os_linux.cpp revision 4453:17bf4d428955
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104#define MAX_PATH    (2 * K)
105
106// for timer info max values which include all bits
107#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
108
109#define LARGEPAGES_BIT (1 << 6)
110////////////////////////////////////////////////////////////////////////////////
111// global variables
112julong os::Linux::_physical_memory = 0;
113
114address   os::Linux::_initial_thread_stack_bottom = NULL;
115uintptr_t os::Linux::_initial_thread_stack_size   = 0;
116
117int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
118int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
119Mutex* os::Linux::_createThread_lock = NULL;
120pthread_t os::Linux::_main_thread;
121int os::Linux::_page_size = -1;
122bool os::Linux::_is_floating_stack = false;
123bool os::Linux::_is_NPTL = false;
124bool os::Linux::_supports_fast_thread_cpu_time = false;
125const char * os::Linux::_glibc_version = NULL;
126const char * os::Linux::_libpthread_version = NULL;
127
128static jlong initial_time_count=0;
129
130static int clock_tics_per_sec = 100;
131
132// For diagnostics to print a message once. see run_periodic_checks
133static sigset_t check_signal_done;
134static bool check_signals = true;;
135
136static pid_t _initial_pid = 0;
137
138/* Signal number used to suspend/resume a thread */
139
140/* do not use any signal number less than SIGSEGV, see 4355769 */
141static int SR_signum = SIGUSR2;
142sigset_t SR_sigset;
143
144/* Used to protect dlsym() calls */
145static pthread_mutex_t dl_mutex;
146
147#ifdef JAVASE_EMBEDDED
148class MemNotifyThread: public Thread {
149  friend class VMStructs;
150 public:
151  virtual void run();
152
153 private:
154  static MemNotifyThread* _memnotify_thread;
155  int _fd;
156
157 public:
158
159  // Constructor
160  MemNotifyThread(int fd);
161
162  // Tester
163  bool is_memnotify_thread() const { return true; }
164
165  // Printing
166  char* name() const { return (char*)"Linux MemNotify Thread"; }
167
168  // Returns the single instance of the MemNotifyThread
169  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
170
171  // Create and start the single instance of MemNotifyThread
172  static void start();
173};
174#endif // JAVASE_EMBEDDED
175
176// utility functions
177
178static int SR_initialize();
179static int SR_finalize();
180
181julong os::available_memory() {
182  return Linux::available_memory();
183}
184
185julong os::Linux::available_memory() {
186  // values in struct sysinfo are "unsigned long"
187  struct sysinfo si;
188  sysinfo(&si);
189
190  return (julong)si.freeram * si.mem_unit;
191}
192
193julong os::physical_memory() {
194  return Linux::physical_memory();
195}
196
197julong os::allocatable_physical_memory(julong size) {
198#ifdef _LP64
199  return size;
200#else
201  julong result = MIN2(size, (julong)3800*M);
202   if (!is_allocatable(result)) {
203     // See comments under solaris for alignment considerations
204     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
205     result =  MIN2(size, reasonable_size);
206   }
207   return result;
208#endif // _LP64
209}
210
211////////////////////////////////////////////////////////////////////////////////
212// environment support
213
214bool os::getenv(const char* name, char* buf, int len) {
215  const char* val = ::getenv(name);
216  if (val != NULL && strlen(val) < (size_t)len) {
217    strcpy(buf, val);
218    return true;
219  }
220  if (len > 0) buf[0] = 0;  // return a null string
221  return false;
222}
223
224
225// Return true if user is running as root.
226
227bool os::have_special_privileges() {
228  static bool init = false;
229  static bool privileges = false;
230  if (!init) {
231    privileges = (getuid() != geteuid()) || (getgid() != getegid());
232    init = true;
233  }
234  return privileges;
235}
236
237
238#ifndef SYS_gettid
239// i386: 224, ia64: 1105, amd64: 186, sparc 143
240#ifdef __ia64__
241#define SYS_gettid 1105
242#elif __i386__
243#define SYS_gettid 224
244#elif __amd64__
245#define SYS_gettid 186
246#elif __sparc__
247#define SYS_gettid 143
248#else
249#error define gettid for the arch
250#endif
251#endif
252
253// Cpu architecture string
254#if   defined(ZERO)
255static char cpu_arch[] = ZERO_LIBARCH;
256#elif defined(IA64)
257static char cpu_arch[] = "ia64";
258#elif defined(IA32)
259static char cpu_arch[] = "i386";
260#elif defined(AMD64)
261static char cpu_arch[] = "amd64";
262#elif defined(ARM)
263static char cpu_arch[] = "arm";
264#elif defined(PPC)
265static char cpu_arch[] = "ppc";
266#elif defined(SPARC)
267#  ifdef _LP64
268static char cpu_arch[] = "sparcv9";
269#  else
270static char cpu_arch[] = "sparc";
271#  endif
272#else
273#error Add appropriate cpu_arch setting
274#endif
275
276
277// pid_t gettid()
278//
279// Returns the kernel thread id of the currently running thread. Kernel
280// thread id is used to access /proc.
281//
282// (Note that getpid() on LinuxThreads returns kernel thread id too; but
283// on NPTL, it returns the same pid for all threads, as required by POSIX.)
284//
285pid_t os::Linux::gettid() {
286  int rslt = syscall(SYS_gettid);
287  if (rslt == -1) {
288     // old kernel, no NPTL support
289     return getpid();
290  } else {
291     return (pid_t)rslt;
292  }
293}
294
295// Most versions of linux have a bug where the number of processors are
296// determined by looking at the /proc file system.  In a chroot environment,
297// the system call returns 1.  This causes the VM to act as if it is
298// a single processor and elide locking (see is_MP() call).
299static bool unsafe_chroot_detected = false;
300static const char *unstable_chroot_error = "/proc file system not found.\n"
301                     "Java may be unstable running multithreaded in a chroot "
302                     "environment on Linux when /proc filesystem is not mounted.";
303
304void os::Linux::initialize_system_info() {
305  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
306  if (processor_count() == 1) {
307    pid_t pid = os::Linux::gettid();
308    char fname[32];
309    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
310    FILE *fp = fopen(fname, "r");
311    if (fp == NULL) {
312      unsafe_chroot_detected = true;
313    } else {
314      fclose(fp);
315    }
316  }
317  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
318  assert(processor_count() > 0, "linux error");
319}
320
321void os::init_system_properties_values() {
322//  char arch[12];
323//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
324
325  // The next steps are taken in the product version:
326  //
327  // Obtain the JAVA_HOME value from the location of libjvm.so.
328  // This library should be located at:
329  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
330  //
331  // If "/jre/lib/" appears at the right place in the path, then we
332  // assume libjvm.so is installed in a JDK and we use this path.
333  //
334  // Otherwise exit with message: "Could not create the Java virtual machine."
335  //
336  // The following extra steps are taken in the debugging version:
337  //
338  // If "/jre/lib/" does NOT appear at the right place in the path
339  // instead of exit check for $JAVA_HOME environment variable.
340  //
341  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
342  // then we append a fake suffix "hotspot/libjvm.so" to this path so
343  // it looks like libjvm.so is installed there
344  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
345  //
346  // Otherwise exit.
347  //
348  // Important note: if the location of libjvm.so changes this
349  // code needs to be changed accordingly.
350
351  // The next few definitions allow the code to be verbatim:
352#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
353#define getenv(n) ::getenv(n)
354
355/*
356 * See ld(1):
357 *      The linker uses the following search paths to locate required
358 *      shared libraries:
359 *        1: ...
360 *        ...
361 *        7: The default directories, normally /lib and /usr/lib.
362 */
363#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
364#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
365#else
366#define DEFAULT_LIBPATH "/lib:/usr/lib"
367#endif
368
369#define EXTENSIONS_DIR  "/lib/ext"
370#define ENDORSED_DIR    "/lib/endorsed"
371#define REG_DIR         "/usr/java/packages"
372
373  {
374    /* sysclasspath, java_home, dll_dir */
375    {
376        char *home_path;
377        char *dll_path;
378        char *pslash;
379        char buf[MAXPATHLEN];
380        os::jvm_path(buf, sizeof(buf));
381
382        // Found the full path to libjvm.so.
383        // Now cut the path to <java_home>/jre if we can.
384        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
385        pslash = strrchr(buf, '/');
386        if (pslash != NULL)
387            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
388        dll_path = malloc(strlen(buf) + 1);
389        if (dll_path == NULL)
390            return;
391        strcpy(dll_path, buf);
392        Arguments::set_dll_dir(dll_path);
393
394        if (pslash != NULL) {
395            pslash = strrchr(buf, '/');
396            if (pslash != NULL) {
397                *pslash = '\0';       /* get rid of /<arch> */
398                pslash = strrchr(buf, '/');
399                if (pslash != NULL)
400                    *pslash = '\0';   /* get rid of /lib */
401            }
402        }
403
404        home_path = malloc(strlen(buf) + 1);
405        if (home_path == NULL)
406            return;
407        strcpy(home_path, buf);
408        Arguments::set_java_home(home_path);
409
410        if (!set_boot_path('/', ':'))
411            return;
412    }
413
414    /*
415     * Where to look for native libraries
416     *
417     * Note: Due to a legacy implementation, most of the library path
418     * is set in the launcher.  This was to accomodate linking restrictions
419     * on legacy Linux implementations (which are no longer supported).
420     * Eventually, all the library path setting will be done here.
421     *
422     * However, to prevent the proliferation of improperly built native
423     * libraries, the new path component /usr/java/packages is added here.
424     * Eventually, all the library path setting will be done here.
425     */
426    {
427        char *ld_library_path;
428
429        /*
430         * Construct the invariant part of ld_library_path. Note that the
431         * space for the colon and the trailing null are provided by the
432         * nulls included by the sizeof operator (so actually we allocate
433         * a byte more than necessary).
434         */
435        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
436            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
437        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
438
439        /*
440         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
441         * should always exist (until the legacy problem cited above is
442         * addressed).
443         */
444        char *v = getenv("LD_LIBRARY_PATH");
445        if (v != NULL) {
446            char *t = ld_library_path;
447            /* That's +1 for the colon and +1 for the trailing '\0' */
448            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
449            sprintf(ld_library_path, "%s:%s", v, t);
450        }
451        Arguments::set_library_path(ld_library_path);
452    }
453
454    /*
455     * Extensions directories.
456     *
457     * Note that the space for the colon and the trailing null are provided
458     * by the nulls included by the sizeof operator (so actually one byte more
459     * than necessary is allocated).
460     */
461    {
462        char *buf = malloc(strlen(Arguments::get_java_home()) +
463            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
464        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
465            Arguments::get_java_home());
466        Arguments::set_ext_dirs(buf);
467    }
468
469    /* Endorsed standards default directory. */
470    {
471        char * buf;
472        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
473        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
474        Arguments::set_endorsed_dirs(buf);
475    }
476  }
477
478#undef malloc
479#undef getenv
480#undef EXTENSIONS_DIR
481#undef ENDORSED_DIR
482
483  // Done
484  return;
485}
486
487////////////////////////////////////////////////////////////////////////////////
488// breakpoint support
489
490void os::breakpoint() {
491  BREAKPOINT;
492}
493
494extern "C" void breakpoint() {
495  // use debugger to set breakpoint here
496}
497
498////////////////////////////////////////////////////////////////////////////////
499// signal support
500
501debug_only(static bool signal_sets_initialized = false);
502static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
503
504bool os::Linux::is_sig_ignored(int sig) {
505      struct sigaction oact;
506      sigaction(sig, (struct sigaction*)NULL, &oact);
507      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
508                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
509      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
510           return true;
511      else
512           return false;
513}
514
515void os::Linux::signal_sets_init() {
516  // Should also have an assertion stating we are still single-threaded.
517  assert(!signal_sets_initialized, "Already initialized");
518  // Fill in signals that are necessarily unblocked for all threads in
519  // the VM. Currently, we unblock the following signals:
520  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
521  //                         by -Xrs (=ReduceSignalUsage));
522  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
523  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
524  // the dispositions or masks wrt these signals.
525  // Programs embedding the VM that want to use the above signals for their
526  // own purposes must, at this time, use the "-Xrs" option to prevent
527  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
528  // (See bug 4345157, and other related bugs).
529  // In reality, though, unblocking these signals is really a nop, since
530  // these signals are not blocked by default.
531  sigemptyset(&unblocked_sigs);
532  sigemptyset(&allowdebug_blocked_sigs);
533  sigaddset(&unblocked_sigs, SIGILL);
534  sigaddset(&unblocked_sigs, SIGSEGV);
535  sigaddset(&unblocked_sigs, SIGBUS);
536  sigaddset(&unblocked_sigs, SIGFPE);
537  sigaddset(&unblocked_sigs, SR_signum);
538
539  if (!ReduceSignalUsage) {
540   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
541      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
542      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
543   }
544   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
545      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
546      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
547   }
548   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
549      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
550      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
551   }
552  }
553  // Fill in signals that are blocked by all but the VM thread.
554  sigemptyset(&vm_sigs);
555  if (!ReduceSignalUsage)
556    sigaddset(&vm_sigs, BREAK_SIGNAL);
557  debug_only(signal_sets_initialized = true);
558
559}
560
561// These are signals that are unblocked while a thread is running Java.
562// (For some reason, they get blocked by default.)
563sigset_t* os::Linux::unblocked_signals() {
564  assert(signal_sets_initialized, "Not initialized");
565  return &unblocked_sigs;
566}
567
568// These are the signals that are blocked while a (non-VM) thread is
569// running Java. Only the VM thread handles these signals.
570sigset_t* os::Linux::vm_signals() {
571  assert(signal_sets_initialized, "Not initialized");
572  return &vm_sigs;
573}
574
575// These are signals that are blocked during cond_wait to allow debugger in
576sigset_t* os::Linux::allowdebug_blocked_signals() {
577  assert(signal_sets_initialized, "Not initialized");
578  return &allowdebug_blocked_sigs;
579}
580
581void os::Linux::hotspot_sigmask(Thread* thread) {
582
583  //Save caller's signal mask before setting VM signal mask
584  sigset_t caller_sigmask;
585  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
586
587  OSThread* osthread = thread->osthread();
588  osthread->set_caller_sigmask(caller_sigmask);
589
590  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
591
592  if (!ReduceSignalUsage) {
593    if (thread->is_VM_thread()) {
594      // Only the VM thread handles BREAK_SIGNAL ...
595      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
596    } else {
597      // ... all other threads block BREAK_SIGNAL
598      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
599    }
600  }
601}
602
603//////////////////////////////////////////////////////////////////////////////
604// detecting pthread library
605
606void os::Linux::libpthread_init() {
607  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
608  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
609  // generic name for earlier versions.
610  // Define macros here so we can build HotSpot on old systems.
611# ifndef _CS_GNU_LIBC_VERSION
612# define _CS_GNU_LIBC_VERSION 2
613# endif
614# ifndef _CS_GNU_LIBPTHREAD_VERSION
615# define _CS_GNU_LIBPTHREAD_VERSION 3
616# endif
617
618  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
619  if (n > 0) {
620     char *str = (char *)malloc(n, mtInternal);
621     confstr(_CS_GNU_LIBC_VERSION, str, n);
622     os::Linux::set_glibc_version(str);
623  } else {
624     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
625     static char _gnu_libc_version[32];
626     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
627              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
628     os::Linux::set_glibc_version(_gnu_libc_version);
629  }
630
631  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
632  if (n > 0) {
633     char *str = (char *)malloc(n, mtInternal);
634     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
635     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
636     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
637     // is the case. LinuxThreads has a hard limit on max number of threads.
638     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
639     // On the other hand, NPTL does not have such a limit, sysconf()
640     // will return -1 and errno is not changed. Check if it is really NPTL.
641     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
642         strstr(str, "NPTL") &&
643         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
644       free(str);
645       os::Linux::set_libpthread_version("linuxthreads");
646     } else {
647       os::Linux::set_libpthread_version(str);
648     }
649  } else {
650    // glibc before 2.3.2 only has LinuxThreads.
651    os::Linux::set_libpthread_version("linuxthreads");
652  }
653
654  if (strstr(libpthread_version(), "NPTL")) {
655     os::Linux::set_is_NPTL();
656  } else {
657     os::Linux::set_is_LinuxThreads();
658  }
659
660  // LinuxThreads have two flavors: floating-stack mode, which allows variable
661  // stack size; and fixed-stack mode. NPTL is always floating-stack.
662  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
663     os::Linux::set_is_floating_stack();
664  }
665}
666
667/////////////////////////////////////////////////////////////////////////////
668// thread stack
669
670// Force Linux kernel to expand current thread stack. If "bottom" is close
671// to the stack guard, caller should block all signals.
672//
673// MAP_GROWSDOWN:
674//   A special mmap() flag that is used to implement thread stacks. It tells
675//   kernel that the memory region should extend downwards when needed. This
676//   allows early versions of LinuxThreads to only mmap the first few pages
677//   when creating a new thread. Linux kernel will automatically expand thread
678//   stack as needed (on page faults).
679//
680//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
681//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
682//   region, it's hard to tell if the fault is due to a legitimate stack
683//   access or because of reading/writing non-exist memory (e.g. buffer
684//   overrun). As a rule, if the fault happens below current stack pointer,
685//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
686//   application (see Linux kernel fault.c).
687//
688//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
689//   stack overflow detection.
690//
691//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
692//   not use this flag. However, the stack of initial thread is not created
693//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
694//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
695//   and then attach the thread to JVM.
696//
697// To get around the problem and allow stack banging on Linux, we need to
698// manually expand thread stack after receiving the SIGSEGV.
699//
700// There are two ways to expand thread stack to address "bottom", we used
701// both of them in JVM before 1.5:
702//   1. adjust stack pointer first so that it is below "bottom", and then
703//      touch "bottom"
704//   2. mmap() the page in question
705//
706// Now alternate signal stack is gone, it's harder to use 2. For instance,
707// if current sp is already near the lower end of page 101, and we need to
708// call mmap() to map page 100, it is possible that part of the mmap() frame
709// will be placed in page 100. When page 100 is mapped, it is zero-filled.
710// That will destroy the mmap() frame and cause VM to crash.
711//
712// The following code works by adjusting sp first, then accessing the "bottom"
713// page to force a page fault. Linux kernel will then automatically expand the
714// stack mapping.
715//
716// _expand_stack_to() assumes its frame size is less than page size, which
717// should always be true if the function is not inlined.
718
719#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
720#define NOINLINE
721#else
722#define NOINLINE __attribute__ ((noinline))
723#endif
724
725static void _expand_stack_to(address bottom) NOINLINE;
726
727static void _expand_stack_to(address bottom) {
728  address sp;
729  size_t size;
730  volatile char *p;
731
732  // Adjust bottom to point to the largest address within the same page, it
733  // gives us a one-page buffer if alloca() allocates slightly more memory.
734  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
735  bottom += os::Linux::page_size() - 1;
736
737  // sp might be slightly above current stack pointer; if that's the case, we
738  // will alloca() a little more space than necessary, which is OK. Don't use
739  // os::current_stack_pointer(), as its result can be slightly below current
740  // stack pointer, causing us to not alloca enough to reach "bottom".
741  sp = (address)&sp;
742
743  if (sp > bottom) {
744    size = sp - bottom;
745    p = (volatile char *)alloca(size);
746    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
747    p[0] = '\0';
748  }
749}
750
751bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
752  assert(t!=NULL, "just checking");
753  assert(t->osthread()->expanding_stack(), "expand should be set");
754  assert(t->stack_base() != NULL, "stack_base was not initialized");
755
756  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
757    sigset_t mask_all, old_sigset;
758    sigfillset(&mask_all);
759    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
760    _expand_stack_to(addr);
761    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
762    return true;
763  }
764  return false;
765}
766
767//////////////////////////////////////////////////////////////////////////////
768// create new thread
769
770static address highest_vm_reserved_address();
771
772// check if it's safe to start a new thread
773static bool _thread_safety_check(Thread* thread) {
774  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
775    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
776    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
777    //   allocated (MAP_FIXED) from high address space. Every thread stack
778    //   occupies a fixed size slot (usually 2Mbytes, but user can change
779    //   it to other values if they rebuild LinuxThreads).
780    //
781    // Problem with MAP_FIXED is that mmap() can still succeed even part of
782    // the memory region has already been mmap'ed. That means if we have too
783    // many threads and/or very large heap, eventually thread stack will
784    // collide with heap.
785    //
786    // Here we try to prevent heap/stack collision by comparing current
787    // stack bottom with the highest address that has been mmap'ed by JVM
788    // plus a safety margin for memory maps created by native code.
789    //
790    // This feature can be disabled by setting ThreadSafetyMargin to 0
791    //
792    if (ThreadSafetyMargin > 0) {
793      address stack_bottom = os::current_stack_base() - os::current_stack_size();
794
795      // not safe if our stack extends below the safety margin
796      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
797    } else {
798      return true;
799    }
800  } else {
801    // Floating stack LinuxThreads or NPTL:
802    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
803    //   there's not enough space left, pthread_create() will fail. If we come
804    //   here, that means enough space has been reserved for stack.
805    return true;
806  }
807}
808
809// Thread start routine for all newly created threads
810static void *java_start(Thread *thread) {
811  // Try to randomize the cache line index of hot stack frames.
812  // This helps when threads of the same stack traces evict each other's
813  // cache lines. The threads can be either from the same JVM instance, or
814  // from different JVM instances. The benefit is especially true for
815  // processors with hyperthreading technology.
816  static int counter = 0;
817  int pid = os::current_process_id();
818  alloca(((pid ^ counter++) & 7) * 128);
819
820  ThreadLocalStorage::set_thread(thread);
821
822  OSThread* osthread = thread->osthread();
823  Monitor* sync = osthread->startThread_lock();
824
825  // non floating stack LinuxThreads needs extra check, see above
826  if (!_thread_safety_check(thread)) {
827    // notify parent thread
828    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
829    osthread->set_state(ZOMBIE);
830    sync->notify_all();
831    return NULL;
832  }
833
834  // thread_id is kernel thread id (similar to Solaris LWP id)
835  osthread->set_thread_id(os::Linux::gettid());
836
837  if (UseNUMA) {
838    int lgrp_id = os::numa_get_group_id();
839    if (lgrp_id != -1) {
840      thread->set_lgrp_id(lgrp_id);
841    }
842  }
843  // initialize signal mask for this thread
844  os::Linux::hotspot_sigmask(thread);
845
846  // initialize floating point control register
847  os::Linux::init_thread_fpu_state();
848
849  // handshaking with parent thread
850  {
851    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
852
853    // notify parent thread
854    osthread->set_state(INITIALIZED);
855    sync->notify_all();
856
857    // wait until os::start_thread()
858    while (osthread->get_state() == INITIALIZED) {
859      sync->wait(Mutex::_no_safepoint_check_flag);
860    }
861  }
862
863  // call one more level start routine
864  thread->run();
865
866  return 0;
867}
868
869bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
870  assert(thread->osthread() == NULL, "caller responsible");
871
872  // Allocate the OSThread object
873  OSThread* osthread = new OSThread(NULL, NULL);
874  if (osthread == NULL) {
875    return false;
876  }
877
878  // set the correct thread state
879  osthread->set_thread_type(thr_type);
880
881  // Initial state is ALLOCATED but not INITIALIZED
882  osthread->set_state(ALLOCATED);
883
884  thread->set_osthread(osthread);
885
886  // init thread attributes
887  pthread_attr_t attr;
888  pthread_attr_init(&attr);
889  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
890
891  // stack size
892  if (os::Linux::supports_variable_stack_size()) {
893    // calculate stack size if it's not specified by caller
894    if (stack_size == 0) {
895      stack_size = os::Linux::default_stack_size(thr_type);
896
897      switch (thr_type) {
898      case os::java_thread:
899        // Java threads use ThreadStackSize which default value can be
900        // changed with the flag -Xss
901        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
902        stack_size = JavaThread::stack_size_at_create();
903        break;
904      case os::compiler_thread:
905        if (CompilerThreadStackSize > 0) {
906          stack_size = (size_t)(CompilerThreadStackSize * K);
907          break;
908        } // else fall through:
909          // use VMThreadStackSize if CompilerThreadStackSize is not defined
910      case os::vm_thread:
911      case os::pgc_thread:
912      case os::cgc_thread:
913      case os::watcher_thread:
914        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
915        break;
916      }
917    }
918
919    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
920    pthread_attr_setstacksize(&attr, stack_size);
921  } else {
922    // let pthread_create() pick the default value.
923  }
924
925  // glibc guard page
926  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
927
928  ThreadState state;
929
930  {
931    // Serialize thread creation if we are running with fixed stack LinuxThreads
932    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
933    if (lock) {
934      os::Linux::createThread_lock()->lock_without_safepoint_check();
935    }
936
937    pthread_t tid;
938    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
939
940    pthread_attr_destroy(&attr);
941
942    if (ret != 0) {
943      if (PrintMiscellaneous && (Verbose || WizardMode)) {
944        perror("pthread_create()");
945      }
946      // Need to clean up stuff we've allocated so far
947      thread->set_osthread(NULL);
948      delete osthread;
949      if (lock) os::Linux::createThread_lock()->unlock();
950      return false;
951    }
952
953    // Store pthread info into the OSThread
954    osthread->set_pthread_id(tid);
955
956    // Wait until child thread is either initialized or aborted
957    {
958      Monitor* sync_with_child = osthread->startThread_lock();
959      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
960      while ((state = osthread->get_state()) == ALLOCATED) {
961        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
962      }
963    }
964
965    if (lock) {
966      os::Linux::createThread_lock()->unlock();
967    }
968  }
969
970  // Aborted due to thread limit being reached
971  if (state == ZOMBIE) {
972      thread->set_osthread(NULL);
973      delete osthread;
974      return false;
975  }
976
977  // The thread is returned suspended (in state INITIALIZED),
978  // and is started higher up in the call chain
979  assert(state == INITIALIZED, "race condition");
980  return true;
981}
982
983/////////////////////////////////////////////////////////////////////////////
984// attach existing thread
985
986// bootstrap the main thread
987bool os::create_main_thread(JavaThread* thread) {
988  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
989  return create_attached_thread(thread);
990}
991
992bool os::create_attached_thread(JavaThread* thread) {
993#ifdef ASSERT
994    thread->verify_not_published();
995#endif
996
997  // Allocate the OSThread object
998  OSThread* osthread = new OSThread(NULL, NULL);
999
1000  if (osthread == NULL) {
1001    return false;
1002  }
1003
1004  // Store pthread info into the OSThread
1005  osthread->set_thread_id(os::Linux::gettid());
1006  osthread->set_pthread_id(::pthread_self());
1007
1008  // initialize floating point control register
1009  os::Linux::init_thread_fpu_state();
1010
1011  // Initial thread state is RUNNABLE
1012  osthread->set_state(RUNNABLE);
1013
1014  thread->set_osthread(osthread);
1015
1016  if (UseNUMA) {
1017    int lgrp_id = os::numa_get_group_id();
1018    if (lgrp_id != -1) {
1019      thread->set_lgrp_id(lgrp_id);
1020    }
1021  }
1022
1023  if (os::Linux::is_initial_thread()) {
1024    // If current thread is initial thread, its stack is mapped on demand,
1025    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1026    // the entire stack region to avoid SEGV in stack banging.
1027    // It is also useful to get around the heap-stack-gap problem on SuSE
1028    // kernel (see 4821821 for details). We first expand stack to the top
1029    // of yellow zone, then enable stack yellow zone (order is significant,
1030    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1031    // is no gap between the last two virtual memory regions.
1032
1033    JavaThread *jt = (JavaThread *)thread;
1034    address addr = jt->stack_yellow_zone_base();
1035    assert(addr != NULL, "initialization problem?");
1036    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1037
1038    osthread->set_expanding_stack();
1039    os::Linux::manually_expand_stack(jt, addr);
1040    osthread->clear_expanding_stack();
1041  }
1042
1043  // initialize signal mask for this thread
1044  // and save the caller's signal mask
1045  os::Linux::hotspot_sigmask(thread);
1046
1047  return true;
1048}
1049
1050void os::pd_start_thread(Thread* thread) {
1051  OSThread * osthread = thread->osthread();
1052  assert(osthread->get_state() != INITIALIZED, "just checking");
1053  Monitor* sync_with_child = osthread->startThread_lock();
1054  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1055  sync_with_child->notify();
1056}
1057
1058// Free Linux resources related to the OSThread
1059void os::free_thread(OSThread* osthread) {
1060  assert(osthread != NULL, "osthread not set");
1061
1062  if (Thread::current()->osthread() == osthread) {
1063    // Restore caller's signal mask
1064    sigset_t sigmask = osthread->caller_sigmask();
1065    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1066   }
1067
1068  delete osthread;
1069}
1070
1071//////////////////////////////////////////////////////////////////////////////
1072// thread local storage
1073
1074int os::allocate_thread_local_storage() {
1075  pthread_key_t key;
1076  int rslt = pthread_key_create(&key, NULL);
1077  assert(rslt == 0, "cannot allocate thread local storage");
1078  return (int)key;
1079}
1080
1081// Note: This is currently not used by VM, as we don't destroy TLS key
1082// on VM exit.
1083void os::free_thread_local_storage(int index) {
1084  int rslt = pthread_key_delete((pthread_key_t)index);
1085  assert(rslt == 0, "invalid index");
1086}
1087
1088void os::thread_local_storage_at_put(int index, void* value) {
1089  int rslt = pthread_setspecific((pthread_key_t)index, value);
1090  assert(rslt == 0, "pthread_setspecific failed");
1091}
1092
1093extern "C" Thread* get_thread() {
1094  return ThreadLocalStorage::thread();
1095}
1096
1097//////////////////////////////////////////////////////////////////////////////
1098// initial thread
1099
1100// Check if current thread is the initial thread, similar to Solaris thr_main.
1101bool os::Linux::is_initial_thread(void) {
1102  char dummy;
1103  // If called before init complete, thread stack bottom will be null.
1104  // Can be called if fatal error occurs before initialization.
1105  if (initial_thread_stack_bottom() == NULL) return false;
1106  assert(initial_thread_stack_bottom() != NULL &&
1107         initial_thread_stack_size()   != 0,
1108         "os::init did not locate initial thread's stack region");
1109  if ((address)&dummy >= initial_thread_stack_bottom() &&
1110      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1111       return true;
1112  else return false;
1113}
1114
1115// Find the virtual memory area that contains addr
1116static bool find_vma(address addr, address* vma_low, address* vma_high) {
1117  FILE *fp = fopen("/proc/self/maps", "r");
1118  if (fp) {
1119    address low, high;
1120    while (!feof(fp)) {
1121      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1122        if (low <= addr && addr < high) {
1123           if (vma_low)  *vma_low  = low;
1124           if (vma_high) *vma_high = high;
1125           fclose (fp);
1126           return true;
1127        }
1128      }
1129      for (;;) {
1130        int ch = fgetc(fp);
1131        if (ch == EOF || ch == (int)'\n') break;
1132      }
1133    }
1134    fclose(fp);
1135  }
1136  return false;
1137}
1138
1139// Locate initial thread stack. This special handling of initial thread stack
1140// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1141// bogus value for initial thread.
1142void os::Linux::capture_initial_stack(size_t max_size) {
1143  // stack size is the easy part, get it from RLIMIT_STACK
1144  size_t stack_size;
1145  struct rlimit rlim;
1146  getrlimit(RLIMIT_STACK, &rlim);
1147  stack_size = rlim.rlim_cur;
1148
1149  // 6308388: a bug in ld.so will relocate its own .data section to the
1150  //   lower end of primordial stack; reduce ulimit -s value a little bit
1151  //   so we won't install guard page on ld.so's data section.
1152  stack_size -= 2 * page_size();
1153
1154  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1155  //   7.1, in both cases we will get 2G in return value.
1156  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1157  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1158  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1159  //   in case other parts in glibc still assumes 2M max stack size.
1160  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1161  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1162  if (stack_size > 2 * K * K IA64_ONLY(*2))
1163      stack_size = 2 * K * K IA64_ONLY(*2);
1164  // Try to figure out where the stack base (top) is. This is harder.
1165  //
1166  // When an application is started, glibc saves the initial stack pointer in
1167  // a global variable "__libc_stack_end", which is then used by system
1168  // libraries. __libc_stack_end should be pretty close to stack top. The
1169  // variable is available since the very early days. However, because it is
1170  // a private interface, it could disappear in the future.
1171  //
1172  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1173  // to __libc_stack_end, it is very close to stack top, but isn't the real
1174  // stack top. Note that /proc may not exist if VM is running as a chroot
1175  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1176  // /proc/<pid>/stat could change in the future (though unlikely).
1177  //
1178  // We try __libc_stack_end first. If that doesn't work, look for
1179  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1180  // as a hint, which should work well in most cases.
1181
1182  uintptr_t stack_start;
1183
1184  // try __libc_stack_end first
1185  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1186  if (p && *p) {
1187    stack_start = *p;
1188  } else {
1189    // see if we can get the start_stack field from /proc/self/stat
1190    FILE *fp;
1191    int pid;
1192    char state;
1193    int ppid;
1194    int pgrp;
1195    int session;
1196    int nr;
1197    int tpgrp;
1198    unsigned long flags;
1199    unsigned long minflt;
1200    unsigned long cminflt;
1201    unsigned long majflt;
1202    unsigned long cmajflt;
1203    unsigned long utime;
1204    unsigned long stime;
1205    long cutime;
1206    long cstime;
1207    long prio;
1208    long nice;
1209    long junk;
1210    long it_real;
1211    uintptr_t start;
1212    uintptr_t vsize;
1213    intptr_t rss;
1214    uintptr_t rsslim;
1215    uintptr_t scodes;
1216    uintptr_t ecode;
1217    int i;
1218
1219    // Figure what the primordial thread stack base is. Code is inspired
1220    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1221    // followed by command name surrounded by parentheses, state, etc.
1222    char stat[2048];
1223    int statlen;
1224
1225    fp = fopen("/proc/self/stat", "r");
1226    if (fp) {
1227      statlen = fread(stat, 1, 2047, fp);
1228      stat[statlen] = '\0';
1229      fclose(fp);
1230
1231      // Skip pid and the command string. Note that we could be dealing with
1232      // weird command names, e.g. user could decide to rename java launcher
1233      // to "java 1.4.2 :)", then the stat file would look like
1234      //                1234 (java 1.4.2 :)) R ... ...
1235      // We don't really need to know the command string, just find the last
1236      // occurrence of ")" and then start parsing from there. See bug 4726580.
1237      char * s = strrchr(stat, ')');
1238
1239      i = 0;
1240      if (s) {
1241        // Skip blank chars
1242        do s++; while (isspace(*s));
1243
1244#define _UFM UINTX_FORMAT
1245#define _DFM INTX_FORMAT
1246
1247        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1248        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1249        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1250             &state,          /* 3  %c  */
1251             &ppid,           /* 4  %d  */
1252             &pgrp,           /* 5  %d  */
1253             &session,        /* 6  %d  */
1254             &nr,             /* 7  %d  */
1255             &tpgrp,          /* 8  %d  */
1256             &flags,          /* 9  %lu  */
1257             &minflt,         /* 10 %lu  */
1258             &cminflt,        /* 11 %lu  */
1259             &majflt,         /* 12 %lu  */
1260             &cmajflt,        /* 13 %lu  */
1261             &utime,          /* 14 %lu  */
1262             &stime,          /* 15 %lu  */
1263             &cutime,         /* 16 %ld  */
1264             &cstime,         /* 17 %ld  */
1265             &prio,           /* 18 %ld  */
1266             &nice,           /* 19 %ld  */
1267             &junk,           /* 20 %ld  */
1268             &it_real,        /* 21 %ld  */
1269             &start,          /* 22 UINTX_FORMAT */
1270             &vsize,          /* 23 UINTX_FORMAT */
1271             &rss,            /* 24 INTX_FORMAT  */
1272             &rsslim,         /* 25 UINTX_FORMAT */
1273             &scodes,         /* 26 UINTX_FORMAT */
1274             &ecode,          /* 27 UINTX_FORMAT */
1275             &stack_start);   /* 28 UINTX_FORMAT */
1276      }
1277
1278#undef _UFM
1279#undef _DFM
1280
1281      if (i != 28 - 2) {
1282         assert(false, "Bad conversion from /proc/self/stat");
1283         // product mode - assume we are the initial thread, good luck in the
1284         // embedded case.
1285         warning("Can't detect initial thread stack location - bad conversion");
1286         stack_start = (uintptr_t) &rlim;
1287      }
1288    } else {
1289      // For some reason we can't open /proc/self/stat (for example, running on
1290      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1291      // most cases, so don't abort:
1292      warning("Can't detect initial thread stack location - no /proc/self/stat");
1293      stack_start = (uintptr_t) &rlim;
1294    }
1295  }
1296
1297  // Now we have a pointer (stack_start) very close to the stack top, the
1298  // next thing to do is to figure out the exact location of stack top. We
1299  // can find out the virtual memory area that contains stack_start by
1300  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1301  // and its upper limit is the real stack top. (again, this would fail if
1302  // running inside chroot, because /proc may not exist.)
1303
1304  uintptr_t stack_top;
1305  address low, high;
1306  if (find_vma((address)stack_start, &low, &high)) {
1307    // success, "high" is the true stack top. (ignore "low", because initial
1308    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1309    stack_top = (uintptr_t)high;
1310  } else {
1311    // failed, likely because /proc/self/maps does not exist
1312    warning("Can't detect initial thread stack location - find_vma failed");
1313    // best effort: stack_start is normally within a few pages below the real
1314    // stack top, use it as stack top, and reduce stack size so we won't put
1315    // guard page outside stack.
1316    stack_top = stack_start;
1317    stack_size -= 16 * page_size();
1318  }
1319
1320  // stack_top could be partially down the page so align it
1321  stack_top = align_size_up(stack_top, page_size());
1322
1323  if (max_size && stack_size > max_size) {
1324     _initial_thread_stack_size = max_size;
1325  } else {
1326     _initial_thread_stack_size = stack_size;
1327  }
1328
1329  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1330  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1331}
1332
1333////////////////////////////////////////////////////////////////////////////////
1334// time support
1335
1336// Time since start-up in seconds to a fine granularity.
1337// Used by VMSelfDestructTimer and the MemProfiler.
1338double os::elapsedTime() {
1339
1340  return (double)(os::elapsed_counter()) * 0.000001;
1341}
1342
1343jlong os::elapsed_counter() {
1344  timeval time;
1345  int status = gettimeofday(&time, NULL);
1346  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1347}
1348
1349jlong os::elapsed_frequency() {
1350  return (1000 * 1000);
1351}
1352
1353// For now, we say that linux does not support vtime.  I have no idea
1354// whether it can actually be made to (DLD, 9/13/05).
1355
1356bool os::supports_vtime() { return false; }
1357bool os::enable_vtime()   { return false; }
1358bool os::vtime_enabled()  { return false; }
1359double os::elapsedVTime() {
1360  // better than nothing, but not much
1361  return elapsedTime();
1362}
1363
1364jlong os::javaTimeMillis() {
1365  timeval time;
1366  int status = gettimeofday(&time, NULL);
1367  assert(status != -1, "linux error");
1368  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1369}
1370
1371#ifndef CLOCK_MONOTONIC
1372#define CLOCK_MONOTONIC (1)
1373#endif
1374
1375void os::Linux::clock_init() {
1376  // we do dlopen's in this particular order due to bug in linux
1377  // dynamical loader (see 6348968) leading to crash on exit
1378  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1379  if (handle == NULL) {
1380    handle = dlopen("librt.so", RTLD_LAZY);
1381  }
1382
1383  if (handle) {
1384    int (*clock_getres_func)(clockid_t, struct timespec*) =
1385           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1386    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1387           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1388    if (clock_getres_func && clock_gettime_func) {
1389      // See if monotonic clock is supported by the kernel. Note that some
1390      // early implementations simply return kernel jiffies (updated every
1391      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1392      // for nano time (though the monotonic property is still nice to have).
1393      // It's fixed in newer kernels, however clock_getres() still returns
1394      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1395      // resolution for now. Hopefully as people move to new kernels, this
1396      // won't be a problem.
1397      struct timespec res;
1398      struct timespec tp;
1399      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1400          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1401        // yes, monotonic clock is supported
1402        _clock_gettime = clock_gettime_func;
1403      } else {
1404        // close librt if there is no monotonic clock
1405        dlclose(handle);
1406      }
1407    }
1408  }
1409}
1410
1411#ifndef SYS_clock_getres
1412
1413#if defined(IA32) || defined(AMD64)
1414#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1415#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1416#else
1417#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1418#define sys_clock_getres(x,y)  -1
1419#endif
1420
1421#else
1422#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1423#endif
1424
1425void os::Linux::fast_thread_clock_init() {
1426  if (!UseLinuxPosixThreadCPUClocks) {
1427    return;
1428  }
1429  clockid_t clockid;
1430  struct timespec tp;
1431  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1432      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1433
1434  // Switch to using fast clocks for thread cpu time if
1435  // the sys_clock_getres() returns 0 error code.
1436  // Note, that some kernels may support the current thread
1437  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1438  // returned by the pthread_getcpuclockid().
1439  // If the fast Posix clocks are supported then the sys_clock_getres()
1440  // must return at least tp.tv_sec == 0 which means a resolution
1441  // better than 1 sec. This is extra check for reliability.
1442
1443  if(pthread_getcpuclockid_func &&
1444     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1445     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1446
1447    _supports_fast_thread_cpu_time = true;
1448    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1449  }
1450}
1451
1452jlong os::javaTimeNanos() {
1453  if (Linux::supports_monotonic_clock()) {
1454    struct timespec tp;
1455    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1456    assert(status == 0, "gettime error");
1457    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1458    return result;
1459  } else {
1460    timeval time;
1461    int status = gettimeofday(&time, NULL);
1462    assert(status != -1, "linux error");
1463    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1464    return 1000 * usecs;
1465  }
1466}
1467
1468void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1469  if (Linux::supports_monotonic_clock()) {
1470    info_ptr->max_value = ALL_64_BITS;
1471
1472    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1473    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1474    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1475  } else {
1476    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1477    info_ptr->max_value = ALL_64_BITS;
1478
1479    // gettimeofday is a real time clock so it skips
1480    info_ptr->may_skip_backward = true;
1481    info_ptr->may_skip_forward = true;
1482  }
1483
1484  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1485}
1486
1487// Return the real, user, and system times in seconds from an
1488// arbitrary fixed point in the past.
1489bool os::getTimesSecs(double* process_real_time,
1490                      double* process_user_time,
1491                      double* process_system_time) {
1492  struct tms ticks;
1493  clock_t real_ticks = times(&ticks);
1494
1495  if (real_ticks == (clock_t) (-1)) {
1496    return false;
1497  } else {
1498    double ticks_per_second = (double) clock_tics_per_sec;
1499    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1500    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1501    *process_real_time = ((double) real_ticks) / ticks_per_second;
1502
1503    return true;
1504  }
1505}
1506
1507
1508char * os::local_time_string(char *buf, size_t buflen) {
1509  struct tm t;
1510  time_t long_time;
1511  time(&long_time);
1512  localtime_r(&long_time, &t);
1513  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1514               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1515               t.tm_hour, t.tm_min, t.tm_sec);
1516  return buf;
1517}
1518
1519struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1520  return localtime_r(clock, res);
1521}
1522
1523////////////////////////////////////////////////////////////////////////////////
1524// runtime exit support
1525
1526// Note: os::shutdown() might be called very early during initialization, or
1527// called from signal handler. Before adding something to os::shutdown(), make
1528// sure it is async-safe and can handle partially initialized VM.
1529void os::shutdown() {
1530
1531  // allow PerfMemory to attempt cleanup of any persistent resources
1532  perfMemory_exit();
1533
1534  // needs to remove object in file system
1535  AttachListener::abort();
1536
1537  // flush buffered output, finish log files
1538  ostream_abort();
1539
1540  // Check for abort hook
1541  abort_hook_t abort_hook = Arguments::abort_hook();
1542  if (abort_hook != NULL) {
1543    abort_hook();
1544  }
1545
1546}
1547
1548// Note: os::abort() might be called very early during initialization, or
1549// called from signal handler. Before adding something to os::abort(), make
1550// sure it is async-safe and can handle partially initialized VM.
1551void os::abort(bool dump_core) {
1552  os::shutdown();
1553  if (dump_core) {
1554#ifndef PRODUCT
1555    fdStream out(defaultStream::output_fd());
1556    out.print_raw("Current thread is ");
1557    char buf[16];
1558    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1559    out.print_raw_cr(buf);
1560    out.print_raw_cr("Dumping core ...");
1561#endif
1562    ::abort(); // dump core
1563  }
1564
1565  ::exit(1);
1566}
1567
1568// Die immediately, no exit hook, no abort hook, no cleanup.
1569void os::die() {
1570  // _exit() on LinuxThreads only kills current thread
1571  ::abort();
1572}
1573
1574// unused on linux for now.
1575void os::set_error_file(const char *logfile) {}
1576
1577
1578// This method is a copy of JDK's sysGetLastErrorString
1579// from src/solaris/hpi/src/system_md.c
1580
1581size_t os::lasterror(char *buf, size_t len) {
1582
1583  if (errno == 0)  return 0;
1584
1585  const char *s = ::strerror(errno);
1586  size_t n = ::strlen(s);
1587  if (n >= len) {
1588    n = len - 1;
1589  }
1590  ::strncpy(buf, s, n);
1591  buf[n] = '\0';
1592  return n;
1593}
1594
1595intx os::current_thread_id() { return (intx)pthread_self(); }
1596int os::current_process_id() {
1597
1598  // Under the old linux thread library, linux gives each thread
1599  // its own process id. Because of this each thread will return
1600  // a different pid if this method were to return the result
1601  // of getpid(2). Linux provides no api that returns the pid
1602  // of the launcher thread for the vm. This implementation
1603  // returns a unique pid, the pid of the launcher thread
1604  // that starts the vm 'process'.
1605
1606  // Under the NPTL, getpid() returns the same pid as the
1607  // launcher thread rather than a unique pid per thread.
1608  // Use gettid() if you want the old pre NPTL behaviour.
1609
1610  // if you are looking for the result of a call to getpid() that
1611  // returns a unique pid for the calling thread, then look at the
1612  // OSThread::thread_id() method in osThread_linux.hpp file
1613
1614  return (int)(_initial_pid ? _initial_pid : getpid());
1615}
1616
1617// DLL functions
1618
1619const char* os::dll_file_extension() { return ".so"; }
1620
1621// This must be hard coded because it's the system's temporary
1622// directory not the java application's temp directory, ala java.io.tmpdir.
1623const char* os::get_temp_directory() { return "/tmp"; }
1624
1625static bool file_exists(const char* filename) {
1626  struct stat statbuf;
1627  if (filename == NULL || strlen(filename) == 0) {
1628    return false;
1629  }
1630  return os::stat(filename, &statbuf) == 0;
1631}
1632
1633bool os::dll_build_name(char* buffer, size_t buflen,
1634                        const char* pname, const char* fname) {
1635  bool retval = false;
1636  // Copied from libhpi
1637  const size_t pnamelen = pname ? strlen(pname) : 0;
1638
1639  // Return error on buffer overflow.
1640  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1641    return retval;
1642  }
1643
1644  if (pnamelen == 0) {
1645    snprintf(buffer, buflen, "lib%s.so", fname);
1646    retval = true;
1647  } else if (strchr(pname, *os::path_separator()) != NULL) {
1648    int n;
1649    char** pelements = split_path(pname, &n);
1650    if (pelements == NULL) {
1651        return false;
1652    }
1653    for (int i = 0 ; i < n ; i++) {
1654      // Really shouldn't be NULL, but check can't hurt
1655      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1656        continue; // skip the empty path values
1657      }
1658      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1659      if (file_exists(buffer)) {
1660        retval = true;
1661        break;
1662      }
1663    }
1664    // release the storage
1665    for (int i = 0 ; i < n ; i++) {
1666      if (pelements[i] != NULL) {
1667        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1668      }
1669    }
1670    if (pelements != NULL) {
1671      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1672    }
1673  } else {
1674    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1675    retval = true;
1676  }
1677  return retval;
1678}
1679
1680const char* os::get_current_directory(char *buf, int buflen) {
1681  return getcwd(buf, buflen);
1682}
1683
1684// check if addr is inside libjvm.so
1685bool os::address_is_in_vm(address addr) {
1686  static address libjvm_base_addr;
1687  Dl_info dlinfo;
1688
1689  if (libjvm_base_addr == NULL) {
1690    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1691    libjvm_base_addr = (address)dlinfo.dli_fbase;
1692    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1693  }
1694
1695  if (dladdr((void *)addr, &dlinfo)) {
1696    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1697  }
1698
1699  return false;
1700}
1701
1702bool os::dll_address_to_function_name(address addr, char *buf,
1703                                      int buflen, int *offset) {
1704  Dl_info dlinfo;
1705
1706  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1707    if (buf != NULL) {
1708      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1709        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1710      }
1711    }
1712    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1713    return true;
1714  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1715    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1716        buf, buflen, offset, dlinfo.dli_fname)) {
1717       return true;
1718    }
1719  }
1720
1721  if (buf != NULL) buf[0] = '\0';
1722  if (offset != NULL) *offset = -1;
1723  return false;
1724}
1725
1726struct _address_to_library_name {
1727  address addr;          // input : memory address
1728  size_t  buflen;        //         size of fname
1729  char*   fname;         // output: library name
1730  address base;          //         library base addr
1731};
1732
1733static int address_to_library_name_callback(struct dl_phdr_info *info,
1734                                            size_t size, void *data) {
1735  int i;
1736  bool found = false;
1737  address libbase = NULL;
1738  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1739
1740  // iterate through all loadable segments
1741  for (i = 0; i < info->dlpi_phnum; i++) {
1742    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1743    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1744      // base address of a library is the lowest address of its loaded
1745      // segments.
1746      if (libbase == NULL || libbase > segbase) {
1747        libbase = segbase;
1748      }
1749      // see if 'addr' is within current segment
1750      if (segbase <= d->addr &&
1751          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1752        found = true;
1753      }
1754    }
1755  }
1756
1757  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1758  // so dll_address_to_library_name() can fall through to use dladdr() which
1759  // can figure out executable name from argv[0].
1760  if (found && info->dlpi_name && info->dlpi_name[0]) {
1761    d->base = libbase;
1762    if (d->fname) {
1763      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1764    }
1765    return 1;
1766  }
1767  return 0;
1768}
1769
1770bool os::dll_address_to_library_name(address addr, char* buf,
1771                                     int buflen, int* offset) {
1772  Dl_info dlinfo;
1773  struct _address_to_library_name data;
1774
1775  // There is a bug in old glibc dladdr() implementation that it could resolve
1776  // to wrong library name if the .so file has a base address != NULL. Here
1777  // we iterate through the program headers of all loaded libraries to find
1778  // out which library 'addr' really belongs to. This workaround can be
1779  // removed once the minimum requirement for glibc is moved to 2.3.x.
1780  data.addr = addr;
1781  data.fname = buf;
1782  data.buflen = buflen;
1783  data.base = NULL;
1784  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1785
1786  if (rslt) {
1787     // buf already contains library name
1788     if (offset) *offset = addr - data.base;
1789     return true;
1790  } else if (dladdr((void*)addr, &dlinfo)){
1791     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1792     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1793     return true;
1794  } else {
1795     if (buf) buf[0] = '\0';
1796     if (offset) *offset = -1;
1797     return false;
1798  }
1799}
1800
1801  // Loads .dll/.so and
1802  // in case of error it checks if .dll/.so was built for the
1803  // same architecture as Hotspot is running on
1804
1805
1806// Remember the stack's state. The Linux dynamic linker will change
1807// the stack to 'executable' at most once, so we must safepoint only once.
1808bool os::Linux::_stack_is_executable = false;
1809
1810// VM operation that loads a library.  This is necessary if stack protection
1811// of the Java stacks can be lost during loading the library.  If we
1812// do not stop the Java threads, they can stack overflow before the stacks
1813// are protected again.
1814class VM_LinuxDllLoad: public VM_Operation {
1815 private:
1816  const char *_filename;
1817  char *_ebuf;
1818  int _ebuflen;
1819  void *_lib;
1820 public:
1821  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1822    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1823  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1824  void doit() {
1825    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1826    os::Linux::_stack_is_executable = true;
1827  }
1828  void* loaded_library() { return _lib; }
1829};
1830
1831void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1832{
1833  void * result = NULL;
1834  bool load_attempted = false;
1835
1836  // Check whether the library to load might change execution rights
1837  // of the stack. If they are changed, the protection of the stack
1838  // guard pages will be lost. We need a safepoint to fix this.
1839  //
1840  // See Linux man page execstack(8) for more info.
1841  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1842    ElfFile ef(filename);
1843    if (!ef.specifies_noexecstack()) {
1844      if (!is_init_completed()) {
1845        os::Linux::_stack_is_executable = true;
1846        // This is OK - No Java threads have been created yet, and hence no
1847        // stack guard pages to fix.
1848        //
1849        // This should happen only when you are building JDK7 using a very
1850        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1851        //
1852        // Dynamic loader will make all stacks executable after
1853        // this function returns, and will not do that again.
1854        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1855      } else {
1856        warning("You have loaded library %s which might have disabled stack guard. "
1857                "The VM will try to fix the stack guard now.\n"
1858                "It's highly recommended that you fix the library with "
1859                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1860                filename);
1861
1862        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1863        JavaThread *jt = JavaThread::current();
1864        if (jt->thread_state() != _thread_in_native) {
1865          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1866          // that requires ExecStack. Cannot enter safe point. Let's give up.
1867          warning("Unable to fix stack guard. Giving up.");
1868        } else {
1869          if (!LoadExecStackDllInVMThread) {
1870            // This is for the case where the DLL has an static
1871            // constructor function that executes JNI code. We cannot
1872            // load such DLLs in the VMThread.
1873            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1874          }
1875
1876          ThreadInVMfromNative tiv(jt);
1877          debug_only(VMNativeEntryWrapper vew;)
1878
1879          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1880          VMThread::execute(&op);
1881          if (LoadExecStackDllInVMThread) {
1882            result = op.loaded_library();
1883          }
1884          load_attempted = true;
1885        }
1886      }
1887    }
1888  }
1889
1890  if (!load_attempted) {
1891    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1892  }
1893
1894  if (result != NULL) {
1895    // Successful loading
1896    return result;
1897  }
1898
1899  Elf32_Ehdr elf_head;
1900  int diag_msg_max_length=ebuflen-strlen(ebuf);
1901  char* diag_msg_buf=ebuf+strlen(ebuf);
1902
1903  if (diag_msg_max_length==0) {
1904    // No more space in ebuf for additional diagnostics message
1905    return NULL;
1906  }
1907
1908
1909  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1910
1911  if (file_descriptor < 0) {
1912    // Can't open library, report dlerror() message
1913    return NULL;
1914  }
1915
1916  bool failed_to_read_elf_head=
1917    (sizeof(elf_head)!=
1918        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1919
1920  ::close(file_descriptor);
1921  if (failed_to_read_elf_head) {
1922    // file i/o error - report dlerror() msg
1923    return NULL;
1924  }
1925
1926  typedef struct {
1927    Elf32_Half  code;         // Actual value as defined in elf.h
1928    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1929    char        elf_class;    // 32 or 64 bit
1930    char        endianess;    // MSB or LSB
1931    char*       name;         // String representation
1932  } arch_t;
1933
1934  #ifndef EM_486
1935  #define EM_486          6               /* Intel 80486 */
1936  #endif
1937
1938  static const arch_t arch_array[]={
1939    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1940    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1941    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1942    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1943    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1944    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1945    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1946    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1947    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1948    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1949    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1950    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1951    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1952    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1953    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1954    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1955  };
1956
1957  #if  (defined IA32)
1958    static  Elf32_Half running_arch_code=EM_386;
1959  #elif   (defined AMD64)
1960    static  Elf32_Half running_arch_code=EM_X86_64;
1961  #elif  (defined IA64)
1962    static  Elf32_Half running_arch_code=EM_IA_64;
1963  #elif  (defined __sparc) && (defined _LP64)
1964    static  Elf32_Half running_arch_code=EM_SPARCV9;
1965  #elif  (defined __sparc) && (!defined _LP64)
1966    static  Elf32_Half running_arch_code=EM_SPARC;
1967  #elif  (defined __powerpc64__)
1968    static  Elf32_Half running_arch_code=EM_PPC64;
1969  #elif  (defined __powerpc__)
1970    static  Elf32_Half running_arch_code=EM_PPC;
1971  #elif  (defined ARM)
1972    static  Elf32_Half running_arch_code=EM_ARM;
1973  #elif  (defined S390)
1974    static  Elf32_Half running_arch_code=EM_S390;
1975  #elif  (defined ALPHA)
1976    static  Elf32_Half running_arch_code=EM_ALPHA;
1977  #elif  (defined MIPSEL)
1978    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1979  #elif  (defined PARISC)
1980    static  Elf32_Half running_arch_code=EM_PARISC;
1981  #elif  (defined MIPS)
1982    static  Elf32_Half running_arch_code=EM_MIPS;
1983  #elif  (defined M68K)
1984    static  Elf32_Half running_arch_code=EM_68K;
1985  #else
1986    #error Method os::dll_load requires that one of following is defined:\
1987         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1988  #endif
1989
1990  // Identify compatability class for VM's architecture and library's architecture
1991  // Obtain string descriptions for architectures
1992
1993  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1994  int running_arch_index=-1;
1995
1996  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1997    if (running_arch_code == arch_array[i].code) {
1998      running_arch_index    = i;
1999    }
2000    if (lib_arch.code == arch_array[i].code) {
2001      lib_arch.compat_class = arch_array[i].compat_class;
2002      lib_arch.name         = arch_array[i].name;
2003    }
2004  }
2005
2006  assert(running_arch_index != -1,
2007    "Didn't find running architecture code (running_arch_code) in arch_array");
2008  if (running_arch_index == -1) {
2009    // Even though running architecture detection failed
2010    // we may still continue with reporting dlerror() message
2011    return NULL;
2012  }
2013
2014  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2015    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2016    return NULL;
2017  }
2018
2019#ifndef S390
2020  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2021    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2022    return NULL;
2023  }
2024#endif // !S390
2025
2026  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2027    if ( lib_arch.name!=NULL ) {
2028      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2029        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2030        lib_arch.name, arch_array[running_arch_index].name);
2031    } else {
2032      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2033      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2034        lib_arch.code,
2035        arch_array[running_arch_index].name);
2036    }
2037  }
2038
2039  return NULL;
2040}
2041
2042void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2043  void * result = ::dlopen(filename, RTLD_LAZY);
2044  if (result == NULL) {
2045    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2046    ebuf[ebuflen-1] = '\0';
2047  }
2048  return result;
2049}
2050
2051void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2052  void * result = NULL;
2053  if (LoadExecStackDllInVMThread) {
2054    result = dlopen_helper(filename, ebuf, ebuflen);
2055  }
2056
2057  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2058  // library that requires an executable stack, or which does not have this
2059  // stack attribute set, dlopen changes the stack attribute to executable. The
2060  // read protection of the guard pages gets lost.
2061  //
2062  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2063  // may have been queued at the same time.
2064
2065  if (!_stack_is_executable) {
2066    JavaThread *jt = Threads::first();
2067
2068    while (jt) {
2069      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2070          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2071        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2072                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2073          warning("Attempt to reguard stack yellow zone failed.");
2074        }
2075      }
2076      jt = jt->next();
2077    }
2078  }
2079
2080  return result;
2081}
2082
2083/*
2084 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2085 * chances are you might want to run the generated bits against glibc-2.0
2086 * libdl.so, so always use locking for any version of glibc.
2087 */
2088void* os::dll_lookup(void* handle, const char* name) {
2089  pthread_mutex_lock(&dl_mutex);
2090  void* res = dlsym(handle, name);
2091  pthread_mutex_unlock(&dl_mutex);
2092  return res;
2093}
2094
2095
2096static bool _print_ascii_file(const char* filename, outputStream* st) {
2097  int fd = ::open(filename, O_RDONLY);
2098  if (fd == -1) {
2099     return false;
2100  }
2101
2102  char buf[32];
2103  int bytes;
2104  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2105    st->print_raw(buf, bytes);
2106  }
2107
2108  ::close(fd);
2109
2110  return true;
2111}
2112
2113void os::print_dll_info(outputStream *st) {
2114   st->print_cr("Dynamic libraries:");
2115
2116   char fname[32];
2117   pid_t pid = os::Linux::gettid();
2118
2119   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2120
2121   if (!_print_ascii_file(fname, st)) {
2122     st->print("Can not get library information for pid = %d\n", pid);
2123   }
2124}
2125
2126void os::print_os_info_brief(outputStream* st) {
2127  os::Linux::print_distro_info(st);
2128
2129  os::Posix::print_uname_info(st);
2130
2131  os::Linux::print_libversion_info(st);
2132
2133}
2134
2135void os::print_os_info(outputStream* st) {
2136  st->print("OS:");
2137
2138  os::Linux::print_distro_info(st);
2139
2140  os::Posix::print_uname_info(st);
2141
2142  // Print warning if unsafe chroot environment detected
2143  if (unsafe_chroot_detected) {
2144    st->print("WARNING!! ");
2145    st->print_cr(unstable_chroot_error);
2146  }
2147
2148  os::Linux::print_libversion_info(st);
2149
2150  os::Posix::print_rlimit_info(st);
2151
2152  os::Posix::print_load_average(st);
2153
2154  os::Linux::print_full_memory_info(st);
2155}
2156
2157// Try to identify popular distros.
2158// Most Linux distributions have /etc/XXX-release file, which contains
2159// the OS version string. Some have more than one /etc/XXX-release file
2160// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2161// so the order is important.
2162void os::Linux::print_distro_info(outputStream* st) {
2163  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2164      !_print_ascii_file("/etc/sun-release", st) &&
2165      !_print_ascii_file("/etc/redhat-release", st) &&
2166      !_print_ascii_file("/etc/SuSE-release", st) &&
2167      !_print_ascii_file("/etc/turbolinux-release", st) &&
2168      !_print_ascii_file("/etc/gentoo-release", st) &&
2169      !_print_ascii_file("/etc/debian_version", st) &&
2170      !_print_ascii_file("/etc/ltib-release", st) &&
2171      !_print_ascii_file("/etc/angstrom-version", st)) {
2172      st->print("Linux");
2173  }
2174  st->cr();
2175}
2176
2177void os::Linux::print_libversion_info(outputStream* st) {
2178  // libc, pthread
2179  st->print("libc:");
2180  st->print(os::Linux::glibc_version()); st->print(" ");
2181  st->print(os::Linux::libpthread_version()); st->print(" ");
2182  if (os::Linux::is_LinuxThreads()) {
2183     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2184  }
2185  st->cr();
2186}
2187
2188void os::Linux::print_full_memory_info(outputStream* st) {
2189   st->print("\n/proc/meminfo:\n");
2190   _print_ascii_file("/proc/meminfo", st);
2191   st->cr();
2192}
2193
2194void os::print_memory_info(outputStream* st) {
2195
2196  st->print("Memory:");
2197  st->print(" %dk page", os::vm_page_size()>>10);
2198
2199  // values in struct sysinfo are "unsigned long"
2200  struct sysinfo si;
2201  sysinfo(&si);
2202
2203  st->print(", physical " UINT64_FORMAT "k",
2204            os::physical_memory() >> 10);
2205  st->print("(" UINT64_FORMAT "k free)",
2206            os::available_memory() >> 10);
2207  st->print(", swap " UINT64_FORMAT "k",
2208            ((jlong)si.totalswap * si.mem_unit) >> 10);
2209  st->print("(" UINT64_FORMAT "k free)",
2210            ((jlong)si.freeswap * si.mem_unit) >> 10);
2211  st->cr();
2212}
2213
2214void os::pd_print_cpu_info(outputStream* st) {
2215  st->print("\n/proc/cpuinfo:\n");
2216  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2217    st->print("  <Not Available>");
2218  }
2219  st->cr();
2220}
2221
2222// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2223// but they're the same for all the linux arch that we support
2224// and they're the same for solaris but there's no common place to put this.
2225const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2226                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2227                          "ILL_COPROC", "ILL_BADSTK" };
2228
2229const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2230                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2231                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2232
2233const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2234
2235const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2236
2237void os::print_siginfo(outputStream* st, void* siginfo) {
2238  st->print("siginfo:");
2239
2240  const int buflen = 100;
2241  char buf[buflen];
2242  siginfo_t *si = (siginfo_t*)siginfo;
2243  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2244  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2245    st->print("si_errno=%s", buf);
2246  } else {
2247    st->print("si_errno=%d", si->si_errno);
2248  }
2249  const int c = si->si_code;
2250  assert(c > 0, "unexpected si_code");
2251  switch (si->si_signo) {
2252  case SIGILL:
2253    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2254    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2255    break;
2256  case SIGFPE:
2257    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2258    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2259    break;
2260  case SIGSEGV:
2261    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2262    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2263    break;
2264  case SIGBUS:
2265    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2266    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2267    break;
2268  default:
2269    st->print(", si_code=%d", si->si_code);
2270    // no si_addr
2271  }
2272
2273  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2274      UseSharedSpaces) {
2275    FileMapInfo* mapinfo = FileMapInfo::current_info();
2276    if (mapinfo->is_in_shared_space(si->si_addr)) {
2277      st->print("\n\nError accessing class data sharing archive."   \
2278                " Mapped file inaccessible during execution, "      \
2279                " possible disk/network problem.");
2280    }
2281  }
2282  st->cr();
2283}
2284
2285
2286static void print_signal_handler(outputStream* st, int sig,
2287                                 char* buf, size_t buflen);
2288
2289void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2290  st->print_cr("Signal Handlers:");
2291  print_signal_handler(st, SIGSEGV, buf, buflen);
2292  print_signal_handler(st, SIGBUS , buf, buflen);
2293  print_signal_handler(st, SIGFPE , buf, buflen);
2294  print_signal_handler(st, SIGPIPE, buf, buflen);
2295  print_signal_handler(st, SIGXFSZ, buf, buflen);
2296  print_signal_handler(st, SIGILL , buf, buflen);
2297  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2298  print_signal_handler(st, SR_signum, buf, buflen);
2299  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2300  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2301  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2302  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2303}
2304
2305static char saved_jvm_path[MAXPATHLEN] = {0};
2306
2307// Find the full path to the current module, libjvm.so
2308void os::jvm_path(char *buf, jint buflen) {
2309  // Error checking.
2310  if (buflen < MAXPATHLEN) {
2311    assert(false, "must use a large-enough buffer");
2312    buf[0] = '\0';
2313    return;
2314  }
2315  // Lazy resolve the path to current module.
2316  if (saved_jvm_path[0] != 0) {
2317    strcpy(buf, saved_jvm_path);
2318    return;
2319  }
2320
2321  char dli_fname[MAXPATHLEN];
2322  bool ret = dll_address_to_library_name(
2323                CAST_FROM_FN_PTR(address, os::jvm_path),
2324                dli_fname, sizeof(dli_fname), NULL);
2325  assert(ret != 0, "cannot locate libjvm");
2326  char *rp = realpath(dli_fname, buf);
2327  if (rp == NULL)
2328    return;
2329
2330  if (Arguments::created_by_gamma_launcher()) {
2331    // Support for the gamma launcher.  Typical value for buf is
2332    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2333    // the right place in the string, then assume we are installed in a JDK and
2334    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2335    // up the path so it looks like libjvm.so is installed there (append a
2336    // fake suffix hotspot/libjvm.so).
2337    const char *p = buf + strlen(buf) - 1;
2338    for (int count = 0; p > buf && count < 5; ++count) {
2339      for (--p; p > buf && *p != '/'; --p)
2340        /* empty */ ;
2341    }
2342
2343    if (strncmp(p, "/jre/lib/", 9) != 0) {
2344      // Look for JAVA_HOME in the environment.
2345      char* java_home_var = ::getenv("JAVA_HOME");
2346      if (java_home_var != NULL && java_home_var[0] != 0) {
2347        char* jrelib_p;
2348        int len;
2349
2350        // Check the current module name "libjvm.so".
2351        p = strrchr(buf, '/');
2352        assert(strstr(p, "/libjvm") == p, "invalid library name");
2353
2354        rp = realpath(java_home_var, buf);
2355        if (rp == NULL)
2356          return;
2357
2358        // determine if this is a legacy image or modules image
2359        // modules image doesn't have "jre" subdirectory
2360        len = strlen(buf);
2361        jrelib_p = buf + len;
2362        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2363        if (0 != access(buf, F_OK)) {
2364          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2365        }
2366
2367        if (0 == access(buf, F_OK)) {
2368          // Use current module name "libjvm.so"
2369          len = strlen(buf);
2370          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2371        } else {
2372          // Go back to path of .so
2373          rp = realpath(dli_fname, buf);
2374          if (rp == NULL)
2375            return;
2376        }
2377      }
2378    }
2379  }
2380
2381  strcpy(saved_jvm_path, buf);
2382}
2383
2384void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2385  // no prefix required, not even "_"
2386}
2387
2388void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2389  // no suffix required
2390}
2391
2392////////////////////////////////////////////////////////////////////////////////
2393// sun.misc.Signal support
2394
2395static volatile jint sigint_count = 0;
2396
2397static void
2398UserHandler(int sig, void *siginfo, void *context) {
2399  // 4511530 - sem_post is serialized and handled by the manager thread. When
2400  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2401  // don't want to flood the manager thread with sem_post requests.
2402  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2403      return;
2404
2405  // Ctrl-C is pressed during error reporting, likely because the error
2406  // handler fails to abort. Let VM die immediately.
2407  if (sig == SIGINT && is_error_reported()) {
2408     os::die();
2409  }
2410
2411  os::signal_notify(sig);
2412}
2413
2414void* os::user_handler() {
2415  return CAST_FROM_FN_PTR(void*, UserHandler);
2416}
2417
2418extern "C" {
2419  typedef void (*sa_handler_t)(int);
2420  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2421}
2422
2423void* os::signal(int signal_number, void* handler) {
2424  struct sigaction sigAct, oldSigAct;
2425
2426  sigfillset(&(sigAct.sa_mask));
2427  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2428  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2429
2430  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2431    // -1 means registration failed
2432    return (void *)-1;
2433  }
2434
2435  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2436}
2437
2438void os::signal_raise(int signal_number) {
2439  ::raise(signal_number);
2440}
2441
2442/*
2443 * The following code is moved from os.cpp for making this
2444 * code platform specific, which it is by its very nature.
2445 */
2446
2447// Will be modified when max signal is changed to be dynamic
2448int os::sigexitnum_pd() {
2449  return NSIG;
2450}
2451
2452// a counter for each possible signal value
2453static volatile jint pending_signals[NSIG+1] = { 0 };
2454
2455// Linux(POSIX) specific hand shaking semaphore.
2456static sem_t sig_sem;
2457
2458void os::signal_init_pd() {
2459  // Initialize signal structures
2460  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2461
2462  // Initialize signal semaphore
2463  ::sem_init(&sig_sem, 0, 0);
2464}
2465
2466void os::signal_notify(int sig) {
2467  Atomic::inc(&pending_signals[sig]);
2468  ::sem_post(&sig_sem);
2469}
2470
2471static int check_pending_signals(bool wait) {
2472  Atomic::store(0, &sigint_count);
2473  for (;;) {
2474    for (int i = 0; i < NSIG + 1; i++) {
2475      jint n = pending_signals[i];
2476      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2477        return i;
2478      }
2479    }
2480    if (!wait) {
2481      return -1;
2482    }
2483    JavaThread *thread = JavaThread::current();
2484    ThreadBlockInVM tbivm(thread);
2485
2486    bool threadIsSuspended;
2487    do {
2488      thread->set_suspend_equivalent();
2489      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2490      ::sem_wait(&sig_sem);
2491
2492      // were we externally suspended while we were waiting?
2493      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2494      if (threadIsSuspended) {
2495        //
2496        // The semaphore has been incremented, but while we were waiting
2497        // another thread suspended us. We don't want to continue running
2498        // while suspended because that would surprise the thread that
2499        // suspended us.
2500        //
2501        ::sem_post(&sig_sem);
2502
2503        thread->java_suspend_self();
2504      }
2505    } while (threadIsSuspended);
2506  }
2507}
2508
2509int os::signal_lookup() {
2510  return check_pending_signals(false);
2511}
2512
2513int os::signal_wait() {
2514  return check_pending_signals(true);
2515}
2516
2517////////////////////////////////////////////////////////////////////////////////
2518// Virtual Memory
2519
2520int os::vm_page_size() {
2521  // Seems redundant as all get out
2522  assert(os::Linux::page_size() != -1, "must call os::init");
2523  return os::Linux::page_size();
2524}
2525
2526// Solaris allocates memory by pages.
2527int os::vm_allocation_granularity() {
2528  assert(os::Linux::page_size() != -1, "must call os::init");
2529  return os::Linux::page_size();
2530}
2531
2532// Rationale behind this function:
2533//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2534//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2535//  samples for JITted code. Here we create private executable mapping over the code cache
2536//  and then we can use standard (well, almost, as mapping can change) way to provide
2537//  info for the reporting script by storing timestamp and location of symbol
2538void linux_wrap_code(char* base, size_t size) {
2539  static volatile jint cnt = 0;
2540
2541  if (!UseOprofile) {
2542    return;
2543  }
2544
2545  char buf[PATH_MAX+1];
2546  int num = Atomic::add(1, &cnt);
2547
2548  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2549           os::get_temp_directory(), os::current_process_id(), num);
2550  unlink(buf);
2551
2552  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2553
2554  if (fd != -1) {
2555    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2556    if (rv != (off_t)-1) {
2557      if (::write(fd, "", 1) == 1) {
2558        mmap(base, size,
2559             PROT_READ|PROT_WRITE|PROT_EXEC,
2560             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2561      }
2562    }
2563    ::close(fd);
2564    unlink(buf);
2565  }
2566}
2567
2568// NOTE: Linux kernel does not really reserve the pages for us.
2569//       All it does is to check if there are enough free pages
2570//       left at the time of mmap(). This could be a potential
2571//       problem.
2572bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2573  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2574  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2575                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2576  if (res != (uintptr_t) MAP_FAILED) {
2577    if (UseNUMAInterleaving) {
2578      numa_make_global(addr, size);
2579    }
2580    return true;
2581  }
2582  return false;
2583}
2584
2585// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2586#ifndef MAP_HUGETLB
2587#define MAP_HUGETLB 0x40000
2588#endif
2589
2590// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2591#ifndef MADV_HUGEPAGE
2592#define MADV_HUGEPAGE 14
2593#endif
2594
2595bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2596                       bool exec) {
2597  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2598    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2599    uintptr_t res =
2600      (uintptr_t) ::mmap(addr, size, prot,
2601                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2602                         -1, 0);
2603    if (res != (uintptr_t) MAP_FAILED) {
2604      if (UseNUMAInterleaving) {
2605        numa_make_global(addr, size);
2606      }
2607      return true;
2608    }
2609    // Fall through and try to use small pages
2610  }
2611
2612  if (commit_memory(addr, size, exec)) {
2613    realign_memory(addr, size, alignment_hint);
2614    return true;
2615  }
2616  return false;
2617}
2618
2619void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2620  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2621    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2622    // be supported or the memory may already be backed by huge pages.
2623    ::madvise(addr, bytes, MADV_HUGEPAGE);
2624  }
2625}
2626
2627void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2628  // This method works by doing an mmap over an existing mmaping and effectively discarding
2629  // the existing pages. However it won't work for SHM-based large pages that cannot be
2630  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2631  // small pages on top of the SHM segment. This method always works for small pages, so we
2632  // allow that in any case.
2633  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2634    commit_memory(addr, bytes, alignment_hint, false);
2635  }
2636}
2637
2638void os::numa_make_global(char *addr, size_t bytes) {
2639  Linux::numa_interleave_memory(addr, bytes);
2640}
2641
2642void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2643  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2644}
2645
2646bool os::numa_topology_changed()   { return false; }
2647
2648size_t os::numa_get_groups_num() {
2649  int max_node = Linux::numa_max_node();
2650  return max_node > 0 ? max_node + 1 : 1;
2651}
2652
2653int os::numa_get_group_id() {
2654  int cpu_id = Linux::sched_getcpu();
2655  if (cpu_id != -1) {
2656    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2657    if (lgrp_id != -1) {
2658      return lgrp_id;
2659    }
2660  }
2661  return 0;
2662}
2663
2664size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2665  for (size_t i = 0; i < size; i++) {
2666    ids[i] = i;
2667  }
2668  return size;
2669}
2670
2671bool os::get_page_info(char *start, page_info* info) {
2672  return false;
2673}
2674
2675char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2676  return end;
2677}
2678
2679
2680int os::Linux::sched_getcpu_syscall(void) {
2681  unsigned int cpu;
2682  int retval = -1;
2683
2684#if defined(IA32)
2685# ifndef SYS_getcpu
2686# define SYS_getcpu 318
2687# endif
2688  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2689#elif defined(AMD64)
2690// Unfortunately we have to bring all these macros here from vsyscall.h
2691// to be able to compile on old linuxes.
2692# define __NR_vgetcpu 2
2693# define VSYSCALL_START (-10UL << 20)
2694# define VSYSCALL_SIZE 1024
2695# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2696  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2697  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2698  retval = vgetcpu(&cpu, NULL, NULL);
2699#endif
2700
2701  return (retval == -1) ? retval : cpu;
2702}
2703
2704// Something to do with the numa-aware allocator needs these symbols
2705extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2706extern "C" JNIEXPORT void numa_error(char *where) { }
2707extern "C" JNIEXPORT int fork1() { return fork(); }
2708
2709
2710// If we are running with libnuma version > 2, then we should
2711// be trying to use symbols with versions 1.1
2712// If we are running with earlier version, which did not have symbol versions,
2713// we should use the base version.
2714void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2715  void *f = dlvsym(handle, name, "libnuma_1.1");
2716  if (f == NULL) {
2717    f = dlsym(handle, name);
2718  }
2719  return f;
2720}
2721
2722bool os::Linux::libnuma_init() {
2723  // sched_getcpu() should be in libc.
2724  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2725                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2726
2727  // If it's not, try a direct syscall.
2728  if (sched_getcpu() == -1)
2729    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2730
2731  if (sched_getcpu() != -1) { // Does it work?
2732    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2733    if (handle != NULL) {
2734      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2735                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2736      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2737                                       libnuma_dlsym(handle, "numa_max_node")));
2738      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2739                                        libnuma_dlsym(handle, "numa_available")));
2740      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2741                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2742      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2743                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2744
2745
2746      if (numa_available() != -1) {
2747        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2748        // Create a cpu -> node mapping
2749        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2750        rebuild_cpu_to_node_map();
2751        return true;
2752      }
2753    }
2754  }
2755  return false;
2756}
2757
2758// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2759// The table is later used in get_node_by_cpu().
2760void os::Linux::rebuild_cpu_to_node_map() {
2761  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2762                              // in libnuma (possible values are starting from 16,
2763                              // and continuing up with every other power of 2, but less
2764                              // than the maximum number of CPUs supported by kernel), and
2765                              // is a subject to change (in libnuma version 2 the requirements
2766                              // are more reasonable) we'll just hardcode the number they use
2767                              // in the library.
2768  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2769
2770  size_t cpu_num = os::active_processor_count();
2771  size_t cpu_map_size = NCPUS / BitsPerCLong;
2772  size_t cpu_map_valid_size =
2773    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2774
2775  cpu_to_node()->clear();
2776  cpu_to_node()->at_grow(cpu_num - 1);
2777  size_t node_num = numa_get_groups_num();
2778
2779  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2780  for (size_t i = 0; i < node_num; i++) {
2781    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2782      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2783        if (cpu_map[j] != 0) {
2784          for (size_t k = 0; k < BitsPerCLong; k++) {
2785            if (cpu_map[j] & (1UL << k)) {
2786              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2787            }
2788          }
2789        }
2790      }
2791    }
2792  }
2793  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2794}
2795
2796int os::Linux::get_node_by_cpu(int cpu_id) {
2797  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2798    return cpu_to_node()->at(cpu_id);
2799  }
2800  return -1;
2801}
2802
2803GrowableArray<int>* os::Linux::_cpu_to_node;
2804os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2805os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2806os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2807os::Linux::numa_available_func_t os::Linux::_numa_available;
2808os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2809os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2810unsigned long* os::Linux::_numa_all_nodes;
2811
2812bool os::pd_uncommit_memory(char* addr, size_t size) {
2813  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2814                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2815  return res  != (uintptr_t) MAP_FAILED;
2816}
2817
2818// Linux uses a growable mapping for the stack, and if the mapping for
2819// the stack guard pages is not removed when we detach a thread the
2820// stack cannot grow beyond the pages where the stack guard was
2821// mapped.  If at some point later in the process the stack expands to
2822// that point, the Linux kernel cannot expand the stack any further
2823// because the guard pages are in the way, and a segfault occurs.
2824//
2825// However, it's essential not to split the stack region by unmapping
2826// a region (leaving a hole) that's already part of the stack mapping,
2827// so if the stack mapping has already grown beyond the guard pages at
2828// the time we create them, we have to truncate the stack mapping.
2829// So, we need to know the extent of the stack mapping when
2830// create_stack_guard_pages() is called.
2831
2832// Find the bounds of the stack mapping.  Return true for success.
2833//
2834// We only need this for stacks that are growable: at the time of
2835// writing thread stacks don't use growable mappings (i.e. those
2836// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2837// only applies to the main thread.
2838
2839static
2840bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2841
2842  char buf[128];
2843  int fd, sz;
2844
2845  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2846    return false;
2847  }
2848
2849  const char kw[] = "[stack]";
2850  const int kwlen = sizeof(kw)-1;
2851
2852  // Address part of /proc/self/maps couldn't be more than 128 bytes
2853  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2854     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2855        // Extract addresses
2856        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2857           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2858           if (sp >= *bottom && sp <= *top) {
2859              ::close(fd);
2860              return true;
2861           }
2862        }
2863     }
2864  }
2865
2866 ::close(fd);
2867  return false;
2868}
2869
2870
2871// If the (growable) stack mapping already extends beyond the point
2872// where we're going to put our guard pages, truncate the mapping at
2873// that point by munmap()ping it.  This ensures that when we later
2874// munmap() the guard pages we don't leave a hole in the stack
2875// mapping. This only affects the main/initial thread, but guard
2876// against future OS changes
2877bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2878  uintptr_t stack_extent, stack_base;
2879  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2880  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2881      assert(os::Linux::is_initial_thread(),
2882           "growable stack in non-initial thread");
2883    if (stack_extent < (uintptr_t)addr)
2884      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2885  }
2886
2887  return os::commit_memory(addr, size);
2888}
2889
2890// If this is a growable mapping, remove the guard pages entirely by
2891// munmap()ping them.  If not, just call uncommit_memory(). This only
2892// affects the main/initial thread, but guard against future OS changes
2893bool os::remove_stack_guard_pages(char* addr, size_t size) {
2894  uintptr_t stack_extent, stack_base;
2895  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2896  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2897      assert(os::Linux::is_initial_thread(),
2898           "growable stack in non-initial thread");
2899
2900    return ::munmap(addr, size) == 0;
2901  }
2902
2903  return os::uncommit_memory(addr, size);
2904}
2905
2906static address _highest_vm_reserved_address = NULL;
2907
2908// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2909// at 'requested_addr'. If there are existing memory mappings at the same
2910// location, however, they will be overwritten. If 'fixed' is false,
2911// 'requested_addr' is only treated as a hint, the return value may or
2912// may not start from the requested address. Unlike Linux mmap(), this
2913// function returns NULL to indicate failure.
2914static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2915  char * addr;
2916  int flags;
2917
2918  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2919  if (fixed) {
2920    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2921    flags |= MAP_FIXED;
2922  }
2923
2924  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2925  // to PROT_EXEC if executable when we commit the page.
2926  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2927                       flags, -1, 0);
2928
2929  if (addr != MAP_FAILED) {
2930    // anon_mmap() should only get called during VM initialization,
2931    // don't need lock (actually we can skip locking even it can be called
2932    // from multiple threads, because _highest_vm_reserved_address is just a
2933    // hint about the upper limit of non-stack memory regions.)
2934    if ((address)addr + bytes > _highest_vm_reserved_address) {
2935      _highest_vm_reserved_address = (address)addr + bytes;
2936    }
2937  }
2938
2939  return addr == MAP_FAILED ? NULL : addr;
2940}
2941
2942// Don't update _highest_vm_reserved_address, because there might be memory
2943// regions above addr + size. If so, releasing a memory region only creates
2944// a hole in the address space, it doesn't help prevent heap-stack collision.
2945//
2946static int anon_munmap(char * addr, size_t size) {
2947  return ::munmap(addr, size) == 0;
2948}
2949
2950char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2951                         size_t alignment_hint) {
2952  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2953}
2954
2955bool os::pd_release_memory(char* addr, size_t size) {
2956  return anon_munmap(addr, size);
2957}
2958
2959static address highest_vm_reserved_address() {
2960  return _highest_vm_reserved_address;
2961}
2962
2963static bool linux_mprotect(char* addr, size_t size, int prot) {
2964  // Linux wants the mprotect address argument to be page aligned.
2965  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2966
2967  // According to SUSv3, mprotect() should only be used with mappings
2968  // established by mmap(), and mmap() always maps whole pages. Unaligned
2969  // 'addr' likely indicates problem in the VM (e.g. trying to change
2970  // protection of malloc'ed or statically allocated memory). Check the
2971  // caller if you hit this assert.
2972  assert(addr == bottom, "sanity check");
2973
2974  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2975  return ::mprotect(bottom, size, prot) == 0;
2976}
2977
2978// Set protections specified
2979bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2980                        bool is_committed) {
2981  unsigned int p = 0;
2982  switch (prot) {
2983  case MEM_PROT_NONE: p = PROT_NONE; break;
2984  case MEM_PROT_READ: p = PROT_READ; break;
2985  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2986  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2987  default:
2988    ShouldNotReachHere();
2989  }
2990  // is_committed is unused.
2991  return linux_mprotect(addr, bytes, p);
2992}
2993
2994bool os::guard_memory(char* addr, size_t size) {
2995  return linux_mprotect(addr, size, PROT_NONE);
2996}
2997
2998bool os::unguard_memory(char* addr, size_t size) {
2999  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3000}
3001
3002bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3003  bool result = false;
3004  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3005                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3006                  -1, 0);
3007
3008  if (p != (void *) -1) {
3009    // We don't know if this really is a huge page or not.
3010    FILE *fp = fopen("/proc/self/maps", "r");
3011    if (fp) {
3012      while (!feof(fp)) {
3013        char chars[257];
3014        long x = 0;
3015        if (fgets(chars, sizeof(chars), fp)) {
3016          if (sscanf(chars, "%lx-%*x", &x) == 1
3017              && x == (long)p) {
3018            if (strstr (chars, "hugepage")) {
3019              result = true;
3020              break;
3021            }
3022          }
3023        }
3024      }
3025      fclose(fp);
3026    }
3027    munmap (p, page_size);
3028    if (result)
3029      return true;
3030  }
3031
3032  if (warn) {
3033    warning("HugeTLBFS is not supported by the operating system.");
3034  }
3035
3036  return result;
3037}
3038
3039/*
3040* Set the coredump_filter bits to include largepages in core dump (bit 6)
3041*
3042* From the coredump_filter documentation:
3043*
3044* - (bit 0) anonymous private memory
3045* - (bit 1) anonymous shared memory
3046* - (bit 2) file-backed private memory
3047* - (bit 3) file-backed shared memory
3048* - (bit 4) ELF header pages in file-backed private memory areas (it is
3049*           effective only if the bit 2 is cleared)
3050* - (bit 5) hugetlb private memory
3051* - (bit 6) hugetlb shared memory
3052*/
3053static void set_coredump_filter(void) {
3054  FILE *f;
3055  long cdm;
3056
3057  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3058    return;
3059  }
3060
3061  if (fscanf(f, "%lx", &cdm) != 1) {
3062    fclose(f);
3063    return;
3064  }
3065
3066  rewind(f);
3067
3068  if ((cdm & LARGEPAGES_BIT) == 0) {
3069    cdm |= LARGEPAGES_BIT;
3070    fprintf(f, "%#lx", cdm);
3071  }
3072
3073  fclose(f);
3074}
3075
3076// Large page support
3077
3078static size_t _large_page_size = 0;
3079
3080void os::large_page_init() {
3081  if (!UseLargePages) {
3082    UseHugeTLBFS = false;
3083    UseSHM = false;
3084    return;
3085  }
3086
3087  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3088    // If UseLargePages is specified on the command line try both methods,
3089    // if it's default, then try only HugeTLBFS.
3090    if (FLAG_IS_DEFAULT(UseLargePages)) {
3091      UseHugeTLBFS = true;
3092    } else {
3093      UseHugeTLBFS = UseSHM = true;
3094    }
3095  }
3096
3097  if (LargePageSizeInBytes) {
3098    _large_page_size = LargePageSizeInBytes;
3099  } else {
3100    // large_page_size on Linux is used to round up heap size. x86 uses either
3101    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3102    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3103    // page as large as 256M.
3104    //
3105    // Here we try to figure out page size by parsing /proc/meminfo and looking
3106    // for a line with the following format:
3107    //    Hugepagesize:     2048 kB
3108    //
3109    // If we can't determine the value (e.g. /proc is not mounted, or the text
3110    // format has been changed), we'll use the largest page size supported by
3111    // the processor.
3112
3113#ifndef ZERO
3114    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3115                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3116#endif // ZERO
3117
3118    FILE *fp = fopen("/proc/meminfo", "r");
3119    if (fp) {
3120      while (!feof(fp)) {
3121        int x = 0;
3122        char buf[16];
3123        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3124          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3125            _large_page_size = x * K;
3126            break;
3127          }
3128        } else {
3129          // skip to next line
3130          for (;;) {
3131            int ch = fgetc(fp);
3132            if (ch == EOF || ch == (int)'\n') break;
3133          }
3134        }
3135      }
3136      fclose(fp);
3137    }
3138  }
3139
3140  // print a warning if any large page related flag is specified on command line
3141  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3142
3143  const size_t default_page_size = (size_t)Linux::page_size();
3144  if (_large_page_size > default_page_size) {
3145    _page_sizes[0] = _large_page_size;
3146    _page_sizes[1] = default_page_size;
3147    _page_sizes[2] = 0;
3148  }
3149  UseHugeTLBFS = UseHugeTLBFS &&
3150                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3151
3152  if (UseHugeTLBFS)
3153    UseSHM = false;
3154
3155  UseLargePages = UseHugeTLBFS || UseSHM;
3156
3157  set_coredump_filter();
3158}
3159
3160#ifndef SHM_HUGETLB
3161#define SHM_HUGETLB 04000
3162#endif
3163
3164char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3165  // "exec" is passed in but not used.  Creating the shared image for
3166  // the code cache doesn't have an SHM_X executable permission to check.
3167  assert(UseLargePages && UseSHM, "only for SHM large pages");
3168
3169  key_t key = IPC_PRIVATE;
3170  char *addr;
3171
3172  bool warn_on_failure = UseLargePages &&
3173                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3174                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3175                        );
3176  char msg[128];
3177
3178  // Create a large shared memory region to attach to based on size.
3179  // Currently, size is the total size of the heap
3180  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3181  if (shmid == -1) {
3182     // Possible reasons for shmget failure:
3183     // 1. shmmax is too small for Java heap.
3184     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3185     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3186     // 2. not enough large page memory.
3187     //    > check available large pages: cat /proc/meminfo
3188     //    > increase amount of large pages:
3189     //          echo new_value > /proc/sys/vm/nr_hugepages
3190     //      Note 1: different Linux may use different name for this property,
3191     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3192     //      Note 2: it's possible there's enough physical memory available but
3193     //            they are so fragmented after a long run that they can't
3194     //            coalesce into large pages. Try to reserve large pages when
3195     //            the system is still "fresh".
3196     if (warn_on_failure) {
3197       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3198       warning(msg);
3199     }
3200     return NULL;
3201  }
3202
3203  // attach to the region
3204  addr = (char*)shmat(shmid, req_addr, 0);
3205  int err = errno;
3206
3207  // Remove shmid. If shmat() is successful, the actual shared memory segment
3208  // will be deleted when it's detached by shmdt() or when the process
3209  // terminates. If shmat() is not successful this will remove the shared
3210  // segment immediately.
3211  shmctl(shmid, IPC_RMID, NULL);
3212
3213  if ((intptr_t)addr == -1) {
3214     if (warn_on_failure) {
3215       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3216       warning(msg);
3217     }
3218     return NULL;
3219  }
3220
3221  if ((addr != NULL) && UseNUMAInterleaving) {
3222    numa_make_global(addr, bytes);
3223  }
3224
3225  // The memory is committed
3226  address pc = CALLER_PC;
3227  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
3228  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
3229
3230  return addr;
3231}
3232
3233bool os::release_memory_special(char* base, size_t bytes) {
3234  // detaching the SHM segment will also delete it, see reserve_memory_special()
3235  int rslt = shmdt(base);
3236  if (rslt == 0) {
3237    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3238    MemTracker::record_virtual_memory_release((address)base, bytes);
3239    return true;
3240  } else {
3241   return false;
3242  }
3243}
3244
3245size_t os::large_page_size() {
3246  return _large_page_size;
3247}
3248
3249// HugeTLBFS allows application to commit large page memory on demand;
3250// with SysV SHM the entire memory region must be allocated as shared
3251// memory.
3252bool os::can_commit_large_page_memory() {
3253  return UseHugeTLBFS;
3254}
3255
3256bool os::can_execute_large_page_memory() {
3257  return UseHugeTLBFS;
3258}
3259
3260// Reserve memory at an arbitrary address, only if that area is
3261// available (and not reserved for something else).
3262
3263char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3264  const int max_tries = 10;
3265  char* base[max_tries];
3266  size_t size[max_tries];
3267  const size_t gap = 0x000000;
3268
3269  // Assert only that the size is a multiple of the page size, since
3270  // that's all that mmap requires, and since that's all we really know
3271  // about at this low abstraction level.  If we need higher alignment,
3272  // we can either pass an alignment to this method or verify alignment
3273  // in one of the methods further up the call chain.  See bug 5044738.
3274  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3275
3276  // Repeatedly allocate blocks until the block is allocated at the
3277  // right spot. Give up after max_tries. Note that reserve_memory() will
3278  // automatically update _highest_vm_reserved_address if the call is
3279  // successful. The variable tracks the highest memory address every reserved
3280  // by JVM. It is used to detect heap-stack collision if running with
3281  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3282  // space than needed, it could confuse the collision detecting code. To
3283  // solve the problem, save current _highest_vm_reserved_address and
3284  // calculate the correct value before return.
3285  address old_highest = _highest_vm_reserved_address;
3286
3287  // Linux mmap allows caller to pass an address as hint; give it a try first,
3288  // if kernel honors the hint then we can return immediately.
3289  char * addr = anon_mmap(requested_addr, bytes, false);
3290  if (addr == requested_addr) {
3291     return requested_addr;
3292  }
3293
3294  if (addr != NULL) {
3295     // mmap() is successful but it fails to reserve at the requested address
3296     anon_munmap(addr, bytes);
3297  }
3298
3299  int i;
3300  for (i = 0; i < max_tries; ++i) {
3301    base[i] = reserve_memory(bytes);
3302
3303    if (base[i] != NULL) {
3304      // Is this the block we wanted?
3305      if (base[i] == requested_addr) {
3306        size[i] = bytes;
3307        break;
3308      }
3309
3310      // Does this overlap the block we wanted? Give back the overlapped
3311      // parts and try again.
3312
3313      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3314      if (top_overlap >= 0 && top_overlap < bytes) {
3315        unmap_memory(base[i], top_overlap);
3316        base[i] += top_overlap;
3317        size[i] = bytes - top_overlap;
3318      } else {
3319        size_t bottom_overlap = base[i] + bytes - requested_addr;
3320        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3321          unmap_memory(requested_addr, bottom_overlap);
3322          size[i] = bytes - bottom_overlap;
3323        } else {
3324          size[i] = bytes;
3325        }
3326      }
3327    }
3328  }
3329
3330  // Give back the unused reserved pieces.
3331
3332  for (int j = 0; j < i; ++j) {
3333    if (base[j] != NULL) {
3334      unmap_memory(base[j], size[j]);
3335    }
3336  }
3337
3338  if (i < max_tries) {
3339    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3340    return requested_addr;
3341  } else {
3342    _highest_vm_reserved_address = old_highest;
3343    return NULL;
3344  }
3345}
3346
3347size_t os::read(int fd, void *buf, unsigned int nBytes) {
3348  return ::read(fd, buf, nBytes);
3349}
3350
3351// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3352// Solaris uses poll(), linux uses park().
3353// Poll() is likely a better choice, assuming that Thread.interrupt()
3354// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3355// SIGSEGV, see 4355769.
3356
3357int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3358  assert(thread == Thread::current(),  "thread consistency check");
3359
3360  ParkEvent * const slp = thread->_SleepEvent ;
3361  slp->reset() ;
3362  OrderAccess::fence() ;
3363
3364  if (interruptible) {
3365    jlong prevtime = javaTimeNanos();
3366
3367    for (;;) {
3368      if (os::is_interrupted(thread, true)) {
3369        return OS_INTRPT;
3370      }
3371
3372      jlong newtime = javaTimeNanos();
3373
3374      if (newtime - prevtime < 0) {
3375        // time moving backwards, should only happen if no monotonic clock
3376        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3377        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3378      } else {
3379        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3380      }
3381
3382      if(millis <= 0) {
3383        return OS_OK;
3384      }
3385
3386      prevtime = newtime;
3387
3388      {
3389        assert(thread->is_Java_thread(), "sanity check");
3390        JavaThread *jt = (JavaThread *) thread;
3391        ThreadBlockInVM tbivm(jt);
3392        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3393
3394        jt->set_suspend_equivalent();
3395        // cleared by handle_special_suspend_equivalent_condition() or
3396        // java_suspend_self() via check_and_wait_while_suspended()
3397
3398        slp->park(millis);
3399
3400        // were we externally suspended while we were waiting?
3401        jt->check_and_wait_while_suspended();
3402      }
3403    }
3404  } else {
3405    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3406    jlong prevtime = javaTimeNanos();
3407
3408    for (;;) {
3409      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3410      // the 1st iteration ...
3411      jlong newtime = javaTimeNanos();
3412
3413      if (newtime - prevtime < 0) {
3414        // time moving backwards, should only happen if no monotonic clock
3415        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3416        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3417      } else {
3418        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3419      }
3420
3421      if(millis <= 0) break ;
3422
3423      prevtime = newtime;
3424      slp->park(millis);
3425    }
3426    return OS_OK ;
3427  }
3428}
3429
3430int os::naked_sleep() {
3431  // %% make the sleep time an integer flag. for now use 1 millisec.
3432  return os::sleep(Thread::current(), 1, false);
3433}
3434
3435// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3436void os::infinite_sleep() {
3437  while (true) {    // sleep forever ...
3438    ::sleep(100);   // ... 100 seconds at a time
3439  }
3440}
3441
3442// Used to convert frequent JVM_Yield() to nops
3443bool os::dont_yield() {
3444  return DontYieldALot;
3445}
3446
3447void os::yield() {
3448  sched_yield();
3449}
3450
3451os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3452
3453void os::yield_all(int attempts) {
3454  // Yields to all threads, including threads with lower priorities
3455  // Threads on Linux are all with same priority. The Solaris style
3456  // os::yield_all() with nanosleep(1ms) is not necessary.
3457  sched_yield();
3458}
3459
3460// Called from the tight loops to possibly influence time-sharing heuristics
3461void os::loop_breaker(int attempts) {
3462  os::yield_all(attempts);
3463}
3464
3465////////////////////////////////////////////////////////////////////////////////
3466// thread priority support
3467
3468// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3469// only supports dynamic priority, static priority must be zero. For real-time
3470// applications, Linux supports SCHED_RR which allows static priority (1-99).
3471// However, for large multi-threaded applications, SCHED_RR is not only slower
3472// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3473// of 5 runs - Sep 2005).
3474//
3475// The following code actually changes the niceness of kernel-thread/LWP. It
3476// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3477// not the entire user process, and user level threads are 1:1 mapped to kernel
3478// threads. It has always been the case, but could change in the future. For
3479// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3480// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3481
3482int os::java_to_os_priority[CriticalPriority + 1] = {
3483  19,              // 0 Entry should never be used
3484
3485   4,              // 1 MinPriority
3486   3,              // 2
3487   2,              // 3
3488
3489   1,              // 4
3490   0,              // 5 NormPriority
3491  -1,              // 6
3492
3493  -2,              // 7
3494  -3,              // 8
3495  -4,              // 9 NearMaxPriority
3496
3497  -5,              // 10 MaxPriority
3498
3499  -5               // 11 CriticalPriority
3500};
3501
3502static int prio_init() {
3503  if (ThreadPriorityPolicy == 1) {
3504    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3505    // if effective uid is not root. Perhaps, a more elegant way of doing
3506    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3507    if (geteuid() != 0) {
3508      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3509        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3510      }
3511      ThreadPriorityPolicy = 0;
3512    }
3513  }
3514  if (UseCriticalJavaThreadPriority) {
3515    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3516  }
3517  return 0;
3518}
3519
3520OSReturn os::set_native_priority(Thread* thread, int newpri) {
3521  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3522
3523  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3524  return (ret == 0) ? OS_OK : OS_ERR;
3525}
3526
3527OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3528  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3529    *priority_ptr = java_to_os_priority[NormPriority];
3530    return OS_OK;
3531  }
3532
3533  errno = 0;
3534  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3535  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3536}
3537
3538// Hint to the underlying OS that a task switch would not be good.
3539// Void return because it's a hint and can fail.
3540void os::hint_no_preempt() {}
3541
3542////////////////////////////////////////////////////////////////////////////////
3543// suspend/resume support
3544
3545//  the low-level signal-based suspend/resume support is a remnant from the
3546//  old VM-suspension that used to be for java-suspension, safepoints etc,
3547//  within hotspot. Now there is a single use-case for this:
3548//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3549//      that runs in the watcher thread.
3550//  The remaining code is greatly simplified from the more general suspension
3551//  code that used to be used.
3552//
3553//  The protocol is quite simple:
3554//  - suspend:
3555//      - sends a signal to the target thread
3556//      - polls the suspend state of the osthread using a yield loop
3557//      - target thread signal handler (SR_handler) sets suspend state
3558//        and blocks in sigsuspend until continued
3559//  - resume:
3560//      - sets target osthread state to continue
3561//      - sends signal to end the sigsuspend loop in the SR_handler
3562//
3563//  Note that the SR_lock plays no role in this suspend/resume protocol.
3564//
3565
3566static void resume_clear_context(OSThread *osthread) {
3567  osthread->set_ucontext(NULL);
3568  osthread->set_siginfo(NULL);
3569
3570  // notify the suspend action is completed, we have now resumed
3571  osthread->sr.clear_suspended();
3572}
3573
3574static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3575  osthread->set_ucontext(context);
3576  osthread->set_siginfo(siginfo);
3577}
3578
3579//
3580// Handler function invoked when a thread's execution is suspended or
3581// resumed. We have to be careful that only async-safe functions are
3582// called here (Note: most pthread functions are not async safe and
3583// should be avoided.)
3584//
3585// Note: sigwait() is a more natural fit than sigsuspend() from an
3586// interface point of view, but sigwait() prevents the signal hander
3587// from being run. libpthread would get very confused by not having
3588// its signal handlers run and prevents sigwait()'s use with the
3589// mutex granting granting signal.
3590//
3591// Currently only ever called on the VMThread
3592//
3593static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3594  // Save and restore errno to avoid confusing native code with EINTR
3595  // after sigsuspend.
3596  int old_errno = errno;
3597
3598  Thread* thread = Thread::current();
3599  OSThread* osthread = thread->osthread();
3600  assert(thread->is_VM_thread(), "Must be VMThread");
3601  // read current suspend action
3602  int action = osthread->sr.suspend_action();
3603  if (action == os::Linux::SuspendResume::SR_SUSPEND) {
3604    suspend_save_context(osthread, siginfo, context);
3605
3606    // Notify the suspend action is about to be completed. do_suspend()
3607    // waits until SR_SUSPENDED is set and then returns. We will wait
3608    // here for a resume signal and that completes the suspend-other
3609    // action. do_suspend/do_resume is always called as a pair from
3610    // the same thread - so there are no races
3611
3612    // notify the caller
3613    osthread->sr.set_suspended();
3614
3615    sigset_t suspend_set;  // signals for sigsuspend()
3616
3617    // get current set of blocked signals and unblock resume signal
3618    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3619    sigdelset(&suspend_set, SR_signum);
3620
3621    // wait here until we are resumed
3622    do {
3623      sigsuspend(&suspend_set);
3624      // ignore all returns until we get a resume signal
3625    } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
3626
3627    resume_clear_context(osthread);
3628
3629  } else {
3630    assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
3631    // nothing special to do - just leave the handler
3632  }
3633
3634  errno = old_errno;
3635}
3636
3637
3638static int SR_initialize() {
3639  struct sigaction act;
3640  char *s;
3641  /* Get signal number to use for suspend/resume */
3642  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3643    int sig = ::strtol(s, 0, 10);
3644    if (sig > 0 || sig < _NSIG) {
3645        SR_signum = sig;
3646    }
3647  }
3648
3649  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3650        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3651
3652  sigemptyset(&SR_sigset);
3653  sigaddset(&SR_sigset, SR_signum);
3654
3655  /* Set up signal handler for suspend/resume */
3656  act.sa_flags = SA_RESTART|SA_SIGINFO;
3657  act.sa_handler = (void (*)(int)) SR_handler;
3658
3659  // SR_signum is blocked by default.
3660  // 4528190 - We also need to block pthread restart signal (32 on all
3661  // supported Linux platforms). Note that LinuxThreads need to block
3662  // this signal for all threads to work properly. So we don't have
3663  // to use hard-coded signal number when setting up the mask.
3664  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3665
3666  if (sigaction(SR_signum, &act, 0) == -1) {
3667    return -1;
3668  }
3669
3670  // Save signal flag
3671  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3672  return 0;
3673}
3674
3675static int SR_finalize() {
3676  return 0;
3677}
3678
3679
3680// returns true on success and false on error - really an error is fatal
3681// but this seems the normal response to library errors
3682static bool do_suspend(OSThread* osthread) {
3683  // mark as suspended and send signal
3684  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
3685  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3686  assert_status(status == 0, status, "pthread_kill");
3687
3688  // check status and wait until notified of suspension
3689  if (status == 0) {
3690    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3691      os::yield_all(i);
3692    }
3693    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3694    return true;
3695  }
3696  else {
3697    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3698    return false;
3699  }
3700}
3701
3702static void do_resume(OSThread* osthread) {
3703  assert(osthread->sr.is_suspended(), "thread should be suspended");
3704  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
3705
3706  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3707  assert_status(status == 0, status, "pthread_kill");
3708  // check status and wait unit notified of resumption
3709  if (status == 0) {
3710    for (int i = 0; osthread->sr.is_suspended(); i++) {
3711      os::yield_all(i);
3712    }
3713  }
3714  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3715}
3716
3717////////////////////////////////////////////////////////////////////////////////
3718// interrupt support
3719
3720void os::interrupt(Thread* thread) {
3721  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3722    "possibility of dangling Thread pointer");
3723
3724  OSThread* osthread = thread->osthread();
3725
3726  if (!osthread->interrupted()) {
3727    osthread->set_interrupted(true);
3728    // More than one thread can get here with the same value of osthread,
3729    // resulting in multiple notifications.  We do, however, want the store
3730    // to interrupted() to be visible to other threads before we execute unpark().
3731    OrderAccess::fence();
3732    ParkEvent * const slp = thread->_SleepEvent ;
3733    if (slp != NULL) slp->unpark() ;
3734  }
3735
3736  // For JSR166. Unpark even if interrupt status already was set
3737  if (thread->is_Java_thread())
3738    ((JavaThread*)thread)->parker()->unpark();
3739
3740  ParkEvent * ev = thread->_ParkEvent ;
3741  if (ev != NULL) ev->unpark() ;
3742
3743}
3744
3745bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3746  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3747    "possibility of dangling Thread pointer");
3748
3749  OSThread* osthread = thread->osthread();
3750
3751  bool interrupted = osthread->interrupted();
3752
3753  if (interrupted && clear_interrupted) {
3754    osthread->set_interrupted(false);
3755    // consider thread->_SleepEvent->reset() ... optional optimization
3756  }
3757
3758  return interrupted;
3759}
3760
3761///////////////////////////////////////////////////////////////////////////////////
3762// signal handling (except suspend/resume)
3763
3764// This routine may be used by user applications as a "hook" to catch signals.
3765// The user-defined signal handler must pass unrecognized signals to this
3766// routine, and if it returns true (non-zero), then the signal handler must
3767// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3768// routine will never retun false (zero), but instead will execute a VM panic
3769// routine kill the process.
3770//
3771// If this routine returns false, it is OK to call it again.  This allows
3772// the user-defined signal handler to perform checks either before or after
3773// the VM performs its own checks.  Naturally, the user code would be making
3774// a serious error if it tried to handle an exception (such as a null check
3775// or breakpoint) that the VM was generating for its own correct operation.
3776//
3777// This routine may recognize any of the following kinds of signals:
3778//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3779// It should be consulted by handlers for any of those signals.
3780//
3781// The caller of this routine must pass in the three arguments supplied
3782// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3783// field of the structure passed to sigaction().  This routine assumes that
3784// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3785//
3786// Note that the VM will print warnings if it detects conflicting signal
3787// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3788//
3789extern "C" JNIEXPORT int
3790JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3791                        void* ucontext, int abort_if_unrecognized);
3792
3793void signalHandler(int sig, siginfo_t* info, void* uc) {
3794  assert(info != NULL && uc != NULL, "it must be old kernel");
3795  int orig_errno = errno;  // Preserve errno value over signal handler.
3796  JVM_handle_linux_signal(sig, info, uc, true);
3797  errno = orig_errno;
3798}
3799
3800
3801// This boolean allows users to forward their own non-matching signals
3802// to JVM_handle_linux_signal, harmlessly.
3803bool os::Linux::signal_handlers_are_installed = false;
3804
3805// For signal-chaining
3806struct sigaction os::Linux::sigact[MAXSIGNUM];
3807unsigned int os::Linux::sigs = 0;
3808bool os::Linux::libjsig_is_loaded = false;
3809typedef struct sigaction *(*get_signal_t)(int);
3810get_signal_t os::Linux::get_signal_action = NULL;
3811
3812struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3813  struct sigaction *actp = NULL;
3814
3815  if (libjsig_is_loaded) {
3816    // Retrieve the old signal handler from libjsig
3817    actp = (*get_signal_action)(sig);
3818  }
3819  if (actp == NULL) {
3820    // Retrieve the preinstalled signal handler from jvm
3821    actp = get_preinstalled_handler(sig);
3822  }
3823
3824  return actp;
3825}
3826
3827static bool call_chained_handler(struct sigaction *actp, int sig,
3828                                 siginfo_t *siginfo, void *context) {
3829  // Call the old signal handler
3830  if (actp->sa_handler == SIG_DFL) {
3831    // It's more reasonable to let jvm treat it as an unexpected exception
3832    // instead of taking the default action.
3833    return false;
3834  } else if (actp->sa_handler != SIG_IGN) {
3835    if ((actp->sa_flags & SA_NODEFER) == 0) {
3836      // automaticlly block the signal
3837      sigaddset(&(actp->sa_mask), sig);
3838    }
3839
3840    sa_handler_t hand;
3841    sa_sigaction_t sa;
3842    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3843    // retrieve the chained handler
3844    if (siginfo_flag_set) {
3845      sa = actp->sa_sigaction;
3846    } else {
3847      hand = actp->sa_handler;
3848    }
3849
3850    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3851      actp->sa_handler = SIG_DFL;
3852    }
3853
3854    // try to honor the signal mask
3855    sigset_t oset;
3856    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3857
3858    // call into the chained handler
3859    if (siginfo_flag_set) {
3860      (*sa)(sig, siginfo, context);
3861    } else {
3862      (*hand)(sig);
3863    }
3864
3865    // restore the signal mask
3866    pthread_sigmask(SIG_SETMASK, &oset, 0);
3867  }
3868  // Tell jvm's signal handler the signal is taken care of.
3869  return true;
3870}
3871
3872bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3873  bool chained = false;
3874  // signal-chaining
3875  if (UseSignalChaining) {
3876    struct sigaction *actp = get_chained_signal_action(sig);
3877    if (actp != NULL) {
3878      chained = call_chained_handler(actp, sig, siginfo, context);
3879    }
3880  }
3881  return chained;
3882}
3883
3884struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3885  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3886    return &sigact[sig];
3887  }
3888  return NULL;
3889}
3890
3891void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3892  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3893  sigact[sig] = oldAct;
3894  sigs |= (unsigned int)1 << sig;
3895}
3896
3897// for diagnostic
3898int os::Linux::sigflags[MAXSIGNUM];
3899
3900int os::Linux::get_our_sigflags(int sig) {
3901  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3902  return sigflags[sig];
3903}
3904
3905void os::Linux::set_our_sigflags(int sig, int flags) {
3906  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3907  sigflags[sig] = flags;
3908}
3909
3910void os::Linux::set_signal_handler(int sig, bool set_installed) {
3911  // Check for overwrite.
3912  struct sigaction oldAct;
3913  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3914
3915  void* oldhand = oldAct.sa_sigaction
3916                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3917                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3918  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3919      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3920      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3921    if (AllowUserSignalHandlers || !set_installed) {
3922      // Do not overwrite; user takes responsibility to forward to us.
3923      return;
3924    } else if (UseSignalChaining) {
3925      // save the old handler in jvm
3926      save_preinstalled_handler(sig, oldAct);
3927      // libjsig also interposes the sigaction() call below and saves the
3928      // old sigaction on it own.
3929    } else {
3930      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3931                    "%#lx for signal %d.", (long)oldhand, sig));
3932    }
3933  }
3934
3935  struct sigaction sigAct;
3936  sigfillset(&(sigAct.sa_mask));
3937  sigAct.sa_handler = SIG_DFL;
3938  if (!set_installed) {
3939    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3940  } else {
3941    sigAct.sa_sigaction = signalHandler;
3942    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3943  }
3944  // Save flags, which are set by ours
3945  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3946  sigflags[sig] = sigAct.sa_flags;
3947
3948  int ret = sigaction(sig, &sigAct, &oldAct);
3949  assert(ret == 0, "check");
3950
3951  void* oldhand2  = oldAct.sa_sigaction
3952                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3953                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3954  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3955}
3956
3957// install signal handlers for signals that HotSpot needs to
3958// handle in order to support Java-level exception handling.
3959
3960void os::Linux::install_signal_handlers() {
3961  if (!signal_handlers_are_installed) {
3962    signal_handlers_are_installed = true;
3963
3964    // signal-chaining
3965    typedef void (*signal_setting_t)();
3966    signal_setting_t begin_signal_setting = NULL;
3967    signal_setting_t end_signal_setting = NULL;
3968    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3969                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3970    if (begin_signal_setting != NULL) {
3971      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3972                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3973      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3974                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3975      libjsig_is_loaded = true;
3976      assert(UseSignalChaining, "should enable signal-chaining");
3977    }
3978    if (libjsig_is_loaded) {
3979      // Tell libjsig jvm is setting signal handlers
3980      (*begin_signal_setting)();
3981    }
3982
3983    set_signal_handler(SIGSEGV, true);
3984    set_signal_handler(SIGPIPE, true);
3985    set_signal_handler(SIGBUS, true);
3986    set_signal_handler(SIGILL, true);
3987    set_signal_handler(SIGFPE, true);
3988    set_signal_handler(SIGXFSZ, true);
3989
3990    if (libjsig_is_loaded) {
3991      // Tell libjsig jvm finishes setting signal handlers
3992      (*end_signal_setting)();
3993    }
3994
3995    // We don't activate signal checker if libjsig is in place, we trust ourselves
3996    // and if UserSignalHandler is installed all bets are off.
3997    // Log that signal checking is off only if -verbose:jni is specified.
3998    if (CheckJNICalls) {
3999      if (libjsig_is_loaded) {
4000        if (PrintJNIResolving) {
4001          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4002        }
4003        check_signals = false;
4004      }
4005      if (AllowUserSignalHandlers) {
4006        if (PrintJNIResolving) {
4007          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4008        }
4009        check_signals = false;
4010      }
4011    }
4012  }
4013}
4014
4015// This is the fastest way to get thread cpu time on Linux.
4016// Returns cpu time (user+sys) for any thread, not only for current.
4017// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4018// It might work on 2.6.10+ with a special kernel/glibc patch.
4019// For reference, please, see IEEE Std 1003.1-2004:
4020//   http://www.unix.org/single_unix_specification
4021
4022jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4023  struct timespec tp;
4024  int rc = os::Linux::clock_gettime(clockid, &tp);
4025  assert(rc == 0, "clock_gettime is expected to return 0 code");
4026
4027  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4028}
4029
4030/////
4031// glibc on Linux platform uses non-documented flag
4032// to indicate, that some special sort of signal
4033// trampoline is used.
4034// We will never set this flag, and we should
4035// ignore this flag in our diagnostic
4036#ifdef SIGNIFICANT_SIGNAL_MASK
4037#undef SIGNIFICANT_SIGNAL_MASK
4038#endif
4039#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4040
4041static const char* get_signal_handler_name(address handler,
4042                                           char* buf, int buflen) {
4043  int offset;
4044  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4045  if (found) {
4046    // skip directory names
4047    const char *p1, *p2;
4048    p1 = buf;
4049    size_t len = strlen(os::file_separator());
4050    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4051    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4052  } else {
4053    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4054  }
4055  return buf;
4056}
4057
4058static void print_signal_handler(outputStream* st, int sig,
4059                                 char* buf, size_t buflen) {
4060  struct sigaction sa;
4061
4062  sigaction(sig, NULL, &sa);
4063
4064  // See comment for SIGNIFICANT_SIGNAL_MASK define
4065  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4066
4067  st->print("%s: ", os::exception_name(sig, buf, buflen));
4068
4069  address handler = (sa.sa_flags & SA_SIGINFO)
4070    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4071    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4072
4073  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4074    st->print("SIG_DFL");
4075  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4076    st->print("SIG_IGN");
4077  } else {
4078    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4079  }
4080
4081  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4082
4083  address rh = VMError::get_resetted_sighandler(sig);
4084  // May be, handler was resetted by VMError?
4085  if(rh != NULL) {
4086    handler = rh;
4087    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4088  }
4089
4090  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4091
4092  // Check: is it our handler?
4093  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4094     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4095    // It is our signal handler
4096    // check for flags, reset system-used one!
4097    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4098      st->print(
4099                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4100                os::Linux::get_our_sigflags(sig));
4101    }
4102  }
4103  st->cr();
4104}
4105
4106
4107#define DO_SIGNAL_CHECK(sig) \
4108  if (!sigismember(&check_signal_done, sig)) \
4109    os::Linux::check_signal_handler(sig)
4110
4111// This method is a periodic task to check for misbehaving JNI applications
4112// under CheckJNI, we can add any periodic checks here
4113
4114void os::run_periodic_checks() {
4115
4116  if (check_signals == false) return;
4117
4118  // SEGV and BUS if overridden could potentially prevent
4119  // generation of hs*.log in the event of a crash, debugging
4120  // such a case can be very challenging, so we absolutely
4121  // check the following for a good measure:
4122  DO_SIGNAL_CHECK(SIGSEGV);
4123  DO_SIGNAL_CHECK(SIGILL);
4124  DO_SIGNAL_CHECK(SIGFPE);
4125  DO_SIGNAL_CHECK(SIGBUS);
4126  DO_SIGNAL_CHECK(SIGPIPE);
4127  DO_SIGNAL_CHECK(SIGXFSZ);
4128
4129
4130  // ReduceSignalUsage allows the user to override these handlers
4131  // see comments at the very top and jvm_solaris.h
4132  if (!ReduceSignalUsage) {
4133    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4134    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4135    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4136    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4137  }
4138
4139  DO_SIGNAL_CHECK(SR_signum);
4140  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4141}
4142
4143typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4144
4145static os_sigaction_t os_sigaction = NULL;
4146
4147void os::Linux::check_signal_handler(int sig) {
4148  char buf[O_BUFLEN];
4149  address jvmHandler = NULL;
4150
4151
4152  struct sigaction act;
4153  if (os_sigaction == NULL) {
4154    // only trust the default sigaction, in case it has been interposed
4155    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4156    if (os_sigaction == NULL) return;
4157  }
4158
4159  os_sigaction(sig, (struct sigaction*)NULL, &act);
4160
4161
4162  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4163
4164  address thisHandler = (act.sa_flags & SA_SIGINFO)
4165    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4166    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4167
4168
4169  switch(sig) {
4170  case SIGSEGV:
4171  case SIGBUS:
4172  case SIGFPE:
4173  case SIGPIPE:
4174  case SIGILL:
4175  case SIGXFSZ:
4176    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4177    break;
4178
4179  case SHUTDOWN1_SIGNAL:
4180  case SHUTDOWN2_SIGNAL:
4181  case SHUTDOWN3_SIGNAL:
4182  case BREAK_SIGNAL:
4183    jvmHandler = (address)user_handler();
4184    break;
4185
4186  case INTERRUPT_SIGNAL:
4187    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4188    break;
4189
4190  default:
4191    if (sig == SR_signum) {
4192      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4193    } else {
4194      return;
4195    }
4196    break;
4197  }
4198
4199  if (thisHandler != jvmHandler) {
4200    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4201    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4202    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4203    // No need to check this sig any longer
4204    sigaddset(&check_signal_done, sig);
4205  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4206    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4207    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4208    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4209    // No need to check this sig any longer
4210    sigaddset(&check_signal_done, sig);
4211  }
4212
4213  // Dump all the signal
4214  if (sigismember(&check_signal_done, sig)) {
4215    print_signal_handlers(tty, buf, O_BUFLEN);
4216  }
4217}
4218
4219extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4220
4221extern bool signal_name(int signo, char* buf, size_t len);
4222
4223const char* os::exception_name(int exception_code, char* buf, size_t size) {
4224  if (0 < exception_code && exception_code <= SIGRTMAX) {
4225    // signal
4226    if (!signal_name(exception_code, buf, size)) {
4227      jio_snprintf(buf, size, "SIG%d", exception_code);
4228    }
4229    return buf;
4230  } else {
4231    return NULL;
4232  }
4233}
4234
4235// this is called _before_ the most of global arguments have been parsed
4236void os::init(void) {
4237  char dummy;   /* used to get a guess on initial stack address */
4238//  first_hrtime = gethrtime();
4239
4240  // With LinuxThreads the JavaMain thread pid (primordial thread)
4241  // is different than the pid of the java launcher thread.
4242  // So, on Linux, the launcher thread pid is passed to the VM
4243  // via the sun.java.launcher.pid property.
4244  // Use this property instead of getpid() if it was correctly passed.
4245  // See bug 6351349.
4246  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4247
4248  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4249
4250  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4251
4252  init_random(1234567);
4253
4254  ThreadCritical::initialize();
4255
4256  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4257  if (Linux::page_size() == -1) {
4258    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4259                  strerror(errno)));
4260  }
4261  init_page_sizes((size_t) Linux::page_size());
4262
4263  Linux::initialize_system_info();
4264
4265  // main_thread points to the aboriginal thread
4266  Linux::_main_thread = pthread_self();
4267
4268  Linux::clock_init();
4269  initial_time_count = os::elapsed_counter();
4270  pthread_mutex_init(&dl_mutex, NULL);
4271}
4272
4273// To install functions for atexit system call
4274extern "C" {
4275  static void perfMemory_exit_helper() {
4276    perfMemory_exit();
4277  }
4278}
4279
4280// this is called _after_ the global arguments have been parsed
4281jint os::init_2(void)
4282{
4283  Linux::fast_thread_clock_init();
4284
4285  // Allocate a single page and mark it as readable for safepoint polling
4286  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4287  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4288
4289  os::set_polling_page( polling_page );
4290
4291#ifndef PRODUCT
4292  if(Verbose && PrintMiscellaneous)
4293    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4294#endif
4295
4296  if (!UseMembar) {
4297    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4298    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4299    os::set_memory_serialize_page( mem_serialize_page );
4300
4301#ifndef PRODUCT
4302    if(Verbose && PrintMiscellaneous)
4303      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4304#endif
4305  }
4306
4307  os::large_page_init();
4308
4309  // initialize suspend/resume support - must do this before signal_sets_init()
4310  if (SR_initialize() != 0) {
4311    perror("SR_initialize failed");
4312    return JNI_ERR;
4313  }
4314
4315  Linux::signal_sets_init();
4316  Linux::install_signal_handlers();
4317
4318  // Check minimum allowable stack size for thread creation and to initialize
4319  // the java system classes, including StackOverflowError - depends on page
4320  // size.  Add a page for compiler2 recursion in main thread.
4321  // Add in 2*BytesPerWord times page size to account for VM stack during
4322  // class initialization depending on 32 or 64 bit VM.
4323  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4324            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4325                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4326
4327  size_t threadStackSizeInBytes = ThreadStackSize * K;
4328  if (threadStackSizeInBytes != 0 &&
4329      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4330        tty->print_cr("\nThe stack size specified is too small, "
4331                      "Specify at least %dk",
4332                      os::Linux::min_stack_allowed/ K);
4333        return JNI_ERR;
4334  }
4335
4336  // Make the stack size a multiple of the page size so that
4337  // the yellow/red zones can be guarded.
4338  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4339        vm_page_size()));
4340
4341  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4342
4343  Linux::libpthread_init();
4344  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4345     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4346          Linux::glibc_version(), Linux::libpthread_version(),
4347          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4348  }
4349
4350  if (UseNUMA) {
4351    if (!Linux::libnuma_init()) {
4352      UseNUMA = false;
4353    } else {
4354      if ((Linux::numa_max_node() < 1)) {
4355        // There's only one node(they start from 0), disable NUMA.
4356        UseNUMA = false;
4357      }
4358    }
4359    // With SHM large pages we cannot uncommit a page, so there's not way
4360    // we can make the adaptive lgrp chunk resizing work. If the user specified
4361    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4362    // disable adaptive resizing.
4363    if (UseNUMA && UseLargePages && UseSHM) {
4364      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4365        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4366          UseLargePages = false;
4367        } else {
4368          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4369          UseAdaptiveSizePolicy = false;
4370          UseAdaptiveNUMAChunkSizing = false;
4371        }
4372      } else {
4373        UseNUMA = false;
4374      }
4375    }
4376    if (!UseNUMA && ForceNUMA) {
4377      UseNUMA = true;
4378    }
4379  }
4380
4381  if (MaxFDLimit) {
4382    // set the number of file descriptors to max. print out error
4383    // if getrlimit/setrlimit fails but continue regardless.
4384    struct rlimit nbr_files;
4385    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4386    if (status != 0) {
4387      if (PrintMiscellaneous && (Verbose || WizardMode))
4388        perror("os::init_2 getrlimit failed");
4389    } else {
4390      nbr_files.rlim_cur = nbr_files.rlim_max;
4391      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4392      if (status != 0) {
4393        if (PrintMiscellaneous && (Verbose || WizardMode))
4394          perror("os::init_2 setrlimit failed");
4395      }
4396    }
4397  }
4398
4399  // Initialize lock used to serialize thread creation (see os::create_thread)
4400  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4401
4402  // at-exit methods are called in the reverse order of their registration.
4403  // atexit functions are called on return from main or as a result of a
4404  // call to exit(3C). There can be only 32 of these functions registered
4405  // and atexit() does not set errno.
4406
4407  if (PerfAllowAtExitRegistration) {
4408    // only register atexit functions if PerfAllowAtExitRegistration is set.
4409    // atexit functions can be delayed until process exit time, which
4410    // can be problematic for embedded VM situations. Embedded VMs should
4411    // call DestroyJavaVM() to assure that VM resources are released.
4412
4413    // note: perfMemory_exit_helper atexit function may be removed in
4414    // the future if the appropriate cleanup code can be added to the
4415    // VM_Exit VMOperation's doit method.
4416    if (atexit(perfMemory_exit_helper) != 0) {
4417      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4418    }
4419  }
4420
4421  // initialize thread priority policy
4422  prio_init();
4423
4424  return JNI_OK;
4425}
4426
4427// this is called at the end of vm_initialization
4428void os::init_3(void)
4429{
4430#ifdef JAVASE_EMBEDDED
4431  // Start the MemNotifyThread
4432  if (LowMemoryProtection) {
4433    MemNotifyThread::start();
4434  }
4435  return;
4436#endif
4437}
4438
4439// Mark the polling page as unreadable
4440void os::make_polling_page_unreadable(void) {
4441  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4442    fatal("Could not disable polling page");
4443};
4444
4445// Mark the polling page as readable
4446void os::make_polling_page_readable(void) {
4447  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4448    fatal("Could not enable polling page");
4449  }
4450};
4451
4452int os::active_processor_count() {
4453  // Linux doesn't yet have a (official) notion of processor sets,
4454  // so just return the number of online processors.
4455  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4456  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4457  return online_cpus;
4458}
4459
4460void os::set_native_thread_name(const char *name) {
4461  // Not yet implemented.
4462  return;
4463}
4464
4465bool os::distribute_processes(uint length, uint* distribution) {
4466  // Not yet implemented.
4467  return false;
4468}
4469
4470bool os::bind_to_processor(uint processor_id) {
4471  // Not yet implemented.
4472  return false;
4473}
4474
4475///
4476
4477// Suspends the target using the signal mechanism and then grabs the PC before
4478// resuming the target. Used by the flat-profiler only
4479ExtendedPC os::get_thread_pc(Thread* thread) {
4480  // Make sure that it is called by the watcher for the VMThread
4481  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4482  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4483
4484  ExtendedPC epc;
4485
4486  OSThread* osthread = thread->osthread();
4487  if (do_suspend(osthread)) {
4488    if (osthread->ucontext() != NULL) {
4489      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4490    } else {
4491      // NULL context is unexpected, double-check this is the VMThread
4492      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4493    }
4494    do_resume(osthread);
4495  }
4496  // failure means pthread_kill failed for some reason - arguably this is
4497  // a fatal problem, but such problems are ignored elsewhere
4498
4499  return epc;
4500}
4501
4502int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4503{
4504   if (is_NPTL()) {
4505      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4506   } else {
4507      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4508      // word back to default 64bit precision if condvar is signaled. Java
4509      // wants 53bit precision.  Save and restore current value.
4510      int fpu = get_fpu_control_word();
4511      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4512      set_fpu_control_word(fpu);
4513      return status;
4514   }
4515}
4516
4517////////////////////////////////////////////////////////////////////////////////
4518// debug support
4519
4520static address same_page(address x, address y) {
4521  int page_bits = -os::vm_page_size();
4522  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4523    return x;
4524  else if (x > y)
4525    return (address)(intptr_t(y) | ~page_bits) + 1;
4526  else
4527    return (address)(intptr_t(y) & page_bits);
4528}
4529
4530bool os::find(address addr, outputStream* st) {
4531  Dl_info dlinfo;
4532  memset(&dlinfo, 0, sizeof(dlinfo));
4533  if (dladdr(addr, &dlinfo)) {
4534    st->print(PTR_FORMAT ": ", addr);
4535    if (dlinfo.dli_sname != NULL) {
4536      st->print("%s+%#x", dlinfo.dli_sname,
4537                 addr - (intptr_t)dlinfo.dli_saddr);
4538    } else if (dlinfo.dli_fname) {
4539      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4540    } else {
4541      st->print("<absolute address>");
4542    }
4543    if (dlinfo.dli_fname) {
4544      st->print(" in %s", dlinfo.dli_fname);
4545    }
4546    if (dlinfo.dli_fbase) {
4547      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4548    }
4549    st->cr();
4550
4551    if (Verbose) {
4552      // decode some bytes around the PC
4553      address begin = same_page(addr-40, addr);
4554      address end   = same_page(addr+40, addr);
4555      address       lowest = (address) dlinfo.dli_sname;
4556      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4557      if (begin < lowest)  begin = lowest;
4558      Dl_info dlinfo2;
4559      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4560          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4561        end = (address) dlinfo2.dli_saddr;
4562      Disassembler::decode(begin, end, st);
4563    }
4564    return true;
4565  }
4566  return false;
4567}
4568
4569////////////////////////////////////////////////////////////////////////////////
4570// misc
4571
4572// This does not do anything on Linux. This is basically a hook for being
4573// able to use structured exception handling (thread-local exception filters)
4574// on, e.g., Win32.
4575void
4576os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4577                         JavaCallArguments* args, Thread* thread) {
4578  f(value, method, args, thread);
4579}
4580
4581void os::print_statistics() {
4582}
4583
4584int os::message_box(const char* title, const char* message) {
4585  int i;
4586  fdStream err(defaultStream::error_fd());
4587  for (i = 0; i < 78; i++) err.print_raw("=");
4588  err.cr();
4589  err.print_raw_cr(title);
4590  for (i = 0; i < 78; i++) err.print_raw("-");
4591  err.cr();
4592  err.print_raw_cr(message);
4593  for (i = 0; i < 78; i++) err.print_raw("=");
4594  err.cr();
4595
4596  char buf[16];
4597  // Prevent process from exiting upon "read error" without consuming all CPU
4598  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4599
4600  return buf[0] == 'y' || buf[0] == 'Y';
4601}
4602
4603int os::stat(const char *path, struct stat *sbuf) {
4604  char pathbuf[MAX_PATH];
4605  if (strlen(path) > MAX_PATH - 1) {
4606    errno = ENAMETOOLONG;
4607    return -1;
4608  }
4609  os::native_path(strcpy(pathbuf, path));
4610  return ::stat(pathbuf, sbuf);
4611}
4612
4613bool os::check_heap(bool force) {
4614  return true;
4615}
4616
4617int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4618  return ::vsnprintf(buf, count, format, args);
4619}
4620
4621// Is a (classpath) directory empty?
4622bool os::dir_is_empty(const char* path) {
4623  DIR *dir = NULL;
4624  struct dirent *ptr;
4625
4626  dir = opendir(path);
4627  if (dir == NULL) return true;
4628
4629  /* Scan the directory */
4630  bool result = true;
4631  char buf[sizeof(struct dirent) + MAX_PATH];
4632  while (result && (ptr = ::readdir(dir)) != NULL) {
4633    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4634      result = false;
4635    }
4636  }
4637  closedir(dir);
4638  return result;
4639}
4640
4641// This code originates from JDK's sysOpen and open64_w
4642// from src/solaris/hpi/src/system_md.c
4643
4644#ifndef O_DELETE
4645#define O_DELETE 0x10000
4646#endif
4647
4648// Open a file. Unlink the file immediately after open returns
4649// if the specified oflag has the O_DELETE flag set.
4650// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4651
4652int os::open(const char *path, int oflag, int mode) {
4653
4654  if (strlen(path) > MAX_PATH - 1) {
4655    errno = ENAMETOOLONG;
4656    return -1;
4657  }
4658  int fd;
4659  int o_delete = (oflag & O_DELETE);
4660  oflag = oflag & ~O_DELETE;
4661
4662  fd = ::open64(path, oflag, mode);
4663  if (fd == -1) return -1;
4664
4665  //If the open succeeded, the file might still be a directory
4666  {
4667    struct stat64 buf64;
4668    int ret = ::fstat64(fd, &buf64);
4669    int st_mode = buf64.st_mode;
4670
4671    if (ret != -1) {
4672      if ((st_mode & S_IFMT) == S_IFDIR) {
4673        errno = EISDIR;
4674        ::close(fd);
4675        return -1;
4676      }
4677    } else {
4678      ::close(fd);
4679      return -1;
4680    }
4681  }
4682
4683    /*
4684     * All file descriptors that are opened in the JVM and not
4685     * specifically destined for a subprocess should have the
4686     * close-on-exec flag set.  If we don't set it, then careless 3rd
4687     * party native code might fork and exec without closing all
4688     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4689     * UNIXProcess.c), and this in turn might:
4690     *
4691     * - cause end-of-file to fail to be detected on some file
4692     *   descriptors, resulting in mysterious hangs, or
4693     *
4694     * - might cause an fopen in the subprocess to fail on a system
4695     *   suffering from bug 1085341.
4696     *
4697     * (Yes, the default setting of the close-on-exec flag is a Unix
4698     * design flaw)
4699     *
4700     * See:
4701     * 1085341: 32-bit stdio routines should support file descriptors >255
4702     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4703     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4704     */
4705#ifdef FD_CLOEXEC
4706    {
4707        int flags = ::fcntl(fd, F_GETFD);
4708        if (flags != -1)
4709            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4710    }
4711#endif
4712
4713  if (o_delete != 0) {
4714    ::unlink(path);
4715  }
4716  return fd;
4717}
4718
4719
4720// create binary file, rewriting existing file if required
4721int os::create_binary_file(const char* path, bool rewrite_existing) {
4722  int oflags = O_WRONLY | O_CREAT;
4723  if (!rewrite_existing) {
4724    oflags |= O_EXCL;
4725  }
4726  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4727}
4728
4729// return current position of file pointer
4730jlong os::current_file_offset(int fd) {
4731  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4732}
4733
4734// move file pointer to the specified offset
4735jlong os::seek_to_file_offset(int fd, jlong offset) {
4736  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4737}
4738
4739// This code originates from JDK's sysAvailable
4740// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4741
4742int os::available(int fd, jlong *bytes) {
4743  jlong cur, end;
4744  int mode;
4745  struct stat64 buf64;
4746
4747  if (::fstat64(fd, &buf64) >= 0) {
4748    mode = buf64.st_mode;
4749    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4750      /*
4751      * XXX: is the following call interruptible? If so, this might
4752      * need to go through the INTERRUPT_IO() wrapper as for other
4753      * blocking, interruptible calls in this file.
4754      */
4755      int n;
4756      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4757        *bytes = n;
4758        return 1;
4759      }
4760    }
4761  }
4762  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4763    return 0;
4764  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4765    return 0;
4766  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4767    return 0;
4768  }
4769  *bytes = end - cur;
4770  return 1;
4771}
4772
4773int os::socket_available(int fd, jint *pbytes) {
4774  // Linux doc says EINTR not returned, unlike Solaris
4775  int ret = ::ioctl(fd, FIONREAD, pbytes);
4776
4777  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4778  // is expected to return 0 on failure and 1 on success to the jdk.
4779  return (ret < 0) ? 0 : 1;
4780}
4781
4782// Map a block of memory.
4783char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4784                     char *addr, size_t bytes, bool read_only,
4785                     bool allow_exec) {
4786  int prot;
4787  int flags = MAP_PRIVATE;
4788
4789  if (read_only) {
4790    prot = PROT_READ;
4791  } else {
4792    prot = PROT_READ | PROT_WRITE;
4793  }
4794
4795  if (allow_exec) {
4796    prot |= PROT_EXEC;
4797  }
4798
4799  if (addr != NULL) {
4800    flags |= MAP_FIXED;
4801  }
4802
4803  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4804                                     fd, file_offset);
4805  if (mapped_address == MAP_FAILED) {
4806    return NULL;
4807  }
4808  return mapped_address;
4809}
4810
4811
4812// Remap a block of memory.
4813char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4814                       char *addr, size_t bytes, bool read_only,
4815                       bool allow_exec) {
4816  // same as map_memory() on this OS
4817  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4818                        allow_exec);
4819}
4820
4821
4822// Unmap a block of memory.
4823bool os::pd_unmap_memory(char* addr, size_t bytes) {
4824  return munmap(addr, bytes) == 0;
4825}
4826
4827static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4828
4829static clockid_t thread_cpu_clockid(Thread* thread) {
4830  pthread_t tid = thread->osthread()->pthread_id();
4831  clockid_t clockid;
4832
4833  // Get thread clockid
4834  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4835  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4836  return clockid;
4837}
4838
4839// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4840// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4841// of a thread.
4842//
4843// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4844// the fast estimate available on the platform.
4845
4846jlong os::current_thread_cpu_time() {
4847  if (os::Linux::supports_fast_thread_cpu_time()) {
4848    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4849  } else {
4850    // return user + sys since the cost is the same
4851    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4852  }
4853}
4854
4855jlong os::thread_cpu_time(Thread* thread) {
4856  // consistent with what current_thread_cpu_time() returns
4857  if (os::Linux::supports_fast_thread_cpu_time()) {
4858    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4859  } else {
4860    return slow_thread_cpu_time(thread, true /* user + sys */);
4861  }
4862}
4863
4864jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4865  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4866    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4867  } else {
4868    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4869  }
4870}
4871
4872jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4873  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4874    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4875  } else {
4876    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4877  }
4878}
4879
4880//
4881//  -1 on error.
4882//
4883
4884static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4885  static bool proc_task_unchecked = true;
4886  static const char *proc_stat_path = "/proc/%d/stat";
4887  pid_t  tid = thread->osthread()->thread_id();
4888  char *s;
4889  char stat[2048];
4890  int statlen;
4891  char proc_name[64];
4892  int count;
4893  long sys_time, user_time;
4894  char cdummy;
4895  int idummy;
4896  long ldummy;
4897  FILE *fp;
4898
4899  // The /proc/<tid>/stat aggregates per-process usage on
4900  // new Linux kernels 2.6+ where NPTL is supported.
4901  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4902  // See bug 6328462.
4903  // There possibly can be cases where there is no directory
4904  // /proc/self/task, so we check its availability.
4905  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4906    // This is executed only once
4907    proc_task_unchecked = false;
4908    fp = fopen("/proc/self/task", "r");
4909    if (fp != NULL) {
4910      proc_stat_path = "/proc/self/task/%d/stat";
4911      fclose(fp);
4912    }
4913  }
4914
4915  sprintf(proc_name, proc_stat_path, tid);
4916  fp = fopen(proc_name, "r");
4917  if ( fp == NULL ) return -1;
4918  statlen = fread(stat, 1, 2047, fp);
4919  stat[statlen] = '\0';
4920  fclose(fp);
4921
4922  // Skip pid and the command string. Note that we could be dealing with
4923  // weird command names, e.g. user could decide to rename java launcher
4924  // to "java 1.4.2 :)", then the stat file would look like
4925  //                1234 (java 1.4.2 :)) R ... ...
4926  // We don't really need to know the command string, just find the last
4927  // occurrence of ")" and then start parsing from there. See bug 4726580.
4928  s = strrchr(stat, ')');
4929  if (s == NULL ) return -1;
4930
4931  // Skip blank chars
4932  do s++; while (isspace(*s));
4933
4934  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4935                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4936                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4937                 &user_time, &sys_time);
4938  if ( count != 13 ) return -1;
4939  if (user_sys_cpu_time) {
4940    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4941  } else {
4942    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4943  }
4944}
4945
4946void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4947  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4948  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4949  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4950  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4951}
4952
4953void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4954  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4955  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4956  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4957  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4958}
4959
4960bool os::is_thread_cpu_time_supported() {
4961  return true;
4962}
4963
4964// System loadavg support.  Returns -1 if load average cannot be obtained.
4965// Linux doesn't yet have a (official) notion of processor sets,
4966// so just return the system wide load average.
4967int os::loadavg(double loadavg[], int nelem) {
4968  return ::getloadavg(loadavg, nelem);
4969}
4970
4971void os::pause() {
4972  char filename[MAX_PATH];
4973  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4974    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4975  } else {
4976    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4977  }
4978
4979  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4980  if (fd != -1) {
4981    struct stat buf;
4982    ::close(fd);
4983    while (::stat(filename, &buf) == 0) {
4984      (void)::poll(NULL, 0, 100);
4985    }
4986  } else {
4987    jio_fprintf(stderr,
4988      "Could not open pause file '%s', continuing immediately.\n", filename);
4989  }
4990}
4991
4992
4993// Refer to the comments in os_solaris.cpp park-unpark.
4994//
4995// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4996// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4997// For specifics regarding the bug see GLIBC BUGID 261237 :
4998//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4999// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5000// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5001// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5002// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5003// and monitorenter when we're using 1-0 locking.  All those operations may result in
5004// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5005// of libpthread avoids the problem, but isn't practical.
5006//
5007// Possible remedies:
5008//
5009// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5010//      This is palliative and probabilistic, however.  If the thread is preempted
5011//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5012//      than the minimum period may have passed, and the abstime may be stale (in the
5013//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5014//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5015//
5016// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5017//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5018//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5019//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5020//      thread.
5021//
5022// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5023//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5024//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5025//      This also works well.  In fact it avoids kernel-level scalability impediments
5026//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5027//      timers in a graceful fashion.
5028//
5029// 4.   When the abstime value is in the past it appears that control returns
5030//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5031//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5032//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5033//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5034//      It may be possible to avoid reinitialization by checking the return
5035//      value from pthread_cond_timedwait().  In addition to reinitializing the
5036//      condvar we must establish the invariant that cond_signal() is only called
5037//      within critical sections protected by the adjunct mutex.  This prevents
5038//      cond_signal() from "seeing" a condvar that's in the midst of being
5039//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5040//      desirable signal-after-unlock optimization that avoids futile context switching.
5041//
5042//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5043//      structure when a condvar is used or initialized.  cond_destroy()  would
5044//      release the helper structure.  Our reinitialize-after-timedwait fix
5045//      put excessive stress on malloc/free and locks protecting the c-heap.
5046//
5047// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5048// It may be possible to refine (4) by checking the kernel and NTPL verisons
5049// and only enabling the work-around for vulnerable environments.
5050
5051// utility to compute the abstime argument to timedwait:
5052// millis is the relative timeout time
5053// abstime will be the absolute timeout time
5054// TODO: replace compute_abstime() with unpackTime()
5055
5056static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5057  if (millis < 0)  millis = 0;
5058  struct timeval now;
5059  int status = gettimeofday(&now, NULL);
5060  assert(status == 0, "gettimeofday");
5061  jlong seconds = millis / 1000;
5062  millis %= 1000;
5063  if (seconds > 50000000) { // see man cond_timedwait(3T)
5064    seconds = 50000000;
5065  }
5066  abstime->tv_sec = now.tv_sec  + seconds;
5067  long       usec = now.tv_usec + millis * 1000;
5068  if (usec >= 1000000) {
5069    abstime->tv_sec += 1;
5070    usec -= 1000000;
5071  }
5072  abstime->tv_nsec = usec * 1000;
5073  return abstime;
5074}
5075
5076
5077// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5078// Conceptually TryPark() should be equivalent to park(0).
5079
5080int os::PlatformEvent::TryPark() {
5081  for (;;) {
5082    const int v = _Event ;
5083    guarantee ((v == 0) || (v == 1), "invariant") ;
5084    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5085  }
5086}
5087
5088void os::PlatformEvent::park() {       // AKA "down()"
5089  // Invariant: Only the thread associated with the Event/PlatformEvent
5090  // may call park().
5091  // TODO: assert that _Assoc != NULL or _Assoc == Self
5092  int v ;
5093  for (;;) {
5094      v = _Event ;
5095      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5096  }
5097  guarantee (v >= 0, "invariant") ;
5098  if (v == 0) {
5099     // Do this the hard way by blocking ...
5100     int status = pthread_mutex_lock(_mutex);
5101     assert_status(status == 0, status, "mutex_lock");
5102     guarantee (_nParked == 0, "invariant") ;
5103     ++ _nParked ;
5104     while (_Event < 0) {
5105        status = pthread_cond_wait(_cond, _mutex);
5106        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5107        // Treat this the same as if the wait was interrupted
5108        if (status == ETIME) { status = EINTR; }
5109        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5110     }
5111     -- _nParked ;
5112
5113    _Event = 0 ;
5114     status = pthread_mutex_unlock(_mutex);
5115     assert_status(status == 0, status, "mutex_unlock");
5116    // Paranoia to ensure our locked and lock-free paths interact
5117    // correctly with each other.
5118    OrderAccess::fence();
5119  }
5120  guarantee (_Event >= 0, "invariant") ;
5121}
5122
5123int os::PlatformEvent::park(jlong millis) {
5124  guarantee (_nParked == 0, "invariant") ;
5125
5126  int v ;
5127  for (;;) {
5128      v = _Event ;
5129      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5130  }
5131  guarantee (v >= 0, "invariant") ;
5132  if (v != 0) return OS_OK ;
5133
5134  // We do this the hard way, by blocking the thread.
5135  // Consider enforcing a minimum timeout value.
5136  struct timespec abst;
5137  compute_abstime(&abst, millis);
5138
5139  int ret = OS_TIMEOUT;
5140  int status = pthread_mutex_lock(_mutex);
5141  assert_status(status == 0, status, "mutex_lock");
5142  guarantee (_nParked == 0, "invariant") ;
5143  ++_nParked ;
5144
5145  // Object.wait(timo) will return because of
5146  // (a) notification
5147  // (b) timeout
5148  // (c) thread.interrupt
5149  //
5150  // Thread.interrupt and object.notify{All} both call Event::set.
5151  // That is, we treat thread.interrupt as a special case of notification.
5152  // The underlying Solaris implementation, cond_timedwait, admits
5153  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5154  // JVM from making those visible to Java code.  As such, we must
5155  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5156  //
5157  // TODO: properly differentiate simultaneous notify+interrupt.
5158  // In that case, we should propagate the notify to another waiter.
5159
5160  while (_Event < 0) {
5161    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5162    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5163      pthread_cond_destroy (_cond);
5164      pthread_cond_init (_cond, NULL) ;
5165    }
5166    assert_status(status == 0 || status == EINTR ||
5167                  status == ETIME || status == ETIMEDOUT,
5168                  status, "cond_timedwait");
5169    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5170    if (status == ETIME || status == ETIMEDOUT) break ;
5171    // We consume and ignore EINTR and spurious wakeups.
5172  }
5173  --_nParked ;
5174  if (_Event >= 0) {
5175     ret = OS_OK;
5176  }
5177  _Event = 0 ;
5178  status = pthread_mutex_unlock(_mutex);
5179  assert_status(status == 0, status, "mutex_unlock");
5180  assert (_nParked == 0, "invariant") ;
5181  // Paranoia to ensure our locked and lock-free paths interact
5182  // correctly with each other.
5183  OrderAccess::fence();
5184  return ret;
5185}
5186
5187void os::PlatformEvent::unpark() {
5188  // Transitions for _Event:
5189  //    0 :=> 1
5190  //    1 :=> 1
5191  //   -1 :=> either 0 or 1; must signal target thread
5192  //          That is, we can safely transition _Event from -1 to either
5193  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5194  //          unpark() calls.
5195  // See also: "Semaphores in Plan 9" by Mullender & Cox
5196  //
5197  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5198  // that it will take two back-to-back park() calls for the owning
5199  // thread to block. This has the benefit of forcing a spurious return
5200  // from the first park() call after an unpark() call which will help
5201  // shake out uses of park() and unpark() without condition variables.
5202
5203  if (Atomic::xchg(1, &_Event) >= 0) return;
5204
5205  // Wait for the thread associated with the event to vacate
5206  int status = pthread_mutex_lock(_mutex);
5207  assert_status(status == 0, status, "mutex_lock");
5208  int AnyWaiters = _nParked;
5209  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5210  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5211    AnyWaiters = 0;
5212    pthread_cond_signal(_cond);
5213  }
5214  status = pthread_mutex_unlock(_mutex);
5215  assert_status(status == 0, status, "mutex_unlock");
5216  if (AnyWaiters != 0) {
5217    status = pthread_cond_signal(_cond);
5218    assert_status(status == 0, status, "cond_signal");
5219  }
5220
5221  // Note that we signal() _after dropping the lock for "immortal" Events.
5222  // This is safe and avoids a common class of  futile wakeups.  In rare
5223  // circumstances this can cause a thread to return prematurely from
5224  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5225  // simply re-test the condition and re-park itself.
5226}
5227
5228
5229// JSR166
5230// -------------------------------------------------------
5231
5232/*
5233 * The solaris and linux implementations of park/unpark are fairly
5234 * conservative for now, but can be improved. They currently use a
5235 * mutex/condvar pair, plus a a count.
5236 * Park decrements count if > 0, else does a condvar wait.  Unpark
5237 * sets count to 1 and signals condvar.  Only one thread ever waits
5238 * on the condvar. Contention seen when trying to park implies that someone
5239 * is unparking you, so don't wait. And spurious returns are fine, so there
5240 * is no need to track notifications.
5241 */
5242
5243#define MAX_SECS 100000000
5244/*
5245 * This code is common to linux and solaris and will be moved to a
5246 * common place in dolphin.
5247 *
5248 * The passed in time value is either a relative time in nanoseconds
5249 * or an absolute time in milliseconds. Either way it has to be unpacked
5250 * into suitable seconds and nanoseconds components and stored in the
5251 * given timespec structure.
5252 * Given time is a 64-bit value and the time_t used in the timespec is only
5253 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5254 * overflow if times way in the future are given. Further on Solaris versions
5255 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5256 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5257 * As it will be 28 years before "now + 100000000" will overflow we can
5258 * ignore overflow and just impose a hard-limit on seconds using the value
5259 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5260 * years from "now".
5261 */
5262
5263static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5264  assert (time > 0, "convertTime");
5265
5266  struct timeval now;
5267  int status = gettimeofday(&now, NULL);
5268  assert(status == 0, "gettimeofday");
5269
5270  time_t max_secs = now.tv_sec + MAX_SECS;
5271
5272  if (isAbsolute) {
5273    jlong secs = time / 1000;
5274    if (secs > max_secs) {
5275      absTime->tv_sec = max_secs;
5276    }
5277    else {
5278      absTime->tv_sec = secs;
5279    }
5280    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5281  }
5282  else {
5283    jlong secs = time / NANOSECS_PER_SEC;
5284    if (secs >= MAX_SECS) {
5285      absTime->tv_sec = max_secs;
5286      absTime->tv_nsec = 0;
5287    }
5288    else {
5289      absTime->tv_sec = now.tv_sec + secs;
5290      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5291      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5292        absTime->tv_nsec -= NANOSECS_PER_SEC;
5293        ++absTime->tv_sec; // note: this must be <= max_secs
5294      }
5295    }
5296  }
5297  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5298  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5299  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5300  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5301}
5302
5303void Parker::park(bool isAbsolute, jlong time) {
5304  // Ideally we'd do something useful while spinning, such
5305  // as calling unpackTime().
5306
5307  // Optional fast-path check:
5308  // Return immediately if a permit is available.
5309  // We depend on Atomic::xchg() having full barrier semantics
5310  // since we are doing a lock-free update to _counter.
5311  if (Atomic::xchg(0, &_counter) > 0) return;
5312
5313  Thread* thread = Thread::current();
5314  assert(thread->is_Java_thread(), "Must be JavaThread");
5315  JavaThread *jt = (JavaThread *)thread;
5316
5317  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5318  // Check interrupt before trying to wait
5319  if (Thread::is_interrupted(thread, false)) {
5320    return;
5321  }
5322
5323  // Next, demultiplex/decode time arguments
5324  timespec absTime;
5325  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5326    return;
5327  }
5328  if (time > 0) {
5329    unpackTime(&absTime, isAbsolute, time);
5330  }
5331
5332
5333  // Enter safepoint region
5334  // Beware of deadlocks such as 6317397.
5335  // The per-thread Parker:: mutex is a classic leaf-lock.
5336  // In particular a thread must never block on the Threads_lock while
5337  // holding the Parker:: mutex.  If safepoints are pending both the
5338  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5339  ThreadBlockInVM tbivm(jt);
5340
5341  // Don't wait if cannot get lock since interference arises from
5342  // unblocking.  Also. check interrupt before trying wait
5343  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5344    return;
5345  }
5346
5347  int status ;
5348  if (_counter > 0)  { // no wait needed
5349    _counter = 0;
5350    status = pthread_mutex_unlock(_mutex);
5351    assert (status == 0, "invariant") ;
5352    // Paranoia to ensure our locked and lock-free paths interact
5353    // correctly with each other and Java-level accesses.
5354    OrderAccess::fence();
5355    return;
5356  }
5357
5358#ifdef ASSERT
5359  // Don't catch signals while blocked; let the running threads have the signals.
5360  // (This allows a debugger to break into the running thread.)
5361  sigset_t oldsigs;
5362  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5363  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5364#endif
5365
5366  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5367  jt->set_suspend_equivalent();
5368  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5369
5370  if (time == 0) {
5371    status = pthread_cond_wait (_cond, _mutex) ;
5372  } else {
5373    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5374    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5375      pthread_cond_destroy (_cond) ;
5376      pthread_cond_init    (_cond, NULL);
5377    }
5378  }
5379  assert_status(status == 0 || status == EINTR ||
5380                status == ETIME || status == ETIMEDOUT,
5381                status, "cond_timedwait");
5382
5383#ifdef ASSERT
5384  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5385#endif
5386
5387  _counter = 0 ;
5388  status = pthread_mutex_unlock(_mutex) ;
5389  assert_status(status == 0, status, "invariant") ;
5390  // Paranoia to ensure our locked and lock-free paths interact
5391  // correctly with each other and Java-level accesses.
5392  OrderAccess::fence();
5393
5394  // If externally suspended while waiting, re-suspend
5395  if (jt->handle_special_suspend_equivalent_condition()) {
5396    jt->java_suspend_self();
5397  }
5398}
5399
5400void Parker::unpark() {
5401  int s, status ;
5402  status = pthread_mutex_lock(_mutex);
5403  assert (status == 0, "invariant") ;
5404  s = _counter;
5405  _counter = 1;
5406  if (s < 1) {
5407     if (WorkAroundNPTLTimedWaitHang) {
5408        status = pthread_cond_signal (_cond) ;
5409        assert (status == 0, "invariant") ;
5410        status = pthread_mutex_unlock(_mutex);
5411        assert (status == 0, "invariant") ;
5412     } else {
5413        status = pthread_mutex_unlock(_mutex);
5414        assert (status == 0, "invariant") ;
5415        status = pthread_cond_signal (_cond) ;
5416        assert (status == 0, "invariant") ;
5417     }
5418  } else {
5419    pthread_mutex_unlock(_mutex);
5420    assert (status == 0, "invariant") ;
5421  }
5422}
5423
5424
5425extern char** environ;
5426
5427#ifndef __NR_fork
5428#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5429#endif
5430
5431#ifndef __NR_execve
5432#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5433#endif
5434
5435// Run the specified command in a separate process. Return its exit value,
5436// or -1 on failure (e.g. can't fork a new process).
5437// Unlike system(), this function can be called from signal handler. It
5438// doesn't block SIGINT et al.
5439int os::fork_and_exec(char* cmd) {
5440  const char * argv[4] = {"sh", "-c", cmd, NULL};
5441
5442  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5443  // pthread_atfork handlers and reset pthread library. All we need is a
5444  // separate process to execve. Make a direct syscall to fork process.
5445  // On IA64 there's no fork syscall, we have to use fork() and hope for
5446  // the best...
5447  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5448              IA64_ONLY(fork();)
5449
5450  if (pid < 0) {
5451    // fork failed
5452    return -1;
5453
5454  } else if (pid == 0) {
5455    // child process
5456
5457    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5458    // first to kill every thread on the thread list. Because this list is
5459    // not reset by fork() (see notes above), execve() will instead kill
5460    // every thread in the parent process. We know this is the only thread
5461    // in the new process, so make a system call directly.
5462    // IA64 should use normal execve() from glibc to match the glibc fork()
5463    // above.
5464    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5465    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5466
5467    // execve failed
5468    _exit(-1);
5469
5470  } else  {
5471    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5472    // care about the actual exit code, for now.
5473
5474    int status;
5475
5476    // Wait for the child process to exit.  This returns immediately if
5477    // the child has already exited. */
5478    while (waitpid(pid, &status, 0) < 0) {
5479        switch (errno) {
5480        case ECHILD: return 0;
5481        case EINTR: break;
5482        default: return -1;
5483        }
5484    }
5485
5486    if (WIFEXITED(status)) {
5487       // The child exited normally; get its exit code.
5488       return WEXITSTATUS(status);
5489    } else if (WIFSIGNALED(status)) {
5490       // The child exited because of a signal
5491       // The best value to return is 0x80 + signal number,
5492       // because that is what all Unix shells do, and because
5493       // it allows callers to distinguish between process exit and
5494       // process death by signal.
5495       return 0x80 + WTERMSIG(status);
5496    } else {
5497       // Unknown exit code; pass it through
5498       return status;
5499    }
5500  }
5501}
5502
5503// is_headless_jre()
5504//
5505// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5506// in order to report if we are running in a headless jre
5507//
5508// Since JDK8 xawt/libmawt.so was moved into the same directory
5509// as libawt.so, and renamed libawt_xawt.so
5510//
5511bool os::is_headless_jre() {
5512    struct stat statbuf;
5513    char buf[MAXPATHLEN];
5514    char libmawtpath[MAXPATHLEN];
5515    const char *xawtstr  = "/xawt/libmawt.so";
5516    const char *new_xawtstr = "/libawt_xawt.so";
5517    char *p;
5518
5519    // Get path to libjvm.so
5520    os::jvm_path(buf, sizeof(buf));
5521
5522    // Get rid of libjvm.so
5523    p = strrchr(buf, '/');
5524    if (p == NULL) return false;
5525    else *p = '\0';
5526
5527    // Get rid of client or server
5528    p = strrchr(buf, '/');
5529    if (p == NULL) return false;
5530    else *p = '\0';
5531
5532    // check xawt/libmawt.so
5533    strcpy(libmawtpath, buf);
5534    strcat(libmawtpath, xawtstr);
5535    if (::stat(libmawtpath, &statbuf) == 0) return false;
5536
5537    // check libawt_xawt.so
5538    strcpy(libmawtpath, buf);
5539    strcat(libmawtpath, new_xawtstr);
5540    if (::stat(libmawtpath, &statbuf) == 0) return false;
5541
5542    return true;
5543}
5544
5545// Get the default path to the core file
5546// Returns the length of the string
5547int os::get_core_path(char* buffer, size_t bufferSize) {
5548  const char* p = get_current_directory(buffer, bufferSize);
5549
5550  if (p == NULL) {
5551    assert(p != NULL, "failed to get current directory");
5552    return 0;
5553  }
5554
5555  return strlen(buffer);
5556}
5557
5558#ifdef JAVASE_EMBEDDED
5559//
5560// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5561//
5562MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5563
5564// ctor
5565//
5566MemNotifyThread::MemNotifyThread(int fd): Thread() {
5567  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5568  _fd = fd;
5569
5570  if (os::create_thread(this, os::os_thread)) {
5571    _memnotify_thread = this;
5572    os::set_priority(this, NearMaxPriority);
5573    os::start_thread(this);
5574  }
5575}
5576
5577// Where all the work gets done
5578//
5579void MemNotifyThread::run() {
5580  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5581
5582  // Set up the select arguments
5583  fd_set rfds;
5584  if (_fd != -1) {
5585    FD_ZERO(&rfds);
5586    FD_SET(_fd, &rfds);
5587  }
5588
5589  // Now wait for the mem_notify device to wake up
5590  while (1) {
5591    // Wait for the mem_notify device to signal us..
5592    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5593    if (rc == -1) {
5594      perror("select!\n");
5595      break;
5596    } else if (rc) {
5597      //ssize_t free_before = os::available_memory();
5598      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5599
5600      // The kernel is telling us there is not much memory left...
5601      // try to do something about that
5602
5603      // If we are not already in a GC, try one.
5604      if (!Universe::heap()->is_gc_active()) {
5605        Universe::heap()->collect(GCCause::_allocation_failure);
5606
5607        //ssize_t free_after = os::available_memory();
5608        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5609        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5610      }
5611      // We might want to do something like the following if we find the GC's are not helping...
5612      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5613    }
5614  }
5615}
5616
5617//
5618// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5619//
5620void MemNotifyThread::start() {
5621  int    fd;
5622  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5623  if (fd < 0) {
5624      return;
5625  }
5626
5627  if (memnotify_thread() == NULL) {
5628    new MemNotifyThread(fd);
5629  }
5630}
5631#endif // JAVASE_EMBEDDED
5632