os_linux.cpp revision 3957:7d42f3b08300
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/runtimeService.hpp"
61#include "utilities/decoder.hpp"
62#include "utilities/defaultStream.hpp"
63#include "utilities/events.hpp"
64#include "utilities/growableArray.hpp"
65#include "utilities/vmError.hpp"
66
67// put OS-includes here
68# include <sys/types.h>
69# include <sys/mman.h>
70# include <sys/stat.h>
71# include <sys/select.h>
72# include <pthread.h>
73# include <signal.h>
74# include <errno.h>
75# include <dlfcn.h>
76# include <stdio.h>
77# include <unistd.h>
78# include <sys/resource.h>
79# include <pthread.h>
80# include <sys/stat.h>
81# include <sys/time.h>
82# include <sys/times.h>
83# include <sys/utsname.h>
84# include <sys/socket.h>
85# include <sys/wait.h>
86# include <pwd.h>
87# include <poll.h>
88# include <semaphore.h>
89# include <fcntl.h>
90# include <string.h>
91# include <syscall.h>
92# include <sys/sysinfo.h>
93# include <gnu/libc-version.h>
94# include <sys/ipc.h>
95# include <sys/shm.h>
96# include <link.h>
97# include <stdint.h>
98# include <inttypes.h>
99# include <sys/ioctl.h>
100
101#define MAX_PATH    (2 * K)
102
103// for timer info max values which include all bits
104#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
105
106#define LARGEPAGES_BIT (1 << 6)
107////////////////////////////////////////////////////////////////////////////////
108// global variables
109julong os::Linux::_physical_memory = 0;
110
111address   os::Linux::_initial_thread_stack_bottom = NULL;
112uintptr_t os::Linux::_initial_thread_stack_size   = 0;
113
114int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
115int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
116Mutex* os::Linux::_createThread_lock = NULL;
117pthread_t os::Linux::_main_thread;
118int os::Linux::_page_size = -1;
119bool os::Linux::_is_floating_stack = false;
120bool os::Linux::_is_NPTL = false;
121bool os::Linux::_supports_fast_thread_cpu_time = false;
122const char * os::Linux::_glibc_version = NULL;
123const char * os::Linux::_libpthread_version = NULL;
124
125static jlong initial_time_count=0;
126
127static int clock_tics_per_sec = 100;
128
129// For diagnostics to print a message once. see run_periodic_checks
130static sigset_t check_signal_done;
131static bool check_signals = true;;
132
133static pid_t _initial_pid = 0;
134
135/* Signal number used to suspend/resume a thread */
136
137/* do not use any signal number less than SIGSEGV, see 4355769 */
138static int SR_signum = SIGUSR2;
139sigset_t SR_sigset;
140
141/* Used to protect dlsym() calls */
142static pthread_mutex_t dl_mutex;
143
144#ifdef JAVASE_EMBEDDED
145class MemNotifyThread: public Thread {
146  friend class VMStructs;
147 public:
148  virtual void run();
149
150 private:
151  static MemNotifyThread* _memnotify_thread;
152  int _fd;
153
154 public:
155
156  // Constructor
157  MemNotifyThread(int fd);
158
159  // Tester
160  bool is_memnotify_thread() const { return true; }
161
162  // Printing
163  char* name() const { return (char*)"Linux MemNotify Thread"; }
164
165  // Returns the single instance of the MemNotifyThread
166  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
167
168  // Create and start the single instance of MemNotifyThread
169  static void start();
170};
171#endif // JAVASE_EMBEDDED
172
173// utility functions
174
175static int SR_initialize();
176static int SR_finalize();
177
178julong os::available_memory() {
179  return Linux::available_memory();
180}
181
182julong os::Linux::available_memory() {
183  // values in struct sysinfo are "unsigned long"
184  struct sysinfo si;
185  sysinfo(&si);
186
187  return (julong)si.freeram * si.mem_unit;
188}
189
190julong os::physical_memory() {
191  return Linux::physical_memory();
192}
193
194julong os::allocatable_physical_memory(julong size) {
195#ifdef _LP64
196  return size;
197#else
198  julong result = MIN2(size, (julong)3800*M);
199   if (!is_allocatable(result)) {
200     // See comments under solaris for alignment considerations
201     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
202     result =  MIN2(size, reasonable_size);
203   }
204   return result;
205#endif // _LP64
206}
207
208////////////////////////////////////////////////////////////////////////////////
209// environment support
210
211bool os::getenv(const char* name, char* buf, int len) {
212  const char* val = ::getenv(name);
213  if (val != NULL && strlen(val) < (size_t)len) {
214    strcpy(buf, val);
215    return true;
216  }
217  if (len > 0) buf[0] = 0;  // return a null string
218  return false;
219}
220
221
222// Return true if user is running as root.
223
224bool os::have_special_privileges() {
225  static bool init = false;
226  static bool privileges = false;
227  if (!init) {
228    privileges = (getuid() != geteuid()) || (getgid() != getegid());
229    init = true;
230  }
231  return privileges;
232}
233
234
235#ifndef SYS_gettid
236// i386: 224, ia64: 1105, amd64: 186, sparc 143
237#ifdef __ia64__
238#define SYS_gettid 1105
239#elif __i386__
240#define SYS_gettid 224
241#elif __amd64__
242#define SYS_gettid 186
243#elif __sparc__
244#define SYS_gettid 143
245#else
246#error define gettid for the arch
247#endif
248#endif
249
250// Cpu architecture string
251#if   defined(ZERO)
252static char cpu_arch[] = ZERO_LIBARCH;
253#elif defined(IA64)
254static char cpu_arch[] = "ia64";
255#elif defined(IA32)
256static char cpu_arch[] = "i386";
257#elif defined(AMD64)
258static char cpu_arch[] = "amd64";
259#elif defined(ARM)
260static char cpu_arch[] = "arm";
261#elif defined(PPC)
262static char cpu_arch[] = "ppc";
263#elif defined(SPARC)
264#  ifdef _LP64
265static char cpu_arch[] = "sparcv9";
266#  else
267static char cpu_arch[] = "sparc";
268#  endif
269#else
270#error Add appropriate cpu_arch setting
271#endif
272
273
274// pid_t gettid()
275//
276// Returns the kernel thread id of the currently running thread. Kernel
277// thread id is used to access /proc.
278//
279// (Note that getpid() on LinuxThreads returns kernel thread id too; but
280// on NPTL, it returns the same pid for all threads, as required by POSIX.)
281//
282pid_t os::Linux::gettid() {
283  int rslt = syscall(SYS_gettid);
284  if (rslt == -1) {
285     // old kernel, no NPTL support
286     return getpid();
287  } else {
288     return (pid_t)rslt;
289  }
290}
291
292// Most versions of linux have a bug where the number of processors are
293// determined by looking at the /proc file system.  In a chroot environment,
294// the system call returns 1.  This causes the VM to act as if it is
295// a single processor and elide locking (see is_MP() call).
296static bool unsafe_chroot_detected = false;
297static const char *unstable_chroot_error = "/proc file system not found.\n"
298                     "Java may be unstable running multithreaded in a chroot "
299                     "environment on Linux when /proc filesystem is not mounted.";
300
301void os::Linux::initialize_system_info() {
302  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
303  if (processor_count() == 1) {
304    pid_t pid = os::Linux::gettid();
305    char fname[32];
306    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
307    FILE *fp = fopen(fname, "r");
308    if (fp == NULL) {
309      unsafe_chroot_detected = true;
310    } else {
311      fclose(fp);
312    }
313  }
314  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
315  assert(processor_count() > 0, "linux error");
316}
317
318void os::init_system_properties_values() {
319//  char arch[12];
320//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
321
322  // The next steps are taken in the product version:
323  //
324  // Obtain the JAVA_HOME value from the location of libjvm.so.
325  // This library should be located at:
326  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
327  //
328  // If "/jre/lib/" appears at the right place in the path, then we
329  // assume libjvm.so is installed in a JDK and we use this path.
330  //
331  // Otherwise exit with message: "Could not create the Java virtual machine."
332  //
333  // The following extra steps are taken in the debugging version:
334  //
335  // If "/jre/lib/" does NOT appear at the right place in the path
336  // instead of exit check for $JAVA_HOME environment variable.
337  //
338  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
339  // then we append a fake suffix "hotspot/libjvm.so" to this path so
340  // it looks like libjvm.so is installed there
341  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
342  //
343  // Otherwise exit.
344  //
345  // Important note: if the location of libjvm.so changes this
346  // code needs to be changed accordingly.
347
348  // The next few definitions allow the code to be verbatim:
349#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
350#define getenv(n) ::getenv(n)
351
352/*
353 * See ld(1):
354 *      The linker uses the following search paths to locate required
355 *      shared libraries:
356 *        1: ...
357 *        ...
358 *        7: The default directories, normally /lib and /usr/lib.
359 */
360#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
361#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
362#else
363#define DEFAULT_LIBPATH "/lib:/usr/lib"
364#endif
365
366#define EXTENSIONS_DIR  "/lib/ext"
367#define ENDORSED_DIR    "/lib/endorsed"
368#define REG_DIR         "/usr/java/packages"
369
370  {
371    /* sysclasspath, java_home, dll_dir */
372    {
373        char *home_path;
374        char *dll_path;
375        char *pslash;
376        char buf[MAXPATHLEN];
377        os::jvm_path(buf, sizeof(buf));
378
379        // Found the full path to libjvm.so.
380        // Now cut the path to <java_home>/jre if we can.
381        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
382        pslash = strrchr(buf, '/');
383        if (pslash != NULL)
384            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
385        dll_path = malloc(strlen(buf) + 1);
386        if (dll_path == NULL)
387            return;
388        strcpy(dll_path, buf);
389        Arguments::set_dll_dir(dll_path);
390
391        if (pslash != NULL) {
392            pslash = strrchr(buf, '/');
393            if (pslash != NULL) {
394                *pslash = '\0';       /* get rid of /<arch> */
395                pslash = strrchr(buf, '/');
396                if (pslash != NULL)
397                    *pslash = '\0';   /* get rid of /lib */
398            }
399        }
400
401        home_path = malloc(strlen(buf) + 1);
402        if (home_path == NULL)
403            return;
404        strcpy(home_path, buf);
405        Arguments::set_java_home(home_path);
406
407        if (!set_boot_path('/', ':'))
408            return;
409    }
410
411    /*
412     * Where to look for native libraries
413     *
414     * Note: Due to a legacy implementation, most of the library path
415     * is set in the launcher.  This was to accomodate linking restrictions
416     * on legacy Linux implementations (which are no longer supported).
417     * Eventually, all the library path setting will be done here.
418     *
419     * However, to prevent the proliferation of improperly built native
420     * libraries, the new path component /usr/java/packages is added here.
421     * Eventually, all the library path setting will be done here.
422     */
423    {
424        char *ld_library_path;
425
426        /*
427         * Construct the invariant part of ld_library_path. Note that the
428         * space for the colon and the trailing null are provided by the
429         * nulls included by the sizeof operator (so actually we allocate
430         * a byte more than necessary).
431         */
432        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
433            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
434        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
435
436        /*
437         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
438         * should always exist (until the legacy problem cited above is
439         * addressed).
440         */
441        char *v = getenv("LD_LIBRARY_PATH");
442        if (v != NULL) {
443            char *t = ld_library_path;
444            /* That's +1 for the colon and +1 for the trailing '\0' */
445            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
446            sprintf(ld_library_path, "%s:%s", v, t);
447        }
448        Arguments::set_library_path(ld_library_path);
449    }
450
451    /*
452     * Extensions directories.
453     *
454     * Note that the space for the colon and the trailing null are provided
455     * by the nulls included by the sizeof operator (so actually one byte more
456     * than necessary is allocated).
457     */
458    {
459        char *buf = malloc(strlen(Arguments::get_java_home()) +
460            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
461        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
462            Arguments::get_java_home());
463        Arguments::set_ext_dirs(buf);
464    }
465
466    /* Endorsed standards default directory. */
467    {
468        char * buf;
469        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
470        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
471        Arguments::set_endorsed_dirs(buf);
472    }
473  }
474
475#undef malloc
476#undef getenv
477#undef EXTENSIONS_DIR
478#undef ENDORSED_DIR
479
480  // Done
481  return;
482}
483
484////////////////////////////////////////////////////////////////////////////////
485// breakpoint support
486
487void os::breakpoint() {
488  BREAKPOINT;
489}
490
491extern "C" void breakpoint() {
492  // use debugger to set breakpoint here
493}
494
495////////////////////////////////////////////////////////////////////////////////
496// signal support
497
498debug_only(static bool signal_sets_initialized = false);
499static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
500
501bool os::Linux::is_sig_ignored(int sig) {
502      struct sigaction oact;
503      sigaction(sig, (struct sigaction*)NULL, &oact);
504      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
505                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
506      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
507           return true;
508      else
509           return false;
510}
511
512void os::Linux::signal_sets_init() {
513  // Should also have an assertion stating we are still single-threaded.
514  assert(!signal_sets_initialized, "Already initialized");
515  // Fill in signals that are necessarily unblocked for all threads in
516  // the VM. Currently, we unblock the following signals:
517  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
518  //                         by -Xrs (=ReduceSignalUsage));
519  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
520  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
521  // the dispositions or masks wrt these signals.
522  // Programs embedding the VM that want to use the above signals for their
523  // own purposes must, at this time, use the "-Xrs" option to prevent
524  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
525  // (See bug 4345157, and other related bugs).
526  // In reality, though, unblocking these signals is really a nop, since
527  // these signals are not blocked by default.
528  sigemptyset(&unblocked_sigs);
529  sigemptyset(&allowdebug_blocked_sigs);
530  sigaddset(&unblocked_sigs, SIGILL);
531  sigaddset(&unblocked_sigs, SIGSEGV);
532  sigaddset(&unblocked_sigs, SIGBUS);
533  sigaddset(&unblocked_sigs, SIGFPE);
534  sigaddset(&unblocked_sigs, SR_signum);
535
536  if (!ReduceSignalUsage) {
537   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
538      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
539      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
540   }
541   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
542      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
543      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
544   }
545   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
546      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
547      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
548   }
549  }
550  // Fill in signals that are blocked by all but the VM thread.
551  sigemptyset(&vm_sigs);
552  if (!ReduceSignalUsage)
553    sigaddset(&vm_sigs, BREAK_SIGNAL);
554  debug_only(signal_sets_initialized = true);
555
556}
557
558// These are signals that are unblocked while a thread is running Java.
559// (For some reason, they get blocked by default.)
560sigset_t* os::Linux::unblocked_signals() {
561  assert(signal_sets_initialized, "Not initialized");
562  return &unblocked_sigs;
563}
564
565// These are the signals that are blocked while a (non-VM) thread is
566// running Java. Only the VM thread handles these signals.
567sigset_t* os::Linux::vm_signals() {
568  assert(signal_sets_initialized, "Not initialized");
569  return &vm_sigs;
570}
571
572// These are signals that are blocked during cond_wait to allow debugger in
573sigset_t* os::Linux::allowdebug_blocked_signals() {
574  assert(signal_sets_initialized, "Not initialized");
575  return &allowdebug_blocked_sigs;
576}
577
578void os::Linux::hotspot_sigmask(Thread* thread) {
579
580  //Save caller's signal mask before setting VM signal mask
581  sigset_t caller_sigmask;
582  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
583
584  OSThread* osthread = thread->osthread();
585  osthread->set_caller_sigmask(caller_sigmask);
586
587  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
588
589  if (!ReduceSignalUsage) {
590    if (thread->is_VM_thread()) {
591      // Only the VM thread handles BREAK_SIGNAL ...
592      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
593    } else {
594      // ... all other threads block BREAK_SIGNAL
595      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
596    }
597  }
598}
599
600//////////////////////////////////////////////////////////////////////////////
601// detecting pthread library
602
603void os::Linux::libpthread_init() {
604  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
605  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
606  // generic name for earlier versions.
607  // Define macros here so we can build HotSpot on old systems.
608# ifndef _CS_GNU_LIBC_VERSION
609# define _CS_GNU_LIBC_VERSION 2
610# endif
611# ifndef _CS_GNU_LIBPTHREAD_VERSION
612# define _CS_GNU_LIBPTHREAD_VERSION 3
613# endif
614
615  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
616  if (n > 0) {
617     char *str = (char *)malloc(n, mtInternal);
618     confstr(_CS_GNU_LIBC_VERSION, str, n);
619     os::Linux::set_glibc_version(str);
620  } else {
621     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
622     static char _gnu_libc_version[32];
623     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
624              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
625     os::Linux::set_glibc_version(_gnu_libc_version);
626  }
627
628  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
629  if (n > 0) {
630     char *str = (char *)malloc(n, mtInternal);
631     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
632     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
633     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
634     // is the case. LinuxThreads has a hard limit on max number of threads.
635     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
636     // On the other hand, NPTL does not have such a limit, sysconf()
637     // will return -1 and errno is not changed. Check if it is really NPTL.
638     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
639         strstr(str, "NPTL") &&
640         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
641       free(str);
642       os::Linux::set_libpthread_version("linuxthreads");
643     } else {
644       os::Linux::set_libpthread_version(str);
645     }
646  } else {
647    // glibc before 2.3.2 only has LinuxThreads.
648    os::Linux::set_libpthread_version("linuxthreads");
649  }
650
651  if (strstr(libpthread_version(), "NPTL")) {
652     os::Linux::set_is_NPTL();
653  } else {
654     os::Linux::set_is_LinuxThreads();
655  }
656
657  // LinuxThreads have two flavors: floating-stack mode, which allows variable
658  // stack size; and fixed-stack mode. NPTL is always floating-stack.
659  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
660     os::Linux::set_is_floating_stack();
661  }
662}
663
664/////////////////////////////////////////////////////////////////////////////
665// thread stack
666
667// Force Linux kernel to expand current thread stack. If "bottom" is close
668// to the stack guard, caller should block all signals.
669//
670// MAP_GROWSDOWN:
671//   A special mmap() flag that is used to implement thread stacks. It tells
672//   kernel that the memory region should extend downwards when needed. This
673//   allows early versions of LinuxThreads to only mmap the first few pages
674//   when creating a new thread. Linux kernel will automatically expand thread
675//   stack as needed (on page faults).
676//
677//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
678//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
679//   region, it's hard to tell if the fault is due to a legitimate stack
680//   access or because of reading/writing non-exist memory (e.g. buffer
681//   overrun). As a rule, if the fault happens below current stack pointer,
682//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
683//   application (see Linux kernel fault.c).
684//
685//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
686//   stack overflow detection.
687//
688//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
689//   not use this flag. However, the stack of initial thread is not created
690//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
691//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
692//   and then attach the thread to JVM.
693//
694// To get around the problem and allow stack banging on Linux, we need to
695// manually expand thread stack after receiving the SIGSEGV.
696//
697// There are two ways to expand thread stack to address "bottom", we used
698// both of them in JVM before 1.5:
699//   1. adjust stack pointer first so that it is below "bottom", and then
700//      touch "bottom"
701//   2. mmap() the page in question
702//
703// Now alternate signal stack is gone, it's harder to use 2. For instance,
704// if current sp is already near the lower end of page 101, and we need to
705// call mmap() to map page 100, it is possible that part of the mmap() frame
706// will be placed in page 100. When page 100 is mapped, it is zero-filled.
707// That will destroy the mmap() frame and cause VM to crash.
708//
709// The following code works by adjusting sp first, then accessing the "bottom"
710// page to force a page fault. Linux kernel will then automatically expand the
711// stack mapping.
712//
713// _expand_stack_to() assumes its frame size is less than page size, which
714// should always be true if the function is not inlined.
715
716#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
717#define NOINLINE
718#else
719#define NOINLINE __attribute__ ((noinline))
720#endif
721
722static void _expand_stack_to(address bottom) NOINLINE;
723
724static void _expand_stack_to(address bottom) {
725  address sp;
726  size_t size;
727  volatile char *p;
728
729  // Adjust bottom to point to the largest address within the same page, it
730  // gives us a one-page buffer if alloca() allocates slightly more memory.
731  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
732  bottom += os::Linux::page_size() - 1;
733
734  // sp might be slightly above current stack pointer; if that's the case, we
735  // will alloca() a little more space than necessary, which is OK. Don't use
736  // os::current_stack_pointer(), as its result can be slightly below current
737  // stack pointer, causing us to not alloca enough to reach "bottom".
738  sp = (address)&sp;
739
740  if (sp > bottom) {
741    size = sp - bottom;
742    p = (volatile char *)alloca(size);
743    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
744    p[0] = '\0';
745  }
746}
747
748bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
749  assert(t!=NULL, "just checking");
750  assert(t->osthread()->expanding_stack(), "expand should be set");
751  assert(t->stack_base() != NULL, "stack_base was not initialized");
752
753  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
754    sigset_t mask_all, old_sigset;
755    sigfillset(&mask_all);
756    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
757    _expand_stack_to(addr);
758    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
759    return true;
760  }
761  return false;
762}
763
764//////////////////////////////////////////////////////////////////////////////
765// create new thread
766
767static address highest_vm_reserved_address();
768
769// check if it's safe to start a new thread
770static bool _thread_safety_check(Thread* thread) {
771  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
772    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
773    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
774    //   allocated (MAP_FIXED) from high address space. Every thread stack
775    //   occupies a fixed size slot (usually 2Mbytes, but user can change
776    //   it to other values if they rebuild LinuxThreads).
777    //
778    // Problem with MAP_FIXED is that mmap() can still succeed even part of
779    // the memory region has already been mmap'ed. That means if we have too
780    // many threads and/or very large heap, eventually thread stack will
781    // collide with heap.
782    //
783    // Here we try to prevent heap/stack collision by comparing current
784    // stack bottom with the highest address that has been mmap'ed by JVM
785    // plus a safety margin for memory maps created by native code.
786    //
787    // This feature can be disabled by setting ThreadSafetyMargin to 0
788    //
789    if (ThreadSafetyMargin > 0) {
790      address stack_bottom = os::current_stack_base() - os::current_stack_size();
791
792      // not safe if our stack extends below the safety margin
793      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
794    } else {
795      return true;
796    }
797  } else {
798    // Floating stack LinuxThreads or NPTL:
799    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
800    //   there's not enough space left, pthread_create() will fail. If we come
801    //   here, that means enough space has been reserved for stack.
802    return true;
803  }
804}
805
806// Thread start routine for all newly created threads
807static void *java_start(Thread *thread) {
808  // Try to randomize the cache line index of hot stack frames.
809  // This helps when threads of the same stack traces evict each other's
810  // cache lines. The threads can be either from the same JVM instance, or
811  // from different JVM instances. The benefit is especially true for
812  // processors with hyperthreading technology.
813  static int counter = 0;
814  int pid = os::current_process_id();
815  alloca(((pid ^ counter++) & 7) * 128);
816
817  ThreadLocalStorage::set_thread(thread);
818
819  OSThread* osthread = thread->osthread();
820  Monitor* sync = osthread->startThread_lock();
821
822  // non floating stack LinuxThreads needs extra check, see above
823  if (!_thread_safety_check(thread)) {
824    // notify parent thread
825    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
826    osthread->set_state(ZOMBIE);
827    sync->notify_all();
828    return NULL;
829  }
830
831  // thread_id is kernel thread id (similar to Solaris LWP id)
832  osthread->set_thread_id(os::Linux::gettid());
833
834  if (UseNUMA) {
835    int lgrp_id = os::numa_get_group_id();
836    if (lgrp_id != -1) {
837      thread->set_lgrp_id(lgrp_id);
838    }
839  }
840  // initialize signal mask for this thread
841  os::Linux::hotspot_sigmask(thread);
842
843  // initialize floating point control register
844  os::Linux::init_thread_fpu_state();
845
846  // handshaking with parent thread
847  {
848    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
849
850    // notify parent thread
851    osthread->set_state(INITIALIZED);
852    sync->notify_all();
853
854    // wait until os::start_thread()
855    while (osthread->get_state() == INITIALIZED) {
856      sync->wait(Mutex::_no_safepoint_check_flag);
857    }
858  }
859
860  // call one more level start routine
861  thread->run();
862
863  return 0;
864}
865
866bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
867  assert(thread->osthread() == NULL, "caller responsible");
868
869  // Allocate the OSThread object
870  OSThread* osthread = new OSThread(NULL, NULL);
871  if (osthread == NULL) {
872    return false;
873  }
874
875  // set the correct thread state
876  osthread->set_thread_type(thr_type);
877
878  // Initial state is ALLOCATED but not INITIALIZED
879  osthread->set_state(ALLOCATED);
880
881  thread->set_osthread(osthread);
882
883  // init thread attributes
884  pthread_attr_t attr;
885  pthread_attr_init(&attr);
886  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
887
888  // stack size
889  if (os::Linux::supports_variable_stack_size()) {
890    // calculate stack size if it's not specified by caller
891    if (stack_size == 0) {
892      stack_size = os::Linux::default_stack_size(thr_type);
893
894      switch (thr_type) {
895      case os::java_thread:
896        // Java threads use ThreadStackSize which default value can be
897        // changed with the flag -Xss
898        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
899        stack_size = JavaThread::stack_size_at_create();
900        break;
901      case os::compiler_thread:
902        if (CompilerThreadStackSize > 0) {
903          stack_size = (size_t)(CompilerThreadStackSize * K);
904          break;
905        } // else fall through:
906          // use VMThreadStackSize if CompilerThreadStackSize is not defined
907      case os::vm_thread:
908      case os::pgc_thread:
909      case os::cgc_thread:
910      case os::watcher_thread:
911        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
912        break;
913      }
914    }
915
916    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
917    pthread_attr_setstacksize(&attr, stack_size);
918  } else {
919    // let pthread_create() pick the default value.
920  }
921
922  // glibc guard page
923  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
924
925  ThreadState state;
926
927  {
928    // Serialize thread creation if we are running with fixed stack LinuxThreads
929    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
930    if (lock) {
931      os::Linux::createThread_lock()->lock_without_safepoint_check();
932    }
933
934    pthread_t tid;
935    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
936
937    pthread_attr_destroy(&attr);
938
939    if (ret != 0) {
940      if (PrintMiscellaneous && (Verbose || WizardMode)) {
941        perror("pthread_create()");
942      }
943      // Need to clean up stuff we've allocated so far
944      thread->set_osthread(NULL);
945      delete osthread;
946      if (lock) os::Linux::createThread_lock()->unlock();
947      return false;
948    }
949
950    // Store pthread info into the OSThread
951    osthread->set_pthread_id(tid);
952
953    // Wait until child thread is either initialized or aborted
954    {
955      Monitor* sync_with_child = osthread->startThread_lock();
956      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
957      while ((state = osthread->get_state()) == ALLOCATED) {
958        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
959      }
960    }
961
962    if (lock) {
963      os::Linux::createThread_lock()->unlock();
964    }
965  }
966
967  // Aborted due to thread limit being reached
968  if (state == ZOMBIE) {
969      thread->set_osthread(NULL);
970      delete osthread;
971      return false;
972  }
973
974  // The thread is returned suspended (in state INITIALIZED),
975  // and is started higher up in the call chain
976  assert(state == INITIALIZED, "race condition");
977  return true;
978}
979
980/////////////////////////////////////////////////////////////////////////////
981// attach existing thread
982
983// bootstrap the main thread
984bool os::create_main_thread(JavaThread* thread) {
985  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
986  return create_attached_thread(thread);
987}
988
989bool os::create_attached_thread(JavaThread* thread) {
990#ifdef ASSERT
991    thread->verify_not_published();
992#endif
993
994  // Allocate the OSThread object
995  OSThread* osthread = new OSThread(NULL, NULL);
996
997  if (osthread == NULL) {
998    return false;
999  }
1000
1001  // Store pthread info into the OSThread
1002  osthread->set_thread_id(os::Linux::gettid());
1003  osthread->set_pthread_id(::pthread_self());
1004
1005  // initialize floating point control register
1006  os::Linux::init_thread_fpu_state();
1007
1008  // Initial thread state is RUNNABLE
1009  osthread->set_state(RUNNABLE);
1010
1011  thread->set_osthread(osthread);
1012
1013  if (UseNUMA) {
1014    int lgrp_id = os::numa_get_group_id();
1015    if (lgrp_id != -1) {
1016      thread->set_lgrp_id(lgrp_id);
1017    }
1018  }
1019
1020  if (os::Linux::is_initial_thread()) {
1021    // If current thread is initial thread, its stack is mapped on demand,
1022    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023    // the entire stack region to avoid SEGV in stack banging.
1024    // It is also useful to get around the heap-stack-gap problem on SuSE
1025    // kernel (see 4821821 for details). We first expand stack to the top
1026    // of yellow zone, then enable stack yellow zone (order is significant,
1027    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028    // is no gap between the last two virtual memory regions.
1029
1030    JavaThread *jt = (JavaThread *)thread;
1031    address addr = jt->stack_yellow_zone_base();
1032    assert(addr != NULL, "initialization problem?");
1033    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034
1035    osthread->set_expanding_stack();
1036    os::Linux::manually_expand_stack(jt, addr);
1037    osthread->clear_expanding_stack();
1038  }
1039
1040  // initialize signal mask for this thread
1041  // and save the caller's signal mask
1042  os::Linux::hotspot_sigmask(thread);
1043
1044  return true;
1045}
1046
1047void os::pd_start_thread(Thread* thread) {
1048  OSThread * osthread = thread->osthread();
1049  assert(osthread->get_state() != INITIALIZED, "just checking");
1050  Monitor* sync_with_child = osthread->startThread_lock();
1051  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052  sync_with_child->notify();
1053}
1054
1055// Free Linux resources related to the OSThread
1056void os::free_thread(OSThread* osthread) {
1057  assert(osthread != NULL, "osthread not set");
1058
1059  if (Thread::current()->osthread() == osthread) {
1060    // Restore caller's signal mask
1061    sigset_t sigmask = osthread->caller_sigmask();
1062    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063   }
1064
1065  delete osthread;
1066}
1067
1068//////////////////////////////////////////////////////////////////////////////
1069// thread local storage
1070
1071int os::allocate_thread_local_storage() {
1072  pthread_key_t key;
1073  int rslt = pthread_key_create(&key, NULL);
1074  assert(rslt == 0, "cannot allocate thread local storage");
1075  return (int)key;
1076}
1077
1078// Note: This is currently not used by VM, as we don't destroy TLS key
1079// on VM exit.
1080void os::free_thread_local_storage(int index) {
1081  int rslt = pthread_key_delete((pthread_key_t)index);
1082  assert(rslt == 0, "invalid index");
1083}
1084
1085void os::thread_local_storage_at_put(int index, void* value) {
1086  int rslt = pthread_setspecific((pthread_key_t)index, value);
1087  assert(rslt == 0, "pthread_setspecific failed");
1088}
1089
1090extern "C" Thread* get_thread() {
1091  return ThreadLocalStorage::thread();
1092}
1093
1094//////////////////////////////////////////////////////////////////////////////
1095// initial thread
1096
1097// Check if current thread is the initial thread, similar to Solaris thr_main.
1098bool os::Linux::is_initial_thread(void) {
1099  char dummy;
1100  // If called before init complete, thread stack bottom will be null.
1101  // Can be called if fatal error occurs before initialization.
1102  if (initial_thread_stack_bottom() == NULL) return false;
1103  assert(initial_thread_stack_bottom() != NULL &&
1104         initial_thread_stack_size()   != 0,
1105         "os::init did not locate initial thread's stack region");
1106  if ((address)&dummy >= initial_thread_stack_bottom() &&
1107      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108       return true;
1109  else return false;
1110}
1111
1112// Find the virtual memory area that contains addr
1113static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114  FILE *fp = fopen("/proc/self/maps", "r");
1115  if (fp) {
1116    address low, high;
1117    while (!feof(fp)) {
1118      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119        if (low <= addr && addr < high) {
1120           if (vma_low)  *vma_low  = low;
1121           if (vma_high) *vma_high = high;
1122           fclose (fp);
1123           return true;
1124        }
1125      }
1126      for (;;) {
1127        int ch = fgetc(fp);
1128        if (ch == EOF || ch == (int)'\n') break;
1129      }
1130    }
1131    fclose(fp);
1132  }
1133  return false;
1134}
1135
1136// Locate initial thread stack. This special handling of initial thread stack
1137// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138// bogus value for initial thread.
1139void os::Linux::capture_initial_stack(size_t max_size) {
1140  // stack size is the easy part, get it from RLIMIT_STACK
1141  size_t stack_size;
1142  struct rlimit rlim;
1143  getrlimit(RLIMIT_STACK, &rlim);
1144  stack_size = rlim.rlim_cur;
1145
1146  // 6308388: a bug in ld.so will relocate its own .data section to the
1147  //   lower end of primordial stack; reduce ulimit -s value a little bit
1148  //   so we won't install guard page on ld.so's data section.
1149  stack_size -= 2 * page_size();
1150
1151  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152  //   7.1, in both cases we will get 2G in return value.
1153  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156  //   in case other parts in glibc still assumes 2M max stack size.
1157  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158#ifndef IA64
1159  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1160#else
1161  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1162  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1163#endif
1164
1165  // Try to figure out where the stack base (top) is. This is harder.
1166  //
1167  // When an application is started, glibc saves the initial stack pointer in
1168  // a global variable "__libc_stack_end", which is then used by system
1169  // libraries. __libc_stack_end should be pretty close to stack top. The
1170  // variable is available since the very early days. However, because it is
1171  // a private interface, it could disappear in the future.
1172  //
1173  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1174  // to __libc_stack_end, it is very close to stack top, but isn't the real
1175  // stack top. Note that /proc may not exist if VM is running as a chroot
1176  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1177  // /proc/<pid>/stat could change in the future (though unlikely).
1178  //
1179  // We try __libc_stack_end first. If that doesn't work, look for
1180  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1181  // as a hint, which should work well in most cases.
1182
1183  uintptr_t stack_start;
1184
1185  // try __libc_stack_end first
1186  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1187  if (p && *p) {
1188    stack_start = *p;
1189  } else {
1190    // see if we can get the start_stack field from /proc/self/stat
1191    FILE *fp;
1192    int pid;
1193    char state;
1194    int ppid;
1195    int pgrp;
1196    int session;
1197    int nr;
1198    int tpgrp;
1199    unsigned long flags;
1200    unsigned long minflt;
1201    unsigned long cminflt;
1202    unsigned long majflt;
1203    unsigned long cmajflt;
1204    unsigned long utime;
1205    unsigned long stime;
1206    long cutime;
1207    long cstime;
1208    long prio;
1209    long nice;
1210    long junk;
1211    long it_real;
1212    uintptr_t start;
1213    uintptr_t vsize;
1214    intptr_t rss;
1215    uintptr_t rsslim;
1216    uintptr_t scodes;
1217    uintptr_t ecode;
1218    int i;
1219
1220    // Figure what the primordial thread stack base is. Code is inspired
1221    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1222    // followed by command name surrounded by parentheses, state, etc.
1223    char stat[2048];
1224    int statlen;
1225
1226    fp = fopen("/proc/self/stat", "r");
1227    if (fp) {
1228      statlen = fread(stat, 1, 2047, fp);
1229      stat[statlen] = '\0';
1230      fclose(fp);
1231
1232      // Skip pid and the command string. Note that we could be dealing with
1233      // weird command names, e.g. user could decide to rename java launcher
1234      // to "java 1.4.2 :)", then the stat file would look like
1235      //                1234 (java 1.4.2 :)) R ... ...
1236      // We don't really need to know the command string, just find the last
1237      // occurrence of ")" and then start parsing from there. See bug 4726580.
1238      char * s = strrchr(stat, ')');
1239
1240      i = 0;
1241      if (s) {
1242        // Skip blank chars
1243        do s++; while (isspace(*s));
1244
1245#define _UFM UINTX_FORMAT
1246#define _DFM INTX_FORMAT
1247
1248        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1249        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1250        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1251             &state,          /* 3  %c  */
1252             &ppid,           /* 4  %d  */
1253             &pgrp,           /* 5  %d  */
1254             &session,        /* 6  %d  */
1255             &nr,             /* 7  %d  */
1256             &tpgrp,          /* 8  %d  */
1257             &flags,          /* 9  %lu  */
1258             &minflt,         /* 10 %lu  */
1259             &cminflt,        /* 11 %lu  */
1260             &majflt,         /* 12 %lu  */
1261             &cmajflt,        /* 13 %lu  */
1262             &utime,          /* 14 %lu  */
1263             &stime,          /* 15 %lu  */
1264             &cutime,         /* 16 %ld  */
1265             &cstime,         /* 17 %ld  */
1266             &prio,           /* 18 %ld  */
1267             &nice,           /* 19 %ld  */
1268             &junk,           /* 20 %ld  */
1269             &it_real,        /* 21 %ld  */
1270             &start,          /* 22 UINTX_FORMAT */
1271             &vsize,          /* 23 UINTX_FORMAT */
1272             &rss,            /* 24 INTX_FORMAT  */
1273             &rsslim,         /* 25 UINTX_FORMAT */
1274             &scodes,         /* 26 UINTX_FORMAT */
1275             &ecode,          /* 27 UINTX_FORMAT */
1276             &stack_start);   /* 28 UINTX_FORMAT */
1277      }
1278
1279#undef _UFM
1280#undef _DFM
1281
1282      if (i != 28 - 2) {
1283         assert(false, "Bad conversion from /proc/self/stat");
1284         // product mode - assume we are the initial thread, good luck in the
1285         // embedded case.
1286         warning("Can't detect initial thread stack location - bad conversion");
1287         stack_start = (uintptr_t) &rlim;
1288      }
1289    } else {
1290      // For some reason we can't open /proc/self/stat (for example, running on
1291      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1292      // most cases, so don't abort:
1293      warning("Can't detect initial thread stack location - no /proc/self/stat");
1294      stack_start = (uintptr_t) &rlim;
1295    }
1296  }
1297
1298  // Now we have a pointer (stack_start) very close to the stack top, the
1299  // next thing to do is to figure out the exact location of stack top. We
1300  // can find out the virtual memory area that contains stack_start by
1301  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1302  // and its upper limit is the real stack top. (again, this would fail if
1303  // running inside chroot, because /proc may not exist.)
1304
1305  uintptr_t stack_top;
1306  address low, high;
1307  if (find_vma((address)stack_start, &low, &high)) {
1308    // success, "high" is the true stack top. (ignore "low", because initial
1309    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1310    stack_top = (uintptr_t)high;
1311  } else {
1312    // failed, likely because /proc/self/maps does not exist
1313    warning("Can't detect initial thread stack location - find_vma failed");
1314    // best effort: stack_start is normally within a few pages below the real
1315    // stack top, use it as stack top, and reduce stack size so we won't put
1316    // guard page outside stack.
1317    stack_top = stack_start;
1318    stack_size -= 16 * page_size();
1319  }
1320
1321  // stack_top could be partially down the page so align it
1322  stack_top = align_size_up(stack_top, page_size());
1323
1324  if (max_size && stack_size > max_size) {
1325     _initial_thread_stack_size = max_size;
1326  } else {
1327     _initial_thread_stack_size = stack_size;
1328  }
1329
1330  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1331  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1332}
1333
1334////////////////////////////////////////////////////////////////////////////////
1335// time support
1336
1337// Time since start-up in seconds to a fine granularity.
1338// Used by VMSelfDestructTimer and the MemProfiler.
1339double os::elapsedTime() {
1340
1341  return (double)(os::elapsed_counter()) * 0.000001;
1342}
1343
1344jlong os::elapsed_counter() {
1345  timeval time;
1346  int status = gettimeofday(&time, NULL);
1347  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1348}
1349
1350jlong os::elapsed_frequency() {
1351  return (1000 * 1000);
1352}
1353
1354// For now, we say that linux does not support vtime.  I have no idea
1355// whether it can actually be made to (DLD, 9/13/05).
1356
1357bool os::supports_vtime() { return false; }
1358bool os::enable_vtime()   { return false; }
1359bool os::vtime_enabled()  { return false; }
1360double os::elapsedVTime() {
1361  // better than nothing, but not much
1362  return elapsedTime();
1363}
1364
1365jlong os::javaTimeMillis() {
1366  timeval time;
1367  int status = gettimeofday(&time, NULL);
1368  assert(status != -1, "linux error");
1369  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1370}
1371
1372#ifndef CLOCK_MONOTONIC
1373#define CLOCK_MONOTONIC (1)
1374#endif
1375
1376void os::Linux::clock_init() {
1377  // we do dlopen's in this particular order due to bug in linux
1378  // dynamical loader (see 6348968) leading to crash on exit
1379  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1380  if (handle == NULL) {
1381    handle = dlopen("librt.so", RTLD_LAZY);
1382  }
1383
1384  if (handle) {
1385    int (*clock_getres_func)(clockid_t, struct timespec*) =
1386           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1387    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1388           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1389    if (clock_getres_func && clock_gettime_func) {
1390      // See if monotonic clock is supported by the kernel. Note that some
1391      // early implementations simply return kernel jiffies (updated every
1392      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1393      // for nano time (though the monotonic property is still nice to have).
1394      // It's fixed in newer kernels, however clock_getres() still returns
1395      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1396      // resolution for now. Hopefully as people move to new kernels, this
1397      // won't be a problem.
1398      struct timespec res;
1399      struct timespec tp;
1400      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1401          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1402        // yes, monotonic clock is supported
1403        _clock_gettime = clock_gettime_func;
1404      } else {
1405        // close librt if there is no monotonic clock
1406        dlclose(handle);
1407      }
1408    }
1409  }
1410}
1411
1412#ifndef SYS_clock_getres
1413
1414#if defined(IA32) || defined(AMD64)
1415#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1416#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1417#else
1418#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1419#define sys_clock_getres(x,y)  -1
1420#endif
1421
1422#else
1423#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424#endif
1425
1426void os::Linux::fast_thread_clock_init() {
1427  if (!UseLinuxPosixThreadCPUClocks) {
1428    return;
1429  }
1430  clockid_t clockid;
1431  struct timespec tp;
1432  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1433      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1434
1435  // Switch to using fast clocks for thread cpu time if
1436  // the sys_clock_getres() returns 0 error code.
1437  // Note, that some kernels may support the current thread
1438  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1439  // returned by the pthread_getcpuclockid().
1440  // If the fast Posix clocks are supported then the sys_clock_getres()
1441  // must return at least tp.tv_sec == 0 which means a resolution
1442  // better than 1 sec. This is extra check for reliability.
1443
1444  if(pthread_getcpuclockid_func &&
1445     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1446     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1447
1448    _supports_fast_thread_cpu_time = true;
1449    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1450  }
1451}
1452
1453jlong os::javaTimeNanos() {
1454  if (Linux::supports_monotonic_clock()) {
1455    struct timespec tp;
1456    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1457    assert(status == 0, "gettime error");
1458    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1459    return result;
1460  } else {
1461    timeval time;
1462    int status = gettimeofday(&time, NULL);
1463    assert(status != -1, "linux error");
1464    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1465    return 1000 * usecs;
1466  }
1467}
1468
1469void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1470  if (Linux::supports_monotonic_clock()) {
1471    info_ptr->max_value = ALL_64_BITS;
1472
1473    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1474    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1475    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1476  } else {
1477    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1478    info_ptr->max_value = ALL_64_BITS;
1479
1480    // gettimeofday is a real time clock so it skips
1481    info_ptr->may_skip_backward = true;
1482    info_ptr->may_skip_forward = true;
1483  }
1484
1485  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1486}
1487
1488// Return the real, user, and system times in seconds from an
1489// arbitrary fixed point in the past.
1490bool os::getTimesSecs(double* process_real_time,
1491                      double* process_user_time,
1492                      double* process_system_time) {
1493  struct tms ticks;
1494  clock_t real_ticks = times(&ticks);
1495
1496  if (real_ticks == (clock_t) (-1)) {
1497    return false;
1498  } else {
1499    double ticks_per_second = (double) clock_tics_per_sec;
1500    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1501    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1502    *process_real_time = ((double) real_ticks) / ticks_per_second;
1503
1504    return true;
1505  }
1506}
1507
1508
1509char * os::local_time_string(char *buf, size_t buflen) {
1510  struct tm t;
1511  time_t long_time;
1512  time(&long_time);
1513  localtime_r(&long_time, &t);
1514  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1515               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1516               t.tm_hour, t.tm_min, t.tm_sec);
1517  return buf;
1518}
1519
1520struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1521  return localtime_r(clock, res);
1522}
1523
1524////////////////////////////////////////////////////////////////////////////////
1525// runtime exit support
1526
1527// Note: os::shutdown() might be called very early during initialization, or
1528// called from signal handler. Before adding something to os::shutdown(), make
1529// sure it is async-safe and can handle partially initialized VM.
1530void os::shutdown() {
1531
1532  // allow PerfMemory to attempt cleanup of any persistent resources
1533  perfMemory_exit();
1534
1535  // needs to remove object in file system
1536  AttachListener::abort();
1537
1538  // flush buffered output, finish log files
1539  ostream_abort();
1540
1541  // Check for abort hook
1542  abort_hook_t abort_hook = Arguments::abort_hook();
1543  if (abort_hook != NULL) {
1544    abort_hook();
1545  }
1546
1547}
1548
1549// Note: os::abort() might be called very early during initialization, or
1550// called from signal handler. Before adding something to os::abort(), make
1551// sure it is async-safe and can handle partially initialized VM.
1552void os::abort(bool dump_core) {
1553  os::shutdown();
1554  if (dump_core) {
1555#ifndef PRODUCT
1556    fdStream out(defaultStream::output_fd());
1557    out.print_raw("Current thread is ");
1558    char buf[16];
1559    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1560    out.print_raw_cr(buf);
1561    out.print_raw_cr("Dumping core ...");
1562#endif
1563    ::abort(); // dump core
1564  }
1565
1566  ::exit(1);
1567}
1568
1569// Die immediately, no exit hook, no abort hook, no cleanup.
1570void os::die() {
1571  // _exit() on LinuxThreads only kills current thread
1572  ::abort();
1573}
1574
1575// unused on linux for now.
1576void os::set_error_file(const char *logfile) {}
1577
1578
1579// This method is a copy of JDK's sysGetLastErrorString
1580// from src/solaris/hpi/src/system_md.c
1581
1582size_t os::lasterror(char *buf, size_t len) {
1583
1584  if (errno == 0)  return 0;
1585
1586  const char *s = ::strerror(errno);
1587  size_t n = ::strlen(s);
1588  if (n >= len) {
1589    n = len - 1;
1590  }
1591  ::strncpy(buf, s, n);
1592  buf[n] = '\0';
1593  return n;
1594}
1595
1596intx os::current_thread_id() { return (intx)pthread_self(); }
1597int os::current_process_id() {
1598
1599  // Under the old linux thread library, linux gives each thread
1600  // its own process id. Because of this each thread will return
1601  // a different pid if this method were to return the result
1602  // of getpid(2). Linux provides no api that returns the pid
1603  // of the launcher thread for the vm. This implementation
1604  // returns a unique pid, the pid of the launcher thread
1605  // that starts the vm 'process'.
1606
1607  // Under the NPTL, getpid() returns the same pid as the
1608  // launcher thread rather than a unique pid per thread.
1609  // Use gettid() if you want the old pre NPTL behaviour.
1610
1611  // if you are looking for the result of a call to getpid() that
1612  // returns a unique pid for the calling thread, then look at the
1613  // OSThread::thread_id() method in osThread_linux.hpp file
1614
1615  return (int)(_initial_pid ? _initial_pid : getpid());
1616}
1617
1618// DLL functions
1619
1620const char* os::dll_file_extension() { return ".so"; }
1621
1622// This must be hard coded because it's the system's temporary
1623// directory not the java application's temp directory, ala java.io.tmpdir.
1624const char* os::get_temp_directory() { return "/tmp"; }
1625
1626static bool file_exists(const char* filename) {
1627  struct stat statbuf;
1628  if (filename == NULL || strlen(filename) == 0) {
1629    return false;
1630  }
1631  return os::stat(filename, &statbuf) == 0;
1632}
1633
1634bool os::dll_build_name(char* buffer, size_t buflen,
1635                        const char* pname, const char* fname) {
1636  bool retval = false;
1637  // Copied from libhpi
1638  const size_t pnamelen = pname ? strlen(pname) : 0;
1639
1640  // Return error on buffer overflow.
1641  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1642    return retval;
1643  }
1644
1645  if (pnamelen == 0) {
1646    snprintf(buffer, buflen, "lib%s.so", fname);
1647    retval = true;
1648  } else if (strchr(pname, *os::path_separator()) != NULL) {
1649    int n;
1650    char** pelements = split_path(pname, &n);
1651    for (int i = 0 ; i < n ; i++) {
1652      // Really shouldn't be NULL, but check can't hurt
1653      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1654        continue; // skip the empty path values
1655      }
1656      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1657      if (file_exists(buffer)) {
1658        retval = true;
1659        break;
1660      }
1661    }
1662    // release the storage
1663    for (int i = 0 ; i < n ; i++) {
1664      if (pelements[i] != NULL) {
1665        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1666      }
1667    }
1668    if (pelements != NULL) {
1669      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1670    }
1671  } else {
1672    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1673    retval = true;
1674  }
1675  return retval;
1676}
1677
1678const char* os::get_current_directory(char *buf, int buflen) {
1679  return getcwd(buf, buflen);
1680}
1681
1682// check if addr is inside libjvm.so
1683bool os::address_is_in_vm(address addr) {
1684  static address libjvm_base_addr;
1685  Dl_info dlinfo;
1686
1687  if (libjvm_base_addr == NULL) {
1688    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1689    libjvm_base_addr = (address)dlinfo.dli_fbase;
1690    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1691  }
1692
1693  if (dladdr((void *)addr, &dlinfo)) {
1694    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1695  }
1696
1697  return false;
1698}
1699
1700bool os::dll_address_to_function_name(address addr, char *buf,
1701                                      int buflen, int *offset) {
1702  Dl_info dlinfo;
1703
1704  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1705    if (buf != NULL) {
1706      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1707        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1708      }
1709    }
1710    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1711    return true;
1712  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1713    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1714        buf, buflen, offset, dlinfo.dli_fname)) {
1715       return true;
1716    }
1717  }
1718
1719  if (buf != NULL) buf[0] = '\0';
1720  if (offset != NULL) *offset = -1;
1721  return false;
1722}
1723
1724struct _address_to_library_name {
1725  address addr;          // input : memory address
1726  size_t  buflen;        //         size of fname
1727  char*   fname;         // output: library name
1728  address base;          //         library base addr
1729};
1730
1731static int address_to_library_name_callback(struct dl_phdr_info *info,
1732                                            size_t size, void *data) {
1733  int i;
1734  bool found = false;
1735  address libbase = NULL;
1736  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1737
1738  // iterate through all loadable segments
1739  for (i = 0; i < info->dlpi_phnum; i++) {
1740    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1741    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1742      // base address of a library is the lowest address of its loaded
1743      // segments.
1744      if (libbase == NULL || libbase > segbase) {
1745        libbase = segbase;
1746      }
1747      // see if 'addr' is within current segment
1748      if (segbase <= d->addr &&
1749          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1750        found = true;
1751      }
1752    }
1753  }
1754
1755  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1756  // so dll_address_to_library_name() can fall through to use dladdr() which
1757  // can figure out executable name from argv[0].
1758  if (found && info->dlpi_name && info->dlpi_name[0]) {
1759    d->base = libbase;
1760    if (d->fname) {
1761      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1762    }
1763    return 1;
1764  }
1765  return 0;
1766}
1767
1768bool os::dll_address_to_library_name(address addr, char* buf,
1769                                     int buflen, int* offset) {
1770  Dl_info dlinfo;
1771  struct _address_to_library_name data;
1772
1773  // There is a bug in old glibc dladdr() implementation that it could resolve
1774  // to wrong library name if the .so file has a base address != NULL. Here
1775  // we iterate through the program headers of all loaded libraries to find
1776  // out which library 'addr' really belongs to. This workaround can be
1777  // removed once the minimum requirement for glibc is moved to 2.3.x.
1778  data.addr = addr;
1779  data.fname = buf;
1780  data.buflen = buflen;
1781  data.base = NULL;
1782  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1783
1784  if (rslt) {
1785     // buf already contains library name
1786     if (offset) *offset = addr - data.base;
1787     return true;
1788  } else if (dladdr((void*)addr, &dlinfo)){
1789     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1790     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1791     return true;
1792  } else {
1793     if (buf) buf[0] = '\0';
1794     if (offset) *offset = -1;
1795     return false;
1796  }
1797}
1798
1799  // Loads .dll/.so and
1800  // in case of error it checks if .dll/.so was built for the
1801  // same architecture as Hotspot is running on
1802
1803void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1804{
1805  void * result= ::dlopen(filename, RTLD_LAZY);
1806  if (result != NULL) {
1807    // Successful loading
1808    return result;
1809  }
1810
1811  Elf32_Ehdr elf_head;
1812
1813  // Read system error message into ebuf
1814  // It may or may not be overwritten below
1815  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1816  ebuf[ebuflen-1]='\0';
1817  int diag_msg_max_length=ebuflen-strlen(ebuf);
1818  char* diag_msg_buf=ebuf+strlen(ebuf);
1819
1820  if (diag_msg_max_length==0) {
1821    // No more space in ebuf for additional diagnostics message
1822    return NULL;
1823  }
1824
1825
1826  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1827
1828  if (file_descriptor < 0) {
1829    // Can't open library, report dlerror() message
1830    return NULL;
1831  }
1832
1833  bool failed_to_read_elf_head=
1834    (sizeof(elf_head)!=
1835        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1836
1837  ::close(file_descriptor);
1838  if (failed_to_read_elf_head) {
1839    // file i/o error - report dlerror() msg
1840    return NULL;
1841  }
1842
1843  typedef struct {
1844    Elf32_Half  code;         // Actual value as defined in elf.h
1845    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1846    char        elf_class;    // 32 or 64 bit
1847    char        endianess;    // MSB or LSB
1848    char*       name;         // String representation
1849  } arch_t;
1850
1851  #ifndef EM_486
1852  #define EM_486          6               /* Intel 80486 */
1853  #endif
1854
1855  static const arch_t arch_array[]={
1856    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1857    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1858    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1859    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1860    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1861    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1862    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1863    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1864    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1865    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1866    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1867    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1868    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1869    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1870    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1871    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1872  };
1873
1874  #if  (defined IA32)
1875    static  Elf32_Half running_arch_code=EM_386;
1876  #elif   (defined AMD64)
1877    static  Elf32_Half running_arch_code=EM_X86_64;
1878  #elif  (defined IA64)
1879    static  Elf32_Half running_arch_code=EM_IA_64;
1880  #elif  (defined __sparc) && (defined _LP64)
1881    static  Elf32_Half running_arch_code=EM_SPARCV9;
1882  #elif  (defined __sparc) && (!defined _LP64)
1883    static  Elf32_Half running_arch_code=EM_SPARC;
1884  #elif  (defined __powerpc64__)
1885    static  Elf32_Half running_arch_code=EM_PPC64;
1886  #elif  (defined __powerpc__)
1887    static  Elf32_Half running_arch_code=EM_PPC;
1888  #elif  (defined ARM)
1889    static  Elf32_Half running_arch_code=EM_ARM;
1890  #elif  (defined S390)
1891    static  Elf32_Half running_arch_code=EM_S390;
1892  #elif  (defined ALPHA)
1893    static  Elf32_Half running_arch_code=EM_ALPHA;
1894  #elif  (defined MIPSEL)
1895    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1896  #elif  (defined PARISC)
1897    static  Elf32_Half running_arch_code=EM_PARISC;
1898  #elif  (defined MIPS)
1899    static  Elf32_Half running_arch_code=EM_MIPS;
1900  #elif  (defined M68K)
1901    static  Elf32_Half running_arch_code=EM_68K;
1902  #else
1903    #error Method os::dll_load requires that one of following is defined:\
1904         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1905  #endif
1906
1907  // Identify compatability class for VM's architecture and library's architecture
1908  // Obtain string descriptions for architectures
1909
1910  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1911  int running_arch_index=-1;
1912
1913  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1914    if (running_arch_code == arch_array[i].code) {
1915      running_arch_index    = i;
1916    }
1917    if (lib_arch.code == arch_array[i].code) {
1918      lib_arch.compat_class = arch_array[i].compat_class;
1919      lib_arch.name         = arch_array[i].name;
1920    }
1921  }
1922
1923  assert(running_arch_index != -1,
1924    "Didn't find running architecture code (running_arch_code) in arch_array");
1925  if (running_arch_index == -1) {
1926    // Even though running architecture detection failed
1927    // we may still continue with reporting dlerror() message
1928    return NULL;
1929  }
1930
1931  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1932    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1933    return NULL;
1934  }
1935
1936#ifndef S390
1937  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1938    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1939    return NULL;
1940  }
1941#endif // !S390
1942
1943  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1944    if ( lib_arch.name!=NULL ) {
1945      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1947        lib_arch.name, arch_array[running_arch_index].name);
1948    } else {
1949      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1950      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1951        lib_arch.code,
1952        arch_array[running_arch_index].name);
1953    }
1954  }
1955
1956  return NULL;
1957}
1958
1959/*
1960 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1961 * chances are you might want to run the generated bits against glibc-2.0
1962 * libdl.so, so always use locking for any version of glibc.
1963 */
1964void* os::dll_lookup(void* handle, const char* name) {
1965  pthread_mutex_lock(&dl_mutex);
1966  void* res = dlsym(handle, name);
1967  pthread_mutex_unlock(&dl_mutex);
1968  return res;
1969}
1970
1971
1972static bool _print_ascii_file(const char* filename, outputStream* st) {
1973  int fd = ::open(filename, O_RDONLY);
1974  if (fd == -1) {
1975     return false;
1976  }
1977
1978  char buf[32];
1979  int bytes;
1980  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1981    st->print_raw(buf, bytes);
1982  }
1983
1984  ::close(fd);
1985
1986  return true;
1987}
1988
1989void os::print_dll_info(outputStream *st) {
1990   st->print_cr("Dynamic libraries:");
1991
1992   char fname[32];
1993   pid_t pid = os::Linux::gettid();
1994
1995   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1996
1997   if (!_print_ascii_file(fname, st)) {
1998     st->print("Can not get library information for pid = %d\n", pid);
1999   }
2000}
2001
2002void os::print_os_info_brief(outputStream* st) {
2003  os::Linux::print_distro_info(st);
2004
2005  os::Posix::print_uname_info(st);
2006
2007  os::Linux::print_libversion_info(st);
2008
2009}
2010
2011void os::print_os_info(outputStream* st) {
2012  st->print("OS:");
2013
2014  os::Linux::print_distro_info(st);
2015
2016  os::Posix::print_uname_info(st);
2017
2018  // Print warning if unsafe chroot environment detected
2019  if (unsafe_chroot_detected) {
2020    st->print("WARNING!! ");
2021    st->print_cr(unstable_chroot_error);
2022  }
2023
2024  os::Linux::print_libversion_info(st);
2025
2026  os::Posix::print_rlimit_info(st);
2027
2028  os::Posix::print_load_average(st);
2029
2030  os::Linux::print_full_memory_info(st);
2031}
2032
2033// Try to identify popular distros.
2034// Most Linux distributions have /etc/XXX-release file, which contains
2035// the OS version string. Some have more than one /etc/XXX-release file
2036// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2037// so the order is important.
2038void os::Linux::print_distro_info(outputStream* st) {
2039  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2040      !_print_ascii_file("/etc/sun-release", st) &&
2041      !_print_ascii_file("/etc/redhat-release", st) &&
2042      !_print_ascii_file("/etc/SuSE-release", st) &&
2043      !_print_ascii_file("/etc/turbolinux-release", st) &&
2044      !_print_ascii_file("/etc/gentoo-release", st) &&
2045      !_print_ascii_file("/etc/debian_version", st) &&
2046      !_print_ascii_file("/etc/ltib-release", st) &&
2047      !_print_ascii_file("/etc/angstrom-version", st)) {
2048      st->print("Linux");
2049  }
2050  st->cr();
2051}
2052
2053void os::Linux::print_libversion_info(outputStream* st) {
2054  // libc, pthread
2055  st->print("libc:");
2056  st->print(os::Linux::glibc_version()); st->print(" ");
2057  st->print(os::Linux::libpthread_version()); st->print(" ");
2058  if (os::Linux::is_LinuxThreads()) {
2059     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2060  }
2061  st->cr();
2062}
2063
2064void os::Linux::print_full_memory_info(outputStream* st) {
2065   st->print("\n/proc/meminfo:\n");
2066   _print_ascii_file("/proc/meminfo", st);
2067   st->cr();
2068}
2069
2070void os::print_memory_info(outputStream* st) {
2071
2072  st->print("Memory:");
2073  st->print(" %dk page", os::vm_page_size()>>10);
2074
2075  // values in struct sysinfo are "unsigned long"
2076  struct sysinfo si;
2077  sysinfo(&si);
2078
2079  st->print(", physical " UINT64_FORMAT "k",
2080            os::physical_memory() >> 10);
2081  st->print("(" UINT64_FORMAT "k free)",
2082            os::available_memory() >> 10);
2083  st->print(", swap " UINT64_FORMAT "k",
2084            ((jlong)si.totalswap * si.mem_unit) >> 10);
2085  st->print("(" UINT64_FORMAT "k free)",
2086            ((jlong)si.freeswap * si.mem_unit) >> 10);
2087  st->cr();
2088}
2089
2090void os::pd_print_cpu_info(outputStream* st) {
2091  st->print("\n/proc/cpuinfo:\n");
2092  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2093    st->print("  <Not Available>");
2094  }
2095  st->cr();
2096}
2097
2098// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2099// but they're the same for all the linux arch that we support
2100// and they're the same for solaris but there's no common place to put this.
2101const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2102                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2103                          "ILL_COPROC", "ILL_BADSTK" };
2104
2105const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2106                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2107                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2108
2109const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2110
2111const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2112
2113void os::print_siginfo(outputStream* st, void* siginfo) {
2114  st->print("siginfo:");
2115
2116  const int buflen = 100;
2117  char buf[buflen];
2118  siginfo_t *si = (siginfo_t*)siginfo;
2119  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2120  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2121    st->print("si_errno=%s", buf);
2122  } else {
2123    st->print("si_errno=%d", si->si_errno);
2124  }
2125  const int c = si->si_code;
2126  assert(c > 0, "unexpected si_code");
2127  switch (si->si_signo) {
2128  case SIGILL:
2129    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2130    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2131    break;
2132  case SIGFPE:
2133    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2134    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2135    break;
2136  case SIGSEGV:
2137    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2138    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2139    break;
2140  case SIGBUS:
2141    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2142    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2143    break;
2144  default:
2145    st->print(", si_code=%d", si->si_code);
2146    // no si_addr
2147  }
2148
2149  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2150      UseSharedSpaces) {
2151    FileMapInfo* mapinfo = FileMapInfo::current_info();
2152    if (mapinfo->is_in_shared_space(si->si_addr)) {
2153      st->print("\n\nError accessing class data sharing archive."   \
2154                " Mapped file inaccessible during execution, "      \
2155                " possible disk/network problem.");
2156    }
2157  }
2158  st->cr();
2159}
2160
2161
2162static void print_signal_handler(outputStream* st, int sig,
2163                                 char* buf, size_t buflen);
2164
2165void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2166  st->print_cr("Signal Handlers:");
2167  print_signal_handler(st, SIGSEGV, buf, buflen);
2168  print_signal_handler(st, SIGBUS , buf, buflen);
2169  print_signal_handler(st, SIGFPE , buf, buflen);
2170  print_signal_handler(st, SIGPIPE, buf, buflen);
2171  print_signal_handler(st, SIGXFSZ, buf, buflen);
2172  print_signal_handler(st, SIGILL , buf, buflen);
2173  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2174  print_signal_handler(st, SR_signum, buf, buflen);
2175  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2176  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2177  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2178  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2179}
2180
2181static char saved_jvm_path[MAXPATHLEN] = {0};
2182
2183// Find the full path to the current module, libjvm.so
2184void os::jvm_path(char *buf, jint buflen) {
2185  // Error checking.
2186  if (buflen < MAXPATHLEN) {
2187    assert(false, "must use a large-enough buffer");
2188    buf[0] = '\0';
2189    return;
2190  }
2191  // Lazy resolve the path to current module.
2192  if (saved_jvm_path[0] != 0) {
2193    strcpy(buf, saved_jvm_path);
2194    return;
2195  }
2196
2197  char dli_fname[MAXPATHLEN];
2198  bool ret = dll_address_to_library_name(
2199                CAST_FROM_FN_PTR(address, os::jvm_path),
2200                dli_fname, sizeof(dli_fname), NULL);
2201  assert(ret != 0, "cannot locate libjvm");
2202  char *rp = realpath(dli_fname, buf);
2203  if (rp == NULL)
2204    return;
2205
2206  if (Arguments::created_by_gamma_launcher()) {
2207    // Support for the gamma launcher.  Typical value for buf is
2208    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2209    // the right place in the string, then assume we are installed in a JDK and
2210    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2211    // up the path so it looks like libjvm.so is installed there (append a
2212    // fake suffix hotspot/libjvm.so).
2213    const char *p = buf + strlen(buf) - 1;
2214    for (int count = 0; p > buf && count < 5; ++count) {
2215      for (--p; p > buf && *p != '/'; --p)
2216        /* empty */ ;
2217    }
2218
2219    if (strncmp(p, "/jre/lib/", 9) != 0) {
2220      // Look for JAVA_HOME in the environment.
2221      char* java_home_var = ::getenv("JAVA_HOME");
2222      if (java_home_var != NULL && java_home_var[0] != 0) {
2223        char* jrelib_p;
2224        int len;
2225
2226        // Check the current module name "libjvm.so".
2227        p = strrchr(buf, '/');
2228        assert(strstr(p, "/libjvm") == p, "invalid library name");
2229
2230        rp = realpath(java_home_var, buf);
2231        if (rp == NULL)
2232          return;
2233
2234        // determine if this is a legacy image or modules image
2235        // modules image doesn't have "jre" subdirectory
2236        len = strlen(buf);
2237        jrelib_p = buf + len;
2238        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2239        if (0 != access(buf, F_OK)) {
2240          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2241        }
2242
2243        if (0 == access(buf, F_OK)) {
2244          // Use current module name "libjvm.so"
2245          len = strlen(buf);
2246          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2247        } else {
2248          // Go back to path of .so
2249          rp = realpath(dli_fname, buf);
2250          if (rp == NULL)
2251            return;
2252        }
2253      }
2254    }
2255  }
2256
2257  strcpy(saved_jvm_path, buf);
2258}
2259
2260void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2261  // no prefix required, not even "_"
2262}
2263
2264void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2265  // no suffix required
2266}
2267
2268////////////////////////////////////////////////////////////////////////////////
2269// sun.misc.Signal support
2270
2271static volatile jint sigint_count = 0;
2272
2273static void
2274UserHandler(int sig, void *siginfo, void *context) {
2275  // 4511530 - sem_post is serialized and handled by the manager thread. When
2276  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2277  // don't want to flood the manager thread with sem_post requests.
2278  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2279      return;
2280
2281  // Ctrl-C is pressed during error reporting, likely because the error
2282  // handler fails to abort. Let VM die immediately.
2283  if (sig == SIGINT && is_error_reported()) {
2284     os::die();
2285  }
2286
2287  os::signal_notify(sig);
2288}
2289
2290void* os::user_handler() {
2291  return CAST_FROM_FN_PTR(void*, UserHandler);
2292}
2293
2294extern "C" {
2295  typedef void (*sa_handler_t)(int);
2296  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2297}
2298
2299void* os::signal(int signal_number, void* handler) {
2300  struct sigaction sigAct, oldSigAct;
2301
2302  sigfillset(&(sigAct.sa_mask));
2303  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2304  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2305
2306  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2307    // -1 means registration failed
2308    return (void *)-1;
2309  }
2310
2311  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2312}
2313
2314void os::signal_raise(int signal_number) {
2315  ::raise(signal_number);
2316}
2317
2318/*
2319 * The following code is moved from os.cpp for making this
2320 * code platform specific, which it is by its very nature.
2321 */
2322
2323// Will be modified when max signal is changed to be dynamic
2324int os::sigexitnum_pd() {
2325  return NSIG;
2326}
2327
2328// a counter for each possible signal value
2329static volatile jint pending_signals[NSIG+1] = { 0 };
2330
2331// Linux(POSIX) specific hand shaking semaphore.
2332static sem_t sig_sem;
2333
2334void os::signal_init_pd() {
2335  // Initialize signal structures
2336  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2337
2338  // Initialize signal semaphore
2339  ::sem_init(&sig_sem, 0, 0);
2340}
2341
2342void os::signal_notify(int sig) {
2343  Atomic::inc(&pending_signals[sig]);
2344  ::sem_post(&sig_sem);
2345}
2346
2347static int check_pending_signals(bool wait) {
2348  Atomic::store(0, &sigint_count);
2349  for (;;) {
2350    for (int i = 0; i < NSIG + 1; i++) {
2351      jint n = pending_signals[i];
2352      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2353        return i;
2354      }
2355    }
2356    if (!wait) {
2357      return -1;
2358    }
2359    JavaThread *thread = JavaThread::current();
2360    ThreadBlockInVM tbivm(thread);
2361
2362    bool threadIsSuspended;
2363    do {
2364      thread->set_suspend_equivalent();
2365      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2366      ::sem_wait(&sig_sem);
2367
2368      // were we externally suspended while we were waiting?
2369      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2370      if (threadIsSuspended) {
2371        //
2372        // The semaphore has been incremented, but while we were waiting
2373        // another thread suspended us. We don't want to continue running
2374        // while suspended because that would surprise the thread that
2375        // suspended us.
2376        //
2377        ::sem_post(&sig_sem);
2378
2379        thread->java_suspend_self();
2380      }
2381    } while (threadIsSuspended);
2382  }
2383}
2384
2385int os::signal_lookup() {
2386  return check_pending_signals(false);
2387}
2388
2389int os::signal_wait() {
2390  return check_pending_signals(true);
2391}
2392
2393////////////////////////////////////////////////////////////////////////////////
2394// Virtual Memory
2395
2396int os::vm_page_size() {
2397  // Seems redundant as all get out
2398  assert(os::Linux::page_size() != -1, "must call os::init");
2399  return os::Linux::page_size();
2400}
2401
2402// Solaris allocates memory by pages.
2403int os::vm_allocation_granularity() {
2404  assert(os::Linux::page_size() != -1, "must call os::init");
2405  return os::Linux::page_size();
2406}
2407
2408// Rationale behind this function:
2409//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2410//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2411//  samples for JITted code. Here we create private executable mapping over the code cache
2412//  and then we can use standard (well, almost, as mapping can change) way to provide
2413//  info for the reporting script by storing timestamp and location of symbol
2414void linux_wrap_code(char* base, size_t size) {
2415  static volatile jint cnt = 0;
2416
2417  if (!UseOprofile) {
2418    return;
2419  }
2420
2421  char buf[PATH_MAX+1];
2422  int num = Atomic::add(1, &cnt);
2423
2424  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2425           os::get_temp_directory(), os::current_process_id(), num);
2426  unlink(buf);
2427
2428  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2429
2430  if (fd != -1) {
2431    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2432    if (rv != (off_t)-1) {
2433      if (::write(fd, "", 1) == 1) {
2434        mmap(base, size,
2435             PROT_READ|PROT_WRITE|PROT_EXEC,
2436             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2437      }
2438    }
2439    ::close(fd);
2440    unlink(buf);
2441  }
2442}
2443
2444// NOTE: Linux kernel does not really reserve the pages for us.
2445//       All it does is to check if there are enough free pages
2446//       left at the time of mmap(). This could be a potential
2447//       problem.
2448bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2449  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2450  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2451                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2452  if (res != (uintptr_t) MAP_FAILED) {
2453    if (UseNUMAInterleaving) {
2454      numa_make_global(addr, size);
2455    }
2456    return true;
2457  }
2458  return false;
2459}
2460
2461// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2462#ifndef MAP_HUGETLB
2463#define MAP_HUGETLB 0x40000
2464#endif
2465
2466// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2467#ifndef MADV_HUGEPAGE
2468#define MADV_HUGEPAGE 14
2469#endif
2470
2471bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2472                       bool exec) {
2473  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2474    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2475    uintptr_t res =
2476      (uintptr_t) ::mmap(addr, size, prot,
2477                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2478                         -1, 0);
2479    if (res != (uintptr_t) MAP_FAILED) {
2480      if (UseNUMAInterleaving) {
2481        numa_make_global(addr, size);
2482      }
2483      return true;
2484    }
2485    // Fall through and try to use small pages
2486  }
2487
2488  if (commit_memory(addr, size, exec)) {
2489    realign_memory(addr, size, alignment_hint);
2490    return true;
2491  }
2492  return false;
2493}
2494
2495void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2496  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2497    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2498    // be supported or the memory may already be backed by huge pages.
2499    ::madvise(addr, bytes, MADV_HUGEPAGE);
2500  }
2501}
2502
2503void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2504  // This method works by doing an mmap over an existing mmaping and effectively discarding
2505  // the existing pages. However it won't work for SHM-based large pages that cannot be
2506  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2507  // small pages on top of the SHM segment. This method always works for small pages, so we
2508  // allow that in any case.
2509  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2510    commit_memory(addr, bytes, alignment_hint, false);
2511  }
2512}
2513
2514void os::numa_make_global(char *addr, size_t bytes) {
2515  Linux::numa_interleave_memory(addr, bytes);
2516}
2517
2518void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2519  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2520}
2521
2522bool os::numa_topology_changed()   { return false; }
2523
2524size_t os::numa_get_groups_num() {
2525  int max_node = Linux::numa_max_node();
2526  return max_node > 0 ? max_node + 1 : 1;
2527}
2528
2529int os::numa_get_group_id() {
2530  int cpu_id = Linux::sched_getcpu();
2531  if (cpu_id != -1) {
2532    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2533    if (lgrp_id != -1) {
2534      return lgrp_id;
2535    }
2536  }
2537  return 0;
2538}
2539
2540size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2541  for (size_t i = 0; i < size; i++) {
2542    ids[i] = i;
2543  }
2544  return size;
2545}
2546
2547bool os::get_page_info(char *start, page_info* info) {
2548  return false;
2549}
2550
2551char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2552  return end;
2553}
2554
2555
2556int os::Linux::sched_getcpu_syscall(void) {
2557  unsigned int cpu;
2558  int retval = -1;
2559
2560#if defined(IA32)
2561# ifndef SYS_getcpu
2562# define SYS_getcpu 318
2563# endif
2564  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2565#elif defined(AMD64)
2566// Unfortunately we have to bring all these macros here from vsyscall.h
2567// to be able to compile on old linuxes.
2568# define __NR_vgetcpu 2
2569# define VSYSCALL_START (-10UL << 20)
2570# define VSYSCALL_SIZE 1024
2571# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2572  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2573  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2574  retval = vgetcpu(&cpu, NULL, NULL);
2575#endif
2576
2577  return (retval == -1) ? retval : cpu;
2578}
2579
2580// Something to do with the numa-aware allocator needs these symbols
2581extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2582extern "C" JNIEXPORT void numa_error(char *where) { }
2583extern "C" JNIEXPORT int fork1() { return fork(); }
2584
2585
2586// If we are running with libnuma version > 2, then we should
2587// be trying to use symbols with versions 1.1
2588// If we are running with earlier version, which did not have symbol versions,
2589// we should use the base version.
2590void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2591  void *f = dlvsym(handle, name, "libnuma_1.1");
2592  if (f == NULL) {
2593    f = dlsym(handle, name);
2594  }
2595  return f;
2596}
2597
2598bool os::Linux::libnuma_init() {
2599  // sched_getcpu() should be in libc.
2600  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2601                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2602
2603  // If it's not, try a direct syscall.
2604  if (sched_getcpu() == -1)
2605    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2606
2607  if (sched_getcpu() != -1) { // Does it work?
2608    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2609    if (handle != NULL) {
2610      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2611                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2612      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2613                                       libnuma_dlsym(handle, "numa_max_node")));
2614      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2615                                        libnuma_dlsym(handle, "numa_available")));
2616      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2617                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2618      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2619                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2620
2621
2622      if (numa_available() != -1) {
2623        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2624        // Create a cpu -> node mapping
2625        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2626        rebuild_cpu_to_node_map();
2627        return true;
2628      }
2629    }
2630  }
2631  return false;
2632}
2633
2634// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2635// The table is later used in get_node_by_cpu().
2636void os::Linux::rebuild_cpu_to_node_map() {
2637  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2638                              // in libnuma (possible values are starting from 16,
2639                              // and continuing up with every other power of 2, but less
2640                              // than the maximum number of CPUs supported by kernel), and
2641                              // is a subject to change (in libnuma version 2 the requirements
2642                              // are more reasonable) we'll just hardcode the number they use
2643                              // in the library.
2644  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2645
2646  size_t cpu_num = os::active_processor_count();
2647  size_t cpu_map_size = NCPUS / BitsPerCLong;
2648  size_t cpu_map_valid_size =
2649    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2650
2651  cpu_to_node()->clear();
2652  cpu_to_node()->at_grow(cpu_num - 1);
2653  size_t node_num = numa_get_groups_num();
2654
2655  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2656  for (size_t i = 0; i < node_num; i++) {
2657    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2658      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2659        if (cpu_map[j] != 0) {
2660          for (size_t k = 0; k < BitsPerCLong; k++) {
2661            if (cpu_map[j] & (1UL << k)) {
2662              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2663            }
2664          }
2665        }
2666      }
2667    }
2668  }
2669  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2670}
2671
2672int os::Linux::get_node_by_cpu(int cpu_id) {
2673  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2674    return cpu_to_node()->at(cpu_id);
2675  }
2676  return -1;
2677}
2678
2679GrowableArray<int>* os::Linux::_cpu_to_node;
2680os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2681os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2682os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2683os::Linux::numa_available_func_t os::Linux::_numa_available;
2684os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2685os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2686unsigned long* os::Linux::_numa_all_nodes;
2687
2688bool os::pd_uncommit_memory(char* addr, size_t size) {
2689  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2690                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2691  return res  != (uintptr_t) MAP_FAILED;
2692}
2693
2694// Linux uses a growable mapping for the stack, and if the mapping for
2695// the stack guard pages is not removed when we detach a thread the
2696// stack cannot grow beyond the pages where the stack guard was
2697// mapped.  If at some point later in the process the stack expands to
2698// that point, the Linux kernel cannot expand the stack any further
2699// because the guard pages are in the way, and a segfault occurs.
2700//
2701// However, it's essential not to split the stack region by unmapping
2702// a region (leaving a hole) that's already part of the stack mapping,
2703// so if the stack mapping has already grown beyond the guard pages at
2704// the time we create them, we have to truncate the stack mapping.
2705// So, we need to know the extent of the stack mapping when
2706// create_stack_guard_pages() is called.
2707
2708// Find the bounds of the stack mapping.  Return true for success.
2709//
2710// We only need this for stacks that are growable: at the time of
2711// writing thread stacks don't use growable mappings (i.e. those
2712// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2713// only applies to the main thread.
2714
2715static
2716bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2717
2718  char buf[128];
2719  int fd, sz;
2720
2721  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2722    return false;
2723  }
2724
2725  const char kw[] = "[stack]";
2726  const int kwlen = sizeof(kw)-1;
2727
2728  // Address part of /proc/self/maps couldn't be more than 128 bytes
2729  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2730     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2731        // Extract addresses
2732        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2733           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2734           if (sp >= *bottom && sp <= *top) {
2735              ::close(fd);
2736              return true;
2737           }
2738        }
2739     }
2740  }
2741
2742 ::close(fd);
2743  return false;
2744}
2745
2746
2747// If the (growable) stack mapping already extends beyond the point
2748// where we're going to put our guard pages, truncate the mapping at
2749// that point by munmap()ping it.  This ensures that when we later
2750// munmap() the guard pages we don't leave a hole in the stack
2751// mapping. This only affects the main/initial thread, but guard
2752// against future OS changes
2753bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2754  uintptr_t stack_extent, stack_base;
2755  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2756  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2757      assert(os::Linux::is_initial_thread(),
2758           "growable stack in non-initial thread");
2759    if (stack_extent < (uintptr_t)addr)
2760      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2761  }
2762
2763  return os::commit_memory(addr, size);
2764}
2765
2766// If this is a growable mapping, remove the guard pages entirely by
2767// munmap()ping them.  If not, just call uncommit_memory(). This only
2768// affects the main/initial thread, but guard against future OS changes
2769bool os::remove_stack_guard_pages(char* addr, size_t size) {
2770  uintptr_t stack_extent, stack_base;
2771  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2772  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2773      assert(os::Linux::is_initial_thread(),
2774           "growable stack in non-initial thread");
2775
2776    return ::munmap(addr, size) == 0;
2777  }
2778
2779  return os::uncommit_memory(addr, size);
2780}
2781
2782static address _highest_vm_reserved_address = NULL;
2783
2784// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2785// at 'requested_addr'. If there are existing memory mappings at the same
2786// location, however, they will be overwritten. If 'fixed' is false,
2787// 'requested_addr' is only treated as a hint, the return value may or
2788// may not start from the requested address. Unlike Linux mmap(), this
2789// function returns NULL to indicate failure.
2790static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2791  char * addr;
2792  int flags;
2793
2794  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2795  if (fixed) {
2796    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2797    flags |= MAP_FIXED;
2798  }
2799
2800  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2801  // to PROT_EXEC if executable when we commit the page.
2802  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2803                       flags, -1, 0);
2804
2805  if (addr != MAP_FAILED) {
2806    // anon_mmap() should only get called during VM initialization,
2807    // don't need lock (actually we can skip locking even it can be called
2808    // from multiple threads, because _highest_vm_reserved_address is just a
2809    // hint about the upper limit of non-stack memory regions.)
2810    if ((address)addr + bytes > _highest_vm_reserved_address) {
2811      _highest_vm_reserved_address = (address)addr + bytes;
2812    }
2813  }
2814
2815  return addr == MAP_FAILED ? NULL : addr;
2816}
2817
2818// Don't update _highest_vm_reserved_address, because there might be memory
2819// regions above addr + size. If so, releasing a memory region only creates
2820// a hole in the address space, it doesn't help prevent heap-stack collision.
2821//
2822static int anon_munmap(char * addr, size_t size) {
2823  return ::munmap(addr, size) == 0;
2824}
2825
2826char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2827                         size_t alignment_hint) {
2828  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2829}
2830
2831bool os::pd_release_memory(char* addr, size_t size) {
2832  return anon_munmap(addr, size);
2833}
2834
2835static address highest_vm_reserved_address() {
2836  return _highest_vm_reserved_address;
2837}
2838
2839static bool linux_mprotect(char* addr, size_t size, int prot) {
2840  // Linux wants the mprotect address argument to be page aligned.
2841  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2842
2843  // According to SUSv3, mprotect() should only be used with mappings
2844  // established by mmap(), and mmap() always maps whole pages. Unaligned
2845  // 'addr' likely indicates problem in the VM (e.g. trying to change
2846  // protection of malloc'ed or statically allocated memory). Check the
2847  // caller if you hit this assert.
2848  assert(addr == bottom, "sanity check");
2849
2850  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2851  return ::mprotect(bottom, size, prot) == 0;
2852}
2853
2854// Set protections specified
2855bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2856                        bool is_committed) {
2857  unsigned int p = 0;
2858  switch (prot) {
2859  case MEM_PROT_NONE: p = PROT_NONE; break;
2860  case MEM_PROT_READ: p = PROT_READ; break;
2861  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2862  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2863  default:
2864    ShouldNotReachHere();
2865  }
2866  // is_committed is unused.
2867  return linux_mprotect(addr, bytes, p);
2868}
2869
2870bool os::guard_memory(char* addr, size_t size) {
2871  return linux_mprotect(addr, size, PROT_NONE);
2872}
2873
2874bool os::unguard_memory(char* addr, size_t size) {
2875  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2876}
2877
2878bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2879  bool result = false;
2880  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2881                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2882                  -1, 0);
2883
2884  if (p != (void *) -1) {
2885    // We don't know if this really is a huge page or not.
2886    FILE *fp = fopen("/proc/self/maps", "r");
2887    if (fp) {
2888      while (!feof(fp)) {
2889        char chars[257];
2890        long x = 0;
2891        if (fgets(chars, sizeof(chars), fp)) {
2892          if (sscanf(chars, "%lx-%*x", &x) == 1
2893              && x == (long)p) {
2894            if (strstr (chars, "hugepage")) {
2895              result = true;
2896              break;
2897            }
2898          }
2899        }
2900      }
2901      fclose(fp);
2902    }
2903    munmap (p, page_size);
2904    if (result)
2905      return true;
2906  }
2907
2908  if (warn) {
2909    warning("HugeTLBFS is not supported by the operating system.");
2910  }
2911
2912  return result;
2913}
2914
2915/*
2916* Set the coredump_filter bits to include largepages in core dump (bit 6)
2917*
2918* From the coredump_filter documentation:
2919*
2920* - (bit 0) anonymous private memory
2921* - (bit 1) anonymous shared memory
2922* - (bit 2) file-backed private memory
2923* - (bit 3) file-backed shared memory
2924* - (bit 4) ELF header pages in file-backed private memory areas (it is
2925*           effective only if the bit 2 is cleared)
2926* - (bit 5) hugetlb private memory
2927* - (bit 6) hugetlb shared memory
2928*/
2929static void set_coredump_filter(void) {
2930  FILE *f;
2931  long cdm;
2932
2933  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2934    return;
2935  }
2936
2937  if (fscanf(f, "%lx", &cdm) != 1) {
2938    fclose(f);
2939    return;
2940  }
2941
2942  rewind(f);
2943
2944  if ((cdm & LARGEPAGES_BIT) == 0) {
2945    cdm |= LARGEPAGES_BIT;
2946    fprintf(f, "%#lx", cdm);
2947  }
2948
2949  fclose(f);
2950}
2951
2952// Large page support
2953
2954static size_t _large_page_size = 0;
2955
2956void os::large_page_init() {
2957  if (!UseLargePages) {
2958    UseHugeTLBFS = false;
2959    UseSHM = false;
2960    return;
2961  }
2962
2963  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2964    // If UseLargePages is specified on the command line try both methods,
2965    // if it's default, then try only HugeTLBFS.
2966    if (FLAG_IS_DEFAULT(UseLargePages)) {
2967      UseHugeTLBFS = true;
2968    } else {
2969      UseHugeTLBFS = UseSHM = true;
2970    }
2971  }
2972
2973  if (LargePageSizeInBytes) {
2974    _large_page_size = LargePageSizeInBytes;
2975  } else {
2976    // large_page_size on Linux is used to round up heap size. x86 uses either
2977    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2978    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2979    // page as large as 256M.
2980    //
2981    // Here we try to figure out page size by parsing /proc/meminfo and looking
2982    // for a line with the following format:
2983    //    Hugepagesize:     2048 kB
2984    //
2985    // If we can't determine the value (e.g. /proc is not mounted, or the text
2986    // format has been changed), we'll use the largest page size supported by
2987    // the processor.
2988
2989#ifndef ZERO
2990    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2991                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2992#endif // ZERO
2993
2994    FILE *fp = fopen("/proc/meminfo", "r");
2995    if (fp) {
2996      while (!feof(fp)) {
2997        int x = 0;
2998        char buf[16];
2999        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3000          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3001            _large_page_size = x * K;
3002            break;
3003          }
3004        } else {
3005          // skip to next line
3006          for (;;) {
3007            int ch = fgetc(fp);
3008            if (ch == EOF || ch == (int)'\n') break;
3009          }
3010        }
3011      }
3012      fclose(fp);
3013    }
3014  }
3015
3016  // print a warning if any large page related flag is specified on command line
3017  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3018
3019  const size_t default_page_size = (size_t)Linux::page_size();
3020  if (_large_page_size > default_page_size) {
3021    _page_sizes[0] = _large_page_size;
3022    _page_sizes[1] = default_page_size;
3023    _page_sizes[2] = 0;
3024  }
3025  UseHugeTLBFS = UseHugeTLBFS &&
3026                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3027
3028  if (UseHugeTLBFS)
3029    UseSHM = false;
3030
3031  UseLargePages = UseHugeTLBFS || UseSHM;
3032
3033  set_coredump_filter();
3034}
3035
3036#ifndef SHM_HUGETLB
3037#define SHM_HUGETLB 04000
3038#endif
3039
3040char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3041  // "exec" is passed in but not used.  Creating the shared image for
3042  // the code cache doesn't have an SHM_X executable permission to check.
3043  assert(UseLargePages && UseSHM, "only for SHM large pages");
3044
3045  key_t key = IPC_PRIVATE;
3046  char *addr;
3047
3048  bool warn_on_failure = UseLargePages &&
3049                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3050                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3051                        );
3052  char msg[128];
3053
3054  // Create a large shared memory region to attach to based on size.
3055  // Currently, size is the total size of the heap
3056  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3057  if (shmid == -1) {
3058     // Possible reasons for shmget failure:
3059     // 1. shmmax is too small for Java heap.
3060     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3061     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3062     // 2. not enough large page memory.
3063     //    > check available large pages: cat /proc/meminfo
3064     //    > increase amount of large pages:
3065     //          echo new_value > /proc/sys/vm/nr_hugepages
3066     //      Note 1: different Linux may use different name for this property,
3067     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3068     //      Note 2: it's possible there's enough physical memory available but
3069     //            they are so fragmented after a long run that they can't
3070     //            coalesce into large pages. Try to reserve large pages when
3071     //            the system is still "fresh".
3072     if (warn_on_failure) {
3073       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3074       warning(msg);
3075     }
3076     return NULL;
3077  }
3078
3079  // attach to the region
3080  addr = (char*)shmat(shmid, req_addr, 0);
3081  int err = errno;
3082
3083  // Remove shmid. If shmat() is successful, the actual shared memory segment
3084  // will be deleted when it's detached by shmdt() or when the process
3085  // terminates. If shmat() is not successful this will remove the shared
3086  // segment immediately.
3087  shmctl(shmid, IPC_RMID, NULL);
3088
3089  if ((intptr_t)addr == -1) {
3090     if (warn_on_failure) {
3091       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3092       warning(msg);
3093     }
3094     return NULL;
3095  }
3096
3097  if ((addr != NULL) && UseNUMAInterleaving) {
3098    numa_make_global(addr, bytes);
3099  }
3100
3101  return addr;
3102}
3103
3104bool os::release_memory_special(char* base, size_t bytes) {
3105  // detaching the SHM segment will also delete it, see reserve_memory_special()
3106  int rslt = shmdt(base);
3107  return rslt == 0;
3108}
3109
3110size_t os::large_page_size() {
3111  return _large_page_size;
3112}
3113
3114// HugeTLBFS allows application to commit large page memory on demand;
3115// with SysV SHM the entire memory region must be allocated as shared
3116// memory.
3117bool os::can_commit_large_page_memory() {
3118  return UseHugeTLBFS;
3119}
3120
3121bool os::can_execute_large_page_memory() {
3122  return UseHugeTLBFS;
3123}
3124
3125// Reserve memory at an arbitrary address, only if that area is
3126// available (and not reserved for something else).
3127
3128char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3129  const int max_tries = 10;
3130  char* base[max_tries];
3131  size_t size[max_tries];
3132  const size_t gap = 0x000000;
3133
3134  // Assert only that the size is a multiple of the page size, since
3135  // that's all that mmap requires, and since that's all we really know
3136  // about at this low abstraction level.  If we need higher alignment,
3137  // we can either pass an alignment to this method or verify alignment
3138  // in one of the methods further up the call chain.  See bug 5044738.
3139  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3140
3141  // Repeatedly allocate blocks until the block is allocated at the
3142  // right spot. Give up after max_tries. Note that reserve_memory() will
3143  // automatically update _highest_vm_reserved_address if the call is
3144  // successful. The variable tracks the highest memory address every reserved
3145  // by JVM. It is used to detect heap-stack collision if running with
3146  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3147  // space than needed, it could confuse the collision detecting code. To
3148  // solve the problem, save current _highest_vm_reserved_address and
3149  // calculate the correct value before return.
3150  address old_highest = _highest_vm_reserved_address;
3151
3152  // Linux mmap allows caller to pass an address as hint; give it a try first,
3153  // if kernel honors the hint then we can return immediately.
3154  char * addr = anon_mmap(requested_addr, bytes, false);
3155  if (addr == requested_addr) {
3156     return requested_addr;
3157  }
3158
3159  if (addr != NULL) {
3160     // mmap() is successful but it fails to reserve at the requested address
3161     anon_munmap(addr, bytes);
3162  }
3163
3164  int i;
3165  for (i = 0; i < max_tries; ++i) {
3166    base[i] = reserve_memory(bytes);
3167
3168    if (base[i] != NULL) {
3169      // Is this the block we wanted?
3170      if (base[i] == requested_addr) {
3171        size[i] = bytes;
3172        break;
3173      }
3174
3175      // Does this overlap the block we wanted? Give back the overlapped
3176      // parts and try again.
3177
3178      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3179      if (top_overlap >= 0 && top_overlap < bytes) {
3180        unmap_memory(base[i], top_overlap);
3181        base[i] += top_overlap;
3182        size[i] = bytes - top_overlap;
3183      } else {
3184        size_t bottom_overlap = base[i] + bytes - requested_addr;
3185        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3186          unmap_memory(requested_addr, bottom_overlap);
3187          size[i] = bytes - bottom_overlap;
3188        } else {
3189          size[i] = bytes;
3190        }
3191      }
3192    }
3193  }
3194
3195  // Give back the unused reserved pieces.
3196
3197  for (int j = 0; j < i; ++j) {
3198    if (base[j] != NULL) {
3199      unmap_memory(base[j], size[j]);
3200    }
3201  }
3202
3203  if (i < max_tries) {
3204    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3205    return requested_addr;
3206  } else {
3207    _highest_vm_reserved_address = old_highest;
3208    return NULL;
3209  }
3210}
3211
3212size_t os::read(int fd, void *buf, unsigned int nBytes) {
3213  return ::read(fd, buf, nBytes);
3214}
3215
3216// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3217// Solaris uses poll(), linux uses park().
3218// Poll() is likely a better choice, assuming that Thread.interrupt()
3219// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3220// SIGSEGV, see 4355769.
3221
3222int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3223  assert(thread == Thread::current(),  "thread consistency check");
3224
3225  ParkEvent * const slp = thread->_SleepEvent ;
3226  slp->reset() ;
3227  OrderAccess::fence() ;
3228
3229  if (interruptible) {
3230    jlong prevtime = javaTimeNanos();
3231
3232    for (;;) {
3233      if (os::is_interrupted(thread, true)) {
3234        return OS_INTRPT;
3235      }
3236
3237      jlong newtime = javaTimeNanos();
3238
3239      if (newtime - prevtime < 0) {
3240        // time moving backwards, should only happen if no monotonic clock
3241        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3242        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3243      } else {
3244        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3245      }
3246
3247      if(millis <= 0) {
3248        return OS_OK;
3249      }
3250
3251      prevtime = newtime;
3252
3253      {
3254        assert(thread->is_Java_thread(), "sanity check");
3255        JavaThread *jt = (JavaThread *) thread;
3256        ThreadBlockInVM tbivm(jt);
3257        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3258
3259        jt->set_suspend_equivalent();
3260        // cleared by handle_special_suspend_equivalent_condition() or
3261        // java_suspend_self() via check_and_wait_while_suspended()
3262
3263        slp->park(millis);
3264
3265        // were we externally suspended while we were waiting?
3266        jt->check_and_wait_while_suspended();
3267      }
3268    }
3269  } else {
3270    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3271    jlong prevtime = javaTimeNanos();
3272
3273    for (;;) {
3274      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3275      // the 1st iteration ...
3276      jlong newtime = javaTimeNanos();
3277
3278      if (newtime - prevtime < 0) {
3279        // time moving backwards, should only happen if no monotonic clock
3280        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3281        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3282      } else {
3283        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3284      }
3285
3286      if(millis <= 0) break ;
3287
3288      prevtime = newtime;
3289      slp->park(millis);
3290    }
3291    return OS_OK ;
3292  }
3293}
3294
3295int os::naked_sleep() {
3296  // %% make the sleep time an integer flag. for now use 1 millisec.
3297  return os::sleep(Thread::current(), 1, false);
3298}
3299
3300// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3301void os::infinite_sleep() {
3302  while (true) {    // sleep forever ...
3303    ::sleep(100);   // ... 100 seconds at a time
3304  }
3305}
3306
3307// Used to convert frequent JVM_Yield() to nops
3308bool os::dont_yield() {
3309  return DontYieldALot;
3310}
3311
3312void os::yield() {
3313  sched_yield();
3314}
3315
3316os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3317
3318void os::yield_all(int attempts) {
3319  // Yields to all threads, including threads with lower priorities
3320  // Threads on Linux are all with same priority. The Solaris style
3321  // os::yield_all() with nanosleep(1ms) is not necessary.
3322  sched_yield();
3323}
3324
3325// Called from the tight loops to possibly influence time-sharing heuristics
3326void os::loop_breaker(int attempts) {
3327  os::yield_all(attempts);
3328}
3329
3330////////////////////////////////////////////////////////////////////////////////
3331// thread priority support
3332
3333// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3334// only supports dynamic priority, static priority must be zero. For real-time
3335// applications, Linux supports SCHED_RR which allows static priority (1-99).
3336// However, for large multi-threaded applications, SCHED_RR is not only slower
3337// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3338// of 5 runs - Sep 2005).
3339//
3340// The following code actually changes the niceness of kernel-thread/LWP. It
3341// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3342// not the entire user process, and user level threads are 1:1 mapped to kernel
3343// threads. It has always been the case, but could change in the future. For
3344// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3345// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3346
3347int os::java_to_os_priority[CriticalPriority + 1] = {
3348  19,              // 0 Entry should never be used
3349
3350   4,              // 1 MinPriority
3351   3,              // 2
3352   2,              // 3
3353
3354   1,              // 4
3355   0,              // 5 NormPriority
3356  -1,              // 6
3357
3358  -2,              // 7
3359  -3,              // 8
3360  -4,              // 9 NearMaxPriority
3361
3362  -5,              // 10 MaxPriority
3363
3364  -5               // 11 CriticalPriority
3365};
3366
3367static int prio_init() {
3368  if (ThreadPriorityPolicy == 1) {
3369    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3370    // if effective uid is not root. Perhaps, a more elegant way of doing
3371    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3372    if (geteuid() != 0) {
3373      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3374        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3375      }
3376      ThreadPriorityPolicy = 0;
3377    }
3378  }
3379  if (UseCriticalJavaThreadPriority) {
3380    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3381  }
3382  return 0;
3383}
3384
3385OSReturn os::set_native_priority(Thread* thread, int newpri) {
3386  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3387
3388  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3389  return (ret == 0) ? OS_OK : OS_ERR;
3390}
3391
3392OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3393  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3394    *priority_ptr = java_to_os_priority[NormPriority];
3395    return OS_OK;
3396  }
3397
3398  errno = 0;
3399  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3400  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3401}
3402
3403// Hint to the underlying OS that a task switch would not be good.
3404// Void return because it's a hint and can fail.
3405void os::hint_no_preempt() {}
3406
3407////////////////////////////////////////////////////////////////////////////////
3408// suspend/resume support
3409
3410//  the low-level signal-based suspend/resume support is a remnant from the
3411//  old VM-suspension that used to be for java-suspension, safepoints etc,
3412//  within hotspot. Now there is a single use-case for this:
3413//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3414//      that runs in the watcher thread.
3415//  The remaining code is greatly simplified from the more general suspension
3416//  code that used to be used.
3417//
3418//  The protocol is quite simple:
3419//  - suspend:
3420//      - sends a signal to the target thread
3421//      - polls the suspend state of the osthread using a yield loop
3422//      - target thread signal handler (SR_handler) sets suspend state
3423//        and blocks in sigsuspend until continued
3424//  - resume:
3425//      - sets target osthread state to continue
3426//      - sends signal to end the sigsuspend loop in the SR_handler
3427//
3428//  Note that the SR_lock plays no role in this suspend/resume protocol.
3429//
3430
3431static void resume_clear_context(OSThread *osthread) {
3432  osthread->set_ucontext(NULL);
3433  osthread->set_siginfo(NULL);
3434
3435  // notify the suspend action is completed, we have now resumed
3436  osthread->sr.clear_suspended();
3437}
3438
3439static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3440  osthread->set_ucontext(context);
3441  osthread->set_siginfo(siginfo);
3442}
3443
3444//
3445// Handler function invoked when a thread's execution is suspended or
3446// resumed. We have to be careful that only async-safe functions are
3447// called here (Note: most pthread functions are not async safe and
3448// should be avoided.)
3449//
3450// Note: sigwait() is a more natural fit than sigsuspend() from an
3451// interface point of view, but sigwait() prevents the signal hander
3452// from being run. libpthread would get very confused by not having
3453// its signal handlers run and prevents sigwait()'s use with the
3454// mutex granting granting signal.
3455//
3456// Currently only ever called on the VMThread
3457//
3458static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3459  // Save and restore errno to avoid confusing native code with EINTR
3460  // after sigsuspend.
3461  int old_errno = errno;
3462
3463  Thread* thread = Thread::current();
3464  OSThread* osthread = thread->osthread();
3465  assert(thread->is_VM_thread(), "Must be VMThread");
3466  // read current suspend action
3467  int action = osthread->sr.suspend_action();
3468  if (action == SR_SUSPEND) {
3469    suspend_save_context(osthread, siginfo, context);
3470
3471    // Notify the suspend action is about to be completed. do_suspend()
3472    // waits until SR_SUSPENDED is set and then returns. We will wait
3473    // here for a resume signal and that completes the suspend-other
3474    // action. do_suspend/do_resume is always called as a pair from
3475    // the same thread - so there are no races
3476
3477    // notify the caller
3478    osthread->sr.set_suspended();
3479
3480    sigset_t suspend_set;  // signals for sigsuspend()
3481
3482    // get current set of blocked signals and unblock resume signal
3483    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3484    sigdelset(&suspend_set, SR_signum);
3485
3486    // wait here until we are resumed
3487    do {
3488      sigsuspend(&suspend_set);
3489      // ignore all returns until we get a resume signal
3490    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3491
3492    resume_clear_context(osthread);
3493
3494  } else {
3495    assert(action == SR_CONTINUE, "unexpected sr action");
3496    // nothing special to do - just leave the handler
3497  }
3498
3499  errno = old_errno;
3500}
3501
3502
3503static int SR_initialize() {
3504  struct sigaction act;
3505  char *s;
3506  /* Get signal number to use for suspend/resume */
3507  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3508    int sig = ::strtol(s, 0, 10);
3509    if (sig > 0 || sig < _NSIG) {
3510        SR_signum = sig;
3511    }
3512  }
3513
3514  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3515        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3516
3517  sigemptyset(&SR_sigset);
3518  sigaddset(&SR_sigset, SR_signum);
3519
3520  /* Set up signal handler for suspend/resume */
3521  act.sa_flags = SA_RESTART|SA_SIGINFO;
3522  act.sa_handler = (void (*)(int)) SR_handler;
3523
3524  // SR_signum is blocked by default.
3525  // 4528190 - We also need to block pthread restart signal (32 on all
3526  // supported Linux platforms). Note that LinuxThreads need to block
3527  // this signal for all threads to work properly. So we don't have
3528  // to use hard-coded signal number when setting up the mask.
3529  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3530
3531  if (sigaction(SR_signum, &act, 0) == -1) {
3532    return -1;
3533  }
3534
3535  // Save signal flag
3536  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3537  return 0;
3538}
3539
3540static int SR_finalize() {
3541  return 0;
3542}
3543
3544
3545// returns true on success and false on error - really an error is fatal
3546// but this seems the normal response to library errors
3547static bool do_suspend(OSThread* osthread) {
3548  // mark as suspended and send signal
3549  osthread->sr.set_suspend_action(SR_SUSPEND);
3550  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3551  assert_status(status == 0, status, "pthread_kill");
3552
3553  // check status and wait until notified of suspension
3554  if (status == 0) {
3555    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3556      os::yield_all(i);
3557    }
3558    osthread->sr.set_suspend_action(SR_NONE);
3559    return true;
3560  }
3561  else {
3562    osthread->sr.set_suspend_action(SR_NONE);
3563    return false;
3564  }
3565}
3566
3567static void do_resume(OSThread* osthread) {
3568  assert(osthread->sr.is_suspended(), "thread should be suspended");
3569  osthread->sr.set_suspend_action(SR_CONTINUE);
3570
3571  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3572  assert_status(status == 0, status, "pthread_kill");
3573  // check status and wait unit notified of resumption
3574  if (status == 0) {
3575    for (int i = 0; osthread->sr.is_suspended(); i++) {
3576      os::yield_all(i);
3577    }
3578  }
3579  osthread->sr.set_suspend_action(SR_NONE);
3580}
3581
3582////////////////////////////////////////////////////////////////////////////////
3583// interrupt support
3584
3585void os::interrupt(Thread* thread) {
3586  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3587    "possibility of dangling Thread pointer");
3588
3589  OSThread* osthread = thread->osthread();
3590
3591  if (!osthread->interrupted()) {
3592    osthread->set_interrupted(true);
3593    // More than one thread can get here with the same value of osthread,
3594    // resulting in multiple notifications.  We do, however, want the store
3595    // to interrupted() to be visible to other threads before we execute unpark().
3596    OrderAccess::fence();
3597    ParkEvent * const slp = thread->_SleepEvent ;
3598    if (slp != NULL) slp->unpark() ;
3599  }
3600
3601  // For JSR166. Unpark even if interrupt status already was set
3602  if (thread->is_Java_thread())
3603    ((JavaThread*)thread)->parker()->unpark();
3604
3605  ParkEvent * ev = thread->_ParkEvent ;
3606  if (ev != NULL) ev->unpark() ;
3607
3608}
3609
3610bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3611  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3612    "possibility of dangling Thread pointer");
3613
3614  OSThread* osthread = thread->osthread();
3615
3616  bool interrupted = osthread->interrupted();
3617
3618  if (interrupted && clear_interrupted) {
3619    osthread->set_interrupted(false);
3620    // consider thread->_SleepEvent->reset() ... optional optimization
3621  }
3622
3623  return interrupted;
3624}
3625
3626///////////////////////////////////////////////////////////////////////////////////
3627// signal handling (except suspend/resume)
3628
3629// This routine may be used by user applications as a "hook" to catch signals.
3630// The user-defined signal handler must pass unrecognized signals to this
3631// routine, and if it returns true (non-zero), then the signal handler must
3632// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3633// routine will never retun false (zero), but instead will execute a VM panic
3634// routine kill the process.
3635//
3636// If this routine returns false, it is OK to call it again.  This allows
3637// the user-defined signal handler to perform checks either before or after
3638// the VM performs its own checks.  Naturally, the user code would be making
3639// a serious error if it tried to handle an exception (such as a null check
3640// or breakpoint) that the VM was generating for its own correct operation.
3641//
3642// This routine may recognize any of the following kinds of signals:
3643//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3644// It should be consulted by handlers for any of those signals.
3645//
3646// The caller of this routine must pass in the three arguments supplied
3647// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3648// field of the structure passed to sigaction().  This routine assumes that
3649// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3650//
3651// Note that the VM will print warnings if it detects conflicting signal
3652// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3653//
3654extern "C" JNIEXPORT int
3655JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3656                        void* ucontext, int abort_if_unrecognized);
3657
3658void signalHandler(int sig, siginfo_t* info, void* uc) {
3659  assert(info != NULL && uc != NULL, "it must be old kernel");
3660  JVM_handle_linux_signal(sig, info, uc, true);
3661}
3662
3663
3664// This boolean allows users to forward their own non-matching signals
3665// to JVM_handle_linux_signal, harmlessly.
3666bool os::Linux::signal_handlers_are_installed = false;
3667
3668// For signal-chaining
3669struct sigaction os::Linux::sigact[MAXSIGNUM];
3670unsigned int os::Linux::sigs = 0;
3671bool os::Linux::libjsig_is_loaded = false;
3672typedef struct sigaction *(*get_signal_t)(int);
3673get_signal_t os::Linux::get_signal_action = NULL;
3674
3675struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3676  struct sigaction *actp = NULL;
3677
3678  if (libjsig_is_loaded) {
3679    // Retrieve the old signal handler from libjsig
3680    actp = (*get_signal_action)(sig);
3681  }
3682  if (actp == NULL) {
3683    // Retrieve the preinstalled signal handler from jvm
3684    actp = get_preinstalled_handler(sig);
3685  }
3686
3687  return actp;
3688}
3689
3690static bool call_chained_handler(struct sigaction *actp, int sig,
3691                                 siginfo_t *siginfo, void *context) {
3692  // Call the old signal handler
3693  if (actp->sa_handler == SIG_DFL) {
3694    // It's more reasonable to let jvm treat it as an unexpected exception
3695    // instead of taking the default action.
3696    return false;
3697  } else if (actp->sa_handler != SIG_IGN) {
3698    if ((actp->sa_flags & SA_NODEFER) == 0) {
3699      // automaticlly block the signal
3700      sigaddset(&(actp->sa_mask), sig);
3701    }
3702
3703    sa_handler_t hand;
3704    sa_sigaction_t sa;
3705    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3706    // retrieve the chained handler
3707    if (siginfo_flag_set) {
3708      sa = actp->sa_sigaction;
3709    } else {
3710      hand = actp->sa_handler;
3711    }
3712
3713    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3714      actp->sa_handler = SIG_DFL;
3715    }
3716
3717    // try to honor the signal mask
3718    sigset_t oset;
3719    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3720
3721    // call into the chained handler
3722    if (siginfo_flag_set) {
3723      (*sa)(sig, siginfo, context);
3724    } else {
3725      (*hand)(sig);
3726    }
3727
3728    // restore the signal mask
3729    pthread_sigmask(SIG_SETMASK, &oset, 0);
3730  }
3731  // Tell jvm's signal handler the signal is taken care of.
3732  return true;
3733}
3734
3735bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3736  bool chained = false;
3737  // signal-chaining
3738  if (UseSignalChaining) {
3739    struct sigaction *actp = get_chained_signal_action(sig);
3740    if (actp != NULL) {
3741      chained = call_chained_handler(actp, sig, siginfo, context);
3742    }
3743  }
3744  return chained;
3745}
3746
3747struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3748  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3749    return &sigact[sig];
3750  }
3751  return NULL;
3752}
3753
3754void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3755  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3756  sigact[sig] = oldAct;
3757  sigs |= (unsigned int)1 << sig;
3758}
3759
3760// for diagnostic
3761int os::Linux::sigflags[MAXSIGNUM];
3762
3763int os::Linux::get_our_sigflags(int sig) {
3764  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3765  return sigflags[sig];
3766}
3767
3768void os::Linux::set_our_sigflags(int sig, int flags) {
3769  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3770  sigflags[sig] = flags;
3771}
3772
3773void os::Linux::set_signal_handler(int sig, bool set_installed) {
3774  // Check for overwrite.
3775  struct sigaction oldAct;
3776  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3777
3778  void* oldhand = oldAct.sa_sigaction
3779                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3780                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3781  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3782      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3783      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3784    if (AllowUserSignalHandlers || !set_installed) {
3785      // Do not overwrite; user takes responsibility to forward to us.
3786      return;
3787    } else if (UseSignalChaining) {
3788      // save the old handler in jvm
3789      save_preinstalled_handler(sig, oldAct);
3790      // libjsig also interposes the sigaction() call below and saves the
3791      // old sigaction on it own.
3792    } else {
3793      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3794                    "%#lx for signal %d.", (long)oldhand, sig));
3795    }
3796  }
3797
3798  struct sigaction sigAct;
3799  sigfillset(&(sigAct.sa_mask));
3800  sigAct.sa_handler = SIG_DFL;
3801  if (!set_installed) {
3802    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3803  } else {
3804    sigAct.sa_sigaction = signalHandler;
3805    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3806  }
3807  // Save flags, which are set by ours
3808  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3809  sigflags[sig] = sigAct.sa_flags;
3810
3811  int ret = sigaction(sig, &sigAct, &oldAct);
3812  assert(ret == 0, "check");
3813
3814  void* oldhand2  = oldAct.sa_sigaction
3815                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3816                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3817  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3818}
3819
3820// install signal handlers for signals that HotSpot needs to
3821// handle in order to support Java-level exception handling.
3822
3823void os::Linux::install_signal_handlers() {
3824  if (!signal_handlers_are_installed) {
3825    signal_handlers_are_installed = true;
3826
3827    // signal-chaining
3828    typedef void (*signal_setting_t)();
3829    signal_setting_t begin_signal_setting = NULL;
3830    signal_setting_t end_signal_setting = NULL;
3831    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3832                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3833    if (begin_signal_setting != NULL) {
3834      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3835                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3836      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3837                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3838      libjsig_is_loaded = true;
3839      assert(UseSignalChaining, "should enable signal-chaining");
3840    }
3841    if (libjsig_is_loaded) {
3842      // Tell libjsig jvm is setting signal handlers
3843      (*begin_signal_setting)();
3844    }
3845
3846    set_signal_handler(SIGSEGV, true);
3847    set_signal_handler(SIGPIPE, true);
3848    set_signal_handler(SIGBUS, true);
3849    set_signal_handler(SIGILL, true);
3850    set_signal_handler(SIGFPE, true);
3851    set_signal_handler(SIGXFSZ, true);
3852
3853    if (libjsig_is_loaded) {
3854      // Tell libjsig jvm finishes setting signal handlers
3855      (*end_signal_setting)();
3856    }
3857
3858    // We don't activate signal checker if libjsig is in place, we trust ourselves
3859    // and if UserSignalHandler is installed all bets are off.
3860    // Log that signal checking is off only if -verbose:jni is specified.
3861    if (CheckJNICalls) {
3862      if (libjsig_is_loaded) {
3863        if (PrintJNIResolving) {
3864          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3865        }
3866        check_signals = false;
3867      }
3868      if (AllowUserSignalHandlers) {
3869        if (PrintJNIResolving) {
3870          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3871        }
3872        check_signals = false;
3873      }
3874    }
3875  }
3876}
3877
3878// This is the fastest way to get thread cpu time on Linux.
3879// Returns cpu time (user+sys) for any thread, not only for current.
3880// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3881// It might work on 2.6.10+ with a special kernel/glibc patch.
3882// For reference, please, see IEEE Std 1003.1-2004:
3883//   http://www.unix.org/single_unix_specification
3884
3885jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3886  struct timespec tp;
3887  int rc = os::Linux::clock_gettime(clockid, &tp);
3888  assert(rc == 0, "clock_gettime is expected to return 0 code");
3889
3890  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3891}
3892
3893/////
3894// glibc on Linux platform uses non-documented flag
3895// to indicate, that some special sort of signal
3896// trampoline is used.
3897// We will never set this flag, and we should
3898// ignore this flag in our diagnostic
3899#ifdef SIGNIFICANT_SIGNAL_MASK
3900#undef SIGNIFICANT_SIGNAL_MASK
3901#endif
3902#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3903
3904static const char* get_signal_handler_name(address handler,
3905                                           char* buf, int buflen) {
3906  int offset;
3907  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3908  if (found) {
3909    // skip directory names
3910    const char *p1, *p2;
3911    p1 = buf;
3912    size_t len = strlen(os::file_separator());
3913    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3914    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3915  } else {
3916    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3917  }
3918  return buf;
3919}
3920
3921static void print_signal_handler(outputStream* st, int sig,
3922                                 char* buf, size_t buflen) {
3923  struct sigaction sa;
3924
3925  sigaction(sig, NULL, &sa);
3926
3927  // See comment for SIGNIFICANT_SIGNAL_MASK define
3928  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3929
3930  st->print("%s: ", os::exception_name(sig, buf, buflen));
3931
3932  address handler = (sa.sa_flags & SA_SIGINFO)
3933    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3934    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3935
3936  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3937    st->print("SIG_DFL");
3938  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3939    st->print("SIG_IGN");
3940  } else {
3941    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3942  }
3943
3944  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3945
3946  address rh = VMError::get_resetted_sighandler(sig);
3947  // May be, handler was resetted by VMError?
3948  if(rh != NULL) {
3949    handler = rh;
3950    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3951  }
3952
3953  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3954
3955  // Check: is it our handler?
3956  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3957     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3958    // It is our signal handler
3959    // check for flags, reset system-used one!
3960    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3961      st->print(
3962                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3963                os::Linux::get_our_sigflags(sig));
3964    }
3965  }
3966  st->cr();
3967}
3968
3969
3970#define DO_SIGNAL_CHECK(sig) \
3971  if (!sigismember(&check_signal_done, sig)) \
3972    os::Linux::check_signal_handler(sig)
3973
3974// This method is a periodic task to check for misbehaving JNI applications
3975// under CheckJNI, we can add any periodic checks here
3976
3977void os::run_periodic_checks() {
3978
3979  if (check_signals == false) return;
3980
3981  // SEGV and BUS if overridden could potentially prevent
3982  // generation of hs*.log in the event of a crash, debugging
3983  // such a case can be very challenging, so we absolutely
3984  // check the following for a good measure:
3985  DO_SIGNAL_CHECK(SIGSEGV);
3986  DO_SIGNAL_CHECK(SIGILL);
3987  DO_SIGNAL_CHECK(SIGFPE);
3988  DO_SIGNAL_CHECK(SIGBUS);
3989  DO_SIGNAL_CHECK(SIGPIPE);
3990  DO_SIGNAL_CHECK(SIGXFSZ);
3991
3992
3993  // ReduceSignalUsage allows the user to override these handlers
3994  // see comments at the very top and jvm_solaris.h
3995  if (!ReduceSignalUsage) {
3996    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3997    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3998    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3999    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4000  }
4001
4002  DO_SIGNAL_CHECK(SR_signum);
4003  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4004}
4005
4006typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4007
4008static os_sigaction_t os_sigaction = NULL;
4009
4010void os::Linux::check_signal_handler(int sig) {
4011  char buf[O_BUFLEN];
4012  address jvmHandler = NULL;
4013
4014
4015  struct sigaction act;
4016  if (os_sigaction == NULL) {
4017    // only trust the default sigaction, in case it has been interposed
4018    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4019    if (os_sigaction == NULL) return;
4020  }
4021
4022  os_sigaction(sig, (struct sigaction*)NULL, &act);
4023
4024
4025  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4026
4027  address thisHandler = (act.sa_flags & SA_SIGINFO)
4028    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4029    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4030
4031
4032  switch(sig) {
4033  case SIGSEGV:
4034  case SIGBUS:
4035  case SIGFPE:
4036  case SIGPIPE:
4037  case SIGILL:
4038  case SIGXFSZ:
4039    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4040    break;
4041
4042  case SHUTDOWN1_SIGNAL:
4043  case SHUTDOWN2_SIGNAL:
4044  case SHUTDOWN3_SIGNAL:
4045  case BREAK_SIGNAL:
4046    jvmHandler = (address)user_handler();
4047    break;
4048
4049  case INTERRUPT_SIGNAL:
4050    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4051    break;
4052
4053  default:
4054    if (sig == SR_signum) {
4055      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4056    } else {
4057      return;
4058    }
4059    break;
4060  }
4061
4062  if (thisHandler != jvmHandler) {
4063    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4064    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4065    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4066    // No need to check this sig any longer
4067    sigaddset(&check_signal_done, sig);
4068  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4069    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4070    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4071    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4072    // No need to check this sig any longer
4073    sigaddset(&check_signal_done, sig);
4074  }
4075
4076  // Dump all the signal
4077  if (sigismember(&check_signal_done, sig)) {
4078    print_signal_handlers(tty, buf, O_BUFLEN);
4079  }
4080}
4081
4082extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4083
4084extern bool signal_name(int signo, char* buf, size_t len);
4085
4086const char* os::exception_name(int exception_code, char* buf, size_t size) {
4087  if (0 < exception_code && exception_code <= SIGRTMAX) {
4088    // signal
4089    if (!signal_name(exception_code, buf, size)) {
4090      jio_snprintf(buf, size, "SIG%d", exception_code);
4091    }
4092    return buf;
4093  } else {
4094    return NULL;
4095  }
4096}
4097
4098// this is called _before_ the most of global arguments have been parsed
4099void os::init(void) {
4100  char dummy;   /* used to get a guess on initial stack address */
4101//  first_hrtime = gethrtime();
4102
4103  // With LinuxThreads the JavaMain thread pid (primordial thread)
4104  // is different than the pid of the java launcher thread.
4105  // So, on Linux, the launcher thread pid is passed to the VM
4106  // via the sun.java.launcher.pid property.
4107  // Use this property instead of getpid() if it was correctly passed.
4108  // See bug 6351349.
4109  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4110
4111  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4112
4113  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4114
4115  init_random(1234567);
4116
4117  ThreadCritical::initialize();
4118
4119  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4120  if (Linux::page_size() == -1) {
4121    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4122                  strerror(errno)));
4123  }
4124  init_page_sizes((size_t) Linux::page_size());
4125
4126  Linux::initialize_system_info();
4127
4128  // main_thread points to the aboriginal thread
4129  Linux::_main_thread = pthread_self();
4130
4131  Linux::clock_init();
4132  initial_time_count = os::elapsed_counter();
4133  pthread_mutex_init(&dl_mutex, NULL);
4134}
4135
4136// To install functions for atexit system call
4137extern "C" {
4138  static void perfMemory_exit_helper() {
4139    perfMemory_exit();
4140  }
4141}
4142
4143// this is called _after_ the global arguments have been parsed
4144jint os::init_2(void)
4145{
4146  Linux::fast_thread_clock_init();
4147
4148  // Allocate a single page and mark it as readable for safepoint polling
4149  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4150  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4151
4152  os::set_polling_page( polling_page );
4153
4154#ifndef PRODUCT
4155  if(Verbose && PrintMiscellaneous)
4156    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4157#endif
4158
4159  if (!UseMembar) {
4160    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4161    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4162    os::set_memory_serialize_page( mem_serialize_page );
4163
4164#ifndef PRODUCT
4165    if(Verbose && PrintMiscellaneous)
4166      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4167#endif
4168  }
4169
4170  os::large_page_init();
4171
4172  // initialize suspend/resume support - must do this before signal_sets_init()
4173  if (SR_initialize() != 0) {
4174    perror("SR_initialize failed");
4175    return JNI_ERR;
4176  }
4177
4178  Linux::signal_sets_init();
4179  Linux::install_signal_handlers();
4180
4181  // Check minimum allowable stack size for thread creation and to initialize
4182  // the java system classes, including StackOverflowError - depends on page
4183  // size.  Add a page for compiler2 recursion in main thread.
4184  // Add in 2*BytesPerWord times page size to account for VM stack during
4185  // class initialization depending on 32 or 64 bit VM.
4186  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4187            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4188                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4189
4190  size_t threadStackSizeInBytes = ThreadStackSize * K;
4191  if (threadStackSizeInBytes != 0 &&
4192      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4193        tty->print_cr("\nThe stack size specified is too small, "
4194                      "Specify at least %dk",
4195                      os::Linux::min_stack_allowed/ K);
4196        return JNI_ERR;
4197  }
4198
4199  // Make the stack size a multiple of the page size so that
4200  // the yellow/red zones can be guarded.
4201  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4202        vm_page_size()));
4203
4204  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4205
4206  Linux::libpthread_init();
4207  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4208     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4209          Linux::glibc_version(), Linux::libpthread_version(),
4210          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4211  }
4212
4213  if (UseNUMA) {
4214    if (!Linux::libnuma_init()) {
4215      UseNUMA = false;
4216    } else {
4217      if ((Linux::numa_max_node() < 1)) {
4218        // There's only one node(they start from 0), disable NUMA.
4219        UseNUMA = false;
4220      }
4221    }
4222    // With SHM large pages we cannot uncommit a page, so there's not way
4223    // we can make the adaptive lgrp chunk resizing work. If the user specified
4224    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4225    // disable adaptive resizing.
4226    if (UseNUMA && UseLargePages && UseSHM) {
4227      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4228        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4229          UseLargePages = false;
4230        } else {
4231          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4232          UseAdaptiveSizePolicy = false;
4233          UseAdaptiveNUMAChunkSizing = false;
4234        }
4235      } else {
4236        UseNUMA = false;
4237      }
4238    }
4239    if (!UseNUMA && ForceNUMA) {
4240      UseNUMA = true;
4241    }
4242  }
4243
4244  if (MaxFDLimit) {
4245    // set the number of file descriptors to max. print out error
4246    // if getrlimit/setrlimit fails but continue regardless.
4247    struct rlimit nbr_files;
4248    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4249    if (status != 0) {
4250      if (PrintMiscellaneous && (Verbose || WizardMode))
4251        perror("os::init_2 getrlimit failed");
4252    } else {
4253      nbr_files.rlim_cur = nbr_files.rlim_max;
4254      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4255      if (status != 0) {
4256        if (PrintMiscellaneous && (Verbose || WizardMode))
4257          perror("os::init_2 setrlimit failed");
4258      }
4259    }
4260  }
4261
4262  // Initialize lock used to serialize thread creation (see os::create_thread)
4263  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4264
4265  // at-exit methods are called in the reverse order of their registration.
4266  // atexit functions are called on return from main or as a result of a
4267  // call to exit(3C). There can be only 32 of these functions registered
4268  // and atexit() does not set errno.
4269
4270  if (PerfAllowAtExitRegistration) {
4271    // only register atexit functions if PerfAllowAtExitRegistration is set.
4272    // atexit functions can be delayed until process exit time, which
4273    // can be problematic for embedded VM situations. Embedded VMs should
4274    // call DestroyJavaVM() to assure that VM resources are released.
4275
4276    // note: perfMemory_exit_helper atexit function may be removed in
4277    // the future if the appropriate cleanup code can be added to the
4278    // VM_Exit VMOperation's doit method.
4279    if (atexit(perfMemory_exit_helper) != 0) {
4280      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4281    }
4282  }
4283
4284  // initialize thread priority policy
4285  prio_init();
4286
4287  return JNI_OK;
4288}
4289
4290// this is called at the end of vm_initialization
4291void os::init_3(void)
4292{
4293#ifdef JAVASE_EMBEDDED
4294  // Start the MemNotifyThread
4295  if (LowMemoryProtection) {
4296    MemNotifyThread::start();
4297  }
4298  return;
4299#endif
4300}
4301
4302// Mark the polling page as unreadable
4303void os::make_polling_page_unreadable(void) {
4304  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4305    fatal("Could not disable polling page");
4306};
4307
4308// Mark the polling page as readable
4309void os::make_polling_page_readable(void) {
4310  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4311    fatal("Could not enable polling page");
4312  }
4313};
4314
4315int os::active_processor_count() {
4316  // Linux doesn't yet have a (official) notion of processor sets,
4317  // so just return the number of online processors.
4318  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4319  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4320  return online_cpus;
4321}
4322
4323void os::set_native_thread_name(const char *name) {
4324  // Not yet implemented.
4325  return;
4326}
4327
4328bool os::distribute_processes(uint length, uint* distribution) {
4329  // Not yet implemented.
4330  return false;
4331}
4332
4333bool os::bind_to_processor(uint processor_id) {
4334  // Not yet implemented.
4335  return false;
4336}
4337
4338///
4339
4340// Suspends the target using the signal mechanism and then grabs the PC before
4341// resuming the target. Used by the flat-profiler only
4342ExtendedPC os::get_thread_pc(Thread* thread) {
4343  // Make sure that it is called by the watcher for the VMThread
4344  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4345  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4346
4347  ExtendedPC epc;
4348
4349  OSThread* osthread = thread->osthread();
4350  if (do_suspend(osthread)) {
4351    if (osthread->ucontext() != NULL) {
4352      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4353    } else {
4354      // NULL context is unexpected, double-check this is the VMThread
4355      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4356    }
4357    do_resume(osthread);
4358  }
4359  // failure means pthread_kill failed for some reason - arguably this is
4360  // a fatal problem, but such problems are ignored elsewhere
4361
4362  return epc;
4363}
4364
4365int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4366{
4367   if (is_NPTL()) {
4368      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4369   } else {
4370#ifndef IA64
4371      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4372      // word back to default 64bit precision if condvar is signaled. Java
4373      // wants 53bit precision.  Save and restore current value.
4374      int fpu = get_fpu_control_word();
4375#endif // IA64
4376      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4377#ifndef IA64
4378      set_fpu_control_word(fpu);
4379#endif // IA64
4380      return status;
4381   }
4382}
4383
4384////////////////////////////////////////////////////////////////////////////////
4385// debug support
4386
4387static address same_page(address x, address y) {
4388  int page_bits = -os::vm_page_size();
4389  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4390    return x;
4391  else if (x > y)
4392    return (address)(intptr_t(y) | ~page_bits) + 1;
4393  else
4394    return (address)(intptr_t(y) & page_bits);
4395}
4396
4397bool os::find(address addr, outputStream* st) {
4398  Dl_info dlinfo;
4399  memset(&dlinfo, 0, sizeof(dlinfo));
4400  if (dladdr(addr, &dlinfo)) {
4401    st->print(PTR_FORMAT ": ", addr);
4402    if (dlinfo.dli_sname != NULL) {
4403      st->print("%s+%#x", dlinfo.dli_sname,
4404                 addr - (intptr_t)dlinfo.dli_saddr);
4405    } else if (dlinfo.dli_fname) {
4406      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4407    } else {
4408      st->print("<absolute address>");
4409    }
4410    if (dlinfo.dli_fname) {
4411      st->print(" in %s", dlinfo.dli_fname);
4412    }
4413    if (dlinfo.dli_fbase) {
4414      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4415    }
4416    st->cr();
4417
4418    if (Verbose) {
4419      // decode some bytes around the PC
4420      address begin = same_page(addr-40, addr);
4421      address end   = same_page(addr+40, addr);
4422      address       lowest = (address) dlinfo.dli_sname;
4423      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4424      if (begin < lowest)  begin = lowest;
4425      Dl_info dlinfo2;
4426      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4427          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4428        end = (address) dlinfo2.dli_saddr;
4429      Disassembler::decode(begin, end, st);
4430    }
4431    return true;
4432  }
4433  return false;
4434}
4435
4436////////////////////////////////////////////////////////////////////////////////
4437// misc
4438
4439// This does not do anything on Linux. This is basically a hook for being
4440// able to use structured exception handling (thread-local exception filters)
4441// on, e.g., Win32.
4442void
4443os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4444                         JavaCallArguments* args, Thread* thread) {
4445  f(value, method, args, thread);
4446}
4447
4448void os::print_statistics() {
4449}
4450
4451int os::message_box(const char* title, const char* message) {
4452  int i;
4453  fdStream err(defaultStream::error_fd());
4454  for (i = 0; i < 78; i++) err.print_raw("=");
4455  err.cr();
4456  err.print_raw_cr(title);
4457  for (i = 0; i < 78; i++) err.print_raw("-");
4458  err.cr();
4459  err.print_raw_cr(message);
4460  for (i = 0; i < 78; i++) err.print_raw("=");
4461  err.cr();
4462
4463  char buf[16];
4464  // Prevent process from exiting upon "read error" without consuming all CPU
4465  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4466
4467  return buf[0] == 'y' || buf[0] == 'Y';
4468}
4469
4470int os::stat(const char *path, struct stat *sbuf) {
4471  char pathbuf[MAX_PATH];
4472  if (strlen(path) > MAX_PATH - 1) {
4473    errno = ENAMETOOLONG;
4474    return -1;
4475  }
4476  os::native_path(strcpy(pathbuf, path));
4477  return ::stat(pathbuf, sbuf);
4478}
4479
4480bool os::check_heap(bool force) {
4481  return true;
4482}
4483
4484int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4485  return ::vsnprintf(buf, count, format, args);
4486}
4487
4488// Is a (classpath) directory empty?
4489bool os::dir_is_empty(const char* path) {
4490  DIR *dir = NULL;
4491  struct dirent *ptr;
4492
4493  dir = opendir(path);
4494  if (dir == NULL) return true;
4495
4496  /* Scan the directory */
4497  bool result = true;
4498  char buf[sizeof(struct dirent) + MAX_PATH];
4499  while (result && (ptr = ::readdir(dir)) != NULL) {
4500    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4501      result = false;
4502    }
4503  }
4504  closedir(dir);
4505  return result;
4506}
4507
4508// This code originates from JDK's sysOpen and open64_w
4509// from src/solaris/hpi/src/system_md.c
4510
4511#ifndef O_DELETE
4512#define O_DELETE 0x10000
4513#endif
4514
4515// Open a file. Unlink the file immediately after open returns
4516// if the specified oflag has the O_DELETE flag set.
4517// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4518
4519int os::open(const char *path, int oflag, int mode) {
4520
4521  if (strlen(path) > MAX_PATH - 1) {
4522    errno = ENAMETOOLONG;
4523    return -1;
4524  }
4525  int fd;
4526  int o_delete = (oflag & O_DELETE);
4527  oflag = oflag & ~O_DELETE;
4528
4529  fd = ::open64(path, oflag, mode);
4530  if (fd == -1) return -1;
4531
4532  //If the open succeeded, the file might still be a directory
4533  {
4534    struct stat64 buf64;
4535    int ret = ::fstat64(fd, &buf64);
4536    int st_mode = buf64.st_mode;
4537
4538    if (ret != -1) {
4539      if ((st_mode & S_IFMT) == S_IFDIR) {
4540        errno = EISDIR;
4541        ::close(fd);
4542        return -1;
4543      }
4544    } else {
4545      ::close(fd);
4546      return -1;
4547    }
4548  }
4549
4550    /*
4551     * All file descriptors that are opened in the JVM and not
4552     * specifically destined for a subprocess should have the
4553     * close-on-exec flag set.  If we don't set it, then careless 3rd
4554     * party native code might fork and exec without closing all
4555     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4556     * UNIXProcess.c), and this in turn might:
4557     *
4558     * - cause end-of-file to fail to be detected on some file
4559     *   descriptors, resulting in mysterious hangs, or
4560     *
4561     * - might cause an fopen in the subprocess to fail on a system
4562     *   suffering from bug 1085341.
4563     *
4564     * (Yes, the default setting of the close-on-exec flag is a Unix
4565     * design flaw)
4566     *
4567     * See:
4568     * 1085341: 32-bit stdio routines should support file descriptors >255
4569     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4570     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4571     */
4572#ifdef FD_CLOEXEC
4573    {
4574        int flags = ::fcntl(fd, F_GETFD);
4575        if (flags != -1)
4576            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4577    }
4578#endif
4579
4580  if (o_delete != 0) {
4581    ::unlink(path);
4582  }
4583  return fd;
4584}
4585
4586
4587// create binary file, rewriting existing file if required
4588int os::create_binary_file(const char* path, bool rewrite_existing) {
4589  int oflags = O_WRONLY | O_CREAT;
4590  if (!rewrite_existing) {
4591    oflags |= O_EXCL;
4592  }
4593  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4594}
4595
4596// return current position of file pointer
4597jlong os::current_file_offset(int fd) {
4598  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4599}
4600
4601// move file pointer to the specified offset
4602jlong os::seek_to_file_offset(int fd, jlong offset) {
4603  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4604}
4605
4606// This code originates from JDK's sysAvailable
4607// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4608
4609int os::available(int fd, jlong *bytes) {
4610  jlong cur, end;
4611  int mode;
4612  struct stat64 buf64;
4613
4614  if (::fstat64(fd, &buf64) >= 0) {
4615    mode = buf64.st_mode;
4616    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4617      /*
4618      * XXX: is the following call interruptible? If so, this might
4619      * need to go through the INTERRUPT_IO() wrapper as for other
4620      * blocking, interruptible calls in this file.
4621      */
4622      int n;
4623      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4624        *bytes = n;
4625        return 1;
4626      }
4627    }
4628  }
4629  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4630    return 0;
4631  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4632    return 0;
4633  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4634    return 0;
4635  }
4636  *bytes = end - cur;
4637  return 1;
4638}
4639
4640int os::socket_available(int fd, jint *pbytes) {
4641  // Linux doc says EINTR not returned, unlike Solaris
4642  int ret = ::ioctl(fd, FIONREAD, pbytes);
4643
4644  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4645  // is expected to return 0 on failure and 1 on success to the jdk.
4646  return (ret < 0) ? 0 : 1;
4647}
4648
4649// Map a block of memory.
4650char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4651                     char *addr, size_t bytes, bool read_only,
4652                     bool allow_exec) {
4653  int prot;
4654  int flags = MAP_PRIVATE;
4655
4656  if (read_only) {
4657    prot = PROT_READ;
4658  } else {
4659    prot = PROT_READ | PROT_WRITE;
4660  }
4661
4662  if (allow_exec) {
4663    prot |= PROT_EXEC;
4664  }
4665
4666  if (addr != NULL) {
4667    flags |= MAP_FIXED;
4668  }
4669
4670  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4671                                     fd, file_offset);
4672  if (mapped_address == MAP_FAILED) {
4673    return NULL;
4674  }
4675  return mapped_address;
4676}
4677
4678
4679// Remap a block of memory.
4680char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4681                       char *addr, size_t bytes, bool read_only,
4682                       bool allow_exec) {
4683  // same as map_memory() on this OS
4684  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4685                        allow_exec);
4686}
4687
4688
4689// Unmap a block of memory.
4690bool os::pd_unmap_memory(char* addr, size_t bytes) {
4691  return munmap(addr, bytes) == 0;
4692}
4693
4694static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4695
4696static clockid_t thread_cpu_clockid(Thread* thread) {
4697  pthread_t tid = thread->osthread()->pthread_id();
4698  clockid_t clockid;
4699
4700  // Get thread clockid
4701  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4702  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4703  return clockid;
4704}
4705
4706// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4707// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4708// of a thread.
4709//
4710// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4711// the fast estimate available on the platform.
4712
4713jlong os::current_thread_cpu_time() {
4714  if (os::Linux::supports_fast_thread_cpu_time()) {
4715    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4716  } else {
4717    // return user + sys since the cost is the same
4718    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4719  }
4720}
4721
4722jlong os::thread_cpu_time(Thread* thread) {
4723  // consistent with what current_thread_cpu_time() returns
4724  if (os::Linux::supports_fast_thread_cpu_time()) {
4725    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4726  } else {
4727    return slow_thread_cpu_time(thread, true /* user + sys */);
4728  }
4729}
4730
4731jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4732  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4733    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4734  } else {
4735    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4736  }
4737}
4738
4739jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4740  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4741    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4742  } else {
4743    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4744  }
4745}
4746
4747//
4748//  -1 on error.
4749//
4750
4751static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4752  static bool proc_pid_cpu_avail = true;
4753  static bool proc_task_unchecked = true;
4754  static const char *proc_stat_path = "/proc/%d/stat";
4755  pid_t  tid = thread->osthread()->thread_id();
4756  int i;
4757  char *s;
4758  char stat[2048];
4759  int statlen;
4760  char proc_name[64];
4761  int count;
4762  long sys_time, user_time;
4763  char string[64];
4764  char cdummy;
4765  int idummy;
4766  long ldummy;
4767  FILE *fp;
4768
4769  // We first try accessing /proc/<pid>/cpu since this is faster to
4770  // process.  If this file is not present (linux kernels 2.5 and above)
4771  // then we open /proc/<pid>/stat.
4772  if ( proc_pid_cpu_avail ) {
4773    sprintf(proc_name, "/proc/%d/cpu", tid);
4774    fp =  fopen(proc_name, "r");
4775    if ( fp != NULL ) {
4776      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4777      fclose(fp);
4778      if ( count != 3 ) return -1;
4779
4780      if (user_sys_cpu_time) {
4781        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4782      } else {
4783        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4784      }
4785    }
4786    else proc_pid_cpu_avail = false;
4787  }
4788
4789  // The /proc/<tid>/stat aggregates per-process usage on
4790  // new Linux kernels 2.6+ where NPTL is supported.
4791  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4792  // See bug 6328462.
4793  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4794  // and possibly in some other cases, so we check its availability.
4795  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4796    // This is executed only once
4797    proc_task_unchecked = false;
4798    fp = fopen("/proc/self/task", "r");
4799    if (fp != NULL) {
4800      proc_stat_path = "/proc/self/task/%d/stat";
4801      fclose(fp);
4802    }
4803  }
4804
4805  sprintf(proc_name, proc_stat_path, tid);
4806  fp = fopen(proc_name, "r");
4807  if ( fp == NULL ) return -1;
4808  statlen = fread(stat, 1, 2047, fp);
4809  stat[statlen] = '\0';
4810  fclose(fp);
4811
4812  // Skip pid and the command string. Note that we could be dealing with
4813  // weird command names, e.g. user could decide to rename java launcher
4814  // to "java 1.4.2 :)", then the stat file would look like
4815  //                1234 (java 1.4.2 :)) R ... ...
4816  // We don't really need to know the command string, just find the last
4817  // occurrence of ")" and then start parsing from there. See bug 4726580.
4818  s = strrchr(stat, ')');
4819  i = 0;
4820  if (s == NULL ) return -1;
4821
4822  // Skip blank chars
4823  do s++; while (isspace(*s));
4824
4825  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4826                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4827                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4828                 &user_time, &sys_time);
4829  if ( count != 13 ) return -1;
4830  if (user_sys_cpu_time) {
4831    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4832  } else {
4833    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4834  }
4835}
4836
4837void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4838  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4839  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4840  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4841  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4842}
4843
4844void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4845  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4846  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4847  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4848  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4849}
4850
4851bool os::is_thread_cpu_time_supported() {
4852  return true;
4853}
4854
4855// System loadavg support.  Returns -1 if load average cannot be obtained.
4856// Linux doesn't yet have a (official) notion of processor sets,
4857// so just return the system wide load average.
4858int os::loadavg(double loadavg[], int nelem) {
4859  return ::getloadavg(loadavg, nelem);
4860}
4861
4862void os::pause() {
4863  char filename[MAX_PATH];
4864  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4865    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4866  } else {
4867    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4868  }
4869
4870  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4871  if (fd != -1) {
4872    struct stat buf;
4873    ::close(fd);
4874    while (::stat(filename, &buf) == 0) {
4875      (void)::poll(NULL, 0, 100);
4876    }
4877  } else {
4878    jio_fprintf(stderr,
4879      "Could not open pause file '%s', continuing immediately.\n", filename);
4880  }
4881}
4882
4883
4884// Refer to the comments in os_solaris.cpp park-unpark.
4885//
4886// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4887// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4888// For specifics regarding the bug see GLIBC BUGID 261237 :
4889//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4890// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4891// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4892// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4893// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4894// and monitorenter when we're using 1-0 locking.  All those operations may result in
4895// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4896// of libpthread avoids the problem, but isn't practical.
4897//
4898// Possible remedies:
4899//
4900// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4901//      This is palliative and probabilistic, however.  If the thread is preempted
4902//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4903//      than the minimum period may have passed, and the abstime may be stale (in the
4904//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4905//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4906//
4907// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4908//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4909//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4910//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4911//      thread.
4912//
4913// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4914//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4915//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4916//      This also works well.  In fact it avoids kernel-level scalability impediments
4917//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4918//      timers in a graceful fashion.
4919//
4920// 4.   When the abstime value is in the past it appears that control returns
4921//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4922//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4923//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4924//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4925//      It may be possible to avoid reinitialization by checking the return
4926//      value from pthread_cond_timedwait().  In addition to reinitializing the
4927//      condvar we must establish the invariant that cond_signal() is only called
4928//      within critical sections protected by the adjunct mutex.  This prevents
4929//      cond_signal() from "seeing" a condvar that's in the midst of being
4930//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4931//      desirable signal-after-unlock optimization that avoids futile context switching.
4932//
4933//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4934//      structure when a condvar is used or initialized.  cond_destroy()  would
4935//      release the helper structure.  Our reinitialize-after-timedwait fix
4936//      put excessive stress on malloc/free and locks protecting the c-heap.
4937//
4938// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4939// It may be possible to refine (4) by checking the kernel and NTPL verisons
4940// and only enabling the work-around for vulnerable environments.
4941
4942// utility to compute the abstime argument to timedwait:
4943// millis is the relative timeout time
4944// abstime will be the absolute timeout time
4945// TODO: replace compute_abstime() with unpackTime()
4946
4947static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4948  if (millis < 0)  millis = 0;
4949  struct timeval now;
4950  int status = gettimeofday(&now, NULL);
4951  assert(status == 0, "gettimeofday");
4952  jlong seconds = millis / 1000;
4953  millis %= 1000;
4954  if (seconds > 50000000) { // see man cond_timedwait(3T)
4955    seconds = 50000000;
4956  }
4957  abstime->tv_sec = now.tv_sec  + seconds;
4958  long       usec = now.tv_usec + millis * 1000;
4959  if (usec >= 1000000) {
4960    abstime->tv_sec += 1;
4961    usec -= 1000000;
4962  }
4963  abstime->tv_nsec = usec * 1000;
4964  return abstime;
4965}
4966
4967
4968// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4969// Conceptually TryPark() should be equivalent to park(0).
4970
4971int os::PlatformEvent::TryPark() {
4972  for (;;) {
4973    const int v = _Event ;
4974    guarantee ((v == 0) || (v == 1), "invariant") ;
4975    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4976  }
4977}
4978
4979void os::PlatformEvent::park() {       // AKA "down()"
4980  // Invariant: Only the thread associated with the Event/PlatformEvent
4981  // may call park().
4982  // TODO: assert that _Assoc != NULL or _Assoc == Self
4983  int v ;
4984  for (;;) {
4985      v = _Event ;
4986      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4987  }
4988  guarantee (v >= 0, "invariant") ;
4989  if (v == 0) {
4990     // Do this the hard way by blocking ...
4991     int status = pthread_mutex_lock(_mutex);
4992     assert_status(status == 0, status, "mutex_lock");
4993     guarantee (_nParked == 0, "invariant") ;
4994     ++ _nParked ;
4995     while (_Event < 0) {
4996        status = pthread_cond_wait(_cond, _mutex);
4997        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4998        // Treat this the same as if the wait was interrupted
4999        if (status == ETIME) { status = EINTR; }
5000        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5001     }
5002     -- _nParked ;
5003
5004    // In theory we could move the ST of 0 into _Event past the unlock(),
5005    // but then we'd need a MEMBAR after the ST.
5006    _Event = 0 ;
5007     status = pthread_mutex_unlock(_mutex);
5008     assert_status(status == 0, status, "mutex_unlock");
5009  }
5010  guarantee (_Event >= 0, "invariant") ;
5011}
5012
5013int os::PlatformEvent::park(jlong millis) {
5014  guarantee (_nParked == 0, "invariant") ;
5015
5016  int v ;
5017  for (;;) {
5018      v = _Event ;
5019      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5020  }
5021  guarantee (v >= 0, "invariant") ;
5022  if (v != 0) return OS_OK ;
5023
5024  // We do this the hard way, by blocking the thread.
5025  // Consider enforcing a minimum timeout value.
5026  struct timespec abst;
5027  compute_abstime(&abst, millis);
5028
5029  int ret = OS_TIMEOUT;
5030  int status = pthread_mutex_lock(_mutex);
5031  assert_status(status == 0, status, "mutex_lock");
5032  guarantee (_nParked == 0, "invariant") ;
5033  ++_nParked ;
5034
5035  // Object.wait(timo) will return because of
5036  // (a) notification
5037  // (b) timeout
5038  // (c) thread.interrupt
5039  //
5040  // Thread.interrupt and object.notify{All} both call Event::set.
5041  // That is, we treat thread.interrupt as a special case of notification.
5042  // The underlying Solaris implementation, cond_timedwait, admits
5043  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5044  // JVM from making those visible to Java code.  As such, we must
5045  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5046  //
5047  // TODO: properly differentiate simultaneous notify+interrupt.
5048  // In that case, we should propagate the notify to another waiter.
5049
5050  while (_Event < 0) {
5051    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5052    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5053      pthread_cond_destroy (_cond);
5054      pthread_cond_init (_cond, NULL) ;
5055    }
5056    assert_status(status == 0 || status == EINTR ||
5057                  status == ETIME || status == ETIMEDOUT,
5058                  status, "cond_timedwait");
5059    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5060    if (status == ETIME || status == ETIMEDOUT) break ;
5061    // We consume and ignore EINTR and spurious wakeups.
5062  }
5063  --_nParked ;
5064  if (_Event >= 0) {
5065     ret = OS_OK;
5066  }
5067  _Event = 0 ;
5068  status = pthread_mutex_unlock(_mutex);
5069  assert_status(status == 0, status, "mutex_unlock");
5070  assert (_nParked == 0, "invariant") ;
5071  return ret;
5072}
5073
5074void os::PlatformEvent::unpark() {
5075  int v, AnyWaiters ;
5076  for (;;) {
5077      v = _Event ;
5078      if (v > 0) {
5079         // The LD of _Event could have reordered or be satisfied
5080         // by a read-aside from this processor's write buffer.
5081         // To avoid problems execute a barrier and then
5082         // ratify the value.
5083         OrderAccess::fence() ;
5084         if (_Event == v) return ;
5085         continue ;
5086      }
5087      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5088  }
5089  if (v < 0) {
5090     // Wait for the thread associated with the event to vacate
5091     int status = pthread_mutex_lock(_mutex);
5092     assert_status(status == 0, status, "mutex_lock");
5093     AnyWaiters = _nParked ;
5094     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5095     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5096        AnyWaiters = 0 ;
5097        pthread_cond_signal (_cond);
5098     }
5099     status = pthread_mutex_unlock(_mutex);
5100     assert_status(status == 0, status, "mutex_unlock");
5101     if (AnyWaiters != 0) {
5102        status = pthread_cond_signal(_cond);
5103        assert_status(status == 0, status, "cond_signal");
5104     }
5105  }
5106
5107  // Note that we signal() _after dropping the lock for "immortal" Events.
5108  // This is safe and avoids a common class of  futile wakeups.  In rare
5109  // circumstances this can cause a thread to return prematurely from
5110  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5111  // simply re-test the condition and re-park itself.
5112}
5113
5114
5115// JSR166
5116// -------------------------------------------------------
5117
5118/*
5119 * The solaris and linux implementations of park/unpark are fairly
5120 * conservative for now, but can be improved. They currently use a
5121 * mutex/condvar pair, plus a a count.
5122 * Park decrements count if > 0, else does a condvar wait.  Unpark
5123 * sets count to 1 and signals condvar.  Only one thread ever waits
5124 * on the condvar. Contention seen when trying to park implies that someone
5125 * is unparking you, so don't wait. And spurious returns are fine, so there
5126 * is no need to track notifications.
5127 */
5128
5129#define MAX_SECS 100000000
5130/*
5131 * This code is common to linux and solaris and will be moved to a
5132 * common place in dolphin.
5133 *
5134 * The passed in time value is either a relative time in nanoseconds
5135 * or an absolute time in milliseconds. Either way it has to be unpacked
5136 * into suitable seconds and nanoseconds components and stored in the
5137 * given timespec structure.
5138 * Given time is a 64-bit value and the time_t used in the timespec is only
5139 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5140 * overflow if times way in the future are given. Further on Solaris versions
5141 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5142 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5143 * As it will be 28 years before "now + 100000000" will overflow we can
5144 * ignore overflow and just impose a hard-limit on seconds using the value
5145 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5146 * years from "now".
5147 */
5148
5149static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5150  assert (time > 0, "convertTime");
5151
5152  struct timeval now;
5153  int status = gettimeofday(&now, NULL);
5154  assert(status == 0, "gettimeofday");
5155
5156  time_t max_secs = now.tv_sec + MAX_SECS;
5157
5158  if (isAbsolute) {
5159    jlong secs = time / 1000;
5160    if (secs > max_secs) {
5161      absTime->tv_sec = max_secs;
5162    }
5163    else {
5164      absTime->tv_sec = secs;
5165    }
5166    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5167  }
5168  else {
5169    jlong secs = time / NANOSECS_PER_SEC;
5170    if (secs >= MAX_SECS) {
5171      absTime->tv_sec = max_secs;
5172      absTime->tv_nsec = 0;
5173    }
5174    else {
5175      absTime->tv_sec = now.tv_sec + secs;
5176      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5177      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5178        absTime->tv_nsec -= NANOSECS_PER_SEC;
5179        ++absTime->tv_sec; // note: this must be <= max_secs
5180      }
5181    }
5182  }
5183  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5184  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5185  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5186  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5187}
5188
5189void Parker::park(bool isAbsolute, jlong time) {
5190  // Optional fast-path check:
5191  // Return immediately if a permit is available.
5192  if (_counter > 0) {
5193      _counter = 0 ;
5194      OrderAccess::fence();
5195      return ;
5196  }
5197
5198  Thread* thread = Thread::current();
5199  assert(thread->is_Java_thread(), "Must be JavaThread");
5200  JavaThread *jt = (JavaThread *)thread;
5201
5202  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5203  // Check interrupt before trying to wait
5204  if (Thread::is_interrupted(thread, false)) {
5205    return;
5206  }
5207
5208  // Next, demultiplex/decode time arguments
5209  timespec absTime;
5210  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5211    return;
5212  }
5213  if (time > 0) {
5214    unpackTime(&absTime, isAbsolute, time);
5215  }
5216
5217
5218  // Enter safepoint region
5219  // Beware of deadlocks such as 6317397.
5220  // The per-thread Parker:: mutex is a classic leaf-lock.
5221  // In particular a thread must never block on the Threads_lock while
5222  // holding the Parker:: mutex.  If safepoints are pending both the
5223  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5224  ThreadBlockInVM tbivm(jt);
5225
5226  // Don't wait if cannot get lock since interference arises from
5227  // unblocking.  Also. check interrupt before trying wait
5228  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5229    return;
5230  }
5231
5232  int status ;
5233  if (_counter > 0)  { // no wait needed
5234    _counter = 0;
5235    status = pthread_mutex_unlock(_mutex);
5236    assert (status == 0, "invariant") ;
5237    OrderAccess::fence();
5238    return;
5239  }
5240
5241#ifdef ASSERT
5242  // Don't catch signals while blocked; let the running threads have the signals.
5243  // (This allows a debugger to break into the running thread.)
5244  sigset_t oldsigs;
5245  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5246  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5247#endif
5248
5249  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5250  jt->set_suspend_equivalent();
5251  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5252
5253  if (time == 0) {
5254    status = pthread_cond_wait (_cond, _mutex) ;
5255  } else {
5256    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5257    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5258      pthread_cond_destroy (_cond) ;
5259      pthread_cond_init    (_cond, NULL);
5260    }
5261  }
5262  assert_status(status == 0 || status == EINTR ||
5263                status == ETIME || status == ETIMEDOUT,
5264                status, "cond_timedwait");
5265
5266#ifdef ASSERT
5267  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5268#endif
5269
5270  _counter = 0 ;
5271  status = pthread_mutex_unlock(_mutex) ;
5272  assert_status(status == 0, status, "invariant") ;
5273  // If externally suspended while waiting, re-suspend
5274  if (jt->handle_special_suspend_equivalent_condition()) {
5275    jt->java_suspend_self();
5276  }
5277
5278  OrderAccess::fence();
5279}
5280
5281void Parker::unpark() {
5282  int s, status ;
5283  status = pthread_mutex_lock(_mutex);
5284  assert (status == 0, "invariant") ;
5285  s = _counter;
5286  _counter = 1;
5287  if (s < 1) {
5288     if (WorkAroundNPTLTimedWaitHang) {
5289        status = pthread_cond_signal (_cond) ;
5290        assert (status == 0, "invariant") ;
5291        status = pthread_mutex_unlock(_mutex);
5292        assert (status == 0, "invariant") ;
5293     } else {
5294        status = pthread_mutex_unlock(_mutex);
5295        assert (status == 0, "invariant") ;
5296        status = pthread_cond_signal (_cond) ;
5297        assert (status == 0, "invariant") ;
5298     }
5299  } else {
5300    pthread_mutex_unlock(_mutex);
5301    assert (status == 0, "invariant") ;
5302  }
5303}
5304
5305
5306extern char** environ;
5307
5308#ifndef __NR_fork
5309#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5310#endif
5311
5312#ifndef __NR_execve
5313#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5314#endif
5315
5316// Run the specified command in a separate process. Return its exit value,
5317// or -1 on failure (e.g. can't fork a new process).
5318// Unlike system(), this function can be called from signal handler. It
5319// doesn't block SIGINT et al.
5320int os::fork_and_exec(char* cmd) {
5321  const char * argv[4] = {"sh", "-c", cmd, NULL};
5322
5323  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5324  // pthread_atfork handlers and reset pthread library. All we need is a
5325  // separate process to execve. Make a direct syscall to fork process.
5326  // On IA64 there's no fork syscall, we have to use fork() and hope for
5327  // the best...
5328  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5329              IA64_ONLY(fork();)
5330
5331  if (pid < 0) {
5332    // fork failed
5333    return -1;
5334
5335  } else if (pid == 0) {
5336    // child process
5337
5338    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5339    // first to kill every thread on the thread list. Because this list is
5340    // not reset by fork() (see notes above), execve() will instead kill
5341    // every thread in the parent process. We know this is the only thread
5342    // in the new process, so make a system call directly.
5343    // IA64 should use normal execve() from glibc to match the glibc fork()
5344    // above.
5345    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5346    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5347
5348    // execve failed
5349    _exit(-1);
5350
5351  } else  {
5352    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5353    // care about the actual exit code, for now.
5354
5355    int status;
5356
5357    // Wait for the child process to exit.  This returns immediately if
5358    // the child has already exited. */
5359    while (waitpid(pid, &status, 0) < 0) {
5360        switch (errno) {
5361        case ECHILD: return 0;
5362        case EINTR: break;
5363        default: return -1;
5364        }
5365    }
5366
5367    if (WIFEXITED(status)) {
5368       // The child exited normally; get its exit code.
5369       return WEXITSTATUS(status);
5370    } else if (WIFSIGNALED(status)) {
5371       // The child exited because of a signal
5372       // The best value to return is 0x80 + signal number,
5373       // because that is what all Unix shells do, and because
5374       // it allows callers to distinguish between process exit and
5375       // process death by signal.
5376       return 0x80 + WTERMSIG(status);
5377    } else {
5378       // Unknown exit code; pass it through
5379       return status;
5380    }
5381  }
5382}
5383
5384// is_headless_jre()
5385//
5386// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5387// in order to report if we are running in a headless jre
5388//
5389// Since JDK8 xawt/libmawt.so was moved into the same directory
5390// as libawt.so, and renamed libawt_xawt.so
5391//
5392bool os::is_headless_jre() {
5393    struct stat statbuf;
5394    char buf[MAXPATHLEN];
5395    char libmawtpath[MAXPATHLEN];
5396    const char *xawtstr  = "/xawt/libmawt.so";
5397    const char *new_xawtstr = "/libawt_xawt.so";
5398    char *p;
5399
5400    // Get path to libjvm.so
5401    os::jvm_path(buf, sizeof(buf));
5402
5403    // Get rid of libjvm.so
5404    p = strrchr(buf, '/');
5405    if (p == NULL) return false;
5406    else *p = '\0';
5407
5408    // Get rid of client or server
5409    p = strrchr(buf, '/');
5410    if (p == NULL) return false;
5411    else *p = '\0';
5412
5413    // check xawt/libmawt.so
5414    strcpy(libmawtpath, buf);
5415    strcat(libmawtpath, xawtstr);
5416    if (::stat(libmawtpath, &statbuf) == 0) return false;
5417
5418    // check libawt_xawt.so
5419    strcpy(libmawtpath, buf);
5420    strcat(libmawtpath, new_xawtstr);
5421    if (::stat(libmawtpath, &statbuf) == 0) return false;
5422
5423    return true;
5424}
5425
5426// Get the default path to the core file
5427// Returns the length of the string
5428int os::get_core_path(char* buffer, size_t bufferSize) {
5429  const char* p = get_current_directory(buffer, bufferSize);
5430
5431  if (p == NULL) {
5432    assert(p != NULL, "failed to get current directory");
5433    return 0;
5434  }
5435
5436  return strlen(buffer);
5437}
5438
5439#ifdef JAVASE_EMBEDDED
5440//
5441// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5442//
5443MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5444
5445// ctor
5446//
5447MemNotifyThread::MemNotifyThread(int fd): Thread() {
5448  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5449  _fd = fd;
5450
5451  if (os::create_thread(this, os::os_thread)) {
5452    _memnotify_thread = this;
5453    os::set_priority(this, NearMaxPriority);
5454    os::start_thread(this);
5455  }
5456}
5457
5458// Where all the work gets done
5459//
5460void MemNotifyThread::run() {
5461  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5462
5463  // Set up the select arguments
5464  fd_set rfds;
5465  if (_fd != -1) {
5466    FD_ZERO(&rfds);
5467    FD_SET(_fd, &rfds);
5468  }
5469
5470  // Now wait for the mem_notify device to wake up
5471  while (1) {
5472    // Wait for the mem_notify device to signal us..
5473    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5474    if (rc == -1) {
5475      perror("select!\n");
5476      break;
5477    } else if (rc) {
5478      //ssize_t free_before = os::available_memory();
5479      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5480
5481      // The kernel is telling us there is not much memory left...
5482      // try to do something about that
5483
5484      // If we are not already in a GC, try one.
5485      if (!Universe::heap()->is_gc_active()) {
5486        Universe::heap()->collect(GCCause::_allocation_failure);
5487
5488        //ssize_t free_after = os::available_memory();
5489        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5490        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5491      }
5492      // We might want to do something like the following if we find the GC's are not helping...
5493      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5494    }
5495  }
5496}
5497
5498//
5499// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5500//
5501void MemNotifyThread::start() {
5502  int    fd;
5503  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5504  if (fd < 0) {
5505      return;
5506  }
5507
5508  if (memnotify_thread() == NULL) {
5509    new MemNotifyThread(fd);
5510  }
5511}
5512#endif // JAVASE_EMBEDDED
5513