os_linux.cpp revision 3465:d2a62e0f25eb
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "memory/filemap.hpp"
36#include "mutex_linux.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "os_share_linux.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/globals.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/objectMonitor.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/perfMemory.hpp"
52#include "runtime/sharedRuntime.hpp"
53#include "runtime/statSampler.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/timer.hpp"
57#include "services/attachListener.hpp"
58#include "services/runtimeService.hpp"
59#include "thread_linux.inline.hpp"
60#include "utilities/decoder.hpp"
61#include "utilities/defaultStream.hpp"
62#include "utilities/events.hpp"
63#include "utilities/growableArray.hpp"
64#include "utilities/vmError.hpp"
65#ifdef TARGET_ARCH_x86
66# include "assembler_x86.inline.hpp"
67# include "nativeInst_x86.hpp"
68#endif
69#ifdef TARGET_ARCH_sparc
70# include "assembler_sparc.inline.hpp"
71# include "nativeInst_sparc.hpp"
72#endif
73#ifdef TARGET_ARCH_zero
74# include "assembler_zero.inline.hpp"
75# include "nativeInst_zero.hpp"
76#endif
77#ifdef TARGET_ARCH_arm
78# include "assembler_arm.inline.hpp"
79# include "nativeInst_arm.hpp"
80#endif
81#ifdef TARGET_ARCH_ppc
82# include "assembler_ppc.inline.hpp"
83# include "nativeInst_ppc.hpp"
84#endif
85#ifdef COMPILER1
86#include "c1/c1_Runtime1.hpp"
87#endif
88#ifdef COMPILER2
89#include "opto/runtime.hpp"
90#endif
91
92// put OS-includes here
93# include <sys/types.h>
94# include <sys/mman.h>
95# include <sys/stat.h>
96# include <sys/select.h>
97# include <pthread.h>
98# include <signal.h>
99# include <errno.h>
100# include <dlfcn.h>
101# include <stdio.h>
102# include <unistd.h>
103# include <sys/resource.h>
104# include <pthread.h>
105# include <sys/stat.h>
106# include <sys/time.h>
107# include <sys/times.h>
108# include <sys/utsname.h>
109# include <sys/socket.h>
110# include <sys/wait.h>
111# include <pwd.h>
112# include <poll.h>
113# include <semaphore.h>
114# include <fcntl.h>
115# include <string.h>
116# include <syscall.h>
117# include <sys/sysinfo.h>
118# include <gnu/libc-version.h>
119# include <sys/ipc.h>
120# include <sys/shm.h>
121# include <link.h>
122# include <stdint.h>
123# include <inttypes.h>
124# include <sys/ioctl.h>
125
126#define MAX_PATH    (2 * K)
127
128// for timer info max values which include all bits
129#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
130
131#define LARGEPAGES_BIT (1 << 6)
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Linux::_physical_memory = 0;
135
136address   os::Linux::_initial_thread_stack_bottom = NULL;
137uintptr_t os::Linux::_initial_thread_stack_size   = 0;
138
139int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
141Mutex* os::Linux::_createThread_lock = NULL;
142pthread_t os::Linux::_main_thread;
143int os::Linux::_page_size = -1;
144bool os::Linux::_is_floating_stack = false;
145bool os::Linux::_is_NPTL = false;
146bool os::Linux::_supports_fast_thread_cpu_time = false;
147const char * os::Linux::_glibc_version = NULL;
148const char * os::Linux::_libpthread_version = NULL;
149
150static jlong initial_time_count=0;
151
152static int clock_tics_per_sec = 100;
153
154// For diagnostics to print a message once. see run_periodic_checks
155static sigset_t check_signal_done;
156static bool check_signals = true;;
157
158static pid_t _initial_pid = 0;
159
160/* Signal number used to suspend/resume a thread */
161
162/* do not use any signal number less than SIGSEGV, see 4355769 */
163static int SR_signum = SIGUSR2;
164sigset_t SR_sigset;
165
166/* Used to protect dlsym() calls */
167static pthread_mutex_t dl_mutex;
168
169#ifdef JAVASE_EMBEDDED
170class MemNotifyThread: public Thread {
171  friend class VMStructs;
172 public:
173  virtual void run();
174
175 private:
176  static MemNotifyThread* _memnotify_thread;
177  int _fd;
178
179 public:
180
181  // Constructor
182  MemNotifyThread(int fd);
183
184  // Tester
185  bool is_memnotify_thread() const { return true; }
186
187  // Printing
188  char* name() const { return (char*)"Linux MemNotify Thread"; }
189
190  // Returns the single instance of the MemNotifyThread
191  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
192
193  // Create and start the single instance of MemNotifyThread
194  static void start();
195};
196#endif // JAVASE_EMBEDDED
197
198// utility functions
199
200static int SR_initialize();
201static int SR_finalize();
202
203julong os::available_memory() {
204  return Linux::available_memory();
205}
206
207julong os::Linux::available_memory() {
208  // values in struct sysinfo are "unsigned long"
209  struct sysinfo si;
210  sysinfo(&si);
211
212  return (julong)si.freeram * si.mem_unit;
213}
214
215julong os::physical_memory() {
216  return Linux::physical_memory();
217}
218
219julong os::allocatable_physical_memory(julong size) {
220#ifdef _LP64
221  return size;
222#else
223  julong result = MIN2(size, (julong)3800*M);
224   if (!is_allocatable(result)) {
225     // See comments under solaris for alignment considerations
226     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
227     result =  MIN2(size, reasonable_size);
228   }
229   return result;
230#endif // _LP64
231}
232
233////////////////////////////////////////////////////////////////////////////////
234// environment support
235
236bool os::getenv(const char* name, char* buf, int len) {
237  const char* val = ::getenv(name);
238  if (val != NULL && strlen(val) < (size_t)len) {
239    strcpy(buf, val);
240    return true;
241  }
242  if (len > 0) buf[0] = 0;  // return a null string
243  return false;
244}
245
246
247// Return true if user is running as root.
248
249bool os::have_special_privileges() {
250  static bool init = false;
251  static bool privileges = false;
252  if (!init) {
253    privileges = (getuid() != geteuid()) || (getgid() != getegid());
254    init = true;
255  }
256  return privileges;
257}
258
259
260#ifndef SYS_gettid
261// i386: 224, ia64: 1105, amd64: 186, sparc 143
262#ifdef __ia64__
263#define SYS_gettid 1105
264#elif __i386__
265#define SYS_gettid 224
266#elif __amd64__
267#define SYS_gettid 186
268#elif __sparc__
269#define SYS_gettid 143
270#else
271#error define gettid for the arch
272#endif
273#endif
274
275// Cpu architecture string
276#if   defined(ZERO)
277static char cpu_arch[] = ZERO_LIBARCH;
278#elif defined(IA64)
279static char cpu_arch[] = "ia64";
280#elif defined(IA32)
281static char cpu_arch[] = "i386";
282#elif defined(AMD64)
283static char cpu_arch[] = "amd64";
284#elif defined(ARM)
285static char cpu_arch[] = "arm";
286#elif defined(PPC)
287static char cpu_arch[] = "ppc";
288#elif defined(SPARC)
289#  ifdef _LP64
290static char cpu_arch[] = "sparcv9";
291#  else
292static char cpu_arch[] = "sparc";
293#  endif
294#else
295#error Add appropriate cpu_arch setting
296#endif
297
298
299// pid_t gettid()
300//
301// Returns the kernel thread id of the currently running thread. Kernel
302// thread id is used to access /proc.
303//
304// (Note that getpid() on LinuxThreads returns kernel thread id too; but
305// on NPTL, it returns the same pid for all threads, as required by POSIX.)
306//
307pid_t os::Linux::gettid() {
308  int rslt = syscall(SYS_gettid);
309  if (rslt == -1) {
310     // old kernel, no NPTL support
311     return getpid();
312  } else {
313     return (pid_t)rslt;
314  }
315}
316
317// Most versions of linux have a bug where the number of processors are
318// determined by looking at the /proc file system.  In a chroot environment,
319// the system call returns 1.  This causes the VM to act as if it is
320// a single processor and elide locking (see is_MP() call).
321static bool unsafe_chroot_detected = false;
322static const char *unstable_chroot_error = "/proc file system not found.\n"
323                     "Java may be unstable running multithreaded in a chroot "
324                     "environment on Linux when /proc filesystem is not mounted.";
325
326void os::Linux::initialize_system_info() {
327  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
328  if (processor_count() == 1) {
329    pid_t pid = os::Linux::gettid();
330    char fname[32];
331    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
332    FILE *fp = fopen(fname, "r");
333    if (fp == NULL) {
334      unsafe_chroot_detected = true;
335    } else {
336      fclose(fp);
337    }
338  }
339  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
340  assert(processor_count() > 0, "linux error");
341}
342
343void os::init_system_properties_values() {
344//  char arch[12];
345//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
346
347  // The next steps are taken in the product version:
348  //
349  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
350  // This library should be located at:
351  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
352  //
353  // If "/jre/lib/" appears at the right place in the path, then we
354  // assume libjvm[_g].so is installed in a JDK and we use this path.
355  //
356  // Otherwise exit with message: "Could not create the Java virtual machine."
357  //
358  // The following extra steps are taken in the debugging version:
359  //
360  // If "/jre/lib/" does NOT appear at the right place in the path
361  // instead of exit check for $JAVA_HOME environment variable.
362  //
363  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
364  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
365  // it looks like libjvm[_g].so is installed there
366  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
367  //
368  // Otherwise exit.
369  //
370  // Important note: if the location of libjvm.so changes this
371  // code needs to be changed accordingly.
372
373  // The next few definitions allow the code to be verbatim:
374#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
375#define getenv(n) ::getenv(n)
376
377/*
378 * See ld(1):
379 *      The linker uses the following search paths to locate required
380 *      shared libraries:
381 *        1: ...
382 *        ...
383 *        7: The default directories, normally /lib and /usr/lib.
384 */
385#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
386#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
387#else
388#define DEFAULT_LIBPATH "/lib:/usr/lib"
389#endif
390
391#define EXTENSIONS_DIR  "/lib/ext"
392#define ENDORSED_DIR    "/lib/endorsed"
393#define REG_DIR         "/usr/java/packages"
394
395  {
396    /* sysclasspath, java_home, dll_dir */
397    {
398        char *home_path;
399        char *dll_path;
400        char *pslash;
401        char buf[MAXPATHLEN];
402        os::jvm_path(buf, sizeof(buf));
403
404        // Found the full path to libjvm.so.
405        // Now cut the path to <java_home>/jre if we can.
406        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
407        pslash = strrchr(buf, '/');
408        if (pslash != NULL)
409            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
410        dll_path = malloc(strlen(buf) + 1);
411        if (dll_path == NULL)
412            return;
413        strcpy(dll_path, buf);
414        Arguments::set_dll_dir(dll_path);
415
416        if (pslash != NULL) {
417            pslash = strrchr(buf, '/');
418            if (pslash != NULL) {
419                *pslash = '\0';       /* get rid of /<arch> */
420                pslash = strrchr(buf, '/');
421                if (pslash != NULL)
422                    *pslash = '\0';   /* get rid of /lib */
423            }
424        }
425
426        home_path = malloc(strlen(buf) + 1);
427        if (home_path == NULL)
428            return;
429        strcpy(home_path, buf);
430        Arguments::set_java_home(home_path);
431
432        if (!set_boot_path('/', ':'))
433            return;
434    }
435
436    /*
437     * Where to look for native libraries
438     *
439     * Note: Due to a legacy implementation, most of the library path
440     * is set in the launcher.  This was to accomodate linking restrictions
441     * on legacy Linux implementations (which are no longer supported).
442     * Eventually, all the library path setting will be done here.
443     *
444     * However, to prevent the proliferation of improperly built native
445     * libraries, the new path component /usr/java/packages is added here.
446     * Eventually, all the library path setting will be done here.
447     */
448    {
449        char *ld_library_path;
450
451        /*
452         * Construct the invariant part of ld_library_path. Note that the
453         * space for the colon and the trailing null are provided by the
454         * nulls included by the sizeof operator (so actually we allocate
455         * a byte more than necessary).
456         */
457        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
458            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
459        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
460
461        /*
462         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
463         * should always exist (until the legacy problem cited above is
464         * addressed).
465         */
466        char *v = getenv("LD_LIBRARY_PATH");
467        if (v != NULL) {
468            char *t = ld_library_path;
469            /* That's +1 for the colon and +1 for the trailing '\0' */
470            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
471            sprintf(ld_library_path, "%s:%s", v, t);
472        }
473        Arguments::set_library_path(ld_library_path);
474    }
475
476    /*
477     * Extensions directories.
478     *
479     * Note that the space for the colon and the trailing null are provided
480     * by the nulls included by the sizeof operator (so actually one byte more
481     * than necessary is allocated).
482     */
483    {
484        char *buf = malloc(strlen(Arguments::get_java_home()) +
485            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
486        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
487            Arguments::get_java_home());
488        Arguments::set_ext_dirs(buf);
489    }
490
491    /* Endorsed standards default directory. */
492    {
493        char * buf;
494        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
495        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
496        Arguments::set_endorsed_dirs(buf);
497    }
498  }
499
500#undef malloc
501#undef getenv
502#undef EXTENSIONS_DIR
503#undef ENDORSED_DIR
504
505  // Done
506  return;
507}
508
509////////////////////////////////////////////////////////////////////////////////
510// breakpoint support
511
512void os::breakpoint() {
513  BREAKPOINT;
514}
515
516extern "C" void breakpoint() {
517  // use debugger to set breakpoint here
518}
519
520////////////////////////////////////////////////////////////////////////////////
521// signal support
522
523debug_only(static bool signal_sets_initialized = false);
524static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
525
526bool os::Linux::is_sig_ignored(int sig) {
527      struct sigaction oact;
528      sigaction(sig, (struct sigaction*)NULL, &oact);
529      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
530                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
531      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
532           return true;
533      else
534           return false;
535}
536
537void os::Linux::signal_sets_init() {
538  // Should also have an assertion stating we are still single-threaded.
539  assert(!signal_sets_initialized, "Already initialized");
540  // Fill in signals that are necessarily unblocked for all threads in
541  // the VM. Currently, we unblock the following signals:
542  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
543  //                         by -Xrs (=ReduceSignalUsage));
544  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
545  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
546  // the dispositions or masks wrt these signals.
547  // Programs embedding the VM that want to use the above signals for their
548  // own purposes must, at this time, use the "-Xrs" option to prevent
549  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
550  // (See bug 4345157, and other related bugs).
551  // In reality, though, unblocking these signals is really a nop, since
552  // these signals are not blocked by default.
553  sigemptyset(&unblocked_sigs);
554  sigemptyset(&allowdebug_blocked_sigs);
555  sigaddset(&unblocked_sigs, SIGILL);
556  sigaddset(&unblocked_sigs, SIGSEGV);
557  sigaddset(&unblocked_sigs, SIGBUS);
558  sigaddset(&unblocked_sigs, SIGFPE);
559  sigaddset(&unblocked_sigs, SR_signum);
560
561  if (!ReduceSignalUsage) {
562   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
563      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
564      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
565   }
566   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
567      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
568      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
569   }
570   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
571      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
572      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
573   }
574  }
575  // Fill in signals that are blocked by all but the VM thread.
576  sigemptyset(&vm_sigs);
577  if (!ReduceSignalUsage)
578    sigaddset(&vm_sigs, BREAK_SIGNAL);
579  debug_only(signal_sets_initialized = true);
580
581}
582
583// These are signals that are unblocked while a thread is running Java.
584// (For some reason, they get blocked by default.)
585sigset_t* os::Linux::unblocked_signals() {
586  assert(signal_sets_initialized, "Not initialized");
587  return &unblocked_sigs;
588}
589
590// These are the signals that are blocked while a (non-VM) thread is
591// running Java. Only the VM thread handles these signals.
592sigset_t* os::Linux::vm_signals() {
593  assert(signal_sets_initialized, "Not initialized");
594  return &vm_sigs;
595}
596
597// These are signals that are blocked during cond_wait to allow debugger in
598sigset_t* os::Linux::allowdebug_blocked_signals() {
599  assert(signal_sets_initialized, "Not initialized");
600  return &allowdebug_blocked_sigs;
601}
602
603void os::Linux::hotspot_sigmask(Thread* thread) {
604
605  //Save caller's signal mask before setting VM signal mask
606  sigset_t caller_sigmask;
607  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
608
609  OSThread* osthread = thread->osthread();
610  osthread->set_caller_sigmask(caller_sigmask);
611
612  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
613
614  if (!ReduceSignalUsage) {
615    if (thread->is_VM_thread()) {
616      // Only the VM thread handles BREAK_SIGNAL ...
617      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
618    } else {
619      // ... all other threads block BREAK_SIGNAL
620      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
621    }
622  }
623}
624
625//////////////////////////////////////////////////////////////////////////////
626// detecting pthread library
627
628void os::Linux::libpthread_init() {
629  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
630  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
631  // generic name for earlier versions.
632  // Define macros here so we can build HotSpot on old systems.
633# ifndef _CS_GNU_LIBC_VERSION
634# define _CS_GNU_LIBC_VERSION 2
635# endif
636# ifndef _CS_GNU_LIBPTHREAD_VERSION
637# define _CS_GNU_LIBPTHREAD_VERSION 3
638# endif
639
640  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
641  if (n > 0) {
642     char *str = (char *)malloc(n, mtInternal);
643     confstr(_CS_GNU_LIBC_VERSION, str, n);
644     os::Linux::set_glibc_version(str);
645  } else {
646     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
647     static char _gnu_libc_version[32];
648     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
649              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
650     os::Linux::set_glibc_version(_gnu_libc_version);
651  }
652
653  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
654  if (n > 0) {
655     char *str = (char *)malloc(n, mtInternal);
656     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
657     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
658     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
659     // is the case. LinuxThreads has a hard limit on max number of threads.
660     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
661     // On the other hand, NPTL does not have such a limit, sysconf()
662     // will return -1 and errno is not changed. Check if it is really NPTL.
663     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
664         strstr(str, "NPTL") &&
665         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
666       free(str);
667       os::Linux::set_libpthread_version("linuxthreads");
668     } else {
669       os::Linux::set_libpthread_version(str);
670     }
671  } else {
672    // glibc before 2.3.2 only has LinuxThreads.
673    os::Linux::set_libpthread_version("linuxthreads");
674  }
675
676  if (strstr(libpthread_version(), "NPTL")) {
677     os::Linux::set_is_NPTL();
678  } else {
679     os::Linux::set_is_LinuxThreads();
680  }
681
682  // LinuxThreads have two flavors: floating-stack mode, which allows variable
683  // stack size; and fixed-stack mode. NPTL is always floating-stack.
684  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
685     os::Linux::set_is_floating_stack();
686  }
687}
688
689/////////////////////////////////////////////////////////////////////////////
690// thread stack
691
692// Force Linux kernel to expand current thread stack. If "bottom" is close
693// to the stack guard, caller should block all signals.
694//
695// MAP_GROWSDOWN:
696//   A special mmap() flag that is used to implement thread stacks. It tells
697//   kernel that the memory region should extend downwards when needed. This
698//   allows early versions of LinuxThreads to only mmap the first few pages
699//   when creating a new thread. Linux kernel will automatically expand thread
700//   stack as needed (on page faults).
701//
702//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
703//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
704//   region, it's hard to tell if the fault is due to a legitimate stack
705//   access or because of reading/writing non-exist memory (e.g. buffer
706//   overrun). As a rule, if the fault happens below current stack pointer,
707//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
708//   application (see Linux kernel fault.c).
709//
710//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
711//   stack overflow detection.
712//
713//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
714//   not use this flag. However, the stack of initial thread is not created
715//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
716//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
717//   and then attach the thread to JVM.
718//
719// To get around the problem and allow stack banging on Linux, we need to
720// manually expand thread stack after receiving the SIGSEGV.
721//
722// There are two ways to expand thread stack to address "bottom", we used
723// both of them in JVM before 1.5:
724//   1. adjust stack pointer first so that it is below "bottom", and then
725//      touch "bottom"
726//   2. mmap() the page in question
727//
728// Now alternate signal stack is gone, it's harder to use 2. For instance,
729// if current sp is already near the lower end of page 101, and we need to
730// call mmap() to map page 100, it is possible that part of the mmap() frame
731// will be placed in page 100. When page 100 is mapped, it is zero-filled.
732// That will destroy the mmap() frame and cause VM to crash.
733//
734// The following code works by adjusting sp first, then accessing the "bottom"
735// page to force a page fault. Linux kernel will then automatically expand the
736// stack mapping.
737//
738// _expand_stack_to() assumes its frame size is less than page size, which
739// should always be true if the function is not inlined.
740
741#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
742#define NOINLINE
743#else
744#define NOINLINE __attribute__ ((noinline))
745#endif
746
747static void _expand_stack_to(address bottom) NOINLINE;
748
749static void _expand_stack_to(address bottom) {
750  address sp;
751  size_t size;
752  volatile char *p;
753
754  // Adjust bottom to point to the largest address within the same page, it
755  // gives us a one-page buffer if alloca() allocates slightly more memory.
756  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
757  bottom += os::Linux::page_size() - 1;
758
759  // sp might be slightly above current stack pointer; if that's the case, we
760  // will alloca() a little more space than necessary, which is OK. Don't use
761  // os::current_stack_pointer(), as its result can be slightly below current
762  // stack pointer, causing us to not alloca enough to reach "bottom".
763  sp = (address)&sp;
764
765  if (sp > bottom) {
766    size = sp - bottom;
767    p = (volatile char *)alloca(size);
768    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
769    p[0] = '\0';
770  }
771}
772
773bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
774  assert(t!=NULL, "just checking");
775  assert(t->osthread()->expanding_stack(), "expand should be set");
776  assert(t->stack_base() != NULL, "stack_base was not initialized");
777
778  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
779    sigset_t mask_all, old_sigset;
780    sigfillset(&mask_all);
781    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
782    _expand_stack_to(addr);
783    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
784    return true;
785  }
786  return false;
787}
788
789//////////////////////////////////////////////////////////////////////////////
790// create new thread
791
792static address highest_vm_reserved_address();
793
794// check if it's safe to start a new thread
795static bool _thread_safety_check(Thread* thread) {
796  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
797    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
798    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
799    //   allocated (MAP_FIXED) from high address space. Every thread stack
800    //   occupies a fixed size slot (usually 2Mbytes, but user can change
801    //   it to other values if they rebuild LinuxThreads).
802    //
803    // Problem with MAP_FIXED is that mmap() can still succeed even part of
804    // the memory region has already been mmap'ed. That means if we have too
805    // many threads and/or very large heap, eventually thread stack will
806    // collide with heap.
807    //
808    // Here we try to prevent heap/stack collision by comparing current
809    // stack bottom with the highest address that has been mmap'ed by JVM
810    // plus a safety margin for memory maps created by native code.
811    //
812    // This feature can be disabled by setting ThreadSafetyMargin to 0
813    //
814    if (ThreadSafetyMargin > 0) {
815      address stack_bottom = os::current_stack_base() - os::current_stack_size();
816
817      // not safe if our stack extends below the safety margin
818      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
819    } else {
820      return true;
821    }
822  } else {
823    // Floating stack LinuxThreads or NPTL:
824    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
825    //   there's not enough space left, pthread_create() will fail. If we come
826    //   here, that means enough space has been reserved for stack.
827    return true;
828  }
829}
830
831// Thread start routine for all newly created threads
832static void *java_start(Thread *thread) {
833  // Try to randomize the cache line index of hot stack frames.
834  // This helps when threads of the same stack traces evict each other's
835  // cache lines. The threads can be either from the same JVM instance, or
836  // from different JVM instances. The benefit is especially true for
837  // processors with hyperthreading technology.
838  static int counter = 0;
839  int pid = os::current_process_id();
840  alloca(((pid ^ counter++) & 7) * 128);
841
842  ThreadLocalStorage::set_thread(thread);
843
844  OSThread* osthread = thread->osthread();
845  Monitor* sync = osthread->startThread_lock();
846
847  // non floating stack LinuxThreads needs extra check, see above
848  if (!_thread_safety_check(thread)) {
849    // notify parent thread
850    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
851    osthread->set_state(ZOMBIE);
852    sync->notify_all();
853    return NULL;
854  }
855
856  // thread_id is kernel thread id (similar to Solaris LWP id)
857  osthread->set_thread_id(os::Linux::gettid());
858
859  if (UseNUMA) {
860    int lgrp_id = os::numa_get_group_id();
861    if (lgrp_id != -1) {
862      thread->set_lgrp_id(lgrp_id);
863    }
864  }
865  // initialize signal mask for this thread
866  os::Linux::hotspot_sigmask(thread);
867
868  // initialize floating point control register
869  os::Linux::init_thread_fpu_state();
870
871  // handshaking with parent thread
872  {
873    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
874
875    // notify parent thread
876    osthread->set_state(INITIALIZED);
877    sync->notify_all();
878
879    // wait until os::start_thread()
880    while (osthread->get_state() == INITIALIZED) {
881      sync->wait(Mutex::_no_safepoint_check_flag);
882    }
883  }
884
885  // call one more level start routine
886  thread->run();
887
888  return 0;
889}
890
891bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
892  assert(thread->osthread() == NULL, "caller responsible");
893
894  // Allocate the OSThread object
895  OSThread* osthread = new OSThread(NULL, NULL);
896  if (osthread == NULL) {
897    return false;
898  }
899
900  // set the correct thread state
901  osthread->set_thread_type(thr_type);
902
903  // Initial state is ALLOCATED but not INITIALIZED
904  osthread->set_state(ALLOCATED);
905
906  thread->set_osthread(osthread);
907
908  // init thread attributes
909  pthread_attr_t attr;
910  pthread_attr_init(&attr);
911  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
912
913  // stack size
914  if (os::Linux::supports_variable_stack_size()) {
915    // calculate stack size if it's not specified by caller
916    if (stack_size == 0) {
917      stack_size = os::Linux::default_stack_size(thr_type);
918
919      switch (thr_type) {
920      case os::java_thread:
921        // Java threads use ThreadStackSize which default value can be
922        // changed with the flag -Xss
923        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
924        stack_size = JavaThread::stack_size_at_create();
925        break;
926      case os::compiler_thread:
927        if (CompilerThreadStackSize > 0) {
928          stack_size = (size_t)(CompilerThreadStackSize * K);
929          break;
930        } // else fall through:
931          // use VMThreadStackSize if CompilerThreadStackSize is not defined
932      case os::vm_thread:
933      case os::pgc_thread:
934      case os::cgc_thread:
935      case os::watcher_thread:
936        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
937        break;
938      }
939    }
940
941    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
942    pthread_attr_setstacksize(&attr, stack_size);
943  } else {
944    // let pthread_create() pick the default value.
945  }
946
947  // glibc guard page
948  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
949
950  ThreadState state;
951
952  {
953    // Serialize thread creation if we are running with fixed stack LinuxThreads
954    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
955    if (lock) {
956      os::Linux::createThread_lock()->lock_without_safepoint_check();
957    }
958
959    pthread_t tid;
960    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
961
962    pthread_attr_destroy(&attr);
963
964    if (ret != 0) {
965      if (PrintMiscellaneous && (Verbose || WizardMode)) {
966        perror("pthread_create()");
967      }
968      // Need to clean up stuff we've allocated so far
969      thread->set_osthread(NULL);
970      delete osthread;
971      if (lock) os::Linux::createThread_lock()->unlock();
972      return false;
973    }
974
975    // Store pthread info into the OSThread
976    osthread->set_pthread_id(tid);
977
978    // Wait until child thread is either initialized or aborted
979    {
980      Monitor* sync_with_child = osthread->startThread_lock();
981      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
982      while ((state = osthread->get_state()) == ALLOCATED) {
983        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
984      }
985    }
986
987    if (lock) {
988      os::Linux::createThread_lock()->unlock();
989    }
990  }
991
992  // Aborted due to thread limit being reached
993  if (state == ZOMBIE) {
994      thread->set_osthread(NULL);
995      delete osthread;
996      return false;
997  }
998
999  // The thread is returned suspended (in state INITIALIZED),
1000  // and is started higher up in the call chain
1001  assert(state == INITIALIZED, "race condition");
1002  return true;
1003}
1004
1005/////////////////////////////////////////////////////////////////////////////
1006// attach existing thread
1007
1008// bootstrap the main thread
1009bool os::create_main_thread(JavaThread* thread) {
1010  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1011  return create_attached_thread(thread);
1012}
1013
1014bool os::create_attached_thread(JavaThread* thread) {
1015#ifdef ASSERT
1016    thread->verify_not_published();
1017#endif
1018
1019  // Allocate the OSThread object
1020  OSThread* osthread = new OSThread(NULL, NULL);
1021
1022  if (osthread == NULL) {
1023    return false;
1024  }
1025
1026  // Store pthread info into the OSThread
1027  osthread->set_thread_id(os::Linux::gettid());
1028  osthread->set_pthread_id(::pthread_self());
1029
1030  // initialize floating point control register
1031  os::Linux::init_thread_fpu_state();
1032
1033  // Initial thread state is RUNNABLE
1034  osthread->set_state(RUNNABLE);
1035
1036  thread->set_osthread(osthread);
1037
1038  if (UseNUMA) {
1039    int lgrp_id = os::numa_get_group_id();
1040    if (lgrp_id != -1) {
1041      thread->set_lgrp_id(lgrp_id);
1042    }
1043  }
1044
1045  if (os::Linux::is_initial_thread()) {
1046    // If current thread is initial thread, its stack is mapped on demand,
1047    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1048    // the entire stack region to avoid SEGV in stack banging.
1049    // It is also useful to get around the heap-stack-gap problem on SuSE
1050    // kernel (see 4821821 for details). We first expand stack to the top
1051    // of yellow zone, then enable stack yellow zone (order is significant,
1052    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1053    // is no gap between the last two virtual memory regions.
1054
1055    JavaThread *jt = (JavaThread *)thread;
1056    address addr = jt->stack_yellow_zone_base();
1057    assert(addr != NULL, "initialization problem?");
1058    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1059
1060    osthread->set_expanding_stack();
1061    os::Linux::manually_expand_stack(jt, addr);
1062    osthread->clear_expanding_stack();
1063  }
1064
1065  // initialize signal mask for this thread
1066  // and save the caller's signal mask
1067  os::Linux::hotspot_sigmask(thread);
1068
1069  return true;
1070}
1071
1072void os::pd_start_thread(Thread* thread) {
1073  OSThread * osthread = thread->osthread();
1074  assert(osthread->get_state() != INITIALIZED, "just checking");
1075  Monitor* sync_with_child = osthread->startThread_lock();
1076  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1077  sync_with_child->notify();
1078}
1079
1080// Free Linux resources related to the OSThread
1081void os::free_thread(OSThread* osthread) {
1082  assert(osthread != NULL, "osthread not set");
1083
1084  if (Thread::current()->osthread() == osthread) {
1085    // Restore caller's signal mask
1086    sigset_t sigmask = osthread->caller_sigmask();
1087    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1088   }
1089
1090  delete osthread;
1091}
1092
1093//////////////////////////////////////////////////////////////////////////////
1094// thread local storage
1095
1096int os::allocate_thread_local_storage() {
1097  pthread_key_t key;
1098  int rslt = pthread_key_create(&key, NULL);
1099  assert(rslt == 0, "cannot allocate thread local storage");
1100  return (int)key;
1101}
1102
1103// Note: This is currently not used by VM, as we don't destroy TLS key
1104// on VM exit.
1105void os::free_thread_local_storage(int index) {
1106  int rslt = pthread_key_delete((pthread_key_t)index);
1107  assert(rslt == 0, "invalid index");
1108}
1109
1110void os::thread_local_storage_at_put(int index, void* value) {
1111  int rslt = pthread_setspecific((pthread_key_t)index, value);
1112  assert(rslt == 0, "pthread_setspecific failed");
1113}
1114
1115extern "C" Thread* get_thread() {
1116  return ThreadLocalStorage::thread();
1117}
1118
1119//////////////////////////////////////////////////////////////////////////////
1120// initial thread
1121
1122// Check if current thread is the initial thread, similar to Solaris thr_main.
1123bool os::Linux::is_initial_thread(void) {
1124  char dummy;
1125  // If called before init complete, thread stack bottom will be null.
1126  // Can be called if fatal error occurs before initialization.
1127  if (initial_thread_stack_bottom() == NULL) return false;
1128  assert(initial_thread_stack_bottom() != NULL &&
1129         initial_thread_stack_size()   != 0,
1130         "os::init did not locate initial thread's stack region");
1131  if ((address)&dummy >= initial_thread_stack_bottom() &&
1132      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1133       return true;
1134  else return false;
1135}
1136
1137// Find the virtual memory area that contains addr
1138static bool find_vma(address addr, address* vma_low, address* vma_high) {
1139  FILE *fp = fopen("/proc/self/maps", "r");
1140  if (fp) {
1141    address low, high;
1142    while (!feof(fp)) {
1143      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1144        if (low <= addr && addr < high) {
1145           if (vma_low)  *vma_low  = low;
1146           if (vma_high) *vma_high = high;
1147           fclose (fp);
1148           return true;
1149        }
1150      }
1151      for (;;) {
1152        int ch = fgetc(fp);
1153        if (ch == EOF || ch == (int)'\n') break;
1154      }
1155    }
1156    fclose(fp);
1157  }
1158  return false;
1159}
1160
1161// Locate initial thread stack. This special handling of initial thread stack
1162// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1163// bogus value for initial thread.
1164void os::Linux::capture_initial_stack(size_t max_size) {
1165  // stack size is the easy part, get it from RLIMIT_STACK
1166  size_t stack_size;
1167  struct rlimit rlim;
1168  getrlimit(RLIMIT_STACK, &rlim);
1169  stack_size = rlim.rlim_cur;
1170
1171  // 6308388: a bug in ld.so will relocate its own .data section to the
1172  //   lower end of primordial stack; reduce ulimit -s value a little bit
1173  //   so we won't install guard page on ld.so's data section.
1174  stack_size -= 2 * page_size();
1175
1176  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1177  //   7.1, in both cases we will get 2G in return value.
1178  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1179  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1180  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1181  //   in case other parts in glibc still assumes 2M max stack size.
1182  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1183#ifndef IA64
1184  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1185#else
1186  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1187  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1188#endif
1189
1190  // Try to figure out where the stack base (top) is. This is harder.
1191  //
1192  // When an application is started, glibc saves the initial stack pointer in
1193  // a global variable "__libc_stack_end", which is then used by system
1194  // libraries. __libc_stack_end should be pretty close to stack top. The
1195  // variable is available since the very early days. However, because it is
1196  // a private interface, it could disappear in the future.
1197  //
1198  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1199  // to __libc_stack_end, it is very close to stack top, but isn't the real
1200  // stack top. Note that /proc may not exist if VM is running as a chroot
1201  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1202  // /proc/<pid>/stat could change in the future (though unlikely).
1203  //
1204  // We try __libc_stack_end first. If that doesn't work, look for
1205  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1206  // as a hint, which should work well in most cases.
1207
1208  uintptr_t stack_start;
1209
1210  // try __libc_stack_end first
1211  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1212  if (p && *p) {
1213    stack_start = *p;
1214  } else {
1215    // see if we can get the start_stack field from /proc/self/stat
1216    FILE *fp;
1217    int pid;
1218    char state;
1219    int ppid;
1220    int pgrp;
1221    int session;
1222    int nr;
1223    int tpgrp;
1224    unsigned long flags;
1225    unsigned long minflt;
1226    unsigned long cminflt;
1227    unsigned long majflt;
1228    unsigned long cmajflt;
1229    unsigned long utime;
1230    unsigned long stime;
1231    long cutime;
1232    long cstime;
1233    long prio;
1234    long nice;
1235    long junk;
1236    long it_real;
1237    uintptr_t start;
1238    uintptr_t vsize;
1239    intptr_t rss;
1240    uintptr_t rsslim;
1241    uintptr_t scodes;
1242    uintptr_t ecode;
1243    int i;
1244
1245    // Figure what the primordial thread stack base is. Code is inspired
1246    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1247    // followed by command name surrounded by parentheses, state, etc.
1248    char stat[2048];
1249    int statlen;
1250
1251    fp = fopen("/proc/self/stat", "r");
1252    if (fp) {
1253      statlen = fread(stat, 1, 2047, fp);
1254      stat[statlen] = '\0';
1255      fclose(fp);
1256
1257      // Skip pid and the command string. Note that we could be dealing with
1258      // weird command names, e.g. user could decide to rename java launcher
1259      // to "java 1.4.2 :)", then the stat file would look like
1260      //                1234 (java 1.4.2 :)) R ... ...
1261      // We don't really need to know the command string, just find the last
1262      // occurrence of ")" and then start parsing from there. See bug 4726580.
1263      char * s = strrchr(stat, ')');
1264
1265      i = 0;
1266      if (s) {
1267        // Skip blank chars
1268        do s++; while (isspace(*s));
1269
1270#define _UFM UINTX_FORMAT
1271#define _DFM INTX_FORMAT
1272
1273        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1274        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1275        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1276             &state,          /* 3  %c  */
1277             &ppid,           /* 4  %d  */
1278             &pgrp,           /* 5  %d  */
1279             &session,        /* 6  %d  */
1280             &nr,             /* 7  %d  */
1281             &tpgrp,          /* 8  %d  */
1282             &flags,          /* 9  %lu  */
1283             &minflt,         /* 10 %lu  */
1284             &cminflt,        /* 11 %lu  */
1285             &majflt,         /* 12 %lu  */
1286             &cmajflt,        /* 13 %lu  */
1287             &utime,          /* 14 %lu  */
1288             &stime,          /* 15 %lu  */
1289             &cutime,         /* 16 %ld  */
1290             &cstime,         /* 17 %ld  */
1291             &prio,           /* 18 %ld  */
1292             &nice,           /* 19 %ld  */
1293             &junk,           /* 20 %ld  */
1294             &it_real,        /* 21 %ld  */
1295             &start,          /* 22 UINTX_FORMAT */
1296             &vsize,          /* 23 UINTX_FORMAT */
1297             &rss,            /* 24 INTX_FORMAT  */
1298             &rsslim,         /* 25 UINTX_FORMAT */
1299             &scodes,         /* 26 UINTX_FORMAT */
1300             &ecode,          /* 27 UINTX_FORMAT */
1301             &stack_start);   /* 28 UINTX_FORMAT */
1302      }
1303
1304#undef _UFM
1305#undef _DFM
1306
1307      if (i != 28 - 2) {
1308         assert(false, "Bad conversion from /proc/self/stat");
1309         // product mode - assume we are the initial thread, good luck in the
1310         // embedded case.
1311         warning("Can't detect initial thread stack location - bad conversion");
1312         stack_start = (uintptr_t) &rlim;
1313      }
1314    } else {
1315      // For some reason we can't open /proc/self/stat (for example, running on
1316      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1317      // most cases, so don't abort:
1318      warning("Can't detect initial thread stack location - no /proc/self/stat");
1319      stack_start = (uintptr_t) &rlim;
1320    }
1321  }
1322
1323  // Now we have a pointer (stack_start) very close to the stack top, the
1324  // next thing to do is to figure out the exact location of stack top. We
1325  // can find out the virtual memory area that contains stack_start by
1326  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1327  // and its upper limit is the real stack top. (again, this would fail if
1328  // running inside chroot, because /proc may not exist.)
1329
1330  uintptr_t stack_top;
1331  address low, high;
1332  if (find_vma((address)stack_start, &low, &high)) {
1333    // success, "high" is the true stack top. (ignore "low", because initial
1334    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1335    stack_top = (uintptr_t)high;
1336  } else {
1337    // failed, likely because /proc/self/maps does not exist
1338    warning("Can't detect initial thread stack location - find_vma failed");
1339    // best effort: stack_start is normally within a few pages below the real
1340    // stack top, use it as stack top, and reduce stack size so we won't put
1341    // guard page outside stack.
1342    stack_top = stack_start;
1343    stack_size -= 16 * page_size();
1344  }
1345
1346  // stack_top could be partially down the page so align it
1347  stack_top = align_size_up(stack_top, page_size());
1348
1349  if (max_size && stack_size > max_size) {
1350     _initial_thread_stack_size = max_size;
1351  } else {
1352     _initial_thread_stack_size = stack_size;
1353  }
1354
1355  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1356  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1357}
1358
1359////////////////////////////////////////////////////////////////////////////////
1360// time support
1361
1362// Time since start-up in seconds to a fine granularity.
1363// Used by VMSelfDestructTimer and the MemProfiler.
1364double os::elapsedTime() {
1365
1366  return (double)(os::elapsed_counter()) * 0.000001;
1367}
1368
1369jlong os::elapsed_counter() {
1370  timeval time;
1371  int status = gettimeofday(&time, NULL);
1372  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1373}
1374
1375jlong os::elapsed_frequency() {
1376  return (1000 * 1000);
1377}
1378
1379// For now, we say that linux does not support vtime.  I have no idea
1380// whether it can actually be made to (DLD, 9/13/05).
1381
1382bool os::supports_vtime() { return false; }
1383bool os::enable_vtime()   { return false; }
1384bool os::vtime_enabled()  { return false; }
1385double os::elapsedVTime() {
1386  // better than nothing, but not much
1387  return elapsedTime();
1388}
1389
1390jlong os::javaTimeMillis() {
1391  timeval time;
1392  int status = gettimeofday(&time, NULL);
1393  assert(status != -1, "linux error");
1394  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1395}
1396
1397#ifndef CLOCK_MONOTONIC
1398#define CLOCK_MONOTONIC (1)
1399#endif
1400
1401void os::Linux::clock_init() {
1402  // we do dlopen's in this particular order due to bug in linux
1403  // dynamical loader (see 6348968) leading to crash on exit
1404  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1405  if (handle == NULL) {
1406    handle = dlopen("librt.so", RTLD_LAZY);
1407  }
1408
1409  if (handle) {
1410    int (*clock_getres_func)(clockid_t, struct timespec*) =
1411           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1412    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1413           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1414    if (clock_getres_func && clock_gettime_func) {
1415      // See if monotonic clock is supported by the kernel. Note that some
1416      // early implementations simply return kernel jiffies (updated every
1417      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1418      // for nano time (though the monotonic property is still nice to have).
1419      // It's fixed in newer kernels, however clock_getres() still returns
1420      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1421      // resolution for now. Hopefully as people move to new kernels, this
1422      // won't be a problem.
1423      struct timespec res;
1424      struct timespec tp;
1425      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1426          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1427        // yes, monotonic clock is supported
1428        _clock_gettime = clock_gettime_func;
1429      } else {
1430        // close librt if there is no monotonic clock
1431        dlclose(handle);
1432      }
1433    }
1434  }
1435}
1436
1437#ifndef SYS_clock_getres
1438
1439#if defined(IA32) || defined(AMD64)
1440#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1441#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1442#else
1443#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1444#define sys_clock_getres(x,y)  -1
1445#endif
1446
1447#else
1448#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1449#endif
1450
1451void os::Linux::fast_thread_clock_init() {
1452  if (!UseLinuxPosixThreadCPUClocks) {
1453    return;
1454  }
1455  clockid_t clockid;
1456  struct timespec tp;
1457  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1458      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1459
1460  // Switch to using fast clocks for thread cpu time if
1461  // the sys_clock_getres() returns 0 error code.
1462  // Note, that some kernels may support the current thread
1463  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1464  // returned by the pthread_getcpuclockid().
1465  // If the fast Posix clocks are supported then the sys_clock_getres()
1466  // must return at least tp.tv_sec == 0 which means a resolution
1467  // better than 1 sec. This is extra check for reliability.
1468
1469  if(pthread_getcpuclockid_func &&
1470     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1471     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1472
1473    _supports_fast_thread_cpu_time = true;
1474    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1475  }
1476}
1477
1478jlong os::javaTimeNanos() {
1479  if (Linux::supports_monotonic_clock()) {
1480    struct timespec tp;
1481    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1482    assert(status == 0, "gettime error");
1483    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1484    return result;
1485  } else {
1486    timeval time;
1487    int status = gettimeofday(&time, NULL);
1488    assert(status != -1, "linux error");
1489    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1490    return 1000 * usecs;
1491  }
1492}
1493
1494void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1495  if (Linux::supports_monotonic_clock()) {
1496    info_ptr->max_value = ALL_64_BITS;
1497
1498    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1499    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1500    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1501  } else {
1502    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1503    info_ptr->max_value = ALL_64_BITS;
1504
1505    // gettimeofday is a real time clock so it skips
1506    info_ptr->may_skip_backward = true;
1507    info_ptr->may_skip_forward = true;
1508  }
1509
1510  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1511}
1512
1513// Return the real, user, and system times in seconds from an
1514// arbitrary fixed point in the past.
1515bool os::getTimesSecs(double* process_real_time,
1516                      double* process_user_time,
1517                      double* process_system_time) {
1518  struct tms ticks;
1519  clock_t real_ticks = times(&ticks);
1520
1521  if (real_ticks == (clock_t) (-1)) {
1522    return false;
1523  } else {
1524    double ticks_per_second = (double) clock_tics_per_sec;
1525    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1526    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1527    *process_real_time = ((double) real_ticks) / ticks_per_second;
1528
1529    return true;
1530  }
1531}
1532
1533
1534char * os::local_time_string(char *buf, size_t buflen) {
1535  struct tm t;
1536  time_t long_time;
1537  time(&long_time);
1538  localtime_r(&long_time, &t);
1539  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1540               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1541               t.tm_hour, t.tm_min, t.tm_sec);
1542  return buf;
1543}
1544
1545struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1546  return localtime_r(clock, res);
1547}
1548
1549////////////////////////////////////////////////////////////////////////////////
1550// runtime exit support
1551
1552// Note: os::shutdown() might be called very early during initialization, or
1553// called from signal handler. Before adding something to os::shutdown(), make
1554// sure it is async-safe and can handle partially initialized VM.
1555void os::shutdown() {
1556
1557  // allow PerfMemory to attempt cleanup of any persistent resources
1558  perfMemory_exit();
1559
1560  // needs to remove object in file system
1561  AttachListener::abort();
1562
1563  // flush buffered output, finish log files
1564  ostream_abort();
1565
1566  // Check for abort hook
1567  abort_hook_t abort_hook = Arguments::abort_hook();
1568  if (abort_hook != NULL) {
1569    abort_hook();
1570  }
1571
1572}
1573
1574// Note: os::abort() might be called very early during initialization, or
1575// called from signal handler. Before adding something to os::abort(), make
1576// sure it is async-safe and can handle partially initialized VM.
1577void os::abort(bool dump_core) {
1578  os::shutdown();
1579  if (dump_core) {
1580#ifndef PRODUCT
1581    fdStream out(defaultStream::output_fd());
1582    out.print_raw("Current thread is ");
1583    char buf[16];
1584    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1585    out.print_raw_cr(buf);
1586    out.print_raw_cr("Dumping core ...");
1587#endif
1588    ::abort(); // dump core
1589  }
1590
1591  ::exit(1);
1592}
1593
1594// Die immediately, no exit hook, no abort hook, no cleanup.
1595void os::die() {
1596  // _exit() on LinuxThreads only kills current thread
1597  ::abort();
1598}
1599
1600// unused on linux for now.
1601void os::set_error_file(const char *logfile) {}
1602
1603
1604// This method is a copy of JDK's sysGetLastErrorString
1605// from src/solaris/hpi/src/system_md.c
1606
1607size_t os::lasterror(char *buf, size_t len) {
1608
1609  if (errno == 0)  return 0;
1610
1611  const char *s = ::strerror(errno);
1612  size_t n = ::strlen(s);
1613  if (n >= len) {
1614    n = len - 1;
1615  }
1616  ::strncpy(buf, s, n);
1617  buf[n] = '\0';
1618  return n;
1619}
1620
1621intx os::current_thread_id() { return (intx)pthread_self(); }
1622int os::current_process_id() {
1623
1624  // Under the old linux thread library, linux gives each thread
1625  // its own process id. Because of this each thread will return
1626  // a different pid if this method were to return the result
1627  // of getpid(2). Linux provides no api that returns the pid
1628  // of the launcher thread for the vm. This implementation
1629  // returns a unique pid, the pid of the launcher thread
1630  // that starts the vm 'process'.
1631
1632  // Under the NPTL, getpid() returns the same pid as the
1633  // launcher thread rather than a unique pid per thread.
1634  // Use gettid() if you want the old pre NPTL behaviour.
1635
1636  // if you are looking for the result of a call to getpid() that
1637  // returns a unique pid for the calling thread, then look at the
1638  // OSThread::thread_id() method in osThread_linux.hpp file
1639
1640  return (int)(_initial_pid ? _initial_pid : getpid());
1641}
1642
1643// DLL functions
1644
1645const char* os::dll_file_extension() { return ".so"; }
1646
1647// This must be hard coded because it's the system's temporary
1648// directory not the java application's temp directory, ala java.io.tmpdir.
1649const char* os::get_temp_directory() { return "/tmp"; }
1650
1651static bool file_exists(const char* filename) {
1652  struct stat statbuf;
1653  if (filename == NULL || strlen(filename) == 0) {
1654    return false;
1655  }
1656  return os::stat(filename, &statbuf) == 0;
1657}
1658
1659void os::dll_build_name(char* buffer, size_t buflen,
1660                        const char* pname, const char* fname) {
1661  // Copied from libhpi
1662  const size_t pnamelen = pname ? strlen(pname) : 0;
1663
1664  // Quietly truncate on buffer overflow.  Should be an error.
1665  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1666      *buffer = '\0';
1667      return;
1668  }
1669
1670  if (pnamelen == 0) {
1671    snprintf(buffer, buflen, "lib%s.so", fname);
1672  } else if (strchr(pname, *os::path_separator()) != NULL) {
1673    int n;
1674    char** pelements = split_path(pname, &n);
1675    for (int i = 0 ; i < n ; i++) {
1676      // Really shouldn't be NULL, but check can't hurt
1677      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1678        continue; // skip the empty path values
1679      }
1680      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1681      if (file_exists(buffer)) {
1682        break;
1683      }
1684    }
1685    // release the storage
1686    for (int i = 0 ; i < n ; i++) {
1687      if (pelements[i] != NULL) {
1688        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1689      }
1690    }
1691    if (pelements != NULL) {
1692      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1693    }
1694  } else {
1695    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1696  }
1697}
1698
1699const char* os::get_current_directory(char *buf, int buflen) {
1700  return getcwd(buf, buflen);
1701}
1702
1703// check if addr is inside libjvm[_g].so
1704bool os::address_is_in_vm(address addr) {
1705  static address libjvm_base_addr;
1706  Dl_info dlinfo;
1707
1708  if (libjvm_base_addr == NULL) {
1709    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1710    libjvm_base_addr = (address)dlinfo.dli_fbase;
1711    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1712  }
1713
1714  if (dladdr((void *)addr, &dlinfo)) {
1715    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1716  }
1717
1718  return false;
1719}
1720
1721bool os::dll_address_to_function_name(address addr, char *buf,
1722                                      int buflen, int *offset) {
1723  Dl_info dlinfo;
1724
1725  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1726    if (buf != NULL) {
1727      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1728        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1729      }
1730    }
1731    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1732    return true;
1733  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1734    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1735        buf, buflen, offset, dlinfo.dli_fname)) {
1736       return true;
1737    }
1738  }
1739
1740  if (buf != NULL) buf[0] = '\0';
1741  if (offset != NULL) *offset = -1;
1742  return false;
1743}
1744
1745struct _address_to_library_name {
1746  address addr;          // input : memory address
1747  size_t  buflen;        //         size of fname
1748  char*   fname;         // output: library name
1749  address base;          //         library base addr
1750};
1751
1752static int address_to_library_name_callback(struct dl_phdr_info *info,
1753                                            size_t size, void *data) {
1754  int i;
1755  bool found = false;
1756  address libbase = NULL;
1757  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1758
1759  // iterate through all loadable segments
1760  for (i = 0; i < info->dlpi_phnum; i++) {
1761    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1762    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1763      // base address of a library is the lowest address of its loaded
1764      // segments.
1765      if (libbase == NULL || libbase > segbase) {
1766        libbase = segbase;
1767      }
1768      // see if 'addr' is within current segment
1769      if (segbase <= d->addr &&
1770          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1771        found = true;
1772      }
1773    }
1774  }
1775
1776  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1777  // so dll_address_to_library_name() can fall through to use dladdr() which
1778  // can figure out executable name from argv[0].
1779  if (found && info->dlpi_name && info->dlpi_name[0]) {
1780    d->base = libbase;
1781    if (d->fname) {
1782      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1783    }
1784    return 1;
1785  }
1786  return 0;
1787}
1788
1789bool os::dll_address_to_library_name(address addr, char* buf,
1790                                     int buflen, int* offset) {
1791  Dl_info dlinfo;
1792  struct _address_to_library_name data;
1793
1794  // There is a bug in old glibc dladdr() implementation that it could resolve
1795  // to wrong library name if the .so file has a base address != NULL. Here
1796  // we iterate through the program headers of all loaded libraries to find
1797  // out which library 'addr' really belongs to. This workaround can be
1798  // removed once the minimum requirement for glibc is moved to 2.3.x.
1799  data.addr = addr;
1800  data.fname = buf;
1801  data.buflen = buflen;
1802  data.base = NULL;
1803  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1804
1805  if (rslt) {
1806     // buf already contains library name
1807     if (offset) *offset = addr - data.base;
1808     return true;
1809  } else if (dladdr((void*)addr, &dlinfo)){
1810     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1811     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1812     return true;
1813  } else {
1814     if (buf) buf[0] = '\0';
1815     if (offset) *offset = -1;
1816     return false;
1817  }
1818}
1819
1820  // Loads .dll/.so and
1821  // in case of error it checks if .dll/.so was built for the
1822  // same architecture as Hotspot is running on
1823
1824void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1825{
1826  void * result= ::dlopen(filename, RTLD_LAZY);
1827  if (result != NULL) {
1828    // Successful loading
1829    return result;
1830  }
1831
1832  Elf32_Ehdr elf_head;
1833
1834  // Read system error message into ebuf
1835  // It may or may not be overwritten below
1836  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1837  ebuf[ebuflen-1]='\0';
1838  int diag_msg_max_length=ebuflen-strlen(ebuf);
1839  char* diag_msg_buf=ebuf+strlen(ebuf);
1840
1841  if (diag_msg_max_length==0) {
1842    // No more space in ebuf for additional diagnostics message
1843    return NULL;
1844  }
1845
1846
1847  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1848
1849  if (file_descriptor < 0) {
1850    // Can't open library, report dlerror() message
1851    return NULL;
1852  }
1853
1854  bool failed_to_read_elf_head=
1855    (sizeof(elf_head)!=
1856        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1857
1858  ::close(file_descriptor);
1859  if (failed_to_read_elf_head) {
1860    // file i/o error - report dlerror() msg
1861    return NULL;
1862  }
1863
1864  typedef struct {
1865    Elf32_Half  code;         // Actual value as defined in elf.h
1866    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1867    char        elf_class;    // 32 or 64 bit
1868    char        endianess;    // MSB or LSB
1869    char*       name;         // String representation
1870  } arch_t;
1871
1872  #ifndef EM_486
1873  #define EM_486          6               /* Intel 80486 */
1874  #endif
1875
1876  static const arch_t arch_array[]={
1877    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1878    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1879    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1880    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1881    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1882    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1883    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1884    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1885    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1886    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1887    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1888    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1889    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1890    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1891    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1892    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1893  };
1894
1895  #if  (defined IA32)
1896    static  Elf32_Half running_arch_code=EM_386;
1897  #elif   (defined AMD64)
1898    static  Elf32_Half running_arch_code=EM_X86_64;
1899  #elif  (defined IA64)
1900    static  Elf32_Half running_arch_code=EM_IA_64;
1901  #elif  (defined __sparc) && (defined _LP64)
1902    static  Elf32_Half running_arch_code=EM_SPARCV9;
1903  #elif  (defined __sparc) && (!defined _LP64)
1904    static  Elf32_Half running_arch_code=EM_SPARC;
1905  #elif  (defined __powerpc64__)
1906    static  Elf32_Half running_arch_code=EM_PPC64;
1907  #elif  (defined __powerpc__)
1908    static  Elf32_Half running_arch_code=EM_PPC;
1909  #elif  (defined ARM)
1910    static  Elf32_Half running_arch_code=EM_ARM;
1911  #elif  (defined S390)
1912    static  Elf32_Half running_arch_code=EM_S390;
1913  #elif  (defined ALPHA)
1914    static  Elf32_Half running_arch_code=EM_ALPHA;
1915  #elif  (defined MIPSEL)
1916    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1917  #elif  (defined PARISC)
1918    static  Elf32_Half running_arch_code=EM_PARISC;
1919  #elif  (defined MIPS)
1920    static  Elf32_Half running_arch_code=EM_MIPS;
1921  #elif  (defined M68K)
1922    static  Elf32_Half running_arch_code=EM_68K;
1923  #else
1924    #error Method os::dll_load requires that one of following is defined:\
1925         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1926  #endif
1927
1928  // Identify compatability class for VM's architecture and library's architecture
1929  // Obtain string descriptions for architectures
1930
1931  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1932  int running_arch_index=-1;
1933
1934  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1935    if (running_arch_code == arch_array[i].code) {
1936      running_arch_index    = i;
1937    }
1938    if (lib_arch.code == arch_array[i].code) {
1939      lib_arch.compat_class = arch_array[i].compat_class;
1940      lib_arch.name         = arch_array[i].name;
1941    }
1942  }
1943
1944  assert(running_arch_index != -1,
1945    "Didn't find running architecture code (running_arch_code) in arch_array");
1946  if (running_arch_index == -1) {
1947    // Even though running architecture detection failed
1948    // we may still continue with reporting dlerror() message
1949    return NULL;
1950  }
1951
1952  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1953    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1954    return NULL;
1955  }
1956
1957#ifndef S390
1958  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1959    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1960    return NULL;
1961  }
1962#endif // !S390
1963
1964  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1965    if ( lib_arch.name!=NULL ) {
1966      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1967        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1968        lib_arch.name, arch_array[running_arch_index].name);
1969    } else {
1970      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1971      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1972        lib_arch.code,
1973        arch_array[running_arch_index].name);
1974    }
1975  }
1976
1977  return NULL;
1978}
1979
1980/*
1981 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1982 * chances are you might want to run the generated bits against glibc-2.0
1983 * libdl.so, so always use locking for any version of glibc.
1984 */
1985void* os::dll_lookup(void* handle, const char* name) {
1986  pthread_mutex_lock(&dl_mutex);
1987  void* res = dlsym(handle, name);
1988  pthread_mutex_unlock(&dl_mutex);
1989  return res;
1990}
1991
1992
1993static bool _print_ascii_file(const char* filename, outputStream* st) {
1994  int fd = ::open(filename, O_RDONLY);
1995  if (fd == -1) {
1996     return false;
1997  }
1998
1999  char buf[32];
2000  int bytes;
2001  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2002    st->print_raw(buf, bytes);
2003  }
2004
2005  ::close(fd);
2006
2007  return true;
2008}
2009
2010void os::print_dll_info(outputStream *st) {
2011   st->print_cr("Dynamic libraries:");
2012
2013   char fname[32];
2014   pid_t pid = os::Linux::gettid();
2015
2016   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2017
2018   if (!_print_ascii_file(fname, st)) {
2019     st->print("Can not get library information for pid = %d\n", pid);
2020   }
2021}
2022
2023void os::print_os_info_brief(outputStream* st) {
2024  os::Linux::print_distro_info(st);
2025
2026  os::Posix::print_uname_info(st);
2027
2028  os::Linux::print_libversion_info(st);
2029
2030}
2031
2032void os::print_os_info(outputStream* st) {
2033  st->print("OS:");
2034
2035  os::Linux::print_distro_info(st);
2036
2037  os::Posix::print_uname_info(st);
2038
2039  // Print warning if unsafe chroot environment detected
2040  if (unsafe_chroot_detected) {
2041    st->print("WARNING!! ");
2042    st->print_cr(unstable_chroot_error);
2043  }
2044
2045  os::Linux::print_libversion_info(st);
2046
2047  os::Posix::print_rlimit_info(st);
2048
2049  os::Posix::print_load_average(st);
2050
2051  os::Linux::print_full_memory_info(st);
2052}
2053
2054// Try to identify popular distros.
2055// Most Linux distributions have /etc/XXX-release file, which contains
2056// the OS version string. Some have more than one /etc/XXX-release file
2057// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2058// so the order is important.
2059void os::Linux::print_distro_info(outputStream* st) {
2060  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2061      !_print_ascii_file("/etc/sun-release", st) &&
2062      !_print_ascii_file("/etc/redhat-release", st) &&
2063      !_print_ascii_file("/etc/SuSE-release", st) &&
2064      !_print_ascii_file("/etc/turbolinux-release", st) &&
2065      !_print_ascii_file("/etc/gentoo-release", st) &&
2066      !_print_ascii_file("/etc/debian_version", st) &&
2067      !_print_ascii_file("/etc/ltib-release", st) &&
2068      !_print_ascii_file("/etc/angstrom-version", st)) {
2069      st->print("Linux");
2070  }
2071  st->cr();
2072}
2073
2074void os::Linux::print_libversion_info(outputStream* st) {
2075  // libc, pthread
2076  st->print("libc:");
2077  st->print(os::Linux::glibc_version()); st->print(" ");
2078  st->print(os::Linux::libpthread_version()); st->print(" ");
2079  if (os::Linux::is_LinuxThreads()) {
2080     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2081  }
2082  st->cr();
2083}
2084
2085void os::Linux::print_full_memory_info(outputStream* st) {
2086   st->print("\n/proc/meminfo:\n");
2087   _print_ascii_file("/proc/meminfo", st);
2088   st->cr();
2089}
2090
2091void os::print_memory_info(outputStream* st) {
2092
2093  st->print("Memory:");
2094  st->print(" %dk page", os::vm_page_size()>>10);
2095
2096  // values in struct sysinfo are "unsigned long"
2097  struct sysinfo si;
2098  sysinfo(&si);
2099
2100  st->print(", physical " UINT64_FORMAT "k",
2101            os::physical_memory() >> 10);
2102  st->print("(" UINT64_FORMAT "k free)",
2103            os::available_memory() >> 10);
2104  st->print(", swap " UINT64_FORMAT "k",
2105            ((jlong)si.totalswap * si.mem_unit) >> 10);
2106  st->print("(" UINT64_FORMAT "k free)",
2107            ((jlong)si.freeswap * si.mem_unit) >> 10);
2108  st->cr();
2109}
2110
2111void os::pd_print_cpu_info(outputStream* st) {
2112  st->print("\n/proc/cpuinfo:\n");
2113  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2114    st->print("  <Not Available>");
2115  }
2116  st->cr();
2117}
2118
2119// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2120// but they're the same for all the linux arch that we support
2121// and they're the same for solaris but there's no common place to put this.
2122const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2123                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2124                          "ILL_COPROC", "ILL_BADSTK" };
2125
2126const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2127                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2128                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2129
2130const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2131
2132const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2133
2134void os::print_siginfo(outputStream* st, void* siginfo) {
2135  st->print("siginfo:");
2136
2137  const int buflen = 100;
2138  char buf[buflen];
2139  siginfo_t *si = (siginfo_t*)siginfo;
2140  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2141  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2142    st->print("si_errno=%s", buf);
2143  } else {
2144    st->print("si_errno=%d", si->si_errno);
2145  }
2146  const int c = si->si_code;
2147  assert(c > 0, "unexpected si_code");
2148  switch (si->si_signo) {
2149  case SIGILL:
2150    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2151    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2152    break;
2153  case SIGFPE:
2154    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2155    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2156    break;
2157  case SIGSEGV:
2158    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2159    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2160    break;
2161  case SIGBUS:
2162    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2163    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2164    break;
2165  default:
2166    st->print(", si_code=%d", si->si_code);
2167    // no si_addr
2168  }
2169
2170  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2171      UseSharedSpaces) {
2172    FileMapInfo* mapinfo = FileMapInfo::current_info();
2173    if (mapinfo->is_in_shared_space(si->si_addr)) {
2174      st->print("\n\nError accessing class data sharing archive."   \
2175                " Mapped file inaccessible during execution, "      \
2176                " possible disk/network problem.");
2177    }
2178  }
2179  st->cr();
2180}
2181
2182
2183static void print_signal_handler(outputStream* st, int sig,
2184                                 char* buf, size_t buflen);
2185
2186void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2187  st->print_cr("Signal Handlers:");
2188  print_signal_handler(st, SIGSEGV, buf, buflen);
2189  print_signal_handler(st, SIGBUS , buf, buflen);
2190  print_signal_handler(st, SIGFPE , buf, buflen);
2191  print_signal_handler(st, SIGPIPE, buf, buflen);
2192  print_signal_handler(st, SIGXFSZ, buf, buflen);
2193  print_signal_handler(st, SIGILL , buf, buflen);
2194  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2195  print_signal_handler(st, SR_signum, buf, buflen);
2196  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2197  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2198  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2199  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2200}
2201
2202static char saved_jvm_path[MAXPATHLEN] = {0};
2203
2204// Find the full path to the current module, libjvm.so or libjvm_g.so
2205void os::jvm_path(char *buf, jint buflen) {
2206  // Error checking.
2207  if (buflen < MAXPATHLEN) {
2208    assert(false, "must use a large-enough buffer");
2209    buf[0] = '\0';
2210    return;
2211  }
2212  // Lazy resolve the path to current module.
2213  if (saved_jvm_path[0] != 0) {
2214    strcpy(buf, saved_jvm_path);
2215    return;
2216  }
2217
2218  char dli_fname[MAXPATHLEN];
2219  bool ret = dll_address_to_library_name(
2220                CAST_FROM_FN_PTR(address, os::jvm_path),
2221                dli_fname, sizeof(dli_fname), NULL);
2222  assert(ret != 0, "cannot locate libjvm");
2223  char *rp = realpath(dli_fname, buf);
2224  if (rp == NULL)
2225    return;
2226
2227  if (Arguments::created_by_gamma_launcher()) {
2228    // Support for the gamma launcher.  Typical value for buf is
2229    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2230    // the right place in the string, then assume we are installed in a JDK and
2231    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2232    // up the path so it looks like libjvm.so is installed there (append a
2233    // fake suffix hotspot/libjvm.so).
2234    const char *p = buf + strlen(buf) - 1;
2235    for (int count = 0; p > buf && count < 5; ++count) {
2236      for (--p; p > buf && *p != '/'; --p)
2237        /* empty */ ;
2238    }
2239
2240    if (strncmp(p, "/jre/lib/", 9) != 0) {
2241      // Look for JAVA_HOME in the environment.
2242      char* java_home_var = ::getenv("JAVA_HOME");
2243      if (java_home_var != NULL && java_home_var[0] != 0) {
2244        char* jrelib_p;
2245        int len;
2246
2247        // Check the current module name "libjvm.so" or "libjvm_g.so".
2248        p = strrchr(buf, '/');
2249        assert(strstr(p, "/libjvm") == p, "invalid library name");
2250        p = strstr(p, "_g") ? "_g" : "";
2251
2252        rp = realpath(java_home_var, buf);
2253        if (rp == NULL)
2254          return;
2255
2256        // determine if this is a legacy image or modules image
2257        // modules image doesn't have "jre" subdirectory
2258        len = strlen(buf);
2259        jrelib_p = buf + len;
2260        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2261        if (0 != access(buf, F_OK)) {
2262          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2263        }
2264
2265        if (0 == access(buf, F_OK)) {
2266          // Use current module name "libjvm[_g].so" instead of
2267          // "libjvm"debug_only("_g")".so" since for fastdebug version
2268          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2269          len = strlen(buf);
2270          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2271        } else {
2272          // Go back to path of .so
2273          rp = realpath(dli_fname, buf);
2274          if (rp == NULL)
2275            return;
2276        }
2277      }
2278    }
2279  }
2280
2281  strcpy(saved_jvm_path, buf);
2282}
2283
2284void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2285  // no prefix required, not even "_"
2286}
2287
2288void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2289  // no suffix required
2290}
2291
2292////////////////////////////////////////////////////////////////////////////////
2293// sun.misc.Signal support
2294
2295static volatile jint sigint_count = 0;
2296
2297static void
2298UserHandler(int sig, void *siginfo, void *context) {
2299  // 4511530 - sem_post is serialized and handled by the manager thread. When
2300  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2301  // don't want to flood the manager thread with sem_post requests.
2302  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2303      return;
2304
2305  // Ctrl-C is pressed during error reporting, likely because the error
2306  // handler fails to abort. Let VM die immediately.
2307  if (sig == SIGINT && is_error_reported()) {
2308     os::die();
2309  }
2310
2311  os::signal_notify(sig);
2312}
2313
2314void* os::user_handler() {
2315  return CAST_FROM_FN_PTR(void*, UserHandler);
2316}
2317
2318extern "C" {
2319  typedef void (*sa_handler_t)(int);
2320  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2321}
2322
2323void* os::signal(int signal_number, void* handler) {
2324  struct sigaction sigAct, oldSigAct;
2325
2326  sigfillset(&(sigAct.sa_mask));
2327  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2328  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2329
2330  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2331    // -1 means registration failed
2332    return (void *)-1;
2333  }
2334
2335  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2336}
2337
2338void os::signal_raise(int signal_number) {
2339  ::raise(signal_number);
2340}
2341
2342/*
2343 * The following code is moved from os.cpp for making this
2344 * code platform specific, which it is by its very nature.
2345 */
2346
2347// Will be modified when max signal is changed to be dynamic
2348int os::sigexitnum_pd() {
2349  return NSIG;
2350}
2351
2352// a counter for each possible signal value
2353static volatile jint pending_signals[NSIG+1] = { 0 };
2354
2355// Linux(POSIX) specific hand shaking semaphore.
2356static sem_t sig_sem;
2357
2358void os::signal_init_pd() {
2359  // Initialize signal structures
2360  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2361
2362  // Initialize signal semaphore
2363  ::sem_init(&sig_sem, 0, 0);
2364}
2365
2366void os::signal_notify(int sig) {
2367  Atomic::inc(&pending_signals[sig]);
2368  ::sem_post(&sig_sem);
2369}
2370
2371static int check_pending_signals(bool wait) {
2372  Atomic::store(0, &sigint_count);
2373  for (;;) {
2374    for (int i = 0; i < NSIG + 1; i++) {
2375      jint n = pending_signals[i];
2376      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2377        return i;
2378      }
2379    }
2380    if (!wait) {
2381      return -1;
2382    }
2383    JavaThread *thread = JavaThread::current();
2384    ThreadBlockInVM tbivm(thread);
2385
2386    bool threadIsSuspended;
2387    do {
2388      thread->set_suspend_equivalent();
2389      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2390      ::sem_wait(&sig_sem);
2391
2392      // were we externally suspended while we were waiting?
2393      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2394      if (threadIsSuspended) {
2395        //
2396        // The semaphore has been incremented, but while we were waiting
2397        // another thread suspended us. We don't want to continue running
2398        // while suspended because that would surprise the thread that
2399        // suspended us.
2400        //
2401        ::sem_post(&sig_sem);
2402
2403        thread->java_suspend_self();
2404      }
2405    } while (threadIsSuspended);
2406  }
2407}
2408
2409int os::signal_lookup() {
2410  return check_pending_signals(false);
2411}
2412
2413int os::signal_wait() {
2414  return check_pending_signals(true);
2415}
2416
2417////////////////////////////////////////////////////////////////////////////////
2418// Virtual Memory
2419
2420int os::vm_page_size() {
2421  // Seems redundant as all get out
2422  assert(os::Linux::page_size() != -1, "must call os::init");
2423  return os::Linux::page_size();
2424}
2425
2426// Solaris allocates memory by pages.
2427int os::vm_allocation_granularity() {
2428  assert(os::Linux::page_size() != -1, "must call os::init");
2429  return os::Linux::page_size();
2430}
2431
2432// Rationale behind this function:
2433//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2434//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2435//  samples for JITted code. Here we create private executable mapping over the code cache
2436//  and then we can use standard (well, almost, as mapping can change) way to provide
2437//  info for the reporting script by storing timestamp and location of symbol
2438void linux_wrap_code(char* base, size_t size) {
2439  static volatile jint cnt = 0;
2440
2441  if (!UseOprofile) {
2442    return;
2443  }
2444
2445  char buf[PATH_MAX+1];
2446  int num = Atomic::add(1, &cnt);
2447
2448  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2449           os::get_temp_directory(), os::current_process_id(), num);
2450  unlink(buf);
2451
2452  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2453
2454  if (fd != -1) {
2455    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2456    if (rv != (off_t)-1) {
2457      if (::write(fd, "", 1) == 1) {
2458        mmap(base, size,
2459             PROT_READ|PROT_WRITE|PROT_EXEC,
2460             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2461      }
2462    }
2463    ::close(fd);
2464    unlink(buf);
2465  }
2466}
2467
2468// NOTE: Linux kernel does not really reserve the pages for us.
2469//       All it does is to check if there are enough free pages
2470//       left at the time of mmap(). This could be a potential
2471//       problem.
2472bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2473  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2474  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2475                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2476  if (res != (uintptr_t) MAP_FAILED) {
2477    if (UseNUMAInterleaving) {
2478      numa_make_global(addr, size);
2479    }
2480    return true;
2481  }
2482  return false;
2483}
2484
2485// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2486#ifndef MAP_HUGETLB
2487#define MAP_HUGETLB 0x40000
2488#endif
2489
2490// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2491#ifndef MADV_HUGEPAGE
2492#define MADV_HUGEPAGE 14
2493#endif
2494
2495bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2496                       bool exec) {
2497  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2498    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2499    uintptr_t res =
2500      (uintptr_t) ::mmap(addr, size, prot,
2501                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2502                         -1, 0);
2503    if (res != (uintptr_t) MAP_FAILED) {
2504      if (UseNUMAInterleaving) {
2505        numa_make_global(addr, size);
2506      }
2507      return true;
2508    }
2509    // Fall through and try to use small pages
2510  }
2511
2512  if (commit_memory(addr, size, exec)) {
2513    realign_memory(addr, size, alignment_hint);
2514    return true;
2515  }
2516  return false;
2517}
2518
2519void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2520  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2521    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2522    // be supported or the memory may already be backed by huge pages.
2523    ::madvise(addr, bytes, MADV_HUGEPAGE);
2524  }
2525}
2526
2527void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2528  // This method works by doing an mmap over an existing mmaping and effectively discarding
2529  // the existing pages. However it won't work for SHM-based large pages that cannot be
2530  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2531  // small pages on top of the SHM segment. This method always works for small pages, so we
2532  // allow that in any case.
2533  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2534    commit_memory(addr, bytes, alignment_hint, false);
2535  }
2536}
2537
2538void os::numa_make_global(char *addr, size_t bytes) {
2539  Linux::numa_interleave_memory(addr, bytes);
2540}
2541
2542void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2543  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2544}
2545
2546bool os::numa_topology_changed()   { return false; }
2547
2548size_t os::numa_get_groups_num() {
2549  int max_node = Linux::numa_max_node();
2550  return max_node > 0 ? max_node + 1 : 1;
2551}
2552
2553int os::numa_get_group_id() {
2554  int cpu_id = Linux::sched_getcpu();
2555  if (cpu_id != -1) {
2556    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2557    if (lgrp_id != -1) {
2558      return lgrp_id;
2559    }
2560  }
2561  return 0;
2562}
2563
2564size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2565  for (size_t i = 0; i < size; i++) {
2566    ids[i] = i;
2567  }
2568  return size;
2569}
2570
2571bool os::get_page_info(char *start, page_info* info) {
2572  return false;
2573}
2574
2575char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2576  return end;
2577}
2578
2579
2580int os::Linux::sched_getcpu_syscall(void) {
2581  unsigned int cpu;
2582  int retval = -1;
2583
2584#if defined(IA32)
2585# ifndef SYS_getcpu
2586# define SYS_getcpu 318
2587# endif
2588  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2589#elif defined(AMD64)
2590// Unfortunately we have to bring all these macros here from vsyscall.h
2591// to be able to compile on old linuxes.
2592# define __NR_vgetcpu 2
2593# define VSYSCALL_START (-10UL << 20)
2594# define VSYSCALL_SIZE 1024
2595# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2596  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2597  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2598  retval = vgetcpu(&cpu, NULL, NULL);
2599#endif
2600
2601  return (retval == -1) ? retval : cpu;
2602}
2603
2604// Something to do with the numa-aware allocator needs these symbols
2605extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2606extern "C" JNIEXPORT void numa_error(char *where) { }
2607extern "C" JNIEXPORT int fork1() { return fork(); }
2608
2609
2610// If we are running with libnuma version > 2, then we should
2611// be trying to use symbols with versions 1.1
2612// If we are running with earlier version, which did not have symbol versions,
2613// we should use the base version.
2614void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2615  void *f = dlvsym(handle, name, "libnuma_1.1");
2616  if (f == NULL) {
2617    f = dlsym(handle, name);
2618  }
2619  return f;
2620}
2621
2622bool os::Linux::libnuma_init() {
2623  // sched_getcpu() should be in libc.
2624  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2625                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2626
2627  // If it's not, try a direct syscall.
2628  if (sched_getcpu() == -1)
2629    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2630
2631  if (sched_getcpu() != -1) { // Does it work?
2632    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2633    if (handle != NULL) {
2634      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2635                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2636      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2637                                       libnuma_dlsym(handle, "numa_max_node")));
2638      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2639                                        libnuma_dlsym(handle, "numa_available")));
2640      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2641                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2642      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2643                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2644
2645
2646      if (numa_available() != -1) {
2647        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2648        // Create a cpu -> node mapping
2649        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2650        rebuild_cpu_to_node_map();
2651        return true;
2652      }
2653    }
2654  }
2655  return false;
2656}
2657
2658// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2659// The table is later used in get_node_by_cpu().
2660void os::Linux::rebuild_cpu_to_node_map() {
2661  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2662                              // in libnuma (possible values are starting from 16,
2663                              // and continuing up with every other power of 2, but less
2664                              // than the maximum number of CPUs supported by kernel), and
2665                              // is a subject to change (in libnuma version 2 the requirements
2666                              // are more reasonable) we'll just hardcode the number they use
2667                              // in the library.
2668  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2669
2670  size_t cpu_num = os::active_processor_count();
2671  size_t cpu_map_size = NCPUS / BitsPerCLong;
2672  size_t cpu_map_valid_size =
2673    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2674
2675  cpu_to_node()->clear();
2676  cpu_to_node()->at_grow(cpu_num - 1);
2677  size_t node_num = numa_get_groups_num();
2678
2679  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2680  for (size_t i = 0; i < node_num; i++) {
2681    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2682      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2683        if (cpu_map[j] != 0) {
2684          for (size_t k = 0; k < BitsPerCLong; k++) {
2685            if (cpu_map[j] & (1UL << k)) {
2686              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2687            }
2688          }
2689        }
2690      }
2691    }
2692  }
2693  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2694}
2695
2696int os::Linux::get_node_by_cpu(int cpu_id) {
2697  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2698    return cpu_to_node()->at(cpu_id);
2699  }
2700  return -1;
2701}
2702
2703GrowableArray<int>* os::Linux::_cpu_to_node;
2704os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2705os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2706os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2707os::Linux::numa_available_func_t os::Linux::_numa_available;
2708os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2709os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2710unsigned long* os::Linux::_numa_all_nodes;
2711
2712bool os::pd_uncommit_memory(char* addr, size_t size) {
2713  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2714                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2715  return res  != (uintptr_t) MAP_FAILED;
2716}
2717
2718// Linux uses a growable mapping for the stack, and if the mapping for
2719// the stack guard pages is not removed when we detach a thread the
2720// stack cannot grow beyond the pages where the stack guard was
2721// mapped.  If at some point later in the process the stack expands to
2722// that point, the Linux kernel cannot expand the stack any further
2723// because the guard pages are in the way, and a segfault occurs.
2724//
2725// However, it's essential not to split the stack region by unmapping
2726// a region (leaving a hole) that's already part of the stack mapping,
2727// so if the stack mapping has already grown beyond the guard pages at
2728// the time we create them, we have to truncate the stack mapping.
2729// So, we need to know the extent of the stack mapping when
2730// create_stack_guard_pages() is called.
2731
2732// Find the bounds of the stack mapping.  Return true for success.
2733//
2734// We only need this for stacks that are growable: at the time of
2735// writing thread stacks don't use growable mappings (i.e. those
2736// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2737// only applies to the main thread.
2738
2739static
2740bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2741
2742  char buf[128];
2743  int fd, sz;
2744
2745  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2746    return false;
2747  }
2748
2749  const char kw[] = "[stack]";
2750  const int kwlen = sizeof(kw)-1;
2751
2752  // Address part of /proc/self/maps couldn't be more than 128 bytes
2753  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2754     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2755        // Extract addresses
2756        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2757           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2758           if (sp >= *bottom && sp <= *top) {
2759              ::close(fd);
2760              return true;
2761           }
2762        }
2763     }
2764  }
2765
2766 ::close(fd);
2767  return false;
2768}
2769
2770
2771// If the (growable) stack mapping already extends beyond the point
2772// where we're going to put our guard pages, truncate the mapping at
2773// that point by munmap()ping it.  This ensures that when we later
2774// munmap() the guard pages we don't leave a hole in the stack
2775// mapping. This only affects the main/initial thread, but guard
2776// against future OS changes
2777bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2778  uintptr_t stack_extent, stack_base;
2779  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2780  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2781      assert(os::Linux::is_initial_thread(),
2782           "growable stack in non-initial thread");
2783    if (stack_extent < (uintptr_t)addr)
2784      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2785  }
2786
2787  return os::commit_memory(addr, size);
2788}
2789
2790// If this is a growable mapping, remove the guard pages entirely by
2791// munmap()ping them.  If not, just call uncommit_memory(). This only
2792// affects the main/initial thread, but guard against future OS changes
2793bool os::remove_stack_guard_pages(char* addr, size_t size) {
2794  uintptr_t stack_extent, stack_base;
2795  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2796  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2797      assert(os::Linux::is_initial_thread(),
2798           "growable stack in non-initial thread");
2799
2800    return ::munmap(addr, size) == 0;
2801  }
2802
2803  return os::uncommit_memory(addr, size);
2804}
2805
2806static address _highest_vm_reserved_address = NULL;
2807
2808// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2809// at 'requested_addr'. If there are existing memory mappings at the same
2810// location, however, they will be overwritten. If 'fixed' is false,
2811// 'requested_addr' is only treated as a hint, the return value may or
2812// may not start from the requested address. Unlike Linux mmap(), this
2813// function returns NULL to indicate failure.
2814static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2815  char * addr;
2816  int flags;
2817
2818  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2819  if (fixed) {
2820    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2821    flags |= MAP_FIXED;
2822  }
2823
2824  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2825  // to PROT_EXEC if executable when we commit the page.
2826  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2827                       flags, -1, 0);
2828
2829  if (addr != MAP_FAILED) {
2830    // anon_mmap() should only get called during VM initialization,
2831    // don't need lock (actually we can skip locking even it can be called
2832    // from multiple threads, because _highest_vm_reserved_address is just a
2833    // hint about the upper limit of non-stack memory regions.)
2834    if ((address)addr + bytes > _highest_vm_reserved_address) {
2835      _highest_vm_reserved_address = (address)addr + bytes;
2836    }
2837  }
2838
2839  return addr == MAP_FAILED ? NULL : addr;
2840}
2841
2842// Don't update _highest_vm_reserved_address, because there might be memory
2843// regions above addr + size. If so, releasing a memory region only creates
2844// a hole in the address space, it doesn't help prevent heap-stack collision.
2845//
2846static int anon_munmap(char * addr, size_t size) {
2847  return ::munmap(addr, size) == 0;
2848}
2849
2850char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2851                         size_t alignment_hint) {
2852  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2853}
2854
2855bool os::pd_release_memory(char* addr, size_t size) {
2856  return anon_munmap(addr, size);
2857}
2858
2859static address highest_vm_reserved_address() {
2860  return _highest_vm_reserved_address;
2861}
2862
2863static bool linux_mprotect(char* addr, size_t size, int prot) {
2864  // Linux wants the mprotect address argument to be page aligned.
2865  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2866
2867  // According to SUSv3, mprotect() should only be used with mappings
2868  // established by mmap(), and mmap() always maps whole pages. Unaligned
2869  // 'addr' likely indicates problem in the VM (e.g. trying to change
2870  // protection of malloc'ed or statically allocated memory). Check the
2871  // caller if you hit this assert.
2872  assert(addr == bottom, "sanity check");
2873
2874  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2875  return ::mprotect(bottom, size, prot) == 0;
2876}
2877
2878// Set protections specified
2879bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2880                        bool is_committed) {
2881  unsigned int p = 0;
2882  switch (prot) {
2883  case MEM_PROT_NONE: p = PROT_NONE; break;
2884  case MEM_PROT_READ: p = PROT_READ; break;
2885  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2886  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2887  default:
2888    ShouldNotReachHere();
2889  }
2890  // is_committed is unused.
2891  return linux_mprotect(addr, bytes, p);
2892}
2893
2894bool os::guard_memory(char* addr, size_t size) {
2895  return linux_mprotect(addr, size, PROT_NONE);
2896}
2897
2898bool os::unguard_memory(char* addr, size_t size) {
2899  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2900}
2901
2902bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2903  bool result = false;
2904  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2905                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2906                  -1, 0);
2907
2908  if (p != (void *) -1) {
2909    // We don't know if this really is a huge page or not.
2910    FILE *fp = fopen("/proc/self/maps", "r");
2911    if (fp) {
2912      while (!feof(fp)) {
2913        char chars[257];
2914        long x = 0;
2915        if (fgets(chars, sizeof(chars), fp)) {
2916          if (sscanf(chars, "%lx-%*x", &x) == 1
2917              && x == (long)p) {
2918            if (strstr (chars, "hugepage")) {
2919              result = true;
2920              break;
2921            }
2922          }
2923        }
2924      }
2925      fclose(fp);
2926    }
2927    munmap (p, page_size);
2928    if (result)
2929      return true;
2930  }
2931
2932  if (warn) {
2933    warning("HugeTLBFS is not supported by the operating system.");
2934  }
2935
2936  return result;
2937}
2938
2939/*
2940* Set the coredump_filter bits to include largepages in core dump (bit 6)
2941*
2942* From the coredump_filter documentation:
2943*
2944* - (bit 0) anonymous private memory
2945* - (bit 1) anonymous shared memory
2946* - (bit 2) file-backed private memory
2947* - (bit 3) file-backed shared memory
2948* - (bit 4) ELF header pages in file-backed private memory areas (it is
2949*           effective only if the bit 2 is cleared)
2950* - (bit 5) hugetlb private memory
2951* - (bit 6) hugetlb shared memory
2952*/
2953static void set_coredump_filter(void) {
2954  FILE *f;
2955  long cdm;
2956
2957  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2958    return;
2959  }
2960
2961  if (fscanf(f, "%lx", &cdm) != 1) {
2962    fclose(f);
2963    return;
2964  }
2965
2966  rewind(f);
2967
2968  if ((cdm & LARGEPAGES_BIT) == 0) {
2969    cdm |= LARGEPAGES_BIT;
2970    fprintf(f, "%#lx", cdm);
2971  }
2972
2973  fclose(f);
2974}
2975
2976// Large page support
2977
2978static size_t _large_page_size = 0;
2979
2980void os::large_page_init() {
2981  if (!UseLargePages) {
2982    UseHugeTLBFS = false;
2983    UseSHM = false;
2984    return;
2985  }
2986
2987  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2988    // If UseLargePages is specified on the command line try both methods,
2989    // if it's default, then try only HugeTLBFS.
2990    if (FLAG_IS_DEFAULT(UseLargePages)) {
2991      UseHugeTLBFS = true;
2992    } else {
2993      UseHugeTLBFS = UseSHM = true;
2994    }
2995  }
2996
2997  if (LargePageSizeInBytes) {
2998    _large_page_size = LargePageSizeInBytes;
2999  } else {
3000    // large_page_size on Linux is used to round up heap size. x86 uses either
3001    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3002    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3003    // page as large as 256M.
3004    //
3005    // Here we try to figure out page size by parsing /proc/meminfo and looking
3006    // for a line with the following format:
3007    //    Hugepagesize:     2048 kB
3008    //
3009    // If we can't determine the value (e.g. /proc is not mounted, or the text
3010    // format has been changed), we'll use the largest page size supported by
3011    // the processor.
3012
3013#ifndef ZERO
3014    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3015                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3016#endif // ZERO
3017
3018    FILE *fp = fopen("/proc/meminfo", "r");
3019    if (fp) {
3020      while (!feof(fp)) {
3021        int x = 0;
3022        char buf[16];
3023        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3024          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3025            _large_page_size = x * K;
3026            break;
3027          }
3028        } else {
3029          // skip to next line
3030          for (;;) {
3031            int ch = fgetc(fp);
3032            if (ch == EOF || ch == (int)'\n') break;
3033          }
3034        }
3035      }
3036      fclose(fp);
3037    }
3038  }
3039
3040  // print a warning if any large page related flag is specified on command line
3041  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3042
3043  const size_t default_page_size = (size_t)Linux::page_size();
3044  if (_large_page_size > default_page_size) {
3045    _page_sizes[0] = _large_page_size;
3046    _page_sizes[1] = default_page_size;
3047    _page_sizes[2] = 0;
3048  }
3049  UseHugeTLBFS = UseHugeTLBFS &&
3050                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3051
3052  if (UseHugeTLBFS)
3053    UseSHM = false;
3054
3055  UseLargePages = UseHugeTLBFS || UseSHM;
3056
3057  set_coredump_filter();
3058}
3059
3060#ifndef SHM_HUGETLB
3061#define SHM_HUGETLB 04000
3062#endif
3063
3064char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3065  // "exec" is passed in but not used.  Creating the shared image for
3066  // the code cache doesn't have an SHM_X executable permission to check.
3067  assert(UseLargePages && UseSHM, "only for SHM large pages");
3068
3069  key_t key = IPC_PRIVATE;
3070  char *addr;
3071
3072  bool warn_on_failure = UseLargePages &&
3073                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3074                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3075                        );
3076  char msg[128];
3077
3078  // Create a large shared memory region to attach to based on size.
3079  // Currently, size is the total size of the heap
3080  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3081  if (shmid == -1) {
3082     // Possible reasons for shmget failure:
3083     // 1. shmmax is too small for Java heap.
3084     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3085     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3086     // 2. not enough large page memory.
3087     //    > check available large pages: cat /proc/meminfo
3088     //    > increase amount of large pages:
3089     //          echo new_value > /proc/sys/vm/nr_hugepages
3090     //      Note 1: different Linux may use different name for this property,
3091     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3092     //      Note 2: it's possible there's enough physical memory available but
3093     //            they are so fragmented after a long run that they can't
3094     //            coalesce into large pages. Try to reserve large pages when
3095     //            the system is still "fresh".
3096     if (warn_on_failure) {
3097       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3098       warning(msg);
3099     }
3100     return NULL;
3101  }
3102
3103  // attach to the region
3104  addr = (char*)shmat(shmid, req_addr, 0);
3105  int err = errno;
3106
3107  // Remove shmid. If shmat() is successful, the actual shared memory segment
3108  // will be deleted when it's detached by shmdt() or when the process
3109  // terminates. If shmat() is not successful this will remove the shared
3110  // segment immediately.
3111  shmctl(shmid, IPC_RMID, NULL);
3112
3113  if ((intptr_t)addr == -1) {
3114     if (warn_on_failure) {
3115       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3116       warning(msg);
3117     }
3118     return NULL;
3119  }
3120
3121  if ((addr != NULL) && UseNUMAInterleaving) {
3122    numa_make_global(addr, bytes);
3123  }
3124
3125  return addr;
3126}
3127
3128bool os::release_memory_special(char* base, size_t bytes) {
3129  // detaching the SHM segment will also delete it, see reserve_memory_special()
3130  int rslt = shmdt(base);
3131  return rslt == 0;
3132}
3133
3134size_t os::large_page_size() {
3135  return _large_page_size;
3136}
3137
3138// HugeTLBFS allows application to commit large page memory on demand;
3139// with SysV SHM the entire memory region must be allocated as shared
3140// memory.
3141bool os::can_commit_large_page_memory() {
3142  return UseHugeTLBFS;
3143}
3144
3145bool os::can_execute_large_page_memory() {
3146  return UseHugeTLBFS;
3147}
3148
3149// Reserve memory at an arbitrary address, only if that area is
3150// available (and not reserved for something else).
3151
3152char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3153  const int max_tries = 10;
3154  char* base[max_tries];
3155  size_t size[max_tries];
3156  const size_t gap = 0x000000;
3157
3158  // Assert only that the size is a multiple of the page size, since
3159  // that's all that mmap requires, and since that's all we really know
3160  // about at this low abstraction level.  If we need higher alignment,
3161  // we can either pass an alignment to this method or verify alignment
3162  // in one of the methods further up the call chain.  See bug 5044738.
3163  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3164
3165  // Repeatedly allocate blocks until the block is allocated at the
3166  // right spot. Give up after max_tries. Note that reserve_memory() will
3167  // automatically update _highest_vm_reserved_address if the call is
3168  // successful. The variable tracks the highest memory address every reserved
3169  // by JVM. It is used to detect heap-stack collision if running with
3170  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3171  // space than needed, it could confuse the collision detecting code. To
3172  // solve the problem, save current _highest_vm_reserved_address and
3173  // calculate the correct value before return.
3174  address old_highest = _highest_vm_reserved_address;
3175
3176  // Linux mmap allows caller to pass an address as hint; give it a try first,
3177  // if kernel honors the hint then we can return immediately.
3178  char * addr = anon_mmap(requested_addr, bytes, false);
3179  if (addr == requested_addr) {
3180     return requested_addr;
3181  }
3182
3183  if (addr != NULL) {
3184     // mmap() is successful but it fails to reserve at the requested address
3185     anon_munmap(addr, bytes);
3186  }
3187
3188  int i;
3189  for (i = 0; i < max_tries; ++i) {
3190    base[i] = reserve_memory(bytes);
3191
3192    if (base[i] != NULL) {
3193      // Is this the block we wanted?
3194      if (base[i] == requested_addr) {
3195        size[i] = bytes;
3196        break;
3197      }
3198
3199      // Does this overlap the block we wanted? Give back the overlapped
3200      // parts and try again.
3201
3202      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3203      if (top_overlap >= 0 && top_overlap < bytes) {
3204        unmap_memory(base[i], top_overlap);
3205        base[i] += top_overlap;
3206        size[i] = bytes - top_overlap;
3207      } else {
3208        size_t bottom_overlap = base[i] + bytes - requested_addr;
3209        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3210          unmap_memory(requested_addr, bottom_overlap);
3211          size[i] = bytes - bottom_overlap;
3212        } else {
3213          size[i] = bytes;
3214        }
3215      }
3216    }
3217  }
3218
3219  // Give back the unused reserved pieces.
3220
3221  for (int j = 0; j < i; ++j) {
3222    if (base[j] != NULL) {
3223      unmap_memory(base[j], size[j]);
3224    }
3225  }
3226
3227  if (i < max_tries) {
3228    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3229    return requested_addr;
3230  } else {
3231    _highest_vm_reserved_address = old_highest;
3232    return NULL;
3233  }
3234}
3235
3236size_t os::read(int fd, void *buf, unsigned int nBytes) {
3237  return ::read(fd, buf, nBytes);
3238}
3239
3240// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3241// Solaris uses poll(), linux uses park().
3242// Poll() is likely a better choice, assuming that Thread.interrupt()
3243// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3244// SIGSEGV, see 4355769.
3245
3246int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3247  assert(thread == Thread::current(),  "thread consistency check");
3248
3249  ParkEvent * const slp = thread->_SleepEvent ;
3250  slp->reset() ;
3251  OrderAccess::fence() ;
3252
3253  if (interruptible) {
3254    jlong prevtime = javaTimeNanos();
3255
3256    for (;;) {
3257      if (os::is_interrupted(thread, true)) {
3258        return OS_INTRPT;
3259      }
3260
3261      jlong newtime = javaTimeNanos();
3262
3263      if (newtime - prevtime < 0) {
3264        // time moving backwards, should only happen if no monotonic clock
3265        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3266        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3267      } else {
3268        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3269      }
3270
3271      if(millis <= 0) {
3272        return OS_OK;
3273      }
3274
3275      prevtime = newtime;
3276
3277      {
3278        assert(thread->is_Java_thread(), "sanity check");
3279        JavaThread *jt = (JavaThread *) thread;
3280        ThreadBlockInVM tbivm(jt);
3281        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3282
3283        jt->set_suspend_equivalent();
3284        // cleared by handle_special_suspend_equivalent_condition() or
3285        // java_suspend_self() via check_and_wait_while_suspended()
3286
3287        slp->park(millis);
3288
3289        // were we externally suspended while we were waiting?
3290        jt->check_and_wait_while_suspended();
3291      }
3292    }
3293  } else {
3294    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3295    jlong prevtime = javaTimeNanos();
3296
3297    for (;;) {
3298      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3299      // the 1st iteration ...
3300      jlong newtime = javaTimeNanos();
3301
3302      if (newtime - prevtime < 0) {
3303        // time moving backwards, should only happen if no monotonic clock
3304        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3305        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3306      } else {
3307        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3308      }
3309
3310      if(millis <= 0) break ;
3311
3312      prevtime = newtime;
3313      slp->park(millis);
3314    }
3315    return OS_OK ;
3316  }
3317}
3318
3319int os::naked_sleep() {
3320  // %% make the sleep time an integer flag. for now use 1 millisec.
3321  return os::sleep(Thread::current(), 1, false);
3322}
3323
3324// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3325void os::infinite_sleep() {
3326  while (true) {    // sleep forever ...
3327    ::sleep(100);   // ... 100 seconds at a time
3328  }
3329}
3330
3331// Used to convert frequent JVM_Yield() to nops
3332bool os::dont_yield() {
3333  return DontYieldALot;
3334}
3335
3336void os::yield() {
3337  sched_yield();
3338}
3339
3340os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3341
3342void os::yield_all(int attempts) {
3343  // Yields to all threads, including threads with lower priorities
3344  // Threads on Linux are all with same priority. The Solaris style
3345  // os::yield_all() with nanosleep(1ms) is not necessary.
3346  sched_yield();
3347}
3348
3349// Called from the tight loops to possibly influence time-sharing heuristics
3350void os::loop_breaker(int attempts) {
3351  os::yield_all(attempts);
3352}
3353
3354////////////////////////////////////////////////////////////////////////////////
3355// thread priority support
3356
3357// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3358// only supports dynamic priority, static priority must be zero. For real-time
3359// applications, Linux supports SCHED_RR which allows static priority (1-99).
3360// However, for large multi-threaded applications, SCHED_RR is not only slower
3361// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3362// of 5 runs - Sep 2005).
3363//
3364// The following code actually changes the niceness of kernel-thread/LWP. It
3365// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3366// not the entire user process, and user level threads are 1:1 mapped to kernel
3367// threads. It has always been the case, but could change in the future. For
3368// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3369// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3370
3371int os::java_to_os_priority[CriticalPriority + 1] = {
3372  19,              // 0 Entry should never be used
3373
3374   4,              // 1 MinPriority
3375   3,              // 2
3376   2,              // 3
3377
3378   1,              // 4
3379   0,              // 5 NormPriority
3380  -1,              // 6
3381
3382  -2,              // 7
3383  -3,              // 8
3384  -4,              // 9 NearMaxPriority
3385
3386  -5,              // 10 MaxPriority
3387
3388  -5               // 11 CriticalPriority
3389};
3390
3391static int prio_init() {
3392  if (ThreadPriorityPolicy == 1) {
3393    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3394    // if effective uid is not root. Perhaps, a more elegant way of doing
3395    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3396    if (geteuid() != 0) {
3397      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3398        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3399      }
3400      ThreadPriorityPolicy = 0;
3401    }
3402  }
3403  if (UseCriticalJavaThreadPriority) {
3404    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3405  }
3406  return 0;
3407}
3408
3409OSReturn os::set_native_priority(Thread* thread, int newpri) {
3410  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3411
3412  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3413  return (ret == 0) ? OS_OK : OS_ERR;
3414}
3415
3416OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3417  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3418    *priority_ptr = java_to_os_priority[NormPriority];
3419    return OS_OK;
3420  }
3421
3422  errno = 0;
3423  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3424  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3425}
3426
3427// Hint to the underlying OS that a task switch would not be good.
3428// Void return because it's a hint and can fail.
3429void os::hint_no_preempt() {}
3430
3431////////////////////////////////////////////////////////////////////////////////
3432// suspend/resume support
3433
3434//  the low-level signal-based suspend/resume support is a remnant from the
3435//  old VM-suspension that used to be for java-suspension, safepoints etc,
3436//  within hotspot. Now there is a single use-case for this:
3437//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3438//      that runs in the watcher thread.
3439//  The remaining code is greatly simplified from the more general suspension
3440//  code that used to be used.
3441//
3442//  The protocol is quite simple:
3443//  - suspend:
3444//      - sends a signal to the target thread
3445//      - polls the suspend state of the osthread using a yield loop
3446//      - target thread signal handler (SR_handler) sets suspend state
3447//        and blocks in sigsuspend until continued
3448//  - resume:
3449//      - sets target osthread state to continue
3450//      - sends signal to end the sigsuspend loop in the SR_handler
3451//
3452//  Note that the SR_lock plays no role in this suspend/resume protocol.
3453//
3454
3455static void resume_clear_context(OSThread *osthread) {
3456  osthread->set_ucontext(NULL);
3457  osthread->set_siginfo(NULL);
3458
3459  // notify the suspend action is completed, we have now resumed
3460  osthread->sr.clear_suspended();
3461}
3462
3463static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3464  osthread->set_ucontext(context);
3465  osthread->set_siginfo(siginfo);
3466}
3467
3468//
3469// Handler function invoked when a thread's execution is suspended or
3470// resumed. We have to be careful that only async-safe functions are
3471// called here (Note: most pthread functions are not async safe and
3472// should be avoided.)
3473//
3474// Note: sigwait() is a more natural fit than sigsuspend() from an
3475// interface point of view, but sigwait() prevents the signal hander
3476// from being run. libpthread would get very confused by not having
3477// its signal handlers run and prevents sigwait()'s use with the
3478// mutex granting granting signal.
3479//
3480// Currently only ever called on the VMThread
3481//
3482static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3483  // Save and restore errno to avoid confusing native code with EINTR
3484  // after sigsuspend.
3485  int old_errno = errno;
3486
3487  Thread* thread = Thread::current();
3488  OSThread* osthread = thread->osthread();
3489  assert(thread->is_VM_thread(), "Must be VMThread");
3490  // read current suspend action
3491  int action = osthread->sr.suspend_action();
3492  if (action == SR_SUSPEND) {
3493    suspend_save_context(osthread, siginfo, context);
3494
3495    // Notify the suspend action is about to be completed. do_suspend()
3496    // waits until SR_SUSPENDED is set and then returns. We will wait
3497    // here for a resume signal and that completes the suspend-other
3498    // action. do_suspend/do_resume is always called as a pair from
3499    // the same thread - so there are no races
3500
3501    // notify the caller
3502    osthread->sr.set_suspended();
3503
3504    sigset_t suspend_set;  // signals for sigsuspend()
3505
3506    // get current set of blocked signals and unblock resume signal
3507    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3508    sigdelset(&suspend_set, SR_signum);
3509
3510    // wait here until we are resumed
3511    do {
3512      sigsuspend(&suspend_set);
3513      // ignore all returns until we get a resume signal
3514    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3515
3516    resume_clear_context(osthread);
3517
3518  } else {
3519    assert(action == SR_CONTINUE, "unexpected sr action");
3520    // nothing special to do - just leave the handler
3521  }
3522
3523  errno = old_errno;
3524}
3525
3526
3527static int SR_initialize() {
3528  struct sigaction act;
3529  char *s;
3530  /* Get signal number to use for suspend/resume */
3531  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3532    int sig = ::strtol(s, 0, 10);
3533    if (sig > 0 || sig < _NSIG) {
3534        SR_signum = sig;
3535    }
3536  }
3537
3538  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3539        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3540
3541  sigemptyset(&SR_sigset);
3542  sigaddset(&SR_sigset, SR_signum);
3543
3544  /* Set up signal handler for suspend/resume */
3545  act.sa_flags = SA_RESTART|SA_SIGINFO;
3546  act.sa_handler = (void (*)(int)) SR_handler;
3547
3548  // SR_signum is blocked by default.
3549  // 4528190 - We also need to block pthread restart signal (32 on all
3550  // supported Linux platforms). Note that LinuxThreads need to block
3551  // this signal for all threads to work properly. So we don't have
3552  // to use hard-coded signal number when setting up the mask.
3553  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3554
3555  if (sigaction(SR_signum, &act, 0) == -1) {
3556    return -1;
3557  }
3558
3559  // Save signal flag
3560  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3561  return 0;
3562}
3563
3564static int SR_finalize() {
3565  return 0;
3566}
3567
3568
3569// returns true on success and false on error - really an error is fatal
3570// but this seems the normal response to library errors
3571static bool do_suspend(OSThread* osthread) {
3572  // mark as suspended and send signal
3573  osthread->sr.set_suspend_action(SR_SUSPEND);
3574  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3575  assert_status(status == 0, status, "pthread_kill");
3576
3577  // check status and wait until notified of suspension
3578  if (status == 0) {
3579    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3580      os::yield_all(i);
3581    }
3582    osthread->sr.set_suspend_action(SR_NONE);
3583    return true;
3584  }
3585  else {
3586    osthread->sr.set_suspend_action(SR_NONE);
3587    return false;
3588  }
3589}
3590
3591static void do_resume(OSThread* osthread) {
3592  assert(osthread->sr.is_suspended(), "thread should be suspended");
3593  osthread->sr.set_suspend_action(SR_CONTINUE);
3594
3595  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3596  assert_status(status == 0, status, "pthread_kill");
3597  // check status and wait unit notified of resumption
3598  if (status == 0) {
3599    for (int i = 0; osthread->sr.is_suspended(); i++) {
3600      os::yield_all(i);
3601    }
3602  }
3603  osthread->sr.set_suspend_action(SR_NONE);
3604}
3605
3606////////////////////////////////////////////////////////////////////////////////
3607// interrupt support
3608
3609void os::interrupt(Thread* thread) {
3610  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3611    "possibility of dangling Thread pointer");
3612
3613  OSThread* osthread = thread->osthread();
3614
3615  if (!osthread->interrupted()) {
3616    osthread->set_interrupted(true);
3617    // More than one thread can get here with the same value of osthread,
3618    // resulting in multiple notifications.  We do, however, want the store
3619    // to interrupted() to be visible to other threads before we execute unpark().
3620    OrderAccess::fence();
3621    ParkEvent * const slp = thread->_SleepEvent ;
3622    if (slp != NULL) slp->unpark() ;
3623  }
3624
3625  // For JSR166. Unpark even if interrupt status already was set
3626  if (thread->is_Java_thread())
3627    ((JavaThread*)thread)->parker()->unpark();
3628
3629  ParkEvent * ev = thread->_ParkEvent ;
3630  if (ev != NULL) ev->unpark() ;
3631
3632}
3633
3634bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3635  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3636    "possibility of dangling Thread pointer");
3637
3638  OSThread* osthread = thread->osthread();
3639
3640  bool interrupted = osthread->interrupted();
3641
3642  if (interrupted && clear_interrupted) {
3643    osthread->set_interrupted(false);
3644    // consider thread->_SleepEvent->reset() ... optional optimization
3645  }
3646
3647  return interrupted;
3648}
3649
3650///////////////////////////////////////////////////////////////////////////////////
3651// signal handling (except suspend/resume)
3652
3653// This routine may be used by user applications as a "hook" to catch signals.
3654// The user-defined signal handler must pass unrecognized signals to this
3655// routine, and if it returns true (non-zero), then the signal handler must
3656// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3657// routine will never retun false (zero), but instead will execute a VM panic
3658// routine kill the process.
3659//
3660// If this routine returns false, it is OK to call it again.  This allows
3661// the user-defined signal handler to perform checks either before or after
3662// the VM performs its own checks.  Naturally, the user code would be making
3663// a serious error if it tried to handle an exception (such as a null check
3664// or breakpoint) that the VM was generating for its own correct operation.
3665//
3666// This routine may recognize any of the following kinds of signals:
3667//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3668// It should be consulted by handlers for any of those signals.
3669//
3670// The caller of this routine must pass in the three arguments supplied
3671// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3672// field of the structure passed to sigaction().  This routine assumes that
3673// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3674//
3675// Note that the VM will print warnings if it detects conflicting signal
3676// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3677//
3678extern "C" JNIEXPORT int
3679JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3680                        void* ucontext, int abort_if_unrecognized);
3681
3682void signalHandler(int sig, siginfo_t* info, void* uc) {
3683  assert(info != NULL && uc != NULL, "it must be old kernel");
3684  JVM_handle_linux_signal(sig, info, uc, true);
3685}
3686
3687
3688// This boolean allows users to forward their own non-matching signals
3689// to JVM_handle_linux_signal, harmlessly.
3690bool os::Linux::signal_handlers_are_installed = false;
3691
3692// For signal-chaining
3693struct sigaction os::Linux::sigact[MAXSIGNUM];
3694unsigned int os::Linux::sigs = 0;
3695bool os::Linux::libjsig_is_loaded = false;
3696typedef struct sigaction *(*get_signal_t)(int);
3697get_signal_t os::Linux::get_signal_action = NULL;
3698
3699struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3700  struct sigaction *actp = NULL;
3701
3702  if (libjsig_is_loaded) {
3703    // Retrieve the old signal handler from libjsig
3704    actp = (*get_signal_action)(sig);
3705  }
3706  if (actp == NULL) {
3707    // Retrieve the preinstalled signal handler from jvm
3708    actp = get_preinstalled_handler(sig);
3709  }
3710
3711  return actp;
3712}
3713
3714static bool call_chained_handler(struct sigaction *actp, int sig,
3715                                 siginfo_t *siginfo, void *context) {
3716  // Call the old signal handler
3717  if (actp->sa_handler == SIG_DFL) {
3718    // It's more reasonable to let jvm treat it as an unexpected exception
3719    // instead of taking the default action.
3720    return false;
3721  } else if (actp->sa_handler != SIG_IGN) {
3722    if ((actp->sa_flags & SA_NODEFER) == 0) {
3723      // automaticlly block the signal
3724      sigaddset(&(actp->sa_mask), sig);
3725    }
3726
3727    sa_handler_t hand;
3728    sa_sigaction_t sa;
3729    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3730    // retrieve the chained handler
3731    if (siginfo_flag_set) {
3732      sa = actp->sa_sigaction;
3733    } else {
3734      hand = actp->sa_handler;
3735    }
3736
3737    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3738      actp->sa_handler = SIG_DFL;
3739    }
3740
3741    // try to honor the signal mask
3742    sigset_t oset;
3743    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3744
3745    // call into the chained handler
3746    if (siginfo_flag_set) {
3747      (*sa)(sig, siginfo, context);
3748    } else {
3749      (*hand)(sig);
3750    }
3751
3752    // restore the signal mask
3753    pthread_sigmask(SIG_SETMASK, &oset, 0);
3754  }
3755  // Tell jvm's signal handler the signal is taken care of.
3756  return true;
3757}
3758
3759bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3760  bool chained = false;
3761  // signal-chaining
3762  if (UseSignalChaining) {
3763    struct sigaction *actp = get_chained_signal_action(sig);
3764    if (actp != NULL) {
3765      chained = call_chained_handler(actp, sig, siginfo, context);
3766    }
3767  }
3768  return chained;
3769}
3770
3771struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3772  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3773    return &sigact[sig];
3774  }
3775  return NULL;
3776}
3777
3778void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3779  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3780  sigact[sig] = oldAct;
3781  sigs |= (unsigned int)1 << sig;
3782}
3783
3784// for diagnostic
3785int os::Linux::sigflags[MAXSIGNUM];
3786
3787int os::Linux::get_our_sigflags(int sig) {
3788  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3789  return sigflags[sig];
3790}
3791
3792void os::Linux::set_our_sigflags(int sig, int flags) {
3793  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3794  sigflags[sig] = flags;
3795}
3796
3797void os::Linux::set_signal_handler(int sig, bool set_installed) {
3798  // Check for overwrite.
3799  struct sigaction oldAct;
3800  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3801
3802  void* oldhand = oldAct.sa_sigaction
3803                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3804                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3805  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3806      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3807      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3808    if (AllowUserSignalHandlers || !set_installed) {
3809      // Do not overwrite; user takes responsibility to forward to us.
3810      return;
3811    } else if (UseSignalChaining) {
3812      // save the old handler in jvm
3813      save_preinstalled_handler(sig, oldAct);
3814      // libjsig also interposes the sigaction() call below and saves the
3815      // old sigaction on it own.
3816    } else {
3817      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3818                    "%#lx for signal %d.", (long)oldhand, sig));
3819    }
3820  }
3821
3822  struct sigaction sigAct;
3823  sigfillset(&(sigAct.sa_mask));
3824  sigAct.sa_handler = SIG_DFL;
3825  if (!set_installed) {
3826    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3827  } else {
3828    sigAct.sa_sigaction = signalHandler;
3829    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3830  }
3831  // Save flags, which are set by ours
3832  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3833  sigflags[sig] = sigAct.sa_flags;
3834
3835  int ret = sigaction(sig, &sigAct, &oldAct);
3836  assert(ret == 0, "check");
3837
3838  void* oldhand2  = oldAct.sa_sigaction
3839                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3840                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3841  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3842}
3843
3844// install signal handlers for signals that HotSpot needs to
3845// handle in order to support Java-level exception handling.
3846
3847void os::Linux::install_signal_handlers() {
3848  if (!signal_handlers_are_installed) {
3849    signal_handlers_are_installed = true;
3850
3851    // signal-chaining
3852    typedef void (*signal_setting_t)();
3853    signal_setting_t begin_signal_setting = NULL;
3854    signal_setting_t end_signal_setting = NULL;
3855    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3856                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3857    if (begin_signal_setting != NULL) {
3858      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3859                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3860      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3861                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3862      libjsig_is_loaded = true;
3863      assert(UseSignalChaining, "should enable signal-chaining");
3864    }
3865    if (libjsig_is_loaded) {
3866      // Tell libjsig jvm is setting signal handlers
3867      (*begin_signal_setting)();
3868    }
3869
3870    set_signal_handler(SIGSEGV, true);
3871    set_signal_handler(SIGPIPE, true);
3872    set_signal_handler(SIGBUS, true);
3873    set_signal_handler(SIGILL, true);
3874    set_signal_handler(SIGFPE, true);
3875    set_signal_handler(SIGXFSZ, true);
3876
3877    if (libjsig_is_loaded) {
3878      // Tell libjsig jvm finishes setting signal handlers
3879      (*end_signal_setting)();
3880    }
3881
3882    // We don't activate signal checker if libjsig is in place, we trust ourselves
3883    // and if UserSignalHandler is installed all bets are off.
3884    // Log that signal checking is off only if -verbose:jni is specified.
3885    if (CheckJNICalls) {
3886      if (libjsig_is_loaded) {
3887        if (PrintJNIResolving) {
3888          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3889        }
3890        check_signals = false;
3891      }
3892      if (AllowUserSignalHandlers) {
3893        if (PrintJNIResolving) {
3894          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3895        }
3896        check_signals = false;
3897      }
3898    }
3899  }
3900}
3901
3902// This is the fastest way to get thread cpu time on Linux.
3903// Returns cpu time (user+sys) for any thread, not only for current.
3904// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3905// It might work on 2.6.10+ with a special kernel/glibc patch.
3906// For reference, please, see IEEE Std 1003.1-2004:
3907//   http://www.unix.org/single_unix_specification
3908
3909jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3910  struct timespec tp;
3911  int rc = os::Linux::clock_gettime(clockid, &tp);
3912  assert(rc == 0, "clock_gettime is expected to return 0 code");
3913
3914  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3915}
3916
3917/////
3918// glibc on Linux platform uses non-documented flag
3919// to indicate, that some special sort of signal
3920// trampoline is used.
3921// We will never set this flag, and we should
3922// ignore this flag in our diagnostic
3923#ifdef SIGNIFICANT_SIGNAL_MASK
3924#undef SIGNIFICANT_SIGNAL_MASK
3925#endif
3926#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3927
3928static const char* get_signal_handler_name(address handler,
3929                                           char* buf, int buflen) {
3930  int offset;
3931  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3932  if (found) {
3933    // skip directory names
3934    const char *p1, *p2;
3935    p1 = buf;
3936    size_t len = strlen(os::file_separator());
3937    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3938    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3939  } else {
3940    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3941  }
3942  return buf;
3943}
3944
3945static void print_signal_handler(outputStream* st, int sig,
3946                                 char* buf, size_t buflen) {
3947  struct sigaction sa;
3948
3949  sigaction(sig, NULL, &sa);
3950
3951  // See comment for SIGNIFICANT_SIGNAL_MASK define
3952  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3953
3954  st->print("%s: ", os::exception_name(sig, buf, buflen));
3955
3956  address handler = (sa.sa_flags & SA_SIGINFO)
3957    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3958    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3959
3960  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3961    st->print("SIG_DFL");
3962  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3963    st->print("SIG_IGN");
3964  } else {
3965    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3966  }
3967
3968  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3969
3970  address rh = VMError::get_resetted_sighandler(sig);
3971  // May be, handler was resetted by VMError?
3972  if(rh != NULL) {
3973    handler = rh;
3974    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3975  }
3976
3977  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3978
3979  // Check: is it our handler?
3980  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3981     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3982    // It is our signal handler
3983    // check for flags, reset system-used one!
3984    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3985      st->print(
3986                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3987                os::Linux::get_our_sigflags(sig));
3988    }
3989  }
3990  st->cr();
3991}
3992
3993
3994#define DO_SIGNAL_CHECK(sig) \
3995  if (!sigismember(&check_signal_done, sig)) \
3996    os::Linux::check_signal_handler(sig)
3997
3998// This method is a periodic task to check for misbehaving JNI applications
3999// under CheckJNI, we can add any periodic checks here
4000
4001void os::run_periodic_checks() {
4002
4003  if (check_signals == false) return;
4004
4005  // SEGV and BUS if overridden could potentially prevent
4006  // generation of hs*.log in the event of a crash, debugging
4007  // such a case can be very challenging, so we absolutely
4008  // check the following for a good measure:
4009  DO_SIGNAL_CHECK(SIGSEGV);
4010  DO_SIGNAL_CHECK(SIGILL);
4011  DO_SIGNAL_CHECK(SIGFPE);
4012  DO_SIGNAL_CHECK(SIGBUS);
4013  DO_SIGNAL_CHECK(SIGPIPE);
4014  DO_SIGNAL_CHECK(SIGXFSZ);
4015
4016
4017  // ReduceSignalUsage allows the user to override these handlers
4018  // see comments at the very top and jvm_solaris.h
4019  if (!ReduceSignalUsage) {
4020    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4021    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4022    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4023    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4024  }
4025
4026  DO_SIGNAL_CHECK(SR_signum);
4027  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4028}
4029
4030typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4031
4032static os_sigaction_t os_sigaction = NULL;
4033
4034void os::Linux::check_signal_handler(int sig) {
4035  char buf[O_BUFLEN];
4036  address jvmHandler = NULL;
4037
4038
4039  struct sigaction act;
4040  if (os_sigaction == NULL) {
4041    // only trust the default sigaction, in case it has been interposed
4042    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4043    if (os_sigaction == NULL) return;
4044  }
4045
4046  os_sigaction(sig, (struct sigaction*)NULL, &act);
4047
4048
4049  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4050
4051  address thisHandler = (act.sa_flags & SA_SIGINFO)
4052    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4053    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4054
4055
4056  switch(sig) {
4057  case SIGSEGV:
4058  case SIGBUS:
4059  case SIGFPE:
4060  case SIGPIPE:
4061  case SIGILL:
4062  case SIGXFSZ:
4063    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4064    break;
4065
4066  case SHUTDOWN1_SIGNAL:
4067  case SHUTDOWN2_SIGNAL:
4068  case SHUTDOWN3_SIGNAL:
4069  case BREAK_SIGNAL:
4070    jvmHandler = (address)user_handler();
4071    break;
4072
4073  case INTERRUPT_SIGNAL:
4074    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4075    break;
4076
4077  default:
4078    if (sig == SR_signum) {
4079      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4080    } else {
4081      return;
4082    }
4083    break;
4084  }
4085
4086  if (thisHandler != jvmHandler) {
4087    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4088    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4089    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4090    // No need to check this sig any longer
4091    sigaddset(&check_signal_done, sig);
4092  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4093    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4094    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4095    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4096    // No need to check this sig any longer
4097    sigaddset(&check_signal_done, sig);
4098  }
4099
4100  // Dump all the signal
4101  if (sigismember(&check_signal_done, sig)) {
4102    print_signal_handlers(tty, buf, O_BUFLEN);
4103  }
4104}
4105
4106extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4107
4108extern bool signal_name(int signo, char* buf, size_t len);
4109
4110const char* os::exception_name(int exception_code, char* buf, size_t size) {
4111  if (0 < exception_code && exception_code <= SIGRTMAX) {
4112    // signal
4113    if (!signal_name(exception_code, buf, size)) {
4114      jio_snprintf(buf, size, "SIG%d", exception_code);
4115    }
4116    return buf;
4117  } else {
4118    return NULL;
4119  }
4120}
4121
4122// this is called _before_ the most of global arguments have been parsed
4123void os::init(void) {
4124  char dummy;   /* used to get a guess on initial stack address */
4125//  first_hrtime = gethrtime();
4126
4127  // With LinuxThreads the JavaMain thread pid (primordial thread)
4128  // is different than the pid of the java launcher thread.
4129  // So, on Linux, the launcher thread pid is passed to the VM
4130  // via the sun.java.launcher.pid property.
4131  // Use this property instead of getpid() if it was correctly passed.
4132  // See bug 6351349.
4133  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4134
4135  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4136
4137  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4138
4139  init_random(1234567);
4140
4141  ThreadCritical::initialize();
4142
4143  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4144  if (Linux::page_size() == -1) {
4145    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4146                  strerror(errno)));
4147  }
4148  init_page_sizes((size_t) Linux::page_size());
4149
4150  Linux::initialize_system_info();
4151
4152  // main_thread points to the aboriginal thread
4153  Linux::_main_thread = pthread_self();
4154
4155  Linux::clock_init();
4156  initial_time_count = os::elapsed_counter();
4157  pthread_mutex_init(&dl_mutex, NULL);
4158}
4159
4160// To install functions for atexit system call
4161extern "C" {
4162  static void perfMemory_exit_helper() {
4163    perfMemory_exit();
4164  }
4165}
4166
4167// this is called _after_ the global arguments have been parsed
4168jint os::init_2(void)
4169{
4170  Linux::fast_thread_clock_init();
4171
4172  // Allocate a single page and mark it as readable for safepoint polling
4173  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4174  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4175
4176  os::set_polling_page( polling_page );
4177
4178#ifndef PRODUCT
4179  if(Verbose && PrintMiscellaneous)
4180    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4181#endif
4182
4183  if (!UseMembar) {
4184    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4185    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4186    os::set_memory_serialize_page( mem_serialize_page );
4187
4188#ifndef PRODUCT
4189    if(Verbose && PrintMiscellaneous)
4190      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4191#endif
4192  }
4193
4194  os::large_page_init();
4195
4196  // initialize suspend/resume support - must do this before signal_sets_init()
4197  if (SR_initialize() != 0) {
4198    perror("SR_initialize failed");
4199    return JNI_ERR;
4200  }
4201
4202  Linux::signal_sets_init();
4203  Linux::install_signal_handlers();
4204
4205  // Check minimum allowable stack size for thread creation and to initialize
4206  // the java system classes, including StackOverflowError - depends on page
4207  // size.  Add a page for compiler2 recursion in main thread.
4208  // Add in 2*BytesPerWord times page size to account for VM stack during
4209  // class initialization depending on 32 or 64 bit VM.
4210  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4211            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4212                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4213
4214  size_t threadStackSizeInBytes = ThreadStackSize * K;
4215  if (threadStackSizeInBytes != 0 &&
4216      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4217        tty->print_cr("\nThe stack size specified is too small, "
4218                      "Specify at least %dk",
4219                      os::Linux::min_stack_allowed/ K);
4220        return JNI_ERR;
4221  }
4222
4223  // Make the stack size a multiple of the page size so that
4224  // the yellow/red zones can be guarded.
4225  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4226        vm_page_size()));
4227
4228  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4229
4230  Linux::libpthread_init();
4231  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4232     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4233          Linux::glibc_version(), Linux::libpthread_version(),
4234          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4235  }
4236
4237  if (UseNUMA) {
4238    if (!Linux::libnuma_init()) {
4239      UseNUMA = false;
4240    } else {
4241      if ((Linux::numa_max_node() < 1)) {
4242        // There's only one node(they start from 0), disable NUMA.
4243        UseNUMA = false;
4244      }
4245    }
4246    // With SHM large pages we cannot uncommit a page, so there's not way
4247    // we can make the adaptive lgrp chunk resizing work. If the user specified
4248    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4249    // disable adaptive resizing.
4250    if (UseNUMA && UseLargePages && UseSHM) {
4251      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4252        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4253          UseLargePages = false;
4254        } else {
4255          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4256          UseAdaptiveSizePolicy = false;
4257          UseAdaptiveNUMAChunkSizing = false;
4258        }
4259      } else {
4260        UseNUMA = false;
4261      }
4262    }
4263    if (!UseNUMA && ForceNUMA) {
4264      UseNUMA = true;
4265    }
4266  }
4267
4268  if (MaxFDLimit) {
4269    // set the number of file descriptors to max. print out error
4270    // if getrlimit/setrlimit fails but continue regardless.
4271    struct rlimit nbr_files;
4272    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4273    if (status != 0) {
4274      if (PrintMiscellaneous && (Verbose || WizardMode))
4275        perror("os::init_2 getrlimit failed");
4276    } else {
4277      nbr_files.rlim_cur = nbr_files.rlim_max;
4278      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4279      if (status != 0) {
4280        if (PrintMiscellaneous && (Verbose || WizardMode))
4281          perror("os::init_2 setrlimit failed");
4282      }
4283    }
4284  }
4285
4286  // Initialize lock used to serialize thread creation (see os::create_thread)
4287  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4288
4289  // at-exit methods are called in the reverse order of their registration.
4290  // atexit functions are called on return from main or as a result of a
4291  // call to exit(3C). There can be only 32 of these functions registered
4292  // and atexit() does not set errno.
4293
4294  if (PerfAllowAtExitRegistration) {
4295    // only register atexit functions if PerfAllowAtExitRegistration is set.
4296    // atexit functions can be delayed until process exit time, which
4297    // can be problematic for embedded VM situations. Embedded VMs should
4298    // call DestroyJavaVM() to assure that VM resources are released.
4299
4300    // note: perfMemory_exit_helper atexit function may be removed in
4301    // the future if the appropriate cleanup code can be added to the
4302    // VM_Exit VMOperation's doit method.
4303    if (atexit(perfMemory_exit_helper) != 0) {
4304      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4305    }
4306  }
4307
4308  // initialize thread priority policy
4309  prio_init();
4310
4311  return JNI_OK;
4312}
4313
4314// this is called at the end of vm_initialization
4315void os::init_3(void)
4316{
4317#ifdef JAVASE_EMBEDDED
4318  // Start the MemNotifyThread
4319  if (LowMemoryProtection) {
4320    MemNotifyThread::start();
4321  }
4322  return;
4323#endif
4324}
4325
4326// Mark the polling page as unreadable
4327void os::make_polling_page_unreadable(void) {
4328  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4329    fatal("Could not disable polling page");
4330};
4331
4332// Mark the polling page as readable
4333void os::make_polling_page_readable(void) {
4334  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4335    fatal("Could not enable polling page");
4336  }
4337};
4338
4339int os::active_processor_count() {
4340  // Linux doesn't yet have a (official) notion of processor sets,
4341  // so just return the number of online processors.
4342  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4343  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4344  return online_cpus;
4345}
4346
4347void os::set_native_thread_name(const char *name) {
4348  // Not yet implemented.
4349  return;
4350}
4351
4352bool os::distribute_processes(uint length, uint* distribution) {
4353  // Not yet implemented.
4354  return false;
4355}
4356
4357bool os::bind_to_processor(uint processor_id) {
4358  // Not yet implemented.
4359  return false;
4360}
4361
4362///
4363
4364// Suspends the target using the signal mechanism and then grabs the PC before
4365// resuming the target. Used by the flat-profiler only
4366ExtendedPC os::get_thread_pc(Thread* thread) {
4367  // Make sure that it is called by the watcher for the VMThread
4368  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4369  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4370
4371  ExtendedPC epc;
4372
4373  OSThread* osthread = thread->osthread();
4374  if (do_suspend(osthread)) {
4375    if (osthread->ucontext() != NULL) {
4376      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4377    } else {
4378      // NULL context is unexpected, double-check this is the VMThread
4379      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4380    }
4381    do_resume(osthread);
4382  }
4383  // failure means pthread_kill failed for some reason - arguably this is
4384  // a fatal problem, but such problems are ignored elsewhere
4385
4386  return epc;
4387}
4388
4389int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4390{
4391   if (is_NPTL()) {
4392      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4393   } else {
4394#ifndef IA64
4395      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4396      // word back to default 64bit precision if condvar is signaled. Java
4397      // wants 53bit precision.  Save and restore current value.
4398      int fpu = get_fpu_control_word();
4399#endif // IA64
4400      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4401#ifndef IA64
4402      set_fpu_control_word(fpu);
4403#endif // IA64
4404      return status;
4405   }
4406}
4407
4408////////////////////////////////////////////////////////////////////////////////
4409// debug support
4410
4411static address same_page(address x, address y) {
4412  int page_bits = -os::vm_page_size();
4413  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4414    return x;
4415  else if (x > y)
4416    return (address)(intptr_t(y) | ~page_bits) + 1;
4417  else
4418    return (address)(intptr_t(y) & page_bits);
4419}
4420
4421bool os::find(address addr, outputStream* st) {
4422  Dl_info dlinfo;
4423  memset(&dlinfo, 0, sizeof(dlinfo));
4424  if (dladdr(addr, &dlinfo)) {
4425    st->print(PTR_FORMAT ": ", addr);
4426    if (dlinfo.dli_sname != NULL) {
4427      st->print("%s+%#x", dlinfo.dli_sname,
4428                 addr - (intptr_t)dlinfo.dli_saddr);
4429    } else if (dlinfo.dli_fname) {
4430      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4431    } else {
4432      st->print("<absolute address>");
4433    }
4434    if (dlinfo.dli_fname) {
4435      st->print(" in %s", dlinfo.dli_fname);
4436    }
4437    if (dlinfo.dli_fbase) {
4438      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4439    }
4440    st->cr();
4441
4442    if (Verbose) {
4443      // decode some bytes around the PC
4444      address begin = same_page(addr-40, addr);
4445      address end   = same_page(addr+40, addr);
4446      address       lowest = (address) dlinfo.dli_sname;
4447      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4448      if (begin < lowest)  begin = lowest;
4449      Dl_info dlinfo2;
4450      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4451          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4452        end = (address) dlinfo2.dli_saddr;
4453      Disassembler::decode(begin, end, st);
4454    }
4455    return true;
4456  }
4457  return false;
4458}
4459
4460////////////////////////////////////////////////////////////////////////////////
4461// misc
4462
4463// This does not do anything on Linux. This is basically a hook for being
4464// able to use structured exception handling (thread-local exception filters)
4465// on, e.g., Win32.
4466void
4467os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4468                         JavaCallArguments* args, Thread* thread) {
4469  f(value, method, args, thread);
4470}
4471
4472void os::print_statistics() {
4473}
4474
4475int os::message_box(const char* title, const char* message) {
4476  int i;
4477  fdStream err(defaultStream::error_fd());
4478  for (i = 0; i < 78; i++) err.print_raw("=");
4479  err.cr();
4480  err.print_raw_cr(title);
4481  for (i = 0; i < 78; i++) err.print_raw("-");
4482  err.cr();
4483  err.print_raw_cr(message);
4484  for (i = 0; i < 78; i++) err.print_raw("=");
4485  err.cr();
4486
4487  char buf[16];
4488  // Prevent process from exiting upon "read error" without consuming all CPU
4489  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4490
4491  return buf[0] == 'y' || buf[0] == 'Y';
4492}
4493
4494int os::stat(const char *path, struct stat *sbuf) {
4495  char pathbuf[MAX_PATH];
4496  if (strlen(path) > MAX_PATH - 1) {
4497    errno = ENAMETOOLONG;
4498    return -1;
4499  }
4500  os::native_path(strcpy(pathbuf, path));
4501  return ::stat(pathbuf, sbuf);
4502}
4503
4504bool os::check_heap(bool force) {
4505  return true;
4506}
4507
4508int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4509  return ::vsnprintf(buf, count, format, args);
4510}
4511
4512// Is a (classpath) directory empty?
4513bool os::dir_is_empty(const char* path) {
4514  DIR *dir = NULL;
4515  struct dirent *ptr;
4516
4517  dir = opendir(path);
4518  if (dir == NULL) return true;
4519
4520  /* Scan the directory */
4521  bool result = true;
4522  char buf[sizeof(struct dirent) + MAX_PATH];
4523  while (result && (ptr = ::readdir(dir)) != NULL) {
4524    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4525      result = false;
4526    }
4527  }
4528  closedir(dir);
4529  return result;
4530}
4531
4532// This code originates from JDK's sysOpen and open64_w
4533// from src/solaris/hpi/src/system_md.c
4534
4535#ifndef O_DELETE
4536#define O_DELETE 0x10000
4537#endif
4538
4539// Open a file. Unlink the file immediately after open returns
4540// if the specified oflag has the O_DELETE flag set.
4541// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4542
4543int os::open(const char *path, int oflag, int mode) {
4544
4545  if (strlen(path) > MAX_PATH - 1) {
4546    errno = ENAMETOOLONG;
4547    return -1;
4548  }
4549  int fd;
4550  int o_delete = (oflag & O_DELETE);
4551  oflag = oflag & ~O_DELETE;
4552
4553  fd = ::open64(path, oflag, mode);
4554  if (fd == -1) return -1;
4555
4556  //If the open succeeded, the file might still be a directory
4557  {
4558    struct stat64 buf64;
4559    int ret = ::fstat64(fd, &buf64);
4560    int st_mode = buf64.st_mode;
4561
4562    if (ret != -1) {
4563      if ((st_mode & S_IFMT) == S_IFDIR) {
4564        errno = EISDIR;
4565        ::close(fd);
4566        return -1;
4567      }
4568    } else {
4569      ::close(fd);
4570      return -1;
4571    }
4572  }
4573
4574    /*
4575     * All file descriptors that are opened in the JVM and not
4576     * specifically destined for a subprocess should have the
4577     * close-on-exec flag set.  If we don't set it, then careless 3rd
4578     * party native code might fork and exec without closing all
4579     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4580     * UNIXProcess.c), and this in turn might:
4581     *
4582     * - cause end-of-file to fail to be detected on some file
4583     *   descriptors, resulting in mysterious hangs, or
4584     *
4585     * - might cause an fopen in the subprocess to fail on a system
4586     *   suffering from bug 1085341.
4587     *
4588     * (Yes, the default setting of the close-on-exec flag is a Unix
4589     * design flaw)
4590     *
4591     * See:
4592     * 1085341: 32-bit stdio routines should support file descriptors >255
4593     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4594     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4595     */
4596#ifdef FD_CLOEXEC
4597    {
4598        int flags = ::fcntl(fd, F_GETFD);
4599        if (flags != -1)
4600            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4601    }
4602#endif
4603
4604  if (o_delete != 0) {
4605    ::unlink(path);
4606  }
4607  return fd;
4608}
4609
4610
4611// create binary file, rewriting existing file if required
4612int os::create_binary_file(const char* path, bool rewrite_existing) {
4613  int oflags = O_WRONLY | O_CREAT;
4614  if (!rewrite_existing) {
4615    oflags |= O_EXCL;
4616  }
4617  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4618}
4619
4620// return current position of file pointer
4621jlong os::current_file_offset(int fd) {
4622  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4623}
4624
4625// move file pointer to the specified offset
4626jlong os::seek_to_file_offset(int fd, jlong offset) {
4627  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4628}
4629
4630// This code originates from JDK's sysAvailable
4631// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4632
4633int os::available(int fd, jlong *bytes) {
4634  jlong cur, end;
4635  int mode;
4636  struct stat64 buf64;
4637
4638  if (::fstat64(fd, &buf64) >= 0) {
4639    mode = buf64.st_mode;
4640    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4641      /*
4642      * XXX: is the following call interruptible? If so, this might
4643      * need to go through the INTERRUPT_IO() wrapper as for other
4644      * blocking, interruptible calls in this file.
4645      */
4646      int n;
4647      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4648        *bytes = n;
4649        return 1;
4650      }
4651    }
4652  }
4653  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4654    return 0;
4655  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4656    return 0;
4657  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4658    return 0;
4659  }
4660  *bytes = end - cur;
4661  return 1;
4662}
4663
4664int os::socket_available(int fd, jint *pbytes) {
4665  // Linux doc says EINTR not returned, unlike Solaris
4666  int ret = ::ioctl(fd, FIONREAD, pbytes);
4667
4668  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4669  // is expected to return 0 on failure and 1 on success to the jdk.
4670  return (ret < 0) ? 0 : 1;
4671}
4672
4673// Map a block of memory.
4674char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4675                     char *addr, size_t bytes, bool read_only,
4676                     bool allow_exec) {
4677  int prot;
4678  int flags = MAP_PRIVATE;
4679
4680  if (read_only) {
4681    prot = PROT_READ;
4682  } else {
4683    prot = PROT_READ | PROT_WRITE;
4684  }
4685
4686  if (allow_exec) {
4687    prot |= PROT_EXEC;
4688  }
4689
4690  if (addr != NULL) {
4691    flags |= MAP_FIXED;
4692  }
4693
4694  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4695                                     fd, file_offset);
4696  if (mapped_address == MAP_FAILED) {
4697    return NULL;
4698  }
4699  return mapped_address;
4700}
4701
4702
4703// Remap a block of memory.
4704char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4705                       char *addr, size_t bytes, bool read_only,
4706                       bool allow_exec) {
4707  // same as map_memory() on this OS
4708  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4709                        allow_exec);
4710}
4711
4712
4713// Unmap a block of memory.
4714bool os::pd_unmap_memory(char* addr, size_t bytes) {
4715  return munmap(addr, bytes) == 0;
4716}
4717
4718static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4719
4720static clockid_t thread_cpu_clockid(Thread* thread) {
4721  pthread_t tid = thread->osthread()->pthread_id();
4722  clockid_t clockid;
4723
4724  // Get thread clockid
4725  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4726  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4727  return clockid;
4728}
4729
4730// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4731// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4732// of a thread.
4733//
4734// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4735// the fast estimate available on the platform.
4736
4737jlong os::current_thread_cpu_time() {
4738  if (os::Linux::supports_fast_thread_cpu_time()) {
4739    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4740  } else {
4741    // return user + sys since the cost is the same
4742    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4743  }
4744}
4745
4746jlong os::thread_cpu_time(Thread* thread) {
4747  // consistent with what current_thread_cpu_time() returns
4748  if (os::Linux::supports_fast_thread_cpu_time()) {
4749    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4750  } else {
4751    return slow_thread_cpu_time(thread, true /* user + sys */);
4752  }
4753}
4754
4755jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4756  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4757    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4758  } else {
4759    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4760  }
4761}
4762
4763jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4764  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4765    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4766  } else {
4767    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4768  }
4769}
4770
4771//
4772//  -1 on error.
4773//
4774
4775static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4776  static bool proc_pid_cpu_avail = true;
4777  static bool proc_task_unchecked = true;
4778  static const char *proc_stat_path = "/proc/%d/stat";
4779  pid_t  tid = thread->osthread()->thread_id();
4780  int i;
4781  char *s;
4782  char stat[2048];
4783  int statlen;
4784  char proc_name[64];
4785  int count;
4786  long sys_time, user_time;
4787  char string[64];
4788  char cdummy;
4789  int idummy;
4790  long ldummy;
4791  FILE *fp;
4792
4793  // We first try accessing /proc/<pid>/cpu since this is faster to
4794  // process.  If this file is not present (linux kernels 2.5 and above)
4795  // then we open /proc/<pid>/stat.
4796  if ( proc_pid_cpu_avail ) {
4797    sprintf(proc_name, "/proc/%d/cpu", tid);
4798    fp =  fopen(proc_name, "r");
4799    if ( fp != NULL ) {
4800      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4801      fclose(fp);
4802      if ( count != 3 ) return -1;
4803
4804      if (user_sys_cpu_time) {
4805        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4806      } else {
4807        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4808      }
4809    }
4810    else proc_pid_cpu_avail = false;
4811  }
4812
4813  // The /proc/<tid>/stat aggregates per-process usage on
4814  // new Linux kernels 2.6+ where NPTL is supported.
4815  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4816  // See bug 6328462.
4817  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4818  // and possibly in some other cases, so we check its availability.
4819  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4820    // This is executed only once
4821    proc_task_unchecked = false;
4822    fp = fopen("/proc/self/task", "r");
4823    if (fp != NULL) {
4824      proc_stat_path = "/proc/self/task/%d/stat";
4825      fclose(fp);
4826    }
4827  }
4828
4829  sprintf(proc_name, proc_stat_path, tid);
4830  fp = fopen(proc_name, "r");
4831  if ( fp == NULL ) return -1;
4832  statlen = fread(stat, 1, 2047, fp);
4833  stat[statlen] = '\0';
4834  fclose(fp);
4835
4836  // Skip pid and the command string. Note that we could be dealing with
4837  // weird command names, e.g. user could decide to rename java launcher
4838  // to "java 1.4.2 :)", then the stat file would look like
4839  //                1234 (java 1.4.2 :)) R ... ...
4840  // We don't really need to know the command string, just find the last
4841  // occurrence of ")" and then start parsing from there. See bug 4726580.
4842  s = strrchr(stat, ')');
4843  i = 0;
4844  if (s == NULL ) return -1;
4845
4846  // Skip blank chars
4847  do s++; while (isspace(*s));
4848
4849  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4850                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4851                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4852                 &user_time, &sys_time);
4853  if ( count != 13 ) return -1;
4854  if (user_sys_cpu_time) {
4855    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4856  } else {
4857    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4858  }
4859}
4860
4861void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4862  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4863  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4864  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4865  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4866}
4867
4868void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4869  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4870  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4871  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4872  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4873}
4874
4875bool os::is_thread_cpu_time_supported() {
4876  return true;
4877}
4878
4879// System loadavg support.  Returns -1 if load average cannot be obtained.
4880// Linux doesn't yet have a (official) notion of processor sets,
4881// so just return the system wide load average.
4882int os::loadavg(double loadavg[], int nelem) {
4883  return ::getloadavg(loadavg, nelem);
4884}
4885
4886void os::pause() {
4887  char filename[MAX_PATH];
4888  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4889    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4890  } else {
4891    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4892  }
4893
4894  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4895  if (fd != -1) {
4896    struct stat buf;
4897    ::close(fd);
4898    while (::stat(filename, &buf) == 0) {
4899      (void)::poll(NULL, 0, 100);
4900    }
4901  } else {
4902    jio_fprintf(stderr,
4903      "Could not open pause file '%s', continuing immediately.\n", filename);
4904  }
4905}
4906
4907
4908// Refer to the comments in os_solaris.cpp park-unpark.
4909//
4910// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4911// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4912// For specifics regarding the bug see GLIBC BUGID 261237 :
4913//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4914// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4915// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4916// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4917// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4918// and monitorenter when we're using 1-0 locking.  All those operations may result in
4919// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4920// of libpthread avoids the problem, but isn't practical.
4921//
4922// Possible remedies:
4923//
4924// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4925//      This is palliative and probabilistic, however.  If the thread is preempted
4926//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4927//      than the minimum period may have passed, and the abstime may be stale (in the
4928//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4929//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4930//
4931// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4932//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4933//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4934//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4935//      thread.
4936//
4937// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4938//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4939//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4940//      This also works well.  In fact it avoids kernel-level scalability impediments
4941//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4942//      timers in a graceful fashion.
4943//
4944// 4.   When the abstime value is in the past it appears that control returns
4945//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4946//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4947//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4948//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4949//      It may be possible to avoid reinitialization by checking the return
4950//      value from pthread_cond_timedwait().  In addition to reinitializing the
4951//      condvar we must establish the invariant that cond_signal() is only called
4952//      within critical sections protected by the adjunct mutex.  This prevents
4953//      cond_signal() from "seeing" a condvar that's in the midst of being
4954//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4955//      desirable signal-after-unlock optimization that avoids futile context switching.
4956//
4957//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4958//      structure when a condvar is used or initialized.  cond_destroy()  would
4959//      release the helper structure.  Our reinitialize-after-timedwait fix
4960//      put excessive stress on malloc/free and locks protecting the c-heap.
4961//
4962// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4963// It may be possible to refine (4) by checking the kernel and NTPL verisons
4964// and only enabling the work-around for vulnerable environments.
4965
4966// utility to compute the abstime argument to timedwait:
4967// millis is the relative timeout time
4968// abstime will be the absolute timeout time
4969// TODO: replace compute_abstime() with unpackTime()
4970
4971static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4972  if (millis < 0)  millis = 0;
4973  struct timeval now;
4974  int status = gettimeofday(&now, NULL);
4975  assert(status == 0, "gettimeofday");
4976  jlong seconds = millis / 1000;
4977  millis %= 1000;
4978  if (seconds > 50000000) { // see man cond_timedwait(3T)
4979    seconds = 50000000;
4980  }
4981  abstime->tv_sec = now.tv_sec  + seconds;
4982  long       usec = now.tv_usec + millis * 1000;
4983  if (usec >= 1000000) {
4984    abstime->tv_sec += 1;
4985    usec -= 1000000;
4986  }
4987  abstime->tv_nsec = usec * 1000;
4988  return abstime;
4989}
4990
4991
4992// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4993// Conceptually TryPark() should be equivalent to park(0).
4994
4995int os::PlatformEvent::TryPark() {
4996  for (;;) {
4997    const int v = _Event ;
4998    guarantee ((v == 0) || (v == 1), "invariant") ;
4999    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5000  }
5001}
5002
5003void os::PlatformEvent::park() {       // AKA "down()"
5004  // Invariant: Only the thread associated with the Event/PlatformEvent
5005  // may call park().
5006  // TODO: assert that _Assoc != NULL or _Assoc == Self
5007  int v ;
5008  for (;;) {
5009      v = _Event ;
5010      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5011  }
5012  guarantee (v >= 0, "invariant") ;
5013  if (v == 0) {
5014     // Do this the hard way by blocking ...
5015     int status = pthread_mutex_lock(_mutex);
5016     assert_status(status == 0, status, "mutex_lock");
5017     guarantee (_nParked == 0, "invariant") ;
5018     ++ _nParked ;
5019     while (_Event < 0) {
5020        status = pthread_cond_wait(_cond, _mutex);
5021        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5022        // Treat this the same as if the wait was interrupted
5023        if (status == ETIME) { status = EINTR; }
5024        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5025     }
5026     -- _nParked ;
5027
5028    // In theory we could move the ST of 0 into _Event past the unlock(),
5029    // but then we'd need a MEMBAR after the ST.
5030    _Event = 0 ;
5031     status = pthread_mutex_unlock(_mutex);
5032     assert_status(status == 0, status, "mutex_unlock");
5033  }
5034  guarantee (_Event >= 0, "invariant") ;
5035}
5036
5037int os::PlatformEvent::park(jlong millis) {
5038  guarantee (_nParked == 0, "invariant") ;
5039
5040  int v ;
5041  for (;;) {
5042      v = _Event ;
5043      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5044  }
5045  guarantee (v >= 0, "invariant") ;
5046  if (v != 0) return OS_OK ;
5047
5048  // We do this the hard way, by blocking the thread.
5049  // Consider enforcing a minimum timeout value.
5050  struct timespec abst;
5051  compute_abstime(&abst, millis);
5052
5053  int ret = OS_TIMEOUT;
5054  int status = pthread_mutex_lock(_mutex);
5055  assert_status(status == 0, status, "mutex_lock");
5056  guarantee (_nParked == 0, "invariant") ;
5057  ++_nParked ;
5058
5059  // Object.wait(timo) will return because of
5060  // (a) notification
5061  // (b) timeout
5062  // (c) thread.interrupt
5063  //
5064  // Thread.interrupt and object.notify{All} both call Event::set.
5065  // That is, we treat thread.interrupt as a special case of notification.
5066  // The underlying Solaris implementation, cond_timedwait, admits
5067  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5068  // JVM from making those visible to Java code.  As such, we must
5069  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5070  //
5071  // TODO: properly differentiate simultaneous notify+interrupt.
5072  // In that case, we should propagate the notify to another waiter.
5073
5074  while (_Event < 0) {
5075    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5076    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5077      pthread_cond_destroy (_cond);
5078      pthread_cond_init (_cond, NULL) ;
5079    }
5080    assert_status(status == 0 || status == EINTR ||
5081                  status == ETIME || status == ETIMEDOUT,
5082                  status, "cond_timedwait");
5083    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5084    if (status == ETIME || status == ETIMEDOUT) break ;
5085    // We consume and ignore EINTR and spurious wakeups.
5086  }
5087  --_nParked ;
5088  if (_Event >= 0) {
5089     ret = OS_OK;
5090  }
5091  _Event = 0 ;
5092  status = pthread_mutex_unlock(_mutex);
5093  assert_status(status == 0, status, "mutex_unlock");
5094  assert (_nParked == 0, "invariant") ;
5095  return ret;
5096}
5097
5098void os::PlatformEvent::unpark() {
5099  int v, AnyWaiters ;
5100  for (;;) {
5101      v = _Event ;
5102      if (v > 0) {
5103         // The LD of _Event could have reordered or be satisfied
5104         // by a read-aside from this processor's write buffer.
5105         // To avoid problems execute a barrier and then
5106         // ratify the value.
5107         OrderAccess::fence() ;
5108         if (_Event == v) return ;
5109         continue ;
5110      }
5111      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5112  }
5113  if (v < 0) {
5114     // Wait for the thread associated with the event to vacate
5115     int status = pthread_mutex_lock(_mutex);
5116     assert_status(status == 0, status, "mutex_lock");
5117     AnyWaiters = _nParked ;
5118     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5119     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5120        AnyWaiters = 0 ;
5121        pthread_cond_signal (_cond);
5122     }
5123     status = pthread_mutex_unlock(_mutex);
5124     assert_status(status == 0, status, "mutex_unlock");
5125     if (AnyWaiters != 0) {
5126        status = pthread_cond_signal(_cond);
5127        assert_status(status == 0, status, "cond_signal");
5128     }
5129  }
5130
5131  // Note that we signal() _after dropping the lock for "immortal" Events.
5132  // This is safe and avoids a common class of  futile wakeups.  In rare
5133  // circumstances this can cause a thread to return prematurely from
5134  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5135  // simply re-test the condition and re-park itself.
5136}
5137
5138
5139// JSR166
5140// -------------------------------------------------------
5141
5142/*
5143 * The solaris and linux implementations of park/unpark are fairly
5144 * conservative for now, but can be improved. They currently use a
5145 * mutex/condvar pair, plus a a count.
5146 * Park decrements count if > 0, else does a condvar wait.  Unpark
5147 * sets count to 1 and signals condvar.  Only one thread ever waits
5148 * on the condvar. Contention seen when trying to park implies that someone
5149 * is unparking you, so don't wait. And spurious returns are fine, so there
5150 * is no need to track notifications.
5151 */
5152
5153#define MAX_SECS 100000000
5154/*
5155 * This code is common to linux and solaris and will be moved to a
5156 * common place in dolphin.
5157 *
5158 * The passed in time value is either a relative time in nanoseconds
5159 * or an absolute time in milliseconds. Either way it has to be unpacked
5160 * into suitable seconds and nanoseconds components and stored in the
5161 * given timespec structure.
5162 * Given time is a 64-bit value and the time_t used in the timespec is only
5163 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5164 * overflow if times way in the future are given. Further on Solaris versions
5165 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5166 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5167 * As it will be 28 years before "now + 100000000" will overflow we can
5168 * ignore overflow and just impose a hard-limit on seconds using the value
5169 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5170 * years from "now".
5171 */
5172
5173static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5174  assert (time > 0, "convertTime");
5175
5176  struct timeval now;
5177  int status = gettimeofday(&now, NULL);
5178  assert(status == 0, "gettimeofday");
5179
5180  time_t max_secs = now.tv_sec + MAX_SECS;
5181
5182  if (isAbsolute) {
5183    jlong secs = time / 1000;
5184    if (secs > max_secs) {
5185      absTime->tv_sec = max_secs;
5186    }
5187    else {
5188      absTime->tv_sec = secs;
5189    }
5190    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5191  }
5192  else {
5193    jlong secs = time / NANOSECS_PER_SEC;
5194    if (secs >= MAX_SECS) {
5195      absTime->tv_sec = max_secs;
5196      absTime->tv_nsec = 0;
5197    }
5198    else {
5199      absTime->tv_sec = now.tv_sec + secs;
5200      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5201      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5202        absTime->tv_nsec -= NANOSECS_PER_SEC;
5203        ++absTime->tv_sec; // note: this must be <= max_secs
5204      }
5205    }
5206  }
5207  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5208  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5209  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5210  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5211}
5212
5213void Parker::park(bool isAbsolute, jlong time) {
5214  // Optional fast-path check:
5215  // Return immediately if a permit is available.
5216  if (_counter > 0) {
5217      _counter = 0 ;
5218      OrderAccess::fence();
5219      return ;
5220  }
5221
5222  Thread* thread = Thread::current();
5223  assert(thread->is_Java_thread(), "Must be JavaThread");
5224  JavaThread *jt = (JavaThread *)thread;
5225
5226  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5227  // Check interrupt before trying to wait
5228  if (Thread::is_interrupted(thread, false)) {
5229    return;
5230  }
5231
5232  // Next, demultiplex/decode time arguments
5233  timespec absTime;
5234  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5235    return;
5236  }
5237  if (time > 0) {
5238    unpackTime(&absTime, isAbsolute, time);
5239  }
5240
5241
5242  // Enter safepoint region
5243  // Beware of deadlocks such as 6317397.
5244  // The per-thread Parker:: mutex is a classic leaf-lock.
5245  // In particular a thread must never block on the Threads_lock while
5246  // holding the Parker:: mutex.  If safepoints are pending both the
5247  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5248  ThreadBlockInVM tbivm(jt);
5249
5250  // Don't wait if cannot get lock since interference arises from
5251  // unblocking.  Also. check interrupt before trying wait
5252  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5253    return;
5254  }
5255
5256  int status ;
5257  if (_counter > 0)  { // no wait needed
5258    _counter = 0;
5259    status = pthread_mutex_unlock(_mutex);
5260    assert (status == 0, "invariant") ;
5261    OrderAccess::fence();
5262    return;
5263  }
5264
5265#ifdef ASSERT
5266  // Don't catch signals while blocked; let the running threads have the signals.
5267  // (This allows a debugger to break into the running thread.)
5268  sigset_t oldsigs;
5269  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5270  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5271#endif
5272
5273  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5274  jt->set_suspend_equivalent();
5275  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5276
5277  if (time == 0) {
5278    status = pthread_cond_wait (_cond, _mutex) ;
5279  } else {
5280    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5281    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5282      pthread_cond_destroy (_cond) ;
5283      pthread_cond_init    (_cond, NULL);
5284    }
5285  }
5286  assert_status(status == 0 || status == EINTR ||
5287                status == ETIME || status == ETIMEDOUT,
5288                status, "cond_timedwait");
5289
5290#ifdef ASSERT
5291  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5292#endif
5293
5294  _counter = 0 ;
5295  status = pthread_mutex_unlock(_mutex) ;
5296  assert_status(status == 0, status, "invariant") ;
5297  // If externally suspended while waiting, re-suspend
5298  if (jt->handle_special_suspend_equivalent_condition()) {
5299    jt->java_suspend_self();
5300  }
5301
5302  OrderAccess::fence();
5303}
5304
5305void Parker::unpark() {
5306  int s, status ;
5307  status = pthread_mutex_lock(_mutex);
5308  assert (status == 0, "invariant") ;
5309  s = _counter;
5310  _counter = 1;
5311  if (s < 1) {
5312     if (WorkAroundNPTLTimedWaitHang) {
5313        status = pthread_cond_signal (_cond) ;
5314        assert (status == 0, "invariant") ;
5315        status = pthread_mutex_unlock(_mutex);
5316        assert (status == 0, "invariant") ;
5317     } else {
5318        status = pthread_mutex_unlock(_mutex);
5319        assert (status == 0, "invariant") ;
5320        status = pthread_cond_signal (_cond) ;
5321        assert (status == 0, "invariant") ;
5322     }
5323  } else {
5324    pthread_mutex_unlock(_mutex);
5325    assert (status == 0, "invariant") ;
5326  }
5327}
5328
5329
5330extern char** environ;
5331
5332#ifndef __NR_fork
5333#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5334#endif
5335
5336#ifndef __NR_execve
5337#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5338#endif
5339
5340// Run the specified command in a separate process. Return its exit value,
5341// or -1 on failure (e.g. can't fork a new process).
5342// Unlike system(), this function can be called from signal handler. It
5343// doesn't block SIGINT et al.
5344int os::fork_and_exec(char* cmd) {
5345  const char * argv[4] = {"sh", "-c", cmd, NULL};
5346
5347  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5348  // pthread_atfork handlers and reset pthread library. All we need is a
5349  // separate process to execve. Make a direct syscall to fork process.
5350  // On IA64 there's no fork syscall, we have to use fork() and hope for
5351  // the best...
5352  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5353              IA64_ONLY(fork();)
5354
5355  if (pid < 0) {
5356    // fork failed
5357    return -1;
5358
5359  } else if (pid == 0) {
5360    // child process
5361
5362    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5363    // first to kill every thread on the thread list. Because this list is
5364    // not reset by fork() (see notes above), execve() will instead kill
5365    // every thread in the parent process. We know this is the only thread
5366    // in the new process, so make a system call directly.
5367    // IA64 should use normal execve() from glibc to match the glibc fork()
5368    // above.
5369    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5370    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5371
5372    // execve failed
5373    _exit(-1);
5374
5375  } else  {
5376    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5377    // care about the actual exit code, for now.
5378
5379    int status;
5380
5381    // Wait for the child process to exit.  This returns immediately if
5382    // the child has already exited. */
5383    while (waitpid(pid, &status, 0) < 0) {
5384        switch (errno) {
5385        case ECHILD: return 0;
5386        case EINTR: break;
5387        default: return -1;
5388        }
5389    }
5390
5391    if (WIFEXITED(status)) {
5392       // The child exited normally; get its exit code.
5393       return WEXITSTATUS(status);
5394    } else if (WIFSIGNALED(status)) {
5395       // The child exited because of a signal
5396       // The best value to return is 0x80 + signal number,
5397       // because that is what all Unix shells do, and because
5398       // it allows callers to distinguish between process exit and
5399       // process death by signal.
5400       return 0x80 + WTERMSIG(status);
5401    } else {
5402       // Unknown exit code; pass it through
5403       return status;
5404    }
5405  }
5406}
5407
5408// is_headless_jre()
5409//
5410// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5411// in order to report if we are running in a headless jre
5412//
5413// Since JDK8 xawt/libmawt.so was moved into the same directory
5414// as libawt.so, and renamed libawt_xawt.so
5415//
5416bool os::is_headless_jre() {
5417    struct stat statbuf;
5418    char buf[MAXPATHLEN];
5419    char libmawtpath[MAXPATHLEN];
5420    const char *xawtstr  = "/xawt/libmawt.so";
5421    const char *new_xawtstr = "/libawt_xawt.so";
5422    char *p;
5423
5424    // Get path to libjvm.so
5425    os::jvm_path(buf, sizeof(buf));
5426
5427    // Get rid of libjvm.so
5428    p = strrchr(buf, '/');
5429    if (p == NULL) return false;
5430    else *p = '\0';
5431
5432    // Get rid of client or server
5433    p = strrchr(buf, '/');
5434    if (p == NULL) return false;
5435    else *p = '\0';
5436
5437    // check xawt/libmawt.so
5438    strcpy(libmawtpath, buf);
5439    strcat(libmawtpath, xawtstr);
5440    if (::stat(libmawtpath, &statbuf) == 0) return false;
5441
5442    // check libawt_xawt.so
5443    strcpy(libmawtpath, buf);
5444    strcat(libmawtpath, new_xawtstr);
5445    if (::stat(libmawtpath, &statbuf) == 0) return false;
5446
5447    return true;
5448}
5449
5450
5451#ifdef JAVASE_EMBEDDED
5452//
5453// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5454//
5455MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5456
5457// ctor
5458//
5459MemNotifyThread::MemNotifyThread(int fd): Thread() {
5460  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5461  _fd = fd;
5462
5463  if (os::create_thread(this, os::os_thread)) {
5464    _memnotify_thread = this;
5465    os::set_priority(this, NearMaxPriority);
5466    os::start_thread(this);
5467  }
5468}
5469
5470// Where all the work gets done
5471//
5472void MemNotifyThread::run() {
5473  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5474
5475  // Set up the select arguments
5476  fd_set rfds;
5477  if (_fd != -1) {
5478    FD_ZERO(&rfds);
5479    FD_SET(_fd, &rfds);
5480  }
5481
5482  // Now wait for the mem_notify device to wake up
5483  while (1) {
5484    // Wait for the mem_notify device to signal us..
5485    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5486    if (rc == -1) {
5487      perror("select!\n");
5488      break;
5489    } else if (rc) {
5490      //ssize_t free_before = os::available_memory();
5491      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5492
5493      // The kernel is telling us there is not much memory left...
5494      // try to do something about that
5495
5496      // If we are not already in a GC, try one.
5497      if (!Universe::heap()->is_gc_active()) {
5498        Universe::heap()->collect(GCCause::_allocation_failure);
5499
5500        //ssize_t free_after = os::available_memory();
5501        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5502        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5503      }
5504      // We might want to do something like the following if we find the GC's are not helping...
5505      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5506    }
5507  }
5508}
5509
5510//
5511// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5512//
5513void MemNotifyThread::start() {
5514  int    fd;
5515  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5516  if (fd < 0) {
5517      return;
5518  }
5519
5520  if (memnotify_thread() == NULL) {
5521    new MemNotifyThread(fd);
5522  }
5523}
5524#endif // JAVASE_EMBEDDED
5525