os_linux.cpp revision 3890:d2f8c38e543d
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/runtimeService.hpp"
61#include "utilities/decoder.hpp"
62#include "utilities/defaultStream.hpp"
63#include "utilities/events.hpp"
64#include "utilities/growableArray.hpp"
65#include "utilities/vmError.hpp"
66
67// put OS-includes here
68# include <sys/types.h>
69# include <sys/mman.h>
70# include <sys/stat.h>
71# include <sys/select.h>
72# include <pthread.h>
73# include <signal.h>
74# include <errno.h>
75# include <dlfcn.h>
76# include <stdio.h>
77# include <unistd.h>
78# include <sys/resource.h>
79# include <pthread.h>
80# include <sys/stat.h>
81# include <sys/time.h>
82# include <sys/times.h>
83# include <sys/utsname.h>
84# include <sys/socket.h>
85# include <sys/wait.h>
86# include <pwd.h>
87# include <poll.h>
88# include <semaphore.h>
89# include <fcntl.h>
90# include <string.h>
91# include <syscall.h>
92# include <sys/sysinfo.h>
93# include <gnu/libc-version.h>
94# include <sys/ipc.h>
95# include <sys/shm.h>
96# include <link.h>
97# include <stdint.h>
98# include <inttypes.h>
99# include <sys/ioctl.h>
100
101#define MAX_PATH    (2 * K)
102
103// for timer info max values which include all bits
104#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
105
106#define LARGEPAGES_BIT (1 << 6)
107////////////////////////////////////////////////////////////////////////////////
108// global variables
109julong os::Linux::_physical_memory = 0;
110
111address   os::Linux::_initial_thread_stack_bottom = NULL;
112uintptr_t os::Linux::_initial_thread_stack_size   = 0;
113
114int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
115int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
116Mutex* os::Linux::_createThread_lock = NULL;
117pthread_t os::Linux::_main_thread;
118int os::Linux::_page_size = -1;
119bool os::Linux::_is_floating_stack = false;
120bool os::Linux::_is_NPTL = false;
121bool os::Linux::_supports_fast_thread_cpu_time = false;
122const char * os::Linux::_glibc_version = NULL;
123const char * os::Linux::_libpthread_version = NULL;
124
125static jlong initial_time_count=0;
126
127static int clock_tics_per_sec = 100;
128
129// For diagnostics to print a message once. see run_periodic_checks
130static sigset_t check_signal_done;
131static bool check_signals = true;;
132
133static pid_t _initial_pid = 0;
134
135/* Signal number used to suspend/resume a thread */
136
137/* do not use any signal number less than SIGSEGV, see 4355769 */
138static int SR_signum = SIGUSR2;
139sigset_t SR_sigset;
140
141/* Used to protect dlsym() calls */
142static pthread_mutex_t dl_mutex;
143
144#ifdef JAVASE_EMBEDDED
145class MemNotifyThread: public Thread {
146  friend class VMStructs;
147 public:
148  virtual void run();
149
150 private:
151  static MemNotifyThread* _memnotify_thread;
152  int _fd;
153
154 public:
155
156  // Constructor
157  MemNotifyThread(int fd);
158
159  // Tester
160  bool is_memnotify_thread() const { return true; }
161
162  // Printing
163  char* name() const { return (char*)"Linux MemNotify Thread"; }
164
165  // Returns the single instance of the MemNotifyThread
166  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
167
168  // Create and start the single instance of MemNotifyThread
169  static void start();
170};
171#endif // JAVASE_EMBEDDED
172
173// utility functions
174
175static int SR_initialize();
176static int SR_finalize();
177
178julong os::available_memory() {
179  return Linux::available_memory();
180}
181
182julong os::Linux::available_memory() {
183  // values in struct sysinfo are "unsigned long"
184  struct sysinfo si;
185  sysinfo(&si);
186
187  return (julong)si.freeram * si.mem_unit;
188}
189
190julong os::physical_memory() {
191  return Linux::physical_memory();
192}
193
194julong os::allocatable_physical_memory(julong size) {
195#ifdef _LP64
196  return size;
197#else
198  julong result = MIN2(size, (julong)3800*M);
199   if (!is_allocatable(result)) {
200     // See comments under solaris for alignment considerations
201     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
202     result =  MIN2(size, reasonable_size);
203   }
204   return result;
205#endif // _LP64
206}
207
208////////////////////////////////////////////////////////////////////////////////
209// environment support
210
211bool os::getenv(const char* name, char* buf, int len) {
212  const char* val = ::getenv(name);
213  if (val != NULL && strlen(val) < (size_t)len) {
214    strcpy(buf, val);
215    return true;
216  }
217  if (len > 0) buf[0] = 0;  // return a null string
218  return false;
219}
220
221
222// Return true if user is running as root.
223
224bool os::have_special_privileges() {
225  static bool init = false;
226  static bool privileges = false;
227  if (!init) {
228    privileges = (getuid() != geteuid()) || (getgid() != getegid());
229    init = true;
230  }
231  return privileges;
232}
233
234
235#ifndef SYS_gettid
236// i386: 224, ia64: 1105, amd64: 186, sparc 143
237#ifdef __ia64__
238#define SYS_gettid 1105
239#elif __i386__
240#define SYS_gettid 224
241#elif __amd64__
242#define SYS_gettid 186
243#elif __sparc__
244#define SYS_gettid 143
245#else
246#error define gettid for the arch
247#endif
248#endif
249
250// Cpu architecture string
251#if   defined(ZERO)
252static char cpu_arch[] = ZERO_LIBARCH;
253#elif defined(IA64)
254static char cpu_arch[] = "ia64";
255#elif defined(IA32)
256static char cpu_arch[] = "i386";
257#elif defined(AMD64)
258static char cpu_arch[] = "amd64";
259#elif defined(ARM)
260static char cpu_arch[] = "arm";
261#elif defined(PPC)
262static char cpu_arch[] = "ppc";
263#elif defined(SPARC)
264#  ifdef _LP64
265static char cpu_arch[] = "sparcv9";
266#  else
267static char cpu_arch[] = "sparc";
268#  endif
269#else
270#error Add appropriate cpu_arch setting
271#endif
272
273
274// pid_t gettid()
275//
276// Returns the kernel thread id of the currently running thread. Kernel
277// thread id is used to access /proc.
278//
279// (Note that getpid() on LinuxThreads returns kernel thread id too; but
280// on NPTL, it returns the same pid for all threads, as required by POSIX.)
281//
282pid_t os::Linux::gettid() {
283  int rslt = syscall(SYS_gettid);
284  if (rslt == -1) {
285     // old kernel, no NPTL support
286     return getpid();
287  } else {
288     return (pid_t)rslt;
289  }
290}
291
292// Most versions of linux have a bug where the number of processors are
293// determined by looking at the /proc file system.  In a chroot environment,
294// the system call returns 1.  This causes the VM to act as if it is
295// a single processor and elide locking (see is_MP() call).
296static bool unsafe_chroot_detected = false;
297static const char *unstable_chroot_error = "/proc file system not found.\n"
298                     "Java may be unstable running multithreaded in a chroot "
299                     "environment on Linux when /proc filesystem is not mounted.";
300
301void os::Linux::initialize_system_info() {
302  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
303  if (processor_count() == 1) {
304    pid_t pid = os::Linux::gettid();
305    char fname[32];
306    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
307    FILE *fp = fopen(fname, "r");
308    if (fp == NULL) {
309      unsafe_chroot_detected = true;
310    } else {
311      fclose(fp);
312    }
313  }
314  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
315  assert(processor_count() > 0, "linux error");
316}
317
318void os::init_system_properties_values() {
319//  char arch[12];
320//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
321
322  // The next steps are taken in the product version:
323  //
324  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
325  // This library should be located at:
326  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
327  //
328  // If "/jre/lib/" appears at the right place in the path, then we
329  // assume libjvm[_g].so is installed in a JDK and we use this path.
330  //
331  // Otherwise exit with message: "Could not create the Java virtual machine."
332  //
333  // The following extra steps are taken in the debugging version:
334  //
335  // If "/jre/lib/" does NOT appear at the right place in the path
336  // instead of exit check for $JAVA_HOME environment variable.
337  //
338  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
339  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
340  // it looks like libjvm[_g].so is installed there
341  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
342  //
343  // Otherwise exit.
344  //
345  // Important note: if the location of libjvm.so changes this
346  // code needs to be changed accordingly.
347
348  // The next few definitions allow the code to be verbatim:
349#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
350#define getenv(n) ::getenv(n)
351
352/*
353 * See ld(1):
354 *      The linker uses the following search paths to locate required
355 *      shared libraries:
356 *        1: ...
357 *        ...
358 *        7: The default directories, normally /lib and /usr/lib.
359 */
360#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
361#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
362#else
363#define DEFAULT_LIBPATH "/lib:/usr/lib"
364#endif
365
366#define EXTENSIONS_DIR  "/lib/ext"
367#define ENDORSED_DIR    "/lib/endorsed"
368#define REG_DIR         "/usr/java/packages"
369
370  {
371    /* sysclasspath, java_home, dll_dir */
372    {
373        char *home_path;
374        char *dll_path;
375        char *pslash;
376        char buf[MAXPATHLEN];
377        os::jvm_path(buf, sizeof(buf));
378
379        // Found the full path to libjvm.so.
380        // Now cut the path to <java_home>/jre if we can.
381        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
382        pslash = strrchr(buf, '/');
383        if (pslash != NULL)
384            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
385        dll_path = malloc(strlen(buf) + 1);
386        if (dll_path == NULL)
387            return;
388        strcpy(dll_path, buf);
389        Arguments::set_dll_dir(dll_path);
390
391        if (pslash != NULL) {
392            pslash = strrchr(buf, '/');
393            if (pslash != NULL) {
394                *pslash = '\0';       /* get rid of /<arch> */
395                pslash = strrchr(buf, '/');
396                if (pslash != NULL)
397                    *pslash = '\0';   /* get rid of /lib */
398            }
399        }
400
401        home_path = malloc(strlen(buf) + 1);
402        if (home_path == NULL)
403            return;
404        strcpy(home_path, buf);
405        Arguments::set_java_home(home_path);
406
407        if (!set_boot_path('/', ':'))
408            return;
409    }
410
411    /*
412     * Where to look for native libraries
413     *
414     * Note: Due to a legacy implementation, most of the library path
415     * is set in the launcher.  This was to accomodate linking restrictions
416     * on legacy Linux implementations (which are no longer supported).
417     * Eventually, all the library path setting will be done here.
418     *
419     * However, to prevent the proliferation of improperly built native
420     * libraries, the new path component /usr/java/packages is added here.
421     * Eventually, all the library path setting will be done here.
422     */
423    {
424        char *ld_library_path;
425
426        /*
427         * Construct the invariant part of ld_library_path. Note that the
428         * space for the colon and the trailing null are provided by the
429         * nulls included by the sizeof operator (so actually we allocate
430         * a byte more than necessary).
431         */
432        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
433            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
434        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
435
436        /*
437         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
438         * should always exist (until the legacy problem cited above is
439         * addressed).
440         */
441        char *v = getenv("LD_LIBRARY_PATH");
442        if (v != NULL) {
443            char *t = ld_library_path;
444            /* That's +1 for the colon and +1 for the trailing '\0' */
445            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
446            sprintf(ld_library_path, "%s:%s", v, t);
447        }
448        Arguments::set_library_path(ld_library_path);
449    }
450
451    /*
452     * Extensions directories.
453     *
454     * Note that the space for the colon and the trailing null are provided
455     * by the nulls included by the sizeof operator (so actually one byte more
456     * than necessary is allocated).
457     */
458    {
459        char *buf = malloc(strlen(Arguments::get_java_home()) +
460            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
461        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
462            Arguments::get_java_home());
463        Arguments::set_ext_dirs(buf);
464    }
465
466    /* Endorsed standards default directory. */
467    {
468        char * buf;
469        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
470        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
471        Arguments::set_endorsed_dirs(buf);
472    }
473  }
474
475#undef malloc
476#undef getenv
477#undef EXTENSIONS_DIR
478#undef ENDORSED_DIR
479
480  // Done
481  return;
482}
483
484////////////////////////////////////////////////////////////////////////////////
485// breakpoint support
486
487void os::breakpoint() {
488  BREAKPOINT;
489}
490
491extern "C" void breakpoint() {
492  // use debugger to set breakpoint here
493}
494
495////////////////////////////////////////////////////////////////////////////////
496// signal support
497
498debug_only(static bool signal_sets_initialized = false);
499static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
500
501bool os::Linux::is_sig_ignored(int sig) {
502      struct sigaction oact;
503      sigaction(sig, (struct sigaction*)NULL, &oact);
504      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
505                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
506      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
507           return true;
508      else
509           return false;
510}
511
512void os::Linux::signal_sets_init() {
513  // Should also have an assertion stating we are still single-threaded.
514  assert(!signal_sets_initialized, "Already initialized");
515  // Fill in signals that are necessarily unblocked for all threads in
516  // the VM. Currently, we unblock the following signals:
517  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
518  //                         by -Xrs (=ReduceSignalUsage));
519  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
520  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
521  // the dispositions or masks wrt these signals.
522  // Programs embedding the VM that want to use the above signals for their
523  // own purposes must, at this time, use the "-Xrs" option to prevent
524  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
525  // (See bug 4345157, and other related bugs).
526  // In reality, though, unblocking these signals is really a nop, since
527  // these signals are not blocked by default.
528  sigemptyset(&unblocked_sigs);
529  sigemptyset(&allowdebug_blocked_sigs);
530  sigaddset(&unblocked_sigs, SIGILL);
531  sigaddset(&unblocked_sigs, SIGSEGV);
532  sigaddset(&unblocked_sigs, SIGBUS);
533  sigaddset(&unblocked_sigs, SIGFPE);
534  sigaddset(&unblocked_sigs, SR_signum);
535
536  if (!ReduceSignalUsage) {
537   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
538      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
539      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
540   }
541   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
542      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
543      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
544   }
545   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
546      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
547      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
548   }
549  }
550  // Fill in signals that are blocked by all but the VM thread.
551  sigemptyset(&vm_sigs);
552  if (!ReduceSignalUsage)
553    sigaddset(&vm_sigs, BREAK_SIGNAL);
554  debug_only(signal_sets_initialized = true);
555
556}
557
558// These are signals that are unblocked while a thread is running Java.
559// (For some reason, they get blocked by default.)
560sigset_t* os::Linux::unblocked_signals() {
561  assert(signal_sets_initialized, "Not initialized");
562  return &unblocked_sigs;
563}
564
565// These are the signals that are blocked while a (non-VM) thread is
566// running Java. Only the VM thread handles these signals.
567sigset_t* os::Linux::vm_signals() {
568  assert(signal_sets_initialized, "Not initialized");
569  return &vm_sigs;
570}
571
572// These are signals that are blocked during cond_wait to allow debugger in
573sigset_t* os::Linux::allowdebug_blocked_signals() {
574  assert(signal_sets_initialized, "Not initialized");
575  return &allowdebug_blocked_sigs;
576}
577
578void os::Linux::hotspot_sigmask(Thread* thread) {
579
580  //Save caller's signal mask before setting VM signal mask
581  sigset_t caller_sigmask;
582  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
583
584  OSThread* osthread = thread->osthread();
585  osthread->set_caller_sigmask(caller_sigmask);
586
587  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
588
589  if (!ReduceSignalUsage) {
590    if (thread->is_VM_thread()) {
591      // Only the VM thread handles BREAK_SIGNAL ...
592      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
593    } else {
594      // ... all other threads block BREAK_SIGNAL
595      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
596    }
597  }
598}
599
600//////////////////////////////////////////////////////////////////////////////
601// detecting pthread library
602
603void os::Linux::libpthread_init() {
604  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
605  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
606  // generic name for earlier versions.
607  // Define macros here so we can build HotSpot on old systems.
608# ifndef _CS_GNU_LIBC_VERSION
609# define _CS_GNU_LIBC_VERSION 2
610# endif
611# ifndef _CS_GNU_LIBPTHREAD_VERSION
612# define _CS_GNU_LIBPTHREAD_VERSION 3
613# endif
614
615  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
616  if (n > 0) {
617     char *str = (char *)malloc(n, mtInternal);
618     confstr(_CS_GNU_LIBC_VERSION, str, n);
619     os::Linux::set_glibc_version(str);
620  } else {
621     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
622     static char _gnu_libc_version[32];
623     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
624              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
625     os::Linux::set_glibc_version(_gnu_libc_version);
626  }
627
628  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
629  if (n > 0) {
630     char *str = (char *)malloc(n, mtInternal);
631     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
632     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
633     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
634     // is the case. LinuxThreads has a hard limit on max number of threads.
635     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
636     // On the other hand, NPTL does not have such a limit, sysconf()
637     // will return -1 and errno is not changed. Check if it is really NPTL.
638     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
639         strstr(str, "NPTL") &&
640         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
641       free(str);
642       os::Linux::set_libpthread_version("linuxthreads");
643     } else {
644       os::Linux::set_libpthread_version(str);
645     }
646  } else {
647    // glibc before 2.3.2 only has LinuxThreads.
648    os::Linux::set_libpthread_version("linuxthreads");
649  }
650
651  if (strstr(libpthread_version(), "NPTL")) {
652     os::Linux::set_is_NPTL();
653  } else {
654     os::Linux::set_is_LinuxThreads();
655  }
656
657  // LinuxThreads have two flavors: floating-stack mode, which allows variable
658  // stack size; and fixed-stack mode. NPTL is always floating-stack.
659  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
660     os::Linux::set_is_floating_stack();
661  }
662}
663
664/////////////////////////////////////////////////////////////////////////////
665// thread stack
666
667// Force Linux kernel to expand current thread stack. If "bottom" is close
668// to the stack guard, caller should block all signals.
669//
670// MAP_GROWSDOWN:
671//   A special mmap() flag that is used to implement thread stacks. It tells
672//   kernel that the memory region should extend downwards when needed. This
673//   allows early versions of LinuxThreads to only mmap the first few pages
674//   when creating a new thread. Linux kernel will automatically expand thread
675//   stack as needed (on page faults).
676//
677//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
678//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
679//   region, it's hard to tell if the fault is due to a legitimate stack
680//   access or because of reading/writing non-exist memory (e.g. buffer
681//   overrun). As a rule, if the fault happens below current stack pointer,
682//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
683//   application (see Linux kernel fault.c).
684//
685//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
686//   stack overflow detection.
687//
688//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
689//   not use this flag. However, the stack of initial thread is not created
690//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
691//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
692//   and then attach the thread to JVM.
693//
694// To get around the problem and allow stack banging on Linux, we need to
695// manually expand thread stack after receiving the SIGSEGV.
696//
697// There are two ways to expand thread stack to address "bottom", we used
698// both of them in JVM before 1.5:
699//   1. adjust stack pointer first so that it is below "bottom", and then
700//      touch "bottom"
701//   2. mmap() the page in question
702//
703// Now alternate signal stack is gone, it's harder to use 2. For instance,
704// if current sp is already near the lower end of page 101, and we need to
705// call mmap() to map page 100, it is possible that part of the mmap() frame
706// will be placed in page 100. When page 100 is mapped, it is zero-filled.
707// That will destroy the mmap() frame and cause VM to crash.
708//
709// The following code works by adjusting sp first, then accessing the "bottom"
710// page to force a page fault. Linux kernel will then automatically expand the
711// stack mapping.
712//
713// _expand_stack_to() assumes its frame size is less than page size, which
714// should always be true if the function is not inlined.
715
716#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
717#define NOINLINE
718#else
719#define NOINLINE __attribute__ ((noinline))
720#endif
721
722static void _expand_stack_to(address bottom) NOINLINE;
723
724static void _expand_stack_to(address bottom) {
725  address sp;
726  size_t size;
727  volatile char *p;
728
729  // Adjust bottom to point to the largest address within the same page, it
730  // gives us a one-page buffer if alloca() allocates slightly more memory.
731  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
732  bottom += os::Linux::page_size() - 1;
733
734  // sp might be slightly above current stack pointer; if that's the case, we
735  // will alloca() a little more space than necessary, which is OK. Don't use
736  // os::current_stack_pointer(), as its result can be slightly below current
737  // stack pointer, causing us to not alloca enough to reach "bottom".
738  sp = (address)&sp;
739
740  if (sp > bottom) {
741    size = sp - bottom;
742    p = (volatile char *)alloca(size);
743    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
744    p[0] = '\0';
745  }
746}
747
748bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
749  assert(t!=NULL, "just checking");
750  assert(t->osthread()->expanding_stack(), "expand should be set");
751  assert(t->stack_base() != NULL, "stack_base was not initialized");
752
753  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
754    sigset_t mask_all, old_sigset;
755    sigfillset(&mask_all);
756    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
757    _expand_stack_to(addr);
758    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
759    return true;
760  }
761  return false;
762}
763
764//////////////////////////////////////////////////////////////////////////////
765// create new thread
766
767static address highest_vm_reserved_address();
768
769// check if it's safe to start a new thread
770static bool _thread_safety_check(Thread* thread) {
771  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
772    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
773    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
774    //   allocated (MAP_FIXED) from high address space. Every thread stack
775    //   occupies a fixed size slot (usually 2Mbytes, but user can change
776    //   it to other values if they rebuild LinuxThreads).
777    //
778    // Problem with MAP_FIXED is that mmap() can still succeed even part of
779    // the memory region has already been mmap'ed. That means if we have too
780    // many threads and/or very large heap, eventually thread stack will
781    // collide with heap.
782    //
783    // Here we try to prevent heap/stack collision by comparing current
784    // stack bottom with the highest address that has been mmap'ed by JVM
785    // plus a safety margin for memory maps created by native code.
786    //
787    // This feature can be disabled by setting ThreadSafetyMargin to 0
788    //
789    if (ThreadSafetyMargin > 0) {
790      address stack_bottom = os::current_stack_base() - os::current_stack_size();
791
792      // not safe if our stack extends below the safety margin
793      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
794    } else {
795      return true;
796    }
797  } else {
798    // Floating stack LinuxThreads or NPTL:
799    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
800    //   there's not enough space left, pthread_create() will fail. If we come
801    //   here, that means enough space has been reserved for stack.
802    return true;
803  }
804}
805
806// Thread start routine for all newly created threads
807static void *java_start(Thread *thread) {
808  // Try to randomize the cache line index of hot stack frames.
809  // This helps when threads of the same stack traces evict each other's
810  // cache lines. The threads can be either from the same JVM instance, or
811  // from different JVM instances. The benefit is especially true for
812  // processors with hyperthreading technology.
813  static int counter = 0;
814  int pid = os::current_process_id();
815  alloca(((pid ^ counter++) & 7) * 128);
816
817  ThreadLocalStorage::set_thread(thread);
818
819  OSThread* osthread = thread->osthread();
820  Monitor* sync = osthread->startThread_lock();
821
822  // non floating stack LinuxThreads needs extra check, see above
823  if (!_thread_safety_check(thread)) {
824    // notify parent thread
825    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
826    osthread->set_state(ZOMBIE);
827    sync->notify_all();
828    return NULL;
829  }
830
831  // thread_id is kernel thread id (similar to Solaris LWP id)
832  osthread->set_thread_id(os::Linux::gettid());
833
834  if (UseNUMA) {
835    int lgrp_id = os::numa_get_group_id();
836    if (lgrp_id != -1) {
837      thread->set_lgrp_id(lgrp_id);
838    }
839  }
840  // initialize signal mask for this thread
841  os::Linux::hotspot_sigmask(thread);
842
843  // initialize floating point control register
844  os::Linux::init_thread_fpu_state();
845
846  // handshaking with parent thread
847  {
848    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
849
850    // notify parent thread
851    osthread->set_state(INITIALIZED);
852    sync->notify_all();
853
854    // wait until os::start_thread()
855    while (osthread->get_state() == INITIALIZED) {
856      sync->wait(Mutex::_no_safepoint_check_flag);
857    }
858  }
859
860  // call one more level start routine
861  thread->run();
862
863  return 0;
864}
865
866bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
867  assert(thread->osthread() == NULL, "caller responsible");
868
869  // Allocate the OSThread object
870  OSThread* osthread = new OSThread(NULL, NULL);
871  if (osthread == NULL) {
872    return false;
873  }
874
875  // set the correct thread state
876  osthread->set_thread_type(thr_type);
877
878  // Initial state is ALLOCATED but not INITIALIZED
879  osthread->set_state(ALLOCATED);
880
881  thread->set_osthread(osthread);
882
883  // init thread attributes
884  pthread_attr_t attr;
885  pthread_attr_init(&attr);
886  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
887
888  // stack size
889  if (os::Linux::supports_variable_stack_size()) {
890    // calculate stack size if it's not specified by caller
891    if (stack_size == 0) {
892      stack_size = os::Linux::default_stack_size(thr_type);
893
894      switch (thr_type) {
895      case os::java_thread:
896        // Java threads use ThreadStackSize which default value can be
897        // changed with the flag -Xss
898        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
899        stack_size = JavaThread::stack_size_at_create();
900        break;
901      case os::compiler_thread:
902        if (CompilerThreadStackSize > 0) {
903          stack_size = (size_t)(CompilerThreadStackSize * K);
904          break;
905        } // else fall through:
906          // use VMThreadStackSize if CompilerThreadStackSize is not defined
907      case os::vm_thread:
908      case os::pgc_thread:
909      case os::cgc_thread:
910      case os::watcher_thread:
911        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
912        break;
913      }
914    }
915
916    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
917    pthread_attr_setstacksize(&attr, stack_size);
918  } else {
919    // let pthread_create() pick the default value.
920  }
921
922  // glibc guard page
923  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
924
925  ThreadState state;
926
927  {
928    // Serialize thread creation if we are running with fixed stack LinuxThreads
929    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
930    if (lock) {
931      os::Linux::createThread_lock()->lock_without_safepoint_check();
932    }
933
934    pthread_t tid;
935    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
936
937    pthread_attr_destroy(&attr);
938
939    if (ret != 0) {
940      if (PrintMiscellaneous && (Verbose || WizardMode)) {
941        perror("pthread_create()");
942      }
943      // Need to clean up stuff we've allocated so far
944      thread->set_osthread(NULL);
945      delete osthread;
946      if (lock) os::Linux::createThread_lock()->unlock();
947      return false;
948    }
949
950    // Store pthread info into the OSThread
951    osthread->set_pthread_id(tid);
952
953    // Wait until child thread is either initialized or aborted
954    {
955      Monitor* sync_with_child = osthread->startThread_lock();
956      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
957      while ((state = osthread->get_state()) == ALLOCATED) {
958        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
959      }
960    }
961
962    if (lock) {
963      os::Linux::createThread_lock()->unlock();
964    }
965  }
966
967  // Aborted due to thread limit being reached
968  if (state == ZOMBIE) {
969      thread->set_osthread(NULL);
970      delete osthread;
971      return false;
972  }
973
974  // The thread is returned suspended (in state INITIALIZED),
975  // and is started higher up in the call chain
976  assert(state == INITIALIZED, "race condition");
977  return true;
978}
979
980/////////////////////////////////////////////////////////////////////////////
981// attach existing thread
982
983// bootstrap the main thread
984bool os::create_main_thread(JavaThread* thread) {
985  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
986  return create_attached_thread(thread);
987}
988
989bool os::create_attached_thread(JavaThread* thread) {
990#ifdef ASSERT
991    thread->verify_not_published();
992#endif
993
994  // Allocate the OSThread object
995  OSThread* osthread = new OSThread(NULL, NULL);
996
997  if (osthread == NULL) {
998    return false;
999  }
1000
1001  // Store pthread info into the OSThread
1002  osthread->set_thread_id(os::Linux::gettid());
1003  osthread->set_pthread_id(::pthread_self());
1004
1005  // initialize floating point control register
1006  os::Linux::init_thread_fpu_state();
1007
1008  // Initial thread state is RUNNABLE
1009  osthread->set_state(RUNNABLE);
1010
1011  thread->set_osthread(osthread);
1012
1013  if (UseNUMA) {
1014    int lgrp_id = os::numa_get_group_id();
1015    if (lgrp_id != -1) {
1016      thread->set_lgrp_id(lgrp_id);
1017    }
1018  }
1019
1020  if (os::Linux::is_initial_thread()) {
1021    // If current thread is initial thread, its stack is mapped on demand,
1022    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023    // the entire stack region to avoid SEGV in stack banging.
1024    // It is also useful to get around the heap-stack-gap problem on SuSE
1025    // kernel (see 4821821 for details). We first expand stack to the top
1026    // of yellow zone, then enable stack yellow zone (order is significant,
1027    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028    // is no gap between the last two virtual memory regions.
1029
1030    JavaThread *jt = (JavaThread *)thread;
1031    address addr = jt->stack_yellow_zone_base();
1032    assert(addr != NULL, "initialization problem?");
1033    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034
1035    osthread->set_expanding_stack();
1036    os::Linux::manually_expand_stack(jt, addr);
1037    osthread->clear_expanding_stack();
1038  }
1039
1040  // initialize signal mask for this thread
1041  // and save the caller's signal mask
1042  os::Linux::hotspot_sigmask(thread);
1043
1044  return true;
1045}
1046
1047void os::pd_start_thread(Thread* thread) {
1048  OSThread * osthread = thread->osthread();
1049  assert(osthread->get_state() != INITIALIZED, "just checking");
1050  Monitor* sync_with_child = osthread->startThread_lock();
1051  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052  sync_with_child->notify();
1053}
1054
1055// Free Linux resources related to the OSThread
1056void os::free_thread(OSThread* osthread) {
1057  assert(osthread != NULL, "osthread not set");
1058
1059  if (Thread::current()->osthread() == osthread) {
1060    // Restore caller's signal mask
1061    sigset_t sigmask = osthread->caller_sigmask();
1062    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063   }
1064
1065  delete osthread;
1066}
1067
1068//////////////////////////////////////////////////////////////////////////////
1069// thread local storage
1070
1071int os::allocate_thread_local_storage() {
1072  pthread_key_t key;
1073  int rslt = pthread_key_create(&key, NULL);
1074  assert(rslt == 0, "cannot allocate thread local storage");
1075  return (int)key;
1076}
1077
1078// Note: This is currently not used by VM, as we don't destroy TLS key
1079// on VM exit.
1080void os::free_thread_local_storage(int index) {
1081  int rslt = pthread_key_delete((pthread_key_t)index);
1082  assert(rslt == 0, "invalid index");
1083}
1084
1085void os::thread_local_storage_at_put(int index, void* value) {
1086  int rslt = pthread_setspecific((pthread_key_t)index, value);
1087  assert(rslt == 0, "pthread_setspecific failed");
1088}
1089
1090extern "C" Thread* get_thread() {
1091  return ThreadLocalStorage::thread();
1092}
1093
1094//////////////////////////////////////////////////////////////////////////////
1095// initial thread
1096
1097// Check if current thread is the initial thread, similar to Solaris thr_main.
1098bool os::Linux::is_initial_thread(void) {
1099  char dummy;
1100  // If called before init complete, thread stack bottom will be null.
1101  // Can be called if fatal error occurs before initialization.
1102  if (initial_thread_stack_bottom() == NULL) return false;
1103  assert(initial_thread_stack_bottom() != NULL &&
1104         initial_thread_stack_size()   != 0,
1105         "os::init did not locate initial thread's stack region");
1106  if ((address)&dummy >= initial_thread_stack_bottom() &&
1107      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108       return true;
1109  else return false;
1110}
1111
1112// Find the virtual memory area that contains addr
1113static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114  FILE *fp = fopen("/proc/self/maps", "r");
1115  if (fp) {
1116    address low, high;
1117    while (!feof(fp)) {
1118      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119        if (low <= addr && addr < high) {
1120           if (vma_low)  *vma_low  = low;
1121           if (vma_high) *vma_high = high;
1122           fclose (fp);
1123           return true;
1124        }
1125      }
1126      for (;;) {
1127        int ch = fgetc(fp);
1128        if (ch == EOF || ch == (int)'\n') break;
1129      }
1130    }
1131    fclose(fp);
1132  }
1133  return false;
1134}
1135
1136// Locate initial thread stack. This special handling of initial thread stack
1137// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138// bogus value for initial thread.
1139void os::Linux::capture_initial_stack(size_t max_size) {
1140  // stack size is the easy part, get it from RLIMIT_STACK
1141  size_t stack_size;
1142  struct rlimit rlim;
1143  getrlimit(RLIMIT_STACK, &rlim);
1144  stack_size = rlim.rlim_cur;
1145
1146  // 6308388: a bug in ld.so will relocate its own .data section to the
1147  //   lower end of primordial stack; reduce ulimit -s value a little bit
1148  //   so we won't install guard page on ld.so's data section.
1149  stack_size -= 2 * page_size();
1150
1151  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152  //   7.1, in both cases we will get 2G in return value.
1153  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156  //   in case other parts in glibc still assumes 2M max stack size.
1157  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158#ifndef IA64
1159  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1160#else
1161  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1162  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1163#endif
1164
1165  // Try to figure out where the stack base (top) is. This is harder.
1166  //
1167  // When an application is started, glibc saves the initial stack pointer in
1168  // a global variable "__libc_stack_end", which is then used by system
1169  // libraries. __libc_stack_end should be pretty close to stack top. The
1170  // variable is available since the very early days. However, because it is
1171  // a private interface, it could disappear in the future.
1172  //
1173  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1174  // to __libc_stack_end, it is very close to stack top, but isn't the real
1175  // stack top. Note that /proc may not exist if VM is running as a chroot
1176  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1177  // /proc/<pid>/stat could change in the future (though unlikely).
1178  //
1179  // We try __libc_stack_end first. If that doesn't work, look for
1180  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1181  // as a hint, which should work well in most cases.
1182
1183  uintptr_t stack_start;
1184
1185  // try __libc_stack_end first
1186  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1187  if (p && *p) {
1188    stack_start = *p;
1189  } else {
1190    // see if we can get the start_stack field from /proc/self/stat
1191    FILE *fp;
1192    int pid;
1193    char state;
1194    int ppid;
1195    int pgrp;
1196    int session;
1197    int nr;
1198    int tpgrp;
1199    unsigned long flags;
1200    unsigned long minflt;
1201    unsigned long cminflt;
1202    unsigned long majflt;
1203    unsigned long cmajflt;
1204    unsigned long utime;
1205    unsigned long stime;
1206    long cutime;
1207    long cstime;
1208    long prio;
1209    long nice;
1210    long junk;
1211    long it_real;
1212    uintptr_t start;
1213    uintptr_t vsize;
1214    intptr_t rss;
1215    uintptr_t rsslim;
1216    uintptr_t scodes;
1217    uintptr_t ecode;
1218    int i;
1219
1220    // Figure what the primordial thread stack base is. Code is inspired
1221    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1222    // followed by command name surrounded by parentheses, state, etc.
1223    char stat[2048];
1224    int statlen;
1225
1226    fp = fopen("/proc/self/stat", "r");
1227    if (fp) {
1228      statlen = fread(stat, 1, 2047, fp);
1229      stat[statlen] = '\0';
1230      fclose(fp);
1231
1232      // Skip pid and the command string. Note that we could be dealing with
1233      // weird command names, e.g. user could decide to rename java launcher
1234      // to "java 1.4.2 :)", then the stat file would look like
1235      //                1234 (java 1.4.2 :)) R ... ...
1236      // We don't really need to know the command string, just find the last
1237      // occurrence of ")" and then start parsing from there. See bug 4726580.
1238      char * s = strrchr(stat, ')');
1239
1240      i = 0;
1241      if (s) {
1242        // Skip blank chars
1243        do s++; while (isspace(*s));
1244
1245#define _UFM UINTX_FORMAT
1246#define _DFM INTX_FORMAT
1247
1248        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1249        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1250        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1251             &state,          /* 3  %c  */
1252             &ppid,           /* 4  %d  */
1253             &pgrp,           /* 5  %d  */
1254             &session,        /* 6  %d  */
1255             &nr,             /* 7  %d  */
1256             &tpgrp,          /* 8  %d  */
1257             &flags,          /* 9  %lu  */
1258             &minflt,         /* 10 %lu  */
1259             &cminflt,        /* 11 %lu  */
1260             &majflt,         /* 12 %lu  */
1261             &cmajflt,        /* 13 %lu  */
1262             &utime,          /* 14 %lu  */
1263             &stime,          /* 15 %lu  */
1264             &cutime,         /* 16 %ld  */
1265             &cstime,         /* 17 %ld  */
1266             &prio,           /* 18 %ld  */
1267             &nice,           /* 19 %ld  */
1268             &junk,           /* 20 %ld  */
1269             &it_real,        /* 21 %ld  */
1270             &start,          /* 22 UINTX_FORMAT */
1271             &vsize,          /* 23 UINTX_FORMAT */
1272             &rss,            /* 24 INTX_FORMAT  */
1273             &rsslim,         /* 25 UINTX_FORMAT */
1274             &scodes,         /* 26 UINTX_FORMAT */
1275             &ecode,          /* 27 UINTX_FORMAT */
1276             &stack_start);   /* 28 UINTX_FORMAT */
1277      }
1278
1279#undef _UFM
1280#undef _DFM
1281
1282      if (i != 28 - 2) {
1283         assert(false, "Bad conversion from /proc/self/stat");
1284         // product mode - assume we are the initial thread, good luck in the
1285         // embedded case.
1286         warning("Can't detect initial thread stack location - bad conversion");
1287         stack_start = (uintptr_t) &rlim;
1288      }
1289    } else {
1290      // For some reason we can't open /proc/self/stat (for example, running on
1291      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1292      // most cases, so don't abort:
1293      warning("Can't detect initial thread stack location - no /proc/self/stat");
1294      stack_start = (uintptr_t) &rlim;
1295    }
1296  }
1297
1298  // Now we have a pointer (stack_start) very close to the stack top, the
1299  // next thing to do is to figure out the exact location of stack top. We
1300  // can find out the virtual memory area that contains stack_start by
1301  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1302  // and its upper limit is the real stack top. (again, this would fail if
1303  // running inside chroot, because /proc may not exist.)
1304
1305  uintptr_t stack_top;
1306  address low, high;
1307  if (find_vma((address)stack_start, &low, &high)) {
1308    // success, "high" is the true stack top. (ignore "low", because initial
1309    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1310    stack_top = (uintptr_t)high;
1311  } else {
1312    // failed, likely because /proc/self/maps does not exist
1313    warning("Can't detect initial thread stack location - find_vma failed");
1314    // best effort: stack_start is normally within a few pages below the real
1315    // stack top, use it as stack top, and reduce stack size so we won't put
1316    // guard page outside stack.
1317    stack_top = stack_start;
1318    stack_size -= 16 * page_size();
1319  }
1320
1321  // stack_top could be partially down the page so align it
1322  stack_top = align_size_up(stack_top, page_size());
1323
1324  if (max_size && stack_size > max_size) {
1325     _initial_thread_stack_size = max_size;
1326  } else {
1327     _initial_thread_stack_size = stack_size;
1328  }
1329
1330  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1331  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1332}
1333
1334////////////////////////////////////////////////////////////////////////////////
1335// time support
1336
1337// Time since start-up in seconds to a fine granularity.
1338// Used by VMSelfDestructTimer and the MemProfiler.
1339double os::elapsedTime() {
1340
1341  return (double)(os::elapsed_counter()) * 0.000001;
1342}
1343
1344jlong os::elapsed_counter() {
1345  timeval time;
1346  int status = gettimeofday(&time, NULL);
1347  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1348}
1349
1350jlong os::elapsed_frequency() {
1351  return (1000 * 1000);
1352}
1353
1354// For now, we say that linux does not support vtime.  I have no idea
1355// whether it can actually be made to (DLD, 9/13/05).
1356
1357bool os::supports_vtime() { return false; }
1358bool os::enable_vtime()   { return false; }
1359bool os::vtime_enabled()  { return false; }
1360double os::elapsedVTime() {
1361  // better than nothing, but not much
1362  return elapsedTime();
1363}
1364
1365jlong os::javaTimeMillis() {
1366  timeval time;
1367  int status = gettimeofday(&time, NULL);
1368  assert(status != -1, "linux error");
1369  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1370}
1371
1372#ifndef CLOCK_MONOTONIC
1373#define CLOCK_MONOTONIC (1)
1374#endif
1375
1376void os::Linux::clock_init() {
1377  // we do dlopen's in this particular order due to bug in linux
1378  // dynamical loader (see 6348968) leading to crash on exit
1379  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1380  if (handle == NULL) {
1381    handle = dlopen("librt.so", RTLD_LAZY);
1382  }
1383
1384  if (handle) {
1385    int (*clock_getres_func)(clockid_t, struct timespec*) =
1386           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1387    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1388           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1389    if (clock_getres_func && clock_gettime_func) {
1390      // See if monotonic clock is supported by the kernel. Note that some
1391      // early implementations simply return kernel jiffies (updated every
1392      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1393      // for nano time (though the monotonic property is still nice to have).
1394      // It's fixed in newer kernels, however clock_getres() still returns
1395      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1396      // resolution for now. Hopefully as people move to new kernels, this
1397      // won't be a problem.
1398      struct timespec res;
1399      struct timespec tp;
1400      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1401          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1402        // yes, monotonic clock is supported
1403        _clock_gettime = clock_gettime_func;
1404      } else {
1405        // close librt if there is no monotonic clock
1406        dlclose(handle);
1407      }
1408    }
1409  }
1410}
1411
1412#ifndef SYS_clock_getres
1413
1414#if defined(IA32) || defined(AMD64)
1415#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1416#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1417#else
1418#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1419#define sys_clock_getres(x,y)  -1
1420#endif
1421
1422#else
1423#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424#endif
1425
1426void os::Linux::fast_thread_clock_init() {
1427  if (!UseLinuxPosixThreadCPUClocks) {
1428    return;
1429  }
1430  clockid_t clockid;
1431  struct timespec tp;
1432  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1433      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1434
1435  // Switch to using fast clocks for thread cpu time if
1436  // the sys_clock_getres() returns 0 error code.
1437  // Note, that some kernels may support the current thread
1438  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1439  // returned by the pthread_getcpuclockid().
1440  // If the fast Posix clocks are supported then the sys_clock_getres()
1441  // must return at least tp.tv_sec == 0 which means a resolution
1442  // better than 1 sec. This is extra check for reliability.
1443
1444  if(pthread_getcpuclockid_func &&
1445     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1446     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1447
1448    _supports_fast_thread_cpu_time = true;
1449    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1450  }
1451}
1452
1453jlong os::javaTimeNanos() {
1454  if (Linux::supports_monotonic_clock()) {
1455    struct timespec tp;
1456    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1457    assert(status == 0, "gettime error");
1458    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1459    return result;
1460  } else {
1461    timeval time;
1462    int status = gettimeofday(&time, NULL);
1463    assert(status != -1, "linux error");
1464    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1465    return 1000 * usecs;
1466  }
1467}
1468
1469void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1470  if (Linux::supports_monotonic_clock()) {
1471    info_ptr->max_value = ALL_64_BITS;
1472
1473    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1474    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1475    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1476  } else {
1477    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1478    info_ptr->max_value = ALL_64_BITS;
1479
1480    // gettimeofday is a real time clock so it skips
1481    info_ptr->may_skip_backward = true;
1482    info_ptr->may_skip_forward = true;
1483  }
1484
1485  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1486}
1487
1488// Return the real, user, and system times in seconds from an
1489// arbitrary fixed point in the past.
1490bool os::getTimesSecs(double* process_real_time,
1491                      double* process_user_time,
1492                      double* process_system_time) {
1493  struct tms ticks;
1494  clock_t real_ticks = times(&ticks);
1495
1496  if (real_ticks == (clock_t) (-1)) {
1497    return false;
1498  } else {
1499    double ticks_per_second = (double) clock_tics_per_sec;
1500    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1501    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1502    *process_real_time = ((double) real_ticks) / ticks_per_second;
1503
1504    return true;
1505  }
1506}
1507
1508
1509char * os::local_time_string(char *buf, size_t buflen) {
1510  struct tm t;
1511  time_t long_time;
1512  time(&long_time);
1513  localtime_r(&long_time, &t);
1514  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1515               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1516               t.tm_hour, t.tm_min, t.tm_sec);
1517  return buf;
1518}
1519
1520struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1521  return localtime_r(clock, res);
1522}
1523
1524////////////////////////////////////////////////////////////////////////////////
1525// runtime exit support
1526
1527// Note: os::shutdown() might be called very early during initialization, or
1528// called from signal handler. Before adding something to os::shutdown(), make
1529// sure it is async-safe and can handle partially initialized VM.
1530void os::shutdown() {
1531
1532  // allow PerfMemory to attempt cleanup of any persistent resources
1533  perfMemory_exit();
1534
1535  // needs to remove object in file system
1536  AttachListener::abort();
1537
1538  // flush buffered output, finish log files
1539  ostream_abort();
1540
1541  // Check for abort hook
1542  abort_hook_t abort_hook = Arguments::abort_hook();
1543  if (abort_hook != NULL) {
1544    abort_hook();
1545  }
1546
1547}
1548
1549// Note: os::abort() might be called very early during initialization, or
1550// called from signal handler. Before adding something to os::abort(), make
1551// sure it is async-safe and can handle partially initialized VM.
1552void os::abort(bool dump_core) {
1553  os::shutdown();
1554  if (dump_core) {
1555#ifndef PRODUCT
1556    fdStream out(defaultStream::output_fd());
1557    out.print_raw("Current thread is ");
1558    char buf[16];
1559    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1560    out.print_raw_cr(buf);
1561    out.print_raw_cr("Dumping core ...");
1562#endif
1563    ::abort(); // dump core
1564  }
1565
1566  ::exit(1);
1567}
1568
1569// Die immediately, no exit hook, no abort hook, no cleanup.
1570void os::die() {
1571  // _exit() on LinuxThreads only kills current thread
1572  ::abort();
1573}
1574
1575// unused on linux for now.
1576void os::set_error_file(const char *logfile) {}
1577
1578
1579// This method is a copy of JDK's sysGetLastErrorString
1580// from src/solaris/hpi/src/system_md.c
1581
1582size_t os::lasterror(char *buf, size_t len) {
1583
1584  if (errno == 0)  return 0;
1585
1586  const char *s = ::strerror(errno);
1587  size_t n = ::strlen(s);
1588  if (n >= len) {
1589    n = len - 1;
1590  }
1591  ::strncpy(buf, s, n);
1592  buf[n] = '\0';
1593  return n;
1594}
1595
1596intx os::current_thread_id() { return (intx)pthread_self(); }
1597int os::current_process_id() {
1598
1599  // Under the old linux thread library, linux gives each thread
1600  // its own process id. Because of this each thread will return
1601  // a different pid if this method were to return the result
1602  // of getpid(2). Linux provides no api that returns the pid
1603  // of the launcher thread for the vm. This implementation
1604  // returns a unique pid, the pid of the launcher thread
1605  // that starts the vm 'process'.
1606
1607  // Under the NPTL, getpid() returns the same pid as the
1608  // launcher thread rather than a unique pid per thread.
1609  // Use gettid() if you want the old pre NPTL behaviour.
1610
1611  // if you are looking for the result of a call to getpid() that
1612  // returns a unique pid for the calling thread, then look at the
1613  // OSThread::thread_id() method in osThread_linux.hpp file
1614
1615  return (int)(_initial_pid ? _initial_pid : getpid());
1616}
1617
1618// DLL functions
1619
1620const char* os::dll_file_extension() { return ".so"; }
1621
1622// This must be hard coded because it's the system's temporary
1623// directory not the java application's temp directory, ala java.io.tmpdir.
1624const char* os::get_temp_directory() { return "/tmp"; }
1625
1626static bool file_exists(const char* filename) {
1627  struct stat statbuf;
1628  if (filename == NULL || strlen(filename) == 0) {
1629    return false;
1630  }
1631  return os::stat(filename, &statbuf) == 0;
1632}
1633
1634bool os::dll_build_name(char* buffer, size_t buflen,
1635                        const char* pname, const char* fname) {
1636  bool retval = false;
1637  // Copied from libhpi
1638  const size_t pnamelen = pname ? strlen(pname) : 0;
1639
1640  // Return error on buffer overflow.
1641  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1642    return retval;
1643  }
1644
1645  if (pnamelen == 0) {
1646    snprintf(buffer, buflen, "lib%s.so", fname);
1647    retval = true;
1648  } else if (strchr(pname, *os::path_separator()) != NULL) {
1649    int n;
1650    char** pelements = split_path(pname, &n);
1651    for (int i = 0 ; i < n ; i++) {
1652      // Really shouldn't be NULL, but check can't hurt
1653      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1654        continue; // skip the empty path values
1655      }
1656      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1657      if (file_exists(buffer)) {
1658        retval = true;
1659        break;
1660      }
1661    }
1662    // release the storage
1663    for (int i = 0 ; i < n ; i++) {
1664      if (pelements[i] != NULL) {
1665        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1666      }
1667    }
1668    if (pelements != NULL) {
1669      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1670    }
1671  } else {
1672    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1673    retval = true;
1674  }
1675  return retval;
1676}
1677
1678const char* os::get_current_directory(char *buf, int buflen) {
1679  return getcwd(buf, buflen);
1680}
1681
1682// check if addr is inside libjvm[_g].so
1683bool os::address_is_in_vm(address addr) {
1684  static address libjvm_base_addr;
1685  Dl_info dlinfo;
1686
1687  if (libjvm_base_addr == NULL) {
1688    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1689    libjvm_base_addr = (address)dlinfo.dli_fbase;
1690    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1691  }
1692
1693  if (dladdr((void *)addr, &dlinfo)) {
1694    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1695  }
1696
1697  return false;
1698}
1699
1700bool os::dll_address_to_function_name(address addr, char *buf,
1701                                      int buflen, int *offset) {
1702  Dl_info dlinfo;
1703
1704  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1705    if (buf != NULL) {
1706      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1707        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1708      }
1709    }
1710    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1711    return true;
1712  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1713    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1714        buf, buflen, offset, dlinfo.dli_fname)) {
1715       return true;
1716    }
1717  }
1718
1719  if (buf != NULL) buf[0] = '\0';
1720  if (offset != NULL) *offset = -1;
1721  return false;
1722}
1723
1724struct _address_to_library_name {
1725  address addr;          // input : memory address
1726  size_t  buflen;        //         size of fname
1727  char*   fname;         // output: library name
1728  address base;          //         library base addr
1729};
1730
1731static int address_to_library_name_callback(struct dl_phdr_info *info,
1732                                            size_t size, void *data) {
1733  int i;
1734  bool found = false;
1735  address libbase = NULL;
1736  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1737
1738  // iterate through all loadable segments
1739  for (i = 0; i < info->dlpi_phnum; i++) {
1740    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1741    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1742      // base address of a library is the lowest address of its loaded
1743      // segments.
1744      if (libbase == NULL || libbase > segbase) {
1745        libbase = segbase;
1746      }
1747      // see if 'addr' is within current segment
1748      if (segbase <= d->addr &&
1749          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1750        found = true;
1751      }
1752    }
1753  }
1754
1755  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1756  // so dll_address_to_library_name() can fall through to use dladdr() which
1757  // can figure out executable name from argv[0].
1758  if (found && info->dlpi_name && info->dlpi_name[0]) {
1759    d->base = libbase;
1760    if (d->fname) {
1761      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1762    }
1763    return 1;
1764  }
1765  return 0;
1766}
1767
1768bool os::dll_address_to_library_name(address addr, char* buf,
1769                                     int buflen, int* offset) {
1770  Dl_info dlinfo;
1771  struct _address_to_library_name data;
1772
1773  // There is a bug in old glibc dladdr() implementation that it could resolve
1774  // to wrong library name if the .so file has a base address != NULL. Here
1775  // we iterate through the program headers of all loaded libraries to find
1776  // out which library 'addr' really belongs to. This workaround can be
1777  // removed once the minimum requirement for glibc is moved to 2.3.x.
1778  data.addr = addr;
1779  data.fname = buf;
1780  data.buflen = buflen;
1781  data.base = NULL;
1782  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1783
1784  if (rslt) {
1785     // buf already contains library name
1786     if (offset) *offset = addr - data.base;
1787     return true;
1788  } else if (dladdr((void*)addr, &dlinfo)){
1789     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1790     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1791     return true;
1792  } else {
1793     if (buf) buf[0] = '\0';
1794     if (offset) *offset = -1;
1795     return false;
1796  }
1797}
1798
1799  // Loads .dll/.so and
1800  // in case of error it checks if .dll/.so was built for the
1801  // same architecture as Hotspot is running on
1802
1803void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1804{
1805  void * result= ::dlopen(filename, RTLD_LAZY);
1806  if (result != NULL) {
1807    // Successful loading
1808    return result;
1809  }
1810
1811  Elf32_Ehdr elf_head;
1812
1813  // Read system error message into ebuf
1814  // It may or may not be overwritten below
1815  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1816  ebuf[ebuflen-1]='\0';
1817  int diag_msg_max_length=ebuflen-strlen(ebuf);
1818  char* diag_msg_buf=ebuf+strlen(ebuf);
1819
1820  if (diag_msg_max_length==0) {
1821    // No more space in ebuf for additional diagnostics message
1822    return NULL;
1823  }
1824
1825
1826  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1827
1828  if (file_descriptor < 0) {
1829    // Can't open library, report dlerror() message
1830    return NULL;
1831  }
1832
1833  bool failed_to_read_elf_head=
1834    (sizeof(elf_head)!=
1835        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1836
1837  ::close(file_descriptor);
1838  if (failed_to_read_elf_head) {
1839    // file i/o error - report dlerror() msg
1840    return NULL;
1841  }
1842
1843  typedef struct {
1844    Elf32_Half  code;         // Actual value as defined in elf.h
1845    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1846    char        elf_class;    // 32 or 64 bit
1847    char        endianess;    // MSB or LSB
1848    char*       name;         // String representation
1849  } arch_t;
1850
1851  #ifndef EM_486
1852  #define EM_486          6               /* Intel 80486 */
1853  #endif
1854
1855  static const arch_t arch_array[]={
1856    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1857    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1858    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1859    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1860    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1861    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1862    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1863    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1864    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1865    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1866    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1867    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1868    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1869    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1870    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1871    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1872  };
1873
1874  #if  (defined IA32)
1875    static  Elf32_Half running_arch_code=EM_386;
1876  #elif   (defined AMD64)
1877    static  Elf32_Half running_arch_code=EM_X86_64;
1878  #elif  (defined IA64)
1879    static  Elf32_Half running_arch_code=EM_IA_64;
1880  #elif  (defined __sparc) && (defined _LP64)
1881    static  Elf32_Half running_arch_code=EM_SPARCV9;
1882  #elif  (defined __sparc) && (!defined _LP64)
1883    static  Elf32_Half running_arch_code=EM_SPARC;
1884  #elif  (defined __powerpc64__)
1885    static  Elf32_Half running_arch_code=EM_PPC64;
1886  #elif  (defined __powerpc__)
1887    static  Elf32_Half running_arch_code=EM_PPC;
1888  #elif  (defined ARM)
1889    static  Elf32_Half running_arch_code=EM_ARM;
1890  #elif  (defined S390)
1891    static  Elf32_Half running_arch_code=EM_S390;
1892  #elif  (defined ALPHA)
1893    static  Elf32_Half running_arch_code=EM_ALPHA;
1894  #elif  (defined MIPSEL)
1895    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1896  #elif  (defined PARISC)
1897    static  Elf32_Half running_arch_code=EM_PARISC;
1898  #elif  (defined MIPS)
1899    static  Elf32_Half running_arch_code=EM_MIPS;
1900  #elif  (defined M68K)
1901    static  Elf32_Half running_arch_code=EM_68K;
1902  #else
1903    #error Method os::dll_load requires that one of following is defined:\
1904         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1905  #endif
1906
1907  // Identify compatability class for VM's architecture and library's architecture
1908  // Obtain string descriptions for architectures
1909
1910  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1911  int running_arch_index=-1;
1912
1913  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1914    if (running_arch_code == arch_array[i].code) {
1915      running_arch_index    = i;
1916    }
1917    if (lib_arch.code == arch_array[i].code) {
1918      lib_arch.compat_class = arch_array[i].compat_class;
1919      lib_arch.name         = arch_array[i].name;
1920    }
1921  }
1922
1923  assert(running_arch_index != -1,
1924    "Didn't find running architecture code (running_arch_code) in arch_array");
1925  if (running_arch_index == -1) {
1926    // Even though running architecture detection failed
1927    // we may still continue with reporting dlerror() message
1928    return NULL;
1929  }
1930
1931  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1932    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1933    return NULL;
1934  }
1935
1936#ifndef S390
1937  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1938    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1939    return NULL;
1940  }
1941#endif // !S390
1942
1943  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1944    if ( lib_arch.name!=NULL ) {
1945      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1947        lib_arch.name, arch_array[running_arch_index].name);
1948    } else {
1949      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1950      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1951        lib_arch.code,
1952        arch_array[running_arch_index].name);
1953    }
1954  }
1955
1956  return NULL;
1957}
1958
1959/*
1960 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1961 * chances are you might want to run the generated bits against glibc-2.0
1962 * libdl.so, so always use locking for any version of glibc.
1963 */
1964void* os::dll_lookup(void* handle, const char* name) {
1965  pthread_mutex_lock(&dl_mutex);
1966  void* res = dlsym(handle, name);
1967  pthread_mutex_unlock(&dl_mutex);
1968  return res;
1969}
1970
1971
1972static bool _print_ascii_file(const char* filename, outputStream* st) {
1973  int fd = ::open(filename, O_RDONLY);
1974  if (fd == -1) {
1975     return false;
1976  }
1977
1978  char buf[32];
1979  int bytes;
1980  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1981    st->print_raw(buf, bytes);
1982  }
1983
1984  ::close(fd);
1985
1986  return true;
1987}
1988
1989void os::print_dll_info(outputStream *st) {
1990   st->print_cr("Dynamic libraries:");
1991
1992   char fname[32];
1993   pid_t pid = os::Linux::gettid();
1994
1995   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1996
1997   if (!_print_ascii_file(fname, st)) {
1998     st->print("Can not get library information for pid = %d\n", pid);
1999   }
2000}
2001
2002void os::print_os_info_brief(outputStream* st) {
2003  os::Linux::print_distro_info(st);
2004
2005  os::Posix::print_uname_info(st);
2006
2007  os::Linux::print_libversion_info(st);
2008
2009}
2010
2011void os::print_os_info(outputStream* st) {
2012  st->print("OS:");
2013
2014  os::Linux::print_distro_info(st);
2015
2016  os::Posix::print_uname_info(st);
2017
2018  // Print warning if unsafe chroot environment detected
2019  if (unsafe_chroot_detected) {
2020    st->print("WARNING!! ");
2021    st->print_cr(unstable_chroot_error);
2022  }
2023
2024  os::Linux::print_libversion_info(st);
2025
2026  os::Posix::print_rlimit_info(st);
2027
2028  os::Posix::print_load_average(st);
2029
2030  os::Linux::print_full_memory_info(st);
2031}
2032
2033// Try to identify popular distros.
2034// Most Linux distributions have /etc/XXX-release file, which contains
2035// the OS version string. Some have more than one /etc/XXX-release file
2036// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2037// so the order is important.
2038void os::Linux::print_distro_info(outputStream* st) {
2039  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2040      !_print_ascii_file("/etc/sun-release", st) &&
2041      !_print_ascii_file("/etc/redhat-release", st) &&
2042      !_print_ascii_file("/etc/SuSE-release", st) &&
2043      !_print_ascii_file("/etc/turbolinux-release", st) &&
2044      !_print_ascii_file("/etc/gentoo-release", st) &&
2045      !_print_ascii_file("/etc/debian_version", st) &&
2046      !_print_ascii_file("/etc/ltib-release", st) &&
2047      !_print_ascii_file("/etc/angstrom-version", st)) {
2048      st->print("Linux");
2049  }
2050  st->cr();
2051}
2052
2053void os::Linux::print_libversion_info(outputStream* st) {
2054  // libc, pthread
2055  st->print("libc:");
2056  st->print(os::Linux::glibc_version()); st->print(" ");
2057  st->print(os::Linux::libpthread_version()); st->print(" ");
2058  if (os::Linux::is_LinuxThreads()) {
2059     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2060  }
2061  st->cr();
2062}
2063
2064void os::Linux::print_full_memory_info(outputStream* st) {
2065   st->print("\n/proc/meminfo:\n");
2066   _print_ascii_file("/proc/meminfo", st);
2067   st->cr();
2068}
2069
2070void os::print_memory_info(outputStream* st) {
2071
2072  st->print("Memory:");
2073  st->print(" %dk page", os::vm_page_size()>>10);
2074
2075  // values in struct sysinfo are "unsigned long"
2076  struct sysinfo si;
2077  sysinfo(&si);
2078
2079  st->print(", physical " UINT64_FORMAT "k",
2080            os::physical_memory() >> 10);
2081  st->print("(" UINT64_FORMAT "k free)",
2082            os::available_memory() >> 10);
2083  st->print(", swap " UINT64_FORMAT "k",
2084            ((jlong)si.totalswap * si.mem_unit) >> 10);
2085  st->print("(" UINT64_FORMAT "k free)",
2086            ((jlong)si.freeswap * si.mem_unit) >> 10);
2087  st->cr();
2088}
2089
2090void os::pd_print_cpu_info(outputStream* st) {
2091  st->print("\n/proc/cpuinfo:\n");
2092  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2093    st->print("  <Not Available>");
2094  }
2095  st->cr();
2096}
2097
2098// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2099// but they're the same for all the linux arch that we support
2100// and they're the same for solaris but there's no common place to put this.
2101const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2102                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2103                          "ILL_COPROC", "ILL_BADSTK" };
2104
2105const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2106                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2107                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2108
2109const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2110
2111const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2112
2113void os::print_siginfo(outputStream* st, void* siginfo) {
2114  st->print("siginfo:");
2115
2116  const int buflen = 100;
2117  char buf[buflen];
2118  siginfo_t *si = (siginfo_t*)siginfo;
2119  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2120  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2121    st->print("si_errno=%s", buf);
2122  } else {
2123    st->print("si_errno=%d", si->si_errno);
2124  }
2125  const int c = si->si_code;
2126  assert(c > 0, "unexpected si_code");
2127  switch (si->si_signo) {
2128  case SIGILL:
2129    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2130    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2131    break;
2132  case SIGFPE:
2133    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2134    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2135    break;
2136  case SIGSEGV:
2137    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2138    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2139    break;
2140  case SIGBUS:
2141    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2142    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2143    break;
2144  default:
2145    st->print(", si_code=%d", si->si_code);
2146    // no si_addr
2147  }
2148
2149  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2150      UseSharedSpaces) {
2151    FileMapInfo* mapinfo = FileMapInfo::current_info();
2152    if (mapinfo->is_in_shared_space(si->si_addr)) {
2153      st->print("\n\nError accessing class data sharing archive."   \
2154                " Mapped file inaccessible during execution, "      \
2155                " possible disk/network problem.");
2156    }
2157  }
2158  st->cr();
2159}
2160
2161
2162static void print_signal_handler(outputStream* st, int sig,
2163                                 char* buf, size_t buflen);
2164
2165void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2166  st->print_cr("Signal Handlers:");
2167  print_signal_handler(st, SIGSEGV, buf, buflen);
2168  print_signal_handler(st, SIGBUS , buf, buflen);
2169  print_signal_handler(st, SIGFPE , buf, buflen);
2170  print_signal_handler(st, SIGPIPE, buf, buflen);
2171  print_signal_handler(st, SIGXFSZ, buf, buflen);
2172  print_signal_handler(st, SIGILL , buf, buflen);
2173  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2174  print_signal_handler(st, SR_signum, buf, buflen);
2175  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2176  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2177  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2178  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2179}
2180
2181static char saved_jvm_path[MAXPATHLEN] = {0};
2182
2183// Find the full path to the current module, libjvm.so or libjvm_g.so
2184void os::jvm_path(char *buf, jint buflen) {
2185  // Error checking.
2186  if (buflen < MAXPATHLEN) {
2187    assert(false, "must use a large-enough buffer");
2188    buf[0] = '\0';
2189    return;
2190  }
2191  // Lazy resolve the path to current module.
2192  if (saved_jvm_path[0] != 0) {
2193    strcpy(buf, saved_jvm_path);
2194    return;
2195  }
2196
2197  char dli_fname[MAXPATHLEN];
2198  bool ret = dll_address_to_library_name(
2199                CAST_FROM_FN_PTR(address, os::jvm_path),
2200                dli_fname, sizeof(dli_fname), NULL);
2201  assert(ret != 0, "cannot locate libjvm");
2202  char *rp = realpath(dli_fname, buf);
2203  if (rp == NULL)
2204    return;
2205
2206  if (Arguments::created_by_gamma_launcher()) {
2207    // Support for the gamma launcher.  Typical value for buf is
2208    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2209    // the right place in the string, then assume we are installed in a JDK and
2210    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2211    // up the path so it looks like libjvm.so is installed there (append a
2212    // fake suffix hotspot/libjvm.so).
2213    const char *p = buf + strlen(buf) - 1;
2214    for (int count = 0; p > buf && count < 5; ++count) {
2215      for (--p; p > buf && *p != '/'; --p)
2216        /* empty */ ;
2217    }
2218
2219    if (strncmp(p, "/jre/lib/", 9) != 0) {
2220      // Look for JAVA_HOME in the environment.
2221      char* java_home_var = ::getenv("JAVA_HOME");
2222      if (java_home_var != NULL && java_home_var[0] != 0) {
2223        char* jrelib_p;
2224        int len;
2225
2226        // Check the current module name "libjvm.so" or "libjvm_g.so".
2227        p = strrchr(buf, '/');
2228        assert(strstr(p, "/libjvm") == p, "invalid library name");
2229        p = strstr(p, "_g") ? "_g" : "";
2230
2231        rp = realpath(java_home_var, buf);
2232        if (rp == NULL)
2233          return;
2234
2235        // determine if this is a legacy image or modules image
2236        // modules image doesn't have "jre" subdirectory
2237        len = strlen(buf);
2238        jrelib_p = buf + len;
2239        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2240        if (0 != access(buf, F_OK)) {
2241          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2242        }
2243
2244        if (0 == access(buf, F_OK)) {
2245          // Use current module name "libjvm[_g].so" instead of
2246          // "libjvm"debug_only("_g")".so" since for fastdebug version
2247          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2248          len = strlen(buf);
2249          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2250        } else {
2251          // Go back to path of .so
2252          rp = realpath(dli_fname, buf);
2253          if (rp == NULL)
2254            return;
2255        }
2256      }
2257    }
2258  }
2259
2260  strcpy(saved_jvm_path, buf);
2261}
2262
2263void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2264  // no prefix required, not even "_"
2265}
2266
2267void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2268  // no suffix required
2269}
2270
2271////////////////////////////////////////////////////////////////////////////////
2272// sun.misc.Signal support
2273
2274static volatile jint sigint_count = 0;
2275
2276static void
2277UserHandler(int sig, void *siginfo, void *context) {
2278  // 4511530 - sem_post is serialized and handled by the manager thread. When
2279  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2280  // don't want to flood the manager thread with sem_post requests.
2281  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2282      return;
2283
2284  // Ctrl-C is pressed during error reporting, likely because the error
2285  // handler fails to abort. Let VM die immediately.
2286  if (sig == SIGINT && is_error_reported()) {
2287     os::die();
2288  }
2289
2290  os::signal_notify(sig);
2291}
2292
2293void* os::user_handler() {
2294  return CAST_FROM_FN_PTR(void*, UserHandler);
2295}
2296
2297extern "C" {
2298  typedef void (*sa_handler_t)(int);
2299  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2300}
2301
2302void* os::signal(int signal_number, void* handler) {
2303  struct sigaction sigAct, oldSigAct;
2304
2305  sigfillset(&(sigAct.sa_mask));
2306  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2307  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2308
2309  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2310    // -1 means registration failed
2311    return (void *)-1;
2312  }
2313
2314  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2315}
2316
2317void os::signal_raise(int signal_number) {
2318  ::raise(signal_number);
2319}
2320
2321/*
2322 * The following code is moved from os.cpp for making this
2323 * code platform specific, which it is by its very nature.
2324 */
2325
2326// Will be modified when max signal is changed to be dynamic
2327int os::sigexitnum_pd() {
2328  return NSIG;
2329}
2330
2331// a counter for each possible signal value
2332static volatile jint pending_signals[NSIG+1] = { 0 };
2333
2334// Linux(POSIX) specific hand shaking semaphore.
2335static sem_t sig_sem;
2336
2337void os::signal_init_pd() {
2338  // Initialize signal structures
2339  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2340
2341  // Initialize signal semaphore
2342  ::sem_init(&sig_sem, 0, 0);
2343}
2344
2345void os::signal_notify(int sig) {
2346  Atomic::inc(&pending_signals[sig]);
2347  ::sem_post(&sig_sem);
2348}
2349
2350static int check_pending_signals(bool wait) {
2351  Atomic::store(0, &sigint_count);
2352  for (;;) {
2353    for (int i = 0; i < NSIG + 1; i++) {
2354      jint n = pending_signals[i];
2355      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2356        return i;
2357      }
2358    }
2359    if (!wait) {
2360      return -1;
2361    }
2362    JavaThread *thread = JavaThread::current();
2363    ThreadBlockInVM tbivm(thread);
2364
2365    bool threadIsSuspended;
2366    do {
2367      thread->set_suspend_equivalent();
2368      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2369      ::sem_wait(&sig_sem);
2370
2371      // were we externally suspended while we were waiting?
2372      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2373      if (threadIsSuspended) {
2374        //
2375        // The semaphore has been incremented, but while we were waiting
2376        // another thread suspended us. We don't want to continue running
2377        // while suspended because that would surprise the thread that
2378        // suspended us.
2379        //
2380        ::sem_post(&sig_sem);
2381
2382        thread->java_suspend_self();
2383      }
2384    } while (threadIsSuspended);
2385  }
2386}
2387
2388int os::signal_lookup() {
2389  return check_pending_signals(false);
2390}
2391
2392int os::signal_wait() {
2393  return check_pending_signals(true);
2394}
2395
2396////////////////////////////////////////////////////////////////////////////////
2397// Virtual Memory
2398
2399int os::vm_page_size() {
2400  // Seems redundant as all get out
2401  assert(os::Linux::page_size() != -1, "must call os::init");
2402  return os::Linux::page_size();
2403}
2404
2405// Solaris allocates memory by pages.
2406int os::vm_allocation_granularity() {
2407  assert(os::Linux::page_size() != -1, "must call os::init");
2408  return os::Linux::page_size();
2409}
2410
2411// Rationale behind this function:
2412//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2413//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2414//  samples for JITted code. Here we create private executable mapping over the code cache
2415//  and then we can use standard (well, almost, as mapping can change) way to provide
2416//  info for the reporting script by storing timestamp and location of symbol
2417void linux_wrap_code(char* base, size_t size) {
2418  static volatile jint cnt = 0;
2419
2420  if (!UseOprofile) {
2421    return;
2422  }
2423
2424  char buf[PATH_MAX+1];
2425  int num = Atomic::add(1, &cnt);
2426
2427  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2428           os::get_temp_directory(), os::current_process_id(), num);
2429  unlink(buf);
2430
2431  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2432
2433  if (fd != -1) {
2434    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2435    if (rv != (off_t)-1) {
2436      if (::write(fd, "", 1) == 1) {
2437        mmap(base, size,
2438             PROT_READ|PROT_WRITE|PROT_EXEC,
2439             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2440      }
2441    }
2442    ::close(fd);
2443    unlink(buf);
2444  }
2445}
2446
2447// NOTE: Linux kernel does not really reserve the pages for us.
2448//       All it does is to check if there are enough free pages
2449//       left at the time of mmap(). This could be a potential
2450//       problem.
2451bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2452  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2453  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2454                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2455  if (res != (uintptr_t) MAP_FAILED) {
2456    if (UseNUMAInterleaving) {
2457      numa_make_global(addr, size);
2458    }
2459    return true;
2460  }
2461  return false;
2462}
2463
2464// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2465#ifndef MAP_HUGETLB
2466#define MAP_HUGETLB 0x40000
2467#endif
2468
2469// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2470#ifndef MADV_HUGEPAGE
2471#define MADV_HUGEPAGE 14
2472#endif
2473
2474bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2475                       bool exec) {
2476  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2477    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2478    uintptr_t res =
2479      (uintptr_t) ::mmap(addr, size, prot,
2480                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2481                         -1, 0);
2482    if (res != (uintptr_t) MAP_FAILED) {
2483      if (UseNUMAInterleaving) {
2484        numa_make_global(addr, size);
2485      }
2486      return true;
2487    }
2488    // Fall through and try to use small pages
2489  }
2490
2491  if (commit_memory(addr, size, exec)) {
2492    realign_memory(addr, size, alignment_hint);
2493    return true;
2494  }
2495  return false;
2496}
2497
2498void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2499  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2500    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2501    // be supported or the memory may already be backed by huge pages.
2502    ::madvise(addr, bytes, MADV_HUGEPAGE);
2503  }
2504}
2505
2506void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2507  // This method works by doing an mmap over an existing mmaping and effectively discarding
2508  // the existing pages. However it won't work for SHM-based large pages that cannot be
2509  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2510  // small pages on top of the SHM segment. This method always works for small pages, so we
2511  // allow that in any case.
2512  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2513    commit_memory(addr, bytes, alignment_hint, false);
2514  }
2515}
2516
2517void os::numa_make_global(char *addr, size_t bytes) {
2518  Linux::numa_interleave_memory(addr, bytes);
2519}
2520
2521void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2522  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2523}
2524
2525bool os::numa_topology_changed()   { return false; }
2526
2527size_t os::numa_get_groups_num() {
2528  int max_node = Linux::numa_max_node();
2529  return max_node > 0 ? max_node + 1 : 1;
2530}
2531
2532int os::numa_get_group_id() {
2533  int cpu_id = Linux::sched_getcpu();
2534  if (cpu_id != -1) {
2535    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2536    if (lgrp_id != -1) {
2537      return lgrp_id;
2538    }
2539  }
2540  return 0;
2541}
2542
2543size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2544  for (size_t i = 0; i < size; i++) {
2545    ids[i] = i;
2546  }
2547  return size;
2548}
2549
2550bool os::get_page_info(char *start, page_info* info) {
2551  return false;
2552}
2553
2554char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2555  return end;
2556}
2557
2558
2559int os::Linux::sched_getcpu_syscall(void) {
2560  unsigned int cpu;
2561  int retval = -1;
2562
2563#if defined(IA32)
2564# ifndef SYS_getcpu
2565# define SYS_getcpu 318
2566# endif
2567  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2568#elif defined(AMD64)
2569// Unfortunately we have to bring all these macros here from vsyscall.h
2570// to be able to compile on old linuxes.
2571# define __NR_vgetcpu 2
2572# define VSYSCALL_START (-10UL << 20)
2573# define VSYSCALL_SIZE 1024
2574# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2575  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2576  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2577  retval = vgetcpu(&cpu, NULL, NULL);
2578#endif
2579
2580  return (retval == -1) ? retval : cpu;
2581}
2582
2583// Something to do with the numa-aware allocator needs these symbols
2584extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2585extern "C" JNIEXPORT void numa_error(char *where) { }
2586extern "C" JNIEXPORT int fork1() { return fork(); }
2587
2588
2589// If we are running with libnuma version > 2, then we should
2590// be trying to use symbols with versions 1.1
2591// If we are running with earlier version, which did not have symbol versions,
2592// we should use the base version.
2593void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2594  void *f = dlvsym(handle, name, "libnuma_1.1");
2595  if (f == NULL) {
2596    f = dlsym(handle, name);
2597  }
2598  return f;
2599}
2600
2601bool os::Linux::libnuma_init() {
2602  // sched_getcpu() should be in libc.
2603  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2604                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2605
2606  // If it's not, try a direct syscall.
2607  if (sched_getcpu() == -1)
2608    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2609
2610  if (sched_getcpu() != -1) { // Does it work?
2611    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2612    if (handle != NULL) {
2613      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2614                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2615      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2616                                       libnuma_dlsym(handle, "numa_max_node")));
2617      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2618                                        libnuma_dlsym(handle, "numa_available")));
2619      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2620                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2621      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2622                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2623
2624
2625      if (numa_available() != -1) {
2626        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2627        // Create a cpu -> node mapping
2628        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2629        rebuild_cpu_to_node_map();
2630        return true;
2631      }
2632    }
2633  }
2634  return false;
2635}
2636
2637// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2638// The table is later used in get_node_by_cpu().
2639void os::Linux::rebuild_cpu_to_node_map() {
2640  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2641                              // in libnuma (possible values are starting from 16,
2642                              // and continuing up with every other power of 2, but less
2643                              // than the maximum number of CPUs supported by kernel), and
2644                              // is a subject to change (in libnuma version 2 the requirements
2645                              // are more reasonable) we'll just hardcode the number they use
2646                              // in the library.
2647  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2648
2649  size_t cpu_num = os::active_processor_count();
2650  size_t cpu_map_size = NCPUS / BitsPerCLong;
2651  size_t cpu_map_valid_size =
2652    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2653
2654  cpu_to_node()->clear();
2655  cpu_to_node()->at_grow(cpu_num - 1);
2656  size_t node_num = numa_get_groups_num();
2657
2658  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2659  for (size_t i = 0; i < node_num; i++) {
2660    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2661      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2662        if (cpu_map[j] != 0) {
2663          for (size_t k = 0; k < BitsPerCLong; k++) {
2664            if (cpu_map[j] & (1UL << k)) {
2665              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2666            }
2667          }
2668        }
2669      }
2670    }
2671  }
2672  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2673}
2674
2675int os::Linux::get_node_by_cpu(int cpu_id) {
2676  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2677    return cpu_to_node()->at(cpu_id);
2678  }
2679  return -1;
2680}
2681
2682GrowableArray<int>* os::Linux::_cpu_to_node;
2683os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2684os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2685os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2686os::Linux::numa_available_func_t os::Linux::_numa_available;
2687os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2688os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2689unsigned long* os::Linux::_numa_all_nodes;
2690
2691bool os::pd_uncommit_memory(char* addr, size_t size) {
2692  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2693                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2694  return res  != (uintptr_t) MAP_FAILED;
2695}
2696
2697// Linux uses a growable mapping for the stack, and if the mapping for
2698// the stack guard pages is not removed when we detach a thread the
2699// stack cannot grow beyond the pages where the stack guard was
2700// mapped.  If at some point later in the process the stack expands to
2701// that point, the Linux kernel cannot expand the stack any further
2702// because the guard pages are in the way, and a segfault occurs.
2703//
2704// However, it's essential not to split the stack region by unmapping
2705// a region (leaving a hole) that's already part of the stack mapping,
2706// so if the stack mapping has already grown beyond the guard pages at
2707// the time we create them, we have to truncate the stack mapping.
2708// So, we need to know the extent of the stack mapping when
2709// create_stack_guard_pages() is called.
2710
2711// Find the bounds of the stack mapping.  Return true for success.
2712//
2713// We only need this for stacks that are growable: at the time of
2714// writing thread stacks don't use growable mappings (i.e. those
2715// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2716// only applies to the main thread.
2717
2718static
2719bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2720
2721  char buf[128];
2722  int fd, sz;
2723
2724  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2725    return false;
2726  }
2727
2728  const char kw[] = "[stack]";
2729  const int kwlen = sizeof(kw)-1;
2730
2731  // Address part of /proc/self/maps couldn't be more than 128 bytes
2732  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2733     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2734        // Extract addresses
2735        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2736           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2737           if (sp >= *bottom && sp <= *top) {
2738              ::close(fd);
2739              return true;
2740           }
2741        }
2742     }
2743  }
2744
2745 ::close(fd);
2746  return false;
2747}
2748
2749
2750// If the (growable) stack mapping already extends beyond the point
2751// where we're going to put our guard pages, truncate the mapping at
2752// that point by munmap()ping it.  This ensures that when we later
2753// munmap() the guard pages we don't leave a hole in the stack
2754// mapping. This only affects the main/initial thread, but guard
2755// against future OS changes
2756bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2757  uintptr_t stack_extent, stack_base;
2758  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2759  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2760      assert(os::Linux::is_initial_thread(),
2761           "growable stack in non-initial thread");
2762    if (stack_extent < (uintptr_t)addr)
2763      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2764  }
2765
2766  return os::commit_memory(addr, size);
2767}
2768
2769// If this is a growable mapping, remove the guard pages entirely by
2770// munmap()ping them.  If not, just call uncommit_memory(). This only
2771// affects the main/initial thread, but guard against future OS changes
2772bool os::remove_stack_guard_pages(char* addr, size_t size) {
2773  uintptr_t stack_extent, stack_base;
2774  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2775  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2776      assert(os::Linux::is_initial_thread(),
2777           "growable stack in non-initial thread");
2778
2779    return ::munmap(addr, size) == 0;
2780  }
2781
2782  return os::uncommit_memory(addr, size);
2783}
2784
2785static address _highest_vm_reserved_address = NULL;
2786
2787// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2788// at 'requested_addr'. If there are existing memory mappings at the same
2789// location, however, they will be overwritten. If 'fixed' is false,
2790// 'requested_addr' is only treated as a hint, the return value may or
2791// may not start from the requested address. Unlike Linux mmap(), this
2792// function returns NULL to indicate failure.
2793static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2794  char * addr;
2795  int flags;
2796
2797  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2798  if (fixed) {
2799    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2800    flags |= MAP_FIXED;
2801  }
2802
2803  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2804  // to PROT_EXEC if executable when we commit the page.
2805  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2806                       flags, -1, 0);
2807
2808  if (addr != MAP_FAILED) {
2809    // anon_mmap() should only get called during VM initialization,
2810    // don't need lock (actually we can skip locking even it can be called
2811    // from multiple threads, because _highest_vm_reserved_address is just a
2812    // hint about the upper limit of non-stack memory regions.)
2813    if ((address)addr + bytes > _highest_vm_reserved_address) {
2814      _highest_vm_reserved_address = (address)addr + bytes;
2815    }
2816  }
2817
2818  return addr == MAP_FAILED ? NULL : addr;
2819}
2820
2821// Don't update _highest_vm_reserved_address, because there might be memory
2822// regions above addr + size. If so, releasing a memory region only creates
2823// a hole in the address space, it doesn't help prevent heap-stack collision.
2824//
2825static int anon_munmap(char * addr, size_t size) {
2826  return ::munmap(addr, size) == 0;
2827}
2828
2829char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2830                         size_t alignment_hint) {
2831  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2832}
2833
2834bool os::pd_release_memory(char* addr, size_t size) {
2835  return anon_munmap(addr, size);
2836}
2837
2838static address highest_vm_reserved_address() {
2839  return _highest_vm_reserved_address;
2840}
2841
2842static bool linux_mprotect(char* addr, size_t size, int prot) {
2843  // Linux wants the mprotect address argument to be page aligned.
2844  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2845
2846  // According to SUSv3, mprotect() should only be used with mappings
2847  // established by mmap(), and mmap() always maps whole pages. Unaligned
2848  // 'addr' likely indicates problem in the VM (e.g. trying to change
2849  // protection of malloc'ed or statically allocated memory). Check the
2850  // caller if you hit this assert.
2851  assert(addr == bottom, "sanity check");
2852
2853  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2854  return ::mprotect(bottom, size, prot) == 0;
2855}
2856
2857// Set protections specified
2858bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2859                        bool is_committed) {
2860  unsigned int p = 0;
2861  switch (prot) {
2862  case MEM_PROT_NONE: p = PROT_NONE; break;
2863  case MEM_PROT_READ: p = PROT_READ; break;
2864  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2865  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2866  default:
2867    ShouldNotReachHere();
2868  }
2869  // is_committed is unused.
2870  return linux_mprotect(addr, bytes, p);
2871}
2872
2873bool os::guard_memory(char* addr, size_t size) {
2874  return linux_mprotect(addr, size, PROT_NONE);
2875}
2876
2877bool os::unguard_memory(char* addr, size_t size) {
2878  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2879}
2880
2881bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2882  bool result = false;
2883  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2884                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2885                  -1, 0);
2886
2887  if (p != (void *) -1) {
2888    // We don't know if this really is a huge page or not.
2889    FILE *fp = fopen("/proc/self/maps", "r");
2890    if (fp) {
2891      while (!feof(fp)) {
2892        char chars[257];
2893        long x = 0;
2894        if (fgets(chars, sizeof(chars), fp)) {
2895          if (sscanf(chars, "%lx-%*x", &x) == 1
2896              && x == (long)p) {
2897            if (strstr (chars, "hugepage")) {
2898              result = true;
2899              break;
2900            }
2901          }
2902        }
2903      }
2904      fclose(fp);
2905    }
2906    munmap (p, page_size);
2907    if (result)
2908      return true;
2909  }
2910
2911  if (warn) {
2912    warning("HugeTLBFS is not supported by the operating system.");
2913  }
2914
2915  return result;
2916}
2917
2918/*
2919* Set the coredump_filter bits to include largepages in core dump (bit 6)
2920*
2921* From the coredump_filter documentation:
2922*
2923* - (bit 0) anonymous private memory
2924* - (bit 1) anonymous shared memory
2925* - (bit 2) file-backed private memory
2926* - (bit 3) file-backed shared memory
2927* - (bit 4) ELF header pages in file-backed private memory areas (it is
2928*           effective only if the bit 2 is cleared)
2929* - (bit 5) hugetlb private memory
2930* - (bit 6) hugetlb shared memory
2931*/
2932static void set_coredump_filter(void) {
2933  FILE *f;
2934  long cdm;
2935
2936  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2937    return;
2938  }
2939
2940  if (fscanf(f, "%lx", &cdm) != 1) {
2941    fclose(f);
2942    return;
2943  }
2944
2945  rewind(f);
2946
2947  if ((cdm & LARGEPAGES_BIT) == 0) {
2948    cdm |= LARGEPAGES_BIT;
2949    fprintf(f, "%#lx", cdm);
2950  }
2951
2952  fclose(f);
2953}
2954
2955// Large page support
2956
2957static size_t _large_page_size = 0;
2958
2959void os::large_page_init() {
2960  if (!UseLargePages) {
2961    UseHugeTLBFS = false;
2962    UseSHM = false;
2963    return;
2964  }
2965
2966  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2967    // If UseLargePages is specified on the command line try both methods,
2968    // if it's default, then try only HugeTLBFS.
2969    if (FLAG_IS_DEFAULT(UseLargePages)) {
2970      UseHugeTLBFS = true;
2971    } else {
2972      UseHugeTLBFS = UseSHM = true;
2973    }
2974  }
2975
2976  if (LargePageSizeInBytes) {
2977    _large_page_size = LargePageSizeInBytes;
2978  } else {
2979    // large_page_size on Linux is used to round up heap size. x86 uses either
2980    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2981    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2982    // page as large as 256M.
2983    //
2984    // Here we try to figure out page size by parsing /proc/meminfo and looking
2985    // for a line with the following format:
2986    //    Hugepagesize:     2048 kB
2987    //
2988    // If we can't determine the value (e.g. /proc is not mounted, or the text
2989    // format has been changed), we'll use the largest page size supported by
2990    // the processor.
2991
2992#ifndef ZERO
2993    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2994                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2995#endif // ZERO
2996
2997    FILE *fp = fopen("/proc/meminfo", "r");
2998    if (fp) {
2999      while (!feof(fp)) {
3000        int x = 0;
3001        char buf[16];
3002        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3003          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3004            _large_page_size = x * K;
3005            break;
3006          }
3007        } else {
3008          // skip to next line
3009          for (;;) {
3010            int ch = fgetc(fp);
3011            if (ch == EOF || ch == (int)'\n') break;
3012          }
3013        }
3014      }
3015      fclose(fp);
3016    }
3017  }
3018
3019  // print a warning if any large page related flag is specified on command line
3020  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3021
3022  const size_t default_page_size = (size_t)Linux::page_size();
3023  if (_large_page_size > default_page_size) {
3024    _page_sizes[0] = _large_page_size;
3025    _page_sizes[1] = default_page_size;
3026    _page_sizes[2] = 0;
3027  }
3028  UseHugeTLBFS = UseHugeTLBFS &&
3029                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3030
3031  if (UseHugeTLBFS)
3032    UseSHM = false;
3033
3034  UseLargePages = UseHugeTLBFS || UseSHM;
3035
3036  set_coredump_filter();
3037}
3038
3039#ifndef SHM_HUGETLB
3040#define SHM_HUGETLB 04000
3041#endif
3042
3043char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3044  // "exec" is passed in but not used.  Creating the shared image for
3045  // the code cache doesn't have an SHM_X executable permission to check.
3046  assert(UseLargePages && UseSHM, "only for SHM large pages");
3047
3048  key_t key = IPC_PRIVATE;
3049  char *addr;
3050
3051  bool warn_on_failure = UseLargePages &&
3052                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3053                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3054                        );
3055  char msg[128];
3056
3057  // Create a large shared memory region to attach to based on size.
3058  // Currently, size is the total size of the heap
3059  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3060  if (shmid == -1) {
3061     // Possible reasons for shmget failure:
3062     // 1. shmmax is too small for Java heap.
3063     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3064     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3065     // 2. not enough large page memory.
3066     //    > check available large pages: cat /proc/meminfo
3067     //    > increase amount of large pages:
3068     //          echo new_value > /proc/sys/vm/nr_hugepages
3069     //      Note 1: different Linux may use different name for this property,
3070     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3071     //      Note 2: it's possible there's enough physical memory available but
3072     //            they are so fragmented after a long run that they can't
3073     //            coalesce into large pages. Try to reserve large pages when
3074     //            the system is still "fresh".
3075     if (warn_on_failure) {
3076       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3077       warning(msg);
3078     }
3079     return NULL;
3080  }
3081
3082  // attach to the region
3083  addr = (char*)shmat(shmid, req_addr, 0);
3084  int err = errno;
3085
3086  // Remove shmid. If shmat() is successful, the actual shared memory segment
3087  // will be deleted when it's detached by shmdt() or when the process
3088  // terminates. If shmat() is not successful this will remove the shared
3089  // segment immediately.
3090  shmctl(shmid, IPC_RMID, NULL);
3091
3092  if ((intptr_t)addr == -1) {
3093     if (warn_on_failure) {
3094       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3095       warning(msg);
3096     }
3097     return NULL;
3098  }
3099
3100  if ((addr != NULL) && UseNUMAInterleaving) {
3101    numa_make_global(addr, bytes);
3102  }
3103
3104  return addr;
3105}
3106
3107bool os::release_memory_special(char* base, size_t bytes) {
3108  // detaching the SHM segment will also delete it, see reserve_memory_special()
3109  int rslt = shmdt(base);
3110  return rslt == 0;
3111}
3112
3113size_t os::large_page_size() {
3114  return _large_page_size;
3115}
3116
3117// HugeTLBFS allows application to commit large page memory on demand;
3118// with SysV SHM the entire memory region must be allocated as shared
3119// memory.
3120bool os::can_commit_large_page_memory() {
3121  return UseHugeTLBFS;
3122}
3123
3124bool os::can_execute_large_page_memory() {
3125  return UseHugeTLBFS;
3126}
3127
3128// Reserve memory at an arbitrary address, only if that area is
3129// available (and not reserved for something else).
3130
3131char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3132  const int max_tries = 10;
3133  char* base[max_tries];
3134  size_t size[max_tries];
3135  const size_t gap = 0x000000;
3136
3137  // Assert only that the size is a multiple of the page size, since
3138  // that's all that mmap requires, and since that's all we really know
3139  // about at this low abstraction level.  If we need higher alignment,
3140  // we can either pass an alignment to this method or verify alignment
3141  // in one of the methods further up the call chain.  See bug 5044738.
3142  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3143
3144  // Repeatedly allocate blocks until the block is allocated at the
3145  // right spot. Give up after max_tries. Note that reserve_memory() will
3146  // automatically update _highest_vm_reserved_address if the call is
3147  // successful. The variable tracks the highest memory address every reserved
3148  // by JVM. It is used to detect heap-stack collision if running with
3149  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3150  // space than needed, it could confuse the collision detecting code. To
3151  // solve the problem, save current _highest_vm_reserved_address and
3152  // calculate the correct value before return.
3153  address old_highest = _highest_vm_reserved_address;
3154
3155  // Linux mmap allows caller to pass an address as hint; give it a try first,
3156  // if kernel honors the hint then we can return immediately.
3157  char * addr = anon_mmap(requested_addr, bytes, false);
3158  if (addr == requested_addr) {
3159     return requested_addr;
3160  }
3161
3162  if (addr != NULL) {
3163     // mmap() is successful but it fails to reserve at the requested address
3164     anon_munmap(addr, bytes);
3165  }
3166
3167  int i;
3168  for (i = 0; i < max_tries; ++i) {
3169    base[i] = reserve_memory(bytes);
3170
3171    if (base[i] != NULL) {
3172      // Is this the block we wanted?
3173      if (base[i] == requested_addr) {
3174        size[i] = bytes;
3175        break;
3176      }
3177
3178      // Does this overlap the block we wanted? Give back the overlapped
3179      // parts and try again.
3180
3181      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3182      if (top_overlap >= 0 && top_overlap < bytes) {
3183        unmap_memory(base[i], top_overlap);
3184        base[i] += top_overlap;
3185        size[i] = bytes - top_overlap;
3186      } else {
3187        size_t bottom_overlap = base[i] + bytes - requested_addr;
3188        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3189          unmap_memory(requested_addr, bottom_overlap);
3190          size[i] = bytes - bottom_overlap;
3191        } else {
3192          size[i] = bytes;
3193        }
3194      }
3195    }
3196  }
3197
3198  // Give back the unused reserved pieces.
3199
3200  for (int j = 0; j < i; ++j) {
3201    if (base[j] != NULL) {
3202      unmap_memory(base[j], size[j]);
3203    }
3204  }
3205
3206  if (i < max_tries) {
3207    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3208    return requested_addr;
3209  } else {
3210    _highest_vm_reserved_address = old_highest;
3211    return NULL;
3212  }
3213}
3214
3215size_t os::read(int fd, void *buf, unsigned int nBytes) {
3216  return ::read(fd, buf, nBytes);
3217}
3218
3219// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3220// Solaris uses poll(), linux uses park().
3221// Poll() is likely a better choice, assuming that Thread.interrupt()
3222// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3223// SIGSEGV, see 4355769.
3224
3225int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3226  assert(thread == Thread::current(),  "thread consistency check");
3227
3228  ParkEvent * const slp = thread->_SleepEvent ;
3229  slp->reset() ;
3230  OrderAccess::fence() ;
3231
3232  if (interruptible) {
3233    jlong prevtime = javaTimeNanos();
3234
3235    for (;;) {
3236      if (os::is_interrupted(thread, true)) {
3237        return OS_INTRPT;
3238      }
3239
3240      jlong newtime = javaTimeNanos();
3241
3242      if (newtime - prevtime < 0) {
3243        // time moving backwards, should only happen if no monotonic clock
3244        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3245        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3246      } else {
3247        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3248      }
3249
3250      if(millis <= 0) {
3251        return OS_OK;
3252      }
3253
3254      prevtime = newtime;
3255
3256      {
3257        assert(thread->is_Java_thread(), "sanity check");
3258        JavaThread *jt = (JavaThread *) thread;
3259        ThreadBlockInVM tbivm(jt);
3260        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3261
3262        jt->set_suspend_equivalent();
3263        // cleared by handle_special_suspend_equivalent_condition() or
3264        // java_suspend_self() via check_and_wait_while_suspended()
3265
3266        slp->park(millis);
3267
3268        // were we externally suspended while we were waiting?
3269        jt->check_and_wait_while_suspended();
3270      }
3271    }
3272  } else {
3273    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3274    jlong prevtime = javaTimeNanos();
3275
3276    for (;;) {
3277      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3278      // the 1st iteration ...
3279      jlong newtime = javaTimeNanos();
3280
3281      if (newtime - prevtime < 0) {
3282        // time moving backwards, should only happen if no monotonic clock
3283        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3284        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3285      } else {
3286        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3287      }
3288
3289      if(millis <= 0) break ;
3290
3291      prevtime = newtime;
3292      slp->park(millis);
3293    }
3294    return OS_OK ;
3295  }
3296}
3297
3298int os::naked_sleep() {
3299  // %% make the sleep time an integer flag. for now use 1 millisec.
3300  return os::sleep(Thread::current(), 1, false);
3301}
3302
3303// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3304void os::infinite_sleep() {
3305  while (true) {    // sleep forever ...
3306    ::sleep(100);   // ... 100 seconds at a time
3307  }
3308}
3309
3310// Used to convert frequent JVM_Yield() to nops
3311bool os::dont_yield() {
3312  return DontYieldALot;
3313}
3314
3315void os::yield() {
3316  sched_yield();
3317}
3318
3319os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3320
3321void os::yield_all(int attempts) {
3322  // Yields to all threads, including threads with lower priorities
3323  // Threads on Linux are all with same priority. The Solaris style
3324  // os::yield_all() with nanosleep(1ms) is not necessary.
3325  sched_yield();
3326}
3327
3328// Called from the tight loops to possibly influence time-sharing heuristics
3329void os::loop_breaker(int attempts) {
3330  os::yield_all(attempts);
3331}
3332
3333////////////////////////////////////////////////////////////////////////////////
3334// thread priority support
3335
3336// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3337// only supports dynamic priority, static priority must be zero. For real-time
3338// applications, Linux supports SCHED_RR which allows static priority (1-99).
3339// However, for large multi-threaded applications, SCHED_RR is not only slower
3340// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3341// of 5 runs - Sep 2005).
3342//
3343// The following code actually changes the niceness of kernel-thread/LWP. It
3344// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3345// not the entire user process, and user level threads are 1:1 mapped to kernel
3346// threads. It has always been the case, but could change in the future. For
3347// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3348// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3349
3350int os::java_to_os_priority[CriticalPriority + 1] = {
3351  19,              // 0 Entry should never be used
3352
3353   4,              // 1 MinPriority
3354   3,              // 2
3355   2,              // 3
3356
3357   1,              // 4
3358   0,              // 5 NormPriority
3359  -1,              // 6
3360
3361  -2,              // 7
3362  -3,              // 8
3363  -4,              // 9 NearMaxPriority
3364
3365  -5,              // 10 MaxPriority
3366
3367  -5               // 11 CriticalPriority
3368};
3369
3370static int prio_init() {
3371  if (ThreadPriorityPolicy == 1) {
3372    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3373    // if effective uid is not root. Perhaps, a more elegant way of doing
3374    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3375    if (geteuid() != 0) {
3376      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3377        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3378      }
3379      ThreadPriorityPolicy = 0;
3380    }
3381  }
3382  if (UseCriticalJavaThreadPriority) {
3383    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3384  }
3385  return 0;
3386}
3387
3388OSReturn os::set_native_priority(Thread* thread, int newpri) {
3389  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3390
3391  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3392  return (ret == 0) ? OS_OK : OS_ERR;
3393}
3394
3395OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3396  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3397    *priority_ptr = java_to_os_priority[NormPriority];
3398    return OS_OK;
3399  }
3400
3401  errno = 0;
3402  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3403  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3404}
3405
3406// Hint to the underlying OS that a task switch would not be good.
3407// Void return because it's a hint and can fail.
3408void os::hint_no_preempt() {}
3409
3410////////////////////////////////////////////////////////////////////////////////
3411// suspend/resume support
3412
3413//  the low-level signal-based suspend/resume support is a remnant from the
3414//  old VM-suspension that used to be for java-suspension, safepoints etc,
3415//  within hotspot. Now there is a single use-case for this:
3416//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3417//      that runs in the watcher thread.
3418//  The remaining code is greatly simplified from the more general suspension
3419//  code that used to be used.
3420//
3421//  The protocol is quite simple:
3422//  - suspend:
3423//      - sends a signal to the target thread
3424//      - polls the suspend state of the osthread using a yield loop
3425//      - target thread signal handler (SR_handler) sets suspend state
3426//        and blocks in sigsuspend until continued
3427//  - resume:
3428//      - sets target osthread state to continue
3429//      - sends signal to end the sigsuspend loop in the SR_handler
3430//
3431//  Note that the SR_lock plays no role in this suspend/resume protocol.
3432//
3433
3434static void resume_clear_context(OSThread *osthread) {
3435  osthread->set_ucontext(NULL);
3436  osthread->set_siginfo(NULL);
3437
3438  // notify the suspend action is completed, we have now resumed
3439  osthread->sr.clear_suspended();
3440}
3441
3442static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3443  osthread->set_ucontext(context);
3444  osthread->set_siginfo(siginfo);
3445}
3446
3447//
3448// Handler function invoked when a thread's execution is suspended or
3449// resumed. We have to be careful that only async-safe functions are
3450// called here (Note: most pthread functions are not async safe and
3451// should be avoided.)
3452//
3453// Note: sigwait() is a more natural fit than sigsuspend() from an
3454// interface point of view, but sigwait() prevents the signal hander
3455// from being run. libpthread would get very confused by not having
3456// its signal handlers run and prevents sigwait()'s use with the
3457// mutex granting granting signal.
3458//
3459// Currently only ever called on the VMThread
3460//
3461static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3462  // Save and restore errno to avoid confusing native code with EINTR
3463  // after sigsuspend.
3464  int old_errno = errno;
3465
3466  Thread* thread = Thread::current();
3467  OSThread* osthread = thread->osthread();
3468  assert(thread->is_VM_thread(), "Must be VMThread");
3469  // read current suspend action
3470  int action = osthread->sr.suspend_action();
3471  if (action == SR_SUSPEND) {
3472    suspend_save_context(osthread, siginfo, context);
3473
3474    // Notify the suspend action is about to be completed. do_suspend()
3475    // waits until SR_SUSPENDED is set and then returns. We will wait
3476    // here for a resume signal and that completes the suspend-other
3477    // action. do_suspend/do_resume is always called as a pair from
3478    // the same thread - so there are no races
3479
3480    // notify the caller
3481    osthread->sr.set_suspended();
3482
3483    sigset_t suspend_set;  // signals for sigsuspend()
3484
3485    // get current set of blocked signals and unblock resume signal
3486    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3487    sigdelset(&suspend_set, SR_signum);
3488
3489    // wait here until we are resumed
3490    do {
3491      sigsuspend(&suspend_set);
3492      // ignore all returns until we get a resume signal
3493    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3494
3495    resume_clear_context(osthread);
3496
3497  } else {
3498    assert(action == SR_CONTINUE, "unexpected sr action");
3499    // nothing special to do - just leave the handler
3500  }
3501
3502  errno = old_errno;
3503}
3504
3505
3506static int SR_initialize() {
3507  struct sigaction act;
3508  char *s;
3509  /* Get signal number to use for suspend/resume */
3510  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3511    int sig = ::strtol(s, 0, 10);
3512    if (sig > 0 || sig < _NSIG) {
3513        SR_signum = sig;
3514    }
3515  }
3516
3517  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3518        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3519
3520  sigemptyset(&SR_sigset);
3521  sigaddset(&SR_sigset, SR_signum);
3522
3523  /* Set up signal handler for suspend/resume */
3524  act.sa_flags = SA_RESTART|SA_SIGINFO;
3525  act.sa_handler = (void (*)(int)) SR_handler;
3526
3527  // SR_signum is blocked by default.
3528  // 4528190 - We also need to block pthread restart signal (32 on all
3529  // supported Linux platforms). Note that LinuxThreads need to block
3530  // this signal for all threads to work properly. So we don't have
3531  // to use hard-coded signal number when setting up the mask.
3532  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3533
3534  if (sigaction(SR_signum, &act, 0) == -1) {
3535    return -1;
3536  }
3537
3538  // Save signal flag
3539  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3540  return 0;
3541}
3542
3543static int SR_finalize() {
3544  return 0;
3545}
3546
3547
3548// returns true on success and false on error - really an error is fatal
3549// but this seems the normal response to library errors
3550static bool do_suspend(OSThread* osthread) {
3551  // mark as suspended and send signal
3552  osthread->sr.set_suspend_action(SR_SUSPEND);
3553  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3554  assert_status(status == 0, status, "pthread_kill");
3555
3556  // check status and wait until notified of suspension
3557  if (status == 0) {
3558    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3559      os::yield_all(i);
3560    }
3561    osthread->sr.set_suspend_action(SR_NONE);
3562    return true;
3563  }
3564  else {
3565    osthread->sr.set_suspend_action(SR_NONE);
3566    return false;
3567  }
3568}
3569
3570static void do_resume(OSThread* osthread) {
3571  assert(osthread->sr.is_suspended(), "thread should be suspended");
3572  osthread->sr.set_suspend_action(SR_CONTINUE);
3573
3574  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3575  assert_status(status == 0, status, "pthread_kill");
3576  // check status and wait unit notified of resumption
3577  if (status == 0) {
3578    for (int i = 0; osthread->sr.is_suspended(); i++) {
3579      os::yield_all(i);
3580    }
3581  }
3582  osthread->sr.set_suspend_action(SR_NONE);
3583}
3584
3585////////////////////////////////////////////////////////////////////////////////
3586// interrupt support
3587
3588void os::interrupt(Thread* thread) {
3589  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3590    "possibility of dangling Thread pointer");
3591
3592  OSThread* osthread = thread->osthread();
3593
3594  if (!osthread->interrupted()) {
3595    osthread->set_interrupted(true);
3596    // More than one thread can get here with the same value of osthread,
3597    // resulting in multiple notifications.  We do, however, want the store
3598    // to interrupted() to be visible to other threads before we execute unpark().
3599    OrderAccess::fence();
3600    ParkEvent * const slp = thread->_SleepEvent ;
3601    if (slp != NULL) slp->unpark() ;
3602  }
3603
3604  // For JSR166. Unpark even if interrupt status already was set
3605  if (thread->is_Java_thread())
3606    ((JavaThread*)thread)->parker()->unpark();
3607
3608  ParkEvent * ev = thread->_ParkEvent ;
3609  if (ev != NULL) ev->unpark() ;
3610
3611}
3612
3613bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3614  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3615    "possibility of dangling Thread pointer");
3616
3617  OSThread* osthread = thread->osthread();
3618
3619  bool interrupted = osthread->interrupted();
3620
3621  if (interrupted && clear_interrupted) {
3622    osthread->set_interrupted(false);
3623    // consider thread->_SleepEvent->reset() ... optional optimization
3624  }
3625
3626  return interrupted;
3627}
3628
3629///////////////////////////////////////////////////////////////////////////////////
3630// signal handling (except suspend/resume)
3631
3632// This routine may be used by user applications as a "hook" to catch signals.
3633// The user-defined signal handler must pass unrecognized signals to this
3634// routine, and if it returns true (non-zero), then the signal handler must
3635// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3636// routine will never retun false (zero), but instead will execute a VM panic
3637// routine kill the process.
3638//
3639// If this routine returns false, it is OK to call it again.  This allows
3640// the user-defined signal handler to perform checks either before or after
3641// the VM performs its own checks.  Naturally, the user code would be making
3642// a serious error if it tried to handle an exception (such as a null check
3643// or breakpoint) that the VM was generating for its own correct operation.
3644//
3645// This routine may recognize any of the following kinds of signals:
3646//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3647// It should be consulted by handlers for any of those signals.
3648//
3649// The caller of this routine must pass in the three arguments supplied
3650// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3651// field of the structure passed to sigaction().  This routine assumes that
3652// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3653//
3654// Note that the VM will print warnings if it detects conflicting signal
3655// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3656//
3657extern "C" JNIEXPORT int
3658JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3659                        void* ucontext, int abort_if_unrecognized);
3660
3661void signalHandler(int sig, siginfo_t* info, void* uc) {
3662  assert(info != NULL && uc != NULL, "it must be old kernel");
3663  JVM_handle_linux_signal(sig, info, uc, true);
3664}
3665
3666
3667// This boolean allows users to forward their own non-matching signals
3668// to JVM_handle_linux_signal, harmlessly.
3669bool os::Linux::signal_handlers_are_installed = false;
3670
3671// For signal-chaining
3672struct sigaction os::Linux::sigact[MAXSIGNUM];
3673unsigned int os::Linux::sigs = 0;
3674bool os::Linux::libjsig_is_loaded = false;
3675typedef struct sigaction *(*get_signal_t)(int);
3676get_signal_t os::Linux::get_signal_action = NULL;
3677
3678struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3679  struct sigaction *actp = NULL;
3680
3681  if (libjsig_is_loaded) {
3682    // Retrieve the old signal handler from libjsig
3683    actp = (*get_signal_action)(sig);
3684  }
3685  if (actp == NULL) {
3686    // Retrieve the preinstalled signal handler from jvm
3687    actp = get_preinstalled_handler(sig);
3688  }
3689
3690  return actp;
3691}
3692
3693static bool call_chained_handler(struct sigaction *actp, int sig,
3694                                 siginfo_t *siginfo, void *context) {
3695  // Call the old signal handler
3696  if (actp->sa_handler == SIG_DFL) {
3697    // It's more reasonable to let jvm treat it as an unexpected exception
3698    // instead of taking the default action.
3699    return false;
3700  } else if (actp->sa_handler != SIG_IGN) {
3701    if ((actp->sa_flags & SA_NODEFER) == 0) {
3702      // automaticlly block the signal
3703      sigaddset(&(actp->sa_mask), sig);
3704    }
3705
3706    sa_handler_t hand;
3707    sa_sigaction_t sa;
3708    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3709    // retrieve the chained handler
3710    if (siginfo_flag_set) {
3711      sa = actp->sa_sigaction;
3712    } else {
3713      hand = actp->sa_handler;
3714    }
3715
3716    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3717      actp->sa_handler = SIG_DFL;
3718    }
3719
3720    // try to honor the signal mask
3721    sigset_t oset;
3722    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3723
3724    // call into the chained handler
3725    if (siginfo_flag_set) {
3726      (*sa)(sig, siginfo, context);
3727    } else {
3728      (*hand)(sig);
3729    }
3730
3731    // restore the signal mask
3732    pthread_sigmask(SIG_SETMASK, &oset, 0);
3733  }
3734  // Tell jvm's signal handler the signal is taken care of.
3735  return true;
3736}
3737
3738bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3739  bool chained = false;
3740  // signal-chaining
3741  if (UseSignalChaining) {
3742    struct sigaction *actp = get_chained_signal_action(sig);
3743    if (actp != NULL) {
3744      chained = call_chained_handler(actp, sig, siginfo, context);
3745    }
3746  }
3747  return chained;
3748}
3749
3750struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3751  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3752    return &sigact[sig];
3753  }
3754  return NULL;
3755}
3756
3757void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3758  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3759  sigact[sig] = oldAct;
3760  sigs |= (unsigned int)1 << sig;
3761}
3762
3763// for diagnostic
3764int os::Linux::sigflags[MAXSIGNUM];
3765
3766int os::Linux::get_our_sigflags(int sig) {
3767  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3768  return sigflags[sig];
3769}
3770
3771void os::Linux::set_our_sigflags(int sig, int flags) {
3772  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3773  sigflags[sig] = flags;
3774}
3775
3776void os::Linux::set_signal_handler(int sig, bool set_installed) {
3777  // Check for overwrite.
3778  struct sigaction oldAct;
3779  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3780
3781  void* oldhand = oldAct.sa_sigaction
3782                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3783                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3784  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3785      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3786      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3787    if (AllowUserSignalHandlers || !set_installed) {
3788      // Do not overwrite; user takes responsibility to forward to us.
3789      return;
3790    } else if (UseSignalChaining) {
3791      // save the old handler in jvm
3792      save_preinstalled_handler(sig, oldAct);
3793      // libjsig also interposes the sigaction() call below and saves the
3794      // old sigaction on it own.
3795    } else {
3796      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3797                    "%#lx for signal %d.", (long)oldhand, sig));
3798    }
3799  }
3800
3801  struct sigaction sigAct;
3802  sigfillset(&(sigAct.sa_mask));
3803  sigAct.sa_handler = SIG_DFL;
3804  if (!set_installed) {
3805    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3806  } else {
3807    sigAct.sa_sigaction = signalHandler;
3808    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3809  }
3810  // Save flags, which are set by ours
3811  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3812  sigflags[sig] = sigAct.sa_flags;
3813
3814  int ret = sigaction(sig, &sigAct, &oldAct);
3815  assert(ret == 0, "check");
3816
3817  void* oldhand2  = oldAct.sa_sigaction
3818                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3819                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3820  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3821}
3822
3823// install signal handlers for signals that HotSpot needs to
3824// handle in order to support Java-level exception handling.
3825
3826void os::Linux::install_signal_handlers() {
3827  if (!signal_handlers_are_installed) {
3828    signal_handlers_are_installed = true;
3829
3830    // signal-chaining
3831    typedef void (*signal_setting_t)();
3832    signal_setting_t begin_signal_setting = NULL;
3833    signal_setting_t end_signal_setting = NULL;
3834    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3835                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3836    if (begin_signal_setting != NULL) {
3837      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3838                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3839      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3840                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3841      libjsig_is_loaded = true;
3842      assert(UseSignalChaining, "should enable signal-chaining");
3843    }
3844    if (libjsig_is_loaded) {
3845      // Tell libjsig jvm is setting signal handlers
3846      (*begin_signal_setting)();
3847    }
3848
3849    set_signal_handler(SIGSEGV, true);
3850    set_signal_handler(SIGPIPE, true);
3851    set_signal_handler(SIGBUS, true);
3852    set_signal_handler(SIGILL, true);
3853    set_signal_handler(SIGFPE, true);
3854    set_signal_handler(SIGXFSZ, true);
3855
3856    if (libjsig_is_loaded) {
3857      // Tell libjsig jvm finishes setting signal handlers
3858      (*end_signal_setting)();
3859    }
3860
3861    // We don't activate signal checker if libjsig is in place, we trust ourselves
3862    // and if UserSignalHandler is installed all bets are off.
3863    // Log that signal checking is off only if -verbose:jni is specified.
3864    if (CheckJNICalls) {
3865      if (libjsig_is_loaded) {
3866        if (PrintJNIResolving) {
3867          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3868        }
3869        check_signals = false;
3870      }
3871      if (AllowUserSignalHandlers) {
3872        if (PrintJNIResolving) {
3873          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3874        }
3875        check_signals = false;
3876      }
3877    }
3878  }
3879}
3880
3881// This is the fastest way to get thread cpu time on Linux.
3882// Returns cpu time (user+sys) for any thread, not only for current.
3883// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3884// It might work on 2.6.10+ with a special kernel/glibc patch.
3885// For reference, please, see IEEE Std 1003.1-2004:
3886//   http://www.unix.org/single_unix_specification
3887
3888jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3889  struct timespec tp;
3890  int rc = os::Linux::clock_gettime(clockid, &tp);
3891  assert(rc == 0, "clock_gettime is expected to return 0 code");
3892
3893  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3894}
3895
3896/////
3897// glibc on Linux platform uses non-documented flag
3898// to indicate, that some special sort of signal
3899// trampoline is used.
3900// We will never set this flag, and we should
3901// ignore this flag in our diagnostic
3902#ifdef SIGNIFICANT_SIGNAL_MASK
3903#undef SIGNIFICANT_SIGNAL_MASK
3904#endif
3905#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3906
3907static const char* get_signal_handler_name(address handler,
3908                                           char* buf, int buflen) {
3909  int offset;
3910  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3911  if (found) {
3912    // skip directory names
3913    const char *p1, *p2;
3914    p1 = buf;
3915    size_t len = strlen(os::file_separator());
3916    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3917    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3918  } else {
3919    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3920  }
3921  return buf;
3922}
3923
3924static void print_signal_handler(outputStream* st, int sig,
3925                                 char* buf, size_t buflen) {
3926  struct sigaction sa;
3927
3928  sigaction(sig, NULL, &sa);
3929
3930  // See comment for SIGNIFICANT_SIGNAL_MASK define
3931  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3932
3933  st->print("%s: ", os::exception_name(sig, buf, buflen));
3934
3935  address handler = (sa.sa_flags & SA_SIGINFO)
3936    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3937    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3938
3939  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3940    st->print("SIG_DFL");
3941  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3942    st->print("SIG_IGN");
3943  } else {
3944    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3945  }
3946
3947  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3948
3949  address rh = VMError::get_resetted_sighandler(sig);
3950  // May be, handler was resetted by VMError?
3951  if(rh != NULL) {
3952    handler = rh;
3953    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3954  }
3955
3956  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3957
3958  // Check: is it our handler?
3959  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3960     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3961    // It is our signal handler
3962    // check for flags, reset system-used one!
3963    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3964      st->print(
3965                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3966                os::Linux::get_our_sigflags(sig));
3967    }
3968  }
3969  st->cr();
3970}
3971
3972
3973#define DO_SIGNAL_CHECK(sig) \
3974  if (!sigismember(&check_signal_done, sig)) \
3975    os::Linux::check_signal_handler(sig)
3976
3977// This method is a periodic task to check for misbehaving JNI applications
3978// under CheckJNI, we can add any periodic checks here
3979
3980void os::run_periodic_checks() {
3981
3982  if (check_signals == false) return;
3983
3984  // SEGV and BUS if overridden could potentially prevent
3985  // generation of hs*.log in the event of a crash, debugging
3986  // such a case can be very challenging, so we absolutely
3987  // check the following for a good measure:
3988  DO_SIGNAL_CHECK(SIGSEGV);
3989  DO_SIGNAL_CHECK(SIGILL);
3990  DO_SIGNAL_CHECK(SIGFPE);
3991  DO_SIGNAL_CHECK(SIGBUS);
3992  DO_SIGNAL_CHECK(SIGPIPE);
3993  DO_SIGNAL_CHECK(SIGXFSZ);
3994
3995
3996  // ReduceSignalUsage allows the user to override these handlers
3997  // see comments at the very top and jvm_solaris.h
3998  if (!ReduceSignalUsage) {
3999    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4000    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4001    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4002    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4003  }
4004
4005  DO_SIGNAL_CHECK(SR_signum);
4006  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4007}
4008
4009typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4010
4011static os_sigaction_t os_sigaction = NULL;
4012
4013void os::Linux::check_signal_handler(int sig) {
4014  char buf[O_BUFLEN];
4015  address jvmHandler = NULL;
4016
4017
4018  struct sigaction act;
4019  if (os_sigaction == NULL) {
4020    // only trust the default sigaction, in case it has been interposed
4021    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4022    if (os_sigaction == NULL) return;
4023  }
4024
4025  os_sigaction(sig, (struct sigaction*)NULL, &act);
4026
4027
4028  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4029
4030  address thisHandler = (act.sa_flags & SA_SIGINFO)
4031    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4032    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4033
4034
4035  switch(sig) {
4036  case SIGSEGV:
4037  case SIGBUS:
4038  case SIGFPE:
4039  case SIGPIPE:
4040  case SIGILL:
4041  case SIGXFSZ:
4042    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4043    break;
4044
4045  case SHUTDOWN1_SIGNAL:
4046  case SHUTDOWN2_SIGNAL:
4047  case SHUTDOWN3_SIGNAL:
4048  case BREAK_SIGNAL:
4049    jvmHandler = (address)user_handler();
4050    break;
4051
4052  case INTERRUPT_SIGNAL:
4053    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4054    break;
4055
4056  default:
4057    if (sig == SR_signum) {
4058      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4059    } else {
4060      return;
4061    }
4062    break;
4063  }
4064
4065  if (thisHandler != jvmHandler) {
4066    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4067    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4068    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4069    // No need to check this sig any longer
4070    sigaddset(&check_signal_done, sig);
4071  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4072    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4073    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4074    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4075    // No need to check this sig any longer
4076    sigaddset(&check_signal_done, sig);
4077  }
4078
4079  // Dump all the signal
4080  if (sigismember(&check_signal_done, sig)) {
4081    print_signal_handlers(tty, buf, O_BUFLEN);
4082  }
4083}
4084
4085extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4086
4087extern bool signal_name(int signo, char* buf, size_t len);
4088
4089const char* os::exception_name(int exception_code, char* buf, size_t size) {
4090  if (0 < exception_code && exception_code <= SIGRTMAX) {
4091    // signal
4092    if (!signal_name(exception_code, buf, size)) {
4093      jio_snprintf(buf, size, "SIG%d", exception_code);
4094    }
4095    return buf;
4096  } else {
4097    return NULL;
4098  }
4099}
4100
4101// this is called _before_ the most of global arguments have been parsed
4102void os::init(void) {
4103  char dummy;   /* used to get a guess on initial stack address */
4104//  first_hrtime = gethrtime();
4105
4106  // With LinuxThreads the JavaMain thread pid (primordial thread)
4107  // is different than the pid of the java launcher thread.
4108  // So, on Linux, the launcher thread pid is passed to the VM
4109  // via the sun.java.launcher.pid property.
4110  // Use this property instead of getpid() if it was correctly passed.
4111  // See bug 6351349.
4112  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4113
4114  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4115
4116  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4117
4118  init_random(1234567);
4119
4120  ThreadCritical::initialize();
4121
4122  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4123  if (Linux::page_size() == -1) {
4124    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4125                  strerror(errno)));
4126  }
4127  init_page_sizes((size_t) Linux::page_size());
4128
4129  Linux::initialize_system_info();
4130
4131  // main_thread points to the aboriginal thread
4132  Linux::_main_thread = pthread_self();
4133
4134  Linux::clock_init();
4135  initial_time_count = os::elapsed_counter();
4136  pthread_mutex_init(&dl_mutex, NULL);
4137}
4138
4139// To install functions for atexit system call
4140extern "C" {
4141  static void perfMemory_exit_helper() {
4142    perfMemory_exit();
4143  }
4144}
4145
4146// this is called _after_ the global arguments have been parsed
4147jint os::init_2(void)
4148{
4149  Linux::fast_thread_clock_init();
4150
4151  // Allocate a single page and mark it as readable for safepoint polling
4152  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4153  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4154
4155  os::set_polling_page( polling_page );
4156
4157#ifndef PRODUCT
4158  if(Verbose && PrintMiscellaneous)
4159    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4160#endif
4161
4162  if (!UseMembar) {
4163    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4164    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4165    os::set_memory_serialize_page( mem_serialize_page );
4166
4167#ifndef PRODUCT
4168    if(Verbose && PrintMiscellaneous)
4169      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4170#endif
4171  }
4172
4173  os::large_page_init();
4174
4175  // initialize suspend/resume support - must do this before signal_sets_init()
4176  if (SR_initialize() != 0) {
4177    perror("SR_initialize failed");
4178    return JNI_ERR;
4179  }
4180
4181  Linux::signal_sets_init();
4182  Linux::install_signal_handlers();
4183
4184  // Check minimum allowable stack size for thread creation and to initialize
4185  // the java system classes, including StackOverflowError - depends on page
4186  // size.  Add a page for compiler2 recursion in main thread.
4187  // Add in 2*BytesPerWord times page size to account for VM stack during
4188  // class initialization depending on 32 or 64 bit VM.
4189  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4190            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4191                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4192
4193  size_t threadStackSizeInBytes = ThreadStackSize * K;
4194  if (threadStackSizeInBytes != 0 &&
4195      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4196        tty->print_cr("\nThe stack size specified is too small, "
4197                      "Specify at least %dk",
4198                      os::Linux::min_stack_allowed/ K);
4199        return JNI_ERR;
4200  }
4201
4202  // Make the stack size a multiple of the page size so that
4203  // the yellow/red zones can be guarded.
4204  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4205        vm_page_size()));
4206
4207  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4208
4209  Linux::libpthread_init();
4210  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4211     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4212          Linux::glibc_version(), Linux::libpthread_version(),
4213          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4214  }
4215
4216  if (UseNUMA) {
4217    if (!Linux::libnuma_init()) {
4218      UseNUMA = false;
4219    } else {
4220      if ((Linux::numa_max_node() < 1)) {
4221        // There's only one node(they start from 0), disable NUMA.
4222        UseNUMA = false;
4223      }
4224    }
4225    // With SHM large pages we cannot uncommit a page, so there's not way
4226    // we can make the adaptive lgrp chunk resizing work. If the user specified
4227    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4228    // disable adaptive resizing.
4229    if (UseNUMA && UseLargePages && UseSHM) {
4230      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4231        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4232          UseLargePages = false;
4233        } else {
4234          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4235          UseAdaptiveSizePolicy = false;
4236          UseAdaptiveNUMAChunkSizing = false;
4237        }
4238      } else {
4239        UseNUMA = false;
4240      }
4241    }
4242    if (!UseNUMA && ForceNUMA) {
4243      UseNUMA = true;
4244    }
4245  }
4246
4247  if (MaxFDLimit) {
4248    // set the number of file descriptors to max. print out error
4249    // if getrlimit/setrlimit fails but continue regardless.
4250    struct rlimit nbr_files;
4251    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4252    if (status != 0) {
4253      if (PrintMiscellaneous && (Verbose || WizardMode))
4254        perror("os::init_2 getrlimit failed");
4255    } else {
4256      nbr_files.rlim_cur = nbr_files.rlim_max;
4257      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4258      if (status != 0) {
4259        if (PrintMiscellaneous && (Verbose || WizardMode))
4260          perror("os::init_2 setrlimit failed");
4261      }
4262    }
4263  }
4264
4265  // Initialize lock used to serialize thread creation (see os::create_thread)
4266  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4267
4268  // at-exit methods are called in the reverse order of their registration.
4269  // atexit functions are called on return from main or as a result of a
4270  // call to exit(3C). There can be only 32 of these functions registered
4271  // and atexit() does not set errno.
4272
4273  if (PerfAllowAtExitRegistration) {
4274    // only register atexit functions if PerfAllowAtExitRegistration is set.
4275    // atexit functions can be delayed until process exit time, which
4276    // can be problematic for embedded VM situations. Embedded VMs should
4277    // call DestroyJavaVM() to assure that VM resources are released.
4278
4279    // note: perfMemory_exit_helper atexit function may be removed in
4280    // the future if the appropriate cleanup code can be added to the
4281    // VM_Exit VMOperation's doit method.
4282    if (atexit(perfMemory_exit_helper) != 0) {
4283      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4284    }
4285  }
4286
4287  // initialize thread priority policy
4288  prio_init();
4289
4290  return JNI_OK;
4291}
4292
4293// this is called at the end of vm_initialization
4294void os::init_3(void)
4295{
4296#ifdef JAVASE_EMBEDDED
4297  // Start the MemNotifyThread
4298  if (LowMemoryProtection) {
4299    MemNotifyThread::start();
4300  }
4301  return;
4302#endif
4303}
4304
4305// Mark the polling page as unreadable
4306void os::make_polling_page_unreadable(void) {
4307  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4308    fatal("Could not disable polling page");
4309};
4310
4311// Mark the polling page as readable
4312void os::make_polling_page_readable(void) {
4313  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4314    fatal("Could not enable polling page");
4315  }
4316};
4317
4318int os::active_processor_count() {
4319  // Linux doesn't yet have a (official) notion of processor sets,
4320  // so just return the number of online processors.
4321  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4322  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4323  return online_cpus;
4324}
4325
4326void os::set_native_thread_name(const char *name) {
4327  // Not yet implemented.
4328  return;
4329}
4330
4331bool os::distribute_processes(uint length, uint* distribution) {
4332  // Not yet implemented.
4333  return false;
4334}
4335
4336bool os::bind_to_processor(uint processor_id) {
4337  // Not yet implemented.
4338  return false;
4339}
4340
4341///
4342
4343// Suspends the target using the signal mechanism and then grabs the PC before
4344// resuming the target. Used by the flat-profiler only
4345ExtendedPC os::get_thread_pc(Thread* thread) {
4346  // Make sure that it is called by the watcher for the VMThread
4347  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4348  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4349
4350  ExtendedPC epc;
4351
4352  OSThread* osthread = thread->osthread();
4353  if (do_suspend(osthread)) {
4354    if (osthread->ucontext() != NULL) {
4355      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4356    } else {
4357      // NULL context is unexpected, double-check this is the VMThread
4358      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4359    }
4360    do_resume(osthread);
4361  }
4362  // failure means pthread_kill failed for some reason - arguably this is
4363  // a fatal problem, but such problems are ignored elsewhere
4364
4365  return epc;
4366}
4367
4368int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4369{
4370   if (is_NPTL()) {
4371      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4372   } else {
4373#ifndef IA64
4374      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4375      // word back to default 64bit precision if condvar is signaled. Java
4376      // wants 53bit precision.  Save and restore current value.
4377      int fpu = get_fpu_control_word();
4378#endif // IA64
4379      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4380#ifndef IA64
4381      set_fpu_control_word(fpu);
4382#endif // IA64
4383      return status;
4384   }
4385}
4386
4387////////////////////////////////////////////////////////////////////////////////
4388// debug support
4389
4390static address same_page(address x, address y) {
4391  int page_bits = -os::vm_page_size();
4392  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4393    return x;
4394  else if (x > y)
4395    return (address)(intptr_t(y) | ~page_bits) + 1;
4396  else
4397    return (address)(intptr_t(y) & page_bits);
4398}
4399
4400bool os::find(address addr, outputStream* st) {
4401  Dl_info dlinfo;
4402  memset(&dlinfo, 0, sizeof(dlinfo));
4403  if (dladdr(addr, &dlinfo)) {
4404    st->print(PTR_FORMAT ": ", addr);
4405    if (dlinfo.dli_sname != NULL) {
4406      st->print("%s+%#x", dlinfo.dli_sname,
4407                 addr - (intptr_t)dlinfo.dli_saddr);
4408    } else if (dlinfo.dli_fname) {
4409      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4410    } else {
4411      st->print("<absolute address>");
4412    }
4413    if (dlinfo.dli_fname) {
4414      st->print(" in %s", dlinfo.dli_fname);
4415    }
4416    if (dlinfo.dli_fbase) {
4417      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4418    }
4419    st->cr();
4420
4421    if (Verbose) {
4422      // decode some bytes around the PC
4423      address begin = same_page(addr-40, addr);
4424      address end   = same_page(addr+40, addr);
4425      address       lowest = (address) dlinfo.dli_sname;
4426      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4427      if (begin < lowest)  begin = lowest;
4428      Dl_info dlinfo2;
4429      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4430          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4431        end = (address) dlinfo2.dli_saddr;
4432      Disassembler::decode(begin, end, st);
4433    }
4434    return true;
4435  }
4436  return false;
4437}
4438
4439////////////////////////////////////////////////////////////////////////////////
4440// misc
4441
4442// This does not do anything on Linux. This is basically a hook for being
4443// able to use structured exception handling (thread-local exception filters)
4444// on, e.g., Win32.
4445void
4446os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4447                         JavaCallArguments* args, Thread* thread) {
4448  f(value, method, args, thread);
4449}
4450
4451void os::print_statistics() {
4452}
4453
4454int os::message_box(const char* title, const char* message) {
4455  int i;
4456  fdStream err(defaultStream::error_fd());
4457  for (i = 0; i < 78; i++) err.print_raw("=");
4458  err.cr();
4459  err.print_raw_cr(title);
4460  for (i = 0; i < 78; i++) err.print_raw("-");
4461  err.cr();
4462  err.print_raw_cr(message);
4463  for (i = 0; i < 78; i++) err.print_raw("=");
4464  err.cr();
4465
4466  char buf[16];
4467  // Prevent process from exiting upon "read error" without consuming all CPU
4468  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4469
4470  return buf[0] == 'y' || buf[0] == 'Y';
4471}
4472
4473int os::stat(const char *path, struct stat *sbuf) {
4474  char pathbuf[MAX_PATH];
4475  if (strlen(path) > MAX_PATH - 1) {
4476    errno = ENAMETOOLONG;
4477    return -1;
4478  }
4479  os::native_path(strcpy(pathbuf, path));
4480  return ::stat(pathbuf, sbuf);
4481}
4482
4483bool os::check_heap(bool force) {
4484  return true;
4485}
4486
4487int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4488  return ::vsnprintf(buf, count, format, args);
4489}
4490
4491// Is a (classpath) directory empty?
4492bool os::dir_is_empty(const char* path) {
4493  DIR *dir = NULL;
4494  struct dirent *ptr;
4495
4496  dir = opendir(path);
4497  if (dir == NULL) return true;
4498
4499  /* Scan the directory */
4500  bool result = true;
4501  char buf[sizeof(struct dirent) + MAX_PATH];
4502  while (result && (ptr = ::readdir(dir)) != NULL) {
4503    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4504      result = false;
4505    }
4506  }
4507  closedir(dir);
4508  return result;
4509}
4510
4511// This code originates from JDK's sysOpen and open64_w
4512// from src/solaris/hpi/src/system_md.c
4513
4514#ifndef O_DELETE
4515#define O_DELETE 0x10000
4516#endif
4517
4518// Open a file. Unlink the file immediately after open returns
4519// if the specified oflag has the O_DELETE flag set.
4520// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4521
4522int os::open(const char *path, int oflag, int mode) {
4523
4524  if (strlen(path) > MAX_PATH - 1) {
4525    errno = ENAMETOOLONG;
4526    return -1;
4527  }
4528  int fd;
4529  int o_delete = (oflag & O_DELETE);
4530  oflag = oflag & ~O_DELETE;
4531
4532  fd = ::open64(path, oflag, mode);
4533  if (fd == -1) return -1;
4534
4535  //If the open succeeded, the file might still be a directory
4536  {
4537    struct stat64 buf64;
4538    int ret = ::fstat64(fd, &buf64);
4539    int st_mode = buf64.st_mode;
4540
4541    if (ret != -1) {
4542      if ((st_mode & S_IFMT) == S_IFDIR) {
4543        errno = EISDIR;
4544        ::close(fd);
4545        return -1;
4546      }
4547    } else {
4548      ::close(fd);
4549      return -1;
4550    }
4551  }
4552
4553    /*
4554     * All file descriptors that are opened in the JVM and not
4555     * specifically destined for a subprocess should have the
4556     * close-on-exec flag set.  If we don't set it, then careless 3rd
4557     * party native code might fork and exec without closing all
4558     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4559     * UNIXProcess.c), and this in turn might:
4560     *
4561     * - cause end-of-file to fail to be detected on some file
4562     *   descriptors, resulting in mysterious hangs, or
4563     *
4564     * - might cause an fopen in the subprocess to fail on a system
4565     *   suffering from bug 1085341.
4566     *
4567     * (Yes, the default setting of the close-on-exec flag is a Unix
4568     * design flaw)
4569     *
4570     * See:
4571     * 1085341: 32-bit stdio routines should support file descriptors >255
4572     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4573     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4574     */
4575#ifdef FD_CLOEXEC
4576    {
4577        int flags = ::fcntl(fd, F_GETFD);
4578        if (flags != -1)
4579            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4580    }
4581#endif
4582
4583  if (o_delete != 0) {
4584    ::unlink(path);
4585  }
4586  return fd;
4587}
4588
4589
4590// create binary file, rewriting existing file if required
4591int os::create_binary_file(const char* path, bool rewrite_existing) {
4592  int oflags = O_WRONLY | O_CREAT;
4593  if (!rewrite_existing) {
4594    oflags |= O_EXCL;
4595  }
4596  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4597}
4598
4599// return current position of file pointer
4600jlong os::current_file_offset(int fd) {
4601  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4602}
4603
4604// move file pointer to the specified offset
4605jlong os::seek_to_file_offset(int fd, jlong offset) {
4606  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4607}
4608
4609// This code originates from JDK's sysAvailable
4610// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4611
4612int os::available(int fd, jlong *bytes) {
4613  jlong cur, end;
4614  int mode;
4615  struct stat64 buf64;
4616
4617  if (::fstat64(fd, &buf64) >= 0) {
4618    mode = buf64.st_mode;
4619    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4620      /*
4621      * XXX: is the following call interruptible? If so, this might
4622      * need to go through the INTERRUPT_IO() wrapper as for other
4623      * blocking, interruptible calls in this file.
4624      */
4625      int n;
4626      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4627        *bytes = n;
4628        return 1;
4629      }
4630    }
4631  }
4632  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4633    return 0;
4634  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4635    return 0;
4636  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4637    return 0;
4638  }
4639  *bytes = end - cur;
4640  return 1;
4641}
4642
4643int os::socket_available(int fd, jint *pbytes) {
4644  // Linux doc says EINTR not returned, unlike Solaris
4645  int ret = ::ioctl(fd, FIONREAD, pbytes);
4646
4647  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4648  // is expected to return 0 on failure and 1 on success to the jdk.
4649  return (ret < 0) ? 0 : 1;
4650}
4651
4652// Map a block of memory.
4653char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4654                     char *addr, size_t bytes, bool read_only,
4655                     bool allow_exec) {
4656  int prot;
4657  int flags = MAP_PRIVATE;
4658
4659  if (read_only) {
4660    prot = PROT_READ;
4661  } else {
4662    prot = PROT_READ | PROT_WRITE;
4663  }
4664
4665  if (allow_exec) {
4666    prot |= PROT_EXEC;
4667  }
4668
4669  if (addr != NULL) {
4670    flags |= MAP_FIXED;
4671  }
4672
4673  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4674                                     fd, file_offset);
4675  if (mapped_address == MAP_FAILED) {
4676    return NULL;
4677  }
4678  return mapped_address;
4679}
4680
4681
4682// Remap a block of memory.
4683char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4684                       char *addr, size_t bytes, bool read_only,
4685                       bool allow_exec) {
4686  // same as map_memory() on this OS
4687  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4688                        allow_exec);
4689}
4690
4691
4692// Unmap a block of memory.
4693bool os::pd_unmap_memory(char* addr, size_t bytes) {
4694  return munmap(addr, bytes) == 0;
4695}
4696
4697static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4698
4699static clockid_t thread_cpu_clockid(Thread* thread) {
4700  pthread_t tid = thread->osthread()->pthread_id();
4701  clockid_t clockid;
4702
4703  // Get thread clockid
4704  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4705  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4706  return clockid;
4707}
4708
4709// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4710// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4711// of a thread.
4712//
4713// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4714// the fast estimate available on the platform.
4715
4716jlong os::current_thread_cpu_time() {
4717  if (os::Linux::supports_fast_thread_cpu_time()) {
4718    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4719  } else {
4720    // return user + sys since the cost is the same
4721    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4722  }
4723}
4724
4725jlong os::thread_cpu_time(Thread* thread) {
4726  // consistent with what current_thread_cpu_time() returns
4727  if (os::Linux::supports_fast_thread_cpu_time()) {
4728    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4729  } else {
4730    return slow_thread_cpu_time(thread, true /* user + sys */);
4731  }
4732}
4733
4734jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4735  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4736    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4737  } else {
4738    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4739  }
4740}
4741
4742jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4743  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4744    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4745  } else {
4746    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4747  }
4748}
4749
4750//
4751//  -1 on error.
4752//
4753
4754static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4755  static bool proc_pid_cpu_avail = true;
4756  static bool proc_task_unchecked = true;
4757  static const char *proc_stat_path = "/proc/%d/stat";
4758  pid_t  tid = thread->osthread()->thread_id();
4759  int i;
4760  char *s;
4761  char stat[2048];
4762  int statlen;
4763  char proc_name[64];
4764  int count;
4765  long sys_time, user_time;
4766  char string[64];
4767  char cdummy;
4768  int idummy;
4769  long ldummy;
4770  FILE *fp;
4771
4772  // We first try accessing /proc/<pid>/cpu since this is faster to
4773  // process.  If this file is not present (linux kernels 2.5 and above)
4774  // then we open /proc/<pid>/stat.
4775  if ( proc_pid_cpu_avail ) {
4776    sprintf(proc_name, "/proc/%d/cpu", tid);
4777    fp =  fopen(proc_name, "r");
4778    if ( fp != NULL ) {
4779      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4780      fclose(fp);
4781      if ( count != 3 ) return -1;
4782
4783      if (user_sys_cpu_time) {
4784        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4785      } else {
4786        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4787      }
4788    }
4789    else proc_pid_cpu_avail = false;
4790  }
4791
4792  // The /proc/<tid>/stat aggregates per-process usage on
4793  // new Linux kernels 2.6+ where NPTL is supported.
4794  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4795  // See bug 6328462.
4796  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4797  // and possibly in some other cases, so we check its availability.
4798  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4799    // This is executed only once
4800    proc_task_unchecked = false;
4801    fp = fopen("/proc/self/task", "r");
4802    if (fp != NULL) {
4803      proc_stat_path = "/proc/self/task/%d/stat";
4804      fclose(fp);
4805    }
4806  }
4807
4808  sprintf(proc_name, proc_stat_path, tid);
4809  fp = fopen(proc_name, "r");
4810  if ( fp == NULL ) return -1;
4811  statlen = fread(stat, 1, 2047, fp);
4812  stat[statlen] = '\0';
4813  fclose(fp);
4814
4815  // Skip pid and the command string. Note that we could be dealing with
4816  // weird command names, e.g. user could decide to rename java launcher
4817  // to "java 1.4.2 :)", then the stat file would look like
4818  //                1234 (java 1.4.2 :)) R ... ...
4819  // We don't really need to know the command string, just find the last
4820  // occurrence of ")" and then start parsing from there. See bug 4726580.
4821  s = strrchr(stat, ')');
4822  i = 0;
4823  if (s == NULL ) return -1;
4824
4825  // Skip blank chars
4826  do s++; while (isspace(*s));
4827
4828  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4829                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4830                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4831                 &user_time, &sys_time);
4832  if ( count != 13 ) return -1;
4833  if (user_sys_cpu_time) {
4834    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4835  } else {
4836    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4837  }
4838}
4839
4840void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4841  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4842  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4843  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4844  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4845}
4846
4847void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4848  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4849  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4850  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4851  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4852}
4853
4854bool os::is_thread_cpu_time_supported() {
4855  return true;
4856}
4857
4858// System loadavg support.  Returns -1 if load average cannot be obtained.
4859// Linux doesn't yet have a (official) notion of processor sets,
4860// so just return the system wide load average.
4861int os::loadavg(double loadavg[], int nelem) {
4862  return ::getloadavg(loadavg, nelem);
4863}
4864
4865void os::pause() {
4866  char filename[MAX_PATH];
4867  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4868    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4869  } else {
4870    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4871  }
4872
4873  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4874  if (fd != -1) {
4875    struct stat buf;
4876    ::close(fd);
4877    while (::stat(filename, &buf) == 0) {
4878      (void)::poll(NULL, 0, 100);
4879    }
4880  } else {
4881    jio_fprintf(stderr,
4882      "Could not open pause file '%s', continuing immediately.\n", filename);
4883  }
4884}
4885
4886
4887// Refer to the comments in os_solaris.cpp park-unpark.
4888//
4889// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4890// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4891// For specifics regarding the bug see GLIBC BUGID 261237 :
4892//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4893// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4894// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4895// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4896// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4897// and monitorenter when we're using 1-0 locking.  All those operations may result in
4898// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4899// of libpthread avoids the problem, but isn't practical.
4900//
4901// Possible remedies:
4902//
4903// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4904//      This is palliative and probabilistic, however.  If the thread is preempted
4905//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4906//      than the minimum period may have passed, and the abstime may be stale (in the
4907//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4908//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4909//
4910// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4911//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4912//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4913//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4914//      thread.
4915//
4916// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4917//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4918//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4919//      This also works well.  In fact it avoids kernel-level scalability impediments
4920//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4921//      timers in a graceful fashion.
4922//
4923// 4.   When the abstime value is in the past it appears that control returns
4924//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4925//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4926//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4927//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4928//      It may be possible to avoid reinitialization by checking the return
4929//      value from pthread_cond_timedwait().  In addition to reinitializing the
4930//      condvar we must establish the invariant that cond_signal() is only called
4931//      within critical sections protected by the adjunct mutex.  This prevents
4932//      cond_signal() from "seeing" a condvar that's in the midst of being
4933//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4934//      desirable signal-after-unlock optimization that avoids futile context switching.
4935//
4936//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4937//      structure when a condvar is used or initialized.  cond_destroy()  would
4938//      release the helper structure.  Our reinitialize-after-timedwait fix
4939//      put excessive stress on malloc/free and locks protecting the c-heap.
4940//
4941// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4942// It may be possible to refine (4) by checking the kernel and NTPL verisons
4943// and only enabling the work-around for vulnerable environments.
4944
4945// utility to compute the abstime argument to timedwait:
4946// millis is the relative timeout time
4947// abstime will be the absolute timeout time
4948// TODO: replace compute_abstime() with unpackTime()
4949
4950static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4951  if (millis < 0)  millis = 0;
4952  struct timeval now;
4953  int status = gettimeofday(&now, NULL);
4954  assert(status == 0, "gettimeofday");
4955  jlong seconds = millis / 1000;
4956  millis %= 1000;
4957  if (seconds > 50000000) { // see man cond_timedwait(3T)
4958    seconds = 50000000;
4959  }
4960  abstime->tv_sec = now.tv_sec  + seconds;
4961  long       usec = now.tv_usec + millis * 1000;
4962  if (usec >= 1000000) {
4963    abstime->tv_sec += 1;
4964    usec -= 1000000;
4965  }
4966  abstime->tv_nsec = usec * 1000;
4967  return abstime;
4968}
4969
4970
4971// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4972// Conceptually TryPark() should be equivalent to park(0).
4973
4974int os::PlatformEvent::TryPark() {
4975  for (;;) {
4976    const int v = _Event ;
4977    guarantee ((v == 0) || (v == 1), "invariant") ;
4978    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4979  }
4980}
4981
4982void os::PlatformEvent::park() {       // AKA "down()"
4983  // Invariant: Only the thread associated with the Event/PlatformEvent
4984  // may call park().
4985  // TODO: assert that _Assoc != NULL or _Assoc == Self
4986  int v ;
4987  for (;;) {
4988      v = _Event ;
4989      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4990  }
4991  guarantee (v >= 0, "invariant") ;
4992  if (v == 0) {
4993     // Do this the hard way by blocking ...
4994     int status = pthread_mutex_lock(_mutex);
4995     assert_status(status == 0, status, "mutex_lock");
4996     guarantee (_nParked == 0, "invariant") ;
4997     ++ _nParked ;
4998     while (_Event < 0) {
4999        status = pthread_cond_wait(_cond, _mutex);
5000        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5001        // Treat this the same as if the wait was interrupted
5002        if (status == ETIME) { status = EINTR; }
5003        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5004     }
5005     -- _nParked ;
5006
5007    // In theory we could move the ST of 0 into _Event past the unlock(),
5008    // but then we'd need a MEMBAR after the ST.
5009    _Event = 0 ;
5010     status = pthread_mutex_unlock(_mutex);
5011     assert_status(status == 0, status, "mutex_unlock");
5012  }
5013  guarantee (_Event >= 0, "invariant") ;
5014}
5015
5016int os::PlatformEvent::park(jlong millis) {
5017  guarantee (_nParked == 0, "invariant") ;
5018
5019  int v ;
5020  for (;;) {
5021      v = _Event ;
5022      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5023  }
5024  guarantee (v >= 0, "invariant") ;
5025  if (v != 0) return OS_OK ;
5026
5027  // We do this the hard way, by blocking the thread.
5028  // Consider enforcing a minimum timeout value.
5029  struct timespec abst;
5030  compute_abstime(&abst, millis);
5031
5032  int ret = OS_TIMEOUT;
5033  int status = pthread_mutex_lock(_mutex);
5034  assert_status(status == 0, status, "mutex_lock");
5035  guarantee (_nParked == 0, "invariant") ;
5036  ++_nParked ;
5037
5038  // Object.wait(timo) will return because of
5039  // (a) notification
5040  // (b) timeout
5041  // (c) thread.interrupt
5042  //
5043  // Thread.interrupt and object.notify{All} both call Event::set.
5044  // That is, we treat thread.interrupt as a special case of notification.
5045  // The underlying Solaris implementation, cond_timedwait, admits
5046  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5047  // JVM from making those visible to Java code.  As such, we must
5048  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5049  //
5050  // TODO: properly differentiate simultaneous notify+interrupt.
5051  // In that case, we should propagate the notify to another waiter.
5052
5053  while (_Event < 0) {
5054    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5055    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5056      pthread_cond_destroy (_cond);
5057      pthread_cond_init (_cond, NULL) ;
5058    }
5059    assert_status(status == 0 || status == EINTR ||
5060                  status == ETIME || status == ETIMEDOUT,
5061                  status, "cond_timedwait");
5062    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5063    if (status == ETIME || status == ETIMEDOUT) break ;
5064    // We consume and ignore EINTR and spurious wakeups.
5065  }
5066  --_nParked ;
5067  if (_Event >= 0) {
5068     ret = OS_OK;
5069  }
5070  _Event = 0 ;
5071  status = pthread_mutex_unlock(_mutex);
5072  assert_status(status == 0, status, "mutex_unlock");
5073  assert (_nParked == 0, "invariant") ;
5074  return ret;
5075}
5076
5077void os::PlatformEvent::unpark() {
5078  int v, AnyWaiters ;
5079  for (;;) {
5080      v = _Event ;
5081      if (v > 0) {
5082         // The LD of _Event could have reordered or be satisfied
5083         // by a read-aside from this processor's write buffer.
5084         // To avoid problems execute a barrier and then
5085         // ratify the value.
5086         OrderAccess::fence() ;
5087         if (_Event == v) return ;
5088         continue ;
5089      }
5090      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5091  }
5092  if (v < 0) {
5093     // Wait for the thread associated with the event to vacate
5094     int status = pthread_mutex_lock(_mutex);
5095     assert_status(status == 0, status, "mutex_lock");
5096     AnyWaiters = _nParked ;
5097     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5098     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5099        AnyWaiters = 0 ;
5100        pthread_cond_signal (_cond);
5101     }
5102     status = pthread_mutex_unlock(_mutex);
5103     assert_status(status == 0, status, "mutex_unlock");
5104     if (AnyWaiters != 0) {
5105        status = pthread_cond_signal(_cond);
5106        assert_status(status == 0, status, "cond_signal");
5107     }
5108  }
5109
5110  // Note that we signal() _after dropping the lock for "immortal" Events.
5111  // This is safe and avoids a common class of  futile wakeups.  In rare
5112  // circumstances this can cause a thread to return prematurely from
5113  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5114  // simply re-test the condition and re-park itself.
5115}
5116
5117
5118// JSR166
5119// -------------------------------------------------------
5120
5121/*
5122 * The solaris and linux implementations of park/unpark are fairly
5123 * conservative for now, but can be improved. They currently use a
5124 * mutex/condvar pair, plus a a count.
5125 * Park decrements count if > 0, else does a condvar wait.  Unpark
5126 * sets count to 1 and signals condvar.  Only one thread ever waits
5127 * on the condvar. Contention seen when trying to park implies that someone
5128 * is unparking you, so don't wait. And spurious returns are fine, so there
5129 * is no need to track notifications.
5130 */
5131
5132#define MAX_SECS 100000000
5133/*
5134 * This code is common to linux and solaris and will be moved to a
5135 * common place in dolphin.
5136 *
5137 * The passed in time value is either a relative time in nanoseconds
5138 * or an absolute time in milliseconds. Either way it has to be unpacked
5139 * into suitable seconds and nanoseconds components and stored in the
5140 * given timespec structure.
5141 * Given time is a 64-bit value and the time_t used in the timespec is only
5142 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5143 * overflow if times way in the future are given. Further on Solaris versions
5144 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5145 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5146 * As it will be 28 years before "now + 100000000" will overflow we can
5147 * ignore overflow and just impose a hard-limit on seconds using the value
5148 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5149 * years from "now".
5150 */
5151
5152static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5153  assert (time > 0, "convertTime");
5154
5155  struct timeval now;
5156  int status = gettimeofday(&now, NULL);
5157  assert(status == 0, "gettimeofday");
5158
5159  time_t max_secs = now.tv_sec + MAX_SECS;
5160
5161  if (isAbsolute) {
5162    jlong secs = time / 1000;
5163    if (secs > max_secs) {
5164      absTime->tv_sec = max_secs;
5165    }
5166    else {
5167      absTime->tv_sec = secs;
5168    }
5169    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5170  }
5171  else {
5172    jlong secs = time / NANOSECS_PER_SEC;
5173    if (secs >= MAX_SECS) {
5174      absTime->tv_sec = max_secs;
5175      absTime->tv_nsec = 0;
5176    }
5177    else {
5178      absTime->tv_sec = now.tv_sec + secs;
5179      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5180      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5181        absTime->tv_nsec -= NANOSECS_PER_SEC;
5182        ++absTime->tv_sec; // note: this must be <= max_secs
5183      }
5184    }
5185  }
5186  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5187  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5188  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5189  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5190}
5191
5192void Parker::park(bool isAbsolute, jlong time) {
5193  // Optional fast-path check:
5194  // Return immediately if a permit is available.
5195  if (_counter > 0) {
5196      _counter = 0 ;
5197      OrderAccess::fence();
5198      return ;
5199  }
5200
5201  Thread* thread = Thread::current();
5202  assert(thread->is_Java_thread(), "Must be JavaThread");
5203  JavaThread *jt = (JavaThread *)thread;
5204
5205  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5206  // Check interrupt before trying to wait
5207  if (Thread::is_interrupted(thread, false)) {
5208    return;
5209  }
5210
5211  // Next, demultiplex/decode time arguments
5212  timespec absTime;
5213  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5214    return;
5215  }
5216  if (time > 0) {
5217    unpackTime(&absTime, isAbsolute, time);
5218  }
5219
5220
5221  // Enter safepoint region
5222  // Beware of deadlocks such as 6317397.
5223  // The per-thread Parker:: mutex is a classic leaf-lock.
5224  // In particular a thread must never block on the Threads_lock while
5225  // holding the Parker:: mutex.  If safepoints are pending both the
5226  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5227  ThreadBlockInVM tbivm(jt);
5228
5229  // Don't wait if cannot get lock since interference arises from
5230  // unblocking.  Also. check interrupt before trying wait
5231  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5232    return;
5233  }
5234
5235  int status ;
5236  if (_counter > 0)  { // no wait needed
5237    _counter = 0;
5238    status = pthread_mutex_unlock(_mutex);
5239    assert (status == 0, "invariant") ;
5240    OrderAccess::fence();
5241    return;
5242  }
5243
5244#ifdef ASSERT
5245  // Don't catch signals while blocked; let the running threads have the signals.
5246  // (This allows a debugger to break into the running thread.)
5247  sigset_t oldsigs;
5248  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5249  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5250#endif
5251
5252  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5253  jt->set_suspend_equivalent();
5254  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5255
5256  if (time == 0) {
5257    status = pthread_cond_wait (_cond, _mutex) ;
5258  } else {
5259    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5260    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5261      pthread_cond_destroy (_cond) ;
5262      pthread_cond_init    (_cond, NULL);
5263    }
5264  }
5265  assert_status(status == 0 || status == EINTR ||
5266                status == ETIME || status == ETIMEDOUT,
5267                status, "cond_timedwait");
5268
5269#ifdef ASSERT
5270  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5271#endif
5272
5273  _counter = 0 ;
5274  status = pthread_mutex_unlock(_mutex) ;
5275  assert_status(status == 0, status, "invariant") ;
5276  // If externally suspended while waiting, re-suspend
5277  if (jt->handle_special_suspend_equivalent_condition()) {
5278    jt->java_suspend_self();
5279  }
5280
5281  OrderAccess::fence();
5282}
5283
5284void Parker::unpark() {
5285  int s, status ;
5286  status = pthread_mutex_lock(_mutex);
5287  assert (status == 0, "invariant") ;
5288  s = _counter;
5289  _counter = 1;
5290  if (s < 1) {
5291     if (WorkAroundNPTLTimedWaitHang) {
5292        status = pthread_cond_signal (_cond) ;
5293        assert (status == 0, "invariant") ;
5294        status = pthread_mutex_unlock(_mutex);
5295        assert (status == 0, "invariant") ;
5296     } else {
5297        status = pthread_mutex_unlock(_mutex);
5298        assert (status == 0, "invariant") ;
5299        status = pthread_cond_signal (_cond) ;
5300        assert (status == 0, "invariant") ;
5301     }
5302  } else {
5303    pthread_mutex_unlock(_mutex);
5304    assert (status == 0, "invariant") ;
5305  }
5306}
5307
5308
5309extern char** environ;
5310
5311#ifndef __NR_fork
5312#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5313#endif
5314
5315#ifndef __NR_execve
5316#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5317#endif
5318
5319// Run the specified command in a separate process. Return its exit value,
5320// or -1 on failure (e.g. can't fork a new process).
5321// Unlike system(), this function can be called from signal handler. It
5322// doesn't block SIGINT et al.
5323int os::fork_and_exec(char* cmd) {
5324  const char * argv[4] = {"sh", "-c", cmd, NULL};
5325
5326  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5327  // pthread_atfork handlers and reset pthread library. All we need is a
5328  // separate process to execve. Make a direct syscall to fork process.
5329  // On IA64 there's no fork syscall, we have to use fork() and hope for
5330  // the best...
5331  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5332              IA64_ONLY(fork();)
5333
5334  if (pid < 0) {
5335    // fork failed
5336    return -1;
5337
5338  } else if (pid == 0) {
5339    // child process
5340
5341    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5342    // first to kill every thread on the thread list. Because this list is
5343    // not reset by fork() (see notes above), execve() will instead kill
5344    // every thread in the parent process. We know this is the only thread
5345    // in the new process, so make a system call directly.
5346    // IA64 should use normal execve() from glibc to match the glibc fork()
5347    // above.
5348    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5349    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5350
5351    // execve failed
5352    _exit(-1);
5353
5354  } else  {
5355    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5356    // care about the actual exit code, for now.
5357
5358    int status;
5359
5360    // Wait for the child process to exit.  This returns immediately if
5361    // the child has already exited. */
5362    while (waitpid(pid, &status, 0) < 0) {
5363        switch (errno) {
5364        case ECHILD: return 0;
5365        case EINTR: break;
5366        default: return -1;
5367        }
5368    }
5369
5370    if (WIFEXITED(status)) {
5371       // The child exited normally; get its exit code.
5372       return WEXITSTATUS(status);
5373    } else if (WIFSIGNALED(status)) {
5374       // The child exited because of a signal
5375       // The best value to return is 0x80 + signal number,
5376       // because that is what all Unix shells do, and because
5377       // it allows callers to distinguish between process exit and
5378       // process death by signal.
5379       return 0x80 + WTERMSIG(status);
5380    } else {
5381       // Unknown exit code; pass it through
5382       return status;
5383    }
5384  }
5385}
5386
5387// is_headless_jre()
5388//
5389// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5390// in order to report if we are running in a headless jre
5391//
5392// Since JDK8 xawt/libmawt.so was moved into the same directory
5393// as libawt.so, and renamed libawt_xawt.so
5394//
5395bool os::is_headless_jre() {
5396    struct stat statbuf;
5397    char buf[MAXPATHLEN];
5398    char libmawtpath[MAXPATHLEN];
5399    const char *xawtstr  = "/xawt/libmawt.so";
5400    const char *new_xawtstr = "/libawt_xawt.so";
5401    char *p;
5402
5403    // Get path to libjvm.so
5404    os::jvm_path(buf, sizeof(buf));
5405
5406    // Get rid of libjvm.so
5407    p = strrchr(buf, '/');
5408    if (p == NULL) return false;
5409    else *p = '\0';
5410
5411    // Get rid of client or server
5412    p = strrchr(buf, '/');
5413    if (p == NULL) return false;
5414    else *p = '\0';
5415
5416    // check xawt/libmawt.so
5417    strcpy(libmawtpath, buf);
5418    strcat(libmawtpath, xawtstr);
5419    if (::stat(libmawtpath, &statbuf) == 0) return false;
5420
5421    // check libawt_xawt.so
5422    strcpy(libmawtpath, buf);
5423    strcat(libmawtpath, new_xawtstr);
5424    if (::stat(libmawtpath, &statbuf) == 0) return false;
5425
5426    return true;
5427}
5428
5429// Get the default path to the core file
5430// Returns the length of the string
5431int os::get_core_path(char* buffer, size_t bufferSize) {
5432  const char* p = get_current_directory(buffer, bufferSize);
5433
5434  if (p == NULL) {
5435    assert(p != NULL, "failed to get current directory");
5436    return 0;
5437  }
5438
5439  return strlen(buffer);
5440}
5441
5442#ifdef JAVASE_EMBEDDED
5443//
5444// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5445//
5446MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5447
5448// ctor
5449//
5450MemNotifyThread::MemNotifyThread(int fd): Thread() {
5451  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5452  _fd = fd;
5453
5454  if (os::create_thread(this, os::os_thread)) {
5455    _memnotify_thread = this;
5456    os::set_priority(this, NearMaxPriority);
5457    os::start_thread(this);
5458  }
5459}
5460
5461// Where all the work gets done
5462//
5463void MemNotifyThread::run() {
5464  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5465
5466  // Set up the select arguments
5467  fd_set rfds;
5468  if (_fd != -1) {
5469    FD_ZERO(&rfds);
5470    FD_SET(_fd, &rfds);
5471  }
5472
5473  // Now wait for the mem_notify device to wake up
5474  while (1) {
5475    // Wait for the mem_notify device to signal us..
5476    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5477    if (rc == -1) {
5478      perror("select!\n");
5479      break;
5480    } else if (rc) {
5481      //ssize_t free_before = os::available_memory();
5482      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5483
5484      // The kernel is telling us there is not much memory left...
5485      // try to do something about that
5486
5487      // If we are not already in a GC, try one.
5488      if (!Universe::heap()->is_gc_active()) {
5489        Universe::heap()->collect(GCCause::_allocation_failure);
5490
5491        //ssize_t free_after = os::available_memory();
5492        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5493        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5494      }
5495      // We might want to do something like the following if we find the GC's are not helping...
5496      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5497    }
5498  }
5499}
5500
5501//
5502// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5503//
5504void MemNotifyThread::start() {
5505  int    fd;
5506  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5507  if (fd < 0) {
5508      return;
5509  }
5510
5511  if (memnotify_thread() == NULL) {
5512    new MemNotifyThread(fd);
5513  }
5514}
5515#endif // JAVASE_EMBEDDED
5516