os_linux.cpp revision 4592:e12c9b3740db
11541Srgrimes/*
21541Srgrimes * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
31541Srgrimes * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
41541Srgrimes *
535938Sdyson * This code is free software; you can redistribute it and/or modify it
61541Srgrimes * under the terms of the GNU General Public License version 2 only, as
71541Srgrimes * published by the Free Software Foundation.
81541Srgrimes *
91541Srgrimes * This code is distributed in the hope that it will be useful, but WITHOUT
101541Srgrimes * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
111541Srgrimes * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
121541Srgrimes * version 2 for more details (a copy is included in the LICENSE file that
131541Srgrimes * accompanied this code).
141541Srgrimes *
151541Srgrimes * You should have received a copy of the GNU General Public License version
161541Srgrimes * 2 along with this work; if not, write to the Free Software Foundation,
171541Srgrimes * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
181541Srgrimes *
191541Srgrimes * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
201541Srgrimes * or visit www.oracle.com if you need additional information or have any
211541Srgrimes * questions.
221541Srgrimes *
231541Srgrimes */
241541Srgrimes
251541Srgrimes// no precompiled headers
261541Srgrimes#include "classfile/classLoader.hpp"
271541Srgrimes#include "classfile/systemDictionary.hpp"
281541Srgrimes#include "classfile/vmSymbols.hpp"
291541Srgrimes#include "code/icBuffer.hpp"
301541Srgrimes#include "code/vtableStubs.hpp"
311541Srgrimes#include "compiler/compileBroker.hpp"
321541Srgrimes#include "compiler/disassembler.hpp"
331541Srgrimes#include "interpreter/interpreter.hpp"
341541Srgrimes#include "jvm_linux.h"
351541Srgrimes#include "memory/allocation.inline.hpp"
361541Srgrimes#include "memory/filemap.hpp"
371541Srgrimes#include "mutex_linux.inline.hpp"
381541Srgrimes#include "oops/oop.inline.hpp"
391541Srgrimes#include "os_share_linux.hpp"
401541Srgrimes#include "prims/jniFastGetField.hpp"
411541Srgrimes#include "prims/jvm.h"
421541Srgrimes#include "prims/jvm_misc.hpp"
431541Srgrimes#include "runtime/arguments.hpp"
441541Srgrimes#include "runtime/extendedPC.hpp"
451541Srgrimes#include "runtime/globals.hpp"
461541Srgrimes#include "runtime/interfaceSupport.hpp"
471541Srgrimes#include "runtime/init.hpp"
481541Srgrimes#include "runtime/java.hpp"
491541Srgrimes#include "runtime/javaCalls.hpp"
501541Srgrimes#include "runtime/mutexLocker.hpp"
511541Srgrimes#include "runtime/objectMonitor.hpp"
521541Srgrimes#include "runtime/osThread.hpp"
531541Srgrimes#include "runtime/perfMemory.hpp"
541541Srgrimes#include "runtime/sharedRuntime.hpp"
551541Srgrimes#include "runtime/statSampler.hpp"
561541Srgrimes#include "runtime/stubRoutines.hpp"
571541Srgrimes#include "runtime/thread.inline.hpp"
581541Srgrimes#include "runtime/threadCritical.hpp"
591541Srgrimes#include "runtime/timer.hpp"
601541Srgrimes#include "services/attachListener.hpp"
611541Srgrimes#include "services/memTracker.hpp"
621541Srgrimes#include "services/runtimeService.hpp"
631541Srgrimes#include "utilities/decoder.hpp"
641541Srgrimes#include "utilities/defaultStream.hpp"
651541Srgrimes#include "utilities/events.hpp"
661541Srgrimes#include "utilities/elfFile.hpp"
671541Srgrimes#include "utilities/growableArray.hpp"
681541Srgrimes#include "utilities/vmError.hpp"
691541Srgrimes
701541Srgrimes// put OS-includes here
711541Srgrimes# include <sys/types.h>
721541Srgrimes# include <sys/mman.h>
731541Srgrimes# include <sys/stat.h>
741541Srgrimes# include <sys/select.h>
751541Srgrimes# include <pthread.h>
761541Srgrimes# include <signal.h>
771541Srgrimes# include <errno.h>
781541Srgrimes# include <dlfcn.h>
791541Srgrimes# include <stdio.h>
801541Srgrimes# include <unistd.h>
811541Srgrimes# include <sys/resource.h>
821541Srgrimes# include <pthread.h>
831541Srgrimes# include <sys/stat.h>
841541Srgrimes# include <sys/time.h>
851541Srgrimes# include <sys/times.h>
861541Srgrimes# include <sys/utsname.h>
871541Srgrimes# include <sys/socket.h>
881541Srgrimes# include <sys/wait.h>
891541Srgrimes# include <pwd.h>
901541Srgrimes# include <poll.h>
911541Srgrimes# include <semaphore.h>
921541Srgrimes# include <fcntl.h>
931541Srgrimes# include <string.h>
941541Srgrimes# include <syscall.h>
951541Srgrimes# include <sys/sysinfo.h>
961541Srgrimes# include <gnu/libc-version.h>
971541Srgrimes# include <sys/ipc.h>
981541Srgrimes# include <sys/shm.h>
991541Srgrimes# include <link.h>
1001541Srgrimes# include <stdint.h>
1011541Srgrimes# include <inttypes.h>
1021541Srgrimes# include <sys/ioctl.h>
1031541Srgrimes
1041541Srgrimes#define MAX_PATH    (2 * K)
1051541Srgrimes
1061541Srgrimes// for timer info max values which include all bits
1071541Srgrimes#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
1081541Srgrimes
1091541Srgrimes#define LARGEPAGES_BIT (1 << 6)
1101541Srgrimes////////////////////////////////////////////////////////////////////////////////
1111541Srgrimes// global variables
1121541Srgrimesjulong os::Linux::_physical_memory = 0;
1131541Srgrimes
1141541Srgrimesaddress   os::Linux::_initial_thread_stack_bottom = NULL;
1151541Srgrimesuintptr_t os::Linux::_initial_thread_stack_size   = 0;
1161541Srgrimes
1171541Srgrimesint (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
1181541Srgrimesint (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
1191541SrgrimesMutex* os::Linux::_createThread_lock = NULL;
1201541Srgrimespthread_t os::Linux::_main_thread;
1211541Srgrimesint os::Linux::_page_size = -1;
1221541Srgrimesbool os::Linux::_is_floating_stack = false;
1231541Srgrimesbool os::Linux::_is_NPTL = false;
1241541Srgrimesbool os::Linux::_supports_fast_thread_cpu_time = false;
1251541Srgrimesconst char * os::Linux::_glibc_version = NULL;
1261541Srgrimesconst char * os::Linux::_libpthread_version = NULL;
1271541Srgrimes
1281541Srgrimesstatic jlong initial_time_count=0;
1291541Srgrimes
1301541Srgrimesstatic int clock_tics_per_sec = 100;
1318019Sache
1328019Sache// For diagnostics to print a message once. see run_periodic_checks
1331541Srgrimesstatic sigset_t check_signal_done;
1341541Srgrimesstatic bool check_signals = true;;
1351541Srgrimes
1361541Srgrimesstatic pid_t _initial_pid = 0;
1371541Srgrimes
1381541Srgrimes/* Signal number used to suspend/resume a thread */
1391541Srgrimes
1401541Srgrimes/* do not use any signal number less than SIGSEGV, see 4355769 */
1411541Srgrimesstatic int SR_signum = SIGUSR2;
1421541Srgrimessigset_t SR_sigset;
1431541Srgrimes
1441541Srgrimes/* Used to protect dlsym() calls */
1451541Srgrimesstatic pthread_mutex_t dl_mutex;
1461541Srgrimes
1471541Srgrimes#ifdef JAVASE_EMBEDDED
1481541Srgrimesclass MemNotifyThread: public Thread {
1491541Srgrimes  friend class VMStructs;
1501541Srgrimes public:
1511541Srgrimes  virtual void run();
1521541Srgrimes
1531541Srgrimes private:
1541541Srgrimes  static MemNotifyThread* _memnotify_thread;
1551541Srgrimes  int _fd;
1561541Srgrimes
1571541Srgrimes public:
1581541Srgrimes
1591541Srgrimes  // Constructor
1601541Srgrimes  MemNotifyThread(int fd);
1611549Srgrimes
1621549Srgrimes  // Tester
1631549Srgrimes  bool is_memnotify_thread() const { return true; }
1641549Srgrimes
1652442Sdg  // Printing
1662729Sdfr  char* name() const { return (char*)"Linux MemNotify Thread"; }
1672729Sdfr
1681541Srgrimes  // Returns the single instance of the MemNotifyThread
1692297Swollman  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
1701541Srgrimes
1711541Srgrimes  // Create and start the single instance of MemNotifyThread
1721541Srgrimes  static void start();
1731541Srgrimes};
1741541Srgrimes#endif // JAVASE_EMBEDDED
1751541Srgrimes
1761541Srgrimes// utility functions
1771541Srgrimes
1781541Srgrimesstatic int SR_initialize();
1791541Srgrimes
1801541Srgrimesjulong os::available_memory() {
1811541Srgrimes  return Linux::available_memory();
1821541Srgrimes}
1831541Srgrimes
1841541Srgrimesjulong os::Linux::available_memory() {
1851541Srgrimes  // values in struct sysinfo are "unsigned long"
1861541Srgrimes  struct sysinfo si;
1871541Srgrimes  sysinfo(&si);
1881541Srgrimes
18935938Sdyson  return (julong)si.freeram * si.mem_unit;
19035938Sdyson}
19128400Speter
19229349Speterjulong os::physical_memory() {
19312865Speter  return Linux::physical_memory();
19412865Speter}
19512865Speter
19612865Speter////////////////////////////////////////////////////////////////////////////////
19712865Speter// environment support
19812865Speter
19912865Speterbool os::getenv(const char* name, char* buf, int len) {
20012865Speter  const char* val = ::getenv(name);
20112865Speter  if (val != NULL && strlen(val) < (size_t)len) {
20212865Speter    strcpy(buf, val);
20312865Speter    return true;
20412865Speter  }
20525582Speter  if (len > 0) buf[0] = 0;  // return a null string
20625582Speter  return false;
20725582Speter}
20825582Speter
20914220Speter
21014220Speter// Return true if user is running as root.
21129349Speter
21224452Speterbool os::have_special_privileges() {
21324440Speter  static bool init = false;
21435938Sdyson  static bool privileges = false;
21535938Sdyson  if (!init) {
21635938Sdyson    privileges = (getuid() != geteuid()) || (getgid() != getegid());
21735938Sdyson    init = true;
21835938Sdyson  }
21935938Sdyson  return privileges;
22035938Sdyson}
22135938Sdyson
22225537Sdfr
22325537Sdfr#ifndef SYS_gettid
22425537Sdfr// i386: 224, ia64: 1105, amd64: 186, sparc 143
22525537Sdfr#ifdef __ia64__
22625537Sdfr#define SYS_gettid 1105
22725537Sdfr#elif __i386__
22825537Sdfr#define SYS_gettid 224
22925537Sdfr#elif __amd64__
23025537Sdfr#define SYS_gettid 186
23125537Sdfr#elif __sparc__
23228400Speter#define SYS_gettid 143
23326334Speter#else
23426671Sdyson#error define gettid for the arch
23526671Sdyson#endif
23626671Sdyson#endif
23726671Sdyson
23826671Sdyson// Cpu architecture string
23926671Sdyson#if   defined(ZERO)
24026671Sdysonstatic char cpu_arch[] = ZERO_LIBARCH;
24126671Sdyson#elif defined(IA64)
24226671Sdysonstatic char cpu_arch[] = "ia64";
24326671Sdyson#elif defined(IA32)
24426671Sdysonstatic char cpu_arch[] = "i386";
24526671Sdyson#elif defined(AMD64)
24629391Sphkstatic char cpu_arch[] = "amd64";
24734925Sdufault#elif defined(ARM)
24834925Sdufaultstatic char cpu_arch[] = "arm";
24934925Sdufault#elif defined(PPC)
25034925Sdufaultstatic char cpu_arch[] = "ppc";
25134925Sdufault#elif defined(SPARC)
25234925Sdufault#  ifdef _LP64
25334925Sdufaultstatic char cpu_arch[] = "sparcv9";
25434925Sdufault#  else
25535938Sdysonstatic char cpu_arch[] = "sparc";
25635938Sdyson#  endif
257#else
258#error Add appropriate cpu_arch setting
259#endif
260
261
262// pid_t gettid()
263//
264// Returns the kernel thread id of the currently running thread. Kernel
265// thread id is used to access /proc.
266//
267// (Note that getpid() on LinuxThreads returns kernel thread id too; but
268// on NPTL, it returns the same pid for all threads, as required by POSIX.)
269//
270pid_t os::Linux::gettid() {
271  int rslt = syscall(SYS_gettid);
272  if (rslt == -1) {
273     // old kernel, no NPTL support
274     return getpid();
275  } else {
276     return (pid_t)rslt;
277  }
278}
279
280// Most versions of linux have a bug where the number of processors are
281// determined by looking at the /proc file system.  In a chroot environment,
282// the system call returns 1.  This causes the VM to act as if it is
283// a single processor and elide locking (see is_MP() call).
284static bool unsafe_chroot_detected = false;
285static const char *unstable_chroot_error = "/proc file system not found.\n"
286                     "Java may be unstable running multithreaded in a chroot "
287                     "environment on Linux when /proc filesystem is not mounted.";
288
289void os::Linux::initialize_system_info() {
290  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
291  if (processor_count() == 1) {
292    pid_t pid = os::Linux::gettid();
293    char fname[32];
294    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
295    FILE *fp = fopen(fname, "r");
296    if (fp == NULL) {
297      unsafe_chroot_detected = true;
298    } else {
299      fclose(fp);
300    }
301  }
302  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
303  assert(processor_count() > 0, "linux error");
304}
305
306void os::init_system_properties_values() {
307//  char arch[12];
308//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
309
310  // The next steps are taken in the product version:
311  //
312  // Obtain the JAVA_HOME value from the location of libjvm.so.
313  // This library should be located at:
314  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
315  //
316  // If "/jre/lib/" appears at the right place in the path, then we
317  // assume libjvm.so is installed in a JDK and we use this path.
318  //
319  // Otherwise exit with message: "Could not create the Java virtual machine."
320  //
321  // The following extra steps are taken in the debugging version:
322  //
323  // If "/jre/lib/" does NOT appear at the right place in the path
324  // instead of exit check for $JAVA_HOME environment variable.
325  //
326  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
327  // then we append a fake suffix "hotspot/libjvm.so" to this path so
328  // it looks like libjvm.so is installed there
329  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
330  //
331  // Otherwise exit.
332  //
333  // Important note: if the location of libjvm.so changes this
334  // code needs to be changed accordingly.
335
336  // The next few definitions allow the code to be verbatim:
337#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
338#define getenv(n) ::getenv(n)
339
340/*
341 * See ld(1):
342 *      The linker uses the following search paths to locate required
343 *      shared libraries:
344 *        1: ...
345 *        ...
346 *        7: The default directories, normally /lib and /usr/lib.
347 */
348#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
349#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
350#else
351#define DEFAULT_LIBPATH "/lib:/usr/lib"
352#endif
353
354#define EXTENSIONS_DIR  "/lib/ext"
355#define ENDORSED_DIR    "/lib/endorsed"
356#define REG_DIR         "/usr/java/packages"
357
358  {
359    /* sysclasspath, java_home, dll_dir */
360    {
361        char *home_path;
362        char *dll_path;
363        char *pslash;
364        char buf[MAXPATHLEN];
365        os::jvm_path(buf, sizeof(buf));
366
367        // Found the full path to libjvm.so.
368        // Now cut the path to <java_home>/jre if we can.
369        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL)
372            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
373        dll_path = malloc(strlen(buf) + 1);
374        if (dll_path == NULL)
375            return;
376        strcpy(dll_path, buf);
377        Arguments::set_dll_dir(dll_path);
378
379        if (pslash != NULL) {
380            pslash = strrchr(buf, '/');
381            if (pslash != NULL) {
382                *pslash = '\0';       /* get rid of /<arch> */
383                pslash = strrchr(buf, '/');
384                if (pslash != NULL)
385                    *pslash = '\0';   /* get rid of /lib */
386            }
387        }
388
389        home_path = malloc(strlen(buf) + 1);
390        if (home_path == NULL)
391            return;
392        strcpy(home_path, buf);
393        Arguments::set_java_home(home_path);
394
395        if (!set_boot_path('/', ':'))
396            return;
397    }
398
399    /*
400     * Where to look for native libraries
401     *
402     * Note: Due to a legacy implementation, most of the library path
403     * is set in the launcher.  This was to accomodate linking restrictions
404     * on legacy Linux implementations (which are no longer supported).
405     * Eventually, all the library path setting will be done here.
406     *
407     * However, to prevent the proliferation of improperly built native
408     * libraries, the new path component /usr/java/packages is added here.
409     * Eventually, all the library path setting will be done here.
410     */
411    {
412        char *ld_library_path;
413
414        /*
415         * Construct the invariant part of ld_library_path. Note that the
416         * space for the colon and the trailing null are provided by the
417         * nulls included by the sizeof operator (so actually we allocate
418         * a byte more than necessary).
419         */
420        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
421            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
422        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
423
424        /*
425         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
426         * should always exist (until the legacy problem cited above is
427         * addressed).
428         */
429        char *v = getenv("LD_LIBRARY_PATH");
430        if (v != NULL) {
431            char *t = ld_library_path;
432            /* That's +1 for the colon and +1 for the trailing '\0' */
433            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
434            sprintf(ld_library_path, "%s:%s", v, t);
435        }
436        Arguments::set_library_path(ld_library_path);
437    }
438
439    /*
440     * Extensions directories.
441     *
442     * Note that the space for the colon and the trailing null are provided
443     * by the nulls included by the sizeof operator (so actually one byte more
444     * than necessary is allocated).
445     */
446    {
447        char *buf = malloc(strlen(Arguments::get_java_home()) +
448            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
449        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
450            Arguments::get_java_home());
451        Arguments::set_ext_dirs(buf);
452    }
453
454    /* Endorsed standards default directory. */
455    {
456        char * buf;
457        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
458        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
459        Arguments::set_endorsed_dirs(buf);
460    }
461  }
462
463#undef malloc
464#undef getenv
465#undef EXTENSIONS_DIR
466#undef ENDORSED_DIR
467
468  // Done
469  return;
470}
471
472////////////////////////////////////////////////////////////////////////////////
473// breakpoint support
474
475void os::breakpoint() {
476  BREAKPOINT;
477}
478
479extern "C" void breakpoint() {
480  // use debugger to set breakpoint here
481}
482
483////////////////////////////////////////////////////////////////////////////////
484// signal support
485
486debug_only(static bool signal_sets_initialized = false);
487static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
488
489bool os::Linux::is_sig_ignored(int sig) {
490      struct sigaction oact;
491      sigaction(sig, (struct sigaction*)NULL, &oact);
492      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
493                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
494      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
495           return true;
496      else
497           return false;
498}
499
500void os::Linux::signal_sets_init() {
501  // Should also have an assertion stating we are still single-threaded.
502  assert(!signal_sets_initialized, "Already initialized");
503  // Fill in signals that are necessarily unblocked for all threads in
504  // the VM. Currently, we unblock the following signals:
505  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
506  //                         by -Xrs (=ReduceSignalUsage));
507  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
508  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
509  // the dispositions or masks wrt these signals.
510  // Programs embedding the VM that want to use the above signals for their
511  // own purposes must, at this time, use the "-Xrs" option to prevent
512  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
513  // (See bug 4345157, and other related bugs).
514  // In reality, though, unblocking these signals is really a nop, since
515  // these signals are not blocked by default.
516  sigemptyset(&unblocked_sigs);
517  sigemptyset(&allowdebug_blocked_sigs);
518  sigaddset(&unblocked_sigs, SIGILL);
519  sigaddset(&unblocked_sigs, SIGSEGV);
520  sigaddset(&unblocked_sigs, SIGBUS);
521  sigaddset(&unblocked_sigs, SIGFPE);
522  sigaddset(&unblocked_sigs, SR_signum);
523
524  if (!ReduceSignalUsage) {
525   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
526      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
527      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
528   }
529   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
530      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
531      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
532   }
533   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
534      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
535      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
536   }
537  }
538  // Fill in signals that are blocked by all but the VM thread.
539  sigemptyset(&vm_sigs);
540  if (!ReduceSignalUsage)
541    sigaddset(&vm_sigs, BREAK_SIGNAL);
542  debug_only(signal_sets_initialized = true);
543
544}
545
546// These are signals that are unblocked while a thread is running Java.
547// (For some reason, they get blocked by default.)
548sigset_t* os::Linux::unblocked_signals() {
549  assert(signal_sets_initialized, "Not initialized");
550  return &unblocked_sigs;
551}
552
553// These are the signals that are blocked while a (non-VM) thread is
554// running Java. Only the VM thread handles these signals.
555sigset_t* os::Linux::vm_signals() {
556  assert(signal_sets_initialized, "Not initialized");
557  return &vm_sigs;
558}
559
560// These are signals that are blocked during cond_wait to allow debugger in
561sigset_t* os::Linux::allowdebug_blocked_signals() {
562  assert(signal_sets_initialized, "Not initialized");
563  return &allowdebug_blocked_sigs;
564}
565
566void os::Linux::hotspot_sigmask(Thread* thread) {
567
568  //Save caller's signal mask before setting VM signal mask
569  sigset_t caller_sigmask;
570  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
571
572  OSThread* osthread = thread->osthread();
573  osthread->set_caller_sigmask(caller_sigmask);
574
575  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
576
577  if (!ReduceSignalUsage) {
578    if (thread->is_VM_thread()) {
579      // Only the VM thread handles BREAK_SIGNAL ...
580      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
581    } else {
582      // ... all other threads block BREAK_SIGNAL
583      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
584    }
585  }
586}
587
588//////////////////////////////////////////////////////////////////////////////
589// detecting pthread library
590
591void os::Linux::libpthread_init() {
592  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
593  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
594  // generic name for earlier versions.
595  // Define macros here so we can build HotSpot on old systems.
596# ifndef _CS_GNU_LIBC_VERSION
597# define _CS_GNU_LIBC_VERSION 2
598# endif
599# ifndef _CS_GNU_LIBPTHREAD_VERSION
600# define _CS_GNU_LIBPTHREAD_VERSION 3
601# endif
602
603  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
604  if (n > 0) {
605     char *str = (char *)malloc(n, mtInternal);
606     confstr(_CS_GNU_LIBC_VERSION, str, n);
607     os::Linux::set_glibc_version(str);
608  } else {
609     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
610     static char _gnu_libc_version[32];
611     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
612              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
613     os::Linux::set_glibc_version(_gnu_libc_version);
614  }
615
616  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
617  if (n > 0) {
618     char *str = (char *)malloc(n, mtInternal);
619     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
620     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
621     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
622     // is the case. LinuxThreads has a hard limit on max number of threads.
623     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
624     // On the other hand, NPTL does not have such a limit, sysconf()
625     // will return -1 and errno is not changed. Check if it is really NPTL.
626     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
627         strstr(str, "NPTL") &&
628         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
629       free(str);
630       os::Linux::set_libpthread_version("linuxthreads");
631     } else {
632       os::Linux::set_libpthread_version(str);
633     }
634  } else {
635    // glibc before 2.3.2 only has LinuxThreads.
636    os::Linux::set_libpthread_version("linuxthreads");
637  }
638
639  if (strstr(libpthread_version(), "NPTL")) {
640     os::Linux::set_is_NPTL();
641  } else {
642     os::Linux::set_is_LinuxThreads();
643  }
644
645  // LinuxThreads have two flavors: floating-stack mode, which allows variable
646  // stack size; and fixed-stack mode. NPTL is always floating-stack.
647  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
648     os::Linux::set_is_floating_stack();
649  }
650}
651
652/////////////////////////////////////////////////////////////////////////////
653// thread stack
654
655// Force Linux kernel to expand current thread stack. If "bottom" is close
656// to the stack guard, caller should block all signals.
657//
658// MAP_GROWSDOWN:
659//   A special mmap() flag that is used to implement thread stacks. It tells
660//   kernel that the memory region should extend downwards when needed. This
661//   allows early versions of LinuxThreads to only mmap the first few pages
662//   when creating a new thread. Linux kernel will automatically expand thread
663//   stack as needed (on page faults).
664//
665//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
666//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
667//   region, it's hard to tell if the fault is due to a legitimate stack
668//   access or because of reading/writing non-exist memory (e.g. buffer
669//   overrun). As a rule, if the fault happens below current stack pointer,
670//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
671//   application (see Linux kernel fault.c).
672//
673//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
674//   stack overflow detection.
675//
676//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
677//   not use this flag. However, the stack of initial thread is not created
678//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
679//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
680//   and then attach the thread to JVM.
681//
682// To get around the problem and allow stack banging on Linux, we need to
683// manually expand thread stack after receiving the SIGSEGV.
684//
685// There are two ways to expand thread stack to address "bottom", we used
686// both of them in JVM before 1.5:
687//   1. adjust stack pointer first so that it is below "bottom", and then
688//      touch "bottom"
689//   2. mmap() the page in question
690//
691// Now alternate signal stack is gone, it's harder to use 2. For instance,
692// if current sp is already near the lower end of page 101, and we need to
693// call mmap() to map page 100, it is possible that part of the mmap() frame
694// will be placed in page 100. When page 100 is mapped, it is zero-filled.
695// That will destroy the mmap() frame and cause VM to crash.
696//
697// The following code works by adjusting sp first, then accessing the "bottom"
698// page to force a page fault. Linux kernel will then automatically expand the
699// stack mapping.
700//
701// _expand_stack_to() assumes its frame size is less than page size, which
702// should always be true if the function is not inlined.
703
704#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
705#define NOINLINE
706#else
707#define NOINLINE __attribute__ ((noinline))
708#endif
709
710static void _expand_stack_to(address bottom) NOINLINE;
711
712static void _expand_stack_to(address bottom) {
713  address sp;
714  size_t size;
715  volatile char *p;
716
717  // Adjust bottom to point to the largest address within the same page, it
718  // gives us a one-page buffer if alloca() allocates slightly more memory.
719  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
720  bottom += os::Linux::page_size() - 1;
721
722  // sp might be slightly above current stack pointer; if that's the case, we
723  // will alloca() a little more space than necessary, which is OK. Don't use
724  // os::current_stack_pointer(), as its result can be slightly below current
725  // stack pointer, causing us to not alloca enough to reach "bottom".
726  sp = (address)&sp;
727
728  if (sp > bottom) {
729    size = sp - bottom;
730    p = (volatile char *)alloca(size);
731    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
732    p[0] = '\0';
733  }
734}
735
736bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
737  assert(t!=NULL, "just checking");
738  assert(t->osthread()->expanding_stack(), "expand should be set");
739  assert(t->stack_base() != NULL, "stack_base was not initialized");
740
741  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
742    sigset_t mask_all, old_sigset;
743    sigfillset(&mask_all);
744    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
745    _expand_stack_to(addr);
746    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
747    return true;
748  }
749  return false;
750}
751
752//////////////////////////////////////////////////////////////////////////////
753// create new thread
754
755static address highest_vm_reserved_address();
756
757// check if it's safe to start a new thread
758static bool _thread_safety_check(Thread* thread) {
759  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
760    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
761    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
762    //   allocated (MAP_FIXED) from high address space. Every thread stack
763    //   occupies a fixed size slot (usually 2Mbytes, but user can change
764    //   it to other values if they rebuild LinuxThreads).
765    //
766    // Problem with MAP_FIXED is that mmap() can still succeed even part of
767    // the memory region has already been mmap'ed. That means if we have too
768    // many threads and/or very large heap, eventually thread stack will
769    // collide with heap.
770    //
771    // Here we try to prevent heap/stack collision by comparing current
772    // stack bottom with the highest address that has been mmap'ed by JVM
773    // plus a safety margin for memory maps created by native code.
774    //
775    // This feature can be disabled by setting ThreadSafetyMargin to 0
776    //
777    if (ThreadSafetyMargin > 0) {
778      address stack_bottom = os::current_stack_base() - os::current_stack_size();
779
780      // not safe if our stack extends below the safety margin
781      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
782    } else {
783      return true;
784    }
785  } else {
786    // Floating stack LinuxThreads or NPTL:
787    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
788    //   there's not enough space left, pthread_create() will fail. If we come
789    //   here, that means enough space has been reserved for stack.
790    return true;
791  }
792}
793
794// Thread start routine for all newly created threads
795static void *java_start(Thread *thread) {
796  // Try to randomize the cache line index of hot stack frames.
797  // This helps when threads of the same stack traces evict each other's
798  // cache lines. The threads can be either from the same JVM instance, or
799  // from different JVM instances. The benefit is especially true for
800  // processors with hyperthreading technology.
801  static int counter = 0;
802  int pid = os::current_process_id();
803  alloca(((pid ^ counter++) & 7) * 128);
804
805  ThreadLocalStorage::set_thread(thread);
806
807  OSThread* osthread = thread->osthread();
808  Monitor* sync = osthread->startThread_lock();
809
810  // non floating stack LinuxThreads needs extra check, see above
811  if (!_thread_safety_check(thread)) {
812    // notify parent thread
813    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
814    osthread->set_state(ZOMBIE);
815    sync->notify_all();
816    return NULL;
817  }
818
819  // thread_id is kernel thread id (similar to Solaris LWP id)
820  osthread->set_thread_id(os::Linux::gettid());
821
822  if (UseNUMA) {
823    int lgrp_id = os::numa_get_group_id();
824    if (lgrp_id != -1) {
825      thread->set_lgrp_id(lgrp_id);
826    }
827  }
828  // initialize signal mask for this thread
829  os::Linux::hotspot_sigmask(thread);
830
831  // initialize floating point control register
832  os::Linux::init_thread_fpu_state();
833
834  // handshaking with parent thread
835  {
836    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
837
838    // notify parent thread
839    osthread->set_state(INITIALIZED);
840    sync->notify_all();
841
842    // wait until os::start_thread()
843    while (osthread->get_state() == INITIALIZED) {
844      sync->wait(Mutex::_no_safepoint_check_flag);
845    }
846  }
847
848  // call one more level start routine
849  thread->run();
850
851  return 0;
852}
853
854bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
855  assert(thread->osthread() == NULL, "caller responsible");
856
857  // Allocate the OSThread object
858  OSThread* osthread = new OSThread(NULL, NULL);
859  if (osthread == NULL) {
860    return false;
861  }
862
863  // set the correct thread state
864  osthread->set_thread_type(thr_type);
865
866  // Initial state is ALLOCATED but not INITIALIZED
867  osthread->set_state(ALLOCATED);
868
869  thread->set_osthread(osthread);
870
871  // init thread attributes
872  pthread_attr_t attr;
873  pthread_attr_init(&attr);
874  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
875
876  // stack size
877  if (os::Linux::supports_variable_stack_size()) {
878    // calculate stack size if it's not specified by caller
879    if (stack_size == 0) {
880      stack_size = os::Linux::default_stack_size(thr_type);
881
882      switch (thr_type) {
883      case os::java_thread:
884        // Java threads use ThreadStackSize which default value can be
885        // changed with the flag -Xss
886        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
887        stack_size = JavaThread::stack_size_at_create();
888        break;
889      case os::compiler_thread:
890        if (CompilerThreadStackSize > 0) {
891          stack_size = (size_t)(CompilerThreadStackSize * K);
892          break;
893        } // else fall through:
894          // use VMThreadStackSize if CompilerThreadStackSize is not defined
895      case os::vm_thread:
896      case os::pgc_thread:
897      case os::cgc_thread:
898      case os::watcher_thread:
899        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
900        break;
901      }
902    }
903
904    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
905    pthread_attr_setstacksize(&attr, stack_size);
906  } else {
907    // let pthread_create() pick the default value.
908  }
909
910  // glibc guard page
911  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
912
913  ThreadState state;
914
915  {
916    // Serialize thread creation if we are running with fixed stack LinuxThreads
917    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
918    if (lock) {
919      os::Linux::createThread_lock()->lock_without_safepoint_check();
920    }
921
922    pthread_t tid;
923    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
924
925    pthread_attr_destroy(&attr);
926
927    if (ret != 0) {
928      if (PrintMiscellaneous && (Verbose || WizardMode)) {
929        perror("pthread_create()");
930      }
931      // Need to clean up stuff we've allocated so far
932      thread->set_osthread(NULL);
933      delete osthread;
934      if (lock) os::Linux::createThread_lock()->unlock();
935      return false;
936    }
937
938    // Store pthread info into the OSThread
939    osthread->set_pthread_id(tid);
940
941    // Wait until child thread is either initialized or aborted
942    {
943      Monitor* sync_with_child = osthread->startThread_lock();
944      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
945      while ((state = osthread->get_state()) == ALLOCATED) {
946        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
947      }
948    }
949
950    if (lock) {
951      os::Linux::createThread_lock()->unlock();
952    }
953  }
954
955  // Aborted due to thread limit being reached
956  if (state == ZOMBIE) {
957      thread->set_osthread(NULL);
958      delete osthread;
959      return false;
960  }
961
962  // The thread is returned suspended (in state INITIALIZED),
963  // and is started higher up in the call chain
964  assert(state == INITIALIZED, "race condition");
965  return true;
966}
967
968/////////////////////////////////////////////////////////////////////////////
969// attach existing thread
970
971// bootstrap the main thread
972bool os::create_main_thread(JavaThread* thread) {
973  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
974  return create_attached_thread(thread);
975}
976
977bool os::create_attached_thread(JavaThread* thread) {
978#ifdef ASSERT
979    thread->verify_not_published();
980#endif
981
982  // Allocate the OSThread object
983  OSThread* osthread = new OSThread(NULL, NULL);
984
985  if (osthread == NULL) {
986    return false;
987  }
988
989  // Store pthread info into the OSThread
990  osthread->set_thread_id(os::Linux::gettid());
991  osthread->set_pthread_id(::pthread_self());
992
993  // initialize floating point control register
994  os::Linux::init_thread_fpu_state();
995
996  // Initial thread state is RUNNABLE
997  osthread->set_state(RUNNABLE);
998
999  thread->set_osthread(osthread);
1000
1001  if (UseNUMA) {
1002    int lgrp_id = os::numa_get_group_id();
1003    if (lgrp_id != -1) {
1004      thread->set_lgrp_id(lgrp_id);
1005    }
1006  }
1007
1008  if (os::Linux::is_initial_thread()) {
1009    // If current thread is initial thread, its stack is mapped on demand,
1010    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1011    // the entire stack region to avoid SEGV in stack banging.
1012    // It is also useful to get around the heap-stack-gap problem on SuSE
1013    // kernel (see 4821821 for details). We first expand stack to the top
1014    // of yellow zone, then enable stack yellow zone (order is significant,
1015    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1016    // is no gap between the last two virtual memory regions.
1017
1018    JavaThread *jt = (JavaThread *)thread;
1019    address addr = jt->stack_yellow_zone_base();
1020    assert(addr != NULL, "initialization problem?");
1021    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1022
1023    osthread->set_expanding_stack();
1024    os::Linux::manually_expand_stack(jt, addr);
1025    osthread->clear_expanding_stack();
1026  }
1027
1028  // initialize signal mask for this thread
1029  // and save the caller's signal mask
1030  os::Linux::hotspot_sigmask(thread);
1031
1032  return true;
1033}
1034
1035void os::pd_start_thread(Thread* thread) {
1036  OSThread * osthread = thread->osthread();
1037  assert(osthread->get_state() != INITIALIZED, "just checking");
1038  Monitor* sync_with_child = osthread->startThread_lock();
1039  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1040  sync_with_child->notify();
1041}
1042
1043// Free Linux resources related to the OSThread
1044void os::free_thread(OSThread* osthread) {
1045  assert(osthread != NULL, "osthread not set");
1046
1047  if (Thread::current()->osthread() == osthread) {
1048    // Restore caller's signal mask
1049    sigset_t sigmask = osthread->caller_sigmask();
1050    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1051   }
1052
1053  delete osthread;
1054}
1055
1056//////////////////////////////////////////////////////////////////////////////
1057// thread local storage
1058
1059int os::allocate_thread_local_storage() {
1060  pthread_key_t key;
1061  int rslt = pthread_key_create(&key, NULL);
1062  assert(rslt == 0, "cannot allocate thread local storage");
1063  return (int)key;
1064}
1065
1066// Note: This is currently not used by VM, as we don't destroy TLS key
1067// on VM exit.
1068void os::free_thread_local_storage(int index) {
1069  int rslt = pthread_key_delete((pthread_key_t)index);
1070  assert(rslt == 0, "invalid index");
1071}
1072
1073void os::thread_local_storage_at_put(int index, void* value) {
1074  int rslt = pthread_setspecific((pthread_key_t)index, value);
1075  assert(rslt == 0, "pthread_setspecific failed");
1076}
1077
1078extern "C" Thread* get_thread() {
1079  return ThreadLocalStorage::thread();
1080}
1081
1082//////////////////////////////////////////////////////////////////////////////
1083// initial thread
1084
1085// Check if current thread is the initial thread, similar to Solaris thr_main.
1086bool os::Linux::is_initial_thread(void) {
1087  char dummy;
1088  // If called before init complete, thread stack bottom will be null.
1089  // Can be called if fatal error occurs before initialization.
1090  if (initial_thread_stack_bottom() == NULL) return false;
1091  assert(initial_thread_stack_bottom() != NULL &&
1092         initial_thread_stack_size()   != 0,
1093         "os::init did not locate initial thread's stack region");
1094  if ((address)&dummy >= initial_thread_stack_bottom() &&
1095      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1096       return true;
1097  else return false;
1098}
1099
1100// Find the virtual memory area that contains addr
1101static bool find_vma(address addr, address* vma_low, address* vma_high) {
1102  FILE *fp = fopen("/proc/self/maps", "r");
1103  if (fp) {
1104    address low, high;
1105    while (!feof(fp)) {
1106      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1107        if (low <= addr && addr < high) {
1108           if (vma_low)  *vma_low  = low;
1109           if (vma_high) *vma_high = high;
1110           fclose (fp);
1111           return true;
1112        }
1113      }
1114      for (;;) {
1115        int ch = fgetc(fp);
1116        if (ch == EOF || ch == (int)'\n') break;
1117      }
1118    }
1119    fclose(fp);
1120  }
1121  return false;
1122}
1123
1124// Locate initial thread stack. This special handling of initial thread stack
1125// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1126// bogus value for initial thread.
1127void os::Linux::capture_initial_stack(size_t max_size) {
1128  // stack size is the easy part, get it from RLIMIT_STACK
1129  size_t stack_size;
1130  struct rlimit rlim;
1131  getrlimit(RLIMIT_STACK, &rlim);
1132  stack_size = rlim.rlim_cur;
1133
1134  // 6308388: a bug in ld.so will relocate its own .data section to the
1135  //   lower end of primordial stack; reduce ulimit -s value a little bit
1136  //   so we won't install guard page on ld.so's data section.
1137  stack_size -= 2 * page_size();
1138
1139  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1140  //   7.1, in both cases we will get 2G in return value.
1141  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1142  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1143  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1144  //   in case other parts in glibc still assumes 2M max stack size.
1145  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1146  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1147  if (stack_size > 2 * K * K IA64_ONLY(*2))
1148      stack_size = 2 * K * K IA64_ONLY(*2);
1149  // Try to figure out where the stack base (top) is. This is harder.
1150  //
1151  // When an application is started, glibc saves the initial stack pointer in
1152  // a global variable "__libc_stack_end", which is then used by system
1153  // libraries. __libc_stack_end should be pretty close to stack top. The
1154  // variable is available since the very early days. However, because it is
1155  // a private interface, it could disappear in the future.
1156  //
1157  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1158  // to __libc_stack_end, it is very close to stack top, but isn't the real
1159  // stack top. Note that /proc may not exist if VM is running as a chroot
1160  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1161  // /proc/<pid>/stat could change in the future (though unlikely).
1162  //
1163  // We try __libc_stack_end first. If that doesn't work, look for
1164  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1165  // as a hint, which should work well in most cases.
1166
1167  uintptr_t stack_start;
1168
1169  // try __libc_stack_end first
1170  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1171  if (p && *p) {
1172    stack_start = *p;
1173  } else {
1174    // see if we can get the start_stack field from /proc/self/stat
1175    FILE *fp;
1176    int pid;
1177    char state;
1178    int ppid;
1179    int pgrp;
1180    int session;
1181    int nr;
1182    int tpgrp;
1183    unsigned long flags;
1184    unsigned long minflt;
1185    unsigned long cminflt;
1186    unsigned long majflt;
1187    unsigned long cmajflt;
1188    unsigned long utime;
1189    unsigned long stime;
1190    long cutime;
1191    long cstime;
1192    long prio;
1193    long nice;
1194    long junk;
1195    long it_real;
1196    uintptr_t start;
1197    uintptr_t vsize;
1198    intptr_t rss;
1199    uintptr_t rsslim;
1200    uintptr_t scodes;
1201    uintptr_t ecode;
1202    int i;
1203
1204    // Figure what the primordial thread stack base is. Code is inspired
1205    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1206    // followed by command name surrounded by parentheses, state, etc.
1207    char stat[2048];
1208    int statlen;
1209
1210    fp = fopen("/proc/self/stat", "r");
1211    if (fp) {
1212      statlen = fread(stat, 1, 2047, fp);
1213      stat[statlen] = '\0';
1214      fclose(fp);
1215
1216      // Skip pid and the command string. Note that we could be dealing with
1217      // weird command names, e.g. user could decide to rename java launcher
1218      // to "java 1.4.2 :)", then the stat file would look like
1219      //                1234 (java 1.4.2 :)) R ... ...
1220      // We don't really need to know the command string, just find the last
1221      // occurrence of ")" and then start parsing from there. See bug 4726580.
1222      char * s = strrchr(stat, ')');
1223
1224      i = 0;
1225      if (s) {
1226        // Skip blank chars
1227        do s++; while (isspace(*s));
1228
1229#define _UFM UINTX_FORMAT
1230#define _DFM INTX_FORMAT
1231
1232        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1233        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1234        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1235             &state,          /* 3  %c  */
1236             &ppid,           /* 4  %d  */
1237             &pgrp,           /* 5  %d  */
1238             &session,        /* 6  %d  */
1239             &nr,             /* 7  %d  */
1240             &tpgrp,          /* 8  %d  */
1241             &flags,          /* 9  %lu  */
1242             &minflt,         /* 10 %lu  */
1243             &cminflt,        /* 11 %lu  */
1244             &majflt,         /* 12 %lu  */
1245             &cmajflt,        /* 13 %lu  */
1246             &utime,          /* 14 %lu  */
1247             &stime,          /* 15 %lu  */
1248             &cutime,         /* 16 %ld  */
1249             &cstime,         /* 17 %ld  */
1250             &prio,           /* 18 %ld  */
1251             &nice,           /* 19 %ld  */
1252             &junk,           /* 20 %ld  */
1253             &it_real,        /* 21 %ld  */
1254             &start,          /* 22 UINTX_FORMAT */
1255             &vsize,          /* 23 UINTX_FORMAT */
1256             &rss,            /* 24 INTX_FORMAT  */
1257             &rsslim,         /* 25 UINTX_FORMAT */
1258             &scodes,         /* 26 UINTX_FORMAT */
1259             &ecode,          /* 27 UINTX_FORMAT */
1260             &stack_start);   /* 28 UINTX_FORMAT */
1261      }
1262
1263#undef _UFM
1264#undef _DFM
1265
1266      if (i != 28 - 2) {
1267         assert(false, "Bad conversion from /proc/self/stat");
1268         // product mode - assume we are the initial thread, good luck in the
1269         // embedded case.
1270         warning("Can't detect initial thread stack location - bad conversion");
1271         stack_start = (uintptr_t) &rlim;
1272      }
1273    } else {
1274      // For some reason we can't open /proc/self/stat (for example, running on
1275      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1276      // most cases, so don't abort:
1277      warning("Can't detect initial thread stack location - no /proc/self/stat");
1278      stack_start = (uintptr_t) &rlim;
1279    }
1280  }
1281
1282  // Now we have a pointer (stack_start) very close to the stack top, the
1283  // next thing to do is to figure out the exact location of stack top. We
1284  // can find out the virtual memory area that contains stack_start by
1285  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1286  // and its upper limit is the real stack top. (again, this would fail if
1287  // running inside chroot, because /proc may not exist.)
1288
1289  uintptr_t stack_top;
1290  address low, high;
1291  if (find_vma((address)stack_start, &low, &high)) {
1292    // success, "high" is the true stack top. (ignore "low", because initial
1293    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1294    stack_top = (uintptr_t)high;
1295  } else {
1296    // failed, likely because /proc/self/maps does not exist
1297    warning("Can't detect initial thread stack location - find_vma failed");
1298    // best effort: stack_start is normally within a few pages below the real
1299    // stack top, use it as stack top, and reduce stack size so we won't put
1300    // guard page outside stack.
1301    stack_top = stack_start;
1302    stack_size -= 16 * page_size();
1303  }
1304
1305  // stack_top could be partially down the page so align it
1306  stack_top = align_size_up(stack_top, page_size());
1307
1308  if (max_size && stack_size > max_size) {
1309     _initial_thread_stack_size = max_size;
1310  } else {
1311     _initial_thread_stack_size = stack_size;
1312  }
1313
1314  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1315  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1316}
1317
1318////////////////////////////////////////////////////////////////////////////////
1319// time support
1320
1321// Time since start-up in seconds to a fine granularity.
1322// Used by VMSelfDestructTimer and the MemProfiler.
1323double os::elapsedTime() {
1324
1325  return (double)(os::elapsed_counter()) * 0.000001;
1326}
1327
1328jlong os::elapsed_counter() {
1329  timeval time;
1330  int status = gettimeofday(&time, NULL);
1331  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1332}
1333
1334jlong os::elapsed_frequency() {
1335  return (1000 * 1000);
1336}
1337
1338// For now, we say that linux does not support vtime.  I have no idea
1339// whether it can actually be made to (DLD, 9/13/05).
1340
1341bool os::supports_vtime() { return false; }
1342bool os::enable_vtime()   { return false; }
1343bool os::vtime_enabled()  { return false; }
1344double os::elapsedVTime() {
1345  // better than nothing, but not much
1346  return elapsedTime();
1347}
1348
1349jlong os::javaTimeMillis() {
1350  timeval time;
1351  int status = gettimeofday(&time, NULL);
1352  assert(status != -1, "linux error");
1353  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1354}
1355
1356#ifndef CLOCK_MONOTONIC
1357#define CLOCK_MONOTONIC (1)
1358#endif
1359
1360void os::Linux::clock_init() {
1361  // we do dlopen's in this particular order due to bug in linux
1362  // dynamical loader (see 6348968) leading to crash on exit
1363  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1364  if (handle == NULL) {
1365    handle = dlopen("librt.so", RTLD_LAZY);
1366  }
1367
1368  if (handle) {
1369    int (*clock_getres_func)(clockid_t, struct timespec*) =
1370           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1371    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1372           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1373    if (clock_getres_func && clock_gettime_func) {
1374      // See if monotonic clock is supported by the kernel. Note that some
1375      // early implementations simply return kernel jiffies (updated every
1376      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1377      // for nano time (though the monotonic property is still nice to have).
1378      // It's fixed in newer kernels, however clock_getres() still returns
1379      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1380      // resolution for now. Hopefully as people move to new kernels, this
1381      // won't be a problem.
1382      struct timespec res;
1383      struct timespec tp;
1384      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1385          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1386        // yes, monotonic clock is supported
1387        _clock_gettime = clock_gettime_func;
1388      } else {
1389        // close librt if there is no monotonic clock
1390        dlclose(handle);
1391      }
1392    }
1393  }
1394}
1395
1396#ifndef SYS_clock_getres
1397
1398#if defined(IA32) || defined(AMD64)
1399#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1400#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1401#else
1402#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1403#define sys_clock_getres(x,y)  -1
1404#endif
1405
1406#else
1407#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1408#endif
1409
1410void os::Linux::fast_thread_clock_init() {
1411  if (!UseLinuxPosixThreadCPUClocks) {
1412    return;
1413  }
1414  clockid_t clockid;
1415  struct timespec tp;
1416  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1417      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1418
1419  // Switch to using fast clocks for thread cpu time if
1420  // the sys_clock_getres() returns 0 error code.
1421  // Note, that some kernels may support the current thread
1422  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1423  // returned by the pthread_getcpuclockid().
1424  // If the fast Posix clocks are supported then the sys_clock_getres()
1425  // must return at least tp.tv_sec == 0 which means a resolution
1426  // better than 1 sec. This is extra check for reliability.
1427
1428  if(pthread_getcpuclockid_func &&
1429     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1430     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1431
1432    _supports_fast_thread_cpu_time = true;
1433    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1434  }
1435}
1436
1437jlong os::javaTimeNanos() {
1438  if (Linux::supports_monotonic_clock()) {
1439    struct timespec tp;
1440    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1441    assert(status == 0, "gettime error");
1442    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1443    return result;
1444  } else {
1445    timeval time;
1446    int status = gettimeofday(&time, NULL);
1447    assert(status != -1, "linux error");
1448    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1449    return 1000 * usecs;
1450  }
1451}
1452
1453void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1454  if (Linux::supports_monotonic_clock()) {
1455    info_ptr->max_value = ALL_64_BITS;
1456
1457    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1458    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1459    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1460  } else {
1461    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1462    info_ptr->max_value = ALL_64_BITS;
1463
1464    // gettimeofday is a real time clock so it skips
1465    info_ptr->may_skip_backward = true;
1466    info_ptr->may_skip_forward = true;
1467  }
1468
1469  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1470}
1471
1472// Return the real, user, and system times in seconds from an
1473// arbitrary fixed point in the past.
1474bool os::getTimesSecs(double* process_real_time,
1475                      double* process_user_time,
1476                      double* process_system_time) {
1477  struct tms ticks;
1478  clock_t real_ticks = times(&ticks);
1479
1480  if (real_ticks == (clock_t) (-1)) {
1481    return false;
1482  } else {
1483    double ticks_per_second = (double) clock_tics_per_sec;
1484    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1485    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1486    *process_real_time = ((double) real_ticks) / ticks_per_second;
1487
1488    return true;
1489  }
1490}
1491
1492
1493char * os::local_time_string(char *buf, size_t buflen) {
1494  struct tm t;
1495  time_t long_time;
1496  time(&long_time);
1497  localtime_r(&long_time, &t);
1498  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1499               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1500               t.tm_hour, t.tm_min, t.tm_sec);
1501  return buf;
1502}
1503
1504struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1505  return localtime_r(clock, res);
1506}
1507
1508////////////////////////////////////////////////////////////////////////////////
1509// runtime exit support
1510
1511// Note: os::shutdown() might be called very early during initialization, or
1512// called from signal handler. Before adding something to os::shutdown(), make
1513// sure it is async-safe and can handle partially initialized VM.
1514void os::shutdown() {
1515
1516  // allow PerfMemory to attempt cleanup of any persistent resources
1517  perfMemory_exit();
1518
1519  // needs to remove object in file system
1520  AttachListener::abort();
1521
1522  // flush buffered output, finish log files
1523  ostream_abort();
1524
1525  // Check for abort hook
1526  abort_hook_t abort_hook = Arguments::abort_hook();
1527  if (abort_hook != NULL) {
1528    abort_hook();
1529  }
1530
1531}
1532
1533// Note: os::abort() might be called very early during initialization, or
1534// called from signal handler. Before adding something to os::abort(), make
1535// sure it is async-safe and can handle partially initialized VM.
1536void os::abort(bool dump_core) {
1537  os::shutdown();
1538  if (dump_core) {
1539#ifndef PRODUCT
1540    fdStream out(defaultStream::output_fd());
1541    out.print_raw("Current thread is ");
1542    char buf[16];
1543    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1544    out.print_raw_cr(buf);
1545    out.print_raw_cr("Dumping core ...");
1546#endif
1547    ::abort(); // dump core
1548  }
1549
1550  ::exit(1);
1551}
1552
1553// Die immediately, no exit hook, no abort hook, no cleanup.
1554void os::die() {
1555  // _exit() on LinuxThreads only kills current thread
1556  ::abort();
1557}
1558
1559// unused on linux for now.
1560void os::set_error_file(const char *logfile) {}
1561
1562
1563// This method is a copy of JDK's sysGetLastErrorString
1564// from src/solaris/hpi/src/system_md.c
1565
1566size_t os::lasterror(char *buf, size_t len) {
1567
1568  if (errno == 0)  return 0;
1569
1570  const char *s = ::strerror(errno);
1571  size_t n = ::strlen(s);
1572  if (n >= len) {
1573    n = len - 1;
1574  }
1575  ::strncpy(buf, s, n);
1576  buf[n] = '\0';
1577  return n;
1578}
1579
1580intx os::current_thread_id() { return (intx)pthread_self(); }
1581int os::current_process_id() {
1582
1583  // Under the old linux thread library, linux gives each thread
1584  // its own process id. Because of this each thread will return
1585  // a different pid if this method were to return the result
1586  // of getpid(2). Linux provides no api that returns the pid
1587  // of the launcher thread for the vm. This implementation
1588  // returns a unique pid, the pid of the launcher thread
1589  // that starts the vm 'process'.
1590
1591  // Under the NPTL, getpid() returns the same pid as the
1592  // launcher thread rather than a unique pid per thread.
1593  // Use gettid() if you want the old pre NPTL behaviour.
1594
1595  // if you are looking for the result of a call to getpid() that
1596  // returns a unique pid for the calling thread, then look at the
1597  // OSThread::thread_id() method in osThread_linux.hpp file
1598
1599  return (int)(_initial_pid ? _initial_pid : getpid());
1600}
1601
1602// DLL functions
1603
1604const char* os::dll_file_extension() { return ".so"; }
1605
1606// This must be hard coded because it's the system's temporary
1607// directory not the java application's temp directory, ala java.io.tmpdir.
1608const char* os::get_temp_directory() { return "/tmp"; }
1609
1610static bool file_exists(const char* filename) {
1611  struct stat statbuf;
1612  if (filename == NULL || strlen(filename) == 0) {
1613    return false;
1614  }
1615  return os::stat(filename, &statbuf) == 0;
1616}
1617
1618bool os::dll_build_name(char* buffer, size_t buflen,
1619                        const char* pname, const char* fname) {
1620  bool retval = false;
1621  // Copied from libhpi
1622  const size_t pnamelen = pname ? strlen(pname) : 0;
1623
1624  // Return error on buffer overflow.
1625  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1626    return retval;
1627  }
1628
1629  if (pnamelen == 0) {
1630    snprintf(buffer, buflen, "lib%s.so", fname);
1631    retval = true;
1632  } else if (strchr(pname, *os::path_separator()) != NULL) {
1633    int n;
1634    char** pelements = split_path(pname, &n);
1635    if (pelements == NULL) {
1636      return false;
1637    }
1638    for (int i = 0 ; i < n ; i++) {
1639      // Really shouldn't be NULL, but check can't hurt
1640      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1641        continue; // skip the empty path values
1642      }
1643      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1644      if (file_exists(buffer)) {
1645        retval = true;
1646        break;
1647      }
1648    }
1649    // release the storage
1650    for (int i = 0 ; i < n ; i++) {
1651      if (pelements[i] != NULL) {
1652        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1653      }
1654    }
1655    if (pelements != NULL) {
1656      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1657    }
1658  } else {
1659    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1660    retval = true;
1661  }
1662  return retval;
1663}
1664
1665// check if addr is inside libjvm.so
1666bool os::address_is_in_vm(address addr) {
1667  static address libjvm_base_addr;
1668  Dl_info dlinfo;
1669
1670  if (libjvm_base_addr == NULL) {
1671    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1672    libjvm_base_addr = (address)dlinfo.dli_fbase;
1673    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1674  }
1675
1676  if (dladdr((void *)addr, &dlinfo)) {
1677    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1678  }
1679
1680  return false;
1681}
1682
1683bool os::dll_address_to_function_name(address addr, char *buf,
1684                                      int buflen, int *offset) {
1685  Dl_info dlinfo;
1686
1687  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1688    if (buf != NULL) {
1689      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1690        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1691      }
1692    }
1693    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1694    return true;
1695  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1696    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1697        buf, buflen, offset, dlinfo.dli_fname)) {
1698       return true;
1699    }
1700  }
1701
1702  if (buf != NULL) buf[0] = '\0';
1703  if (offset != NULL) *offset = -1;
1704  return false;
1705}
1706
1707struct _address_to_library_name {
1708  address addr;          // input : memory address
1709  size_t  buflen;        //         size of fname
1710  char*   fname;         // output: library name
1711  address base;          //         library base addr
1712};
1713
1714static int address_to_library_name_callback(struct dl_phdr_info *info,
1715                                            size_t size, void *data) {
1716  int i;
1717  bool found = false;
1718  address libbase = NULL;
1719  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1720
1721  // iterate through all loadable segments
1722  for (i = 0; i < info->dlpi_phnum; i++) {
1723    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1724    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1725      // base address of a library is the lowest address of its loaded
1726      // segments.
1727      if (libbase == NULL || libbase > segbase) {
1728        libbase = segbase;
1729      }
1730      // see if 'addr' is within current segment
1731      if (segbase <= d->addr &&
1732          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1733        found = true;
1734      }
1735    }
1736  }
1737
1738  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1739  // so dll_address_to_library_name() can fall through to use dladdr() which
1740  // can figure out executable name from argv[0].
1741  if (found && info->dlpi_name && info->dlpi_name[0]) {
1742    d->base = libbase;
1743    if (d->fname) {
1744      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1745    }
1746    return 1;
1747  }
1748  return 0;
1749}
1750
1751bool os::dll_address_to_library_name(address addr, char* buf,
1752                                     int buflen, int* offset) {
1753  Dl_info dlinfo;
1754  struct _address_to_library_name data;
1755
1756  // There is a bug in old glibc dladdr() implementation that it could resolve
1757  // to wrong library name if the .so file has a base address != NULL. Here
1758  // we iterate through the program headers of all loaded libraries to find
1759  // out which library 'addr' really belongs to. This workaround can be
1760  // removed once the minimum requirement for glibc is moved to 2.3.x.
1761  data.addr = addr;
1762  data.fname = buf;
1763  data.buflen = buflen;
1764  data.base = NULL;
1765  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1766
1767  if (rslt) {
1768     // buf already contains library name
1769     if (offset) *offset = addr - data.base;
1770     return true;
1771  } else if (dladdr((void*)addr, &dlinfo)){
1772     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1773     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1774     return true;
1775  } else {
1776     if (buf) buf[0] = '\0';
1777     if (offset) *offset = -1;
1778     return false;
1779  }
1780}
1781
1782  // Loads .dll/.so and
1783  // in case of error it checks if .dll/.so was built for the
1784  // same architecture as Hotspot is running on
1785
1786
1787// Remember the stack's state. The Linux dynamic linker will change
1788// the stack to 'executable' at most once, so we must safepoint only once.
1789bool os::Linux::_stack_is_executable = false;
1790
1791// VM operation that loads a library.  This is necessary if stack protection
1792// of the Java stacks can be lost during loading the library.  If we
1793// do not stop the Java threads, they can stack overflow before the stacks
1794// are protected again.
1795class VM_LinuxDllLoad: public VM_Operation {
1796 private:
1797  const char *_filename;
1798  char *_ebuf;
1799  int _ebuflen;
1800  void *_lib;
1801 public:
1802  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1803    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1804  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1805  void doit() {
1806    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1807    os::Linux::_stack_is_executable = true;
1808  }
1809  void* loaded_library() { return _lib; }
1810};
1811
1812void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1813{
1814  void * result = NULL;
1815  bool load_attempted = false;
1816
1817  // Check whether the library to load might change execution rights
1818  // of the stack. If they are changed, the protection of the stack
1819  // guard pages will be lost. We need a safepoint to fix this.
1820  //
1821  // See Linux man page execstack(8) for more info.
1822  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1823    ElfFile ef(filename);
1824    if (!ef.specifies_noexecstack()) {
1825      if (!is_init_completed()) {
1826        os::Linux::_stack_is_executable = true;
1827        // This is OK - No Java threads have been created yet, and hence no
1828        // stack guard pages to fix.
1829        //
1830        // This should happen only when you are building JDK7 using a very
1831        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1832        //
1833        // Dynamic loader will make all stacks executable after
1834        // this function returns, and will not do that again.
1835        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1836      } else {
1837        warning("You have loaded library %s which might have disabled stack guard. "
1838                "The VM will try to fix the stack guard now.\n"
1839                "It's highly recommended that you fix the library with "
1840                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1841                filename);
1842
1843        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1844        JavaThread *jt = JavaThread::current();
1845        if (jt->thread_state() != _thread_in_native) {
1846          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1847          // that requires ExecStack. Cannot enter safe point. Let's give up.
1848          warning("Unable to fix stack guard. Giving up.");
1849        } else {
1850          if (!LoadExecStackDllInVMThread) {
1851            // This is for the case where the DLL has an static
1852            // constructor function that executes JNI code. We cannot
1853            // load such DLLs in the VMThread.
1854            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1855          }
1856
1857          ThreadInVMfromNative tiv(jt);
1858          debug_only(VMNativeEntryWrapper vew;)
1859
1860          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1861          VMThread::execute(&op);
1862          if (LoadExecStackDllInVMThread) {
1863            result = op.loaded_library();
1864          }
1865          load_attempted = true;
1866        }
1867      }
1868    }
1869  }
1870
1871  if (!load_attempted) {
1872    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1873  }
1874
1875  if (result != NULL) {
1876    // Successful loading
1877    return result;
1878  }
1879
1880  Elf32_Ehdr elf_head;
1881  int diag_msg_max_length=ebuflen-strlen(ebuf);
1882  char* diag_msg_buf=ebuf+strlen(ebuf);
1883
1884  if (diag_msg_max_length==0) {
1885    // No more space in ebuf for additional diagnostics message
1886    return NULL;
1887  }
1888
1889
1890  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1891
1892  if (file_descriptor < 0) {
1893    // Can't open library, report dlerror() message
1894    return NULL;
1895  }
1896
1897  bool failed_to_read_elf_head=
1898    (sizeof(elf_head)!=
1899        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1900
1901  ::close(file_descriptor);
1902  if (failed_to_read_elf_head) {
1903    // file i/o error - report dlerror() msg
1904    return NULL;
1905  }
1906
1907  typedef struct {
1908    Elf32_Half  code;         // Actual value as defined in elf.h
1909    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1910    char        elf_class;    // 32 or 64 bit
1911    char        endianess;    // MSB or LSB
1912    char*       name;         // String representation
1913  } arch_t;
1914
1915  #ifndef EM_486
1916  #define EM_486          6               /* Intel 80486 */
1917  #endif
1918
1919  static const arch_t arch_array[]={
1920    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1921    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1922    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1923    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1924    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1925    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1926    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1927    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1928    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1929    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1930    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1931    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1932    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1933    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1934    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1935    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1936  };
1937
1938  #if  (defined IA32)
1939    static  Elf32_Half running_arch_code=EM_386;
1940  #elif   (defined AMD64)
1941    static  Elf32_Half running_arch_code=EM_X86_64;
1942  #elif  (defined IA64)
1943    static  Elf32_Half running_arch_code=EM_IA_64;
1944  #elif  (defined __sparc) && (defined _LP64)
1945    static  Elf32_Half running_arch_code=EM_SPARCV9;
1946  #elif  (defined __sparc) && (!defined _LP64)
1947    static  Elf32_Half running_arch_code=EM_SPARC;
1948  #elif  (defined __powerpc64__)
1949    static  Elf32_Half running_arch_code=EM_PPC64;
1950  #elif  (defined __powerpc__)
1951    static  Elf32_Half running_arch_code=EM_PPC;
1952  #elif  (defined ARM)
1953    static  Elf32_Half running_arch_code=EM_ARM;
1954  #elif  (defined S390)
1955    static  Elf32_Half running_arch_code=EM_S390;
1956  #elif  (defined ALPHA)
1957    static  Elf32_Half running_arch_code=EM_ALPHA;
1958  #elif  (defined MIPSEL)
1959    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1960  #elif  (defined PARISC)
1961    static  Elf32_Half running_arch_code=EM_PARISC;
1962  #elif  (defined MIPS)
1963    static  Elf32_Half running_arch_code=EM_MIPS;
1964  #elif  (defined M68K)
1965    static  Elf32_Half running_arch_code=EM_68K;
1966  #else
1967    #error Method os::dll_load requires that one of following is defined:\
1968         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1969  #endif
1970
1971  // Identify compatability class for VM's architecture and library's architecture
1972  // Obtain string descriptions for architectures
1973
1974  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1975  int running_arch_index=-1;
1976
1977  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1978    if (running_arch_code == arch_array[i].code) {
1979      running_arch_index    = i;
1980    }
1981    if (lib_arch.code == arch_array[i].code) {
1982      lib_arch.compat_class = arch_array[i].compat_class;
1983      lib_arch.name         = arch_array[i].name;
1984    }
1985  }
1986
1987  assert(running_arch_index != -1,
1988    "Didn't find running architecture code (running_arch_code) in arch_array");
1989  if (running_arch_index == -1) {
1990    // Even though running architecture detection failed
1991    // we may still continue with reporting dlerror() message
1992    return NULL;
1993  }
1994
1995  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1996    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1997    return NULL;
1998  }
1999
2000#ifndef S390
2001  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2002    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2003    return NULL;
2004  }
2005#endif // !S390
2006
2007  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2008    if ( lib_arch.name!=NULL ) {
2009      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2010        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2011        lib_arch.name, arch_array[running_arch_index].name);
2012    } else {
2013      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2014      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2015        lib_arch.code,
2016        arch_array[running_arch_index].name);
2017    }
2018  }
2019
2020  return NULL;
2021}
2022
2023void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2024  void * result = ::dlopen(filename, RTLD_LAZY);
2025  if (result == NULL) {
2026    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2027    ebuf[ebuflen-1] = '\0';
2028  }
2029  return result;
2030}
2031
2032void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2033  void * result = NULL;
2034  if (LoadExecStackDllInVMThread) {
2035    result = dlopen_helper(filename, ebuf, ebuflen);
2036  }
2037
2038  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2039  // library that requires an executable stack, or which does not have this
2040  // stack attribute set, dlopen changes the stack attribute to executable. The
2041  // read protection of the guard pages gets lost.
2042  //
2043  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2044  // may have been queued at the same time.
2045
2046  if (!_stack_is_executable) {
2047    JavaThread *jt = Threads::first();
2048
2049    while (jt) {
2050      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2051          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2052        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2053                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2054          warning("Attempt to reguard stack yellow zone failed.");
2055        }
2056      }
2057      jt = jt->next();
2058    }
2059  }
2060
2061  return result;
2062}
2063
2064/*
2065 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2066 * chances are you might want to run the generated bits against glibc-2.0
2067 * libdl.so, so always use locking for any version of glibc.
2068 */
2069void* os::dll_lookup(void* handle, const char* name) {
2070  pthread_mutex_lock(&dl_mutex);
2071  void* res = dlsym(handle, name);
2072  pthread_mutex_unlock(&dl_mutex);
2073  return res;
2074}
2075
2076
2077static bool _print_ascii_file(const char* filename, outputStream* st) {
2078  int fd = ::open(filename, O_RDONLY);
2079  if (fd == -1) {
2080     return false;
2081  }
2082
2083  char buf[32];
2084  int bytes;
2085  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2086    st->print_raw(buf, bytes);
2087  }
2088
2089  ::close(fd);
2090
2091  return true;
2092}
2093
2094void os::print_dll_info(outputStream *st) {
2095   st->print_cr("Dynamic libraries:");
2096
2097   char fname[32];
2098   pid_t pid = os::Linux::gettid();
2099
2100   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2101
2102   if (!_print_ascii_file(fname, st)) {
2103     st->print("Can not get library information for pid = %d\n", pid);
2104   }
2105}
2106
2107void os::print_os_info_brief(outputStream* st) {
2108  os::Linux::print_distro_info(st);
2109
2110  os::Posix::print_uname_info(st);
2111
2112  os::Linux::print_libversion_info(st);
2113
2114}
2115
2116void os::print_os_info(outputStream* st) {
2117  st->print("OS:");
2118
2119  os::Linux::print_distro_info(st);
2120
2121  os::Posix::print_uname_info(st);
2122
2123  // Print warning if unsafe chroot environment detected
2124  if (unsafe_chroot_detected) {
2125    st->print("WARNING!! ");
2126    st->print_cr(unstable_chroot_error);
2127  }
2128
2129  os::Linux::print_libversion_info(st);
2130
2131  os::Posix::print_rlimit_info(st);
2132
2133  os::Posix::print_load_average(st);
2134
2135  os::Linux::print_full_memory_info(st);
2136}
2137
2138// Try to identify popular distros.
2139// Most Linux distributions have /etc/XXX-release file, which contains
2140// the OS version string. Some have more than one /etc/XXX-release file
2141// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2142// so the order is important.
2143void os::Linux::print_distro_info(outputStream* st) {
2144  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2145      !_print_ascii_file("/etc/sun-release", st) &&
2146      !_print_ascii_file("/etc/redhat-release", st) &&
2147      !_print_ascii_file("/etc/SuSE-release", st) &&
2148      !_print_ascii_file("/etc/turbolinux-release", st) &&
2149      !_print_ascii_file("/etc/gentoo-release", st) &&
2150      !_print_ascii_file("/etc/debian_version", st) &&
2151      !_print_ascii_file("/etc/ltib-release", st) &&
2152      !_print_ascii_file("/etc/angstrom-version", st)) {
2153      st->print("Linux");
2154  }
2155  st->cr();
2156}
2157
2158void os::Linux::print_libversion_info(outputStream* st) {
2159  // libc, pthread
2160  st->print("libc:");
2161  st->print(os::Linux::glibc_version()); st->print(" ");
2162  st->print(os::Linux::libpthread_version()); st->print(" ");
2163  if (os::Linux::is_LinuxThreads()) {
2164     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2165  }
2166  st->cr();
2167}
2168
2169void os::Linux::print_full_memory_info(outputStream* st) {
2170   st->print("\n/proc/meminfo:\n");
2171   _print_ascii_file("/proc/meminfo", st);
2172   st->cr();
2173}
2174
2175void os::print_memory_info(outputStream* st) {
2176
2177  st->print("Memory:");
2178  st->print(" %dk page", os::vm_page_size()>>10);
2179
2180  // values in struct sysinfo are "unsigned long"
2181  struct sysinfo si;
2182  sysinfo(&si);
2183
2184  st->print(", physical " UINT64_FORMAT "k",
2185            os::physical_memory() >> 10);
2186  st->print("(" UINT64_FORMAT "k free)",
2187            os::available_memory() >> 10);
2188  st->print(", swap " UINT64_FORMAT "k",
2189            ((jlong)si.totalswap * si.mem_unit) >> 10);
2190  st->print("(" UINT64_FORMAT "k free)",
2191            ((jlong)si.freeswap * si.mem_unit) >> 10);
2192  st->cr();
2193}
2194
2195void os::pd_print_cpu_info(outputStream* st) {
2196  st->print("\n/proc/cpuinfo:\n");
2197  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2198    st->print("  <Not Available>");
2199  }
2200  st->cr();
2201}
2202
2203// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2204// but they're the same for all the linux arch that we support
2205// and they're the same for solaris but there's no common place to put this.
2206const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2207                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2208                          "ILL_COPROC", "ILL_BADSTK" };
2209
2210const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2211                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2212                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2213
2214const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2215
2216const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2217
2218void os::print_siginfo(outputStream* st, void* siginfo) {
2219  st->print("siginfo:");
2220
2221  const int buflen = 100;
2222  char buf[buflen];
2223  siginfo_t *si = (siginfo_t*)siginfo;
2224  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2225  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2226    st->print("si_errno=%s", buf);
2227  } else {
2228    st->print("si_errno=%d", si->si_errno);
2229  }
2230  const int c = si->si_code;
2231  assert(c > 0, "unexpected si_code");
2232  switch (si->si_signo) {
2233  case SIGILL:
2234    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2235    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2236    break;
2237  case SIGFPE:
2238    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2239    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2240    break;
2241  case SIGSEGV:
2242    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2243    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2244    break;
2245  case SIGBUS:
2246    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2247    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2248    break;
2249  default:
2250    st->print(", si_code=%d", si->si_code);
2251    // no si_addr
2252  }
2253
2254  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2255      UseSharedSpaces) {
2256    FileMapInfo* mapinfo = FileMapInfo::current_info();
2257    if (mapinfo->is_in_shared_space(si->si_addr)) {
2258      st->print("\n\nError accessing class data sharing archive."   \
2259                " Mapped file inaccessible during execution, "      \
2260                " possible disk/network problem.");
2261    }
2262  }
2263  st->cr();
2264}
2265
2266
2267static void print_signal_handler(outputStream* st, int sig,
2268                                 char* buf, size_t buflen);
2269
2270void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2271  st->print_cr("Signal Handlers:");
2272  print_signal_handler(st, SIGSEGV, buf, buflen);
2273  print_signal_handler(st, SIGBUS , buf, buflen);
2274  print_signal_handler(st, SIGFPE , buf, buflen);
2275  print_signal_handler(st, SIGPIPE, buf, buflen);
2276  print_signal_handler(st, SIGXFSZ, buf, buflen);
2277  print_signal_handler(st, SIGILL , buf, buflen);
2278  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2279  print_signal_handler(st, SR_signum, buf, buflen);
2280  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2281  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2282  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2283  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2284}
2285
2286static char saved_jvm_path[MAXPATHLEN] = {0};
2287
2288// Find the full path to the current module, libjvm.so
2289void os::jvm_path(char *buf, jint buflen) {
2290  // Error checking.
2291  if (buflen < MAXPATHLEN) {
2292    assert(false, "must use a large-enough buffer");
2293    buf[0] = '\0';
2294    return;
2295  }
2296  // Lazy resolve the path to current module.
2297  if (saved_jvm_path[0] != 0) {
2298    strcpy(buf, saved_jvm_path);
2299    return;
2300  }
2301
2302  char dli_fname[MAXPATHLEN];
2303  bool ret = dll_address_to_library_name(
2304                CAST_FROM_FN_PTR(address, os::jvm_path),
2305                dli_fname, sizeof(dli_fname), NULL);
2306  assert(ret != 0, "cannot locate libjvm");
2307  char *rp = realpath(dli_fname, buf);
2308  if (rp == NULL)
2309    return;
2310
2311  if (Arguments::created_by_gamma_launcher()) {
2312    // Support for the gamma launcher.  Typical value for buf is
2313    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2314    // the right place in the string, then assume we are installed in a JDK and
2315    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2316    // up the path so it looks like libjvm.so is installed there (append a
2317    // fake suffix hotspot/libjvm.so).
2318    const char *p = buf + strlen(buf) - 1;
2319    for (int count = 0; p > buf && count < 5; ++count) {
2320      for (--p; p > buf && *p != '/'; --p)
2321        /* empty */ ;
2322    }
2323
2324    if (strncmp(p, "/jre/lib/", 9) != 0) {
2325      // Look for JAVA_HOME in the environment.
2326      char* java_home_var = ::getenv("JAVA_HOME");
2327      if (java_home_var != NULL && java_home_var[0] != 0) {
2328        char* jrelib_p;
2329        int len;
2330
2331        // Check the current module name "libjvm.so".
2332        p = strrchr(buf, '/');
2333        assert(strstr(p, "/libjvm") == p, "invalid library name");
2334
2335        rp = realpath(java_home_var, buf);
2336        if (rp == NULL)
2337          return;
2338
2339        // determine if this is a legacy image or modules image
2340        // modules image doesn't have "jre" subdirectory
2341        len = strlen(buf);
2342        jrelib_p = buf + len;
2343        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2344        if (0 != access(buf, F_OK)) {
2345          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2346        }
2347
2348        if (0 == access(buf, F_OK)) {
2349          // Use current module name "libjvm.so"
2350          len = strlen(buf);
2351          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2352        } else {
2353          // Go back to path of .so
2354          rp = realpath(dli_fname, buf);
2355          if (rp == NULL)
2356            return;
2357        }
2358      }
2359    }
2360  }
2361
2362  strcpy(saved_jvm_path, buf);
2363}
2364
2365void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2366  // no prefix required, not even "_"
2367}
2368
2369void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2370  // no suffix required
2371}
2372
2373////////////////////////////////////////////////////////////////////////////////
2374// sun.misc.Signal support
2375
2376static volatile jint sigint_count = 0;
2377
2378static void
2379UserHandler(int sig, void *siginfo, void *context) {
2380  // 4511530 - sem_post is serialized and handled by the manager thread. When
2381  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2382  // don't want to flood the manager thread with sem_post requests.
2383  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2384      return;
2385
2386  // Ctrl-C is pressed during error reporting, likely because the error
2387  // handler fails to abort. Let VM die immediately.
2388  if (sig == SIGINT && is_error_reported()) {
2389     os::die();
2390  }
2391
2392  os::signal_notify(sig);
2393}
2394
2395void* os::user_handler() {
2396  return CAST_FROM_FN_PTR(void*, UserHandler);
2397}
2398
2399extern "C" {
2400  typedef void (*sa_handler_t)(int);
2401  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2402}
2403
2404void* os::signal(int signal_number, void* handler) {
2405  struct sigaction sigAct, oldSigAct;
2406
2407  sigfillset(&(sigAct.sa_mask));
2408  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2409  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2410
2411  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2412    // -1 means registration failed
2413    return (void *)-1;
2414  }
2415
2416  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2417}
2418
2419void os::signal_raise(int signal_number) {
2420  ::raise(signal_number);
2421}
2422
2423/*
2424 * The following code is moved from os.cpp for making this
2425 * code platform specific, which it is by its very nature.
2426 */
2427
2428// Will be modified when max signal is changed to be dynamic
2429int os::sigexitnum_pd() {
2430  return NSIG;
2431}
2432
2433// a counter for each possible signal value
2434static volatile jint pending_signals[NSIG+1] = { 0 };
2435
2436// Linux(POSIX) specific hand shaking semaphore.
2437static sem_t sig_sem;
2438
2439void os::signal_init_pd() {
2440  // Initialize signal structures
2441  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2442
2443  // Initialize signal semaphore
2444  ::sem_init(&sig_sem, 0, 0);
2445}
2446
2447void os::signal_notify(int sig) {
2448  Atomic::inc(&pending_signals[sig]);
2449  ::sem_post(&sig_sem);
2450}
2451
2452static int check_pending_signals(bool wait) {
2453  Atomic::store(0, &sigint_count);
2454  for (;;) {
2455    for (int i = 0; i < NSIG + 1; i++) {
2456      jint n = pending_signals[i];
2457      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2458        return i;
2459      }
2460    }
2461    if (!wait) {
2462      return -1;
2463    }
2464    JavaThread *thread = JavaThread::current();
2465    ThreadBlockInVM tbivm(thread);
2466
2467    bool threadIsSuspended;
2468    do {
2469      thread->set_suspend_equivalent();
2470      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2471      ::sem_wait(&sig_sem);
2472
2473      // were we externally suspended while we were waiting?
2474      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2475      if (threadIsSuspended) {
2476        //
2477        // The semaphore has been incremented, but while we were waiting
2478        // another thread suspended us. We don't want to continue running
2479        // while suspended because that would surprise the thread that
2480        // suspended us.
2481        //
2482        ::sem_post(&sig_sem);
2483
2484        thread->java_suspend_self();
2485      }
2486    } while (threadIsSuspended);
2487  }
2488}
2489
2490int os::signal_lookup() {
2491  return check_pending_signals(false);
2492}
2493
2494int os::signal_wait() {
2495  return check_pending_signals(true);
2496}
2497
2498////////////////////////////////////////////////////////////////////////////////
2499// Virtual Memory
2500
2501int os::vm_page_size() {
2502  // Seems redundant as all get out
2503  assert(os::Linux::page_size() != -1, "must call os::init");
2504  return os::Linux::page_size();
2505}
2506
2507// Solaris allocates memory by pages.
2508int os::vm_allocation_granularity() {
2509  assert(os::Linux::page_size() != -1, "must call os::init");
2510  return os::Linux::page_size();
2511}
2512
2513// Rationale behind this function:
2514//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2515//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2516//  samples for JITted code. Here we create private executable mapping over the code cache
2517//  and then we can use standard (well, almost, as mapping can change) way to provide
2518//  info for the reporting script by storing timestamp and location of symbol
2519void linux_wrap_code(char* base, size_t size) {
2520  static volatile jint cnt = 0;
2521
2522  if (!UseOprofile) {
2523    return;
2524  }
2525
2526  char buf[PATH_MAX+1];
2527  int num = Atomic::add(1, &cnt);
2528
2529  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2530           os::get_temp_directory(), os::current_process_id(), num);
2531  unlink(buf);
2532
2533  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2534
2535  if (fd != -1) {
2536    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2537    if (rv != (off_t)-1) {
2538      if (::write(fd, "", 1) == 1) {
2539        mmap(base, size,
2540             PROT_READ|PROT_WRITE|PROT_EXEC,
2541             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2542      }
2543    }
2544    ::close(fd);
2545    unlink(buf);
2546  }
2547}
2548
2549// NOTE: Linux kernel does not really reserve the pages for us.
2550//       All it does is to check if there are enough free pages
2551//       left at the time of mmap(). This could be a potential
2552//       problem.
2553bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2554  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2555  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2556                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2557  if (res != (uintptr_t) MAP_FAILED) {
2558    if (UseNUMAInterleaving) {
2559      numa_make_global(addr, size);
2560    }
2561    return true;
2562  }
2563  return false;
2564}
2565
2566// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2567#ifndef MAP_HUGETLB
2568#define MAP_HUGETLB 0x40000
2569#endif
2570
2571// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2572#ifndef MADV_HUGEPAGE
2573#define MADV_HUGEPAGE 14
2574#endif
2575
2576bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2577                       bool exec) {
2578  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2579    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2580    uintptr_t res =
2581      (uintptr_t) ::mmap(addr, size, prot,
2582                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2583                         -1, 0);
2584    if (res != (uintptr_t) MAP_FAILED) {
2585      if (UseNUMAInterleaving) {
2586        numa_make_global(addr, size);
2587      }
2588      return true;
2589    }
2590    // Fall through and try to use small pages
2591  }
2592
2593  if (commit_memory(addr, size, exec)) {
2594    realign_memory(addr, size, alignment_hint);
2595    return true;
2596  }
2597  return false;
2598}
2599
2600void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2601  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2602    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2603    // be supported or the memory may already be backed by huge pages.
2604    ::madvise(addr, bytes, MADV_HUGEPAGE);
2605  }
2606}
2607
2608void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2609  // This method works by doing an mmap over an existing mmaping and effectively discarding
2610  // the existing pages. However it won't work for SHM-based large pages that cannot be
2611  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2612  // small pages on top of the SHM segment. This method always works for small pages, so we
2613  // allow that in any case.
2614  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2615    commit_memory(addr, bytes, alignment_hint, false);
2616  }
2617}
2618
2619void os::numa_make_global(char *addr, size_t bytes) {
2620  Linux::numa_interleave_memory(addr, bytes);
2621}
2622
2623void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2624  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2625}
2626
2627bool os::numa_topology_changed()   { return false; }
2628
2629size_t os::numa_get_groups_num() {
2630  int max_node = Linux::numa_max_node();
2631  return max_node > 0 ? max_node + 1 : 1;
2632}
2633
2634int os::numa_get_group_id() {
2635  int cpu_id = Linux::sched_getcpu();
2636  if (cpu_id != -1) {
2637    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2638    if (lgrp_id != -1) {
2639      return lgrp_id;
2640    }
2641  }
2642  return 0;
2643}
2644
2645size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2646  for (size_t i = 0; i < size; i++) {
2647    ids[i] = i;
2648  }
2649  return size;
2650}
2651
2652bool os::get_page_info(char *start, page_info* info) {
2653  return false;
2654}
2655
2656char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2657  return end;
2658}
2659
2660
2661int os::Linux::sched_getcpu_syscall(void) {
2662  unsigned int cpu;
2663  int retval = -1;
2664
2665#if defined(IA32)
2666# ifndef SYS_getcpu
2667# define SYS_getcpu 318
2668# endif
2669  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2670#elif defined(AMD64)
2671// Unfortunately we have to bring all these macros here from vsyscall.h
2672// to be able to compile on old linuxes.
2673# define __NR_vgetcpu 2
2674# define VSYSCALL_START (-10UL << 20)
2675# define VSYSCALL_SIZE 1024
2676# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2677  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2678  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2679  retval = vgetcpu(&cpu, NULL, NULL);
2680#endif
2681
2682  return (retval == -1) ? retval : cpu;
2683}
2684
2685// Something to do with the numa-aware allocator needs these symbols
2686extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2687extern "C" JNIEXPORT void numa_error(char *where) { }
2688extern "C" JNIEXPORT int fork1() { return fork(); }
2689
2690
2691// If we are running with libnuma version > 2, then we should
2692// be trying to use symbols with versions 1.1
2693// If we are running with earlier version, which did not have symbol versions,
2694// we should use the base version.
2695void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2696  void *f = dlvsym(handle, name, "libnuma_1.1");
2697  if (f == NULL) {
2698    f = dlsym(handle, name);
2699  }
2700  return f;
2701}
2702
2703bool os::Linux::libnuma_init() {
2704  // sched_getcpu() should be in libc.
2705  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2706                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2707
2708  // If it's not, try a direct syscall.
2709  if (sched_getcpu() == -1)
2710    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2711
2712  if (sched_getcpu() != -1) { // Does it work?
2713    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2714    if (handle != NULL) {
2715      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2716                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2717      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2718                                       libnuma_dlsym(handle, "numa_max_node")));
2719      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2720                                        libnuma_dlsym(handle, "numa_available")));
2721      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2722                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2723      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2724                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2725
2726
2727      if (numa_available() != -1) {
2728        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2729        // Create a cpu -> node mapping
2730        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2731        rebuild_cpu_to_node_map();
2732        return true;
2733      }
2734    }
2735  }
2736  return false;
2737}
2738
2739// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2740// The table is later used in get_node_by_cpu().
2741void os::Linux::rebuild_cpu_to_node_map() {
2742  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2743                              // in libnuma (possible values are starting from 16,
2744                              // and continuing up with every other power of 2, but less
2745                              // than the maximum number of CPUs supported by kernel), and
2746                              // is a subject to change (in libnuma version 2 the requirements
2747                              // are more reasonable) we'll just hardcode the number they use
2748                              // in the library.
2749  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2750
2751  size_t cpu_num = os::active_processor_count();
2752  size_t cpu_map_size = NCPUS / BitsPerCLong;
2753  size_t cpu_map_valid_size =
2754    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2755
2756  cpu_to_node()->clear();
2757  cpu_to_node()->at_grow(cpu_num - 1);
2758  size_t node_num = numa_get_groups_num();
2759
2760  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2761  for (size_t i = 0; i < node_num; i++) {
2762    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2763      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2764        if (cpu_map[j] != 0) {
2765          for (size_t k = 0; k < BitsPerCLong; k++) {
2766            if (cpu_map[j] & (1UL << k)) {
2767              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2768            }
2769          }
2770        }
2771      }
2772    }
2773  }
2774  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2775}
2776
2777int os::Linux::get_node_by_cpu(int cpu_id) {
2778  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2779    return cpu_to_node()->at(cpu_id);
2780  }
2781  return -1;
2782}
2783
2784GrowableArray<int>* os::Linux::_cpu_to_node;
2785os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2786os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2787os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2788os::Linux::numa_available_func_t os::Linux::_numa_available;
2789os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2790os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2791unsigned long* os::Linux::_numa_all_nodes;
2792
2793bool os::pd_uncommit_memory(char* addr, size_t size) {
2794  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2795                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2796  return res  != (uintptr_t) MAP_FAILED;
2797}
2798
2799// Linux uses a growable mapping for the stack, and if the mapping for
2800// the stack guard pages is not removed when we detach a thread the
2801// stack cannot grow beyond the pages where the stack guard was
2802// mapped.  If at some point later in the process the stack expands to
2803// that point, the Linux kernel cannot expand the stack any further
2804// because the guard pages are in the way, and a segfault occurs.
2805//
2806// However, it's essential not to split the stack region by unmapping
2807// a region (leaving a hole) that's already part of the stack mapping,
2808// so if the stack mapping has already grown beyond the guard pages at
2809// the time we create them, we have to truncate the stack mapping.
2810// So, we need to know the extent of the stack mapping when
2811// create_stack_guard_pages() is called.
2812
2813// Find the bounds of the stack mapping.  Return true for success.
2814//
2815// We only need this for stacks that are growable: at the time of
2816// writing thread stacks don't use growable mappings (i.e. those
2817// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2818// only applies to the main thread.
2819
2820static
2821bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2822
2823  char buf[128];
2824  int fd, sz;
2825
2826  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2827    return false;
2828  }
2829
2830  const char kw[] = "[stack]";
2831  const int kwlen = sizeof(kw)-1;
2832
2833  // Address part of /proc/self/maps couldn't be more than 128 bytes
2834  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2835     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2836        // Extract addresses
2837        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2838           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2839           if (sp >= *bottom && sp <= *top) {
2840              ::close(fd);
2841              return true;
2842           }
2843        }
2844     }
2845  }
2846
2847 ::close(fd);
2848  return false;
2849}
2850
2851
2852// If the (growable) stack mapping already extends beyond the point
2853// where we're going to put our guard pages, truncate the mapping at
2854// that point by munmap()ping it.  This ensures that when we later
2855// munmap() the guard pages we don't leave a hole in the stack
2856// mapping. This only affects the main/initial thread, but guard
2857// against future OS changes
2858bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2859  uintptr_t stack_extent, stack_base;
2860  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2861  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2862      assert(os::Linux::is_initial_thread(),
2863           "growable stack in non-initial thread");
2864    if (stack_extent < (uintptr_t)addr)
2865      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2866  }
2867
2868  return os::commit_memory(addr, size);
2869}
2870
2871// If this is a growable mapping, remove the guard pages entirely by
2872// munmap()ping them.  If not, just call uncommit_memory(). This only
2873// affects the main/initial thread, but guard against future OS changes
2874bool os::remove_stack_guard_pages(char* addr, size_t size) {
2875  uintptr_t stack_extent, stack_base;
2876  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2877  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2878      assert(os::Linux::is_initial_thread(),
2879           "growable stack in non-initial thread");
2880
2881    return ::munmap(addr, size) == 0;
2882  }
2883
2884  return os::uncommit_memory(addr, size);
2885}
2886
2887static address _highest_vm_reserved_address = NULL;
2888
2889// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2890// at 'requested_addr'. If there are existing memory mappings at the same
2891// location, however, they will be overwritten. If 'fixed' is false,
2892// 'requested_addr' is only treated as a hint, the return value may or
2893// may not start from the requested address. Unlike Linux mmap(), this
2894// function returns NULL to indicate failure.
2895static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2896  char * addr;
2897  int flags;
2898
2899  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2900  if (fixed) {
2901    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2902    flags |= MAP_FIXED;
2903  }
2904
2905  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2906  // to PROT_EXEC if executable when we commit the page.
2907  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2908                       flags, -1, 0);
2909
2910  if (addr != MAP_FAILED) {
2911    // anon_mmap() should only get called during VM initialization,
2912    // don't need lock (actually we can skip locking even it can be called
2913    // from multiple threads, because _highest_vm_reserved_address is just a
2914    // hint about the upper limit of non-stack memory regions.)
2915    if ((address)addr + bytes > _highest_vm_reserved_address) {
2916      _highest_vm_reserved_address = (address)addr + bytes;
2917    }
2918  }
2919
2920  return addr == MAP_FAILED ? NULL : addr;
2921}
2922
2923// Don't update _highest_vm_reserved_address, because there might be memory
2924// regions above addr + size. If so, releasing a memory region only creates
2925// a hole in the address space, it doesn't help prevent heap-stack collision.
2926//
2927static int anon_munmap(char * addr, size_t size) {
2928  return ::munmap(addr, size) == 0;
2929}
2930
2931char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2932                         size_t alignment_hint) {
2933  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2934}
2935
2936bool os::pd_release_memory(char* addr, size_t size) {
2937  return anon_munmap(addr, size);
2938}
2939
2940static address highest_vm_reserved_address() {
2941  return _highest_vm_reserved_address;
2942}
2943
2944static bool linux_mprotect(char* addr, size_t size, int prot) {
2945  // Linux wants the mprotect address argument to be page aligned.
2946  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2947
2948  // According to SUSv3, mprotect() should only be used with mappings
2949  // established by mmap(), and mmap() always maps whole pages. Unaligned
2950  // 'addr' likely indicates problem in the VM (e.g. trying to change
2951  // protection of malloc'ed or statically allocated memory). Check the
2952  // caller if you hit this assert.
2953  assert(addr == bottom, "sanity check");
2954
2955  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2956  return ::mprotect(bottom, size, prot) == 0;
2957}
2958
2959// Set protections specified
2960bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2961                        bool is_committed) {
2962  unsigned int p = 0;
2963  switch (prot) {
2964  case MEM_PROT_NONE: p = PROT_NONE; break;
2965  case MEM_PROT_READ: p = PROT_READ; break;
2966  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2967  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2968  default:
2969    ShouldNotReachHere();
2970  }
2971  // is_committed is unused.
2972  return linux_mprotect(addr, bytes, p);
2973}
2974
2975bool os::guard_memory(char* addr, size_t size) {
2976  return linux_mprotect(addr, size, PROT_NONE);
2977}
2978
2979bool os::unguard_memory(char* addr, size_t size) {
2980  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2981}
2982
2983bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2984  bool result = false;
2985  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2986                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2987                  -1, 0);
2988
2989  if (p != (void *) -1) {
2990    // We don't know if this really is a huge page or not.
2991    FILE *fp = fopen("/proc/self/maps", "r");
2992    if (fp) {
2993      while (!feof(fp)) {
2994        char chars[257];
2995        long x = 0;
2996        if (fgets(chars, sizeof(chars), fp)) {
2997          if (sscanf(chars, "%lx-%*x", &x) == 1
2998              && x == (long)p) {
2999            if (strstr (chars, "hugepage")) {
3000              result = true;
3001              break;
3002            }
3003          }
3004        }
3005      }
3006      fclose(fp);
3007    }
3008    munmap (p, page_size);
3009    if (result)
3010      return true;
3011  }
3012
3013  if (warn) {
3014    warning("HugeTLBFS is not supported by the operating system.");
3015  }
3016
3017  return result;
3018}
3019
3020/*
3021* Set the coredump_filter bits to include largepages in core dump (bit 6)
3022*
3023* From the coredump_filter documentation:
3024*
3025* - (bit 0) anonymous private memory
3026* - (bit 1) anonymous shared memory
3027* - (bit 2) file-backed private memory
3028* - (bit 3) file-backed shared memory
3029* - (bit 4) ELF header pages in file-backed private memory areas (it is
3030*           effective only if the bit 2 is cleared)
3031* - (bit 5) hugetlb private memory
3032* - (bit 6) hugetlb shared memory
3033*/
3034static void set_coredump_filter(void) {
3035  FILE *f;
3036  long cdm;
3037
3038  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3039    return;
3040  }
3041
3042  if (fscanf(f, "%lx", &cdm) != 1) {
3043    fclose(f);
3044    return;
3045  }
3046
3047  rewind(f);
3048
3049  if ((cdm & LARGEPAGES_BIT) == 0) {
3050    cdm |= LARGEPAGES_BIT;
3051    fprintf(f, "%#lx", cdm);
3052  }
3053
3054  fclose(f);
3055}
3056
3057// Large page support
3058
3059static size_t _large_page_size = 0;
3060
3061void os::large_page_init() {
3062  if (!UseLargePages) {
3063    UseHugeTLBFS = false;
3064    UseSHM = false;
3065    return;
3066  }
3067
3068  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3069    // If UseLargePages is specified on the command line try both methods,
3070    // if it's default, then try only HugeTLBFS.
3071    if (FLAG_IS_DEFAULT(UseLargePages)) {
3072      UseHugeTLBFS = true;
3073    } else {
3074      UseHugeTLBFS = UseSHM = true;
3075    }
3076  }
3077
3078  if (LargePageSizeInBytes) {
3079    _large_page_size = LargePageSizeInBytes;
3080  } else {
3081    // large_page_size on Linux is used to round up heap size. x86 uses either
3082    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3083    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3084    // page as large as 256M.
3085    //
3086    // Here we try to figure out page size by parsing /proc/meminfo and looking
3087    // for a line with the following format:
3088    //    Hugepagesize:     2048 kB
3089    //
3090    // If we can't determine the value (e.g. /proc is not mounted, or the text
3091    // format has been changed), we'll use the largest page size supported by
3092    // the processor.
3093
3094#ifndef ZERO
3095    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3096                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3097#endif // ZERO
3098
3099    FILE *fp = fopen("/proc/meminfo", "r");
3100    if (fp) {
3101      while (!feof(fp)) {
3102        int x = 0;
3103        char buf[16];
3104        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3105          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3106            _large_page_size = x * K;
3107            break;
3108          }
3109        } else {
3110          // skip to next line
3111          for (;;) {
3112            int ch = fgetc(fp);
3113            if (ch == EOF || ch == (int)'\n') break;
3114          }
3115        }
3116      }
3117      fclose(fp);
3118    }
3119  }
3120
3121  // print a warning if any large page related flag is specified on command line
3122  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3123
3124  const size_t default_page_size = (size_t)Linux::page_size();
3125  if (_large_page_size > default_page_size) {
3126    _page_sizes[0] = _large_page_size;
3127    _page_sizes[1] = default_page_size;
3128    _page_sizes[2] = 0;
3129  }
3130  UseHugeTLBFS = UseHugeTLBFS &&
3131                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3132
3133  if (UseHugeTLBFS)
3134    UseSHM = false;
3135
3136  UseLargePages = UseHugeTLBFS || UseSHM;
3137
3138  set_coredump_filter();
3139}
3140
3141#ifndef SHM_HUGETLB
3142#define SHM_HUGETLB 04000
3143#endif
3144
3145char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3146  // "exec" is passed in but not used.  Creating the shared image for
3147  // the code cache doesn't have an SHM_X executable permission to check.
3148  assert(UseLargePages && UseSHM, "only for SHM large pages");
3149
3150  key_t key = IPC_PRIVATE;
3151  char *addr;
3152
3153  bool warn_on_failure = UseLargePages &&
3154                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3155                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3156                        );
3157  char msg[128];
3158
3159  // Create a large shared memory region to attach to based on size.
3160  // Currently, size is the total size of the heap
3161  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3162  if (shmid == -1) {
3163     // Possible reasons for shmget failure:
3164     // 1. shmmax is too small for Java heap.
3165     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3166     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3167     // 2. not enough large page memory.
3168     //    > check available large pages: cat /proc/meminfo
3169     //    > increase amount of large pages:
3170     //          echo new_value > /proc/sys/vm/nr_hugepages
3171     //      Note 1: different Linux may use different name for this property,
3172     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3173     //      Note 2: it's possible there's enough physical memory available but
3174     //            they are so fragmented after a long run that they can't
3175     //            coalesce into large pages. Try to reserve large pages when
3176     //            the system is still "fresh".
3177     if (warn_on_failure) {
3178       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3179       warning(msg);
3180     }
3181     return NULL;
3182  }
3183
3184  // attach to the region
3185  addr = (char*)shmat(shmid, req_addr, 0);
3186  int err = errno;
3187
3188  // Remove shmid. If shmat() is successful, the actual shared memory segment
3189  // will be deleted when it's detached by shmdt() or when the process
3190  // terminates. If shmat() is not successful this will remove the shared
3191  // segment immediately.
3192  shmctl(shmid, IPC_RMID, NULL);
3193
3194  if ((intptr_t)addr == -1) {
3195     if (warn_on_failure) {
3196       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3197       warning(msg);
3198     }
3199     return NULL;
3200  }
3201
3202  if ((addr != NULL) && UseNUMAInterleaving) {
3203    numa_make_global(addr, bytes);
3204  }
3205
3206  // The memory is committed
3207  address pc = CALLER_PC;
3208  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
3209  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
3210
3211  return addr;
3212}
3213
3214bool os::release_memory_special(char* base, size_t bytes) {
3215  // detaching the SHM segment will also delete it, see reserve_memory_special()
3216  int rslt = shmdt(base);
3217  if (rslt == 0) {
3218    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3219    MemTracker::record_virtual_memory_release((address)base, bytes);
3220    return true;
3221  } else {
3222   return false;
3223  }
3224}
3225
3226size_t os::large_page_size() {
3227  return _large_page_size;
3228}
3229
3230// HugeTLBFS allows application to commit large page memory on demand;
3231// with SysV SHM the entire memory region must be allocated as shared
3232// memory.
3233bool os::can_commit_large_page_memory() {
3234  return UseHugeTLBFS;
3235}
3236
3237bool os::can_execute_large_page_memory() {
3238  return UseHugeTLBFS;
3239}
3240
3241// Reserve memory at an arbitrary address, only if that area is
3242// available (and not reserved for something else).
3243
3244char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3245  const int max_tries = 10;
3246  char* base[max_tries];
3247  size_t size[max_tries];
3248  const size_t gap = 0x000000;
3249
3250  // Assert only that the size is a multiple of the page size, since
3251  // that's all that mmap requires, and since that's all we really know
3252  // about at this low abstraction level.  If we need higher alignment,
3253  // we can either pass an alignment to this method or verify alignment
3254  // in one of the methods further up the call chain.  See bug 5044738.
3255  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3256
3257  // Repeatedly allocate blocks until the block is allocated at the
3258  // right spot. Give up after max_tries. Note that reserve_memory() will
3259  // automatically update _highest_vm_reserved_address if the call is
3260  // successful. The variable tracks the highest memory address every reserved
3261  // by JVM. It is used to detect heap-stack collision if running with
3262  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3263  // space than needed, it could confuse the collision detecting code. To
3264  // solve the problem, save current _highest_vm_reserved_address and
3265  // calculate the correct value before return.
3266  address old_highest = _highest_vm_reserved_address;
3267
3268  // Linux mmap allows caller to pass an address as hint; give it a try first,
3269  // if kernel honors the hint then we can return immediately.
3270  char * addr = anon_mmap(requested_addr, bytes, false);
3271  if (addr == requested_addr) {
3272     return requested_addr;
3273  }
3274
3275  if (addr != NULL) {
3276     // mmap() is successful but it fails to reserve at the requested address
3277     anon_munmap(addr, bytes);
3278  }
3279
3280  int i;
3281  for (i = 0; i < max_tries; ++i) {
3282    base[i] = reserve_memory(bytes);
3283
3284    if (base[i] != NULL) {
3285      // Is this the block we wanted?
3286      if (base[i] == requested_addr) {
3287        size[i] = bytes;
3288        break;
3289      }
3290
3291      // Does this overlap the block we wanted? Give back the overlapped
3292      // parts and try again.
3293
3294      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3295      if (top_overlap >= 0 && top_overlap < bytes) {
3296        unmap_memory(base[i], top_overlap);
3297        base[i] += top_overlap;
3298        size[i] = bytes - top_overlap;
3299      } else {
3300        size_t bottom_overlap = base[i] + bytes - requested_addr;
3301        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3302          unmap_memory(requested_addr, bottom_overlap);
3303          size[i] = bytes - bottom_overlap;
3304        } else {
3305          size[i] = bytes;
3306        }
3307      }
3308    }
3309  }
3310
3311  // Give back the unused reserved pieces.
3312
3313  for (int j = 0; j < i; ++j) {
3314    if (base[j] != NULL) {
3315      unmap_memory(base[j], size[j]);
3316    }
3317  }
3318
3319  if (i < max_tries) {
3320    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3321    return requested_addr;
3322  } else {
3323    _highest_vm_reserved_address = old_highest;
3324    return NULL;
3325  }
3326}
3327
3328size_t os::read(int fd, void *buf, unsigned int nBytes) {
3329  return ::read(fd, buf, nBytes);
3330}
3331
3332// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3333// Solaris uses poll(), linux uses park().
3334// Poll() is likely a better choice, assuming that Thread.interrupt()
3335// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3336// SIGSEGV, see 4355769.
3337
3338int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3339  assert(thread == Thread::current(),  "thread consistency check");
3340
3341  ParkEvent * const slp = thread->_SleepEvent ;
3342  slp->reset() ;
3343  OrderAccess::fence() ;
3344
3345  if (interruptible) {
3346    jlong prevtime = javaTimeNanos();
3347
3348    for (;;) {
3349      if (os::is_interrupted(thread, true)) {
3350        return OS_INTRPT;
3351      }
3352
3353      jlong newtime = javaTimeNanos();
3354
3355      if (newtime - prevtime < 0) {
3356        // time moving backwards, should only happen if no monotonic clock
3357        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3358        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3359      } else {
3360        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3361      }
3362
3363      if(millis <= 0) {
3364        return OS_OK;
3365      }
3366
3367      prevtime = newtime;
3368
3369      {
3370        assert(thread->is_Java_thread(), "sanity check");
3371        JavaThread *jt = (JavaThread *) thread;
3372        ThreadBlockInVM tbivm(jt);
3373        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3374
3375        jt->set_suspend_equivalent();
3376        // cleared by handle_special_suspend_equivalent_condition() or
3377        // java_suspend_self() via check_and_wait_while_suspended()
3378
3379        slp->park(millis);
3380
3381        // were we externally suspended while we were waiting?
3382        jt->check_and_wait_while_suspended();
3383      }
3384    }
3385  } else {
3386    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3387    jlong prevtime = javaTimeNanos();
3388
3389    for (;;) {
3390      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3391      // the 1st iteration ...
3392      jlong newtime = javaTimeNanos();
3393
3394      if (newtime - prevtime < 0) {
3395        // time moving backwards, should only happen if no monotonic clock
3396        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3397        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3398      } else {
3399        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3400      }
3401
3402      if(millis <= 0) break ;
3403
3404      prevtime = newtime;
3405      slp->park(millis);
3406    }
3407    return OS_OK ;
3408  }
3409}
3410
3411int os::naked_sleep() {
3412  // %% make the sleep time an integer flag. for now use 1 millisec.
3413  return os::sleep(Thread::current(), 1, false);
3414}
3415
3416// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3417void os::infinite_sleep() {
3418  while (true) {    // sleep forever ...
3419    ::sleep(100);   // ... 100 seconds at a time
3420  }
3421}
3422
3423// Used to convert frequent JVM_Yield() to nops
3424bool os::dont_yield() {
3425  return DontYieldALot;
3426}
3427
3428void os::yield() {
3429  sched_yield();
3430}
3431
3432os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3433
3434void os::yield_all(int attempts) {
3435  // Yields to all threads, including threads with lower priorities
3436  // Threads on Linux are all with same priority. The Solaris style
3437  // os::yield_all() with nanosleep(1ms) is not necessary.
3438  sched_yield();
3439}
3440
3441// Called from the tight loops to possibly influence time-sharing heuristics
3442void os::loop_breaker(int attempts) {
3443  os::yield_all(attempts);
3444}
3445
3446////////////////////////////////////////////////////////////////////////////////
3447// thread priority support
3448
3449// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3450// only supports dynamic priority, static priority must be zero. For real-time
3451// applications, Linux supports SCHED_RR which allows static priority (1-99).
3452// However, for large multi-threaded applications, SCHED_RR is not only slower
3453// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3454// of 5 runs - Sep 2005).
3455//
3456// The following code actually changes the niceness of kernel-thread/LWP. It
3457// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3458// not the entire user process, and user level threads are 1:1 mapped to kernel
3459// threads. It has always been the case, but could change in the future. For
3460// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3461// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3462
3463int os::java_to_os_priority[CriticalPriority + 1] = {
3464  19,              // 0 Entry should never be used
3465
3466   4,              // 1 MinPriority
3467   3,              // 2
3468   2,              // 3
3469
3470   1,              // 4
3471   0,              // 5 NormPriority
3472  -1,              // 6
3473
3474  -2,              // 7
3475  -3,              // 8
3476  -4,              // 9 NearMaxPriority
3477
3478  -5,              // 10 MaxPriority
3479
3480  -5               // 11 CriticalPriority
3481};
3482
3483static int prio_init() {
3484  if (ThreadPriorityPolicy == 1) {
3485    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3486    // if effective uid is not root. Perhaps, a more elegant way of doing
3487    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3488    if (geteuid() != 0) {
3489      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3490        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3491      }
3492      ThreadPriorityPolicy = 0;
3493    }
3494  }
3495  if (UseCriticalJavaThreadPriority) {
3496    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3497  }
3498  return 0;
3499}
3500
3501OSReturn os::set_native_priority(Thread* thread, int newpri) {
3502  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3503
3504  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3505  return (ret == 0) ? OS_OK : OS_ERR;
3506}
3507
3508OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3509  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3510    *priority_ptr = java_to_os_priority[NormPriority];
3511    return OS_OK;
3512  }
3513
3514  errno = 0;
3515  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3516  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3517}
3518
3519// Hint to the underlying OS that a task switch would not be good.
3520// Void return because it's a hint and can fail.
3521void os::hint_no_preempt() {}
3522
3523////////////////////////////////////////////////////////////////////////////////
3524// suspend/resume support
3525
3526//  the low-level signal-based suspend/resume support is a remnant from the
3527//  old VM-suspension that used to be for java-suspension, safepoints etc,
3528//  within hotspot. Now there is a single use-case for this:
3529//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3530//      that runs in the watcher thread.
3531//  The remaining code is greatly simplified from the more general suspension
3532//  code that used to be used.
3533//
3534//  The protocol is quite simple:
3535//  - suspend:
3536//      - sends a signal to the target thread
3537//      - polls the suspend state of the osthread using a yield loop
3538//      - target thread signal handler (SR_handler) sets suspend state
3539//        and blocks in sigsuspend until continued
3540//  - resume:
3541//      - sets target osthread state to continue
3542//      - sends signal to end the sigsuspend loop in the SR_handler
3543//
3544//  Note that the SR_lock plays no role in this suspend/resume protocol.
3545//
3546
3547static void resume_clear_context(OSThread *osthread) {
3548  osthread->set_ucontext(NULL);
3549  osthread->set_siginfo(NULL);
3550
3551  // notify the suspend action is completed, we have now resumed
3552  osthread->sr.clear_suspended();
3553}
3554
3555static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3556  osthread->set_ucontext(context);
3557  osthread->set_siginfo(siginfo);
3558}
3559
3560//
3561// Handler function invoked when a thread's execution is suspended or
3562// resumed. We have to be careful that only async-safe functions are
3563// called here (Note: most pthread functions are not async safe and
3564// should be avoided.)
3565//
3566// Note: sigwait() is a more natural fit than sigsuspend() from an
3567// interface point of view, but sigwait() prevents the signal hander
3568// from being run. libpthread would get very confused by not having
3569// its signal handlers run and prevents sigwait()'s use with the
3570// mutex granting granting signal.
3571//
3572// Currently only ever called on the VMThread
3573//
3574static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3575  // Save and restore errno to avoid confusing native code with EINTR
3576  // after sigsuspend.
3577  int old_errno = errno;
3578
3579  Thread* thread = Thread::current();
3580  OSThread* osthread = thread->osthread();
3581  assert(thread->is_VM_thread(), "Must be VMThread");
3582  // read current suspend action
3583  int action = osthread->sr.suspend_action();
3584  if (action == os::Linux::SuspendResume::SR_SUSPEND) {
3585    suspend_save_context(osthread, siginfo, context);
3586
3587    // Notify the suspend action is about to be completed. do_suspend()
3588    // waits until SR_SUSPENDED is set and then returns. We will wait
3589    // here for a resume signal and that completes the suspend-other
3590    // action. do_suspend/do_resume is always called as a pair from
3591    // the same thread - so there are no races
3592
3593    // notify the caller
3594    osthread->sr.set_suspended();
3595
3596    sigset_t suspend_set;  // signals for sigsuspend()
3597
3598    // get current set of blocked signals and unblock resume signal
3599    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3600    sigdelset(&suspend_set, SR_signum);
3601
3602    // wait here until we are resumed
3603    do {
3604      sigsuspend(&suspend_set);
3605      // ignore all returns until we get a resume signal
3606    } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
3607
3608    resume_clear_context(osthread);
3609
3610  } else {
3611    assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
3612    // nothing special to do - just leave the handler
3613  }
3614
3615  errno = old_errno;
3616}
3617
3618
3619static int SR_initialize() {
3620  struct sigaction act;
3621  char *s;
3622  /* Get signal number to use for suspend/resume */
3623  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3624    int sig = ::strtol(s, 0, 10);
3625    if (sig > 0 || sig < _NSIG) {
3626        SR_signum = sig;
3627    }
3628  }
3629
3630  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3631        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3632
3633  sigemptyset(&SR_sigset);
3634  sigaddset(&SR_sigset, SR_signum);
3635
3636  /* Set up signal handler for suspend/resume */
3637  act.sa_flags = SA_RESTART|SA_SIGINFO;
3638  act.sa_handler = (void (*)(int)) SR_handler;
3639
3640  // SR_signum is blocked by default.
3641  // 4528190 - We also need to block pthread restart signal (32 on all
3642  // supported Linux platforms). Note that LinuxThreads need to block
3643  // this signal for all threads to work properly. So we don't have
3644  // to use hard-coded signal number when setting up the mask.
3645  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3646
3647  if (sigaction(SR_signum, &act, 0) == -1) {
3648    return -1;
3649  }
3650
3651  // Save signal flag
3652  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3653  return 0;
3654}
3655
3656
3657// returns true on success and false on error - really an error is fatal
3658// but this seems the normal response to library errors
3659static bool do_suspend(OSThread* osthread) {
3660  // mark as suspended and send signal
3661  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
3662  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3663  assert_status(status == 0, status, "pthread_kill");
3664
3665  // check status and wait until notified of suspension
3666  if (status == 0) {
3667    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3668      os::yield_all(i);
3669    }
3670    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3671    return true;
3672  }
3673  else {
3674    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3675    return false;
3676  }
3677}
3678
3679static void do_resume(OSThread* osthread) {
3680  assert(osthread->sr.is_suspended(), "thread should be suspended");
3681  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
3682
3683  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3684  assert_status(status == 0, status, "pthread_kill");
3685  // check status and wait unit notified of resumption
3686  if (status == 0) {
3687    for (int i = 0; osthread->sr.is_suspended(); i++) {
3688      os::yield_all(i);
3689    }
3690  }
3691  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3692}
3693
3694////////////////////////////////////////////////////////////////////////////////
3695// interrupt support
3696
3697void os::interrupt(Thread* thread) {
3698  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3699    "possibility of dangling Thread pointer");
3700
3701  OSThread* osthread = thread->osthread();
3702
3703  if (!osthread->interrupted()) {
3704    osthread->set_interrupted(true);
3705    // More than one thread can get here with the same value of osthread,
3706    // resulting in multiple notifications.  We do, however, want the store
3707    // to interrupted() to be visible to other threads before we execute unpark().
3708    OrderAccess::fence();
3709    ParkEvent * const slp = thread->_SleepEvent ;
3710    if (slp != NULL) slp->unpark() ;
3711  }
3712
3713  // For JSR166. Unpark even if interrupt status already was set
3714  if (thread->is_Java_thread())
3715    ((JavaThread*)thread)->parker()->unpark();
3716
3717  ParkEvent * ev = thread->_ParkEvent ;
3718  if (ev != NULL) ev->unpark() ;
3719
3720}
3721
3722bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3723  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3724    "possibility of dangling Thread pointer");
3725
3726  OSThread* osthread = thread->osthread();
3727
3728  bool interrupted = osthread->interrupted();
3729
3730  if (interrupted && clear_interrupted) {
3731    osthread->set_interrupted(false);
3732    // consider thread->_SleepEvent->reset() ... optional optimization
3733  }
3734
3735  return interrupted;
3736}
3737
3738///////////////////////////////////////////////////////////////////////////////////
3739// signal handling (except suspend/resume)
3740
3741// This routine may be used by user applications as a "hook" to catch signals.
3742// The user-defined signal handler must pass unrecognized signals to this
3743// routine, and if it returns true (non-zero), then the signal handler must
3744// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3745// routine will never retun false (zero), but instead will execute a VM panic
3746// routine kill the process.
3747//
3748// If this routine returns false, it is OK to call it again.  This allows
3749// the user-defined signal handler to perform checks either before or after
3750// the VM performs its own checks.  Naturally, the user code would be making
3751// a serious error if it tried to handle an exception (such as a null check
3752// or breakpoint) that the VM was generating for its own correct operation.
3753//
3754// This routine may recognize any of the following kinds of signals:
3755//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3756// It should be consulted by handlers for any of those signals.
3757//
3758// The caller of this routine must pass in the three arguments supplied
3759// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3760// field of the structure passed to sigaction().  This routine assumes that
3761// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3762//
3763// Note that the VM will print warnings if it detects conflicting signal
3764// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3765//
3766extern "C" JNIEXPORT int
3767JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3768                        void* ucontext, int abort_if_unrecognized);
3769
3770void signalHandler(int sig, siginfo_t* info, void* uc) {
3771  assert(info != NULL && uc != NULL, "it must be old kernel");
3772  int orig_errno = errno;  // Preserve errno value over signal handler.
3773  JVM_handle_linux_signal(sig, info, uc, true);
3774  errno = orig_errno;
3775}
3776
3777
3778// This boolean allows users to forward their own non-matching signals
3779// to JVM_handle_linux_signal, harmlessly.
3780bool os::Linux::signal_handlers_are_installed = false;
3781
3782// For signal-chaining
3783struct sigaction os::Linux::sigact[MAXSIGNUM];
3784unsigned int os::Linux::sigs = 0;
3785bool os::Linux::libjsig_is_loaded = false;
3786typedef struct sigaction *(*get_signal_t)(int);
3787get_signal_t os::Linux::get_signal_action = NULL;
3788
3789struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3790  struct sigaction *actp = NULL;
3791
3792  if (libjsig_is_loaded) {
3793    // Retrieve the old signal handler from libjsig
3794    actp = (*get_signal_action)(sig);
3795  }
3796  if (actp == NULL) {
3797    // Retrieve the preinstalled signal handler from jvm
3798    actp = get_preinstalled_handler(sig);
3799  }
3800
3801  return actp;
3802}
3803
3804static bool call_chained_handler(struct sigaction *actp, int sig,
3805                                 siginfo_t *siginfo, void *context) {
3806  // Call the old signal handler
3807  if (actp->sa_handler == SIG_DFL) {
3808    // It's more reasonable to let jvm treat it as an unexpected exception
3809    // instead of taking the default action.
3810    return false;
3811  } else if (actp->sa_handler != SIG_IGN) {
3812    if ((actp->sa_flags & SA_NODEFER) == 0) {
3813      // automaticlly block the signal
3814      sigaddset(&(actp->sa_mask), sig);
3815    }
3816
3817    sa_handler_t hand;
3818    sa_sigaction_t sa;
3819    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3820    // retrieve the chained handler
3821    if (siginfo_flag_set) {
3822      sa = actp->sa_sigaction;
3823    } else {
3824      hand = actp->sa_handler;
3825    }
3826
3827    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3828      actp->sa_handler = SIG_DFL;
3829    }
3830
3831    // try to honor the signal mask
3832    sigset_t oset;
3833    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3834
3835    // call into the chained handler
3836    if (siginfo_flag_set) {
3837      (*sa)(sig, siginfo, context);
3838    } else {
3839      (*hand)(sig);
3840    }
3841
3842    // restore the signal mask
3843    pthread_sigmask(SIG_SETMASK, &oset, 0);
3844  }
3845  // Tell jvm's signal handler the signal is taken care of.
3846  return true;
3847}
3848
3849bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3850  bool chained = false;
3851  // signal-chaining
3852  if (UseSignalChaining) {
3853    struct sigaction *actp = get_chained_signal_action(sig);
3854    if (actp != NULL) {
3855      chained = call_chained_handler(actp, sig, siginfo, context);
3856    }
3857  }
3858  return chained;
3859}
3860
3861struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3862  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3863    return &sigact[sig];
3864  }
3865  return NULL;
3866}
3867
3868void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3869  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3870  sigact[sig] = oldAct;
3871  sigs |= (unsigned int)1 << sig;
3872}
3873
3874// for diagnostic
3875int os::Linux::sigflags[MAXSIGNUM];
3876
3877int os::Linux::get_our_sigflags(int sig) {
3878  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3879  return sigflags[sig];
3880}
3881
3882void os::Linux::set_our_sigflags(int sig, int flags) {
3883  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3884  sigflags[sig] = flags;
3885}
3886
3887void os::Linux::set_signal_handler(int sig, bool set_installed) {
3888  // Check for overwrite.
3889  struct sigaction oldAct;
3890  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3891
3892  void* oldhand = oldAct.sa_sigaction
3893                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3894                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3895  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3896      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3897      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3898    if (AllowUserSignalHandlers || !set_installed) {
3899      // Do not overwrite; user takes responsibility to forward to us.
3900      return;
3901    } else if (UseSignalChaining) {
3902      // save the old handler in jvm
3903      save_preinstalled_handler(sig, oldAct);
3904      // libjsig also interposes the sigaction() call below and saves the
3905      // old sigaction on it own.
3906    } else {
3907      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3908                    "%#lx for signal %d.", (long)oldhand, sig));
3909    }
3910  }
3911
3912  struct sigaction sigAct;
3913  sigfillset(&(sigAct.sa_mask));
3914  sigAct.sa_handler = SIG_DFL;
3915  if (!set_installed) {
3916    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3917  } else {
3918    sigAct.sa_sigaction = signalHandler;
3919    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3920  }
3921  // Save flags, which are set by ours
3922  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3923  sigflags[sig] = sigAct.sa_flags;
3924
3925  int ret = sigaction(sig, &sigAct, &oldAct);
3926  assert(ret == 0, "check");
3927
3928  void* oldhand2  = oldAct.sa_sigaction
3929                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3930                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3931  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3932}
3933
3934// install signal handlers for signals that HotSpot needs to
3935// handle in order to support Java-level exception handling.
3936
3937void os::Linux::install_signal_handlers() {
3938  if (!signal_handlers_are_installed) {
3939    signal_handlers_are_installed = true;
3940
3941    // signal-chaining
3942    typedef void (*signal_setting_t)();
3943    signal_setting_t begin_signal_setting = NULL;
3944    signal_setting_t end_signal_setting = NULL;
3945    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3946                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3947    if (begin_signal_setting != NULL) {
3948      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3949                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3950      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3951                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3952      libjsig_is_loaded = true;
3953      assert(UseSignalChaining, "should enable signal-chaining");
3954    }
3955    if (libjsig_is_loaded) {
3956      // Tell libjsig jvm is setting signal handlers
3957      (*begin_signal_setting)();
3958    }
3959
3960    set_signal_handler(SIGSEGV, true);
3961    set_signal_handler(SIGPIPE, true);
3962    set_signal_handler(SIGBUS, true);
3963    set_signal_handler(SIGILL, true);
3964    set_signal_handler(SIGFPE, true);
3965    set_signal_handler(SIGXFSZ, true);
3966
3967    if (libjsig_is_loaded) {
3968      // Tell libjsig jvm finishes setting signal handlers
3969      (*end_signal_setting)();
3970    }
3971
3972    // We don't activate signal checker if libjsig is in place, we trust ourselves
3973    // and if UserSignalHandler is installed all bets are off.
3974    // Log that signal checking is off only if -verbose:jni is specified.
3975    if (CheckJNICalls) {
3976      if (libjsig_is_loaded) {
3977        if (PrintJNIResolving) {
3978          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3979        }
3980        check_signals = false;
3981      }
3982      if (AllowUserSignalHandlers) {
3983        if (PrintJNIResolving) {
3984          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3985        }
3986        check_signals = false;
3987      }
3988    }
3989  }
3990}
3991
3992// This is the fastest way to get thread cpu time on Linux.
3993// Returns cpu time (user+sys) for any thread, not only for current.
3994// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3995// It might work on 2.6.10+ with a special kernel/glibc patch.
3996// For reference, please, see IEEE Std 1003.1-2004:
3997//   http://www.unix.org/single_unix_specification
3998
3999jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4000  struct timespec tp;
4001  int rc = os::Linux::clock_gettime(clockid, &tp);
4002  assert(rc == 0, "clock_gettime is expected to return 0 code");
4003
4004  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4005}
4006
4007/////
4008// glibc on Linux platform uses non-documented flag
4009// to indicate, that some special sort of signal
4010// trampoline is used.
4011// We will never set this flag, and we should
4012// ignore this flag in our diagnostic
4013#ifdef SIGNIFICANT_SIGNAL_MASK
4014#undef SIGNIFICANT_SIGNAL_MASK
4015#endif
4016#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4017
4018static const char* get_signal_handler_name(address handler,
4019                                           char* buf, int buflen) {
4020  int offset;
4021  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4022  if (found) {
4023    // skip directory names
4024    const char *p1, *p2;
4025    p1 = buf;
4026    size_t len = strlen(os::file_separator());
4027    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4028    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4029  } else {
4030    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4031  }
4032  return buf;
4033}
4034
4035static void print_signal_handler(outputStream* st, int sig,
4036                                 char* buf, size_t buflen) {
4037  struct sigaction sa;
4038
4039  sigaction(sig, NULL, &sa);
4040
4041  // See comment for SIGNIFICANT_SIGNAL_MASK define
4042  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4043
4044  st->print("%s: ", os::exception_name(sig, buf, buflen));
4045
4046  address handler = (sa.sa_flags & SA_SIGINFO)
4047    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4048    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4049
4050  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4051    st->print("SIG_DFL");
4052  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4053    st->print("SIG_IGN");
4054  } else {
4055    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4056  }
4057
4058  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4059
4060  address rh = VMError::get_resetted_sighandler(sig);
4061  // May be, handler was resetted by VMError?
4062  if(rh != NULL) {
4063    handler = rh;
4064    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4065  }
4066
4067  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4068
4069  // Check: is it our handler?
4070  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4071     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4072    // It is our signal handler
4073    // check for flags, reset system-used one!
4074    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4075      st->print(
4076                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4077                os::Linux::get_our_sigflags(sig));
4078    }
4079  }
4080  st->cr();
4081}
4082
4083
4084#define DO_SIGNAL_CHECK(sig) \
4085  if (!sigismember(&check_signal_done, sig)) \
4086    os::Linux::check_signal_handler(sig)
4087
4088// This method is a periodic task to check for misbehaving JNI applications
4089// under CheckJNI, we can add any periodic checks here
4090
4091void os::run_periodic_checks() {
4092
4093  if (check_signals == false) return;
4094
4095  // SEGV and BUS if overridden could potentially prevent
4096  // generation of hs*.log in the event of a crash, debugging
4097  // such a case can be very challenging, so we absolutely
4098  // check the following for a good measure:
4099  DO_SIGNAL_CHECK(SIGSEGV);
4100  DO_SIGNAL_CHECK(SIGILL);
4101  DO_SIGNAL_CHECK(SIGFPE);
4102  DO_SIGNAL_CHECK(SIGBUS);
4103  DO_SIGNAL_CHECK(SIGPIPE);
4104  DO_SIGNAL_CHECK(SIGXFSZ);
4105
4106
4107  // ReduceSignalUsage allows the user to override these handlers
4108  // see comments at the very top and jvm_solaris.h
4109  if (!ReduceSignalUsage) {
4110    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4111    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4112    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4113    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4114  }
4115
4116  DO_SIGNAL_CHECK(SR_signum);
4117  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4118}
4119
4120typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4121
4122static os_sigaction_t os_sigaction = NULL;
4123
4124void os::Linux::check_signal_handler(int sig) {
4125  char buf[O_BUFLEN];
4126  address jvmHandler = NULL;
4127
4128
4129  struct sigaction act;
4130  if (os_sigaction == NULL) {
4131    // only trust the default sigaction, in case it has been interposed
4132    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4133    if (os_sigaction == NULL) return;
4134  }
4135
4136  os_sigaction(sig, (struct sigaction*)NULL, &act);
4137
4138
4139  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4140
4141  address thisHandler = (act.sa_flags & SA_SIGINFO)
4142    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4143    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4144
4145
4146  switch(sig) {
4147  case SIGSEGV:
4148  case SIGBUS:
4149  case SIGFPE:
4150  case SIGPIPE:
4151  case SIGILL:
4152  case SIGXFSZ:
4153    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4154    break;
4155
4156  case SHUTDOWN1_SIGNAL:
4157  case SHUTDOWN2_SIGNAL:
4158  case SHUTDOWN3_SIGNAL:
4159  case BREAK_SIGNAL:
4160    jvmHandler = (address)user_handler();
4161    break;
4162
4163  case INTERRUPT_SIGNAL:
4164    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4165    break;
4166
4167  default:
4168    if (sig == SR_signum) {
4169      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4170    } else {
4171      return;
4172    }
4173    break;
4174  }
4175
4176  if (thisHandler != jvmHandler) {
4177    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4178    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4179    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4180    // No need to check this sig any longer
4181    sigaddset(&check_signal_done, sig);
4182  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4183    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4184    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4185    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4186    // No need to check this sig any longer
4187    sigaddset(&check_signal_done, sig);
4188  }
4189
4190  // Dump all the signal
4191  if (sigismember(&check_signal_done, sig)) {
4192    print_signal_handlers(tty, buf, O_BUFLEN);
4193  }
4194}
4195
4196extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4197
4198extern bool signal_name(int signo, char* buf, size_t len);
4199
4200const char* os::exception_name(int exception_code, char* buf, size_t size) {
4201  if (0 < exception_code && exception_code <= SIGRTMAX) {
4202    // signal
4203    if (!signal_name(exception_code, buf, size)) {
4204      jio_snprintf(buf, size, "SIG%d", exception_code);
4205    }
4206    return buf;
4207  } else {
4208    return NULL;
4209  }
4210}
4211
4212// this is called _before_ the most of global arguments have been parsed
4213void os::init(void) {
4214  char dummy;   /* used to get a guess on initial stack address */
4215//  first_hrtime = gethrtime();
4216
4217  // With LinuxThreads the JavaMain thread pid (primordial thread)
4218  // is different than the pid of the java launcher thread.
4219  // So, on Linux, the launcher thread pid is passed to the VM
4220  // via the sun.java.launcher.pid property.
4221  // Use this property instead of getpid() if it was correctly passed.
4222  // See bug 6351349.
4223  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4224
4225  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4226
4227  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4228
4229  init_random(1234567);
4230
4231  ThreadCritical::initialize();
4232
4233  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4234  if (Linux::page_size() == -1) {
4235    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4236                  strerror(errno)));
4237  }
4238  init_page_sizes((size_t) Linux::page_size());
4239
4240  Linux::initialize_system_info();
4241
4242  // main_thread points to the aboriginal thread
4243  Linux::_main_thread = pthread_self();
4244
4245  Linux::clock_init();
4246  initial_time_count = os::elapsed_counter();
4247  pthread_mutex_init(&dl_mutex, NULL);
4248}
4249
4250// To install functions for atexit system call
4251extern "C" {
4252  static void perfMemory_exit_helper() {
4253    perfMemory_exit();
4254  }
4255}
4256
4257// this is called _after_ the global arguments have been parsed
4258jint os::init_2(void)
4259{
4260  Linux::fast_thread_clock_init();
4261
4262  // Allocate a single page and mark it as readable for safepoint polling
4263  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4264  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4265
4266  os::set_polling_page( polling_page );
4267
4268#ifndef PRODUCT
4269  if(Verbose && PrintMiscellaneous)
4270    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4271#endif
4272
4273  if (!UseMembar) {
4274    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4275    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4276    os::set_memory_serialize_page( mem_serialize_page );
4277
4278#ifndef PRODUCT
4279    if(Verbose && PrintMiscellaneous)
4280      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4281#endif
4282  }
4283
4284  os::large_page_init();
4285
4286  // initialize suspend/resume support - must do this before signal_sets_init()
4287  if (SR_initialize() != 0) {
4288    perror("SR_initialize failed");
4289    return JNI_ERR;
4290  }
4291
4292  Linux::signal_sets_init();
4293  Linux::install_signal_handlers();
4294
4295  // Check minimum allowable stack size for thread creation and to initialize
4296  // the java system classes, including StackOverflowError - depends on page
4297  // size.  Add a page for compiler2 recursion in main thread.
4298  // Add in 2*BytesPerWord times page size to account for VM stack during
4299  // class initialization depending on 32 or 64 bit VM.
4300  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4301            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4302                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4303
4304  size_t threadStackSizeInBytes = ThreadStackSize * K;
4305  if (threadStackSizeInBytes != 0 &&
4306      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4307        tty->print_cr("\nThe stack size specified is too small, "
4308                      "Specify at least %dk",
4309                      os::Linux::min_stack_allowed/ K);
4310        return JNI_ERR;
4311  }
4312
4313  // Make the stack size a multiple of the page size so that
4314  // the yellow/red zones can be guarded.
4315  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4316        vm_page_size()));
4317
4318  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4319
4320  Linux::libpthread_init();
4321  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4322     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4323          Linux::glibc_version(), Linux::libpthread_version(),
4324          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4325  }
4326
4327  if (UseNUMA) {
4328    if (!Linux::libnuma_init()) {
4329      UseNUMA = false;
4330    } else {
4331      if ((Linux::numa_max_node() < 1)) {
4332        // There's only one node(they start from 0), disable NUMA.
4333        UseNUMA = false;
4334      }
4335    }
4336    // With SHM large pages we cannot uncommit a page, so there's not way
4337    // we can make the adaptive lgrp chunk resizing work. If the user specified
4338    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4339    // disable adaptive resizing.
4340    if (UseNUMA && UseLargePages && UseSHM) {
4341      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4342        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4343          UseLargePages = false;
4344        } else {
4345          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4346          UseAdaptiveSizePolicy = false;
4347          UseAdaptiveNUMAChunkSizing = false;
4348        }
4349      } else {
4350        UseNUMA = false;
4351      }
4352    }
4353    if (!UseNUMA && ForceNUMA) {
4354      UseNUMA = true;
4355    }
4356  }
4357
4358  if (MaxFDLimit) {
4359    // set the number of file descriptors to max. print out error
4360    // if getrlimit/setrlimit fails but continue regardless.
4361    struct rlimit nbr_files;
4362    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4363    if (status != 0) {
4364      if (PrintMiscellaneous && (Verbose || WizardMode))
4365        perror("os::init_2 getrlimit failed");
4366    } else {
4367      nbr_files.rlim_cur = nbr_files.rlim_max;
4368      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4369      if (status != 0) {
4370        if (PrintMiscellaneous && (Verbose || WizardMode))
4371          perror("os::init_2 setrlimit failed");
4372      }
4373    }
4374  }
4375
4376  // Initialize lock used to serialize thread creation (see os::create_thread)
4377  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4378
4379  // at-exit methods are called in the reverse order of their registration.
4380  // atexit functions are called on return from main or as a result of a
4381  // call to exit(3C). There can be only 32 of these functions registered
4382  // and atexit() does not set errno.
4383
4384  if (PerfAllowAtExitRegistration) {
4385    // only register atexit functions if PerfAllowAtExitRegistration is set.
4386    // atexit functions can be delayed until process exit time, which
4387    // can be problematic for embedded VM situations. Embedded VMs should
4388    // call DestroyJavaVM() to assure that VM resources are released.
4389
4390    // note: perfMemory_exit_helper atexit function may be removed in
4391    // the future if the appropriate cleanup code can be added to the
4392    // VM_Exit VMOperation's doit method.
4393    if (atexit(perfMemory_exit_helper) != 0) {
4394      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4395    }
4396  }
4397
4398  // initialize thread priority policy
4399  prio_init();
4400
4401  return JNI_OK;
4402}
4403
4404// this is called at the end of vm_initialization
4405void os::init_3(void)
4406{
4407#ifdef JAVASE_EMBEDDED
4408  // Start the MemNotifyThread
4409  if (LowMemoryProtection) {
4410    MemNotifyThread::start();
4411  }
4412  return;
4413#endif
4414}
4415
4416// Mark the polling page as unreadable
4417void os::make_polling_page_unreadable(void) {
4418  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4419    fatal("Could not disable polling page");
4420};
4421
4422// Mark the polling page as readable
4423void os::make_polling_page_readable(void) {
4424  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4425    fatal("Could not enable polling page");
4426  }
4427};
4428
4429int os::active_processor_count() {
4430  // Linux doesn't yet have a (official) notion of processor sets,
4431  // so just return the number of online processors.
4432  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4433  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4434  return online_cpus;
4435}
4436
4437void os::set_native_thread_name(const char *name) {
4438  // Not yet implemented.
4439  return;
4440}
4441
4442bool os::distribute_processes(uint length, uint* distribution) {
4443  // Not yet implemented.
4444  return false;
4445}
4446
4447bool os::bind_to_processor(uint processor_id) {
4448  // Not yet implemented.
4449  return false;
4450}
4451
4452///
4453
4454// Suspends the target using the signal mechanism and then grabs the PC before
4455// resuming the target. Used by the flat-profiler only
4456ExtendedPC os::get_thread_pc(Thread* thread) {
4457  // Make sure that it is called by the watcher for the VMThread
4458  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4459  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4460
4461  ExtendedPC epc;
4462
4463  OSThread* osthread = thread->osthread();
4464  if (do_suspend(osthread)) {
4465    if (osthread->ucontext() != NULL) {
4466      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4467    } else {
4468      // NULL context is unexpected, double-check this is the VMThread
4469      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4470    }
4471    do_resume(osthread);
4472  }
4473  // failure means pthread_kill failed for some reason - arguably this is
4474  // a fatal problem, but such problems are ignored elsewhere
4475
4476  return epc;
4477}
4478
4479int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4480{
4481   if (is_NPTL()) {
4482      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4483   } else {
4484      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4485      // word back to default 64bit precision if condvar is signaled. Java
4486      // wants 53bit precision.  Save and restore current value.
4487      int fpu = get_fpu_control_word();
4488      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4489      set_fpu_control_word(fpu);
4490      return status;
4491   }
4492}
4493
4494////////////////////////////////////////////////////////////////////////////////
4495// debug support
4496
4497bool os::find(address addr, outputStream* st) {
4498  Dl_info dlinfo;
4499  memset(&dlinfo, 0, sizeof(dlinfo));
4500  if (dladdr(addr, &dlinfo)) {
4501    st->print(PTR_FORMAT ": ", addr);
4502    if (dlinfo.dli_sname != NULL) {
4503      st->print("%s+%#x", dlinfo.dli_sname,
4504                 addr - (intptr_t)dlinfo.dli_saddr);
4505    } else if (dlinfo.dli_fname) {
4506      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4507    } else {
4508      st->print("<absolute address>");
4509    }
4510    if (dlinfo.dli_fname) {
4511      st->print(" in %s", dlinfo.dli_fname);
4512    }
4513    if (dlinfo.dli_fbase) {
4514      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4515    }
4516    st->cr();
4517
4518    if (Verbose) {
4519      // decode some bytes around the PC
4520      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4521      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4522      address       lowest = (address) dlinfo.dli_sname;
4523      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4524      if (begin < lowest)  begin = lowest;
4525      Dl_info dlinfo2;
4526      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4527          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4528        end = (address) dlinfo2.dli_saddr;
4529      Disassembler::decode(begin, end, st);
4530    }
4531    return true;
4532  }
4533  return false;
4534}
4535
4536////////////////////////////////////////////////////////////////////////////////
4537// misc
4538
4539// This does not do anything on Linux. This is basically a hook for being
4540// able to use structured exception handling (thread-local exception filters)
4541// on, e.g., Win32.
4542void
4543os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4544                         JavaCallArguments* args, Thread* thread) {
4545  f(value, method, args, thread);
4546}
4547
4548void os::print_statistics() {
4549}
4550
4551int os::message_box(const char* title, const char* message) {
4552  int i;
4553  fdStream err(defaultStream::error_fd());
4554  for (i = 0; i < 78; i++) err.print_raw("=");
4555  err.cr();
4556  err.print_raw_cr(title);
4557  for (i = 0; i < 78; i++) err.print_raw("-");
4558  err.cr();
4559  err.print_raw_cr(message);
4560  for (i = 0; i < 78; i++) err.print_raw("=");
4561  err.cr();
4562
4563  char buf[16];
4564  // Prevent process from exiting upon "read error" without consuming all CPU
4565  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4566
4567  return buf[0] == 'y' || buf[0] == 'Y';
4568}
4569
4570int os::stat(const char *path, struct stat *sbuf) {
4571  char pathbuf[MAX_PATH];
4572  if (strlen(path) > MAX_PATH - 1) {
4573    errno = ENAMETOOLONG;
4574    return -1;
4575  }
4576  os::native_path(strcpy(pathbuf, path));
4577  return ::stat(pathbuf, sbuf);
4578}
4579
4580bool os::check_heap(bool force) {
4581  return true;
4582}
4583
4584int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4585  return ::vsnprintf(buf, count, format, args);
4586}
4587
4588// Is a (classpath) directory empty?
4589bool os::dir_is_empty(const char* path) {
4590  DIR *dir = NULL;
4591  struct dirent *ptr;
4592
4593  dir = opendir(path);
4594  if (dir == NULL) return true;
4595
4596  /* Scan the directory */
4597  bool result = true;
4598  char buf[sizeof(struct dirent) + MAX_PATH];
4599  while (result && (ptr = ::readdir(dir)) != NULL) {
4600    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4601      result = false;
4602    }
4603  }
4604  closedir(dir);
4605  return result;
4606}
4607
4608// This code originates from JDK's sysOpen and open64_w
4609// from src/solaris/hpi/src/system_md.c
4610
4611#ifndef O_DELETE
4612#define O_DELETE 0x10000
4613#endif
4614
4615// Open a file. Unlink the file immediately after open returns
4616// if the specified oflag has the O_DELETE flag set.
4617// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4618
4619int os::open(const char *path, int oflag, int mode) {
4620
4621  if (strlen(path) > MAX_PATH - 1) {
4622    errno = ENAMETOOLONG;
4623    return -1;
4624  }
4625  int fd;
4626  int o_delete = (oflag & O_DELETE);
4627  oflag = oflag & ~O_DELETE;
4628
4629  fd = ::open64(path, oflag, mode);
4630  if (fd == -1) return -1;
4631
4632  //If the open succeeded, the file might still be a directory
4633  {
4634    struct stat64 buf64;
4635    int ret = ::fstat64(fd, &buf64);
4636    int st_mode = buf64.st_mode;
4637
4638    if (ret != -1) {
4639      if ((st_mode & S_IFMT) == S_IFDIR) {
4640        errno = EISDIR;
4641        ::close(fd);
4642        return -1;
4643      }
4644    } else {
4645      ::close(fd);
4646      return -1;
4647    }
4648  }
4649
4650    /*
4651     * All file descriptors that are opened in the JVM and not
4652     * specifically destined for a subprocess should have the
4653     * close-on-exec flag set.  If we don't set it, then careless 3rd
4654     * party native code might fork and exec without closing all
4655     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4656     * UNIXProcess.c), and this in turn might:
4657     *
4658     * - cause end-of-file to fail to be detected on some file
4659     *   descriptors, resulting in mysterious hangs, or
4660     *
4661     * - might cause an fopen in the subprocess to fail on a system
4662     *   suffering from bug 1085341.
4663     *
4664     * (Yes, the default setting of the close-on-exec flag is a Unix
4665     * design flaw)
4666     *
4667     * See:
4668     * 1085341: 32-bit stdio routines should support file descriptors >255
4669     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4670     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4671     */
4672#ifdef FD_CLOEXEC
4673    {
4674        int flags = ::fcntl(fd, F_GETFD);
4675        if (flags != -1)
4676            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4677    }
4678#endif
4679
4680  if (o_delete != 0) {
4681    ::unlink(path);
4682  }
4683  return fd;
4684}
4685
4686
4687// create binary file, rewriting existing file if required
4688int os::create_binary_file(const char* path, bool rewrite_existing) {
4689  int oflags = O_WRONLY | O_CREAT;
4690  if (!rewrite_existing) {
4691    oflags |= O_EXCL;
4692  }
4693  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4694}
4695
4696// return current position of file pointer
4697jlong os::current_file_offset(int fd) {
4698  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4699}
4700
4701// move file pointer to the specified offset
4702jlong os::seek_to_file_offset(int fd, jlong offset) {
4703  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4704}
4705
4706// This code originates from JDK's sysAvailable
4707// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4708
4709int os::available(int fd, jlong *bytes) {
4710  jlong cur, end;
4711  int mode;
4712  struct stat64 buf64;
4713
4714  if (::fstat64(fd, &buf64) >= 0) {
4715    mode = buf64.st_mode;
4716    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4717      /*
4718      * XXX: is the following call interruptible? If so, this might
4719      * need to go through the INTERRUPT_IO() wrapper as for other
4720      * blocking, interruptible calls in this file.
4721      */
4722      int n;
4723      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4724        *bytes = n;
4725        return 1;
4726      }
4727    }
4728  }
4729  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4730    return 0;
4731  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4732    return 0;
4733  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4734    return 0;
4735  }
4736  *bytes = end - cur;
4737  return 1;
4738}
4739
4740int os::socket_available(int fd, jint *pbytes) {
4741  // Linux doc says EINTR not returned, unlike Solaris
4742  int ret = ::ioctl(fd, FIONREAD, pbytes);
4743
4744  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4745  // is expected to return 0 on failure and 1 on success to the jdk.
4746  return (ret < 0) ? 0 : 1;
4747}
4748
4749// Map a block of memory.
4750char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4751                     char *addr, size_t bytes, bool read_only,
4752                     bool allow_exec) {
4753  int prot;
4754  int flags = MAP_PRIVATE;
4755
4756  if (read_only) {
4757    prot = PROT_READ;
4758  } else {
4759    prot = PROT_READ | PROT_WRITE;
4760  }
4761
4762  if (allow_exec) {
4763    prot |= PROT_EXEC;
4764  }
4765
4766  if (addr != NULL) {
4767    flags |= MAP_FIXED;
4768  }
4769
4770  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4771                                     fd, file_offset);
4772  if (mapped_address == MAP_FAILED) {
4773    return NULL;
4774  }
4775  return mapped_address;
4776}
4777
4778
4779// Remap a block of memory.
4780char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4781                       char *addr, size_t bytes, bool read_only,
4782                       bool allow_exec) {
4783  // same as map_memory() on this OS
4784  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4785                        allow_exec);
4786}
4787
4788
4789// Unmap a block of memory.
4790bool os::pd_unmap_memory(char* addr, size_t bytes) {
4791  return munmap(addr, bytes) == 0;
4792}
4793
4794static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4795
4796static clockid_t thread_cpu_clockid(Thread* thread) {
4797  pthread_t tid = thread->osthread()->pthread_id();
4798  clockid_t clockid;
4799
4800  // Get thread clockid
4801  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4802  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4803  return clockid;
4804}
4805
4806// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4807// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4808// of a thread.
4809//
4810// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4811// the fast estimate available on the platform.
4812
4813jlong os::current_thread_cpu_time() {
4814  if (os::Linux::supports_fast_thread_cpu_time()) {
4815    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4816  } else {
4817    // return user + sys since the cost is the same
4818    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4819  }
4820}
4821
4822jlong os::thread_cpu_time(Thread* thread) {
4823  // consistent with what current_thread_cpu_time() returns
4824  if (os::Linux::supports_fast_thread_cpu_time()) {
4825    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4826  } else {
4827    return slow_thread_cpu_time(thread, true /* user + sys */);
4828  }
4829}
4830
4831jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4832  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4833    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4834  } else {
4835    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4836  }
4837}
4838
4839jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4840  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4841    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4842  } else {
4843    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4844  }
4845}
4846
4847//
4848//  -1 on error.
4849//
4850
4851static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4852  static bool proc_task_unchecked = true;
4853  static const char *proc_stat_path = "/proc/%d/stat";
4854  pid_t  tid = thread->osthread()->thread_id();
4855  char *s;
4856  char stat[2048];
4857  int statlen;
4858  char proc_name[64];
4859  int count;
4860  long sys_time, user_time;
4861  char cdummy;
4862  int idummy;
4863  long ldummy;
4864  FILE *fp;
4865
4866  // The /proc/<tid>/stat aggregates per-process usage on
4867  // new Linux kernels 2.6+ where NPTL is supported.
4868  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4869  // See bug 6328462.
4870  // There possibly can be cases where there is no directory
4871  // /proc/self/task, so we check its availability.
4872  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4873    // This is executed only once
4874    proc_task_unchecked = false;
4875    fp = fopen("/proc/self/task", "r");
4876    if (fp != NULL) {
4877      proc_stat_path = "/proc/self/task/%d/stat";
4878      fclose(fp);
4879    }
4880  }
4881
4882  sprintf(proc_name, proc_stat_path, tid);
4883  fp = fopen(proc_name, "r");
4884  if ( fp == NULL ) return -1;
4885  statlen = fread(stat, 1, 2047, fp);
4886  stat[statlen] = '\0';
4887  fclose(fp);
4888
4889  // Skip pid and the command string. Note that we could be dealing with
4890  // weird command names, e.g. user could decide to rename java launcher
4891  // to "java 1.4.2 :)", then the stat file would look like
4892  //                1234 (java 1.4.2 :)) R ... ...
4893  // We don't really need to know the command string, just find the last
4894  // occurrence of ")" and then start parsing from there. See bug 4726580.
4895  s = strrchr(stat, ')');
4896  if (s == NULL ) return -1;
4897
4898  // Skip blank chars
4899  do s++; while (isspace(*s));
4900
4901  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4902                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4903                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4904                 &user_time, &sys_time);
4905  if ( count != 13 ) return -1;
4906  if (user_sys_cpu_time) {
4907    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4908  } else {
4909    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4910  }
4911}
4912
4913void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4914  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4915  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4916  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4917  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4918}
4919
4920void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4921  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4922  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4923  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4924  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4925}
4926
4927bool os::is_thread_cpu_time_supported() {
4928  return true;
4929}
4930
4931// System loadavg support.  Returns -1 if load average cannot be obtained.
4932// Linux doesn't yet have a (official) notion of processor sets,
4933// so just return the system wide load average.
4934int os::loadavg(double loadavg[], int nelem) {
4935  return ::getloadavg(loadavg, nelem);
4936}
4937
4938void os::pause() {
4939  char filename[MAX_PATH];
4940  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4941    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4942  } else {
4943    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4944  }
4945
4946  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4947  if (fd != -1) {
4948    struct stat buf;
4949    ::close(fd);
4950    while (::stat(filename, &buf) == 0) {
4951      (void)::poll(NULL, 0, 100);
4952    }
4953  } else {
4954    jio_fprintf(stderr,
4955      "Could not open pause file '%s', continuing immediately.\n", filename);
4956  }
4957}
4958
4959
4960// Refer to the comments in os_solaris.cpp park-unpark.
4961//
4962// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4963// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4964// For specifics regarding the bug see GLIBC BUGID 261237 :
4965//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4966// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4967// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4968// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4969// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4970// and monitorenter when we're using 1-0 locking.  All those operations may result in
4971// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4972// of libpthread avoids the problem, but isn't practical.
4973//
4974// Possible remedies:
4975//
4976// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4977//      This is palliative and probabilistic, however.  If the thread is preempted
4978//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4979//      than the minimum period may have passed, and the abstime may be stale (in the
4980//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4981//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4982//
4983// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4984//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4985//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4986//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4987//      thread.
4988//
4989// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4990//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4991//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4992//      This also works well.  In fact it avoids kernel-level scalability impediments
4993//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4994//      timers in a graceful fashion.
4995//
4996// 4.   When the abstime value is in the past it appears that control returns
4997//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4998//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4999//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5000//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5001//      It may be possible to avoid reinitialization by checking the return
5002//      value from pthread_cond_timedwait().  In addition to reinitializing the
5003//      condvar we must establish the invariant that cond_signal() is only called
5004//      within critical sections protected by the adjunct mutex.  This prevents
5005//      cond_signal() from "seeing" a condvar that's in the midst of being
5006//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5007//      desirable signal-after-unlock optimization that avoids futile context switching.
5008//
5009//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5010//      structure when a condvar is used or initialized.  cond_destroy()  would
5011//      release the helper structure.  Our reinitialize-after-timedwait fix
5012//      put excessive stress on malloc/free and locks protecting the c-heap.
5013//
5014// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5015// It may be possible to refine (4) by checking the kernel and NTPL verisons
5016// and only enabling the work-around for vulnerable environments.
5017
5018// utility to compute the abstime argument to timedwait:
5019// millis is the relative timeout time
5020// abstime will be the absolute timeout time
5021// TODO: replace compute_abstime() with unpackTime()
5022
5023static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5024  if (millis < 0)  millis = 0;
5025  struct timeval now;
5026  int status = gettimeofday(&now, NULL);
5027  assert(status == 0, "gettimeofday");
5028  jlong seconds = millis / 1000;
5029  millis %= 1000;
5030  if (seconds > 50000000) { // see man cond_timedwait(3T)
5031    seconds = 50000000;
5032  }
5033  abstime->tv_sec = now.tv_sec  + seconds;
5034  long       usec = now.tv_usec + millis * 1000;
5035  if (usec >= 1000000) {
5036    abstime->tv_sec += 1;
5037    usec -= 1000000;
5038  }
5039  abstime->tv_nsec = usec * 1000;
5040  return abstime;
5041}
5042
5043
5044// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5045// Conceptually TryPark() should be equivalent to park(0).
5046
5047int os::PlatformEvent::TryPark() {
5048  for (;;) {
5049    const int v = _Event ;
5050    guarantee ((v == 0) || (v == 1), "invariant") ;
5051    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5052  }
5053}
5054
5055void os::PlatformEvent::park() {       // AKA "down()"
5056  // Invariant: Only the thread associated with the Event/PlatformEvent
5057  // may call park().
5058  // TODO: assert that _Assoc != NULL or _Assoc == Self
5059  int v ;
5060  for (;;) {
5061      v = _Event ;
5062      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5063  }
5064  guarantee (v >= 0, "invariant") ;
5065  if (v == 0) {
5066     // Do this the hard way by blocking ...
5067     int status = pthread_mutex_lock(_mutex);
5068     assert_status(status == 0, status, "mutex_lock");
5069     guarantee (_nParked == 0, "invariant") ;
5070     ++ _nParked ;
5071     while (_Event < 0) {
5072        status = pthread_cond_wait(_cond, _mutex);
5073        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5074        // Treat this the same as if the wait was interrupted
5075        if (status == ETIME) { status = EINTR; }
5076        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5077     }
5078     -- _nParked ;
5079
5080    _Event = 0 ;
5081     status = pthread_mutex_unlock(_mutex);
5082     assert_status(status == 0, status, "mutex_unlock");
5083    // Paranoia to ensure our locked and lock-free paths interact
5084    // correctly with each other.
5085    OrderAccess::fence();
5086  }
5087  guarantee (_Event >= 0, "invariant") ;
5088}
5089
5090int os::PlatformEvent::park(jlong millis) {
5091  guarantee (_nParked == 0, "invariant") ;
5092
5093  int v ;
5094  for (;;) {
5095      v = _Event ;
5096      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5097  }
5098  guarantee (v >= 0, "invariant") ;
5099  if (v != 0) return OS_OK ;
5100
5101  // We do this the hard way, by blocking the thread.
5102  // Consider enforcing a minimum timeout value.
5103  struct timespec abst;
5104  compute_abstime(&abst, millis);
5105
5106  int ret = OS_TIMEOUT;
5107  int status = pthread_mutex_lock(_mutex);
5108  assert_status(status == 0, status, "mutex_lock");
5109  guarantee (_nParked == 0, "invariant") ;
5110  ++_nParked ;
5111
5112  // Object.wait(timo) will return because of
5113  // (a) notification
5114  // (b) timeout
5115  // (c) thread.interrupt
5116  //
5117  // Thread.interrupt and object.notify{All} both call Event::set.
5118  // That is, we treat thread.interrupt as a special case of notification.
5119  // The underlying Solaris implementation, cond_timedwait, admits
5120  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5121  // JVM from making those visible to Java code.  As such, we must
5122  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5123  //
5124  // TODO: properly differentiate simultaneous notify+interrupt.
5125  // In that case, we should propagate the notify to another waiter.
5126
5127  while (_Event < 0) {
5128    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5129    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5130      pthread_cond_destroy (_cond);
5131      pthread_cond_init (_cond, NULL) ;
5132    }
5133    assert_status(status == 0 || status == EINTR ||
5134                  status == ETIME || status == ETIMEDOUT,
5135                  status, "cond_timedwait");
5136    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5137    if (status == ETIME || status == ETIMEDOUT) break ;
5138    // We consume and ignore EINTR and spurious wakeups.
5139  }
5140  --_nParked ;
5141  if (_Event >= 0) {
5142     ret = OS_OK;
5143  }
5144  _Event = 0 ;
5145  status = pthread_mutex_unlock(_mutex);
5146  assert_status(status == 0, status, "mutex_unlock");
5147  assert (_nParked == 0, "invariant") ;
5148  // Paranoia to ensure our locked and lock-free paths interact
5149  // correctly with each other.
5150  OrderAccess::fence();
5151  return ret;
5152}
5153
5154void os::PlatformEvent::unpark() {
5155  // Transitions for _Event:
5156  //    0 :=> 1
5157  //    1 :=> 1
5158  //   -1 :=> either 0 or 1; must signal target thread
5159  //          That is, we can safely transition _Event from -1 to either
5160  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5161  //          unpark() calls.
5162  // See also: "Semaphores in Plan 9" by Mullender & Cox
5163  //
5164  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5165  // that it will take two back-to-back park() calls for the owning
5166  // thread to block. This has the benefit of forcing a spurious return
5167  // from the first park() call after an unpark() call which will help
5168  // shake out uses of park() and unpark() without condition variables.
5169
5170  if (Atomic::xchg(1, &_Event) >= 0) return;
5171
5172  // Wait for the thread associated with the event to vacate
5173  int status = pthread_mutex_lock(_mutex);
5174  assert_status(status == 0, status, "mutex_lock");
5175  int AnyWaiters = _nParked;
5176  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5177  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5178    AnyWaiters = 0;
5179    pthread_cond_signal(_cond);
5180  }
5181  status = pthread_mutex_unlock(_mutex);
5182  assert_status(status == 0, status, "mutex_unlock");
5183  if (AnyWaiters != 0) {
5184    status = pthread_cond_signal(_cond);
5185    assert_status(status == 0, status, "cond_signal");
5186  }
5187
5188  // Note that we signal() _after dropping the lock for "immortal" Events.
5189  // This is safe and avoids a common class of  futile wakeups.  In rare
5190  // circumstances this can cause a thread to return prematurely from
5191  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5192  // simply re-test the condition and re-park itself.
5193}
5194
5195
5196// JSR166
5197// -------------------------------------------------------
5198
5199/*
5200 * The solaris and linux implementations of park/unpark are fairly
5201 * conservative for now, but can be improved. They currently use a
5202 * mutex/condvar pair, plus a a count.
5203 * Park decrements count if > 0, else does a condvar wait.  Unpark
5204 * sets count to 1 and signals condvar.  Only one thread ever waits
5205 * on the condvar. Contention seen when trying to park implies that someone
5206 * is unparking you, so don't wait. And spurious returns are fine, so there
5207 * is no need to track notifications.
5208 */
5209
5210#define MAX_SECS 100000000
5211/*
5212 * This code is common to linux and solaris and will be moved to a
5213 * common place in dolphin.
5214 *
5215 * The passed in time value is either a relative time in nanoseconds
5216 * or an absolute time in milliseconds. Either way it has to be unpacked
5217 * into suitable seconds and nanoseconds components and stored in the
5218 * given timespec structure.
5219 * Given time is a 64-bit value and the time_t used in the timespec is only
5220 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5221 * overflow if times way in the future are given. Further on Solaris versions
5222 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5223 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5224 * As it will be 28 years before "now + 100000000" will overflow we can
5225 * ignore overflow and just impose a hard-limit on seconds using the value
5226 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5227 * years from "now".
5228 */
5229
5230static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5231  assert (time > 0, "convertTime");
5232
5233  struct timeval now;
5234  int status = gettimeofday(&now, NULL);
5235  assert(status == 0, "gettimeofday");
5236
5237  time_t max_secs = now.tv_sec + MAX_SECS;
5238
5239  if (isAbsolute) {
5240    jlong secs = time / 1000;
5241    if (secs > max_secs) {
5242      absTime->tv_sec = max_secs;
5243    }
5244    else {
5245      absTime->tv_sec = secs;
5246    }
5247    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5248  }
5249  else {
5250    jlong secs = time / NANOSECS_PER_SEC;
5251    if (secs >= MAX_SECS) {
5252      absTime->tv_sec = max_secs;
5253      absTime->tv_nsec = 0;
5254    }
5255    else {
5256      absTime->tv_sec = now.tv_sec + secs;
5257      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5258      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5259        absTime->tv_nsec -= NANOSECS_PER_SEC;
5260        ++absTime->tv_sec; // note: this must be <= max_secs
5261      }
5262    }
5263  }
5264  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5265  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5266  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5267  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5268}
5269
5270void Parker::park(bool isAbsolute, jlong time) {
5271  // Ideally we'd do something useful while spinning, such
5272  // as calling unpackTime().
5273
5274  // Optional fast-path check:
5275  // Return immediately if a permit is available.
5276  // We depend on Atomic::xchg() having full barrier semantics
5277  // since we are doing a lock-free update to _counter.
5278  if (Atomic::xchg(0, &_counter) > 0) return;
5279
5280  Thread* thread = Thread::current();
5281  assert(thread->is_Java_thread(), "Must be JavaThread");
5282  JavaThread *jt = (JavaThread *)thread;
5283
5284  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5285  // Check interrupt before trying to wait
5286  if (Thread::is_interrupted(thread, false)) {
5287    return;
5288  }
5289
5290  // Next, demultiplex/decode time arguments
5291  timespec absTime;
5292  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5293    return;
5294  }
5295  if (time > 0) {
5296    unpackTime(&absTime, isAbsolute, time);
5297  }
5298
5299
5300  // Enter safepoint region
5301  // Beware of deadlocks such as 6317397.
5302  // The per-thread Parker:: mutex is a classic leaf-lock.
5303  // In particular a thread must never block on the Threads_lock while
5304  // holding the Parker:: mutex.  If safepoints are pending both the
5305  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5306  ThreadBlockInVM tbivm(jt);
5307
5308  // Don't wait if cannot get lock since interference arises from
5309  // unblocking.  Also. check interrupt before trying wait
5310  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5311    return;
5312  }
5313
5314  int status ;
5315  if (_counter > 0)  { // no wait needed
5316    _counter = 0;
5317    status = pthread_mutex_unlock(_mutex);
5318    assert (status == 0, "invariant") ;
5319    // Paranoia to ensure our locked and lock-free paths interact
5320    // correctly with each other and Java-level accesses.
5321    OrderAccess::fence();
5322    return;
5323  }
5324
5325#ifdef ASSERT
5326  // Don't catch signals while blocked; let the running threads have the signals.
5327  // (This allows a debugger to break into the running thread.)
5328  sigset_t oldsigs;
5329  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5330  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5331#endif
5332
5333  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5334  jt->set_suspend_equivalent();
5335  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5336
5337  if (time == 0) {
5338    status = pthread_cond_wait (_cond, _mutex) ;
5339  } else {
5340    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5341    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5342      pthread_cond_destroy (_cond) ;
5343      pthread_cond_init    (_cond, NULL);
5344    }
5345  }
5346  assert_status(status == 0 || status == EINTR ||
5347                status == ETIME || status == ETIMEDOUT,
5348                status, "cond_timedwait");
5349
5350#ifdef ASSERT
5351  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5352#endif
5353
5354  _counter = 0 ;
5355  status = pthread_mutex_unlock(_mutex) ;
5356  assert_status(status == 0, status, "invariant") ;
5357  // Paranoia to ensure our locked and lock-free paths interact
5358  // correctly with each other and Java-level accesses.
5359  OrderAccess::fence();
5360
5361  // If externally suspended while waiting, re-suspend
5362  if (jt->handle_special_suspend_equivalent_condition()) {
5363    jt->java_suspend_self();
5364  }
5365}
5366
5367void Parker::unpark() {
5368  int s, status ;
5369  status = pthread_mutex_lock(_mutex);
5370  assert (status == 0, "invariant") ;
5371  s = _counter;
5372  _counter = 1;
5373  if (s < 1) {
5374     if (WorkAroundNPTLTimedWaitHang) {
5375        status = pthread_cond_signal (_cond) ;
5376        assert (status == 0, "invariant") ;
5377        status = pthread_mutex_unlock(_mutex);
5378        assert (status == 0, "invariant") ;
5379     } else {
5380        status = pthread_mutex_unlock(_mutex);
5381        assert (status == 0, "invariant") ;
5382        status = pthread_cond_signal (_cond) ;
5383        assert (status == 0, "invariant") ;
5384     }
5385  } else {
5386    pthread_mutex_unlock(_mutex);
5387    assert (status == 0, "invariant") ;
5388  }
5389}
5390
5391
5392extern char** environ;
5393
5394#ifndef __NR_fork
5395#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5396#endif
5397
5398#ifndef __NR_execve
5399#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5400#endif
5401
5402// Run the specified command in a separate process. Return its exit value,
5403// or -1 on failure (e.g. can't fork a new process).
5404// Unlike system(), this function can be called from signal handler. It
5405// doesn't block SIGINT et al.
5406int os::fork_and_exec(char* cmd) {
5407  const char * argv[4] = {"sh", "-c", cmd, NULL};
5408
5409  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5410  // pthread_atfork handlers and reset pthread library. All we need is a
5411  // separate process to execve. Make a direct syscall to fork process.
5412  // On IA64 there's no fork syscall, we have to use fork() and hope for
5413  // the best...
5414  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5415              IA64_ONLY(fork();)
5416
5417  if (pid < 0) {
5418    // fork failed
5419    return -1;
5420
5421  } else if (pid == 0) {
5422    // child process
5423
5424    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5425    // first to kill every thread on the thread list. Because this list is
5426    // not reset by fork() (see notes above), execve() will instead kill
5427    // every thread in the parent process. We know this is the only thread
5428    // in the new process, so make a system call directly.
5429    // IA64 should use normal execve() from glibc to match the glibc fork()
5430    // above.
5431    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5432    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5433
5434    // execve failed
5435    _exit(-1);
5436
5437  } else  {
5438    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5439    // care about the actual exit code, for now.
5440
5441    int status;
5442
5443    // Wait for the child process to exit.  This returns immediately if
5444    // the child has already exited. */
5445    while (waitpid(pid, &status, 0) < 0) {
5446        switch (errno) {
5447        case ECHILD: return 0;
5448        case EINTR: break;
5449        default: return -1;
5450        }
5451    }
5452
5453    if (WIFEXITED(status)) {
5454       // The child exited normally; get its exit code.
5455       return WEXITSTATUS(status);
5456    } else if (WIFSIGNALED(status)) {
5457       // The child exited because of a signal
5458       // The best value to return is 0x80 + signal number,
5459       // because that is what all Unix shells do, and because
5460       // it allows callers to distinguish between process exit and
5461       // process death by signal.
5462       return 0x80 + WTERMSIG(status);
5463    } else {
5464       // Unknown exit code; pass it through
5465       return status;
5466    }
5467  }
5468}
5469
5470// is_headless_jre()
5471//
5472// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5473// in order to report if we are running in a headless jre
5474//
5475// Since JDK8 xawt/libmawt.so was moved into the same directory
5476// as libawt.so, and renamed libawt_xawt.so
5477//
5478bool os::is_headless_jre() {
5479    struct stat statbuf;
5480    char buf[MAXPATHLEN];
5481    char libmawtpath[MAXPATHLEN];
5482    const char *xawtstr  = "/xawt/libmawt.so";
5483    const char *new_xawtstr = "/libawt_xawt.so";
5484    char *p;
5485
5486    // Get path to libjvm.so
5487    os::jvm_path(buf, sizeof(buf));
5488
5489    // Get rid of libjvm.so
5490    p = strrchr(buf, '/');
5491    if (p == NULL) return false;
5492    else *p = '\0';
5493
5494    // Get rid of client or server
5495    p = strrchr(buf, '/');
5496    if (p == NULL) return false;
5497    else *p = '\0';
5498
5499    // check xawt/libmawt.so
5500    strcpy(libmawtpath, buf);
5501    strcat(libmawtpath, xawtstr);
5502    if (::stat(libmawtpath, &statbuf) == 0) return false;
5503
5504    // check libawt_xawt.so
5505    strcpy(libmawtpath, buf);
5506    strcat(libmawtpath, new_xawtstr);
5507    if (::stat(libmawtpath, &statbuf) == 0) return false;
5508
5509    return true;
5510}
5511
5512// Get the default path to the core file
5513// Returns the length of the string
5514int os::get_core_path(char* buffer, size_t bufferSize) {
5515  const char* p = get_current_directory(buffer, bufferSize);
5516
5517  if (p == NULL) {
5518    assert(p != NULL, "failed to get current directory");
5519    return 0;
5520  }
5521
5522  return strlen(buffer);
5523}
5524
5525#ifdef JAVASE_EMBEDDED
5526//
5527// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5528//
5529MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5530
5531// ctor
5532//
5533MemNotifyThread::MemNotifyThread(int fd): Thread() {
5534  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5535  _fd = fd;
5536
5537  if (os::create_thread(this, os::os_thread)) {
5538    _memnotify_thread = this;
5539    os::set_priority(this, NearMaxPriority);
5540    os::start_thread(this);
5541  }
5542}
5543
5544// Where all the work gets done
5545//
5546void MemNotifyThread::run() {
5547  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5548
5549  // Set up the select arguments
5550  fd_set rfds;
5551  if (_fd != -1) {
5552    FD_ZERO(&rfds);
5553    FD_SET(_fd, &rfds);
5554  }
5555
5556  // Now wait for the mem_notify device to wake up
5557  while (1) {
5558    // Wait for the mem_notify device to signal us..
5559    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5560    if (rc == -1) {
5561      perror("select!\n");
5562      break;
5563    } else if (rc) {
5564      //ssize_t free_before = os::available_memory();
5565      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5566
5567      // The kernel is telling us there is not much memory left...
5568      // try to do something about that
5569
5570      // If we are not already in a GC, try one.
5571      if (!Universe::heap()->is_gc_active()) {
5572        Universe::heap()->collect(GCCause::_allocation_failure);
5573
5574        //ssize_t free_after = os::available_memory();
5575        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5576        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5577      }
5578      // We might want to do something like the following if we find the GC's are not helping...
5579      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5580    }
5581  }
5582}
5583
5584//
5585// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5586//
5587void MemNotifyThread::start() {
5588  int    fd;
5589  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5590  if (fd < 0) {
5591      return;
5592  }
5593
5594  if (memnotify_thread() == NULL) {
5595    new MemNotifyThread(fd);
5596  }
5597}
5598#endif // JAVASE_EMBEDDED
5599