ((actp->sa_flags & SA_NODEFER) == 0) {
4049      // automaticlly block the signal
4050      sigaddset(&(actp->sa_mask), sig);
4051    }
4052
4053    sa_handler_t hand;
4054    sa_sigaction_t sa;
4055    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4056    // retrieve the chained handler
4057    if (siginfo_flag_set) {
4058      sa = actp->sa_sigaction;
4059    } else {
4060      hand = actp->sa_handler;
4061    }
4062
4063    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4064      actp->sa_handler = SIG_DFL;
4065    }
4066
4067    // try to honor the signal mask
4068    sigset_t oset;
4069    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4070
4071    // call into the chained handler
4072    if (siginfo_flag_set) {
4073      (*sa)(sig, siginfo, context);
4074    } else {
4075      (*hand)(sig);
4076    }
4077
4078    // restore the signal mask
4079    pthread_sigmask(SIG_SETMASK, &oset, 0);
4080  }
4081  // Tell jvm's signal handler the signal is taken care of.
4082  return true;
4083}
4084
4085bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4086  bool chained = false;
4087  // signal-chaining
4088  if (UseSignalChaining) {
4089    struct sigaction *actp = get_chained_signal_action(sig);
4090    if (actp != NULL) {
4091      chained = call_chained_handler(actp, sig, siginfo, context);
4092    }
4093  }
4094  return chained;
4095}
4096
4097struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4098  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4099    return &sigact[sig];
4100  }
4101  return NULL;
4102}
4103
4104void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4105  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4106  sigact[sig] = oldAct;
4107  sigs |= (unsigned int)1 << sig;
4108}
4109
4110// for diagnostic
4111int os::Linux::sigflags[MAXSIGNUM];
4112
4113int os::Linux::get_our_sigflags(int sig) {
4114  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4115  return sigflags[sig];
4116}
4117
4118void os::Linux::set_our_sigflags(int sig, int flags) {
4119  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4120  sigflags[sig] = flags;
4121}
4122
4123void os::Linux::set_signal_handler(int sig, bool set_installed) {
4124  // Check for overwrite.
4125  struct sigaction oldAct;
4126  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4127
4128  void* oldhand = oldAct.sa_sigaction
4129                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4130                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4131  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4132      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4133      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4134    if (AllowUserSignalHandlers || !set_installed) {
4135      // Do not overwrite; user takes responsibility to forward to us.
4136      return;
4137    } else if (UseSignalChaining) {
4138      // save the old handler in jvm
4139      save_preinstalled_handler(sig, oldAct);
4140      // libjsig also interposes the sigaction() call below and saves the
4141      // old sigaction on it own.
4142    } else {
4143      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4144                    "%#lx for signal %d.", (long)oldhand, sig));
4145    }
4146  }
4147
4148  struct sigaction sigAct;
4149  sigfillset(&(sigAct.sa_mask));
4150  sigAct.sa_handler = SIG_DFL;
4151  if (!set_installed) {
4152    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4153  } else {
4154    sigAct.sa_sigaction = signalHandler;
4155    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4156  }
4157  // Save flags, which are set by ours
4158  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4159  sigflags[sig] = sigAct.sa_flags;
4160
4161  int ret = sigaction(sig, &sigAct, &oldAct);
4162  assert(ret == 0, "check");
4163
4164  void* oldhand2  = oldAct.sa_sigaction
4165                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4166                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4167  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4168}
4169
4170// install signal handlers for signals that HotSpot needs to
4171// handle in order to support Java-level exception handling.
4172
4173void os::Linux::install_signal_handlers() {
4174  if (!signal_handlers_are_installed) {
4175    signal_handlers_are_installed = true;
4176
4177    // signal-chaining
4178    typedef void (*signal_setting_t)();
4179    signal_setting_t begin_signal_setting = NULL;
4180    signal_setting_t end_signal_setting = NULL;
4181    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4182                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4183    if (begin_signal_setting != NULL) {
4184      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4185                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4186      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4187                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4188      libjsig_is_loaded = true;
4189      assert(UseSignalChaining, "should enable signal-chaining");
4190    }
4191    if (libjsig_is_loaded) {
4192      // Tell libjsig jvm is setting signal handlers
4193      (*begin_signal_setting)();
4194    }
4195
4196    set_signal_handler(SIGSEGV, true);
4197    set_signal_handler(SIGPIPE, true);
4198    set_signal_handler(SIGBUS, true);
4199    set_signal_handler(SIGILL, true);
4200    set_signal_handler(SIGFPE, true);
4201    set_signal_handler(SIGXFSZ, true);
4202
4203    if (libjsig_is_loaded) {
4204      // Tell libjsig jvm finishes setting signal handlers
4205      (*end_signal_setting)();
4206    }
4207
4208    // We don't activate signal checker if libjsig is in place, we trust ourselves
4209    // and if UserSignalHandler is installed all bets are off.
4210    // Log that signal checking is off only if -verbose:jni is specified.
4211    if (CheckJNICalls) {
4212      if (libjsig_is_loaded) {
4213        if (PrintJNIResolving) {
4214          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4215        }
4216        check_signals = false;
4217      }
4218      if (AllowUserSignalHandlers) {
4219        if (PrintJNIResolving) {
4220          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4221        }
4222        check_signals = false;
4223      }
4224    }
4225  }
4226}
4227
4228// This is the fastest way to get thread cpu time on Linux.
4229// Returns cpu time (user+sys) for any thread, not only for current.
4230// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4231// It might work on 2.6.10+ with a special kernel/glibc patch.
4232// For reference, please, see IEEE Std 1003.1-2004:
4233//   http://www.unix.org/single_unix_specification
4234
4235jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4236  struct timespec tp;
4237  int rc = os::Linux::clock_gettime(clockid, &tp);
4238  assert(rc == 0, "clock_gettime is expected to return 0 code");
4239
4240  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4241}
4242
4243/////
4244// glibc on Linux platform uses non-documented flag
4245// to indicate, that some special sort of signal
4246// trampoline is used.
4247// We will never set this flag, and we should
4248// ignore this flag in our diagnostic
4249#ifdef SIGNIFICANT_SIGNAL_MASK
4250#undef SIGNIFICANT_SIGNAL_MASK
4251#endif
4252#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4253
4254static const char* get_signal_handler_name(address handler,
4255                                           char* buf, int buflen) {
4256  int offset;
4257  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4258  if (found) {
4259    // skip directory names
4260    const char *p1, *p2;
4261    p1 = buf;
4262    size_t len = strlen(os::file_separator());
4263    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4264    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4265  } else {
4266    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4267  }
4268  return buf;
4269}
4270
4271static void print_signal_handler(outputStream* st, int sig,
4272                                 char* buf, size_t buflen) {
4273  struct sigaction sa;
4274
4275  sigaction(sig, NULL, &sa);
4276
4277  // See comment for SIGNIFICANT_SIGNAL_MASK define
4278  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4279
4280  st->print("%s: ", os::exception_name(sig, buf, buflen));
4281
4282  address handler = (sa.sa_flags & SA_SIGINFO)
4283    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4284    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4285
4286  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4287    st->print("SIG_DFL");
4288  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4289    st->print("SIG_IGN");
4290  } else {
4291    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4292  }
4293
4294  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4295
4296  address rh = VMError::get_resetted_sighandler(sig);
4297  // May be, handler was resetted by VMError?
4298  if(rh != NULL) {
4299    handler = rh;
4300    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4301  }
4302
4303  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4304
4305  // Check: is it our handler?
4306  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4307     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4308    // It is our signal handler
4309    // check for flags, reset system-used one!
4310    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4311      st->print(
4312                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4313                os::Linux::get_our_sigflags(sig));
4314    }
4315  }
4316  st->cr();
4317}
4318
4319
4320#define DO_SIGNAL_CHECK(sig) \
4321  if (!sigismember(&check_signal_done, sig)) \
4322    os::Linux::check_signal_handler(sig)
4323
4324// This method is a periodic task to check for misbehaving JNI applications
4325// under CheckJNI, we can add any periodic checks here
4326
4327void os::run_periodic_checks() {
4328
4329  if (check_signals == false) return;
4330
4331  // SEGV and BUS if overridden could potentially prevent
4332  // generation of hs*.log in the event of a crash, debugging
4333  // such a case can be very challenging, so we absolutely
4334  // check the following for a good measure:
4335  DO_SIGNAL_CHECK(SIGSEGV);
4336  DO_SIGNAL_CHECK(SIGILL);
4337  DO_SIGNAL_CHECK(SIGFPE);
4338  DO_SIGNAL_CHECK(SIGBUS);
4339  DO_SIGNAL_CHECK(SIGPIPE);
4340  DO_SIGNAL_CHECK(SIGXFSZ);
4341
4342
4343  // ReduceSignalUsage allows the user to override these handlers
4344  // see comments at the very top and jvm_solaris.h
4345  if (!ReduceSignalUsage) {
4346    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4347    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4348    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4349    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4350  }
4351
4352  DO_SIGNAL_CHECK(SR_signum);
4353  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4354}
4355
4356typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4357
4358static os_sigaction_t os_sigaction = NULL;
4359
4360void os::Linux::check_signal_handler(int sig) {
4361  char buf[O_BUFLEN];
4362  address jvmHandler = NULL;
4363
4364
4365  struct sigaction act;
4366  if (os_sigaction == NULL) {
4367    // only trust the default sigaction, in case it has been interposed
4368    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4369    if (os_sigaction == NULL) return;
4370  }
4371
4372  os_sigaction(sig, (struct sigaction*)NULL, &act);
4373
4374
4375  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4376
4377  address thisHandler = (act.sa_flags & SA_SIGINFO)
4378    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4379    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4380
4381
4382  switch(sig) {
4383  case SIGSEGV:
4384  case SIGBUS:
4385  case SIGFPE:
4386  case SIGPIPE:
4387  case SIGILL:
4388  case SIGXFSZ:
4389    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4390    break;
4391
4392  case SHUTDOWN1_SIGNAL:
4393  case SHUTDOWN2_SIGNAL:
4394  case SHUTDOWN3_SIGNAL:
4395  case BREAK_SIGNAL:
4396    jvmHandler = (address)user_handler();
4397    break;
4398
4399  case INTERRUPT_SIGNAL:
4400    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4401    break;
4402
4403  default:
4404    if (sig == SR_signum) {
4405      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4406    } else {
4407      return;
4408    }
4409    break;
4410  }
4411
4412  if (thisHandler != jvmHandler) {
4413    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4414    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4415    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4416    // No need to check this sig any longer
4417    sigaddset(&check_signal_done, sig);
4418  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4419    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4420    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4421    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4422    // No need to check this sig any longer
4423    sigaddset(&check_signal_done, sig);
4424  }
4425
4426  // Dump all the signal
4427  if (sigismember(&check_signal_done, sig)) {
4428    print_signal_handlers(tty, buf, O_BUFLEN);
4429  }
4430}
4431
4432extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4433
4434extern bool signal_name(int signo, char* buf, size_t len);
4435
4436const char* os::exception_name(int exception_code, char* buf, size_t size) {
4437  if (0 < exception_code && exception_code <= SIGRTMAX) {
4438    // signal
4439    if (!signal_name(exception_code, buf, size)) {
4440      jio_snprintf(buf, size, "SIG%d", exception_code);
4441    }
4442    return buf;
4443  } else {
4444    return NULL;
4445  }
4446}
4447
4448// this is called _before_ the most of global arguments have been parsed
4449void os::init(void) {
4450  char dummy;   /* used to get a guess on initial stack address */
4451//  first_hrtime = gethrtime();
4452
4453  // With LinuxThreads the JavaMain thread pid (primordial thread)
4454  // is different than the pid of the java launcher thread.
4455  // So, on Linux, the launcher thread pid is passed to the VM
4456  // via the sun.java.launcher.pid property.
4457  // Use this property instead of getpid() if it was correctly passed.
4458  // See bug 6351349.
4459  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4460
4461  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4462
4463  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4464
4465  init_random(1234567);
4466
4467  ThreadCritical::initialize();
4468
4469  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4470  if (Linux::page_size() == -1) {
4471    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4472                  strerror(errno)));
4473  }
4474  init_page_sizes((size_t) Linux::page_size());
4475
4476  Linux::initialize_system_info();
4477
4478  // main_thread points to the aboriginal thread
4479  Linux::_main_thread = pthread_self();
4480
4481  Linux::clock_init();
4482  initial_time_count = os::elapsed_counter();
4483  pthread_mutex_init(&dl_mutex, NULL);
4484
4485  // If the pagesize of the VM is greater than 8K determine the appropriate
4486  // number of initial guard pages.  The user can change this with the
4487  // command line arguments, if needed.
4488  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4489    StackYellowPages = 1;
4490    StackRedPages = 1;
4491    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4492  }
4493}
4494
4495// To install functions for atexit system call
4496extern "C" {
4497  static void perfMemory_exit_helper() {
4498    perfMemory_exit();
4499  }
4500}
4501
4502// this is called _after_ the global arguments have been parsed
4503jint os::init_2(void)
4504{
4505  Linux::fast_thread_clock_init();
4506
4507  // Allocate a single page and mark it as readable for safepoint polling
4508  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4509  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4510
4511  os::set_polling_page( polling_page );
4512
4513#ifndef PRODUCT
4514  if(Verbose && PrintMiscellaneous)
4515    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4516#endif
4517
4518  if (!UseMembar) {
4519    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4520    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4521    os::set_memory_serialize_page( mem_serialize_page );
4522
4523#ifndef PRODUCT
4524    if(Verbose && PrintMiscellaneous)
4525      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4526#endif
4527  }
4528
4529  os::large_page_init();
4530
4531  // initialize suspend/resume support - must do this before signal_sets_init()
4532  if (SR_initialize() != 0) {
4533    perror("SR_initialize failed");
4534    return JNI_ERR;
4535  }
4536
4537  Linux::signal_sets_init();
4538  Linux::install_signal_handlers();
4539
4540  // Check minimum allowable stack size for thread creation and to initialize
4541  // the java system classes, including StackOverflowError - depends on page
4542  // size.  Add a page for compiler2 recursion in main thread.
4543  // Add in 2*BytesPerWord times page size to account for VM stack during
4544  // class initialization depending on 32 or 64 bit VM.
4545  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4546            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4547                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4548
4549  size_t threadStackSizeInBytes = ThreadStackSize * K;
4550  if (threadStackSizeInBytes != 0 &&
4551      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4552        tty->print_cr("\nThe stack size specified is too small, "
4553                      "Specify at least %dk",
4554                      os::Linux::min_stack_allowed/ K);
4555        return JNI_ERR;
4556  }
4557
4558  // Make the stack size a multiple of the page size so that
4559  // the yellow/red zones can be guarded.
4560  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4561        vm_page_size()));
4562
4563  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4564
4565  Linux::libpthread_init();
4566  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4567     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4568          Linux::glibc_version(), Linux::libpthread_version(),
4569          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4570  }
4571
4572  if (UseNUMA) {
4573    if (!Linux::libnuma_init()) {
4574      UseNUMA = false;
4575    } else {
4576      if ((Linux::numa_max_node() < 1)) {
4577        // There's only one node(they start from 0), disable NUMA.
4578        UseNUMA = false;
4579      }
4580    }
4581    // With SHM large pages we cannot uncommit a page, so there's not way
4582    // we can make the adaptive lgrp chunk resizing work. If the user specified
4583    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4584    // disable adaptive resizing.
4585    if (UseNUMA && UseLargePages && UseSHM) {
4586      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4587        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4588          UseLargePages = false;
4589        } else {
4590          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4591          UseAdaptiveSizePolicy = false;
4592          UseAdaptiveNUMAChunkSizing = false;
4593        }
4594      } else {
4595        UseNUMA = false;
4596      }
4597    }
4598    if (!UseNUMA && ForceNUMA) {
4599      UseNUMA = true;
4600    }
4601  }
4602
4603  if (MaxFDLimit) {
4604    // set the number of file descriptors to max. print out error
4605    // if getrlimit/setrlimit fails but continue regardless.
4606    struct rlimit nbr_files;
4607    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4608    if (status != 0) {
4609      if (PrintMiscellaneous && (Verbose || WizardMode))
4610        perror("os::init_2 getrlimit failed");
4611    } else {
4612      nbr_files.rlim_cur = nbr_files.rlim_max;
4613      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4614      if (status != 0) {
4615        if (PrintMiscellaneous && (Verbose || WizardMode))
4616          perror("os::init_2 setrlimit failed");
4617      }
4618    }
4619  }
4620
4621  // Initialize lock used to serialize thread creation (see os::create_thread)
4622  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4623
4624  // at-exit methods are called in the reverse order of their registration.
4625  // atexit functions are called on return from main or as a result of a
4626  // call to exit(3C). There can be only 32 of these functions registered
4627  // and atexit() does not set errno.
4628
4629  if (PerfAllowAtExitRegistration) {
4630    // only register atexit functions if PerfAllowAtExitRegistration is set.
4631    // atexit functions can be delayed until process exit time, which
4632    // can be problematic for embedded VM situations. Embedded VMs should
4633    // call DestroyJavaVM() to assure that VM resources are released.
4634
4635    // note: perfMemory_exit_helper atexit function may be removed in
4636    // the future if the appropriate cleanup code can be added to the
4637    // VM_Exit VMOperation's doit method.
4638    if (atexit(perfMemory_exit_helper) != 0) {
4639      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4640    }
4641  }
4642
4643  // initialize thread priority policy
4644  prio_init();
4645
4646  return JNI_OK;
4647}
4648
4649// this is called at the end of vm_initialization
4650void os::init_3(void)
4651{
4652#ifdef JAVASE_EMBEDDED
4653  // Start the MemNotifyThread
4654  if (LowMemoryProtection) {
4655    MemNotifyThread::start();
4656  }
4657  return;
4658#endif
4659}
4660
4661// Mark the polling page as unreadable
4662void os::make_polling_page_unreadable(void) {
4663  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4664    fatal("Could not disable polling page");
4665};
4666
4667// Mark the polling page as readable
4668void os::make_polling_page_readable(void) {
4669  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4670    fatal("Could not enable polling page");
4671  }
4672};
4673
4674int os::active_processor_count() {
4675  // Linux doesn't yet have a (official) notion of processor sets,
4676  // so just return the number of online processors.
4677  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4678  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4679  return online_cpus;
4680}
4681
4682void os::set_native_thread_name(const char *name) {
4683  // Not yet implemented.
4684  return;
4685}
4686
4687bool os::distribute_processes(uint length, uint* distribution) {
4688  // Not yet implemented.
4689  return false;
4690}
4691
4692bool os::bind_to_processor(uint processor_id) {
4693  // Not yet implemented.
4694  return false;
4695}
4696
4697///
4698
4699void os::SuspendedThreadTask::internal_do_task() {
4700  if (do_suspend(_thread->osthread())) {
4701    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4702    do_task(context);
4703    do_resume(_thread->osthread());
4704  }
4705}
4706
4707class PcFetcher : public os::SuspendedThreadTask {
4708public:
4709  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4710  ExtendedPC result();
4711protected:
4712  void do_task(const os::SuspendedThreadTaskContext& context);
4713private:
4714  ExtendedPC _epc;
4715};
4716
4717ExtendedPC PcFetcher::result() {
4718  guarantee(is_done(), "task is not done yet.");
4719  return _epc;
4720}
4721
4722void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4723  Thread* thread = context.thread();
4724  OSThread* osthread = thread->osthread();
4725  if (osthread->ucontext() != NULL) {
4726    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4727  } else {
4728    // NULL context is unexpected, double-check this is the VMThread
4729    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4730  }
4731}
4732
4733// Suspends the target using the signal mechanism and then grabs the PC before
4734// resuming the target. Used by the flat-profiler only
4735ExtendedPC os::get_thread_pc(Thread* thread) {
4736  // Make sure that it is called by the watcher for the VMThread
4737  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4738  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4739
4740  PcFetcher fetcher(thread);
4741  fetcher.run();
4742  return fetcher.result();
4743}
4744
4745int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4746{
4747   if (is_NPTL()) {
4748      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4749   } else {
4750      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4751      // word back to default 64bit precision if condvar is signaled. Java
4752      // wants 53bit precision.  Save and restore current value.
4753      int fpu = get_fpu_control_word();
4754      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4755      set_fpu_control_word(fpu);
4756      return status;
4757   }
4758}
4759
4760////////////////////////////////////////////////////////////////////////////////
4761// debug support
4762
4763bool os::find(address addr, outputStream* st) {
4764  Dl_info dlinfo;
4765  memset(&dlinfo, 0, sizeof(dlinfo));
4766  if (dladdr(addr, &dlinfo) != 0) {
4767    st->print(PTR_FORMAT ": ", addr);
4768    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4769      st->print("%s+%#x", dlinfo.dli_sname,
4770                 addr - (intptr_t)dlinfo.dli_saddr);
4771    } else if (dlinfo.dli_fbase != NULL) {
4772      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4773    } else {
4774      st->print("<absolute address>");
4775    }
4776    if (dlinfo.dli_fname != NULL) {
4777      st->print(" in %s", dlinfo.dli_fname);
4778    }
4779    if (dlinfo.dli_fbase != NULL) {
4780      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4781    }
4782    st->cr();
4783
4784    if (Verbose) {
4785      // decode some bytes around the PC
4786      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4787      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4788      address       lowest = (address) dlinfo.dli_sname;
4789      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4790      if (begin < lowest)  begin = lowest;
4791      Dl_info dlinfo2;
4792      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4793          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4794        end = (address) dlinfo2.dli_saddr;
4795      Disassembler::decode(begin, end, st);
4796    }
4797    return true;
4798  }
4799  return false;
4800}
4801
4802////////////////////////////////////////////////////////////////////////////////
4803// misc
4804
4805// This does not do anything on Linux. This is basically a hook for being
4806// able to use structured exception handling (thread-local exception filters)
4807// on, e.g., Win32.
4808void
4809os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4810                         JavaCallArguments* args, Thread* thread) {
4811  f(value, method, args, thread);
4812}
4813
4814void os::print_statistics() {
4815}
4816
4817int os::message_box(const char* title, const char* message) {
4818  int i;
4819  fdStream err(defaultStream::error_fd());
4820  for (i = 0; i < 78; i++) err.print_raw("=");
4821  err.cr();
4822  err.print_raw_cr(title);
4823  for (i = 0; i < 78; i++) err.print_raw("-");
4824  err.cr();
4825  err.print_raw_cr(message);
4826  for (i = 0; i < 78; i++) err.print_raw("=");
4827  err.cr();
4828
4829  char buf[16];
4830  // Prevent process from exiting upon "read error" without consuming all CPU
4831  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4832
4833  return buf[0] == 'y' || buf[0] == 'Y';
4834}
4835
4836int os::stat(const char *path, struct stat *sbuf) {
4837  char pathbuf[MAX_PATH];
4838  if (strlen(path) > MAX_PATH - 1) {
4839    errno = ENAMETOOLONG;
4840    return -1;
4841  }
4842  os::native_path(strcpy(pathbuf, path));
4843  return ::stat(pathbuf, sbuf);
4844}
4845
4846bool os::check_heap(bool force) {
4847  return true;
4848}
4849
4850int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4851  return ::vsnprintf(buf, count, format, args);
4852}
4853
4854// Is a (classpath) directory empty?
4855bool os::dir_is_empty(const char* path) {
4856  DIR *dir = NULL;
4857  struct dirent *ptr;
4858
4859  dir = opendir(path);
4860  if (dir == NULL) return true;
4861
4862  /* Scan the directory */
4863  bool result = true;
4864  char buf[sizeof(struct dirent) + MAX_PATH];
4865  while (result && (ptr = ::readdir(dir)) != NULL) {
4866    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4867      result = false;
4868    }
4869  }
4870  closedir(dir);
4871  return result;
4872}
4873
4874// This code originates from JDK's sysOpen and open64_w
4875// from src/solaris/hpi/src/system_md.c
4876
4877#ifndef O_DELETE
4878#define O_DELETE 0x10000
4879#endif
4880
4881// Open a file. Unlink the file immediately after open returns
4882// if the specified oflag has the O_DELETE flag set.
4883// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4884
4885int os::open(const char *path, int oflag, int mode) {
4886
4887  if (strlen(path) > MAX_PATH - 1) {
4888    errno = ENAMETOOLONG;
4889    return -1;
4890  }
4891  int fd;
4892  int o_delete = (oflag & O_DELETE);
4893  oflag = oflag & ~O_DELETE;
4894
4895  fd = ::open64(path, oflag, mode);
4896  if (fd == -1) return -1;
4897
4898  //If the open succeeded, the file might still be a directory
4899  {
4900    struct stat64 buf64;
4901    int ret = ::fstat64(fd, &buf64);
4902    int st_mode = buf64.st_mode;
4903
4904    if (ret != -1) {
4905      if ((st_mode & S_IFMT) == S_IFDIR) {
4906        errno = EISDIR;
4907        ::close(fd);
4908        return -1;
4909      }
4910    } else {
4911      ::close(fd);
4912      return -1;
4913    }
4914  }
4915
4916    /*
4917     * All file descriptors that are opened in the JVM and not
4918     * specifically destined for a subprocess should have the
4919     * close-on-exec flag set.  If we don't set it, then careless 3rd
4920     * party native code might fork and exec without closing all
4921     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4922     * UNIXProcess.c), and this in turn might:
4923     *
4924     * - cause end-of-file to fail to be detected on some file
4925     *   descriptors, resulting in mysterious hangs, or
4926     *
4927     * - might cause an fopen in the subprocess to fail on a system
4928     *   suffering from bug 1085341.
4929     *
4930     * (Yes, the default setting of the close-on-exec flag is a Unix
4931     * design flaw)
4932     *
4933     * See:
4934     * 1085341: 32-bit stdio routines should support file descriptors >255
4935     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4936     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4937     */
4938#ifdef FD_CLOEXEC
4939    {
4940        int flags = ::fcntl(fd, F_GETFD);
4941        if (flags != -1)
4942            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4943    }
4944#endif
4945
4946  if (o_delete != 0) {
4947    ::unlink(path);
4948  }
4949  return fd;
4950}
4951
4952
4953// create binary file, rewriting existing file if required
4954int os::create_binary_file(const char* path, bool rewrite_existing) {
4955  int oflags = O_WRONLY | O_CREAT;
4956  if (!rewrite_existing) {
4957    oflags |= O_EXCL;
4958  }
4959  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4960}
4961
4962// return current position of file pointer
4963jlong os::current_file_offset(int fd) {
4964  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4965}
4966
4967// move file pointer to the specified offset
4968jlong os::seek_to_file_offset(int fd, jlong offset) {
4969  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4970}
4971
4972// This code originates from JDK's sysAvailable
4973// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4974
4975int os::available(int fd, jlong *bytes) {
4976  jlong cur, end;
4977  int mode;
4978  struct stat64 buf64;
4979
4980  if (::fstat64(fd, &buf64) >= 0) {
4981    mode = buf64.st_mode;
4982    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4983      /*
4984      * XXX: is the following call interruptible? If so, this might
4985      * need to go through the INTERRUPT_IO() wrapper as for other
4986      * blocking, interruptible calls in this file.
4987      */
4988      int n;
4989      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4990        *bytes = n;
4991        return 1;
4992      }
4993    }
4994  }
4995  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4996    return 0;
4997  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4998    return 0;
4999  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5000    return 0;
5001  }
5002  *bytes = end - cur;
5003  return 1;
5004}
5005
5006int os::socket_available(int fd, jint *pbytes) {
5007  // Linux doc says EINTR not returned, unlike Solaris
5008  int ret = ::ioctl(fd, FIONREAD, pbytes);
5009
5010  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5011  // is expected to return 0 on failure and 1 on success to the jdk.
5012  return (ret < 0) ? 0 : 1;
5013}
5014
5015// Map a block of memory.
5016char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5017                     char *addr, size_t bytes, bool read_only,
5018                     bool allow_exec) {
5019  int prot;
5020  int flags = MAP_PRIVATE;
5021
5022  if (read_only) {
5023    prot = PROT_READ;
5024  } else {
5025    prot = PROT_READ | PROT_WRITE;
5026  }
5027
5028  if (allow_exec) {
5029    prot |= PROT_EXEC;
5030  }
5031
5032  if (addr != NULL) {
5033    flags |= MAP_FIXED;
5034  }
5035
5036  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5037                                     fd, file_offset);
5038  if (mapped_address == MAP_FAILED) {
5039    return NULL;
5040  }
5041  return mapped_address;
5042}
5043
5044
5045// Remap a block of memory.
5046char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5047                       char *addr, size_t bytes, bool read_only,
5048                       bool allow_exec) {
5049  // same as map_memory() on this OS
5050  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5051                        allow_exec);
5052}
5053
5054
5055// Unmap a block of memory.
5056bool os::pd_unmap_memory(char* addr, size_t bytes) {
5057  return munmap(addr, bytes) == 0;
5058}
5059
5060static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5061
5062static clockid_t thread_cpu_clockid(Thread* thread) {
5063  pthread_t tid = thread->osthread()->pthread_id();
5064  clockid_t clockid;
5065
5066  // Get thread clockid
5067  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5068  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5069  return clockid;
5070}
5071
5072// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5073// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5074// of a thread.
5075//
5076// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5077// the fast estimate available on the platform.
5078
5079jlong os::current_thread_cpu_time() {
5080  if (os::Linux::supports_fast_thread_cpu_time()) {
5081    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5082  } else {
5083    // return user + sys since the cost is the same
5084    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5085  }
5086}
5087
5088jlong os::thread_cpu_time(Thread* thread) {
5089  // consistent with what current_thread_cpu_time() returns
5090  if (os::Linux::supports_fast_thread_cpu_time()) {
5091    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5092  } else {
5093    return slow_thread_cpu_time(thread, true /* user + sys */);
5094  }
5095}
5096
5097jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5098  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5099    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5100  } else {
5101    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5102  }
5103}
5104
5105jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5106  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5107    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5108  } else {
5109    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5110  }
5111}
5112
5113//
5114//  -1 on error.
5115//
5116
5117static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5118  static bool proc_task_unchecked = true;
5119  static const char *proc_stat_path = "/proc/%d/stat";
5120  pid_t  tid = thread->osthread()->thread_id();
5121  char *s;
5122  char stat[2048];
5123  int statlen;
5124  char proc_name[64];
5125  int count;
5126  long sys_time, user_time;
5127  char cdummy;
5128  int idummy;
5129  long ldummy;
5130  FILE *fp;
5131
5132  // The /proc/<tid>/stat aggregates per-process usage on
5133  // new Linux kernels 2.6+ where NPTL is supported.
5134  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5135  // See bug 6328462.
5136  // There possibly can be cases where there is no directory
5137  // /proc/self/task, so we check its availability.
5138  if (proc_task_unchecked && os::Linux::is_NPTL()) {
5139    // This is executed only once
5140    proc_task_unchecked = false;
5141    fp = fopen("/proc/self/task", "r");
5142    if (fp != NULL) {
5143      proc_stat_path = "/proc/self/task/%d/stat";
5144      fclose(fp);
5145    }
5146  }
5147
5148  sprintf(proc_name, proc_stat_path, tid);
5149  fp = fopen(proc_name, "r");
5150  if ( fp == NULL ) return -1;
5151  statlen = fread(stat, 1, 2047, fp);
5152  stat[statlen] = '\0';
5153  fclose(fp);
5154
5155  // Skip pid and the command string. Note that we could be dealing with
5156  // weird command names, e.g. user could decide to rename java launcher
5157  // to "java 1.4.2 :)", then the stat file would look like
5158  //                1234 (java 1.4.2 :)) R ... ...
5159  // We don't really need to know the command string, just find the last
5160  // occurrence of ")" and then start parsing from there. See bug 4726580.
5161  s = strrchr(stat, ')');
5162  if (s == NULL ) return -1;
5163
5164  // Skip blank chars
5165  do s++; while (isspace(*s));
5166
5167  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5168                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5169                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5170                 &user_time, &sys_time);
5171  if ( count != 13 ) return -1;
5172  if (user_sys_cpu_time) {
5173    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5174  } else {
5175    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5176  }
5177}
5178
5179void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5180  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5181  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5182  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5183  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5184}
5185
5186void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5187  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5188  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5189  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5190  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5191}
5192
5193bool os::is_thread_cpu_time_supported() {
5194  return true;
5195}
5196
5197// System loadavg support.  Returns -1 if load average cannot be obtained.
5198// Linux doesn't yet have a (official) notion of processor sets,
5199// so just return the system wide load average.
5200int os::loadavg(double loadavg[], int nelem) {
5201  return ::getloadavg(loadavg, nelem);
5202}
5203
5204void os::pause() {
5205  char filename[MAX_PATH];
5206  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5207    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5208  } else {
5209    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5210  }
5211
5212  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5213  if (fd != -1) {
5214    struct stat buf;
5215    ::close(fd);
5216    while (::stat(filename, &buf) == 0) {
5217      (void)::poll(NULL, 0, 100);
5218    }
5219  } else {
5220    jio_fprintf(stderr,
5221      "Could not open pause file '%s', continuing immediately.\n", filename);
5222  }
5223}
5224
5225
5226// Refer to the comments in os_solaris.cpp park-unpark.
5227//
5228// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5229// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5230// For specifics regarding the bug see GLIBC BUGID 261237 :
5231//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5232// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5233// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5234// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5235// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5236// and monitorenter when we're using 1-0 locking.  All those operations may result in
5237// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5238// of libpthread avoids the problem, but isn't practical.
5239//
5240// Possible remedies:
5241//
5242// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5243//      This is palliative and probabilistic, however.  If the thread is preempted
5244//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5245//      than the minimum period may have passed, and the abstime may be stale (in the
5246//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5247//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5248//
5249// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5250//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5251//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5252//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5253//      thread.
5254//
5255// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5256//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5257//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5258//      This also works well.  In fact it avoids kernel-level scalability impediments
5259//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5260//      timers in a graceful fashion.
5261//
5262// 4.   When the abstime value is in the past it appears that control returns
5263//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5264//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5265//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5266//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5267//      It may be possible to avoid reinitialization by checking the return
5268//      value from pthread_cond_timedwait().  In addition to reinitializing the
5269//      condvar we must establish the invariant that cond_signal() is only called
5270//      within critical sections protected by the adjunct mutex.  This prevents
5271//      cond_signal() from "seeing" a condvar that's in the midst of being
5272//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5273//      desirable signal-after-unlock optimization that avoids futile context switching.
5274//
5275//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5276//      structure when a condvar is used or initialized.  cond_destroy()  would
5277//      release the helper structure.  Our reinitialize-after-timedwait fix
5278//      put excessive stress on malloc/free and locks protecting the c-heap.
5279//
5280// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5281// It may be possible to refine (4) by checking the kernel and NTPL verisons
5282// and only enabling the work-around for vulnerable environments.
5283
5284// utility to compute the abstime argument to timedwait:
5285// millis is the relative timeout time
5286// abstime will be the absolute timeout time
5287// TODO: replace compute_abstime() with unpackTime()
5288
5289static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5290  if (millis < 0)  millis = 0;
5291  struct timeval now;
5292  int status = gettimeofday(&now, NULL);
5293  assert(status == 0, "gettimeofday");
5294  jlong seconds = millis / 1000;
5295  millis %= 1000;
5296  if (seconds > 50000000) { // see man cond_timedwait(3T)
5297    seconds = 50000000;
5298  }
5299  abstime->tv_sec = now.tv_sec  + seconds;
5300  long       usec = now.tv_usec + millis * 1000;
5301  if (usec >= 1000000) {
5302    abstime->tv_sec += 1;
5303    usec -= 1000000;
5304  }
5305  abstime->tv_nsec = usec * 1000;
5306  return abstime;
5307}
5308
5309
5310// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5311// Conceptually TryPark() should be equivalent to park(0).
5312
5313int os::PlatformEvent::TryPark() {
5314  for (;;) {
5315    const int v = _Event ;
5316    guarantee ((v == 0) || (v == 1), "invariant") ;
5317    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5318  }
5319}
5320
5321void os::PlatformEvent::park() {       // AKA "down()"
5322  // Invariant: Only the thread associated with the Event/PlatformEvent
5323  // may call park().
5324  // TODO: assert that _Assoc != NULL or _Assoc == Self
5325  int v ;
5326  for (;;) {
5327      v = _Event ;
5328      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5329  }
5330  guarantee (v >= 0, "invariant") ;
5331  if (v == 0) {
5332     // Do this the hard way by blocking ...
5333     int status = pthread_mutex_lock(_mutex);
5334     assert_status(status == 0, status, "mutex_lock");
5335     guarantee (_nParked == 0, "invariant") ;
5336     ++ _nParked ;
5337     while (_Event < 0) {
5338        status = pthread_cond_wait(_cond, _mutex);
5339        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5340        // Treat this the same as if the wait was interrupted
5341        if (status == ETIME) { status = EINTR; }
5342        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5343     }
5344     -- _nParked ;
5345
5346    _Event = 0 ;
5347     status = pthread_mutex_unlock(_mutex);
5348     assert_status(status == 0, status, "mutex_unlock");
5349    // Paranoia to ensure our locked and lock-free paths interact
5350    // correctly with each other.
5351    OrderAccess::fence();
5352  }
5353  guarantee (_Event >= 0, "invariant") ;
5354}
5355
5356int os::PlatformEvent::park(jlong millis) {
5357  guarantee (_nParked == 0, "invariant") ;
5358
5359  int v ;
5360  for (;;) {
5361      v = _Event ;
5362      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5363  }
5364  guarantee (v >= 0, "invariant") ;
5365  if (v != 0) return OS_OK ;
5366
5367  // We do this the hard way, by blocking the thread.
5368  // Consider enforcing a minimum timeout value.
5369  struct timespec abst;
5370  compute_abstime(&abst, millis);
5371
5372  int ret = OS_TIMEOUT;
5373  int status = pthread_mutex_lock(_mutex);
5374  assert_status(status == 0, status, "mutex_lock");
5375  guarantee (_nParked == 0, "invariant") ;
5376  ++_nParked ;
5377
5378  // Object.wait(timo) will return because of
5379  // (a) notification
5380  // (b) timeout
5381  // (c) thread.interrupt
5382  //
5383  // Thread.interrupt and object.notify{All} both call Event::set.
5384  // That is, we treat thread.interrupt as a special case of notification.
5385  // The underlying Solaris implementation, cond_timedwait, admits
5386  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5387  // JVM from making those visible to Java code.  As such, we must
5388  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5389  //
5390  // TODO: properly differentiate simultaneous notify+interrupt.
5391  // In that case, we should propagate the notify to another waiter.
5392
5393  while (_Event < 0) {
5394    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5395    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5396      pthread_cond_destroy (_cond);
5397      pthread_cond_init (_cond, NULL) ;
5398    }
5399    assert_status(status == 0 || status == EINTR ||
5400                  status == ETIME || status == ETIMEDOUT,
5401                  status, "cond_timedwait");
5402    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5403    if (status == ETIME || status == ETIMEDOUT) break ;
5404    // We consume and ignore EINTR and spurious wakeups.
5405  }
5406  --_nParked ;
5407  if (_Event >= 0) {
5408     ret = OS_OK;
5409  }
5410  _Event = 0 ;
5411  status = pthread_mutex_unlock(_mutex);
5412  assert_status(status == 0, status, "mutex_unlock");
5413  assert (_nParked == 0, "invariant") ;
5414  // Paranoia to ensure our locked and lock-free paths interact
5415  // correctly with each other.
5416  OrderAccess::fence();
5417  return ret;
5418}
5419
5420void os::PlatformEvent::unpark() {
5421  // Transitions for _Event:
5422  //    0 :=> 1
5423  //    1 :=> 1
5424  //   -1 :=> either 0 or 1; must signal target thread
5425  //          That is, we can safely transition _Event from -1 to either
5426  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5427  //          unpark() calls.
5428  // See also: "Semaphores in Plan 9" by Mullender & Cox
5429  //
5430  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5431  // that it will take two back-to-back park() calls for the owning
5432  // thread to block. This has the benefit of forcing a spurious return
5433  // from the first park() call after an unpark() call which will help
5434  // shake out uses of park() and unpark() without condition variables.
5435
5436  if (Atomic::xchg(1, &_Event) >= 0) return;
5437
5438  // Wait for the thread associated with the event to vacate
5439  int status = pthread_mutex_lock(_mutex);
5440  assert_status(status == 0, status, "mutex_lock");
5441  int AnyWaiters = _nParked;
5442  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5443  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5444    AnyWaiters = 0;
5445    pthread_cond_signal(_cond);
5446  }
5447  status = pthread_mutex_unlock(_mutex);
5448  assert_status(status == 0, status, "mutex_unlock");
5449  if (AnyWaiters != 0) {
5450    status = pthread_cond_signal(_cond);
5451    assert_status(status == 0, status, "cond_signal");
5452  }
5453
5454  // Note that we signal() _after dropping the lock for "immortal" Events.
5455  // This is safe and avoids a common class of  futile wakeups.  In rare
5456  // circumstances this can cause a thread to return prematurely from
5457  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5458  // simply re-test the condition and re-park itself.
5459}
5460
5461
5462// JSR166
5463// -------------------------------------------------------
5464
5465/*
5466 * The solaris and linux implementations of park/unpark are fairly
5467 * conservative for now, but can be improved. They currently use a
5468 * mutex/condvar pair, plus a a count.
5469 * Park decrements count if > 0, else does a condvar wait.  Unpark
5470 * sets count to 1 and signals condvar.  Only one thread ever waits
5471 * on the condvar. Contention seen when trying to park implies that someone
5472 * is unparking you, so don't wait. And spurious returns are fine, so there
5473 * is no need to track notifications.
5474 */
5475
5476#define MAX_SECS 100000000
5477/*
5478 * This code is common to linux and solaris and will be moved to a
5479 * common place in dolphin.
5480 *
5481 * The passed in time value is either a relative time in nanoseconds
5482 * or an absolute time in milliseconds. Either way it has to be unpacked
5483 * into suitable seconds and nanoseconds components and stored in the
5484 * given timespec structure.
5485 * Given time is a 64-bit value and the time_t used in the timespec is only
5486 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5487 * overflow if times way in the future are given. Further on Solaris versions
5488 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5489 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5490 * As it will be 28 years before "now + 100000000" will overflow we can
5491 * ignore overflow and just impose a hard-limit on seconds using the value
5492 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5493 * years from "now".
5494 */
5495
5496static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5497  assert (time > 0, "convertTime");
5498
5499  struct timeval now;
5500  int status = gettimeofday(&now, NULL);
5501  assert(status == 0, "gettimeofday");
5502
5503  time_t max_secs = now.tv_sec + MAX_SECS;
5504
5505  if (isAbsolute) {
5506    jlong secs = time / 1000;
5507    if (secs > max_secs) {
5508      absTime->tv_sec = max_secs;
5509    }
5510    else {
5511      absTime->tv_sec = secs;
5512    }
5513    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5514  }
5515  else {
5516    jlong secs = time / NANOSECS_PER_SEC;
5517    if (secs >= MAX_SECS) {
5518      absTime->tv_sec = max_secs;
5519      absTime->tv_nsec = 0;
5520    }
5521    else {
5522      absTime->tv_sec = now.tv_sec + secs;
5523      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5524      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5525        absTime->tv_nsec -= NANOSECS_PER_SEC;
5526        ++absTime->tv_sec; // note: this must be <= max_secs
5527      }
5528    }
5529  }
5530  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5531  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5532  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5533  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5534}
5535
5536void Parker::park(bool isAbsolute, jlong time) {
5537  // Ideally we'd do something useful while spinning, such
5538  // as calling unpackTime().
5539
5540  // Optional fast-path check:
5541  // Return immediately if a permit is available.
5542  // We depend on Atomic::xchg() having full barrier semantics
5543  // since we are doing a lock-free update to _counter.
5544  if (Atomic::xchg(0, &_counter) > 0) return;
5545
5546  Thread* thread = Thread::current();
5547  assert(thread->is_Java_thread(), "Must be JavaThread");
5548  JavaThread *jt = (JavaThread *)thread;
5549
5550  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5551  // Check interrupt before trying to wait
5552  if (Thread::is_interrupted(thread, false)) {
5553    return;
5554  }
5555
5556  // Next, demultiplex/decode time arguments
5557  timespec absTime;
5558  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5559    return;
5560  }
5561  if (time > 0) {
5562    unpackTime(&absTime, isAbsolute, time);
5563  }
5564
5565
5566  // Enter safepoint region
5567  // Beware of deadlocks such as 6317397.
5568  // The per-thread Parker:: mutex is a classic leaf-lock.
5569  // In particular a thread must never block on the Threads_lock while
5570  // holding the Parker:: mutex.  If safepoints are pending both the
5571  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5572  ThreadBlockInVM tbivm(jt);
5573
5574  // Don't wait if cannot get lock since interference arises from
5575  // unblocking.  Also. check interrupt before trying wait
5576  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5577    return;
5578  }
5579
5580  int status ;
5581  if (_counter > 0)  { // no wait needed
5582    _counter = 0;
5583    status = pthread_mutex_unlock(_mutex);
5584    assert (status == 0, "invariant") ;
5585    // Paranoia to ensure our locked and lock-free paths interact
5586    // correctly with each other and Java-level accesses.
5587    OrderAccess::fence();
5588    return;
5589  }
5590
5591#ifdef ASSERT
5592  // Don't catch signals while blocked; let the running threads have the signals.
5593  // (This allows a debugger to break into the running thread.)
5594  sigset_t oldsigs;
5595  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5596  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5597#endif
5598
5599  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5600  jt->set_suspend_equivalent();
5601  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5602
5603  if (time == 0) {
5604    status = pthread_cond_wait (_cond, _mutex) ;
5605  } else {
5606    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5607    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5608      pthread_cond_destroy (_cond) ;
5609      pthread_cond_init    (_cond, NULL);
5610    }
5611  }
5612  assert_status(status == 0 || status == EINTR ||
5613                status == ETIME || status == ETIMEDOUT,
5614                status, "cond_timedwait");
5615
5616#ifdef ASSERT
5617  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5618#endif
5619
5620  _counter = 0 ;
5621  status = pthread_mutex_unlock(_mutex) ;
5622  assert_status(status == 0, status, "invariant") ;
5623  // Paranoia to ensure our locked and lock-free paths interact
5624  // correctly with each other and Java-level accesses.
5625  OrderAccess::fence();
5626
5627  // If externally suspended while waiting, re-suspend
5628  if (jt->handle_special_suspend_equivalent_condition()) {
5629    jt->java_suspend_self();
5630  }
5631}
5632
5633void Parker::unpark() {
5634  int s, status ;
5635  status = pthread_mutex_lock(_mutex);
5636  assert (status == 0, "invariant") ;
5637  s = _counter;
5638  _counter = 1;
5639  if (s < 1) {
5640     if (WorkAroundNPTLTimedWaitHang) {
5641        status = pthread_cond_signal (_cond) ;
5642        assert (status == 0, "invariant") ;
5643        status = pthread_mutex_unlock(_mutex);
5644        assert (status == 0, "invariant") ;
5645     } else {
5646        status = pthread_mutex_unlock(_mutex);
5647        assert (status == 0, "invariant") ;
5648        status = pthread_cond_signal (_cond) ;
5649        assert (status == 0, "invariant") ;
5650     }
5651  } else {
5652    pthread_mutex_unlock(_mutex);
5653    assert (status == 0, "invariant") ;
5654  }
5655}
5656
5657
5658extern char** environ;
5659
5660#ifndef __NR_fork
5661#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5662#endif
5663
5664#ifndef __NR_execve
5665#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5666#endif
5667
5668// Run the specified command in a separate process. Return its exit value,
5669// or -1 on failure (e.g. can't fork a new process).
5670// Unlike system(), this function can be called from signal handler. It
5671// doesn't block SIGINT et al.
5672int os::fork_and_exec(char* cmd) {
5673  const char * argv[4] = {"sh", "-c", cmd, NULL};
5674
5675  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5676  // pthread_atfork handlers and reset pthread library. All we need is a
5677  // separate process to execve. Make a direct syscall to fork process.
5678  // On IA64 there's no fork syscall, we have to use fork() and hope for
5679  // the best...
5680  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5681              IA64_ONLY(fork();)
5682
5683  if (pid < 0) {
5684    // fork failed
5685    return -1;
5686
5687  } else if (pid == 0) {
5688    // child process
5689
5690    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5691    // first to kill every thread on the thread list. Because this list is
5692    // not reset by fork() (see notes above), execve() will instead kill
5693    // every thread in the parent process. We know this is the only thread
5694    // in the new process, so make a system call directly.
5695    // IA64 should use normal execve() from glibc to match the glibc fork()
5696    // above.
5697    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5698    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5699
5700    // execve failed
5701    _exit(-1);
5702
5703  } else  {
5704    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5705    // care about the actual exit code, for now.
5706
5707    int status;
5708
5709    // Wait for the child process to exit.  This returns immediately if
5710    // the child has already exited. */
5711    while (waitpid(pid, &status, 0) < 0) {
5712        switch (errno) {
5713        case ECHILD: return 0;
5714        case EINTR: break;
5715        default: return -1;
5716        }
5717    }
5718
5719    if (WIFEXITED(status)) {
5720       // The child exited normally; get its exit code.
5721       return WEXITSTATUS(status);
5722    } else if (WIFSIGNALED(status)) {
5723       // The child exited because of a signal
5724       // The best value to return is 0x80 + signal number,
5725       // because that is what all Unix shells do, and because
5726       // it allows callers to distinguish between process exit and
5727       // process death by signal.
5728       return 0x80 + WTERMSIG(status);
5729    } else {
5730       // Unknown exit code; pass it through
5731       return status;
5732    }
5733  }
5734}
5735
5736// is_headless_jre()
5737//
5738// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5739// in order to report if we are running in a headless jre
5740//
5741// Since JDK8 xawt/libmawt.so was moved into the same directory
5742// as libawt.so, and renamed libawt_xawt.so
5743//
5744bool os::is_headless_jre() {
5745    struct stat statbuf;
5746    char buf[MAXPATHLEN];
5747    char libmawtpath[MAXPATHLEN];
5748    const char *xawtstr  = "/xawt/libmawt.so";
5749    const char *new_xawtstr = "/libawt_xawt.so";
5750    char *p;
5751
5752    // Get path to libjvm.so
5753    os::jvm_path(buf, sizeof(buf));
5754
5755    // Get rid of libjvm.so
5756    p = strrchr(buf, '/');
5757    if (p == NULL) return false;
5758    else *p = '\0';
5759
5760    // Get rid of client or server
5761    p = strrchr(buf, '/');
5762    if (p == NULL) return false;
5763    else *p = '\0';
5764
5765    // check xawt/libmawt.so
5766    strcpy(libmawtpath, buf);
5767    strcat(libmawtpath, xawtstr);
5768    if (::stat(libmawtpath, &statbuf) == 0) return false;
5769
5770    // check libawt_xawt.so
5771    strcpy(libmawtpath, buf);
5772    strcat(libmawtpath, new_xawtstr);
5773    if (::stat(libmawtpath, &statbuf) == 0) return false;
5774
5775    return true;
5776}
5777
5778// Get the default path to the core file
5779// Returns the length of the string
5780int os::get_core_path(char* buffer, size_t bufferSize) {
5781  const char* p = get_current_directory(buffer, bufferSize);
5782
5783  if (p == NULL) {
5784    assert(p != NULL, "failed to get current directory");
5785    return 0;
5786  }
5787
5788  return strlen(buffer);
5789}
5790
5791#ifdef JAVASE_EMBEDDED
5792//
5793// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5794//
5795MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5796
5797// ctor
5798//
5799MemNotifyThread::MemNotifyThread(int fd): Thread() {
5800  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5801  _fd = fd;
5802
5803  if (os::create_thread(this, os::os_thread)) {
5804    _memnotify_thread = this;
5805    os::set_priority(this, NearMaxPriority);
5806    os::start_thread(this);
5807  }
5808}
5809
5810// Where all the work gets done
5811//
5812void MemNotifyThread::run() {
5813  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5814
5815  // Set up the select arguments
5816  fd_set rfds;
5817  if (_fd != -1) {
5818    FD_ZERO(&rfds);
5819    FD_SET(_fd, &rfds);
5820  }
5821
5822  // Now wait for the mem_notify device to wake up
5823  while (1) {
5824    // Wait for the mem_notify device to signal us..
5825    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5826    if (rc == -1) {
5827      perror("select!\n");
5828      break;
5829    } else if (rc) {
5830      //ssize_t free_before = os::available_memory();
5831      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5832
5833      // The kernel is telling us there is not much memory left...
5834      // try to do something about that
5835
5836      // If we are not already in a GC, try one.
5837      if (!Universe::heap()->is_gc_active()) {
5838        Universe::heap()->collect(GCCause::_allocation_failure);
5839
5840        //ssize_t free_after = os::available_memory();
5841        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5842        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5843      }
5844      // We might want to do something like the following if we find the GC's are not helping...
5845      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5846    }
5847  }
5848}
5849
5850//
5851// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5852//
5853void MemNotifyThread::start() {
5854  int    fd;
5855  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5856  if (fd < 0) {
5857      return;
5858  }
5859
5860  if (memnotify_thread() == NULL) {
5861    new MemNotifyThread(fd);
5862  }
5863}
5864
5865#endif // JAVASE_EMBEDDED
5866