os_linux.cpp revision 342:37f87013dfd8
129615Sjmg/*
229615Sjmg * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
329615Sjmg * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
429615Sjmg *
529615Sjmg * This code is free software; you can redistribute it and/or modify it
629615Sjmg * under the terms of the GNU General Public License version 2 only, as
729615Sjmg * published by the Free Software Foundation.
829615Sjmg *
929615Sjmg * This code is distributed in the hope that it will be useful, but WITHOUT
1029615Sjmg * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1129615Sjmg * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1229615Sjmg * version 2 for more details (a copy is included in the LICENSE file that
1329615Sjmg * accompanied this code).
1429615Sjmg *
1529615Sjmg * You should have received a copy of the GNU General Public License version
1629615Sjmg * 2 along with this work; if not, write to the Free Software Foundation,
1729615Sjmg * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1829615Sjmg *
1929615Sjmg * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
2029615Sjmg * CA 95054 USA or visit www.sun.com if you need additional information or
2129615Sjmg * have any questions.
2229615Sjmg *
2329615Sjmg */
2429615Sjmg
2529615Sjmg// do not include  precompiled  header file
2629615Sjmg# include "incls/_os_linux.cpp.incl"
27124125Scharnier
28124125Scharnier// put OS-includes here
29124125Scharnier# include <sys/types.h>
3029615Sjmg# include <sys/mman.h>
3129615Sjmg# include <pthread.h>
32124125Scharnier# include <signal.h>
3329615Sjmg# include <errno.h>
3429615Sjmg# include <dlfcn.h>
3529615Sjmg# include <stdio.h>
3629615Sjmg# include <unistd.h>
3729615Sjmg# include <sys/resource.h>
3829615Sjmg# include <pthread.h>
3929615Sjmg# include <sys/stat.h>
4029615Sjmg# include <sys/time.h>
4150786Speter# include <sys/times.h>
4229615Sjmg# include <sys/utsname.h>
4329615Sjmg# include <sys/socket.h>
4429615Sjmg# include <sys/wait.h>
4529615Sjmg# include <pwd.h>
4629615Sjmg# include <poll.h>
4729615Sjmg# include <semaphore.h>
4829615Sjmg# include <fcntl.h>
4929615Sjmg# include <string.h>
5029615Sjmg# include <syscall.h>
5129615Sjmg# include <sys/sysinfo.h>
5229615Sjmg# include <gnu/libc-version.h>
5329615Sjmg# include <sys/ipc.h>
5429615Sjmg# include <sys/shm.h>
5529615Sjmg# include <link.h>
5639144Seivind
5729615Sjmg#define MAX_PATH    (2 * K)
5829615Sjmg
5929615Sjmg// for timer info max values which include all bits
6029615Sjmg#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
6129615Sjmg#define SEC_IN_NANOSECS  1000000000LL
6229615Sjmg
6329615Sjmg////////////////////////////////////////////////////////////////////////////////
6429615Sjmg// global variables
6529615Sjmgjulong os::Linux::_physical_memory = 0;
6629615Sjmg
6731135Sjmgaddress   os::Linux::_initial_thread_stack_bottom = NULL;
6829615Sjmguintptr_t os::Linux::_initial_thread_stack_size   = 0;
6929615Sjmg
7029615Sjmgint (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
7129615Sjmgint (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
7229615SjmgMutex* os::Linux::_createThread_lock = NULL;
7329615Sjmgpthread_t os::Linux::_main_thread;
7429615Sjmgint os::Linux::_page_size = -1;
7529615Sjmgbool os::Linux::_is_floating_stack = false;
7629615Sjmgbool os::Linux::_is_NPTL = false;
7729615Sjmgbool os::Linux::_supports_fast_thread_cpu_time = false;
7829615Sjmgchar * os::Linux::_glibc_version = NULL;
7929615Sjmgchar * os::Linux::_libpthread_version = NULL;
8029615Sjmg
8129615Sjmgstatic jlong initial_time_count=0;
8229615Sjmg
8329615Sjmgstatic int clock_tics_per_sec = 100;
8429615Sjmg
8529615Sjmg// For diagnostics to print a message once. see run_periodic_checks
8629615Sjmgstatic sigset_t check_signal_done;
8729615Sjmgstatic bool check_signals = true;;
8829615Sjmg
8929615Sjmgstatic pid_t _initial_pid = 0;
9029615Sjmg
9129615Sjmg/* Signal number used to suspend/resume a thread */
9229615Sjmg
9329615Sjmg/* do not use any signal number less than SIGSEGV, see 4355769 */
9429615Sjmgstatic int SR_signum = SIGUSR2;
9529615Sjmgsigset_t SR_sigset;
9629615Sjmg
9729615Sjmg////////////////////////////////////////////////////////////////////////////////
9829615Sjmg// utility functions
9929615Sjmg
10029615Sjmgstatic int SR_initialize();
10129615Sjmgstatic int SR_finalize();
10229615Sjmg
10329615Sjmgjulong os::available_memory() {
10429615Sjmg  return Linux::available_memory();
10529615Sjmg}
10629615Sjmg
10729615Sjmgjulong os::Linux::available_memory() {
10829615Sjmg  // values in struct sysinfo are "unsigned long"
10929615Sjmg  struct sysinfo si;
11029615Sjmg  sysinfo(&si);
11129615Sjmg
11229615Sjmg  return (julong)si.freeram * si.mem_unit;
11329615Sjmg}
11429615Sjmg
11529615Sjmgjulong os::physical_memory() {
11629615Sjmg  return Linux::physical_memory();
11750786Speter}
11829615Sjmg
11929615Sjmgjulong os::allocatable_physical_memory(julong size) {
12029615Sjmg#ifdef _LP64
12129615Sjmg  return size;
12229615Sjmg#else
12329615Sjmg  julong result = MIN2(size, (julong)3800*M);
12429615Sjmg   if (!is_allocatable(result)) {
12529615Sjmg     // See comments under solaris for alignment considerations
12629615Sjmg     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
12729615Sjmg     result =  MIN2(size, reasonable_size);
12829615Sjmg   }
12929615Sjmg   return result;
13029615Sjmg#endif // _LP64
13129615Sjmg}
13229615Sjmg
13329615Sjmg////////////////////////////////////////////////////////////////////////////////
13429615Sjmg// environment support
13529615Sjmg
13629615Sjmgbool os::getenv(const char* name, char* buf, int len) {
13729615Sjmg  const char* val = ::getenv(name);
13829615Sjmg  if (val != NULL && strlen(val) < (size_t)len) {
13929615Sjmg    strcpy(buf, val);
14029615Sjmg    return true;
14129615Sjmg  }
14229615Sjmg  if (len > 0) buf[0] = 0;  // return a null string
14329615Sjmg  return false;
14429615Sjmg}
14529615Sjmg
14629615Sjmg
14729615Sjmg// Return true if user is running as root.
14829615Sjmg
14929615Sjmgbool os::have_special_privileges() {
15029615Sjmg  static bool init = false;
15129615Sjmg  static bool privileges = false;
15229615Sjmg  if (!init) {
15329615Sjmg    privileges = (getuid() != geteuid()) || (getgid() != getegid());
15429615Sjmg    init = true;
15529615Sjmg  }
15629615Sjmg  return privileges;
15729615Sjmg}
15829615Sjmg
15929615Sjmg
16029615Sjmg#ifndef SYS_gettid
16129615Sjmg// i386: 224, ia64: 1105, amd64: 186, sparc 143
16229615Sjmg#ifdef __ia64__
16329615Sjmg#define SYS_gettid 1105
16429615Sjmg#elif __i386__
16529615Sjmg#define SYS_gettid 224
16629615Sjmg#elif __amd64__
16729615Sjmg#define SYS_gettid 186
16829615Sjmg#elif __sparc__
16929615Sjmg#define SYS_gettid 143
17029615Sjmg#else
17129615Sjmg#error define gettid for the arch
17229615Sjmg#endif
17329615Sjmg#endif
17450786Speter
17529615Sjmg// Cpu architecture string
17629615Sjmg#if   defined(IA64)
17729615Sjmgstatic char cpu_arch[] = "ia64";
17829615Sjmg#elif defined(IA32)
17929615Sjmgstatic char cpu_arch[] = "i386";
18029615Sjmg#elif defined(AMD64)
18129615Sjmgstatic char cpu_arch[] = "amd64";
18229615Sjmg#elif defined(SPARC)
18329615Sjmg#  ifdef _LP64
18450786Speterstatic char cpu_arch[] = "sparcv9";
18529615Sjmg#  else
18629615Sjmgstatic char cpu_arch[] = "sparc";
18729615Sjmg#  endif
18829615Sjmg#else
18929615Sjmg#error Add appropriate cpu_arch setting
19029615Sjmg#endif
19129615Sjmg
19229615Sjmg
19329615Sjmg// pid_t gettid()
19429615Sjmg//
19529615Sjmg// Returns the kernel thread id of the currently running thread. Kernel
19629615Sjmg// thread id is used to access /proc.
19729615Sjmg//
19829615Sjmg// (Note that getpid() on LinuxThreads returns kernel thread id too; but
19929615Sjmg// on NPTL, it returns the same pid for all threads, as required by POSIX.)
20029615Sjmg//
20129615Sjmgpid_t os::Linux::gettid() {
20229615Sjmg  int rslt = syscall(SYS_gettid);
20329615Sjmg  if (rslt == -1) {
20429615Sjmg     // old kernel, no NPTL support
20529615Sjmg     return getpid();
20629615Sjmg  } else {
20729615Sjmg     return (pid_t)rslt;
20829615Sjmg  }
20929615Sjmg}
21029615Sjmg
21129615Sjmg// Most versions of linux have a bug where the number of processors are
21229615Sjmg// determined by looking at the /proc file system.  In a chroot environment,
21329615Sjmg// the system call returns 1.  This causes the VM to act as if it is
21429615Sjmg// a single processor and elide locking (see is_MP() call).
21529615Sjmgstatic bool unsafe_chroot_detected = false;
21629615Sjmgstatic char *unstable_chroot_error = "/proc file system not found.\n"
21729615Sjmg              "Java may be unstable running multithreaded in a chroot "
21829615Sjmg              "environment on Linux when /proc filesystem is not mounted.";
21929615Sjmg
22029615Sjmgvoid os::Linux::initialize_system_info() {
22129615Sjmg  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
22229615Sjmg  if (_processor_count == 1) {
22329615Sjmg    pid_t pid = os::Linux::gettid();
22429615Sjmg    char fname[32];
22529615Sjmg    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
22629615Sjmg    FILE *fp = fopen(fname, "r");
22729615Sjmg    if (fp == NULL) {
22829615Sjmg      unsafe_chroot_detected = true;
22929615Sjmg    } else {
23029615Sjmg      fclose(fp);
23129615Sjmg    }
23229615Sjmg  }
23329615Sjmg  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
23429615Sjmg  assert(_processor_count > 0, "linux error");
23529615Sjmg}
23629615Sjmg
23729615Sjmgvoid os::init_system_properties_values() {
23829615Sjmg//  char arch[12];
23929615Sjmg//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
24029615Sjmg
24129615Sjmg  // The next steps are taken in the product version:
24229615Sjmg  //
24329615Sjmg  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
24429615Sjmg  // This library should be located at:
24529615Sjmg  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
24629615Sjmg  //
24729615Sjmg  // If "/jre/lib/" appears at the right place in the path, then we
24829615Sjmg  // assume libjvm[_g].so is installed in a JDK and we use this path.
24929615Sjmg  //
25029615Sjmg  // Otherwise exit with message: "Could not create the Java virtual machine."
25129615Sjmg  //
25229615Sjmg  // The following extra steps are taken in the debugging version:
25329615Sjmg  //
25429615Sjmg  // If "/jre/lib/" does NOT appear at the right place in the path
25529615Sjmg  // instead of exit check for $JAVA_HOME environment variable.
25629615Sjmg  //
25729615Sjmg  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
25829615Sjmg  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
25929615Sjmg  // it looks like libjvm[_g].so is installed there
26029615Sjmg  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
26129615Sjmg  //
26229615Sjmg  // Otherwise exit.
26329615Sjmg  //
26429615Sjmg  // Important note: if the location of libjvm.so changes this
26529615Sjmg  // code needs to be changed accordingly.
26629615Sjmg
26729615Sjmg  // The next few definitions allow the code to be verbatim:
26829615Sjmg#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
26929615Sjmg#define getenv(n) ::getenv(n)
27029615Sjmg
27129615Sjmg/*
27229615Sjmg * See ld(1):
27329615Sjmg *      The linker uses the following search paths to locate required
27429615Sjmg *      shared libraries:
27529615Sjmg *        1: ...
27629615Sjmg *        ...
27729615Sjmg *        7: The default directories, normally /lib and /usr/lib.
27829615Sjmg */
27929615Sjmg#define DEFAULT_LIBPATH "/lib:/usr/lib"
28029615Sjmg
28129615Sjmg#define EXTENSIONS_DIR  "/lib/ext"
28229615Sjmg#define ENDORSED_DIR    "/lib/endorsed"
28329615Sjmg#define REG_DIR         "/usr/java/packages"
28429615Sjmg
28529615Sjmg  {
28629615Sjmg    /* sysclasspath, java_home, dll_dir */
28729615Sjmg    {
28829615Sjmg        char *home_path;
28929615Sjmg        char *dll_path;
29029615Sjmg        char *pslash;
29129615Sjmg        char buf[MAXPATHLEN];
29229615Sjmg        os::jvm_path(buf, sizeof(buf));
29329615Sjmg
29429615Sjmg        // Found the full path to libjvm.so.
29529615Sjmg        // Now cut the path to <java_home>/jre if we can.
29629615Sjmg        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
29729615Sjmg        pslash = strrchr(buf, '/');
29829615Sjmg        if (pslash != NULL)
29929615Sjmg            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
30029615Sjmg        dll_path = malloc(strlen(buf) + 1);
30129615Sjmg        if (dll_path == NULL)
30229615Sjmg            return;
30329615Sjmg        strcpy(dll_path, buf);
30429615Sjmg        Arguments::set_dll_dir(dll_path);
30529615Sjmg
30629615Sjmg        if (pslash != NULL) {
30729615Sjmg            pslash = strrchr(buf, '/');
30850786Speter            if (pslash != NULL) {
30929615Sjmg                *pslash = '\0';       /* get rid of /<arch> */
31029615Sjmg                pslash = strrchr(buf, '/');
31129615Sjmg                if (pslash != NULL)
31250786Speter                    *pslash = '\0';   /* get rid of /lib */
31329615Sjmg            }
31429615Sjmg        }
31529615Sjmg
31629615Sjmg        home_path = malloc(strlen(buf) + 1);
31729615Sjmg        if (home_path == NULL)
31829615Sjmg            return;
31929615Sjmg        strcpy(home_path, buf);
32029615Sjmg        Arguments::set_java_home(home_path);
32129615Sjmg
32229615Sjmg        if (!set_boot_path('/', ':'))
32329615Sjmg            return;
32429615Sjmg    }
32529615Sjmg
32629615Sjmg    /*
32729615Sjmg     * Where to look for native libraries
32829615Sjmg     *
32929615Sjmg     * Note: Due to a legacy implementation, most of the library path
33029615Sjmg     * is set in the launcher.  This was to accomodate linking restrictions
33129615Sjmg     * on legacy Linux implementations (which are no longer supported).
33250786Speter     * Eventually, all the library path setting will be done here.
33329615Sjmg     *
33429615Sjmg     * However, to prevent the proliferation of improperly built native
33529615Sjmg     * libraries, the new path component /usr/java/packages is added here.
33629615Sjmg     * Eventually, all the library path setting will be done here.
33729615Sjmg     */
33829615Sjmg    {
33929615Sjmg        char *ld_library_path;
34050786Speter
34129615Sjmg        /*
34229615Sjmg         * Construct the invariant part of ld_library_path. Note that the
34329615Sjmg         * space for the colon and the trailing null are provided by the
34429615Sjmg         * nulls included by the sizeof operator (so actually we allocate
34529615Sjmg         * a byte more than necessary).
34629615Sjmg         */
34729615Sjmg        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
34829615Sjmg            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
34929615Sjmg        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
35029615Sjmg
35129615Sjmg        /*
35229615Sjmg         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
35329615Sjmg         * should always exist (until the legacy problem cited above is
35429615Sjmg         * addressed).
35529615Sjmg         */
35629615Sjmg        char *v = getenv("LD_LIBRARY_PATH");
35729615Sjmg        if (v != NULL) {
35829615Sjmg            char *t = ld_library_path;
35929615Sjmg            /* That's +1 for the colon and +1 for the trailing '\0' */
36029615Sjmg            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
36129615Sjmg            sprintf(ld_library_path, "%s:%s", v, t);
36250786Speter        }
36329615Sjmg        Arguments::set_library_path(ld_library_path);
36429615Sjmg    }
36529615Sjmg
36629615Sjmg    /*
36729615Sjmg     * Extensions directories.
36829615Sjmg     *
36929615Sjmg     * Note that the space for the colon and the trailing null are provided
37050786Speter     * by the nulls included by the sizeof operator (so actually one byte more
37129615Sjmg     * than necessary is allocated).
37229615Sjmg     */
37329615Sjmg    {
37429615Sjmg        char *buf = malloc(strlen(Arguments::get_java_home()) +
37529615Sjmg            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
37629615Sjmg        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
37729615Sjmg            Arguments::get_java_home());
37829615Sjmg        Arguments::set_ext_dirs(buf);
37929615Sjmg    }
38029615Sjmg
38129615Sjmg    /* Endorsed standards default directory. */
38229615Sjmg    {
38329615Sjmg        char * buf;
38429615Sjmg        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
38529615Sjmg        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
38650786Speter        Arguments::set_endorsed_dirs(buf);
38729615Sjmg    }
38829615Sjmg  }
38950786Speter
39029615Sjmg#undef malloc
39129615Sjmg#undef getenv
39229615Sjmg#undef EXTENSIONS_DIR
39329615Sjmg#undef ENDORSED_DIR
39429615Sjmg
39529615Sjmg  // Done
39629615Sjmg  return;
39729615Sjmg}
39829615Sjmg
39950786Speter////////////////////////////////////////////////////////////////////////////////
40029615Sjmg// breakpoint support
40129615Sjmg
40229615Sjmgvoid os::breakpoint() {
40329615Sjmg  BREAKPOINT;
40429615Sjmg}
40550786Speter
40629615Sjmgextern "C" void breakpoint() {
40729615Sjmg  // use debugger to set breakpoint here
40829615Sjmg}
40950786Speter
41029615Sjmg////////////////////////////////////////////////////////////////////////////////
41129615Sjmg// signal support
41250786Speter
41329615Sjmgdebug_only(static bool signal_sets_initialized = false);
41429615Sjmgstatic sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
41529615Sjmg
41629615Sjmgbool os::Linux::is_sig_ignored(int sig) {
41729615Sjmg      struct sigaction oact;
41829615Sjmg      sigaction(sig, (struct sigaction*)NULL, &oact);
41929615Sjmg      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
42029615Sjmg                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
42129615Sjmg      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
42229615Sjmg           return true;
42329615Sjmg      else
42429615Sjmg           return false;
42529615Sjmg}
42629615Sjmg
42729615Sjmgvoid os::Linux::signal_sets_init() {
42829615Sjmg  // Should also have an assertion stating we are still single-threaded.
42950786Speter  assert(!signal_sets_initialized, "Already initialized");
43029615Sjmg  // Fill in signals that are necessarily unblocked for all threads in
43129615Sjmg  // the VM. Currently, we unblock the following signals:
43229615Sjmg  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
43329615Sjmg  //                         by -Xrs (=ReduceSignalUsage));
43429615Sjmg  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
43529615Sjmg  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
43629615Sjmg  // the dispositions or masks wrt these signals.
43729615Sjmg  // Programs embedding the VM that want to use the above signals for their
43829615Sjmg  // own purposes must, at this time, use the "-Xrs" option to prevent
43929615Sjmg  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
44050786Speter  // (See bug 4345157, and other related bugs).
44129615Sjmg  // In reality, though, unblocking these signals is really a nop, since
44229615Sjmg  // these signals are not blocked by default.
44329615Sjmg  sigemptyset(&unblocked_sigs);
44429615Sjmg  sigemptyset(&allowdebug_blocked_sigs);
44529615Sjmg  sigaddset(&unblocked_sigs, SIGILL);
44629615Sjmg  sigaddset(&unblocked_sigs, SIGSEGV);
44729615Sjmg  sigaddset(&unblocked_sigs, SIGBUS);
44829615Sjmg  sigaddset(&unblocked_sigs, SIGFPE);
44950786Speter  sigaddset(&unblocked_sigs, SR_signum);
45029615Sjmg
45129615Sjmg  if (!ReduceSignalUsage) {
45250786Speter   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
45329615Sjmg      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
45429615Sjmg      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
45550786Speter   }
45629615Sjmg   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
45729615Sjmg      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
45850786Speter      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
45929615Sjmg   }
46029615Sjmg   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
46150786Speter      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
46250786Speter      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
46329615Sjmg   }
46429615Sjmg  }
46550786Speter  // Fill in signals that are blocked by all but the VM thread.
46629615Sjmg  sigemptyset(&vm_sigs);
46729615Sjmg  if (!ReduceSignalUsage)
46829615Sjmg    sigaddset(&vm_sigs, BREAK_SIGNAL);
46929615Sjmg  debug_only(signal_sets_initialized = true);
47029615Sjmg
47129615Sjmg}
47229615Sjmg
47329615Sjmg// These are signals that are unblocked while a thread is running Java.
47429615Sjmg// (For some reason, they get blocked by default.)
47529615Sjmgsigset_t* os::Linux::unblocked_signals() {
47629615Sjmg  assert(signal_sets_initialized, "Not initialized");
47729615Sjmg  return &unblocked_sigs;
47829615Sjmg}
47929615Sjmg
48029615Sjmg// These are the signals that are blocked while a (non-VM) thread is
48129615Sjmg// running Java. Only the VM thread handles these signals.
48229615Sjmgsigset_t* os::Linux::vm_signals() {
48329615Sjmg  assert(signal_sets_initialized, "Not initialized");
48429615Sjmg  return &vm_sigs;
48529615Sjmg}
48629615Sjmg
48729615Sjmg// These are signals that are blocked during cond_wait to allow debugger in
48850786Spetersigset_t* os::Linux::allowdebug_blocked_signals() {
48950786Speter  assert(signal_sets_initialized, "Not initialized");
49029615Sjmg  return &allowdebug_blocked_sigs;
49129615Sjmg}
49229615Sjmg
49329615Sjmgvoid os::Linux::hotspot_sigmask(Thread* thread) {
49429615Sjmg
49529615Sjmg  //Save caller's signal mask before setting VM signal mask
49639144Seivind  sigset_t caller_sigmask;
49729615Sjmg  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
49829615Sjmg
49939144Seivind  OSThread* osthread = thread->osthread();
50039144Seivind  osthread->set_caller_sigmask(caller_sigmask);
50129615Sjmg
50229615Sjmg  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
50339144Seivind
50429615Sjmg  if (!ReduceSignalUsage) {
50529615Sjmg    if (thread->is_VM_thread()) {
50629615Sjmg      // Only the VM thread handles BREAK_SIGNAL ...
50729615Sjmg      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
50846422Sluoqi    } else {
50946422Sluoqi      // ... all other threads block BREAK_SIGNAL
51029615Sjmg      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
51146422Sluoqi    }
51229615Sjmg  }
51329615Sjmg}
51429615Sjmg
51529615Sjmg//////////////////////////////////////////////////////////////////////////////
51629615Sjmg// detecting pthread library
51739144Seivind
51829615Sjmgvoid os::Linux::libpthread_init() {
51929615Sjmg  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
52029615Sjmg  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
52129615Sjmg  // generic name for earlier versions.
52229615Sjmg  // Define macros here so we can build HotSpot on old systems.
52350786Speter# ifndef _CS_GNU_LIBC_VERSION
52429615Sjmg# define _CS_GNU_LIBC_VERSION 2
52529615Sjmg# endif
52629615Sjmg# ifndef _CS_GNU_LIBPTHREAD_VERSION
52729615Sjmg# define _CS_GNU_LIBPTHREAD_VERSION 3
52829615Sjmg# endif
52929615Sjmg
53029615Sjmg  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
53129615Sjmg  if (n > 0) {
53229615Sjmg     char *str = (char *)malloc(n);
53329615Sjmg     confstr(_CS_GNU_LIBC_VERSION, str, n);
53450786Speter     os::Linux::set_glibc_version(str);
53529615Sjmg  } else {
53650786Speter     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
53729615Sjmg     static char _gnu_libc_version[32];
53829615Sjmg     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
539101611Siedowse              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
540101611Siedowse     os::Linux::set_glibc_version(_gnu_libc_version);
54129615Sjmg  }
54250786Speter
54329615Sjmg  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
54450786Speter  if (n > 0) {
54529615Sjmg     char *str = (char *)malloc(n);
54650786Speter     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
54729615Sjmg
54829615Sjmg     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
54929615Sjmg     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
55029615Sjmg     // is the case:
55129615Sjmg     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
55229615Sjmg         strstr(str, "NPTL")) {
55329615Sjmg        // LinuxThreads has a hard limit on max number of threads. So
55429615Sjmg        // sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
55529615Sjmg        // On the other hand, NPTL does not have such a limit, sysconf()
55629615Sjmg        // will return -1 and errno is not changed. Check if it is really
55729615Sjmg        // NPTL:
55829615Sjmg        if (sysconf(_SC_THREAD_THREADS_MAX) > 0) {
55929615Sjmg           free(str);
56029615Sjmg           str = "linuxthreads";
56129615Sjmg        }
56229615Sjmg     }
56329615Sjmg     os::Linux::set_libpthread_version(str);
56429615Sjmg  } else {
56529615Sjmg     // glibc before 2.3.2 only has LinuxThreads.
56629615Sjmg     os::Linux::set_libpthread_version("linuxthreads");
56750786Speter  }
56829615Sjmg
56950786Speter  if (strstr(libpthread_version(), "NPTL")) {
57029615Sjmg     os::Linux::set_is_NPTL();
57129615Sjmg  } else {
57250786Speter     os::Linux::set_is_LinuxThreads();
57350786Speter  }
57450786Speter
57529615Sjmg  // LinuxThreads have two flavors: floating-stack mode, which allows variable
57629615Sjmg  // stack size; and fixed-stack mode. NPTL is always floating-stack.
57729615Sjmg  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
57829615Sjmg     os::Linux::set_is_floating_stack();
57929615Sjmg  }
58029615Sjmg}
58129615Sjmg
58229615Sjmg/////////////////////////////////////////////////////////////////////////////
58329615Sjmg// thread stack
58429615Sjmg
58529615Sjmg// Force Linux kernel to expand current thread stack. If "bottom" is close
58647405Sdfr// to the stack guard, caller should block all signals.
58747405Sdfr//
58829615Sjmg// MAP_GROWSDOWN:
58929615Sjmg//   A special mmap() flag that is used to implement thread stacks. It tells
59029615Sjmg//   kernel that the memory region should extend downwards when needed. This
59147405Sdfr//   allows early versions of LinuxThreads to only mmap the first few pages
59229615Sjmg//   when creating a new thread. Linux kernel will automatically expand thread
593124125Scharnier//   stack as needed (on page faults).
594124125Scharnier//
59547405Sdfr//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
59647405Sdfr//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
59729615Sjmg//   region, it's hard to tell if the fault is due to a legitimate stack
59829615Sjmg//   access or because of reading/writing non-exist memory (e.g. buffer
59929615Sjmg//   overrun). As a rule, if the fault happens below current stack pointer,
60029615Sjmg//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
60129615Sjmg//   application (see Linux kernel fault.c).
602228672Sdim//
60329615Sjmg//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
60429615Sjmg//   stack overflow detection.
60529615Sjmg//
60629615Sjmg//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
60729615Sjmg//   not use this flag. However, the stack of initial thread is not created
608124125Scharnier//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
60929615Sjmg//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
610124125Scharnier//   and then attach the thread to JVM.
61129615Sjmg//
612// To get around the problem and allow stack banging on Linux, we need to
613// manually expand thread stack after receiving the SIGSEGV.
614//
615// There are two ways to expand thread stack to address "bottom", we used
616// both of them in JVM before 1.5:
617//   1. adjust stack pointer first so that it is below "bottom", and then
618//      touch "bottom"
619//   2. mmap() the page in question
620//
621// Now alternate signal stack is gone, it's harder to use 2. For instance,
622// if current sp is already near the lower end of page 101, and we need to
623// call mmap() to map page 100, it is possible that part of the mmap() frame
624// will be placed in page 100. When page 100 is mapped, it is zero-filled.
625// That will destroy the mmap() frame and cause VM to crash.
626//
627// The following code works by adjusting sp first, then accessing the "bottom"
628// page to force a page fault. Linux kernel will then automatically expand the
629// stack mapping.
630//
631// _expand_stack_to() assumes its frame size is less than page size, which
632// should always be true if the function is not inlined.
633
634#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
635#define NOINLINE
636#else
637#define NOINLINE __attribute__ ((noinline))
638#endif
639
640static void _expand_stack_to(address bottom) NOINLINE;
641
642static void _expand_stack_to(address bottom) {
643  address sp;
644  size_t size;
645  volatile char *p;
646
647  // Adjust bottom to point to the largest address within the same page, it
648  // gives us a one-page buffer if alloca() allocates slightly more memory.
649  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
650  bottom += os::Linux::page_size() - 1;
651
652  // sp might be slightly above current stack pointer; if that's the case, we
653  // will alloca() a little more space than necessary, which is OK. Don't use
654  // os::current_stack_pointer(), as its result can be slightly below current
655  // stack pointer, causing us to not alloca enough to reach "bottom".
656  sp = (address)&sp;
657
658  if (sp > bottom) {
659    size = sp - bottom;
660    p = (volatile char *)alloca(size);
661    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
662    p[0] = '\0';
663  }
664}
665
666bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
667  assert(t!=NULL, "just checking");
668  assert(t->osthread()->expanding_stack(), "expand should be set");
669  assert(t->stack_base() != NULL, "stack_base was not initialized");
670
671  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
672    sigset_t mask_all, old_sigset;
673    sigfillset(&mask_all);
674    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
675    _expand_stack_to(addr);
676    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
677    return true;
678  }
679  return false;
680}
681
682//////////////////////////////////////////////////////////////////////////////
683// create new thread
684
685static address highest_vm_reserved_address();
686
687// check if it's safe to start a new thread
688static bool _thread_safety_check(Thread* thread) {
689  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
690    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
691    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
692    //   allocated (MAP_FIXED) from high address space. Every thread stack
693    //   occupies a fixed size slot (usually 2Mbytes, but user can change
694    //   it to other values if they rebuild LinuxThreads).
695    //
696    // Problem with MAP_FIXED is that mmap() can still succeed even part of
697    // the memory region has already been mmap'ed. That means if we have too
698    // many threads and/or very large heap, eventually thread stack will
699    // collide with heap.
700    //
701    // Here we try to prevent heap/stack collision by comparing current
702    // stack bottom with the highest address that has been mmap'ed by JVM
703    // plus a safety margin for memory maps created by native code.
704    //
705    // This feature can be disabled by setting ThreadSafetyMargin to 0
706    //
707    if (ThreadSafetyMargin > 0) {
708      address stack_bottom = os::current_stack_base() - os::current_stack_size();
709
710      // not safe if our stack extends below the safety margin
711      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
712    } else {
713      return true;
714    }
715  } else {
716    // Floating stack LinuxThreads or NPTL:
717    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
718    //   there's not enough space left, pthread_create() will fail. If we come
719    //   here, that means enough space has been reserved for stack.
720    return true;
721  }
722}
723
724// Thread start routine for all newly created threads
725static void *java_start(Thread *thread) {
726  // Try to randomize the cache line index of hot stack frames.
727  // This helps when threads of the same stack traces evict each other's
728  // cache lines. The threads can be either from the same JVM instance, or
729  // from different JVM instances. The benefit is especially true for
730  // processors with hyperthreading technology.
731  static int counter = 0;
732  int pid = os::current_process_id();
733  alloca(((pid ^ counter++) & 7) * 128);
734
735  ThreadLocalStorage::set_thread(thread);
736
737  OSThread* osthread = thread->osthread();
738  Monitor* sync = osthread->startThread_lock();
739
740  // non floating stack LinuxThreads needs extra check, see above
741  if (!_thread_safety_check(thread)) {
742    // notify parent thread
743    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
744    osthread->set_state(ZOMBIE);
745    sync->notify_all();
746    return NULL;
747  }
748
749  // thread_id is kernel thread id (similar to Solaris LWP id)
750  osthread->set_thread_id(os::Linux::gettid());
751
752  if (UseNUMA) {
753    int lgrp_id = os::numa_get_group_id();
754    if (lgrp_id != -1) {
755      thread->set_lgrp_id(lgrp_id);
756    }
757  }
758  // initialize signal mask for this thread
759  os::Linux::hotspot_sigmask(thread);
760
761  // initialize floating point control register
762  os::Linux::init_thread_fpu_state();
763
764  // handshaking with parent thread
765  {
766    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
767
768    // notify parent thread
769    osthread->set_state(INITIALIZED);
770    sync->notify_all();
771
772    // wait until os::start_thread()
773    while (osthread->get_state() == INITIALIZED) {
774      sync->wait(Mutex::_no_safepoint_check_flag);
775    }
776  }
777
778  // call one more level start routine
779  thread->run();
780
781  return 0;
782}
783
784bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
785  assert(thread->osthread() == NULL, "caller responsible");
786
787  // Allocate the OSThread object
788  OSThread* osthread = new OSThread(NULL, NULL);
789  if (osthread == NULL) {
790    return false;
791  }
792
793  // set the correct thread state
794  osthread->set_thread_type(thr_type);
795
796  // Initial state is ALLOCATED but not INITIALIZED
797  osthread->set_state(ALLOCATED);
798
799  thread->set_osthread(osthread);
800
801  // init thread attributes
802  pthread_attr_t attr;
803  pthread_attr_init(&attr);
804  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
805
806  // stack size
807  if (os::Linux::supports_variable_stack_size()) {
808    // calculate stack size if it's not specified by caller
809    if (stack_size == 0) {
810      stack_size = os::Linux::default_stack_size(thr_type);
811
812      switch (thr_type) {
813      case os::java_thread:
814        // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
815        if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
816        break;
817      case os::compiler_thread:
818        if (CompilerThreadStackSize > 0) {
819          stack_size = (size_t)(CompilerThreadStackSize * K);
820          break;
821        } // else fall through:
822          // use VMThreadStackSize if CompilerThreadStackSize is not defined
823      case os::vm_thread:
824      case os::pgc_thread:
825      case os::cgc_thread:
826      case os::watcher_thread:
827        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
828        break;
829      }
830    }
831
832    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
833    pthread_attr_setstacksize(&attr, stack_size);
834  } else {
835    // let pthread_create() pick the default value.
836  }
837
838  // glibc guard page
839  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
840
841  ThreadState state;
842
843  {
844    // Serialize thread creation if we are running with fixed stack LinuxThreads
845    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
846    if (lock) {
847      os::Linux::createThread_lock()->lock_without_safepoint_check();
848    }
849
850    pthread_t tid;
851    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
852
853    pthread_attr_destroy(&attr);
854
855    if (ret != 0) {
856      if (PrintMiscellaneous && (Verbose || WizardMode)) {
857        perror("pthread_create()");
858      }
859      // Need to clean up stuff we've allocated so far
860      thread->set_osthread(NULL);
861      delete osthread;
862      if (lock) os::Linux::createThread_lock()->unlock();
863      return false;
864    }
865
866    // Store pthread info into the OSThread
867    osthread->set_pthread_id(tid);
868
869    // Wait until child thread is either initialized or aborted
870    {
871      Monitor* sync_with_child = osthread->startThread_lock();
872      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
873      while ((state = osthread->get_state()) == ALLOCATED) {
874        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
875      }
876    }
877
878    if (lock) {
879      os::Linux::createThread_lock()->unlock();
880    }
881  }
882
883  // Aborted due to thread limit being reached
884  if (state == ZOMBIE) {
885      thread->set_osthread(NULL);
886      delete osthread;
887      return false;
888  }
889
890  // The thread is returned suspended (in state INITIALIZED),
891  // and is started higher up in the call chain
892  assert(state == INITIALIZED, "race condition");
893  return true;
894}
895
896/////////////////////////////////////////////////////////////////////////////
897// attach existing thread
898
899// bootstrap the main thread
900bool os::create_main_thread(JavaThread* thread) {
901  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
902  return create_attached_thread(thread);
903}
904
905bool os::create_attached_thread(JavaThread* thread) {
906#ifdef ASSERT
907    thread->verify_not_published();
908#endif
909
910  // Allocate the OSThread object
911  OSThread* osthread = new OSThread(NULL, NULL);
912
913  if (osthread == NULL) {
914    return false;
915  }
916
917  // Store pthread info into the OSThread
918  osthread->set_thread_id(os::Linux::gettid());
919  osthread->set_pthread_id(::pthread_self());
920
921  // initialize floating point control register
922  os::Linux::init_thread_fpu_state();
923
924  // Initial thread state is RUNNABLE
925  osthread->set_state(RUNNABLE);
926
927  thread->set_osthread(osthread);
928
929  if (UseNUMA) {
930    int lgrp_id = os::numa_get_group_id();
931    if (lgrp_id != -1) {
932      thread->set_lgrp_id(lgrp_id);
933    }
934  }
935
936  if (os::Linux::is_initial_thread()) {
937    // If current thread is initial thread, its stack is mapped on demand,
938    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
939    // the entire stack region to avoid SEGV in stack banging.
940    // It is also useful to get around the heap-stack-gap problem on SuSE
941    // kernel (see 4821821 for details). We first expand stack to the top
942    // of yellow zone, then enable stack yellow zone (order is significant,
943    // enabling yellow zone first will crash JVM on SuSE Linux), so there
944    // is no gap between the last two virtual memory regions.
945
946    JavaThread *jt = (JavaThread *)thread;
947    address addr = jt->stack_yellow_zone_base();
948    assert(addr != NULL, "initialization problem?");
949    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
950
951    osthread->set_expanding_stack();
952    os::Linux::manually_expand_stack(jt, addr);
953    osthread->clear_expanding_stack();
954  }
955
956  // initialize signal mask for this thread
957  // and save the caller's signal mask
958  os::Linux::hotspot_sigmask(thread);
959
960  return true;
961}
962
963void os::pd_start_thread(Thread* thread) {
964  OSThread * osthread = thread->osthread();
965  assert(osthread->get_state() != INITIALIZED, "just checking");
966  Monitor* sync_with_child = osthread->startThread_lock();
967  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
968  sync_with_child->notify();
969}
970
971// Free Linux resources related to the OSThread
972void os::free_thread(OSThread* osthread) {
973  assert(osthread != NULL, "osthread not set");
974
975  if (Thread::current()->osthread() == osthread) {
976    // Restore caller's signal mask
977    sigset_t sigmask = osthread->caller_sigmask();
978    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
979   }
980
981  delete osthread;
982}
983
984//////////////////////////////////////////////////////////////////////////////
985// thread local storage
986
987int os::allocate_thread_local_storage() {
988  pthread_key_t key;
989  int rslt = pthread_key_create(&key, NULL);
990  assert(rslt == 0, "cannot allocate thread local storage");
991  return (int)key;
992}
993
994// Note: This is currently not used by VM, as we don't destroy TLS key
995// on VM exit.
996void os::free_thread_local_storage(int index) {
997  int rslt = pthread_key_delete((pthread_key_t)index);
998  assert(rslt == 0, "invalid index");
999}
1000
1001void os::thread_local_storage_at_put(int index, void* value) {
1002  int rslt = pthread_setspecific((pthread_key_t)index, value);
1003  assert(rslt == 0, "pthread_setspecific failed");
1004}
1005
1006extern "C" Thread* get_thread() {
1007  return ThreadLocalStorage::thread();
1008}
1009
1010//////////////////////////////////////////////////////////////////////////////
1011// initial thread
1012
1013// Check if current thread is the initial thread, similar to Solaris thr_main.
1014bool os::Linux::is_initial_thread(void) {
1015  char dummy;
1016  // If called before init complete, thread stack bottom will be null.
1017  // Can be called if fatal error occurs before initialization.
1018  if (initial_thread_stack_bottom() == NULL) return false;
1019  assert(initial_thread_stack_bottom() != NULL &&
1020         initial_thread_stack_size()   != 0,
1021         "os::init did not locate initial thread's stack region");
1022  if ((address)&dummy >= initial_thread_stack_bottom() &&
1023      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1024       return true;
1025  else return false;
1026}
1027
1028// Find the virtual memory area that contains addr
1029static bool find_vma(address addr, address* vma_low, address* vma_high) {
1030  FILE *fp = fopen("/proc/self/maps", "r");
1031  if (fp) {
1032    address low, high;
1033    while (!feof(fp)) {
1034      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1035        if (low <= addr && addr < high) {
1036           if (vma_low)  *vma_low  = low;
1037           if (vma_high) *vma_high = high;
1038           fclose (fp);
1039           return true;
1040        }
1041      }
1042      for (;;) {
1043        int ch = fgetc(fp);
1044        if (ch == EOF || ch == (int)'\n') break;
1045      }
1046    }
1047    fclose(fp);
1048  }
1049  return false;
1050}
1051
1052// Locate initial thread stack. This special handling of initial thread stack
1053// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1054// bogus value for initial thread.
1055void os::Linux::capture_initial_stack(size_t max_size) {
1056  // stack size is the easy part, get it from RLIMIT_STACK
1057  size_t stack_size;
1058  struct rlimit rlim;
1059  getrlimit(RLIMIT_STACK, &rlim);
1060  stack_size = rlim.rlim_cur;
1061
1062  // 6308388: a bug in ld.so will relocate its own .data section to the
1063  //   lower end of primordial stack; reduce ulimit -s value a little bit
1064  //   so we won't install guard page on ld.so's data section.
1065  stack_size -= 2 * page_size();
1066
1067  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1068  //   7.1, in both cases we will get 2G in return value.
1069  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1070  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1071  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1072  //   in case other parts in glibc still assumes 2M max stack size.
1073  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1074#ifndef IA64
1075  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1076#else
1077  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1078  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1079#endif
1080
1081  // Try to figure out where the stack base (top) is. This is harder.
1082  //
1083  // When an application is started, glibc saves the initial stack pointer in
1084  // a global variable "__libc_stack_end", which is then used by system
1085  // libraries. __libc_stack_end should be pretty close to stack top. The
1086  // variable is available since the very early days. However, because it is
1087  // a private interface, it could disappear in the future.
1088  //
1089  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1090  // to __libc_stack_end, it is very close to stack top, but isn't the real
1091  // stack top. Note that /proc may not exist if VM is running as a chroot
1092  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1093  // /proc/<pid>/stat could change in the future (though unlikely).
1094  //
1095  // We try __libc_stack_end first. If that doesn't work, look for
1096  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1097  // as a hint, which should work well in most cases.
1098
1099  uintptr_t stack_start;
1100
1101  // try __libc_stack_end first
1102  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1103  if (p && *p) {
1104    stack_start = *p;
1105  } else {
1106    // see if we can get the start_stack field from /proc/self/stat
1107    FILE *fp;
1108    int pid;
1109    char state;
1110    int ppid;
1111    int pgrp;
1112    int session;
1113    int nr;
1114    int tpgrp;
1115    unsigned long flags;
1116    unsigned long minflt;
1117    unsigned long cminflt;
1118    unsigned long majflt;
1119    unsigned long cmajflt;
1120    unsigned long utime;
1121    unsigned long stime;
1122    long cutime;
1123    long cstime;
1124    long prio;
1125    long nice;
1126    long junk;
1127    long it_real;
1128    uintptr_t start;
1129    uintptr_t vsize;
1130    uintptr_t rss;
1131    unsigned long rsslim;
1132    uintptr_t scodes;
1133    uintptr_t ecode;
1134    int i;
1135
1136    // Figure what the primordial thread stack base is. Code is inspired
1137    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1138    // followed by command name surrounded by parentheses, state, etc.
1139    char stat[2048];
1140    int statlen;
1141
1142    fp = fopen("/proc/self/stat", "r");
1143    if (fp) {
1144      statlen = fread(stat, 1, 2047, fp);
1145      stat[statlen] = '\0';
1146      fclose(fp);
1147
1148      // Skip pid and the command string. Note that we could be dealing with
1149      // weird command names, e.g. user could decide to rename java launcher
1150      // to "java 1.4.2 :)", then the stat file would look like
1151      //                1234 (java 1.4.2 :)) R ... ...
1152      // We don't really need to know the command string, just find the last
1153      // occurrence of ")" and then start parsing from there. See bug 4726580.
1154      char * s = strrchr(stat, ')');
1155
1156      i = 0;
1157      if (s) {
1158        // Skip blank chars
1159        do s++; while (isspace(*s));
1160
1161        /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
1162        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
1163        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu",
1164             &state,          /* 3  %c  */
1165             &ppid,           /* 4  %d  */
1166             &pgrp,           /* 5  %d  */
1167             &session,        /* 6  %d  */
1168             &nr,             /* 7  %d  */
1169             &tpgrp,          /* 8  %d  */
1170             &flags,          /* 9  %lu  */
1171             &minflt,         /* 10 %lu  */
1172             &cminflt,        /* 11 %lu  */
1173             &majflt,         /* 12 %lu  */
1174             &cmajflt,        /* 13 %lu  */
1175             &utime,          /* 14 %lu  */
1176             &stime,          /* 15 %lu  */
1177             &cutime,         /* 16 %ld  */
1178             &cstime,         /* 17 %ld  */
1179             &prio,           /* 18 %ld  */
1180             &nice,           /* 19 %ld  */
1181             &junk,           /* 20 %ld  */
1182             &it_real,        /* 21 %ld  */
1183             &start,          /* 22 %lu  */
1184             &vsize,          /* 23 %lu  */
1185             &rss,            /* 24 %ld  */
1186             &rsslim,         /* 25 %lu  */
1187             &scodes,         /* 26 %lu  */
1188             &ecode,          /* 27 %lu  */
1189             &stack_start);   /* 28 %lu  */
1190      }
1191
1192      if (i != 28 - 2) {
1193         assert(false, "Bad conversion from /proc/self/stat");
1194         // product mode - assume we are the initial thread, good luck in the
1195         // embedded case.
1196         warning("Can't detect initial thread stack location - bad conversion");
1197         stack_start = (uintptr_t) &rlim;
1198      }
1199    } else {
1200      // For some reason we can't open /proc/self/stat (for example, running on
1201      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1202      // most cases, so don't abort:
1203      warning("Can't detect initial thread stack location - no /proc/self/stat");
1204      stack_start = (uintptr_t) &rlim;
1205    }
1206  }
1207
1208  // Now we have a pointer (stack_start) very close to the stack top, the
1209  // next thing to do is to figure out the exact location of stack top. We
1210  // can find out the virtual memory area that contains stack_start by
1211  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1212  // and its upper limit is the real stack top. (again, this would fail if
1213  // running inside chroot, because /proc may not exist.)
1214
1215  uintptr_t stack_top;
1216  address low, high;
1217  if (find_vma((address)stack_start, &low, &high)) {
1218    // success, "high" is the true stack top. (ignore "low", because initial
1219    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1220    stack_top = (uintptr_t)high;
1221  } else {
1222    // failed, likely because /proc/self/maps does not exist
1223    warning("Can't detect initial thread stack location - find_vma failed");
1224    // best effort: stack_start is normally within a few pages below the real
1225    // stack top, use it as stack top, and reduce stack size so we won't put
1226    // guard page outside stack.
1227    stack_top = stack_start;
1228    stack_size -= 16 * page_size();
1229  }
1230
1231  // stack_top could be partially down the page so align it
1232  stack_top = align_size_up(stack_top, page_size());
1233
1234  if (max_size && stack_size > max_size) {
1235     _initial_thread_stack_size = max_size;
1236  } else {
1237     _initial_thread_stack_size = stack_size;
1238  }
1239
1240  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1241  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1242}
1243
1244////////////////////////////////////////////////////////////////////////////////
1245// time support
1246
1247// Time since start-up in seconds to a fine granularity.
1248// Used by VMSelfDestructTimer and the MemProfiler.
1249double os::elapsedTime() {
1250
1251  return (double)(os::elapsed_counter()) * 0.000001;
1252}
1253
1254jlong os::elapsed_counter() {
1255  timeval time;
1256  int status = gettimeofday(&time, NULL);
1257  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1258}
1259
1260jlong os::elapsed_frequency() {
1261  return (1000 * 1000);
1262}
1263
1264// For now, we say that linux does not support vtime.  I have no idea
1265// whether it can actually be made to (DLD, 9/13/05).
1266
1267bool os::supports_vtime() { return false; }
1268bool os::enable_vtime()   { return false; }
1269bool os::vtime_enabled()  { return false; }
1270double os::elapsedVTime() {
1271  // better than nothing, but not much
1272  return elapsedTime();
1273}
1274
1275jlong os::javaTimeMillis() {
1276  timeval time;
1277  int status = gettimeofday(&time, NULL);
1278  assert(status != -1, "linux error");
1279  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1280}
1281
1282#ifndef CLOCK_MONOTONIC
1283#define CLOCK_MONOTONIC (1)
1284#endif
1285
1286void os::Linux::clock_init() {
1287  // we do dlopen's in this particular order due to bug in linux
1288  // dynamical loader (see 6348968) leading to crash on exit
1289  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1290  if (handle == NULL) {
1291    handle = dlopen("librt.so", RTLD_LAZY);
1292  }
1293
1294  if (handle) {
1295    int (*clock_getres_func)(clockid_t, struct timespec*) =
1296           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1297    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1298           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1299    if (clock_getres_func && clock_gettime_func) {
1300      // See if monotonic clock is supported by the kernel. Note that some
1301      // early implementations simply return kernel jiffies (updated every
1302      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1303      // for nano time (though the monotonic property is still nice to have).
1304      // It's fixed in newer kernels, however clock_getres() still returns
1305      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1306      // resolution for now. Hopefully as people move to new kernels, this
1307      // won't be a problem.
1308      struct timespec res;
1309      struct timespec tp;
1310      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1311          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1312        // yes, monotonic clock is supported
1313        _clock_gettime = clock_gettime_func;
1314      } else {
1315        // close librt if there is no monotonic clock
1316        dlclose(handle);
1317      }
1318    }
1319  }
1320}
1321
1322#ifndef SYS_clock_getres
1323
1324#if defined(IA32) || defined(AMD64)
1325#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1326#else
1327#error Value of SYS_clock_getres not known on this platform
1328#endif
1329
1330#endif
1331
1332#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1333
1334void os::Linux::fast_thread_clock_init() {
1335  if (!UseLinuxPosixThreadCPUClocks) {
1336    return;
1337  }
1338  clockid_t clockid;
1339  struct timespec tp;
1340  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1341      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1342
1343  // Switch to using fast clocks for thread cpu time if
1344  // the sys_clock_getres() returns 0 error code.
1345  // Note, that some kernels may support the current thread
1346  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1347  // returned by the pthread_getcpuclockid().
1348  // If the fast Posix clocks are supported then the sys_clock_getres()
1349  // must return at least tp.tv_sec == 0 which means a resolution
1350  // better than 1 sec. This is extra check for reliability.
1351
1352  if(pthread_getcpuclockid_func &&
1353     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1354     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1355
1356    _supports_fast_thread_cpu_time = true;
1357    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1358  }
1359}
1360
1361jlong os::javaTimeNanos() {
1362  if (Linux::supports_monotonic_clock()) {
1363    struct timespec tp;
1364    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1365    assert(status == 0, "gettime error");
1366    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1367    return result;
1368  } else {
1369    timeval time;
1370    int status = gettimeofday(&time, NULL);
1371    assert(status != -1, "linux error");
1372    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1373    return 1000 * usecs;
1374  }
1375}
1376
1377void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1378  if (Linux::supports_monotonic_clock()) {
1379    info_ptr->max_value = ALL_64_BITS;
1380
1381    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1382    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1383    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1384  } else {
1385    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1386    info_ptr->max_value = ALL_64_BITS;
1387
1388    // gettimeofday is a real time clock so it skips
1389    info_ptr->may_skip_backward = true;
1390    info_ptr->may_skip_forward = true;
1391  }
1392
1393  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1394}
1395
1396// Return the real, user, and system times in seconds from an
1397// arbitrary fixed point in the past.
1398bool os::getTimesSecs(double* process_real_time,
1399                      double* process_user_time,
1400                      double* process_system_time) {
1401  struct tms ticks;
1402  clock_t real_ticks = times(&ticks);
1403
1404  if (real_ticks == (clock_t) (-1)) {
1405    return false;
1406  } else {
1407    double ticks_per_second = (double) clock_tics_per_sec;
1408    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1409    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1410    *process_real_time = ((double) real_ticks) / ticks_per_second;
1411
1412    return true;
1413  }
1414}
1415
1416
1417char * os::local_time_string(char *buf, size_t buflen) {
1418  struct tm t;
1419  time_t long_time;
1420  time(&long_time);
1421  localtime_r(&long_time, &t);
1422  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1423               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1424               t.tm_hour, t.tm_min, t.tm_sec);
1425  return buf;
1426}
1427
1428////////////////////////////////////////////////////////////////////////////////
1429// runtime exit support
1430
1431// Note: os::shutdown() might be called very early during initialization, or
1432// called from signal handler. Before adding something to os::shutdown(), make
1433// sure it is async-safe and can handle partially initialized VM.
1434void os::shutdown() {
1435
1436  // allow PerfMemory to attempt cleanup of any persistent resources
1437  perfMemory_exit();
1438
1439  // needs to remove object in file system
1440  AttachListener::abort();
1441
1442  // flush buffered output, finish log files
1443  ostream_abort();
1444
1445  // Check for abort hook
1446  abort_hook_t abort_hook = Arguments::abort_hook();
1447  if (abort_hook != NULL) {
1448    abort_hook();
1449  }
1450
1451}
1452
1453// Note: os::abort() might be called very early during initialization, or
1454// called from signal handler. Before adding something to os::abort(), make
1455// sure it is async-safe and can handle partially initialized VM.
1456void os::abort(bool dump_core) {
1457  os::shutdown();
1458  if (dump_core) {
1459#ifndef PRODUCT
1460    fdStream out(defaultStream::output_fd());
1461    out.print_raw("Current thread is ");
1462    char buf[16];
1463    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1464    out.print_raw_cr(buf);
1465    out.print_raw_cr("Dumping core ...");
1466#endif
1467    ::abort(); // dump core
1468  }
1469
1470  ::exit(1);
1471}
1472
1473// Die immediately, no exit hook, no abort hook, no cleanup.
1474void os::die() {
1475  // _exit() on LinuxThreads only kills current thread
1476  ::abort();
1477}
1478
1479// unused on linux for now.
1480void os::set_error_file(const char *logfile) {}
1481
1482intx os::current_thread_id() { return (intx)pthread_self(); }
1483int os::current_process_id() {
1484
1485  // Under the old linux thread library, linux gives each thread
1486  // its own process id. Because of this each thread will return
1487  // a different pid if this method were to return the result
1488  // of getpid(2). Linux provides no api that returns the pid
1489  // of the launcher thread for the vm. This implementation
1490  // returns a unique pid, the pid of the launcher thread
1491  // that starts the vm 'process'.
1492
1493  // Under the NPTL, getpid() returns the same pid as the
1494  // launcher thread rather than a unique pid per thread.
1495  // Use gettid() if you want the old pre NPTL behaviour.
1496
1497  // if you are looking for the result of a call to getpid() that
1498  // returns a unique pid for the calling thread, then look at the
1499  // OSThread::thread_id() method in osThread_linux.hpp file
1500
1501  return (int)(_initial_pid ? _initial_pid : getpid());
1502}
1503
1504// DLL functions
1505
1506const char* os::dll_file_extension() { return ".so"; }
1507
1508const char* os::get_temp_directory() { return "/tmp/"; }
1509
1510const char* os::get_current_directory(char *buf, int buflen) {
1511  return getcwd(buf, buflen);
1512}
1513
1514// check if addr is inside libjvm[_g].so
1515bool os::address_is_in_vm(address addr) {
1516  static address libjvm_base_addr;
1517  Dl_info dlinfo;
1518
1519  if (libjvm_base_addr == NULL) {
1520    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1521    libjvm_base_addr = (address)dlinfo.dli_fbase;
1522    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1523  }
1524
1525  if (dladdr((void *)addr, &dlinfo)) {
1526    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1527  }
1528
1529  return false;
1530}
1531
1532bool os::dll_address_to_function_name(address addr, char *buf,
1533                                      int buflen, int *offset) {
1534  Dl_info dlinfo;
1535
1536  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1537    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1538    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1539    return true;
1540  } else {
1541    if (buf) buf[0] = '\0';
1542    if (offset) *offset = -1;
1543    return false;
1544  }
1545}
1546
1547struct _address_to_library_name {
1548  address addr;          // input : memory address
1549  size_t  buflen;        //         size of fname
1550  char*   fname;         // output: library name
1551  address base;          //         library base addr
1552};
1553
1554static int address_to_library_name_callback(struct dl_phdr_info *info,
1555                                            size_t size, void *data) {
1556  int i;
1557  bool found = false;
1558  address libbase = NULL;
1559  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1560
1561  // iterate through all loadable segments
1562  for (i = 0; i < info->dlpi_phnum; i++) {
1563    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1564    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1565      // base address of a library is the lowest address of its loaded
1566      // segments.
1567      if (libbase == NULL || libbase > segbase) {
1568        libbase = segbase;
1569      }
1570      // see if 'addr' is within current segment
1571      if (segbase <= d->addr &&
1572          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1573        found = true;
1574      }
1575    }
1576  }
1577
1578  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1579  // so dll_address_to_library_name() can fall through to use dladdr() which
1580  // can figure out executable name from argv[0].
1581  if (found && info->dlpi_name && info->dlpi_name[0]) {
1582    d->base = libbase;
1583    if (d->fname) {
1584      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1585    }
1586    return 1;
1587  }
1588  return 0;
1589}
1590
1591bool os::dll_address_to_library_name(address addr, char* buf,
1592                                     int buflen, int* offset) {
1593  Dl_info dlinfo;
1594  struct _address_to_library_name data;
1595
1596  // There is a bug in old glibc dladdr() implementation that it could resolve
1597  // to wrong library name if the .so file has a base address != NULL. Here
1598  // we iterate through the program headers of all loaded libraries to find
1599  // out which library 'addr' really belongs to. This workaround can be
1600  // removed once the minimum requirement for glibc is moved to 2.3.x.
1601  data.addr = addr;
1602  data.fname = buf;
1603  data.buflen = buflen;
1604  data.base = NULL;
1605  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1606
1607  if (rslt) {
1608     // buf already contains library name
1609     if (offset) *offset = addr - data.base;
1610     return true;
1611  } else if (dladdr((void*)addr, &dlinfo)){
1612     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1613     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1614     return true;
1615  } else {
1616     if (buf) buf[0] = '\0';
1617     if (offset) *offset = -1;
1618     return false;
1619  }
1620}
1621
1622  // Loads .dll/.so and
1623  // in case of error it checks if .dll/.so was built for the
1624  // same architecture as Hotspot is running on
1625
1626void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1627{
1628  void * result= ::dlopen(filename, RTLD_LAZY);
1629  if (result != NULL) {
1630    // Successful loading
1631    return result;
1632  }
1633
1634  Elf32_Ehdr elf_head;
1635
1636  // Read system error message into ebuf
1637  // It may or may not be overwritten below
1638  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1639  ebuf[ebuflen-1]='\0';
1640  int diag_msg_max_length=ebuflen-strlen(ebuf);
1641  char* diag_msg_buf=ebuf+strlen(ebuf);
1642
1643  if (diag_msg_max_length==0) {
1644    // No more space in ebuf for additional diagnostics message
1645    return NULL;
1646  }
1647
1648
1649  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1650
1651  if (file_descriptor < 0) {
1652    // Can't open library, report dlerror() message
1653    return NULL;
1654  }
1655
1656  bool failed_to_read_elf_head=
1657    (sizeof(elf_head)!=
1658        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1659
1660  ::close(file_descriptor);
1661  if (failed_to_read_elf_head) {
1662    // file i/o error - report dlerror() msg
1663    return NULL;
1664  }
1665
1666  typedef struct {
1667    Elf32_Half  code;         // Actual value as defined in elf.h
1668    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1669    char        elf_class;    // 32 or 64 bit
1670    char        endianess;    // MSB or LSB
1671    char*       name;         // String representation
1672  } arch_t;
1673
1674  #ifndef EM_486
1675  #define EM_486          6               /* Intel 80486 */
1676  #endif
1677
1678  static const arch_t arch_array[]={
1679    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1680    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1681    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1682    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1683    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1684    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1685    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1686    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1687    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1688  };
1689
1690  #if  (defined IA32)
1691    static  Elf32_Half running_arch_code=EM_386;
1692  #elif   (defined AMD64)
1693    static  Elf32_Half running_arch_code=EM_X86_64;
1694  #elif  (defined IA64)
1695    static  Elf32_Half running_arch_code=EM_IA_64;
1696  #elif  (defined __sparc) && (defined _LP64)
1697    static  Elf32_Half running_arch_code=EM_SPARCV9;
1698  #elif  (defined __sparc) && (!defined _LP64)
1699    static  Elf32_Half running_arch_code=EM_SPARC;
1700  #elif  (defined __powerpc64__)
1701    static  Elf32_Half running_arch_code=EM_PPC64;
1702  #elif  (defined __powerpc__)
1703    static  Elf32_Half running_arch_code=EM_PPC;
1704  #else
1705    #error Method os::dll_load requires that one of following is defined:\
1706         IA32, AMD64, IA64, __sparc, __powerpc__
1707  #endif
1708
1709  // Identify compatability class for VM's architecture and library's architecture
1710  // Obtain string descriptions for architectures
1711
1712  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1713  int running_arch_index=-1;
1714
1715  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1716    if (running_arch_code == arch_array[i].code) {
1717      running_arch_index    = i;
1718    }
1719    if (lib_arch.code == arch_array[i].code) {
1720      lib_arch.compat_class = arch_array[i].compat_class;
1721      lib_arch.name         = arch_array[i].name;
1722    }
1723  }
1724
1725  assert(running_arch_index != -1,
1726    "Didn't find running architecture code (running_arch_code) in arch_array");
1727  if (running_arch_index == -1) {
1728    // Even though running architecture detection failed
1729    // we may still continue with reporting dlerror() message
1730    return NULL;
1731  }
1732
1733  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1734    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1735    return NULL;
1736  }
1737
1738  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1739    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1740    return NULL;
1741  }
1742
1743  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1744    if ( lib_arch.name!=NULL ) {
1745      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1746        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1747        lib_arch.name, arch_array[running_arch_index].name);
1748    } else {
1749      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1750      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1751        lib_arch.code,
1752        arch_array[running_arch_index].name);
1753    }
1754  }
1755
1756  return NULL;
1757}
1758
1759
1760
1761
1762bool _print_ascii_file(const char* filename, outputStream* st) {
1763  int fd = open(filename, O_RDONLY);
1764  if (fd == -1) {
1765     return false;
1766  }
1767
1768  char buf[32];
1769  int bytes;
1770  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1771    st->print_raw(buf, bytes);
1772  }
1773
1774  close(fd);
1775
1776  return true;
1777}
1778
1779void os::print_dll_info(outputStream *st) {
1780   st->print_cr("Dynamic libraries:");
1781
1782   char fname[32];
1783   pid_t pid = os::Linux::gettid();
1784
1785   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1786
1787   if (!_print_ascii_file(fname, st)) {
1788     st->print("Can not get library information for pid = %d\n", pid);
1789   }
1790}
1791
1792
1793void os::print_os_info(outputStream* st) {
1794  st->print("OS:");
1795
1796  // Try to identify popular distros.
1797  // Most Linux distributions have /etc/XXX-release file, which contains
1798  // the OS version string. Some have more than one /etc/XXX-release file
1799  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1800  // so the order is important.
1801  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1802      !_print_ascii_file("/etc/sun-release", st) &&
1803      !_print_ascii_file("/etc/redhat-release", st) &&
1804      !_print_ascii_file("/etc/SuSE-release", st) &&
1805      !_print_ascii_file("/etc/turbolinux-release", st) &&
1806      !_print_ascii_file("/etc/gentoo-release", st) &&
1807      !_print_ascii_file("/etc/debian_version", st)) {
1808      st->print("Linux");
1809  }
1810  st->cr();
1811
1812  // kernel
1813  st->print("uname:");
1814  struct utsname name;
1815  uname(&name);
1816  st->print(name.sysname); st->print(" ");
1817  st->print(name.release); st->print(" ");
1818  st->print(name.version); st->print(" ");
1819  st->print(name.machine);
1820  st->cr();
1821
1822  // Print warning if unsafe chroot environment detected
1823  if (unsafe_chroot_detected) {
1824    st->print("WARNING!! ");
1825    st->print_cr(unstable_chroot_error);
1826  }
1827
1828  // libc, pthread
1829  st->print("libc:");
1830  st->print(os::Linux::glibc_version()); st->print(" ");
1831  st->print(os::Linux::libpthread_version()); st->print(" ");
1832  if (os::Linux::is_LinuxThreads()) {
1833     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1834  }
1835  st->cr();
1836
1837  // rlimit
1838  st->print("rlimit:");
1839  struct rlimit rlim;
1840
1841  st->print(" STACK ");
1842  getrlimit(RLIMIT_STACK, &rlim);
1843  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1844  else st->print("%uk", rlim.rlim_cur >> 10);
1845
1846  st->print(", CORE ");
1847  getrlimit(RLIMIT_CORE, &rlim);
1848  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1849  else st->print("%uk", rlim.rlim_cur >> 10);
1850
1851  st->print(", NPROC ");
1852  getrlimit(RLIMIT_NPROC, &rlim);
1853  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1854  else st->print("%d", rlim.rlim_cur);
1855
1856  st->print(", NOFILE ");
1857  getrlimit(RLIMIT_NOFILE, &rlim);
1858  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1859  else st->print("%d", rlim.rlim_cur);
1860
1861  st->print(", AS ");
1862  getrlimit(RLIMIT_AS, &rlim);
1863  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1864  else st->print("%uk", rlim.rlim_cur >> 10);
1865  st->cr();
1866
1867  // load average
1868  st->print("load average:");
1869  double loadavg[3];
1870  os::loadavg(loadavg, 3);
1871  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1872  st->cr();
1873}
1874
1875void os::print_memory_info(outputStream* st) {
1876
1877  st->print("Memory:");
1878  st->print(" %dk page", os::vm_page_size()>>10);
1879
1880  // values in struct sysinfo are "unsigned long"
1881  struct sysinfo si;
1882  sysinfo(&si);
1883
1884  st->print(", physical " UINT64_FORMAT "k",
1885            os::physical_memory() >> 10);
1886  st->print("(" UINT64_FORMAT "k free)",
1887            os::available_memory() >> 10);
1888  st->print(", swap " UINT64_FORMAT "k",
1889            ((jlong)si.totalswap * si.mem_unit) >> 10);
1890  st->print("(" UINT64_FORMAT "k free)",
1891            ((jlong)si.freeswap * si.mem_unit) >> 10);
1892  st->cr();
1893}
1894
1895// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1896// but they're the same for all the linux arch that we support
1897// and they're the same for solaris but there's no common place to put this.
1898const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1899                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1900                          "ILL_COPROC", "ILL_BADSTK" };
1901
1902const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1903                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1904                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1905
1906const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1907
1908const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1909
1910void os::print_siginfo(outputStream* st, void* siginfo) {
1911  st->print("siginfo:");
1912
1913  const int buflen = 100;
1914  char buf[buflen];
1915  siginfo_t *si = (siginfo_t*)siginfo;
1916  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1917  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1918    st->print("si_errno=%s", buf);
1919  } else {
1920    st->print("si_errno=%d", si->si_errno);
1921  }
1922  const int c = si->si_code;
1923  assert(c > 0, "unexpected si_code");
1924  switch (si->si_signo) {
1925  case SIGILL:
1926    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1927    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1928    break;
1929  case SIGFPE:
1930    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1931    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1932    break;
1933  case SIGSEGV:
1934    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1935    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1936    break;
1937  case SIGBUS:
1938    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1939    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1940    break;
1941  default:
1942    st->print(", si_code=%d", si->si_code);
1943    // no si_addr
1944  }
1945
1946  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1947      UseSharedSpaces) {
1948    FileMapInfo* mapinfo = FileMapInfo::current_info();
1949    if (mapinfo->is_in_shared_space(si->si_addr)) {
1950      st->print("\n\nError accessing class data sharing archive."   \
1951                " Mapped file inaccessible during execution, "      \
1952                " possible disk/network problem.");
1953    }
1954  }
1955  st->cr();
1956}
1957
1958
1959static void print_signal_handler(outputStream* st, int sig,
1960                                 char* buf, size_t buflen);
1961
1962void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1963  st->print_cr("Signal Handlers:");
1964  print_signal_handler(st, SIGSEGV, buf, buflen);
1965  print_signal_handler(st, SIGBUS , buf, buflen);
1966  print_signal_handler(st, SIGFPE , buf, buflen);
1967  print_signal_handler(st, SIGPIPE, buf, buflen);
1968  print_signal_handler(st, SIGXFSZ, buf, buflen);
1969  print_signal_handler(st, SIGILL , buf, buflen);
1970  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1971  print_signal_handler(st, SR_signum, buf, buflen);
1972  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1973  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1974  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1975  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1976}
1977
1978static char saved_jvm_path[MAXPATHLEN] = {0};
1979
1980// Find the full path to the current module, libjvm.so or libjvm_g.so
1981void os::jvm_path(char *buf, jint len) {
1982  // Error checking.
1983  if (len < MAXPATHLEN) {
1984    assert(false, "must use a large-enough buffer");
1985    buf[0] = '\0';
1986    return;
1987  }
1988  // Lazy resolve the path to current module.
1989  if (saved_jvm_path[0] != 0) {
1990    strcpy(buf, saved_jvm_path);
1991    return;
1992  }
1993
1994  char dli_fname[MAXPATHLEN];
1995  bool ret = dll_address_to_library_name(
1996                CAST_FROM_FN_PTR(address, os::jvm_path),
1997                dli_fname, sizeof(dli_fname), NULL);
1998  assert(ret != 0, "cannot locate libjvm");
1999  realpath(dli_fname, buf);
2000
2001  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2002    // Support for the gamma launcher.  Typical value for buf is
2003    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2004    // the right place in the string, then assume we are installed in a JDK and
2005    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2006    // up the path so it looks like libjvm.so is installed there (append a
2007    // fake suffix hotspot/libjvm.so).
2008    const char *p = buf + strlen(buf) - 1;
2009    for (int count = 0; p > buf && count < 5; ++count) {
2010      for (--p; p > buf && *p != '/'; --p)
2011        /* empty */ ;
2012    }
2013
2014    if (strncmp(p, "/jre/lib/", 9) != 0) {
2015      // Look for JAVA_HOME in the environment.
2016      char* java_home_var = ::getenv("JAVA_HOME");
2017      if (java_home_var != NULL && java_home_var[0] != 0) {
2018        // Check the current module name "libjvm.so" or "libjvm_g.so".
2019        p = strrchr(buf, '/');
2020        assert(strstr(p, "/libjvm") == p, "invalid library name");
2021        p = strstr(p, "_g") ? "_g" : "";
2022
2023        realpath(java_home_var, buf);
2024        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2025        if (0 == access(buf, F_OK)) {
2026          // Use current module name "libjvm[_g].so" instead of
2027          // "libjvm"debug_only("_g")".so" since for fastdebug version
2028          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2029          // It is used when we are choosing the HPI library's name
2030          // "libhpi[_g].so" in hpi::initialize_get_interface().
2031          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2032        } else {
2033          // Go back to path of .so
2034          realpath(dli_fname, buf);
2035        }
2036      }
2037    }
2038  }
2039
2040  strcpy(saved_jvm_path, buf);
2041}
2042
2043void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2044  // no prefix required, not even "_"
2045}
2046
2047void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2048  // no suffix required
2049}
2050
2051////////////////////////////////////////////////////////////////////////////////
2052// sun.misc.Signal support
2053
2054static volatile jint sigint_count = 0;
2055
2056static void
2057UserHandler(int sig, void *siginfo, void *context) {
2058  // 4511530 - sem_post is serialized and handled by the manager thread. When
2059  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2060  // don't want to flood the manager thread with sem_post requests.
2061  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2062      return;
2063
2064  // Ctrl-C is pressed during error reporting, likely because the error
2065  // handler fails to abort. Let VM die immediately.
2066  if (sig == SIGINT && is_error_reported()) {
2067     os::die();
2068  }
2069
2070  os::signal_notify(sig);
2071}
2072
2073void* os::user_handler() {
2074  return CAST_FROM_FN_PTR(void*, UserHandler);
2075}
2076
2077extern "C" {
2078  typedef void (*sa_handler_t)(int);
2079  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2080}
2081
2082void* os::signal(int signal_number, void* handler) {
2083  struct sigaction sigAct, oldSigAct;
2084
2085  sigfillset(&(sigAct.sa_mask));
2086  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2087  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2088
2089  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2090    // -1 means registration failed
2091    return (void *)-1;
2092  }
2093
2094  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2095}
2096
2097void os::signal_raise(int signal_number) {
2098  ::raise(signal_number);
2099}
2100
2101/*
2102 * The following code is moved from os.cpp for making this
2103 * code platform specific, which it is by its very nature.
2104 */
2105
2106// Will be modified when max signal is changed to be dynamic
2107int os::sigexitnum_pd() {
2108  return NSIG;
2109}
2110
2111// a counter for each possible signal value
2112static volatile jint pending_signals[NSIG+1] = { 0 };
2113
2114// Linux(POSIX) specific hand shaking semaphore.
2115static sem_t sig_sem;
2116
2117void os::signal_init_pd() {
2118  // Initialize signal structures
2119  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2120
2121  // Initialize signal semaphore
2122  ::sem_init(&sig_sem, 0, 0);
2123}
2124
2125void os::signal_notify(int sig) {
2126  Atomic::inc(&pending_signals[sig]);
2127  ::sem_post(&sig_sem);
2128}
2129
2130static int check_pending_signals(bool wait) {
2131  Atomic::store(0, &sigint_count);
2132  for (;;) {
2133    for (int i = 0; i < NSIG + 1; i++) {
2134      jint n = pending_signals[i];
2135      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2136        return i;
2137      }
2138    }
2139    if (!wait) {
2140      return -1;
2141    }
2142    JavaThread *thread = JavaThread::current();
2143    ThreadBlockInVM tbivm(thread);
2144
2145    bool threadIsSuspended;
2146    do {
2147      thread->set_suspend_equivalent();
2148      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2149      ::sem_wait(&sig_sem);
2150
2151      // were we externally suspended while we were waiting?
2152      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2153      if (threadIsSuspended) {
2154        //
2155        // The semaphore has been incremented, but while we were waiting
2156        // another thread suspended us. We don't want to continue running
2157        // while suspended because that would surprise the thread that
2158        // suspended us.
2159        //
2160        ::sem_post(&sig_sem);
2161
2162        thread->java_suspend_self();
2163      }
2164    } while (threadIsSuspended);
2165  }
2166}
2167
2168int os::signal_lookup() {
2169  return check_pending_signals(false);
2170}
2171
2172int os::signal_wait() {
2173  return check_pending_signals(true);
2174}
2175
2176////////////////////////////////////////////////////////////////////////////////
2177// Virtual Memory
2178
2179int os::vm_page_size() {
2180  // Seems redundant as all get out
2181  assert(os::Linux::page_size() != -1, "must call os::init");
2182  return os::Linux::page_size();
2183}
2184
2185// Solaris allocates memory by pages.
2186int os::vm_allocation_granularity() {
2187  assert(os::Linux::page_size() != -1, "must call os::init");
2188  return os::Linux::page_size();
2189}
2190
2191// Rationale behind this function:
2192//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2193//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2194//  samples for JITted code. Here we create private executable mapping over the code cache
2195//  and then we can use standard (well, almost, as mapping can change) way to provide
2196//  info for the reporting script by storing timestamp and location of symbol
2197void linux_wrap_code(char* base, size_t size) {
2198  static volatile jint cnt = 0;
2199
2200  if (!UseOprofile) {
2201    return;
2202  }
2203
2204  char buf[40];
2205  int num = Atomic::add(1, &cnt);
2206
2207  sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
2208  unlink(buf);
2209
2210  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2211
2212  if (fd != -1) {
2213    off_t rv = lseek(fd, size-2, SEEK_SET);
2214    if (rv != (off_t)-1) {
2215      if (write(fd, "", 1) == 1) {
2216        mmap(base, size,
2217             PROT_READ|PROT_WRITE|PROT_EXEC,
2218             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2219      }
2220    }
2221    close(fd);
2222    unlink(buf);
2223  }
2224}
2225
2226// NOTE: Linux kernel does not really reserve the pages for us.
2227//       All it does is to check if there are enough free pages
2228//       left at the time of mmap(). This could be a potential
2229//       problem.
2230bool os::commit_memory(char* addr, size_t size) {
2231  uintptr_t res = (uintptr_t) ::mmap(addr, size,
2232                                   PROT_READ|PROT_WRITE|PROT_EXEC,
2233                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2234  return res != (uintptr_t) MAP_FAILED;
2235}
2236
2237bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
2238  return commit_memory(addr, size);
2239}
2240
2241void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2242
2243void os::free_memory(char *addr, size_t bytes) {
2244  uncommit_memory(addr, bytes);
2245}
2246
2247void os::numa_make_global(char *addr, size_t bytes)    { }
2248
2249void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2250  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2251}
2252
2253bool os::numa_topology_changed()   { return false; }
2254
2255size_t os::numa_get_groups_num() {
2256  int max_node = Linux::numa_max_node();
2257  return max_node > 0 ? max_node + 1 : 1;
2258}
2259
2260int os::numa_get_group_id() {
2261  int cpu_id = Linux::sched_getcpu();
2262  if (cpu_id != -1) {
2263    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2264    if (lgrp_id != -1) {
2265      return lgrp_id;
2266    }
2267  }
2268  return 0;
2269}
2270
2271size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2272  for (size_t i = 0; i < size; i++) {
2273    ids[i] = i;
2274  }
2275  return size;
2276}
2277
2278bool os::get_page_info(char *start, page_info* info) {
2279  return false;
2280}
2281
2282char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2283  return end;
2284}
2285
2286extern "C" void numa_warn(int number, char *where, ...) { }
2287extern "C" void numa_error(char *where) { }
2288
2289void os::Linux::libnuma_init() {
2290  // sched_getcpu() should be in libc.
2291  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2292                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2293
2294  if (sched_getcpu() != -1) { // Does it work?
2295    void *handle = dlopen("libnuma.so", RTLD_LAZY);
2296    if (handle != NULL) {
2297      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2298                                           dlsym(handle, "numa_node_to_cpus")));
2299      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2300                                       dlsym(handle, "numa_max_node")));
2301      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2302                                        dlsym(handle, "numa_available")));
2303      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2304                                            dlsym(handle, "numa_tonode_memory")));
2305      if (numa_available() != -1) {
2306        // Create a cpu -> node mapping
2307        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2308        rebuild_cpu_to_node_map();
2309      }
2310    }
2311  }
2312}
2313
2314// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2315// The table is later used in get_node_by_cpu().
2316void os::Linux::rebuild_cpu_to_node_map() {
2317  int cpu_num = os::active_processor_count();
2318  cpu_to_node()->clear();
2319  cpu_to_node()->at_grow(cpu_num - 1);
2320  int node_num = numa_get_groups_num();
2321  int cpu_map_size = (cpu_num + BitsPerLong - 1) / BitsPerLong;
2322  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2323  for (int i = 0; i < node_num; i++) {
2324    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2325      for (int j = 0; j < cpu_map_size; j++) {
2326        if (cpu_map[j] != 0) {
2327          for (int k = 0; k < BitsPerLong; k++) {
2328            if (cpu_map[j] & (1UL << k)) {
2329              cpu_to_node()->at_put(j * BitsPerLong + k, i);
2330            }
2331          }
2332        }
2333      }
2334    }
2335  }
2336  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2337}
2338
2339int os::Linux::get_node_by_cpu(int cpu_id) {
2340  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2341    return cpu_to_node()->at(cpu_id);
2342  }
2343  return -1;
2344}
2345
2346GrowableArray<int>* os::Linux::_cpu_to_node;
2347os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2348os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2349os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2350os::Linux::numa_available_func_t os::Linux::_numa_available;
2351os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2352
2353
2354bool os::uncommit_memory(char* addr, size_t size) {
2355  return ::mmap(addr, size,
2356                PROT_READ|PROT_WRITE|PROT_EXEC,
2357                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
2358    != MAP_FAILED;
2359}
2360
2361static address _highest_vm_reserved_address = NULL;
2362
2363// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2364// at 'requested_addr'. If there are existing memory mappings at the same
2365// location, however, they will be overwritten. If 'fixed' is false,
2366// 'requested_addr' is only treated as a hint, the return value may or
2367// may not start from the requested address. Unlike Linux mmap(), this
2368// function returns NULL to indicate failure.
2369static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2370  char * addr;
2371  int flags;
2372
2373  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2374  if (fixed) {
2375    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2376    flags |= MAP_FIXED;
2377  }
2378
2379  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
2380                       flags, -1, 0);
2381
2382  if (addr != MAP_FAILED) {
2383    // anon_mmap() should only get called during VM initialization,
2384    // don't need lock (actually we can skip locking even it can be called
2385    // from multiple threads, because _highest_vm_reserved_address is just a
2386    // hint about the upper limit of non-stack memory regions.)
2387    if ((address)addr + bytes > _highest_vm_reserved_address) {
2388      _highest_vm_reserved_address = (address)addr + bytes;
2389    }
2390  }
2391
2392  return addr == MAP_FAILED ? NULL : addr;
2393}
2394
2395// Don't update _highest_vm_reserved_address, because there might be memory
2396// regions above addr + size. If so, releasing a memory region only creates
2397// a hole in the address space, it doesn't help prevent heap-stack collision.
2398//
2399static int anon_munmap(char * addr, size_t size) {
2400  return ::munmap(addr, size) == 0;
2401}
2402
2403char* os::reserve_memory(size_t bytes, char* requested_addr,
2404                         size_t alignment_hint) {
2405  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2406}
2407
2408bool os::release_memory(char* addr, size_t size) {
2409  return anon_munmap(addr, size);
2410}
2411
2412static address highest_vm_reserved_address() {
2413  return _highest_vm_reserved_address;
2414}
2415
2416static bool linux_mprotect(char* addr, size_t size, int prot) {
2417  // Linux wants the mprotect address argument to be page aligned.
2418  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2419
2420  // According to SUSv3, mprotect() should only be used with mappings
2421  // established by mmap(), and mmap() always maps whole pages. Unaligned
2422  // 'addr' likely indicates problem in the VM (e.g. trying to change
2423  // protection of malloc'ed or statically allocated memory). Check the
2424  // caller if you hit this assert.
2425  assert(addr == bottom, "sanity check");
2426
2427  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2428  return ::mprotect(bottom, size, prot) == 0;
2429}
2430
2431bool os::protect_memory(char* addr, size_t size) {
2432  return linux_mprotect(addr, size, PROT_READ);
2433}
2434
2435bool os::guard_memory(char* addr, size_t size) {
2436  return linux_mprotect(addr, size, PROT_NONE);
2437}
2438
2439bool os::unguard_memory(char* addr, size_t size) {
2440  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2441}
2442
2443// Large page support
2444
2445static size_t _large_page_size = 0;
2446
2447bool os::large_page_init() {
2448  if (!UseLargePages) return false;
2449
2450  if (LargePageSizeInBytes) {
2451    _large_page_size = LargePageSizeInBytes;
2452  } else {
2453    // large_page_size on Linux is used to round up heap size. x86 uses either
2454    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2455    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2456    // page as large as 256M.
2457    //
2458    // Here we try to figure out page size by parsing /proc/meminfo and looking
2459    // for a line with the following format:
2460    //    Hugepagesize:     2048 kB
2461    //
2462    // If we can't determine the value (e.g. /proc is not mounted, or the text
2463    // format has been changed), we'll use the largest page size supported by
2464    // the processor.
2465
2466    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
2467
2468    FILE *fp = fopen("/proc/meminfo", "r");
2469    if (fp) {
2470      while (!feof(fp)) {
2471        int x = 0;
2472        char buf[16];
2473        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2474          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2475            _large_page_size = x * K;
2476            break;
2477          }
2478        } else {
2479          // skip to next line
2480          for (;;) {
2481            int ch = fgetc(fp);
2482            if (ch == EOF || ch == (int)'\n') break;
2483          }
2484        }
2485      }
2486      fclose(fp);
2487    }
2488  }
2489
2490  const size_t default_page_size = (size_t)Linux::page_size();
2491  if (_large_page_size > default_page_size) {
2492    _page_sizes[0] = _large_page_size;
2493    _page_sizes[1] = default_page_size;
2494    _page_sizes[2] = 0;
2495  }
2496
2497  // Large page support is available on 2.6 or newer kernel, some vendors
2498  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2499  // We optimistically assume the support is available. If later it turns out
2500  // not true, VM will automatically switch to use regular page size.
2501  return true;
2502}
2503
2504#ifndef SHM_HUGETLB
2505#define SHM_HUGETLB 04000
2506#endif
2507
2508char* os::reserve_memory_special(size_t bytes) {
2509  assert(UseLargePages, "only for large pages");
2510
2511  key_t key = IPC_PRIVATE;
2512  char *addr;
2513
2514  bool warn_on_failure = UseLargePages &&
2515                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2516                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2517                        );
2518  char msg[128];
2519
2520  // Create a large shared memory region to attach to based on size.
2521  // Currently, size is the total size of the heap
2522  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2523  if (shmid == -1) {
2524     // Possible reasons for shmget failure:
2525     // 1. shmmax is too small for Java heap.
2526     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2527     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2528     // 2. not enough large page memory.
2529     //    > check available large pages: cat /proc/meminfo
2530     //    > increase amount of large pages:
2531     //          echo new_value > /proc/sys/vm/nr_hugepages
2532     //      Note 1: different Linux may use different name for this property,
2533     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2534     //      Note 2: it's possible there's enough physical memory available but
2535     //            they are so fragmented after a long run that they can't
2536     //            coalesce into large pages. Try to reserve large pages when
2537     //            the system is still "fresh".
2538     if (warn_on_failure) {
2539       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2540       warning(msg);
2541     }
2542     return NULL;
2543  }
2544
2545  // attach to the region
2546  addr = (char*)shmat(shmid, NULL, 0);
2547  int err = errno;
2548
2549  // Remove shmid. If shmat() is successful, the actual shared memory segment
2550  // will be deleted when it's detached by shmdt() or when the process
2551  // terminates. If shmat() is not successful this will remove the shared
2552  // segment immediately.
2553  shmctl(shmid, IPC_RMID, NULL);
2554
2555  if ((intptr_t)addr == -1) {
2556     if (warn_on_failure) {
2557       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2558       warning(msg);
2559     }
2560     return NULL;
2561  }
2562
2563  return addr;
2564}
2565
2566bool os::release_memory_special(char* base, size_t bytes) {
2567  // detaching the SHM segment will also delete it, see reserve_memory_special()
2568  int rslt = shmdt(base);
2569  return rslt == 0;
2570}
2571
2572size_t os::large_page_size() {
2573  return _large_page_size;
2574}
2575
2576// Linux does not support anonymous mmap with large page memory. The only way
2577// to reserve large page memory without file backing is through SysV shared
2578// memory API. The entire memory region is committed and pinned upfront.
2579// Hopefully this will change in the future...
2580bool os::can_commit_large_page_memory() {
2581  return false;
2582}
2583
2584bool os::can_execute_large_page_memory() {
2585  return false;
2586}
2587
2588// Reserve memory at an arbitrary address, only if that area is
2589// available (and not reserved for something else).
2590
2591char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2592  const int max_tries = 10;
2593  char* base[max_tries];
2594  size_t size[max_tries];
2595  const size_t gap = 0x000000;
2596
2597  // Assert only that the size is a multiple of the page size, since
2598  // that's all that mmap requires, and since that's all we really know
2599  // about at this low abstraction level.  If we need higher alignment,
2600  // we can either pass an alignment to this method or verify alignment
2601  // in one of the methods further up the call chain.  See bug 5044738.
2602  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2603
2604  // Repeatedly allocate blocks until the block is allocated at the
2605  // right spot. Give up after max_tries. Note that reserve_memory() will
2606  // automatically update _highest_vm_reserved_address if the call is
2607  // successful. The variable tracks the highest memory address every reserved
2608  // by JVM. It is used to detect heap-stack collision if running with
2609  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2610  // space than needed, it could confuse the collision detecting code. To
2611  // solve the problem, save current _highest_vm_reserved_address and
2612  // calculate the correct value before return.
2613  address old_highest = _highest_vm_reserved_address;
2614
2615  // Linux mmap allows caller to pass an address as hint; give it a try first,
2616  // if kernel honors the hint then we can return immediately.
2617  char * addr = anon_mmap(requested_addr, bytes, false);
2618  if (addr == requested_addr) {
2619     return requested_addr;
2620  }
2621
2622  if (addr != NULL) {
2623     // mmap() is successful but it fails to reserve at the requested address
2624     anon_munmap(addr, bytes);
2625  }
2626
2627  int i;
2628  for (i = 0; i < max_tries; ++i) {
2629    base[i] = reserve_memory(bytes);
2630
2631    if (base[i] != NULL) {
2632      // Is this the block we wanted?
2633      if (base[i] == requested_addr) {
2634        size[i] = bytes;
2635        break;
2636      }
2637
2638      // Does this overlap the block we wanted? Give back the overlapped
2639      // parts and try again.
2640
2641      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2642      if (top_overlap >= 0 && top_overlap < bytes) {
2643        unmap_memory(base[i], top_overlap);
2644        base[i] += top_overlap;
2645        size[i] = bytes - top_overlap;
2646      } else {
2647        size_t bottom_overlap = base[i] + bytes - requested_addr;
2648        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2649          unmap_memory(requested_addr, bottom_overlap);
2650          size[i] = bytes - bottom_overlap;
2651        } else {
2652          size[i] = bytes;
2653        }
2654      }
2655    }
2656  }
2657
2658  // Give back the unused reserved pieces.
2659
2660  for (int j = 0; j < i; ++j) {
2661    if (base[j] != NULL) {
2662      unmap_memory(base[j], size[j]);
2663    }
2664  }
2665
2666  if (i < max_tries) {
2667    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2668    return requested_addr;
2669  } else {
2670    _highest_vm_reserved_address = old_highest;
2671    return NULL;
2672  }
2673}
2674
2675size_t os::read(int fd, void *buf, unsigned int nBytes) {
2676  return ::read(fd, buf, nBytes);
2677}
2678
2679// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2680// Solaris uses poll(), linux uses park().
2681// Poll() is likely a better choice, assuming that Thread.interrupt()
2682// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2683// SIGSEGV, see 4355769.
2684
2685const int NANOSECS_PER_MILLISECS = 1000000;
2686
2687int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2688  assert(thread == Thread::current(),  "thread consistency check");
2689
2690  ParkEvent * const slp = thread->_SleepEvent ;
2691  slp->reset() ;
2692  OrderAccess::fence() ;
2693
2694  if (interruptible) {
2695    jlong prevtime = javaTimeNanos();
2696
2697    for (;;) {
2698      if (os::is_interrupted(thread, true)) {
2699        return OS_INTRPT;
2700      }
2701
2702      jlong newtime = javaTimeNanos();
2703
2704      if (newtime - prevtime < 0) {
2705        // time moving backwards, should only happen if no monotonic clock
2706        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2707        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2708      } else {
2709        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2710      }
2711
2712      if(millis <= 0) {
2713        return OS_OK;
2714      }
2715
2716      prevtime = newtime;
2717
2718      {
2719        assert(thread->is_Java_thread(), "sanity check");
2720        JavaThread *jt = (JavaThread *) thread;
2721        ThreadBlockInVM tbivm(jt);
2722        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2723
2724        jt->set_suspend_equivalent();
2725        // cleared by handle_special_suspend_equivalent_condition() or
2726        // java_suspend_self() via check_and_wait_while_suspended()
2727
2728        slp->park(millis);
2729
2730        // were we externally suspended while we were waiting?
2731        jt->check_and_wait_while_suspended();
2732      }
2733    }
2734  } else {
2735    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2736    jlong prevtime = javaTimeNanos();
2737
2738    for (;;) {
2739      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2740      // the 1st iteration ...
2741      jlong newtime = javaTimeNanos();
2742
2743      if (newtime - prevtime < 0) {
2744        // time moving backwards, should only happen if no monotonic clock
2745        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2746        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2747      } else {
2748        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2749      }
2750
2751      if(millis <= 0) break ;
2752
2753      prevtime = newtime;
2754      slp->park(millis);
2755    }
2756    return OS_OK ;
2757  }
2758}
2759
2760int os::naked_sleep() {
2761  // %% make the sleep time an integer flag. for now use 1 millisec.
2762  return os::sleep(Thread::current(), 1, false);
2763}
2764
2765// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2766void os::infinite_sleep() {
2767  while (true) {    // sleep forever ...
2768    ::sleep(100);   // ... 100 seconds at a time
2769  }
2770}
2771
2772// Used to convert frequent JVM_Yield() to nops
2773bool os::dont_yield() {
2774  return DontYieldALot;
2775}
2776
2777void os::yield() {
2778  sched_yield();
2779}
2780
2781os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2782
2783void os::yield_all(int attempts) {
2784  // Yields to all threads, including threads with lower priorities
2785  // Threads on Linux are all with same priority. The Solaris style
2786  // os::yield_all() with nanosleep(1ms) is not necessary.
2787  sched_yield();
2788}
2789
2790// Called from the tight loops to possibly influence time-sharing heuristics
2791void os::loop_breaker(int attempts) {
2792  os::yield_all(attempts);
2793}
2794
2795////////////////////////////////////////////////////////////////////////////////
2796// thread priority support
2797
2798// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
2799// only supports dynamic priority, static priority must be zero. For real-time
2800// applications, Linux supports SCHED_RR which allows static priority (1-99).
2801// However, for large multi-threaded applications, SCHED_RR is not only slower
2802// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2803// of 5 runs - Sep 2005).
2804//
2805// The following code actually changes the niceness of kernel-thread/LWP. It
2806// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2807// not the entire user process, and user level threads are 1:1 mapped to kernel
2808// threads. It has always been the case, but could change in the future. For
2809// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2810// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2811
2812int os::java_to_os_priority[MaxPriority + 1] = {
2813  19,              // 0 Entry should never be used
2814
2815   4,              // 1 MinPriority
2816   3,              // 2
2817   2,              // 3
2818
2819   1,              // 4
2820   0,              // 5 NormPriority
2821  -1,              // 6
2822
2823  -2,              // 7
2824  -3,              // 8
2825  -4,              // 9 NearMaxPriority
2826
2827  -5               // 10 MaxPriority
2828};
2829
2830static int prio_init() {
2831  if (ThreadPriorityPolicy == 1) {
2832    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2833    // if effective uid is not root. Perhaps, a more elegant way of doing
2834    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2835    if (geteuid() != 0) {
2836      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2837        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
2838      }
2839      ThreadPriorityPolicy = 0;
2840    }
2841  }
2842  return 0;
2843}
2844
2845OSReturn os::set_native_priority(Thread* thread, int newpri) {
2846  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2847
2848  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2849  return (ret == 0) ? OS_OK : OS_ERR;
2850}
2851
2852OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2853  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2854    *priority_ptr = java_to_os_priority[NormPriority];
2855    return OS_OK;
2856  }
2857
2858  errno = 0;
2859  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2860  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2861}
2862
2863// Hint to the underlying OS that a task switch would not be good.
2864// Void return because it's a hint and can fail.
2865void os::hint_no_preempt() {}
2866
2867////////////////////////////////////////////////////////////////////////////////
2868// suspend/resume support
2869
2870//  the low-level signal-based suspend/resume support is a remnant from the
2871//  old VM-suspension that used to be for java-suspension, safepoints etc,
2872//  within hotspot. Now there is a single use-case for this:
2873//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2874//      that runs in the watcher thread.
2875//  The remaining code is greatly simplified from the more general suspension
2876//  code that used to be used.
2877//
2878//  The protocol is quite simple:
2879//  - suspend:
2880//      - sends a signal to the target thread
2881//      - polls the suspend state of the osthread using a yield loop
2882//      - target thread signal handler (SR_handler) sets suspend state
2883//        and blocks in sigsuspend until continued
2884//  - resume:
2885//      - sets target osthread state to continue
2886//      - sends signal to end the sigsuspend loop in the SR_handler
2887//
2888//  Note that the SR_lock plays no role in this suspend/resume protocol.
2889//
2890
2891static void resume_clear_context(OSThread *osthread) {
2892  osthread->set_ucontext(NULL);
2893  osthread->set_siginfo(NULL);
2894
2895  // notify the suspend action is completed, we have now resumed
2896  osthread->sr.clear_suspended();
2897}
2898
2899static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2900  osthread->set_ucontext(context);
2901  osthread->set_siginfo(siginfo);
2902}
2903
2904//
2905// Handler function invoked when a thread's execution is suspended or
2906// resumed. We have to be careful that only async-safe functions are
2907// called here (Note: most pthread functions are not async safe and
2908// should be avoided.)
2909//
2910// Note: sigwait() is a more natural fit than sigsuspend() from an
2911// interface point of view, but sigwait() prevents the signal hander
2912// from being run. libpthread would get very confused by not having
2913// its signal handlers run and prevents sigwait()'s use with the
2914// mutex granting granting signal.
2915//
2916// Currently only ever called on the VMThread
2917//
2918static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2919  // Save and restore errno to avoid confusing native code with EINTR
2920  // after sigsuspend.
2921  int old_errno = errno;
2922
2923  Thread* thread = Thread::current();
2924  OSThread* osthread = thread->osthread();
2925  assert(thread->is_VM_thread(), "Must be VMThread");
2926  // read current suspend action
2927  int action = osthread->sr.suspend_action();
2928  if (action == SR_SUSPEND) {
2929    suspend_save_context(osthread, siginfo, context);
2930
2931    // Notify the suspend action is about to be completed. do_suspend()
2932    // waits until SR_SUSPENDED is set and then returns. We will wait
2933    // here for a resume signal and that completes the suspend-other
2934    // action. do_suspend/do_resume is always called as a pair from
2935    // the same thread - so there are no races
2936
2937    // notify the caller
2938    osthread->sr.set_suspended();
2939
2940    sigset_t suspend_set;  // signals for sigsuspend()
2941
2942    // get current set of blocked signals and unblock resume signal
2943    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2944    sigdelset(&suspend_set, SR_signum);
2945
2946    // wait here until we are resumed
2947    do {
2948      sigsuspend(&suspend_set);
2949      // ignore all returns until we get a resume signal
2950    } while (osthread->sr.suspend_action() != SR_CONTINUE);
2951
2952    resume_clear_context(osthread);
2953
2954  } else {
2955    assert(action == SR_CONTINUE, "unexpected sr action");
2956    // nothing special to do - just leave the handler
2957  }
2958
2959  errno = old_errno;
2960}
2961
2962
2963static int SR_initialize() {
2964  struct sigaction act;
2965  char *s;
2966  /* Get signal number to use for suspend/resume */
2967  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2968    int sig = ::strtol(s, 0, 10);
2969    if (sig > 0 || sig < _NSIG) {
2970        SR_signum = sig;
2971    }
2972  }
2973
2974  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2975        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2976
2977  sigemptyset(&SR_sigset);
2978  sigaddset(&SR_sigset, SR_signum);
2979
2980  /* Set up signal handler for suspend/resume */
2981  act.sa_flags = SA_RESTART|SA_SIGINFO;
2982  act.sa_handler = (void (*)(int)) SR_handler;
2983
2984  // SR_signum is blocked by default.
2985  // 4528190 - We also need to block pthread restart signal (32 on all
2986  // supported Linux platforms). Note that LinuxThreads need to block
2987  // this signal for all threads to work properly. So we don't have
2988  // to use hard-coded signal number when setting up the mask.
2989  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2990
2991  if (sigaction(SR_signum, &act, 0) == -1) {
2992    return -1;
2993  }
2994
2995  // Save signal flag
2996  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
2997  return 0;
2998}
2999
3000static int SR_finalize() {
3001  return 0;
3002}
3003
3004
3005// returns true on success and false on error - really an error is fatal
3006// but this seems the normal response to library errors
3007static bool do_suspend(OSThread* osthread) {
3008  // mark as suspended and send signal
3009  osthread->sr.set_suspend_action(SR_SUSPEND);
3010  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3011  assert_status(status == 0, status, "pthread_kill");
3012
3013  // check status and wait until notified of suspension
3014  if (status == 0) {
3015    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3016      os::yield_all(i);
3017    }
3018    osthread->sr.set_suspend_action(SR_NONE);
3019    return true;
3020  }
3021  else {
3022    osthread->sr.set_suspend_action(SR_NONE);
3023    return false;
3024  }
3025}
3026
3027static void do_resume(OSThread* osthread) {
3028  assert(osthread->sr.is_suspended(), "thread should be suspended");
3029  osthread->sr.set_suspend_action(SR_CONTINUE);
3030
3031  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3032  assert_status(status == 0, status, "pthread_kill");
3033  // check status and wait unit notified of resumption
3034  if (status == 0) {
3035    for (int i = 0; osthread->sr.is_suspended(); i++) {
3036      os::yield_all(i);
3037    }
3038  }
3039  osthread->sr.set_suspend_action(SR_NONE);
3040}
3041
3042////////////////////////////////////////////////////////////////////////////////
3043// interrupt support
3044
3045void os::interrupt(Thread* thread) {
3046  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3047    "possibility of dangling Thread pointer");
3048
3049  OSThread* osthread = thread->osthread();
3050
3051  if (!osthread->interrupted()) {
3052    osthread->set_interrupted(true);
3053    // More than one thread can get here with the same value of osthread,
3054    // resulting in multiple notifications.  We do, however, want the store
3055    // to interrupted() to be visible to other threads before we execute unpark().
3056    OrderAccess::fence();
3057    ParkEvent * const slp = thread->_SleepEvent ;
3058    if (slp != NULL) slp->unpark() ;
3059  }
3060
3061  // For JSR166. Unpark even if interrupt status already was set
3062  if (thread->is_Java_thread())
3063    ((JavaThread*)thread)->parker()->unpark();
3064
3065  ParkEvent * ev = thread->_ParkEvent ;
3066  if (ev != NULL) ev->unpark() ;
3067
3068}
3069
3070bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3071  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3072    "possibility of dangling Thread pointer");
3073
3074  OSThread* osthread = thread->osthread();
3075
3076  bool interrupted = osthread->interrupted();
3077
3078  if (interrupted && clear_interrupted) {
3079    osthread->set_interrupted(false);
3080    // consider thread->_SleepEvent->reset() ... optional optimization
3081  }
3082
3083  return interrupted;
3084}
3085
3086///////////////////////////////////////////////////////////////////////////////////
3087// signal handling (except suspend/resume)
3088
3089// This routine may be used by user applications as a "hook" to catch signals.
3090// The user-defined signal handler must pass unrecognized signals to this
3091// routine, and if it returns true (non-zero), then the signal handler must
3092// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3093// routine will never retun false (zero), but instead will execute a VM panic
3094// routine kill the process.
3095//
3096// If this routine returns false, it is OK to call it again.  This allows
3097// the user-defined signal handler to perform checks either before or after
3098// the VM performs its own checks.  Naturally, the user code would be making
3099// a serious error if it tried to handle an exception (such as a null check
3100// or breakpoint) that the VM was generating for its own correct operation.
3101//
3102// This routine may recognize any of the following kinds of signals:
3103//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3104// It should be consulted by handlers for any of those signals.
3105//
3106// The caller of this routine must pass in the three arguments supplied
3107// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3108// field of the structure passed to sigaction().  This routine assumes that
3109// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3110//
3111// Note that the VM will print warnings if it detects conflicting signal
3112// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3113//
3114extern "C" int
3115JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3116                        void* ucontext, int abort_if_unrecognized);
3117
3118void signalHandler(int sig, siginfo_t* info, void* uc) {
3119  assert(info != NULL && uc != NULL, "it must be old kernel");
3120  JVM_handle_linux_signal(sig, info, uc, true);
3121}
3122
3123
3124// This boolean allows users to forward their own non-matching signals
3125// to JVM_handle_linux_signal, harmlessly.
3126bool os::Linux::signal_handlers_are_installed = false;
3127
3128// For signal-chaining
3129struct sigaction os::Linux::sigact[MAXSIGNUM];
3130unsigned int os::Linux::sigs = 0;
3131bool os::Linux::libjsig_is_loaded = false;
3132typedef struct sigaction *(*get_signal_t)(int);
3133get_signal_t os::Linux::get_signal_action = NULL;
3134
3135struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3136  struct sigaction *actp = NULL;
3137
3138  if (libjsig_is_loaded) {
3139    // Retrieve the old signal handler from libjsig
3140    actp = (*get_signal_action)(sig);
3141  }
3142  if (actp == NULL) {
3143    // Retrieve the preinstalled signal handler from jvm
3144    actp = get_preinstalled_handler(sig);
3145  }
3146
3147  return actp;
3148}
3149
3150static bool call_chained_handler(struct sigaction *actp, int sig,
3151                                 siginfo_t *siginfo, void *context) {
3152  // Call the old signal handler
3153  if (actp->sa_handler == SIG_DFL) {
3154    // It's more reasonable to let jvm treat it as an unexpected exception
3155    // instead of taking the default action.
3156    return false;
3157  } else if (actp->sa_handler != SIG_IGN) {
3158    if ((actp->sa_flags & SA_NODEFER) == 0) {
3159      // automaticlly block the signal
3160      sigaddset(&(actp->sa_mask), sig);
3161    }
3162
3163    sa_handler_t hand;
3164    sa_sigaction_t sa;
3165    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3166    // retrieve the chained handler
3167    if (siginfo_flag_set) {
3168      sa = actp->sa_sigaction;
3169    } else {
3170      hand = actp->sa_handler;
3171    }
3172
3173    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3174      actp->sa_handler = SIG_DFL;
3175    }
3176
3177    // try to honor the signal mask
3178    sigset_t oset;
3179    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3180
3181    // call into the chained handler
3182    if (siginfo_flag_set) {
3183      (*sa)(sig, siginfo, context);
3184    } else {
3185      (*hand)(sig);
3186    }
3187
3188    // restore the signal mask
3189    pthread_sigmask(SIG_SETMASK, &oset, 0);
3190  }
3191  // Tell jvm's signal handler the signal is taken care of.
3192  return true;
3193}
3194
3195bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3196  bool chained = false;
3197  // signal-chaining
3198  if (UseSignalChaining) {
3199    struct sigaction *actp = get_chained_signal_action(sig);
3200    if (actp != NULL) {
3201      chained = call_chained_handler(actp, sig, siginfo, context);
3202    }
3203  }
3204  return chained;
3205}
3206
3207struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3208  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3209    return &sigact[sig];
3210  }
3211  return NULL;
3212}
3213
3214void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3215  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3216  sigact[sig] = oldAct;
3217  sigs |= (unsigned int)1 << sig;
3218}
3219
3220// for diagnostic
3221int os::Linux::sigflags[MAXSIGNUM];
3222
3223int os::Linux::get_our_sigflags(int sig) {
3224  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3225  return sigflags[sig];
3226}
3227
3228void os::Linux::set_our_sigflags(int sig, int flags) {
3229  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3230  sigflags[sig] = flags;
3231}
3232
3233void os::Linux::set_signal_handler(int sig, bool set_installed) {
3234  // Check for overwrite.
3235  struct sigaction oldAct;
3236  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3237
3238  void* oldhand = oldAct.sa_sigaction
3239                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3240                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3241  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3242      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3243      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3244    if (AllowUserSignalHandlers || !set_installed) {
3245      // Do not overwrite; user takes responsibility to forward to us.
3246      return;
3247    } else if (UseSignalChaining) {
3248      // save the old handler in jvm
3249      save_preinstalled_handler(sig, oldAct);
3250      // libjsig also interposes the sigaction() call below and saves the
3251      // old sigaction on it own.
3252    } else {
3253      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
3254    }
3255  }
3256
3257  struct sigaction sigAct;
3258  sigfillset(&(sigAct.sa_mask));
3259  sigAct.sa_handler = SIG_DFL;
3260  if (!set_installed) {
3261    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3262  } else {
3263    sigAct.sa_sigaction = signalHandler;
3264    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3265  }
3266  // Save flags, which are set by ours
3267  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3268  sigflags[sig] = sigAct.sa_flags;
3269
3270  int ret = sigaction(sig, &sigAct, &oldAct);
3271  assert(ret == 0, "check");
3272
3273  void* oldhand2  = oldAct.sa_sigaction
3274                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3275                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3276  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3277}
3278
3279// install signal handlers for signals that HotSpot needs to
3280// handle in order to support Java-level exception handling.
3281
3282void os::Linux::install_signal_handlers() {
3283  if (!signal_handlers_are_installed) {
3284    signal_handlers_are_installed = true;
3285
3286    // signal-chaining
3287    typedef void (*signal_setting_t)();
3288    signal_setting_t begin_signal_setting = NULL;
3289    signal_setting_t end_signal_setting = NULL;
3290    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3291                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3292    if (begin_signal_setting != NULL) {
3293      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3294                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3295      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3296                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3297      libjsig_is_loaded = true;
3298      assert(UseSignalChaining, "should enable signal-chaining");
3299    }
3300    if (libjsig_is_loaded) {
3301      // Tell libjsig jvm is setting signal handlers
3302      (*begin_signal_setting)();
3303    }
3304
3305    set_signal_handler(SIGSEGV, true);
3306    set_signal_handler(SIGPIPE, true);
3307    set_signal_handler(SIGBUS, true);
3308    set_signal_handler(SIGILL, true);
3309    set_signal_handler(SIGFPE, true);
3310    set_signal_handler(SIGXFSZ, true);
3311
3312    if (libjsig_is_loaded) {
3313      // Tell libjsig jvm finishes setting signal handlers
3314      (*end_signal_setting)();
3315    }
3316
3317    // We don't activate signal checker if libjsig is in place, we trust ourselves
3318    // and if UserSignalHandler is installed all bets are off
3319    if (CheckJNICalls) {
3320      if (libjsig_is_loaded) {
3321        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3322        check_signals = false;
3323      }
3324      if (AllowUserSignalHandlers) {
3325        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3326        check_signals = false;
3327      }
3328    }
3329  }
3330}
3331
3332// This is the fastest way to get thread cpu time on Linux.
3333// Returns cpu time (user+sys) for any thread, not only for current.
3334// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3335// It might work on 2.6.10+ with a special kernel/glibc patch.
3336// For reference, please, see IEEE Std 1003.1-2004:
3337//   http://www.unix.org/single_unix_specification
3338
3339jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3340  struct timespec tp;
3341  int rc = os::Linux::clock_gettime(clockid, &tp);
3342  assert(rc == 0, "clock_gettime is expected to return 0 code");
3343
3344  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3345}
3346
3347/////
3348// glibc on Linux platform uses non-documented flag
3349// to indicate, that some special sort of signal
3350// trampoline is used.
3351// We will never set this flag, and we should
3352// ignore this flag in our diagnostic
3353#ifdef SIGNIFICANT_SIGNAL_MASK
3354#undef SIGNIFICANT_SIGNAL_MASK
3355#endif
3356#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3357
3358static const char* get_signal_handler_name(address handler,
3359                                           char* buf, int buflen) {
3360  int offset;
3361  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3362  if (found) {
3363    // skip directory names
3364    const char *p1, *p2;
3365    p1 = buf;
3366    size_t len = strlen(os::file_separator());
3367    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3368    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3369  } else {
3370    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3371  }
3372  return buf;
3373}
3374
3375static void print_signal_handler(outputStream* st, int sig,
3376                                 char* buf, size_t buflen) {
3377  struct sigaction sa;
3378
3379  sigaction(sig, NULL, &sa);
3380
3381  // See comment for SIGNIFICANT_SIGNAL_MASK define
3382  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3383
3384  st->print("%s: ", os::exception_name(sig, buf, buflen));
3385
3386  address handler = (sa.sa_flags & SA_SIGINFO)
3387    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3388    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3389
3390  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3391    st->print("SIG_DFL");
3392  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3393    st->print("SIG_IGN");
3394  } else {
3395    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3396  }
3397
3398  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3399
3400  address rh = VMError::get_resetted_sighandler(sig);
3401  // May be, handler was resetted by VMError?
3402  if(rh != NULL) {
3403    handler = rh;
3404    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3405  }
3406
3407  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3408
3409  // Check: is it our handler?
3410  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3411     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3412    // It is our signal handler
3413    // check for flags, reset system-used one!
3414    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3415      st->print(
3416                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3417                os::Linux::get_our_sigflags(sig));
3418    }
3419  }
3420  st->cr();
3421}
3422
3423
3424#define DO_SIGNAL_CHECK(sig) \
3425  if (!sigismember(&check_signal_done, sig)) \
3426    os::Linux::check_signal_handler(sig)
3427
3428// This method is a periodic task to check for misbehaving JNI applications
3429// under CheckJNI, we can add any periodic checks here
3430
3431void os::run_periodic_checks() {
3432
3433  if (check_signals == false) return;
3434
3435  // SEGV and BUS if overridden could potentially prevent
3436  // generation of hs*.log in the event of a crash, debugging
3437  // such a case can be very challenging, so we absolutely
3438  // check the following for a good measure:
3439  DO_SIGNAL_CHECK(SIGSEGV);
3440  DO_SIGNAL_CHECK(SIGILL);
3441  DO_SIGNAL_CHECK(SIGFPE);
3442  DO_SIGNAL_CHECK(SIGBUS);
3443  DO_SIGNAL_CHECK(SIGPIPE);
3444  DO_SIGNAL_CHECK(SIGXFSZ);
3445
3446
3447  // ReduceSignalUsage allows the user to override these handlers
3448  // see comments at the very top and jvm_solaris.h
3449  if (!ReduceSignalUsage) {
3450    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3451    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3452    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3453    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3454  }
3455
3456  DO_SIGNAL_CHECK(SR_signum);
3457  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3458}
3459
3460typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3461
3462static os_sigaction_t os_sigaction = NULL;
3463
3464void os::Linux::check_signal_handler(int sig) {
3465  char buf[O_BUFLEN];
3466  address jvmHandler = NULL;
3467
3468
3469  struct sigaction act;
3470  if (os_sigaction == NULL) {
3471    // only trust the default sigaction, in case it has been interposed
3472    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3473    if (os_sigaction == NULL) return;
3474  }
3475
3476  os_sigaction(sig, (struct sigaction*)NULL, &act);
3477
3478
3479  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3480
3481  address thisHandler = (act.sa_flags & SA_SIGINFO)
3482    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3483    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3484
3485
3486  switch(sig) {
3487  case SIGSEGV:
3488  case SIGBUS:
3489  case SIGFPE:
3490  case SIGPIPE:
3491  case SIGILL:
3492  case SIGXFSZ:
3493    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3494    break;
3495
3496  case SHUTDOWN1_SIGNAL:
3497  case SHUTDOWN2_SIGNAL:
3498  case SHUTDOWN3_SIGNAL:
3499  case BREAK_SIGNAL:
3500    jvmHandler = (address)user_handler();
3501    break;
3502
3503  case INTERRUPT_SIGNAL:
3504    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3505    break;
3506
3507  default:
3508    if (sig == SR_signum) {
3509      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3510    } else {
3511      return;
3512    }
3513    break;
3514  }
3515
3516  if (thisHandler != jvmHandler) {
3517    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3518    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3519    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3520    // No need to check this sig any longer
3521    sigaddset(&check_signal_done, sig);
3522  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3523    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3524    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3525    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3526    // No need to check this sig any longer
3527    sigaddset(&check_signal_done, sig);
3528  }
3529
3530  // Dump all the signal
3531  if (sigismember(&check_signal_done, sig)) {
3532    print_signal_handlers(tty, buf, O_BUFLEN);
3533  }
3534}
3535
3536extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3537
3538extern bool signal_name(int signo, char* buf, size_t len);
3539
3540const char* os::exception_name(int exception_code, char* buf, size_t size) {
3541  if (0 < exception_code && exception_code <= SIGRTMAX) {
3542    // signal
3543    if (!signal_name(exception_code, buf, size)) {
3544      jio_snprintf(buf, size, "SIG%d", exception_code);
3545    }
3546    return buf;
3547  } else {
3548    return NULL;
3549  }
3550}
3551
3552// this is called _before_ the most of global arguments have been parsed
3553void os::init(void) {
3554  char dummy;   /* used to get a guess on initial stack address */
3555//  first_hrtime = gethrtime();
3556
3557  // With LinuxThreads the JavaMain thread pid (primordial thread)
3558  // is different than the pid of the java launcher thread.
3559  // So, on Linux, the launcher thread pid is passed to the VM
3560  // via the sun.java.launcher.pid property.
3561  // Use this property instead of getpid() if it was correctly passed.
3562  // See bug 6351349.
3563  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3564
3565  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3566
3567  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3568
3569  init_random(1234567);
3570
3571  ThreadCritical::initialize();
3572
3573  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3574  if (Linux::page_size() == -1) {
3575    fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
3576  }
3577  init_page_sizes((size_t) Linux::page_size());
3578
3579  Linux::initialize_system_info();
3580
3581  // main_thread points to the aboriginal thread
3582  Linux::_main_thread = pthread_self();
3583
3584  Linux::clock_init();
3585  initial_time_count = os::elapsed_counter();
3586}
3587
3588// To install functions for atexit system call
3589extern "C" {
3590  static void perfMemory_exit_helper() {
3591    perfMemory_exit();
3592  }
3593}
3594
3595// this is called _after_ the global arguments have been parsed
3596jint os::init_2(void)
3597{
3598  Linux::fast_thread_clock_init();
3599
3600  // Allocate a single page and mark it as readable for safepoint polling
3601  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3602  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3603
3604  os::set_polling_page( polling_page );
3605
3606#ifndef PRODUCT
3607  if(Verbose && PrintMiscellaneous)
3608    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3609#endif
3610
3611  if (!UseMembar) {
3612    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3613    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3614    os::set_memory_serialize_page( mem_serialize_page );
3615
3616#ifndef PRODUCT
3617    if(Verbose && PrintMiscellaneous)
3618      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3619#endif
3620  }
3621
3622  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3623
3624  // initialize suspend/resume support - must do this before signal_sets_init()
3625  if (SR_initialize() != 0) {
3626    perror("SR_initialize failed");
3627    return JNI_ERR;
3628  }
3629
3630  Linux::signal_sets_init();
3631  Linux::install_signal_handlers();
3632
3633  size_t threadStackSizeInBytes = ThreadStackSize * K;
3634  if (threadStackSizeInBytes != 0 &&
3635      threadStackSizeInBytes < Linux::min_stack_allowed) {
3636        tty->print_cr("\nThe stack size specified is too small, "
3637                      "Specify at least %dk",
3638                      Linux::min_stack_allowed / K);
3639        return JNI_ERR;
3640  }
3641
3642  // Make the stack size a multiple of the page size so that
3643  // the yellow/red zones can be guarded.
3644  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3645        vm_page_size()));
3646
3647  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3648
3649  Linux::libpthread_init();
3650  if (PrintMiscellaneous && (Verbose || WizardMode)) {
3651     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3652          Linux::glibc_version(), Linux::libpthread_version(),
3653          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3654  }
3655
3656  if (UseNUMA) {
3657    Linux::libnuma_init();
3658  }
3659
3660  if (MaxFDLimit) {
3661    // set the number of file descriptors to max. print out error
3662    // if getrlimit/setrlimit fails but continue regardless.
3663    struct rlimit nbr_files;
3664    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3665    if (status != 0) {
3666      if (PrintMiscellaneous && (Verbose || WizardMode))
3667        perror("os::init_2 getrlimit failed");
3668    } else {
3669      nbr_files.rlim_cur = nbr_files.rlim_max;
3670      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3671      if (status != 0) {
3672        if (PrintMiscellaneous && (Verbose || WizardMode))
3673          perror("os::init_2 setrlimit failed");
3674      }
3675    }
3676  }
3677
3678  // Initialize lock used to serialize thread creation (see os::create_thread)
3679  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3680
3681  // Initialize HPI.
3682  jint hpi_result = hpi::initialize();
3683  if (hpi_result != JNI_OK) {
3684    tty->print_cr("There was an error trying to initialize the HPI library.");
3685    return hpi_result;
3686  }
3687
3688  // at-exit methods are called in the reverse order of their registration.
3689  // atexit functions are called on return from main or as a result of a
3690  // call to exit(3C). There can be only 32 of these functions registered
3691  // and atexit() does not set errno.
3692
3693  if (PerfAllowAtExitRegistration) {
3694    // only register atexit functions if PerfAllowAtExitRegistration is set.
3695    // atexit functions can be delayed until process exit time, which
3696    // can be problematic for embedded VM situations. Embedded VMs should
3697    // call DestroyJavaVM() to assure that VM resources are released.
3698
3699    // note: perfMemory_exit_helper atexit function may be removed in
3700    // the future if the appropriate cleanup code can be added to the
3701    // VM_Exit VMOperation's doit method.
3702    if (atexit(perfMemory_exit_helper) != 0) {
3703      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3704    }
3705  }
3706
3707  // initialize thread priority policy
3708  prio_init();
3709
3710  return JNI_OK;
3711}
3712
3713// Mark the polling page as unreadable
3714void os::make_polling_page_unreadable(void) {
3715  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
3716    fatal("Could not disable polling page");
3717};
3718
3719// Mark the polling page as readable
3720void os::make_polling_page_readable(void) {
3721  if( !protect_memory((char *)_polling_page, Linux::page_size()) )
3722    fatal("Could not enable polling page");
3723};
3724
3725int os::active_processor_count() {
3726  // Linux doesn't yet have a (official) notion of processor sets,
3727  // so just return the number of online processors.
3728  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3729  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3730  return online_cpus;
3731}
3732
3733bool os::distribute_processes(uint length, uint* distribution) {
3734  // Not yet implemented.
3735  return false;
3736}
3737
3738bool os::bind_to_processor(uint processor_id) {
3739  // Not yet implemented.
3740  return false;
3741}
3742
3743///
3744
3745// Suspends the target using the signal mechanism and then grabs the PC before
3746// resuming the target. Used by the flat-profiler only
3747ExtendedPC os::get_thread_pc(Thread* thread) {
3748  // Make sure that it is called by the watcher for the VMThread
3749  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3750  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3751
3752  ExtendedPC epc;
3753
3754  OSThread* osthread = thread->osthread();
3755  if (do_suspend(osthread)) {
3756    if (osthread->ucontext() != NULL) {
3757      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
3758    } else {
3759      // NULL context is unexpected, double-check this is the VMThread
3760      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3761    }
3762    do_resume(osthread);
3763  }
3764  // failure means pthread_kill failed for some reason - arguably this is
3765  // a fatal problem, but such problems are ignored elsewhere
3766
3767  return epc;
3768}
3769
3770int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3771{
3772   if (is_NPTL()) {
3773      return pthread_cond_timedwait(_cond, _mutex, _abstime);
3774   } else {
3775#ifndef IA64
3776      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
3777      // word back to default 64bit precision if condvar is signaled. Java
3778      // wants 53bit precision.  Save and restore current value.
3779      int fpu = get_fpu_control_word();
3780#endif // IA64
3781      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
3782#ifndef IA64
3783      set_fpu_control_word(fpu);
3784#endif // IA64
3785      return status;
3786   }
3787}
3788
3789////////////////////////////////////////////////////////////////////////////////
3790// debug support
3791
3792#ifndef PRODUCT
3793static address same_page(address x, address y) {
3794  int page_bits = -os::vm_page_size();
3795  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3796    return x;
3797  else if (x > y)
3798    return (address)(intptr_t(y) | ~page_bits) + 1;
3799  else
3800    return (address)(intptr_t(y) & page_bits);
3801}
3802
3803bool os::find(address addr) {
3804  Dl_info dlinfo;
3805  memset(&dlinfo, 0, sizeof(dlinfo));
3806  if (dladdr(addr, &dlinfo)) {
3807    tty->print(PTR_FORMAT ": ", addr);
3808    if (dlinfo.dli_sname != NULL) {
3809      tty->print("%s+%#x", dlinfo.dli_sname,
3810                 addr - (intptr_t)dlinfo.dli_saddr);
3811    } else if (dlinfo.dli_fname) {
3812      tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3813    } else {
3814      tty->print("<absolute address>");
3815    }
3816    if (dlinfo.dli_fname) {
3817      tty->print(" in %s", dlinfo.dli_fname);
3818    }
3819    if (dlinfo.dli_fbase) {
3820      tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3821    }
3822    tty->cr();
3823
3824    if (Verbose) {
3825      // decode some bytes around the PC
3826      address begin = same_page(addr-40, addr);
3827      address end   = same_page(addr+40, addr);
3828      address       lowest = (address) dlinfo.dli_sname;
3829      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3830      if (begin < lowest)  begin = lowest;
3831      Dl_info dlinfo2;
3832      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3833          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3834        end = (address) dlinfo2.dli_saddr;
3835      Disassembler::decode(begin, end);
3836    }
3837    return true;
3838  }
3839  return false;
3840}
3841
3842#endif
3843
3844////////////////////////////////////////////////////////////////////////////////
3845// misc
3846
3847// This does not do anything on Linux. This is basically a hook for being
3848// able to use structured exception handling (thread-local exception filters)
3849// on, e.g., Win32.
3850void
3851os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3852                         JavaCallArguments* args, Thread* thread) {
3853  f(value, method, args, thread);
3854}
3855
3856void os::print_statistics() {
3857}
3858
3859int os::message_box(const char* title, const char* message) {
3860  int i;
3861  fdStream err(defaultStream::error_fd());
3862  for (i = 0; i < 78; i++) err.print_raw("=");
3863  err.cr();
3864  err.print_raw_cr(title);
3865  for (i = 0; i < 78; i++) err.print_raw("-");
3866  err.cr();
3867  err.print_raw_cr(message);
3868  for (i = 0; i < 78; i++) err.print_raw("=");
3869  err.cr();
3870
3871  char buf[16];
3872  // Prevent process from exiting upon "read error" without consuming all CPU
3873  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3874
3875  return buf[0] == 'y' || buf[0] == 'Y';
3876}
3877
3878int os::stat(const char *path, struct stat *sbuf) {
3879  char pathbuf[MAX_PATH];
3880  if (strlen(path) > MAX_PATH - 1) {
3881    errno = ENAMETOOLONG;
3882    return -1;
3883  }
3884  hpi::native_path(strcpy(pathbuf, path));
3885  return ::stat(pathbuf, sbuf);
3886}
3887
3888bool os::check_heap(bool force) {
3889  return true;
3890}
3891
3892int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3893  return ::vsnprintf(buf, count, format, args);
3894}
3895
3896// Is a (classpath) directory empty?
3897bool os::dir_is_empty(const char* path) {
3898  DIR *dir = NULL;
3899  struct dirent *ptr;
3900
3901  dir = opendir(path);
3902  if (dir == NULL) return true;
3903
3904  /* Scan the directory */
3905  bool result = true;
3906  char buf[sizeof(struct dirent) + MAX_PATH];
3907  while (result && (ptr = ::readdir(dir)) != NULL) {
3908    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3909      result = false;
3910    }
3911  }
3912  closedir(dir);
3913  return result;
3914}
3915
3916// create binary file, rewriting existing file if required
3917int os::create_binary_file(const char* path, bool rewrite_existing) {
3918  int oflags = O_WRONLY | O_CREAT;
3919  if (!rewrite_existing) {
3920    oflags |= O_EXCL;
3921  }
3922  return ::open64(path, oflags, S_IREAD | S_IWRITE);
3923}
3924
3925// return current position of file pointer
3926jlong os::current_file_offset(int fd) {
3927  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3928}
3929
3930// move file pointer to the specified offset
3931jlong os::seek_to_file_offset(int fd, jlong offset) {
3932  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3933}
3934
3935// Map a block of memory.
3936char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3937                     char *addr, size_t bytes, bool read_only,
3938                     bool allow_exec) {
3939  int prot;
3940  int flags;
3941
3942  if (read_only) {
3943    prot = PROT_READ;
3944    flags = MAP_SHARED;
3945  } else {
3946    prot = PROT_READ | PROT_WRITE;
3947    flags = MAP_PRIVATE;
3948  }
3949
3950  if (allow_exec) {
3951    prot |= PROT_EXEC;
3952  }
3953
3954  if (addr != NULL) {
3955    flags |= MAP_FIXED;
3956  }
3957
3958  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3959                                     fd, file_offset);
3960  if (mapped_address == MAP_FAILED) {
3961    return NULL;
3962  }
3963  return mapped_address;
3964}
3965
3966
3967// Remap a block of memory.
3968char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3969                       char *addr, size_t bytes, bool read_only,
3970                       bool allow_exec) {
3971  // same as map_memory() on this OS
3972  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3973                        allow_exec);
3974}
3975
3976
3977// Unmap a block of memory.
3978bool os::unmap_memory(char* addr, size_t bytes) {
3979  return munmap(addr, bytes) == 0;
3980}
3981
3982static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
3983
3984static clockid_t thread_cpu_clockid(Thread* thread) {
3985  pthread_t tid = thread->osthread()->pthread_id();
3986  clockid_t clockid;
3987
3988  // Get thread clockid
3989  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
3990  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
3991  return clockid;
3992}
3993
3994// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3995// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3996// of a thread.
3997//
3998// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3999// the fast estimate available on the platform.
4000
4001jlong os::current_thread_cpu_time() {
4002  if (os::Linux::supports_fast_thread_cpu_time()) {
4003    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4004  } else {
4005    // return user + sys since the cost is the same
4006    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4007  }
4008}
4009
4010jlong os::thread_cpu_time(Thread* thread) {
4011  // consistent with what current_thread_cpu_time() returns
4012  if (os::Linux::supports_fast_thread_cpu_time()) {
4013    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4014  } else {
4015    return slow_thread_cpu_time(thread, true /* user + sys */);
4016  }
4017}
4018
4019jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4020  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4021    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4022  } else {
4023    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4024  }
4025}
4026
4027jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4028  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4029    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4030  } else {
4031    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4032  }
4033}
4034
4035//
4036//  -1 on error.
4037//
4038
4039static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4040  static bool proc_pid_cpu_avail = true;
4041  static bool proc_task_unchecked = true;
4042  static const char *proc_stat_path = "/proc/%d/stat";
4043  pid_t  tid = thread->osthread()->thread_id();
4044  int i;
4045  char *s;
4046  char stat[2048];
4047  int statlen;
4048  char proc_name[64];
4049  int count;
4050  long sys_time, user_time;
4051  char string[64];
4052  int idummy;
4053  long ldummy;
4054  FILE *fp;
4055
4056  // We first try accessing /proc/<pid>/cpu since this is faster to
4057  // process.  If this file is not present (linux kernels 2.5 and above)
4058  // then we open /proc/<pid>/stat.
4059  if ( proc_pid_cpu_avail ) {
4060    sprintf(proc_name, "/proc/%d/cpu", tid);
4061    fp =  fopen(proc_name, "r");
4062    if ( fp != NULL ) {
4063      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4064      fclose(fp);
4065      if ( count != 3 ) return -1;
4066
4067      if (user_sys_cpu_time) {
4068        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4069      } else {
4070        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4071      }
4072    }
4073    else proc_pid_cpu_avail = false;
4074  }
4075
4076  // The /proc/<tid>/stat aggregates per-process usage on
4077  // new Linux kernels 2.6+ where NPTL is supported.
4078  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4079  // See bug 6328462.
4080  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4081  // and possibly in some other cases, so we check its availability.
4082  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4083    // This is executed only once
4084    proc_task_unchecked = false;
4085    fp = fopen("/proc/self/task", "r");
4086    if (fp != NULL) {
4087      proc_stat_path = "/proc/self/task/%d/stat";
4088      fclose(fp);
4089    }
4090  }
4091
4092  sprintf(proc_name, proc_stat_path, tid);
4093  fp = fopen(proc_name, "r");
4094  if ( fp == NULL ) return -1;
4095  statlen = fread(stat, 1, 2047, fp);
4096  stat[statlen] = '\0';
4097  fclose(fp);
4098
4099  // Skip pid and the command string. Note that we could be dealing with
4100  // weird command names, e.g. user could decide to rename java launcher
4101  // to "java 1.4.2 :)", then the stat file would look like
4102  //                1234 (java 1.4.2 :)) R ... ...
4103  // We don't really need to know the command string, just find the last
4104  // occurrence of ")" and then start parsing from there. See bug 4726580.
4105  s = strrchr(stat, ')');
4106  i = 0;
4107  if (s == NULL ) return -1;
4108
4109  // Skip blank chars
4110  do s++; while (isspace(*s));
4111
4112  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4113                 &idummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4114                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4115                 &user_time, &sys_time);
4116  if ( count != 13 ) return -1;
4117  if (user_sys_cpu_time) {
4118    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4119  } else {
4120    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4121  }
4122}
4123
4124void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4125  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4126  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4127  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4128  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4129}
4130
4131void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4132  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4133  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4134  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4135  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4136}
4137
4138bool os::is_thread_cpu_time_supported() {
4139  return true;
4140}
4141
4142// System loadavg support.  Returns -1 if load average cannot be obtained.
4143// Linux doesn't yet have a (official) notion of processor sets,
4144// so just return the system wide load average.
4145int os::loadavg(double loadavg[], int nelem) {
4146  return ::getloadavg(loadavg, nelem);
4147}
4148
4149void os::pause() {
4150  char filename[MAX_PATH];
4151  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4152    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4153  } else {
4154    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4155  }
4156
4157  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4158  if (fd != -1) {
4159    struct stat buf;
4160    close(fd);
4161    while (::stat(filename, &buf) == 0) {
4162      (void)::poll(NULL, 0, 100);
4163    }
4164  } else {
4165    jio_fprintf(stderr,
4166      "Could not open pause file '%s', continuing immediately.\n", filename);
4167  }
4168}
4169
4170extern "C" {
4171
4172/**
4173 * NOTE: the following code is to keep the green threads code
4174 * in the libjava.so happy. Once the green threads is removed,
4175 * these code will no longer be needed.
4176 */
4177int
4178jdk_waitpid(pid_t pid, int* status, int options) {
4179    return waitpid(pid, status, options);
4180}
4181
4182int
4183fork1() {
4184    return fork();
4185}
4186
4187int
4188jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4189    return sem_init(sem, pshared, value);
4190}
4191
4192int
4193jdk_sem_post(sem_t *sem) {
4194    return sem_post(sem);
4195}
4196
4197int
4198jdk_sem_wait(sem_t *sem) {
4199    return sem_wait(sem);
4200}
4201
4202int
4203jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4204    return pthread_sigmask(how , newmask, oldmask);
4205}
4206
4207}
4208
4209// Refer to the comments in os_solaris.cpp park-unpark.
4210//
4211// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4212// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4213// For specifics regarding the bug see GLIBC BUGID 261237 :
4214//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4215// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4216// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4217// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4218// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4219// and monitorenter when we're using 1-0 locking.  All those operations may result in
4220// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4221// of libpthread avoids the problem, but isn't practical.
4222//
4223// Possible remedies:
4224//
4225// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4226//      This is palliative and probabilistic, however.  If the thread is preempted
4227//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4228//      than the minimum period may have passed, and the abstime may be stale (in the
4229//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4230//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4231//
4232// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4233//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4234//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4235//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4236//      thread.
4237//
4238// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4239//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4240//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4241//      This also works well.  In fact it avoids kernel-level scalability impediments
4242//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4243//      timers in a graceful fashion.
4244//
4245// 4.   When the abstime value is in the past it appears that control returns
4246//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4247//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4248//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4249//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4250//      It may be possible to avoid reinitialization by checking the return
4251//      value from pthread_cond_timedwait().  In addition to reinitializing the
4252//      condvar we must establish the invariant that cond_signal() is only called
4253//      within critical sections protected by the adjunct mutex.  This prevents
4254//      cond_signal() from "seeing" a condvar that's in the midst of being
4255//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4256//      desirable signal-after-unlock optimization that avoids futile context switching.
4257//
4258//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4259//      structure when a condvar is used or initialized.  cond_destroy()  would
4260//      release the helper structure.  Our reinitialize-after-timedwait fix
4261//      put excessive stress on malloc/free and locks protecting the c-heap.
4262//
4263// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4264// It may be possible to refine (4) by checking the kernel and NTPL verisons
4265// and only enabling the work-around for vulnerable environments.
4266
4267// utility to compute the abstime argument to timedwait:
4268// millis is the relative timeout time
4269// abstime will be the absolute timeout time
4270// TODO: replace compute_abstime() with unpackTime()
4271
4272static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4273  if (millis < 0)  millis = 0;
4274  struct timeval now;
4275  int status = gettimeofday(&now, NULL);
4276  assert(status == 0, "gettimeofday");
4277  jlong seconds = millis / 1000;
4278  millis %= 1000;
4279  if (seconds > 50000000) { // see man cond_timedwait(3T)
4280    seconds = 50000000;
4281  }
4282  abstime->tv_sec = now.tv_sec  + seconds;
4283  long       usec = now.tv_usec + millis * 1000;
4284  if (usec >= 1000000) {
4285    abstime->tv_sec += 1;
4286    usec -= 1000000;
4287  }
4288  abstime->tv_nsec = usec * 1000;
4289  return abstime;
4290}
4291
4292
4293// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4294// Conceptually TryPark() should be equivalent to park(0).
4295
4296int os::PlatformEvent::TryPark() {
4297  for (;;) {
4298    const int v = _Event ;
4299    guarantee ((v == 0) || (v == 1), "invariant") ;
4300    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4301  }
4302}
4303
4304void os::PlatformEvent::park() {       // AKA "down()"
4305  // Invariant: Only the thread associated with the Event/PlatformEvent
4306  // may call park().
4307  // TODO: assert that _Assoc != NULL or _Assoc == Self
4308  int v ;
4309  for (;;) {
4310      v = _Event ;
4311      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4312  }
4313  guarantee (v >= 0, "invariant") ;
4314  if (v == 0) {
4315     // Do this the hard way by blocking ...
4316     int status = pthread_mutex_lock(_mutex);
4317     assert_status(status == 0, status, "mutex_lock");
4318     guarantee (_nParked == 0, "invariant") ;
4319     ++ _nParked ;
4320     while (_Event < 0) {
4321        status = pthread_cond_wait(_cond, _mutex);
4322        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4323        // Treat this the same as if the wait was interrupted
4324        if (status == ETIME) { status = EINTR; }
4325        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4326     }
4327     -- _nParked ;
4328
4329    // In theory we could move the ST of 0 into _Event past the unlock(),
4330    // but then we'd need a MEMBAR after the ST.
4331    _Event = 0 ;
4332     status = pthread_mutex_unlock(_mutex);
4333     assert_status(status == 0, status, "mutex_unlock");
4334  }
4335  guarantee (_Event >= 0, "invariant") ;
4336}
4337
4338int os::PlatformEvent::park(jlong millis) {
4339  guarantee (_nParked == 0, "invariant") ;
4340
4341  int v ;
4342  for (;;) {
4343      v = _Event ;
4344      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4345  }
4346  guarantee (v >= 0, "invariant") ;
4347  if (v != 0) return OS_OK ;
4348
4349  // We do this the hard way, by blocking the thread.
4350  // Consider enforcing a minimum timeout value.
4351  struct timespec abst;
4352  compute_abstime(&abst, millis);
4353
4354  int ret = OS_TIMEOUT;
4355  int status = pthread_mutex_lock(_mutex);
4356  assert_status(status == 0, status, "mutex_lock");
4357  guarantee (_nParked == 0, "invariant") ;
4358  ++_nParked ;
4359
4360  // Object.wait(timo) will return because of
4361  // (a) notification
4362  // (b) timeout
4363  // (c) thread.interrupt
4364  //
4365  // Thread.interrupt and object.notify{All} both call Event::set.
4366  // That is, we treat thread.interrupt as a special case of notification.
4367  // The underlying Solaris implementation, cond_timedwait, admits
4368  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4369  // JVM from making those visible to Java code.  As such, we must
4370  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4371  //
4372  // TODO: properly differentiate simultaneous notify+interrupt.
4373  // In that case, we should propagate the notify to another waiter.
4374
4375  while (_Event < 0) {
4376    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4377    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4378      pthread_cond_destroy (_cond);
4379      pthread_cond_init (_cond, NULL) ;
4380    }
4381    assert_status(status == 0 || status == EINTR ||
4382                  status == ETIME || status == ETIMEDOUT,
4383                  status, "cond_timedwait");
4384    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4385    if (status == ETIME || status == ETIMEDOUT) break ;
4386    // We consume and ignore EINTR and spurious wakeups.
4387  }
4388  --_nParked ;
4389  if (_Event >= 0) {
4390     ret = OS_OK;
4391  }
4392  _Event = 0 ;
4393  status = pthread_mutex_unlock(_mutex);
4394  assert_status(status == 0, status, "mutex_unlock");
4395  assert (_nParked == 0, "invariant") ;
4396  return ret;
4397}
4398
4399void os::PlatformEvent::unpark() {
4400  int v, AnyWaiters ;
4401  for (;;) {
4402      v = _Event ;
4403      if (v > 0) {
4404         // The LD of _Event could have reordered or be satisfied
4405         // by a read-aside from this processor's write buffer.
4406         // To avoid problems execute a barrier and then
4407         // ratify the value.
4408         OrderAccess::fence() ;
4409         if (_Event == v) return ;
4410         continue ;
4411      }
4412      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4413  }
4414  if (v < 0) {
4415     // Wait for the thread associated with the event to vacate
4416     int status = pthread_mutex_lock(_mutex);
4417     assert_status(status == 0, status, "mutex_lock");
4418     AnyWaiters = _nParked ;
4419     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4420     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4421        AnyWaiters = 0 ;
4422        pthread_cond_signal (_cond);
4423     }
4424     status = pthread_mutex_unlock(_mutex);
4425     assert_status(status == 0, status, "mutex_unlock");
4426     if (AnyWaiters != 0) {
4427        status = pthread_cond_signal(_cond);
4428        assert_status(status == 0, status, "cond_signal");
4429     }
4430  }
4431
4432  // Note that we signal() _after dropping the lock for "immortal" Events.
4433  // This is safe and avoids a common class of  futile wakeups.  In rare
4434  // circumstances this can cause a thread to return prematurely from
4435  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4436  // simply re-test the condition and re-park itself.
4437}
4438
4439
4440// JSR166
4441// -------------------------------------------------------
4442
4443/*
4444 * The solaris and linux implementations of park/unpark are fairly
4445 * conservative for now, but can be improved. They currently use a
4446 * mutex/condvar pair, plus a a count.
4447 * Park decrements count if > 0, else does a condvar wait.  Unpark
4448 * sets count to 1 and signals condvar.  Only one thread ever waits
4449 * on the condvar. Contention seen when trying to park implies that someone
4450 * is unparking you, so don't wait. And spurious returns are fine, so there
4451 * is no need to track notifications.
4452 */
4453
4454
4455#define NANOSECS_PER_SEC 1000000000
4456#define NANOSECS_PER_MILLISEC 1000000
4457#define MAX_SECS 100000000
4458/*
4459 * This code is common to linux and solaris and will be moved to a
4460 * common place in dolphin.
4461 *
4462 * The passed in time value is either a relative time in nanoseconds
4463 * or an absolute time in milliseconds. Either way it has to be unpacked
4464 * into suitable seconds and nanoseconds components and stored in the
4465 * given timespec structure.
4466 * Given time is a 64-bit value and the time_t used in the timespec is only
4467 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4468 * overflow if times way in the future are given. Further on Solaris versions
4469 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4470 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4471 * As it will be 28 years before "now + 100000000" will overflow we can
4472 * ignore overflow and just impose a hard-limit on seconds using the value
4473 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4474 * years from "now".
4475 */
4476
4477static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4478  assert (time > 0, "convertTime");
4479
4480  struct timeval now;
4481  int status = gettimeofday(&now, NULL);
4482  assert(status == 0, "gettimeofday");
4483
4484  time_t max_secs = now.tv_sec + MAX_SECS;
4485
4486  if (isAbsolute) {
4487    jlong secs = time / 1000;
4488    if (secs > max_secs) {
4489      absTime->tv_sec = max_secs;
4490    }
4491    else {
4492      absTime->tv_sec = secs;
4493    }
4494    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4495  }
4496  else {
4497    jlong secs = time / NANOSECS_PER_SEC;
4498    if (secs >= MAX_SECS) {
4499      absTime->tv_sec = max_secs;
4500      absTime->tv_nsec = 0;
4501    }
4502    else {
4503      absTime->tv_sec = now.tv_sec + secs;
4504      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4505      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4506        absTime->tv_nsec -= NANOSECS_PER_SEC;
4507        ++absTime->tv_sec; // note: this must be <= max_secs
4508      }
4509    }
4510  }
4511  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4512  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4513  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4514  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4515}
4516
4517void Parker::park(bool isAbsolute, jlong time) {
4518  // Optional fast-path check:
4519  // Return immediately if a permit is available.
4520  if (_counter > 0) {
4521      _counter = 0 ;
4522      return ;
4523  }
4524
4525  Thread* thread = Thread::current();
4526  assert(thread->is_Java_thread(), "Must be JavaThread");
4527  JavaThread *jt = (JavaThread *)thread;
4528
4529  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4530  // Check interrupt before trying to wait
4531  if (Thread::is_interrupted(thread, false)) {
4532    return;
4533  }
4534
4535  // Next, demultiplex/decode time arguments
4536  timespec absTime;
4537  if (time < 0) { // don't wait at all
4538    return;
4539  }
4540  if (time > 0) {
4541    unpackTime(&absTime, isAbsolute, time);
4542  }
4543
4544
4545  // Enter safepoint region
4546  // Beware of deadlocks such as 6317397.
4547  // The per-thread Parker:: mutex is a classic leaf-lock.
4548  // In particular a thread must never block on the Threads_lock while
4549  // holding the Parker:: mutex.  If safepoints are pending both the
4550  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4551  ThreadBlockInVM tbivm(jt);
4552
4553  // Don't wait if cannot get lock since interference arises from
4554  // unblocking.  Also. check interrupt before trying wait
4555  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4556    return;
4557  }
4558
4559  int status ;
4560  if (_counter > 0)  { // no wait needed
4561    _counter = 0;
4562    status = pthread_mutex_unlock(_mutex);
4563    assert (status == 0, "invariant") ;
4564    return;
4565  }
4566
4567#ifdef ASSERT
4568  // Don't catch signals while blocked; let the running threads have the signals.
4569  // (This allows a debugger to break into the running thread.)
4570  sigset_t oldsigs;
4571  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4572  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4573#endif
4574
4575  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4576  jt->set_suspend_equivalent();
4577  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4578
4579  if (time == 0) {
4580    status = pthread_cond_wait (_cond, _mutex) ;
4581  } else {
4582    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4583    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4584      pthread_cond_destroy (_cond) ;
4585      pthread_cond_init    (_cond, NULL);
4586    }
4587  }
4588  assert_status(status == 0 || status == EINTR ||
4589                status == ETIME || status == ETIMEDOUT,
4590                status, "cond_timedwait");
4591
4592#ifdef ASSERT
4593  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4594#endif
4595
4596  _counter = 0 ;
4597  status = pthread_mutex_unlock(_mutex) ;
4598  assert_status(status == 0, status, "invariant") ;
4599  // If externally suspended while waiting, re-suspend
4600  if (jt->handle_special_suspend_equivalent_condition()) {
4601    jt->java_suspend_self();
4602  }
4603
4604}
4605
4606void Parker::unpark() {
4607  int s, status ;
4608  status = pthread_mutex_lock(_mutex);
4609  assert (status == 0, "invariant") ;
4610  s = _counter;
4611  _counter = 1;
4612  if (s < 1) {
4613     if (WorkAroundNPTLTimedWaitHang) {
4614        status = pthread_cond_signal (_cond) ;
4615        assert (status == 0, "invariant") ;
4616        status = pthread_mutex_unlock(_mutex);
4617        assert (status == 0, "invariant") ;
4618     } else {
4619        status = pthread_mutex_unlock(_mutex);
4620        assert (status == 0, "invariant") ;
4621        status = pthread_cond_signal (_cond) ;
4622        assert (status == 0, "invariant") ;
4623     }
4624  } else {
4625    pthread_mutex_unlock(_mutex);
4626    assert (status == 0, "invariant") ;
4627  }
4628}
4629
4630
4631extern char** environ;
4632
4633#ifndef __NR_fork
4634#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4635#endif
4636
4637#ifndef __NR_execve
4638#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4639#endif
4640
4641// Run the specified command in a separate process. Return its exit value,
4642// or -1 on failure (e.g. can't fork a new process).
4643// Unlike system(), this function can be called from signal handler. It
4644// doesn't block SIGINT et al.
4645int os::fork_and_exec(char* cmd) {
4646  char * argv[4];
4647  argv[0] = "sh";
4648  argv[1] = "-c";
4649  argv[2] = cmd;
4650  argv[3] = NULL;
4651
4652  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4653  // pthread_atfork handlers and reset pthread library. All we need is a
4654  // separate process to execve. Make a direct syscall to fork process.
4655  // On IA64 there's no fork syscall, we have to use fork() and hope for
4656  // the best...
4657  pid_t pid = NOT_IA64(syscall(__NR_fork);)
4658              IA64_ONLY(fork();)
4659
4660  if (pid < 0) {
4661    // fork failed
4662    return -1;
4663
4664  } else if (pid == 0) {
4665    // child process
4666
4667    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4668    // first to kill every thread on the thread list. Because this list is
4669    // not reset by fork() (see notes above), execve() will instead kill
4670    // every thread in the parent process. We know this is the only thread
4671    // in the new process, so make a system call directly.
4672    // IA64 should use normal execve() from glibc to match the glibc fork()
4673    // above.
4674    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4675    IA64_ONLY(execve("/bin/sh", argv, environ);)
4676
4677    // execve failed
4678    _exit(-1);
4679
4680  } else  {
4681    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4682    // care about the actual exit code, for now.
4683
4684    int status;
4685
4686    // Wait for the child process to exit.  This returns immediately if
4687    // the child has already exited. */
4688    while (waitpid(pid, &status, 0) < 0) {
4689        switch (errno) {
4690        case ECHILD: return 0;
4691        case EINTR: break;
4692        default: return -1;
4693        }
4694    }
4695
4696    if (WIFEXITED(status)) {
4697       // The child exited normally; get its exit code.
4698       return WEXITSTATUS(status);
4699    } else if (WIFSIGNALED(status)) {
4700       // The child exited because of a signal
4701       // The best value to return is 0x80 + signal number,
4702       // because that is what all Unix shells do, and because
4703       // it allows callers to distinguish between process exit and
4704       // process death by signal.
4705       return 0x80 + WTERMSIG(status);
4706    } else {
4707       // Unknown exit code; pass it through
4708       return status;
4709    }
4710  }
4711}
4712