os_linux.cpp revision 4423:15c04fe93c18
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104#define MAX_PATH    (2 * K)
105
106// for timer info max values which include all bits
107#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
108
109#define LARGEPAGES_BIT (1 << 6)
110////////////////////////////////////////////////////////////////////////////////
111// global variables
112julong os::Linux::_physical_memory = 0;
113
114address   os::Linux::_initial_thread_stack_bottom = NULL;
115uintptr_t os::Linux::_initial_thread_stack_size   = 0;
116
117int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
118int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
119Mutex* os::Linux::_createThread_lock = NULL;
120pthread_t os::Linux::_main_thread;
121int os::Linux::_page_size = -1;
122bool os::Linux::_is_floating_stack = false;
123bool os::Linux::_is_NPTL = false;
124bool os::Linux::_supports_fast_thread_cpu_time = false;
125const char * os::Linux::_glibc_version = NULL;
126const char * os::Linux::_libpthread_version = NULL;
127
128static jlong initial_time_count=0;
129
130static int clock_tics_per_sec = 100;
131
132// For diagnostics to print a message once. see run_periodic_checks
133static sigset_t check_signal_done;
134static bool check_signals = true;;
135
136static pid_t _initial_pid = 0;
137
138/* Signal number used to suspend/resume a thread */
139
140/* do not use any signal number less than SIGSEGV, see 4355769 */
141static int SR_signum = SIGUSR2;
142sigset_t SR_sigset;
143
144/* Used to protect dlsym() calls */
145static pthread_mutex_t dl_mutex;
146
147#ifdef JAVASE_EMBEDDED
148class MemNotifyThread: public Thread {
149  friend class VMStructs;
150 public:
151  virtual void run();
152
153 private:
154  static MemNotifyThread* _memnotify_thread;
155  int _fd;
156
157 public:
158
159  // Constructor
160  MemNotifyThread(int fd);
161
162  // Tester
163  bool is_memnotify_thread() const { return true; }
164
165  // Printing
166  char* name() const { return (char*)"Linux MemNotify Thread"; }
167
168  // Returns the single instance of the MemNotifyThread
169  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
170
171  // Create and start the single instance of MemNotifyThread
172  static void start();
173};
174#endif // JAVASE_EMBEDDED
175
176// utility functions
177
178static int SR_initialize();
179static int SR_finalize();
180
181julong os::available_memory() {
182  return Linux::available_memory();
183}
184
185julong os::Linux::available_memory() {
186  // values in struct sysinfo are "unsigned long"
187  struct sysinfo si;
188  sysinfo(&si);
189
190  return (julong)si.freeram * si.mem_unit;
191}
192
193julong os::physical_memory() {
194  return Linux::physical_memory();
195}
196
197////////////////////////////////////////////////////////////////////////////////
198// environment support
199
200bool os::getenv(const char* name, char* buf, int len) {
201  const char* val = ::getenv(name);
202  if (val != NULL && strlen(val) < (size_t)len) {
203    strcpy(buf, val);
204    return true;
205  }
206  if (len > 0) buf[0] = 0;  // return a null string
207  return false;
208}
209
210
211// Return true if user is running as root.
212
213bool os::have_special_privileges() {
214  static bool init = false;
215  static bool privileges = false;
216  if (!init) {
217    privileges = (getuid() != geteuid()) || (getgid() != getegid());
218    init = true;
219  }
220  return privileges;
221}
222
223
224#ifndef SYS_gettid
225// i386: 224, ia64: 1105, amd64: 186, sparc 143
226#ifdef __ia64__
227#define SYS_gettid 1105
228#elif __i386__
229#define SYS_gettid 224
230#elif __amd64__
231#define SYS_gettid 186
232#elif __sparc__
233#define SYS_gettid 143
234#else
235#error define gettid for the arch
236#endif
237#endif
238
239// Cpu architecture string
240#if   defined(ZERO)
241static char cpu_arch[] = ZERO_LIBARCH;
242#elif defined(IA64)
243static char cpu_arch[] = "ia64";
244#elif defined(IA32)
245static char cpu_arch[] = "i386";
246#elif defined(AMD64)
247static char cpu_arch[] = "amd64";
248#elif defined(ARM)
249static char cpu_arch[] = "arm";
250#elif defined(PPC)
251static char cpu_arch[] = "ppc";
252#elif defined(SPARC)
253#  ifdef _LP64
254static char cpu_arch[] = "sparcv9";
255#  else
256static char cpu_arch[] = "sparc";
257#  endif
258#else
259#error Add appropriate cpu_arch setting
260#endif
261
262
263// pid_t gettid()
264//
265// Returns the kernel thread id of the currently running thread. Kernel
266// thread id is used to access /proc.
267//
268// (Note that getpid() on LinuxThreads returns kernel thread id too; but
269// on NPTL, it returns the same pid for all threads, as required by POSIX.)
270//
271pid_t os::Linux::gettid() {
272  int rslt = syscall(SYS_gettid);
273  if (rslt == -1) {
274     // old kernel, no NPTL support
275     return getpid();
276  } else {
277     return (pid_t)rslt;
278  }
279}
280
281// Most versions of linux have a bug where the number of processors are
282// determined by looking at the /proc file system.  In a chroot environment,
283// the system call returns 1.  This causes the VM to act as if it is
284// a single processor and elide locking (see is_MP() call).
285static bool unsafe_chroot_detected = false;
286static const char *unstable_chroot_error = "/proc file system not found.\n"
287                     "Java may be unstable running multithreaded in a chroot "
288                     "environment on Linux when /proc filesystem is not mounted.";
289
290void os::Linux::initialize_system_info() {
291  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
292  if (processor_count() == 1) {
293    pid_t pid = os::Linux::gettid();
294    char fname[32];
295    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
296    FILE *fp = fopen(fname, "r");
297    if (fp == NULL) {
298      unsafe_chroot_detected = true;
299    } else {
300      fclose(fp);
301    }
302  }
303  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
304  assert(processor_count() > 0, "linux error");
305}
306
307void os::init_system_properties_values() {
308//  char arch[12];
309//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
310
311  // The next steps are taken in the product version:
312  //
313  // Obtain the JAVA_HOME value from the location of libjvm.so.
314  // This library should be located at:
315  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
316  //
317  // If "/jre/lib/" appears at the right place in the path, then we
318  // assume libjvm.so is installed in a JDK and we use this path.
319  //
320  // Otherwise exit with message: "Could not create the Java virtual machine."
321  //
322  // The following extra steps are taken in the debugging version:
323  //
324  // If "/jre/lib/" does NOT appear at the right place in the path
325  // instead of exit check for $JAVA_HOME environment variable.
326  //
327  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
328  // then we append a fake suffix "hotspot/libjvm.so" to this path so
329  // it looks like libjvm.so is installed there
330  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
331  //
332  // Otherwise exit.
333  //
334  // Important note: if the location of libjvm.so changes this
335  // code needs to be changed accordingly.
336
337  // The next few definitions allow the code to be verbatim:
338#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
339#define getenv(n) ::getenv(n)
340
341/*
342 * See ld(1):
343 *      The linker uses the following search paths to locate required
344 *      shared libraries:
345 *        1: ...
346 *        ...
347 *        7: The default directories, normally /lib and /usr/lib.
348 */
349#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
350#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
351#else
352#define DEFAULT_LIBPATH "/lib:/usr/lib"
353#endif
354
355#define EXTENSIONS_DIR  "/lib/ext"
356#define ENDORSED_DIR    "/lib/endorsed"
357#define REG_DIR         "/usr/java/packages"
358
359  {
360    /* sysclasspath, java_home, dll_dir */
361    {
362        char *home_path;
363        char *dll_path;
364        char *pslash;
365        char buf[MAXPATHLEN];
366        os::jvm_path(buf, sizeof(buf));
367
368        // Found the full path to libjvm.so.
369        // Now cut the path to <java_home>/jre if we can.
370        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
371        pslash = strrchr(buf, '/');
372        if (pslash != NULL)
373            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
374        dll_path = malloc(strlen(buf) + 1);
375        if (dll_path == NULL)
376            return;
377        strcpy(dll_path, buf);
378        Arguments::set_dll_dir(dll_path);
379
380        if (pslash != NULL) {
381            pslash = strrchr(buf, '/');
382            if (pslash != NULL) {
383                *pslash = '\0';       /* get rid of /<arch> */
384                pslash = strrchr(buf, '/');
385                if (pslash != NULL)
386                    *pslash = '\0';   /* get rid of /lib */
387            }
388        }
389
390        home_path = malloc(strlen(buf) + 1);
391        if (home_path == NULL)
392            return;
393        strcpy(home_path, buf);
394        Arguments::set_java_home(home_path);
395
396        if (!set_boot_path('/', ':'))
397            return;
398    }
399
400    /*
401     * Where to look for native libraries
402     *
403     * Note: Due to a legacy implementation, most of the library path
404     * is set in the launcher.  This was to accomodate linking restrictions
405     * on legacy Linux implementations (which are no longer supported).
406     * Eventually, all the library path setting will be done here.
407     *
408     * However, to prevent the proliferation of improperly built native
409     * libraries, the new path component /usr/java/packages is added here.
410     * Eventually, all the library path setting will be done here.
411     */
412    {
413        char *ld_library_path;
414
415        /*
416         * Construct the invariant part of ld_library_path. Note that the
417         * space for the colon and the trailing null are provided by the
418         * nulls included by the sizeof operator (so actually we allocate
419         * a byte more than necessary).
420         */
421        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
422            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
423        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
424
425        /*
426         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
427         * should always exist (until the legacy problem cited above is
428         * addressed).
429         */
430        char *v = getenv("LD_LIBRARY_PATH");
431        if (v != NULL) {
432            char *t = ld_library_path;
433            /* That's +1 for the colon and +1 for the trailing '\0' */
434            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
435            sprintf(ld_library_path, "%s:%s", v, t);
436        }
437        Arguments::set_library_path(ld_library_path);
438    }
439
440    /*
441     * Extensions directories.
442     *
443     * Note that the space for the colon and the trailing null are provided
444     * by the nulls included by the sizeof operator (so actually one byte more
445     * than necessary is allocated).
446     */
447    {
448        char *buf = malloc(strlen(Arguments::get_java_home()) +
449            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
450        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
451            Arguments::get_java_home());
452        Arguments::set_ext_dirs(buf);
453    }
454
455    /* Endorsed standards default directory. */
456    {
457        char * buf;
458        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
459        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
460        Arguments::set_endorsed_dirs(buf);
461    }
462  }
463
464#undef malloc
465#undef getenv
466#undef EXTENSIONS_DIR
467#undef ENDORSED_DIR
468
469  // Done
470  return;
471}
472
473////////////////////////////////////////////////////////////////////////////////
474// breakpoint support
475
476void os::breakpoint() {
477  BREAKPOINT;
478}
479
480extern "C" void breakpoint() {
481  // use debugger to set breakpoint here
482}
483
484////////////////////////////////////////////////////////////////////////////////
485// signal support
486
487debug_only(static bool signal_sets_initialized = false);
488static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
489
490bool os::Linux::is_sig_ignored(int sig) {
491      struct sigaction oact;
492      sigaction(sig, (struct sigaction*)NULL, &oact);
493      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
494                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
495      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
496           return true;
497      else
498           return false;
499}
500
501void os::Linux::signal_sets_init() {
502  // Should also have an assertion stating we are still single-threaded.
503  assert(!signal_sets_initialized, "Already initialized");
504  // Fill in signals that are necessarily unblocked for all threads in
505  // the VM. Currently, we unblock the following signals:
506  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
507  //                         by -Xrs (=ReduceSignalUsage));
508  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
509  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
510  // the dispositions or masks wrt these signals.
511  // Programs embedding the VM that want to use the above signals for their
512  // own purposes must, at this time, use the "-Xrs" option to prevent
513  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
514  // (See bug 4345157, and other related bugs).
515  // In reality, though, unblocking these signals is really a nop, since
516  // these signals are not blocked by default.
517  sigemptyset(&unblocked_sigs);
518  sigemptyset(&allowdebug_blocked_sigs);
519  sigaddset(&unblocked_sigs, SIGILL);
520  sigaddset(&unblocked_sigs, SIGSEGV);
521  sigaddset(&unblocked_sigs, SIGBUS);
522  sigaddset(&unblocked_sigs, SIGFPE);
523  sigaddset(&unblocked_sigs, SR_signum);
524
525  if (!ReduceSignalUsage) {
526   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
527      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
528      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
529   }
530   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
531      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
532      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
533   }
534   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
535      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
536      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
537   }
538  }
539  // Fill in signals that are blocked by all but the VM thread.
540  sigemptyset(&vm_sigs);
541  if (!ReduceSignalUsage)
542    sigaddset(&vm_sigs, BREAK_SIGNAL);
543  debug_only(signal_sets_initialized = true);
544
545}
546
547// These are signals that are unblocked while a thread is running Java.
548// (For some reason, they get blocked by default.)
549sigset_t* os::Linux::unblocked_signals() {
550  assert(signal_sets_initialized, "Not initialized");
551  return &unblocked_sigs;
552}
553
554// These are the signals that are blocked while a (non-VM) thread is
555// running Java. Only the VM thread handles these signals.
556sigset_t* os::Linux::vm_signals() {
557  assert(signal_sets_initialized, "Not initialized");
558  return &vm_sigs;
559}
560
561// These are signals that are blocked during cond_wait to allow debugger in
562sigset_t* os::Linux::allowdebug_blocked_signals() {
563  assert(signal_sets_initialized, "Not initialized");
564  return &allowdebug_blocked_sigs;
565}
566
567void os::Linux::hotspot_sigmask(Thread* thread) {
568
569  //Save caller's signal mask before setting VM signal mask
570  sigset_t caller_sigmask;
571  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
572
573  OSThread* osthread = thread->osthread();
574  osthread->set_caller_sigmask(caller_sigmask);
575
576  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
577
578  if (!ReduceSignalUsage) {
579    if (thread->is_VM_thread()) {
580      // Only the VM thread handles BREAK_SIGNAL ...
581      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
582    } else {
583      // ... all other threads block BREAK_SIGNAL
584      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
585    }
586  }
587}
588
589//////////////////////////////////////////////////////////////////////////////
590// detecting pthread library
591
592void os::Linux::libpthread_init() {
593  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
594  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
595  // generic name for earlier versions.
596  // Define macros here so we can build HotSpot on old systems.
597# ifndef _CS_GNU_LIBC_VERSION
598# define _CS_GNU_LIBC_VERSION 2
599# endif
600# ifndef _CS_GNU_LIBPTHREAD_VERSION
601# define _CS_GNU_LIBPTHREAD_VERSION 3
602# endif
603
604  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
605  if (n > 0) {
606     char *str = (char *)malloc(n, mtInternal);
607     confstr(_CS_GNU_LIBC_VERSION, str, n);
608     os::Linux::set_glibc_version(str);
609  } else {
610     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
611     static char _gnu_libc_version[32];
612     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
613              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
614     os::Linux::set_glibc_version(_gnu_libc_version);
615  }
616
617  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
618  if (n > 0) {
619     char *str = (char *)malloc(n, mtInternal);
620     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
621     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
622     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
623     // is the case. LinuxThreads has a hard limit on max number of threads.
624     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
625     // On the other hand, NPTL does not have such a limit, sysconf()
626     // will return -1 and errno is not changed. Check if it is really NPTL.
627     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
628         strstr(str, "NPTL") &&
629         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
630       free(str);
631       os::Linux::set_libpthread_version("linuxthreads");
632     } else {
633       os::Linux::set_libpthread_version(str);
634     }
635  } else {
636    // glibc before 2.3.2 only has LinuxThreads.
637    os::Linux::set_libpthread_version("linuxthreads");
638  }
639
640  if (strstr(libpthread_version(), "NPTL")) {
641     os::Linux::set_is_NPTL();
642  } else {
643     os::Linux::set_is_LinuxThreads();
644  }
645
646  // LinuxThreads have two flavors: floating-stack mode, which allows variable
647  // stack size; and fixed-stack mode. NPTL is always floating-stack.
648  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
649     os::Linux::set_is_floating_stack();
650  }
651}
652
653/////////////////////////////////////////////////////////////////////////////
654// thread stack
655
656// Force Linux kernel to expand current thread stack. If "bottom" is close
657// to the stack guard, caller should block all signals.
658//
659// MAP_GROWSDOWN:
660//   A special mmap() flag that is used to implement thread stacks. It tells
661//   kernel that the memory region should extend downwards when needed. This
662//   allows early versions of LinuxThreads to only mmap the first few pages
663//   when creating a new thread. Linux kernel will automatically expand thread
664//   stack as needed (on page faults).
665//
666//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
667//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
668//   region, it's hard to tell if the fault is due to a legitimate stack
669//   access or because of reading/writing non-exist memory (e.g. buffer
670//   overrun). As a rule, if the fault happens below current stack pointer,
671//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
672//   application (see Linux kernel fault.c).
673//
674//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
675//   stack overflow detection.
676//
677//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
678//   not use this flag. However, the stack of initial thread is not created
679//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
680//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
681//   and then attach the thread to JVM.
682//
683// To get around the problem and allow stack banging on Linux, we need to
684// manually expand thread stack after receiving the SIGSEGV.
685//
686// There are two ways to expand thread stack to address "bottom", we used
687// both of them in JVM before 1.5:
688//   1. adjust stack pointer first so that it is below "bottom", and then
689//      touch "bottom"
690//   2. mmap() the page in question
691//
692// Now alternate signal stack is gone, it's harder to use 2. For instance,
693// if current sp is already near the lower end of page 101, and we need to
694// call mmap() to map page 100, it is possible that part of the mmap() frame
695// will be placed in page 100. When page 100 is mapped, it is zero-filled.
696// That will destroy the mmap() frame and cause VM to crash.
697//
698// The following code works by adjusting sp first, then accessing the "bottom"
699// page to force a page fault. Linux kernel will then automatically expand the
700// stack mapping.
701//
702// _expand_stack_to() assumes its frame size is less than page size, which
703// should always be true if the function is not inlined.
704
705#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
706#define NOINLINE
707#else
708#define NOINLINE __attribute__ ((noinline))
709#endif
710
711static void _expand_stack_to(address bottom) NOINLINE;
712
713static void _expand_stack_to(address bottom) {
714  address sp;
715  size_t size;
716  volatile char *p;
717
718  // Adjust bottom to point to the largest address within the same page, it
719  // gives us a one-page buffer if alloca() allocates slightly more memory.
720  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
721  bottom += os::Linux::page_size() - 1;
722
723  // sp might be slightly above current stack pointer; if that's the case, we
724  // will alloca() a little more space than necessary, which is OK. Don't use
725  // os::current_stack_pointer(), as its result can be slightly below current
726  // stack pointer, causing us to not alloca enough to reach "bottom".
727  sp = (address)&sp;
728
729  if (sp > bottom) {
730    size = sp - bottom;
731    p = (volatile char *)alloca(size);
732    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
733    p[0] = '\0';
734  }
735}
736
737bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
738  assert(t!=NULL, "just checking");
739  assert(t->osthread()->expanding_stack(), "expand should be set");
740  assert(t->stack_base() != NULL, "stack_base was not initialized");
741
742  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
743    sigset_t mask_all, old_sigset;
744    sigfillset(&mask_all);
745    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
746    _expand_stack_to(addr);
747    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
748    return true;
749  }
750  return false;
751}
752
753//////////////////////////////////////////////////////////////////////////////
754// create new thread
755
756static address highest_vm_reserved_address();
757
758// check if it's safe to start a new thread
759static bool _thread_safety_check(Thread* thread) {
760  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
761    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
762    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
763    //   allocated (MAP_FIXED) from high address space. Every thread stack
764    //   occupies a fixed size slot (usually 2Mbytes, but user can change
765    //   it to other values if they rebuild LinuxThreads).
766    //
767    // Problem with MAP_FIXED is that mmap() can still succeed even part of
768    // the memory region has already been mmap'ed. That means if we have too
769    // many threads and/or very large heap, eventually thread stack will
770    // collide with heap.
771    //
772    // Here we try to prevent heap/stack collision by comparing current
773    // stack bottom with the highest address that has been mmap'ed by JVM
774    // plus a safety margin for memory maps created by native code.
775    //
776    // This feature can be disabled by setting ThreadSafetyMargin to 0
777    //
778    if (ThreadSafetyMargin > 0) {
779      address stack_bottom = os::current_stack_base() - os::current_stack_size();
780
781      // not safe if our stack extends below the safety margin
782      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
783    } else {
784      return true;
785    }
786  } else {
787    // Floating stack LinuxThreads or NPTL:
788    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
789    //   there's not enough space left, pthread_create() will fail. If we come
790    //   here, that means enough space has been reserved for stack.
791    return true;
792  }
793}
794
795// Thread start routine for all newly created threads
796static void *java_start(Thread *thread) {
797  // Try to randomize the cache line index of hot stack frames.
798  // This helps when threads of the same stack traces evict each other's
799  // cache lines. The threads can be either from the same JVM instance, or
800  // from different JVM instances. The benefit is especially true for
801  // processors with hyperthreading technology.
802  static int counter = 0;
803  int pid = os::current_process_id();
804  alloca(((pid ^ counter++) & 7) * 128);
805
806  ThreadLocalStorage::set_thread(thread);
807
808  OSThread* osthread = thread->osthread();
809  Monitor* sync = osthread->startThread_lock();
810
811  // non floating stack LinuxThreads needs extra check, see above
812  if (!_thread_safety_check(thread)) {
813    // notify parent thread
814    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
815    osthread->set_state(ZOMBIE);
816    sync->notify_all();
817    return NULL;
818  }
819
820  // thread_id is kernel thread id (similar to Solaris LWP id)
821  osthread->set_thread_id(os::Linux::gettid());
822
823  if (UseNUMA) {
824    int lgrp_id = os::numa_get_group_id();
825    if (lgrp_id != -1) {
826      thread->set_lgrp_id(lgrp_id);
827    }
828  }
829  // initialize signal mask for this thread
830  os::Linux::hotspot_sigmask(thread);
831
832  // initialize floating point control register
833  os::Linux::init_thread_fpu_state();
834
835  // handshaking with parent thread
836  {
837    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
838
839    // notify parent thread
840    osthread->set_state(INITIALIZED);
841    sync->notify_all();
842
843    // wait until os::start_thread()
844    while (osthread->get_state() == INITIALIZED) {
845      sync->wait(Mutex::_no_safepoint_check_flag);
846    }
847  }
848
849  // call one more level start routine
850  thread->run();
851
852  return 0;
853}
854
855bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
856  assert(thread->osthread() == NULL, "caller responsible");
857
858  // Allocate the OSThread object
859  OSThread* osthread = new OSThread(NULL, NULL);
860  if (osthread == NULL) {
861    return false;
862  }
863
864  // set the correct thread state
865  osthread->set_thread_type(thr_type);
866
867  // Initial state is ALLOCATED but not INITIALIZED
868  osthread->set_state(ALLOCATED);
869
870  thread->set_osthread(osthread);
871
872  // init thread attributes
873  pthread_attr_t attr;
874  pthread_attr_init(&attr);
875  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
876
877  // stack size
878  if (os::Linux::supports_variable_stack_size()) {
879    // calculate stack size if it's not specified by caller
880    if (stack_size == 0) {
881      stack_size = os::Linux::default_stack_size(thr_type);
882
883      switch (thr_type) {
884      case os::java_thread:
885        // Java threads use ThreadStackSize which default value can be
886        // changed with the flag -Xss
887        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
888        stack_size = JavaThread::stack_size_at_create();
889        break;
890      case os::compiler_thread:
891        if (CompilerThreadStackSize > 0) {
892          stack_size = (size_t)(CompilerThreadStackSize * K);
893          break;
894        } // else fall through:
895          // use VMThreadStackSize if CompilerThreadStackSize is not defined
896      case os::vm_thread:
897      case os::pgc_thread:
898      case os::cgc_thread:
899      case os::watcher_thread:
900        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
901        break;
902      }
903    }
904
905    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
906    pthread_attr_setstacksize(&attr, stack_size);
907  } else {
908    // let pthread_create() pick the default value.
909  }
910
911  // glibc guard page
912  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
913
914  ThreadState state;
915
916  {
917    // Serialize thread creation if we are running with fixed stack LinuxThreads
918    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
919    if (lock) {
920      os::Linux::createThread_lock()->lock_without_safepoint_check();
921    }
922
923    pthread_t tid;
924    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
925
926    pthread_attr_destroy(&attr);
927
928    if (ret != 0) {
929      if (PrintMiscellaneous && (Verbose || WizardMode)) {
930        perror("pthread_create()");
931      }
932      // Need to clean up stuff we've allocated so far
933      thread->set_osthread(NULL);
934      delete osthread;
935      if (lock) os::Linux::createThread_lock()->unlock();
936      return false;
937    }
938
939    // Store pthread info into the OSThread
940    osthread->set_pthread_id(tid);
941
942    // Wait until child thread is either initialized or aborted
943    {
944      Monitor* sync_with_child = osthread->startThread_lock();
945      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
946      while ((state = osthread->get_state()) == ALLOCATED) {
947        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
948      }
949    }
950
951    if (lock) {
952      os::Linux::createThread_lock()->unlock();
953    }
954  }
955
956  // Aborted due to thread limit being reached
957  if (state == ZOMBIE) {
958      thread->set_osthread(NULL);
959      delete osthread;
960      return false;
961  }
962
963  // The thread is returned suspended (in state INITIALIZED),
964  // and is started higher up in the call chain
965  assert(state == INITIALIZED, "race condition");
966  return true;
967}
968
969/////////////////////////////////////////////////////////////////////////////
970// attach existing thread
971
972// bootstrap the main thread
973bool os::create_main_thread(JavaThread* thread) {
974  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
975  return create_attached_thread(thread);
976}
977
978bool os::create_attached_thread(JavaThread* thread) {
979#ifdef ASSERT
980    thread->verify_not_published();
981#endif
982
983  // Allocate the OSThread object
984  OSThread* osthread = new OSThread(NULL, NULL);
985
986  if (osthread == NULL) {
987    return false;
988  }
989
990  // Store pthread info into the OSThread
991  osthread->set_thread_id(os::Linux::gettid());
992  osthread->set_pthread_id(::pthread_self());
993
994  // initialize floating point control register
995  os::Linux::init_thread_fpu_state();
996
997  // Initial thread state is RUNNABLE
998  osthread->set_state(RUNNABLE);
999
1000  thread->set_osthread(osthread);
1001
1002  if (UseNUMA) {
1003    int lgrp_id = os::numa_get_group_id();
1004    if (lgrp_id != -1) {
1005      thread->set_lgrp_id(lgrp_id);
1006    }
1007  }
1008
1009  if (os::Linux::is_initial_thread()) {
1010    // If current thread is initial thread, its stack is mapped on demand,
1011    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1012    // the entire stack region to avoid SEGV in stack banging.
1013    // It is also useful to get around the heap-stack-gap problem on SuSE
1014    // kernel (see 4821821 for details). We first expand stack to the top
1015    // of yellow zone, then enable stack yellow zone (order is significant,
1016    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1017    // is no gap between the last two virtual memory regions.
1018
1019    JavaThread *jt = (JavaThread *)thread;
1020    address addr = jt->stack_yellow_zone_base();
1021    assert(addr != NULL, "initialization problem?");
1022    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1023
1024    osthread->set_expanding_stack();
1025    os::Linux::manually_expand_stack(jt, addr);
1026    osthread->clear_expanding_stack();
1027  }
1028
1029  // initialize signal mask for this thread
1030  // and save the caller's signal mask
1031  os::Linux::hotspot_sigmask(thread);
1032
1033  return true;
1034}
1035
1036void os::pd_start_thread(Thread* thread) {
1037  OSThread * osthread = thread->osthread();
1038  assert(osthread->get_state() != INITIALIZED, "just checking");
1039  Monitor* sync_with_child = osthread->startThread_lock();
1040  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1041  sync_with_child->notify();
1042}
1043
1044// Free Linux resources related to the OSThread
1045void os::free_thread(OSThread* osthread) {
1046  assert(osthread != NULL, "osthread not set");
1047
1048  if (Thread::current()->osthread() == osthread) {
1049    // Restore caller's signal mask
1050    sigset_t sigmask = osthread->caller_sigmask();
1051    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1052   }
1053
1054  delete osthread;
1055}
1056
1057//////////////////////////////////////////////////////////////////////////////
1058// thread local storage
1059
1060int os::allocate_thread_local_storage() {
1061  pthread_key_t key;
1062  int rslt = pthread_key_create(&key, NULL);
1063  assert(rslt == 0, "cannot allocate thread local storage");
1064  return (int)key;
1065}
1066
1067// Note: This is currently not used by VM, as we don't destroy TLS key
1068// on VM exit.
1069void os::free_thread_local_storage(int index) {
1070  int rslt = pthread_key_delete((pthread_key_t)index);
1071  assert(rslt == 0, "invalid index");
1072}
1073
1074void os::thread_local_storage_at_put(int index, void* value) {
1075  int rslt = pthread_setspecific((pthread_key_t)index, value);
1076  assert(rslt == 0, "pthread_setspecific failed");
1077}
1078
1079extern "C" Thread* get_thread() {
1080  return ThreadLocalStorage::thread();
1081}
1082
1083//////////////////////////////////////////////////////////////////////////////
1084// initial thread
1085
1086// Check if current thread is the initial thread, similar to Solaris thr_main.
1087bool os::Linux::is_initial_thread(void) {
1088  char dummy;
1089  // If called before init complete, thread stack bottom will be null.
1090  // Can be called if fatal error occurs before initialization.
1091  if (initial_thread_stack_bottom() == NULL) return false;
1092  assert(initial_thread_stack_bottom() != NULL &&
1093         initial_thread_stack_size()   != 0,
1094         "os::init did not locate initial thread's stack region");
1095  if ((address)&dummy >= initial_thread_stack_bottom() &&
1096      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1097       return true;
1098  else return false;
1099}
1100
1101// Find the virtual memory area that contains addr
1102static bool find_vma(address addr, address* vma_low, address* vma_high) {
1103  FILE *fp = fopen("/proc/self/maps", "r");
1104  if (fp) {
1105    address low, high;
1106    while (!feof(fp)) {
1107      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1108        if (low <= addr && addr < high) {
1109           if (vma_low)  *vma_low  = low;
1110           if (vma_high) *vma_high = high;
1111           fclose (fp);
1112           return true;
1113        }
1114      }
1115      for (;;) {
1116        int ch = fgetc(fp);
1117        if (ch == EOF || ch == (int)'\n') break;
1118      }
1119    }
1120    fclose(fp);
1121  }
1122  return false;
1123}
1124
1125// Locate initial thread stack. This special handling of initial thread stack
1126// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1127// bogus value for initial thread.
1128void os::Linux::capture_initial_stack(size_t max_size) {
1129  // stack size is the easy part, get it from RLIMIT_STACK
1130  size_t stack_size;
1131  struct rlimit rlim;
1132  getrlimit(RLIMIT_STACK, &rlim);
1133  stack_size = rlim.rlim_cur;
1134
1135  // 6308388: a bug in ld.so will relocate its own .data section to the
1136  //   lower end of primordial stack; reduce ulimit -s value a little bit
1137  //   so we won't install guard page on ld.so's data section.
1138  stack_size -= 2 * page_size();
1139
1140  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1141  //   7.1, in both cases we will get 2G in return value.
1142  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1143  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1144  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1145  //   in case other parts in glibc still assumes 2M max stack size.
1146  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1147  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1148  if (stack_size > 2 * K * K IA64_ONLY(*2))
1149      stack_size = 2 * K * K IA64_ONLY(*2);
1150  // Try to figure out where the stack base (top) is. This is harder.
1151  //
1152  // When an application is started, glibc saves the initial stack pointer in
1153  // a global variable "__libc_stack_end", which is then used by system
1154  // libraries. __libc_stack_end should be pretty close to stack top. The
1155  // variable is available since the very early days. However, because it is
1156  // a private interface, it could disappear in the future.
1157  //
1158  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1159  // to __libc_stack_end, it is very close to stack top, but isn't the real
1160  // stack top. Note that /proc may not exist if VM is running as a chroot
1161  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1162  // /proc/<pid>/stat could change in the future (though unlikely).
1163  //
1164  // We try __libc_stack_end first. If that doesn't work, look for
1165  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1166  // as a hint, which should work well in most cases.
1167
1168  uintptr_t stack_start;
1169
1170  // try __libc_stack_end first
1171  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1172  if (p && *p) {
1173    stack_start = *p;
1174  } else {
1175    // see if we can get the start_stack field from /proc/self/stat
1176    FILE *fp;
1177    int pid;
1178    char state;
1179    int ppid;
1180    int pgrp;
1181    int session;
1182    int nr;
1183    int tpgrp;
1184    unsigned long flags;
1185    unsigned long minflt;
1186    unsigned long cminflt;
1187    unsigned long majflt;
1188    unsigned long cmajflt;
1189    unsigned long utime;
1190    unsigned long stime;
1191    long cutime;
1192    long cstime;
1193    long prio;
1194    long nice;
1195    long junk;
1196    long it_real;
1197    uintptr_t start;
1198    uintptr_t vsize;
1199    intptr_t rss;
1200    uintptr_t rsslim;
1201    uintptr_t scodes;
1202    uintptr_t ecode;
1203    int i;
1204
1205    // Figure what the primordial thread stack base is. Code is inspired
1206    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1207    // followed by command name surrounded by parentheses, state, etc.
1208    char stat[2048];
1209    int statlen;
1210
1211    fp = fopen("/proc/self/stat", "r");
1212    if (fp) {
1213      statlen = fread(stat, 1, 2047, fp);
1214      stat[statlen] = '\0';
1215      fclose(fp);
1216
1217      // Skip pid and the command string. Note that we could be dealing with
1218      // weird command names, e.g. user could decide to rename java launcher
1219      // to "java 1.4.2 :)", then the stat file would look like
1220      //                1234 (java 1.4.2 :)) R ... ...
1221      // We don't really need to know the command string, just find the last
1222      // occurrence of ")" and then start parsing from there. See bug 4726580.
1223      char * s = strrchr(stat, ')');
1224
1225      i = 0;
1226      if (s) {
1227        // Skip blank chars
1228        do s++; while (isspace(*s));
1229
1230#define _UFM UINTX_FORMAT
1231#define _DFM INTX_FORMAT
1232
1233        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1234        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1235        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1236             &state,          /* 3  %c  */
1237             &ppid,           /* 4  %d  */
1238             &pgrp,           /* 5  %d  */
1239             &session,        /* 6  %d  */
1240             &nr,             /* 7  %d  */
1241             &tpgrp,          /* 8  %d  */
1242             &flags,          /* 9  %lu  */
1243             &minflt,         /* 10 %lu  */
1244             &cminflt,        /* 11 %lu  */
1245             &majflt,         /* 12 %lu  */
1246             &cmajflt,        /* 13 %lu  */
1247             &utime,          /* 14 %lu  */
1248             &stime,          /* 15 %lu  */
1249             &cutime,         /* 16 %ld  */
1250             &cstime,         /* 17 %ld  */
1251             &prio,           /* 18 %ld  */
1252             &nice,           /* 19 %ld  */
1253             &junk,           /* 20 %ld  */
1254             &it_real,        /* 21 %ld  */
1255             &start,          /* 22 UINTX_FORMAT */
1256             &vsize,          /* 23 UINTX_FORMAT */
1257             &rss,            /* 24 INTX_FORMAT  */
1258             &rsslim,         /* 25 UINTX_FORMAT */
1259             &scodes,         /* 26 UINTX_FORMAT */
1260             &ecode,          /* 27 UINTX_FORMAT */
1261             &stack_start);   /* 28 UINTX_FORMAT */
1262      }
1263
1264#undef _UFM
1265#undef _DFM
1266
1267      if (i != 28 - 2) {
1268         assert(false, "Bad conversion from /proc/self/stat");
1269         // product mode - assume we are the initial thread, good luck in the
1270         // embedded case.
1271         warning("Can't detect initial thread stack location - bad conversion");
1272         stack_start = (uintptr_t) &rlim;
1273      }
1274    } else {
1275      // For some reason we can't open /proc/self/stat (for example, running on
1276      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1277      // most cases, so don't abort:
1278      warning("Can't detect initial thread stack location - no /proc/self/stat");
1279      stack_start = (uintptr_t) &rlim;
1280    }
1281  }
1282
1283  // Now we have a pointer (stack_start) very close to the stack top, the
1284  // next thing to do is to figure out the exact location of stack top. We
1285  // can find out the virtual memory area that contains stack_start by
1286  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1287  // and its upper limit is the real stack top. (again, this would fail if
1288  // running inside chroot, because /proc may not exist.)
1289
1290  uintptr_t stack_top;
1291  address low, high;
1292  if (find_vma((address)stack_start, &low, &high)) {
1293    // success, "high" is the true stack top. (ignore "low", because initial
1294    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1295    stack_top = (uintptr_t)high;
1296  } else {
1297    // failed, likely because /proc/self/maps does not exist
1298    warning("Can't detect initial thread stack location - find_vma failed");
1299    // best effort: stack_start is normally within a few pages below the real
1300    // stack top, use it as stack top, and reduce stack size so we won't put
1301    // guard page outside stack.
1302    stack_top = stack_start;
1303    stack_size -= 16 * page_size();
1304  }
1305
1306  // stack_top could be partially down the page so align it
1307  stack_top = align_size_up(stack_top, page_size());
1308
1309  if (max_size && stack_size > max_size) {
1310     _initial_thread_stack_size = max_size;
1311  } else {
1312     _initial_thread_stack_size = stack_size;
1313  }
1314
1315  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1316  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1317}
1318
1319////////////////////////////////////////////////////////////////////////////////
1320// time support
1321
1322// Time since start-up in seconds to a fine granularity.
1323// Used by VMSelfDestructTimer and the MemProfiler.
1324double os::elapsedTime() {
1325
1326  return (double)(os::elapsed_counter()) * 0.000001;
1327}
1328
1329jlong os::elapsed_counter() {
1330  timeval time;
1331  int status = gettimeofday(&time, NULL);
1332  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1333}
1334
1335jlong os::elapsed_frequency() {
1336  return (1000 * 1000);
1337}
1338
1339// For now, we say that linux does not support vtime.  I have no idea
1340// whether it can actually be made to (DLD, 9/13/05).
1341
1342bool os::supports_vtime() { return false; }
1343bool os::enable_vtime()   { return false; }
1344bool os::vtime_enabled()  { return false; }
1345double os::elapsedVTime() {
1346  // better than nothing, but not much
1347  return elapsedTime();
1348}
1349
1350jlong os::javaTimeMillis() {
1351  timeval time;
1352  int status = gettimeofday(&time, NULL);
1353  assert(status != -1, "linux error");
1354  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1355}
1356
1357#ifndef CLOCK_MONOTONIC
1358#define CLOCK_MONOTONIC (1)
1359#endif
1360
1361void os::Linux::clock_init() {
1362  // we do dlopen's in this particular order due to bug in linux
1363  // dynamical loader (see 6348968) leading to crash on exit
1364  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1365  if (handle == NULL) {
1366    handle = dlopen("librt.so", RTLD_LAZY);
1367  }
1368
1369  if (handle) {
1370    int (*clock_getres_func)(clockid_t, struct timespec*) =
1371           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1372    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1373           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1374    if (clock_getres_func && clock_gettime_func) {
1375      // See if monotonic clock is supported by the kernel. Note that some
1376      // early implementations simply return kernel jiffies (updated every
1377      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1378      // for nano time (though the monotonic property is still nice to have).
1379      // It's fixed in newer kernels, however clock_getres() still returns
1380      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1381      // resolution for now. Hopefully as people move to new kernels, this
1382      // won't be a problem.
1383      struct timespec res;
1384      struct timespec tp;
1385      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1386          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1387        // yes, monotonic clock is supported
1388        _clock_gettime = clock_gettime_func;
1389      } else {
1390        // close librt if there is no monotonic clock
1391        dlclose(handle);
1392      }
1393    }
1394  }
1395}
1396
1397#ifndef SYS_clock_getres
1398
1399#if defined(IA32) || defined(AMD64)
1400#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1401#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1402#else
1403#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1404#define sys_clock_getres(x,y)  -1
1405#endif
1406
1407#else
1408#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1409#endif
1410
1411void os::Linux::fast_thread_clock_init() {
1412  if (!UseLinuxPosixThreadCPUClocks) {
1413    return;
1414  }
1415  clockid_t clockid;
1416  struct timespec tp;
1417  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1418      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1419
1420  // Switch to using fast clocks for thread cpu time if
1421  // the sys_clock_getres() returns 0 error code.
1422  // Note, that some kernels may support the current thread
1423  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1424  // returned by the pthread_getcpuclockid().
1425  // If the fast Posix clocks are supported then the sys_clock_getres()
1426  // must return at least tp.tv_sec == 0 which means a resolution
1427  // better than 1 sec. This is extra check for reliability.
1428
1429  if(pthread_getcpuclockid_func &&
1430     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1431     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1432
1433    _supports_fast_thread_cpu_time = true;
1434    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1435  }
1436}
1437
1438jlong os::javaTimeNanos() {
1439  if (Linux::supports_monotonic_clock()) {
1440    struct timespec tp;
1441    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1442    assert(status == 0, "gettime error");
1443    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1444    return result;
1445  } else {
1446    timeval time;
1447    int status = gettimeofday(&time, NULL);
1448    assert(status != -1, "linux error");
1449    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1450    return 1000 * usecs;
1451  }
1452}
1453
1454void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1455  if (Linux::supports_monotonic_clock()) {
1456    info_ptr->max_value = ALL_64_BITS;
1457
1458    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1459    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1460    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1461  } else {
1462    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1463    info_ptr->max_value = ALL_64_BITS;
1464
1465    // gettimeofday is a real time clock so it skips
1466    info_ptr->may_skip_backward = true;
1467    info_ptr->may_skip_forward = true;
1468  }
1469
1470  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1471}
1472
1473// Return the real, user, and system times in seconds from an
1474// arbitrary fixed point in the past.
1475bool os::getTimesSecs(double* process_real_time,
1476                      double* process_user_time,
1477                      double* process_system_time) {
1478  struct tms ticks;
1479  clock_t real_ticks = times(&ticks);
1480
1481  if (real_ticks == (clock_t) (-1)) {
1482    return false;
1483  } else {
1484    double ticks_per_second = (double) clock_tics_per_sec;
1485    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1486    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1487    *process_real_time = ((double) real_ticks) / ticks_per_second;
1488
1489    return true;
1490  }
1491}
1492
1493
1494char * os::local_time_string(char *buf, size_t buflen) {
1495  struct tm t;
1496  time_t long_time;
1497  time(&long_time);
1498  localtime_r(&long_time, &t);
1499  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1500               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1501               t.tm_hour, t.tm_min, t.tm_sec);
1502  return buf;
1503}
1504
1505struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1506  return localtime_r(clock, res);
1507}
1508
1509////////////////////////////////////////////////////////////////////////////////
1510// runtime exit support
1511
1512// Note: os::shutdown() might be called very early during initialization, or
1513// called from signal handler. Before adding something to os::shutdown(), make
1514// sure it is async-safe and can handle partially initialized VM.
1515void os::shutdown() {
1516
1517  // allow PerfMemory to attempt cleanup of any persistent resources
1518  perfMemory_exit();
1519
1520  // needs to remove object in file system
1521  AttachListener::abort();
1522
1523  // flush buffered output, finish log files
1524  ostream_abort();
1525
1526  // Check for abort hook
1527  abort_hook_t abort_hook = Arguments::abort_hook();
1528  if (abort_hook != NULL) {
1529    abort_hook();
1530  }
1531
1532}
1533
1534// Note: os::abort() might be called very early during initialization, or
1535// called from signal handler. Before adding something to os::abort(), make
1536// sure it is async-safe and can handle partially initialized VM.
1537void os::abort(bool dump_core) {
1538  os::shutdown();
1539  if (dump_core) {
1540#ifndef PRODUCT
1541    fdStream out(defaultStream::output_fd());
1542    out.print_raw("Current thread is ");
1543    char buf[16];
1544    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1545    out.print_raw_cr(buf);
1546    out.print_raw_cr("Dumping core ...");
1547#endif
1548    ::abort(); // dump core
1549  }
1550
1551  ::exit(1);
1552}
1553
1554// Die immediately, no exit hook, no abort hook, no cleanup.
1555void os::die() {
1556  // _exit() on LinuxThreads only kills current thread
1557  ::abort();
1558}
1559
1560// unused on linux for now.
1561void os::set_error_file(const char *logfile) {}
1562
1563
1564// This method is a copy of JDK's sysGetLastErrorString
1565// from src/solaris/hpi/src/system_md.c
1566
1567size_t os::lasterror(char *buf, size_t len) {
1568
1569  if (errno == 0)  return 0;
1570
1571  const char *s = ::strerror(errno);
1572  size_t n = ::strlen(s);
1573  if (n >= len) {
1574    n = len - 1;
1575  }
1576  ::strncpy(buf, s, n);
1577  buf[n] = '\0';
1578  return n;
1579}
1580
1581intx os::current_thread_id() { return (intx)pthread_self(); }
1582int os::current_process_id() {
1583
1584  // Under the old linux thread library, linux gives each thread
1585  // its own process id. Because of this each thread will return
1586  // a different pid if this method were to return the result
1587  // of getpid(2). Linux provides no api that returns the pid
1588  // of the launcher thread for the vm. This implementation
1589  // returns a unique pid, the pid of the launcher thread
1590  // that starts the vm 'process'.
1591
1592  // Under the NPTL, getpid() returns the same pid as the
1593  // launcher thread rather than a unique pid per thread.
1594  // Use gettid() if you want the old pre NPTL behaviour.
1595
1596  // if you are looking for the result of a call to getpid() that
1597  // returns a unique pid for the calling thread, then look at the
1598  // OSThread::thread_id() method in osThread_linux.hpp file
1599
1600  return (int)(_initial_pid ? _initial_pid : getpid());
1601}
1602
1603// DLL functions
1604
1605const char* os::dll_file_extension() { return ".so"; }
1606
1607// This must be hard coded because it's the system's temporary
1608// directory not the java application's temp directory, ala java.io.tmpdir.
1609const char* os::get_temp_directory() { return "/tmp"; }
1610
1611static bool file_exists(const char* filename) {
1612  struct stat statbuf;
1613  if (filename == NULL || strlen(filename) == 0) {
1614    return false;
1615  }
1616  return os::stat(filename, &statbuf) == 0;
1617}
1618
1619bool os::dll_build_name(char* buffer, size_t buflen,
1620                        const char* pname, const char* fname) {
1621  bool retval = false;
1622  // Copied from libhpi
1623  const size_t pnamelen = pname ? strlen(pname) : 0;
1624
1625  // Return error on buffer overflow.
1626  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1627    return retval;
1628  }
1629
1630  if (pnamelen == 0) {
1631    snprintf(buffer, buflen, "lib%s.so", fname);
1632    retval = true;
1633  } else if (strchr(pname, *os::path_separator()) != NULL) {
1634    int n;
1635    char** pelements = split_path(pname, &n);
1636    for (int i = 0 ; i < n ; i++) {
1637      // Really shouldn't be NULL, but check can't hurt
1638      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1639        continue; // skip the empty path values
1640      }
1641      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1642      if (file_exists(buffer)) {
1643        retval = true;
1644        break;
1645      }
1646    }
1647    // release the storage
1648    for (int i = 0 ; i < n ; i++) {
1649      if (pelements[i] != NULL) {
1650        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1651      }
1652    }
1653    if (pelements != NULL) {
1654      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1655    }
1656  } else {
1657    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1658    retval = true;
1659  }
1660  return retval;
1661}
1662
1663const char* os::get_current_directory(char *buf, int buflen) {
1664  return getcwd(buf, buflen);
1665}
1666
1667// check if addr is inside libjvm.so
1668bool os::address_is_in_vm(address addr) {
1669  static address libjvm_base_addr;
1670  Dl_info dlinfo;
1671
1672  if (libjvm_base_addr == NULL) {
1673    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1674    libjvm_base_addr = (address)dlinfo.dli_fbase;
1675    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1676  }
1677
1678  if (dladdr((void *)addr, &dlinfo)) {
1679    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1680  }
1681
1682  return false;
1683}
1684
1685bool os::dll_address_to_function_name(address addr, char *buf,
1686                                      int buflen, int *offset) {
1687  Dl_info dlinfo;
1688
1689  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1690    if (buf != NULL) {
1691      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1692        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1693      }
1694    }
1695    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1696    return true;
1697  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1698    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1699        buf, buflen, offset, dlinfo.dli_fname)) {
1700       return true;
1701    }
1702  }
1703
1704  if (buf != NULL) buf[0] = '\0';
1705  if (offset != NULL) *offset = -1;
1706  return false;
1707}
1708
1709struct _address_to_library_name {
1710  address addr;          // input : memory address
1711  size_t  buflen;        //         size of fname
1712  char*   fname;         // output: library name
1713  address base;          //         library base addr
1714};
1715
1716static int address_to_library_name_callback(struct dl_phdr_info *info,
1717                                            size_t size, void *data) {
1718  int i;
1719  bool found = false;
1720  address libbase = NULL;
1721  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1722
1723  // iterate through all loadable segments
1724  for (i = 0; i < info->dlpi_phnum; i++) {
1725    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1726    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1727      // base address of a library is the lowest address of its loaded
1728      // segments.
1729      if (libbase == NULL || libbase > segbase) {
1730        libbase = segbase;
1731      }
1732      // see if 'addr' is within current segment
1733      if (segbase <= d->addr &&
1734          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1735        found = true;
1736      }
1737    }
1738  }
1739
1740  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1741  // so dll_address_to_library_name() can fall through to use dladdr() which
1742  // can figure out executable name from argv[0].
1743  if (found && info->dlpi_name && info->dlpi_name[0]) {
1744    d->base = libbase;
1745    if (d->fname) {
1746      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1747    }
1748    return 1;
1749  }
1750  return 0;
1751}
1752
1753bool os::dll_address_to_library_name(address addr, char* buf,
1754                                     int buflen, int* offset) {
1755  Dl_info dlinfo;
1756  struct _address_to_library_name data;
1757
1758  // There is a bug in old glibc dladdr() implementation that it could resolve
1759  // to wrong library name if the .so file has a base address != NULL. Here
1760  // we iterate through the program headers of all loaded libraries to find
1761  // out which library 'addr' really belongs to. This workaround can be
1762  // removed once the minimum requirement for glibc is moved to 2.3.x.
1763  data.addr = addr;
1764  data.fname = buf;
1765  data.buflen = buflen;
1766  data.base = NULL;
1767  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1768
1769  if (rslt) {
1770     // buf already contains library name
1771     if (offset) *offset = addr - data.base;
1772     return true;
1773  } else if (dladdr((void*)addr, &dlinfo)){
1774     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1775     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1776     return true;
1777  } else {
1778     if (buf) buf[0] = '\0';
1779     if (offset) *offset = -1;
1780     return false;
1781  }
1782}
1783
1784  // Loads .dll/.so and
1785  // in case of error it checks if .dll/.so was built for the
1786  // same architecture as Hotspot is running on
1787
1788
1789// Remember the stack's state. The Linux dynamic linker will change
1790// the stack to 'executable' at most once, so we must safepoint only once.
1791bool os::Linux::_stack_is_executable = false;
1792
1793// VM operation that loads a library.  This is necessary if stack protection
1794// of the Java stacks can be lost during loading the library.  If we
1795// do not stop the Java threads, they can stack overflow before the stacks
1796// are protected again.
1797class VM_LinuxDllLoad: public VM_Operation {
1798 private:
1799  const char *_filename;
1800  char *_ebuf;
1801  int _ebuflen;
1802  void *_lib;
1803 public:
1804  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1805    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1806  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1807  void doit() {
1808    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1809    os::Linux::_stack_is_executable = true;
1810  }
1811  void* loaded_library() { return _lib; }
1812};
1813
1814void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1815{
1816  void * result = NULL;
1817  bool load_attempted = false;
1818
1819  // Check whether the library to load might change execution rights
1820  // of the stack. If they are changed, the protection of the stack
1821  // guard pages will be lost. We need a safepoint to fix this.
1822  //
1823  // See Linux man page execstack(8) for more info.
1824  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1825    ElfFile ef(filename);
1826    if (!ef.specifies_noexecstack()) {
1827      if (!is_init_completed()) {
1828        os::Linux::_stack_is_executable = true;
1829        // This is OK - No Java threads have been created yet, and hence no
1830        // stack guard pages to fix.
1831        //
1832        // This should happen only when you are building JDK7 using a very
1833        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1834        //
1835        // Dynamic loader will make all stacks executable after
1836        // this function returns, and will not do that again.
1837        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1838      } else {
1839        warning("You have loaded library %s which might have disabled stack guard. "
1840                "The VM will try to fix the stack guard now.\n"
1841                "It's highly recommended that you fix the library with "
1842                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1843                filename);
1844
1845        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1846        JavaThread *jt = JavaThread::current();
1847        if (jt->thread_state() != _thread_in_native) {
1848          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1849          // that requires ExecStack. Cannot enter safe point. Let's give up.
1850          warning("Unable to fix stack guard. Giving up.");
1851        } else {
1852          if (!LoadExecStackDllInVMThread) {
1853            // This is for the case where the DLL has an static
1854            // constructor function that executes JNI code. We cannot
1855            // load such DLLs in the VMThread.
1856            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1857          }
1858
1859          ThreadInVMfromNative tiv(jt);
1860          debug_only(VMNativeEntryWrapper vew;)
1861
1862          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1863          VMThread::execute(&op);
1864          if (LoadExecStackDllInVMThread) {
1865            result = op.loaded_library();
1866          }
1867          load_attempted = true;
1868        }
1869      }
1870    }
1871  }
1872
1873  if (!load_attempted) {
1874    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1875  }
1876
1877  if (result != NULL) {
1878    // Successful loading
1879    return result;
1880  }
1881
1882  Elf32_Ehdr elf_head;
1883  int diag_msg_max_length=ebuflen-strlen(ebuf);
1884  char* diag_msg_buf=ebuf+strlen(ebuf);
1885
1886  if (diag_msg_max_length==0) {
1887    // No more space in ebuf for additional diagnostics message
1888    return NULL;
1889  }
1890
1891
1892  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1893
1894  if (file_descriptor < 0) {
1895    // Can't open library, report dlerror() message
1896    return NULL;
1897  }
1898
1899  bool failed_to_read_elf_head=
1900    (sizeof(elf_head)!=
1901        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1902
1903  ::close(file_descriptor);
1904  if (failed_to_read_elf_head) {
1905    // file i/o error - report dlerror() msg
1906    return NULL;
1907  }
1908
1909  typedef struct {
1910    Elf32_Half  code;         // Actual value as defined in elf.h
1911    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1912    char        elf_class;    // 32 or 64 bit
1913    char        endianess;    // MSB or LSB
1914    char*       name;         // String representation
1915  } arch_t;
1916
1917  #ifndef EM_486
1918  #define EM_486          6               /* Intel 80486 */
1919  #endif
1920
1921  static const arch_t arch_array[]={
1922    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1923    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1924    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1925    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1926    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1927    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1928    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1929    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1930    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1931    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1932    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1933    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1934    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1935    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1936    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1937    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1938  };
1939
1940  #if  (defined IA32)
1941    static  Elf32_Half running_arch_code=EM_386;
1942  #elif   (defined AMD64)
1943    static  Elf32_Half running_arch_code=EM_X86_64;
1944  #elif  (defined IA64)
1945    static  Elf32_Half running_arch_code=EM_IA_64;
1946  #elif  (defined __sparc) && (defined _LP64)
1947    static  Elf32_Half running_arch_code=EM_SPARCV9;
1948  #elif  (defined __sparc) && (!defined _LP64)
1949    static  Elf32_Half running_arch_code=EM_SPARC;
1950  #elif  (defined __powerpc64__)
1951    static  Elf32_Half running_arch_code=EM_PPC64;
1952  #elif  (defined __powerpc__)
1953    static  Elf32_Half running_arch_code=EM_PPC;
1954  #elif  (defined ARM)
1955    static  Elf32_Half running_arch_code=EM_ARM;
1956  #elif  (defined S390)
1957    static  Elf32_Half running_arch_code=EM_S390;
1958  #elif  (defined ALPHA)
1959    static  Elf32_Half running_arch_code=EM_ALPHA;
1960  #elif  (defined MIPSEL)
1961    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1962  #elif  (defined PARISC)
1963    static  Elf32_Half running_arch_code=EM_PARISC;
1964  #elif  (defined MIPS)
1965    static  Elf32_Half running_arch_code=EM_MIPS;
1966  #elif  (defined M68K)
1967    static  Elf32_Half running_arch_code=EM_68K;
1968  #else
1969    #error Method os::dll_load requires that one of following is defined:\
1970         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1971  #endif
1972
1973  // Identify compatability class for VM's architecture and library's architecture
1974  // Obtain string descriptions for architectures
1975
1976  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1977  int running_arch_index=-1;
1978
1979  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1980    if (running_arch_code == arch_array[i].code) {
1981      running_arch_index    = i;
1982    }
1983    if (lib_arch.code == arch_array[i].code) {
1984      lib_arch.compat_class = arch_array[i].compat_class;
1985      lib_arch.name         = arch_array[i].name;
1986    }
1987  }
1988
1989  assert(running_arch_index != -1,
1990    "Didn't find running architecture code (running_arch_code) in arch_array");
1991  if (running_arch_index == -1) {
1992    // Even though running architecture detection failed
1993    // we may still continue with reporting dlerror() message
1994    return NULL;
1995  }
1996
1997  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1998    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1999    return NULL;
2000  }
2001
2002#ifndef S390
2003  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2004    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2005    return NULL;
2006  }
2007#endif // !S390
2008
2009  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2010    if ( lib_arch.name!=NULL ) {
2011      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2012        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2013        lib_arch.name, arch_array[running_arch_index].name);
2014    } else {
2015      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2016      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2017        lib_arch.code,
2018        arch_array[running_arch_index].name);
2019    }
2020  }
2021
2022  return NULL;
2023}
2024
2025void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2026  void * result = ::dlopen(filename, RTLD_LAZY);
2027  if (result == NULL) {
2028    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2029    ebuf[ebuflen-1] = '\0';
2030  }
2031  return result;
2032}
2033
2034void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2035  void * result = NULL;
2036  if (LoadExecStackDllInVMThread) {
2037    result = dlopen_helper(filename, ebuf, ebuflen);
2038  }
2039
2040  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2041  // library that requires an executable stack, or which does not have this
2042  // stack attribute set, dlopen changes the stack attribute to executable. The
2043  // read protection of the guard pages gets lost.
2044  //
2045  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2046  // may have been queued at the same time.
2047
2048  if (!_stack_is_executable) {
2049    JavaThread *jt = Threads::first();
2050
2051    while (jt) {
2052      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2053          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2054        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2055                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2056          warning("Attempt to reguard stack yellow zone failed.");
2057        }
2058      }
2059      jt = jt->next();
2060    }
2061  }
2062
2063  return result;
2064}
2065
2066/*
2067 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2068 * chances are you might want to run the generated bits against glibc-2.0
2069 * libdl.so, so always use locking for any version of glibc.
2070 */
2071void* os::dll_lookup(void* handle, const char* name) {
2072  pthread_mutex_lock(&dl_mutex);
2073  void* res = dlsym(handle, name);
2074  pthread_mutex_unlock(&dl_mutex);
2075  return res;
2076}
2077
2078
2079static bool _print_ascii_file(const char* filename, outputStream* st) {
2080  int fd = ::open(filename, O_RDONLY);
2081  if (fd == -1) {
2082     return false;
2083  }
2084
2085  char buf[32];
2086  int bytes;
2087  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2088    st->print_raw(buf, bytes);
2089  }
2090
2091  ::close(fd);
2092
2093  return true;
2094}
2095
2096void os::print_dll_info(outputStream *st) {
2097   st->print_cr("Dynamic libraries:");
2098
2099   char fname[32];
2100   pid_t pid = os::Linux::gettid();
2101
2102   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2103
2104   if (!_print_ascii_file(fname, st)) {
2105     st->print("Can not get library information for pid = %d\n", pid);
2106   }
2107}
2108
2109void os::print_os_info_brief(outputStream* st) {
2110  os::Linux::print_distro_info(st);
2111
2112  os::Posix::print_uname_info(st);
2113
2114  os::Linux::print_libversion_info(st);
2115
2116}
2117
2118void os::print_os_info(outputStream* st) {
2119  st->print("OS:");
2120
2121  os::Linux::print_distro_info(st);
2122
2123  os::Posix::print_uname_info(st);
2124
2125  // Print warning if unsafe chroot environment detected
2126  if (unsafe_chroot_detected) {
2127    st->print("WARNING!! ");
2128    st->print_cr(unstable_chroot_error);
2129  }
2130
2131  os::Linux::print_libversion_info(st);
2132
2133  os::Posix::print_rlimit_info(st);
2134
2135  os::Posix::print_load_average(st);
2136
2137  os::Linux::print_full_memory_info(st);
2138}
2139
2140// Try to identify popular distros.
2141// Most Linux distributions have /etc/XXX-release file, which contains
2142// the OS version string. Some have more than one /etc/XXX-release file
2143// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2144// so the order is important.
2145void os::Linux::print_distro_info(outputStream* st) {
2146  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2147      !_print_ascii_file("/etc/sun-release", st) &&
2148      !_print_ascii_file("/etc/redhat-release", st) &&
2149      !_print_ascii_file("/etc/SuSE-release", st) &&
2150      !_print_ascii_file("/etc/turbolinux-release", st) &&
2151      !_print_ascii_file("/etc/gentoo-release", st) &&
2152      !_print_ascii_file("/etc/debian_version", st) &&
2153      !_print_ascii_file("/etc/ltib-release", st) &&
2154      !_print_ascii_file("/etc/angstrom-version", st)) {
2155      st->print("Linux");
2156  }
2157  st->cr();
2158}
2159
2160void os::Linux::print_libversion_info(outputStream* st) {
2161  // libc, pthread
2162  st->print("libc:");
2163  st->print(os::Linux::glibc_version()); st->print(" ");
2164  st->print(os::Linux::libpthread_version()); st->print(" ");
2165  if (os::Linux::is_LinuxThreads()) {
2166     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2167  }
2168  st->cr();
2169}
2170
2171void os::Linux::print_full_memory_info(outputStream* st) {
2172   st->print("\n/proc/meminfo:\n");
2173   _print_ascii_file("/proc/meminfo", st);
2174   st->cr();
2175}
2176
2177void os::print_memory_info(outputStream* st) {
2178
2179  st->print("Memory:");
2180  st->print(" %dk page", os::vm_page_size()>>10);
2181
2182  // values in struct sysinfo are "unsigned long"
2183  struct sysinfo si;
2184  sysinfo(&si);
2185
2186  st->print(", physical " UINT64_FORMAT "k",
2187            os::physical_memory() >> 10);
2188  st->print("(" UINT64_FORMAT "k free)",
2189            os::available_memory() >> 10);
2190  st->print(", swap " UINT64_FORMAT "k",
2191            ((jlong)si.totalswap * si.mem_unit) >> 10);
2192  st->print("(" UINT64_FORMAT "k free)",
2193            ((jlong)si.freeswap * si.mem_unit) >> 10);
2194  st->cr();
2195}
2196
2197void os::pd_print_cpu_info(outputStream* st) {
2198  st->print("\n/proc/cpuinfo:\n");
2199  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2200    st->print("  <Not Available>");
2201  }
2202  st->cr();
2203}
2204
2205// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2206// but they're the same for all the linux arch that we support
2207// and they're the same for solaris but there's no common place to put this.
2208const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2209                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2210                          "ILL_COPROC", "ILL_BADSTK" };
2211
2212const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2213                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2214                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2215
2216const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2217
2218const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2219
2220void os::print_siginfo(outputStream* st, void* siginfo) {
2221  st->print("siginfo:");
2222
2223  const int buflen = 100;
2224  char buf[buflen];
2225  siginfo_t *si = (siginfo_t*)siginfo;
2226  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2227  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2228    st->print("si_errno=%s", buf);
2229  } else {
2230    st->print("si_errno=%d", si->si_errno);
2231  }
2232  const int c = si->si_code;
2233  assert(c > 0, "unexpected si_code");
2234  switch (si->si_signo) {
2235  case SIGILL:
2236    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2237    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2238    break;
2239  case SIGFPE:
2240    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2241    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2242    break;
2243  case SIGSEGV:
2244    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2245    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2246    break;
2247  case SIGBUS:
2248    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2249    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2250    break;
2251  default:
2252    st->print(", si_code=%d", si->si_code);
2253    // no si_addr
2254  }
2255
2256  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2257      UseSharedSpaces) {
2258    FileMapInfo* mapinfo = FileMapInfo::current_info();
2259    if (mapinfo->is_in_shared_space(si->si_addr)) {
2260      st->print("\n\nError accessing class data sharing archive."   \
2261                " Mapped file inaccessible during execution, "      \
2262                " possible disk/network problem.");
2263    }
2264  }
2265  st->cr();
2266}
2267
2268
2269static void print_signal_handler(outputStream* st, int sig,
2270                                 char* buf, size_t buflen);
2271
2272void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2273  st->print_cr("Signal Handlers:");
2274  print_signal_handler(st, SIGSEGV, buf, buflen);
2275  print_signal_handler(st, SIGBUS , buf, buflen);
2276  print_signal_handler(st, SIGFPE , buf, buflen);
2277  print_signal_handler(st, SIGPIPE, buf, buflen);
2278  print_signal_handler(st, SIGXFSZ, buf, buflen);
2279  print_signal_handler(st, SIGILL , buf, buflen);
2280  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2281  print_signal_handler(st, SR_signum, buf, buflen);
2282  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2283  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2284  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2285  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2286}
2287
2288static char saved_jvm_path[MAXPATHLEN] = {0};
2289
2290// Find the full path to the current module, libjvm.so
2291void os::jvm_path(char *buf, jint buflen) {
2292  // Error checking.
2293  if (buflen < MAXPATHLEN) {
2294    assert(false, "must use a large-enough buffer");
2295    buf[0] = '\0';
2296    return;
2297  }
2298  // Lazy resolve the path to current module.
2299  if (saved_jvm_path[0] != 0) {
2300    strcpy(buf, saved_jvm_path);
2301    return;
2302  }
2303
2304  char dli_fname[MAXPATHLEN];
2305  bool ret = dll_address_to_library_name(
2306                CAST_FROM_FN_PTR(address, os::jvm_path),
2307                dli_fname, sizeof(dli_fname), NULL);
2308  assert(ret != 0, "cannot locate libjvm");
2309  char *rp = realpath(dli_fname, buf);
2310  if (rp == NULL)
2311    return;
2312
2313  if (Arguments::created_by_gamma_launcher()) {
2314    // Support for the gamma launcher.  Typical value for buf is
2315    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2316    // the right place in the string, then assume we are installed in a JDK and
2317    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2318    // up the path so it looks like libjvm.so is installed there (append a
2319    // fake suffix hotspot/libjvm.so).
2320    const char *p = buf + strlen(buf) - 1;
2321    for (int count = 0; p > buf && count < 5; ++count) {
2322      for (--p; p > buf && *p != '/'; --p)
2323        /* empty */ ;
2324    }
2325
2326    if (strncmp(p, "/jre/lib/", 9) != 0) {
2327      // Look for JAVA_HOME in the environment.
2328      char* java_home_var = ::getenv("JAVA_HOME");
2329      if (java_home_var != NULL && java_home_var[0] != 0) {
2330        char* jrelib_p;
2331        int len;
2332
2333        // Check the current module name "libjvm.so".
2334        p = strrchr(buf, '/');
2335        assert(strstr(p, "/libjvm") == p, "invalid library name");
2336
2337        rp = realpath(java_home_var, buf);
2338        if (rp == NULL)
2339          return;
2340
2341        // determine if this is a legacy image or modules image
2342        // modules image doesn't have "jre" subdirectory
2343        len = strlen(buf);
2344        jrelib_p = buf + len;
2345        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2346        if (0 != access(buf, F_OK)) {
2347          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2348        }
2349
2350        if (0 == access(buf, F_OK)) {
2351          // Use current module name "libjvm.so"
2352          len = strlen(buf);
2353          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2354        } else {
2355          // Go back to path of .so
2356          rp = realpath(dli_fname, buf);
2357          if (rp == NULL)
2358            return;
2359        }
2360      }
2361    }
2362  }
2363
2364  strcpy(saved_jvm_path, buf);
2365}
2366
2367void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2368  // no prefix required, not even "_"
2369}
2370
2371void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2372  // no suffix required
2373}
2374
2375////////////////////////////////////////////////////////////////////////////////
2376// sun.misc.Signal support
2377
2378static volatile jint sigint_count = 0;
2379
2380static void
2381UserHandler(int sig, void *siginfo, void *context) {
2382  // 4511530 - sem_post is serialized and handled by the manager thread. When
2383  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2384  // don't want to flood the manager thread with sem_post requests.
2385  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2386      return;
2387
2388  // Ctrl-C is pressed during error reporting, likely because the error
2389  // handler fails to abort. Let VM die immediately.
2390  if (sig == SIGINT && is_error_reported()) {
2391     os::die();
2392  }
2393
2394  os::signal_notify(sig);
2395}
2396
2397void* os::user_handler() {
2398  return CAST_FROM_FN_PTR(void*, UserHandler);
2399}
2400
2401extern "C" {
2402  typedef void (*sa_handler_t)(int);
2403  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2404}
2405
2406void* os::signal(int signal_number, void* handler) {
2407  struct sigaction sigAct, oldSigAct;
2408
2409  sigfillset(&(sigAct.sa_mask));
2410  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2411  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2412
2413  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2414    // -1 means registration failed
2415    return (void *)-1;
2416  }
2417
2418  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2419}
2420
2421void os::signal_raise(int signal_number) {
2422  ::raise(signal_number);
2423}
2424
2425/*
2426 * The following code is moved from os.cpp for making this
2427 * code platform specific, which it is by its very nature.
2428 */
2429
2430// Will be modified when max signal is changed to be dynamic
2431int os::sigexitnum_pd() {
2432  return NSIG;
2433}
2434
2435// a counter for each possible signal value
2436static volatile jint pending_signals[NSIG+1] = { 0 };
2437
2438// Linux(POSIX) specific hand shaking semaphore.
2439static sem_t sig_sem;
2440
2441void os::signal_init_pd() {
2442  // Initialize signal structures
2443  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2444
2445  // Initialize signal semaphore
2446  ::sem_init(&sig_sem, 0, 0);
2447}
2448
2449void os::signal_notify(int sig) {
2450  Atomic::inc(&pending_signals[sig]);
2451  ::sem_post(&sig_sem);
2452}
2453
2454static int check_pending_signals(bool wait) {
2455  Atomic::store(0, &sigint_count);
2456  for (;;) {
2457    for (int i = 0; i < NSIG + 1; i++) {
2458      jint n = pending_signals[i];
2459      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2460        return i;
2461      }
2462    }
2463    if (!wait) {
2464      return -1;
2465    }
2466    JavaThread *thread = JavaThread::current();
2467    ThreadBlockInVM tbivm(thread);
2468
2469    bool threadIsSuspended;
2470    do {
2471      thread->set_suspend_equivalent();
2472      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2473      ::sem_wait(&sig_sem);
2474
2475      // were we externally suspended while we were waiting?
2476      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2477      if (threadIsSuspended) {
2478        //
2479        // The semaphore has been incremented, but while we were waiting
2480        // another thread suspended us. We don't want to continue running
2481        // while suspended because that would surprise the thread that
2482        // suspended us.
2483        //
2484        ::sem_post(&sig_sem);
2485
2486        thread->java_suspend_self();
2487      }
2488    } while (threadIsSuspended);
2489  }
2490}
2491
2492int os::signal_lookup() {
2493  return check_pending_signals(false);
2494}
2495
2496int os::signal_wait() {
2497  return check_pending_signals(true);
2498}
2499
2500////////////////////////////////////////////////////////////////////////////////
2501// Virtual Memory
2502
2503int os::vm_page_size() {
2504  // Seems redundant as all get out
2505  assert(os::Linux::page_size() != -1, "must call os::init");
2506  return os::Linux::page_size();
2507}
2508
2509// Solaris allocates memory by pages.
2510int os::vm_allocation_granularity() {
2511  assert(os::Linux::page_size() != -1, "must call os::init");
2512  return os::Linux::page_size();
2513}
2514
2515// Rationale behind this function:
2516//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2517//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2518//  samples for JITted code. Here we create private executable mapping over the code cache
2519//  and then we can use standard (well, almost, as mapping can change) way to provide
2520//  info for the reporting script by storing timestamp and location of symbol
2521void linux_wrap_code(char* base, size_t size) {
2522  static volatile jint cnt = 0;
2523
2524  if (!UseOprofile) {
2525    return;
2526  }
2527
2528  char buf[PATH_MAX+1];
2529  int num = Atomic::add(1, &cnt);
2530
2531  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2532           os::get_temp_directory(), os::current_process_id(), num);
2533  unlink(buf);
2534
2535  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2536
2537  if (fd != -1) {
2538    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2539    if (rv != (off_t)-1) {
2540      if (::write(fd, "", 1) == 1) {
2541        mmap(base, size,
2542             PROT_READ|PROT_WRITE|PROT_EXEC,
2543             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2544      }
2545    }
2546    ::close(fd);
2547    unlink(buf);
2548  }
2549}
2550
2551// NOTE: Linux kernel does not really reserve the pages for us.
2552//       All it does is to check if there are enough free pages
2553//       left at the time of mmap(). This could be a potential
2554//       problem.
2555bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2556  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2557  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2558                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2559  if (res != (uintptr_t) MAP_FAILED) {
2560    if (UseNUMAInterleaving) {
2561      numa_make_global(addr, size);
2562    }
2563    return true;
2564  }
2565  return false;
2566}
2567
2568// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2569#ifndef MAP_HUGETLB
2570#define MAP_HUGETLB 0x40000
2571#endif
2572
2573// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2574#ifndef MADV_HUGEPAGE
2575#define MADV_HUGEPAGE 14
2576#endif
2577
2578bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2579                       bool exec) {
2580  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2581    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2582    uintptr_t res =
2583      (uintptr_t) ::mmap(addr, size, prot,
2584                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2585                         -1, 0);
2586    if (res != (uintptr_t) MAP_FAILED) {
2587      if (UseNUMAInterleaving) {
2588        numa_make_global(addr, size);
2589      }
2590      return true;
2591    }
2592    // Fall through and try to use small pages
2593  }
2594
2595  if (commit_memory(addr, size, exec)) {
2596    realign_memory(addr, size, alignment_hint);
2597    return true;
2598  }
2599  return false;
2600}
2601
2602void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2603  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2604    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2605    // be supported or the memory may already be backed by huge pages.
2606    ::madvise(addr, bytes, MADV_HUGEPAGE);
2607  }
2608}
2609
2610void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2611  // This method works by doing an mmap over an existing mmaping and effectively discarding
2612  // the existing pages. However it won't work for SHM-based large pages that cannot be
2613  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2614  // small pages on top of the SHM segment. This method always works for small pages, so we
2615  // allow that in any case.
2616  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2617    commit_memory(addr, bytes, alignment_hint, false);
2618  }
2619}
2620
2621void os::numa_make_global(char *addr, size_t bytes) {
2622  Linux::numa_interleave_memory(addr, bytes);
2623}
2624
2625void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2626  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2627}
2628
2629bool os::numa_topology_changed()   { return false; }
2630
2631size_t os::numa_get_groups_num() {
2632  int max_node = Linux::numa_max_node();
2633  return max_node > 0 ? max_node + 1 : 1;
2634}
2635
2636int os::numa_get_group_id() {
2637  int cpu_id = Linux::sched_getcpu();
2638  if (cpu_id != -1) {
2639    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2640    if (lgrp_id != -1) {
2641      return lgrp_id;
2642    }
2643  }
2644  return 0;
2645}
2646
2647size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2648  for (size_t i = 0; i < size; i++) {
2649    ids[i] = i;
2650  }
2651  return size;
2652}
2653
2654bool os::get_page_info(char *start, page_info* info) {
2655  return false;
2656}
2657
2658char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2659  return end;
2660}
2661
2662
2663int os::Linux::sched_getcpu_syscall(void) {
2664  unsigned int cpu;
2665  int retval = -1;
2666
2667#if defined(IA32)
2668# ifndef SYS_getcpu
2669# define SYS_getcpu 318
2670# endif
2671  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2672#elif defined(AMD64)
2673// Unfortunately we have to bring all these macros here from vsyscall.h
2674// to be able to compile on old linuxes.
2675# define __NR_vgetcpu 2
2676# define VSYSCALL_START (-10UL << 20)
2677# define VSYSCALL_SIZE 1024
2678# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2679  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2680  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2681  retval = vgetcpu(&cpu, NULL, NULL);
2682#endif
2683
2684  return (retval == -1) ? retval : cpu;
2685}
2686
2687// Something to do with the numa-aware allocator needs these symbols
2688extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2689extern "C" JNIEXPORT void numa_error(char *where) { }
2690extern "C" JNIEXPORT int fork1() { return fork(); }
2691
2692
2693// If we are running with libnuma version > 2, then we should
2694// be trying to use symbols with versions 1.1
2695// If we are running with earlier version, which did not have symbol versions,
2696// we should use the base version.
2697void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2698  void *f = dlvsym(handle, name, "libnuma_1.1");
2699  if (f == NULL) {
2700    f = dlsym(handle, name);
2701  }
2702  return f;
2703}
2704
2705bool os::Linux::libnuma_init() {
2706  // sched_getcpu() should be in libc.
2707  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2708                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2709
2710  // If it's not, try a direct syscall.
2711  if (sched_getcpu() == -1)
2712    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2713
2714  if (sched_getcpu() != -1) { // Does it work?
2715    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2716    if (handle != NULL) {
2717      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2718                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2719      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2720                                       libnuma_dlsym(handle, "numa_max_node")));
2721      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2722                                        libnuma_dlsym(handle, "numa_available")));
2723      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2724                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2725      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2726                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2727
2728
2729      if (numa_available() != -1) {
2730        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2731        // Create a cpu -> node mapping
2732        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2733        rebuild_cpu_to_node_map();
2734        return true;
2735      }
2736    }
2737  }
2738  return false;
2739}
2740
2741// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2742// The table is later used in get_node_by_cpu().
2743void os::Linux::rebuild_cpu_to_node_map() {
2744  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2745                              // in libnuma (possible values are starting from 16,
2746                              // and continuing up with every other power of 2, but less
2747                              // than the maximum number of CPUs supported by kernel), and
2748                              // is a subject to change (in libnuma version 2 the requirements
2749                              // are more reasonable) we'll just hardcode the number they use
2750                              // in the library.
2751  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2752
2753  size_t cpu_num = os::active_processor_count();
2754  size_t cpu_map_size = NCPUS / BitsPerCLong;
2755  size_t cpu_map_valid_size =
2756    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2757
2758  cpu_to_node()->clear();
2759  cpu_to_node()->at_grow(cpu_num - 1);
2760  size_t node_num = numa_get_groups_num();
2761
2762  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2763  for (size_t i = 0; i < node_num; i++) {
2764    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2765      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2766        if (cpu_map[j] != 0) {
2767          for (size_t k = 0; k < BitsPerCLong; k++) {
2768            if (cpu_map[j] & (1UL << k)) {
2769              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2770            }
2771          }
2772        }
2773      }
2774    }
2775  }
2776  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2777}
2778
2779int os::Linux::get_node_by_cpu(int cpu_id) {
2780  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2781    return cpu_to_node()->at(cpu_id);
2782  }
2783  return -1;
2784}
2785
2786GrowableArray<int>* os::Linux::_cpu_to_node;
2787os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2788os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2789os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2790os::Linux::numa_available_func_t os::Linux::_numa_available;
2791os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2792os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2793unsigned long* os::Linux::_numa_all_nodes;
2794
2795bool os::pd_uncommit_memory(char* addr, size_t size) {
2796  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2797                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2798  return res  != (uintptr_t) MAP_FAILED;
2799}
2800
2801// Linux uses a growable mapping for the stack, and if the mapping for
2802// the stack guard pages is not removed when we detach a thread the
2803// stack cannot grow beyond the pages where the stack guard was
2804// mapped.  If at some point later in the process the stack expands to
2805// that point, the Linux kernel cannot expand the stack any further
2806// because the guard pages are in the way, and a segfault occurs.
2807//
2808// However, it's essential not to split the stack region by unmapping
2809// a region (leaving a hole) that's already part of the stack mapping,
2810// so if the stack mapping has already grown beyond the guard pages at
2811// the time we create them, we have to truncate the stack mapping.
2812// So, we need to know the extent of the stack mapping when
2813// create_stack_guard_pages() is called.
2814
2815// Find the bounds of the stack mapping.  Return true for success.
2816//
2817// We only need this for stacks that are growable: at the time of
2818// writing thread stacks don't use growable mappings (i.e. those
2819// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2820// only applies to the main thread.
2821
2822static
2823bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2824
2825  char buf[128];
2826  int fd, sz;
2827
2828  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2829    return false;
2830  }
2831
2832  const char kw[] = "[stack]";
2833  const int kwlen = sizeof(kw)-1;
2834
2835  // Address part of /proc/self/maps couldn't be more than 128 bytes
2836  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2837     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2838        // Extract addresses
2839        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2840           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2841           if (sp >= *bottom && sp <= *top) {
2842              ::close(fd);
2843              return true;
2844           }
2845        }
2846     }
2847  }
2848
2849 ::close(fd);
2850  return false;
2851}
2852
2853
2854// If the (growable) stack mapping already extends beyond the point
2855// where we're going to put our guard pages, truncate the mapping at
2856// that point by munmap()ping it.  This ensures that when we later
2857// munmap() the guard pages we don't leave a hole in the stack
2858// mapping. This only affects the main/initial thread, but guard
2859// against future OS changes
2860bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2861  uintptr_t stack_extent, stack_base;
2862  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2863  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2864      assert(os::Linux::is_initial_thread(),
2865           "growable stack in non-initial thread");
2866    if (stack_extent < (uintptr_t)addr)
2867      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2868  }
2869
2870  return os::commit_memory(addr, size);
2871}
2872
2873// If this is a growable mapping, remove the guard pages entirely by
2874// munmap()ping them.  If not, just call uncommit_memory(). This only
2875// affects the main/initial thread, but guard against future OS changes
2876bool os::remove_stack_guard_pages(char* addr, size_t size) {
2877  uintptr_t stack_extent, stack_base;
2878  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2879  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2880      assert(os::Linux::is_initial_thread(),
2881           "growable stack in non-initial thread");
2882
2883    return ::munmap(addr, size) == 0;
2884  }
2885
2886  return os::uncommit_memory(addr, size);
2887}
2888
2889static address _highest_vm_reserved_address = NULL;
2890
2891// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2892// at 'requested_addr'. If there are existing memory mappings at the same
2893// location, however, they will be overwritten. If 'fixed' is false,
2894// 'requested_addr' is only treated as a hint, the return value may or
2895// may not start from the requested address. Unlike Linux mmap(), this
2896// function returns NULL to indicate failure.
2897static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2898  char * addr;
2899  int flags;
2900
2901  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2902  if (fixed) {
2903    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2904    flags |= MAP_FIXED;
2905  }
2906
2907  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2908  // to PROT_EXEC if executable when we commit the page.
2909  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2910                       flags, -1, 0);
2911
2912  if (addr != MAP_FAILED) {
2913    // anon_mmap() should only get called during VM initialization,
2914    // don't need lock (actually we can skip locking even it can be called
2915    // from multiple threads, because _highest_vm_reserved_address is just a
2916    // hint about the upper limit of non-stack memory regions.)
2917    if ((address)addr + bytes > _highest_vm_reserved_address) {
2918      _highest_vm_reserved_address = (address)addr + bytes;
2919    }
2920  }
2921
2922  return addr == MAP_FAILED ? NULL : addr;
2923}
2924
2925// Don't update _highest_vm_reserved_address, because there might be memory
2926// regions above addr + size. If so, releasing a memory region only creates
2927// a hole in the address space, it doesn't help prevent heap-stack collision.
2928//
2929static int anon_munmap(char * addr, size_t size) {
2930  return ::munmap(addr, size) == 0;
2931}
2932
2933char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2934                         size_t alignment_hint) {
2935  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2936}
2937
2938bool os::pd_release_memory(char* addr, size_t size) {
2939  return anon_munmap(addr, size);
2940}
2941
2942static address highest_vm_reserved_address() {
2943  return _highest_vm_reserved_address;
2944}
2945
2946static bool linux_mprotect(char* addr, size_t size, int prot) {
2947  // Linux wants the mprotect address argument to be page aligned.
2948  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2949
2950  // According to SUSv3, mprotect() should only be used with mappings
2951  // established by mmap(), and mmap() always maps whole pages. Unaligned
2952  // 'addr' likely indicates problem in the VM (e.g. trying to change
2953  // protection of malloc'ed or statically allocated memory). Check the
2954  // caller if you hit this assert.
2955  assert(addr == bottom, "sanity check");
2956
2957  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2958  return ::mprotect(bottom, size, prot) == 0;
2959}
2960
2961// Set protections specified
2962bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2963                        bool is_committed) {
2964  unsigned int p = 0;
2965  switch (prot) {
2966  case MEM_PROT_NONE: p = PROT_NONE; break;
2967  case MEM_PROT_READ: p = PROT_READ; break;
2968  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2969  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2970  default:
2971    ShouldNotReachHere();
2972  }
2973  // is_committed is unused.
2974  return linux_mprotect(addr, bytes, p);
2975}
2976
2977bool os::guard_memory(char* addr, size_t size) {
2978  return linux_mprotect(addr, size, PROT_NONE);
2979}
2980
2981bool os::unguard_memory(char* addr, size_t size) {
2982  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2983}
2984
2985bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2986  bool result = false;
2987  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2988                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2989                  -1, 0);
2990
2991  if (p != (void *) -1) {
2992    // We don't know if this really is a huge page or not.
2993    FILE *fp = fopen("/proc/self/maps", "r");
2994    if (fp) {
2995      while (!feof(fp)) {
2996        char chars[257];
2997        long x = 0;
2998        if (fgets(chars, sizeof(chars), fp)) {
2999          if (sscanf(chars, "%lx-%*x", &x) == 1
3000              && x == (long)p) {
3001            if (strstr (chars, "hugepage")) {
3002              result = true;
3003              break;
3004            }
3005          }
3006        }
3007      }
3008      fclose(fp);
3009    }
3010    munmap (p, page_size);
3011    if (result)
3012      return true;
3013  }
3014
3015  if (warn) {
3016    warning("HugeTLBFS is not supported by the operating system.");
3017  }
3018
3019  return result;
3020}
3021
3022/*
3023* Set the coredump_filter bits to include largepages in core dump (bit 6)
3024*
3025* From the coredump_filter documentation:
3026*
3027* - (bit 0) anonymous private memory
3028* - (bit 1) anonymous shared memory
3029* - (bit 2) file-backed private memory
3030* - (bit 3) file-backed shared memory
3031* - (bit 4) ELF header pages in file-backed private memory areas (it is
3032*           effective only if the bit 2 is cleared)
3033* - (bit 5) hugetlb private memory
3034* - (bit 6) hugetlb shared memory
3035*/
3036static void set_coredump_filter(void) {
3037  FILE *f;
3038  long cdm;
3039
3040  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3041    return;
3042  }
3043
3044  if (fscanf(f, "%lx", &cdm) != 1) {
3045    fclose(f);
3046    return;
3047  }
3048
3049  rewind(f);
3050
3051  if ((cdm & LARGEPAGES_BIT) == 0) {
3052    cdm |= LARGEPAGES_BIT;
3053    fprintf(f, "%#lx", cdm);
3054  }
3055
3056  fclose(f);
3057}
3058
3059// Large page support
3060
3061static size_t _large_page_size = 0;
3062
3063void os::large_page_init() {
3064  if (!UseLargePages) {
3065    UseHugeTLBFS = false;
3066    UseSHM = false;
3067    return;
3068  }
3069
3070  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3071    // If UseLargePages is specified on the command line try both methods,
3072    // if it's default, then try only HugeTLBFS.
3073    if (FLAG_IS_DEFAULT(UseLargePages)) {
3074      UseHugeTLBFS = true;
3075    } else {
3076      UseHugeTLBFS = UseSHM = true;
3077    }
3078  }
3079
3080  if (LargePageSizeInBytes) {
3081    _large_page_size = LargePageSizeInBytes;
3082  } else {
3083    // large_page_size on Linux is used to round up heap size. x86 uses either
3084    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3085    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3086    // page as large as 256M.
3087    //
3088    // Here we try to figure out page size by parsing /proc/meminfo and looking
3089    // for a line with the following format:
3090    //    Hugepagesize:     2048 kB
3091    //
3092    // If we can't determine the value (e.g. /proc is not mounted, or the text
3093    // format has been changed), we'll use the largest page size supported by
3094    // the processor.
3095
3096#ifndef ZERO
3097    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3098                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3099#endif // ZERO
3100
3101    FILE *fp = fopen("/proc/meminfo", "r");
3102    if (fp) {
3103      while (!feof(fp)) {
3104        int x = 0;
3105        char buf[16];
3106        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3107          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3108            _large_page_size = x * K;
3109            break;
3110          }
3111        } else {
3112          // skip to next line
3113          for (;;) {
3114            int ch = fgetc(fp);
3115            if (ch == EOF || ch == (int)'\n') break;
3116          }
3117        }
3118      }
3119      fclose(fp);
3120    }
3121  }
3122
3123  // print a warning if any large page related flag is specified on command line
3124  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3125
3126  const size_t default_page_size = (size_t)Linux::page_size();
3127  if (_large_page_size > default_page_size) {
3128    _page_sizes[0] = _large_page_size;
3129    _page_sizes[1] = default_page_size;
3130    _page_sizes[2] = 0;
3131  }
3132  UseHugeTLBFS = UseHugeTLBFS &&
3133                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3134
3135  if (UseHugeTLBFS)
3136    UseSHM = false;
3137
3138  UseLargePages = UseHugeTLBFS || UseSHM;
3139
3140  set_coredump_filter();
3141}
3142
3143#ifndef SHM_HUGETLB
3144#define SHM_HUGETLB 04000
3145#endif
3146
3147char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3148  // "exec" is passed in but not used.  Creating the shared image for
3149  // the code cache doesn't have an SHM_X executable permission to check.
3150  assert(UseLargePages && UseSHM, "only for SHM large pages");
3151
3152  key_t key = IPC_PRIVATE;
3153  char *addr;
3154
3155  bool warn_on_failure = UseLargePages &&
3156                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3157                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3158                        );
3159  char msg[128];
3160
3161  // Create a large shared memory region to attach to based on size.
3162  // Currently, size is the total size of the heap
3163  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3164  if (shmid == -1) {
3165     // Possible reasons for shmget failure:
3166     // 1. shmmax is too small for Java heap.
3167     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3168     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3169     // 2. not enough large page memory.
3170     //    > check available large pages: cat /proc/meminfo
3171     //    > increase amount of large pages:
3172     //          echo new_value > /proc/sys/vm/nr_hugepages
3173     //      Note 1: different Linux may use different name for this property,
3174     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3175     //      Note 2: it's possible there's enough physical memory available but
3176     //            they are so fragmented after a long run that they can't
3177     //            coalesce into large pages. Try to reserve large pages when
3178     //            the system is still "fresh".
3179     if (warn_on_failure) {
3180       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3181       warning(msg);
3182     }
3183     return NULL;
3184  }
3185
3186  // attach to the region
3187  addr = (char*)shmat(shmid, req_addr, 0);
3188  int err = errno;
3189
3190  // Remove shmid. If shmat() is successful, the actual shared memory segment
3191  // will be deleted when it's detached by shmdt() or when the process
3192  // terminates. If shmat() is not successful this will remove the shared
3193  // segment immediately.
3194  shmctl(shmid, IPC_RMID, NULL);
3195
3196  if ((intptr_t)addr == -1) {
3197     if (warn_on_failure) {
3198       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3199       warning(msg);
3200     }
3201     return NULL;
3202  }
3203
3204  if ((addr != NULL) && UseNUMAInterleaving) {
3205    numa_make_global(addr, bytes);
3206  }
3207
3208  // The memory is committed
3209  address pc = CALLER_PC;
3210  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
3211  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
3212
3213  return addr;
3214}
3215
3216bool os::release_memory_special(char* base, size_t bytes) {
3217  // detaching the SHM segment will also delete it, see reserve_memory_special()
3218  int rslt = shmdt(base);
3219  if (rslt == 0) {
3220    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3221    MemTracker::record_virtual_memory_release((address)base, bytes);
3222    return true;
3223  } else {
3224   return false;
3225  }
3226}
3227
3228size_t os::large_page_size() {
3229  return _large_page_size;
3230}
3231
3232// HugeTLBFS allows application to commit large page memory on demand;
3233// with SysV SHM the entire memory region must be allocated as shared
3234// memory.
3235bool os::can_commit_large_page_memory() {
3236  return UseHugeTLBFS;
3237}
3238
3239bool os::can_execute_large_page_memory() {
3240  return UseHugeTLBFS;
3241}
3242
3243// Reserve memory at an arbitrary address, only if that area is
3244// available (and not reserved for something else).
3245
3246char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3247  const int max_tries = 10;
3248  char* base[max_tries];
3249  size_t size[max_tries];
3250  const size_t gap = 0x000000;
3251
3252  // Assert only that the size is a multiple of the page size, since
3253  // that's all that mmap requires, and since that's all we really know
3254  // about at this low abstraction level.  If we need higher alignment,
3255  // we can either pass an alignment to this method or verify alignment
3256  // in one of the methods further up the call chain.  See bug 5044738.
3257  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3258
3259  // Repeatedly allocate blocks until the block is allocated at the
3260  // right spot. Give up after max_tries. Note that reserve_memory() will
3261  // automatically update _highest_vm_reserved_address if the call is
3262  // successful. The variable tracks the highest memory address every reserved
3263  // by JVM. It is used to detect heap-stack collision if running with
3264  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3265  // space than needed, it could confuse the collision detecting code. To
3266  // solve the problem, save current _highest_vm_reserved_address and
3267  // calculate the correct value before return.
3268  address old_highest = _highest_vm_reserved_address;
3269
3270  // Linux mmap allows caller to pass an address as hint; give it a try first,
3271  // if kernel honors the hint then we can return immediately.
3272  char * addr = anon_mmap(requested_addr, bytes, false);
3273  if (addr == requested_addr) {
3274     return requested_addr;
3275  }
3276
3277  if (addr != NULL) {
3278     // mmap() is successful but it fails to reserve at the requested address
3279     anon_munmap(addr, bytes);
3280  }
3281
3282  int i;
3283  for (i = 0; i < max_tries; ++i) {
3284    base[i] = reserve_memory(bytes);
3285
3286    if (base[i] != NULL) {
3287      // Is this the block we wanted?
3288      if (base[i] == requested_addr) {
3289        size[i] = bytes;
3290        break;
3291      }
3292
3293      // Does this overlap the block we wanted? Give back the overlapped
3294      // parts and try again.
3295
3296      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3297      if (top_overlap >= 0 && top_overlap < bytes) {
3298        unmap_memory(base[i], top_overlap);
3299        base[i] += top_overlap;
3300        size[i] = bytes - top_overlap;
3301      } else {
3302        size_t bottom_overlap = base[i] + bytes - requested_addr;
3303        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3304          unmap_memory(requested_addr, bottom_overlap);
3305          size[i] = bytes - bottom_overlap;
3306        } else {
3307          size[i] = bytes;
3308        }
3309      }
3310    }
3311  }
3312
3313  // Give back the unused reserved pieces.
3314
3315  for (int j = 0; j < i; ++j) {
3316    if (base[j] != NULL) {
3317      unmap_memory(base[j], size[j]);
3318    }
3319  }
3320
3321  if (i < max_tries) {
3322    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3323    return requested_addr;
3324  } else {
3325    _highest_vm_reserved_address = old_highest;
3326    return NULL;
3327  }
3328}
3329
3330size_t os::read(int fd, void *buf, unsigned int nBytes) {
3331  return ::read(fd, buf, nBytes);
3332}
3333
3334// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3335// Solaris uses poll(), linux uses park().
3336// Poll() is likely a better choice, assuming that Thread.interrupt()
3337// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3338// SIGSEGV, see 4355769.
3339
3340int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3341  assert(thread == Thread::current(),  "thread consistency check");
3342
3343  ParkEvent * const slp = thread->_SleepEvent ;
3344  slp->reset() ;
3345  OrderAccess::fence() ;
3346
3347  if (interruptible) {
3348    jlong prevtime = javaTimeNanos();
3349
3350    for (;;) {
3351      if (os::is_interrupted(thread, true)) {
3352        return OS_INTRPT;
3353      }
3354
3355      jlong newtime = javaTimeNanos();
3356
3357      if (newtime - prevtime < 0) {
3358        // time moving backwards, should only happen if no monotonic clock
3359        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3360        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3361      } else {
3362        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3363      }
3364
3365      if(millis <= 0) {
3366        return OS_OK;
3367      }
3368
3369      prevtime = newtime;
3370
3371      {
3372        assert(thread->is_Java_thread(), "sanity check");
3373        JavaThread *jt = (JavaThread *) thread;
3374        ThreadBlockInVM tbivm(jt);
3375        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3376
3377        jt->set_suspend_equivalent();
3378        // cleared by handle_special_suspend_equivalent_condition() or
3379        // java_suspend_self() via check_and_wait_while_suspended()
3380
3381        slp->park(millis);
3382
3383        // were we externally suspended while we were waiting?
3384        jt->check_and_wait_while_suspended();
3385      }
3386    }
3387  } else {
3388    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3389    jlong prevtime = javaTimeNanos();
3390
3391    for (;;) {
3392      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3393      // the 1st iteration ...
3394      jlong newtime = javaTimeNanos();
3395
3396      if (newtime - prevtime < 0) {
3397        // time moving backwards, should only happen if no monotonic clock
3398        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3399        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3400      } else {
3401        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3402      }
3403
3404      if(millis <= 0) break ;
3405
3406      prevtime = newtime;
3407      slp->park(millis);
3408    }
3409    return OS_OK ;
3410  }
3411}
3412
3413int os::naked_sleep() {
3414  // %% make the sleep time an integer flag. for now use 1 millisec.
3415  return os::sleep(Thread::current(), 1, false);
3416}
3417
3418// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3419void os::infinite_sleep() {
3420  while (true) {    // sleep forever ...
3421    ::sleep(100);   // ... 100 seconds at a time
3422  }
3423}
3424
3425// Used to convert frequent JVM_Yield() to nops
3426bool os::dont_yield() {
3427  return DontYieldALot;
3428}
3429
3430void os::yield() {
3431  sched_yield();
3432}
3433
3434os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3435
3436void os::yield_all(int attempts) {
3437  // Yields to all threads, including threads with lower priorities
3438  // Threads on Linux are all with same priority. The Solaris style
3439  // os::yield_all() with nanosleep(1ms) is not necessary.
3440  sched_yield();
3441}
3442
3443// Called from the tight loops to possibly influence time-sharing heuristics
3444void os::loop_breaker(int attempts) {
3445  os::yield_all(attempts);
3446}
3447
3448////////////////////////////////////////////////////////////////////////////////
3449// thread priority support
3450
3451// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3452// only supports dynamic priority, static priority must be zero. For real-time
3453// applications, Linux supports SCHED_RR which allows static priority (1-99).
3454// However, for large multi-threaded applications, SCHED_RR is not only slower
3455// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3456// of 5 runs - Sep 2005).
3457//
3458// The following code actually changes the niceness of kernel-thread/LWP. It
3459// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3460// not the entire user process, and user level threads are 1:1 mapped to kernel
3461// threads. It has always been the case, but could change in the future. For
3462// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3463// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3464
3465int os::java_to_os_priority[CriticalPriority + 1] = {
3466  19,              // 0 Entry should never be used
3467
3468   4,              // 1 MinPriority
3469   3,              // 2
3470   2,              // 3
3471
3472   1,              // 4
3473   0,              // 5 NormPriority
3474  -1,              // 6
3475
3476  -2,              // 7
3477  -3,              // 8
3478  -4,              // 9 NearMaxPriority
3479
3480  -5,              // 10 MaxPriority
3481
3482  -5               // 11 CriticalPriority
3483};
3484
3485static int prio_init() {
3486  if (ThreadPriorityPolicy == 1) {
3487    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3488    // if effective uid is not root. Perhaps, a more elegant way of doing
3489    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3490    if (geteuid() != 0) {
3491      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3492        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3493      }
3494      ThreadPriorityPolicy = 0;
3495    }
3496  }
3497  if (UseCriticalJavaThreadPriority) {
3498    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3499  }
3500  return 0;
3501}
3502
3503OSReturn os::set_native_priority(Thread* thread, int newpri) {
3504  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3505
3506  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3507  return (ret == 0) ? OS_OK : OS_ERR;
3508}
3509
3510OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3511  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3512    *priority_ptr = java_to_os_priority[NormPriority];
3513    return OS_OK;
3514  }
3515
3516  errno = 0;
3517  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3518  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3519}
3520
3521// Hint to the underlying OS that a task switch would not be good.
3522// Void return because it's a hint and can fail.
3523void os::hint_no_preempt() {}
3524
3525////////////////////////////////////////////////////////////////////////////////
3526// suspend/resume support
3527
3528//  the low-level signal-based suspend/resume support is a remnant from the
3529//  old VM-suspension that used to be for java-suspension, safepoints etc,
3530//  within hotspot. Now there is a single use-case for this:
3531//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3532//      that runs in the watcher thread.
3533//  The remaining code is greatly simplified from the more general suspension
3534//  code that used to be used.
3535//
3536//  The protocol is quite simple:
3537//  - suspend:
3538//      - sends a signal to the target thread
3539//      - polls the suspend state of the osthread using a yield loop
3540//      - target thread signal handler (SR_handler) sets suspend state
3541//        and blocks in sigsuspend until continued
3542//  - resume:
3543//      - sets target osthread state to continue
3544//      - sends signal to end the sigsuspend loop in the SR_handler
3545//
3546//  Note that the SR_lock plays no role in this suspend/resume protocol.
3547//
3548
3549static void resume_clear_context(OSThread *osthread) {
3550  osthread->set_ucontext(NULL);
3551  osthread->set_siginfo(NULL);
3552
3553  // notify the suspend action is completed, we have now resumed
3554  osthread->sr.clear_suspended();
3555}
3556
3557static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3558  osthread->set_ucontext(context);
3559  osthread->set_siginfo(siginfo);
3560}
3561
3562//
3563// Handler function invoked when a thread's execution is suspended or
3564// resumed. We have to be careful that only async-safe functions are
3565// called here (Note: most pthread functions are not async safe and
3566// should be avoided.)
3567//
3568// Note: sigwait() is a more natural fit than sigsuspend() from an
3569// interface point of view, but sigwait() prevents the signal hander
3570// from being run. libpthread would get very confused by not having
3571// its signal handlers run and prevents sigwait()'s use with the
3572// mutex granting granting signal.
3573//
3574// Currently only ever called on the VMThread
3575//
3576static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3577  // Save and restore errno to avoid confusing native code with EINTR
3578  // after sigsuspend.
3579  int old_errno = errno;
3580
3581  Thread* thread = Thread::current();
3582  OSThread* osthread = thread->osthread();
3583  assert(thread->is_VM_thread(), "Must be VMThread");
3584  // read current suspend action
3585  int action = osthread->sr.suspend_action();
3586  if (action == os::Linux::SuspendResume::SR_SUSPEND) {
3587    suspend_save_context(osthread, siginfo, context);
3588
3589    // Notify the suspend action is about to be completed. do_suspend()
3590    // waits until SR_SUSPENDED is set and then returns. We will wait
3591    // here for a resume signal and that completes the suspend-other
3592    // action. do_suspend/do_resume is always called as a pair from
3593    // the same thread - so there are no races
3594
3595    // notify the caller
3596    osthread->sr.set_suspended();
3597
3598    sigset_t suspend_set;  // signals for sigsuspend()
3599
3600    // get current set of blocked signals and unblock resume signal
3601    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3602    sigdelset(&suspend_set, SR_signum);
3603
3604    // wait here until we are resumed
3605    do {
3606      sigsuspend(&suspend_set);
3607      // ignore all returns until we get a resume signal
3608    } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
3609
3610    resume_clear_context(osthread);
3611
3612  } else {
3613    assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
3614    // nothing special to do - just leave the handler
3615  }
3616
3617  errno = old_errno;
3618}
3619
3620
3621static int SR_initialize() {
3622  struct sigaction act;
3623  char *s;
3624  /* Get signal number to use for suspend/resume */
3625  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3626    int sig = ::strtol(s, 0, 10);
3627    if (sig > 0 || sig < _NSIG) {
3628        SR_signum = sig;
3629    }
3630  }
3631
3632  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3633        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3634
3635  sigemptyset(&SR_sigset);
3636  sigaddset(&SR_sigset, SR_signum);
3637
3638  /* Set up signal handler for suspend/resume */
3639  act.sa_flags = SA_RESTART|SA_SIGINFO;
3640  act.sa_handler = (void (*)(int)) SR_handler;
3641
3642  // SR_signum is blocked by default.
3643  // 4528190 - We also need to block pthread restart signal (32 on all
3644  // supported Linux platforms). Note that LinuxThreads need to block
3645  // this signal for all threads to work properly. So we don't have
3646  // to use hard-coded signal number when setting up the mask.
3647  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3648
3649  if (sigaction(SR_signum, &act, 0) == -1) {
3650    return -1;
3651  }
3652
3653  // Save signal flag
3654  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3655  return 0;
3656}
3657
3658static int SR_finalize() {
3659  return 0;
3660}
3661
3662
3663// returns true on success and false on error - really an error is fatal
3664// but this seems the normal response to library errors
3665static bool do_suspend(OSThread* osthread) {
3666  // mark as suspended and send signal
3667  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
3668  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3669  assert_status(status == 0, status, "pthread_kill");
3670
3671  // check status and wait until notified of suspension
3672  if (status == 0) {
3673    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3674      os::yield_all(i);
3675    }
3676    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3677    return true;
3678  }
3679  else {
3680    osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3681    return false;
3682  }
3683}
3684
3685static void do_resume(OSThread* osthread) {
3686  assert(osthread->sr.is_suspended(), "thread should be suspended");
3687  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
3688
3689  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3690  assert_status(status == 0, status, "pthread_kill");
3691  // check status and wait unit notified of resumption
3692  if (status == 0) {
3693    for (int i = 0; osthread->sr.is_suspended(); i++) {
3694      os::yield_all(i);
3695    }
3696  }
3697  osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3698}
3699
3700////////////////////////////////////////////////////////////////////////////////
3701// interrupt support
3702
3703void os::interrupt(Thread* thread) {
3704  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3705    "possibility of dangling Thread pointer");
3706
3707  OSThread* osthread = thread->osthread();
3708
3709  if (!osthread->interrupted()) {
3710    osthread->set_interrupted(true);
3711    // More than one thread can get here with the same value of osthread,
3712    // resulting in multiple notifications.  We do, however, want the store
3713    // to interrupted() to be visible to other threads before we execute unpark().
3714    OrderAccess::fence();
3715    ParkEvent * const slp = thread->_SleepEvent ;
3716    if (slp != NULL) slp->unpark() ;
3717  }
3718
3719  // For JSR166. Unpark even if interrupt status already was set
3720  if (thread->is_Java_thread())
3721    ((JavaThread*)thread)->parker()->unpark();
3722
3723  ParkEvent * ev = thread->_ParkEvent ;
3724  if (ev != NULL) ev->unpark() ;
3725
3726}
3727
3728bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3729  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3730    "possibility of dangling Thread pointer");
3731
3732  OSThread* osthread = thread->osthread();
3733
3734  bool interrupted = osthread->interrupted();
3735
3736  if (interrupted && clear_interrupted) {
3737    osthread->set_interrupted(false);
3738    // consider thread->_SleepEvent->reset() ... optional optimization
3739  }
3740
3741  return interrupted;
3742}
3743
3744///////////////////////////////////////////////////////////////////////////////////
3745// signal handling (except suspend/resume)
3746
3747// This routine may be used by user applications as a "hook" to catch signals.
3748// The user-defined signal handler must pass unrecognized signals to this
3749// routine, and if it returns true (non-zero), then the signal handler must
3750// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3751// routine will never retun false (zero), but instead will execute a VM panic
3752// routine kill the process.
3753//
3754// If this routine returns false, it is OK to call it again.  This allows
3755// the user-defined signal handler to perform checks either before or after
3756// the VM performs its own checks.  Naturally, the user code would be making
3757// a serious error if it tried to handle an exception (such as a null check
3758// or breakpoint) that the VM was generating for its own correct operation.
3759//
3760// This routine may recognize any of the following kinds of signals:
3761//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3762// It should be consulted by handlers for any of those signals.
3763//
3764// The caller of this routine must pass in the three arguments supplied
3765// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3766// field of the structure passed to sigaction().  This routine assumes that
3767// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3768//
3769// Note that the VM will print warnings if it detects conflicting signal
3770// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3771//
3772extern "C" JNIEXPORT int
3773JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3774                        void* ucontext, int abort_if_unrecognized);
3775
3776void signalHandler(int sig, siginfo_t* info, void* uc) {
3777  assert(info != NULL && uc != NULL, "it must be old kernel");
3778  int orig_errno = errno;  // Preserve errno value over signal handler.
3779  JVM_handle_linux_signal(sig, info, uc, true);
3780  errno = orig_errno;
3781}
3782
3783
3784// This boolean allows users to forward their own non-matching signals
3785// to JVM_handle_linux_signal, harmlessly.
3786bool os::Linux::signal_handlers_are_installed = false;
3787
3788// For signal-chaining
3789struct sigaction os::Linux::sigact[MAXSIGNUM];
3790unsigned int os::Linux::sigs = 0;
3791bool os::Linux::libjsig_is_loaded = false;
3792typedef struct sigaction *(*get_signal_t)(int);
3793get_signal_t os::Linux::get_signal_action = NULL;
3794
3795struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3796  struct sigaction *actp = NULL;
3797
3798  if (libjsig_is_loaded) {
3799    // Retrieve the old signal handler from libjsig
3800    actp = (*get_signal_action)(sig);
3801  }
3802  if (actp == NULL) {
3803    // Retrieve the preinstalled signal handler from jvm
3804    actp = get_preinstalled_handler(sig);
3805  }
3806
3807  return actp;
3808}
3809
3810static bool call_chained_handler(struct sigaction *actp, int sig,
3811                                 siginfo_t *siginfo, void *context) {
3812  // Call the old signal handler
3813  if (actp->sa_handler == SIG_DFL) {
3814    // It's more reasonable to let jvm treat it as an unexpected exception
3815    // instead of taking the default action.
3816    return false;
3817  } else if (actp->sa_handler != SIG_IGN) {
3818    if ((actp->sa_flags & SA_NODEFER) == 0) {
3819      // automaticlly block the signal
3820      sigaddset(&(actp->sa_mask), sig);
3821    }
3822
3823    sa_handler_t hand;
3824    sa_sigaction_t sa;
3825    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3826    // retrieve the chained handler
3827    if (siginfo_flag_set) {
3828      sa = actp->sa_sigaction;
3829    } else {
3830      hand = actp->sa_handler;
3831    }
3832
3833    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3834      actp->sa_handler = SIG_DFL;
3835    }
3836
3837    // try to honor the signal mask
3838    sigset_t oset;
3839    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3840
3841    // call into the chained handler
3842    if (siginfo_flag_set) {
3843      (*sa)(sig, siginfo, context);
3844    } else {
3845      (*hand)(sig);
3846    }
3847
3848    // restore the signal mask
3849    pthread_sigmask(SIG_SETMASK, &oset, 0);
3850  }
3851  // Tell jvm's signal handler the signal is taken care of.
3852  return true;
3853}
3854
3855bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3856  bool chained = false;
3857  // signal-chaining
3858  if (UseSignalChaining) {
3859    struct sigaction *actp = get_chained_signal_action(sig);
3860    if (actp != NULL) {
3861      chained = call_chained_handler(actp, sig, siginfo, context);
3862    }
3863  }
3864  return chained;
3865}
3866
3867struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3868  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3869    return &sigact[sig];
3870  }
3871  return NULL;
3872}
3873
3874void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3875  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3876  sigact[sig] = oldAct;
3877  sigs |= (unsigned int)1 << sig;
3878}
3879
3880// for diagnostic
3881int os::Linux::sigflags[MAXSIGNUM];
3882
3883int os::Linux::get_our_sigflags(int sig) {
3884  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3885  return sigflags[sig];
3886}
3887
3888void os::Linux::set_our_sigflags(int sig, int flags) {
3889  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3890  sigflags[sig] = flags;
3891}
3892
3893void os::Linux::set_signal_handler(int sig, bool set_installed) {
3894  // Check for overwrite.
3895  struct sigaction oldAct;
3896  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3897
3898  void* oldhand = oldAct.sa_sigaction
3899                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3900                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3901  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3902      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3903      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3904    if (AllowUserSignalHandlers || !set_installed) {
3905      // Do not overwrite; user takes responsibility to forward to us.
3906      return;
3907    } else if (UseSignalChaining) {
3908      // save the old handler in jvm
3909      save_preinstalled_handler(sig, oldAct);
3910      // libjsig also interposes the sigaction() call below and saves the
3911      // old sigaction on it own.
3912    } else {
3913      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3914                    "%#lx for signal %d.", (long)oldhand, sig));
3915    }
3916  }
3917
3918  struct sigaction sigAct;
3919  sigfillset(&(sigAct.sa_mask));
3920  sigAct.sa_handler = SIG_DFL;
3921  if (!set_installed) {
3922    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3923  } else {
3924    sigAct.sa_sigaction = signalHandler;
3925    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3926  }
3927  // Save flags, which are set by ours
3928  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3929  sigflags[sig] = sigAct.sa_flags;
3930
3931  int ret = sigaction(sig, &sigAct, &oldAct);
3932  assert(ret == 0, "check");
3933
3934  void* oldhand2  = oldAct.sa_sigaction
3935                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3936                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3937  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3938}
3939
3940// install signal handlers for signals that HotSpot needs to
3941// handle in order to support Java-level exception handling.
3942
3943void os::Linux::install_signal_handlers() {
3944  if (!signal_handlers_are_installed) {
3945    signal_handlers_are_installed = true;
3946
3947    // signal-chaining
3948    typedef void (*signal_setting_t)();
3949    signal_setting_t begin_signal_setting = NULL;
3950    signal_setting_t end_signal_setting = NULL;
3951    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3952                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3953    if (begin_signal_setting != NULL) {
3954      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3955                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3956      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3957                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3958      libjsig_is_loaded = true;
3959      assert(UseSignalChaining, "should enable signal-chaining");
3960    }
3961    if (libjsig_is_loaded) {
3962      // Tell libjsig jvm is setting signal handlers
3963      (*begin_signal_setting)();
3964    }
3965
3966    set_signal_handler(SIGSEGV, true);
3967    set_signal_handler(SIGPIPE, true);
3968    set_signal_handler(SIGBUS, true);
3969    set_signal_handler(SIGILL, true);
3970    set_signal_handler(SIGFPE, true);
3971    set_signal_handler(SIGXFSZ, true);
3972
3973    if (libjsig_is_loaded) {
3974      // Tell libjsig jvm finishes setting signal handlers
3975      (*end_signal_setting)();
3976    }
3977
3978    // We don't activate signal checker if libjsig is in place, we trust ourselves
3979    // and if UserSignalHandler is installed all bets are off.
3980    // Log that signal checking is off only if -verbose:jni is specified.
3981    if (CheckJNICalls) {
3982      if (libjsig_is_loaded) {
3983        if (PrintJNIResolving) {
3984          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3985        }
3986        check_signals = false;
3987      }
3988      if (AllowUserSignalHandlers) {
3989        if (PrintJNIResolving) {
3990          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3991        }
3992        check_signals = false;
3993      }
3994    }
3995  }
3996}
3997
3998// This is the fastest way to get thread cpu time on Linux.
3999// Returns cpu time (user+sys) for any thread, not only for current.
4000// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4001// It might work on 2.6.10+ with a special kernel/glibc patch.
4002// For reference, please, see IEEE Std 1003.1-2004:
4003//   http://www.unix.org/single_unix_specification
4004
4005jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4006  struct timespec tp;
4007  int rc = os::Linux::clock_gettime(clockid, &tp);
4008  assert(rc == 0, "clock_gettime is expected to return 0 code");
4009
4010  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4011}
4012
4013/////
4014// glibc on Linux platform uses non-documented flag
4015// to indicate, that some special sort of signal
4016// trampoline is used.
4017// We will never set this flag, and we should
4018// ignore this flag in our diagnostic
4019#ifdef SIGNIFICANT_SIGNAL_MASK
4020#undef SIGNIFICANT_SIGNAL_MASK
4021#endif
4022#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4023
4024static const char* get_signal_handler_name(address handler,
4025                                           char* buf, int buflen) {
4026  int offset;
4027  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4028  if (found) {
4029    // skip directory names
4030    const char *p1, *p2;
4031    p1 = buf;
4032    size_t len = strlen(os::file_separator());
4033    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4034    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4035  } else {
4036    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4037  }
4038  return buf;
4039}
4040
4041static void print_signal_handler(outputStream* st, int sig,
4042                                 char* buf, size_t buflen) {
4043  struct sigaction sa;
4044
4045  sigaction(sig, NULL, &sa);
4046
4047  // See comment for SIGNIFICANT_SIGNAL_MASK define
4048  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4049
4050  st->print("%s: ", os::exception_name(sig, buf, buflen));
4051
4052  address handler = (sa.sa_flags & SA_SIGINFO)
4053    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4054    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4055
4056  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4057    st->print("SIG_DFL");
4058  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4059    st->print("SIG_IGN");
4060  } else {
4061    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4062  }
4063
4064  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4065
4066  address rh = VMError::get_resetted_sighandler(sig);
4067  // May be, handler was resetted by VMError?
4068  if(rh != NULL) {
4069    handler = rh;
4070    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4071  }
4072
4073  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4074
4075  // Check: is it our handler?
4076  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4077     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4078    // It is our signal handler
4079    // check for flags, reset system-used one!
4080    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4081      st->print(
4082                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4083                os::Linux::get_our_sigflags(sig));
4084    }
4085  }
4086  st->cr();
4087}
4088
4089
4090#define DO_SIGNAL_CHECK(sig) \
4091  if (!sigismember(&check_signal_done, sig)) \
4092    os::Linux::check_signal_handler(sig)
4093
4094// This method is a periodic task to check for misbehaving JNI applications
4095// under CheckJNI, we can add any periodic checks here
4096
4097void os::run_periodic_checks() {
4098
4099  if (check_signals == false) return;
4100
4101  // SEGV and BUS if overridden could potentially prevent
4102  // generation of hs*.log in the event of a crash, debugging
4103  // such a case can be very challenging, so we absolutely
4104  // check the following for a good measure:
4105  DO_SIGNAL_CHECK(SIGSEGV);
4106  DO_SIGNAL_CHECK(SIGILL);
4107  DO_SIGNAL_CHECK(SIGFPE);
4108  DO_SIGNAL_CHECK(SIGBUS);
4109  DO_SIGNAL_CHECK(SIGPIPE);
4110  DO_SIGNAL_CHECK(SIGXFSZ);
4111
4112
4113  // ReduceSignalUsage allows the user to override these handlers
4114  // see comments at the very top and jvm_solaris.h
4115  if (!ReduceSignalUsage) {
4116    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4117    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4118    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4119    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4120  }
4121
4122  DO_SIGNAL_CHECK(SR_signum);
4123  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4124}
4125
4126typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4127
4128static os_sigaction_t os_sigaction = NULL;
4129
4130void os::Linux::check_signal_handler(int sig) {
4131  char buf[O_BUFLEN];
4132  address jvmHandler = NULL;
4133
4134
4135  struct sigaction act;
4136  if (os_sigaction == NULL) {
4137    // only trust the default sigaction, in case it has been interposed
4138    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4139    if (os_sigaction == NULL) return;
4140  }
4141
4142  os_sigaction(sig, (struct sigaction*)NULL, &act);
4143
4144
4145  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4146
4147  address thisHandler = (act.sa_flags & SA_SIGINFO)
4148    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4149    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4150
4151
4152  switch(sig) {
4153  case SIGSEGV:
4154  case SIGBUS:
4155  case SIGFPE:
4156  case SIGPIPE:
4157  case SIGILL:
4158  case SIGXFSZ:
4159    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4160    break;
4161
4162  case SHUTDOWN1_SIGNAL:
4163  case SHUTDOWN2_SIGNAL:
4164  case SHUTDOWN3_SIGNAL:
4165  case BREAK_SIGNAL:
4166    jvmHandler = (address)user_handler();
4167    break;
4168
4169  case INTERRUPT_SIGNAL:
4170    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4171    break;
4172
4173  default:
4174    if (sig == SR_signum) {
4175      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4176    } else {
4177      return;
4178    }
4179    break;
4180  }
4181
4182  if (thisHandler != jvmHandler) {
4183    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4184    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4185    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4186    // No need to check this sig any longer
4187    sigaddset(&check_signal_done, sig);
4188  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4189    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4190    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4191    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4192    // No need to check this sig any longer
4193    sigaddset(&check_signal_done, sig);
4194  }
4195
4196  // Dump all the signal
4197  if (sigismember(&check_signal_done, sig)) {
4198    print_signal_handlers(tty, buf, O_BUFLEN);
4199  }
4200}
4201
4202extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4203
4204extern bool signal_name(int signo, char* buf, size_t len);
4205
4206const char* os::exception_name(int exception_code, char* buf, size_t size) {
4207  if (0 < exception_code && exception_code <= SIGRTMAX) {
4208    // signal
4209    if (!signal_name(exception_code, buf, size)) {
4210      jio_snprintf(buf, size, "SIG%d", exception_code);
4211    }
4212    return buf;
4213  } else {
4214    return NULL;
4215  }
4216}
4217
4218// this is called _before_ the most of global arguments have been parsed
4219void os::init(void) {
4220  char dummy;   /* used to get a guess on initial stack address */
4221//  first_hrtime = gethrtime();
4222
4223  // With LinuxThreads the JavaMain thread pid (primordial thread)
4224  // is different than the pid of the java launcher thread.
4225  // So, on Linux, the launcher thread pid is passed to the VM
4226  // via the sun.java.launcher.pid property.
4227  // Use this property instead of getpid() if it was correctly passed.
4228  // See bug 6351349.
4229  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4230
4231  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4232
4233  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4234
4235  init_random(1234567);
4236
4237  ThreadCritical::initialize();
4238
4239  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4240  if (Linux::page_size() == -1) {
4241    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4242                  strerror(errno)));
4243  }
4244  init_page_sizes((size_t) Linux::page_size());
4245
4246  Linux::initialize_system_info();
4247
4248  // main_thread points to the aboriginal thread
4249  Linux::_main_thread = pthread_self();
4250
4251  Linux::clock_init();
4252  initial_time_count = os::elapsed_counter();
4253  pthread_mutex_init(&dl_mutex, NULL);
4254}
4255
4256// To install functions for atexit system call
4257extern "C" {
4258  static void perfMemory_exit_helper() {
4259    perfMemory_exit();
4260  }
4261}
4262
4263// this is called _after_ the global arguments have been parsed
4264jint os::init_2(void)
4265{
4266  Linux::fast_thread_clock_init();
4267
4268  // Allocate a single page and mark it as readable for safepoint polling
4269  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4270  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4271
4272  os::set_polling_page( polling_page );
4273
4274#ifndef PRODUCT
4275  if(Verbose && PrintMiscellaneous)
4276    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4277#endif
4278
4279  if (!UseMembar) {
4280    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4281    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4282    os::set_memory_serialize_page( mem_serialize_page );
4283
4284#ifndef PRODUCT
4285    if(Verbose && PrintMiscellaneous)
4286      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4287#endif
4288  }
4289
4290  os::large_page_init();
4291
4292  // initialize suspend/resume support - must do this before signal_sets_init()
4293  if (SR_initialize() != 0) {
4294    perror("SR_initialize failed");
4295    return JNI_ERR;
4296  }
4297
4298  Linux::signal_sets_init();
4299  Linux::install_signal_handlers();
4300
4301  // Check minimum allowable stack size for thread creation and to initialize
4302  // the java system classes, including StackOverflowError - depends on page
4303  // size.  Add a page for compiler2 recursion in main thread.
4304  // Add in 2*BytesPerWord times page size to account for VM stack during
4305  // class initialization depending on 32 or 64 bit VM.
4306  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4307            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4308                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4309
4310  size_t threadStackSizeInBytes = ThreadStackSize * K;
4311  if (threadStackSizeInBytes != 0 &&
4312      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4313        tty->print_cr("\nThe stack size specified is too small, "
4314                      "Specify at least %dk",
4315                      os::Linux::min_stack_allowed/ K);
4316        return JNI_ERR;
4317  }
4318
4319  // Make the stack size a multiple of the page size so that
4320  // the yellow/red zones can be guarded.
4321  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4322        vm_page_size()));
4323
4324  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4325
4326  Linux::libpthread_init();
4327  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4328     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4329          Linux::glibc_version(), Linux::libpthread_version(),
4330          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4331  }
4332
4333  if (UseNUMA) {
4334    if (!Linux::libnuma_init()) {
4335      UseNUMA = false;
4336    } else {
4337      if ((Linux::numa_max_node() < 1)) {
4338        // There's only one node(they start from 0), disable NUMA.
4339        UseNUMA = false;
4340      }
4341    }
4342    // With SHM large pages we cannot uncommit a page, so there's not way
4343    // we can make the adaptive lgrp chunk resizing work. If the user specified
4344    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4345    // disable adaptive resizing.
4346    if (UseNUMA && UseLargePages && UseSHM) {
4347      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4348        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4349          UseLargePages = false;
4350        } else {
4351          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4352          UseAdaptiveSizePolicy = false;
4353          UseAdaptiveNUMAChunkSizing = false;
4354        }
4355      } else {
4356        UseNUMA = false;
4357      }
4358    }
4359    if (!UseNUMA && ForceNUMA) {
4360      UseNUMA = true;
4361    }
4362  }
4363
4364  if (MaxFDLimit) {
4365    // set the number of file descriptors to max. print out error
4366    // if getrlimit/setrlimit fails but continue regardless.
4367    struct rlimit nbr_files;
4368    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4369    if (status != 0) {
4370      if (PrintMiscellaneous && (Verbose || WizardMode))
4371        perror("os::init_2 getrlimit failed");
4372    } else {
4373      nbr_files.rlim_cur = nbr_files.rlim_max;
4374      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4375      if (status != 0) {
4376        if (PrintMiscellaneous && (Verbose || WizardMode))
4377          perror("os::init_2 setrlimit failed");
4378      }
4379    }
4380  }
4381
4382  // Initialize lock used to serialize thread creation (see os::create_thread)
4383  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4384
4385  // at-exit methods are called in the reverse order of their registration.
4386  // atexit functions are called on return from main or as a result of a
4387  // call to exit(3C). There can be only 32 of these functions registered
4388  // and atexit() does not set errno.
4389
4390  if (PerfAllowAtExitRegistration) {
4391    // only register atexit functions if PerfAllowAtExitRegistration is set.
4392    // atexit functions can be delayed until process exit time, which
4393    // can be problematic for embedded VM situations. Embedded VMs should
4394    // call DestroyJavaVM() to assure that VM resources are released.
4395
4396    // note: perfMemory_exit_helper atexit function may be removed in
4397    // the future if the appropriate cleanup code can be added to the
4398    // VM_Exit VMOperation's doit method.
4399    if (atexit(perfMemory_exit_helper) != 0) {
4400      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4401    }
4402  }
4403
4404  // initialize thread priority policy
4405  prio_init();
4406
4407  return JNI_OK;
4408}
4409
4410// this is called at the end of vm_initialization
4411void os::init_3(void)
4412{
4413#ifdef JAVASE_EMBEDDED
4414  // Start the MemNotifyThread
4415  if (LowMemoryProtection) {
4416    MemNotifyThread::start();
4417  }
4418  return;
4419#endif
4420}
4421
4422// Mark the polling page as unreadable
4423void os::make_polling_page_unreadable(void) {
4424  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4425    fatal("Could not disable polling page");
4426};
4427
4428// Mark the polling page as readable
4429void os::make_polling_page_readable(void) {
4430  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4431    fatal("Could not enable polling page");
4432  }
4433};
4434
4435int os::active_processor_count() {
4436  // Linux doesn't yet have a (official) notion of processor sets,
4437  // so just return the number of online processors.
4438  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4439  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4440  return online_cpus;
4441}
4442
4443void os::set_native_thread_name(const char *name) {
4444  // Not yet implemented.
4445  return;
4446}
4447
4448bool os::distribute_processes(uint length, uint* distribution) {
4449  // Not yet implemented.
4450  return false;
4451}
4452
4453bool os::bind_to_processor(uint processor_id) {
4454  // Not yet implemented.
4455  return false;
4456}
4457
4458///
4459
4460// Suspends the target using the signal mechanism and then grabs the PC before
4461// resuming the target. Used by the flat-profiler only
4462ExtendedPC os::get_thread_pc(Thread* thread) {
4463  // Make sure that it is called by the watcher for the VMThread
4464  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4465  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4466
4467  ExtendedPC epc;
4468
4469  OSThread* osthread = thread->osthread();
4470  if (do_suspend(osthread)) {
4471    if (osthread->ucontext() != NULL) {
4472      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4473    } else {
4474      // NULL context is unexpected, double-check this is the VMThread
4475      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4476    }
4477    do_resume(osthread);
4478  }
4479  // failure means pthread_kill failed for some reason - arguably this is
4480  // a fatal problem, but such problems are ignored elsewhere
4481
4482  return epc;
4483}
4484
4485int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4486{
4487   if (is_NPTL()) {
4488      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4489   } else {
4490      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4491      // word back to default 64bit precision if condvar is signaled. Java
4492      // wants 53bit precision.  Save and restore current value.
4493      int fpu = get_fpu_control_word();
4494      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4495      set_fpu_control_word(fpu);
4496      return status;
4497   }
4498}
4499
4500////////////////////////////////////////////////////////////////////////////////
4501// debug support
4502
4503static address same_page(address x, address y) {
4504  int page_bits = -os::vm_page_size();
4505  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4506    return x;
4507  else if (x > y)
4508    return (address)(intptr_t(y) | ~page_bits) + 1;
4509  else
4510    return (address)(intptr_t(y) & page_bits);
4511}
4512
4513bool os::find(address addr, outputStream* st) {
4514  Dl_info dlinfo;
4515  memset(&dlinfo, 0, sizeof(dlinfo));
4516  if (dladdr(addr, &dlinfo)) {
4517    st->print(PTR_FORMAT ": ", addr);
4518    if (dlinfo.dli_sname != NULL) {
4519      st->print("%s+%#x", dlinfo.dli_sname,
4520                 addr - (intptr_t)dlinfo.dli_saddr);
4521    } else if (dlinfo.dli_fname) {
4522      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4523    } else {
4524      st->print("<absolute address>");
4525    }
4526    if (dlinfo.dli_fname) {
4527      st->print(" in %s", dlinfo.dli_fname);
4528    }
4529    if (dlinfo.dli_fbase) {
4530      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4531    }
4532    st->cr();
4533
4534    if (Verbose) {
4535      // decode some bytes around the PC
4536      address begin = same_page(addr-40, addr);
4537      address end   = same_page(addr+40, addr);
4538      address       lowest = (address) dlinfo.dli_sname;
4539      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4540      if (begin < lowest)  begin = lowest;
4541      Dl_info dlinfo2;
4542      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4543          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4544        end = (address) dlinfo2.dli_saddr;
4545      Disassembler::decode(begin, end, st);
4546    }
4547    return true;
4548  }
4549  return false;
4550}
4551
4552////////////////////////////////////////////////////////////////////////////////
4553// misc
4554
4555// This does not do anything on Linux. This is basically a hook for being
4556// able to use structured exception handling (thread-local exception filters)
4557// on, e.g., Win32.
4558void
4559os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4560                         JavaCallArguments* args, Thread* thread) {
4561  f(value, method, args, thread);
4562}
4563
4564void os::print_statistics() {
4565}
4566
4567int os::message_box(const char* title, const char* message) {
4568  int i;
4569  fdStream err(defaultStream::error_fd());
4570  for (i = 0; i < 78; i++) err.print_raw("=");
4571  err.cr();
4572  err.print_raw_cr(title);
4573  for (i = 0; i < 78; i++) err.print_raw("-");
4574  err.cr();
4575  err.print_raw_cr(message);
4576  for (i = 0; i < 78; i++) err.print_raw("=");
4577  err.cr();
4578
4579  char buf[16];
4580  // Prevent process from exiting upon "read error" without consuming all CPU
4581  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4582
4583  return buf[0] == 'y' || buf[0] == 'Y';
4584}
4585
4586int os::stat(const char *path, struct stat *sbuf) {
4587  char pathbuf[MAX_PATH];
4588  if (strlen(path) > MAX_PATH - 1) {
4589    errno = ENAMETOOLONG;
4590    return -1;
4591  }
4592  os::native_path(strcpy(pathbuf, path));
4593  return ::stat(pathbuf, sbuf);
4594}
4595
4596bool os::check_heap(bool force) {
4597  return true;
4598}
4599
4600int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4601  return ::vsnprintf(buf, count, format, args);
4602}
4603
4604// Is a (classpath) directory empty?
4605bool os::dir_is_empty(const char* path) {
4606  DIR *dir = NULL;
4607  struct dirent *ptr;
4608
4609  dir = opendir(path);
4610  if (dir == NULL) return true;
4611
4612  /* Scan the directory */
4613  bool result = true;
4614  char buf[sizeof(struct dirent) + MAX_PATH];
4615  while (result && (ptr = ::readdir(dir)) != NULL) {
4616    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4617      result = false;
4618    }
4619  }
4620  closedir(dir);
4621  return result;
4622}
4623
4624// This code originates from JDK's sysOpen and open64_w
4625// from src/solaris/hpi/src/system_md.c
4626
4627#ifndef O_DELETE
4628#define O_DELETE 0x10000
4629#endif
4630
4631// Open a file. Unlink the file immediately after open returns
4632// if the specified oflag has the O_DELETE flag set.
4633// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4634
4635int os::open(const char *path, int oflag, int mode) {
4636
4637  if (strlen(path) > MAX_PATH - 1) {
4638    errno = ENAMETOOLONG;
4639    return -1;
4640  }
4641  int fd;
4642  int o_delete = (oflag & O_DELETE);
4643  oflag = oflag & ~O_DELETE;
4644
4645  fd = ::open64(path, oflag, mode);
4646  if (fd == -1) return -1;
4647
4648  //If the open succeeded, the file might still be a directory
4649  {
4650    struct stat64 buf64;
4651    int ret = ::fstat64(fd, &buf64);
4652    int st_mode = buf64.st_mode;
4653
4654    if (ret != -1) {
4655      if ((st_mode & S_IFMT) == S_IFDIR) {
4656        errno = EISDIR;
4657        ::close(fd);
4658        return -1;
4659      }
4660    } else {
4661      ::close(fd);
4662      return -1;
4663    }
4664  }
4665
4666    /*
4667     * All file descriptors that are opened in the JVM and not
4668     * specifically destined for a subprocess should have the
4669     * close-on-exec flag set.  If we don't set it, then careless 3rd
4670     * party native code might fork and exec without closing all
4671     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4672     * UNIXProcess.c), and this in turn might:
4673     *
4674     * - cause end-of-file to fail to be detected on some file
4675     *   descriptors, resulting in mysterious hangs, or
4676     *
4677     * - might cause an fopen in the subprocess to fail on a system
4678     *   suffering from bug 1085341.
4679     *
4680     * (Yes, the default setting of the close-on-exec flag is a Unix
4681     * design flaw)
4682     *
4683     * See:
4684     * 1085341: 32-bit stdio routines should support file descriptors >255
4685     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4686     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4687     */
4688#ifdef FD_CLOEXEC
4689    {
4690        int flags = ::fcntl(fd, F_GETFD);
4691        if (flags != -1)
4692            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4693    }
4694#endif
4695
4696  if (o_delete != 0) {
4697    ::unlink(path);
4698  }
4699  return fd;
4700}
4701
4702
4703// create binary file, rewriting existing file if required
4704int os::create_binary_file(const char* path, bool rewrite_existing) {
4705  int oflags = O_WRONLY | O_CREAT;
4706  if (!rewrite_existing) {
4707    oflags |= O_EXCL;
4708  }
4709  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4710}
4711
4712// return current position of file pointer
4713jlong os::current_file_offset(int fd) {
4714  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4715}
4716
4717// move file pointer to the specified offset
4718jlong os::seek_to_file_offset(int fd, jlong offset) {
4719  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4720}
4721
4722// This code originates from JDK's sysAvailable
4723// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4724
4725int os::available(int fd, jlong *bytes) {
4726  jlong cur, end;
4727  int mode;
4728  struct stat64 buf64;
4729
4730  if (::fstat64(fd, &buf64) >= 0) {
4731    mode = buf64.st_mode;
4732    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4733      /*
4734      * XXX: is the following call interruptible? If so, this might
4735      * need to go through the INTERRUPT_IO() wrapper as for other
4736      * blocking, interruptible calls in this file.
4737      */
4738      int n;
4739      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4740        *bytes = n;
4741        return 1;
4742      }
4743    }
4744  }
4745  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4746    return 0;
4747  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4748    return 0;
4749  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4750    return 0;
4751  }
4752  *bytes = end - cur;
4753  return 1;
4754}
4755
4756int os::socket_available(int fd, jint *pbytes) {
4757  // Linux doc says EINTR not returned, unlike Solaris
4758  int ret = ::ioctl(fd, FIONREAD, pbytes);
4759
4760  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4761  // is expected to return 0 on failure and 1 on success to the jdk.
4762  return (ret < 0) ? 0 : 1;
4763}
4764
4765// Map a block of memory.
4766char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4767                     char *addr, size_t bytes, bool read_only,
4768                     bool allow_exec) {
4769  int prot;
4770  int flags = MAP_PRIVATE;
4771
4772  if (read_only) {
4773    prot = PROT_READ;
4774  } else {
4775    prot = PROT_READ | PROT_WRITE;
4776  }
4777
4778  if (allow_exec) {
4779    prot |= PROT_EXEC;
4780  }
4781
4782  if (addr != NULL) {
4783    flags |= MAP_FIXED;
4784  }
4785
4786  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4787                                     fd, file_offset);
4788  if (mapped_address == MAP_FAILED) {
4789    return NULL;
4790  }
4791  return mapped_address;
4792}
4793
4794
4795// Remap a block of memory.
4796char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4797                       char *addr, size_t bytes, bool read_only,
4798                       bool allow_exec) {
4799  // same as map_memory() on this OS
4800  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4801                        allow_exec);
4802}
4803
4804
4805// Unmap a block of memory.
4806bool os::pd_unmap_memory(char* addr, size_t bytes) {
4807  return munmap(addr, bytes) == 0;
4808}
4809
4810static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4811
4812static clockid_t thread_cpu_clockid(Thread* thread) {
4813  pthread_t tid = thread->osthread()->pthread_id();
4814  clockid_t clockid;
4815
4816  // Get thread clockid
4817  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4818  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4819  return clockid;
4820}
4821
4822// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4823// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4824// of a thread.
4825//
4826// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4827// the fast estimate available on the platform.
4828
4829jlong os::current_thread_cpu_time() {
4830  if (os::Linux::supports_fast_thread_cpu_time()) {
4831    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4832  } else {
4833    // return user + sys since the cost is the same
4834    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4835  }
4836}
4837
4838jlong os::thread_cpu_time(Thread* thread) {
4839  // consistent with what current_thread_cpu_time() returns
4840  if (os::Linux::supports_fast_thread_cpu_time()) {
4841    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4842  } else {
4843    return slow_thread_cpu_time(thread, true /* user + sys */);
4844  }
4845}
4846
4847jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4848  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4849    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4850  } else {
4851    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4852  }
4853}
4854
4855jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4856  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4857    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4858  } else {
4859    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4860  }
4861}
4862
4863//
4864//  -1 on error.
4865//
4866
4867static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4868  static bool proc_task_unchecked = true;
4869  static const char *proc_stat_path = "/proc/%d/stat";
4870  pid_t  tid = thread->osthread()->thread_id();
4871  char *s;
4872  char stat[2048];
4873  int statlen;
4874  char proc_name[64];
4875  int count;
4876  long sys_time, user_time;
4877  char cdummy;
4878  int idummy;
4879  long ldummy;
4880  FILE *fp;
4881
4882  // The /proc/<tid>/stat aggregates per-process usage on
4883  // new Linux kernels 2.6+ where NPTL is supported.
4884  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4885  // See bug 6328462.
4886  // There possibly can be cases where there is no directory
4887  // /proc/self/task, so we check its availability.
4888  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4889    // This is executed only once
4890    proc_task_unchecked = false;
4891    fp = fopen("/proc/self/task", "r");
4892    if (fp != NULL) {
4893      proc_stat_path = "/proc/self/task/%d/stat";
4894      fclose(fp);
4895    }
4896  }
4897
4898  sprintf(proc_name, proc_stat_path, tid);
4899  fp = fopen(proc_name, "r");
4900  if ( fp == NULL ) return -1;
4901  statlen = fread(stat, 1, 2047, fp);
4902  stat[statlen] = '\0';
4903  fclose(fp);
4904
4905  // Skip pid and the command string. Note that we could be dealing with
4906  // weird command names, e.g. user could decide to rename java launcher
4907  // to "java 1.4.2 :)", then the stat file would look like
4908  //                1234 (java 1.4.2 :)) R ... ...
4909  // We don't really need to know the command string, just find the last
4910  // occurrence of ")" and then start parsing from there. See bug 4726580.
4911  s = strrchr(stat, ')');
4912  if (s == NULL ) return -1;
4913
4914  // Skip blank chars
4915  do s++; while (isspace(*s));
4916
4917  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4918                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4919                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4920                 &user_time, &sys_time);
4921  if ( count != 13 ) return -1;
4922  if (user_sys_cpu_time) {
4923    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4924  } else {
4925    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4926  }
4927}
4928
4929void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4930  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4931  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4932  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4933  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4934}
4935
4936void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4937  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4938  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4939  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4940  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4941}
4942
4943bool os::is_thread_cpu_time_supported() {
4944  return true;
4945}
4946
4947// System loadavg support.  Returns -1 if load average cannot be obtained.
4948// Linux doesn't yet have a (official) notion of processor sets,
4949// so just return the system wide load average.
4950int os::loadavg(double loadavg[], int nelem) {
4951  return ::getloadavg(loadavg, nelem);
4952}
4953
4954void os::pause() {
4955  char filename[MAX_PATH];
4956  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4957    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4958  } else {
4959    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4960  }
4961
4962  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4963  if (fd != -1) {
4964    struct stat buf;
4965    ::close(fd);
4966    while (::stat(filename, &buf) == 0) {
4967      (void)::poll(NULL, 0, 100);
4968    }
4969  } else {
4970    jio_fprintf(stderr,
4971      "Could not open pause file '%s', continuing immediately.\n", filename);
4972  }
4973}
4974
4975
4976// Refer to the comments in os_solaris.cpp park-unpark.
4977//
4978// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4979// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4980// For specifics regarding the bug see GLIBC BUGID 261237 :
4981//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4982// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4983// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4984// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4985// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4986// and monitorenter when we're using 1-0 locking.  All those operations may result in
4987// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4988// of libpthread avoids the problem, but isn't practical.
4989//
4990// Possible remedies:
4991//
4992// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4993//      This is palliative and probabilistic, however.  If the thread is preempted
4994//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4995//      than the minimum period may have passed, and the abstime may be stale (in the
4996//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4997//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4998//
4999// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5000//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5001//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5002//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5003//      thread.
5004//
5005// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5006//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5007//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5008//      This also works well.  In fact it avoids kernel-level scalability impediments
5009//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5010//      timers in a graceful fashion.
5011//
5012// 4.   When the abstime value is in the past it appears that control returns
5013//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5014//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5015//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5016//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5017//      It may be possible to avoid reinitialization by checking the return
5018//      value from pthread_cond_timedwait().  In addition to reinitializing the
5019//      condvar we must establish the invariant that cond_signal() is only called
5020//      within critical sections protected by the adjunct mutex.  This prevents
5021//      cond_signal() from "seeing" a condvar that's in the midst of being
5022//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5023//      desirable signal-after-unlock optimization that avoids futile context switching.
5024//
5025//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5026//      structure when a condvar is used or initialized.  cond_destroy()  would
5027//      release the helper structure.  Our reinitialize-after-timedwait fix
5028//      put excessive stress on malloc/free and locks protecting the c-heap.
5029//
5030// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5031// It may be possible to refine (4) by checking the kernel and NTPL verisons
5032// and only enabling the work-around for vulnerable environments.
5033
5034// utility to compute the abstime argument to timedwait:
5035// millis is the relative timeout time
5036// abstime will be the absolute timeout time
5037// TODO: replace compute_abstime() with unpackTime()
5038
5039static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5040  if (millis < 0)  millis = 0;
5041  struct timeval now;
5042  int status = gettimeofday(&now, NULL);
5043  assert(status == 0, "gettimeofday");
5044  jlong seconds = millis / 1000;
5045  millis %= 1000;
5046  if (seconds > 50000000) { // see man cond_timedwait(3T)
5047    seconds = 50000000;
5048  }
5049  abstime->tv_sec = now.tv_sec  + seconds;
5050  long       usec = now.tv_usec + millis * 1000;
5051  if (usec >= 1000000) {
5052    abstime->tv_sec += 1;
5053    usec -= 1000000;
5054  }
5055  abstime->tv_nsec = usec * 1000;
5056  return abstime;
5057}
5058
5059
5060// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5061// Conceptually TryPark() should be equivalent to park(0).
5062
5063int os::PlatformEvent::TryPark() {
5064  for (;;) {
5065    const int v = _Event ;
5066    guarantee ((v == 0) || (v == 1), "invariant") ;
5067    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5068  }
5069}
5070
5071void os::PlatformEvent::park() {       // AKA "down()"
5072  // Invariant: Only the thread associated with the Event/PlatformEvent
5073  // may call park().
5074  // TODO: assert that _Assoc != NULL or _Assoc == Self
5075  int v ;
5076  for (;;) {
5077      v = _Event ;
5078      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5079  }
5080  guarantee (v >= 0, "invariant") ;
5081  if (v == 0) {
5082     // Do this the hard way by blocking ...
5083     int status = pthread_mutex_lock(_mutex);
5084     assert_status(status == 0, status, "mutex_lock");
5085     guarantee (_nParked == 0, "invariant") ;
5086     ++ _nParked ;
5087     while (_Event < 0) {
5088        status = pthread_cond_wait(_cond, _mutex);
5089        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5090        // Treat this the same as if the wait was interrupted
5091        if (status == ETIME) { status = EINTR; }
5092        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5093     }
5094     -- _nParked ;
5095
5096    _Event = 0 ;
5097     status = pthread_mutex_unlock(_mutex);
5098     assert_status(status == 0, status, "mutex_unlock");
5099    // Paranoia to ensure our locked and lock-free paths interact
5100    // correctly with each other.
5101    OrderAccess::fence();
5102  }
5103  guarantee (_Event >= 0, "invariant") ;
5104}
5105
5106int os::PlatformEvent::park(jlong millis) {
5107  guarantee (_nParked == 0, "invariant") ;
5108
5109  int v ;
5110  for (;;) {
5111      v = _Event ;
5112      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5113  }
5114  guarantee (v >= 0, "invariant") ;
5115  if (v != 0) return OS_OK ;
5116
5117  // We do this the hard way, by blocking the thread.
5118  // Consider enforcing a minimum timeout value.
5119  struct timespec abst;
5120  compute_abstime(&abst, millis);
5121
5122  int ret = OS_TIMEOUT;
5123  int status = pthread_mutex_lock(_mutex);
5124  assert_status(status == 0, status, "mutex_lock");
5125  guarantee (_nParked == 0, "invariant") ;
5126  ++_nParked ;
5127
5128  // Object.wait(timo) will return because of
5129  // (a) notification
5130  // (b) timeout
5131  // (c) thread.interrupt
5132  //
5133  // Thread.interrupt and object.notify{All} both call Event::set.
5134  // That is, we treat thread.interrupt as a special case of notification.
5135  // The underlying Solaris implementation, cond_timedwait, admits
5136  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5137  // JVM from making those visible to Java code.  As such, we must
5138  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5139  //
5140  // TODO: properly differentiate simultaneous notify+interrupt.
5141  // In that case, we should propagate the notify to another waiter.
5142
5143  while (_Event < 0) {
5144    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5145    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5146      pthread_cond_destroy (_cond);
5147      pthread_cond_init (_cond, NULL) ;
5148    }
5149    assert_status(status == 0 || status == EINTR ||
5150                  status == ETIME || status == ETIMEDOUT,
5151                  status, "cond_timedwait");
5152    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5153    if (status == ETIME || status == ETIMEDOUT) break ;
5154    // We consume and ignore EINTR and spurious wakeups.
5155  }
5156  --_nParked ;
5157  if (_Event >= 0) {
5158     ret = OS_OK;
5159  }
5160  _Event = 0 ;
5161  status = pthread_mutex_unlock(_mutex);
5162  assert_status(status == 0, status, "mutex_unlock");
5163  assert (_nParked == 0, "invariant") ;
5164  // Paranoia to ensure our locked and lock-free paths interact
5165  // correctly with each other.
5166  OrderAccess::fence();
5167  return ret;
5168}
5169
5170void os::PlatformEvent::unpark() {
5171  // Transitions for _Event:
5172  //    0 :=> 1
5173  //    1 :=> 1
5174  //   -1 :=> either 0 or 1; must signal target thread
5175  //          That is, we can safely transition _Event from -1 to either
5176  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5177  //          unpark() calls.
5178  // See also: "Semaphores in Plan 9" by Mullender & Cox
5179  //
5180  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5181  // that it will take two back-to-back park() calls for the owning
5182  // thread to block. This has the benefit of forcing a spurious return
5183  // from the first park() call after an unpark() call which will help
5184  // shake out uses of park() and unpark() without condition variables.
5185
5186  if (Atomic::xchg(1, &_Event) >= 0) return;
5187
5188  // Wait for the thread associated with the event to vacate
5189  int status = pthread_mutex_lock(_mutex);
5190  assert_status(status == 0, status, "mutex_lock");
5191  int AnyWaiters = _nParked;
5192  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5193  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5194    AnyWaiters = 0;
5195    pthread_cond_signal(_cond);
5196  }
5197  status = pthread_mutex_unlock(_mutex);
5198  assert_status(status == 0, status, "mutex_unlock");
5199  if (AnyWaiters != 0) {
5200    status = pthread_cond_signal(_cond);
5201    assert_status(status == 0, status, "cond_signal");
5202  }
5203
5204  // Note that we signal() _after dropping the lock for "immortal" Events.
5205  // This is safe and avoids a common class of  futile wakeups.  In rare
5206  // circumstances this can cause a thread to return prematurely from
5207  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5208  // simply re-test the condition and re-park itself.
5209}
5210
5211
5212// JSR166
5213// -------------------------------------------------------
5214
5215/*
5216 * The solaris and linux implementations of park/unpark are fairly
5217 * conservative for now, but can be improved. They currently use a
5218 * mutex/condvar pair, plus a a count.
5219 * Park decrements count if > 0, else does a condvar wait.  Unpark
5220 * sets count to 1 and signals condvar.  Only one thread ever waits
5221 * on the condvar. Contention seen when trying to park implies that someone
5222 * is unparking you, so don't wait. And spurious returns are fine, so there
5223 * is no need to track notifications.
5224 */
5225
5226#define MAX_SECS 100000000
5227/*
5228 * This code is common to linux and solaris and will be moved to a
5229 * common place in dolphin.
5230 *
5231 * The passed in time value is either a relative time in nanoseconds
5232 * or an absolute time in milliseconds. Either way it has to be unpacked
5233 * into suitable seconds and nanoseconds components and stored in the
5234 * given timespec structure.
5235 * Given time is a 64-bit value and the time_t used in the timespec is only
5236 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5237 * overflow if times way in the future are given. Further on Solaris versions
5238 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5239 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5240 * As it will be 28 years before "now + 100000000" will overflow we can
5241 * ignore overflow and just impose a hard-limit on seconds using the value
5242 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5243 * years from "now".
5244 */
5245
5246static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5247  assert (time > 0, "convertTime");
5248
5249  struct timeval now;
5250  int status = gettimeofday(&now, NULL);
5251  assert(status == 0, "gettimeofday");
5252
5253  time_t max_secs = now.tv_sec + MAX_SECS;
5254
5255  if (isAbsolute) {
5256    jlong secs = time / 1000;
5257    if (secs > max_secs) {
5258      absTime->tv_sec = max_secs;
5259    }
5260    else {
5261      absTime->tv_sec = secs;
5262    }
5263    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5264  }
5265  else {
5266    jlong secs = time / NANOSECS_PER_SEC;
5267    if (secs >= MAX_SECS) {
5268      absTime->tv_sec = max_secs;
5269      absTime->tv_nsec = 0;
5270    }
5271    else {
5272      absTime->tv_sec = now.tv_sec + secs;
5273      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5274      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5275        absTime->tv_nsec -= NANOSECS_PER_SEC;
5276        ++absTime->tv_sec; // note: this must be <= max_secs
5277      }
5278    }
5279  }
5280  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5281  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5282  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5283  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5284}
5285
5286void Parker::park(bool isAbsolute, jlong time) {
5287  // Ideally we'd do something useful while spinning, such
5288  // as calling unpackTime().
5289
5290  // Optional fast-path check:
5291  // Return immediately if a permit is available.
5292  // We depend on Atomic::xchg() having full barrier semantics
5293  // since we are doing a lock-free update to _counter.
5294  if (Atomic::xchg(0, &_counter) > 0) return;
5295
5296  Thread* thread = Thread::current();
5297  assert(thread->is_Java_thread(), "Must be JavaThread");
5298  JavaThread *jt = (JavaThread *)thread;
5299
5300  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5301  // Check interrupt before trying to wait
5302  if (Thread::is_interrupted(thread, false)) {
5303    return;
5304  }
5305
5306  // Next, demultiplex/decode time arguments
5307  timespec absTime;
5308  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5309    return;
5310  }
5311  if (time > 0) {
5312    unpackTime(&absTime, isAbsolute, time);
5313  }
5314
5315
5316  // Enter safepoint region
5317  // Beware of deadlocks such as 6317397.
5318  // The per-thread Parker:: mutex is a classic leaf-lock.
5319  // In particular a thread must never block on the Threads_lock while
5320  // holding the Parker:: mutex.  If safepoints are pending both the
5321  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5322  ThreadBlockInVM tbivm(jt);
5323
5324  // Don't wait if cannot get lock since interference arises from
5325  // unblocking.  Also. check interrupt before trying wait
5326  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5327    return;
5328  }
5329
5330  int status ;
5331  if (_counter > 0)  { // no wait needed
5332    _counter = 0;
5333    status = pthread_mutex_unlock(_mutex);
5334    assert (status == 0, "invariant") ;
5335    // Paranoia to ensure our locked and lock-free paths interact
5336    // correctly with each other and Java-level accesses.
5337    OrderAccess::fence();
5338    return;
5339  }
5340
5341#ifdef ASSERT
5342  // Don't catch signals while blocked; let the running threads have the signals.
5343  // (This allows a debugger to break into the running thread.)
5344  sigset_t oldsigs;
5345  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5346  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5347#endif
5348
5349  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5350  jt->set_suspend_equivalent();
5351  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5352
5353  if (time == 0) {
5354    status = pthread_cond_wait (_cond, _mutex) ;
5355  } else {
5356    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5357    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5358      pthread_cond_destroy (_cond) ;
5359      pthread_cond_init    (_cond, NULL);
5360    }
5361  }
5362  assert_status(status == 0 || status == EINTR ||
5363                status == ETIME || status == ETIMEDOUT,
5364                status, "cond_timedwait");
5365
5366#ifdef ASSERT
5367  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5368#endif
5369
5370  _counter = 0 ;
5371  status = pthread_mutex_unlock(_mutex) ;
5372  assert_status(status == 0, status, "invariant") ;
5373  // Paranoia to ensure our locked and lock-free paths interact
5374  // correctly with each other and Java-level accesses.
5375  OrderAccess::fence();
5376
5377  // If externally suspended while waiting, re-suspend
5378  if (jt->handle_special_suspend_equivalent_condition()) {
5379    jt->java_suspend_self();
5380  }
5381}
5382
5383void Parker::unpark() {
5384  int s, status ;
5385  status = pthread_mutex_lock(_mutex);
5386  assert (status == 0, "invariant") ;
5387  s = _counter;
5388  _counter = 1;
5389  if (s < 1) {
5390     if (WorkAroundNPTLTimedWaitHang) {
5391        status = pthread_cond_signal (_cond) ;
5392        assert (status == 0, "invariant") ;
5393        status = pthread_mutex_unlock(_mutex);
5394        assert (status == 0, "invariant") ;
5395     } else {
5396        status = pthread_mutex_unlock(_mutex);
5397        assert (status == 0, "invariant") ;
5398        status = pthread_cond_signal (_cond) ;
5399        assert (status == 0, "invariant") ;
5400     }
5401  } else {
5402    pthread_mutex_unlock(_mutex);
5403    assert (status == 0, "invariant") ;
5404  }
5405}
5406
5407
5408extern char** environ;
5409
5410#ifndef __NR_fork
5411#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5412#endif
5413
5414#ifndef __NR_execve
5415#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5416#endif
5417
5418// Run the specified command in a separate process. Return its exit value,
5419// or -1 on failure (e.g. can't fork a new process).
5420// Unlike system(), this function can be called from signal handler. It
5421// doesn't block SIGINT et al.
5422int os::fork_and_exec(char* cmd) {
5423  const char * argv[4] = {"sh", "-c", cmd, NULL};
5424
5425  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5426  // pthread_atfork handlers and reset pthread library. All we need is a
5427  // separate process to execve. Make a direct syscall to fork process.
5428  // On IA64 there's no fork syscall, we have to use fork() and hope for
5429  // the best...
5430  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5431              IA64_ONLY(fork();)
5432
5433  if (pid < 0) {
5434    // fork failed
5435    return -1;
5436
5437  } else if (pid == 0) {
5438    // child process
5439
5440    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5441    // first to kill every thread on the thread list. Because this list is
5442    // not reset by fork() (see notes above), execve() will instead kill
5443    // every thread in the parent process. We know this is the only thread
5444    // in the new process, so make a system call directly.
5445    // IA64 should use normal execve() from glibc to match the glibc fork()
5446    // above.
5447    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5448    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5449
5450    // execve failed
5451    _exit(-1);
5452
5453  } else  {
5454    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5455    // care about the actual exit code, for now.
5456
5457    int status;
5458
5459    // Wait for the child process to exit.  This returns immediately if
5460    // the child has already exited. */
5461    while (waitpid(pid, &status, 0) < 0) {
5462        switch (errno) {
5463        case ECHILD: return 0;
5464        case EINTR: break;
5465        default: return -1;
5466        }
5467    }
5468
5469    if (WIFEXITED(status)) {
5470       // The child exited normally; get its exit code.
5471       return WEXITSTATUS(status);
5472    } else if (WIFSIGNALED(status)) {
5473       // The child exited because of a signal
5474       // The best value to return is 0x80 + signal number,
5475       // because that is what all Unix shells do, and because
5476       // it allows callers to distinguish between process exit and
5477       // process death by signal.
5478       return 0x80 + WTERMSIG(status);
5479    } else {
5480       // Unknown exit code; pass it through
5481       return status;
5482    }
5483  }
5484}
5485
5486// is_headless_jre()
5487//
5488// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5489// in order to report if we are running in a headless jre
5490//
5491// Since JDK8 xawt/libmawt.so was moved into the same directory
5492// as libawt.so, and renamed libawt_xawt.so
5493//
5494bool os::is_headless_jre() {
5495    struct stat statbuf;
5496    char buf[MAXPATHLEN];
5497    char libmawtpath[MAXPATHLEN];
5498    const char *xawtstr  = "/xawt/libmawt.so";
5499    const char *new_xawtstr = "/libawt_xawt.so";
5500    char *p;
5501
5502    // Get path to libjvm.so
5503    os::jvm_path(buf, sizeof(buf));
5504
5505    // Get rid of libjvm.so
5506    p = strrchr(buf, '/');
5507    if (p == NULL) return false;
5508    else *p = '\0';
5509
5510    // Get rid of client or server
5511    p = strrchr(buf, '/');
5512    if (p == NULL) return false;
5513    else *p = '\0';
5514
5515    // check xawt/libmawt.so
5516    strcpy(libmawtpath, buf);
5517    strcat(libmawtpath, xawtstr);
5518    if (::stat(libmawtpath, &statbuf) == 0) return false;
5519
5520    // check libawt_xawt.so
5521    strcpy(libmawtpath, buf);
5522    strcat(libmawtpath, new_xawtstr);
5523    if (::stat(libmawtpath, &statbuf) == 0) return false;
5524
5525    return true;
5526}
5527
5528// Get the default path to the core file
5529// Returns the length of the string
5530int os::get_core_path(char* buffer, size_t bufferSize) {
5531  const char* p = get_current_directory(buffer, bufferSize);
5532
5533  if (p == NULL) {
5534    assert(p != NULL, "failed to get current directory");
5535    return 0;
5536  }
5537
5538  return strlen(buffer);
5539}
5540
5541#ifdef JAVASE_EMBEDDED
5542//
5543// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5544//
5545MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5546
5547// ctor
5548//
5549MemNotifyThread::MemNotifyThread(int fd): Thread() {
5550  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5551  _fd = fd;
5552
5553  if (os::create_thread(this, os::os_thread)) {
5554    _memnotify_thread = this;
5555    os::set_priority(this, NearMaxPriority);
5556    os::start_thread(this);
5557  }
5558}
5559
5560// Where all the work gets done
5561//
5562void MemNotifyThread::run() {
5563  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5564
5565  // Set up the select arguments
5566  fd_set rfds;
5567  if (_fd != -1) {
5568    FD_ZERO(&rfds);
5569    FD_SET(_fd, &rfds);
5570  }
5571
5572  // Now wait for the mem_notify device to wake up
5573  while (1) {
5574    // Wait for the mem_notify device to signal us..
5575    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5576    if (rc == -1) {
5577      perror("select!\n");
5578      break;
5579    } else if (rc) {
5580      //ssize_t free_before = os::available_memory();
5581      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5582
5583      // The kernel is telling us there is not much memory left...
5584      // try to do something about that
5585
5586      // If we are not already in a GC, try one.
5587      if (!Universe::heap()->is_gc_active()) {
5588        Universe::heap()->collect(GCCause::_allocation_failure);
5589
5590        //ssize_t free_after = os::available_memory();
5591        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5592        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5593      }
5594      // We might want to do something like the following if we find the GC's are not helping...
5595      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5596    }
5597  }
5598}
5599
5600//
5601// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5602//
5603void MemNotifyThread::start() {
5604  int    fd;
5605  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5606  if (fd < 0) {
5607      return;
5608  }
5609
5610  if (memnotify_thread() == NULL) {
5611    new MemNotifyThread(fd);
5612  }
5613}
5614#endif // JAVASE_EMBEDDED
5615