os_linux.cpp revision 4769:e72f7eecc96d
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
105// getrusage() is prepared to handle the associated failure.
106#ifndef RUSAGE_THREAD
107#define RUSAGE_THREAD   (1)               /* only the calling thread */
108#endif
109
110#define MAX_PATH    (2 * K)
111
112// for timer info max values which include all bits
113#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
114
115#define LARGEPAGES_BIT (1 << 6)
116////////////////////////////////////////////////////////////////////////////////
117// global variables
118julong os::Linux::_physical_memory = 0;
119
120address   os::Linux::_initial_thread_stack_bottom = NULL;
121uintptr_t os::Linux::_initial_thread_stack_size   = 0;
122
123int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
124int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
125Mutex* os::Linux::_createThread_lock = NULL;
126pthread_t os::Linux::_main_thread;
127int os::Linux::_page_size = -1;
128const int os::Linux::_vm_default_page_size = (8 * K);
129bool os::Linux::_is_floating_stack = false;
130bool os::Linux::_is_NPTL = false;
131bool os::Linux::_supports_fast_thread_cpu_time = false;
132const char * os::Linux::_glibc_version = NULL;
133const char * os::Linux::_libpthread_version = NULL;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151/* Used to protect dlsym() calls */
152static pthread_mutex_t dl_mutex;
153
154#ifdef JAVASE_EMBEDDED
155class MemNotifyThread: public Thread {
156  friend class VMStructs;
157 public:
158  virtual void run();
159
160 private:
161  static MemNotifyThread* _memnotify_thread;
162  int _fd;
163
164 public:
165
166  // Constructor
167  MemNotifyThread(int fd);
168
169  // Tester
170  bool is_memnotify_thread() const { return true; }
171
172  // Printing
173  char* name() const { return (char*)"Linux MemNotify Thread"; }
174
175  // Returns the single instance of the MemNotifyThread
176  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
177
178  // Create and start the single instance of MemNotifyThread
179  static void start();
180};
181#endif // JAVASE_EMBEDDED
182
183// utility functions
184
185static int SR_initialize();
186
187julong os::available_memory() {
188  return Linux::available_memory();
189}
190
191julong os::Linux::available_memory() {
192  // values in struct sysinfo are "unsigned long"
193  struct sysinfo si;
194  sysinfo(&si);
195
196  return (julong)si.freeram * si.mem_unit;
197}
198
199julong os::physical_memory() {
200  return Linux::physical_memory();
201}
202
203////////////////////////////////////////////////////////////////////////////////
204// environment support
205
206bool os::getenv(const char* name, char* buf, int len) {
207  const char* val = ::getenv(name);
208  if (val != NULL && strlen(val) < (size_t)len) {
209    strcpy(buf, val);
210    return true;
211  }
212  if (len > 0) buf[0] = 0;  // return a null string
213  return false;
214}
215
216
217// Return true if user is running as root.
218
219bool os::have_special_privileges() {
220  static bool init = false;
221  static bool privileges = false;
222  if (!init) {
223    privileges = (getuid() != geteuid()) || (getgid() != getegid());
224    init = true;
225  }
226  return privileges;
227}
228
229
230#ifndef SYS_gettid
231// i386: 224, ia64: 1105, amd64: 186, sparc 143
232#ifdef __ia64__
233#define SYS_gettid 1105
234#elif __i386__
235#define SYS_gettid 224
236#elif __amd64__
237#define SYS_gettid 186
238#elif __sparc__
239#define SYS_gettid 143
240#else
241#error define gettid for the arch
242#endif
243#endif
244
245// Cpu architecture string
246#if   defined(ZERO)
247static char cpu_arch[] = ZERO_LIBARCH;
248#elif defined(IA64)
249static char cpu_arch[] = "ia64";
250#elif defined(IA32)
251static char cpu_arch[] = "i386";
252#elif defined(AMD64)
253static char cpu_arch[] = "amd64";
254#elif defined(ARM)
255static char cpu_arch[] = "arm";
256#elif defined(PPC)
257static char cpu_arch[] = "ppc";
258#elif defined(SPARC)
259#  ifdef _LP64
260static char cpu_arch[] = "sparcv9";
261#  else
262static char cpu_arch[] = "sparc";
263#  endif
264#else
265#error Add appropriate cpu_arch setting
266#endif
267
268
269// pid_t gettid()
270//
271// Returns the kernel thread id of the currently running thread. Kernel
272// thread id is used to access /proc.
273//
274// (Note that getpid() on LinuxThreads returns kernel thread id too; but
275// on NPTL, it returns the same pid for all threads, as required by POSIX.)
276//
277pid_t os::Linux::gettid() {
278  int rslt = syscall(SYS_gettid);
279  if (rslt == -1) {
280     // old kernel, no NPTL support
281     return getpid();
282  } else {
283     return (pid_t)rslt;
284  }
285}
286
287// Most versions of linux have a bug where the number of processors are
288// determined by looking at the /proc file system.  In a chroot environment,
289// the system call returns 1.  This causes the VM to act as if it is
290// a single processor and elide locking (see is_MP() call).
291static bool unsafe_chroot_detected = false;
292static const char *unstable_chroot_error = "/proc file system not found.\n"
293                     "Java may be unstable running multithreaded in a chroot "
294                     "environment on Linux when /proc filesystem is not mounted.";
295
296void os::Linux::initialize_system_info() {
297  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
298  if (processor_count() == 1) {
299    pid_t pid = os::Linux::gettid();
300    char fname[32];
301    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
302    FILE *fp = fopen(fname, "r");
303    if (fp == NULL) {
304      unsafe_chroot_detected = true;
305    } else {
306      fclose(fp);
307    }
308  }
309  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
310  assert(processor_count() > 0, "linux error");
311}
312
313void os::init_system_properties_values() {
314//  char arch[12];
315//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
316
317  // The next steps are taken in the product version:
318  //
319  // Obtain the JAVA_HOME value from the location of libjvm.so.
320  // This library should be located at:
321  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
322  //
323  // If "/jre/lib/" appears at the right place in the path, then we
324  // assume libjvm.so is installed in a JDK and we use this path.
325  //
326  // Otherwise exit with message: "Could not create the Java virtual machine."
327  //
328  // The following extra steps are taken in the debugging version:
329  //
330  // If "/jre/lib/" does NOT appear at the right place in the path
331  // instead of exit check for $JAVA_HOME environment variable.
332  //
333  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
334  // then we append a fake suffix "hotspot/libjvm.so" to this path so
335  // it looks like libjvm.so is installed there
336  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
337  //
338  // Otherwise exit.
339  //
340  // Important note: if the location of libjvm.so changes this
341  // code needs to be changed accordingly.
342
343  // The next few definitions allow the code to be verbatim:
344#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
345#define getenv(n) ::getenv(n)
346
347/*
348 * See ld(1):
349 *      The linker uses the following search paths to locate required
350 *      shared libraries:
351 *        1: ...
352 *        ...
353 *        7: The default directories, normally /lib and /usr/lib.
354 */
355#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
356#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
357#else
358#define DEFAULT_LIBPATH "/lib:/usr/lib"
359#endif
360
361#define EXTENSIONS_DIR  "/lib/ext"
362#define ENDORSED_DIR    "/lib/endorsed"
363#define REG_DIR         "/usr/java/packages"
364
365  {
366    /* sysclasspath, java_home, dll_dir */
367    {
368        char *home_path;
369        char *dll_path;
370        char *pslash;
371        char buf[MAXPATHLEN];
372        os::jvm_path(buf, sizeof(buf));
373
374        // Found the full path to libjvm.so.
375        // Now cut the path to <java_home>/jre if we can.
376        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
377        pslash = strrchr(buf, '/');
378        if (pslash != NULL)
379            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
380        dll_path = malloc(strlen(buf) + 1);
381        if (dll_path == NULL)
382            return;
383        strcpy(dll_path, buf);
384        Arguments::set_dll_dir(dll_path);
385
386        if (pslash != NULL) {
387            pslash = strrchr(buf, '/');
388            if (pslash != NULL) {
389                *pslash = '\0';       /* get rid of /<arch> */
390                pslash = strrchr(buf, '/');
391                if (pslash != NULL)
392                    *pslash = '\0';   /* get rid of /lib */
393            }
394        }
395
396        home_path = malloc(strlen(buf) + 1);
397        if (home_path == NULL)
398            return;
399        strcpy(home_path, buf);
400        Arguments::set_java_home(home_path);
401
402        if (!set_boot_path('/', ':'))
403            return;
404    }
405
406    /*
407     * Where to look for native libraries
408     *
409     * Note: Due to a legacy implementation, most of the library path
410     * is set in the launcher.  This was to accomodate linking restrictions
411     * on legacy Linux implementations (which are no longer supported).
412     * Eventually, all the library path setting will be done here.
413     *
414     * However, to prevent the proliferation of improperly built native
415     * libraries, the new path component /usr/java/packages is added here.
416     * Eventually, all the library path setting will be done here.
417     */
418    {
419        char *ld_library_path;
420
421        /*
422         * Construct the invariant part of ld_library_path. Note that the
423         * space for the colon and the trailing null are provided by the
424         * nulls included by the sizeof operator (so actually we allocate
425         * a byte more than necessary).
426         */
427        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
428            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
429        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
430
431        /*
432         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
433         * should always exist (until the legacy problem cited above is
434         * addressed).
435         */
436        char *v = getenv("LD_LIBRARY_PATH");
437        if (v != NULL) {
438            char *t = ld_library_path;
439            /* That's +1 for the colon and +1 for the trailing '\0' */
440            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
441            sprintf(ld_library_path, "%s:%s", v, t);
442        }
443        Arguments::set_library_path(ld_library_path);
444    }
445
446    /*
447     * Extensions directories.
448     *
449     * Note that the space for the colon and the trailing null are provided
450     * by the nulls included by the sizeof operator (so actually one byte more
451     * than necessary is allocated).
452     */
453    {
454        char *buf = malloc(strlen(Arguments::get_java_home()) +
455            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
456        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
457            Arguments::get_java_home());
458        Arguments::set_ext_dirs(buf);
459    }
460
461    /* Endorsed standards default directory. */
462    {
463        char * buf;
464        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
465        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
466        Arguments::set_endorsed_dirs(buf);
467    }
468  }
469
470#undef malloc
471#undef getenv
472#undef EXTENSIONS_DIR
473#undef ENDORSED_DIR
474
475  // Done
476  return;
477}
478
479////////////////////////////////////////////////////////////////////////////////
480// breakpoint support
481
482void os::breakpoint() {
483  BREAKPOINT;
484}
485
486extern "C" void breakpoint() {
487  // use debugger to set breakpoint here
488}
489
490////////////////////////////////////////////////////////////////////////////////
491// signal support
492
493debug_only(static bool signal_sets_initialized = false);
494static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
495
496bool os::Linux::is_sig_ignored(int sig) {
497      struct sigaction oact;
498      sigaction(sig, (struct sigaction*)NULL, &oact);
499      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
500                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
501      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
502           return true;
503      else
504           return false;
505}
506
507void os::Linux::signal_sets_init() {
508  // Should also have an assertion stating we are still single-threaded.
509  assert(!signal_sets_initialized, "Already initialized");
510  // Fill in signals that are necessarily unblocked for all threads in
511  // the VM. Currently, we unblock the following signals:
512  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
513  //                         by -Xrs (=ReduceSignalUsage));
514  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
515  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
516  // the dispositions or masks wrt these signals.
517  // Programs embedding the VM that want to use the above signals for their
518  // own purposes must, at this time, use the "-Xrs" option to prevent
519  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
520  // (See bug 4345157, and other related bugs).
521  // In reality, though, unblocking these signals is really a nop, since
522  // these signals are not blocked by default.
523  sigemptyset(&unblocked_sigs);
524  sigemptyset(&allowdebug_blocked_sigs);
525  sigaddset(&unblocked_sigs, SIGILL);
526  sigaddset(&unblocked_sigs, SIGSEGV);
527  sigaddset(&unblocked_sigs, SIGBUS);
528  sigaddset(&unblocked_sigs, SIGFPE);
529  sigaddset(&unblocked_sigs, SR_signum);
530
531  if (!ReduceSignalUsage) {
532   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
533      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
534      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
535   }
536   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
537      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
538      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
539   }
540   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
541      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
542      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
543   }
544  }
545  // Fill in signals that are blocked by all but the VM thread.
546  sigemptyset(&vm_sigs);
547  if (!ReduceSignalUsage)
548    sigaddset(&vm_sigs, BREAK_SIGNAL);
549  debug_only(signal_sets_initialized = true);
550
551}
552
553// These are signals that are unblocked while a thread is running Java.
554// (For some reason, they get blocked by default.)
555sigset_t* os::Linux::unblocked_signals() {
556  assert(signal_sets_initialized, "Not initialized");
557  return &unblocked_sigs;
558}
559
560// These are the signals that are blocked while a (non-VM) thread is
561// running Java. Only the VM thread handles these signals.
562sigset_t* os::Linux::vm_signals() {
563  assert(signal_sets_initialized, "Not initialized");
564  return &vm_sigs;
565}
566
567// These are signals that are blocked during cond_wait to allow debugger in
568sigset_t* os::Linux::allowdebug_blocked_signals() {
569  assert(signal_sets_initialized, "Not initialized");
570  return &allowdebug_blocked_sigs;
571}
572
573void os::Linux::hotspot_sigmask(Thread* thread) {
574
575  //Save caller's signal mask before setting VM signal mask
576  sigset_t caller_sigmask;
577  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
578
579  OSThread* osthread = thread->osthread();
580  osthread->set_caller_sigmask(caller_sigmask);
581
582  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
583
584  if (!ReduceSignalUsage) {
585    if (thread->is_VM_thread()) {
586      // Only the VM thread handles BREAK_SIGNAL ...
587      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
588    } else {
589      // ... all other threads block BREAK_SIGNAL
590      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
591    }
592  }
593}
594
595//////////////////////////////////////////////////////////////////////////////
596// detecting pthread library
597
598void os::Linux::libpthread_init() {
599  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
600  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
601  // generic name for earlier versions.
602  // Define macros here so we can build HotSpot on old systems.
603# ifndef _CS_GNU_LIBC_VERSION
604# define _CS_GNU_LIBC_VERSION 2
605# endif
606# ifndef _CS_GNU_LIBPTHREAD_VERSION
607# define _CS_GNU_LIBPTHREAD_VERSION 3
608# endif
609
610  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
611  if (n > 0) {
612     char *str = (char *)malloc(n, mtInternal);
613     confstr(_CS_GNU_LIBC_VERSION, str, n);
614     os::Linux::set_glibc_version(str);
615  } else {
616     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
617     static char _gnu_libc_version[32];
618     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
619              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
620     os::Linux::set_glibc_version(_gnu_libc_version);
621  }
622
623  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
624  if (n > 0) {
625     char *str = (char *)malloc(n, mtInternal);
626     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
627     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
628     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
629     // is the case. LinuxThreads has a hard limit on max number of threads.
630     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
631     // On the other hand, NPTL does not have such a limit, sysconf()
632     // will return -1 and errno is not changed. Check if it is really NPTL.
633     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
634         strstr(str, "NPTL") &&
635         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
636       free(str);
637       os::Linux::set_libpthread_version("linuxthreads");
638     } else {
639       os::Linux::set_libpthread_version(str);
640     }
641  } else {
642    // glibc before 2.3.2 only has LinuxThreads.
643    os::Linux::set_libpthread_version("linuxthreads");
644  }
645
646  if (strstr(libpthread_version(), "NPTL")) {
647     os::Linux::set_is_NPTL();
648  } else {
649     os::Linux::set_is_LinuxThreads();
650  }
651
652  // LinuxThreads have two flavors: floating-stack mode, which allows variable
653  // stack size; and fixed-stack mode. NPTL is always floating-stack.
654  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
655     os::Linux::set_is_floating_stack();
656  }
657}
658
659/////////////////////////////////////////////////////////////////////////////
660// thread stack
661
662// Force Linux kernel to expand current thread stack. If "bottom" is close
663// to the stack guard, caller should block all signals.
664//
665// MAP_GROWSDOWN:
666//   A special mmap() flag that is used to implement thread stacks. It tells
667//   kernel that the memory region should extend downwards when needed. This
668//   allows early versions of LinuxThreads to only mmap the first few pages
669//   when creating a new thread. Linux kernel will automatically expand thread
670//   stack as needed (on page faults).
671//
672//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
673//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
674//   region, it's hard to tell if the fault is due to a legitimate stack
675//   access or because of reading/writing non-exist memory (e.g. buffer
676//   overrun). As a rule, if the fault happens below current stack pointer,
677//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
678//   application (see Linux kernel fault.c).
679//
680//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
681//   stack overflow detection.
682//
683//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
684//   not use this flag. However, the stack of initial thread is not created
685//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
686//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
687//   and then attach the thread to JVM.
688//
689// To get around the problem and allow stack banging on Linux, we need to
690// manually expand thread stack after receiving the SIGSEGV.
691//
692// There are two ways to expand thread stack to address "bottom", we used
693// both of them in JVM before 1.5:
694//   1. adjust stack pointer first so that it is below "bottom", and then
695//      touch "bottom"
696//   2. mmap() the page in question
697//
698// Now alternate signal stack is gone, it's harder to use 2. For instance,
699// if current sp is already near the lower end of page 101, and we need to
700// call mmap() to map page 100, it is possible that part of the mmap() frame
701// will be placed in page 100. When page 100 is mapped, it is zero-filled.
702// That will destroy the mmap() frame and cause VM to crash.
703//
704// The following code works by adjusting sp first, then accessing the "bottom"
705// page to force a page fault. Linux kernel will then automatically expand the
706// stack mapping.
707//
708// _expand_stack_to() assumes its frame size is less than page size, which
709// should always be true if the function is not inlined.
710
711#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
712#define NOINLINE
713#else
714#define NOINLINE __attribute__ ((noinline))
715#endif
716
717static void _expand_stack_to(address bottom) NOINLINE;
718
719static void _expand_stack_to(address bottom) {
720  address sp;
721  size_t size;
722  volatile char *p;
723
724  // Adjust bottom to point to the largest address within the same page, it
725  // gives us a one-page buffer if alloca() allocates slightly more memory.
726  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
727  bottom += os::Linux::page_size() - 1;
728
729  // sp might be slightly above current stack pointer; if that's the case, we
730  // will alloca() a little more space than necessary, which is OK. Don't use
731  // os::current_stack_pointer(), as its result can be slightly below current
732  // stack pointer, causing us to not alloca enough to reach "bottom".
733  sp = (address)&sp;
734
735  if (sp > bottom) {
736    size = sp - bottom;
737    p = (volatile char *)alloca(size);
738    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
739    p[0] = '\0';
740  }
741}
742
743bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
744  assert(t!=NULL, "just checking");
745  assert(t->osthread()->expanding_stack(), "expand should be set");
746  assert(t->stack_base() != NULL, "stack_base was not initialized");
747
748  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
749    sigset_t mask_all, old_sigset;
750    sigfillset(&mask_all);
751    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
752    _expand_stack_to(addr);
753    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
754    return true;
755  }
756  return false;
757}
758
759//////////////////////////////////////////////////////////////////////////////
760// create new thread
761
762static address highest_vm_reserved_address();
763
764// check if it's safe to start a new thread
765static bool _thread_safety_check(Thread* thread) {
766  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
767    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
768    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
769    //   allocated (MAP_FIXED) from high address space. Every thread stack
770    //   occupies a fixed size slot (usually 2Mbytes, but user can change
771    //   it to other values if they rebuild LinuxThreads).
772    //
773    // Problem with MAP_FIXED is that mmap() can still succeed even part of
774    // the memory region has already been mmap'ed. That means if we have too
775    // many threads and/or very large heap, eventually thread stack will
776    // collide with heap.
777    //
778    // Here we try to prevent heap/stack collision by comparing current
779    // stack bottom with the highest address that has been mmap'ed by JVM
780    // plus a safety margin for memory maps created by native code.
781    //
782    // This feature can be disabled by setting ThreadSafetyMargin to 0
783    //
784    if (ThreadSafetyMargin > 0) {
785      address stack_bottom = os::current_stack_base() - os::current_stack_size();
786
787      // not safe if our stack extends below the safety margin
788      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
789    } else {
790      return true;
791    }
792  } else {
793    // Floating stack LinuxThreads or NPTL:
794    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
795    //   there's not enough space left, pthread_create() will fail. If we come
796    //   here, that means enough space has been reserved for stack.
797    return true;
798  }
799}
800
801// Thread start routine for all newly created threads
802static void *java_start(Thread *thread) {
803  // Try to randomize the cache line index of hot stack frames.
804  // This helps when threads of the same stack traces evict each other's
805  // cache lines. The threads can be either from the same JVM instance, or
806  // from different JVM instances. The benefit is especially true for
807  // processors with hyperthreading technology.
808  static int counter = 0;
809  int pid = os::current_process_id();
810  alloca(((pid ^ counter++) & 7) * 128);
811
812  ThreadLocalStorage::set_thread(thread);
813
814  OSThread* osthread = thread->osthread();
815  Monitor* sync = osthread->startThread_lock();
816
817  // non floating stack LinuxThreads needs extra check, see above
818  if (!_thread_safety_check(thread)) {
819    // notify parent thread
820    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
821    osthread->set_state(ZOMBIE);
822    sync->notify_all();
823    return NULL;
824  }
825
826  // thread_id is kernel thread id (similar to Solaris LWP id)
827  osthread->set_thread_id(os::Linux::gettid());
828
829  if (UseNUMA) {
830    int lgrp_id = os::numa_get_group_id();
831    if (lgrp_id != -1) {
832      thread->set_lgrp_id(lgrp_id);
833    }
834  }
835  // initialize signal mask for this thread
836  os::Linux::hotspot_sigmask(thread);
837
838  // initialize floating point control register
839  os::Linux::init_thread_fpu_state();
840
841  // handshaking with parent thread
842  {
843    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
844
845    // notify parent thread
846    osthread->set_state(INITIALIZED);
847    sync->notify_all();
848
849    // wait until os::start_thread()
850    while (osthread->get_state() == INITIALIZED) {
851      sync->wait(Mutex::_no_safepoint_check_flag);
852    }
853  }
854
855  // call one more level start routine
856  thread->run();
857
858  return 0;
859}
860
861bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
862  assert(thread->osthread() == NULL, "caller responsible");
863
864  // Allocate the OSThread object
865  OSThread* osthread = new OSThread(NULL, NULL);
866  if (osthread == NULL) {
867    return false;
868  }
869
870  // set the correct thread state
871  osthread->set_thread_type(thr_type);
872
873  // Initial state is ALLOCATED but not INITIALIZED
874  osthread->set_state(ALLOCATED);
875
876  thread->set_osthread(osthread);
877
878  // init thread attributes
879  pthread_attr_t attr;
880  pthread_attr_init(&attr);
881  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
882
883  // stack size
884  if (os::Linux::supports_variable_stack_size()) {
885    // calculate stack size if it's not specified by caller
886    if (stack_size == 0) {
887      stack_size = os::Linux::default_stack_size(thr_type);
888
889      switch (thr_type) {
890      case os::java_thread:
891        // Java threads use ThreadStackSize which default value can be
892        // changed with the flag -Xss
893        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
894        stack_size = JavaThread::stack_size_at_create();
895        break;
896      case os::compiler_thread:
897        if (CompilerThreadStackSize > 0) {
898          stack_size = (size_t)(CompilerThreadStackSize * K);
899          break;
900        } // else fall through:
901          // use VMThreadStackSize if CompilerThreadStackSize is not defined
902      case os::vm_thread:
903      case os::pgc_thread:
904      case os::cgc_thread:
905      case os::watcher_thread:
906        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
907        break;
908      }
909    }
910
911    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
912    pthread_attr_setstacksize(&attr, stack_size);
913  } else {
914    // let pthread_create() pick the default value.
915  }
916
917  // glibc guard page
918  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
919
920  ThreadState state;
921
922  {
923    // Serialize thread creation if we are running with fixed stack LinuxThreads
924    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
925    if (lock) {
926      os::Linux::createThread_lock()->lock_without_safepoint_check();
927    }
928
929    pthread_t tid;
930    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
931
932    pthread_attr_destroy(&attr);
933
934    if (ret != 0) {
935      if (PrintMiscellaneous && (Verbose || WizardMode)) {
936        perror("pthread_create()");
937      }
938      // Need to clean up stuff we've allocated so far
939      thread->set_osthread(NULL);
940      delete osthread;
941      if (lock) os::Linux::createThread_lock()->unlock();
942      return false;
943    }
944
945    // Store pthread info into the OSThread
946    osthread->set_pthread_id(tid);
947
948    // Wait until child thread is either initialized or aborted
949    {
950      Monitor* sync_with_child = osthread->startThread_lock();
951      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
952      while ((state = osthread->get_state()) == ALLOCATED) {
953        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
954      }
955    }
956
957    if (lock) {
958      os::Linux::createThread_lock()->unlock();
959    }
960  }
961
962  // Aborted due to thread limit being reached
963  if (state == ZOMBIE) {
964      thread->set_osthread(NULL);
965      delete osthread;
966      return false;
967  }
968
969  // The thread is returned suspended (in state INITIALIZED),
970  // and is started higher up in the call chain
971  assert(state == INITIALIZED, "race condition");
972  return true;
973}
974
975/////////////////////////////////////////////////////////////////////////////
976// attach existing thread
977
978// bootstrap the main thread
979bool os::create_main_thread(JavaThread* thread) {
980  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
981  return create_attached_thread(thread);
982}
983
984bool os::create_attached_thread(JavaThread* thread) {
985#ifdef ASSERT
986    thread->verify_not_published();
987#endif
988
989  // Allocate the OSThread object
990  OSThread* osthread = new OSThread(NULL, NULL);
991
992  if (osthread == NULL) {
993    return false;
994  }
995
996  // Store pthread info into the OSThread
997  osthread->set_thread_id(os::Linux::gettid());
998  osthread->set_pthread_id(::pthread_self());
999
1000  // initialize floating point control register
1001  os::Linux::init_thread_fpu_state();
1002
1003  // Initial thread state is RUNNABLE
1004  osthread->set_state(RUNNABLE);
1005
1006  thread->set_osthread(osthread);
1007
1008  if (UseNUMA) {
1009    int lgrp_id = os::numa_get_group_id();
1010    if (lgrp_id != -1) {
1011      thread->set_lgrp_id(lgrp_id);
1012    }
1013  }
1014
1015  if (os::Linux::is_initial_thread()) {
1016    // If current thread is initial thread, its stack is mapped on demand,
1017    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1018    // the entire stack region to avoid SEGV in stack banging.
1019    // It is also useful to get around the heap-stack-gap problem on SuSE
1020    // kernel (see 4821821 for details). We first expand stack to the top
1021    // of yellow zone, then enable stack yellow zone (order is significant,
1022    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1023    // is no gap between the last two virtual memory regions.
1024
1025    JavaThread *jt = (JavaThread *)thread;
1026    address addr = jt->stack_yellow_zone_base();
1027    assert(addr != NULL, "initialization problem?");
1028    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1029
1030    osthread->set_expanding_stack();
1031    os::Linux::manually_expand_stack(jt, addr);
1032    osthread->clear_expanding_stack();
1033  }
1034
1035  // initialize signal mask for this thread
1036  // and save the caller's signal mask
1037  os::Linux::hotspot_sigmask(thread);
1038
1039  return true;
1040}
1041
1042void os::pd_start_thread(Thread* thread) {
1043  OSThread * osthread = thread->osthread();
1044  assert(osthread->get_state() != INITIALIZED, "just checking");
1045  Monitor* sync_with_child = osthread->startThread_lock();
1046  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1047  sync_with_child->notify();
1048}
1049
1050// Free Linux resources related to the OSThread
1051void os::free_thread(OSThread* osthread) {
1052  assert(osthread != NULL, "osthread not set");
1053
1054  if (Thread::current()->osthread() == osthread) {
1055    // Restore caller's signal mask
1056    sigset_t sigmask = osthread->caller_sigmask();
1057    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1058   }
1059
1060  delete osthread;
1061}
1062
1063//////////////////////////////////////////////////////////////////////////////
1064// thread local storage
1065
1066int os::allocate_thread_local_storage() {
1067  pthread_key_t key;
1068  int rslt = pthread_key_create(&key, NULL);
1069  assert(rslt == 0, "cannot allocate thread local storage");
1070  return (int)key;
1071}
1072
1073// Note: This is currently not used by VM, as we don't destroy TLS key
1074// on VM exit.
1075void os::free_thread_local_storage(int index) {
1076  int rslt = pthread_key_delete((pthread_key_t)index);
1077  assert(rslt == 0, "invalid index");
1078}
1079
1080void os::thread_local_storage_at_put(int index, void* value) {
1081  int rslt = pthread_setspecific((pthread_key_t)index, value);
1082  assert(rslt == 0, "pthread_setspecific failed");
1083}
1084
1085extern "C" Thread* get_thread() {
1086  return ThreadLocalStorage::thread();
1087}
1088
1089//////////////////////////////////////////////////////////////////////////////
1090// initial thread
1091
1092// Check if current thread is the initial thread, similar to Solaris thr_main.
1093bool os::Linux::is_initial_thread(void) {
1094  char dummy;
1095  // If called before init complete, thread stack bottom will be null.
1096  // Can be called if fatal error occurs before initialization.
1097  if (initial_thread_stack_bottom() == NULL) return false;
1098  assert(initial_thread_stack_bottom() != NULL &&
1099         initial_thread_stack_size()   != 0,
1100         "os::init did not locate initial thread's stack region");
1101  if ((address)&dummy >= initial_thread_stack_bottom() &&
1102      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1103       return true;
1104  else return false;
1105}
1106
1107// Find the virtual memory area that contains addr
1108static bool find_vma(address addr, address* vma_low, address* vma_high) {
1109  FILE *fp = fopen("/proc/self/maps", "r");
1110  if (fp) {
1111    address low, high;
1112    while (!feof(fp)) {
1113      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1114        if (low <= addr && addr < high) {
1115           if (vma_low)  *vma_low  = low;
1116           if (vma_high) *vma_high = high;
1117           fclose (fp);
1118           return true;
1119        }
1120      }
1121      for (;;) {
1122        int ch = fgetc(fp);
1123        if (ch == EOF || ch == (int)'\n') break;
1124      }
1125    }
1126    fclose(fp);
1127  }
1128  return false;
1129}
1130
1131// Locate initial thread stack. This special handling of initial thread stack
1132// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1133// bogus value for initial thread.
1134void os::Linux::capture_initial_stack(size_t max_size) {
1135  // stack size is the easy part, get it from RLIMIT_STACK
1136  size_t stack_size;
1137  struct rlimit rlim;
1138  getrlimit(RLIMIT_STACK, &rlim);
1139  stack_size = rlim.rlim_cur;
1140
1141  // 6308388: a bug in ld.so will relocate its own .data section to the
1142  //   lower end of primordial stack; reduce ulimit -s value a little bit
1143  //   so we won't install guard page on ld.so's data section.
1144  stack_size -= 2 * page_size();
1145
1146  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1147  //   7.1, in both cases we will get 2G in return value.
1148  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1149  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1150  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1151  //   in case other parts in glibc still assumes 2M max stack size.
1152  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1153  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1154  if (stack_size > 2 * K * K IA64_ONLY(*2))
1155      stack_size = 2 * K * K IA64_ONLY(*2);
1156  // Try to figure out where the stack base (top) is. This is harder.
1157  //
1158  // When an application is started, glibc saves the initial stack pointer in
1159  // a global variable "__libc_stack_end", which is then used by system
1160  // libraries. __libc_stack_end should be pretty close to stack top. The
1161  // variable is available since the very early days. However, because it is
1162  // a private interface, it could disappear in the future.
1163  //
1164  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1165  // to __libc_stack_end, it is very close to stack top, but isn't the real
1166  // stack top. Note that /proc may not exist if VM is running as a chroot
1167  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1168  // /proc/<pid>/stat could change in the future (though unlikely).
1169  //
1170  // We try __libc_stack_end first. If that doesn't work, look for
1171  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1172  // as a hint, which should work well in most cases.
1173
1174  uintptr_t stack_start;
1175
1176  // try __libc_stack_end first
1177  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1178  if (p && *p) {
1179    stack_start = *p;
1180  } else {
1181    // see if we can get the start_stack field from /proc/self/stat
1182    FILE *fp;
1183    int pid;
1184    char state;
1185    int ppid;
1186    int pgrp;
1187    int session;
1188    int nr;
1189    int tpgrp;
1190    unsigned long flags;
1191    unsigned long minflt;
1192    unsigned long cminflt;
1193    unsigned long majflt;
1194    unsigned long cmajflt;
1195    unsigned long utime;
1196    unsigned long stime;
1197    long cutime;
1198    long cstime;
1199    long prio;
1200    long nice;
1201    long junk;
1202    long it_real;
1203    uintptr_t start;
1204    uintptr_t vsize;
1205    intptr_t rss;
1206    uintptr_t rsslim;
1207    uintptr_t scodes;
1208    uintptr_t ecode;
1209    int i;
1210
1211    // Figure what the primordial thread stack base is. Code is inspired
1212    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1213    // followed by command name surrounded by parentheses, state, etc.
1214    char stat[2048];
1215    int statlen;
1216
1217    fp = fopen("/proc/self/stat", "r");
1218    if (fp) {
1219      statlen = fread(stat, 1, 2047, fp);
1220      stat[statlen] = '\0';
1221      fclose(fp);
1222
1223      // Skip pid and the command string. Note that we could be dealing with
1224      // weird command names, e.g. user could decide to rename java launcher
1225      // to "java 1.4.2 :)", then the stat file would look like
1226      //                1234 (java 1.4.2 :)) R ... ...
1227      // We don't really need to know the command string, just find the last
1228      // occurrence of ")" and then start parsing from there. See bug 4726580.
1229      char * s = strrchr(stat, ')');
1230
1231      i = 0;
1232      if (s) {
1233        // Skip blank chars
1234        do s++; while (isspace(*s));
1235
1236#define _UFM UINTX_FORMAT
1237#define _DFM INTX_FORMAT
1238
1239        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1240        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1241        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1242             &state,          /* 3  %c  */
1243             &ppid,           /* 4  %d  */
1244             &pgrp,           /* 5  %d  */
1245             &session,        /* 6  %d  */
1246             &nr,             /* 7  %d  */
1247             &tpgrp,          /* 8  %d  */
1248             &flags,          /* 9  %lu  */
1249             &minflt,         /* 10 %lu  */
1250             &cminflt,        /* 11 %lu  */
1251             &majflt,         /* 12 %lu  */
1252             &cmajflt,        /* 13 %lu  */
1253             &utime,          /* 14 %lu  */
1254             &stime,          /* 15 %lu  */
1255             &cutime,         /* 16 %ld  */
1256             &cstime,         /* 17 %ld  */
1257             &prio,           /* 18 %ld  */
1258             &nice,           /* 19 %ld  */
1259             &junk,           /* 20 %ld  */
1260             &it_real,        /* 21 %ld  */
1261             &start,          /* 22 UINTX_FORMAT */
1262             &vsize,          /* 23 UINTX_FORMAT */
1263             &rss,            /* 24 INTX_FORMAT  */
1264             &rsslim,         /* 25 UINTX_FORMAT */
1265             &scodes,         /* 26 UINTX_FORMAT */
1266             &ecode,          /* 27 UINTX_FORMAT */
1267             &stack_start);   /* 28 UINTX_FORMAT */
1268      }
1269
1270#undef _UFM
1271#undef _DFM
1272
1273      if (i != 28 - 2) {
1274         assert(false, "Bad conversion from /proc/self/stat");
1275         // product mode - assume we are the initial thread, good luck in the
1276         // embedded case.
1277         warning("Can't detect initial thread stack location - bad conversion");
1278         stack_start = (uintptr_t) &rlim;
1279      }
1280    } else {
1281      // For some reason we can't open /proc/self/stat (for example, running on
1282      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1283      // most cases, so don't abort:
1284      warning("Can't detect initial thread stack location - no /proc/self/stat");
1285      stack_start = (uintptr_t) &rlim;
1286    }
1287  }
1288
1289  // Now we have a pointer (stack_start) very close to the stack top, the
1290  // next thing to do is to figure out the exact location of stack top. We
1291  // can find out the virtual memory area that contains stack_start by
1292  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1293  // and its upper limit is the real stack top. (again, this would fail if
1294  // running inside chroot, because /proc may not exist.)
1295
1296  uintptr_t stack_top;
1297  address low, high;
1298  if (find_vma((address)stack_start, &low, &high)) {
1299    // success, "high" is the true stack top. (ignore "low", because initial
1300    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1301    stack_top = (uintptr_t)high;
1302  } else {
1303    // failed, likely because /proc/self/maps does not exist
1304    warning("Can't detect initial thread stack location - find_vma failed");
1305    // best effort: stack_start is normally within a few pages below the real
1306    // stack top, use it as stack top, and reduce stack size so we won't put
1307    // guard page outside stack.
1308    stack_top = stack_start;
1309    stack_size -= 16 * page_size();
1310  }
1311
1312  // stack_top could be partially down the page so align it
1313  stack_top = align_size_up(stack_top, page_size());
1314
1315  if (max_size && stack_size > max_size) {
1316     _initial_thread_stack_size = max_size;
1317  } else {
1318     _initial_thread_stack_size = stack_size;
1319  }
1320
1321  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1322  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1323}
1324
1325////////////////////////////////////////////////////////////////////////////////
1326// time support
1327
1328// Time since start-up in seconds to a fine granularity.
1329// Used by VMSelfDestructTimer and the MemProfiler.
1330double os::elapsedTime() {
1331
1332  return (double)(os::elapsed_counter()) * 0.000001;
1333}
1334
1335jlong os::elapsed_counter() {
1336  timeval time;
1337  int status = gettimeofday(&time, NULL);
1338  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1339}
1340
1341jlong os::elapsed_frequency() {
1342  return (1000 * 1000);
1343}
1344
1345bool os::supports_vtime() { return true; }
1346bool os::enable_vtime()   { return false; }
1347bool os::vtime_enabled()  { return false; }
1348
1349double os::elapsedVTime() {
1350  struct rusage usage;
1351  int retval = getrusage(RUSAGE_THREAD, &usage);
1352  if (retval == 0) {
1353    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1354  } else {
1355    // better than nothing, but not much
1356    return elapsedTime();
1357  }
1358}
1359
1360jlong os::javaTimeMillis() {
1361  timeval time;
1362  int status = gettimeofday(&time, NULL);
1363  assert(status != -1, "linux error");
1364  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1365}
1366
1367#ifndef CLOCK_MONOTONIC
1368#define CLOCK_MONOTONIC (1)
1369#endif
1370
1371void os::Linux::clock_init() {
1372  // we do dlopen's in this particular order due to bug in linux
1373  // dynamical loader (see 6348968) leading to crash on exit
1374  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1375  if (handle == NULL) {
1376    handle = dlopen("librt.so", RTLD_LAZY);
1377  }
1378
1379  if (handle) {
1380    int (*clock_getres_func)(clockid_t, struct timespec*) =
1381           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1382    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1383           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1384    if (clock_getres_func && clock_gettime_func) {
1385      // See if monotonic clock is supported by the kernel. Note that some
1386      // early implementations simply return kernel jiffies (updated every
1387      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1388      // for nano time (though the monotonic property is still nice to have).
1389      // It's fixed in newer kernels, however clock_getres() still returns
1390      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1391      // resolution for now. Hopefully as people move to new kernels, this
1392      // won't be a problem.
1393      struct timespec res;
1394      struct timespec tp;
1395      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1396          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1397        // yes, monotonic clock is supported
1398        _clock_gettime = clock_gettime_func;
1399      } else {
1400        // close librt if there is no monotonic clock
1401        dlclose(handle);
1402      }
1403    }
1404  }
1405}
1406
1407#ifndef SYS_clock_getres
1408
1409#if defined(IA32) || defined(AMD64)
1410#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1411#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1412#else
1413#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1414#define sys_clock_getres(x,y)  -1
1415#endif
1416
1417#else
1418#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1419#endif
1420
1421void os::Linux::fast_thread_clock_init() {
1422  if (!UseLinuxPosixThreadCPUClocks) {
1423    return;
1424  }
1425  clockid_t clockid;
1426  struct timespec tp;
1427  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1428      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1429
1430  // Switch to using fast clocks for thread cpu time if
1431  // the sys_clock_getres() returns 0 error code.
1432  // Note, that some kernels may support the current thread
1433  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1434  // returned by the pthread_getcpuclockid().
1435  // If the fast Posix clocks are supported then the sys_clock_getres()
1436  // must return at least tp.tv_sec == 0 which means a resolution
1437  // better than 1 sec. This is extra check for reliability.
1438
1439  if(pthread_getcpuclockid_func &&
1440     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1441     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1442
1443    _supports_fast_thread_cpu_time = true;
1444    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1445  }
1446}
1447
1448jlong os::javaTimeNanos() {
1449  if (Linux::supports_monotonic_clock()) {
1450    struct timespec tp;
1451    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1452    assert(status == 0, "gettime error");
1453    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1454    return result;
1455  } else {
1456    timeval time;
1457    int status = gettimeofday(&time, NULL);
1458    assert(status != -1, "linux error");
1459    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1460    return 1000 * usecs;
1461  }
1462}
1463
1464void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1465  if (Linux::supports_monotonic_clock()) {
1466    info_ptr->max_value = ALL_64_BITS;
1467
1468    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1469    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1470    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1471  } else {
1472    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1473    info_ptr->max_value = ALL_64_BITS;
1474
1475    // gettimeofday is a real time clock so it skips
1476    info_ptr->may_skip_backward = true;
1477    info_ptr->may_skip_forward = true;
1478  }
1479
1480  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1481}
1482
1483// Return the real, user, and system times in seconds from an
1484// arbitrary fixed point in the past.
1485bool os::getTimesSecs(double* process_real_time,
1486                      double* process_user_time,
1487                      double* process_system_time) {
1488  struct tms ticks;
1489  clock_t real_ticks = times(&ticks);
1490
1491  if (real_ticks == (clock_t) (-1)) {
1492    return false;
1493  } else {
1494    double ticks_per_second = (double) clock_tics_per_sec;
1495    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1496    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1497    *process_real_time = ((double) real_ticks) / ticks_per_second;
1498
1499    return true;
1500  }
1501}
1502
1503
1504char * os::local_time_string(char *buf, size_t buflen) {
1505  struct tm t;
1506  time_t long_time;
1507  time(&long_time);
1508  localtime_r(&long_time, &t);
1509  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1510               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1511               t.tm_hour, t.tm_min, t.tm_sec);
1512  return buf;
1513}
1514
1515struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1516  return localtime_r(clock, res);
1517}
1518
1519////////////////////////////////////////////////////////////////////////////////
1520// runtime exit support
1521
1522// Note: os::shutdown() might be called very early during initialization, or
1523// called from signal handler. Before adding something to os::shutdown(), make
1524// sure it is async-safe and can handle partially initialized VM.
1525void os::shutdown() {
1526
1527  // allow PerfMemory to attempt cleanup of any persistent resources
1528  perfMemory_exit();
1529
1530  // needs to remove object in file system
1531  AttachListener::abort();
1532
1533  // flush buffered output, finish log files
1534  ostream_abort();
1535
1536  // Check for abort hook
1537  abort_hook_t abort_hook = Arguments::abort_hook();
1538  if (abort_hook != NULL) {
1539    abort_hook();
1540  }
1541
1542}
1543
1544// Note: os::abort() might be called very early during initialization, or
1545// called from signal handler. Before adding something to os::abort(), make
1546// sure it is async-safe and can handle partially initialized VM.
1547void os::abort(bool dump_core) {
1548  os::shutdown();
1549  if (dump_core) {
1550#ifndef PRODUCT
1551    fdStream out(defaultStream::output_fd());
1552    out.print_raw("Current thread is ");
1553    char buf[16];
1554    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1555    out.print_raw_cr(buf);
1556    out.print_raw_cr("Dumping core ...");
1557#endif
1558    ::abort(); // dump core
1559  }
1560
1561  ::exit(1);
1562}
1563
1564// Die immediately, no exit hook, no abort hook, no cleanup.
1565void os::die() {
1566  // _exit() on LinuxThreads only kills current thread
1567  ::abort();
1568}
1569
1570// unused on linux for now.
1571void os::set_error_file(const char *logfile) {}
1572
1573
1574// This method is a copy of JDK's sysGetLastErrorString
1575// from src/solaris/hpi/src/system_md.c
1576
1577size_t os::lasterror(char *buf, size_t len) {
1578
1579  if (errno == 0)  return 0;
1580
1581  const char *s = ::strerror(errno);
1582  size_t n = ::strlen(s);
1583  if (n >= len) {
1584    n = len - 1;
1585  }
1586  ::strncpy(buf, s, n);
1587  buf[n] = '\0';
1588  return n;
1589}
1590
1591intx os::current_thread_id() { return (intx)pthread_self(); }
1592int os::current_process_id() {
1593
1594  // Under the old linux thread library, linux gives each thread
1595  // its own process id. Because of this each thread will return
1596  // a different pid if this method were to return the result
1597  // of getpid(2). Linux provides no api that returns the pid
1598  // of the launcher thread for the vm. This implementation
1599  // returns a unique pid, the pid of the launcher thread
1600  // that starts the vm 'process'.
1601
1602  // Under the NPTL, getpid() returns the same pid as the
1603  // launcher thread rather than a unique pid per thread.
1604  // Use gettid() if you want the old pre NPTL behaviour.
1605
1606  // if you are looking for the result of a call to getpid() that
1607  // returns a unique pid for the calling thread, then look at the
1608  // OSThread::thread_id() method in osThread_linux.hpp file
1609
1610  return (int)(_initial_pid ? _initial_pid : getpid());
1611}
1612
1613// DLL functions
1614
1615const char* os::dll_file_extension() { return ".so"; }
1616
1617// This must be hard coded because it's the system's temporary
1618// directory not the java application's temp directory, ala java.io.tmpdir.
1619const char* os::get_temp_directory() { return "/tmp"; }
1620
1621static bool file_exists(const char* filename) {
1622  struct stat statbuf;
1623  if (filename == NULL || strlen(filename) == 0) {
1624    return false;
1625  }
1626  return os::stat(filename, &statbuf) == 0;
1627}
1628
1629bool os::dll_build_name(char* buffer, size_t buflen,
1630                        const char* pname, const char* fname) {
1631  bool retval = false;
1632  // Copied from libhpi
1633  const size_t pnamelen = pname ? strlen(pname) : 0;
1634
1635  // Return error on buffer overflow.
1636  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1637    return retval;
1638  }
1639
1640  if (pnamelen == 0) {
1641    snprintf(buffer, buflen, "lib%s.so", fname);
1642    retval = true;
1643  } else if (strchr(pname, *os::path_separator()) != NULL) {
1644    int n;
1645    char** pelements = split_path(pname, &n);
1646    if (pelements == NULL) {
1647      return false;
1648    }
1649    for (int i = 0 ; i < n ; i++) {
1650      // Really shouldn't be NULL, but check can't hurt
1651      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1652        continue; // skip the empty path values
1653      }
1654      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1655      if (file_exists(buffer)) {
1656        retval = true;
1657        break;
1658      }
1659    }
1660    // release the storage
1661    for (int i = 0 ; i < n ; i++) {
1662      if (pelements[i] != NULL) {
1663        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1664      }
1665    }
1666    if (pelements != NULL) {
1667      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1668    }
1669  } else {
1670    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1671    retval = true;
1672  }
1673  return retval;
1674}
1675
1676// check if addr is inside libjvm.so
1677bool os::address_is_in_vm(address addr) {
1678  static address libjvm_base_addr;
1679  Dl_info dlinfo;
1680
1681  if (libjvm_base_addr == NULL) {
1682    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1683    libjvm_base_addr = (address)dlinfo.dli_fbase;
1684    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1685  }
1686
1687  if (dladdr((void *)addr, &dlinfo)) {
1688    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1689  }
1690
1691  return false;
1692}
1693
1694bool os::dll_address_to_function_name(address addr, char *buf,
1695                                      int buflen, int *offset) {
1696  Dl_info dlinfo;
1697
1698  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1699    if (buf != NULL) {
1700      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1701        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1702      }
1703    }
1704    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1705    return true;
1706  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1707    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1708        buf, buflen, offset, dlinfo.dli_fname)) {
1709       return true;
1710    }
1711  }
1712
1713  if (buf != NULL) buf[0] = '\0';
1714  if (offset != NULL) *offset = -1;
1715  return false;
1716}
1717
1718struct _address_to_library_name {
1719  address addr;          // input : memory address
1720  size_t  buflen;        //         size of fname
1721  char*   fname;         // output: library name
1722  address base;          //         library base addr
1723};
1724
1725static int address_to_library_name_callback(struct dl_phdr_info *info,
1726                                            size_t size, void *data) {
1727  int i;
1728  bool found = false;
1729  address libbase = NULL;
1730  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1731
1732  // iterate through all loadable segments
1733  for (i = 0; i < info->dlpi_phnum; i++) {
1734    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1735    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1736      // base address of a library is the lowest address of its loaded
1737      // segments.
1738      if (libbase == NULL || libbase > segbase) {
1739        libbase = segbase;
1740      }
1741      // see if 'addr' is within current segment
1742      if (segbase <= d->addr &&
1743          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1744        found = true;
1745      }
1746    }
1747  }
1748
1749  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1750  // so dll_address_to_library_name() can fall through to use dladdr() which
1751  // can figure out executable name from argv[0].
1752  if (found && info->dlpi_name && info->dlpi_name[0]) {
1753    d->base = libbase;
1754    if (d->fname) {
1755      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1756    }
1757    return 1;
1758  }
1759  return 0;
1760}
1761
1762bool os::dll_address_to_library_name(address addr, char* buf,
1763                                     int buflen, int* offset) {
1764  Dl_info dlinfo;
1765  struct _address_to_library_name data;
1766
1767  // There is a bug in old glibc dladdr() implementation that it could resolve
1768  // to wrong library name if the .so file has a base address != NULL. Here
1769  // we iterate through the program headers of all loaded libraries to find
1770  // out which library 'addr' really belongs to. This workaround can be
1771  // removed once the minimum requirement for glibc is moved to 2.3.x.
1772  data.addr = addr;
1773  data.fname = buf;
1774  data.buflen = buflen;
1775  data.base = NULL;
1776  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1777
1778  if (rslt) {
1779     // buf already contains library name
1780     if (offset) *offset = addr - data.base;
1781     return true;
1782  } else if (dladdr((void*)addr, &dlinfo)){
1783     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1784     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1785     return true;
1786  } else {
1787     if (buf) buf[0] = '\0';
1788     if (offset) *offset = -1;
1789     return false;
1790  }
1791}
1792
1793  // Loads .dll/.so and
1794  // in case of error it checks if .dll/.so was built for the
1795  // same architecture as Hotspot is running on
1796
1797
1798// Remember the stack's state. The Linux dynamic linker will change
1799// the stack to 'executable' at most once, so we must safepoint only once.
1800bool os::Linux::_stack_is_executable = false;
1801
1802// VM operation that loads a library.  This is necessary if stack protection
1803// of the Java stacks can be lost during loading the library.  If we
1804// do not stop the Java threads, they can stack overflow before the stacks
1805// are protected again.
1806class VM_LinuxDllLoad: public VM_Operation {
1807 private:
1808  const char *_filename;
1809  char *_ebuf;
1810  int _ebuflen;
1811  void *_lib;
1812 public:
1813  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1814    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1815  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1816  void doit() {
1817    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1818    os::Linux::_stack_is_executable = true;
1819  }
1820  void* loaded_library() { return _lib; }
1821};
1822
1823void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1824{
1825  void * result = NULL;
1826  bool load_attempted = false;
1827
1828  // Check whether the library to load might change execution rights
1829  // of the stack. If they are changed, the protection of the stack
1830  // guard pages will be lost. We need a safepoint to fix this.
1831  //
1832  // See Linux man page execstack(8) for more info.
1833  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1834    ElfFile ef(filename);
1835    if (!ef.specifies_noexecstack()) {
1836      if (!is_init_completed()) {
1837        os::Linux::_stack_is_executable = true;
1838        // This is OK - No Java threads have been created yet, and hence no
1839        // stack guard pages to fix.
1840        //
1841        // This should happen only when you are building JDK7 using a very
1842        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1843        //
1844        // Dynamic loader will make all stacks executable after
1845        // this function returns, and will not do that again.
1846        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1847      } else {
1848        warning("You have loaded library %s which might have disabled stack guard. "
1849                "The VM will try to fix the stack guard now.\n"
1850                "It's highly recommended that you fix the library with "
1851                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1852                filename);
1853
1854        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1855        JavaThread *jt = JavaThread::current();
1856        if (jt->thread_state() != _thread_in_native) {
1857          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1858          // that requires ExecStack. Cannot enter safe point. Let's give up.
1859          warning("Unable to fix stack guard. Giving up.");
1860        } else {
1861          if (!LoadExecStackDllInVMThread) {
1862            // This is for the case where the DLL has an static
1863            // constructor function that executes JNI code. We cannot
1864            // load such DLLs in the VMThread.
1865            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1866          }
1867
1868          ThreadInVMfromNative tiv(jt);
1869          debug_only(VMNativeEntryWrapper vew;)
1870
1871          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1872          VMThread::execute(&op);
1873          if (LoadExecStackDllInVMThread) {
1874            result = op.loaded_library();
1875          }
1876          load_attempted = true;
1877        }
1878      }
1879    }
1880  }
1881
1882  if (!load_attempted) {
1883    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1884  }
1885
1886  if (result != NULL) {
1887    // Successful loading
1888    return result;
1889  }
1890
1891  Elf32_Ehdr elf_head;
1892  int diag_msg_max_length=ebuflen-strlen(ebuf);
1893  char* diag_msg_buf=ebuf+strlen(ebuf);
1894
1895  if (diag_msg_max_length==0) {
1896    // No more space in ebuf for additional diagnostics message
1897    return NULL;
1898  }
1899
1900
1901  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1902
1903  if (file_descriptor < 0) {
1904    // Can't open library, report dlerror() message
1905    return NULL;
1906  }
1907
1908  bool failed_to_read_elf_head=
1909    (sizeof(elf_head)!=
1910        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1911
1912  ::close(file_descriptor);
1913  if (failed_to_read_elf_head) {
1914    // file i/o error - report dlerror() msg
1915    return NULL;
1916  }
1917
1918  typedef struct {
1919    Elf32_Half  code;         // Actual value as defined in elf.h
1920    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1921    char        elf_class;    // 32 or 64 bit
1922    char        endianess;    // MSB or LSB
1923    char*       name;         // String representation
1924  } arch_t;
1925
1926  #ifndef EM_486
1927  #define EM_486          6               /* Intel 80486 */
1928  #endif
1929
1930  static const arch_t arch_array[]={
1931    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1932    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1933    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1934    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1935    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1936    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1937    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1938    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1939    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1940    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1941    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1942    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1943    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1944    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1945    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1946    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1947  };
1948
1949  #if  (defined IA32)
1950    static  Elf32_Half running_arch_code=EM_386;
1951  #elif   (defined AMD64)
1952    static  Elf32_Half running_arch_code=EM_X86_64;
1953  #elif  (defined IA64)
1954    static  Elf32_Half running_arch_code=EM_IA_64;
1955  #elif  (defined __sparc) && (defined _LP64)
1956    static  Elf32_Half running_arch_code=EM_SPARCV9;
1957  #elif  (defined __sparc) && (!defined _LP64)
1958    static  Elf32_Half running_arch_code=EM_SPARC;
1959  #elif  (defined __powerpc64__)
1960    static  Elf32_Half running_arch_code=EM_PPC64;
1961  #elif  (defined __powerpc__)
1962    static  Elf32_Half running_arch_code=EM_PPC;
1963  #elif  (defined ARM)
1964    static  Elf32_Half running_arch_code=EM_ARM;
1965  #elif  (defined S390)
1966    static  Elf32_Half running_arch_code=EM_S390;
1967  #elif  (defined ALPHA)
1968    static  Elf32_Half running_arch_code=EM_ALPHA;
1969  #elif  (defined MIPSEL)
1970    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1971  #elif  (defined PARISC)
1972    static  Elf32_Half running_arch_code=EM_PARISC;
1973  #elif  (defined MIPS)
1974    static  Elf32_Half running_arch_code=EM_MIPS;
1975  #elif  (defined M68K)
1976    static  Elf32_Half running_arch_code=EM_68K;
1977  #else
1978    #error Method os::dll_load requires that one of following is defined:\
1979         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1980  #endif
1981
1982  // Identify compatability class for VM's architecture and library's architecture
1983  // Obtain string descriptions for architectures
1984
1985  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1986  int running_arch_index=-1;
1987
1988  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1989    if (running_arch_code == arch_array[i].code) {
1990      running_arch_index    = i;
1991    }
1992    if (lib_arch.code == arch_array[i].code) {
1993      lib_arch.compat_class = arch_array[i].compat_class;
1994      lib_arch.name         = arch_array[i].name;
1995    }
1996  }
1997
1998  assert(running_arch_index != -1,
1999    "Didn't find running architecture code (running_arch_code) in arch_array");
2000  if (running_arch_index == -1) {
2001    // Even though running architecture detection failed
2002    // we may still continue with reporting dlerror() message
2003    return NULL;
2004  }
2005
2006  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2007    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2008    return NULL;
2009  }
2010
2011#ifndef S390
2012  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2013    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2014    return NULL;
2015  }
2016#endif // !S390
2017
2018  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2019    if ( lib_arch.name!=NULL ) {
2020      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2021        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2022        lib_arch.name, arch_array[running_arch_index].name);
2023    } else {
2024      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2025      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2026        lib_arch.code,
2027        arch_array[running_arch_index].name);
2028    }
2029  }
2030
2031  return NULL;
2032}
2033
2034void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2035  void * result = ::dlopen(filename, RTLD_LAZY);
2036  if (result == NULL) {
2037    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2038    ebuf[ebuflen-1] = '\0';
2039  }
2040  return result;
2041}
2042
2043void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2044  void * result = NULL;
2045  if (LoadExecStackDllInVMThread) {
2046    result = dlopen_helper(filename, ebuf, ebuflen);
2047  }
2048
2049  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2050  // library that requires an executable stack, or which does not have this
2051  // stack attribute set, dlopen changes the stack attribute to executable. The
2052  // read protection of the guard pages gets lost.
2053  //
2054  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2055  // may have been queued at the same time.
2056
2057  if (!_stack_is_executable) {
2058    JavaThread *jt = Threads::first();
2059
2060    while (jt) {
2061      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2062          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2063        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2064                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2065          warning("Attempt to reguard stack yellow zone failed.");
2066        }
2067      }
2068      jt = jt->next();
2069    }
2070  }
2071
2072  return result;
2073}
2074
2075/*
2076 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2077 * chances are you might want to run the generated bits against glibc-2.0
2078 * libdl.so, so always use locking for any version of glibc.
2079 */
2080void* os::dll_lookup(void* handle, const char* name) {
2081  pthread_mutex_lock(&dl_mutex);
2082  void* res = dlsym(handle, name);
2083  pthread_mutex_unlock(&dl_mutex);
2084  return res;
2085}
2086
2087
2088static bool _print_ascii_file(const char* filename, outputStream* st) {
2089  int fd = ::open(filename, O_RDONLY);
2090  if (fd == -1) {
2091     return false;
2092  }
2093
2094  char buf[32];
2095  int bytes;
2096  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2097    st->print_raw(buf, bytes);
2098  }
2099
2100  ::close(fd);
2101
2102  return true;
2103}
2104
2105void os::print_dll_info(outputStream *st) {
2106   st->print_cr("Dynamic libraries:");
2107
2108   char fname[32];
2109   pid_t pid = os::Linux::gettid();
2110
2111   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2112
2113   if (!_print_ascii_file(fname, st)) {
2114     st->print("Can not get library information for pid = %d\n", pid);
2115   }
2116}
2117
2118void os::print_os_info_brief(outputStream* st) {
2119  os::Linux::print_distro_info(st);
2120
2121  os::Posix::print_uname_info(st);
2122
2123  os::Linux::print_libversion_info(st);
2124
2125}
2126
2127void os::print_os_info(outputStream* st) {
2128  st->print("OS:");
2129
2130  os::Linux::print_distro_info(st);
2131
2132  os::Posix::print_uname_info(st);
2133
2134  // Print warning if unsafe chroot environment detected
2135  if (unsafe_chroot_detected) {
2136    st->print("WARNING!! ");
2137    st->print_cr(unstable_chroot_error);
2138  }
2139
2140  os::Linux::print_libversion_info(st);
2141
2142  os::Posix::print_rlimit_info(st);
2143
2144  os::Posix::print_load_average(st);
2145
2146  os::Linux::print_full_memory_info(st);
2147}
2148
2149// Try to identify popular distros.
2150// Most Linux distributions have /etc/XXX-release file, which contains
2151// the OS version string. Some have more than one /etc/XXX-release file
2152// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2153// so the order is important.
2154void os::Linux::print_distro_info(outputStream* st) {
2155  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2156      !_print_ascii_file("/etc/sun-release", st) &&
2157      !_print_ascii_file("/etc/redhat-release", st) &&
2158      !_print_ascii_file("/etc/SuSE-release", st) &&
2159      !_print_ascii_file("/etc/turbolinux-release", st) &&
2160      !_print_ascii_file("/etc/gentoo-release", st) &&
2161      !_print_ascii_file("/etc/debian_version", st) &&
2162      !_print_ascii_file("/etc/ltib-release", st) &&
2163      !_print_ascii_file("/etc/angstrom-version", st)) {
2164      st->print("Linux");
2165  }
2166  st->cr();
2167}
2168
2169void os::Linux::print_libversion_info(outputStream* st) {
2170  // libc, pthread
2171  st->print("libc:");
2172  st->print(os::Linux::glibc_version()); st->print(" ");
2173  st->print(os::Linux::libpthread_version()); st->print(" ");
2174  if (os::Linux::is_LinuxThreads()) {
2175     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2176  }
2177  st->cr();
2178}
2179
2180void os::Linux::print_full_memory_info(outputStream* st) {
2181   st->print("\n/proc/meminfo:\n");
2182   _print_ascii_file("/proc/meminfo", st);
2183   st->cr();
2184}
2185
2186void os::print_memory_info(outputStream* st) {
2187
2188  st->print("Memory:");
2189  st->print(" %dk page", os::vm_page_size()>>10);
2190
2191  // values in struct sysinfo are "unsigned long"
2192  struct sysinfo si;
2193  sysinfo(&si);
2194
2195  st->print(", physical " UINT64_FORMAT "k",
2196            os::physical_memory() >> 10);
2197  st->print("(" UINT64_FORMAT "k free)",
2198            os::available_memory() >> 10);
2199  st->print(", swap " UINT64_FORMAT "k",
2200            ((jlong)si.totalswap * si.mem_unit) >> 10);
2201  st->print("(" UINT64_FORMAT "k free)",
2202            ((jlong)si.freeswap * si.mem_unit) >> 10);
2203  st->cr();
2204}
2205
2206void os::pd_print_cpu_info(outputStream* st) {
2207  st->print("\n/proc/cpuinfo:\n");
2208  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2209    st->print("  <Not Available>");
2210  }
2211  st->cr();
2212}
2213
2214// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2215// but they're the same for all the linux arch that we support
2216// and they're the same for solaris but there's no common place to put this.
2217const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2218                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2219                          "ILL_COPROC", "ILL_BADSTK" };
2220
2221const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2222                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2223                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2224
2225const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2226
2227const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2228
2229void os::print_siginfo(outputStream* st, void* siginfo) {
2230  st->print("siginfo:");
2231
2232  const int buflen = 100;
2233  char buf[buflen];
2234  siginfo_t *si = (siginfo_t*)siginfo;
2235  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2236  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2237    st->print("si_errno=%s", buf);
2238  } else {
2239    st->print("si_errno=%d", si->si_errno);
2240  }
2241  const int c = si->si_code;
2242  assert(c > 0, "unexpected si_code");
2243  switch (si->si_signo) {
2244  case SIGILL:
2245    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2246    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2247    break;
2248  case SIGFPE:
2249    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2250    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2251    break;
2252  case SIGSEGV:
2253    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2254    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2255    break;
2256  case SIGBUS:
2257    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2258    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2259    break;
2260  default:
2261    st->print(", si_code=%d", si->si_code);
2262    // no si_addr
2263  }
2264
2265  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2266      UseSharedSpaces) {
2267    FileMapInfo* mapinfo = FileMapInfo::current_info();
2268    if (mapinfo->is_in_shared_space(si->si_addr)) {
2269      st->print("\n\nError accessing class data sharing archive."   \
2270                " Mapped file inaccessible during execution, "      \
2271                " possible disk/network problem.");
2272    }
2273  }
2274  st->cr();
2275}
2276
2277
2278static void print_signal_handler(outputStream* st, int sig,
2279                                 char* buf, size_t buflen);
2280
2281void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2282  st->print_cr("Signal Handlers:");
2283  print_signal_handler(st, SIGSEGV, buf, buflen);
2284  print_signal_handler(st, SIGBUS , buf, buflen);
2285  print_signal_handler(st, SIGFPE , buf, buflen);
2286  print_signal_handler(st, SIGPIPE, buf, buflen);
2287  print_signal_handler(st, SIGXFSZ, buf, buflen);
2288  print_signal_handler(st, SIGILL , buf, buflen);
2289  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2290  print_signal_handler(st, SR_signum, buf, buflen);
2291  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2292  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2293  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2294  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2295}
2296
2297static char saved_jvm_path[MAXPATHLEN] = {0};
2298
2299// Find the full path to the current module, libjvm.so
2300void os::jvm_path(char *buf, jint buflen) {
2301  // Error checking.
2302  if (buflen < MAXPATHLEN) {
2303    assert(false, "must use a large-enough buffer");
2304    buf[0] = '\0';
2305    return;
2306  }
2307  // Lazy resolve the path to current module.
2308  if (saved_jvm_path[0] != 0) {
2309    strcpy(buf, saved_jvm_path);
2310    return;
2311  }
2312
2313  char dli_fname[MAXPATHLEN];
2314  bool ret = dll_address_to_library_name(
2315                CAST_FROM_FN_PTR(address, os::jvm_path),
2316                dli_fname, sizeof(dli_fname), NULL);
2317  assert(ret != 0, "cannot locate libjvm");
2318  char *rp = realpath(dli_fname, buf);
2319  if (rp == NULL)
2320    return;
2321
2322  if (Arguments::created_by_gamma_launcher()) {
2323    // Support for the gamma launcher.  Typical value for buf is
2324    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2325    // the right place in the string, then assume we are installed in a JDK and
2326    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2327    // up the path so it looks like libjvm.so is installed there (append a
2328    // fake suffix hotspot/libjvm.so).
2329    const char *p = buf + strlen(buf) - 1;
2330    for (int count = 0; p > buf && count < 5; ++count) {
2331      for (--p; p > buf && *p != '/'; --p)
2332        /* empty */ ;
2333    }
2334
2335    if (strncmp(p, "/jre/lib/", 9) != 0) {
2336      // Look for JAVA_HOME in the environment.
2337      char* java_home_var = ::getenv("JAVA_HOME");
2338      if (java_home_var != NULL && java_home_var[0] != 0) {
2339        char* jrelib_p;
2340        int len;
2341
2342        // Check the current module name "libjvm.so".
2343        p = strrchr(buf, '/');
2344        assert(strstr(p, "/libjvm") == p, "invalid library name");
2345
2346        rp = realpath(java_home_var, buf);
2347        if (rp == NULL)
2348          return;
2349
2350        // determine if this is a legacy image or modules image
2351        // modules image doesn't have "jre" subdirectory
2352        len = strlen(buf);
2353        jrelib_p = buf + len;
2354        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2355        if (0 != access(buf, F_OK)) {
2356          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2357        }
2358
2359        if (0 == access(buf, F_OK)) {
2360          // Use current module name "libjvm.so"
2361          len = strlen(buf);
2362          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2363        } else {
2364          // Go back to path of .so
2365          rp = realpath(dli_fname, buf);
2366          if (rp == NULL)
2367            return;
2368        }
2369      }
2370    }
2371  }
2372
2373  strcpy(saved_jvm_path, buf);
2374}
2375
2376void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2377  // no prefix required, not even "_"
2378}
2379
2380void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2381  // no suffix required
2382}
2383
2384////////////////////////////////////////////////////////////////////////////////
2385// sun.misc.Signal support
2386
2387static volatile jint sigint_count = 0;
2388
2389static void
2390UserHandler(int sig, void *siginfo, void *context) {
2391  // 4511530 - sem_post is serialized and handled by the manager thread. When
2392  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2393  // don't want to flood the manager thread with sem_post requests.
2394  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2395      return;
2396
2397  // Ctrl-C is pressed during error reporting, likely because the error
2398  // handler fails to abort. Let VM die immediately.
2399  if (sig == SIGINT && is_error_reported()) {
2400     os::die();
2401  }
2402
2403  os::signal_notify(sig);
2404}
2405
2406void* os::user_handler() {
2407  return CAST_FROM_FN_PTR(void*, UserHandler);
2408}
2409
2410extern "C" {
2411  typedef void (*sa_handler_t)(int);
2412  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2413}
2414
2415void* os::signal(int signal_number, void* handler) {
2416  struct sigaction sigAct, oldSigAct;
2417
2418  sigfillset(&(sigAct.sa_mask));
2419  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2420  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2421
2422  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2423    // -1 means registration failed
2424    return (void *)-1;
2425  }
2426
2427  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2428}
2429
2430void os::signal_raise(int signal_number) {
2431  ::raise(signal_number);
2432}
2433
2434/*
2435 * The following code is moved from os.cpp for making this
2436 * code platform specific, which it is by its very nature.
2437 */
2438
2439// Will be modified when max signal is changed to be dynamic
2440int os::sigexitnum_pd() {
2441  return NSIG;
2442}
2443
2444// a counter for each possible signal value
2445static volatile jint pending_signals[NSIG+1] = { 0 };
2446
2447// Linux(POSIX) specific hand shaking semaphore.
2448static sem_t sig_sem;
2449
2450void os::signal_init_pd() {
2451  // Initialize signal structures
2452  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2453
2454  // Initialize signal semaphore
2455  ::sem_init(&sig_sem, 0, 0);
2456}
2457
2458void os::signal_notify(int sig) {
2459  Atomic::inc(&pending_signals[sig]);
2460  ::sem_post(&sig_sem);
2461}
2462
2463static int check_pending_signals(bool wait) {
2464  Atomic::store(0, &sigint_count);
2465  for (;;) {
2466    for (int i = 0; i < NSIG + 1; i++) {
2467      jint n = pending_signals[i];
2468      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2469        return i;
2470      }
2471    }
2472    if (!wait) {
2473      return -1;
2474    }
2475    JavaThread *thread = JavaThread::current();
2476    ThreadBlockInVM tbivm(thread);
2477
2478    bool threadIsSuspended;
2479    do {
2480      thread->set_suspend_equivalent();
2481      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2482      ::sem_wait(&sig_sem);
2483
2484      // were we externally suspended while we were waiting?
2485      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2486      if (threadIsSuspended) {
2487        //
2488        // The semaphore has been incremented, but while we were waiting
2489        // another thread suspended us. We don't want to continue running
2490        // while suspended because that would surprise the thread that
2491        // suspended us.
2492        //
2493        ::sem_post(&sig_sem);
2494
2495        thread->java_suspend_self();
2496      }
2497    } while (threadIsSuspended);
2498  }
2499}
2500
2501int os::signal_lookup() {
2502  return check_pending_signals(false);
2503}
2504
2505int os::signal_wait() {
2506  return check_pending_signals(true);
2507}
2508
2509////////////////////////////////////////////////////////////////////////////////
2510// Virtual Memory
2511
2512int os::vm_page_size() {
2513  // Seems redundant as all get out
2514  assert(os::Linux::page_size() != -1, "must call os::init");
2515  return os::Linux::page_size();
2516}
2517
2518// Solaris allocates memory by pages.
2519int os::vm_allocation_granularity() {
2520  assert(os::Linux::page_size() != -1, "must call os::init");
2521  return os::Linux::page_size();
2522}
2523
2524// Rationale behind this function:
2525//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2526//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2527//  samples for JITted code. Here we create private executable mapping over the code cache
2528//  and then we can use standard (well, almost, as mapping can change) way to provide
2529//  info for the reporting script by storing timestamp and location of symbol
2530void linux_wrap_code(char* base, size_t size) {
2531  static volatile jint cnt = 0;
2532
2533  if (!UseOprofile) {
2534    return;
2535  }
2536
2537  char buf[PATH_MAX+1];
2538  int num = Atomic::add(1, &cnt);
2539
2540  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2541           os::get_temp_directory(), os::current_process_id(), num);
2542  unlink(buf);
2543
2544  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2545
2546  if (fd != -1) {
2547    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2548    if (rv != (off_t)-1) {
2549      if (::write(fd, "", 1) == 1) {
2550        mmap(base, size,
2551             PROT_READ|PROT_WRITE|PROT_EXEC,
2552             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2553      }
2554    }
2555    ::close(fd);
2556    unlink(buf);
2557  }
2558}
2559
2560// NOTE: Linux kernel does not really reserve the pages for us.
2561//       All it does is to check if there are enough free pages
2562//       left at the time of mmap(). This could be a potential
2563//       problem.
2564bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2565  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2566  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2567                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2568  if (res != (uintptr_t) MAP_FAILED) {
2569    if (UseNUMAInterleaving) {
2570      numa_make_global(addr, size);
2571    }
2572    return true;
2573  }
2574  return false;
2575}
2576
2577// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2578#ifndef MAP_HUGETLB
2579#define MAP_HUGETLB 0x40000
2580#endif
2581
2582// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2583#ifndef MADV_HUGEPAGE
2584#define MADV_HUGEPAGE 14
2585#endif
2586
2587bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2588                       bool exec) {
2589  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2590    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2591    uintptr_t res =
2592      (uintptr_t) ::mmap(addr, size, prot,
2593                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2594                         -1, 0);
2595    if (res != (uintptr_t) MAP_FAILED) {
2596      if (UseNUMAInterleaving) {
2597        numa_make_global(addr, size);
2598      }
2599      return true;
2600    }
2601    // Fall through and try to use small pages
2602  }
2603
2604  if (commit_memory(addr, size, exec)) {
2605    realign_memory(addr, size, alignment_hint);
2606    return true;
2607  }
2608  return false;
2609}
2610
2611void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2612  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2613    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2614    // be supported or the memory may already be backed by huge pages.
2615    ::madvise(addr, bytes, MADV_HUGEPAGE);
2616  }
2617}
2618
2619void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2620  // This method works by doing an mmap over an existing mmaping and effectively discarding
2621  // the existing pages. However it won't work for SHM-based large pages that cannot be
2622  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2623  // small pages on top of the SHM segment. This method always works for small pages, so we
2624  // allow that in any case.
2625  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2626    commit_memory(addr, bytes, alignment_hint, false);
2627  }
2628}
2629
2630void os::numa_make_global(char *addr, size_t bytes) {
2631  Linux::numa_interleave_memory(addr, bytes);
2632}
2633
2634void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2635  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2636}
2637
2638bool os::numa_topology_changed()   { return false; }
2639
2640size_t os::numa_get_groups_num() {
2641  int max_node = Linux::numa_max_node();
2642  return max_node > 0 ? max_node + 1 : 1;
2643}
2644
2645int os::numa_get_group_id() {
2646  int cpu_id = Linux::sched_getcpu();
2647  if (cpu_id != -1) {
2648    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2649    if (lgrp_id != -1) {
2650      return lgrp_id;
2651    }
2652  }
2653  return 0;
2654}
2655
2656size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2657  for (size_t i = 0; i < size; i++) {
2658    ids[i] = i;
2659  }
2660  return size;
2661}
2662
2663bool os::get_page_info(char *start, page_info* info) {
2664  return false;
2665}
2666
2667char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2668  return end;
2669}
2670
2671
2672int os::Linux::sched_getcpu_syscall(void) {
2673  unsigned int cpu;
2674  int retval = -1;
2675
2676#if defined(IA32)
2677# ifndef SYS_getcpu
2678# define SYS_getcpu 318
2679# endif
2680  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2681#elif defined(AMD64)
2682// Unfortunately we have to bring all these macros here from vsyscall.h
2683// to be able to compile on old linuxes.
2684# define __NR_vgetcpu 2
2685# define VSYSCALL_START (-10UL << 20)
2686# define VSYSCALL_SIZE 1024
2687# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2688  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2689  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2690  retval = vgetcpu(&cpu, NULL, NULL);
2691#endif
2692
2693  return (retval == -1) ? retval : cpu;
2694}
2695
2696// Something to do with the numa-aware allocator needs these symbols
2697extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2698extern "C" JNIEXPORT void numa_error(char *where) { }
2699extern "C" JNIEXPORT int fork1() { return fork(); }
2700
2701
2702// If we are running with libnuma version > 2, then we should
2703// be trying to use symbols with versions 1.1
2704// If we are running with earlier version, which did not have symbol versions,
2705// we should use the base version.
2706void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2707  void *f = dlvsym(handle, name, "libnuma_1.1");
2708  if (f == NULL) {
2709    f = dlsym(handle, name);
2710  }
2711  return f;
2712}
2713
2714bool os::Linux::libnuma_init() {
2715  // sched_getcpu() should be in libc.
2716  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2717                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2718
2719  // If it's not, try a direct syscall.
2720  if (sched_getcpu() == -1)
2721    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2722
2723  if (sched_getcpu() != -1) { // Does it work?
2724    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2725    if (handle != NULL) {
2726      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2727                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2728      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2729                                       libnuma_dlsym(handle, "numa_max_node")));
2730      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2731                                        libnuma_dlsym(handle, "numa_available")));
2732      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2733                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2734      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2735                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2736
2737
2738      if (numa_available() != -1) {
2739        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2740        // Create a cpu -> node mapping
2741        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2742        rebuild_cpu_to_node_map();
2743        return true;
2744      }
2745    }
2746  }
2747  return false;
2748}
2749
2750// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2751// The table is later used in get_node_by_cpu().
2752void os::Linux::rebuild_cpu_to_node_map() {
2753  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2754                              // in libnuma (possible values are starting from 16,
2755                              // and continuing up with every other power of 2, but less
2756                              // than the maximum number of CPUs supported by kernel), and
2757                              // is a subject to change (in libnuma version 2 the requirements
2758                              // are more reasonable) we'll just hardcode the number they use
2759                              // in the library.
2760  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2761
2762  size_t cpu_num = os::active_processor_count();
2763  size_t cpu_map_size = NCPUS / BitsPerCLong;
2764  size_t cpu_map_valid_size =
2765    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2766
2767  cpu_to_node()->clear();
2768  cpu_to_node()->at_grow(cpu_num - 1);
2769  size_t node_num = numa_get_groups_num();
2770
2771  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2772  for (size_t i = 0; i < node_num; i++) {
2773    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2774      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2775        if (cpu_map[j] != 0) {
2776          for (size_t k = 0; k < BitsPerCLong; k++) {
2777            if (cpu_map[j] & (1UL << k)) {
2778              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2779            }
2780          }
2781        }
2782      }
2783    }
2784  }
2785  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2786}
2787
2788int os::Linux::get_node_by_cpu(int cpu_id) {
2789  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2790    return cpu_to_node()->at(cpu_id);
2791  }
2792  return -1;
2793}
2794
2795GrowableArray<int>* os::Linux::_cpu_to_node;
2796os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2797os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2798os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2799os::Linux::numa_available_func_t os::Linux::_numa_available;
2800os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2801os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2802unsigned long* os::Linux::_numa_all_nodes;
2803
2804bool os::pd_uncommit_memory(char* addr, size_t size) {
2805  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2806                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2807  return res  != (uintptr_t) MAP_FAILED;
2808}
2809
2810// Linux uses a growable mapping for the stack, and if the mapping for
2811// the stack guard pages is not removed when we detach a thread the
2812// stack cannot grow beyond the pages where the stack guard was
2813// mapped.  If at some point later in the process the stack expands to
2814// that point, the Linux kernel cannot expand the stack any further
2815// because the guard pages are in the way, and a segfault occurs.
2816//
2817// However, it's essential not to split the stack region by unmapping
2818// a region (leaving a hole) that's already part of the stack mapping,
2819// so if the stack mapping has already grown beyond the guard pages at
2820// the time we create them, we have to truncate the stack mapping.
2821// So, we need to know the extent of the stack mapping when
2822// create_stack_guard_pages() is called.
2823
2824// Find the bounds of the stack mapping.  Return true for success.
2825//
2826// We only need this for stacks that are growable: at the time of
2827// writing thread stacks don't use growable mappings (i.e. those
2828// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2829// only applies to the main thread.
2830
2831static
2832bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2833
2834  char buf[128];
2835  int fd, sz;
2836
2837  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2838    return false;
2839  }
2840
2841  const char kw[] = "[stack]";
2842  const int kwlen = sizeof(kw)-1;
2843
2844  // Address part of /proc/self/maps couldn't be more than 128 bytes
2845  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2846     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2847        // Extract addresses
2848        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2849           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2850           if (sp >= *bottom && sp <= *top) {
2851              ::close(fd);
2852              return true;
2853           }
2854        }
2855     }
2856  }
2857
2858 ::close(fd);
2859  return false;
2860}
2861
2862
2863// If the (growable) stack mapping already extends beyond the point
2864// where we're going to put our guard pages, truncate the mapping at
2865// that point by munmap()ping it.  This ensures that when we later
2866// munmap() the guard pages we don't leave a hole in the stack
2867// mapping. This only affects the main/initial thread, but guard
2868// against future OS changes
2869bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2870  uintptr_t stack_extent, stack_base;
2871  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2872  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2873      assert(os::Linux::is_initial_thread(),
2874           "growable stack in non-initial thread");
2875    if (stack_extent < (uintptr_t)addr)
2876      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2877  }
2878
2879  return os::commit_memory(addr, size);
2880}
2881
2882// If this is a growable mapping, remove the guard pages entirely by
2883// munmap()ping them.  If not, just call uncommit_memory(). This only
2884// affects the main/initial thread, but guard against future OS changes
2885bool os::remove_stack_guard_pages(char* addr, size_t size) {
2886  uintptr_t stack_extent, stack_base;
2887  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2888  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2889      assert(os::Linux::is_initial_thread(),
2890           "growable stack in non-initial thread");
2891
2892    return ::munmap(addr, size) == 0;
2893  }
2894
2895  return os::uncommit_memory(addr, size);
2896}
2897
2898static address _highest_vm_reserved_address = NULL;
2899
2900// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2901// at 'requested_addr'. If there are existing memory mappings at the same
2902// location, however, they will be overwritten. If 'fixed' is false,
2903// 'requested_addr' is only treated as a hint, the return value may or
2904// may not start from the requested address. Unlike Linux mmap(), this
2905// function returns NULL to indicate failure.
2906static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2907  char * addr;
2908  int flags;
2909
2910  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2911  if (fixed) {
2912    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2913    flags |= MAP_FIXED;
2914  }
2915
2916  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2917  // touch an uncommitted page. Otherwise, the read/write might
2918  // succeed if we have enough swap space to back the physical page.
2919  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2920                       flags, -1, 0);
2921
2922  if (addr != MAP_FAILED) {
2923    // anon_mmap() should only get called during VM initialization,
2924    // don't need lock (actually we can skip locking even it can be called
2925    // from multiple threads, because _highest_vm_reserved_address is just a
2926    // hint about the upper limit of non-stack memory regions.)
2927    if ((address)addr + bytes > _highest_vm_reserved_address) {
2928      _highest_vm_reserved_address = (address)addr + bytes;
2929    }
2930  }
2931
2932  return addr == MAP_FAILED ? NULL : addr;
2933}
2934
2935// Don't update _highest_vm_reserved_address, because there might be memory
2936// regions above addr + size. If so, releasing a memory region only creates
2937// a hole in the address space, it doesn't help prevent heap-stack collision.
2938//
2939static int anon_munmap(char * addr, size_t size) {
2940  return ::munmap(addr, size) == 0;
2941}
2942
2943char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2944                         size_t alignment_hint) {
2945  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2946}
2947
2948bool os::pd_release_memory(char* addr, size_t size) {
2949  return anon_munmap(addr, size);
2950}
2951
2952static address highest_vm_reserved_address() {
2953  return _highest_vm_reserved_address;
2954}
2955
2956static bool linux_mprotect(char* addr, size_t size, int prot) {
2957  // Linux wants the mprotect address argument to be page aligned.
2958  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2959
2960  // According to SUSv3, mprotect() should only be used with mappings
2961  // established by mmap(), and mmap() always maps whole pages. Unaligned
2962  // 'addr' likely indicates problem in the VM (e.g. trying to change
2963  // protection of malloc'ed or statically allocated memory). Check the
2964  // caller if you hit this assert.
2965  assert(addr == bottom, "sanity check");
2966
2967  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2968  return ::mprotect(bottom, size, prot) == 0;
2969}
2970
2971// Set protections specified
2972bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2973                        bool is_committed) {
2974  unsigned int p = 0;
2975  switch (prot) {
2976  case MEM_PROT_NONE: p = PROT_NONE; break;
2977  case MEM_PROT_READ: p = PROT_READ; break;
2978  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2979  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2980  default:
2981    ShouldNotReachHere();
2982  }
2983  // is_committed is unused.
2984  return linux_mprotect(addr, bytes, p);
2985}
2986
2987bool os::guard_memory(char* addr, size_t size) {
2988  return linux_mprotect(addr, size, PROT_NONE);
2989}
2990
2991bool os::unguard_memory(char* addr, size_t size) {
2992  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2993}
2994
2995bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2996  bool result = false;
2997  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2998                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2999                  -1, 0);
3000
3001  if (p != (void *) -1) {
3002    // We don't know if this really is a huge page or not.
3003    FILE *fp = fopen("/proc/self/maps", "r");
3004    if (fp) {
3005      while (!feof(fp)) {
3006        char chars[257];
3007        long x = 0;
3008        if (fgets(chars, sizeof(chars), fp)) {
3009          if (sscanf(chars, "%lx-%*x", &x) == 1
3010              && x == (long)p) {
3011            if (strstr (chars, "hugepage")) {
3012              result = true;
3013              break;
3014            }
3015          }
3016        }
3017      }
3018      fclose(fp);
3019    }
3020    munmap (p, page_size);
3021    if (result)
3022      return true;
3023  }
3024
3025  if (warn) {
3026    warning("HugeTLBFS is not supported by the operating system.");
3027  }
3028
3029  return result;
3030}
3031
3032/*
3033* Set the coredump_filter bits to include largepages in core dump (bit 6)
3034*
3035* From the coredump_filter documentation:
3036*
3037* - (bit 0) anonymous private memory
3038* - (bit 1) anonymous shared memory
3039* - (bit 2) file-backed private memory
3040* - (bit 3) file-backed shared memory
3041* - (bit 4) ELF header pages in file-backed private memory areas (it is
3042*           effective only if the bit 2 is cleared)
3043* - (bit 5) hugetlb private memory
3044* - (bit 6) hugetlb shared memory
3045*/
3046static void set_coredump_filter(void) {
3047  FILE *f;
3048  long cdm;
3049
3050  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3051    return;
3052  }
3053
3054  if (fscanf(f, "%lx", &cdm) != 1) {
3055    fclose(f);
3056    return;
3057  }
3058
3059  rewind(f);
3060
3061  if ((cdm & LARGEPAGES_BIT) == 0) {
3062    cdm |= LARGEPAGES_BIT;
3063    fprintf(f, "%#lx", cdm);
3064  }
3065
3066  fclose(f);
3067}
3068
3069// Large page support
3070
3071static size_t _large_page_size = 0;
3072
3073void os::large_page_init() {
3074  if (!UseLargePages) {
3075    UseHugeTLBFS = false;
3076    UseSHM = false;
3077    return;
3078  }
3079
3080  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3081    // If UseLargePages is specified on the command line try both methods,
3082    // if it's default, then try only HugeTLBFS.
3083    if (FLAG_IS_DEFAULT(UseLargePages)) {
3084      UseHugeTLBFS = true;
3085    } else {
3086      UseHugeTLBFS = UseSHM = true;
3087    }
3088  }
3089
3090  if (LargePageSizeInBytes) {
3091    _large_page_size = LargePageSizeInBytes;
3092  } else {
3093    // large_page_size on Linux is used to round up heap size. x86 uses either
3094    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3095    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3096    // page as large as 256M.
3097    //
3098    // Here we try to figure out page size by parsing /proc/meminfo and looking
3099    // for a line with the following format:
3100    //    Hugepagesize:     2048 kB
3101    //
3102    // If we can't determine the value (e.g. /proc is not mounted, or the text
3103    // format has been changed), we'll use the largest page size supported by
3104    // the processor.
3105
3106#ifndef ZERO
3107    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3108                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3109#endif // ZERO
3110
3111    FILE *fp = fopen("/proc/meminfo", "r");
3112    if (fp) {
3113      while (!feof(fp)) {
3114        int x = 0;
3115        char buf[16];
3116        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3117          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3118            _large_page_size = x * K;
3119            break;
3120          }
3121        } else {
3122          // skip to next line
3123          for (;;) {
3124            int ch = fgetc(fp);
3125            if (ch == EOF || ch == (int)'\n') break;
3126          }
3127        }
3128      }
3129      fclose(fp);
3130    }
3131  }
3132
3133  // print a warning if any large page related flag is specified on command line
3134  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3135
3136  const size_t default_page_size = (size_t)Linux::page_size();
3137  if (_large_page_size > default_page_size) {
3138    _page_sizes[0] = _large_page_size;
3139    _page_sizes[1] = default_page_size;
3140    _page_sizes[2] = 0;
3141  }
3142  UseHugeTLBFS = UseHugeTLBFS &&
3143                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3144
3145  if (UseHugeTLBFS)
3146    UseSHM = false;
3147
3148  UseLargePages = UseHugeTLBFS || UseSHM;
3149
3150  set_coredump_filter();
3151}
3152
3153#ifndef SHM_HUGETLB
3154#define SHM_HUGETLB 04000
3155#endif
3156
3157char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3158  // "exec" is passed in but not used.  Creating the shared image for
3159  // the code cache doesn't have an SHM_X executable permission to check.
3160  assert(UseLargePages && UseSHM, "only for SHM large pages");
3161
3162  key_t key = IPC_PRIVATE;
3163  char *addr;
3164
3165  bool warn_on_failure = UseLargePages &&
3166                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3167                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3168                        );
3169  char msg[128];
3170
3171  // Create a large shared memory region to attach to based on size.
3172  // Currently, size is the total size of the heap
3173  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3174  if (shmid == -1) {
3175     // Possible reasons for shmget failure:
3176     // 1. shmmax is too small for Java heap.
3177     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3178     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3179     // 2. not enough large page memory.
3180     //    > check available large pages: cat /proc/meminfo
3181     //    > increase amount of large pages:
3182     //          echo new_value > /proc/sys/vm/nr_hugepages
3183     //      Note 1: different Linux may use different name for this property,
3184     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3185     //      Note 2: it's possible there's enough physical memory available but
3186     //            they are so fragmented after a long run that they can't
3187     //            coalesce into large pages. Try to reserve large pages when
3188     //            the system is still "fresh".
3189     if (warn_on_failure) {
3190       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3191       warning(msg);
3192     }
3193     return NULL;
3194  }
3195
3196  // attach to the region
3197  addr = (char*)shmat(shmid, req_addr, 0);
3198  int err = errno;
3199
3200  // Remove shmid. If shmat() is successful, the actual shared memory segment
3201  // will be deleted when it's detached by shmdt() or when the process
3202  // terminates. If shmat() is not successful this will remove the shared
3203  // segment immediately.
3204  shmctl(shmid, IPC_RMID, NULL);
3205
3206  if ((intptr_t)addr == -1) {
3207     if (warn_on_failure) {
3208       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3209       warning(msg);
3210     }
3211     return NULL;
3212  }
3213
3214  if ((addr != NULL) && UseNUMAInterleaving) {
3215    numa_make_global(addr, bytes);
3216  }
3217
3218  // The memory is committed
3219  address pc = CALLER_PC;
3220  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
3221  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
3222
3223  return addr;
3224}
3225
3226bool os::release_memory_special(char* base, size_t bytes) {
3227  // detaching the SHM segment will also delete it, see reserve_memory_special()
3228  int rslt = shmdt(base);
3229  if (rslt == 0) {
3230    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3231    MemTracker::record_virtual_memory_release((address)base, bytes);
3232    return true;
3233  } else {
3234   return false;
3235  }
3236}
3237
3238size_t os::large_page_size() {
3239  return _large_page_size;
3240}
3241
3242// HugeTLBFS allows application to commit large page memory on demand;
3243// with SysV SHM the entire memory region must be allocated as shared
3244// memory.
3245bool os::can_commit_large_page_memory() {
3246  return UseHugeTLBFS;
3247}
3248
3249bool os::can_execute_large_page_memory() {
3250  return UseHugeTLBFS;
3251}
3252
3253// Reserve memory at an arbitrary address, only if that area is
3254// available (and not reserved for something else).
3255
3256char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3257  const int max_tries = 10;
3258  char* base[max_tries];
3259  size_t size[max_tries];
3260  const size_t gap = 0x000000;
3261
3262  // Assert only that the size is a multiple of the page size, since
3263  // that's all that mmap requires, and since that's all we really know
3264  // about at this low abstraction level.  If we need higher alignment,
3265  // we can either pass an alignment to this method or verify alignment
3266  // in one of the methods further up the call chain.  See bug 5044738.
3267  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3268
3269  // Repeatedly allocate blocks until the block is allocated at the
3270  // right spot. Give up after max_tries. Note that reserve_memory() will
3271  // automatically update _highest_vm_reserved_address if the call is
3272  // successful. The variable tracks the highest memory address every reserved
3273  // by JVM. It is used to detect heap-stack collision if running with
3274  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3275  // space than needed, it could confuse the collision detecting code. To
3276  // solve the problem, save current _highest_vm_reserved_address and
3277  // calculate the correct value before return.
3278  address old_highest = _highest_vm_reserved_address;
3279
3280  // Linux mmap allows caller to pass an address as hint; give it a try first,
3281  // if kernel honors the hint then we can return immediately.
3282  char * addr = anon_mmap(requested_addr, bytes, false);
3283  if (addr == requested_addr) {
3284     return requested_addr;
3285  }
3286
3287  if (addr != NULL) {
3288     // mmap() is successful but it fails to reserve at the requested address
3289     anon_munmap(addr, bytes);
3290  }
3291
3292  int i;
3293  for (i = 0; i < max_tries; ++i) {
3294    base[i] = reserve_memory(bytes);
3295
3296    if (base[i] != NULL) {
3297      // Is this the block we wanted?
3298      if (base[i] == requested_addr) {
3299        size[i] = bytes;
3300        break;
3301      }
3302
3303      // Does this overlap the block we wanted? Give back the overlapped
3304      // parts and try again.
3305
3306      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3307      if (top_overlap >= 0 && top_overlap < bytes) {
3308        unmap_memory(base[i], top_overlap);
3309        base[i] += top_overlap;
3310        size[i] = bytes - top_overlap;
3311      } else {
3312        size_t bottom_overlap = base[i] + bytes - requested_addr;
3313        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3314          unmap_memory(requested_addr, bottom_overlap);
3315          size[i] = bytes - bottom_overlap;
3316        } else {
3317          size[i] = bytes;
3318        }
3319      }
3320    }
3321  }
3322
3323  // Give back the unused reserved pieces.
3324
3325  for (int j = 0; j < i; ++j) {
3326    if (base[j] != NULL) {
3327      unmap_memory(base[j], size[j]);
3328    }
3329  }
3330
3331  if (i < max_tries) {
3332    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3333    return requested_addr;
3334  } else {
3335    _highest_vm_reserved_address = old_highest;
3336    return NULL;
3337  }
3338}
3339
3340size_t os::read(int fd, void *buf, unsigned int nBytes) {
3341  return ::read(fd, buf, nBytes);
3342}
3343
3344// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3345// Solaris uses poll(), linux uses park().
3346// Poll() is likely a better choice, assuming that Thread.interrupt()
3347// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3348// SIGSEGV, see 4355769.
3349
3350int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3351  assert(thread == Thread::current(),  "thread consistency check");
3352
3353  ParkEvent * const slp = thread->_SleepEvent ;
3354  slp->reset() ;
3355  OrderAccess::fence() ;
3356
3357  if (interruptible) {
3358    jlong prevtime = javaTimeNanos();
3359
3360    for (;;) {
3361      if (os::is_interrupted(thread, true)) {
3362        return OS_INTRPT;
3363      }
3364
3365      jlong newtime = javaTimeNanos();
3366
3367      if (newtime - prevtime < 0) {
3368        // time moving backwards, should only happen if no monotonic clock
3369        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3370        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3371      } else {
3372        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3373      }
3374
3375      if(millis <= 0) {
3376        return OS_OK;
3377      }
3378
3379      prevtime = newtime;
3380
3381      {
3382        assert(thread->is_Java_thread(), "sanity check");
3383        JavaThread *jt = (JavaThread *) thread;
3384        ThreadBlockInVM tbivm(jt);
3385        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3386
3387        jt->set_suspend_equivalent();
3388        // cleared by handle_special_suspend_equivalent_condition() or
3389        // java_suspend_self() via check_and_wait_while_suspended()
3390
3391        slp->park(millis);
3392
3393        // were we externally suspended while we were waiting?
3394        jt->check_and_wait_while_suspended();
3395      }
3396    }
3397  } else {
3398    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3399    jlong prevtime = javaTimeNanos();
3400
3401    for (;;) {
3402      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3403      // the 1st iteration ...
3404      jlong newtime = javaTimeNanos();
3405
3406      if (newtime - prevtime < 0) {
3407        // time moving backwards, should only happen if no monotonic clock
3408        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3409        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3410      } else {
3411        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3412      }
3413
3414      if(millis <= 0) break ;
3415
3416      prevtime = newtime;
3417      slp->park(millis);
3418    }
3419    return OS_OK ;
3420  }
3421}
3422
3423int os::naked_sleep() {
3424  // %% make the sleep time an integer flag. for now use 1 millisec.
3425  return os::sleep(Thread::current(), 1, false);
3426}
3427
3428// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3429void os::infinite_sleep() {
3430  while (true) {    // sleep forever ...
3431    ::sleep(100);   // ... 100 seconds at a time
3432  }
3433}
3434
3435// Used to convert frequent JVM_Yield() to nops
3436bool os::dont_yield() {
3437  return DontYieldALot;
3438}
3439
3440void os::yield() {
3441  sched_yield();
3442}
3443
3444os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3445
3446void os::yield_all(int attempts) {
3447  // Yields to all threads, including threads with lower priorities
3448  // Threads on Linux are all with same priority. The Solaris style
3449  // os::yield_all() with nanosleep(1ms) is not necessary.
3450  sched_yield();
3451}
3452
3453// Called from the tight loops to possibly influence time-sharing heuristics
3454void os::loop_breaker(int attempts) {
3455  os::yield_all(attempts);
3456}
3457
3458////////////////////////////////////////////////////////////////////////////////
3459// thread priority support
3460
3461// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3462// only supports dynamic priority, static priority must be zero. For real-time
3463// applications, Linux supports SCHED_RR which allows static priority (1-99).
3464// However, for large multi-threaded applications, SCHED_RR is not only slower
3465// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3466// of 5 runs - Sep 2005).
3467//
3468// The following code actually changes the niceness of kernel-thread/LWP. It
3469// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3470// not the entire user process, and user level threads are 1:1 mapped to kernel
3471// threads. It has always been the case, but could change in the future. For
3472// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3473// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3474
3475int os::java_to_os_priority[CriticalPriority + 1] = {
3476  19,              // 0 Entry should never be used
3477
3478   4,              // 1 MinPriority
3479   3,              // 2
3480   2,              // 3
3481
3482   1,              // 4
3483   0,              // 5 NormPriority
3484  -1,              // 6
3485
3486  -2,              // 7
3487  -3,              // 8
3488  -4,              // 9 NearMaxPriority
3489
3490  -5,              // 10 MaxPriority
3491
3492  -5               // 11 CriticalPriority
3493};
3494
3495static int prio_init() {
3496  if (ThreadPriorityPolicy == 1) {
3497    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3498    // if effective uid is not root. Perhaps, a more elegant way of doing
3499    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3500    if (geteuid() != 0) {
3501      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3502        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3503      }
3504      ThreadPriorityPolicy = 0;
3505    }
3506  }
3507  if (UseCriticalJavaThreadPriority) {
3508    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3509  }
3510  return 0;
3511}
3512
3513OSReturn os::set_native_priority(Thread* thread, int newpri) {
3514  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3515
3516  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3517  return (ret == 0) ? OS_OK : OS_ERR;
3518}
3519
3520OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3521  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3522    *priority_ptr = java_to_os_priority[NormPriority];
3523    return OS_OK;
3524  }
3525
3526  errno = 0;
3527  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3528  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3529}
3530
3531// Hint to the underlying OS that a task switch would not be good.
3532// Void return because it's a hint and can fail.
3533void os::hint_no_preempt() {}
3534
3535////////////////////////////////////////////////////////////////////////////////
3536// suspend/resume support
3537
3538//  the low-level signal-based suspend/resume support is a remnant from the
3539//  old VM-suspension that used to be for java-suspension, safepoints etc,
3540//  within hotspot. Now there is a single use-case for this:
3541//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3542//      that runs in the watcher thread.
3543//  The remaining code is greatly simplified from the more general suspension
3544//  code that used to be used.
3545//
3546//  The protocol is quite simple:
3547//  - suspend:
3548//      - sends a signal to the target thread
3549//      - polls the suspend state of the osthread using a yield loop
3550//      - target thread signal handler (SR_handler) sets suspend state
3551//        and blocks in sigsuspend until continued
3552//  - resume:
3553//      - sets target osthread state to continue
3554//      - sends signal to end the sigsuspend loop in the SR_handler
3555//
3556//  Note that the SR_lock plays no role in this suspend/resume protocol.
3557//
3558
3559static void resume_clear_context(OSThread *osthread) {
3560  osthread->set_ucontext(NULL);
3561  osthread->set_siginfo(NULL);
3562
3563  // notify the suspend action is completed, we have now resumed
3564  osthread->sr.clear_suspended();
3565}
3566
3567static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3568  osthread->set_ucontext(context);
3569  osthread->set_siginfo(siginfo);
3570}
3571
3572//
3573// Handler function invoked when a thread's execution is suspended or
3574// resumed. We have to be careful that only async-safe functions are
3575// called here (Note: most pthread functions are not async safe and
3576// should be avoided.)
3577//
3578// Note: sigwait() is a more natural fit than sigsuspend() from an
3579// interface point of view, but sigwait() prevents the signal hander
3580// from being run. libpthread would get very confused by not having
3581// its signal handlers run and prevents sigwait()'s use with the
3582// mutex granting granting signal.
3583//
3584// Currently only ever called on the VMThread
3585//
3586static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3587  // Save and restore errno to avoid confusing native code with EINTR
3588  // after sigsuspend.
3589  int old_errno = errno;
3590
3591  Thread* thread = Thread::current();
3592  OSThread* osthread = thread->osthread();
3593  assert(thread->is_VM_thread(), "Must be VMThread");
3594  // read current suspend action
3595  int action = osthread->sr.suspend_action();
3596  if (action == os::Linux::SuspendResume::SR_SUSPEND) {
3597    suspend_save_context(osthread, siginfo, context);
3598
3599    // Notify the suspend action is about to be completed. do_suspend()
3600    // waits until SR_SUSPENDED is set and then returns. We will wait
3601    // here for a resume signal and that completes the suspend-other
3602    // action. do_suspend/do_resume is always called as a pair from
3603    // the same thread - so there are no races
3604
3605    // notify the caller
3606    osthread->sr.set_suspended();
3607
3608    sigset_t suspend_set;  // signals for sigsuspend()
3609
3610    // get current set of blocked signals and unblock resume signal
3611    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3612    sigdelset(&suspend_set, SR_signum);
3613
3614    // wait here until we are resumed
3615    do {
3616      sigsuspend(&suspend_set);
3617      // ignore all returns until we get a resume signal
3618    } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
3619
3620    resume_clear_context(osthread);
3621
3622  } else {
3623    assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
3624    // nothing special to do - just leave the handler
3625  }
3626
3627  errno = old_errno;
3628}
3629
3630
3631static int SR_initialize() {
3632  struct sigaction act;
3633  char *s;
3634  /* Get signal number to use for suspend/resume */
3635  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3636    int sig = ::strtol(s, 0, 10);
3637    if (sig > 0 || sig < _NSIG) {
3638        SR_signum = sig;
3639    }
3640  }
3641
3642  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3643        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3644
3645  sigemptyset(&SR_sigset);
3646  sigaddset(&SR_sigset, SR_signum);
3647
3648  /* Set up signal handler for suspend/resume */
3649  act.sa_flags = SA_RESTART|SA_SIGINFO;
3650  act.sa_handler = (void (*)(int)) SR_handler;
3651
3652  // SR_signum is blocked by default.
3653  // 4528190 - We also need to block pthread restart signal (32 on all
3654  // supported Linux platforms). Note that LinuxThreads need to block
3655  // this signal for all threads to work properly. So we don't have
3656  // to use hard-coded signal number when setting up the mask.
3657  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3658
3659  if (sigaction(SR_signum, &act, 0) == -1) {
3660    return -1;
3661  }
3662
3663  // Save signal flag
3664  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3665  return 0;
3666}
3667
3668
3669// returns true on success and false on error - really an error is fatal
3670// but this seems the normal response to library errors
3671static bool do_suspend(OSThread* osthread) {
3672  // mark as suspended and send signal
3673  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
3674  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3675  assert_status(status == 0, status, "pthread_kill");
3676
3677  // check status and wait until notified of suspension
3678  if (status == 0) {
3679    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3680      os::yield_all(i);
3681    }
3682    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3683    return true;
3684  }
3685  else {
3686    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3687    return false;
3688  }
3689}
3690
3691static void do_resume(OSThread* osthread) {
3692  assert(osthread->sr.is_suspended(), "thread should be suspended");
3693  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
3694
3695  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3696  assert_status(status == 0, status, "pthread_kill");
3697  // check status and wait unit notified of resumption
3698  if (status == 0) {
3699    for (int i = 0; osthread->sr.is_suspended(); i++) {
3700      os::yield_all(i);
3701    }
3702  }
3703  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3704}
3705
3706////////////////////////////////////////////////////////////////////////////////
3707// interrupt support
3708
3709void os::interrupt(Thread* thread) {
3710  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3711    "possibility of dangling Thread pointer");
3712
3713  OSThread* osthread = thread->osthread();
3714
3715  if (!osthread->interrupted()) {
3716    osthread->set_interrupted(true);
3717    // More than one thread can get here with the same value of osthread,
3718    // resulting in multiple notifications.  We do, however, want the store
3719    // to interrupted() to be visible to other threads before we execute unpark().
3720    OrderAccess::fence();
3721    ParkEvent * const slp = thread->_SleepEvent ;
3722    if (slp != NULL) slp->unpark() ;
3723  }
3724
3725  // For JSR166. Unpark even if interrupt status already was set
3726  if (thread->is_Java_thread())
3727    ((JavaThread*)thread)->parker()->unpark();
3728
3729  ParkEvent * ev = thread->_ParkEvent ;
3730  if (ev != NULL) ev->unpark() ;
3731
3732}
3733
3734bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3735  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3736    "possibility of dangling Thread pointer");
3737
3738  OSThread* osthread = thread->osthread();
3739
3740  bool interrupted = osthread->interrupted();
3741
3742  if (interrupted && clear_interrupted) {
3743    osthread->set_interrupted(false);
3744    // consider thread->_SleepEvent->reset() ... optional optimization
3745  }
3746
3747  return interrupted;
3748}
3749
3750///////////////////////////////////////////////////////////////////////////////////
3751// signal handling (except suspend/resume)
3752
3753// This routine may be used by user applications as a "hook" to catch signals.
3754// The user-defined signal handler must pass unrecognized signals to this
3755// routine, and if it returns true (non-zero), then the signal handler must
3756// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3757// routine will never retun false (zero), but instead will execute a VM panic
3758// routine kill the process.
3759//
3760// If this routine returns false, it is OK to call it again.  This allows
3761// the user-defined signal handler to perform checks either before or after
3762// the VM performs its own checks.  Naturally, the user code would be making
3763// a serious error if it tried to handle an exception (such as a null check
3764// or breakpoint) that the VM was generating for its own correct operation.
3765//
3766// This routine may recognize any of the following kinds of signals:
3767//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3768// It should be consulted by handlers for any of those signals.
3769//
3770// The caller of this routine must pass in the three arguments supplied
3771// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3772// field of the structure passed to sigaction().  This routine assumes that
3773// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3774//
3775// Note that the VM will print warnings if it detects conflicting signal
3776// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3777//
3778extern "C" JNIEXPORT int
3779JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3780                        void* ucontext, int abort_if_unrecognized);
3781
3782void signalHandler(int sig, siginfo_t* info, void* uc) {
3783  assert(info != NULL && uc != NULL, "it must be old kernel");
3784  int orig_errno = errno;  // Preserve errno value over signal handler.
3785  JVM_handle_linux_signal(sig, info, uc, true);
3786  errno = orig_errno;
3787}
3788
3789
3790// This boolean allows users to forward their own non-matching signals
3791// to JVM_handle_linux_signal, harmlessly.
3792bool os::Linux::signal_handlers_are_installed = false;
3793
3794// For signal-chaining
3795struct sigaction os::Linux::sigact[MAXSIGNUM];
3796unsigned int os::Linux::sigs = 0;
3797bool os::Linux::libjsig_is_loaded = false;
3798typedef struct sigaction *(*get_signal_t)(int);
3799get_signal_t os::Linux::get_signal_action = NULL;
3800
3801struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3802  struct sigaction *actp = NULL;
3803
3804  if (libjsig_is_loaded) {
3805    // Retrieve the old signal handler from libjsig
3806    actp = (*get_signal_action)(sig);
3807  }
3808  if (actp == NULL) {
3809    // Retrieve the preinstalled signal handler from jvm
3810    actp = get_preinstalled_handler(sig);
3811  }
3812
3813  return actp;
3814}
3815
3816static bool call_chained_handler(struct sigaction *actp, int sig,
3817                                 siginfo_t *siginfo, void *context) {
3818  // Call the old signal handler
3819  if (actp->sa_handler == SIG_DFL) {
3820    // It's more reasonable to let jvm treat it as an unexpected exception
3821    // instead of taking the default action.
3822    return false;
3823  } else if (actp->sa_handler != SIG_IGN) {
3824    if ((actp->sa_flags & SA_NODEFER) == 0) {
3825      // automaticlly block the signal
3826      sigaddset(&(actp->sa_mask), sig);
3827    }
3828
3829    sa_handler_t hand;
3830    sa_sigaction_t sa;
3831    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3832    // retrieve the chained handler
3833    if (siginfo_flag_set) {
3834      sa = actp->sa_sigaction;
3835    } else {
3836      hand = actp->sa_handler;
3837    }
3838
3839    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3840      actp->sa_handler = SIG_DFL;
3841    }
3842
3843    // try to honor the signal mask
3844    sigset_t oset;
3845    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3846
3847    // call into the chained handler
3848    if (siginfo_flag_set) {
3849      (*sa)(sig, siginfo, context);
3850    } else {
3851      (*hand)(sig);
3852    }
3853
3854    // restore the signal mask
3855    pthread_sigmask(SIG_SETMASK, &oset, 0);
3856  }
3857  // Tell jvm's signal handler the signal is taken care of.
3858  return true;
3859}
3860
3861bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3862  bool chained = false;
3863  // signal-chaining
3864  if (UseSignalChaining) {
3865    struct sigaction *actp = get_chained_signal_action(sig);
3866    if (actp != NULL) {
3867      chained = call_chained_handler(actp, sig, siginfo, context);
3868    }
3869  }
3870  return chained;
3871}
3872
3873struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3874  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3875    return &sigact[sig];
3876  }
3877  return NULL;
3878}
3879
3880void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3881  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3882  sigact[sig] = oldAct;
3883  sigs |= (unsigned int)1 << sig;
3884}
3885
3886// for diagnostic
3887int os::Linux::sigflags[MAXSIGNUM];
3888
3889int os::Linux::get_our_sigflags(int sig) {
3890  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3891  return sigflags[sig];
3892}
3893
3894void os::Linux::set_our_sigflags(int sig, int flags) {
3895  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3896  sigflags[sig] = flags;
3897}
3898
3899void os::Linux::set_signal_handler(int sig, bool set_installed) {
3900  // Check for overwrite.
3901  struct sigaction oldAct;
3902  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3903
3904  void* oldhand = oldAct.sa_sigaction
3905                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3906                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3907  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3908      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3909      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3910    if (AllowUserSignalHandlers || !set_installed) {
3911      // Do not overwrite; user takes responsibility to forward to us.
3912      return;
3913    } else if (UseSignalChaining) {
3914      // save the old handler in jvm
3915      save_preinstalled_handler(sig, oldAct);
3916      // libjsig also interposes the sigaction() call below and saves the
3917      // old sigaction on it own.
3918    } else {
3919      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3920                    "%#lx for signal %d.", (long)oldhand, sig));
3921    }
3922  }
3923
3924  struct sigaction sigAct;
3925  sigfillset(&(sigAct.sa_mask));
3926  sigAct.sa_handler = SIG_DFL;
3927  if (!set_installed) {
3928    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3929  } else {
3930    sigAct.sa_sigaction = signalHandler;
3931    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3932  }
3933  // Save flags, which are set by ours
3934  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3935  sigflags[sig] = sigAct.sa_flags;
3936
3937  int ret = sigaction(sig, &sigAct, &oldAct);
3938  assert(ret == 0, "check");
3939
3940  void* oldhand2  = oldAct.sa_sigaction
3941                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3942                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3943  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3944}
3945
3946// install signal handlers for signals that HotSpot needs to
3947// handle in order to support Java-level exception handling.
3948
3949void os::Linux::install_signal_handlers() {
3950  if (!signal_handlers_are_installed) {
3951    signal_handlers_are_installed = true;
3952
3953    // signal-chaining
3954    typedef void (*signal_setting_t)();
3955    signal_setting_t begin_signal_setting = NULL;
3956    signal_setting_t end_signal_setting = NULL;
3957    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3958                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3959    if (begin_signal_setting != NULL) {
3960      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3961                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3962      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3963                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3964      libjsig_is_loaded = true;
3965      assert(UseSignalChaining, "should enable signal-chaining");
3966    }
3967    if (libjsig_is_loaded) {
3968      // Tell libjsig jvm is setting signal handlers
3969      (*begin_signal_setting)();
3970    }
3971
3972    set_signal_handler(SIGSEGV, true);
3973    set_signal_handler(SIGPIPE, true);
3974    set_signal_handler(SIGBUS, true);
3975    set_signal_handler(SIGILL, true);
3976    set_signal_handler(SIGFPE, true);
3977    set_signal_handler(SIGXFSZ, true);
3978
3979    if (libjsig_is_loaded) {
3980      // Tell libjsig jvm finishes setting signal handlers
3981      (*end_signal_setting)();
3982    }
3983
3984    // We don't activate signal checker if libjsig is in place, we trust ourselves
3985    // and if UserSignalHandler is installed all bets are off.
3986    // Log that signal checking is off only if -verbose:jni is specified.
3987    if (CheckJNICalls) {
3988      if (libjsig_is_loaded) {
3989        if (PrintJNIResolving) {
3990          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3991        }
3992        check_signals = false;
3993      }
3994      if (AllowUserSignalHandlers) {
3995        if (PrintJNIResolving) {
3996          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3997        }
3998        check_signals = false;
3999      }
4000    }
4001  }
4002}
4003
4004// This is the fastest way to get thread cpu time on Linux.
4005// Returns cpu time (user+sys) for any thread, not only for current.
4006// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4007// It might work on 2.6.10+ with a special kernel/glibc patch.
4008// For reference, please, see IEEE Std 1003.1-2004:
4009//   http://www.unix.org/single_unix_specification
4010
4011jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4012  struct timespec tp;
4013  int rc = os::Linux::clock_gettime(clockid, &tp);
4014  assert(rc == 0, "clock_gettime is expected to return 0 code");
4015
4016  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4017}
4018
4019/////
4020// glibc on Linux platform uses non-documented flag
4021// to indicate, that some special sort of signal
4022// trampoline is used.
4023// We will never set this flag, and we should
4024// ignore this flag in our diagnostic
4025#ifdef SIGNIFICANT_SIGNAL_MASK
4026#undef SIGNIFICANT_SIGNAL_MASK
4027#endif
4028#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4029
4030static const char* get_signal_handler_name(address handler,
4031                                           char* buf, int buflen) {
4032  int offset;
4033  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4034  if (found) {
4035    // skip directory names
4036    const char *p1, *p2;
4037    p1 = buf;
4038    size_t len = strlen(os::file_separator());
4039    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4040    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4041  } else {
4042    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4043  }
4044  return buf;
4045}
4046
4047static void print_signal_handler(outputStream* st, int sig,
4048                                 char* buf, size_t buflen) {
4049  struct sigaction sa;
4050
4051  sigaction(sig, NULL, &sa);
4052
4053  // See comment for SIGNIFICANT_SIGNAL_MASK define
4054  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4055
4056  st->print("%s: ", os::exception_name(sig, buf, buflen));
4057
4058  address handler = (sa.sa_flags & SA_SIGINFO)
4059    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4060    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4061
4062  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4063    st->print("SIG_DFL");
4064  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4065    st->print("SIG_IGN");
4066  } else {
4067    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4068  }
4069
4070  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4071
4072  address rh = VMError::get_resetted_sighandler(sig);
4073  // May be, handler was resetted by VMError?
4074  if(rh != NULL) {
4075    handler = rh;
4076    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4077  }
4078
4079  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4080
4081  // Check: is it our handler?
4082  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4083     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4084    // It is our signal handler
4085    // check for flags, reset system-used one!
4086    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4087      st->print(
4088                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4089                os::Linux::get_our_sigflags(sig));
4090    }
4091  }
4092  st->cr();
4093}
4094
4095
4096#define DO_SIGNAL_CHECK(sig) \
4097  if (!sigismember(&check_signal_done, sig)) \
4098    os::Linux::check_signal_handler(sig)
4099
4100// This method is a periodic task to check for misbehaving JNI applications
4101// under CheckJNI, we can add any periodic checks here
4102
4103void os::run_periodic_checks() {
4104
4105  if (check_signals == false) return;
4106
4107  // SEGV and BUS if overridden could potentially prevent
4108  // generation of hs*.log in the event of a crash, debugging
4109  // such a case can be very challenging, so we absolutely
4110  // check the following for a good measure:
4111  DO_SIGNAL_CHECK(SIGSEGV);
4112  DO_SIGNAL_CHECK(SIGILL);
4113  DO_SIGNAL_CHECK(SIGFPE);
4114  DO_SIGNAL_CHECK(SIGBUS);
4115  DO_SIGNAL_CHECK(SIGPIPE);
4116  DO_SIGNAL_CHECK(SIGXFSZ);
4117
4118
4119  // ReduceSignalUsage allows the user to override these handlers
4120  // see comments at the very top and jvm_solaris.h
4121  if (!ReduceSignalUsage) {
4122    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4123    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4124    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4125    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4126  }
4127
4128  DO_SIGNAL_CHECK(SR_signum);
4129  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4130}
4131
4132typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4133
4134static os_sigaction_t os_sigaction = NULL;
4135
4136void os::Linux::check_signal_handler(int sig) {
4137  char buf[O_BUFLEN];
4138  address jvmHandler = NULL;
4139
4140
4141  struct sigaction act;
4142  if (os_sigaction == NULL) {
4143    // only trust the default sigaction, in case it has been interposed
4144    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4145    if (os_sigaction == NULL) return;
4146  }
4147
4148  os_sigaction(sig, (struct sigaction*)NULL, &act);
4149
4150
4151  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4152
4153  address thisHandler = (act.sa_flags & SA_SIGINFO)
4154    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4155    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4156
4157
4158  switch(sig) {
4159  case SIGSEGV:
4160  case SIGBUS:
4161  case SIGFPE:
4162  case SIGPIPE:
4163  case SIGILL:
4164  case SIGXFSZ:
4165    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4166    break;
4167
4168  case SHUTDOWN1_SIGNAL:
4169  case SHUTDOWN2_SIGNAL:
4170  case SHUTDOWN3_SIGNAL:
4171  case BREAK_SIGNAL:
4172    jvmHandler = (address)user_handler();
4173    break;
4174
4175  case INTERRUPT_SIGNAL:
4176    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4177    break;
4178
4179  default:
4180    if (sig == SR_signum) {
4181      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4182    } else {
4183      return;
4184    }
4185    break;
4186  }
4187
4188  if (thisHandler != jvmHandler) {
4189    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4190    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4191    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4192    // No need to check this sig any longer
4193    sigaddset(&check_signal_done, sig);
4194  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4195    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4196    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4197    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4198    // No need to check this sig any longer
4199    sigaddset(&check_signal_done, sig);
4200  }
4201
4202  // Dump all the signal
4203  if (sigismember(&check_signal_done, sig)) {
4204    print_signal_handlers(tty, buf, O_BUFLEN);
4205  }
4206}
4207
4208extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4209
4210extern bool signal_name(int signo, char* buf, size_t len);
4211
4212const char* os::exception_name(int exception_code, char* buf, size_t size) {
4213  if (0 < exception_code && exception_code <= SIGRTMAX) {
4214    // signal
4215    if (!signal_name(exception_code, buf, size)) {
4216      jio_snprintf(buf, size, "SIG%d", exception_code);
4217    }
4218    return buf;
4219  } else {
4220    return NULL;
4221  }
4222}
4223
4224// this is called _before_ the most of global arguments have been parsed
4225void os::init(void) {
4226  char dummy;   /* used to get a guess on initial stack address */
4227//  first_hrtime = gethrtime();
4228
4229  // With LinuxThreads the JavaMain thread pid (primordial thread)
4230  // is different than the pid of the java launcher thread.
4231  // So, on Linux, the launcher thread pid is passed to the VM
4232  // via the sun.java.launcher.pid property.
4233  // Use this property instead of getpid() if it was correctly passed.
4234  // See bug 6351349.
4235  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4236
4237  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4238
4239  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4240
4241  init_random(1234567);
4242
4243  ThreadCritical::initialize();
4244
4245  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4246  if (Linux::page_size() == -1) {
4247    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4248                  strerror(errno)));
4249  }
4250  init_page_sizes((size_t) Linux::page_size());
4251
4252  Linux::initialize_system_info();
4253
4254  // main_thread points to the aboriginal thread
4255  Linux::_main_thread = pthread_self();
4256
4257  Linux::clock_init();
4258  initial_time_count = os::elapsed_counter();
4259  pthread_mutex_init(&dl_mutex, NULL);
4260
4261  // If the pagesize of the VM is greater than 8K determine the appropriate
4262  // number of initial guard pages.  The user can change this with the
4263  // command line arguments, if needed.
4264  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4265    StackYellowPages = 1;
4266    StackRedPages = 1;
4267    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4268  }
4269}
4270
4271// To install functions for atexit system call
4272extern "C" {
4273  static void perfMemory_exit_helper() {
4274    perfMemory_exit();
4275  }
4276}
4277
4278// this is called _after_ the global arguments have been parsed
4279jint os::init_2(void)
4280{
4281  Linux::fast_thread_clock_init();
4282
4283  // Allocate a single page and mark it as readable for safepoint polling
4284  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4285  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4286
4287  os::set_polling_page( polling_page );
4288
4289#ifndef PRODUCT
4290  if(Verbose && PrintMiscellaneous)
4291    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4292#endif
4293
4294  if (!UseMembar) {
4295    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4296    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4297    os::set_memory_serialize_page( mem_serialize_page );
4298
4299#ifndef PRODUCT
4300    if(Verbose && PrintMiscellaneous)
4301      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4302#endif
4303  }
4304
4305  os::large_page_init();
4306
4307  // initialize suspend/resume support - must do this before signal_sets_init()
4308  if (SR_initialize() != 0) {
4309    perror("SR_initialize failed");
4310    return JNI_ERR;
4311  }
4312
4313  Linux::signal_sets_init();
4314  Linux::install_signal_handlers();
4315
4316  // Check minimum allowable stack size for thread creation and to initialize
4317  // the java system classes, including StackOverflowError - depends on page
4318  // size.  Add a page for compiler2 recursion in main thread.
4319  // Add in 2*BytesPerWord times page size to account for VM stack during
4320  // class initialization depending on 32 or 64 bit VM.
4321  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4322            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4323                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4324
4325  size_t threadStackSizeInBytes = ThreadStackSize * K;
4326  if (threadStackSizeInBytes != 0 &&
4327      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4328        tty->print_cr("\nThe stack size specified is too small, "
4329                      "Specify at least %dk",
4330                      os::Linux::min_stack_allowed/ K);
4331        return JNI_ERR;
4332  }
4333
4334  // Make the stack size a multiple of the page size so that
4335  // the yellow/red zones can be guarded.
4336  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4337        vm_page_size()));
4338
4339  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4340
4341  Linux::libpthread_init();
4342  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4343     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4344          Linux::glibc_version(), Linux::libpthread_version(),
4345          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4346  }
4347
4348  if (UseNUMA) {
4349    if (!Linux::libnuma_init()) {
4350      UseNUMA = false;
4351    } else {
4352      if ((Linux::numa_max_node() < 1)) {
4353        // There's only one node(they start from 0), disable NUMA.
4354        UseNUMA = false;
4355      }
4356    }
4357    // With SHM large pages we cannot uncommit a page, so there's not way
4358    // we can make the adaptive lgrp chunk resizing work. If the user specified
4359    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4360    // disable adaptive resizing.
4361    if (UseNUMA && UseLargePages && UseSHM) {
4362      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4363        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4364          UseLargePages = false;
4365        } else {
4366          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4367          UseAdaptiveSizePolicy = false;
4368          UseAdaptiveNUMAChunkSizing = false;
4369        }
4370      } else {
4371        UseNUMA = false;
4372      }
4373    }
4374    if (!UseNUMA && ForceNUMA) {
4375      UseNUMA = true;
4376    }
4377  }
4378
4379  if (MaxFDLimit) {
4380    // set the number of file descriptors to max. print out error
4381    // if getrlimit/setrlimit fails but continue regardless.
4382    struct rlimit nbr_files;
4383    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4384    if (status != 0) {
4385      if (PrintMiscellaneous && (Verbose || WizardMode))
4386        perror("os::init_2 getrlimit failed");
4387    } else {
4388      nbr_files.rlim_cur = nbr_files.rlim_max;
4389      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4390      if (status != 0) {
4391        if (PrintMiscellaneous && (Verbose || WizardMode))
4392          perror("os::init_2 setrlimit failed");
4393      }
4394    }
4395  }
4396
4397  // Initialize lock used to serialize thread creation (see os::create_thread)
4398  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4399
4400  // at-exit methods are called in the reverse order of their registration.
4401  // atexit functions are called on return from main or as a result of a
4402  // call to exit(3C). There can be only 32 of these functions registered
4403  // and atexit() does not set errno.
4404
4405  if (PerfAllowAtExitRegistration) {
4406    // only register atexit functions if PerfAllowAtExitRegistration is set.
4407    // atexit functions can be delayed until process exit time, which
4408    // can be problematic for embedded VM situations. Embedded VMs should
4409    // call DestroyJavaVM() to assure that VM resources are released.
4410
4411    // note: perfMemory_exit_helper atexit function may be removed in
4412    // the future if the appropriate cleanup code can be added to the
4413    // VM_Exit VMOperation's doit method.
4414    if (atexit(perfMemory_exit_helper) != 0) {
4415      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4416    }
4417  }
4418
4419  // initialize thread priority policy
4420  prio_init();
4421
4422  return JNI_OK;
4423}
4424
4425// this is called at the end of vm_initialization
4426void os::init_3(void)
4427{
4428#ifdef JAVASE_EMBEDDED
4429  // Start the MemNotifyThread
4430  if (LowMemoryProtection) {
4431    MemNotifyThread::start();
4432  }
4433  return;
4434#endif
4435}
4436
4437// Mark the polling page as unreadable
4438void os::make_polling_page_unreadable(void) {
4439  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4440    fatal("Could not disable polling page");
4441};
4442
4443// Mark the polling page as readable
4444void os::make_polling_page_readable(void) {
4445  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4446    fatal("Could not enable polling page");
4447  }
4448};
4449
4450int os::active_processor_count() {
4451  // Linux doesn't yet have a (official) notion of processor sets,
4452  // so just return the number of online processors.
4453  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4454  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4455  return online_cpus;
4456}
4457
4458void os::set_native_thread_name(const char *name) {
4459  // Not yet implemented.
4460  return;
4461}
4462
4463bool os::distribute_processes(uint length, uint* distribution) {
4464  // Not yet implemented.
4465  return false;
4466}
4467
4468bool os::bind_to_processor(uint processor_id) {
4469  // Not yet implemented.
4470  return false;
4471}
4472
4473///
4474
4475// Suspends the target using the signal mechanism and then grabs the PC before
4476// resuming the target. Used by the flat-profiler only
4477ExtendedPC os::get_thread_pc(Thread* thread) {
4478  // Make sure that it is called by the watcher for the VMThread
4479  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4480  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4481
4482  ExtendedPC epc;
4483
4484  OSThread* osthread = thread->osthread();
4485  if (do_suspend(osthread)) {
4486    if (osthread->ucontext() != NULL) {
4487      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4488    } else {
4489      // NULL context is unexpected, double-check this is the VMThread
4490      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4491    }
4492    do_resume(osthread);
4493  }
4494  // failure means pthread_kill failed for some reason - arguably this is
4495  // a fatal problem, but such problems are ignored elsewhere
4496
4497  return epc;
4498}
4499
4500int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4501{
4502   if (is_NPTL()) {
4503      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4504   } else {
4505      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4506      // word back to default 64bit precision if condvar is signaled. Java
4507      // wants 53bit precision.  Save and restore current value.
4508      int fpu = get_fpu_control_word();
4509      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4510      set_fpu_control_word(fpu);
4511      return status;
4512   }
4513}
4514
4515////////////////////////////////////////////////////////////////////////////////
4516// debug support
4517
4518bool os::find(address addr, outputStream* st) {
4519  Dl_info dlinfo;
4520  memset(&dlinfo, 0, sizeof(dlinfo));
4521  if (dladdr(addr, &dlinfo)) {
4522    st->print(PTR_FORMAT ": ", addr);
4523    if (dlinfo.dli_sname != NULL) {
4524      st->print("%s+%#x", dlinfo.dli_sname,
4525                 addr - (intptr_t)dlinfo.dli_saddr);
4526    } else if (dlinfo.dli_fname) {
4527      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4528    } else {
4529      st->print("<absolute address>");
4530    }
4531    if (dlinfo.dli_fname) {
4532      st->print(" in %s", dlinfo.dli_fname);
4533    }
4534    if (dlinfo.dli_fbase) {
4535      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4536    }
4537    st->cr();
4538
4539    if (Verbose) {
4540      // decode some bytes around the PC
4541      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4542      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4543      address       lowest = (address) dlinfo.dli_sname;
4544      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4545      if (begin < lowest)  begin = lowest;
4546      Dl_info dlinfo2;
4547      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4548          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4549        end = (address) dlinfo2.dli_saddr;
4550      Disassembler::decode(begin, end, st);
4551    }
4552    return true;
4553  }
4554  return false;
4555}
4556
4557////////////////////////////////////////////////////////////////////////////////
4558// misc
4559
4560// This does not do anything on Linux. This is basically a hook for being
4561// able to use structured exception handling (thread-local exception filters)
4562// on, e.g., Win32.
4563void
4564os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4565                         JavaCallArguments* args, Thread* thread) {
4566  f(value, method, args, thread);
4567}
4568
4569void os::print_statistics() {
4570}
4571
4572int os::message_box(const char* title, const char* message) {
4573  int i;
4574  fdStream err(defaultStream::error_fd());
4575  for (i = 0; i < 78; i++) err.print_raw("=");
4576  err.cr();
4577  err.print_raw_cr(title);
4578  for (i = 0; i < 78; i++) err.print_raw("-");
4579  err.cr();
4580  err.print_raw_cr(message);
4581  for (i = 0; i < 78; i++) err.print_raw("=");
4582  err.cr();
4583
4584  char buf[16];
4585  // Prevent process from exiting upon "read error" without consuming all CPU
4586  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4587
4588  return buf[0] == 'y' || buf[0] == 'Y';
4589}
4590
4591int os::stat(const char *path, struct stat *sbuf) {
4592  char pathbuf[MAX_PATH];
4593  if (strlen(path) > MAX_PATH - 1) {
4594    errno = ENAMETOOLONG;
4595    return -1;
4596  }
4597  os::native_path(strcpy(pathbuf, path));
4598  return ::stat(pathbuf, sbuf);
4599}
4600
4601bool os::check_heap(bool force) {
4602  return true;
4603}
4604
4605int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4606  return ::vsnprintf(buf, count, format, args);
4607}
4608
4609// Is a (classpath) directory empty?
4610bool os::dir_is_empty(const char* path) {
4611  DIR *dir = NULL;
4612  struct dirent *ptr;
4613
4614  dir = opendir(path);
4615  if (dir == NULL) return true;
4616
4617  /* Scan the directory */
4618  bool result = true;
4619  char buf[sizeof(struct dirent) + MAX_PATH];
4620  while (result && (ptr = ::readdir(dir)) != NULL) {
4621    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4622      result = false;
4623    }
4624  }
4625  closedir(dir);
4626  return result;
4627}
4628
4629// This code originates from JDK's sysOpen and open64_w
4630// from src/solaris/hpi/src/system_md.c
4631
4632#ifndef O_DELETE
4633#define O_DELETE 0x10000
4634#endif
4635
4636// Open a file. Unlink the file immediately after open returns
4637// if the specified oflag has the O_DELETE flag set.
4638// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4639
4640int os::open(const char *path, int oflag, int mode) {
4641
4642  if (strlen(path) > MAX_PATH - 1) {
4643    errno = ENAMETOOLONG;
4644    return -1;
4645  }
4646  int fd;
4647  int o_delete = (oflag & O_DELETE);
4648  oflag = oflag & ~O_DELETE;
4649
4650  fd = ::open64(path, oflag, mode);
4651  if (fd == -1) return -1;
4652
4653  //If the open succeeded, the file might still be a directory
4654  {
4655    struct stat64 buf64;
4656    int ret = ::fstat64(fd, &buf64);
4657    int st_mode = buf64.st_mode;
4658
4659    if (ret != -1) {
4660      if ((st_mode & S_IFMT) == S_IFDIR) {
4661        errno = EISDIR;
4662        ::close(fd);
4663        return -1;
4664      }
4665    } else {
4666      ::close(fd);
4667      return -1;
4668    }
4669  }
4670
4671    /*
4672     * All file descriptors that are opened in the JVM and not
4673     * specifically destined for a subprocess should have the
4674     * close-on-exec flag set.  If we don't set it, then careless 3rd
4675     * party native code might fork and exec without closing all
4676     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4677     * UNIXProcess.c), and this in turn might:
4678     *
4679     * - cause end-of-file to fail to be detected on some file
4680     *   descriptors, resulting in mysterious hangs, or
4681     *
4682     * - might cause an fopen in the subprocess to fail on a system
4683     *   suffering from bug 1085341.
4684     *
4685     * (Yes, the default setting of the close-on-exec flag is a Unix
4686     * design flaw)
4687     *
4688     * See:
4689     * 1085341: 32-bit stdio routines should support file descriptors >255
4690     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4691     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4692     */
4693#ifdef FD_CLOEXEC
4694    {
4695        int flags = ::fcntl(fd, F_GETFD);
4696        if (flags != -1)
4697            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4698    }
4699#endif
4700
4701  if (o_delete != 0) {
4702    ::unlink(path);
4703  }
4704  return fd;
4705}
4706
4707
4708// create binary file, rewriting existing file if required
4709int os::create_binary_file(const char* path, bool rewrite_existing) {
4710  int oflags = O_WRONLY | O_CREAT;
4711  if (!rewrite_existing) {
4712    oflags |= O_EXCL;
4713  }
4714  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4715}
4716
4717// return current position of file pointer
4718jlong os::current_file_offset(int fd) {
4719  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4720}
4721
4722// move file pointer to the specified offset
4723jlong os::seek_to_file_offset(int fd, jlong offset) {
4724  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4725}
4726
4727// This code originates from JDK's sysAvailable
4728// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4729
4730int os::available(int fd, jlong *bytes) {
4731  jlong cur, end;
4732  int mode;
4733  struct stat64 buf64;
4734
4735  if (::fstat64(fd, &buf64) >= 0) {
4736    mode = buf64.st_mode;
4737    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4738      /*
4739      * XXX: is the following call interruptible? If so, this might
4740      * need to go through the INTERRUPT_IO() wrapper as for other
4741      * blocking, interruptible calls in this file.
4742      */
4743      int n;
4744      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4745        *bytes = n;
4746        return 1;
4747      }
4748    }
4749  }
4750  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4751    return 0;
4752  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4753    return 0;
4754  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4755    return 0;
4756  }
4757  *bytes = end - cur;
4758  return 1;
4759}
4760
4761int os::socket_available(int fd, jint *pbytes) {
4762  // Linux doc says EINTR not returned, unlike Solaris
4763  int ret = ::ioctl(fd, FIONREAD, pbytes);
4764
4765  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4766  // is expected to return 0 on failure and 1 on success to the jdk.
4767  return (ret < 0) ? 0 : 1;
4768}
4769
4770// Map a block of memory.
4771char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4772                     char *addr, size_t bytes, bool read_only,
4773                     bool allow_exec) {
4774  int prot;
4775  int flags = MAP_PRIVATE;
4776
4777  if (read_only) {
4778    prot = PROT_READ;
4779  } else {
4780    prot = PROT_READ | PROT_WRITE;
4781  }
4782
4783  if (allow_exec) {
4784    prot |= PROT_EXEC;
4785  }
4786
4787  if (addr != NULL) {
4788    flags |= MAP_FIXED;
4789  }
4790
4791  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4792                                     fd, file_offset);
4793  if (mapped_address == MAP_FAILED) {
4794    return NULL;
4795  }
4796  return mapped_address;
4797}
4798
4799
4800// Remap a block of memory.
4801char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4802                       char *addr, size_t bytes, bool read_only,
4803                       bool allow_exec) {
4804  // same as map_memory() on this OS
4805  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4806                        allow_exec);
4807}
4808
4809
4810// Unmap a block of memory.
4811bool os::pd_unmap_memory(char* addr, size_t bytes) {
4812  return munmap(addr, bytes) == 0;
4813}
4814
4815static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4816
4817static clockid_t thread_cpu_clockid(Thread* thread) {
4818  pthread_t tid = thread->osthread()->pthread_id();
4819  clockid_t clockid;
4820
4821  // Get thread clockid
4822  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4823  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4824  return clockid;
4825}
4826
4827// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4828// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4829// of a thread.
4830//
4831// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4832// the fast estimate available on the platform.
4833
4834jlong os::current_thread_cpu_time() {
4835  if (os::Linux::supports_fast_thread_cpu_time()) {
4836    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4837  } else {
4838    // return user + sys since the cost is the same
4839    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4840  }
4841}
4842
4843jlong os::thread_cpu_time(Thread* thread) {
4844  // consistent with what current_thread_cpu_time() returns
4845  if (os::Linux::supports_fast_thread_cpu_time()) {
4846    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4847  } else {
4848    return slow_thread_cpu_time(thread, true /* user + sys */);
4849  }
4850}
4851
4852jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4853  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4854    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4855  } else {
4856    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4857  }
4858}
4859
4860jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4861  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4862    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4863  } else {
4864    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4865  }
4866}
4867
4868//
4869//  -1 on error.
4870//
4871
4872static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4873  static bool proc_task_unchecked = true;
4874  static const char *proc_stat_path = "/proc/%d/stat";
4875  pid_t  tid = thread->osthread()->thread_id();
4876  char *s;
4877  char stat[2048];
4878  int statlen;
4879  char proc_name[64];
4880  int count;
4881  long sys_time, user_time;
4882  char cdummy;
4883  int idummy;
4884  long ldummy;
4885  FILE *fp;
4886
4887  // The /proc/<tid>/stat aggregates per-process usage on
4888  // new Linux kernels 2.6+ where NPTL is supported.
4889  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4890  // See bug 6328462.
4891  // There possibly can be cases where there is no directory
4892  // /proc/self/task, so we check its availability.
4893  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4894    // This is executed only once
4895    proc_task_unchecked = false;
4896    fp = fopen("/proc/self/task", "r");
4897    if (fp != NULL) {
4898      proc_stat_path = "/proc/self/task/%d/stat";
4899      fclose(fp);
4900    }
4901  }
4902
4903  sprintf(proc_name, proc_stat_path, tid);
4904  fp = fopen(proc_name, "r");
4905  if ( fp == NULL ) return -1;
4906  statlen = fread(stat, 1, 2047, fp);
4907  stat[statlen] = '\0';
4908  fclose(fp);
4909
4910  // Skip pid and the command string. Note that we could be dealing with
4911  // weird command names, e.g. user could decide to rename java launcher
4912  // to "java 1.4.2 :)", then the stat file would look like
4913  //                1234 (java 1.4.2 :)) R ... ...
4914  // We don't really need to know the command string, just find the last
4915  // occurrence of ")" and then start parsing from there. See bug 4726580.
4916  s = strrchr(stat, ')');
4917  if (s == NULL ) return -1;
4918
4919  // Skip blank chars
4920  do s++; while (isspace(*s));
4921
4922  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4923                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4924                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4925                 &user_time, &sys_time);
4926  if ( count != 13 ) return -1;
4927  if (user_sys_cpu_time) {
4928    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4929  } else {
4930    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4931  }
4932}
4933
4934void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4935  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4936  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4937  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4938  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4939}
4940
4941void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4942  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4943  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4944  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4945  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4946}
4947
4948bool os::is_thread_cpu_time_supported() {
4949  return true;
4950}
4951
4952// System loadavg support.  Returns -1 if load average cannot be obtained.
4953// Linux doesn't yet have a (official) notion of processor sets,
4954// so just return the system wide load average.
4955int os::loadavg(double loadavg[], int nelem) {
4956  return ::getloadavg(loadavg, nelem);
4957}
4958
4959void os::pause() {
4960  char filename[MAX_PATH];
4961  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4962    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4963  } else {
4964    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4965  }
4966
4967  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4968  if (fd != -1) {
4969    struct stat buf;
4970    ::close(fd);
4971    while (::stat(filename, &buf) == 0) {
4972      (void)::poll(NULL, 0, 100);
4973    }
4974  } else {
4975    jio_fprintf(stderr,
4976      "Could not open pause file '%s', continuing immediately.\n", filename);
4977  }
4978}
4979
4980
4981// Refer to the comments in os_solaris.cpp park-unpark.
4982//
4983// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4984// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4985// For specifics regarding the bug see GLIBC BUGID 261237 :
4986//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4987// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4988// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4989// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4990// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4991// and monitorenter when we're using 1-0 locking.  All those operations may result in
4992// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4993// of libpthread avoids the problem, but isn't practical.
4994//
4995// Possible remedies:
4996//
4997// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4998//      This is palliative and probabilistic, however.  If the thread is preempted
4999//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5000//      than the minimum period may have passed, and the abstime may be stale (in the
5001//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5002//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5003//
5004// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5005//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5006//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5007//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5008//      thread.
5009//
5010// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5011//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5012//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5013//      This also works well.  In fact it avoids kernel-level scalability impediments
5014//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5015//      timers in a graceful fashion.
5016//
5017// 4.   When the abstime value is in the past it appears that control returns
5018//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5019//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5020//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5021//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5022//      It may be possible to avoid reinitialization by checking the return
5023//      value from pthread_cond_timedwait().  In addition to reinitializing the
5024//      condvar we must establish the invariant that cond_signal() is only called
5025//      within critical sections protected by the adjunct mutex.  This prevents
5026//      cond_signal() from "seeing" a condvar that's in the midst of being
5027//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5028//      desirable signal-after-unlock optimization that avoids futile context switching.
5029//
5030//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5031//      structure when a condvar is used or initialized.  cond_destroy()  would
5032//      release the helper structure.  Our reinitialize-after-timedwait fix
5033//      put excessive stress on malloc/free and locks protecting the c-heap.
5034//
5035// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5036// It may be possible to refine (4) by checking the kernel and NTPL verisons
5037// and only enabling the work-around for vulnerable environments.
5038
5039// utility to compute the abstime argument to timedwait:
5040// millis is the relative timeout time
5041// abstime will be the absolute timeout time
5042// TODO: replace compute_abstime() with unpackTime()
5043
5044static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5045  if (millis < 0)  millis = 0;
5046  struct timeval now;
5047  int status = gettimeofday(&now, NULL);
5048  assert(status == 0, "gettimeofday");
5049  jlong seconds = millis / 1000;
5050  millis %= 1000;
5051  if (seconds > 50000000) { // see man cond_timedwait(3T)
5052    seconds = 50000000;
5053  }
5054  abstime->tv_sec = now.tv_sec  + seconds;
5055  long       usec = now.tv_usec + millis * 1000;
5056  if (usec >= 1000000) {
5057    abstime->tv_sec += 1;
5058    usec -= 1000000;
5059  }
5060  abstime->tv_nsec = usec * 1000;
5061  return abstime;
5062}
5063
5064
5065// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5066// Conceptually TryPark() should be equivalent to park(0).
5067
5068int os::PlatformEvent::TryPark() {
5069  for (;;) {
5070    const int v = _Event ;
5071    guarantee ((v == 0) || (v == 1), "invariant") ;
5072    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5073  }
5074}
5075
5076void os::PlatformEvent::park() {       // AKA "down()"
5077  // Invariant: Only the thread associated with the Event/PlatformEvent
5078  // may call park().
5079  // TODO: assert that _Assoc != NULL or _Assoc == Self
5080  int v ;
5081  for (;;) {
5082      v = _Event ;
5083      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5084  }
5085  guarantee (v >= 0, "invariant") ;
5086  if (v == 0) {
5087     // Do this the hard way by blocking ...
5088     int status = pthread_mutex_lock(_mutex);
5089     assert_status(status == 0, status, "mutex_lock");
5090     guarantee (_nParked == 0, "invariant") ;
5091     ++ _nParked ;
5092     while (_Event < 0) {
5093        status = pthread_cond_wait(_cond, _mutex);
5094        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5095        // Treat this the same as if the wait was interrupted
5096        if (status == ETIME) { status = EINTR; }
5097        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5098     }
5099     -- _nParked ;
5100
5101    _Event = 0 ;
5102     status = pthread_mutex_unlock(_mutex);
5103     assert_status(status == 0, status, "mutex_unlock");
5104    // Paranoia to ensure our locked and lock-free paths interact
5105    // correctly with each other.
5106    OrderAccess::fence();
5107  }
5108  guarantee (_Event >= 0, "invariant") ;
5109}
5110
5111int os::PlatformEvent::park(jlong millis) {
5112  guarantee (_nParked == 0, "invariant") ;
5113
5114  int v ;
5115  for (;;) {
5116      v = _Event ;
5117      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5118  }
5119  guarantee (v >= 0, "invariant") ;
5120  if (v != 0) return OS_OK ;
5121
5122  // We do this the hard way, by blocking the thread.
5123  // Consider enforcing a minimum timeout value.
5124  struct timespec abst;
5125  compute_abstime(&abst, millis);
5126
5127  int ret = OS_TIMEOUT;
5128  int status = pthread_mutex_lock(_mutex);
5129  assert_status(status == 0, status, "mutex_lock");
5130  guarantee (_nParked == 0, "invariant") ;
5131  ++_nParked ;
5132
5133  // Object.wait(timo) will return because of
5134  // (a) notification
5135  // (b) timeout
5136  // (c) thread.interrupt
5137  //
5138  // Thread.interrupt and object.notify{All} both call Event::set.
5139  // That is, we treat thread.interrupt as a special case of notification.
5140  // The underlying Solaris implementation, cond_timedwait, admits
5141  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5142  // JVM from making those visible to Java code.  As such, we must
5143  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5144  //
5145  // TODO: properly differentiate simultaneous notify+interrupt.
5146  // In that case, we should propagate the notify to another waiter.
5147
5148  while (_Event < 0) {
5149    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5150    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5151      pthread_cond_destroy (_cond);
5152      pthread_cond_init (_cond, NULL) ;
5153    }
5154    assert_status(status == 0 || status == EINTR ||
5155                  status == ETIME || status == ETIMEDOUT,
5156                  status, "cond_timedwait");
5157    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5158    if (status == ETIME || status == ETIMEDOUT) break ;
5159    // We consume and ignore EINTR and spurious wakeups.
5160  }
5161  --_nParked ;
5162  if (_Event >= 0) {
5163     ret = OS_OK;
5164  }
5165  _Event = 0 ;
5166  status = pthread_mutex_unlock(_mutex);
5167  assert_status(status == 0, status, "mutex_unlock");
5168  assert (_nParked == 0, "invariant") ;
5169  // Paranoia to ensure our locked and lock-free paths interact
5170  // correctly with each other.
5171  OrderAccess::fence();
5172  return ret;
5173}
5174
5175void os::PlatformEvent::unpark() {
5176  // Transitions for _Event:
5177  //    0 :=> 1
5178  //    1 :=> 1
5179  //   -1 :=> either 0 or 1; must signal target thread
5180  //          That is, we can safely transition _Event from -1 to either
5181  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5182  //          unpark() calls.
5183  // See also: "Semaphores in Plan 9" by Mullender & Cox
5184  //
5185  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5186  // that it will take two back-to-back park() calls for the owning
5187  // thread to block. This has the benefit of forcing a spurious return
5188  // from the first park() call after an unpark() call which will help
5189  // shake out uses of park() and unpark() without condition variables.
5190
5191  if (Atomic::xchg(1, &_Event) >= 0) return;
5192
5193  // Wait for the thread associated with the event to vacate
5194  int status = pthread_mutex_lock(_mutex);
5195  assert_status(status == 0, status, "mutex_lock");
5196  int AnyWaiters = _nParked;
5197  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5198  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5199    AnyWaiters = 0;
5200    pthread_cond_signal(_cond);
5201  }
5202  status = pthread_mutex_unlock(_mutex);
5203  assert_status(status == 0, status, "mutex_unlock");
5204  if (AnyWaiters != 0) {
5205    status = pthread_cond_signal(_cond);
5206    assert_status(status == 0, status, "cond_signal");
5207  }
5208
5209  // Note that we signal() _after dropping the lock for "immortal" Events.
5210  // This is safe and avoids a common class of  futile wakeups.  In rare
5211  // circumstances this can cause a thread to return prematurely from
5212  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5213  // simply re-test the condition and re-park itself.
5214}
5215
5216
5217// JSR166
5218// -------------------------------------------------------
5219
5220/*
5221 * The solaris and linux implementations of park/unpark are fairly
5222 * conservative for now, but can be improved. They currently use a
5223 * mutex/condvar pair, plus a a count.
5224 * Park decrements count if > 0, else does a condvar wait.  Unpark
5225 * sets count to 1 and signals condvar.  Only one thread ever waits
5226 * on the condvar. Contention seen when trying to park implies that someone
5227 * is unparking you, so don't wait. And spurious returns are fine, so there
5228 * is no need to track notifications.
5229 */
5230
5231#define MAX_SECS 100000000
5232/*
5233 * This code is common to linux and solaris and will be moved to a
5234 * common place in dolphin.
5235 *
5236 * The passed in time value is either a relative time in nanoseconds
5237 * or an absolute time in milliseconds. Either way it has to be unpacked
5238 * into suitable seconds and nanoseconds components and stored in the
5239 * given timespec structure.
5240 * Given time is a 64-bit value and the time_t used in the timespec is only
5241 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5242 * overflow if times way in the future are given. Further on Solaris versions
5243 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5244 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5245 * As it will be 28 years before "now + 100000000" will overflow we can
5246 * ignore overflow and just impose a hard-limit on seconds using the value
5247 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5248 * years from "now".
5249 */
5250
5251static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5252  assert (time > 0, "convertTime");
5253
5254  struct timeval now;
5255  int status = gettimeofday(&now, NULL);
5256  assert(status == 0, "gettimeofday");
5257
5258  time_t max_secs = now.tv_sec + MAX_SECS;
5259
5260  if (isAbsolute) {
5261    jlong secs = time / 1000;
5262    if (secs > max_secs) {
5263      absTime->tv_sec = max_secs;
5264    }
5265    else {
5266      absTime->tv_sec = secs;
5267    }
5268    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5269  }
5270  else {
5271    jlong secs = time / NANOSECS_PER_SEC;
5272    if (secs >= MAX_SECS) {
5273      absTime->tv_sec = max_secs;
5274      absTime->tv_nsec = 0;
5275    }
5276    else {
5277      absTime->tv_sec = now.tv_sec + secs;
5278      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5279      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5280        absTime->tv_nsec -= NANOSECS_PER_SEC;
5281        ++absTime->tv_sec; // note: this must be <= max_secs
5282      }
5283    }
5284  }
5285  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5286  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5287  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5288  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5289}
5290
5291void Parker::park(bool isAbsolute, jlong time) {
5292  // Ideally we'd do something useful while spinning, such
5293  // as calling unpackTime().
5294
5295  // Optional fast-path check:
5296  // Return immediately if a permit is available.
5297  // We depend on Atomic::xchg() having full barrier semantics
5298  // since we are doing a lock-free update to _counter.
5299  if (Atomic::xchg(0, &_counter) > 0) return;
5300
5301  Thread* thread = Thread::current();
5302  assert(thread->is_Java_thread(), "Must be JavaThread");
5303  JavaThread *jt = (JavaThread *)thread;
5304
5305  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5306  // Check interrupt before trying to wait
5307  if (Thread::is_interrupted(thread, false)) {
5308    return;
5309  }
5310
5311  // Next, demultiplex/decode time arguments
5312  timespec absTime;
5313  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5314    return;
5315  }
5316  if (time > 0) {
5317    unpackTime(&absTime, isAbsolute, time);
5318  }
5319
5320
5321  // Enter safepoint region
5322  // Beware of deadlocks such as 6317397.
5323  // The per-thread Parker:: mutex is a classic leaf-lock.
5324  // In particular a thread must never block on the Threads_lock while
5325  // holding the Parker:: mutex.  If safepoints are pending both the
5326  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5327  ThreadBlockInVM tbivm(jt);
5328
5329  // Don't wait if cannot get lock since interference arises from
5330  // unblocking.  Also. check interrupt before trying wait
5331  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5332    return;
5333  }
5334
5335  int status ;
5336  if (_counter > 0)  { // no wait needed
5337    _counter = 0;
5338    status = pthread_mutex_unlock(_mutex);
5339    assert (status == 0, "invariant") ;
5340    // Paranoia to ensure our locked and lock-free paths interact
5341    // correctly with each other and Java-level accesses.
5342    OrderAccess::fence();
5343    return;
5344  }
5345
5346#ifdef ASSERT
5347  // Don't catch signals while blocked; let the running threads have the signals.
5348  // (This allows a debugger to break into the running thread.)
5349  sigset_t oldsigs;
5350  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5351  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5352#endif
5353
5354  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5355  jt->set_suspend_equivalent();
5356  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5357
5358  if (time == 0) {
5359    status = pthread_cond_wait (_cond, _mutex) ;
5360  } else {
5361    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5362    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5363      pthread_cond_destroy (_cond) ;
5364      pthread_cond_init    (_cond, NULL);
5365    }
5366  }
5367  assert_status(status == 0 || status == EINTR ||
5368                status == ETIME || status == ETIMEDOUT,
5369                status, "cond_timedwait");
5370
5371#ifdef ASSERT
5372  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5373#endif
5374
5375  _counter = 0 ;
5376  status = pthread_mutex_unlock(_mutex) ;
5377  assert_status(status == 0, status, "invariant") ;
5378  // Paranoia to ensure our locked and lock-free paths interact
5379  // correctly with each other and Java-level accesses.
5380  OrderAccess::fence();
5381
5382  // If externally suspended while waiting, re-suspend
5383  if (jt->handle_special_suspend_equivalent_condition()) {
5384    jt->java_suspend_self();
5385  }
5386}
5387
5388void Parker::unpark() {
5389  int s, status ;
5390  status = pthread_mutex_lock(_mutex);
5391  assert (status == 0, "invariant") ;
5392  s = _counter;
5393  _counter = 1;
5394  if (s < 1) {
5395     if (WorkAroundNPTLTimedWaitHang) {
5396        status = pthread_cond_signal (_cond) ;
5397        assert (status == 0, "invariant") ;
5398        status = pthread_mutex_unlock(_mutex);
5399        assert (status == 0, "invariant") ;
5400     } else {
5401        status = pthread_mutex_unlock(_mutex);
5402        assert (status == 0, "invariant") ;
5403        status = pthread_cond_signal (_cond) ;
5404        assert (status == 0, "invariant") ;
5405     }
5406  } else {
5407    pthread_mutex_unlock(_mutex);
5408    assert (status == 0, "invariant") ;
5409  }
5410}
5411
5412
5413extern char** environ;
5414
5415#ifndef __NR_fork
5416#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5417#endif
5418
5419#ifndef __NR_execve
5420#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5421#endif
5422
5423// Run the specified command in a separate process. Return its exit value,
5424// or -1 on failure (e.g. can't fork a new process).
5425// Unlike system(), this function can be called from signal handler. It
5426// doesn't block SIGINT et al.
5427int os::fork_and_exec(char* cmd) {
5428  const char * argv[4] = {"sh", "-c", cmd, NULL};
5429
5430  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5431  // pthread_atfork handlers and reset pthread library. All we need is a
5432  // separate process to execve. Make a direct syscall to fork process.
5433  // On IA64 there's no fork syscall, we have to use fork() and hope for
5434  // the best...
5435  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5436              IA64_ONLY(fork();)
5437
5438  if (pid < 0) {
5439    // fork failed
5440    return -1;
5441
5442  } else if (pid == 0) {
5443    // child process
5444
5445    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5446    // first to kill every thread on the thread list. Because this list is
5447    // not reset by fork() (see notes above), execve() will instead kill
5448    // every thread in the parent process. We know this is the only thread
5449    // in the new process, so make a system call directly.
5450    // IA64 should use normal execve() from glibc to match the glibc fork()
5451    // above.
5452    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5453    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5454
5455    // execve failed
5456    _exit(-1);
5457
5458  } else  {
5459    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5460    // care about the actual exit code, for now.
5461
5462    int status;
5463
5464    // Wait for the child process to exit.  This returns immediately if
5465    // the child has already exited. */
5466    while (waitpid(pid, &status, 0) < 0) {
5467        switch (errno) {
5468        case ECHILD: return 0;
5469        case EINTR: break;
5470        default: return -1;
5471        }
5472    }
5473
5474    if (WIFEXITED(status)) {
5475       // The child exited normally; get its exit code.
5476       return WEXITSTATUS(status);
5477    } else if (WIFSIGNALED(status)) {
5478       // The child exited because of a signal
5479       // The best value to return is 0x80 + signal number,
5480       // because that is what all Unix shells do, and because
5481       // it allows callers to distinguish between process exit and
5482       // process death by signal.
5483       return 0x80 + WTERMSIG(status);
5484    } else {
5485       // Unknown exit code; pass it through
5486       return status;
5487    }
5488  }
5489}
5490
5491// is_headless_jre()
5492//
5493// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5494// in order to report if we are running in a headless jre
5495//
5496// Since JDK8 xawt/libmawt.so was moved into the same directory
5497// as libawt.so, and renamed libawt_xawt.so
5498//
5499bool os::is_headless_jre() {
5500    struct stat statbuf;
5501    char buf[MAXPATHLEN];
5502    char libmawtpath[MAXPATHLEN];
5503    const char *xawtstr  = "/xawt/libmawt.so";
5504    const char *new_xawtstr = "/libawt_xawt.so";
5505    char *p;
5506
5507    // Get path to libjvm.so
5508    os::jvm_path(buf, sizeof(buf));
5509
5510    // Get rid of libjvm.so
5511    p = strrchr(buf, '/');
5512    if (p == NULL) return false;
5513    else *p = '\0';
5514
5515    // Get rid of client or server
5516    p = strrchr(buf, '/');
5517    if (p == NULL) return false;
5518    else *p = '\0';
5519
5520    // check xawt/libmawt.so
5521    strcpy(libmawtpath, buf);
5522    strcat(libmawtpath, xawtstr);
5523    if (::stat(libmawtpath, &statbuf) == 0) return false;
5524
5525    // check libawt_xawt.so
5526    strcpy(libmawtpath, buf);
5527    strcat(libmawtpath, new_xawtstr);
5528    if (::stat(libmawtpath, &statbuf) == 0) return false;
5529
5530    return true;
5531}
5532
5533// Get the default path to the core file
5534// Returns the length of the string
5535int os::get_core_path(char* buffer, size_t bufferSize) {
5536  const char* p = get_current_directory(buffer, bufferSize);
5537
5538  if (p == NULL) {
5539    assert(p != NULL, "failed to get current directory");
5540    return 0;
5541  }
5542
5543  return strlen(buffer);
5544}
5545
5546#ifdef JAVASE_EMBEDDED
5547//
5548// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5549//
5550MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5551
5552// ctor
5553//
5554MemNotifyThread::MemNotifyThread(int fd): Thread() {
5555  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5556  _fd = fd;
5557
5558  if (os::create_thread(this, os::os_thread)) {
5559    _memnotify_thread = this;
5560    os::set_priority(this, NearMaxPriority);
5561    os::start_thread(this);
5562  }
5563}
5564
5565// Where all the work gets done
5566//
5567void MemNotifyThread::run() {
5568  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5569
5570  // Set up the select arguments
5571  fd_set rfds;
5572  if (_fd != -1) {
5573    FD_ZERO(&rfds);
5574    FD_SET(_fd, &rfds);
5575  }
5576
5577  // Now wait for the mem_notify device to wake up
5578  while (1) {
5579    // Wait for the mem_notify device to signal us..
5580    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5581    if (rc == -1) {
5582      perror("select!\n");
5583      break;
5584    } else if (rc) {
5585      //ssize_t free_before = os::available_memory();
5586      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5587
5588      // The kernel is telling us there is not much memory left...
5589      // try to do something about that
5590
5591      // If we are not already in a GC, try one.
5592      if (!Universe::heap()->is_gc_active()) {
5593        Universe::heap()->collect(GCCause::_allocation_failure);
5594
5595        //ssize_t free_after = os::available_memory();
5596        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5597        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5598      }
5599      // We might want to do something like the following if we find the GC's are not helping...
5600      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5601    }
5602  }
5603}
5604
5605//
5606// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5607//
5608void MemNotifyThread::start() {
5609  int    fd;
5610  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5611  if (fd < 0) {
5612      return;
5613  }
5614
5615  if (memnotify_thread() == NULL) {
5616    new MemNotifyThread(fd);
5617  }
5618}
5619#endif // JAVASE_EMBEDDED
5620