os_linux.cpp revision 4100:9fae07c31641
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/runtimeService.hpp"
61#include "utilities/decoder.hpp"
62#include "utilities/defaultStream.hpp"
63#include "utilities/events.hpp"
64#include "utilities/growableArray.hpp"
65#include "utilities/vmError.hpp"
66
67// put OS-includes here
68# include <sys/types.h>
69# include <sys/mman.h>
70# include <sys/stat.h>
71# include <sys/select.h>
72# include <pthread.h>
73# include <signal.h>
74# include <errno.h>
75# include <dlfcn.h>
76# include <stdio.h>
77# include <unistd.h>
78# include <sys/resource.h>
79# include <pthread.h>
80# include <sys/stat.h>
81# include <sys/time.h>
82# include <sys/times.h>
83# include <sys/utsname.h>
84# include <sys/socket.h>
85# include <sys/wait.h>
86# include <pwd.h>
87# include <poll.h>
88# include <semaphore.h>
89# include <fcntl.h>
90# include <string.h>
91# include <syscall.h>
92# include <sys/sysinfo.h>
93# include <gnu/libc-version.h>
94# include <sys/ipc.h>
95# include <sys/shm.h>
96# include <link.h>
97# include <stdint.h>
98# include <inttypes.h>
99# include <sys/ioctl.h>
100
101#define MAX_PATH    (2 * K)
102
103// for timer info max values which include all bits
104#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
105
106#define LARGEPAGES_BIT (1 << 6)
107////////////////////////////////////////////////////////////////////////////////
108// global variables
109julong os::Linux::_physical_memory = 0;
110
111address   os::Linux::_initial_thread_stack_bottom = NULL;
112uintptr_t os::Linux::_initial_thread_stack_size   = 0;
113
114int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
115int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
116Mutex* os::Linux::_createThread_lock = NULL;
117pthread_t os::Linux::_main_thread;
118int os::Linux::_page_size = -1;
119bool os::Linux::_is_floating_stack = false;
120bool os::Linux::_is_NPTL = false;
121bool os::Linux::_supports_fast_thread_cpu_time = false;
122const char * os::Linux::_glibc_version = NULL;
123const char * os::Linux::_libpthread_version = NULL;
124
125static jlong initial_time_count=0;
126
127static int clock_tics_per_sec = 100;
128
129// For diagnostics to print a message once. see run_periodic_checks
130static sigset_t check_signal_done;
131static bool check_signals = true;;
132
133static pid_t _initial_pid = 0;
134
135/* Signal number used to suspend/resume a thread */
136
137/* do not use any signal number less than SIGSEGV, see 4355769 */
138static int SR_signum = SIGUSR2;
139sigset_t SR_sigset;
140
141/* Used to protect dlsym() calls */
142static pthread_mutex_t dl_mutex;
143
144#ifdef JAVASE_EMBEDDED
145class MemNotifyThread: public Thread {
146  friend class VMStructs;
147 public:
148  virtual void run();
149
150 private:
151  static MemNotifyThread* _memnotify_thread;
152  int _fd;
153
154 public:
155
156  // Constructor
157  MemNotifyThread(int fd);
158
159  // Tester
160  bool is_memnotify_thread() const { return true; }
161
162  // Printing
163  char* name() const { return (char*)"Linux MemNotify Thread"; }
164
165  // Returns the single instance of the MemNotifyThread
166  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
167
168  // Create and start the single instance of MemNotifyThread
169  static void start();
170};
171#endif // JAVASE_EMBEDDED
172
173// utility functions
174
175static int SR_initialize();
176static int SR_finalize();
177
178julong os::available_memory() {
179  return Linux::available_memory();
180}
181
182julong os::Linux::available_memory() {
183  // values in struct sysinfo are "unsigned long"
184  struct sysinfo si;
185  sysinfo(&si);
186
187  return (julong)si.freeram * si.mem_unit;
188}
189
190julong os::physical_memory() {
191  return Linux::physical_memory();
192}
193
194julong os::allocatable_physical_memory(julong size) {
195#ifdef _LP64
196  return size;
197#else
198  julong result = MIN2(size, (julong)3800*M);
199   if (!is_allocatable(result)) {
200     // See comments under solaris for alignment considerations
201     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
202     result =  MIN2(size, reasonable_size);
203   }
204   return result;
205#endif // _LP64
206}
207
208////////////////////////////////////////////////////////////////////////////////
209// environment support
210
211bool os::getenv(const char* name, char* buf, int len) {
212  const char* val = ::getenv(name);
213  if (val != NULL && strlen(val) < (size_t)len) {
214    strcpy(buf, val);
215    return true;
216  }
217  if (len > 0) buf[0] = 0;  // return a null string
218  return false;
219}
220
221
222// Return true if user is running as root.
223
224bool os::have_special_privileges() {
225  static bool init = false;
226  static bool privileges = false;
227  if (!init) {
228    privileges = (getuid() != geteuid()) || (getgid() != getegid());
229    init = true;
230  }
231  return privileges;
232}
233
234
235#ifndef SYS_gettid
236// i386: 224, ia64: 1105, amd64: 186, sparc 143
237#ifdef __ia64__
238#define SYS_gettid 1105
239#elif __i386__
240#define SYS_gettid 224
241#elif __amd64__
242#define SYS_gettid 186
243#elif __sparc__
244#define SYS_gettid 143
245#else
246#error define gettid for the arch
247#endif
248#endif
249
250// Cpu architecture string
251#if   defined(ZERO)
252static char cpu_arch[] = ZERO_LIBARCH;
253#elif defined(IA64)
254static char cpu_arch[] = "ia64";
255#elif defined(IA32)
256static char cpu_arch[] = "i386";
257#elif defined(AMD64)
258static char cpu_arch[] = "amd64";
259#elif defined(ARM)
260static char cpu_arch[] = "arm";
261#elif defined(PPC)
262static char cpu_arch[] = "ppc";
263#elif defined(SPARC)
264#  ifdef _LP64
265static char cpu_arch[] = "sparcv9";
266#  else
267static char cpu_arch[] = "sparc";
268#  endif
269#else
270#error Add appropriate cpu_arch setting
271#endif
272
273
274// pid_t gettid()
275//
276// Returns the kernel thread id of the currently running thread. Kernel
277// thread id is used to access /proc.
278//
279// (Note that getpid() on LinuxThreads returns kernel thread id too; but
280// on NPTL, it returns the same pid for all threads, as required by POSIX.)
281//
282pid_t os::Linux::gettid() {
283  int rslt = syscall(SYS_gettid);
284  if (rslt == -1) {
285     // old kernel, no NPTL support
286     return getpid();
287  } else {
288     return (pid_t)rslt;
289  }
290}
291
292// Most versions of linux have a bug where the number of processors are
293// determined by looking at the /proc file system.  In a chroot environment,
294// the system call returns 1.  This causes the VM to act as if it is
295// a single processor and elide locking (see is_MP() call).
296static bool unsafe_chroot_detected = false;
297static const char *unstable_chroot_error = "/proc file system not found.\n"
298                     "Java may be unstable running multithreaded in a chroot "
299                     "environment on Linux when /proc filesystem is not mounted.";
300
301void os::Linux::initialize_system_info() {
302  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
303  if (processor_count() == 1) {
304    pid_t pid = os::Linux::gettid();
305    char fname[32];
306    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
307    FILE *fp = fopen(fname, "r");
308    if (fp == NULL) {
309      unsafe_chroot_detected = true;
310    } else {
311      fclose(fp);
312    }
313  }
314  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
315  assert(processor_count() > 0, "linux error");
316}
317
318void os::init_system_properties_values() {
319//  char arch[12];
320//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
321
322  // The next steps are taken in the product version:
323  //
324  // Obtain the JAVA_HOME value from the location of libjvm.so.
325  // This library should be located at:
326  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
327  //
328  // If "/jre/lib/" appears at the right place in the path, then we
329  // assume libjvm.so is installed in a JDK and we use this path.
330  //
331  // Otherwise exit with message: "Could not create the Java virtual machine."
332  //
333  // The following extra steps are taken in the debugging version:
334  //
335  // If "/jre/lib/" does NOT appear at the right place in the path
336  // instead of exit check for $JAVA_HOME environment variable.
337  //
338  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
339  // then we append a fake suffix "hotspot/libjvm.so" to this path so
340  // it looks like libjvm.so is installed there
341  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
342  //
343  // Otherwise exit.
344  //
345  // Important note: if the location of libjvm.so changes this
346  // code needs to be changed accordingly.
347
348  // The next few definitions allow the code to be verbatim:
349#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
350#define getenv(n) ::getenv(n)
351
352/*
353 * See ld(1):
354 *      The linker uses the following search paths to locate required
355 *      shared libraries:
356 *        1: ...
357 *        ...
358 *        7: The default directories, normally /lib and /usr/lib.
359 */
360#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
361#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
362#else
363#define DEFAULT_LIBPATH "/lib:/usr/lib"
364#endif
365
366#define EXTENSIONS_DIR  "/lib/ext"
367#define ENDORSED_DIR    "/lib/endorsed"
368#define REG_DIR         "/usr/java/packages"
369
370  {
371    /* sysclasspath, java_home, dll_dir */
372    {
373        char *home_path;
374        char *dll_path;
375        char *pslash;
376        char buf[MAXPATHLEN];
377        os::jvm_path(buf, sizeof(buf));
378
379        // Found the full path to libjvm.so.
380        // Now cut the path to <java_home>/jre if we can.
381        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
382        pslash = strrchr(buf, '/');
383        if (pslash != NULL)
384            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
385        dll_path = malloc(strlen(buf) + 1);
386        if (dll_path == NULL)
387            return;
388        strcpy(dll_path, buf);
389        Arguments::set_dll_dir(dll_path);
390
391        if (pslash != NULL) {
392            pslash = strrchr(buf, '/');
393            if (pslash != NULL) {
394                *pslash = '\0';       /* get rid of /<arch> */
395                pslash = strrchr(buf, '/');
396                if (pslash != NULL)
397                    *pslash = '\0';   /* get rid of /lib */
398            }
399        }
400
401        home_path = malloc(strlen(buf) + 1);
402        if (home_path == NULL)
403            return;
404        strcpy(home_path, buf);
405        Arguments::set_java_home(home_path);
406
407        if (!set_boot_path('/', ':'))
408            return;
409    }
410
411    /*
412     * Where to look for native libraries
413     *
414     * Note: Due to a legacy implementation, most of the library path
415     * is set in the launcher.  This was to accomodate linking restrictions
416     * on legacy Linux implementations (which are no longer supported).
417     * Eventually, all the library path setting will be done here.
418     *
419     * However, to prevent the proliferation of improperly built native
420     * libraries, the new path component /usr/java/packages is added here.
421     * Eventually, all the library path setting will be done here.
422     */
423    {
424        char *ld_library_path;
425
426        /*
427         * Construct the invariant part of ld_library_path. Note that the
428         * space for the colon and the trailing null are provided by the
429         * nulls included by the sizeof operator (so actually we allocate
430         * a byte more than necessary).
431         */
432        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
433            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
434        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
435
436        /*
437         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
438         * should always exist (until the legacy problem cited above is
439         * addressed).
440         */
441        char *v = getenv("LD_LIBRARY_PATH");
442        if (v != NULL) {
443            char *t = ld_library_path;
444            /* That's +1 for the colon and +1 for the trailing '\0' */
445            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
446            sprintf(ld_library_path, "%s:%s", v, t);
447        }
448        Arguments::set_library_path(ld_library_path);
449    }
450
451    /*
452     * Extensions directories.
453     *
454     * Note that the space for the colon and the trailing null are provided
455     * by the nulls included by the sizeof operator (so actually one byte more
456     * than necessary is allocated).
457     */
458    {
459        char *buf = malloc(strlen(Arguments::get_java_home()) +
460            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
461        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
462            Arguments::get_java_home());
463        Arguments::set_ext_dirs(buf);
464    }
465
466    /* Endorsed standards default directory. */
467    {
468        char * buf;
469        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
470        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
471        Arguments::set_endorsed_dirs(buf);
472    }
473  }
474
475#undef malloc
476#undef getenv
477#undef EXTENSIONS_DIR
478#undef ENDORSED_DIR
479
480  // Done
481  return;
482}
483
484////////////////////////////////////////////////////////////////////////////////
485// breakpoint support
486
487void os::breakpoint() {
488  BREAKPOINT;
489}
490
491extern "C" void breakpoint() {
492  // use debugger to set breakpoint here
493}
494
495////////////////////////////////////////////////////////////////////////////////
496// signal support
497
498debug_only(static bool signal_sets_initialized = false);
499static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
500
501bool os::Linux::is_sig_ignored(int sig) {
502      struct sigaction oact;
503      sigaction(sig, (struct sigaction*)NULL, &oact);
504      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
505                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
506      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
507           return true;
508      else
509           return false;
510}
511
512void os::Linux::signal_sets_init() {
513  // Should also have an assertion stating we are still single-threaded.
514  assert(!signal_sets_initialized, "Already initialized");
515  // Fill in signals that are necessarily unblocked for all threads in
516  // the VM. Currently, we unblock the following signals:
517  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
518  //                         by -Xrs (=ReduceSignalUsage));
519  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
520  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
521  // the dispositions or masks wrt these signals.
522  // Programs embedding the VM that want to use the above signals for their
523  // own purposes must, at this time, use the "-Xrs" option to prevent
524  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
525  // (See bug 4345157, and other related bugs).
526  // In reality, though, unblocking these signals is really a nop, since
527  // these signals are not blocked by default.
528  sigemptyset(&unblocked_sigs);
529  sigemptyset(&allowdebug_blocked_sigs);
530  sigaddset(&unblocked_sigs, SIGILL);
531  sigaddset(&unblocked_sigs, SIGSEGV);
532  sigaddset(&unblocked_sigs, SIGBUS);
533  sigaddset(&unblocked_sigs, SIGFPE);
534  sigaddset(&unblocked_sigs, SR_signum);
535
536  if (!ReduceSignalUsage) {
537   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
538      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
539      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
540   }
541   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
542      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
543      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
544   }
545   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
546      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
547      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
548   }
549  }
550  // Fill in signals that are blocked by all but the VM thread.
551  sigemptyset(&vm_sigs);
552  if (!ReduceSignalUsage)
553    sigaddset(&vm_sigs, BREAK_SIGNAL);
554  debug_only(signal_sets_initialized = true);
555
556}
557
558// These are signals that are unblocked while a thread is running Java.
559// (For some reason, they get blocked by default.)
560sigset_t* os::Linux::unblocked_signals() {
561  assert(signal_sets_initialized, "Not initialized");
562  return &unblocked_sigs;
563}
564
565// These are the signals that are blocked while a (non-VM) thread is
566// running Java. Only the VM thread handles these signals.
567sigset_t* os::Linux::vm_signals() {
568  assert(signal_sets_initialized, "Not initialized");
569  return &vm_sigs;
570}
571
572// These are signals that are blocked during cond_wait to allow debugger in
573sigset_t* os::Linux::allowdebug_blocked_signals() {
574  assert(signal_sets_initialized, "Not initialized");
575  return &allowdebug_blocked_sigs;
576}
577
578void os::Linux::hotspot_sigmask(Thread* thread) {
579
580  //Save caller's signal mask before setting VM signal mask
581  sigset_t caller_sigmask;
582  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
583
584  OSThread* osthread = thread->osthread();
585  osthread->set_caller_sigmask(caller_sigmask);
586
587  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
588
589  if (!ReduceSignalUsage) {
590    if (thread->is_VM_thread()) {
591      // Only the VM thread handles BREAK_SIGNAL ...
592      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
593    } else {
594      // ... all other threads block BREAK_SIGNAL
595      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
596    }
597  }
598}
599
600//////////////////////////////////////////////////////////////////////////////
601// detecting pthread library
602
603void os::Linux::libpthread_init() {
604  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
605  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
606  // generic name for earlier versions.
607  // Define macros here so we can build HotSpot on old systems.
608# ifndef _CS_GNU_LIBC_VERSION
609# define _CS_GNU_LIBC_VERSION 2
610# endif
611# ifndef _CS_GNU_LIBPTHREAD_VERSION
612# define _CS_GNU_LIBPTHREAD_VERSION 3
613# endif
614
615  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
616  if (n > 0) {
617     char *str = (char *)malloc(n, mtInternal);
618     confstr(_CS_GNU_LIBC_VERSION, str, n);
619     os::Linux::set_glibc_version(str);
620  } else {
621     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
622     static char _gnu_libc_version[32];
623     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
624              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
625     os::Linux::set_glibc_version(_gnu_libc_version);
626  }
627
628  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
629  if (n > 0) {
630     char *str = (char *)malloc(n, mtInternal);
631     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
632     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
633     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
634     // is the case. LinuxThreads has a hard limit on max number of threads.
635     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
636     // On the other hand, NPTL does not have such a limit, sysconf()
637     // will return -1 and errno is not changed. Check if it is really NPTL.
638     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
639         strstr(str, "NPTL") &&
640         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
641       free(str);
642       os::Linux::set_libpthread_version("linuxthreads");
643     } else {
644       os::Linux::set_libpthread_version(str);
645     }
646  } else {
647    // glibc before 2.3.2 only has LinuxThreads.
648    os::Linux::set_libpthread_version("linuxthreads");
649  }
650
651  if (strstr(libpthread_version(), "NPTL")) {
652     os::Linux::set_is_NPTL();
653  } else {
654     os::Linux::set_is_LinuxThreads();
655  }
656
657  // LinuxThreads have two flavors: floating-stack mode, which allows variable
658  // stack size; and fixed-stack mode. NPTL is always floating-stack.
659  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
660     os::Linux::set_is_floating_stack();
661  }
662}
663
664/////////////////////////////////////////////////////////////////////////////
665// thread stack
666
667// Force Linux kernel to expand current thread stack. If "bottom" is close
668// to the stack guard, caller should block all signals.
669//
670// MAP_GROWSDOWN:
671//   A special mmap() flag that is used to implement thread stacks. It tells
672//   kernel that the memory region should extend downwards when needed. This
673//   allows early versions of LinuxThreads to only mmap the first few pages
674//   when creating a new thread. Linux kernel will automatically expand thread
675//   stack as needed (on page faults).
676//
677//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
678//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
679//   region, it's hard to tell if the fault is due to a legitimate stack
680//   access or because of reading/writing non-exist memory (e.g. buffer
681//   overrun). As a rule, if the fault happens below current stack pointer,
682//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
683//   application (see Linux kernel fault.c).
684//
685//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
686//   stack overflow detection.
687//
688//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
689//   not use this flag. However, the stack of initial thread is not created
690//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
691//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
692//   and then attach the thread to JVM.
693//
694// To get around the problem and allow stack banging on Linux, we need to
695// manually expand thread stack after receiving the SIGSEGV.
696//
697// There are two ways to expand thread stack to address "bottom", we used
698// both of them in JVM before 1.5:
699//   1. adjust stack pointer first so that it is below "bottom", and then
700//      touch "bottom"
701//   2. mmap() the page in question
702//
703// Now alternate signal stack is gone, it's harder to use 2. For instance,
704// if current sp is already near the lower end of page 101, and we need to
705// call mmap() to map page 100, it is possible that part of the mmap() frame
706// will be placed in page 100. When page 100 is mapped, it is zero-filled.
707// That will destroy the mmap() frame and cause VM to crash.
708//
709// The following code works by adjusting sp first, then accessing the "bottom"
710// page to force a page fault. Linux kernel will then automatically expand the
711// stack mapping.
712//
713// _expand_stack_to() assumes its frame size is less than page size, which
714// should always be true if the function is not inlined.
715
716#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
717#define NOINLINE
718#else
719#define NOINLINE __attribute__ ((noinline))
720#endif
721
722static void _expand_stack_to(address bottom) NOINLINE;
723
724static void _expand_stack_to(address bottom) {
725  address sp;
726  size_t size;
727  volatile char *p;
728
729  // Adjust bottom to point to the largest address within the same page, it
730  // gives us a one-page buffer if alloca() allocates slightly more memory.
731  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
732  bottom += os::Linux::page_size() - 1;
733
734  // sp might be slightly above current stack pointer; if that's the case, we
735  // will alloca() a little more space than necessary, which is OK. Don't use
736  // os::current_stack_pointer(), as its result can be slightly below current
737  // stack pointer, causing us to not alloca enough to reach "bottom".
738  sp = (address)&sp;
739
740  if (sp > bottom) {
741    size = sp - bottom;
742    p = (volatile char *)alloca(size);
743    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
744    p[0] = '\0';
745  }
746}
747
748bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
749  assert(t!=NULL, "just checking");
750  assert(t->osthread()->expanding_stack(), "expand should be set");
751  assert(t->stack_base() != NULL, "stack_base was not initialized");
752
753  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
754    sigset_t mask_all, old_sigset;
755    sigfillset(&mask_all);
756    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
757    _expand_stack_to(addr);
758    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
759    return true;
760  }
761  return false;
762}
763
764//////////////////////////////////////////////////////////////////////////////
765// create new thread
766
767static address highest_vm_reserved_address();
768
769// check if it's safe to start a new thread
770static bool _thread_safety_check(Thread* thread) {
771  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
772    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
773    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
774    //   allocated (MAP_FIXED) from high address space. Every thread stack
775    //   occupies a fixed size slot (usually 2Mbytes, but user can change
776    //   it to other values if they rebuild LinuxThreads).
777    //
778    // Problem with MAP_FIXED is that mmap() can still succeed even part of
779    // the memory region has already been mmap'ed. That means if we have too
780    // many threads and/or very large heap, eventually thread stack will
781    // collide with heap.
782    //
783    // Here we try to prevent heap/stack collision by comparing current
784    // stack bottom with the highest address that has been mmap'ed by JVM
785    // plus a safety margin for memory maps created by native code.
786    //
787    // This feature can be disabled by setting ThreadSafetyMargin to 0
788    //
789    if (ThreadSafetyMargin > 0) {
790      address stack_bottom = os::current_stack_base() - os::current_stack_size();
791
792      // not safe if our stack extends below the safety margin
793      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
794    } else {
795      return true;
796    }
797  } else {
798    // Floating stack LinuxThreads or NPTL:
799    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
800    //   there's not enough space left, pthread_create() will fail. If we come
801    //   here, that means enough space has been reserved for stack.
802    return true;
803  }
804}
805
806// Thread start routine for all newly created threads
807static void *java_start(Thread *thread) {
808  // Try to randomize the cache line index of hot stack frames.
809  // This helps when threads of the same stack traces evict each other's
810  // cache lines. The threads can be either from the same JVM instance, or
811  // from different JVM instances. The benefit is especially true for
812  // processors with hyperthreading technology.
813  static int counter = 0;
814  int pid = os::current_process_id();
815  alloca(((pid ^ counter++) & 7) * 128);
816
817  ThreadLocalStorage::set_thread(thread);
818
819  OSThread* osthread = thread->osthread();
820  Monitor* sync = osthread->startThread_lock();
821
822  // non floating stack LinuxThreads needs extra check, see above
823  if (!_thread_safety_check(thread)) {
824    // notify parent thread
825    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
826    osthread->set_state(ZOMBIE);
827    sync->notify_all();
828    return NULL;
829  }
830
831  // thread_id is kernel thread id (similar to Solaris LWP id)
832  osthread->set_thread_id(os::Linux::gettid());
833
834  if (UseNUMA) {
835    int lgrp_id = os::numa_get_group_id();
836    if (lgrp_id != -1) {
837      thread->set_lgrp_id(lgrp_id);
838    }
839  }
840  // initialize signal mask for this thread
841  os::Linux::hotspot_sigmask(thread);
842
843  // initialize floating point control register
844  os::Linux::init_thread_fpu_state();
845
846  // handshaking with parent thread
847  {
848    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
849
850    // notify parent thread
851    osthread->set_state(INITIALIZED);
852    sync->notify_all();
853
854    // wait until os::start_thread()
855    while (osthread->get_state() == INITIALIZED) {
856      sync->wait(Mutex::_no_safepoint_check_flag);
857    }
858  }
859
860  // call one more level start routine
861  thread->run();
862
863  return 0;
864}
865
866bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
867  assert(thread->osthread() == NULL, "caller responsible");
868
869  // Allocate the OSThread object
870  OSThread* osthread = new OSThread(NULL, NULL);
871  if (osthread == NULL) {
872    return false;
873  }
874
875  // set the correct thread state
876  osthread->set_thread_type(thr_type);
877
878  // Initial state is ALLOCATED but not INITIALIZED
879  osthread->set_state(ALLOCATED);
880
881  thread->set_osthread(osthread);
882
883  // init thread attributes
884  pthread_attr_t attr;
885  pthread_attr_init(&attr);
886  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
887
888  // stack size
889  if (os::Linux::supports_variable_stack_size()) {
890    // calculate stack size if it's not specified by caller
891    if (stack_size == 0) {
892      stack_size = os::Linux::default_stack_size(thr_type);
893
894      switch (thr_type) {
895      case os::java_thread:
896        // Java threads use ThreadStackSize which default value can be
897        // changed with the flag -Xss
898        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
899        stack_size = JavaThread::stack_size_at_create();
900        break;
901      case os::compiler_thread:
902        if (CompilerThreadStackSize > 0) {
903          stack_size = (size_t)(CompilerThreadStackSize * K);
904          break;
905        } // else fall through:
906          // use VMThreadStackSize if CompilerThreadStackSize is not defined
907      case os::vm_thread:
908      case os::pgc_thread:
909      case os::cgc_thread:
910      case os::watcher_thread:
911        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
912        break;
913      }
914    }
915
916    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
917    pthread_attr_setstacksize(&attr, stack_size);
918  } else {
919    // let pthread_create() pick the default value.
920  }
921
922  // glibc guard page
923  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
924
925  ThreadState state;
926
927  {
928    // Serialize thread creation if we are running with fixed stack LinuxThreads
929    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
930    if (lock) {
931      os::Linux::createThread_lock()->lock_without_safepoint_check();
932    }
933
934    pthread_t tid;
935    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
936
937    pthread_attr_destroy(&attr);
938
939    if (ret != 0) {
940      if (PrintMiscellaneous && (Verbose || WizardMode)) {
941        perror("pthread_create()");
942      }
943      // Need to clean up stuff we've allocated so far
944      thread->set_osthread(NULL);
945      delete osthread;
946      if (lock) os::Linux::createThread_lock()->unlock();
947      return false;
948    }
949
950    // Store pthread info into the OSThread
951    osthread->set_pthread_id(tid);
952
953    // Wait until child thread is either initialized or aborted
954    {
955      Monitor* sync_with_child = osthread->startThread_lock();
956      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
957      while ((state = osthread->get_state()) == ALLOCATED) {
958        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
959      }
960    }
961
962    if (lock) {
963      os::Linux::createThread_lock()->unlock();
964    }
965  }
966
967  // Aborted due to thread limit being reached
968  if (state == ZOMBIE) {
969      thread->set_osthread(NULL);
970      delete osthread;
971      return false;
972  }
973
974  // The thread is returned suspended (in state INITIALIZED),
975  // and is started higher up in the call chain
976  assert(state == INITIALIZED, "race condition");
977  return true;
978}
979
980/////////////////////////////////////////////////////////////////////////////
981// attach existing thread
982
983// bootstrap the main thread
984bool os::create_main_thread(JavaThread* thread) {
985  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
986  return create_attached_thread(thread);
987}
988
989bool os::create_attached_thread(JavaThread* thread) {
990#ifdef ASSERT
991    thread->verify_not_published();
992#endif
993
994  // Allocate the OSThread object
995  OSThread* osthread = new OSThread(NULL, NULL);
996
997  if (osthread == NULL) {
998    return false;
999  }
1000
1001  // Store pthread info into the OSThread
1002  osthread->set_thread_id(os::Linux::gettid());
1003  osthread->set_pthread_id(::pthread_self());
1004
1005  // initialize floating point control register
1006  os::Linux::init_thread_fpu_state();
1007
1008  // Initial thread state is RUNNABLE
1009  osthread->set_state(RUNNABLE);
1010
1011  thread->set_osthread(osthread);
1012
1013  if (UseNUMA) {
1014    int lgrp_id = os::numa_get_group_id();
1015    if (lgrp_id != -1) {
1016      thread->set_lgrp_id(lgrp_id);
1017    }
1018  }
1019
1020  if (os::Linux::is_initial_thread()) {
1021    // If current thread is initial thread, its stack is mapped on demand,
1022    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023    // the entire stack region to avoid SEGV in stack banging.
1024    // It is also useful to get around the heap-stack-gap problem on SuSE
1025    // kernel (see 4821821 for details). We first expand stack to the top
1026    // of yellow zone, then enable stack yellow zone (order is significant,
1027    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028    // is no gap between the last two virtual memory regions.
1029
1030    JavaThread *jt = (JavaThread *)thread;
1031    address addr = jt->stack_yellow_zone_base();
1032    assert(addr != NULL, "initialization problem?");
1033    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034
1035    osthread->set_expanding_stack();
1036    os::Linux::manually_expand_stack(jt, addr);
1037    osthread->clear_expanding_stack();
1038  }
1039
1040  // initialize signal mask for this thread
1041  // and save the caller's signal mask
1042  os::Linux::hotspot_sigmask(thread);
1043
1044  return true;
1045}
1046
1047void os::pd_start_thread(Thread* thread) {
1048  OSThread * osthread = thread->osthread();
1049  assert(osthread->get_state() != INITIALIZED, "just checking");
1050  Monitor* sync_with_child = osthread->startThread_lock();
1051  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052  sync_with_child->notify();
1053}
1054
1055// Free Linux resources related to the OSThread
1056void os::free_thread(OSThread* osthread) {
1057  assert(osthread != NULL, "osthread not set");
1058
1059  if (Thread::current()->osthread() == osthread) {
1060    // Restore caller's signal mask
1061    sigset_t sigmask = osthread->caller_sigmask();
1062    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063   }
1064
1065  delete osthread;
1066}
1067
1068//////////////////////////////////////////////////////////////////////////////
1069// thread local storage
1070
1071int os::allocate_thread_local_storage() {
1072  pthread_key_t key;
1073  int rslt = pthread_key_create(&key, NULL);
1074  assert(rslt == 0, "cannot allocate thread local storage");
1075  return (int)key;
1076}
1077
1078// Note: This is currently not used by VM, as we don't destroy TLS key
1079// on VM exit.
1080void os::free_thread_local_storage(int index) {
1081  int rslt = pthread_key_delete((pthread_key_t)index);
1082  assert(rslt == 0, "invalid index");
1083}
1084
1085void os::thread_local_storage_at_put(int index, void* value) {
1086  int rslt = pthread_setspecific((pthread_key_t)index, value);
1087  assert(rslt == 0, "pthread_setspecific failed");
1088}
1089
1090extern "C" Thread* get_thread() {
1091  return ThreadLocalStorage::thread();
1092}
1093
1094//////////////////////////////////////////////////////////////////////////////
1095// initial thread
1096
1097// Check if current thread is the initial thread, similar to Solaris thr_main.
1098bool os::Linux::is_initial_thread(void) {
1099  char dummy;
1100  // If called before init complete, thread stack bottom will be null.
1101  // Can be called if fatal error occurs before initialization.
1102  if (initial_thread_stack_bottom() == NULL) return false;
1103  assert(initial_thread_stack_bottom() != NULL &&
1104         initial_thread_stack_size()   != 0,
1105         "os::init did not locate initial thread's stack region");
1106  if ((address)&dummy >= initial_thread_stack_bottom() &&
1107      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108       return true;
1109  else return false;
1110}
1111
1112// Find the virtual memory area that contains addr
1113static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114  FILE *fp = fopen("/proc/self/maps", "r");
1115  if (fp) {
1116    address low, high;
1117    while (!feof(fp)) {
1118      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119        if (low <= addr && addr < high) {
1120           if (vma_low)  *vma_low  = low;
1121           if (vma_high) *vma_high = high;
1122           fclose (fp);
1123           return true;
1124        }
1125      }
1126      for (;;) {
1127        int ch = fgetc(fp);
1128        if (ch == EOF || ch == (int)'\n') break;
1129      }
1130    }
1131    fclose(fp);
1132  }
1133  return false;
1134}
1135
1136// Locate initial thread stack. This special handling of initial thread stack
1137// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138// bogus value for initial thread.
1139void os::Linux::capture_initial_stack(size_t max_size) {
1140  // stack size is the easy part, get it from RLIMIT_STACK
1141  size_t stack_size;
1142  struct rlimit rlim;
1143  getrlimit(RLIMIT_STACK, &rlim);
1144  stack_size = rlim.rlim_cur;
1145
1146  // 6308388: a bug in ld.so will relocate its own .data section to the
1147  //   lower end of primordial stack; reduce ulimit -s value a little bit
1148  //   so we won't install guard page on ld.so's data section.
1149  stack_size -= 2 * page_size();
1150
1151  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152  //   7.1, in both cases we will get 2G in return value.
1153  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156  //   in case other parts in glibc still assumes 2M max stack size.
1157  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1159  if (stack_size > 2 * K * K IA64_ONLY(*2))
1160      stack_size = 2 * K * K IA64_ONLY(*2);
1161  // Try to figure out where the stack base (top) is. This is harder.
1162  //
1163  // When an application is started, glibc saves the initial stack pointer in
1164  // a global variable "__libc_stack_end", which is then used by system
1165  // libraries. __libc_stack_end should be pretty close to stack top. The
1166  // variable is available since the very early days. However, because it is
1167  // a private interface, it could disappear in the future.
1168  //
1169  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1170  // to __libc_stack_end, it is very close to stack top, but isn't the real
1171  // stack top. Note that /proc may not exist if VM is running as a chroot
1172  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1173  // /proc/<pid>/stat could change in the future (though unlikely).
1174  //
1175  // We try __libc_stack_end first. If that doesn't work, look for
1176  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1177  // as a hint, which should work well in most cases.
1178
1179  uintptr_t stack_start;
1180
1181  // try __libc_stack_end first
1182  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1183  if (p && *p) {
1184    stack_start = *p;
1185  } else {
1186    // see if we can get the start_stack field from /proc/self/stat
1187    FILE *fp;
1188    int pid;
1189    char state;
1190    int ppid;
1191    int pgrp;
1192    int session;
1193    int nr;
1194    int tpgrp;
1195    unsigned long flags;
1196    unsigned long minflt;
1197    unsigned long cminflt;
1198    unsigned long majflt;
1199    unsigned long cmajflt;
1200    unsigned long utime;
1201    unsigned long stime;
1202    long cutime;
1203    long cstime;
1204    long prio;
1205    long nice;
1206    long junk;
1207    long it_real;
1208    uintptr_t start;
1209    uintptr_t vsize;
1210    intptr_t rss;
1211    uintptr_t rsslim;
1212    uintptr_t scodes;
1213    uintptr_t ecode;
1214    int i;
1215
1216    // Figure what the primordial thread stack base is. Code is inspired
1217    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1218    // followed by command name surrounded by parentheses, state, etc.
1219    char stat[2048];
1220    int statlen;
1221
1222    fp = fopen("/proc/self/stat", "r");
1223    if (fp) {
1224      statlen = fread(stat, 1, 2047, fp);
1225      stat[statlen] = '\0';
1226      fclose(fp);
1227
1228      // Skip pid and the command string. Note that we could be dealing with
1229      // weird command names, e.g. user could decide to rename java launcher
1230      // to "java 1.4.2 :)", then the stat file would look like
1231      //                1234 (java 1.4.2 :)) R ... ...
1232      // We don't really need to know the command string, just find the last
1233      // occurrence of ")" and then start parsing from there. See bug 4726580.
1234      char * s = strrchr(stat, ')');
1235
1236      i = 0;
1237      if (s) {
1238        // Skip blank chars
1239        do s++; while (isspace(*s));
1240
1241#define _UFM UINTX_FORMAT
1242#define _DFM INTX_FORMAT
1243
1244        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1245        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1246        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1247             &state,          /* 3  %c  */
1248             &ppid,           /* 4  %d  */
1249             &pgrp,           /* 5  %d  */
1250             &session,        /* 6  %d  */
1251             &nr,             /* 7  %d  */
1252             &tpgrp,          /* 8  %d  */
1253             &flags,          /* 9  %lu  */
1254             &minflt,         /* 10 %lu  */
1255             &cminflt,        /* 11 %lu  */
1256             &majflt,         /* 12 %lu  */
1257             &cmajflt,        /* 13 %lu  */
1258             &utime,          /* 14 %lu  */
1259             &stime,          /* 15 %lu  */
1260             &cutime,         /* 16 %ld  */
1261             &cstime,         /* 17 %ld  */
1262             &prio,           /* 18 %ld  */
1263             &nice,           /* 19 %ld  */
1264             &junk,           /* 20 %ld  */
1265             &it_real,        /* 21 %ld  */
1266             &start,          /* 22 UINTX_FORMAT */
1267             &vsize,          /* 23 UINTX_FORMAT */
1268             &rss,            /* 24 INTX_FORMAT  */
1269             &rsslim,         /* 25 UINTX_FORMAT */
1270             &scodes,         /* 26 UINTX_FORMAT */
1271             &ecode,          /* 27 UINTX_FORMAT */
1272             &stack_start);   /* 28 UINTX_FORMAT */
1273      }
1274
1275#undef _UFM
1276#undef _DFM
1277
1278      if (i != 28 - 2) {
1279         assert(false, "Bad conversion from /proc/self/stat");
1280         // product mode - assume we are the initial thread, good luck in the
1281         // embedded case.
1282         warning("Can't detect initial thread stack location - bad conversion");
1283         stack_start = (uintptr_t) &rlim;
1284      }
1285    } else {
1286      // For some reason we can't open /proc/self/stat (for example, running on
1287      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1288      // most cases, so don't abort:
1289      warning("Can't detect initial thread stack location - no /proc/self/stat");
1290      stack_start = (uintptr_t) &rlim;
1291    }
1292  }
1293
1294  // Now we have a pointer (stack_start) very close to the stack top, the
1295  // next thing to do is to figure out the exact location of stack top. We
1296  // can find out the virtual memory area that contains stack_start by
1297  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1298  // and its upper limit is the real stack top. (again, this would fail if
1299  // running inside chroot, because /proc may not exist.)
1300
1301  uintptr_t stack_top;
1302  address low, high;
1303  if (find_vma((address)stack_start, &low, &high)) {
1304    // success, "high" is the true stack top. (ignore "low", because initial
1305    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1306    stack_top = (uintptr_t)high;
1307  } else {
1308    // failed, likely because /proc/self/maps does not exist
1309    warning("Can't detect initial thread stack location - find_vma failed");
1310    // best effort: stack_start is normally within a few pages below the real
1311    // stack top, use it as stack top, and reduce stack size so we won't put
1312    // guard page outside stack.
1313    stack_top = stack_start;
1314    stack_size -= 16 * page_size();
1315  }
1316
1317  // stack_top could be partially down the page so align it
1318  stack_top = align_size_up(stack_top, page_size());
1319
1320  if (max_size && stack_size > max_size) {
1321     _initial_thread_stack_size = max_size;
1322  } else {
1323     _initial_thread_stack_size = stack_size;
1324  }
1325
1326  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1327  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1328}
1329
1330////////////////////////////////////////////////////////////////////////////////
1331// time support
1332
1333// Time since start-up in seconds to a fine granularity.
1334// Used by VMSelfDestructTimer and the MemProfiler.
1335double os::elapsedTime() {
1336
1337  return (double)(os::elapsed_counter()) * 0.000001;
1338}
1339
1340jlong os::elapsed_counter() {
1341  timeval time;
1342  int status = gettimeofday(&time, NULL);
1343  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1344}
1345
1346jlong os::elapsed_frequency() {
1347  return (1000 * 1000);
1348}
1349
1350// For now, we say that linux does not support vtime.  I have no idea
1351// whether it can actually be made to (DLD, 9/13/05).
1352
1353bool os::supports_vtime() { return false; }
1354bool os::enable_vtime()   { return false; }
1355bool os::vtime_enabled()  { return false; }
1356double os::elapsedVTime() {
1357  // better than nothing, but not much
1358  return elapsedTime();
1359}
1360
1361jlong os::javaTimeMillis() {
1362  timeval time;
1363  int status = gettimeofday(&time, NULL);
1364  assert(status != -1, "linux error");
1365  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1366}
1367
1368#ifndef CLOCK_MONOTONIC
1369#define CLOCK_MONOTONIC (1)
1370#endif
1371
1372void os::Linux::clock_init() {
1373  // we do dlopen's in this particular order due to bug in linux
1374  // dynamical loader (see 6348968) leading to crash on exit
1375  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1376  if (handle == NULL) {
1377    handle = dlopen("librt.so", RTLD_LAZY);
1378  }
1379
1380  if (handle) {
1381    int (*clock_getres_func)(clockid_t, struct timespec*) =
1382           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1383    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1384           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1385    if (clock_getres_func && clock_gettime_func) {
1386      // See if monotonic clock is supported by the kernel. Note that some
1387      // early implementations simply return kernel jiffies (updated every
1388      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1389      // for nano time (though the monotonic property is still nice to have).
1390      // It's fixed in newer kernels, however clock_getres() still returns
1391      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1392      // resolution for now. Hopefully as people move to new kernels, this
1393      // won't be a problem.
1394      struct timespec res;
1395      struct timespec tp;
1396      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1397          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1398        // yes, monotonic clock is supported
1399        _clock_gettime = clock_gettime_func;
1400      } else {
1401        // close librt if there is no monotonic clock
1402        dlclose(handle);
1403      }
1404    }
1405  }
1406}
1407
1408#ifndef SYS_clock_getres
1409
1410#if defined(IA32) || defined(AMD64)
1411#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1412#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1413#else
1414#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1415#define sys_clock_getres(x,y)  -1
1416#endif
1417
1418#else
1419#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1420#endif
1421
1422void os::Linux::fast_thread_clock_init() {
1423  if (!UseLinuxPosixThreadCPUClocks) {
1424    return;
1425  }
1426  clockid_t clockid;
1427  struct timespec tp;
1428  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1429      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1430
1431  // Switch to using fast clocks for thread cpu time if
1432  // the sys_clock_getres() returns 0 error code.
1433  // Note, that some kernels may support the current thread
1434  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1435  // returned by the pthread_getcpuclockid().
1436  // If the fast Posix clocks are supported then the sys_clock_getres()
1437  // must return at least tp.tv_sec == 0 which means a resolution
1438  // better than 1 sec. This is extra check for reliability.
1439
1440  if(pthread_getcpuclockid_func &&
1441     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1442     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1443
1444    _supports_fast_thread_cpu_time = true;
1445    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1446  }
1447}
1448
1449jlong os::javaTimeNanos() {
1450  if (Linux::supports_monotonic_clock()) {
1451    struct timespec tp;
1452    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1453    assert(status == 0, "gettime error");
1454    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1455    return result;
1456  } else {
1457    timeval time;
1458    int status = gettimeofday(&time, NULL);
1459    assert(status != -1, "linux error");
1460    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1461    return 1000 * usecs;
1462  }
1463}
1464
1465void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1466  if (Linux::supports_monotonic_clock()) {
1467    info_ptr->max_value = ALL_64_BITS;
1468
1469    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1470    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1471    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1472  } else {
1473    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1474    info_ptr->max_value = ALL_64_BITS;
1475
1476    // gettimeofday is a real time clock so it skips
1477    info_ptr->may_skip_backward = true;
1478    info_ptr->may_skip_forward = true;
1479  }
1480
1481  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1482}
1483
1484// Return the real, user, and system times in seconds from an
1485// arbitrary fixed point in the past.
1486bool os::getTimesSecs(double* process_real_time,
1487                      double* process_user_time,
1488                      double* process_system_time) {
1489  struct tms ticks;
1490  clock_t real_ticks = times(&ticks);
1491
1492  if (real_ticks == (clock_t) (-1)) {
1493    return false;
1494  } else {
1495    double ticks_per_second = (double) clock_tics_per_sec;
1496    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1497    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1498    *process_real_time = ((double) real_ticks) / ticks_per_second;
1499
1500    return true;
1501  }
1502}
1503
1504
1505char * os::local_time_string(char *buf, size_t buflen) {
1506  struct tm t;
1507  time_t long_time;
1508  time(&long_time);
1509  localtime_r(&long_time, &t);
1510  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1511               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1512               t.tm_hour, t.tm_min, t.tm_sec);
1513  return buf;
1514}
1515
1516struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1517  return localtime_r(clock, res);
1518}
1519
1520////////////////////////////////////////////////////////////////////////////////
1521// runtime exit support
1522
1523// Note: os::shutdown() might be called very early during initialization, or
1524// called from signal handler. Before adding something to os::shutdown(), make
1525// sure it is async-safe and can handle partially initialized VM.
1526void os::shutdown() {
1527
1528  // allow PerfMemory to attempt cleanup of any persistent resources
1529  perfMemory_exit();
1530
1531  // needs to remove object in file system
1532  AttachListener::abort();
1533
1534  // flush buffered output, finish log files
1535  ostream_abort();
1536
1537  // Check for abort hook
1538  abort_hook_t abort_hook = Arguments::abort_hook();
1539  if (abort_hook != NULL) {
1540    abort_hook();
1541  }
1542
1543}
1544
1545// Note: os::abort() might be called very early during initialization, or
1546// called from signal handler. Before adding something to os::abort(), make
1547// sure it is async-safe and can handle partially initialized VM.
1548void os::abort(bool dump_core) {
1549  os::shutdown();
1550  if (dump_core) {
1551#ifndef PRODUCT
1552    fdStream out(defaultStream::output_fd());
1553    out.print_raw("Current thread is ");
1554    char buf[16];
1555    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1556    out.print_raw_cr(buf);
1557    out.print_raw_cr("Dumping core ...");
1558#endif
1559    ::abort(); // dump core
1560  }
1561
1562  ::exit(1);
1563}
1564
1565// Die immediately, no exit hook, no abort hook, no cleanup.
1566void os::die() {
1567  // _exit() on LinuxThreads only kills current thread
1568  ::abort();
1569}
1570
1571// unused on linux for now.
1572void os::set_error_file(const char *logfile) {}
1573
1574
1575// This method is a copy of JDK's sysGetLastErrorString
1576// from src/solaris/hpi/src/system_md.c
1577
1578size_t os::lasterror(char *buf, size_t len) {
1579
1580  if (errno == 0)  return 0;
1581
1582  const char *s = ::strerror(errno);
1583  size_t n = ::strlen(s);
1584  if (n >= len) {
1585    n = len - 1;
1586  }
1587  ::strncpy(buf, s, n);
1588  buf[n] = '\0';
1589  return n;
1590}
1591
1592intx os::current_thread_id() { return (intx)pthread_self(); }
1593int os::current_process_id() {
1594
1595  // Under the old linux thread library, linux gives each thread
1596  // its own process id. Because of this each thread will return
1597  // a different pid if this method were to return the result
1598  // of getpid(2). Linux provides no api that returns the pid
1599  // of the launcher thread for the vm. This implementation
1600  // returns a unique pid, the pid of the launcher thread
1601  // that starts the vm 'process'.
1602
1603  // Under the NPTL, getpid() returns the same pid as the
1604  // launcher thread rather than a unique pid per thread.
1605  // Use gettid() if you want the old pre NPTL behaviour.
1606
1607  // if you are looking for the result of a call to getpid() that
1608  // returns a unique pid for the calling thread, then look at the
1609  // OSThread::thread_id() method in osThread_linux.hpp file
1610
1611  return (int)(_initial_pid ? _initial_pid : getpid());
1612}
1613
1614// DLL functions
1615
1616const char* os::dll_file_extension() { return ".so"; }
1617
1618// This must be hard coded because it's the system's temporary
1619// directory not the java application's temp directory, ala java.io.tmpdir.
1620const char* os::get_temp_directory() { return "/tmp"; }
1621
1622static bool file_exists(const char* filename) {
1623  struct stat statbuf;
1624  if (filename == NULL || strlen(filename) == 0) {
1625    return false;
1626  }
1627  return os::stat(filename, &statbuf) == 0;
1628}
1629
1630bool os::dll_build_name(char* buffer, size_t buflen,
1631                        const char* pname, const char* fname) {
1632  bool retval = false;
1633  // Copied from libhpi
1634  const size_t pnamelen = pname ? strlen(pname) : 0;
1635
1636  // Return error on buffer overflow.
1637  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1638    return retval;
1639  }
1640
1641  if (pnamelen == 0) {
1642    snprintf(buffer, buflen, "lib%s.so", fname);
1643    retval = true;
1644  } else if (strchr(pname, *os::path_separator()) != NULL) {
1645    int n;
1646    char** pelements = split_path(pname, &n);
1647    for (int i = 0 ; i < n ; i++) {
1648      // Really shouldn't be NULL, but check can't hurt
1649      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1650        continue; // skip the empty path values
1651      }
1652      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1653      if (file_exists(buffer)) {
1654        retval = true;
1655        break;
1656      }
1657    }
1658    // release the storage
1659    for (int i = 0 ; i < n ; i++) {
1660      if (pelements[i] != NULL) {
1661        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1662      }
1663    }
1664    if (pelements != NULL) {
1665      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1666    }
1667  } else {
1668    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1669    retval = true;
1670  }
1671  return retval;
1672}
1673
1674const char* os::get_current_directory(char *buf, int buflen) {
1675  return getcwd(buf, buflen);
1676}
1677
1678// check if addr is inside libjvm.so
1679bool os::address_is_in_vm(address addr) {
1680  static address libjvm_base_addr;
1681  Dl_info dlinfo;
1682
1683  if (libjvm_base_addr == NULL) {
1684    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1685    libjvm_base_addr = (address)dlinfo.dli_fbase;
1686    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1687  }
1688
1689  if (dladdr((void *)addr, &dlinfo)) {
1690    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1691  }
1692
1693  return false;
1694}
1695
1696bool os::dll_address_to_function_name(address addr, char *buf,
1697                                      int buflen, int *offset) {
1698  Dl_info dlinfo;
1699
1700  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1701    if (buf != NULL) {
1702      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1703        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1704      }
1705    }
1706    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1707    return true;
1708  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1709    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1710        buf, buflen, offset, dlinfo.dli_fname)) {
1711       return true;
1712    }
1713  }
1714
1715  if (buf != NULL) buf[0] = '\0';
1716  if (offset != NULL) *offset = -1;
1717  return false;
1718}
1719
1720struct _address_to_library_name {
1721  address addr;          // input : memory address
1722  size_t  buflen;        //         size of fname
1723  char*   fname;         // output: library name
1724  address base;          //         library base addr
1725};
1726
1727static int address_to_library_name_callback(struct dl_phdr_info *info,
1728                                            size_t size, void *data) {
1729  int i;
1730  bool found = false;
1731  address libbase = NULL;
1732  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1733
1734  // iterate through all loadable segments
1735  for (i = 0; i < info->dlpi_phnum; i++) {
1736    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1737    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1738      // base address of a library is the lowest address of its loaded
1739      // segments.
1740      if (libbase == NULL || libbase > segbase) {
1741        libbase = segbase;
1742      }
1743      // see if 'addr' is within current segment
1744      if (segbase <= d->addr &&
1745          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1746        found = true;
1747      }
1748    }
1749  }
1750
1751  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1752  // so dll_address_to_library_name() can fall through to use dladdr() which
1753  // can figure out executable name from argv[0].
1754  if (found && info->dlpi_name && info->dlpi_name[0]) {
1755    d->base = libbase;
1756    if (d->fname) {
1757      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1758    }
1759    return 1;
1760  }
1761  return 0;
1762}
1763
1764bool os::dll_address_to_library_name(address addr, char* buf,
1765                                     int buflen, int* offset) {
1766  Dl_info dlinfo;
1767  struct _address_to_library_name data;
1768
1769  // There is a bug in old glibc dladdr() implementation that it could resolve
1770  // to wrong library name if the .so file has a base address != NULL. Here
1771  // we iterate through the program headers of all loaded libraries to find
1772  // out which library 'addr' really belongs to. This workaround can be
1773  // removed once the minimum requirement for glibc is moved to 2.3.x.
1774  data.addr = addr;
1775  data.fname = buf;
1776  data.buflen = buflen;
1777  data.base = NULL;
1778  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1779
1780  if (rslt) {
1781     // buf already contains library name
1782     if (offset) *offset = addr - data.base;
1783     return true;
1784  } else if (dladdr((void*)addr, &dlinfo)){
1785     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1786     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1787     return true;
1788  } else {
1789     if (buf) buf[0] = '\0';
1790     if (offset) *offset = -1;
1791     return false;
1792  }
1793}
1794
1795  // Loads .dll/.so and
1796  // in case of error it checks if .dll/.so was built for the
1797  // same architecture as Hotspot is running on
1798
1799void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1800{
1801  void * result= ::dlopen(filename, RTLD_LAZY);
1802  if (result != NULL) {
1803    // Successful loading
1804    return result;
1805  }
1806
1807  Elf32_Ehdr elf_head;
1808
1809  // Read system error message into ebuf
1810  // It may or may not be overwritten below
1811  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1812  ebuf[ebuflen-1]='\0';
1813  int diag_msg_max_length=ebuflen-strlen(ebuf);
1814  char* diag_msg_buf=ebuf+strlen(ebuf);
1815
1816  if (diag_msg_max_length==0) {
1817    // No more space in ebuf for additional diagnostics message
1818    return NULL;
1819  }
1820
1821
1822  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1823
1824  if (file_descriptor < 0) {
1825    // Can't open library, report dlerror() message
1826    return NULL;
1827  }
1828
1829  bool failed_to_read_elf_head=
1830    (sizeof(elf_head)!=
1831        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1832
1833  ::close(file_descriptor);
1834  if (failed_to_read_elf_head) {
1835    // file i/o error - report dlerror() msg
1836    return NULL;
1837  }
1838
1839  typedef struct {
1840    Elf32_Half  code;         // Actual value as defined in elf.h
1841    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1842    char        elf_class;    // 32 or 64 bit
1843    char        endianess;    // MSB or LSB
1844    char*       name;         // String representation
1845  } arch_t;
1846
1847  #ifndef EM_486
1848  #define EM_486          6               /* Intel 80486 */
1849  #endif
1850
1851  static const arch_t arch_array[]={
1852    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1853    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1854    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1855    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1856    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1857    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1858    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1859    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1860    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1861    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1862    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1863    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1864    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1865    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1866    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1867    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1868  };
1869
1870  #if  (defined IA32)
1871    static  Elf32_Half running_arch_code=EM_386;
1872  #elif   (defined AMD64)
1873    static  Elf32_Half running_arch_code=EM_X86_64;
1874  #elif  (defined IA64)
1875    static  Elf32_Half running_arch_code=EM_IA_64;
1876  #elif  (defined __sparc) && (defined _LP64)
1877    static  Elf32_Half running_arch_code=EM_SPARCV9;
1878  #elif  (defined __sparc) && (!defined _LP64)
1879    static  Elf32_Half running_arch_code=EM_SPARC;
1880  #elif  (defined __powerpc64__)
1881    static  Elf32_Half running_arch_code=EM_PPC64;
1882  #elif  (defined __powerpc__)
1883    static  Elf32_Half running_arch_code=EM_PPC;
1884  #elif  (defined ARM)
1885    static  Elf32_Half running_arch_code=EM_ARM;
1886  #elif  (defined S390)
1887    static  Elf32_Half running_arch_code=EM_S390;
1888  #elif  (defined ALPHA)
1889    static  Elf32_Half running_arch_code=EM_ALPHA;
1890  #elif  (defined MIPSEL)
1891    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1892  #elif  (defined PARISC)
1893    static  Elf32_Half running_arch_code=EM_PARISC;
1894  #elif  (defined MIPS)
1895    static  Elf32_Half running_arch_code=EM_MIPS;
1896  #elif  (defined M68K)
1897    static  Elf32_Half running_arch_code=EM_68K;
1898  #else
1899    #error Method os::dll_load requires that one of following is defined:\
1900         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1901  #endif
1902
1903  // Identify compatability class for VM's architecture and library's architecture
1904  // Obtain string descriptions for architectures
1905
1906  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1907  int running_arch_index=-1;
1908
1909  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1910    if (running_arch_code == arch_array[i].code) {
1911      running_arch_index    = i;
1912    }
1913    if (lib_arch.code == arch_array[i].code) {
1914      lib_arch.compat_class = arch_array[i].compat_class;
1915      lib_arch.name         = arch_array[i].name;
1916    }
1917  }
1918
1919  assert(running_arch_index != -1,
1920    "Didn't find running architecture code (running_arch_code) in arch_array");
1921  if (running_arch_index == -1) {
1922    // Even though running architecture detection failed
1923    // we may still continue with reporting dlerror() message
1924    return NULL;
1925  }
1926
1927  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1928    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1929    return NULL;
1930  }
1931
1932#ifndef S390
1933  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1934    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1935    return NULL;
1936  }
1937#endif // !S390
1938
1939  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1940    if ( lib_arch.name!=NULL ) {
1941      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1942        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1943        lib_arch.name, arch_array[running_arch_index].name);
1944    } else {
1945      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1947        lib_arch.code,
1948        arch_array[running_arch_index].name);
1949    }
1950  }
1951
1952  return NULL;
1953}
1954
1955/*
1956 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1957 * chances are you might want to run the generated bits against glibc-2.0
1958 * libdl.so, so always use locking for any version of glibc.
1959 */
1960void* os::dll_lookup(void* handle, const char* name) {
1961  pthread_mutex_lock(&dl_mutex);
1962  void* res = dlsym(handle, name);
1963  pthread_mutex_unlock(&dl_mutex);
1964  return res;
1965}
1966
1967
1968static bool _print_ascii_file(const char* filename, outputStream* st) {
1969  int fd = ::open(filename, O_RDONLY);
1970  if (fd == -1) {
1971     return false;
1972  }
1973
1974  char buf[32];
1975  int bytes;
1976  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1977    st->print_raw(buf, bytes);
1978  }
1979
1980  ::close(fd);
1981
1982  return true;
1983}
1984
1985void os::print_dll_info(outputStream *st) {
1986   st->print_cr("Dynamic libraries:");
1987
1988   char fname[32];
1989   pid_t pid = os::Linux::gettid();
1990
1991   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1992
1993   if (!_print_ascii_file(fname, st)) {
1994     st->print("Can not get library information for pid = %d\n", pid);
1995   }
1996}
1997
1998void os::print_os_info_brief(outputStream* st) {
1999  os::Linux::print_distro_info(st);
2000
2001  os::Posix::print_uname_info(st);
2002
2003  os::Linux::print_libversion_info(st);
2004
2005}
2006
2007void os::print_os_info(outputStream* st) {
2008  st->print("OS:");
2009
2010  os::Linux::print_distro_info(st);
2011
2012  os::Posix::print_uname_info(st);
2013
2014  // Print warning if unsafe chroot environment detected
2015  if (unsafe_chroot_detected) {
2016    st->print("WARNING!! ");
2017    st->print_cr(unstable_chroot_error);
2018  }
2019
2020  os::Linux::print_libversion_info(st);
2021
2022  os::Posix::print_rlimit_info(st);
2023
2024  os::Posix::print_load_average(st);
2025
2026  os::Linux::print_full_memory_info(st);
2027}
2028
2029// Try to identify popular distros.
2030// Most Linux distributions have /etc/XXX-release file, which contains
2031// the OS version string. Some have more than one /etc/XXX-release file
2032// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2033// so the order is important.
2034void os::Linux::print_distro_info(outputStream* st) {
2035  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2036      !_print_ascii_file("/etc/sun-release", st) &&
2037      !_print_ascii_file("/etc/redhat-release", st) &&
2038      !_print_ascii_file("/etc/SuSE-release", st) &&
2039      !_print_ascii_file("/etc/turbolinux-release", st) &&
2040      !_print_ascii_file("/etc/gentoo-release", st) &&
2041      !_print_ascii_file("/etc/debian_version", st) &&
2042      !_print_ascii_file("/etc/ltib-release", st) &&
2043      !_print_ascii_file("/etc/angstrom-version", st)) {
2044      st->print("Linux");
2045  }
2046  st->cr();
2047}
2048
2049void os::Linux::print_libversion_info(outputStream* st) {
2050  // libc, pthread
2051  st->print("libc:");
2052  st->print(os::Linux::glibc_version()); st->print(" ");
2053  st->print(os::Linux::libpthread_version()); st->print(" ");
2054  if (os::Linux::is_LinuxThreads()) {
2055     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2056  }
2057  st->cr();
2058}
2059
2060void os::Linux::print_full_memory_info(outputStream* st) {
2061   st->print("\n/proc/meminfo:\n");
2062   _print_ascii_file("/proc/meminfo", st);
2063   st->cr();
2064}
2065
2066void os::print_memory_info(outputStream* st) {
2067
2068  st->print("Memory:");
2069  st->print(" %dk page", os::vm_page_size()>>10);
2070
2071  // values in struct sysinfo are "unsigned long"
2072  struct sysinfo si;
2073  sysinfo(&si);
2074
2075  st->print(", physical " UINT64_FORMAT "k",
2076            os::physical_memory() >> 10);
2077  st->print("(" UINT64_FORMAT "k free)",
2078            os::available_memory() >> 10);
2079  st->print(", swap " UINT64_FORMAT "k",
2080            ((jlong)si.totalswap * si.mem_unit) >> 10);
2081  st->print("(" UINT64_FORMAT "k free)",
2082            ((jlong)si.freeswap * si.mem_unit) >> 10);
2083  st->cr();
2084}
2085
2086void os::pd_print_cpu_info(outputStream* st) {
2087  st->print("\n/proc/cpuinfo:\n");
2088  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2089    st->print("  <Not Available>");
2090  }
2091  st->cr();
2092}
2093
2094// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2095// but they're the same for all the linux arch that we support
2096// and they're the same for solaris but there's no common place to put this.
2097const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2098                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2099                          "ILL_COPROC", "ILL_BADSTK" };
2100
2101const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2102                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2103                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2104
2105const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2106
2107const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2108
2109void os::print_siginfo(outputStream* st, void* siginfo) {
2110  st->print("siginfo:");
2111
2112  const int buflen = 100;
2113  char buf[buflen];
2114  siginfo_t *si = (siginfo_t*)siginfo;
2115  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2116  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2117    st->print("si_errno=%s", buf);
2118  } else {
2119    st->print("si_errno=%d", si->si_errno);
2120  }
2121  const int c = si->si_code;
2122  assert(c > 0, "unexpected si_code");
2123  switch (si->si_signo) {
2124  case SIGILL:
2125    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2126    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2127    break;
2128  case SIGFPE:
2129    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2130    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2131    break;
2132  case SIGSEGV:
2133    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2134    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2135    break;
2136  case SIGBUS:
2137    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2138    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2139    break;
2140  default:
2141    st->print(", si_code=%d", si->si_code);
2142    // no si_addr
2143  }
2144
2145  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2146      UseSharedSpaces) {
2147    FileMapInfo* mapinfo = FileMapInfo::current_info();
2148    if (mapinfo->is_in_shared_space(si->si_addr)) {
2149      st->print("\n\nError accessing class data sharing archive."   \
2150                " Mapped file inaccessible during execution, "      \
2151                " possible disk/network problem.");
2152    }
2153  }
2154  st->cr();
2155}
2156
2157
2158static void print_signal_handler(outputStream* st, int sig,
2159                                 char* buf, size_t buflen);
2160
2161void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2162  st->print_cr("Signal Handlers:");
2163  print_signal_handler(st, SIGSEGV, buf, buflen);
2164  print_signal_handler(st, SIGBUS , buf, buflen);
2165  print_signal_handler(st, SIGFPE , buf, buflen);
2166  print_signal_handler(st, SIGPIPE, buf, buflen);
2167  print_signal_handler(st, SIGXFSZ, buf, buflen);
2168  print_signal_handler(st, SIGILL , buf, buflen);
2169  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2170  print_signal_handler(st, SR_signum, buf, buflen);
2171  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2172  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2173  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2174  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2175}
2176
2177static char saved_jvm_path[MAXPATHLEN] = {0};
2178
2179// Find the full path to the current module, libjvm.so
2180void os::jvm_path(char *buf, jint buflen) {
2181  // Error checking.
2182  if (buflen < MAXPATHLEN) {
2183    assert(false, "must use a large-enough buffer");
2184    buf[0] = '\0';
2185    return;
2186  }
2187  // Lazy resolve the path to current module.
2188  if (saved_jvm_path[0] != 0) {
2189    strcpy(buf, saved_jvm_path);
2190    return;
2191  }
2192
2193  char dli_fname[MAXPATHLEN];
2194  bool ret = dll_address_to_library_name(
2195                CAST_FROM_FN_PTR(address, os::jvm_path),
2196                dli_fname, sizeof(dli_fname), NULL);
2197  assert(ret != 0, "cannot locate libjvm");
2198  char *rp = realpath(dli_fname, buf);
2199  if (rp == NULL)
2200    return;
2201
2202  if (Arguments::created_by_gamma_launcher()) {
2203    // Support for the gamma launcher.  Typical value for buf is
2204    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2205    // the right place in the string, then assume we are installed in a JDK and
2206    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2207    // up the path so it looks like libjvm.so is installed there (append a
2208    // fake suffix hotspot/libjvm.so).
2209    const char *p = buf + strlen(buf) - 1;
2210    for (int count = 0; p > buf && count < 5; ++count) {
2211      for (--p; p > buf && *p != '/'; --p)
2212        /* empty */ ;
2213    }
2214
2215    if (strncmp(p, "/jre/lib/", 9) != 0) {
2216      // Look for JAVA_HOME in the environment.
2217      char* java_home_var = ::getenv("JAVA_HOME");
2218      if (java_home_var != NULL && java_home_var[0] != 0) {
2219        char* jrelib_p;
2220        int len;
2221
2222        // Check the current module name "libjvm.so".
2223        p = strrchr(buf, '/');
2224        assert(strstr(p, "/libjvm") == p, "invalid library name");
2225
2226        rp = realpath(java_home_var, buf);
2227        if (rp == NULL)
2228          return;
2229
2230        // determine if this is a legacy image or modules image
2231        // modules image doesn't have "jre" subdirectory
2232        len = strlen(buf);
2233        jrelib_p = buf + len;
2234        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2235        if (0 != access(buf, F_OK)) {
2236          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2237        }
2238
2239        if (0 == access(buf, F_OK)) {
2240          // Use current module name "libjvm.so"
2241          len = strlen(buf);
2242          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2243        } else {
2244          // Go back to path of .so
2245          rp = realpath(dli_fname, buf);
2246          if (rp == NULL)
2247            return;
2248        }
2249      }
2250    }
2251  }
2252
2253  strcpy(saved_jvm_path, buf);
2254}
2255
2256void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2257  // no prefix required, not even "_"
2258}
2259
2260void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2261  // no suffix required
2262}
2263
2264////////////////////////////////////////////////////////////////////////////////
2265// sun.misc.Signal support
2266
2267static volatile jint sigint_count = 0;
2268
2269static void
2270UserHandler(int sig, void *siginfo, void *context) {
2271  // 4511530 - sem_post is serialized and handled by the manager thread. When
2272  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2273  // don't want to flood the manager thread with sem_post requests.
2274  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2275      return;
2276
2277  // Ctrl-C is pressed during error reporting, likely because the error
2278  // handler fails to abort. Let VM die immediately.
2279  if (sig == SIGINT && is_error_reported()) {
2280     os::die();
2281  }
2282
2283  os::signal_notify(sig);
2284}
2285
2286void* os::user_handler() {
2287  return CAST_FROM_FN_PTR(void*, UserHandler);
2288}
2289
2290extern "C" {
2291  typedef void (*sa_handler_t)(int);
2292  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2293}
2294
2295void* os::signal(int signal_number, void* handler) {
2296  struct sigaction sigAct, oldSigAct;
2297
2298  sigfillset(&(sigAct.sa_mask));
2299  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2300  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2301
2302  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2303    // -1 means registration failed
2304    return (void *)-1;
2305  }
2306
2307  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2308}
2309
2310void os::signal_raise(int signal_number) {
2311  ::raise(signal_number);
2312}
2313
2314/*
2315 * The following code is moved from os.cpp for making this
2316 * code platform specific, which it is by its very nature.
2317 */
2318
2319// Will be modified when max signal is changed to be dynamic
2320int os::sigexitnum_pd() {
2321  return NSIG;
2322}
2323
2324// a counter for each possible signal value
2325static volatile jint pending_signals[NSIG+1] = { 0 };
2326
2327// Linux(POSIX) specific hand shaking semaphore.
2328static sem_t sig_sem;
2329
2330void os::signal_init_pd() {
2331  // Initialize signal structures
2332  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2333
2334  // Initialize signal semaphore
2335  ::sem_init(&sig_sem, 0, 0);
2336}
2337
2338void os::signal_notify(int sig) {
2339  Atomic::inc(&pending_signals[sig]);
2340  ::sem_post(&sig_sem);
2341}
2342
2343static int check_pending_signals(bool wait) {
2344  Atomic::store(0, &sigint_count);
2345  for (;;) {
2346    for (int i = 0; i < NSIG + 1; i++) {
2347      jint n = pending_signals[i];
2348      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2349        return i;
2350      }
2351    }
2352    if (!wait) {
2353      return -1;
2354    }
2355    JavaThread *thread = JavaThread::current();
2356    ThreadBlockInVM tbivm(thread);
2357
2358    bool threadIsSuspended;
2359    do {
2360      thread->set_suspend_equivalent();
2361      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2362      ::sem_wait(&sig_sem);
2363
2364      // were we externally suspended while we were waiting?
2365      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2366      if (threadIsSuspended) {
2367        //
2368        // The semaphore has been incremented, but while we were waiting
2369        // another thread suspended us. We don't want to continue running
2370        // while suspended because that would surprise the thread that
2371        // suspended us.
2372        //
2373        ::sem_post(&sig_sem);
2374
2375        thread->java_suspend_self();
2376      }
2377    } while (threadIsSuspended);
2378  }
2379}
2380
2381int os::signal_lookup() {
2382  return check_pending_signals(false);
2383}
2384
2385int os::signal_wait() {
2386  return check_pending_signals(true);
2387}
2388
2389////////////////////////////////////////////////////////////////////////////////
2390// Virtual Memory
2391
2392int os::vm_page_size() {
2393  // Seems redundant as all get out
2394  assert(os::Linux::page_size() != -1, "must call os::init");
2395  return os::Linux::page_size();
2396}
2397
2398// Solaris allocates memory by pages.
2399int os::vm_allocation_granularity() {
2400  assert(os::Linux::page_size() != -1, "must call os::init");
2401  return os::Linux::page_size();
2402}
2403
2404// Rationale behind this function:
2405//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2406//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2407//  samples for JITted code. Here we create private executable mapping over the code cache
2408//  and then we can use standard (well, almost, as mapping can change) way to provide
2409//  info for the reporting script by storing timestamp and location of symbol
2410void linux_wrap_code(char* base, size_t size) {
2411  static volatile jint cnt = 0;
2412
2413  if (!UseOprofile) {
2414    return;
2415  }
2416
2417  char buf[PATH_MAX+1];
2418  int num = Atomic::add(1, &cnt);
2419
2420  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2421           os::get_temp_directory(), os::current_process_id(), num);
2422  unlink(buf);
2423
2424  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2425
2426  if (fd != -1) {
2427    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2428    if (rv != (off_t)-1) {
2429      if (::write(fd, "", 1) == 1) {
2430        mmap(base, size,
2431             PROT_READ|PROT_WRITE|PROT_EXEC,
2432             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2433      }
2434    }
2435    ::close(fd);
2436    unlink(buf);
2437  }
2438}
2439
2440// NOTE: Linux kernel does not really reserve the pages for us.
2441//       All it does is to check if there are enough free pages
2442//       left at the time of mmap(). This could be a potential
2443//       problem.
2444bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2445  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2446  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2447                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2448  if (res != (uintptr_t) MAP_FAILED) {
2449    if (UseNUMAInterleaving) {
2450      numa_make_global(addr, size);
2451    }
2452    return true;
2453  }
2454  return false;
2455}
2456
2457// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2458#ifndef MAP_HUGETLB
2459#define MAP_HUGETLB 0x40000
2460#endif
2461
2462// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2463#ifndef MADV_HUGEPAGE
2464#define MADV_HUGEPAGE 14
2465#endif
2466
2467bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2468                       bool exec) {
2469  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2470    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2471    uintptr_t res =
2472      (uintptr_t) ::mmap(addr, size, prot,
2473                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2474                         -1, 0);
2475    if (res != (uintptr_t) MAP_FAILED) {
2476      if (UseNUMAInterleaving) {
2477        numa_make_global(addr, size);
2478      }
2479      return true;
2480    }
2481    // Fall through and try to use small pages
2482  }
2483
2484  if (commit_memory(addr, size, exec)) {
2485    realign_memory(addr, size, alignment_hint);
2486    return true;
2487  }
2488  return false;
2489}
2490
2491void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2492  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2493    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2494    // be supported or the memory may already be backed by huge pages.
2495    ::madvise(addr, bytes, MADV_HUGEPAGE);
2496  }
2497}
2498
2499void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2500  // This method works by doing an mmap over an existing mmaping and effectively discarding
2501  // the existing pages. However it won't work for SHM-based large pages that cannot be
2502  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2503  // small pages on top of the SHM segment. This method always works for small pages, so we
2504  // allow that in any case.
2505  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2506    commit_memory(addr, bytes, alignment_hint, false);
2507  }
2508}
2509
2510void os::numa_make_global(char *addr, size_t bytes) {
2511  Linux::numa_interleave_memory(addr, bytes);
2512}
2513
2514void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2515  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2516}
2517
2518bool os::numa_topology_changed()   { return false; }
2519
2520size_t os::numa_get_groups_num() {
2521  int max_node = Linux::numa_max_node();
2522  return max_node > 0 ? max_node + 1 : 1;
2523}
2524
2525int os::numa_get_group_id() {
2526  int cpu_id = Linux::sched_getcpu();
2527  if (cpu_id != -1) {
2528    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2529    if (lgrp_id != -1) {
2530      return lgrp_id;
2531    }
2532  }
2533  return 0;
2534}
2535
2536size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2537  for (size_t i = 0; i < size; i++) {
2538    ids[i] = i;
2539  }
2540  return size;
2541}
2542
2543bool os::get_page_info(char *start, page_info* info) {
2544  return false;
2545}
2546
2547char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2548  return end;
2549}
2550
2551
2552int os::Linux::sched_getcpu_syscall(void) {
2553  unsigned int cpu;
2554  int retval = -1;
2555
2556#if defined(IA32)
2557# ifndef SYS_getcpu
2558# define SYS_getcpu 318
2559# endif
2560  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2561#elif defined(AMD64)
2562// Unfortunately we have to bring all these macros here from vsyscall.h
2563// to be able to compile on old linuxes.
2564# define __NR_vgetcpu 2
2565# define VSYSCALL_START (-10UL << 20)
2566# define VSYSCALL_SIZE 1024
2567# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2568  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2569  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2570  retval = vgetcpu(&cpu, NULL, NULL);
2571#endif
2572
2573  return (retval == -1) ? retval : cpu;
2574}
2575
2576// Something to do with the numa-aware allocator needs these symbols
2577extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2578extern "C" JNIEXPORT void numa_error(char *where) { }
2579extern "C" JNIEXPORT int fork1() { return fork(); }
2580
2581
2582// If we are running with libnuma version > 2, then we should
2583// be trying to use symbols with versions 1.1
2584// If we are running with earlier version, which did not have symbol versions,
2585// we should use the base version.
2586void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2587  void *f = dlvsym(handle, name, "libnuma_1.1");
2588  if (f == NULL) {
2589    f = dlsym(handle, name);
2590  }
2591  return f;
2592}
2593
2594bool os::Linux::libnuma_init() {
2595  // sched_getcpu() should be in libc.
2596  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2597                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2598
2599  // If it's not, try a direct syscall.
2600  if (sched_getcpu() == -1)
2601    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2602
2603  if (sched_getcpu() != -1) { // Does it work?
2604    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2605    if (handle != NULL) {
2606      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2607                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2608      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2609                                       libnuma_dlsym(handle, "numa_max_node")));
2610      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2611                                        libnuma_dlsym(handle, "numa_available")));
2612      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2613                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2614      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2615                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2616
2617
2618      if (numa_available() != -1) {
2619        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2620        // Create a cpu -> node mapping
2621        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2622        rebuild_cpu_to_node_map();
2623        return true;
2624      }
2625    }
2626  }
2627  return false;
2628}
2629
2630// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2631// The table is later used in get_node_by_cpu().
2632void os::Linux::rebuild_cpu_to_node_map() {
2633  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2634                              // in libnuma (possible values are starting from 16,
2635                              // and continuing up with every other power of 2, but less
2636                              // than the maximum number of CPUs supported by kernel), and
2637                              // is a subject to change (in libnuma version 2 the requirements
2638                              // are more reasonable) we'll just hardcode the number they use
2639                              // in the library.
2640  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2641
2642  size_t cpu_num = os::active_processor_count();
2643  size_t cpu_map_size = NCPUS / BitsPerCLong;
2644  size_t cpu_map_valid_size =
2645    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2646
2647  cpu_to_node()->clear();
2648  cpu_to_node()->at_grow(cpu_num - 1);
2649  size_t node_num = numa_get_groups_num();
2650
2651  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2652  for (size_t i = 0; i < node_num; i++) {
2653    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2654      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2655        if (cpu_map[j] != 0) {
2656          for (size_t k = 0; k < BitsPerCLong; k++) {
2657            if (cpu_map[j] & (1UL << k)) {
2658              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2659            }
2660          }
2661        }
2662      }
2663    }
2664  }
2665  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2666}
2667
2668int os::Linux::get_node_by_cpu(int cpu_id) {
2669  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2670    return cpu_to_node()->at(cpu_id);
2671  }
2672  return -1;
2673}
2674
2675GrowableArray<int>* os::Linux::_cpu_to_node;
2676os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2677os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2678os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2679os::Linux::numa_available_func_t os::Linux::_numa_available;
2680os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2681os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2682unsigned long* os::Linux::_numa_all_nodes;
2683
2684bool os::pd_uncommit_memory(char* addr, size_t size) {
2685  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2686                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2687  return res  != (uintptr_t) MAP_FAILED;
2688}
2689
2690// Linux uses a growable mapping for the stack, and if the mapping for
2691// the stack guard pages is not removed when we detach a thread the
2692// stack cannot grow beyond the pages where the stack guard was
2693// mapped.  If at some point later in the process the stack expands to
2694// that point, the Linux kernel cannot expand the stack any further
2695// because the guard pages are in the way, and a segfault occurs.
2696//
2697// However, it's essential not to split the stack region by unmapping
2698// a region (leaving a hole) that's already part of the stack mapping,
2699// so if the stack mapping has already grown beyond the guard pages at
2700// the time we create them, we have to truncate the stack mapping.
2701// So, we need to know the extent of the stack mapping when
2702// create_stack_guard_pages() is called.
2703
2704// Find the bounds of the stack mapping.  Return true for success.
2705//
2706// We only need this for stacks that are growable: at the time of
2707// writing thread stacks don't use growable mappings (i.e. those
2708// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2709// only applies to the main thread.
2710
2711static
2712bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2713
2714  char buf[128];
2715  int fd, sz;
2716
2717  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2718    return false;
2719  }
2720
2721  const char kw[] = "[stack]";
2722  const int kwlen = sizeof(kw)-1;
2723
2724  // Address part of /proc/self/maps couldn't be more than 128 bytes
2725  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2726     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2727        // Extract addresses
2728        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2729           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2730           if (sp >= *bottom && sp <= *top) {
2731              ::close(fd);
2732              return true;
2733           }
2734        }
2735     }
2736  }
2737
2738 ::close(fd);
2739  return false;
2740}
2741
2742
2743// If the (growable) stack mapping already extends beyond the point
2744// where we're going to put our guard pages, truncate the mapping at
2745// that point by munmap()ping it.  This ensures that when we later
2746// munmap() the guard pages we don't leave a hole in the stack
2747// mapping. This only affects the main/initial thread, but guard
2748// against future OS changes
2749bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2750  uintptr_t stack_extent, stack_base;
2751  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2752  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2753      assert(os::Linux::is_initial_thread(),
2754           "growable stack in non-initial thread");
2755    if (stack_extent < (uintptr_t)addr)
2756      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2757  }
2758
2759  return os::commit_memory(addr, size);
2760}
2761
2762// If this is a growable mapping, remove the guard pages entirely by
2763// munmap()ping them.  If not, just call uncommit_memory(). This only
2764// affects the main/initial thread, but guard against future OS changes
2765bool os::remove_stack_guard_pages(char* addr, size_t size) {
2766  uintptr_t stack_extent, stack_base;
2767  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2768  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2769      assert(os::Linux::is_initial_thread(),
2770           "growable stack in non-initial thread");
2771
2772    return ::munmap(addr, size) == 0;
2773  }
2774
2775  return os::uncommit_memory(addr, size);
2776}
2777
2778static address _highest_vm_reserved_address = NULL;
2779
2780// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2781// at 'requested_addr'. If there are existing memory mappings at the same
2782// location, however, they will be overwritten. If 'fixed' is false,
2783// 'requested_addr' is only treated as a hint, the return value may or
2784// may not start from the requested address. Unlike Linux mmap(), this
2785// function returns NULL to indicate failure.
2786static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2787  char * addr;
2788  int flags;
2789
2790  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2791  if (fixed) {
2792    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2793    flags |= MAP_FIXED;
2794  }
2795
2796  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2797  // to PROT_EXEC if executable when we commit the page.
2798  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2799                       flags, -1, 0);
2800
2801  if (addr != MAP_FAILED) {
2802    // anon_mmap() should only get called during VM initialization,
2803    // don't need lock (actually we can skip locking even it can be called
2804    // from multiple threads, because _highest_vm_reserved_address is just a
2805    // hint about the upper limit of non-stack memory regions.)
2806    if ((address)addr + bytes > _highest_vm_reserved_address) {
2807      _highest_vm_reserved_address = (address)addr + bytes;
2808    }
2809  }
2810
2811  return addr == MAP_FAILED ? NULL : addr;
2812}
2813
2814// Don't update _highest_vm_reserved_address, because there might be memory
2815// regions above addr + size. If so, releasing a memory region only creates
2816// a hole in the address space, it doesn't help prevent heap-stack collision.
2817//
2818static int anon_munmap(char * addr, size_t size) {
2819  return ::munmap(addr, size) == 0;
2820}
2821
2822char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2823                         size_t alignment_hint) {
2824  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2825}
2826
2827bool os::pd_release_memory(char* addr, size_t size) {
2828  return anon_munmap(addr, size);
2829}
2830
2831static address highest_vm_reserved_address() {
2832  return _highest_vm_reserved_address;
2833}
2834
2835static bool linux_mprotect(char* addr, size_t size, int prot) {
2836  // Linux wants the mprotect address argument to be page aligned.
2837  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2838
2839  // According to SUSv3, mprotect() should only be used with mappings
2840  // established by mmap(), and mmap() always maps whole pages. Unaligned
2841  // 'addr' likely indicates problem in the VM (e.g. trying to change
2842  // protection of malloc'ed or statically allocated memory). Check the
2843  // caller if you hit this assert.
2844  assert(addr == bottom, "sanity check");
2845
2846  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2847  return ::mprotect(bottom, size, prot) == 0;
2848}
2849
2850// Set protections specified
2851bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2852                        bool is_committed) {
2853  unsigned int p = 0;
2854  switch (prot) {
2855  case MEM_PROT_NONE: p = PROT_NONE; break;
2856  case MEM_PROT_READ: p = PROT_READ; break;
2857  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2858  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2859  default:
2860    ShouldNotReachHere();
2861  }
2862  // is_committed is unused.
2863  return linux_mprotect(addr, bytes, p);
2864}
2865
2866bool os::guard_memory(char* addr, size_t size) {
2867  return linux_mprotect(addr, size, PROT_NONE);
2868}
2869
2870bool os::unguard_memory(char* addr, size_t size) {
2871  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2872}
2873
2874bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2875  bool result = false;
2876  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2877                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2878                  -1, 0);
2879
2880  if (p != (void *) -1) {
2881    // We don't know if this really is a huge page or not.
2882    FILE *fp = fopen("/proc/self/maps", "r");
2883    if (fp) {
2884      while (!feof(fp)) {
2885        char chars[257];
2886        long x = 0;
2887        if (fgets(chars, sizeof(chars), fp)) {
2888          if (sscanf(chars, "%lx-%*x", &x) == 1
2889              && x == (long)p) {
2890            if (strstr (chars, "hugepage")) {
2891              result = true;
2892              break;
2893            }
2894          }
2895        }
2896      }
2897      fclose(fp);
2898    }
2899    munmap (p, page_size);
2900    if (result)
2901      return true;
2902  }
2903
2904  if (warn) {
2905    warning("HugeTLBFS is not supported by the operating system.");
2906  }
2907
2908  return result;
2909}
2910
2911/*
2912* Set the coredump_filter bits to include largepages in core dump (bit 6)
2913*
2914* From the coredump_filter documentation:
2915*
2916* - (bit 0) anonymous private memory
2917* - (bit 1) anonymous shared memory
2918* - (bit 2) file-backed private memory
2919* - (bit 3) file-backed shared memory
2920* - (bit 4) ELF header pages in file-backed private memory areas (it is
2921*           effective only if the bit 2 is cleared)
2922* - (bit 5) hugetlb private memory
2923* - (bit 6) hugetlb shared memory
2924*/
2925static void set_coredump_filter(void) {
2926  FILE *f;
2927  long cdm;
2928
2929  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2930    return;
2931  }
2932
2933  if (fscanf(f, "%lx", &cdm) != 1) {
2934    fclose(f);
2935    return;
2936  }
2937
2938  rewind(f);
2939
2940  if ((cdm & LARGEPAGES_BIT) == 0) {
2941    cdm |= LARGEPAGES_BIT;
2942    fprintf(f, "%#lx", cdm);
2943  }
2944
2945  fclose(f);
2946}
2947
2948// Large page support
2949
2950static size_t _large_page_size = 0;
2951
2952void os::large_page_init() {
2953  if (!UseLargePages) {
2954    UseHugeTLBFS = false;
2955    UseSHM = false;
2956    return;
2957  }
2958
2959  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2960    // If UseLargePages is specified on the command line try both methods,
2961    // if it's default, then try only HugeTLBFS.
2962    if (FLAG_IS_DEFAULT(UseLargePages)) {
2963      UseHugeTLBFS = true;
2964    } else {
2965      UseHugeTLBFS = UseSHM = true;
2966    }
2967  }
2968
2969  if (LargePageSizeInBytes) {
2970    _large_page_size = LargePageSizeInBytes;
2971  } else {
2972    // large_page_size on Linux is used to round up heap size. x86 uses either
2973    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2974    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2975    // page as large as 256M.
2976    //
2977    // Here we try to figure out page size by parsing /proc/meminfo and looking
2978    // for a line with the following format:
2979    //    Hugepagesize:     2048 kB
2980    //
2981    // If we can't determine the value (e.g. /proc is not mounted, or the text
2982    // format has been changed), we'll use the largest page size supported by
2983    // the processor.
2984
2985#ifndef ZERO
2986    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2987                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2988#endif // ZERO
2989
2990    FILE *fp = fopen("/proc/meminfo", "r");
2991    if (fp) {
2992      while (!feof(fp)) {
2993        int x = 0;
2994        char buf[16];
2995        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2996          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2997            _large_page_size = x * K;
2998            break;
2999          }
3000        } else {
3001          // skip to next line
3002          for (;;) {
3003            int ch = fgetc(fp);
3004            if (ch == EOF || ch == (int)'\n') break;
3005          }
3006        }
3007      }
3008      fclose(fp);
3009    }
3010  }
3011
3012  // print a warning if any large page related flag is specified on command line
3013  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3014
3015  const size_t default_page_size = (size_t)Linux::page_size();
3016  if (_large_page_size > default_page_size) {
3017    _page_sizes[0] = _large_page_size;
3018    _page_sizes[1] = default_page_size;
3019    _page_sizes[2] = 0;
3020  }
3021  UseHugeTLBFS = UseHugeTLBFS &&
3022                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3023
3024  if (UseHugeTLBFS)
3025    UseSHM = false;
3026
3027  UseLargePages = UseHugeTLBFS || UseSHM;
3028
3029  set_coredump_filter();
3030}
3031
3032#ifndef SHM_HUGETLB
3033#define SHM_HUGETLB 04000
3034#endif
3035
3036char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3037  // "exec" is passed in but not used.  Creating the shared image for
3038  // the code cache doesn't have an SHM_X executable permission to check.
3039  assert(UseLargePages && UseSHM, "only for SHM large pages");
3040
3041  key_t key = IPC_PRIVATE;
3042  char *addr;
3043
3044  bool warn_on_failure = UseLargePages &&
3045                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3046                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3047                        );
3048  char msg[128];
3049
3050  // Create a large shared memory region to attach to based on size.
3051  // Currently, size is the total size of the heap
3052  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3053  if (shmid == -1) {
3054     // Possible reasons for shmget failure:
3055     // 1. shmmax is too small for Java heap.
3056     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3057     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3058     // 2. not enough large page memory.
3059     //    > check available large pages: cat /proc/meminfo
3060     //    > increase amount of large pages:
3061     //          echo new_value > /proc/sys/vm/nr_hugepages
3062     //      Note 1: different Linux may use different name for this property,
3063     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3064     //      Note 2: it's possible there's enough physical memory available but
3065     //            they are so fragmented after a long run that they can't
3066     //            coalesce into large pages. Try to reserve large pages when
3067     //            the system is still "fresh".
3068     if (warn_on_failure) {
3069       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3070       warning(msg);
3071     }
3072     return NULL;
3073  }
3074
3075  // attach to the region
3076  addr = (char*)shmat(shmid, req_addr, 0);
3077  int err = errno;
3078
3079  // Remove shmid. If shmat() is successful, the actual shared memory segment
3080  // will be deleted when it's detached by shmdt() or when the process
3081  // terminates. If shmat() is not successful this will remove the shared
3082  // segment immediately.
3083  shmctl(shmid, IPC_RMID, NULL);
3084
3085  if ((intptr_t)addr == -1) {
3086     if (warn_on_failure) {
3087       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3088       warning(msg);
3089     }
3090     return NULL;
3091  }
3092
3093  if ((addr != NULL) && UseNUMAInterleaving) {
3094    numa_make_global(addr, bytes);
3095  }
3096
3097  return addr;
3098}
3099
3100bool os::release_memory_special(char* base, size_t bytes) {
3101  // detaching the SHM segment will also delete it, see reserve_memory_special()
3102  int rslt = shmdt(base);
3103  return rslt == 0;
3104}
3105
3106size_t os::large_page_size() {
3107  return _large_page_size;
3108}
3109
3110// HugeTLBFS allows application to commit large page memory on demand;
3111// with SysV SHM the entire memory region must be allocated as shared
3112// memory.
3113bool os::can_commit_large_page_memory() {
3114  return UseHugeTLBFS;
3115}
3116
3117bool os::can_execute_large_page_memory() {
3118  return UseHugeTLBFS;
3119}
3120
3121// Reserve memory at an arbitrary address, only if that area is
3122// available (and not reserved for something else).
3123
3124char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3125  const int max_tries = 10;
3126  char* base[max_tries];
3127  size_t size[max_tries];
3128  const size_t gap = 0x000000;
3129
3130  // Assert only that the size is a multiple of the page size, since
3131  // that's all that mmap requires, and since that's all we really know
3132  // about at this low abstraction level.  If we need higher alignment,
3133  // we can either pass an alignment to this method or verify alignment
3134  // in one of the methods further up the call chain.  See bug 5044738.
3135  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3136
3137  // Repeatedly allocate blocks until the block is allocated at the
3138  // right spot. Give up after max_tries. Note that reserve_memory() will
3139  // automatically update _highest_vm_reserved_address if the call is
3140  // successful. The variable tracks the highest memory address every reserved
3141  // by JVM. It is used to detect heap-stack collision if running with
3142  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3143  // space than needed, it could confuse the collision detecting code. To
3144  // solve the problem, save current _highest_vm_reserved_address and
3145  // calculate the correct value before return.
3146  address old_highest = _highest_vm_reserved_address;
3147
3148  // Linux mmap allows caller to pass an address as hint; give it a try first,
3149  // if kernel honors the hint then we can return immediately.
3150  char * addr = anon_mmap(requested_addr, bytes, false);
3151  if (addr == requested_addr) {
3152     return requested_addr;
3153  }
3154
3155  if (addr != NULL) {
3156     // mmap() is successful but it fails to reserve at the requested address
3157     anon_munmap(addr, bytes);
3158  }
3159
3160  int i;
3161  for (i = 0; i < max_tries; ++i) {
3162    base[i] = reserve_memory(bytes);
3163
3164    if (base[i] != NULL) {
3165      // Is this the block we wanted?
3166      if (base[i] == requested_addr) {
3167        size[i] = bytes;
3168        break;
3169      }
3170
3171      // Does this overlap the block we wanted? Give back the overlapped
3172      // parts and try again.
3173
3174      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3175      if (top_overlap >= 0 && top_overlap < bytes) {
3176        unmap_memory(base[i], top_overlap);
3177        base[i] += top_overlap;
3178        size[i] = bytes - top_overlap;
3179      } else {
3180        size_t bottom_overlap = base[i] + bytes - requested_addr;
3181        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3182          unmap_memory(requested_addr, bottom_overlap);
3183          size[i] = bytes - bottom_overlap;
3184        } else {
3185          size[i] = bytes;
3186        }
3187      }
3188    }
3189  }
3190
3191  // Give back the unused reserved pieces.
3192
3193  for (int j = 0; j < i; ++j) {
3194    if (base[j] != NULL) {
3195      unmap_memory(base[j], size[j]);
3196    }
3197  }
3198
3199  if (i < max_tries) {
3200    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3201    return requested_addr;
3202  } else {
3203    _highest_vm_reserved_address = old_highest;
3204    return NULL;
3205  }
3206}
3207
3208size_t os::read(int fd, void *buf, unsigned int nBytes) {
3209  return ::read(fd, buf, nBytes);
3210}
3211
3212// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3213// Solaris uses poll(), linux uses park().
3214// Poll() is likely a better choice, assuming that Thread.interrupt()
3215// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3216// SIGSEGV, see 4355769.
3217
3218int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3219  assert(thread == Thread::current(),  "thread consistency check");
3220
3221  ParkEvent * const slp = thread->_SleepEvent ;
3222  slp->reset() ;
3223  OrderAccess::fence() ;
3224
3225  if (interruptible) {
3226    jlong prevtime = javaTimeNanos();
3227
3228    for (;;) {
3229      if (os::is_interrupted(thread, true)) {
3230        return OS_INTRPT;
3231      }
3232
3233      jlong newtime = javaTimeNanos();
3234
3235      if (newtime - prevtime < 0) {
3236        // time moving backwards, should only happen if no monotonic clock
3237        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3238        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3239      } else {
3240        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3241      }
3242
3243      if(millis <= 0) {
3244        return OS_OK;
3245      }
3246
3247      prevtime = newtime;
3248
3249      {
3250        assert(thread->is_Java_thread(), "sanity check");
3251        JavaThread *jt = (JavaThread *) thread;
3252        ThreadBlockInVM tbivm(jt);
3253        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3254
3255        jt->set_suspend_equivalent();
3256        // cleared by handle_special_suspend_equivalent_condition() or
3257        // java_suspend_self() via check_and_wait_while_suspended()
3258
3259        slp->park(millis);
3260
3261        // were we externally suspended while we were waiting?
3262        jt->check_and_wait_while_suspended();
3263      }
3264    }
3265  } else {
3266    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3267    jlong prevtime = javaTimeNanos();
3268
3269    for (;;) {
3270      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3271      // the 1st iteration ...
3272      jlong newtime = javaTimeNanos();
3273
3274      if (newtime - prevtime < 0) {
3275        // time moving backwards, should only happen if no monotonic clock
3276        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3277        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3278      } else {
3279        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3280      }
3281
3282      if(millis <= 0) break ;
3283
3284      prevtime = newtime;
3285      slp->park(millis);
3286    }
3287    return OS_OK ;
3288  }
3289}
3290
3291int os::naked_sleep() {
3292  // %% make the sleep time an integer flag. for now use 1 millisec.
3293  return os::sleep(Thread::current(), 1, false);
3294}
3295
3296// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3297void os::infinite_sleep() {
3298  while (true) {    // sleep forever ...
3299    ::sleep(100);   // ... 100 seconds at a time
3300  }
3301}
3302
3303// Used to convert frequent JVM_Yield() to nops
3304bool os::dont_yield() {
3305  return DontYieldALot;
3306}
3307
3308void os::yield() {
3309  sched_yield();
3310}
3311
3312os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3313
3314void os::yield_all(int attempts) {
3315  // Yields to all threads, including threads with lower priorities
3316  // Threads on Linux are all with same priority. The Solaris style
3317  // os::yield_all() with nanosleep(1ms) is not necessary.
3318  sched_yield();
3319}
3320
3321// Called from the tight loops to possibly influence time-sharing heuristics
3322void os::loop_breaker(int attempts) {
3323  os::yield_all(attempts);
3324}
3325
3326////////////////////////////////////////////////////////////////////////////////
3327// thread priority support
3328
3329// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3330// only supports dynamic priority, static priority must be zero. For real-time
3331// applications, Linux supports SCHED_RR which allows static priority (1-99).
3332// However, for large multi-threaded applications, SCHED_RR is not only slower
3333// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3334// of 5 runs - Sep 2005).
3335//
3336// The following code actually changes the niceness of kernel-thread/LWP. It
3337// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3338// not the entire user process, and user level threads are 1:1 mapped to kernel
3339// threads. It has always been the case, but could change in the future. For
3340// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3341// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3342
3343int os::java_to_os_priority[CriticalPriority + 1] = {
3344  19,              // 0 Entry should never be used
3345
3346   4,              // 1 MinPriority
3347   3,              // 2
3348   2,              // 3
3349
3350   1,              // 4
3351   0,              // 5 NormPriority
3352  -1,              // 6
3353
3354  -2,              // 7
3355  -3,              // 8
3356  -4,              // 9 NearMaxPriority
3357
3358  -5,              // 10 MaxPriority
3359
3360  -5               // 11 CriticalPriority
3361};
3362
3363static int prio_init() {
3364  if (ThreadPriorityPolicy == 1) {
3365    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3366    // if effective uid is not root. Perhaps, a more elegant way of doing
3367    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3368    if (geteuid() != 0) {
3369      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3370        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3371      }
3372      ThreadPriorityPolicy = 0;
3373    }
3374  }
3375  if (UseCriticalJavaThreadPriority) {
3376    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3377  }
3378  return 0;
3379}
3380
3381OSReturn os::set_native_priority(Thread* thread, int newpri) {
3382  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3383
3384  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3385  return (ret == 0) ? OS_OK : OS_ERR;
3386}
3387
3388OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3389  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3390    *priority_ptr = java_to_os_priority[NormPriority];
3391    return OS_OK;
3392  }
3393
3394  errno = 0;
3395  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3396  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3397}
3398
3399// Hint to the underlying OS that a task switch would not be good.
3400// Void return because it's a hint and can fail.
3401void os::hint_no_preempt() {}
3402
3403////////////////////////////////////////////////////////////////////////////////
3404// suspend/resume support
3405
3406//  the low-level signal-based suspend/resume support is a remnant from the
3407//  old VM-suspension that used to be for java-suspension, safepoints etc,
3408//  within hotspot. Now there is a single use-case for this:
3409//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3410//      that runs in the watcher thread.
3411//  The remaining code is greatly simplified from the more general suspension
3412//  code that used to be used.
3413//
3414//  The protocol is quite simple:
3415//  - suspend:
3416//      - sends a signal to the target thread
3417//      - polls the suspend state of the osthread using a yield loop
3418//      - target thread signal handler (SR_handler) sets suspend state
3419//        and blocks in sigsuspend until continued
3420//  - resume:
3421//      - sets target osthread state to continue
3422//      - sends signal to end the sigsuspend loop in the SR_handler
3423//
3424//  Note that the SR_lock plays no role in this suspend/resume protocol.
3425//
3426
3427static void resume_clear_context(OSThread *osthread) {
3428  osthread->set_ucontext(NULL);
3429  osthread->set_siginfo(NULL);
3430
3431  // notify the suspend action is completed, we have now resumed
3432  osthread->sr.clear_suspended();
3433}
3434
3435static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3436  osthread->set_ucontext(context);
3437  osthread->set_siginfo(siginfo);
3438}
3439
3440//
3441// Handler function invoked when a thread's execution is suspended or
3442// resumed. We have to be careful that only async-safe functions are
3443// called here (Note: most pthread functions are not async safe and
3444// should be avoided.)
3445//
3446// Note: sigwait() is a more natural fit than sigsuspend() from an
3447// interface point of view, but sigwait() prevents the signal hander
3448// from being run. libpthread would get very confused by not having
3449// its signal handlers run and prevents sigwait()'s use with the
3450// mutex granting granting signal.
3451//
3452// Currently only ever called on the VMThread
3453//
3454static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3455  // Save and restore errno to avoid confusing native code with EINTR
3456  // after sigsuspend.
3457  int old_errno = errno;
3458
3459  Thread* thread = Thread::current();
3460  OSThread* osthread = thread->osthread();
3461  assert(thread->is_VM_thread(), "Must be VMThread");
3462  // read current suspend action
3463  int action = osthread->sr.suspend_action();
3464  if (action == SR_SUSPEND) {
3465    suspend_save_context(osthread, siginfo, context);
3466
3467    // Notify the suspend action is about to be completed. do_suspend()
3468    // waits until SR_SUSPENDED is set and then returns. We will wait
3469    // here for a resume signal and that completes the suspend-other
3470    // action. do_suspend/do_resume is always called as a pair from
3471    // the same thread - so there are no races
3472
3473    // notify the caller
3474    osthread->sr.set_suspended();
3475
3476    sigset_t suspend_set;  // signals for sigsuspend()
3477
3478    // get current set of blocked signals and unblock resume signal
3479    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3480    sigdelset(&suspend_set, SR_signum);
3481
3482    // wait here until we are resumed
3483    do {
3484      sigsuspend(&suspend_set);
3485      // ignore all returns until we get a resume signal
3486    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3487
3488    resume_clear_context(osthread);
3489
3490  } else {
3491    assert(action == SR_CONTINUE, "unexpected sr action");
3492    // nothing special to do - just leave the handler
3493  }
3494
3495  errno = old_errno;
3496}
3497
3498
3499static int SR_initialize() {
3500  struct sigaction act;
3501  char *s;
3502  /* Get signal number to use for suspend/resume */
3503  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3504    int sig = ::strtol(s, 0, 10);
3505    if (sig > 0 || sig < _NSIG) {
3506        SR_signum = sig;
3507    }
3508  }
3509
3510  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3511        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3512
3513  sigemptyset(&SR_sigset);
3514  sigaddset(&SR_sigset, SR_signum);
3515
3516  /* Set up signal handler for suspend/resume */
3517  act.sa_flags = SA_RESTART|SA_SIGINFO;
3518  act.sa_handler = (void (*)(int)) SR_handler;
3519
3520  // SR_signum is blocked by default.
3521  // 4528190 - We also need to block pthread restart signal (32 on all
3522  // supported Linux platforms). Note that LinuxThreads need to block
3523  // this signal for all threads to work properly. So we don't have
3524  // to use hard-coded signal number when setting up the mask.
3525  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3526
3527  if (sigaction(SR_signum, &act, 0) == -1) {
3528    return -1;
3529  }
3530
3531  // Save signal flag
3532  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3533  return 0;
3534}
3535
3536static int SR_finalize() {
3537  return 0;
3538}
3539
3540
3541// returns true on success and false on error - really an error is fatal
3542// but this seems the normal response to library errors
3543static bool do_suspend(OSThread* osthread) {
3544  // mark as suspended and send signal
3545  osthread->sr.set_suspend_action(SR_SUSPEND);
3546  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3547  assert_status(status == 0, status, "pthread_kill");
3548
3549  // check status and wait until notified of suspension
3550  if (status == 0) {
3551    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3552      os::yield_all(i);
3553    }
3554    osthread->sr.set_suspend_action(SR_NONE);
3555    return true;
3556  }
3557  else {
3558    osthread->sr.set_suspend_action(SR_NONE);
3559    return false;
3560  }
3561}
3562
3563static void do_resume(OSThread* osthread) {
3564  assert(osthread->sr.is_suspended(), "thread should be suspended");
3565  osthread->sr.set_suspend_action(SR_CONTINUE);
3566
3567  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3568  assert_status(status == 0, status, "pthread_kill");
3569  // check status and wait unit notified of resumption
3570  if (status == 0) {
3571    for (int i = 0; osthread->sr.is_suspended(); i++) {
3572      os::yield_all(i);
3573    }
3574  }
3575  osthread->sr.set_suspend_action(SR_NONE);
3576}
3577
3578////////////////////////////////////////////////////////////////////////////////
3579// interrupt support
3580
3581void os::interrupt(Thread* thread) {
3582  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3583    "possibility of dangling Thread pointer");
3584
3585  OSThread* osthread = thread->osthread();
3586
3587  if (!osthread->interrupted()) {
3588    osthread->set_interrupted(true);
3589    // More than one thread can get here with the same value of osthread,
3590    // resulting in multiple notifications.  We do, however, want the store
3591    // to interrupted() to be visible to other threads before we execute unpark().
3592    OrderAccess::fence();
3593    ParkEvent * const slp = thread->_SleepEvent ;
3594    if (slp != NULL) slp->unpark() ;
3595  }
3596
3597  // For JSR166. Unpark even if interrupt status already was set
3598  if (thread->is_Java_thread())
3599    ((JavaThread*)thread)->parker()->unpark();
3600
3601  ParkEvent * ev = thread->_ParkEvent ;
3602  if (ev != NULL) ev->unpark() ;
3603
3604}
3605
3606bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3607  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3608    "possibility of dangling Thread pointer");
3609
3610  OSThread* osthread = thread->osthread();
3611
3612  bool interrupted = osthread->interrupted();
3613
3614  if (interrupted && clear_interrupted) {
3615    osthread->set_interrupted(false);
3616    // consider thread->_SleepEvent->reset() ... optional optimization
3617  }
3618
3619  return interrupted;
3620}
3621
3622///////////////////////////////////////////////////////////////////////////////////
3623// signal handling (except suspend/resume)
3624
3625// This routine may be used by user applications as a "hook" to catch signals.
3626// The user-defined signal handler must pass unrecognized signals to this
3627// routine, and if it returns true (non-zero), then the signal handler must
3628// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3629// routine will never retun false (zero), but instead will execute a VM panic
3630// routine kill the process.
3631//
3632// If this routine returns false, it is OK to call it again.  This allows
3633// the user-defined signal handler to perform checks either before or after
3634// the VM performs its own checks.  Naturally, the user code would be making
3635// a serious error if it tried to handle an exception (such as a null check
3636// or breakpoint) that the VM was generating for its own correct operation.
3637//
3638// This routine may recognize any of the following kinds of signals:
3639//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3640// It should be consulted by handlers for any of those signals.
3641//
3642// The caller of this routine must pass in the three arguments supplied
3643// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3644// field of the structure passed to sigaction().  This routine assumes that
3645// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3646//
3647// Note that the VM will print warnings if it detects conflicting signal
3648// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3649//
3650extern "C" JNIEXPORT int
3651JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3652                        void* ucontext, int abort_if_unrecognized);
3653
3654void signalHandler(int sig, siginfo_t* info, void* uc) {
3655  assert(info != NULL && uc != NULL, "it must be old kernel");
3656  JVM_handle_linux_signal(sig, info, uc, true);
3657}
3658
3659
3660// This boolean allows users to forward their own non-matching signals
3661// to JVM_handle_linux_signal, harmlessly.
3662bool os::Linux::signal_handlers_are_installed = false;
3663
3664// For signal-chaining
3665struct sigaction os::Linux::sigact[MAXSIGNUM];
3666unsigned int os::Linux::sigs = 0;
3667bool os::Linux::libjsig_is_loaded = false;
3668typedef struct sigaction *(*get_signal_t)(int);
3669get_signal_t os::Linux::get_signal_action = NULL;
3670
3671struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3672  struct sigaction *actp = NULL;
3673
3674  if (libjsig_is_loaded) {
3675    // Retrieve the old signal handler from libjsig
3676    actp = (*get_signal_action)(sig);
3677  }
3678  if (actp == NULL) {
3679    // Retrieve the preinstalled signal handler from jvm
3680    actp = get_preinstalled_handler(sig);
3681  }
3682
3683  return actp;
3684}
3685
3686static bool call_chained_handler(struct sigaction *actp, int sig,
3687                                 siginfo_t *siginfo, void *context) {
3688  // Call the old signal handler
3689  if (actp->sa_handler == SIG_DFL) {
3690    // It's more reasonable to let jvm treat it as an unexpected exception
3691    // instead of taking the default action.
3692    return false;
3693  } else if (actp->sa_handler != SIG_IGN) {
3694    if ((actp->sa_flags & SA_NODEFER) == 0) {
3695      // automaticlly block the signal
3696      sigaddset(&(actp->sa_mask), sig);
3697    }
3698
3699    sa_handler_t hand;
3700    sa_sigaction_t sa;
3701    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3702    // retrieve the chained handler
3703    if (siginfo_flag_set) {
3704      sa = actp->sa_sigaction;
3705    } else {
3706      hand = actp->sa_handler;
3707    }
3708
3709    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3710      actp->sa_handler = SIG_DFL;
3711    }
3712
3713    // try to honor the signal mask
3714    sigset_t oset;
3715    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3716
3717    // call into the chained handler
3718    if (siginfo_flag_set) {
3719      (*sa)(sig, siginfo, context);
3720    } else {
3721      (*hand)(sig);
3722    }
3723
3724    // restore the signal mask
3725    pthread_sigmask(SIG_SETMASK, &oset, 0);
3726  }
3727  // Tell jvm's signal handler the signal is taken care of.
3728  return true;
3729}
3730
3731bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3732  bool chained = false;
3733  // signal-chaining
3734  if (UseSignalChaining) {
3735    struct sigaction *actp = get_chained_signal_action(sig);
3736    if (actp != NULL) {
3737      chained = call_chained_handler(actp, sig, siginfo, context);
3738    }
3739  }
3740  return chained;
3741}
3742
3743struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3744  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3745    return &sigact[sig];
3746  }
3747  return NULL;
3748}
3749
3750void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3751  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3752  sigact[sig] = oldAct;
3753  sigs |= (unsigned int)1 << sig;
3754}
3755
3756// for diagnostic
3757int os::Linux::sigflags[MAXSIGNUM];
3758
3759int os::Linux::get_our_sigflags(int sig) {
3760  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3761  return sigflags[sig];
3762}
3763
3764void os::Linux::set_our_sigflags(int sig, int flags) {
3765  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3766  sigflags[sig] = flags;
3767}
3768
3769void os::Linux::set_signal_handler(int sig, bool set_installed) {
3770  // Check for overwrite.
3771  struct sigaction oldAct;
3772  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3773
3774  void* oldhand = oldAct.sa_sigaction
3775                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3776                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3777  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3778      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3779      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3780    if (AllowUserSignalHandlers || !set_installed) {
3781      // Do not overwrite; user takes responsibility to forward to us.
3782      return;
3783    } else if (UseSignalChaining) {
3784      // save the old handler in jvm
3785      save_preinstalled_handler(sig, oldAct);
3786      // libjsig also interposes the sigaction() call below and saves the
3787      // old sigaction on it own.
3788    } else {
3789      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3790                    "%#lx for signal %d.", (long)oldhand, sig));
3791    }
3792  }
3793
3794  struct sigaction sigAct;
3795  sigfillset(&(sigAct.sa_mask));
3796  sigAct.sa_handler = SIG_DFL;
3797  if (!set_installed) {
3798    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3799  } else {
3800    sigAct.sa_sigaction = signalHandler;
3801    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3802  }
3803  // Save flags, which are set by ours
3804  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3805  sigflags[sig] = sigAct.sa_flags;
3806
3807  int ret = sigaction(sig, &sigAct, &oldAct);
3808  assert(ret == 0, "check");
3809
3810  void* oldhand2  = oldAct.sa_sigaction
3811                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3812                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3813  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3814}
3815
3816// install signal handlers for signals that HotSpot needs to
3817// handle in order to support Java-level exception handling.
3818
3819void os::Linux::install_signal_handlers() {
3820  if (!signal_handlers_are_installed) {
3821    signal_handlers_are_installed = true;
3822
3823    // signal-chaining
3824    typedef void (*signal_setting_t)();
3825    signal_setting_t begin_signal_setting = NULL;
3826    signal_setting_t end_signal_setting = NULL;
3827    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3828                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3829    if (begin_signal_setting != NULL) {
3830      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3831                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3832      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3833                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3834      libjsig_is_loaded = true;
3835      assert(UseSignalChaining, "should enable signal-chaining");
3836    }
3837    if (libjsig_is_loaded) {
3838      // Tell libjsig jvm is setting signal handlers
3839      (*begin_signal_setting)();
3840    }
3841
3842    set_signal_handler(SIGSEGV, true);
3843    set_signal_handler(SIGPIPE, true);
3844    set_signal_handler(SIGBUS, true);
3845    set_signal_handler(SIGILL, true);
3846    set_signal_handler(SIGFPE, true);
3847    set_signal_handler(SIGXFSZ, true);
3848
3849    if (libjsig_is_loaded) {
3850      // Tell libjsig jvm finishes setting signal handlers
3851      (*end_signal_setting)();
3852    }
3853
3854    // We don't activate signal checker if libjsig is in place, we trust ourselves
3855    // and if UserSignalHandler is installed all bets are off.
3856    // Log that signal checking is off only if -verbose:jni is specified.
3857    if (CheckJNICalls) {
3858      if (libjsig_is_loaded) {
3859        if (PrintJNIResolving) {
3860          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3861        }
3862        check_signals = false;
3863      }
3864      if (AllowUserSignalHandlers) {
3865        if (PrintJNIResolving) {
3866          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3867        }
3868        check_signals = false;
3869      }
3870    }
3871  }
3872}
3873
3874// This is the fastest way to get thread cpu time on Linux.
3875// Returns cpu time (user+sys) for any thread, not only for current.
3876// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3877// It might work on 2.6.10+ with a special kernel/glibc patch.
3878// For reference, please, see IEEE Std 1003.1-2004:
3879//   http://www.unix.org/single_unix_specification
3880
3881jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3882  struct timespec tp;
3883  int rc = os::Linux::clock_gettime(clockid, &tp);
3884  assert(rc == 0, "clock_gettime is expected to return 0 code");
3885
3886  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3887}
3888
3889/////
3890// glibc on Linux platform uses non-documented flag
3891// to indicate, that some special sort of signal
3892// trampoline is used.
3893// We will never set this flag, and we should
3894// ignore this flag in our diagnostic
3895#ifdef SIGNIFICANT_SIGNAL_MASK
3896#undef SIGNIFICANT_SIGNAL_MASK
3897#endif
3898#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3899
3900static const char* get_signal_handler_name(address handler,
3901                                           char* buf, int buflen) {
3902  int offset;
3903  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3904  if (found) {
3905    // skip directory names
3906    const char *p1, *p2;
3907    p1 = buf;
3908    size_t len = strlen(os::file_separator());
3909    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3910    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3911  } else {
3912    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3913  }
3914  return buf;
3915}
3916
3917static void print_signal_handler(outputStream* st, int sig,
3918                                 char* buf, size_t buflen) {
3919  struct sigaction sa;
3920
3921  sigaction(sig, NULL, &sa);
3922
3923  // See comment for SIGNIFICANT_SIGNAL_MASK define
3924  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3925
3926  st->print("%s: ", os::exception_name(sig, buf, buflen));
3927
3928  address handler = (sa.sa_flags & SA_SIGINFO)
3929    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3930    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3931
3932  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3933    st->print("SIG_DFL");
3934  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3935    st->print("SIG_IGN");
3936  } else {
3937    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3938  }
3939
3940  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3941
3942  address rh = VMError::get_resetted_sighandler(sig);
3943  // May be, handler was resetted by VMError?
3944  if(rh != NULL) {
3945    handler = rh;
3946    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3947  }
3948
3949  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3950
3951  // Check: is it our handler?
3952  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3953     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3954    // It is our signal handler
3955    // check for flags, reset system-used one!
3956    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3957      st->print(
3958                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3959                os::Linux::get_our_sigflags(sig));
3960    }
3961  }
3962  st->cr();
3963}
3964
3965
3966#define DO_SIGNAL_CHECK(sig) \
3967  if (!sigismember(&check_signal_done, sig)) \
3968    os::Linux::check_signal_handler(sig)
3969
3970// This method is a periodic task to check for misbehaving JNI applications
3971// under CheckJNI, we can add any periodic checks here
3972
3973void os::run_periodic_checks() {
3974
3975  if (check_signals == false) return;
3976
3977  // SEGV and BUS if overridden could potentially prevent
3978  // generation of hs*.log in the event of a crash, debugging
3979  // such a case can be very challenging, so we absolutely
3980  // check the following for a good measure:
3981  DO_SIGNAL_CHECK(SIGSEGV);
3982  DO_SIGNAL_CHECK(SIGILL);
3983  DO_SIGNAL_CHECK(SIGFPE);
3984  DO_SIGNAL_CHECK(SIGBUS);
3985  DO_SIGNAL_CHECK(SIGPIPE);
3986  DO_SIGNAL_CHECK(SIGXFSZ);
3987
3988
3989  // ReduceSignalUsage allows the user to override these handlers
3990  // see comments at the very top and jvm_solaris.h
3991  if (!ReduceSignalUsage) {
3992    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3993    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3994    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3995    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3996  }
3997
3998  DO_SIGNAL_CHECK(SR_signum);
3999  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4000}
4001
4002typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4003
4004static os_sigaction_t os_sigaction = NULL;
4005
4006void os::Linux::check_signal_handler(int sig) {
4007  char buf[O_BUFLEN];
4008  address jvmHandler = NULL;
4009
4010
4011  struct sigaction act;
4012  if (os_sigaction == NULL) {
4013    // only trust the default sigaction, in case it has been interposed
4014    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4015    if (os_sigaction == NULL) return;
4016  }
4017
4018  os_sigaction(sig, (struct sigaction*)NULL, &act);
4019
4020
4021  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4022
4023  address thisHandler = (act.sa_flags & SA_SIGINFO)
4024    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4025    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4026
4027
4028  switch(sig) {
4029  case SIGSEGV:
4030  case SIGBUS:
4031  case SIGFPE:
4032  case SIGPIPE:
4033  case SIGILL:
4034  case SIGXFSZ:
4035    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4036    break;
4037
4038  case SHUTDOWN1_SIGNAL:
4039  case SHUTDOWN2_SIGNAL:
4040  case SHUTDOWN3_SIGNAL:
4041  case BREAK_SIGNAL:
4042    jvmHandler = (address)user_handler();
4043    break;
4044
4045  case INTERRUPT_SIGNAL:
4046    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4047    break;
4048
4049  default:
4050    if (sig == SR_signum) {
4051      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4052    } else {
4053      return;
4054    }
4055    break;
4056  }
4057
4058  if (thisHandler != jvmHandler) {
4059    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4060    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4061    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4062    // No need to check this sig any longer
4063    sigaddset(&check_signal_done, sig);
4064  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4065    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4066    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4067    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4068    // No need to check this sig any longer
4069    sigaddset(&check_signal_done, sig);
4070  }
4071
4072  // Dump all the signal
4073  if (sigismember(&check_signal_done, sig)) {
4074    print_signal_handlers(tty, buf, O_BUFLEN);
4075  }
4076}
4077
4078extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4079
4080extern bool signal_name(int signo, char* buf, size_t len);
4081
4082const char* os::exception_name(int exception_code, char* buf, size_t size) {
4083  if (0 < exception_code && exception_code <= SIGRTMAX) {
4084    // signal
4085    if (!signal_name(exception_code, buf, size)) {
4086      jio_snprintf(buf, size, "SIG%d", exception_code);
4087    }
4088    return buf;
4089  } else {
4090    return NULL;
4091  }
4092}
4093
4094// this is called _before_ the most of global arguments have been parsed
4095void os::init(void) {
4096  char dummy;   /* used to get a guess on initial stack address */
4097//  first_hrtime = gethrtime();
4098
4099  // With LinuxThreads the JavaMain thread pid (primordial thread)
4100  // is different than the pid of the java launcher thread.
4101  // So, on Linux, the launcher thread pid is passed to the VM
4102  // via the sun.java.launcher.pid property.
4103  // Use this property instead of getpid() if it was correctly passed.
4104  // See bug 6351349.
4105  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4106
4107  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4108
4109  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4110
4111  init_random(1234567);
4112
4113  ThreadCritical::initialize();
4114
4115  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4116  if (Linux::page_size() == -1) {
4117    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4118                  strerror(errno)));
4119  }
4120  init_page_sizes((size_t) Linux::page_size());
4121
4122  Linux::initialize_system_info();
4123
4124  // main_thread points to the aboriginal thread
4125  Linux::_main_thread = pthread_self();
4126
4127  Linux::clock_init();
4128  initial_time_count = os::elapsed_counter();
4129  pthread_mutex_init(&dl_mutex, NULL);
4130}
4131
4132// To install functions for atexit system call
4133extern "C" {
4134  static void perfMemory_exit_helper() {
4135    perfMemory_exit();
4136  }
4137}
4138
4139// this is called _after_ the global arguments have been parsed
4140jint os::init_2(void)
4141{
4142  Linux::fast_thread_clock_init();
4143
4144  // Allocate a single page and mark it as readable for safepoint polling
4145  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4146  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4147
4148  os::set_polling_page( polling_page );
4149
4150#ifndef PRODUCT
4151  if(Verbose && PrintMiscellaneous)
4152    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4153#endif
4154
4155  if (!UseMembar) {
4156    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4157    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4158    os::set_memory_serialize_page( mem_serialize_page );
4159
4160#ifndef PRODUCT
4161    if(Verbose && PrintMiscellaneous)
4162      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4163#endif
4164  }
4165
4166  os::large_page_init();
4167
4168  // initialize suspend/resume support - must do this before signal_sets_init()
4169  if (SR_initialize() != 0) {
4170    perror("SR_initialize failed");
4171    return JNI_ERR;
4172  }
4173
4174  Linux::signal_sets_init();
4175  Linux::install_signal_handlers();
4176
4177  // Check minimum allowable stack size for thread creation and to initialize
4178  // the java system classes, including StackOverflowError - depends on page
4179  // size.  Add a page for compiler2 recursion in main thread.
4180  // Add in 2*BytesPerWord times page size to account for VM stack during
4181  // class initialization depending on 32 or 64 bit VM.
4182  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4183            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4184                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4185
4186  size_t threadStackSizeInBytes = ThreadStackSize * K;
4187  if (threadStackSizeInBytes != 0 &&
4188      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4189        tty->print_cr("\nThe stack size specified is too small, "
4190                      "Specify at least %dk",
4191                      os::Linux::min_stack_allowed/ K);
4192        return JNI_ERR;
4193  }
4194
4195  // Make the stack size a multiple of the page size so that
4196  // the yellow/red zones can be guarded.
4197  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4198        vm_page_size()));
4199
4200  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4201
4202  Linux::libpthread_init();
4203  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4204     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4205          Linux::glibc_version(), Linux::libpthread_version(),
4206          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4207  }
4208
4209  if (UseNUMA) {
4210    if (!Linux::libnuma_init()) {
4211      UseNUMA = false;
4212    } else {
4213      if ((Linux::numa_max_node() < 1)) {
4214        // There's only one node(they start from 0), disable NUMA.
4215        UseNUMA = false;
4216      }
4217    }
4218    // With SHM large pages we cannot uncommit a page, so there's not way
4219    // we can make the adaptive lgrp chunk resizing work. If the user specified
4220    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4221    // disable adaptive resizing.
4222    if (UseNUMA && UseLargePages && UseSHM) {
4223      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4224        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4225          UseLargePages = false;
4226        } else {
4227          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4228          UseAdaptiveSizePolicy = false;
4229          UseAdaptiveNUMAChunkSizing = false;
4230        }
4231      } else {
4232        UseNUMA = false;
4233      }
4234    }
4235    if (!UseNUMA && ForceNUMA) {
4236      UseNUMA = true;
4237    }
4238  }
4239
4240  if (MaxFDLimit) {
4241    // set the number of file descriptors to max. print out error
4242    // if getrlimit/setrlimit fails but continue regardless.
4243    struct rlimit nbr_files;
4244    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4245    if (status != 0) {
4246      if (PrintMiscellaneous && (Verbose || WizardMode))
4247        perror("os::init_2 getrlimit failed");
4248    } else {
4249      nbr_files.rlim_cur = nbr_files.rlim_max;
4250      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4251      if (status != 0) {
4252        if (PrintMiscellaneous && (Verbose || WizardMode))
4253          perror("os::init_2 setrlimit failed");
4254      }
4255    }
4256  }
4257
4258  // Initialize lock used to serialize thread creation (see os::create_thread)
4259  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4260
4261  // at-exit methods are called in the reverse order of their registration.
4262  // atexit functions are called on return from main or as a result of a
4263  // call to exit(3C). There can be only 32 of these functions registered
4264  // and atexit() does not set errno.
4265
4266  if (PerfAllowAtExitRegistration) {
4267    // only register atexit functions if PerfAllowAtExitRegistration is set.
4268    // atexit functions can be delayed until process exit time, which
4269    // can be problematic for embedded VM situations. Embedded VMs should
4270    // call DestroyJavaVM() to assure that VM resources are released.
4271
4272    // note: perfMemory_exit_helper atexit function may be removed in
4273    // the future if the appropriate cleanup code can be added to the
4274    // VM_Exit VMOperation's doit method.
4275    if (atexit(perfMemory_exit_helper) != 0) {
4276      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4277    }
4278  }
4279
4280  // initialize thread priority policy
4281  prio_init();
4282
4283  return JNI_OK;
4284}
4285
4286// this is called at the end of vm_initialization
4287void os::init_3(void)
4288{
4289#ifdef JAVASE_EMBEDDED
4290  // Start the MemNotifyThread
4291  if (LowMemoryProtection) {
4292    MemNotifyThread::start();
4293  }
4294  return;
4295#endif
4296}
4297
4298// Mark the polling page as unreadable
4299void os::make_polling_page_unreadable(void) {
4300  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4301    fatal("Could not disable polling page");
4302};
4303
4304// Mark the polling page as readable
4305void os::make_polling_page_readable(void) {
4306  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4307    fatal("Could not enable polling page");
4308  }
4309};
4310
4311int os::active_processor_count() {
4312  // Linux doesn't yet have a (official) notion of processor sets,
4313  // so just return the number of online processors.
4314  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4315  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4316  return online_cpus;
4317}
4318
4319void os::set_native_thread_name(const char *name) {
4320  // Not yet implemented.
4321  return;
4322}
4323
4324bool os::distribute_processes(uint length, uint* distribution) {
4325  // Not yet implemented.
4326  return false;
4327}
4328
4329bool os::bind_to_processor(uint processor_id) {
4330  // Not yet implemented.
4331  return false;
4332}
4333
4334///
4335
4336// Suspends the target using the signal mechanism and then grabs the PC before
4337// resuming the target. Used by the flat-profiler only
4338ExtendedPC os::get_thread_pc(Thread* thread) {
4339  // Make sure that it is called by the watcher for the VMThread
4340  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4341  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4342
4343  ExtendedPC epc;
4344
4345  OSThread* osthread = thread->osthread();
4346  if (do_suspend(osthread)) {
4347    if (osthread->ucontext() != NULL) {
4348      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4349    } else {
4350      // NULL context is unexpected, double-check this is the VMThread
4351      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4352    }
4353    do_resume(osthread);
4354  }
4355  // failure means pthread_kill failed for some reason - arguably this is
4356  // a fatal problem, but such problems are ignored elsewhere
4357
4358  return epc;
4359}
4360
4361int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4362{
4363   if (is_NPTL()) {
4364      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4365   } else {
4366      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4367      // word back to default 64bit precision if condvar is signaled. Java
4368      // wants 53bit precision.  Save and restore current value.
4369      int fpu = get_fpu_control_word();
4370      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4371      set_fpu_control_word(fpu);
4372      return status;
4373   }
4374}
4375
4376////////////////////////////////////////////////////////////////////////////////
4377// debug support
4378
4379static address same_page(address x, address y) {
4380  int page_bits = -os::vm_page_size();
4381  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4382    return x;
4383  else if (x > y)
4384    return (address)(intptr_t(y) | ~page_bits) + 1;
4385  else
4386    return (address)(intptr_t(y) & page_bits);
4387}
4388
4389bool os::find(address addr, outputStream* st) {
4390  Dl_info dlinfo;
4391  memset(&dlinfo, 0, sizeof(dlinfo));
4392  if (dladdr(addr, &dlinfo)) {
4393    st->print(PTR_FORMAT ": ", addr);
4394    if (dlinfo.dli_sname != NULL) {
4395      st->print("%s+%#x", dlinfo.dli_sname,
4396                 addr - (intptr_t)dlinfo.dli_saddr);
4397    } else if (dlinfo.dli_fname) {
4398      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4399    } else {
4400      st->print("<absolute address>");
4401    }
4402    if (dlinfo.dli_fname) {
4403      st->print(" in %s", dlinfo.dli_fname);
4404    }
4405    if (dlinfo.dli_fbase) {
4406      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4407    }
4408    st->cr();
4409
4410    if (Verbose) {
4411      // decode some bytes around the PC
4412      address begin = same_page(addr-40, addr);
4413      address end   = same_page(addr+40, addr);
4414      address       lowest = (address) dlinfo.dli_sname;
4415      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4416      if (begin < lowest)  begin = lowest;
4417      Dl_info dlinfo2;
4418      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4419          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4420        end = (address) dlinfo2.dli_saddr;
4421      Disassembler::decode(begin, end, st);
4422    }
4423    return true;
4424  }
4425  return false;
4426}
4427
4428////////////////////////////////////////////////////////////////////////////////
4429// misc
4430
4431// This does not do anything on Linux. This is basically a hook for being
4432// able to use structured exception handling (thread-local exception filters)
4433// on, e.g., Win32.
4434void
4435os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4436                         JavaCallArguments* args, Thread* thread) {
4437  f(value, method, args, thread);
4438}
4439
4440void os::print_statistics() {
4441}
4442
4443int os::message_box(const char* title, const char* message) {
4444  int i;
4445  fdStream err(defaultStream::error_fd());
4446  for (i = 0; i < 78; i++) err.print_raw("=");
4447  err.cr();
4448  err.print_raw_cr(title);
4449  for (i = 0; i < 78; i++) err.print_raw("-");
4450  err.cr();
4451  err.print_raw_cr(message);
4452  for (i = 0; i < 78; i++) err.print_raw("=");
4453  err.cr();
4454
4455  char buf[16];
4456  // Prevent process from exiting upon "read error" without consuming all CPU
4457  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4458
4459  return buf[0] == 'y' || buf[0] == 'Y';
4460}
4461
4462int os::stat(const char *path, struct stat *sbuf) {
4463  char pathbuf[MAX_PATH];
4464  if (strlen(path) > MAX_PATH - 1) {
4465    errno = ENAMETOOLONG;
4466    return -1;
4467  }
4468  os::native_path(strcpy(pathbuf, path));
4469  return ::stat(pathbuf, sbuf);
4470}
4471
4472bool os::check_heap(bool force) {
4473  return true;
4474}
4475
4476int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4477  return ::vsnprintf(buf, count, format, args);
4478}
4479
4480// Is a (classpath) directory empty?
4481bool os::dir_is_empty(const char* path) {
4482  DIR *dir = NULL;
4483  struct dirent *ptr;
4484
4485  dir = opendir(path);
4486  if (dir == NULL) return true;
4487
4488  /* Scan the directory */
4489  bool result = true;
4490  char buf[sizeof(struct dirent) + MAX_PATH];
4491  while (result && (ptr = ::readdir(dir)) != NULL) {
4492    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4493      result = false;
4494    }
4495  }
4496  closedir(dir);
4497  return result;
4498}
4499
4500// This code originates from JDK's sysOpen and open64_w
4501// from src/solaris/hpi/src/system_md.c
4502
4503#ifndef O_DELETE
4504#define O_DELETE 0x10000
4505#endif
4506
4507// Open a file. Unlink the file immediately after open returns
4508// if the specified oflag has the O_DELETE flag set.
4509// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4510
4511int os::open(const char *path, int oflag, int mode) {
4512
4513  if (strlen(path) > MAX_PATH - 1) {
4514    errno = ENAMETOOLONG;
4515    return -1;
4516  }
4517  int fd;
4518  int o_delete = (oflag & O_DELETE);
4519  oflag = oflag & ~O_DELETE;
4520
4521  fd = ::open64(path, oflag, mode);
4522  if (fd == -1) return -1;
4523
4524  //If the open succeeded, the file might still be a directory
4525  {
4526    struct stat64 buf64;
4527    int ret = ::fstat64(fd, &buf64);
4528    int st_mode = buf64.st_mode;
4529
4530    if (ret != -1) {
4531      if ((st_mode & S_IFMT) == S_IFDIR) {
4532        errno = EISDIR;
4533        ::close(fd);
4534        return -1;
4535      }
4536    } else {
4537      ::close(fd);
4538      return -1;
4539    }
4540  }
4541
4542    /*
4543     * All file descriptors that are opened in the JVM and not
4544     * specifically destined for a subprocess should have the
4545     * close-on-exec flag set.  If we don't set it, then careless 3rd
4546     * party native code might fork and exec without closing all
4547     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4548     * UNIXProcess.c), and this in turn might:
4549     *
4550     * - cause end-of-file to fail to be detected on some file
4551     *   descriptors, resulting in mysterious hangs, or
4552     *
4553     * - might cause an fopen in the subprocess to fail on a system
4554     *   suffering from bug 1085341.
4555     *
4556     * (Yes, the default setting of the close-on-exec flag is a Unix
4557     * design flaw)
4558     *
4559     * See:
4560     * 1085341: 32-bit stdio routines should support file descriptors >255
4561     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4562     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4563     */
4564#ifdef FD_CLOEXEC
4565    {
4566        int flags = ::fcntl(fd, F_GETFD);
4567        if (flags != -1)
4568            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4569    }
4570#endif
4571
4572  if (o_delete != 0) {
4573    ::unlink(path);
4574  }
4575  return fd;
4576}
4577
4578
4579// create binary file, rewriting existing file if required
4580int os::create_binary_file(const char* path, bool rewrite_existing) {
4581  int oflags = O_WRONLY | O_CREAT;
4582  if (!rewrite_existing) {
4583    oflags |= O_EXCL;
4584  }
4585  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4586}
4587
4588// return current position of file pointer
4589jlong os::current_file_offset(int fd) {
4590  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4591}
4592
4593// move file pointer to the specified offset
4594jlong os::seek_to_file_offset(int fd, jlong offset) {
4595  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4596}
4597
4598// This code originates from JDK's sysAvailable
4599// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4600
4601int os::available(int fd, jlong *bytes) {
4602  jlong cur, end;
4603  int mode;
4604  struct stat64 buf64;
4605
4606  if (::fstat64(fd, &buf64) >= 0) {
4607    mode = buf64.st_mode;
4608    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4609      /*
4610      * XXX: is the following call interruptible? If so, this might
4611      * need to go through the INTERRUPT_IO() wrapper as for other
4612      * blocking, interruptible calls in this file.
4613      */
4614      int n;
4615      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4616        *bytes = n;
4617        return 1;
4618      }
4619    }
4620  }
4621  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4622    return 0;
4623  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4624    return 0;
4625  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4626    return 0;
4627  }
4628  *bytes = end - cur;
4629  return 1;
4630}
4631
4632int os::socket_available(int fd, jint *pbytes) {
4633  // Linux doc says EINTR not returned, unlike Solaris
4634  int ret = ::ioctl(fd, FIONREAD, pbytes);
4635
4636  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4637  // is expected to return 0 on failure and 1 on success to the jdk.
4638  return (ret < 0) ? 0 : 1;
4639}
4640
4641// Map a block of memory.
4642char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4643                     char *addr, size_t bytes, bool read_only,
4644                     bool allow_exec) {
4645  int prot;
4646  int flags = MAP_PRIVATE;
4647
4648  if (read_only) {
4649    prot = PROT_READ;
4650  } else {
4651    prot = PROT_READ | PROT_WRITE;
4652  }
4653
4654  if (allow_exec) {
4655    prot |= PROT_EXEC;
4656  }
4657
4658  if (addr != NULL) {
4659    flags |= MAP_FIXED;
4660  }
4661
4662  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4663                                     fd, file_offset);
4664  if (mapped_address == MAP_FAILED) {
4665    return NULL;
4666  }
4667  return mapped_address;
4668}
4669
4670
4671// Remap a block of memory.
4672char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4673                       char *addr, size_t bytes, bool read_only,
4674                       bool allow_exec) {
4675  // same as map_memory() on this OS
4676  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4677                        allow_exec);
4678}
4679
4680
4681// Unmap a block of memory.
4682bool os::pd_unmap_memory(char* addr, size_t bytes) {
4683  return munmap(addr, bytes) == 0;
4684}
4685
4686static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4687
4688static clockid_t thread_cpu_clockid(Thread* thread) {
4689  pthread_t tid = thread->osthread()->pthread_id();
4690  clockid_t clockid;
4691
4692  // Get thread clockid
4693  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4694  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4695  return clockid;
4696}
4697
4698// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4699// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4700// of a thread.
4701//
4702// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4703// the fast estimate available on the platform.
4704
4705jlong os::current_thread_cpu_time() {
4706  if (os::Linux::supports_fast_thread_cpu_time()) {
4707    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4708  } else {
4709    // return user + sys since the cost is the same
4710    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4711  }
4712}
4713
4714jlong os::thread_cpu_time(Thread* thread) {
4715  // consistent with what current_thread_cpu_time() returns
4716  if (os::Linux::supports_fast_thread_cpu_time()) {
4717    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4718  } else {
4719    return slow_thread_cpu_time(thread, true /* user + sys */);
4720  }
4721}
4722
4723jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4724  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4725    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4726  } else {
4727    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4728  }
4729}
4730
4731jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4732  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4733    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4734  } else {
4735    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4736  }
4737}
4738
4739//
4740//  -1 on error.
4741//
4742
4743static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4744  static bool proc_pid_cpu_avail = true;
4745  static bool proc_task_unchecked = true;
4746  static const char *proc_stat_path = "/proc/%d/stat";
4747  pid_t  tid = thread->osthread()->thread_id();
4748  int i;
4749  char *s;
4750  char stat[2048];
4751  int statlen;
4752  char proc_name[64];
4753  int count;
4754  long sys_time, user_time;
4755  char string[64];
4756  char cdummy;
4757  int idummy;
4758  long ldummy;
4759  FILE *fp;
4760
4761  // We first try accessing /proc/<pid>/cpu since this is faster to
4762  // process.  If this file is not present (linux kernels 2.5 and above)
4763  // then we open /proc/<pid>/stat.
4764  if ( proc_pid_cpu_avail ) {
4765    sprintf(proc_name, "/proc/%d/cpu", tid);
4766    fp =  fopen(proc_name, "r");
4767    if ( fp != NULL ) {
4768      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4769      fclose(fp);
4770      if ( count != 3 ) return -1;
4771
4772      if (user_sys_cpu_time) {
4773        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4774      } else {
4775        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4776      }
4777    }
4778    else proc_pid_cpu_avail = false;
4779  }
4780
4781  // The /proc/<tid>/stat aggregates per-process usage on
4782  // new Linux kernels 2.6+ where NPTL is supported.
4783  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4784  // See bug 6328462.
4785  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4786  // and possibly in some other cases, so we check its availability.
4787  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4788    // This is executed only once
4789    proc_task_unchecked = false;
4790    fp = fopen("/proc/self/task", "r");
4791    if (fp != NULL) {
4792      proc_stat_path = "/proc/self/task/%d/stat";
4793      fclose(fp);
4794    }
4795  }
4796
4797  sprintf(proc_name, proc_stat_path, tid);
4798  fp = fopen(proc_name, "r");
4799  if ( fp == NULL ) return -1;
4800  statlen = fread(stat, 1, 2047, fp);
4801  stat[statlen] = '\0';
4802  fclose(fp);
4803
4804  // Skip pid and the command string. Note that we could be dealing with
4805  // weird command names, e.g. user could decide to rename java launcher
4806  // to "java 1.4.2 :)", then the stat file would look like
4807  //                1234 (java 1.4.2 :)) R ... ...
4808  // We don't really need to know the command string, just find the last
4809  // occurrence of ")" and then start parsing from there. See bug 4726580.
4810  s = strrchr(stat, ')');
4811  i = 0;
4812  if (s == NULL ) return -1;
4813
4814  // Skip blank chars
4815  do s++; while (isspace(*s));
4816
4817  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4818                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4819                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4820                 &user_time, &sys_time);
4821  if ( count != 13 ) return -1;
4822  if (user_sys_cpu_time) {
4823    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4824  } else {
4825    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4826  }
4827}
4828
4829void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4830  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4831  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4832  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4833  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4834}
4835
4836void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4837  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4838  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4839  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4840  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4841}
4842
4843bool os::is_thread_cpu_time_supported() {
4844  return true;
4845}
4846
4847// System loadavg support.  Returns -1 if load average cannot be obtained.
4848// Linux doesn't yet have a (official) notion of processor sets,
4849// so just return the system wide load average.
4850int os::loadavg(double loadavg[], int nelem) {
4851  return ::getloadavg(loadavg, nelem);
4852}
4853
4854void os::pause() {
4855  char filename[MAX_PATH];
4856  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4857    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4858  } else {
4859    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4860  }
4861
4862  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4863  if (fd != -1) {
4864    struct stat buf;
4865    ::close(fd);
4866    while (::stat(filename, &buf) == 0) {
4867      (void)::poll(NULL, 0, 100);
4868    }
4869  } else {
4870    jio_fprintf(stderr,
4871      "Could not open pause file '%s', continuing immediately.\n", filename);
4872  }
4873}
4874
4875
4876// Refer to the comments in os_solaris.cpp park-unpark.
4877//
4878// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4879// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4880// For specifics regarding the bug see GLIBC BUGID 261237 :
4881//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4882// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4883// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4884// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4885// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4886// and monitorenter when we're using 1-0 locking.  All those operations may result in
4887// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4888// of libpthread avoids the problem, but isn't practical.
4889//
4890// Possible remedies:
4891//
4892// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4893//      This is palliative and probabilistic, however.  If the thread is preempted
4894//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4895//      than the minimum period may have passed, and the abstime may be stale (in the
4896//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4897//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4898//
4899// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4900//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4901//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4902//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4903//      thread.
4904//
4905// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4906//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4907//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4908//      This also works well.  In fact it avoids kernel-level scalability impediments
4909//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4910//      timers in a graceful fashion.
4911//
4912// 4.   When the abstime value is in the past it appears that control returns
4913//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4914//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4915//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4916//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4917//      It may be possible to avoid reinitialization by checking the return
4918//      value from pthread_cond_timedwait().  In addition to reinitializing the
4919//      condvar we must establish the invariant that cond_signal() is only called
4920//      within critical sections protected by the adjunct mutex.  This prevents
4921//      cond_signal() from "seeing" a condvar that's in the midst of being
4922//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4923//      desirable signal-after-unlock optimization that avoids futile context switching.
4924//
4925//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4926//      structure when a condvar is used or initialized.  cond_destroy()  would
4927//      release the helper structure.  Our reinitialize-after-timedwait fix
4928//      put excessive stress on malloc/free and locks protecting the c-heap.
4929//
4930// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4931// It may be possible to refine (4) by checking the kernel and NTPL verisons
4932// and only enabling the work-around for vulnerable environments.
4933
4934// utility to compute the abstime argument to timedwait:
4935// millis is the relative timeout time
4936// abstime will be the absolute timeout time
4937// TODO: replace compute_abstime() with unpackTime()
4938
4939static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4940  if (millis < 0)  millis = 0;
4941  struct timeval now;
4942  int status = gettimeofday(&now, NULL);
4943  assert(status == 0, "gettimeofday");
4944  jlong seconds = millis / 1000;
4945  millis %= 1000;
4946  if (seconds > 50000000) { // see man cond_timedwait(3T)
4947    seconds = 50000000;
4948  }
4949  abstime->tv_sec = now.tv_sec  + seconds;
4950  long       usec = now.tv_usec + millis * 1000;
4951  if (usec >= 1000000) {
4952    abstime->tv_sec += 1;
4953    usec -= 1000000;
4954  }
4955  abstime->tv_nsec = usec * 1000;
4956  return abstime;
4957}
4958
4959
4960// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4961// Conceptually TryPark() should be equivalent to park(0).
4962
4963int os::PlatformEvent::TryPark() {
4964  for (;;) {
4965    const int v = _Event ;
4966    guarantee ((v == 0) || (v == 1), "invariant") ;
4967    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4968  }
4969}
4970
4971void os::PlatformEvent::park() {       // AKA "down()"
4972  // Invariant: Only the thread associated with the Event/PlatformEvent
4973  // may call park().
4974  // TODO: assert that _Assoc != NULL or _Assoc == Self
4975  int v ;
4976  for (;;) {
4977      v = _Event ;
4978      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4979  }
4980  guarantee (v >= 0, "invariant") ;
4981  if (v == 0) {
4982     // Do this the hard way by blocking ...
4983     int status = pthread_mutex_lock(_mutex);
4984     assert_status(status == 0, status, "mutex_lock");
4985     guarantee (_nParked == 0, "invariant") ;
4986     ++ _nParked ;
4987     while (_Event < 0) {
4988        status = pthread_cond_wait(_cond, _mutex);
4989        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4990        // Treat this the same as if the wait was interrupted
4991        if (status == ETIME) { status = EINTR; }
4992        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4993     }
4994     -- _nParked ;
4995
4996    _Event = 0 ;
4997     status = pthread_mutex_unlock(_mutex);
4998     assert_status(status == 0, status, "mutex_unlock");
4999    // Paranoia to ensure our locked and lock-free paths interact
5000    // correctly with each other.
5001    OrderAccess::fence();
5002  }
5003  guarantee (_Event >= 0, "invariant") ;
5004}
5005
5006int os::PlatformEvent::park(jlong millis) {
5007  guarantee (_nParked == 0, "invariant") ;
5008
5009  int v ;
5010  for (;;) {
5011      v = _Event ;
5012      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5013  }
5014  guarantee (v >= 0, "invariant") ;
5015  if (v != 0) return OS_OK ;
5016
5017  // We do this the hard way, by blocking the thread.
5018  // Consider enforcing a minimum timeout value.
5019  struct timespec abst;
5020  compute_abstime(&abst, millis);
5021
5022  int ret = OS_TIMEOUT;
5023  int status = pthread_mutex_lock(_mutex);
5024  assert_status(status == 0, status, "mutex_lock");
5025  guarantee (_nParked == 0, "invariant") ;
5026  ++_nParked ;
5027
5028  // Object.wait(timo) will return because of
5029  // (a) notification
5030  // (b) timeout
5031  // (c) thread.interrupt
5032  //
5033  // Thread.interrupt and object.notify{All} both call Event::set.
5034  // That is, we treat thread.interrupt as a special case of notification.
5035  // The underlying Solaris implementation, cond_timedwait, admits
5036  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5037  // JVM from making those visible to Java code.  As such, we must
5038  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5039  //
5040  // TODO: properly differentiate simultaneous notify+interrupt.
5041  // In that case, we should propagate the notify to another waiter.
5042
5043  while (_Event < 0) {
5044    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5045    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5046      pthread_cond_destroy (_cond);
5047      pthread_cond_init (_cond, NULL) ;
5048    }
5049    assert_status(status == 0 || status == EINTR ||
5050                  status == ETIME || status == ETIMEDOUT,
5051                  status, "cond_timedwait");
5052    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5053    if (status == ETIME || status == ETIMEDOUT) break ;
5054    // We consume and ignore EINTR and spurious wakeups.
5055  }
5056  --_nParked ;
5057  if (_Event >= 0) {
5058     ret = OS_OK;
5059  }
5060  _Event = 0 ;
5061  status = pthread_mutex_unlock(_mutex);
5062  assert_status(status == 0, status, "mutex_unlock");
5063  assert (_nParked == 0, "invariant") ;
5064  // Paranoia to ensure our locked and lock-free paths interact
5065  // correctly with each other.
5066  OrderAccess::fence();
5067  return ret;
5068}
5069
5070void os::PlatformEvent::unpark() {
5071  // Transitions for _Event:
5072  //    0 :=> 1
5073  //    1 :=> 1
5074  //   -1 :=> either 0 or 1; must signal target thread
5075  //          That is, we can safely transition _Event from -1 to either
5076  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5077  //          unpark() calls.
5078  // See also: "Semaphores in Plan 9" by Mullender & Cox
5079  //
5080  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5081  // that it will take two back-to-back park() calls for the owning
5082  // thread to block. This has the benefit of forcing a spurious return
5083  // from the first park() call after an unpark() call which will help
5084  // shake out uses of park() and unpark() without condition variables.
5085
5086  if (Atomic::xchg(1, &_Event) >= 0) return;
5087
5088  // Wait for the thread associated with the event to vacate
5089  int status = pthread_mutex_lock(_mutex);
5090  assert_status(status == 0, status, "mutex_lock");
5091  int AnyWaiters = _nParked;
5092  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5093  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5094    AnyWaiters = 0;
5095    pthread_cond_signal(_cond);
5096  }
5097  status = pthread_mutex_unlock(_mutex);
5098  assert_status(status == 0, status, "mutex_unlock");
5099  if (AnyWaiters != 0) {
5100    status = pthread_cond_signal(_cond);
5101    assert_status(status == 0, status, "cond_signal");
5102  }
5103
5104  // Note that we signal() _after dropping the lock for "immortal" Events.
5105  // This is safe and avoids a common class of  futile wakeups.  In rare
5106  // circumstances this can cause a thread to return prematurely from
5107  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5108  // simply re-test the condition and re-park itself.
5109}
5110
5111
5112// JSR166
5113// -------------------------------------------------------
5114
5115/*
5116 * The solaris and linux implementations of park/unpark are fairly
5117 * conservative for now, but can be improved. They currently use a
5118 * mutex/condvar pair, plus a a count.
5119 * Park decrements count if > 0, else does a condvar wait.  Unpark
5120 * sets count to 1 and signals condvar.  Only one thread ever waits
5121 * on the condvar. Contention seen when trying to park implies that someone
5122 * is unparking you, so don't wait. And spurious returns are fine, so there
5123 * is no need to track notifications.
5124 */
5125
5126#define MAX_SECS 100000000
5127/*
5128 * This code is common to linux and solaris and will be moved to a
5129 * common place in dolphin.
5130 *
5131 * The passed in time value is either a relative time in nanoseconds
5132 * or an absolute time in milliseconds. Either way it has to be unpacked
5133 * into suitable seconds and nanoseconds components and stored in the
5134 * given timespec structure.
5135 * Given time is a 64-bit value and the time_t used in the timespec is only
5136 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5137 * overflow if times way in the future are given. Further on Solaris versions
5138 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5139 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5140 * As it will be 28 years before "now + 100000000" will overflow we can
5141 * ignore overflow and just impose a hard-limit on seconds using the value
5142 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5143 * years from "now".
5144 */
5145
5146static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5147  assert (time > 0, "convertTime");
5148
5149  struct timeval now;
5150  int status = gettimeofday(&now, NULL);
5151  assert(status == 0, "gettimeofday");
5152
5153  time_t max_secs = now.tv_sec + MAX_SECS;
5154
5155  if (isAbsolute) {
5156    jlong secs = time / 1000;
5157    if (secs > max_secs) {
5158      absTime->tv_sec = max_secs;
5159    }
5160    else {
5161      absTime->tv_sec = secs;
5162    }
5163    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5164  }
5165  else {
5166    jlong secs = time / NANOSECS_PER_SEC;
5167    if (secs >= MAX_SECS) {
5168      absTime->tv_sec = max_secs;
5169      absTime->tv_nsec = 0;
5170    }
5171    else {
5172      absTime->tv_sec = now.tv_sec + secs;
5173      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5174      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5175        absTime->tv_nsec -= NANOSECS_PER_SEC;
5176        ++absTime->tv_sec; // note: this must be <= max_secs
5177      }
5178    }
5179  }
5180  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5181  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5182  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5183  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5184}
5185
5186void Parker::park(bool isAbsolute, jlong time) {
5187  // Ideally we'd do something useful while spinning, such
5188  // as calling unpackTime().
5189
5190  // Optional fast-path check:
5191  // Return immediately if a permit is available.
5192  // We depend on Atomic::xchg() having full barrier semantics
5193  // since we are doing a lock-free update to _counter.
5194  if (Atomic::xchg(0, &_counter) > 0) return;
5195
5196  Thread* thread = Thread::current();
5197  assert(thread->is_Java_thread(), "Must be JavaThread");
5198  JavaThread *jt = (JavaThread *)thread;
5199
5200  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5201  // Check interrupt before trying to wait
5202  if (Thread::is_interrupted(thread, false)) {
5203    return;
5204  }
5205
5206  // Next, demultiplex/decode time arguments
5207  timespec absTime;
5208  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5209    return;
5210  }
5211  if (time > 0) {
5212    unpackTime(&absTime, isAbsolute, time);
5213  }
5214
5215
5216  // Enter safepoint region
5217  // Beware of deadlocks such as 6317397.
5218  // The per-thread Parker:: mutex is a classic leaf-lock.
5219  // In particular a thread must never block on the Threads_lock while
5220  // holding the Parker:: mutex.  If safepoints are pending both the
5221  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5222  ThreadBlockInVM tbivm(jt);
5223
5224  // Don't wait if cannot get lock since interference arises from
5225  // unblocking.  Also. check interrupt before trying wait
5226  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5227    return;
5228  }
5229
5230  int status ;
5231  if (_counter > 0)  { // no wait needed
5232    _counter = 0;
5233    status = pthread_mutex_unlock(_mutex);
5234    assert (status == 0, "invariant") ;
5235    // Paranoia to ensure our locked and lock-free paths interact
5236    // correctly with each other and Java-level accesses.
5237    OrderAccess::fence();
5238    return;
5239  }
5240
5241#ifdef ASSERT
5242  // Don't catch signals while blocked; let the running threads have the signals.
5243  // (This allows a debugger to break into the running thread.)
5244  sigset_t oldsigs;
5245  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5246  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5247#endif
5248
5249  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5250  jt->set_suspend_equivalent();
5251  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5252
5253  if (time == 0) {
5254    status = pthread_cond_wait (_cond, _mutex) ;
5255  } else {
5256    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5257    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5258      pthread_cond_destroy (_cond) ;
5259      pthread_cond_init    (_cond, NULL);
5260    }
5261  }
5262  assert_status(status == 0 || status == EINTR ||
5263                status == ETIME || status == ETIMEDOUT,
5264                status, "cond_timedwait");
5265
5266#ifdef ASSERT
5267  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5268#endif
5269
5270  _counter = 0 ;
5271  status = pthread_mutex_unlock(_mutex) ;
5272  assert_status(status == 0, status, "invariant") ;
5273  // Paranoia to ensure our locked and lock-free paths interact
5274  // correctly with each other and Java-level accesses.
5275  OrderAccess::fence();
5276
5277  // If externally suspended while waiting, re-suspend
5278  if (jt->handle_special_suspend_equivalent_condition()) {
5279    jt->java_suspend_self();
5280  }
5281}
5282
5283void Parker::unpark() {
5284  int s, status ;
5285  status = pthread_mutex_lock(_mutex);
5286  assert (status == 0, "invariant") ;
5287  s = _counter;
5288  _counter = 1;
5289  if (s < 1) {
5290     if (WorkAroundNPTLTimedWaitHang) {
5291        status = pthread_cond_signal (_cond) ;
5292        assert (status == 0, "invariant") ;
5293        status = pthread_mutex_unlock(_mutex);
5294        assert (status == 0, "invariant") ;
5295     } else {
5296        status = pthread_mutex_unlock(_mutex);
5297        assert (status == 0, "invariant") ;
5298        status = pthread_cond_signal (_cond) ;
5299        assert (status == 0, "invariant") ;
5300     }
5301  } else {
5302    pthread_mutex_unlock(_mutex);
5303    assert (status == 0, "invariant") ;
5304  }
5305}
5306
5307
5308extern char** environ;
5309
5310#ifndef __NR_fork
5311#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5312#endif
5313
5314#ifndef __NR_execve
5315#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5316#endif
5317
5318// Run the specified command in a separate process. Return its exit value,
5319// or -1 on failure (e.g. can't fork a new process).
5320// Unlike system(), this function can be called from signal handler. It
5321// doesn't block SIGINT et al.
5322int os::fork_and_exec(char* cmd) {
5323  const char * argv[4] = {"sh", "-c", cmd, NULL};
5324
5325  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5326  // pthread_atfork handlers and reset pthread library. All we need is a
5327  // separate process to execve. Make a direct syscall to fork process.
5328  // On IA64 there's no fork syscall, we have to use fork() and hope for
5329  // the best...
5330  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5331              IA64_ONLY(fork();)
5332
5333  if (pid < 0) {
5334    // fork failed
5335    return -1;
5336
5337  } else if (pid == 0) {
5338    // child process
5339
5340    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5341    // first to kill every thread on the thread list. Because this list is
5342    // not reset by fork() (see notes above), execve() will instead kill
5343    // every thread in the parent process. We know this is the only thread
5344    // in the new process, so make a system call directly.
5345    // IA64 should use normal execve() from glibc to match the glibc fork()
5346    // above.
5347    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5348    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5349
5350    // execve failed
5351    _exit(-1);
5352
5353  } else  {
5354    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5355    // care about the actual exit code, for now.
5356
5357    int status;
5358
5359    // Wait for the child process to exit.  This returns immediately if
5360    // the child has already exited. */
5361    while (waitpid(pid, &status, 0) < 0) {
5362        switch (errno) {
5363        case ECHILD: return 0;
5364        case EINTR: break;
5365        default: return -1;
5366        }
5367    }
5368
5369    if (WIFEXITED(status)) {
5370       // The child exited normally; get its exit code.
5371       return WEXITSTATUS(status);
5372    } else if (WIFSIGNALED(status)) {
5373       // The child exited because of a signal
5374       // The best value to return is 0x80 + signal number,
5375       // because that is what all Unix shells do, and because
5376       // it allows callers to distinguish between process exit and
5377       // process death by signal.
5378       return 0x80 + WTERMSIG(status);
5379    } else {
5380       // Unknown exit code; pass it through
5381       return status;
5382    }
5383  }
5384}
5385
5386// is_headless_jre()
5387//
5388// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5389// in order to report if we are running in a headless jre
5390//
5391// Since JDK8 xawt/libmawt.so was moved into the same directory
5392// as libawt.so, and renamed libawt_xawt.so
5393//
5394bool os::is_headless_jre() {
5395    struct stat statbuf;
5396    char buf[MAXPATHLEN];
5397    char libmawtpath[MAXPATHLEN];
5398    const char *xawtstr  = "/xawt/libmawt.so";
5399    const char *new_xawtstr = "/libawt_xawt.so";
5400    char *p;
5401
5402    // Get path to libjvm.so
5403    os::jvm_path(buf, sizeof(buf));
5404
5405    // Get rid of libjvm.so
5406    p = strrchr(buf, '/');
5407    if (p == NULL) return false;
5408    else *p = '\0';
5409
5410    // Get rid of client or server
5411    p = strrchr(buf, '/');
5412    if (p == NULL) return false;
5413    else *p = '\0';
5414
5415    // check xawt/libmawt.so
5416    strcpy(libmawtpath, buf);
5417    strcat(libmawtpath, xawtstr);
5418    if (::stat(libmawtpath, &statbuf) == 0) return false;
5419
5420    // check libawt_xawt.so
5421    strcpy(libmawtpath, buf);
5422    strcat(libmawtpath, new_xawtstr);
5423    if (::stat(libmawtpath, &statbuf) == 0) return false;
5424
5425    return true;
5426}
5427
5428// Get the default path to the core file
5429// Returns the length of the string
5430int os::get_core_path(char* buffer, size_t bufferSize) {
5431  const char* p = get_current_directory(buffer, bufferSize);
5432
5433  if (p == NULL) {
5434    assert(p != NULL, "failed to get current directory");
5435    return 0;
5436  }
5437
5438  return strlen(buffer);
5439}
5440
5441#ifdef JAVASE_EMBEDDED
5442//
5443// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5444//
5445MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5446
5447// ctor
5448//
5449MemNotifyThread::MemNotifyThread(int fd): Thread() {
5450  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5451  _fd = fd;
5452
5453  if (os::create_thread(this, os::os_thread)) {
5454    _memnotify_thread = this;
5455    os::set_priority(this, NearMaxPriority);
5456    os::start_thread(this);
5457  }
5458}
5459
5460// Where all the work gets done
5461//
5462void MemNotifyThread::run() {
5463  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5464
5465  // Set up the select arguments
5466  fd_set rfds;
5467  if (_fd != -1) {
5468    FD_ZERO(&rfds);
5469    FD_SET(_fd, &rfds);
5470  }
5471
5472  // Now wait for the mem_notify device to wake up
5473  while (1) {
5474    // Wait for the mem_notify device to signal us..
5475    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5476    if (rc == -1) {
5477      perror("select!\n");
5478      break;
5479    } else if (rc) {
5480      //ssize_t free_before = os::available_memory();
5481      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5482
5483      // The kernel is telling us there is not much memory left...
5484      // try to do something about that
5485
5486      // If we are not already in a GC, try one.
5487      if (!Universe::heap()->is_gc_active()) {
5488        Universe::heap()->collect(GCCause::_allocation_failure);
5489
5490        //ssize_t free_after = os::available_memory();
5491        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5492        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5493      }
5494      // We might want to do something like the following if we find the GC's are not helping...
5495      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5496    }
5497  }
5498}
5499
5500//
5501// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5502//
5503void MemNotifyThread::start() {
5504  int    fd;
5505  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5506  if (fd < 0) {
5507      return;
5508  }
5509
5510  if (memnotify_thread() == NULL) {
5511    new MemNotifyThread(fd);
5512  }
5513}
5514#endif // JAVASE_EMBEDDED
5515