os_linux.cpp revision 4454:cc32ccaaf47f
1232366Sdavide/*
2232366Sdavide * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3232366Sdavide * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4232366Sdavide *
5232366Sdavide * This code is free software; you can redistribute it and/or modify it
6232366Sdavide * under the terms of the GNU General Public License version 2 only, as
7232366Sdavide * published by the Free Software Foundation.
8232366Sdavide *
9232366Sdavide * This code is distributed in the hope that it will be useful, but WITHOUT
10232366Sdavide * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11232366Sdavide * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12232366Sdavide * version 2 for more details (a copy is included in the LICENSE file that
13232366Sdavide * accompanied this code).
14232366Sdavide *
15232366Sdavide * You should have received a copy of the GNU General Public License version
16232366Sdavide * 2 along with this work; if not, write to the Free Software Foundation,
17232366Sdavide * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18232366Sdavide *
19232366Sdavide * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20232366Sdavide * or visit www.oracle.com if you need additional information or have any
21232366Sdavide * questions.
22232366Sdavide *
23232366Sdavide */
24232366Sdavide
25232366Sdavide// no precompiled headers
26232366Sdavide#include "classfile/classLoader.hpp"
27241741Ssbruno#include "classfile/systemDictionary.hpp"
28232366Sdavide#include "classfile/vmSymbols.hpp"
29232366Sdavide#include "code/icBuffer.hpp"
30232366Sdavide#include "code/vtableStubs.hpp"
31232366Sdavide#include "compiler/compileBroker.hpp"
32232366Sdavide#include "compiler/disassembler.hpp"
33232366Sdavide#include "interpreter/interpreter.hpp"
34232366Sdavide#include "jvm_linux.h"
35232366Sdavide#include "memory/allocation.inline.hpp"
36232366Sdavide#include "memory/filemap.hpp"
37232366Sdavide#include "mutex_linux.inline.hpp"
38232366Sdavide#include "oops/oop.inline.hpp"
39232366Sdavide#include "os_share_linux.hpp"
40232366Sdavide#include "prims/jniFastGetField.hpp"
41232366Sdavide#include "prims/jvm.h"
42232366Sdavide#include "prims/jvm_misc.hpp"
43232366Sdavide#include "runtime/arguments.hpp"
44232366Sdavide#include "runtime/extendedPC.hpp"
45232366Sdavide#include "runtime/globals.hpp"
46232366Sdavide#include "runtime/interfaceSupport.hpp"
47232366Sdavide#include "runtime/init.hpp"
48232366Sdavide#include "runtime/java.hpp"
49232366Sdavide#include "runtime/javaCalls.hpp"
50232366Sdavide#include "runtime/mutexLocker.hpp"
51232366Sdavide#include "runtime/objectMonitor.hpp"
52232366Sdavide#include "runtime/osThread.hpp"
53232366Sdavide#include "runtime/perfMemory.hpp"
54232366Sdavide#include "runtime/sharedRuntime.hpp"
55232366Sdavide#include "runtime/statSampler.hpp"
56232366Sdavide#include "runtime/stubRoutines.hpp"
57232366Sdavide#include "runtime/thread.inline.hpp"
58232366Sdavide#include "runtime/threadCritical.hpp"
59232366Sdavide#include "runtime/timer.hpp"
60232366Sdavide#include "services/attachListener.hpp"
61232366Sdavide#include "services/memTracker.hpp"
62232366Sdavide#include "services/runtimeService.hpp"
63232366Sdavide#include "utilities/decoder.hpp"
64232366Sdavide#include "utilities/defaultStream.hpp"
65232366Sdavide#include "utilities/events.hpp"
66232366Sdavide#include "utilities/elfFile.hpp"
67232366Sdavide#include "utilities/growableArray.hpp"
68232366Sdavide#include "utilities/vmError.hpp"
69232366Sdavide
70232366Sdavide// put OS-includes here
71232366Sdavide# include <sys/types.h>
72232366Sdavide# include <sys/mman.h>
73232366Sdavide# include <sys/stat.h>
74232366Sdavide# include <sys/select.h>
75232366Sdavide# include <pthread.h>
76232366Sdavide# include <signal.h>
77232366Sdavide# include <errno.h>
78232366Sdavide# include <dlfcn.h>
79232366Sdavide# include <stdio.h>
80232366Sdavide# include <unistd.h>
81232366Sdavide# include <sys/resource.h>
82232366Sdavide# include <pthread.h>
83232366Sdavide# include <sys/stat.h>
84232366Sdavide# include <sys/time.h>
85232366Sdavide# include <sys/times.h>
86232366Sdavide# include <sys/utsname.h>
87232366Sdavide# include <sys/socket.h>
88232366Sdavide# include <sys/wait.h>
89232366Sdavide# include <pwd.h>
90232366Sdavide# include <poll.h>
91232366Sdavide# include <semaphore.h>
92232366Sdavide# include <fcntl.h>
93232366Sdavide# include <string.h>
94232366Sdavide# include <syscall.h>
95232366Sdavide# include <sys/sysinfo.h>
96232366Sdavide# include <gnu/libc-version.h>
97232366Sdavide# include <sys/ipc.h>
98232366Sdavide# include <sys/shm.h>
99232366Sdavide# include <link.h>
100232366Sdavide# include <stdint.h>
101232366Sdavide# include <inttypes.h>
102232366Sdavide# include <sys/ioctl.h>
103232366Sdavide
104232366Sdavide#define MAX_PATH    (2 * K)
105232366Sdavide
106232366Sdavide// for timer info max values which include all bits
107232366Sdavide#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
108232366Sdavide
109232366Sdavide#define LARGEPAGES_BIT (1 << 6)
110232366Sdavide////////////////////////////////////////////////////////////////////////////////
111232366Sdavide// global variables
112232366Sdavidejulong os::Linux::_physical_memory = 0;
113232366Sdavide
114232377Spluknetaddress   os::Linux::_initial_thread_stack_bottom = NULL;
115232366Sdavideuintptr_t os::Linux::_initial_thread_stack_size   = 0;
116232366Sdavide
117232366Sdavideint (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
118232366Sdavideint (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
119232366SdavideMutex* os::Linux::_createThread_lock = NULL;
120232366Sdavidepthread_t os::Linux::_main_thread;
121232366Sdavideint os::Linux::_page_size = -1;
122232366Sdavidebool os::Linux::_is_floating_stack = false;
123232366Sdavidebool os::Linux::_is_NPTL = false;
124232366Sdavidebool os::Linux::_supports_fast_thread_cpu_time = false;
125232366Sdavideconst char * os::Linux::_glibc_version = NULL;
126232366Sdavideconst char * os::Linux::_libpthread_version = NULL;
127232366Sdavide
128232366Sdavidestatic jlong initial_time_count=0;
129232377Spluknet
130232366Sdavidestatic int clock_tics_per_sec = 100;
131232366Sdavide
132232366Sdavide// For diagnostics to print a message once. see run_periodic_checks
133232377Spluknetstatic sigset_t check_signal_done;
134232366Sdavidestatic bool check_signals = true;;
135232366Sdavide
136232366Sdavidestatic pid_t _initial_pid = 0;
137232377Spluknet
138232366Sdavide/* Signal number used to suspend/resume a thread */
139232366Sdavide
140232366Sdavide/* do not use any signal number less than SIGSEGV, see 4355769 */
141232366Sdavidestatic int SR_signum = SIGUSR2;
142232366Sdavidesigset_t SR_sigset;
143232366Sdavide
144232377Spluknet/* Used to protect dlsym() calls */
145232366Sdavidestatic pthread_mutex_t dl_mutex;
146232366Sdavide
147232366Sdavide#ifdef JAVASE_EMBEDDED
148232377Spluknetclass MemNotifyThread: public Thread {
149232366Sdavide  friend class VMStructs;
150232366Sdavide public:
151232366Sdavide  virtual void run();
152232377Spluknet
153232366Sdavide private:
154232366Sdavide  static MemNotifyThread* _memnotify_thread;
155232366Sdavide  int _fd;
156232366Sdavide
157232377Spluknet public:
158232366Sdavide
159232366Sdavide  // Constructor
160232366Sdavide  MemNotifyThread(int fd);
161232377Spluknet
162232366Sdavide  // Tester
163232366Sdavide  bool is_memnotify_thread() const { return true; }
164232366Sdavide
165232377Spluknet  // Printing
166232366Sdavide  char* name() const { return (char*)"Linux MemNotify Thread"; }
167232366Sdavide
168232366Sdavide  // Returns the single instance of the MemNotifyThread
169232377Spluknet  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
170232377Spluknet
171232366Sdavide  // Create and start the single instance of MemNotifyThread
172232366Sdavide  static void start();
173232366Sdavide};
174232377Spluknet#endif // JAVASE_EMBEDDED
175232377Spluknet
176232366Sdavide// utility functions
177232366Sdavide
178232366Sdavidestatic int SR_initialize();
179232366Sdavide
180232377Spluknetjulong os::available_memory() {
181232366Sdavide  return Linux::available_memory();
182232366Sdavide}
183232366Sdavide
184232377Spluknetjulong os::Linux::available_memory() {
185232366Sdavide  // values in struct sysinfo are "unsigned long"
186232366Sdavide  struct sysinfo si;
187232366Sdavide  sysinfo(&si);
188232366Sdavide
189232366Sdavide  return (julong)si.freeram * si.mem_unit;
190232366Sdavide}
191232366Sdavide
192232366Sdavidejulong os::physical_memory() {
193232366Sdavide  return Linux::physical_memory();
194232366Sdavide}
195232366Sdavide
196232366Sdavidejulong os::allocatable_physical_memory(julong size) {
197232366Sdavide#ifdef _LP64
198232366Sdavide  return size;
199232366Sdavide#else
200232366Sdavide  julong result = MIN2(size, (julong)3800*M);
201232366Sdavide   if (!is_allocatable(result)) {
202232366Sdavide     // See comments under solaris for alignment considerations
203232366Sdavide     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
204232366Sdavide     result =  MIN2(size, reasonable_size);
205232366Sdavide   }
206232366Sdavide   return result;
207232366Sdavide#endif // _LP64
208232366Sdavide}
209232366Sdavide
210232366Sdavide////////////////////////////////////////////////////////////////////////////////
211241741Ssbruno// environment support
212233628Sfabient
213232366Sdavidebool os::getenv(const char* name, char* buf, int len) {
214232366Sdavide  const char* val = ::getenv(name);
215232366Sdavide  if (val != NULL && strlen(val) < (size_t)len) {
216232366Sdavide    strcpy(buf, val);
217232366Sdavide    return true;
218232366Sdavide  }
219232366Sdavide  if (len > 0) buf[0] = 0;  // return a null string
220232366Sdavide  return false;
221232366Sdavide}
222232366Sdavide
223232366Sdavide
224232366Sdavide// Return true if user is running as root.
225232366Sdavide
226232366Sdavidebool os::have_special_privileges() {
227232366Sdavide  static bool init = false;
228232366Sdavide  static bool privileges = false;
229232366Sdavide  if (!init) {
230232366Sdavide    privileges = (getuid() != geteuid()) || (getgid() != getegid());
231232377Spluknet    init = true;
232232366Sdavide  }
233232366Sdavide  return privileges;
234232366Sdavide}
235
236
237#ifndef SYS_gettid
238// i386: 224, ia64: 1105, amd64: 186, sparc 143
239#ifdef __ia64__
240#define SYS_gettid 1105
241#elif __i386__
242#define SYS_gettid 224
243#elif __amd64__
244#define SYS_gettid 186
245#elif __sparc__
246#define SYS_gettid 143
247#else
248#error define gettid for the arch
249#endif
250#endif
251
252// Cpu architecture string
253#if   defined(ZERO)
254static char cpu_arch[] = ZERO_LIBARCH;
255#elif defined(IA64)
256static char cpu_arch[] = "ia64";
257#elif defined(IA32)
258static char cpu_arch[] = "i386";
259#elif defined(AMD64)
260static char cpu_arch[] = "amd64";
261#elif defined(ARM)
262static char cpu_arch[] = "arm";
263#elif defined(PPC)
264static char cpu_arch[] = "ppc";
265#elif defined(SPARC)
266#  ifdef _LP64
267static char cpu_arch[] = "sparcv9";
268#  else
269static char cpu_arch[] = "sparc";
270#  endif
271#else
272#error Add appropriate cpu_arch setting
273#endif
274
275
276// pid_t gettid()
277//
278// Returns the kernel thread id of the currently running thread. Kernel
279// thread id is used to access /proc.
280//
281// (Note that getpid() on LinuxThreads returns kernel thread id too; but
282// on NPTL, it returns the same pid for all threads, as required by POSIX.)
283//
284pid_t os::Linux::gettid() {
285  int rslt = syscall(SYS_gettid);
286  if (rslt == -1) {
287     // old kernel, no NPTL support
288     return getpid();
289  } else {
290     return (pid_t)rslt;
291  }
292}
293
294// Most versions of linux have a bug where the number of processors are
295// determined by looking at the /proc file system.  In a chroot environment,
296// the system call returns 1.  This causes the VM to act as if it is
297// a single processor and elide locking (see is_MP() call).
298static bool unsafe_chroot_detected = false;
299static const char *unstable_chroot_error = "/proc file system not found.\n"
300                     "Java may be unstable running multithreaded in a chroot "
301                     "environment on Linux when /proc filesystem is not mounted.";
302
303void os::Linux::initialize_system_info() {
304  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
305  if (processor_count() == 1) {
306    pid_t pid = os::Linux::gettid();
307    char fname[32];
308    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
309    FILE *fp = fopen(fname, "r");
310    if (fp == NULL) {
311      unsafe_chroot_detected = true;
312    } else {
313      fclose(fp);
314    }
315  }
316  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
317  assert(processor_count() > 0, "linux error");
318}
319
320void os::init_system_properties_values() {
321//  char arch[12];
322//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
323
324  // The next steps are taken in the product version:
325  //
326  // Obtain the JAVA_HOME value from the location of libjvm.so.
327  // This library should be located at:
328  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
329  //
330  // If "/jre/lib/" appears at the right place in the path, then we
331  // assume libjvm.so is installed in a JDK and we use this path.
332  //
333  // Otherwise exit with message: "Could not create the Java virtual machine."
334  //
335  // The following extra steps are taken in the debugging version:
336  //
337  // If "/jre/lib/" does NOT appear at the right place in the path
338  // instead of exit check for $JAVA_HOME environment variable.
339  //
340  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
341  // then we append a fake suffix "hotspot/libjvm.so" to this path so
342  // it looks like libjvm.so is installed there
343  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
344  //
345  // Otherwise exit.
346  //
347  // Important note: if the location of libjvm.so changes this
348  // code needs to be changed accordingly.
349
350  // The next few definitions allow the code to be verbatim:
351#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
352#define getenv(n) ::getenv(n)
353
354/*
355 * See ld(1):
356 *      The linker uses the following search paths to locate required
357 *      shared libraries:
358 *        1: ...
359 *        ...
360 *        7: The default directories, normally /lib and /usr/lib.
361 */
362#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
363#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
364#else
365#define DEFAULT_LIBPATH "/lib:/usr/lib"
366#endif
367
368#define EXTENSIONS_DIR  "/lib/ext"
369#define ENDORSED_DIR    "/lib/endorsed"
370#define REG_DIR         "/usr/java/packages"
371
372  {
373    /* sysclasspath, java_home, dll_dir */
374    {
375        char *home_path;
376        char *dll_path;
377        char *pslash;
378        char buf[MAXPATHLEN];
379        os::jvm_path(buf, sizeof(buf));
380
381        // Found the full path to libjvm.so.
382        // Now cut the path to <java_home>/jre if we can.
383        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
384        pslash = strrchr(buf, '/');
385        if (pslash != NULL)
386            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
387        dll_path = malloc(strlen(buf) + 1);
388        if (dll_path == NULL)
389            return;
390        strcpy(dll_path, buf);
391        Arguments::set_dll_dir(dll_path);
392
393        if (pslash != NULL) {
394            pslash = strrchr(buf, '/');
395            if (pslash != NULL) {
396                *pslash = '\0';       /* get rid of /<arch> */
397                pslash = strrchr(buf, '/');
398                if (pslash != NULL)
399                    *pslash = '\0';   /* get rid of /lib */
400            }
401        }
402
403        home_path = malloc(strlen(buf) + 1);
404        if (home_path == NULL)
405            return;
406        strcpy(home_path, buf);
407        Arguments::set_java_home(home_path);
408
409        if (!set_boot_path('/', ':'))
410            return;
411    }
412
413    /*
414     * Where to look for native libraries
415     *
416     * Note: Due to a legacy implementation, most of the library path
417     * is set in the launcher.  This was to accomodate linking restrictions
418     * on legacy Linux implementations (which are no longer supported).
419     * Eventually, all the library path setting will be done here.
420     *
421     * However, to prevent the proliferation of improperly built native
422     * libraries, the new path component /usr/java/packages is added here.
423     * Eventually, all the library path setting will be done here.
424     */
425    {
426        char *ld_library_path;
427
428        /*
429         * Construct the invariant part of ld_library_path. Note that the
430         * space for the colon and the trailing null are provided by the
431         * nulls included by the sizeof operator (so actually we allocate
432         * a byte more than necessary).
433         */
434        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
435            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
436        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
437
438        /*
439         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
440         * should always exist (until the legacy problem cited above is
441         * addressed).
442         */
443        char *v = getenv("LD_LIBRARY_PATH");
444        if (v != NULL) {
445            char *t = ld_library_path;
446            /* That's +1 for the colon and +1 for the trailing '\0' */
447            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
448            sprintf(ld_library_path, "%s:%s", v, t);
449        }
450        Arguments::set_library_path(ld_library_path);
451    }
452
453    /*
454     * Extensions directories.
455     *
456     * Note that the space for the colon and the trailing null are provided
457     * by the nulls included by the sizeof operator (so actually one byte more
458     * than necessary is allocated).
459     */
460    {
461        char *buf = malloc(strlen(Arguments::get_java_home()) +
462            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
463        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
464            Arguments::get_java_home());
465        Arguments::set_ext_dirs(buf);
466    }
467
468    /* Endorsed standards default directory. */
469    {
470        char * buf;
471        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
472        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
473        Arguments::set_endorsed_dirs(buf);
474    }
475  }
476
477#undef malloc
478#undef getenv
479#undef EXTENSIONS_DIR
480#undef ENDORSED_DIR
481
482  // Done
483  return;
484}
485
486////////////////////////////////////////////////////////////////////////////////
487// breakpoint support
488
489void os::breakpoint() {
490  BREAKPOINT;
491}
492
493extern "C" void breakpoint() {
494  // use debugger to set breakpoint here
495}
496
497////////////////////////////////////////////////////////////////////////////////
498// signal support
499
500debug_only(static bool signal_sets_initialized = false);
501static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
502
503bool os::Linux::is_sig_ignored(int sig) {
504      struct sigaction oact;
505      sigaction(sig, (struct sigaction*)NULL, &oact);
506      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
507                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
508      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
509           return true;
510      else
511           return false;
512}
513
514void os::Linux::signal_sets_init() {
515  // Should also have an assertion stating we are still single-threaded.
516  assert(!signal_sets_initialized, "Already initialized");
517  // Fill in signals that are necessarily unblocked for all threads in
518  // the VM. Currently, we unblock the following signals:
519  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
520  //                         by -Xrs (=ReduceSignalUsage));
521  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
522  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
523  // the dispositions or masks wrt these signals.
524  // Programs embedding the VM that want to use the above signals for their
525  // own purposes must, at this time, use the "-Xrs" option to prevent
526  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
527  // (See bug 4345157, and other related bugs).
528  // In reality, though, unblocking these signals is really a nop, since
529  // these signals are not blocked by default.
530  sigemptyset(&unblocked_sigs);
531  sigemptyset(&allowdebug_blocked_sigs);
532  sigaddset(&unblocked_sigs, SIGILL);
533  sigaddset(&unblocked_sigs, SIGSEGV);
534  sigaddset(&unblocked_sigs, SIGBUS);
535  sigaddset(&unblocked_sigs, SIGFPE);
536  sigaddset(&unblocked_sigs, SR_signum);
537
538  if (!ReduceSignalUsage) {
539   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
540      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
541      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
542   }
543   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
544      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
545      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
546   }
547   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
548      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
549      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
550   }
551  }
552  // Fill in signals that are blocked by all but the VM thread.
553  sigemptyset(&vm_sigs);
554  if (!ReduceSignalUsage)
555    sigaddset(&vm_sigs, BREAK_SIGNAL);
556  debug_only(signal_sets_initialized = true);
557
558}
559
560// These are signals that are unblocked while a thread is running Java.
561// (For some reason, they get blocked by default.)
562sigset_t* os::Linux::unblocked_signals() {
563  assert(signal_sets_initialized, "Not initialized");
564  return &unblocked_sigs;
565}
566
567// These are the signals that are blocked while a (non-VM) thread is
568// running Java. Only the VM thread handles these signals.
569sigset_t* os::Linux::vm_signals() {
570  assert(signal_sets_initialized, "Not initialized");
571  return &vm_sigs;
572}
573
574// These are signals that are blocked during cond_wait to allow debugger in
575sigset_t* os::Linux::allowdebug_blocked_signals() {
576  assert(signal_sets_initialized, "Not initialized");
577  return &allowdebug_blocked_sigs;
578}
579
580void os::Linux::hotspot_sigmask(Thread* thread) {
581
582  //Save caller's signal mask before setting VM signal mask
583  sigset_t caller_sigmask;
584  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
585
586  OSThread* osthread = thread->osthread();
587  osthread->set_caller_sigmask(caller_sigmask);
588
589  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
590
591  if (!ReduceSignalUsage) {
592    if (thread->is_VM_thread()) {
593      // Only the VM thread handles BREAK_SIGNAL ...
594      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
595    } else {
596      // ... all other threads block BREAK_SIGNAL
597      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
598    }
599  }
600}
601
602//////////////////////////////////////////////////////////////////////////////
603// detecting pthread library
604
605void os::Linux::libpthread_init() {
606  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
607  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
608  // generic name for earlier versions.
609  // Define macros here so we can build HotSpot on old systems.
610# ifndef _CS_GNU_LIBC_VERSION
611# define _CS_GNU_LIBC_VERSION 2
612# endif
613# ifndef _CS_GNU_LIBPTHREAD_VERSION
614# define _CS_GNU_LIBPTHREAD_VERSION 3
615# endif
616
617  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
618  if (n > 0) {
619     char *str = (char *)malloc(n, mtInternal);
620     confstr(_CS_GNU_LIBC_VERSION, str, n);
621     os::Linux::set_glibc_version(str);
622  } else {
623     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
624     static char _gnu_libc_version[32];
625     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
626              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
627     os::Linux::set_glibc_version(_gnu_libc_version);
628  }
629
630  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
631  if (n > 0) {
632     char *str = (char *)malloc(n, mtInternal);
633     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
634     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
635     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
636     // is the case. LinuxThreads has a hard limit on max number of threads.
637     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
638     // On the other hand, NPTL does not have such a limit, sysconf()
639     // will return -1 and errno is not changed. Check if it is really NPTL.
640     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
641         strstr(str, "NPTL") &&
642         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
643       free(str);
644       os::Linux::set_libpthread_version("linuxthreads");
645     } else {
646       os::Linux::set_libpthread_version(str);
647     }
648  } else {
649    // glibc before 2.3.2 only has LinuxThreads.
650    os::Linux::set_libpthread_version("linuxthreads");
651  }
652
653  if (strstr(libpthread_version(), "NPTL")) {
654     os::Linux::set_is_NPTL();
655  } else {
656     os::Linux::set_is_LinuxThreads();
657  }
658
659  // LinuxThreads have two flavors: floating-stack mode, which allows variable
660  // stack size; and fixed-stack mode. NPTL is always floating-stack.
661  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
662     os::Linux::set_is_floating_stack();
663  }
664}
665
666/////////////////////////////////////////////////////////////////////////////
667// thread stack
668
669// Force Linux kernel to expand current thread stack. If "bottom" is close
670// to the stack guard, caller should block all signals.
671//
672// MAP_GROWSDOWN:
673//   A special mmap() flag that is used to implement thread stacks. It tells
674//   kernel that the memory region should extend downwards when needed. This
675//   allows early versions of LinuxThreads to only mmap the first few pages
676//   when creating a new thread. Linux kernel will automatically expand thread
677//   stack as needed (on page faults).
678//
679//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
680//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
681//   region, it's hard to tell if the fault is due to a legitimate stack
682//   access or because of reading/writing non-exist memory (e.g. buffer
683//   overrun). As a rule, if the fault happens below current stack pointer,
684//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
685//   application (see Linux kernel fault.c).
686//
687//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
688//   stack overflow detection.
689//
690//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
691//   not use this flag. However, the stack of initial thread is not created
692//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
693//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
694//   and then attach the thread to JVM.
695//
696// To get around the problem and allow stack banging on Linux, we need to
697// manually expand thread stack after receiving the SIGSEGV.
698//
699// There are two ways to expand thread stack to address "bottom", we used
700// both of them in JVM before 1.5:
701//   1. adjust stack pointer first so that it is below "bottom", and then
702//      touch "bottom"
703//   2. mmap() the page in question
704//
705// Now alternate signal stack is gone, it's harder to use 2. For instance,
706// if current sp is already near the lower end of page 101, and we need to
707// call mmap() to map page 100, it is possible that part of the mmap() frame
708// will be placed in page 100. When page 100 is mapped, it is zero-filled.
709// That will destroy the mmap() frame and cause VM to crash.
710//
711// The following code works by adjusting sp first, then accessing the "bottom"
712// page to force a page fault. Linux kernel will then automatically expand the
713// stack mapping.
714//
715// _expand_stack_to() assumes its frame size is less than page size, which
716// should always be true if the function is not inlined.
717
718#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
719#define NOINLINE
720#else
721#define NOINLINE __attribute__ ((noinline))
722#endif
723
724static void _expand_stack_to(address bottom) NOINLINE;
725
726static void _expand_stack_to(address bottom) {
727  address sp;
728  size_t size;
729  volatile char *p;
730
731  // Adjust bottom to point to the largest address within the same page, it
732  // gives us a one-page buffer if alloca() allocates slightly more memory.
733  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
734  bottom += os::Linux::page_size() - 1;
735
736  // sp might be slightly above current stack pointer; if that's the case, we
737  // will alloca() a little more space than necessary, which is OK. Don't use
738  // os::current_stack_pointer(), as its result can be slightly below current
739  // stack pointer, causing us to not alloca enough to reach "bottom".
740  sp = (address)&sp;
741
742  if (sp > bottom) {
743    size = sp - bottom;
744    p = (volatile char *)alloca(size);
745    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
746    p[0] = '\0';
747  }
748}
749
750bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
751  assert(t!=NULL, "just checking");
752  assert(t->osthread()->expanding_stack(), "expand should be set");
753  assert(t->stack_base() != NULL, "stack_base was not initialized");
754
755  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
756    sigset_t mask_all, old_sigset;
757    sigfillset(&mask_all);
758    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
759    _expand_stack_to(addr);
760    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
761    return true;
762  }
763  return false;
764}
765
766//////////////////////////////////////////////////////////////////////////////
767// create new thread
768
769static address highest_vm_reserved_address();
770
771// check if it's safe to start a new thread
772static bool _thread_safety_check(Thread* thread) {
773  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
774    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
775    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
776    //   allocated (MAP_FIXED) from high address space. Every thread stack
777    //   occupies a fixed size slot (usually 2Mbytes, but user can change
778    //   it to other values if they rebuild LinuxThreads).
779    //
780    // Problem with MAP_FIXED is that mmap() can still succeed even part of
781    // the memory region has already been mmap'ed. That means if we have too
782    // many threads and/or very large heap, eventually thread stack will
783    // collide with heap.
784    //
785    // Here we try to prevent heap/stack collision by comparing current
786    // stack bottom with the highest address that has been mmap'ed by JVM
787    // plus a safety margin for memory maps created by native code.
788    //
789    // This feature can be disabled by setting ThreadSafetyMargin to 0
790    //
791    if (ThreadSafetyMargin > 0) {
792      address stack_bottom = os::current_stack_base() - os::current_stack_size();
793
794      // not safe if our stack extends below the safety margin
795      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
796    } else {
797      return true;
798    }
799  } else {
800    // Floating stack LinuxThreads or NPTL:
801    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
802    //   there's not enough space left, pthread_create() will fail. If we come
803    //   here, that means enough space has been reserved for stack.
804    return true;
805  }
806}
807
808// Thread start routine for all newly created threads
809static void *java_start(Thread *thread) {
810  // Try to randomize the cache line index of hot stack frames.
811  // This helps when threads of the same stack traces evict each other's
812  // cache lines. The threads can be either from the same JVM instance, or
813  // from different JVM instances. The benefit is especially true for
814  // processors with hyperthreading technology.
815  static int counter = 0;
816  int pid = os::current_process_id();
817  alloca(((pid ^ counter++) & 7) * 128);
818
819  ThreadLocalStorage::set_thread(thread);
820
821  OSThread* osthread = thread->osthread();
822  Monitor* sync = osthread->startThread_lock();
823
824  // non floating stack LinuxThreads needs extra check, see above
825  if (!_thread_safety_check(thread)) {
826    // notify parent thread
827    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
828    osthread->set_state(ZOMBIE);
829    sync->notify_all();
830    return NULL;
831  }
832
833  // thread_id is kernel thread id (similar to Solaris LWP id)
834  osthread->set_thread_id(os::Linux::gettid());
835
836  if (UseNUMA) {
837    int lgrp_id = os::numa_get_group_id();
838    if (lgrp_id != -1) {
839      thread->set_lgrp_id(lgrp_id);
840    }
841  }
842  // initialize signal mask for this thread
843  os::Linux::hotspot_sigmask(thread);
844
845  // initialize floating point control register
846  os::Linux::init_thread_fpu_state();
847
848  // handshaking with parent thread
849  {
850    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
851
852    // notify parent thread
853    osthread->set_state(INITIALIZED);
854    sync->notify_all();
855
856    // wait until os::start_thread()
857    while (osthread->get_state() == INITIALIZED) {
858      sync->wait(Mutex::_no_safepoint_check_flag);
859    }
860  }
861
862  // call one more level start routine
863  thread->run();
864
865  return 0;
866}
867
868bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
869  assert(thread->osthread() == NULL, "caller responsible");
870
871  // Allocate the OSThread object
872  OSThread* osthread = new OSThread(NULL, NULL);
873  if (osthread == NULL) {
874    return false;
875  }
876
877  // set the correct thread state
878  osthread->set_thread_type(thr_type);
879
880  // Initial state is ALLOCATED but not INITIALIZED
881  osthread->set_state(ALLOCATED);
882
883  thread->set_osthread(osthread);
884
885  // init thread attributes
886  pthread_attr_t attr;
887  pthread_attr_init(&attr);
888  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
889
890  // stack size
891  if (os::Linux::supports_variable_stack_size()) {
892    // calculate stack size if it's not specified by caller
893    if (stack_size == 0) {
894      stack_size = os::Linux::default_stack_size(thr_type);
895
896      switch (thr_type) {
897      case os::java_thread:
898        // Java threads use ThreadStackSize which default value can be
899        // changed with the flag -Xss
900        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
901        stack_size = JavaThread::stack_size_at_create();
902        break;
903      case os::compiler_thread:
904        if (CompilerThreadStackSize > 0) {
905          stack_size = (size_t)(CompilerThreadStackSize * K);
906          break;
907        } // else fall through:
908          // use VMThreadStackSize if CompilerThreadStackSize is not defined
909      case os::vm_thread:
910      case os::pgc_thread:
911      case os::cgc_thread:
912      case os::watcher_thread:
913        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
914        break;
915      }
916    }
917
918    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
919    pthread_attr_setstacksize(&attr, stack_size);
920  } else {
921    // let pthread_create() pick the default value.
922  }
923
924  // glibc guard page
925  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
926
927  ThreadState state;
928
929  {
930    // Serialize thread creation if we are running with fixed stack LinuxThreads
931    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
932    if (lock) {
933      os::Linux::createThread_lock()->lock_without_safepoint_check();
934    }
935
936    pthread_t tid;
937    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
938
939    pthread_attr_destroy(&attr);
940
941    if (ret != 0) {
942      if (PrintMiscellaneous && (Verbose || WizardMode)) {
943        perror("pthread_create()");
944      }
945      // Need to clean up stuff we've allocated so far
946      thread->set_osthread(NULL);
947      delete osthread;
948      if (lock) os::Linux::createThread_lock()->unlock();
949      return false;
950    }
951
952    // Store pthread info into the OSThread
953    osthread->set_pthread_id(tid);
954
955    // Wait until child thread is either initialized or aborted
956    {
957      Monitor* sync_with_child = osthread->startThread_lock();
958      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
959      while ((state = osthread->get_state()) == ALLOCATED) {
960        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
961      }
962    }
963
964    if (lock) {
965      os::Linux::createThread_lock()->unlock();
966    }
967  }
968
969  // Aborted due to thread limit being reached
970  if (state == ZOMBIE) {
971      thread->set_osthread(NULL);
972      delete osthread;
973      return false;
974  }
975
976  // The thread is returned suspended (in state INITIALIZED),
977  // and is started higher up in the call chain
978  assert(state == INITIALIZED, "race condition");
979  return true;
980}
981
982/////////////////////////////////////////////////////////////////////////////
983// attach existing thread
984
985// bootstrap the main thread
986bool os::create_main_thread(JavaThread* thread) {
987  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
988  return create_attached_thread(thread);
989}
990
991bool os::create_attached_thread(JavaThread* thread) {
992#ifdef ASSERT
993    thread->verify_not_published();
994#endif
995
996  // Allocate the OSThread object
997  OSThread* osthread = new OSThread(NULL, NULL);
998
999  if (osthread == NULL) {
1000    return false;
1001  }
1002
1003  // Store pthread info into the OSThread
1004  osthread->set_thread_id(os::Linux::gettid());
1005  osthread->set_pthread_id(::pthread_self());
1006
1007  // initialize floating point control register
1008  os::Linux::init_thread_fpu_state();
1009
1010  // Initial thread state is RUNNABLE
1011  osthread->set_state(RUNNABLE);
1012
1013  thread->set_osthread(osthread);
1014
1015  if (UseNUMA) {
1016    int lgrp_id = os::numa_get_group_id();
1017    if (lgrp_id != -1) {
1018      thread->set_lgrp_id(lgrp_id);
1019    }
1020  }
1021
1022  if (os::Linux::is_initial_thread()) {
1023    // If current thread is initial thread, its stack is mapped on demand,
1024    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1025    // the entire stack region to avoid SEGV in stack banging.
1026    // It is also useful to get around the heap-stack-gap problem on SuSE
1027    // kernel (see 4821821 for details). We first expand stack to the top
1028    // of yellow zone, then enable stack yellow zone (order is significant,
1029    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1030    // is no gap between the last two virtual memory regions.
1031
1032    JavaThread *jt = (JavaThread *)thread;
1033    address addr = jt->stack_yellow_zone_base();
1034    assert(addr != NULL, "initialization problem?");
1035    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1036
1037    osthread->set_expanding_stack();
1038    os::Linux::manually_expand_stack(jt, addr);
1039    osthread->clear_expanding_stack();
1040  }
1041
1042  // initialize signal mask for this thread
1043  // and save the caller's signal mask
1044  os::Linux::hotspot_sigmask(thread);
1045
1046  return true;
1047}
1048
1049void os::pd_start_thread(Thread* thread) {
1050  OSThread * osthread = thread->osthread();
1051  assert(osthread->get_state() != INITIALIZED, "just checking");
1052  Monitor* sync_with_child = osthread->startThread_lock();
1053  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1054  sync_with_child->notify();
1055}
1056
1057// Free Linux resources related to the OSThread
1058void os::free_thread(OSThread* osthread) {
1059  assert(osthread != NULL, "osthread not set");
1060
1061  if (Thread::current()->osthread() == osthread) {
1062    // Restore caller's signal mask
1063    sigset_t sigmask = osthread->caller_sigmask();
1064    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1065   }
1066
1067  delete osthread;
1068}
1069
1070//////////////////////////////////////////////////////////////////////////////
1071// thread local storage
1072
1073int os::allocate_thread_local_storage() {
1074  pthread_key_t key;
1075  int rslt = pthread_key_create(&key, NULL);
1076  assert(rslt == 0, "cannot allocate thread local storage");
1077  return (int)key;
1078}
1079
1080// Note: This is currently not used by VM, as we don't destroy TLS key
1081// on VM exit.
1082void os::free_thread_local_storage(int index) {
1083  int rslt = pthread_key_delete((pthread_key_t)index);
1084  assert(rslt == 0, "invalid index");
1085}
1086
1087void os::thread_local_storage_at_put(int index, void* value) {
1088  int rslt = pthread_setspecific((pthread_key_t)index, value);
1089  assert(rslt == 0, "pthread_setspecific failed");
1090}
1091
1092extern "C" Thread* get_thread() {
1093  return ThreadLocalStorage::thread();
1094}
1095
1096//////////////////////////////////////////////////////////////////////////////
1097// initial thread
1098
1099// Check if current thread is the initial thread, similar to Solaris thr_main.
1100bool os::Linux::is_initial_thread(void) {
1101  char dummy;
1102  // If called before init complete, thread stack bottom will be null.
1103  // Can be called if fatal error occurs before initialization.
1104  if (initial_thread_stack_bottom() == NULL) return false;
1105  assert(initial_thread_stack_bottom() != NULL &&
1106         initial_thread_stack_size()   != 0,
1107         "os::init did not locate initial thread's stack region");
1108  if ((address)&dummy >= initial_thread_stack_bottom() &&
1109      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1110       return true;
1111  else return false;
1112}
1113
1114// Find the virtual memory area that contains addr
1115static bool find_vma(address addr, address* vma_low, address* vma_high) {
1116  FILE *fp = fopen("/proc/self/maps", "r");
1117  if (fp) {
1118    address low, high;
1119    while (!feof(fp)) {
1120      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1121        if (low <= addr && addr < high) {
1122           if (vma_low)  *vma_low  = low;
1123           if (vma_high) *vma_high = high;
1124           fclose (fp);
1125           return true;
1126        }
1127      }
1128      for (;;) {
1129        int ch = fgetc(fp);
1130        if (ch == EOF || ch == (int)'\n') break;
1131      }
1132    }
1133    fclose(fp);
1134  }
1135  return false;
1136}
1137
1138// Locate initial thread stack. This special handling of initial thread stack
1139// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1140// bogus value for initial thread.
1141void os::Linux::capture_initial_stack(size_t max_size) {
1142  // stack size is the easy part, get it from RLIMIT_STACK
1143  size_t stack_size;
1144  struct rlimit rlim;
1145  getrlimit(RLIMIT_STACK, &rlim);
1146  stack_size = rlim.rlim_cur;
1147
1148  // 6308388: a bug in ld.so will relocate its own .data section to the
1149  //   lower end of primordial stack; reduce ulimit -s value a little bit
1150  //   so we won't install guard page on ld.so's data section.
1151  stack_size -= 2 * page_size();
1152
1153  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1154  //   7.1, in both cases we will get 2G in return value.
1155  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1156  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1157  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1158  //   in case other parts in glibc still assumes 2M max stack size.
1159  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1160  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1161  if (stack_size > 2 * K * K IA64_ONLY(*2))
1162      stack_size = 2 * K * K IA64_ONLY(*2);
1163  // Try to figure out where the stack base (top) is. This is harder.
1164  //
1165  // When an application is started, glibc saves the initial stack pointer in
1166  // a global variable "__libc_stack_end", which is then used by system
1167  // libraries. __libc_stack_end should be pretty close to stack top. The
1168  // variable is available since the very early days. However, because it is
1169  // a private interface, it could disappear in the future.
1170  //
1171  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1172  // to __libc_stack_end, it is very close to stack top, but isn't the real
1173  // stack top. Note that /proc may not exist if VM is running as a chroot
1174  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1175  // /proc/<pid>/stat could change in the future (though unlikely).
1176  //
1177  // We try __libc_stack_end first. If that doesn't work, look for
1178  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1179  // as a hint, which should work well in most cases.
1180
1181  uintptr_t stack_start;
1182
1183  // try __libc_stack_end first
1184  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1185  if (p && *p) {
1186    stack_start = *p;
1187  } else {
1188    // see if we can get the start_stack field from /proc/self/stat
1189    FILE *fp;
1190    int pid;
1191    char state;
1192    int ppid;
1193    int pgrp;
1194    int session;
1195    int nr;
1196    int tpgrp;
1197    unsigned long flags;
1198    unsigned long minflt;
1199    unsigned long cminflt;
1200    unsigned long majflt;
1201    unsigned long cmajflt;
1202    unsigned long utime;
1203    unsigned long stime;
1204    long cutime;
1205    long cstime;
1206    long prio;
1207    long nice;
1208    long junk;
1209    long it_real;
1210    uintptr_t start;
1211    uintptr_t vsize;
1212    intptr_t rss;
1213    uintptr_t rsslim;
1214    uintptr_t scodes;
1215    uintptr_t ecode;
1216    int i;
1217
1218    // Figure what the primordial thread stack base is. Code is inspired
1219    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1220    // followed by command name surrounded by parentheses, state, etc.
1221    char stat[2048];
1222    int statlen;
1223
1224    fp = fopen("/proc/self/stat", "r");
1225    if (fp) {
1226      statlen = fread(stat, 1, 2047, fp);
1227      stat[statlen] = '\0';
1228      fclose(fp);
1229
1230      // Skip pid and the command string. Note that we could be dealing with
1231      // weird command names, e.g. user could decide to rename java launcher
1232      // to "java 1.4.2 :)", then the stat file would look like
1233      //                1234 (java 1.4.2 :)) R ... ...
1234      // We don't really need to know the command string, just find the last
1235      // occurrence of ")" and then start parsing from there. See bug 4726580.
1236      char * s = strrchr(stat, ')');
1237
1238      i = 0;
1239      if (s) {
1240        // Skip blank chars
1241        do s++; while (isspace(*s));
1242
1243#define _UFM UINTX_FORMAT
1244#define _DFM INTX_FORMAT
1245
1246        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1247        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1248        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1249             &state,          /* 3  %c  */
1250             &ppid,           /* 4  %d  */
1251             &pgrp,           /* 5  %d  */
1252             &session,        /* 6  %d  */
1253             &nr,             /* 7  %d  */
1254             &tpgrp,          /* 8  %d  */
1255             &flags,          /* 9  %lu  */
1256             &minflt,         /* 10 %lu  */
1257             &cminflt,        /* 11 %lu  */
1258             &majflt,         /* 12 %lu  */
1259             &cmajflt,        /* 13 %lu  */
1260             &utime,          /* 14 %lu  */
1261             &stime,          /* 15 %lu  */
1262             &cutime,         /* 16 %ld  */
1263             &cstime,         /* 17 %ld  */
1264             &prio,           /* 18 %ld  */
1265             &nice,           /* 19 %ld  */
1266             &junk,           /* 20 %ld  */
1267             &it_real,        /* 21 %ld  */
1268             &start,          /* 22 UINTX_FORMAT */
1269             &vsize,          /* 23 UINTX_FORMAT */
1270             &rss,            /* 24 INTX_FORMAT  */
1271             &rsslim,         /* 25 UINTX_FORMAT */
1272             &scodes,         /* 26 UINTX_FORMAT */
1273             &ecode,          /* 27 UINTX_FORMAT */
1274             &stack_start);   /* 28 UINTX_FORMAT */
1275      }
1276
1277#undef _UFM
1278#undef _DFM
1279
1280      if (i != 28 - 2) {
1281         assert(false, "Bad conversion from /proc/self/stat");
1282         // product mode - assume we are the initial thread, good luck in the
1283         // embedded case.
1284         warning("Can't detect initial thread stack location - bad conversion");
1285         stack_start = (uintptr_t) &rlim;
1286      }
1287    } else {
1288      // For some reason we can't open /proc/self/stat (for example, running on
1289      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1290      // most cases, so don't abort:
1291      warning("Can't detect initial thread stack location - no /proc/self/stat");
1292      stack_start = (uintptr_t) &rlim;
1293    }
1294  }
1295
1296  // Now we have a pointer (stack_start) very close to the stack top, the
1297  // next thing to do is to figure out the exact location of stack top. We
1298  // can find out the virtual memory area that contains stack_start by
1299  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1300  // and its upper limit is the real stack top. (again, this would fail if
1301  // running inside chroot, because /proc may not exist.)
1302
1303  uintptr_t stack_top;
1304  address low, high;
1305  if (find_vma((address)stack_start, &low, &high)) {
1306    // success, "high" is the true stack top. (ignore "low", because initial
1307    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1308    stack_top = (uintptr_t)high;
1309  } else {
1310    // failed, likely because /proc/self/maps does not exist
1311    warning("Can't detect initial thread stack location - find_vma failed");
1312    // best effort: stack_start is normally within a few pages below the real
1313    // stack top, use it as stack top, and reduce stack size so we won't put
1314    // guard page outside stack.
1315    stack_top = stack_start;
1316    stack_size -= 16 * page_size();
1317  }
1318
1319  // stack_top could be partially down the page so align it
1320  stack_top = align_size_up(stack_top, page_size());
1321
1322  if (max_size && stack_size > max_size) {
1323     _initial_thread_stack_size = max_size;
1324  } else {
1325     _initial_thread_stack_size = stack_size;
1326  }
1327
1328  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1329  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1330}
1331
1332////////////////////////////////////////////////////////////////////////////////
1333// time support
1334
1335// Time since start-up in seconds to a fine granularity.
1336// Used by VMSelfDestructTimer and the MemProfiler.
1337double os::elapsedTime() {
1338
1339  return (double)(os::elapsed_counter()) * 0.000001;
1340}
1341
1342jlong os::elapsed_counter() {
1343  timeval time;
1344  int status = gettimeofday(&time, NULL);
1345  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1346}
1347
1348jlong os::elapsed_frequency() {
1349  return (1000 * 1000);
1350}
1351
1352// For now, we say that linux does not support vtime.  I have no idea
1353// whether it can actually be made to (DLD, 9/13/05).
1354
1355bool os::supports_vtime() { return false; }
1356bool os::enable_vtime()   { return false; }
1357bool os::vtime_enabled()  { return false; }
1358double os::elapsedVTime() {
1359  // better than nothing, but not much
1360  return elapsedTime();
1361}
1362
1363jlong os::javaTimeMillis() {
1364  timeval time;
1365  int status = gettimeofday(&time, NULL);
1366  assert(status != -1, "linux error");
1367  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1368}
1369
1370#ifndef CLOCK_MONOTONIC
1371#define CLOCK_MONOTONIC (1)
1372#endif
1373
1374void os::Linux::clock_init() {
1375  // we do dlopen's in this particular order due to bug in linux
1376  // dynamical loader (see 6348968) leading to crash on exit
1377  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1378  if (handle == NULL) {
1379    handle = dlopen("librt.so", RTLD_LAZY);
1380  }
1381
1382  if (handle) {
1383    int (*clock_getres_func)(clockid_t, struct timespec*) =
1384           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1385    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1386           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1387    if (clock_getres_func && clock_gettime_func) {
1388      // See if monotonic clock is supported by the kernel. Note that some
1389      // early implementations simply return kernel jiffies (updated every
1390      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1391      // for nano time (though the monotonic property is still nice to have).
1392      // It's fixed in newer kernels, however clock_getres() still returns
1393      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1394      // resolution for now. Hopefully as people move to new kernels, this
1395      // won't be a problem.
1396      struct timespec res;
1397      struct timespec tp;
1398      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1399          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1400        // yes, monotonic clock is supported
1401        _clock_gettime = clock_gettime_func;
1402      } else {
1403        // close librt if there is no monotonic clock
1404        dlclose(handle);
1405      }
1406    }
1407  }
1408}
1409
1410#ifndef SYS_clock_getres
1411
1412#if defined(IA32) || defined(AMD64)
1413#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1414#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1415#else
1416#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1417#define sys_clock_getres(x,y)  -1
1418#endif
1419
1420#else
1421#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1422#endif
1423
1424void os::Linux::fast_thread_clock_init() {
1425  if (!UseLinuxPosixThreadCPUClocks) {
1426    return;
1427  }
1428  clockid_t clockid;
1429  struct timespec tp;
1430  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1431      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1432
1433  // Switch to using fast clocks for thread cpu time if
1434  // the sys_clock_getres() returns 0 error code.
1435  // Note, that some kernels may support the current thread
1436  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1437  // returned by the pthread_getcpuclockid().
1438  // If the fast Posix clocks are supported then the sys_clock_getres()
1439  // must return at least tp.tv_sec == 0 which means a resolution
1440  // better than 1 sec. This is extra check for reliability.
1441
1442  if(pthread_getcpuclockid_func &&
1443     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1444     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1445
1446    _supports_fast_thread_cpu_time = true;
1447    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1448  }
1449}
1450
1451jlong os::javaTimeNanos() {
1452  if (Linux::supports_monotonic_clock()) {
1453    struct timespec tp;
1454    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1455    assert(status == 0, "gettime error");
1456    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1457    return result;
1458  } else {
1459    timeval time;
1460    int status = gettimeofday(&time, NULL);
1461    assert(status != -1, "linux error");
1462    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1463    return 1000 * usecs;
1464  }
1465}
1466
1467void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1468  if (Linux::supports_monotonic_clock()) {
1469    info_ptr->max_value = ALL_64_BITS;
1470
1471    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1472    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1473    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1474  } else {
1475    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1476    info_ptr->max_value = ALL_64_BITS;
1477
1478    // gettimeofday is a real time clock so it skips
1479    info_ptr->may_skip_backward = true;
1480    info_ptr->may_skip_forward = true;
1481  }
1482
1483  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1484}
1485
1486// Return the real, user, and system times in seconds from an
1487// arbitrary fixed point in the past.
1488bool os::getTimesSecs(double* process_real_time,
1489                      double* process_user_time,
1490                      double* process_system_time) {
1491  struct tms ticks;
1492  clock_t real_ticks = times(&ticks);
1493
1494  if (real_ticks == (clock_t) (-1)) {
1495    return false;
1496  } else {
1497    double ticks_per_second = (double) clock_tics_per_sec;
1498    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1499    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1500    *process_real_time = ((double) real_ticks) / ticks_per_second;
1501
1502    return true;
1503  }
1504}
1505
1506
1507char * os::local_time_string(char *buf, size_t buflen) {
1508  struct tm t;
1509  time_t long_time;
1510  time(&long_time);
1511  localtime_r(&long_time, &t);
1512  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1513               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1514               t.tm_hour, t.tm_min, t.tm_sec);
1515  return buf;
1516}
1517
1518struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1519  return localtime_r(clock, res);
1520}
1521
1522////////////////////////////////////////////////////////////////////////////////
1523// runtime exit support
1524
1525// Note: os::shutdown() might be called very early during initialization, or
1526// called from signal handler. Before adding something to os::shutdown(), make
1527// sure it is async-safe and can handle partially initialized VM.
1528void os::shutdown() {
1529
1530  // allow PerfMemory to attempt cleanup of any persistent resources
1531  perfMemory_exit();
1532
1533  // needs to remove object in file system
1534  AttachListener::abort();
1535
1536  // flush buffered output, finish log files
1537  ostream_abort();
1538
1539  // Check for abort hook
1540  abort_hook_t abort_hook = Arguments::abort_hook();
1541  if (abort_hook != NULL) {
1542    abort_hook();
1543  }
1544
1545}
1546
1547// Note: os::abort() might be called very early during initialization, or
1548// called from signal handler. Before adding something to os::abort(), make
1549// sure it is async-safe and can handle partially initialized VM.
1550void os::abort(bool dump_core) {
1551  os::shutdown();
1552  if (dump_core) {
1553#ifndef PRODUCT
1554    fdStream out(defaultStream::output_fd());
1555    out.print_raw("Current thread is ");
1556    char buf[16];
1557    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1558    out.print_raw_cr(buf);
1559    out.print_raw_cr("Dumping core ...");
1560#endif
1561    ::abort(); // dump core
1562  }
1563
1564  ::exit(1);
1565}
1566
1567// Die immediately, no exit hook, no abort hook, no cleanup.
1568void os::die() {
1569  // _exit() on LinuxThreads only kills current thread
1570  ::abort();
1571}
1572
1573// unused on linux for now.
1574void os::set_error_file(const char *logfile) {}
1575
1576
1577// This method is a copy of JDK's sysGetLastErrorString
1578// from src/solaris/hpi/src/system_md.c
1579
1580size_t os::lasterror(char *buf, size_t len) {
1581
1582  if (errno == 0)  return 0;
1583
1584  const char *s = ::strerror(errno);
1585  size_t n = ::strlen(s);
1586  if (n >= len) {
1587    n = len - 1;
1588  }
1589  ::strncpy(buf, s, n);
1590  buf[n] = '\0';
1591  return n;
1592}
1593
1594intx os::current_thread_id() { return (intx)pthread_self(); }
1595int os::current_process_id() {
1596
1597  // Under the old linux thread library, linux gives each thread
1598  // its own process id. Because of this each thread will return
1599  // a different pid if this method were to return the result
1600  // of getpid(2). Linux provides no api that returns the pid
1601  // of the launcher thread for the vm. This implementation
1602  // returns a unique pid, the pid of the launcher thread
1603  // that starts the vm 'process'.
1604
1605  // Under the NPTL, getpid() returns the same pid as the
1606  // launcher thread rather than a unique pid per thread.
1607  // Use gettid() if you want the old pre NPTL behaviour.
1608
1609  // if you are looking for the result of a call to getpid() that
1610  // returns a unique pid for the calling thread, then look at the
1611  // OSThread::thread_id() method in osThread_linux.hpp file
1612
1613  return (int)(_initial_pid ? _initial_pid : getpid());
1614}
1615
1616// DLL functions
1617
1618const char* os::dll_file_extension() { return ".so"; }
1619
1620// This must be hard coded because it's the system's temporary
1621// directory not the java application's temp directory, ala java.io.tmpdir.
1622const char* os::get_temp_directory() { return "/tmp"; }
1623
1624static bool file_exists(const char* filename) {
1625  struct stat statbuf;
1626  if (filename == NULL || strlen(filename) == 0) {
1627    return false;
1628  }
1629  return os::stat(filename, &statbuf) == 0;
1630}
1631
1632bool os::dll_build_name(char* buffer, size_t buflen,
1633                        const char* pname, const char* fname) {
1634  bool retval = false;
1635  // Copied from libhpi
1636  const size_t pnamelen = pname ? strlen(pname) : 0;
1637
1638  // Return error on buffer overflow.
1639  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1640    return retval;
1641  }
1642
1643  if (pnamelen == 0) {
1644    snprintf(buffer, buflen, "lib%s.so", fname);
1645    retval = true;
1646  } else if (strchr(pname, *os::path_separator()) != NULL) {
1647    int n;
1648    char** pelements = split_path(pname, &n);
1649    if (pelements == NULL) {
1650        return false;
1651    }
1652    for (int i = 0 ; i < n ; i++) {
1653      // Really shouldn't be NULL, but check can't hurt
1654      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1655        continue; // skip the empty path values
1656      }
1657      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1658      if (file_exists(buffer)) {
1659        retval = true;
1660        break;
1661      }
1662    }
1663    // release the storage
1664    for (int i = 0 ; i < n ; i++) {
1665      if (pelements[i] != NULL) {
1666        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1667      }
1668    }
1669    if (pelements != NULL) {
1670      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1671    }
1672  } else {
1673    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1674    retval = true;
1675  }
1676  return retval;
1677}
1678
1679const char* os::get_current_directory(char *buf, int buflen) {
1680  return getcwd(buf, buflen);
1681}
1682
1683// check if addr is inside libjvm.so
1684bool os::address_is_in_vm(address addr) {
1685  static address libjvm_base_addr;
1686  Dl_info dlinfo;
1687
1688  if (libjvm_base_addr == NULL) {
1689    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1690    libjvm_base_addr = (address)dlinfo.dli_fbase;
1691    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1692  }
1693
1694  if (dladdr((void *)addr, &dlinfo)) {
1695    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1696  }
1697
1698  return false;
1699}
1700
1701bool os::dll_address_to_function_name(address addr, char *buf,
1702                                      int buflen, int *offset) {
1703  Dl_info dlinfo;
1704
1705  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1706    if (buf != NULL) {
1707      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1708        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1709      }
1710    }
1711    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1712    return true;
1713  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1714    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1715        buf, buflen, offset, dlinfo.dli_fname)) {
1716       return true;
1717    }
1718  }
1719
1720  if (buf != NULL) buf[0] = '\0';
1721  if (offset != NULL) *offset = -1;
1722  return false;
1723}
1724
1725struct _address_to_library_name {
1726  address addr;          // input : memory address
1727  size_t  buflen;        //         size of fname
1728  char*   fname;         // output: library name
1729  address base;          //         library base addr
1730};
1731
1732static int address_to_library_name_callback(struct dl_phdr_info *info,
1733                                            size_t size, void *data) {
1734  int i;
1735  bool found = false;
1736  address libbase = NULL;
1737  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1738
1739  // iterate through all loadable segments
1740  for (i = 0; i < info->dlpi_phnum; i++) {
1741    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1742    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1743      // base address of a library is the lowest address of its loaded
1744      // segments.
1745      if (libbase == NULL || libbase > segbase) {
1746        libbase = segbase;
1747      }
1748      // see if 'addr' is within current segment
1749      if (segbase <= d->addr &&
1750          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1751        found = true;
1752      }
1753    }
1754  }
1755
1756  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1757  // so dll_address_to_library_name() can fall through to use dladdr() which
1758  // can figure out executable name from argv[0].
1759  if (found && info->dlpi_name && info->dlpi_name[0]) {
1760    d->base = libbase;
1761    if (d->fname) {
1762      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1763    }
1764    return 1;
1765  }
1766  return 0;
1767}
1768
1769bool os::dll_address_to_library_name(address addr, char* buf,
1770                                     int buflen, int* offset) {
1771  Dl_info dlinfo;
1772  struct _address_to_library_name data;
1773
1774  // There is a bug in old glibc dladdr() implementation that it could resolve
1775  // to wrong library name if the .so file has a base address != NULL. Here
1776  // we iterate through the program headers of all loaded libraries to find
1777  // out which library 'addr' really belongs to. This workaround can be
1778  // removed once the minimum requirement for glibc is moved to 2.3.x.
1779  data.addr = addr;
1780  data.fname = buf;
1781  data.buflen = buflen;
1782  data.base = NULL;
1783  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1784
1785  if (rslt) {
1786     // buf already contains library name
1787     if (offset) *offset = addr - data.base;
1788     return true;
1789  } else if (dladdr((void*)addr, &dlinfo)){
1790     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1791     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1792     return true;
1793  } else {
1794     if (buf) buf[0] = '\0';
1795     if (offset) *offset = -1;
1796     return false;
1797  }
1798}
1799
1800  // Loads .dll/.so and
1801  // in case of error it checks if .dll/.so was built for the
1802  // same architecture as Hotspot is running on
1803
1804
1805// Remember the stack's state. The Linux dynamic linker will change
1806// the stack to 'executable' at most once, so we must safepoint only once.
1807bool os::Linux::_stack_is_executable = false;
1808
1809// VM operation that loads a library.  This is necessary if stack protection
1810// of the Java stacks can be lost during loading the library.  If we
1811// do not stop the Java threads, they can stack overflow before the stacks
1812// are protected again.
1813class VM_LinuxDllLoad: public VM_Operation {
1814 private:
1815  const char *_filename;
1816  char *_ebuf;
1817  int _ebuflen;
1818  void *_lib;
1819 public:
1820  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1821    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1822  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1823  void doit() {
1824    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1825    os::Linux::_stack_is_executable = true;
1826  }
1827  void* loaded_library() { return _lib; }
1828};
1829
1830void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1831{
1832  void * result = NULL;
1833  bool load_attempted = false;
1834
1835  // Check whether the library to load might change execution rights
1836  // of the stack. If they are changed, the protection of the stack
1837  // guard pages will be lost. We need a safepoint to fix this.
1838  //
1839  // See Linux man page execstack(8) for more info.
1840  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1841    ElfFile ef(filename);
1842    if (!ef.specifies_noexecstack()) {
1843      if (!is_init_completed()) {
1844        os::Linux::_stack_is_executable = true;
1845        // This is OK - No Java threads have been created yet, and hence no
1846        // stack guard pages to fix.
1847        //
1848        // This should happen only when you are building JDK7 using a very
1849        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1850        //
1851        // Dynamic loader will make all stacks executable after
1852        // this function returns, and will not do that again.
1853        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1854      } else {
1855        warning("You have loaded library %s which might have disabled stack guard. "
1856                "The VM will try to fix the stack guard now.\n"
1857                "It's highly recommended that you fix the library with "
1858                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1859                filename);
1860
1861        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1862        JavaThread *jt = JavaThread::current();
1863        if (jt->thread_state() != _thread_in_native) {
1864          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1865          // that requires ExecStack. Cannot enter safe point. Let's give up.
1866          warning("Unable to fix stack guard. Giving up.");
1867        } else {
1868          if (!LoadExecStackDllInVMThread) {
1869            // This is for the case where the DLL has an static
1870            // constructor function that executes JNI code. We cannot
1871            // load such DLLs in the VMThread.
1872            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1873          }
1874
1875          ThreadInVMfromNative tiv(jt);
1876          debug_only(VMNativeEntryWrapper vew;)
1877
1878          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1879          VMThread::execute(&op);
1880          if (LoadExecStackDllInVMThread) {
1881            result = op.loaded_library();
1882          }
1883          load_attempted = true;
1884        }
1885      }
1886    }
1887  }
1888
1889  if (!load_attempted) {
1890    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1891  }
1892
1893  if (result != NULL) {
1894    // Successful loading
1895    return result;
1896  }
1897
1898  Elf32_Ehdr elf_head;
1899  int diag_msg_max_length=ebuflen-strlen(ebuf);
1900  char* diag_msg_buf=ebuf+strlen(ebuf);
1901
1902  if (diag_msg_max_length==0) {
1903    // No more space in ebuf for additional diagnostics message
1904    return NULL;
1905  }
1906
1907
1908  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1909
1910  if (file_descriptor < 0) {
1911    // Can't open library, report dlerror() message
1912    return NULL;
1913  }
1914
1915  bool failed_to_read_elf_head=
1916    (sizeof(elf_head)!=
1917        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1918
1919  ::close(file_descriptor);
1920  if (failed_to_read_elf_head) {
1921    // file i/o error - report dlerror() msg
1922    return NULL;
1923  }
1924
1925  typedef struct {
1926    Elf32_Half  code;         // Actual value as defined in elf.h
1927    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1928    char        elf_class;    // 32 or 64 bit
1929    char        endianess;    // MSB or LSB
1930    char*       name;         // String representation
1931  } arch_t;
1932
1933  #ifndef EM_486
1934  #define EM_486          6               /* Intel 80486 */
1935  #endif
1936
1937  static const arch_t arch_array[]={
1938    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1939    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1940    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1941    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1942    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1943    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1944    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1945    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1946    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1947    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1948    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1949    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1950    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1951    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1952    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1953    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1954  };
1955
1956  #if  (defined IA32)
1957    static  Elf32_Half running_arch_code=EM_386;
1958  #elif   (defined AMD64)
1959    static  Elf32_Half running_arch_code=EM_X86_64;
1960  #elif  (defined IA64)
1961    static  Elf32_Half running_arch_code=EM_IA_64;
1962  #elif  (defined __sparc) && (defined _LP64)
1963    static  Elf32_Half running_arch_code=EM_SPARCV9;
1964  #elif  (defined __sparc) && (!defined _LP64)
1965    static  Elf32_Half running_arch_code=EM_SPARC;
1966  #elif  (defined __powerpc64__)
1967    static  Elf32_Half running_arch_code=EM_PPC64;
1968  #elif  (defined __powerpc__)
1969    static  Elf32_Half running_arch_code=EM_PPC;
1970  #elif  (defined ARM)
1971    static  Elf32_Half running_arch_code=EM_ARM;
1972  #elif  (defined S390)
1973    static  Elf32_Half running_arch_code=EM_S390;
1974  #elif  (defined ALPHA)
1975    static  Elf32_Half running_arch_code=EM_ALPHA;
1976  #elif  (defined MIPSEL)
1977    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1978  #elif  (defined PARISC)
1979    static  Elf32_Half running_arch_code=EM_PARISC;
1980  #elif  (defined MIPS)
1981    static  Elf32_Half running_arch_code=EM_MIPS;
1982  #elif  (defined M68K)
1983    static  Elf32_Half running_arch_code=EM_68K;
1984  #else
1985    #error Method os::dll_load requires that one of following is defined:\
1986         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1987  #endif
1988
1989  // Identify compatability class for VM's architecture and library's architecture
1990  // Obtain string descriptions for architectures
1991
1992  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1993  int running_arch_index=-1;
1994
1995  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1996    if (running_arch_code == arch_array[i].code) {
1997      running_arch_index    = i;
1998    }
1999    if (lib_arch.code == arch_array[i].code) {
2000      lib_arch.compat_class = arch_array[i].compat_class;
2001      lib_arch.name         = arch_array[i].name;
2002    }
2003  }
2004
2005  assert(running_arch_index != -1,
2006    "Didn't find running architecture code (running_arch_code) in arch_array");
2007  if (running_arch_index == -1) {
2008    // Even though running architecture detection failed
2009    // we may still continue with reporting dlerror() message
2010    return NULL;
2011  }
2012
2013  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2014    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2015    return NULL;
2016  }
2017
2018#ifndef S390
2019  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2020    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2021    return NULL;
2022  }
2023#endif // !S390
2024
2025  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2026    if ( lib_arch.name!=NULL ) {
2027      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2028        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2029        lib_arch.name, arch_array[running_arch_index].name);
2030    } else {
2031      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2032      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2033        lib_arch.code,
2034        arch_array[running_arch_index].name);
2035    }
2036  }
2037
2038  return NULL;
2039}
2040
2041void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2042  void * result = ::dlopen(filename, RTLD_LAZY);
2043  if (result == NULL) {
2044    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2045    ebuf[ebuflen-1] = '\0';
2046  }
2047  return result;
2048}
2049
2050void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2051  void * result = NULL;
2052  if (LoadExecStackDllInVMThread) {
2053    result = dlopen_helper(filename, ebuf, ebuflen);
2054  }
2055
2056  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2057  // library that requires an executable stack, or which does not have this
2058  // stack attribute set, dlopen changes the stack attribute to executable. The
2059  // read protection of the guard pages gets lost.
2060  //
2061  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2062  // may have been queued at the same time.
2063
2064  if (!_stack_is_executable) {
2065    JavaThread *jt = Threads::first();
2066
2067    while (jt) {
2068      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2069          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2070        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2071                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2072          warning("Attempt to reguard stack yellow zone failed.");
2073        }
2074      }
2075      jt = jt->next();
2076    }
2077  }
2078
2079  return result;
2080}
2081
2082/*
2083 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2084 * chances are you might want to run the generated bits against glibc-2.0
2085 * libdl.so, so always use locking for any version of glibc.
2086 */
2087void* os::dll_lookup(void* handle, const char* name) {
2088  pthread_mutex_lock(&dl_mutex);
2089  void* res = dlsym(handle, name);
2090  pthread_mutex_unlock(&dl_mutex);
2091  return res;
2092}
2093
2094
2095static bool _print_ascii_file(const char* filename, outputStream* st) {
2096  int fd = ::open(filename, O_RDONLY);
2097  if (fd == -1) {
2098     return false;
2099  }
2100
2101  char buf[32];
2102  int bytes;
2103  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2104    st->print_raw(buf, bytes);
2105  }
2106
2107  ::close(fd);
2108
2109  return true;
2110}
2111
2112void os::print_dll_info(outputStream *st) {
2113   st->print_cr("Dynamic libraries:");
2114
2115   char fname[32];
2116   pid_t pid = os::Linux::gettid();
2117
2118   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2119
2120   if (!_print_ascii_file(fname, st)) {
2121     st->print("Can not get library information for pid = %d\n", pid);
2122   }
2123}
2124
2125void os::print_os_info_brief(outputStream* st) {
2126  os::Linux::print_distro_info(st);
2127
2128  os::Posix::print_uname_info(st);
2129
2130  os::Linux::print_libversion_info(st);
2131
2132}
2133
2134void os::print_os_info(outputStream* st) {
2135  st->print("OS:");
2136
2137  os::Linux::print_distro_info(st);
2138
2139  os::Posix::print_uname_info(st);
2140
2141  // Print warning if unsafe chroot environment detected
2142  if (unsafe_chroot_detected) {
2143    st->print("WARNING!! ");
2144    st->print_cr(unstable_chroot_error);
2145  }
2146
2147  os::Linux::print_libversion_info(st);
2148
2149  os::Posix::print_rlimit_info(st);
2150
2151  os::Posix::print_load_average(st);
2152
2153  os::Linux::print_full_memory_info(st);
2154}
2155
2156// Try to identify popular distros.
2157// Most Linux distributions have /etc/XXX-release file, which contains
2158// the OS version string. Some have more than one /etc/XXX-release file
2159// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2160// so the order is important.
2161void os::Linux::print_distro_info(outputStream* st) {
2162  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2163      !_print_ascii_file("/etc/sun-release", st) &&
2164      !_print_ascii_file("/etc/redhat-release", st) &&
2165      !_print_ascii_file("/etc/SuSE-release", st) &&
2166      !_print_ascii_file("/etc/turbolinux-release", st) &&
2167      !_print_ascii_file("/etc/gentoo-release", st) &&
2168      !_print_ascii_file("/etc/debian_version", st) &&
2169      !_print_ascii_file("/etc/ltib-release", st) &&
2170      !_print_ascii_file("/etc/angstrom-version", st)) {
2171      st->print("Linux");
2172  }
2173  st->cr();
2174}
2175
2176void os::Linux::print_libversion_info(outputStream* st) {
2177  // libc, pthread
2178  st->print("libc:");
2179  st->print(os::Linux::glibc_version()); st->print(" ");
2180  st->print(os::Linux::libpthread_version()); st->print(" ");
2181  if (os::Linux::is_LinuxThreads()) {
2182     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2183  }
2184  st->cr();
2185}
2186
2187void os::Linux::print_full_memory_info(outputStream* st) {
2188   st->print("\n/proc/meminfo:\n");
2189   _print_ascii_file("/proc/meminfo", st);
2190   st->cr();
2191}
2192
2193void os::print_memory_info(outputStream* st) {
2194
2195  st->print("Memory:");
2196  st->print(" %dk page", os::vm_page_size()>>10);
2197
2198  // values in struct sysinfo are "unsigned long"
2199  struct sysinfo si;
2200  sysinfo(&si);
2201
2202  st->print(", physical " UINT64_FORMAT "k",
2203            os::physical_memory() >> 10);
2204  st->print("(" UINT64_FORMAT "k free)",
2205            os::available_memory() >> 10);
2206  st->print(", swap " UINT64_FORMAT "k",
2207            ((jlong)si.totalswap * si.mem_unit) >> 10);
2208  st->print("(" UINT64_FORMAT "k free)",
2209            ((jlong)si.freeswap * si.mem_unit) >> 10);
2210  st->cr();
2211}
2212
2213void os::pd_print_cpu_info(outputStream* st) {
2214  st->print("\n/proc/cpuinfo:\n");
2215  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2216    st->print("  <Not Available>");
2217  }
2218  st->cr();
2219}
2220
2221// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2222// but they're the same for all the linux arch that we support
2223// and they're the same for solaris but there's no common place to put this.
2224const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2225                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2226                          "ILL_COPROC", "ILL_BADSTK" };
2227
2228const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2229                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2230                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2231
2232const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2233
2234const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2235
2236void os::print_siginfo(outputStream* st, void* siginfo) {
2237  st->print("siginfo:");
2238
2239  const int buflen = 100;
2240  char buf[buflen];
2241  siginfo_t *si = (siginfo_t*)siginfo;
2242  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2243  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2244    st->print("si_errno=%s", buf);
2245  } else {
2246    st->print("si_errno=%d", si->si_errno);
2247  }
2248  const int c = si->si_code;
2249  assert(c > 0, "unexpected si_code");
2250  switch (si->si_signo) {
2251  case SIGILL:
2252    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2253    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2254    break;
2255  case SIGFPE:
2256    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2257    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2258    break;
2259  case SIGSEGV:
2260    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2261    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2262    break;
2263  case SIGBUS:
2264    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2265    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2266    break;
2267  default:
2268    st->print(", si_code=%d", si->si_code);
2269    // no si_addr
2270  }
2271
2272  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2273      UseSharedSpaces) {
2274    FileMapInfo* mapinfo = FileMapInfo::current_info();
2275    if (mapinfo->is_in_shared_space(si->si_addr)) {
2276      st->print("\n\nError accessing class data sharing archive."   \
2277                " Mapped file inaccessible during execution, "      \
2278                " possible disk/network problem.");
2279    }
2280  }
2281  st->cr();
2282}
2283
2284
2285static void print_signal_handler(outputStream* st, int sig,
2286                                 char* buf, size_t buflen);
2287
2288void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2289  st->print_cr("Signal Handlers:");
2290  print_signal_handler(st, SIGSEGV, buf, buflen);
2291  print_signal_handler(st, SIGBUS , buf, buflen);
2292  print_signal_handler(st, SIGFPE , buf, buflen);
2293  print_signal_handler(st, SIGPIPE, buf, buflen);
2294  print_signal_handler(st, SIGXFSZ, buf, buflen);
2295  print_signal_handler(st, SIGILL , buf, buflen);
2296  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2297  print_signal_handler(st, SR_signum, buf, buflen);
2298  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2299  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2300  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2301  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2302}
2303
2304static char saved_jvm_path[MAXPATHLEN] = {0};
2305
2306// Find the full path to the current module, libjvm.so
2307void os::jvm_path(char *buf, jint buflen) {
2308  // Error checking.
2309  if (buflen < MAXPATHLEN) {
2310    assert(false, "must use a large-enough buffer");
2311    buf[0] = '\0';
2312    return;
2313  }
2314  // Lazy resolve the path to current module.
2315  if (saved_jvm_path[0] != 0) {
2316    strcpy(buf, saved_jvm_path);
2317    return;
2318  }
2319
2320  char dli_fname[MAXPATHLEN];
2321  bool ret = dll_address_to_library_name(
2322                CAST_FROM_FN_PTR(address, os::jvm_path),
2323                dli_fname, sizeof(dli_fname), NULL);
2324  assert(ret != 0, "cannot locate libjvm");
2325  char *rp = realpath(dli_fname, buf);
2326  if (rp == NULL)
2327    return;
2328
2329  if (Arguments::created_by_gamma_launcher()) {
2330    // Support for the gamma launcher.  Typical value for buf is
2331    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2332    // the right place in the string, then assume we are installed in a JDK and
2333    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2334    // up the path so it looks like libjvm.so is installed there (append a
2335    // fake suffix hotspot/libjvm.so).
2336    const char *p = buf + strlen(buf) - 1;
2337    for (int count = 0; p > buf && count < 5; ++count) {
2338      for (--p; p > buf && *p != '/'; --p)
2339        /* empty */ ;
2340    }
2341
2342    if (strncmp(p, "/jre/lib/", 9) != 0) {
2343      // Look for JAVA_HOME in the environment.
2344      char* java_home_var = ::getenv("JAVA_HOME");
2345      if (java_home_var != NULL && java_home_var[0] != 0) {
2346        char* jrelib_p;
2347        int len;
2348
2349        // Check the current module name "libjvm.so".
2350        p = strrchr(buf, '/');
2351        assert(strstr(p, "/libjvm") == p, "invalid library name");
2352
2353        rp = realpath(java_home_var, buf);
2354        if (rp == NULL)
2355          return;
2356
2357        // determine if this is a legacy image or modules image
2358        // modules image doesn't have "jre" subdirectory
2359        len = strlen(buf);
2360        jrelib_p = buf + len;
2361        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2362        if (0 != access(buf, F_OK)) {
2363          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2364        }
2365
2366        if (0 == access(buf, F_OK)) {
2367          // Use current module name "libjvm.so"
2368          len = strlen(buf);
2369          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2370        } else {
2371          // Go back to path of .so
2372          rp = realpath(dli_fname, buf);
2373          if (rp == NULL)
2374            return;
2375        }
2376      }
2377    }
2378  }
2379
2380  strcpy(saved_jvm_path, buf);
2381}
2382
2383void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2384  // no prefix required, not even "_"
2385}
2386
2387void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2388  // no suffix required
2389}
2390
2391////////////////////////////////////////////////////////////////////////////////
2392// sun.misc.Signal support
2393
2394static volatile jint sigint_count = 0;
2395
2396static void
2397UserHandler(int sig, void *siginfo, void *context) {
2398  // 4511530 - sem_post is serialized and handled by the manager thread. When
2399  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2400  // don't want to flood the manager thread with sem_post requests.
2401  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2402      return;
2403
2404  // Ctrl-C is pressed during error reporting, likely because the error
2405  // handler fails to abort. Let VM die immediately.
2406  if (sig == SIGINT && is_error_reported()) {
2407     os::die();
2408  }
2409
2410  os::signal_notify(sig);
2411}
2412
2413void* os::user_handler() {
2414  return CAST_FROM_FN_PTR(void*, UserHandler);
2415}
2416
2417extern "C" {
2418  typedef void (*sa_handler_t)(int);
2419  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2420}
2421
2422void* os::signal(int signal_number, void* handler) {
2423  struct sigaction sigAct, oldSigAct;
2424
2425  sigfillset(&(sigAct.sa_mask));
2426  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2427  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2428
2429  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2430    // -1 means registration failed
2431    return (void *)-1;
2432  }
2433
2434  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2435}
2436
2437void os::signal_raise(int signal_number) {
2438  ::raise(signal_number);
2439}
2440
2441/*
2442 * The following code is moved from os.cpp for making this
2443 * code platform specific, which it is by its very nature.
2444 */
2445
2446// Will be modified when max signal is changed to be dynamic
2447int os::sigexitnum_pd() {
2448  return NSIG;
2449}
2450
2451// a counter for each possible signal value
2452static volatile jint pending_signals[NSIG+1] = { 0 };
2453
2454// Linux(POSIX) specific hand shaking semaphore.
2455static sem_t sig_sem;
2456
2457void os::signal_init_pd() {
2458  // Initialize signal structures
2459  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2460
2461  // Initialize signal semaphore
2462  ::sem_init(&sig_sem, 0, 0);
2463}
2464
2465void os::signal_notify(int sig) {
2466  Atomic::inc(&pending_signals[sig]);
2467  ::sem_post(&sig_sem);
2468}
2469
2470static int check_pending_signals(bool wait) {
2471  Atomic::store(0, &sigint_count);
2472  for (;;) {
2473    for (int i = 0; i < NSIG + 1; i++) {
2474      jint n = pending_signals[i];
2475      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2476        return i;
2477      }
2478    }
2479    if (!wait) {
2480      return -1;
2481    }
2482    JavaThread *thread = JavaThread::current();
2483    ThreadBlockInVM tbivm(thread);
2484
2485    bool threadIsSuspended;
2486    do {
2487      thread->set_suspend_equivalent();
2488      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2489      ::sem_wait(&sig_sem);
2490
2491      // were we externally suspended while we were waiting?
2492      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2493      if (threadIsSuspended) {
2494        //
2495        // The semaphore has been incremented, but while we were waiting
2496        // another thread suspended us. We don't want to continue running
2497        // while suspended because that would surprise the thread that
2498        // suspended us.
2499        //
2500        ::sem_post(&sig_sem);
2501
2502        thread->java_suspend_self();
2503      }
2504    } while (threadIsSuspended);
2505  }
2506}
2507
2508int os::signal_lookup() {
2509  return check_pending_signals(false);
2510}
2511
2512int os::signal_wait() {
2513  return check_pending_signals(true);
2514}
2515
2516////////////////////////////////////////////////////////////////////////////////
2517// Virtual Memory
2518
2519int os::vm_page_size() {
2520  // Seems redundant as all get out
2521  assert(os::Linux::page_size() != -1, "must call os::init");
2522  return os::Linux::page_size();
2523}
2524
2525// Solaris allocates memory by pages.
2526int os::vm_allocation_granularity() {
2527  assert(os::Linux::page_size() != -1, "must call os::init");
2528  return os::Linux::page_size();
2529}
2530
2531// Rationale behind this function:
2532//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2533//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2534//  samples for JITted code. Here we create private executable mapping over the code cache
2535//  and then we can use standard (well, almost, as mapping can change) way to provide
2536//  info for the reporting script by storing timestamp and location of symbol
2537void linux_wrap_code(char* base, size_t size) {
2538  static volatile jint cnt = 0;
2539
2540  if (!UseOprofile) {
2541    return;
2542  }
2543
2544  char buf[PATH_MAX+1];
2545  int num = Atomic::add(1, &cnt);
2546
2547  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2548           os::get_temp_directory(), os::current_process_id(), num);
2549  unlink(buf);
2550
2551  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2552
2553  if (fd != -1) {
2554    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2555    if (rv != (off_t)-1) {
2556      if (::write(fd, "", 1) == 1) {
2557        mmap(base, size,
2558             PROT_READ|PROT_WRITE|PROT_EXEC,
2559             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2560      }
2561    }
2562    ::close(fd);
2563    unlink(buf);
2564  }
2565}
2566
2567// NOTE: Linux kernel does not really reserve the pages for us.
2568//       All it does is to check if there are enough free pages
2569//       left at the time of mmap(). This could be a potential
2570//       problem.
2571bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2572  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2573  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2574                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2575  if (res != (uintptr_t) MAP_FAILED) {
2576    if (UseNUMAInterleaving) {
2577      numa_make_global(addr, size);
2578    }
2579    return true;
2580  }
2581  return false;
2582}
2583
2584// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2585#ifndef MAP_HUGETLB
2586#define MAP_HUGETLB 0x40000
2587#endif
2588
2589// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2590#ifndef MADV_HUGEPAGE
2591#define MADV_HUGEPAGE 14
2592#endif
2593
2594bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2595                       bool exec) {
2596  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2597    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2598    uintptr_t res =
2599      (uintptr_t) ::mmap(addr, size, prot,
2600                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2601                         -1, 0);
2602    if (res != (uintptr_t) MAP_FAILED) {
2603      if (UseNUMAInterleaving) {
2604        numa_make_global(addr, size);
2605      }
2606      return true;
2607    }
2608    // Fall through and try to use small pages
2609  }
2610
2611  if (commit_memory(addr, size, exec)) {
2612    realign_memory(addr, size, alignment_hint);
2613    return true;
2614  }
2615  return false;
2616}
2617
2618void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2619  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2620    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2621    // be supported or the memory may already be backed by huge pages.
2622    ::madvise(addr, bytes, MADV_HUGEPAGE);
2623  }
2624}
2625
2626void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2627  // This method works by doing an mmap over an existing mmaping and effectively discarding
2628  // the existing pages. However it won't work for SHM-based large pages that cannot be
2629  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2630  // small pages on top of the SHM segment. This method always works for small pages, so we
2631  // allow that in any case.
2632  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2633    commit_memory(addr, bytes, alignment_hint, false);
2634  }
2635}
2636
2637void os::numa_make_global(char *addr, size_t bytes) {
2638  Linux::numa_interleave_memory(addr, bytes);
2639}
2640
2641void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2642  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2643}
2644
2645bool os::numa_topology_changed()   { return false; }
2646
2647size_t os::numa_get_groups_num() {
2648  int max_node = Linux::numa_max_node();
2649  return max_node > 0 ? max_node + 1 : 1;
2650}
2651
2652int os::numa_get_group_id() {
2653  int cpu_id = Linux::sched_getcpu();
2654  if (cpu_id != -1) {
2655    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2656    if (lgrp_id != -1) {
2657      return lgrp_id;
2658    }
2659  }
2660  return 0;
2661}
2662
2663size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2664  for (size_t i = 0; i < size; i++) {
2665    ids[i] = i;
2666  }
2667  return size;
2668}
2669
2670bool os::get_page_info(char *start, page_info* info) {
2671  return false;
2672}
2673
2674char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2675  return end;
2676}
2677
2678
2679int os::Linux::sched_getcpu_syscall(void) {
2680  unsigned int cpu;
2681  int retval = -1;
2682
2683#if defined(IA32)
2684# ifndef SYS_getcpu
2685# define SYS_getcpu 318
2686# endif
2687  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2688#elif defined(AMD64)
2689// Unfortunately we have to bring all these macros here from vsyscall.h
2690// to be able to compile on old linuxes.
2691# define __NR_vgetcpu 2
2692# define VSYSCALL_START (-10UL << 20)
2693# define VSYSCALL_SIZE 1024
2694# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2695  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2696  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2697  retval = vgetcpu(&cpu, NULL, NULL);
2698#endif
2699
2700  return (retval == -1) ? retval : cpu;
2701}
2702
2703// Something to do with the numa-aware allocator needs these symbols
2704extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2705extern "C" JNIEXPORT void numa_error(char *where) { }
2706extern "C" JNIEXPORT int fork1() { return fork(); }
2707
2708
2709// If we are running with libnuma version > 2, then we should
2710// be trying to use symbols with versions 1.1
2711// If we are running with earlier version, which did not have symbol versions,
2712// we should use the base version.
2713void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2714  void *f = dlvsym(handle, name, "libnuma_1.1");
2715  if (f == NULL) {
2716    f = dlsym(handle, name);
2717  }
2718  return f;
2719}
2720
2721bool os::Linux::libnuma_init() {
2722  // sched_getcpu() should be in libc.
2723  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2724                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2725
2726  // If it's not, try a direct syscall.
2727  if (sched_getcpu() == -1)
2728    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2729
2730  if (sched_getcpu() != -1) { // Does it work?
2731    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2732    if (handle != NULL) {
2733      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2734                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2735      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2736                                       libnuma_dlsym(handle, "numa_max_node")));
2737      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2738                                        libnuma_dlsym(handle, "numa_available")));
2739      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2740                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2741      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2742                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2743
2744
2745      if (numa_available() != -1) {
2746        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2747        // Create a cpu -> node mapping
2748        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2749        rebuild_cpu_to_node_map();
2750        return true;
2751      }
2752    }
2753  }
2754  return false;
2755}
2756
2757// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2758// The table is later used in get_node_by_cpu().
2759void os::Linux::rebuild_cpu_to_node_map() {
2760  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2761                              // in libnuma (possible values are starting from 16,
2762                              // and continuing up with every other power of 2, but less
2763                              // than the maximum number of CPUs supported by kernel), and
2764                              // is a subject to change (in libnuma version 2 the requirements
2765                              // are more reasonable) we'll just hardcode the number they use
2766                              // in the library.
2767  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2768
2769  size_t cpu_num = os::active_processor_count();
2770  size_t cpu_map_size = NCPUS / BitsPerCLong;
2771  size_t cpu_map_valid_size =
2772    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2773
2774  cpu_to_node()->clear();
2775  cpu_to_node()->at_grow(cpu_num - 1);
2776  size_t node_num = numa_get_groups_num();
2777
2778  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2779  for (size_t i = 0; i < node_num; i++) {
2780    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2781      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2782        if (cpu_map[j] != 0) {
2783          for (size_t k = 0; k < BitsPerCLong; k++) {
2784            if (cpu_map[j] & (1UL << k)) {
2785              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2786            }
2787          }
2788        }
2789      }
2790    }
2791  }
2792  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2793}
2794
2795int os::Linux::get_node_by_cpu(int cpu_id) {
2796  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2797    return cpu_to_node()->at(cpu_id);
2798  }
2799  return -1;
2800}
2801
2802GrowableArray<int>* os::Linux::_cpu_to_node;
2803os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2804os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2805os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2806os::Linux::numa_available_func_t os::Linux::_numa_available;
2807os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2808os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2809unsigned long* os::Linux::_numa_all_nodes;
2810
2811bool os::pd_uncommit_memory(char* addr, size_t size) {
2812  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2813                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2814  return res  != (uintptr_t) MAP_FAILED;
2815}
2816
2817// Linux uses a growable mapping for the stack, and if the mapping for
2818// the stack guard pages is not removed when we detach a thread the
2819// stack cannot grow beyond the pages where the stack guard was
2820// mapped.  If at some point later in the process the stack expands to
2821// that point, the Linux kernel cannot expand the stack any further
2822// because the guard pages are in the way, and a segfault occurs.
2823//
2824// However, it's essential not to split the stack region by unmapping
2825// a region (leaving a hole) that's already part of the stack mapping,
2826// so if the stack mapping has already grown beyond the guard pages at
2827// the time we create them, we have to truncate the stack mapping.
2828// So, we need to know the extent of the stack mapping when
2829// create_stack_guard_pages() is called.
2830
2831// Find the bounds of the stack mapping.  Return true for success.
2832//
2833// We only need this for stacks that are growable: at the time of
2834// writing thread stacks don't use growable mappings (i.e. those
2835// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2836// only applies to the main thread.
2837
2838static
2839bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2840
2841  char buf[128];
2842  int fd, sz;
2843
2844  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2845    return false;
2846  }
2847
2848  const char kw[] = "[stack]";
2849  const int kwlen = sizeof(kw)-1;
2850
2851  // Address part of /proc/self/maps couldn't be more than 128 bytes
2852  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2853     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2854        // Extract addresses
2855        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2856           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2857           if (sp >= *bottom && sp <= *top) {
2858              ::close(fd);
2859              return true;
2860           }
2861        }
2862     }
2863  }
2864
2865 ::close(fd);
2866  return false;
2867}
2868
2869
2870// If the (growable) stack mapping already extends beyond the point
2871// where we're going to put our guard pages, truncate the mapping at
2872// that point by munmap()ping it.  This ensures that when we later
2873// munmap() the guard pages we don't leave a hole in the stack
2874// mapping. This only affects the main/initial thread, but guard
2875// against future OS changes
2876bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2877  uintptr_t stack_extent, stack_base;
2878  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2879  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2880      assert(os::Linux::is_initial_thread(),
2881           "growable stack in non-initial thread");
2882    if (stack_extent < (uintptr_t)addr)
2883      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2884  }
2885
2886  return os::commit_memory(addr, size);
2887}
2888
2889// If this is a growable mapping, remove the guard pages entirely by
2890// munmap()ping them.  If not, just call uncommit_memory(). This only
2891// affects the main/initial thread, but guard against future OS changes
2892bool os::remove_stack_guard_pages(char* addr, size_t size) {
2893  uintptr_t stack_extent, stack_base;
2894  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2895  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2896      assert(os::Linux::is_initial_thread(),
2897           "growable stack in non-initial thread");
2898
2899    return ::munmap(addr, size) == 0;
2900  }
2901
2902  return os::uncommit_memory(addr, size);
2903}
2904
2905static address _highest_vm_reserved_address = NULL;
2906
2907// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2908// at 'requested_addr'. If there are existing memory mappings at the same
2909// location, however, they will be overwritten. If 'fixed' is false,
2910// 'requested_addr' is only treated as a hint, the return value may or
2911// may not start from the requested address. Unlike Linux mmap(), this
2912// function returns NULL to indicate failure.
2913static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2914  char * addr;
2915  int flags;
2916
2917  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2918  if (fixed) {
2919    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2920    flags |= MAP_FIXED;
2921  }
2922
2923  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2924  // to PROT_EXEC if executable when we commit the page.
2925  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2926                       flags, -1, 0);
2927
2928  if (addr != MAP_FAILED) {
2929    // anon_mmap() should only get called during VM initialization,
2930    // don't need lock (actually we can skip locking even it can be called
2931    // from multiple threads, because _highest_vm_reserved_address is just a
2932    // hint about the upper limit of non-stack memory regions.)
2933    if ((address)addr + bytes > _highest_vm_reserved_address) {
2934      _highest_vm_reserved_address = (address)addr + bytes;
2935    }
2936  }
2937
2938  return addr == MAP_FAILED ? NULL : addr;
2939}
2940
2941// Don't update _highest_vm_reserved_address, because there might be memory
2942// regions above addr + size. If so, releasing a memory region only creates
2943// a hole in the address space, it doesn't help prevent heap-stack collision.
2944//
2945static int anon_munmap(char * addr, size_t size) {
2946  return ::munmap(addr, size) == 0;
2947}
2948
2949char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2950                         size_t alignment_hint) {
2951  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2952}
2953
2954bool os::pd_release_memory(char* addr, size_t size) {
2955  return anon_munmap(addr, size);
2956}
2957
2958static address highest_vm_reserved_address() {
2959  return _highest_vm_reserved_address;
2960}
2961
2962static bool linux_mprotect(char* addr, size_t size, int prot) {
2963  // Linux wants the mprotect address argument to be page aligned.
2964  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2965
2966  // According to SUSv3, mprotect() should only be used with mappings
2967  // established by mmap(), and mmap() always maps whole pages. Unaligned
2968  // 'addr' likely indicates problem in the VM (e.g. trying to change
2969  // protection of malloc'ed or statically allocated memory). Check the
2970  // caller if you hit this assert.
2971  assert(addr == bottom, "sanity check");
2972
2973  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2974  return ::mprotect(bottom, size, prot) == 0;
2975}
2976
2977// Set protections specified
2978bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2979                        bool is_committed) {
2980  unsigned int p = 0;
2981  switch (prot) {
2982  case MEM_PROT_NONE: p = PROT_NONE; break;
2983  case MEM_PROT_READ: p = PROT_READ; break;
2984  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2985  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2986  default:
2987    ShouldNotReachHere();
2988  }
2989  // is_committed is unused.
2990  return linux_mprotect(addr, bytes, p);
2991}
2992
2993bool os::guard_memory(char* addr, size_t size) {
2994  return linux_mprotect(addr, size, PROT_NONE);
2995}
2996
2997bool os::unguard_memory(char* addr, size_t size) {
2998  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2999}
3000
3001bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3002  bool result = false;
3003  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3004                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3005                  -1, 0);
3006
3007  if (p != (void *) -1) {
3008    // We don't know if this really is a huge page or not.
3009    FILE *fp = fopen("/proc/self/maps", "r");
3010    if (fp) {
3011      while (!feof(fp)) {
3012        char chars[257];
3013        long x = 0;
3014        if (fgets(chars, sizeof(chars), fp)) {
3015          if (sscanf(chars, "%lx-%*x", &x) == 1
3016              && x == (long)p) {
3017            if (strstr (chars, "hugepage")) {
3018              result = true;
3019              break;
3020            }
3021          }
3022        }
3023      }
3024      fclose(fp);
3025    }
3026    munmap (p, page_size);
3027    if (result)
3028      return true;
3029  }
3030
3031  if (warn) {
3032    warning("HugeTLBFS is not supported by the operating system.");
3033  }
3034
3035  return result;
3036}
3037
3038/*
3039* Set the coredump_filter bits to include largepages in core dump (bit 6)
3040*
3041* From the coredump_filter documentation:
3042*
3043* - (bit 0) anonymous private memory
3044* - (bit 1) anonymous shared memory
3045* - (bit 2) file-backed private memory
3046* - (bit 3) file-backed shared memory
3047* - (bit 4) ELF header pages in file-backed private memory areas (it is
3048*           effective only if the bit 2 is cleared)
3049* - (bit 5) hugetlb private memory
3050* - (bit 6) hugetlb shared memory
3051*/
3052static void set_coredump_filter(void) {
3053  FILE *f;
3054  long cdm;
3055
3056  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3057    return;
3058  }
3059
3060  if (fscanf(f, "%lx", &cdm) != 1) {
3061    fclose(f);
3062    return;
3063  }
3064
3065  rewind(f);
3066
3067  if ((cdm & LARGEPAGES_BIT) == 0) {
3068    cdm |= LARGEPAGES_BIT;
3069    fprintf(f, "%#lx", cdm);
3070  }
3071
3072  fclose(f);
3073}
3074
3075// Large page support
3076
3077static size_t _large_page_size = 0;
3078
3079void os::large_page_init() {
3080  if (!UseLargePages) {
3081    UseHugeTLBFS = false;
3082    UseSHM = false;
3083    return;
3084  }
3085
3086  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3087    // If UseLargePages is specified on the command line try both methods,
3088    // if it's default, then try only HugeTLBFS.
3089    if (FLAG_IS_DEFAULT(UseLargePages)) {
3090      UseHugeTLBFS = true;
3091    } else {
3092      UseHugeTLBFS = UseSHM = true;
3093    }
3094  }
3095
3096  if (LargePageSizeInBytes) {
3097    _large_page_size = LargePageSizeInBytes;
3098  } else {
3099    // large_page_size on Linux is used to round up heap size. x86 uses either
3100    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3101    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3102    // page as large as 256M.
3103    //
3104    // Here we try to figure out page size by parsing /proc/meminfo and looking
3105    // for a line with the following format:
3106    //    Hugepagesize:     2048 kB
3107    //
3108    // If we can't determine the value (e.g. /proc is not mounted, or the text
3109    // format has been changed), we'll use the largest page size supported by
3110    // the processor.
3111
3112#ifndef ZERO
3113    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3114                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3115#endif // ZERO
3116
3117    FILE *fp = fopen("/proc/meminfo", "r");
3118    if (fp) {
3119      while (!feof(fp)) {
3120        int x = 0;
3121        char buf[16];
3122        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3123          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3124            _large_page_size = x * K;
3125            break;
3126          }
3127        } else {
3128          // skip to next line
3129          for (;;) {
3130            int ch = fgetc(fp);
3131            if (ch == EOF || ch == (int)'\n') break;
3132          }
3133        }
3134      }
3135      fclose(fp);
3136    }
3137  }
3138
3139  // print a warning if any large page related flag is specified on command line
3140  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3141
3142  const size_t default_page_size = (size_t)Linux::page_size();
3143  if (_large_page_size > default_page_size) {
3144    _page_sizes[0] = _large_page_size;
3145    _page_sizes[1] = default_page_size;
3146    _page_sizes[2] = 0;
3147  }
3148  UseHugeTLBFS = UseHugeTLBFS &&
3149                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3150
3151  if (UseHugeTLBFS)
3152    UseSHM = false;
3153
3154  UseLargePages = UseHugeTLBFS || UseSHM;
3155
3156  set_coredump_filter();
3157}
3158
3159#ifndef SHM_HUGETLB
3160#define SHM_HUGETLB 04000
3161#endif
3162
3163char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3164  // "exec" is passed in but not used.  Creating the shared image for
3165  // the code cache doesn't have an SHM_X executable permission to check.
3166  assert(UseLargePages && UseSHM, "only for SHM large pages");
3167
3168  key_t key = IPC_PRIVATE;
3169  char *addr;
3170
3171  bool warn_on_failure = UseLargePages &&
3172                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3173                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3174                        );
3175  char msg[128];
3176
3177  // Create a large shared memory region to attach to based on size.
3178  // Currently, size is the total size of the heap
3179  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3180  if (shmid == -1) {
3181     // Possible reasons for shmget failure:
3182     // 1. shmmax is too small for Java heap.
3183     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3184     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3185     // 2. not enough large page memory.
3186     //    > check available large pages: cat /proc/meminfo
3187     //    > increase amount of large pages:
3188     //          echo new_value > /proc/sys/vm/nr_hugepages
3189     //      Note 1: different Linux may use different name for this property,
3190     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3191     //      Note 2: it's possible there's enough physical memory available but
3192     //            they are so fragmented after a long run that they can't
3193     //            coalesce into large pages. Try to reserve large pages when
3194     //            the system is still "fresh".
3195     if (warn_on_failure) {
3196       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3197       warning(msg);
3198     }
3199     return NULL;
3200  }
3201
3202  // attach to the region
3203  addr = (char*)shmat(shmid, req_addr, 0);
3204  int err = errno;
3205
3206  // Remove shmid. If shmat() is successful, the actual shared memory segment
3207  // will be deleted when it's detached by shmdt() or when the process
3208  // terminates. If shmat() is not successful this will remove the shared
3209  // segment immediately.
3210  shmctl(shmid, IPC_RMID, NULL);
3211
3212  if ((intptr_t)addr == -1) {
3213     if (warn_on_failure) {
3214       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3215       warning(msg);
3216     }
3217     return NULL;
3218  }
3219
3220  if ((addr != NULL) && UseNUMAInterleaving) {
3221    numa_make_global(addr, bytes);
3222  }
3223
3224  // The memory is committed
3225  address pc = CALLER_PC;
3226  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
3227  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
3228
3229  return addr;
3230}
3231
3232bool os::release_memory_special(char* base, size_t bytes) {
3233  // detaching the SHM segment will also delete it, see reserve_memory_special()
3234  int rslt = shmdt(base);
3235  if (rslt == 0) {
3236    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3237    MemTracker::record_virtual_memory_release((address)base, bytes);
3238    return true;
3239  } else {
3240   return false;
3241  }
3242}
3243
3244size_t os::large_page_size() {
3245  return _large_page_size;
3246}
3247
3248// HugeTLBFS allows application to commit large page memory on demand;
3249// with SysV SHM the entire memory region must be allocated as shared
3250// memory.
3251bool os::can_commit_large_page_memory() {
3252  return UseHugeTLBFS;
3253}
3254
3255bool os::can_execute_large_page_memory() {
3256  return UseHugeTLBFS;
3257}
3258
3259// Reserve memory at an arbitrary address, only if that area is
3260// available (and not reserved for something else).
3261
3262char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3263  const int max_tries = 10;
3264  char* base[max_tries];
3265  size_t size[max_tries];
3266  const size_t gap = 0x000000;
3267
3268  // Assert only that the size is a multiple of the page size, since
3269  // that's all that mmap requires, and since that's all we really know
3270  // about at this low abstraction level.  If we need higher alignment,
3271  // we can either pass an alignment to this method or verify alignment
3272  // in one of the methods further up the call chain.  See bug 5044738.
3273  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3274
3275  // Repeatedly allocate blocks until the block is allocated at the
3276  // right spot. Give up after max_tries. Note that reserve_memory() will
3277  // automatically update _highest_vm_reserved_address if the call is
3278  // successful. The variable tracks the highest memory address every reserved
3279  // by JVM. It is used to detect heap-stack collision if running with
3280  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3281  // space than needed, it could confuse the collision detecting code. To
3282  // solve the problem, save current _highest_vm_reserved_address and
3283  // calculate the correct value before return.
3284  address old_highest = _highest_vm_reserved_address;
3285
3286  // Linux mmap allows caller to pass an address as hint; give it a try first,
3287  // if kernel honors the hint then we can return immediately.
3288  char * addr = anon_mmap(requested_addr, bytes, false);
3289  if (addr == requested_addr) {
3290     return requested_addr;
3291  }
3292
3293  if (addr != NULL) {
3294     // mmap() is successful but it fails to reserve at the requested address
3295     anon_munmap(addr, bytes);
3296  }
3297
3298  int i;
3299  for (i = 0; i < max_tries; ++i) {
3300    base[i] = reserve_memory(bytes);
3301
3302    if (base[i] != NULL) {
3303      // Is this the block we wanted?
3304      if (base[i] == requested_addr) {
3305        size[i] = bytes;
3306        break;
3307      }
3308
3309      // Does this overlap the block we wanted? Give back the overlapped
3310      // parts and try again.
3311
3312      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3313      if (top_overlap >= 0 && top_overlap < bytes) {
3314        unmap_memory(base[i], top_overlap);
3315        base[i] += top_overlap;
3316        size[i] = bytes - top_overlap;
3317      } else {
3318        size_t bottom_overlap = base[i] + bytes - requested_addr;
3319        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3320          unmap_memory(requested_addr, bottom_overlap);
3321          size[i] = bytes - bottom_overlap;
3322        } else {
3323          size[i] = bytes;
3324        }
3325      }
3326    }
3327  }
3328
3329  // Give back the unused reserved pieces.
3330
3331  for (int j = 0; j < i; ++j) {
3332    if (base[j] != NULL) {
3333      unmap_memory(base[j], size[j]);
3334    }
3335  }
3336
3337  if (i < max_tries) {
3338    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3339    return requested_addr;
3340  } else {
3341    _highest_vm_reserved_address = old_highest;
3342    return NULL;
3343  }
3344}
3345
3346size_t os::read(int fd, void *buf, unsigned int nBytes) {
3347  return ::read(fd, buf, nBytes);
3348}
3349
3350// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3351// Solaris uses poll(), linux uses park().
3352// Poll() is likely a better choice, assuming that Thread.interrupt()
3353// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3354// SIGSEGV, see 4355769.
3355
3356int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3357  assert(thread == Thread::current(),  "thread consistency check");
3358
3359  ParkEvent * const slp = thread->_SleepEvent ;
3360  slp->reset() ;
3361  OrderAccess::fence() ;
3362
3363  if (interruptible) {
3364    jlong prevtime = javaTimeNanos();
3365
3366    for (;;) {
3367      if (os::is_interrupted(thread, true)) {
3368        return OS_INTRPT;
3369      }
3370
3371      jlong newtime = javaTimeNanos();
3372
3373      if (newtime - prevtime < 0) {
3374        // time moving backwards, should only happen if no monotonic clock
3375        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3376        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3377      } else {
3378        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3379      }
3380
3381      if(millis <= 0) {
3382        return OS_OK;
3383      }
3384
3385      prevtime = newtime;
3386
3387      {
3388        assert(thread->is_Java_thread(), "sanity check");
3389        JavaThread *jt = (JavaThread *) thread;
3390        ThreadBlockInVM tbivm(jt);
3391        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3392
3393        jt->set_suspend_equivalent();
3394        // cleared by handle_special_suspend_equivalent_condition() or
3395        // java_suspend_self() via check_and_wait_while_suspended()
3396
3397        slp->park(millis);
3398
3399        // were we externally suspended while we were waiting?
3400        jt->check_and_wait_while_suspended();
3401      }
3402    }
3403  } else {
3404    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3405    jlong prevtime = javaTimeNanos();
3406
3407    for (;;) {
3408      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3409      // the 1st iteration ...
3410      jlong newtime = javaTimeNanos();
3411
3412      if (newtime - prevtime < 0) {
3413        // time moving backwards, should only happen if no monotonic clock
3414        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3415        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3416      } else {
3417        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3418      }
3419
3420      if(millis <= 0) break ;
3421
3422      prevtime = newtime;
3423      slp->park(millis);
3424    }
3425    return OS_OK ;
3426  }
3427}
3428
3429int os::naked_sleep() {
3430  // %% make the sleep time an integer flag. for now use 1 millisec.
3431  return os::sleep(Thread::current(), 1, false);
3432}
3433
3434// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3435void os::infinite_sleep() {
3436  while (true) {    // sleep forever ...
3437    ::sleep(100);   // ... 100 seconds at a time
3438  }
3439}
3440
3441// Used to convert frequent JVM_Yield() to nops
3442bool os::dont_yield() {
3443  return DontYieldALot;
3444}
3445
3446void os::yield() {
3447  sched_yield();
3448}
3449
3450os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3451
3452void os::yield_all(int attempts) {
3453  // Yields to all threads, including threads with lower priorities
3454  // Threads on Linux are all with same priority. The Solaris style
3455  // os::yield_all() with nanosleep(1ms) is not necessary.
3456  sched_yield();
3457}
3458
3459// Called from the tight loops to possibly influence time-sharing heuristics
3460void os::loop_breaker(int attempts) {
3461  os::yield_all(attempts);
3462}
3463
3464////////////////////////////////////////////////////////////////////////////////
3465// thread priority support
3466
3467// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3468// only supports dynamic priority, static priority must be zero. For real-time
3469// applications, Linux supports SCHED_RR which allows static priority (1-99).
3470// However, for large multi-threaded applications, SCHED_RR is not only slower
3471// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3472// of 5 runs - Sep 2005).
3473//
3474// The following code actually changes the niceness of kernel-thread/LWP. It
3475// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3476// not the entire user process, and user level threads are 1:1 mapped to kernel
3477// threads. It has always been the case, but could change in the future. For
3478// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3479// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3480
3481int os::java_to_os_priority[CriticalPriority + 1] = {
3482  19,              // 0 Entry should never be used
3483
3484   4,              // 1 MinPriority
3485   3,              // 2
3486   2,              // 3
3487
3488   1,              // 4
3489   0,              // 5 NormPriority
3490  -1,              // 6
3491
3492  -2,              // 7
3493  -3,              // 8
3494  -4,              // 9 NearMaxPriority
3495
3496  -5,              // 10 MaxPriority
3497
3498  -5               // 11 CriticalPriority
3499};
3500
3501static int prio_init() {
3502  if (ThreadPriorityPolicy == 1) {
3503    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3504    // if effective uid is not root. Perhaps, a more elegant way of doing
3505    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3506    if (geteuid() != 0) {
3507      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3508        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3509      }
3510      ThreadPriorityPolicy = 0;
3511    }
3512  }
3513  if (UseCriticalJavaThreadPriority) {
3514    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3515  }
3516  return 0;
3517}
3518
3519OSReturn os::set_native_priority(Thread* thread, int newpri) {
3520  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3521
3522  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3523  return (ret == 0) ? OS_OK : OS_ERR;
3524}
3525
3526OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3527  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3528    *priority_ptr = java_to_os_priority[NormPriority];
3529    return OS_OK;
3530  }
3531
3532  errno = 0;
3533  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3534  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3535}
3536
3537// Hint to the underlying OS that a task switch would not be good.
3538// Void return because it's a hint and can fail.
3539void os::hint_no_preempt() {}
3540
3541////////////////////////////////////////////////////////////////////////////////
3542// suspend/resume support
3543
3544//  the low-level signal-based suspend/resume support is a remnant from the
3545//  old VM-suspension that used to be for java-suspension, safepoints etc,
3546//  within hotspot. Now there is a single use-case for this:
3547//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3548//      that runs in the watcher thread.
3549//  The remaining code is greatly simplified from the more general suspension
3550//  code that used to be used.
3551//
3552//  The protocol is quite simple:
3553//  - suspend:
3554//      - sends a signal to the target thread
3555//      - polls the suspend state of the osthread using a yield loop
3556//      - target thread signal handler (SR_handler) sets suspend state
3557//        and blocks in sigsuspend until continued
3558//  - resume:
3559//      - sets target osthread state to continue
3560//      - sends signal to end the sigsuspend loop in the SR_handler
3561//
3562//  Note that the SR_lock plays no role in this suspend/resume protocol.
3563//
3564
3565static void resume_clear_context(OSThread *osthread) {
3566  osthread->set_ucontext(NULL);
3567  osthread->set_siginfo(NULL);
3568
3569  // notify the suspend action is completed, we have now resumed
3570  osthread->sr.clear_suspended();
3571}
3572
3573static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3574  osthread->set_ucontext(context);
3575  osthread->set_siginfo(siginfo);
3576}
3577
3578//
3579// Handler function invoked when a thread's execution is suspended or
3580// resumed. We have to be careful that only async-safe functions are
3581// called here (Note: most pthread functions are not async safe and
3582// should be avoided.)
3583//
3584// Note: sigwait() is a more natural fit than sigsuspend() from an
3585// interface point of view, but sigwait() prevents the signal hander
3586// from being run. libpthread would get very confused by not having
3587// its signal handlers run and prevents sigwait()'s use with the
3588// mutex granting granting signal.
3589//
3590// Currently only ever called on the VMThread
3591//
3592static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3593  // Save and restore errno to avoid confusing native code with EINTR
3594  // after sigsuspend.
3595  int old_errno = errno;
3596
3597  Thread* thread = Thread::current();
3598  OSThread* osthread = thread->osthread();
3599  assert(thread->is_VM_thread(), "Must be VMThread");
3600  // read current suspend action
3601  int action = osthread->sr.suspend_action();
3602  if (action == os::Linux::SuspendResume::SR_SUSPEND) {
3603    suspend_save_context(osthread, siginfo, context);
3604
3605    // Notify the suspend action is about to be completed. do_suspend()
3606    // waits until SR_SUSPENDED is set and then returns. We will wait
3607    // here for a resume signal and that completes the suspend-other
3608    // action. do_suspend/do_resume is always called as a pair from
3609    // the same thread - so there are no races
3610
3611    // notify the caller
3612    osthread->sr.set_suspended();
3613
3614    sigset_t suspend_set;  // signals for sigsuspend()
3615
3616    // get current set of blocked signals and unblock resume signal
3617    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3618    sigdelset(&suspend_set, SR_signum);
3619
3620    // wait here until we are resumed
3621    do {
3622      sigsuspend(&suspend_set);
3623      // ignore all returns until we get a resume signal
3624    } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
3625
3626    resume_clear_context(osthread);
3627
3628  } else {
3629    assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
3630    // nothing special to do - just leave the handler
3631  }
3632
3633  errno = old_errno;
3634}
3635
3636
3637static int SR_initialize() {
3638  struct sigaction act;
3639  char *s;
3640  /* Get signal number to use for suspend/resume */
3641  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3642    int sig = ::strtol(s, 0, 10);
3643    if (sig > 0 || sig < _NSIG) {
3644        SR_signum = sig;
3645    }
3646  }
3647
3648  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3649        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3650
3651  sigemptyset(&SR_sigset);
3652  sigaddset(&SR_sigset, SR_signum);
3653
3654  /* Set up signal handler for suspend/resume */
3655  act.sa_flags = SA_RESTART|SA_SIGINFO;
3656  act.sa_handler = (void (*)(int)) SR_handler;
3657
3658  // SR_signum is blocked by default.
3659  // 4528190 - We also need to block pthread restart signal (32 on all
3660  // supported Linux platforms). Note that LinuxThreads need to block
3661  // this signal for all threads to work properly. So we don't have
3662  // to use hard-coded signal number when setting up the mask.
3663  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3664
3665  if (sigaction(SR_signum, &act, 0) == -1) {
3666    return -1;
3667  }
3668
3669  // Save signal flag
3670  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3671  return 0;
3672}
3673
3674
3675// returns true on success and false on error - really an error is fatal
3676// but this seems the normal response to library errors
3677static bool do_suspend(OSThread* osthread) {
3678  // mark as suspended and send signal
3679  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
3680  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3681  assert_status(status == 0, status, "pthread_kill");
3682
3683  // check status and wait until notified of suspension
3684  if (status == 0) {
3685    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3686      os::yield_all(i);
3687    }
3688    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3689    return true;
3690  }
3691  else {
3692    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3693    return false;
3694  }
3695}
3696
3697static void do_resume(OSThread* osthread) {
3698  assert(osthread->sr.is_suspended(), "thread should be suspended");
3699  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
3700
3701  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3702  assert_status(status == 0, status, "pthread_kill");
3703  // check status and wait unit notified of resumption
3704  if (status == 0) {
3705    for (int i = 0; osthread->sr.is_suspended(); i++) {
3706      os::yield_all(i);
3707    }
3708  }
3709  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3710}
3711
3712////////////////////////////////////////////////////////////////////////////////
3713// interrupt support
3714
3715void os::interrupt(Thread* thread) {
3716  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3717    "possibility of dangling Thread pointer");
3718
3719  OSThread* osthread = thread->osthread();
3720
3721  if (!osthread->interrupted()) {
3722    osthread->set_interrupted(true);
3723    // More than one thread can get here with the same value of osthread,
3724    // resulting in multiple notifications.  We do, however, want the store
3725    // to interrupted() to be visible to other threads before we execute unpark().
3726    OrderAccess::fence();
3727    ParkEvent * const slp = thread->_SleepEvent ;
3728    if (slp != NULL) slp->unpark() ;
3729  }
3730
3731  // For JSR166. Unpark even if interrupt status already was set
3732  if (thread->is_Java_thread())
3733    ((JavaThread*)thread)->parker()->unpark();
3734
3735  ParkEvent * ev = thread->_ParkEvent ;
3736  if (ev != NULL) ev->unpark() ;
3737
3738}
3739
3740bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3741  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3742    "possibility of dangling Thread pointer");
3743
3744  OSThread* osthread = thread->osthread();
3745
3746  bool interrupted = osthread->interrupted();
3747
3748  if (interrupted && clear_interrupted) {
3749    osthread->set_interrupted(false);
3750    // consider thread->_SleepEvent->reset() ... optional optimization
3751  }
3752
3753  return interrupted;
3754}
3755
3756///////////////////////////////////////////////////////////////////////////////////
3757// signal handling (except suspend/resume)
3758
3759// This routine may be used by user applications as a "hook" to catch signals.
3760// The user-defined signal handler must pass unrecognized signals to this
3761// routine, and if it returns true (non-zero), then the signal handler must
3762// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3763// routine will never retun false (zero), but instead will execute a VM panic
3764// routine kill the process.
3765//
3766// If this routine returns false, it is OK to call it again.  This allows
3767// the user-defined signal handler to perform checks either before or after
3768// the VM performs its own checks.  Naturally, the user code would be making
3769// a serious error if it tried to handle an exception (such as a null check
3770// or breakpoint) that the VM was generating for its own correct operation.
3771//
3772// This routine may recognize any of the following kinds of signals:
3773//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3774// It should be consulted by handlers for any of those signals.
3775//
3776// The caller of this routine must pass in the three arguments supplied
3777// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3778// field of the structure passed to sigaction().  This routine assumes that
3779// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3780//
3781// Note that the VM will print warnings if it detects conflicting signal
3782// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3783//
3784extern "C" JNIEXPORT int
3785JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3786                        void* ucontext, int abort_if_unrecognized);
3787
3788void signalHandler(int sig, siginfo_t* info, void* uc) {
3789  assert(info != NULL && uc != NULL, "it must be old kernel");
3790  int orig_errno = errno;  // Preserve errno value over signal handler.
3791  JVM_handle_linux_signal(sig, info, uc, true);
3792  errno = orig_errno;
3793}
3794
3795
3796// This boolean allows users to forward their own non-matching signals
3797// to JVM_handle_linux_signal, harmlessly.
3798bool os::Linux::signal_handlers_are_installed = false;
3799
3800// For signal-chaining
3801struct sigaction os::Linux::sigact[MAXSIGNUM];
3802unsigned int os::Linux::sigs = 0;
3803bool os::Linux::libjsig_is_loaded = false;
3804typedef struct sigaction *(*get_signal_t)(int);
3805get_signal_t os::Linux::get_signal_action = NULL;
3806
3807struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3808  struct sigaction *actp = NULL;
3809
3810  if (libjsig_is_loaded) {
3811    // Retrieve the old signal handler from libjsig
3812    actp = (*get_signal_action)(sig);
3813  }
3814  if (actp == NULL) {
3815    // Retrieve the preinstalled signal handler from jvm
3816    actp = get_preinstalled_handler(sig);
3817  }
3818
3819  return actp;
3820}
3821
3822static bool call_chained_handler(struct sigaction *actp, int sig,
3823                                 siginfo_t *siginfo, void *context) {
3824  // Call the old signal handler
3825  if (actp->sa_handler == SIG_DFL) {
3826    // It's more reasonable to let jvm treat it as an unexpected exception
3827    // instead of taking the default action.
3828    return false;
3829  } else if (actp->sa_handler != SIG_IGN) {
3830    if ((actp->sa_flags & SA_NODEFER) == 0) {
3831      // automaticlly block the signal
3832      sigaddset(&(actp->sa_mask), sig);
3833    }
3834
3835    sa_handler_t hand;
3836    sa_sigaction_t sa;
3837    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3838    // retrieve the chained handler
3839    if (siginfo_flag_set) {
3840      sa = actp->sa_sigaction;
3841    } else {
3842      hand = actp->sa_handler;
3843    }
3844
3845    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3846      actp->sa_handler = SIG_DFL;
3847    }
3848
3849    // try to honor the signal mask
3850    sigset_t oset;
3851    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3852
3853    // call into the chained handler
3854    if (siginfo_flag_set) {
3855      (*sa)(sig, siginfo, context);
3856    } else {
3857      (*hand)(sig);
3858    }
3859
3860    // restore the signal mask
3861    pthread_sigmask(SIG_SETMASK, &oset, 0);
3862  }
3863  // Tell jvm's signal handler the signal is taken care of.
3864  return true;
3865}
3866
3867bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3868  bool chained = false;
3869  // signal-chaining
3870  if (UseSignalChaining) {
3871    struct sigaction *actp = get_chained_signal_action(sig);
3872    if (actp != NULL) {
3873      chained = call_chained_handler(actp, sig, siginfo, context);
3874    }
3875  }
3876  return chained;
3877}
3878
3879struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3880  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3881    return &sigact[sig];
3882  }
3883  return NULL;
3884}
3885
3886void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3887  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3888  sigact[sig] = oldAct;
3889  sigs |= (unsigned int)1 << sig;
3890}
3891
3892// for diagnostic
3893int os::Linux::sigflags[MAXSIGNUM];
3894
3895int os::Linux::get_our_sigflags(int sig) {
3896  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3897  return sigflags[sig];
3898}
3899
3900void os::Linux::set_our_sigflags(int sig, int flags) {
3901  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3902  sigflags[sig] = flags;
3903}
3904
3905void os::Linux::set_signal_handler(int sig, bool set_installed) {
3906  // Check for overwrite.
3907  struct sigaction oldAct;
3908  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3909
3910  void* oldhand = oldAct.sa_sigaction
3911                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3912                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3913  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3914      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3915      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3916    if (AllowUserSignalHandlers || !set_installed) {
3917      // Do not overwrite; user takes responsibility to forward to us.
3918      return;
3919    } else if (UseSignalChaining) {
3920      // save the old handler in jvm
3921      save_preinstalled_handler(sig, oldAct);
3922      // libjsig also interposes the sigaction() call below and saves the
3923      // old sigaction on it own.
3924    } else {
3925      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3926                    "%#lx for signal %d.", (long)oldhand, sig));
3927    }
3928  }
3929
3930  struct sigaction sigAct;
3931  sigfillset(&(sigAct.sa_mask));
3932  sigAct.sa_handler = SIG_DFL;
3933  if (!set_installed) {
3934    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3935  } else {
3936    sigAct.sa_sigaction = signalHandler;
3937    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3938  }
3939  // Save flags, which are set by ours
3940  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3941  sigflags[sig] = sigAct.sa_flags;
3942
3943  int ret = sigaction(sig, &sigAct, &oldAct);
3944  assert(ret == 0, "check");
3945
3946  void* oldhand2  = oldAct.sa_sigaction
3947                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3948                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3949  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3950}
3951
3952// install signal handlers for signals that HotSpot needs to
3953// handle in order to support Java-level exception handling.
3954
3955void os::Linux::install_signal_handlers() {
3956  if (!signal_handlers_are_installed) {
3957    signal_handlers_are_installed = true;
3958
3959    // signal-chaining
3960    typedef void (*signal_setting_t)();
3961    signal_setting_t begin_signal_setting = NULL;
3962    signal_setting_t end_signal_setting = NULL;
3963    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3964                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3965    if (begin_signal_setting != NULL) {
3966      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3967                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3968      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3969                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3970      libjsig_is_loaded = true;
3971      assert(UseSignalChaining, "should enable signal-chaining");
3972    }
3973    if (libjsig_is_loaded) {
3974      // Tell libjsig jvm is setting signal handlers
3975      (*begin_signal_setting)();
3976    }
3977
3978    set_signal_handler(SIGSEGV, true);
3979    set_signal_handler(SIGPIPE, true);
3980    set_signal_handler(SIGBUS, true);
3981    set_signal_handler(SIGILL, true);
3982    set_signal_handler(SIGFPE, true);
3983    set_signal_handler(SIGXFSZ, true);
3984
3985    if (libjsig_is_loaded) {
3986      // Tell libjsig jvm finishes setting signal handlers
3987      (*end_signal_setting)();
3988    }
3989
3990    // We don't activate signal checker if libjsig is in place, we trust ourselves
3991    // and if UserSignalHandler is installed all bets are off.
3992    // Log that signal checking is off only if -verbose:jni is specified.
3993    if (CheckJNICalls) {
3994      if (libjsig_is_loaded) {
3995        if (PrintJNIResolving) {
3996          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3997        }
3998        check_signals = false;
3999      }
4000      if (AllowUserSignalHandlers) {
4001        if (PrintJNIResolving) {
4002          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4003        }
4004        check_signals = false;
4005      }
4006    }
4007  }
4008}
4009
4010// This is the fastest way to get thread cpu time on Linux.
4011// Returns cpu time (user+sys) for any thread, not only for current.
4012// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4013// It might work on 2.6.10+ with a special kernel/glibc patch.
4014// For reference, please, see IEEE Std 1003.1-2004:
4015//   http://www.unix.org/single_unix_specification
4016
4017jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4018  struct timespec tp;
4019  int rc = os::Linux::clock_gettime(clockid, &tp);
4020  assert(rc == 0, "clock_gettime is expected to return 0 code");
4021
4022  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4023}
4024
4025/////
4026// glibc on Linux platform uses non-documented flag
4027// to indicate, that some special sort of signal
4028// trampoline is used.
4029// We will never set this flag, and we should
4030// ignore this flag in our diagnostic
4031#ifdef SIGNIFICANT_SIGNAL_MASK
4032#undef SIGNIFICANT_SIGNAL_MASK
4033#endif
4034#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4035
4036static const char* get_signal_handler_name(address handler,
4037                                           char* buf, int buflen) {
4038  int offset;
4039  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4040  if (found) {
4041    // skip directory names
4042    const char *p1, *p2;
4043    p1 = buf;
4044    size_t len = strlen(os::file_separator());
4045    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4046    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4047  } else {
4048    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4049  }
4050  return buf;
4051}
4052
4053static void print_signal_handler(outputStream* st, int sig,
4054                                 char* buf, size_t buflen) {
4055  struct sigaction sa;
4056
4057  sigaction(sig, NULL, &sa);
4058
4059  // See comment for SIGNIFICANT_SIGNAL_MASK define
4060  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4061
4062  st->print("%s: ", os::exception_name(sig, buf, buflen));
4063
4064  address handler = (sa.sa_flags & SA_SIGINFO)
4065    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4066    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4067
4068  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4069    st->print("SIG_DFL");
4070  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4071    st->print("SIG_IGN");
4072  } else {
4073    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4074  }
4075
4076  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4077
4078  address rh = VMError::get_resetted_sighandler(sig);
4079  // May be, handler was resetted by VMError?
4080  if(rh != NULL) {
4081    handler = rh;
4082    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4083  }
4084
4085  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4086
4087  // Check: is it our handler?
4088  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4089     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4090    // It is our signal handler
4091    // check for flags, reset system-used one!
4092    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4093      st->print(
4094                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4095                os::Linux::get_our_sigflags(sig));
4096    }
4097  }
4098  st->cr();
4099}
4100
4101
4102#define DO_SIGNAL_CHECK(sig) \
4103  if (!sigismember(&check_signal_done, sig)) \
4104    os::Linux::check_signal_handler(sig)
4105
4106// This method is a periodic task to check for misbehaving JNI applications
4107// under CheckJNI, we can add any periodic checks here
4108
4109void os::run_periodic_checks() {
4110
4111  if (check_signals == false) return;
4112
4113  // SEGV and BUS if overridden could potentially prevent
4114  // generation of hs*.log in the event of a crash, debugging
4115  // such a case can be very challenging, so we absolutely
4116  // check the following for a good measure:
4117  DO_SIGNAL_CHECK(SIGSEGV);
4118  DO_SIGNAL_CHECK(SIGILL);
4119  DO_SIGNAL_CHECK(SIGFPE);
4120  DO_SIGNAL_CHECK(SIGBUS);
4121  DO_SIGNAL_CHECK(SIGPIPE);
4122  DO_SIGNAL_CHECK(SIGXFSZ);
4123
4124
4125  // ReduceSignalUsage allows the user to override these handlers
4126  // see comments at the very top and jvm_solaris.h
4127  if (!ReduceSignalUsage) {
4128    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4129    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4130    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4131    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4132  }
4133
4134  DO_SIGNAL_CHECK(SR_signum);
4135  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4136}
4137
4138typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4139
4140static os_sigaction_t os_sigaction = NULL;
4141
4142void os::Linux::check_signal_handler(int sig) {
4143  char buf[O_BUFLEN];
4144  address jvmHandler = NULL;
4145
4146
4147  struct sigaction act;
4148  if (os_sigaction == NULL) {
4149    // only trust the default sigaction, in case it has been interposed
4150    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4151    if (os_sigaction == NULL) return;
4152  }
4153
4154  os_sigaction(sig, (struct sigaction*)NULL, &act);
4155
4156
4157  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4158
4159  address thisHandler = (act.sa_flags & SA_SIGINFO)
4160    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4161    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4162
4163
4164  switch(sig) {
4165  case SIGSEGV:
4166  case SIGBUS:
4167  case SIGFPE:
4168  case SIGPIPE:
4169  case SIGILL:
4170  case SIGXFSZ:
4171    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4172    break;
4173
4174  case SHUTDOWN1_SIGNAL:
4175  case SHUTDOWN2_SIGNAL:
4176  case SHUTDOWN3_SIGNAL:
4177  case BREAK_SIGNAL:
4178    jvmHandler = (address)user_handler();
4179    break;
4180
4181  case INTERRUPT_SIGNAL:
4182    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4183    break;
4184
4185  default:
4186    if (sig == SR_signum) {
4187      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4188    } else {
4189      return;
4190    }
4191    break;
4192  }
4193
4194  if (thisHandler != jvmHandler) {
4195    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4196    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4197    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4198    // No need to check this sig any longer
4199    sigaddset(&check_signal_done, sig);
4200  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4201    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4202    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4203    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4204    // No need to check this sig any longer
4205    sigaddset(&check_signal_done, sig);
4206  }
4207
4208  // Dump all the signal
4209  if (sigismember(&check_signal_done, sig)) {
4210    print_signal_handlers(tty, buf, O_BUFLEN);
4211  }
4212}
4213
4214extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4215
4216extern bool signal_name(int signo, char* buf, size_t len);
4217
4218const char* os::exception_name(int exception_code, char* buf, size_t size) {
4219  if (0 < exception_code && exception_code <= SIGRTMAX) {
4220    // signal
4221    if (!signal_name(exception_code, buf, size)) {
4222      jio_snprintf(buf, size, "SIG%d", exception_code);
4223    }
4224    return buf;
4225  } else {
4226    return NULL;
4227  }
4228}
4229
4230// this is called _before_ the most of global arguments have been parsed
4231void os::init(void) {
4232  char dummy;   /* used to get a guess on initial stack address */
4233//  first_hrtime = gethrtime();
4234
4235  // With LinuxThreads the JavaMain thread pid (primordial thread)
4236  // is different than the pid of the java launcher thread.
4237  // So, on Linux, the launcher thread pid is passed to the VM
4238  // via the sun.java.launcher.pid property.
4239  // Use this property instead of getpid() if it was correctly passed.
4240  // See bug 6351349.
4241  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4242
4243  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4244
4245  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4246
4247  init_random(1234567);
4248
4249  ThreadCritical::initialize();
4250
4251  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4252  if (Linux::page_size() == -1) {
4253    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4254                  strerror(errno)));
4255  }
4256  init_page_sizes((size_t) Linux::page_size());
4257
4258  Linux::initialize_system_info();
4259
4260  // main_thread points to the aboriginal thread
4261  Linux::_main_thread = pthread_self();
4262
4263  Linux::clock_init();
4264  initial_time_count = os::elapsed_counter();
4265  pthread_mutex_init(&dl_mutex, NULL);
4266}
4267
4268// To install functions for atexit system call
4269extern "C" {
4270  static void perfMemory_exit_helper() {
4271    perfMemory_exit();
4272  }
4273}
4274
4275// this is called _after_ the global arguments have been parsed
4276jint os::init_2(void)
4277{
4278  Linux::fast_thread_clock_init();
4279
4280  // Allocate a single page and mark it as readable for safepoint polling
4281  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4282  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4283
4284  os::set_polling_page( polling_page );
4285
4286#ifndef PRODUCT
4287  if(Verbose && PrintMiscellaneous)
4288    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4289#endif
4290
4291  if (!UseMembar) {
4292    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4293    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4294    os::set_memory_serialize_page( mem_serialize_page );
4295
4296#ifndef PRODUCT
4297    if(Verbose && PrintMiscellaneous)
4298      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4299#endif
4300  }
4301
4302  os::large_page_init();
4303
4304  // initialize suspend/resume support - must do this before signal_sets_init()
4305  if (SR_initialize() != 0) {
4306    perror("SR_initialize failed");
4307    return JNI_ERR;
4308  }
4309
4310  Linux::signal_sets_init();
4311  Linux::install_signal_handlers();
4312
4313  // Check minimum allowable stack size for thread creation and to initialize
4314  // the java system classes, including StackOverflowError - depends on page
4315  // size.  Add a page for compiler2 recursion in main thread.
4316  // Add in 2*BytesPerWord times page size to account for VM stack during
4317  // class initialization depending on 32 or 64 bit VM.
4318  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4319            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4320                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4321
4322  size_t threadStackSizeInBytes = ThreadStackSize * K;
4323  if (threadStackSizeInBytes != 0 &&
4324      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4325        tty->print_cr("\nThe stack size specified is too small, "
4326                      "Specify at least %dk",
4327                      os::Linux::min_stack_allowed/ K);
4328        return JNI_ERR;
4329  }
4330
4331  // Make the stack size a multiple of the page size so that
4332  // the yellow/red zones can be guarded.
4333  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4334        vm_page_size()));
4335
4336  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4337
4338  Linux::libpthread_init();
4339  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4340     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4341          Linux::glibc_version(), Linux::libpthread_version(),
4342          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4343  }
4344
4345  if (UseNUMA) {
4346    if (!Linux::libnuma_init()) {
4347      UseNUMA = false;
4348    } else {
4349      if ((Linux::numa_max_node() < 1)) {
4350        // There's only one node(they start from 0), disable NUMA.
4351        UseNUMA = false;
4352      }
4353    }
4354    // With SHM large pages we cannot uncommit a page, so there's not way
4355    // we can make the adaptive lgrp chunk resizing work. If the user specified
4356    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4357    // disable adaptive resizing.
4358    if (UseNUMA && UseLargePages && UseSHM) {
4359      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4360        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4361          UseLargePages = false;
4362        } else {
4363          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4364          UseAdaptiveSizePolicy = false;
4365          UseAdaptiveNUMAChunkSizing = false;
4366        }
4367      } else {
4368        UseNUMA = false;
4369      }
4370    }
4371    if (!UseNUMA && ForceNUMA) {
4372      UseNUMA = true;
4373    }
4374  }
4375
4376  if (MaxFDLimit) {
4377    // set the number of file descriptors to max. print out error
4378    // if getrlimit/setrlimit fails but continue regardless.
4379    struct rlimit nbr_files;
4380    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4381    if (status != 0) {
4382      if (PrintMiscellaneous && (Verbose || WizardMode))
4383        perror("os::init_2 getrlimit failed");
4384    } else {
4385      nbr_files.rlim_cur = nbr_files.rlim_max;
4386      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4387      if (status != 0) {
4388        if (PrintMiscellaneous && (Verbose || WizardMode))
4389          perror("os::init_2 setrlimit failed");
4390      }
4391    }
4392  }
4393
4394  // Initialize lock used to serialize thread creation (see os::create_thread)
4395  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4396
4397  // at-exit methods are called in the reverse order of their registration.
4398  // atexit functions are called on return from main or as a result of a
4399  // call to exit(3C). There can be only 32 of these functions registered
4400  // and atexit() does not set errno.
4401
4402  if (PerfAllowAtExitRegistration) {
4403    // only register atexit functions if PerfAllowAtExitRegistration is set.
4404    // atexit functions can be delayed until process exit time, which
4405    // can be problematic for embedded VM situations. Embedded VMs should
4406    // call DestroyJavaVM() to assure that VM resources are released.
4407
4408    // note: perfMemory_exit_helper atexit function may be removed in
4409    // the future if the appropriate cleanup code can be added to the
4410    // VM_Exit VMOperation's doit method.
4411    if (atexit(perfMemory_exit_helper) != 0) {
4412      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4413    }
4414  }
4415
4416  // initialize thread priority policy
4417  prio_init();
4418
4419  return JNI_OK;
4420}
4421
4422// this is called at the end of vm_initialization
4423void os::init_3(void)
4424{
4425#ifdef JAVASE_EMBEDDED
4426  // Start the MemNotifyThread
4427  if (LowMemoryProtection) {
4428    MemNotifyThread::start();
4429  }
4430  return;
4431#endif
4432}
4433
4434// Mark the polling page as unreadable
4435void os::make_polling_page_unreadable(void) {
4436  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4437    fatal("Could not disable polling page");
4438};
4439
4440// Mark the polling page as readable
4441void os::make_polling_page_readable(void) {
4442  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4443    fatal("Could not enable polling page");
4444  }
4445};
4446
4447int os::active_processor_count() {
4448  // Linux doesn't yet have a (official) notion of processor sets,
4449  // so just return the number of online processors.
4450  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4451  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4452  return online_cpus;
4453}
4454
4455void os::set_native_thread_name(const char *name) {
4456  // Not yet implemented.
4457  return;
4458}
4459
4460bool os::distribute_processes(uint length, uint* distribution) {
4461  // Not yet implemented.
4462  return false;
4463}
4464
4465bool os::bind_to_processor(uint processor_id) {
4466  // Not yet implemented.
4467  return false;
4468}
4469
4470///
4471
4472// Suspends the target using the signal mechanism and then grabs the PC before
4473// resuming the target. Used by the flat-profiler only
4474ExtendedPC os::get_thread_pc(Thread* thread) {
4475  // Make sure that it is called by the watcher for the VMThread
4476  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4477  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4478
4479  ExtendedPC epc;
4480
4481  OSThread* osthread = thread->osthread();
4482  if (do_suspend(osthread)) {
4483    if (osthread->ucontext() != NULL) {
4484      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4485    } else {
4486      // NULL context is unexpected, double-check this is the VMThread
4487      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4488    }
4489    do_resume(osthread);
4490  }
4491  // failure means pthread_kill failed for some reason - arguably this is
4492  // a fatal problem, but such problems are ignored elsewhere
4493
4494  return epc;
4495}
4496
4497int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4498{
4499   if (is_NPTL()) {
4500      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4501   } else {
4502      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4503      // word back to default 64bit precision if condvar is signaled. Java
4504      // wants 53bit precision.  Save and restore current value.
4505      int fpu = get_fpu_control_word();
4506      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4507      set_fpu_control_word(fpu);
4508      return status;
4509   }
4510}
4511
4512////////////////////////////////////////////////////////////////////////////////
4513// debug support
4514
4515bool os::find(address addr, outputStream* st) {
4516  Dl_info dlinfo;
4517  memset(&dlinfo, 0, sizeof(dlinfo));
4518  if (dladdr(addr, &dlinfo)) {
4519    st->print(PTR_FORMAT ": ", addr);
4520    if (dlinfo.dli_sname != NULL) {
4521      st->print("%s+%#x", dlinfo.dli_sname,
4522                 addr - (intptr_t)dlinfo.dli_saddr);
4523    } else if (dlinfo.dli_fname) {
4524      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4525    } else {
4526      st->print("<absolute address>");
4527    }
4528    if (dlinfo.dli_fname) {
4529      st->print(" in %s", dlinfo.dli_fname);
4530    }
4531    if (dlinfo.dli_fbase) {
4532      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4533    }
4534    st->cr();
4535
4536    if (Verbose) {
4537      // decode some bytes around the PC
4538      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4539      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4540      address       lowest = (address) dlinfo.dli_sname;
4541      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4542      if (begin < lowest)  begin = lowest;
4543      Dl_info dlinfo2;
4544      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4545          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4546        end = (address) dlinfo2.dli_saddr;
4547      Disassembler::decode(begin, end, st);
4548    }
4549    return true;
4550  }
4551  return false;
4552}
4553
4554////////////////////////////////////////////////////////////////////////////////
4555// misc
4556
4557// This does not do anything on Linux. This is basically a hook for being
4558// able to use structured exception handling (thread-local exception filters)
4559// on, e.g., Win32.
4560void
4561os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4562                         JavaCallArguments* args, Thread* thread) {
4563  f(value, method, args, thread);
4564}
4565
4566void os::print_statistics() {
4567}
4568
4569int os::message_box(const char* title, const char* message) {
4570  int i;
4571  fdStream err(defaultStream::error_fd());
4572  for (i = 0; i < 78; i++) err.print_raw("=");
4573  err.cr();
4574  err.print_raw_cr(title);
4575  for (i = 0; i < 78; i++) err.print_raw("-");
4576  err.cr();
4577  err.print_raw_cr(message);
4578  for (i = 0; i < 78; i++) err.print_raw("=");
4579  err.cr();
4580
4581  char buf[16];
4582  // Prevent process from exiting upon "read error" without consuming all CPU
4583  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4584
4585  return buf[0] == 'y' || buf[0] == 'Y';
4586}
4587
4588int os::stat(const char *path, struct stat *sbuf) {
4589  char pathbuf[MAX_PATH];
4590  if (strlen(path) > MAX_PATH - 1) {
4591    errno = ENAMETOOLONG;
4592    return -1;
4593  }
4594  os::native_path(strcpy(pathbuf, path));
4595  return ::stat(pathbuf, sbuf);
4596}
4597
4598bool os::check_heap(bool force) {
4599  return true;
4600}
4601
4602int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4603  return ::vsnprintf(buf, count, format, args);
4604}
4605
4606// Is a (classpath) directory empty?
4607bool os::dir_is_empty(const char* path) {
4608  DIR *dir = NULL;
4609  struct dirent *ptr;
4610
4611  dir = opendir(path);
4612  if (dir == NULL) return true;
4613
4614  /* Scan the directory */
4615  bool result = true;
4616  char buf[sizeof(struct dirent) + MAX_PATH];
4617  while (result && (ptr = ::readdir(dir)) != NULL) {
4618    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4619      result = false;
4620    }
4621  }
4622  closedir(dir);
4623  return result;
4624}
4625
4626// This code originates from JDK's sysOpen and open64_w
4627// from src/solaris/hpi/src/system_md.c
4628
4629#ifndef O_DELETE
4630#define O_DELETE 0x10000
4631#endif
4632
4633// Open a file. Unlink the file immediately after open returns
4634// if the specified oflag has the O_DELETE flag set.
4635// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4636
4637int os::open(const char *path, int oflag, int mode) {
4638
4639  if (strlen(path) > MAX_PATH - 1) {
4640    errno = ENAMETOOLONG;
4641    return -1;
4642  }
4643  int fd;
4644  int o_delete = (oflag & O_DELETE);
4645  oflag = oflag & ~O_DELETE;
4646
4647  fd = ::open64(path, oflag, mode);
4648  if (fd == -1) return -1;
4649
4650  //If the open succeeded, the file might still be a directory
4651  {
4652    struct stat64 buf64;
4653    int ret = ::fstat64(fd, &buf64);
4654    int st_mode = buf64.st_mode;
4655
4656    if (ret != -1) {
4657      if ((st_mode & S_IFMT) == S_IFDIR) {
4658        errno = EISDIR;
4659        ::close(fd);
4660        return -1;
4661      }
4662    } else {
4663      ::close(fd);
4664      return -1;
4665    }
4666  }
4667
4668    /*
4669     * All file descriptors that are opened in the JVM and not
4670     * specifically destined for a subprocess should have the
4671     * close-on-exec flag set.  If we don't set it, then careless 3rd
4672     * party native code might fork and exec without closing all
4673     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4674     * UNIXProcess.c), and this in turn might:
4675     *
4676     * - cause end-of-file to fail to be detected on some file
4677     *   descriptors, resulting in mysterious hangs, or
4678     *
4679     * - might cause an fopen in the subprocess to fail on a system
4680     *   suffering from bug 1085341.
4681     *
4682     * (Yes, the default setting of the close-on-exec flag is a Unix
4683     * design flaw)
4684     *
4685     * See:
4686     * 1085341: 32-bit stdio routines should support file descriptors >255
4687     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4688     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4689     */
4690#ifdef FD_CLOEXEC
4691    {
4692        int flags = ::fcntl(fd, F_GETFD);
4693        if (flags != -1)
4694            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4695    }
4696#endif
4697
4698  if (o_delete != 0) {
4699    ::unlink(path);
4700  }
4701  return fd;
4702}
4703
4704
4705// create binary file, rewriting existing file if required
4706int os::create_binary_file(const char* path, bool rewrite_existing) {
4707  int oflags = O_WRONLY | O_CREAT;
4708  if (!rewrite_existing) {
4709    oflags |= O_EXCL;
4710  }
4711  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4712}
4713
4714// return current position of file pointer
4715jlong os::current_file_offset(int fd) {
4716  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4717}
4718
4719// move file pointer to the specified offset
4720jlong os::seek_to_file_offset(int fd, jlong offset) {
4721  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4722}
4723
4724// This code originates from JDK's sysAvailable
4725// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4726
4727int os::available(int fd, jlong *bytes) {
4728  jlong cur, end;
4729  int mode;
4730  struct stat64 buf64;
4731
4732  if (::fstat64(fd, &buf64) >= 0) {
4733    mode = buf64.st_mode;
4734    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4735      /*
4736      * XXX: is the following call interruptible? If so, this might
4737      * need to go through the INTERRUPT_IO() wrapper as for other
4738      * blocking, interruptible calls in this file.
4739      */
4740      int n;
4741      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4742        *bytes = n;
4743        return 1;
4744      }
4745    }
4746  }
4747  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4748    return 0;
4749  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4750    return 0;
4751  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4752    return 0;
4753  }
4754  *bytes = end - cur;
4755  return 1;
4756}
4757
4758int os::socket_available(int fd, jint *pbytes) {
4759  // Linux doc says EINTR not returned, unlike Solaris
4760  int ret = ::ioctl(fd, FIONREAD, pbytes);
4761
4762  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4763  // is expected to return 0 on failure and 1 on success to the jdk.
4764  return (ret < 0) ? 0 : 1;
4765}
4766
4767// Map a block of memory.
4768char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4769                     char *addr, size_t bytes, bool read_only,
4770                     bool allow_exec) {
4771  int prot;
4772  int flags = MAP_PRIVATE;
4773
4774  if (read_only) {
4775    prot = PROT_READ;
4776  } else {
4777    prot = PROT_READ | PROT_WRITE;
4778  }
4779
4780  if (allow_exec) {
4781    prot |= PROT_EXEC;
4782  }
4783
4784  if (addr != NULL) {
4785    flags |= MAP_FIXED;
4786  }
4787
4788  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4789                                     fd, file_offset);
4790  if (mapped_address == MAP_FAILED) {
4791    return NULL;
4792  }
4793  return mapped_address;
4794}
4795
4796
4797// Remap a block of memory.
4798char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4799                       char *addr, size_t bytes, bool read_only,
4800                       bool allow_exec) {
4801  // same as map_memory() on this OS
4802  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4803                        allow_exec);
4804}
4805
4806
4807// Unmap a block of memory.
4808bool os::pd_unmap_memory(char* addr, size_t bytes) {
4809  return munmap(addr, bytes) == 0;
4810}
4811
4812static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4813
4814static clockid_t thread_cpu_clockid(Thread* thread) {
4815  pthread_t tid = thread->osthread()->pthread_id();
4816  clockid_t clockid;
4817
4818  // Get thread clockid
4819  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4820  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4821  return clockid;
4822}
4823
4824// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4825// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4826// of a thread.
4827//
4828// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4829// the fast estimate available on the platform.
4830
4831jlong os::current_thread_cpu_time() {
4832  if (os::Linux::supports_fast_thread_cpu_time()) {
4833    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4834  } else {
4835    // return user + sys since the cost is the same
4836    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4837  }
4838}
4839
4840jlong os::thread_cpu_time(Thread* thread) {
4841  // consistent with what current_thread_cpu_time() returns
4842  if (os::Linux::supports_fast_thread_cpu_time()) {
4843    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4844  } else {
4845    return slow_thread_cpu_time(thread, true /* user + sys */);
4846  }
4847}
4848
4849jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4850  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4851    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4852  } else {
4853    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4854  }
4855}
4856
4857jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4858  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4859    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4860  } else {
4861    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4862  }
4863}
4864
4865//
4866//  -1 on error.
4867//
4868
4869static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4870  static bool proc_task_unchecked = true;
4871  static const char *proc_stat_path = "/proc/%d/stat";
4872  pid_t  tid = thread->osthread()->thread_id();
4873  char *s;
4874  char stat[2048];
4875  int statlen;
4876  char proc_name[64];
4877  int count;
4878  long sys_time, user_time;
4879  char cdummy;
4880  int idummy;
4881  long ldummy;
4882  FILE *fp;
4883
4884  // The /proc/<tid>/stat aggregates per-process usage on
4885  // new Linux kernels 2.6+ where NPTL is supported.
4886  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4887  // See bug 6328462.
4888  // There possibly can be cases where there is no directory
4889  // /proc/self/task, so we check its availability.
4890  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4891    // This is executed only once
4892    proc_task_unchecked = false;
4893    fp = fopen("/proc/self/task", "r");
4894    if (fp != NULL) {
4895      proc_stat_path = "/proc/self/task/%d/stat";
4896      fclose(fp);
4897    }
4898  }
4899
4900  sprintf(proc_name, proc_stat_path, tid);
4901  fp = fopen(proc_name, "r");
4902  if ( fp == NULL ) return -1;
4903  statlen = fread(stat, 1, 2047, fp);
4904  stat[statlen] = '\0';
4905  fclose(fp);
4906
4907  // Skip pid and the command string. Note that we could be dealing with
4908  // weird command names, e.g. user could decide to rename java launcher
4909  // to "java 1.4.2 :)", then the stat file would look like
4910  //                1234 (java 1.4.2 :)) R ... ...
4911  // We don't really need to know the command string, just find the last
4912  // occurrence of ")" and then start parsing from there. See bug 4726580.
4913  s = strrchr(stat, ')');
4914  if (s == NULL ) return -1;
4915
4916  // Skip blank chars
4917  do s++; while (isspace(*s));
4918
4919  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4920                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4921                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4922                 &user_time, &sys_time);
4923  if ( count != 13 ) return -1;
4924  if (user_sys_cpu_time) {
4925    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4926  } else {
4927    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4928  }
4929}
4930
4931void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4932  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4933  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4934  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4935  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4936}
4937
4938void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4939  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4940  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4941  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4942  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4943}
4944
4945bool os::is_thread_cpu_time_supported() {
4946  return true;
4947}
4948
4949// System loadavg support.  Returns -1 if load average cannot be obtained.
4950// Linux doesn't yet have a (official) notion of processor sets,
4951// so just return the system wide load average.
4952int os::loadavg(double loadavg[], int nelem) {
4953  return ::getloadavg(loadavg, nelem);
4954}
4955
4956void os::pause() {
4957  char filename[MAX_PATH];
4958  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4959    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4960  } else {
4961    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4962  }
4963
4964  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4965  if (fd != -1) {
4966    struct stat buf;
4967    ::close(fd);
4968    while (::stat(filename, &buf) == 0) {
4969      (void)::poll(NULL, 0, 100);
4970    }
4971  } else {
4972    jio_fprintf(stderr,
4973      "Could not open pause file '%s', continuing immediately.\n", filename);
4974  }
4975}
4976
4977
4978// Refer to the comments in os_solaris.cpp park-unpark.
4979//
4980// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4981// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4982// For specifics regarding the bug see GLIBC BUGID 261237 :
4983//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4984// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4985// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4986// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4987// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4988// and monitorenter when we're using 1-0 locking.  All those operations may result in
4989// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4990// of libpthread avoids the problem, but isn't practical.
4991//
4992// Possible remedies:
4993//
4994// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4995//      This is palliative and probabilistic, however.  If the thread is preempted
4996//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4997//      than the minimum period may have passed, and the abstime may be stale (in the
4998//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4999//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5000//
5001// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5002//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5003//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5004//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5005//      thread.
5006//
5007// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5008//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5009//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5010//      This also works well.  In fact it avoids kernel-level scalability impediments
5011//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5012//      timers in a graceful fashion.
5013//
5014// 4.   When the abstime value is in the past it appears that control returns
5015//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5016//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5017//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5018//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5019//      It may be possible to avoid reinitialization by checking the return
5020//      value from pthread_cond_timedwait().  In addition to reinitializing the
5021//      condvar we must establish the invariant that cond_signal() is only called
5022//      within critical sections protected by the adjunct mutex.  This prevents
5023//      cond_signal() from "seeing" a condvar that's in the midst of being
5024//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5025//      desirable signal-after-unlock optimization that avoids futile context switching.
5026//
5027//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5028//      structure when a condvar is used or initialized.  cond_destroy()  would
5029//      release the helper structure.  Our reinitialize-after-timedwait fix
5030//      put excessive stress on malloc/free and locks protecting the c-heap.
5031//
5032// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5033// It may be possible to refine (4) by checking the kernel and NTPL verisons
5034// and only enabling the work-around for vulnerable environments.
5035
5036// utility to compute the abstime argument to timedwait:
5037// millis is the relative timeout time
5038// abstime will be the absolute timeout time
5039// TODO: replace compute_abstime() with unpackTime()
5040
5041static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5042  if (millis < 0)  millis = 0;
5043  struct timeval now;
5044  int status = gettimeofday(&now, NULL);
5045  assert(status == 0, "gettimeofday");
5046  jlong seconds = millis / 1000;
5047  millis %= 1000;
5048  if (seconds > 50000000) { // see man cond_timedwait(3T)
5049    seconds = 50000000;
5050  }
5051  abstime->tv_sec = now.tv_sec  + seconds;
5052  long       usec = now.tv_usec + millis * 1000;
5053  if (usec >= 1000000) {
5054    abstime->tv_sec += 1;
5055    usec -= 1000000;
5056  }
5057  abstime->tv_nsec = usec * 1000;
5058  return abstime;
5059}
5060
5061
5062// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5063// Conceptually TryPark() should be equivalent to park(0).
5064
5065int os::PlatformEvent::TryPark() {
5066  for (;;) {
5067    const int v = _Event ;
5068    guarantee ((v == 0) || (v == 1), "invariant") ;
5069    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5070  }
5071}
5072
5073void os::PlatformEvent::park() {       // AKA "down()"
5074  // Invariant: Only the thread associated with the Event/PlatformEvent
5075  // may call park().
5076  // TODO: assert that _Assoc != NULL or _Assoc == Self
5077  int v ;
5078  for (;;) {
5079      v = _Event ;
5080      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5081  }
5082  guarantee (v >= 0, "invariant") ;
5083  if (v == 0) {
5084     // Do this the hard way by blocking ...
5085     int status = pthread_mutex_lock(_mutex);
5086     assert_status(status == 0, status, "mutex_lock");
5087     guarantee (_nParked == 0, "invariant") ;
5088     ++ _nParked ;
5089     while (_Event < 0) {
5090        status = pthread_cond_wait(_cond, _mutex);
5091        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5092        // Treat this the same as if the wait was interrupted
5093        if (status == ETIME) { status = EINTR; }
5094        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5095     }
5096     -- _nParked ;
5097
5098    _Event = 0 ;
5099     status = pthread_mutex_unlock(_mutex);
5100     assert_status(status == 0, status, "mutex_unlock");
5101    // Paranoia to ensure our locked and lock-free paths interact
5102    // correctly with each other.
5103    OrderAccess::fence();
5104  }
5105  guarantee (_Event >= 0, "invariant") ;
5106}
5107
5108int os::PlatformEvent::park(jlong millis) {
5109  guarantee (_nParked == 0, "invariant") ;
5110
5111  int v ;
5112  for (;;) {
5113      v = _Event ;
5114      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5115  }
5116  guarantee (v >= 0, "invariant") ;
5117  if (v != 0) return OS_OK ;
5118
5119  // We do this the hard way, by blocking the thread.
5120  // Consider enforcing a minimum timeout value.
5121  struct timespec abst;
5122  compute_abstime(&abst, millis);
5123
5124  int ret = OS_TIMEOUT;
5125  int status = pthread_mutex_lock(_mutex);
5126  assert_status(status == 0, status, "mutex_lock");
5127  guarantee (_nParked == 0, "invariant") ;
5128  ++_nParked ;
5129
5130  // Object.wait(timo) will return because of
5131  // (a) notification
5132  // (b) timeout
5133  // (c) thread.interrupt
5134  //
5135  // Thread.interrupt and object.notify{All} both call Event::set.
5136  // That is, we treat thread.interrupt as a special case of notification.
5137  // The underlying Solaris implementation, cond_timedwait, admits
5138  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5139  // JVM from making those visible to Java code.  As such, we must
5140  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5141  //
5142  // TODO: properly differentiate simultaneous notify+interrupt.
5143  // In that case, we should propagate the notify to another waiter.
5144
5145  while (_Event < 0) {
5146    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5147    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5148      pthread_cond_destroy (_cond);
5149      pthread_cond_init (_cond, NULL) ;
5150    }
5151    assert_status(status == 0 || status == EINTR ||
5152                  status == ETIME || status == ETIMEDOUT,
5153                  status, "cond_timedwait");
5154    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5155    if (status == ETIME || status == ETIMEDOUT) break ;
5156    // We consume and ignore EINTR and spurious wakeups.
5157  }
5158  --_nParked ;
5159  if (_Event >= 0) {
5160     ret = OS_OK;
5161  }
5162  _Event = 0 ;
5163  status = pthread_mutex_unlock(_mutex);
5164  assert_status(status == 0, status, "mutex_unlock");
5165  assert (_nParked == 0, "invariant") ;
5166  // Paranoia to ensure our locked and lock-free paths interact
5167  // correctly with each other.
5168  OrderAccess::fence();
5169  return ret;
5170}
5171
5172void os::PlatformEvent::unpark() {
5173  // Transitions for _Event:
5174  //    0 :=> 1
5175  //    1 :=> 1
5176  //   -1 :=> either 0 or 1; must signal target thread
5177  //          That is, we can safely transition _Event from -1 to either
5178  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5179  //          unpark() calls.
5180  // See also: "Semaphores in Plan 9" by Mullender & Cox
5181  //
5182  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5183  // that it will take two back-to-back park() calls for the owning
5184  // thread to block. This has the benefit of forcing a spurious return
5185  // from the first park() call after an unpark() call which will help
5186  // shake out uses of park() and unpark() without condition variables.
5187
5188  if (Atomic::xchg(1, &_Event) >= 0) return;
5189
5190  // Wait for the thread associated with the event to vacate
5191  int status = pthread_mutex_lock(_mutex);
5192  assert_status(status == 0, status, "mutex_lock");
5193  int AnyWaiters = _nParked;
5194  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5195  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5196    AnyWaiters = 0;
5197    pthread_cond_signal(_cond);
5198  }
5199  status = pthread_mutex_unlock(_mutex);
5200  assert_status(status == 0, status, "mutex_unlock");
5201  if (AnyWaiters != 0) {
5202    status = pthread_cond_signal(_cond);
5203    assert_status(status == 0, status, "cond_signal");
5204  }
5205
5206  // Note that we signal() _after dropping the lock for "immortal" Events.
5207  // This is safe and avoids a common class of  futile wakeups.  In rare
5208  // circumstances this can cause a thread to return prematurely from
5209  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5210  // simply re-test the condition and re-park itself.
5211}
5212
5213
5214// JSR166
5215// -------------------------------------------------------
5216
5217/*
5218 * The solaris and linux implementations of park/unpark are fairly
5219 * conservative for now, but can be improved. They currently use a
5220 * mutex/condvar pair, plus a a count.
5221 * Park decrements count if > 0, else does a condvar wait.  Unpark
5222 * sets count to 1 and signals condvar.  Only one thread ever waits
5223 * on the condvar. Contention seen when trying to park implies that someone
5224 * is unparking you, so don't wait. And spurious returns are fine, so there
5225 * is no need to track notifications.
5226 */
5227
5228#define MAX_SECS 100000000
5229/*
5230 * This code is common to linux and solaris and will be moved to a
5231 * common place in dolphin.
5232 *
5233 * The passed in time value is either a relative time in nanoseconds
5234 * or an absolute time in milliseconds. Either way it has to be unpacked
5235 * into suitable seconds and nanoseconds components and stored in the
5236 * given timespec structure.
5237 * Given time is a 64-bit value and the time_t used in the timespec is only
5238 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5239 * overflow if times way in the future are given. Further on Solaris versions
5240 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5241 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5242 * As it will be 28 years before "now + 100000000" will overflow we can
5243 * ignore overflow and just impose a hard-limit on seconds using the value
5244 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5245 * years from "now".
5246 */
5247
5248static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5249  assert (time > 0, "convertTime");
5250
5251  struct timeval now;
5252  int status = gettimeofday(&now, NULL);
5253  assert(status == 0, "gettimeofday");
5254
5255  time_t max_secs = now.tv_sec + MAX_SECS;
5256
5257  if (isAbsolute) {
5258    jlong secs = time / 1000;
5259    if (secs > max_secs) {
5260      absTime->tv_sec = max_secs;
5261    }
5262    else {
5263      absTime->tv_sec = secs;
5264    }
5265    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5266  }
5267  else {
5268    jlong secs = time / NANOSECS_PER_SEC;
5269    if (secs >= MAX_SECS) {
5270      absTime->tv_sec = max_secs;
5271      absTime->tv_nsec = 0;
5272    }
5273    else {
5274      absTime->tv_sec = now.tv_sec + secs;
5275      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5276      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5277        absTime->tv_nsec -= NANOSECS_PER_SEC;
5278        ++absTime->tv_sec; // note: this must be <= max_secs
5279      }
5280    }
5281  }
5282  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5283  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5284  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5285  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5286}
5287
5288void Parker::park(bool isAbsolute, jlong time) {
5289  // Ideally we'd do something useful while spinning, such
5290  // as calling unpackTime().
5291
5292  // Optional fast-path check:
5293  // Return immediately if a permit is available.
5294  // We depend on Atomic::xchg() having full barrier semantics
5295  // since we are doing a lock-free update to _counter.
5296  if (Atomic::xchg(0, &_counter) > 0) return;
5297
5298  Thread* thread = Thread::current();
5299  assert(thread->is_Java_thread(), "Must be JavaThread");
5300  JavaThread *jt = (JavaThread *)thread;
5301
5302  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5303  // Check interrupt before trying to wait
5304  if (Thread::is_interrupted(thread, false)) {
5305    return;
5306  }
5307
5308  // Next, demultiplex/decode time arguments
5309  timespec absTime;
5310  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5311    return;
5312  }
5313  if (time > 0) {
5314    unpackTime(&absTime, isAbsolute, time);
5315  }
5316
5317
5318  // Enter safepoint region
5319  // Beware of deadlocks such as 6317397.
5320  // The per-thread Parker:: mutex is a classic leaf-lock.
5321  // In particular a thread must never block on the Threads_lock while
5322  // holding the Parker:: mutex.  If safepoints are pending both the
5323  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5324  ThreadBlockInVM tbivm(jt);
5325
5326  // Don't wait if cannot get lock since interference arises from
5327  // unblocking.  Also. check interrupt before trying wait
5328  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5329    return;
5330  }
5331
5332  int status ;
5333  if (_counter > 0)  { // no wait needed
5334    _counter = 0;
5335    status = pthread_mutex_unlock(_mutex);
5336    assert (status == 0, "invariant") ;
5337    // Paranoia to ensure our locked and lock-free paths interact
5338    // correctly with each other and Java-level accesses.
5339    OrderAccess::fence();
5340    return;
5341  }
5342
5343#ifdef ASSERT
5344  // Don't catch signals while blocked; let the running threads have the signals.
5345  // (This allows a debugger to break into the running thread.)
5346  sigset_t oldsigs;
5347  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5348  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5349#endif
5350
5351  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5352  jt->set_suspend_equivalent();
5353  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5354
5355  if (time == 0) {
5356    status = pthread_cond_wait (_cond, _mutex) ;
5357  } else {
5358    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5359    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5360      pthread_cond_destroy (_cond) ;
5361      pthread_cond_init    (_cond, NULL);
5362    }
5363  }
5364  assert_status(status == 0 || status == EINTR ||
5365                status == ETIME || status == ETIMEDOUT,
5366                status, "cond_timedwait");
5367
5368#ifdef ASSERT
5369  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5370#endif
5371
5372  _counter = 0 ;
5373  status = pthread_mutex_unlock(_mutex) ;
5374  assert_status(status == 0, status, "invariant") ;
5375  // Paranoia to ensure our locked and lock-free paths interact
5376  // correctly with each other and Java-level accesses.
5377  OrderAccess::fence();
5378
5379  // If externally suspended while waiting, re-suspend
5380  if (jt->handle_special_suspend_equivalent_condition()) {
5381    jt->java_suspend_self();
5382  }
5383}
5384
5385void Parker::unpark() {
5386  int s, status ;
5387  status = pthread_mutex_lock(_mutex);
5388  assert (status == 0, "invariant") ;
5389  s = _counter;
5390  _counter = 1;
5391  if (s < 1) {
5392     if (WorkAroundNPTLTimedWaitHang) {
5393        status = pthread_cond_signal (_cond) ;
5394        assert (status == 0, "invariant") ;
5395        status = pthread_mutex_unlock(_mutex);
5396        assert (status == 0, "invariant") ;
5397     } else {
5398        status = pthread_mutex_unlock(_mutex);
5399        assert (status == 0, "invariant") ;
5400        status = pthread_cond_signal (_cond) ;
5401        assert (status == 0, "invariant") ;
5402     }
5403  } else {
5404    pthread_mutex_unlock(_mutex);
5405    assert (status == 0, "invariant") ;
5406  }
5407}
5408
5409
5410extern char** environ;
5411
5412#ifndef __NR_fork
5413#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5414#endif
5415
5416#ifndef __NR_execve
5417#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5418#endif
5419
5420// Run the specified command in a separate process. Return its exit value,
5421// or -1 on failure (e.g. can't fork a new process).
5422// Unlike system(), this function can be called from signal handler. It
5423// doesn't block SIGINT et al.
5424int os::fork_and_exec(char* cmd) {
5425  const char * argv[4] = {"sh", "-c", cmd, NULL};
5426
5427  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5428  // pthread_atfork handlers and reset pthread library. All we need is a
5429  // separate process to execve. Make a direct syscall to fork process.
5430  // On IA64 there's no fork syscall, we have to use fork() and hope for
5431  // the best...
5432  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5433              IA64_ONLY(fork();)
5434
5435  if (pid < 0) {
5436    // fork failed
5437    return -1;
5438
5439  } else if (pid == 0) {
5440    // child process
5441
5442    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5443    // first to kill every thread on the thread list. Because this list is
5444    // not reset by fork() (see notes above), execve() will instead kill
5445    // every thread in the parent process. We know this is the only thread
5446    // in the new process, so make a system call directly.
5447    // IA64 should use normal execve() from glibc to match the glibc fork()
5448    // above.
5449    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5450    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5451
5452    // execve failed
5453    _exit(-1);
5454
5455  } else  {
5456    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5457    // care about the actual exit code, for now.
5458
5459    int status;
5460
5461    // Wait for the child process to exit.  This returns immediately if
5462    // the child has already exited. */
5463    while (waitpid(pid, &status, 0) < 0) {
5464        switch (errno) {
5465        case ECHILD: return 0;
5466        case EINTR: break;
5467        default: return -1;
5468        }
5469    }
5470
5471    if (WIFEXITED(status)) {
5472       // The child exited normally; get its exit code.
5473       return WEXITSTATUS(status);
5474    } else if (WIFSIGNALED(status)) {
5475       // The child exited because of a signal
5476       // The best value to return is 0x80 + signal number,
5477       // because that is what all Unix shells do, and because
5478       // it allows callers to distinguish between process exit and
5479       // process death by signal.
5480       return 0x80 + WTERMSIG(status);
5481    } else {
5482       // Unknown exit code; pass it through
5483       return status;
5484    }
5485  }
5486}
5487
5488// is_headless_jre()
5489//
5490// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5491// in order to report if we are running in a headless jre
5492//
5493// Since JDK8 xawt/libmawt.so was moved into the same directory
5494// as libawt.so, and renamed libawt_xawt.so
5495//
5496bool os::is_headless_jre() {
5497    struct stat statbuf;
5498    char buf[MAXPATHLEN];
5499    char libmawtpath[MAXPATHLEN];
5500    const char *xawtstr  = "/xawt/libmawt.so";
5501    const char *new_xawtstr = "/libawt_xawt.so";
5502    char *p;
5503
5504    // Get path to libjvm.so
5505    os::jvm_path(buf, sizeof(buf));
5506
5507    // Get rid of libjvm.so
5508    p = strrchr(buf, '/');
5509    if (p == NULL) return false;
5510    else *p = '\0';
5511
5512    // Get rid of client or server
5513    p = strrchr(buf, '/');
5514    if (p == NULL) return false;
5515    else *p = '\0';
5516
5517    // check xawt/libmawt.so
5518    strcpy(libmawtpath, buf);
5519    strcat(libmawtpath, xawtstr);
5520    if (::stat(libmawtpath, &statbuf) == 0) return false;
5521
5522    // check libawt_xawt.so
5523    strcpy(libmawtpath, buf);
5524    strcat(libmawtpath, new_xawtstr);
5525    if (::stat(libmawtpath, &statbuf) == 0) return false;
5526
5527    return true;
5528}
5529
5530// Get the default path to the core file
5531// Returns the length of the string
5532int os::get_core_path(char* buffer, size_t bufferSize) {
5533  const char* p = get_current_directory(buffer, bufferSize);
5534
5535  if (p == NULL) {
5536    assert(p != NULL, "failed to get current directory");
5537    return 0;
5538  }
5539
5540  return strlen(buffer);
5541}
5542
5543#ifdef JAVASE_EMBEDDED
5544//
5545// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5546//
5547MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5548
5549// ctor
5550//
5551MemNotifyThread::MemNotifyThread(int fd): Thread() {
5552  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5553  _fd = fd;
5554
5555  if (os::create_thread(this, os::os_thread)) {
5556    _memnotify_thread = this;
5557    os::set_priority(this, NearMaxPriority);
5558    os::start_thread(this);
5559  }
5560}
5561
5562// Where all the work gets done
5563//
5564void MemNotifyThread::run() {
5565  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5566
5567  // Set up the select arguments
5568  fd_set rfds;
5569  if (_fd != -1) {
5570    FD_ZERO(&rfds);
5571    FD_SET(_fd, &rfds);
5572  }
5573
5574  // Now wait for the mem_notify device to wake up
5575  while (1) {
5576    // Wait for the mem_notify device to signal us..
5577    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5578    if (rc == -1) {
5579      perror("select!\n");
5580      break;
5581    } else if (rc) {
5582      //ssize_t free_before = os::available_memory();
5583      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5584
5585      // The kernel is telling us there is not much memory left...
5586      // try to do something about that
5587
5588      // If we are not already in a GC, try one.
5589      if (!Universe::heap()->is_gc_active()) {
5590        Universe::heap()->collect(GCCause::_allocation_failure);
5591
5592        //ssize_t free_after = os::available_memory();
5593        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5594        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5595      }
5596      // We might want to do something like the following if we find the GC's are not helping...
5597      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5598    }
5599  }
5600}
5601
5602//
5603// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5604//
5605void MemNotifyThread::start() {
5606  int    fd;
5607  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5608  if (fd < 0) {
5609      return;
5610  }
5611
5612  if (memnotify_thread() == NULL) {
5613    new MemNotifyThread(fd);
5614  }
5615}
5616#endif // JAVASE_EMBEDDED
5617