os_linux.cpp revision 2727:5d871c1ff17c
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_linux.h"
34#include "memory/allocation.inline.hpp"
35#include "memory/filemap.hpp"
36#include "mutex_linux.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "os_share_linux.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/globals.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/objectMonitor.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/perfMemory.hpp"
52#include "runtime/sharedRuntime.hpp"
53#include "runtime/statSampler.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/timer.hpp"
57#include "services/attachListener.hpp"
58#include "services/runtimeService.hpp"
59#include "thread_linux.inline.hpp"
60#include "utilities/decoder.hpp"
61#include "utilities/defaultStream.hpp"
62#include "utilities/events.hpp"
63#include "utilities/growableArray.hpp"
64#include "utilities/vmError.hpp"
65#ifdef TARGET_ARCH_x86
66# include "assembler_x86.inline.hpp"
67# include "nativeInst_x86.hpp"
68#endif
69#ifdef TARGET_ARCH_sparc
70# include "assembler_sparc.inline.hpp"
71# include "nativeInst_sparc.hpp"
72#endif
73#ifdef TARGET_ARCH_zero
74# include "assembler_zero.inline.hpp"
75# include "nativeInst_zero.hpp"
76#endif
77#ifdef TARGET_ARCH_arm
78# include "assembler_arm.inline.hpp"
79# include "nativeInst_arm.hpp"
80#endif
81#ifdef TARGET_ARCH_ppc
82# include "assembler_ppc.inline.hpp"
83# include "nativeInst_ppc.hpp"
84#endif
85#ifdef COMPILER1
86#include "c1/c1_Runtime1.hpp"
87#endif
88#ifdef COMPILER2
89#include "opto/runtime.hpp"
90#endif
91
92// put OS-includes here
93# include <sys/types.h>
94# include <sys/mman.h>
95# include <sys/stat.h>
96# include <sys/select.h>
97# include <pthread.h>
98# include <signal.h>
99# include <errno.h>
100# include <dlfcn.h>
101# include <stdio.h>
102# include <unistd.h>
103# include <sys/resource.h>
104# include <pthread.h>
105# include <sys/stat.h>
106# include <sys/time.h>
107# include <sys/times.h>
108# include <sys/utsname.h>
109# include <sys/socket.h>
110# include <sys/wait.h>
111# include <pwd.h>
112# include <poll.h>
113# include <semaphore.h>
114# include <fcntl.h>
115# include <string.h>
116# include <syscall.h>
117# include <sys/sysinfo.h>
118# include <gnu/libc-version.h>
119# include <sys/ipc.h>
120# include <sys/shm.h>
121# include <link.h>
122# include <stdint.h>
123# include <inttypes.h>
124# include <sys/ioctl.h>
125
126#define MAX_PATH    (2 * K)
127
128// for timer info max values which include all bits
129#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
130#define SEC_IN_NANOSECS  1000000000LL
131
132#define LARGEPAGES_BIT (1 << 6)
133////////////////////////////////////////////////////////////////////////////////
134// global variables
135julong os::Linux::_physical_memory = 0;
136
137address   os::Linux::_initial_thread_stack_bottom = NULL;
138uintptr_t os::Linux::_initial_thread_stack_size   = 0;
139
140int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
142Mutex* os::Linux::_createThread_lock = NULL;
143pthread_t os::Linux::_main_thread;
144int os::Linux::_page_size = -1;
145bool os::Linux::_is_floating_stack = false;
146bool os::Linux::_is_NPTL = false;
147bool os::Linux::_supports_fast_thread_cpu_time = false;
148const char * os::Linux::_glibc_version = NULL;
149const char * os::Linux::_libpthread_version = NULL;
150
151static jlong initial_time_count=0;
152
153static int clock_tics_per_sec = 100;
154
155// For diagnostics to print a message once. see run_periodic_checks
156static sigset_t check_signal_done;
157static bool check_signals = true;;
158
159static pid_t _initial_pid = 0;
160
161/* Signal number used to suspend/resume a thread */
162
163/* do not use any signal number less than SIGSEGV, see 4355769 */
164static int SR_signum = SIGUSR2;
165sigset_t SR_sigset;
166
167/* Used to protect dlsym() calls */
168static pthread_mutex_t dl_mutex;
169
170#ifdef JAVASE_EMBEDDED
171class MemNotifyThread: public Thread {
172  friend class VMStructs;
173 public:
174  virtual void run();
175
176 private:
177  static MemNotifyThread* _memnotify_thread;
178  int _fd;
179
180 public:
181
182  // Constructor
183  MemNotifyThread(int fd);
184
185  // Tester
186  bool is_memnotify_thread() const { return true; }
187
188  // Printing
189  char* name() const { return (char*)"Linux MemNotify Thread"; }
190
191  // Returns the single instance of the MemNotifyThread
192  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
193
194  // Create and start the single instance of MemNotifyThread
195  static void start();
196};
197#endif // JAVASE_EMBEDDED
198
199// utility functions
200
201static int SR_initialize();
202static int SR_finalize();
203
204julong os::available_memory() {
205  return Linux::available_memory();
206}
207
208julong os::Linux::available_memory() {
209  // values in struct sysinfo are "unsigned long"
210  struct sysinfo si;
211  sysinfo(&si);
212
213  return (julong)si.freeram * si.mem_unit;
214}
215
216julong os::physical_memory() {
217  return Linux::physical_memory();
218}
219
220julong os::allocatable_physical_memory(julong size) {
221#ifdef _LP64
222  return size;
223#else
224  julong result = MIN2(size, (julong)3800*M);
225   if (!is_allocatable(result)) {
226     // See comments under solaris for alignment considerations
227     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
228     result =  MIN2(size, reasonable_size);
229   }
230   return result;
231#endif // _LP64
232}
233
234////////////////////////////////////////////////////////////////////////////////
235// environment support
236
237bool os::getenv(const char* name, char* buf, int len) {
238  const char* val = ::getenv(name);
239  if (val != NULL && strlen(val) < (size_t)len) {
240    strcpy(buf, val);
241    return true;
242  }
243  if (len > 0) buf[0] = 0;  // return a null string
244  return false;
245}
246
247
248// Return true if user is running as root.
249
250bool os::have_special_privileges() {
251  static bool init = false;
252  static bool privileges = false;
253  if (!init) {
254    privileges = (getuid() != geteuid()) || (getgid() != getegid());
255    init = true;
256  }
257  return privileges;
258}
259
260
261#ifndef SYS_gettid
262// i386: 224, ia64: 1105, amd64: 186, sparc 143
263#ifdef __ia64__
264#define SYS_gettid 1105
265#elif __i386__
266#define SYS_gettid 224
267#elif __amd64__
268#define SYS_gettid 186
269#elif __sparc__
270#define SYS_gettid 143
271#else
272#error define gettid for the arch
273#endif
274#endif
275
276// Cpu architecture string
277#if   defined(ZERO)
278static char cpu_arch[] = ZERO_LIBARCH;
279#elif defined(IA64)
280static char cpu_arch[] = "ia64";
281#elif defined(IA32)
282static char cpu_arch[] = "i386";
283#elif defined(AMD64)
284static char cpu_arch[] = "amd64";
285#elif defined(ARM)
286static char cpu_arch[] = "arm";
287#elif defined(PPC)
288static char cpu_arch[] = "ppc";
289#elif defined(SPARC)
290#  ifdef _LP64
291static char cpu_arch[] = "sparcv9";
292#  else
293static char cpu_arch[] = "sparc";
294#  endif
295#else
296#error Add appropriate cpu_arch setting
297#endif
298
299
300// pid_t gettid()
301//
302// Returns the kernel thread id of the currently running thread. Kernel
303// thread id is used to access /proc.
304//
305// (Note that getpid() on LinuxThreads returns kernel thread id too; but
306// on NPTL, it returns the same pid for all threads, as required by POSIX.)
307//
308pid_t os::Linux::gettid() {
309  int rslt = syscall(SYS_gettid);
310  if (rslt == -1) {
311     // old kernel, no NPTL support
312     return getpid();
313  } else {
314     return (pid_t)rslt;
315  }
316}
317
318// Most versions of linux have a bug where the number of processors are
319// determined by looking at the /proc file system.  In a chroot environment,
320// the system call returns 1.  This causes the VM to act as if it is
321// a single processor and elide locking (see is_MP() call).
322static bool unsafe_chroot_detected = false;
323static const char *unstable_chroot_error = "/proc file system not found.\n"
324                     "Java may be unstable running multithreaded in a chroot "
325                     "environment on Linux when /proc filesystem is not mounted.";
326
327void os::Linux::initialize_system_info() {
328  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
329  if (processor_count() == 1) {
330    pid_t pid = os::Linux::gettid();
331    char fname[32];
332    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
333    FILE *fp = fopen(fname, "r");
334    if (fp == NULL) {
335      unsafe_chroot_detected = true;
336    } else {
337      fclose(fp);
338    }
339  }
340  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
341  assert(processor_count() > 0, "linux error");
342}
343
344void os::init_system_properties_values() {
345//  char arch[12];
346//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
347
348  // The next steps are taken in the product version:
349  //
350  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
351  // This library should be located at:
352  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
353  //
354  // If "/jre/lib/" appears at the right place in the path, then we
355  // assume libjvm[_g].so is installed in a JDK and we use this path.
356  //
357  // Otherwise exit with message: "Could not create the Java virtual machine."
358  //
359  // The following extra steps are taken in the debugging version:
360  //
361  // If "/jre/lib/" does NOT appear at the right place in the path
362  // instead of exit check for $JAVA_HOME environment variable.
363  //
364  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
365  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
366  // it looks like libjvm[_g].so is installed there
367  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
368  //
369  // Otherwise exit.
370  //
371  // Important note: if the location of libjvm.so changes this
372  // code needs to be changed accordingly.
373
374  // The next few definitions allow the code to be verbatim:
375#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
376#define getenv(n) ::getenv(n)
377
378/*
379 * See ld(1):
380 *      The linker uses the following search paths to locate required
381 *      shared libraries:
382 *        1: ...
383 *        ...
384 *        7: The default directories, normally /lib and /usr/lib.
385 */
386#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
387#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
388#else
389#define DEFAULT_LIBPATH "/lib:/usr/lib"
390#endif
391
392#define EXTENSIONS_DIR  "/lib/ext"
393#define ENDORSED_DIR    "/lib/endorsed"
394#define REG_DIR         "/usr/java/packages"
395
396  {
397    /* sysclasspath, java_home, dll_dir */
398    {
399        char *home_path;
400        char *dll_path;
401        char *pslash;
402        char buf[MAXPATHLEN];
403        os::jvm_path(buf, sizeof(buf));
404
405        // Found the full path to libjvm.so.
406        // Now cut the path to <java_home>/jre if we can.
407        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
408        pslash = strrchr(buf, '/');
409        if (pslash != NULL)
410            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
411        dll_path = malloc(strlen(buf) + 1);
412        if (dll_path == NULL)
413            return;
414        strcpy(dll_path, buf);
415        Arguments::set_dll_dir(dll_path);
416
417        if (pslash != NULL) {
418            pslash = strrchr(buf, '/');
419            if (pslash != NULL) {
420                *pslash = '\0';       /* get rid of /<arch> */
421                pslash = strrchr(buf, '/');
422                if (pslash != NULL)
423                    *pslash = '\0';   /* get rid of /lib */
424            }
425        }
426
427        home_path = malloc(strlen(buf) + 1);
428        if (home_path == NULL)
429            return;
430        strcpy(home_path, buf);
431        Arguments::set_java_home(home_path);
432
433        if (!set_boot_path('/', ':'))
434            return;
435    }
436
437    /*
438     * Where to look for native libraries
439     *
440     * Note: Due to a legacy implementation, most of the library path
441     * is set in the launcher.  This was to accomodate linking restrictions
442     * on legacy Linux implementations (which are no longer supported).
443     * Eventually, all the library path setting will be done here.
444     *
445     * However, to prevent the proliferation of improperly built native
446     * libraries, the new path component /usr/java/packages is added here.
447     * Eventually, all the library path setting will be done here.
448     */
449    {
450        char *ld_library_path;
451
452        /*
453         * Construct the invariant part of ld_library_path. Note that the
454         * space for the colon and the trailing null are provided by the
455         * nulls included by the sizeof operator (so actually we allocate
456         * a byte more than necessary).
457         */
458        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
459            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
460        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
461
462        /*
463         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
464         * should always exist (until the legacy problem cited above is
465         * addressed).
466         */
467        char *v = getenv("LD_LIBRARY_PATH");
468        if (v != NULL) {
469            char *t = ld_library_path;
470            /* That's +1 for the colon and +1 for the trailing '\0' */
471            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
472            sprintf(ld_library_path, "%s:%s", v, t);
473        }
474        Arguments::set_library_path(ld_library_path);
475    }
476
477    /*
478     * Extensions directories.
479     *
480     * Note that the space for the colon and the trailing null are provided
481     * by the nulls included by the sizeof operator (so actually one byte more
482     * than necessary is allocated).
483     */
484    {
485        char *buf = malloc(strlen(Arguments::get_java_home()) +
486            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
487        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
488            Arguments::get_java_home());
489        Arguments::set_ext_dirs(buf);
490    }
491
492    /* Endorsed standards default directory. */
493    {
494        char * buf;
495        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
496        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
497        Arguments::set_endorsed_dirs(buf);
498    }
499  }
500
501#undef malloc
502#undef getenv
503#undef EXTENSIONS_DIR
504#undef ENDORSED_DIR
505
506  // Done
507  return;
508}
509
510////////////////////////////////////////////////////////////////////////////////
511// breakpoint support
512
513void os::breakpoint() {
514  BREAKPOINT;
515}
516
517extern "C" void breakpoint() {
518  // use debugger to set breakpoint here
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// signal support
523
524debug_only(static bool signal_sets_initialized = false);
525static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
526
527bool os::Linux::is_sig_ignored(int sig) {
528      struct sigaction oact;
529      sigaction(sig, (struct sigaction*)NULL, &oact);
530      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
531                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
532      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
533           return true;
534      else
535           return false;
536}
537
538void os::Linux::signal_sets_init() {
539  // Should also have an assertion stating we are still single-threaded.
540  assert(!signal_sets_initialized, "Already initialized");
541  // Fill in signals that are necessarily unblocked for all threads in
542  // the VM. Currently, we unblock the following signals:
543  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
544  //                         by -Xrs (=ReduceSignalUsage));
545  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
546  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
547  // the dispositions or masks wrt these signals.
548  // Programs embedding the VM that want to use the above signals for their
549  // own purposes must, at this time, use the "-Xrs" option to prevent
550  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
551  // (See bug 4345157, and other related bugs).
552  // In reality, though, unblocking these signals is really a nop, since
553  // these signals are not blocked by default.
554  sigemptyset(&unblocked_sigs);
555  sigemptyset(&allowdebug_blocked_sigs);
556  sigaddset(&unblocked_sigs, SIGILL);
557  sigaddset(&unblocked_sigs, SIGSEGV);
558  sigaddset(&unblocked_sigs, SIGBUS);
559  sigaddset(&unblocked_sigs, SIGFPE);
560  sigaddset(&unblocked_sigs, SR_signum);
561
562  if (!ReduceSignalUsage) {
563   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
564      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
565      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
566   }
567   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
568      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
569      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
570   }
571   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
572      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
573      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
574   }
575  }
576  // Fill in signals that are blocked by all but the VM thread.
577  sigemptyset(&vm_sigs);
578  if (!ReduceSignalUsage)
579    sigaddset(&vm_sigs, BREAK_SIGNAL);
580  debug_only(signal_sets_initialized = true);
581
582}
583
584// These are signals that are unblocked while a thread is running Java.
585// (For some reason, they get blocked by default.)
586sigset_t* os::Linux::unblocked_signals() {
587  assert(signal_sets_initialized, "Not initialized");
588  return &unblocked_sigs;
589}
590
591// These are the signals that are blocked while a (non-VM) thread is
592// running Java. Only the VM thread handles these signals.
593sigset_t* os::Linux::vm_signals() {
594  assert(signal_sets_initialized, "Not initialized");
595  return &vm_sigs;
596}
597
598// These are signals that are blocked during cond_wait to allow debugger in
599sigset_t* os::Linux::allowdebug_blocked_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &allowdebug_blocked_sigs;
602}
603
604void os::Linux::hotspot_sigmask(Thread* thread) {
605
606  //Save caller's signal mask before setting VM signal mask
607  sigset_t caller_sigmask;
608  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
609
610  OSThread* osthread = thread->osthread();
611  osthread->set_caller_sigmask(caller_sigmask);
612
613  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
614
615  if (!ReduceSignalUsage) {
616    if (thread->is_VM_thread()) {
617      // Only the VM thread handles BREAK_SIGNAL ...
618      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
619    } else {
620      // ... all other threads block BREAK_SIGNAL
621      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
622    }
623  }
624}
625
626//////////////////////////////////////////////////////////////////////////////
627// detecting pthread library
628
629void os::Linux::libpthread_init() {
630  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
631  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
632  // generic name for earlier versions.
633  // Define macros here so we can build HotSpot on old systems.
634# ifndef _CS_GNU_LIBC_VERSION
635# define _CS_GNU_LIBC_VERSION 2
636# endif
637# ifndef _CS_GNU_LIBPTHREAD_VERSION
638# define _CS_GNU_LIBPTHREAD_VERSION 3
639# endif
640
641  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
642  if (n > 0) {
643     char *str = (char *)malloc(n);
644     confstr(_CS_GNU_LIBC_VERSION, str, n);
645     os::Linux::set_glibc_version(str);
646  } else {
647     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
648     static char _gnu_libc_version[32];
649     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
650              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
651     os::Linux::set_glibc_version(_gnu_libc_version);
652  }
653
654  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
655  if (n > 0) {
656     char *str = (char *)malloc(n);
657     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
658     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
659     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
660     // is the case. LinuxThreads has a hard limit on max number of threads.
661     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
662     // On the other hand, NPTL does not have such a limit, sysconf()
663     // will return -1 and errno is not changed. Check if it is really NPTL.
664     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
665         strstr(str, "NPTL") &&
666         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
667       free(str);
668       os::Linux::set_libpthread_version("linuxthreads");
669     } else {
670       os::Linux::set_libpthread_version(str);
671     }
672  } else {
673    // glibc before 2.3.2 only has LinuxThreads.
674    os::Linux::set_libpthread_version("linuxthreads");
675  }
676
677  if (strstr(libpthread_version(), "NPTL")) {
678     os::Linux::set_is_NPTL();
679  } else {
680     os::Linux::set_is_LinuxThreads();
681  }
682
683  // LinuxThreads have two flavors: floating-stack mode, which allows variable
684  // stack size; and fixed-stack mode. NPTL is always floating-stack.
685  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
686     os::Linux::set_is_floating_stack();
687  }
688}
689
690/////////////////////////////////////////////////////////////////////////////
691// thread stack
692
693// Force Linux kernel to expand current thread stack. If "bottom" is close
694// to the stack guard, caller should block all signals.
695//
696// MAP_GROWSDOWN:
697//   A special mmap() flag that is used to implement thread stacks. It tells
698//   kernel that the memory region should extend downwards when needed. This
699//   allows early versions of LinuxThreads to only mmap the first few pages
700//   when creating a new thread. Linux kernel will automatically expand thread
701//   stack as needed (on page faults).
702//
703//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
704//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
705//   region, it's hard to tell if the fault is due to a legitimate stack
706//   access or because of reading/writing non-exist memory (e.g. buffer
707//   overrun). As a rule, if the fault happens below current stack pointer,
708//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
709//   application (see Linux kernel fault.c).
710//
711//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
712//   stack overflow detection.
713//
714//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
715//   not use this flag. However, the stack of initial thread is not created
716//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
717//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
718//   and then attach the thread to JVM.
719//
720// To get around the problem and allow stack banging on Linux, we need to
721// manually expand thread stack after receiving the SIGSEGV.
722//
723// There are two ways to expand thread stack to address "bottom", we used
724// both of them in JVM before 1.5:
725//   1. adjust stack pointer first so that it is below "bottom", and then
726//      touch "bottom"
727//   2. mmap() the page in question
728//
729// Now alternate signal stack is gone, it's harder to use 2. For instance,
730// if current sp is already near the lower end of page 101, and we need to
731// call mmap() to map page 100, it is possible that part of the mmap() frame
732// will be placed in page 100. When page 100 is mapped, it is zero-filled.
733// That will destroy the mmap() frame and cause VM to crash.
734//
735// The following code works by adjusting sp first, then accessing the "bottom"
736// page to force a page fault. Linux kernel will then automatically expand the
737// stack mapping.
738//
739// _expand_stack_to() assumes its frame size is less than page size, which
740// should always be true if the function is not inlined.
741
742#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
743#define NOINLINE
744#else
745#define NOINLINE __attribute__ ((noinline))
746#endif
747
748static void _expand_stack_to(address bottom) NOINLINE;
749
750static void _expand_stack_to(address bottom) {
751  address sp;
752  size_t size;
753  volatile char *p;
754
755  // Adjust bottom to point to the largest address within the same page, it
756  // gives us a one-page buffer if alloca() allocates slightly more memory.
757  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
758  bottom += os::Linux::page_size() - 1;
759
760  // sp might be slightly above current stack pointer; if that's the case, we
761  // will alloca() a little more space than necessary, which is OK. Don't use
762  // os::current_stack_pointer(), as its result can be slightly below current
763  // stack pointer, causing us to not alloca enough to reach "bottom".
764  sp = (address)&sp;
765
766  if (sp > bottom) {
767    size = sp - bottom;
768    p = (volatile char *)alloca(size);
769    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
770    p[0] = '\0';
771  }
772}
773
774bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
775  assert(t!=NULL, "just checking");
776  assert(t->osthread()->expanding_stack(), "expand should be set");
777  assert(t->stack_base() != NULL, "stack_base was not initialized");
778
779  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
780    sigset_t mask_all, old_sigset;
781    sigfillset(&mask_all);
782    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
783    _expand_stack_to(addr);
784    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
785    return true;
786  }
787  return false;
788}
789
790//////////////////////////////////////////////////////////////////////////////
791// create new thread
792
793static address highest_vm_reserved_address();
794
795// check if it's safe to start a new thread
796static bool _thread_safety_check(Thread* thread) {
797  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
798    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
799    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
800    //   allocated (MAP_FIXED) from high address space. Every thread stack
801    //   occupies a fixed size slot (usually 2Mbytes, but user can change
802    //   it to other values if they rebuild LinuxThreads).
803    //
804    // Problem with MAP_FIXED is that mmap() can still succeed even part of
805    // the memory region has already been mmap'ed. That means if we have too
806    // many threads and/or very large heap, eventually thread stack will
807    // collide with heap.
808    //
809    // Here we try to prevent heap/stack collision by comparing current
810    // stack bottom with the highest address that has been mmap'ed by JVM
811    // plus a safety margin for memory maps created by native code.
812    //
813    // This feature can be disabled by setting ThreadSafetyMargin to 0
814    //
815    if (ThreadSafetyMargin > 0) {
816      address stack_bottom = os::current_stack_base() - os::current_stack_size();
817
818      // not safe if our stack extends below the safety margin
819      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
820    } else {
821      return true;
822    }
823  } else {
824    // Floating stack LinuxThreads or NPTL:
825    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
826    //   there's not enough space left, pthread_create() will fail. If we come
827    //   here, that means enough space has been reserved for stack.
828    return true;
829  }
830}
831
832// Thread start routine for all newly created threads
833static void *java_start(Thread *thread) {
834  // Try to randomize the cache line index of hot stack frames.
835  // This helps when threads of the same stack traces evict each other's
836  // cache lines. The threads can be either from the same JVM instance, or
837  // from different JVM instances. The benefit is especially true for
838  // processors with hyperthreading technology.
839  static int counter = 0;
840  int pid = os::current_process_id();
841  alloca(((pid ^ counter++) & 7) * 128);
842
843  ThreadLocalStorage::set_thread(thread);
844
845  OSThread* osthread = thread->osthread();
846  Monitor* sync = osthread->startThread_lock();
847
848  // non floating stack LinuxThreads needs extra check, see above
849  if (!_thread_safety_check(thread)) {
850    // notify parent thread
851    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
852    osthread->set_state(ZOMBIE);
853    sync->notify_all();
854    return NULL;
855  }
856
857  // thread_id is kernel thread id (similar to Solaris LWP id)
858  osthread->set_thread_id(os::Linux::gettid());
859
860  if (UseNUMA) {
861    int lgrp_id = os::numa_get_group_id();
862    if (lgrp_id != -1) {
863      thread->set_lgrp_id(lgrp_id);
864    }
865  }
866  // initialize signal mask for this thread
867  os::Linux::hotspot_sigmask(thread);
868
869  // initialize floating point control register
870  os::Linux::init_thread_fpu_state();
871
872  // handshaking with parent thread
873  {
874    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
875
876    // notify parent thread
877    osthread->set_state(INITIALIZED);
878    sync->notify_all();
879
880    // wait until os::start_thread()
881    while (osthread->get_state() == INITIALIZED) {
882      sync->wait(Mutex::_no_safepoint_check_flag);
883    }
884  }
885
886  // call one more level start routine
887  thread->run();
888
889  return 0;
890}
891
892bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
893  assert(thread->osthread() == NULL, "caller responsible");
894
895  // Allocate the OSThread object
896  OSThread* osthread = new OSThread(NULL, NULL);
897  if (osthread == NULL) {
898    return false;
899  }
900
901  // set the correct thread state
902  osthread->set_thread_type(thr_type);
903
904  // Initial state is ALLOCATED but not INITIALIZED
905  osthread->set_state(ALLOCATED);
906
907  thread->set_osthread(osthread);
908
909  // init thread attributes
910  pthread_attr_t attr;
911  pthread_attr_init(&attr);
912  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
913
914  // stack size
915  if (os::Linux::supports_variable_stack_size()) {
916    // calculate stack size if it's not specified by caller
917    if (stack_size == 0) {
918      stack_size = os::Linux::default_stack_size(thr_type);
919
920      switch (thr_type) {
921      case os::java_thread:
922        // Java threads use ThreadStackSize which default value can be
923        // changed with the flag -Xss
924        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
925        stack_size = JavaThread::stack_size_at_create();
926        break;
927      case os::compiler_thread:
928        if (CompilerThreadStackSize > 0) {
929          stack_size = (size_t)(CompilerThreadStackSize * K);
930          break;
931        } // else fall through:
932          // use VMThreadStackSize if CompilerThreadStackSize is not defined
933      case os::vm_thread:
934      case os::pgc_thread:
935      case os::cgc_thread:
936      case os::watcher_thread:
937        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
938        break;
939      }
940    }
941
942    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
943    pthread_attr_setstacksize(&attr, stack_size);
944  } else {
945    // let pthread_create() pick the default value.
946  }
947
948  // glibc guard page
949  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
950
951  ThreadState state;
952
953  {
954    // Serialize thread creation if we are running with fixed stack LinuxThreads
955    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
956    if (lock) {
957      os::Linux::createThread_lock()->lock_without_safepoint_check();
958    }
959
960    pthread_t tid;
961    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
962
963    pthread_attr_destroy(&attr);
964
965    if (ret != 0) {
966      if (PrintMiscellaneous && (Verbose || WizardMode)) {
967        perror("pthread_create()");
968      }
969      // Need to clean up stuff we've allocated so far
970      thread->set_osthread(NULL);
971      delete osthread;
972      if (lock) os::Linux::createThread_lock()->unlock();
973      return false;
974    }
975
976    // Store pthread info into the OSThread
977    osthread->set_pthread_id(tid);
978
979    // Wait until child thread is either initialized or aborted
980    {
981      Monitor* sync_with_child = osthread->startThread_lock();
982      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
983      while ((state = osthread->get_state()) == ALLOCATED) {
984        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
985      }
986    }
987
988    if (lock) {
989      os::Linux::createThread_lock()->unlock();
990    }
991  }
992
993  // Aborted due to thread limit being reached
994  if (state == ZOMBIE) {
995      thread->set_osthread(NULL);
996      delete osthread;
997      return false;
998  }
999
1000  // The thread is returned suspended (in state INITIALIZED),
1001  // and is started higher up in the call chain
1002  assert(state == INITIALIZED, "race condition");
1003  return true;
1004}
1005
1006/////////////////////////////////////////////////////////////////////////////
1007// attach existing thread
1008
1009// bootstrap the main thread
1010bool os::create_main_thread(JavaThread* thread) {
1011  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1012  return create_attached_thread(thread);
1013}
1014
1015bool os::create_attached_thread(JavaThread* thread) {
1016#ifdef ASSERT
1017    thread->verify_not_published();
1018#endif
1019
1020  // Allocate the OSThread object
1021  OSThread* osthread = new OSThread(NULL, NULL);
1022
1023  if (osthread == NULL) {
1024    return false;
1025  }
1026
1027  // Store pthread info into the OSThread
1028  osthread->set_thread_id(os::Linux::gettid());
1029  osthread->set_pthread_id(::pthread_self());
1030
1031  // initialize floating point control register
1032  os::Linux::init_thread_fpu_state();
1033
1034  // Initial thread state is RUNNABLE
1035  osthread->set_state(RUNNABLE);
1036
1037  thread->set_osthread(osthread);
1038
1039  if (UseNUMA) {
1040    int lgrp_id = os::numa_get_group_id();
1041    if (lgrp_id != -1) {
1042      thread->set_lgrp_id(lgrp_id);
1043    }
1044  }
1045
1046  if (os::Linux::is_initial_thread()) {
1047    // If current thread is initial thread, its stack is mapped on demand,
1048    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1049    // the entire stack region to avoid SEGV in stack banging.
1050    // It is also useful to get around the heap-stack-gap problem on SuSE
1051    // kernel (see 4821821 for details). We first expand stack to the top
1052    // of yellow zone, then enable stack yellow zone (order is significant,
1053    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1054    // is no gap between the last two virtual memory regions.
1055
1056    JavaThread *jt = (JavaThread *)thread;
1057    address addr = jt->stack_yellow_zone_base();
1058    assert(addr != NULL, "initialization problem?");
1059    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1060
1061    osthread->set_expanding_stack();
1062    os::Linux::manually_expand_stack(jt, addr);
1063    osthread->clear_expanding_stack();
1064  }
1065
1066  // initialize signal mask for this thread
1067  // and save the caller's signal mask
1068  os::Linux::hotspot_sigmask(thread);
1069
1070  return true;
1071}
1072
1073void os::pd_start_thread(Thread* thread) {
1074  OSThread * osthread = thread->osthread();
1075  assert(osthread->get_state() != INITIALIZED, "just checking");
1076  Monitor* sync_with_child = osthread->startThread_lock();
1077  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1078  sync_with_child->notify();
1079}
1080
1081// Free Linux resources related to the OSThread
1082void os::free_thread(OSThread* osthread) {
1083  assert(osthread != NULL, "osthread not set");
1084
1085  if (Thread::current()->osthread() == osthread) {
1086    // Restore caller's signal mask
1087    sigset_t sigmask = osthread->caller_sigmask();
1088    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1089   }
1090
1091  delete osthread;
1092}
1093
1094//////////////////////////////////////////////////////////////////////////////
1095// thread local storage
1096
1097int os::allocate_thread_local_storage() {
1098  pthread_key_t key;
1099  int rslt = pthread_key_create(&key, NULL);
1100  assert(rslt == 0, "cannot allocate thread local storage");
1101  return (int)key;
1102}
1103
1104// Note: This is currently not used by VM, as we don't destroy TLS key
1105// on VM exit.
1106void os::free_thread_local_storage(int index) {
1107  int rslt = pthread_key_delete((pthread_key_t)index);
1108  assert(rslt == 0, "invalid index");
1109}
1110
1111void os::thread_local_storage_at_put(int index, void* value) {
1112  int rslt = pthread_setspecific((pthread_key_t)index, value);
1113  assert(rslt == 0, "pthread_setspecific failed");
1114}
1115
1116extern "C" Thread* get_thread() {
1117  return ThreadLocalStorage::thread();
1118}
1119
1120//////////////////////////////////////////////////////////////////////////////
1121// initial thread
1122
1123// Check if current thread is the initial thread, similar to Solaris thr_main.
1124bool os::Linux::is_initial_thread(void) {
1125  char dummy;
1126  // If called before init complete, thread stack bottom will be null.
1127  // Can be called if fatal error occurs before initialization.
1128  if (initial_thread_stack_bottom() == NULL) return false;
1129  assert(initial_thread_stack_bottom() != NULL &&
1130         initial_thread_stack_size()   != 0,
1131         "os::init did not locate initial thread's stack region");
1132  if ((address)&dummy >= initial_thread_stack_bottom() &&
1133      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1134       return true;
1135  else return false;
1136}
1137
1138// Find the virtual memory area that contains addr
1139static bool find_vma(address addr, address* vma_low, address* vma_high) {
1140  FILE *fp = fopen("/proc/self/maps", "r");
1141  if (fp) {
1142    address low, high;
1143    while (!feof(fp)) {
1144      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1145        if (low <= addr && addr < high) {
1146           if (vma_low)  *vma_low  = low;
1147           if (vma_high) *vma_high = high;
1148           fclose (fp);
1149           return true;
1150        }
1151      }
1152      for (;;) {
1153        int ch = fgetc(fp);
1154        if (ch == EOF || ch == (int)'\n') break;
1155      }
1156    }
1157    fclose(fp);
1158  }
1159  return false;
1160}
1161
1162// Locate initial thread stack. This special handling of initial thread stack
1163// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1164// bogus value for initial thread.
1165void os::Linux::capture_initial_stack(size_t max_size) {
1166  // stack size is the easy part, get it from RLIMIT_STACK
1167  size_t stack_size;
1168  struct rlimit rlim;
1169  getrlimit(RLIMIT_STACK, &rlim);
1170  stack_size = rlim.rlim_cur;
1171
1172  // 6308388: a bug in ld.so will relocate its own .data section to the
1173  //   lower end of primordial stack; reduce ulimit -s value a little bit
1174  //   so we won't install guard page on ld.so's data section.
1175  stack_size -= 2 * page_size();
1176
1177  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1178  //   7.1, in both cases we will get 2G in return value.
1179  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1180  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1181  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1182  //   in case other parts in glibc still assumes 2M max stack size.
1183  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1184#ifndef IA64
1185  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1186#else
1187  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1188  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1189#endif
1190
1191  // Try to figure out where the stack base (top) is. This is harder.
1192  //
1193  // When an application is started, glibc saves the initial stack pointer in
1194  // a global variable "__libc_stack_end", which is then used by system
1195  // libraries. __libc_stack_end should be pretty close to stack top. The
1196  // variable is available since the very early days. However, because it is
1197  // a private interface, it could disappear in the future.
1198  //
1199  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1200  // to __libc_stack_end, it is very close to stack top, but isn't the real
1201  // stack top. Note that /proc may not exist if VM is running as a chroot
1202  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1203  // /proc/<pid>/stat could change in the future (though unlikely).
1204  //
1205  // We try __libc_stack_end first. If that doesn't work, look for
1206  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1207  // as a hint, which should work well in most cases.
1208
1209  uintptr_t stack_start;
1210
1211  // try __libc_stack_end first
1212  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1213  if (p && *p) {
1214    stack_start = *p;
1215  } else {
1216    // see if we can get the start_stack field from /proc/self/stat
1217    FILE *fp;
1218    int pid;
1219    char state;
1220    int ppid;
1221    int pgrp;
1222    int session;
1223    int nr;
1224    int tpgrp;
1225    unsigned long flags;
1226    unsigned long minflt;
1227    unsigned long cminflt;
1228    unsigned long majflt;
1229    unsigned long cmajflt;
1230    unsigned long utime;
1231    unsigned long stime;
1232    long cutime;
1233    long cstime;
1234    long prio;
1235    long nice;
1236    long junk;
1237    long it_real;
1238    uintptr_t start;
1239    uintptr_t vsize;
1240    intptr_t rss;
1241    uintptr_t rsslim;
1242    uintptr_t scodes;
1243    uintptr_t ecode;
1244    int i;
1245
1246    // Figure what the primordial thread stack base is. Code is inspired
1247    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1248    // followed by command name surrounded by parentheses, state, etc.
1249    char stat[2048];
1250    int statlen;
1251
1252    fp = fopen("/proc/self/stat", "r");
1253    if (fp) {
1254      statlen = fread(stat, 1, 2047, fp);
1255      stat[statlen] = '\0';
1256      fclose(fp);
1257
1258      // Skip pid and the command string. Note that we could be dealing with
1259      // weird command names, e.g. user could decide to rename java launcher
1260      // to "java 1.4.2 :)", then the stat file would look like
1261      //                1234 (java 1.4.2 :)) R ... ...
1262      // We don't really need to know the command string, just find the last
1263      // occurrence of ")" and then start parsing from there. See bug 4726580.
1264      char * s = strrchr(stat, ')');
1265
1266      i = 0;
1267      if (s) {
1268        // Skip blank chars
1269        do s++; while (isspace(*s));
1270
1271#define _UFM UINTX_FORMAT
1272#define _DFM INTX_FORMAT
1273
1274        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1275        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1276        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1277             &state,          /* 3  %c  */
1278             &ppid,           /* 4  %d  */
1279             &pgrp,           /* 5  %d  */
1280             &session,        /* 6  %d  */
1281             &nr,             /* 7  %d  */
1282             &tpgrp,          /* 8  %d  */
1283             &flags,          /* 9  %lu  */
1284             &minflt,         /* 10 %lu  */
1285             &cminflt,        /* 11 %lu  */
1286             &majflt,         /* 12 %lu  */
1287             &cmajflt,        /* 13 %lu  */
1288             &utime,          /* 14 %lu  */
1289             &stime,          /* 15 %lu  */
1290             &cutime,         /* 16 %ld  */
1291             &cstime,         /* 17 %ld  */
1292             &prio,           /* 18 %ld  */
1293             &nice,           /* 19 %ld  */
1294             &junk,           /* 20 %ld  */
1295             &it_real,        /* 21 %ld  */
1296             &start,          /* 22 UINTX_FORMAT */
1297             &vsize,          /* 23 UINTX_FORMAT */
1298             &rss,            /* 24 INTX_FORMAT  */
1299             &rsslim,         /* 25 UINTX_FORMAT */
1300             &scodes,         /* 26 UINTX_FORMAT */
1301             &ecode,          /* 27 UINTX_FORMAT */
1302             &stack_start);   /* 28 UINTX_FORMAT */
1303      }
1304
1305#undef _UFM
1306#undef _DFM
1307
1308      if (i != 28 - 2) {
1309         assert(false, "Bad conversion from /proc/self/stat");
1310         // product mode - assume we are the initial thread, good luck in the
1311         // embedded case.
1312         warning("Can't detect initial thread stack location - bad conversion");
1313         stack_start = (uintptr_t) &rlim;
1314      }
1315    } else {
1316      // For some reason we can't open /proc/self/stat (for example, running on
1317      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1318      // most cases, so don't abort:
1319      warning("Can't detect initial thread stack location - no /proc/self/stat");
1320      stack_start = (uintptr_t) &rlim;
1321    }
1322  }
1323
1324  // Now we have a pointer (stack_start) very close to the stack top, the
1325  // next thing to do is to figure out the exact location of stack top. We
1326  // can find out the virtual memory area that contains stack_start by
1327  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1328  // and its upper limit is the real stack top. (again, this would fail if
1329  // running inside chroot, because /proc may not exist.)
1330
1331  uintptr_t stack_top;
1332  address low, high;
1333  if (find_vma((address)stack_start, &low, &high)) {
1334    // success, "high" is the true stack top. (ignore "low", because initial
1335    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1336    stack_top = (uintptr_t)high;
1337  } else {
1338    // failed, likely because /proc/self/maps does not exist
1339    warning("Can't detect initial thread stack location - find_vma failed");
1340    // best effort: stack_start is normally within a few pages below the real
1341    // stack top, use it as stack top, and reduce stack size so we won't put
1342    // guard page outside stack.
1343    stack_top = stack_start;
1344    stack_size -= 16 * page_size();
1345  }
1346
1347  // stack_top could be partially down the page so align it
1348  stack_top = align_size_up(stack_top, page_size());
1349
1350  if (max_size && stack_size > max_size) {
1351     _initial_thread_stack_size = max_size;
1352  } else {
1353     _initial_thread_stack_size = stack_size;
1354  }
1355
1356  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1357  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1358}
1359
1360////////////////////////////////////////////////////////////////////////////////
1361// time support
1362
1363// Time since start-up in seconds to a fine granularity.
1364// Used by VMSelfDestructTimer and the MemProfiler.
1365double os::elapsedTime() {
1366
1367  return (double)(os::elapsed_counter()) * 0.000001;
1368}
1369
1370jlong os::elapsed_counter() {
1371  timeval time;
1372  int status = gettimeofday(&time, NULL);
1373  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1374}
1375
1376jlong os::elapsed_frequency() {
1377  return (1000 * 1000);
1378}
1379
1380// For now, we say that linux does not support vtime.  I have no idea
1381// whether it can actually be made to (DLD, 9/13/05).
1382
1383bool os::supports_vtime() { return false; }
1384bool os::enable_vtime()   { return false; }
1385bool os::vtime_enabled()  { return false; }
1386double os::elapsedVTime() {
1387  // better than nothing, but not much
1388  return elapsedTime();
1389}
1390
1391jlong os::javaTimeMillis() {
1392  timeval time;
1393  int status = gettimeofday(&time, NULL);
1394  assert(status != -1, "linux error");
1395  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1396}
1397
1398#ifndef CLOCK_MONOTONIC
1399#define CLOCK_MONOTONIC (1)
1400#endif
1401
1402void os::Linux::clock_init() {
1403  // we do dlopen's in this particular order due to bug in linux
1404  // dynamical loader (see 6348968) leading to crash on exit
1405  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1406  if (handle == NULL) {
1407    handle = dlopen("librt.so", RTLD_LAZY);
1408  }
1409
1410  if (handle) {
1411    int (*clock_getres_func)(clockid_t, struct timespec*) =
1412           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1413    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1414           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1415    if (clock_getres_func && clock_gettime_func) {
1416      // See if monotonic clock is supported by the kernel. Note that some
1417      // early implementations simply return kernel jiffies (updated every
1418      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1419      // for nano time (though the monotonic property is still nice to have).
1420      // It's fixed in newer kernels, however clock_getres() still returns
1421      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1422      // resolution for now. Hopefully as people move to new kernels, this
1423      // won't be a problem.
1424      struct timespec res;
1425      struct timespec tp;
1426      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1427          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1428        // yes, monotonic clock is supported
1429        _clock_gettime = clock_gettime_func;
1430      } else {
1431        // close librt if there is no monotonic clock
1432        dlclose(handle);
1433      }
1434    }
1435  }
1436}
1437
1438#ifndef SYS_clock_getres
1439
1440#if defined(IA32) || defined(AMD64)
1441#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1442#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1443#else
1444#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1445#define sys_clock_getres(x,y)  -1
1446#endif
1447
1448#else
1449#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1450#endif
1451
1452void os::Linux::fast_thread_clock_init() {
1453  if (!UseLinuxPosixThreadCPUClocks) {
1454    return;
1455  }
1456  clockid_t clockid;
1457  struct timespec tp;
1458  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1459      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1460
1461  // Switch to using fast clocks for thread cpu time if
1462  // the sys_clock_getres() returns 0 error code.
1463  // Note, that some kernels may support the current thread
1464  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1465  // returned by the pthread_getcpuclockid().
1466  // If the fast Posix clocks are supported then the sys_clock_getres()
1467  // must return at least tp.tv_sec == 0 which means a resolution
1468  // better than 1 sec. This is extra check for reliability.
1469
1470  if(pthread_getcpuclockid_func &&
1471     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1472     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1473
1474    _supports_fast_thread_cpu_time = true;
1475    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1476  }
1477}
1478
1479jlong os::javaTimeNanos() {
1480  if (Linux::supports_monotonic_clock()) {
1481    struct timespec tp;
1482    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1483    assert(status == 0, "gettime error");
1484    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1485    return result;
1486  } else {
1487    timeval time;
1488    int status = gettimeofday(&time, NULL);
1489    assert(status != -1, "linux error");
1490    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1491    return 1000 * usecs;
1492  }
1493}
1494
1495void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1496  if (Linux::supports_monotonic_clock()) {
1497    info_ptr->max_value = ALL_64_BITS;
1498
1499    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1500    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1501    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1502  } else {
1503    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1504    info_ptr->max_value = ALL_64_BITS;
1505
1506    // gettimeofday is a real time clock so it skips
1507    info_ptr->may_skip_backward = true;
1508    info_ptr->may_skip_forward = true;
1509  }
1510
1511  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1512}
1513
1514// Return the real, user, and system times in seconds from an
1515// arbitrary fixed point in the past.
1516bool os::getTimesSecs(double* process_real_time,
1517                      double* process_user_time,
1518                      double* process_system_time) {
1519  struct tms ticks;
1520  clock_t real_ticks = times(&ticks);
1521
1522  if (real_ticks == (clock_t) (-1)) {
1523    return false;
1524  } else {
1525    double ticks_per_second = (double) clock_tics_per_sec;
1526    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1527    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1528    *process_real_time = ((double) real_ticks) / ticks_per_second;
1529
1530    return true;
1531  }
1532}
1533
1534
1535char * os::local_time_string(char *buf, size_t buflen) {
1536  struct tm t;
1537  time_t long_time;
1538  time(&long_time);
1539  localtime_r(&long_time, &t);
1540  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1541               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1542               t.tm_hour, t.tm_min, t.tm_sec);
1543  return buf;
1544}
1545
1546struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1547  return localtime_r(clock, res);
1548}
1549
1550////////////////////////////////////////////////////////////////////////////////
1551// runtime exit support
1552
1553// Note: os::shutdown() might be called very early during initialization, or
1554// called from signal handler. Before adding something to os::shutdown(), make
1555// sure it is async-safe and can handle partially initialized VM.
1556void os::shutdown() {
1557
1558  // allow PerfMemory to attempt cleanup of any persistent resources
1559  perfMemory_exit();
1560
1561  // needs to remove object in file system
1562  AttachListener::abort();
1563
1564  // flush buffered output, finish log files
1565  ostream_abort();
1566
1567  // Check for abort hook
1568  abort_hook_t abort_hook = Arguments::abort_hook();
1569  if (abort_hook != NULL) {
1570    abort_hook();
1571  }
1572
1573}
1574
1575// Note: os::abort() might be called very early during initialization, or
1576// called from signal handler. Before adding something to os::abort(), make
1577// sure it is async-safe and can handle partially initialized VM.
1578void os::abort(bool dump_core) {
1579  os::shutdown();
1580  if (dump_core) {
1581#ifndef PRODUCT
1582    fdStream out(defaultStream::output_fd());
1583    out.print_raw("Current thread is ");
1584    char buf[16];
1585    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1586    out.print_raw_cr(buf);
1587    out.print_raw_cr("Dumping core ...");
1588#endif
1589    ::abort(); // dump core
1590  }
1591
1592  ::exit(1);
1593}
1594
1595// Die immediately, no exit hook, no abort hook, no cleanup.
1596void os::die() {
1597  // _exit() on LinuxThreads only kills current thread
1598  ::abort();
1599}
1600
1601// unused on linux for now.
1602void os::set_error_file(const char *logfile) {}
1603
1604
1605// This method is a copy of JDK's sysGetLastErrorString
1606// from src/solaris/hpi/src/system_md.c
1607
1608size_t os::lasterror(char *buf, size_t len) {
1609
1610  if (errno == 0)  return 0;
1611
1612  const char *s = ::strerror(errno);
1613  size_t n = ::strlen(s);
1614  if (n >= len) {
1615    n = len - 1;
1616  }
1617  ::strncpy(buf, s, n);
1618  buf[n] = '\0';
1619  return n;
1620}
1621
1622intx os::current_thread_id() { return (intx)pthread_self(); }
1623int os::current_process_id() {
1624
1625  // Under the old linux thread library, linux gives each thread
1626  // its own process id. Because of this each thread will return
1627  // a different pid if this method were to return the result
1628  // of getpid(2). Linux provides no api that returns the pid
1629  // of the launcher thread for the vm. This implementation
1630  // returns a unique pid, the pid of the launcher thread
1631  // that starts the vm 'process'.
1632
1633  // Under the NPTL, getpid() returns the same pid as the
1634  // launcher thread rather than a unique pid per thread.
1635  // Use gettid() if you want the old pre NPTL behaviour.
1636
1637  // if you are looking for the result of a call to getpid() that
1638  // returns a unique pid for the calling thread, then look at the
1639  // OSThread::thread_id() method in osThread_linux.hpp file
1640
1641  return (int)(_initial_pid ? _initial_pid : getpid());
1642}
1643
1644// DLL functions
1645
1646const char* os::dll_file_extension() { return ".so"; }
1647
1648// This must be hard coded because it's the system's temporary
1649// directory not the java application's temp directory, ala java.io.tmpdir.
1650const char* os::get_temp_directory() { return "/tmp"; }
1651
1652static bool file_exists(const char* filename) {
1653  struct stat statbuf;
1654  if (filename == NULL || strlen(filename) == 0) {
1655    return false;
1656  }
1657  return os::stat(filename, &statbuf) == 0;
1658}
1659
1660void os::dll_build_name(char* buffer, size_t buflen,
1661                        const char* pname, const char* fname) {
1662  // Copied from libhpi
1663  const size_t pnamelen = pname ? strlen(pname) : 0;
1664
1665  // Quietly truncate on buffer overflow.  Should be an error.
1666  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1667      *buffer = '\0';
1668      return;
1669  }
1670
1671  if (pnamelen == 0) {
1672    snprintf(buffer, buflen, "lib%s.so", fname);
1673  } else if (strchr(pname, *os::path_separator()) != NULL) {
1674    int n;
1675    char** pelements = split_path(pname, &n);
1676    for (int i = 0 ; i < n ; i++) {
1677      // Really shouldn't be NULL, but check can't hurt
1678      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1679        continue; // skip the empty path values
1680      }
1681      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1682      if (file_exists(buffer)) {
1683        break;
1684      }
1685    }
1686    // release the storage
1687    for (int i = 0 ; i < n ; i++) {
1688      if (pelements[i] != NULL) {
1689        FREE_C_HEAP_ARRAY(char, pelements[i]);
1690      }
1691    }
1692    if (pelements != NULL) {
1693      FREE_C_HEAP_ARRAY(char*, pelements);
1694    }
1695  } else {
1696    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1697  }
1698}
1699
1700const char* os::get_current_directory(char *buf, int buflen) {
1701  return getcwd(buf, buflen);
1702}
1703
1704// check if addr is inside libjvm[_g].so
1705bool os::address_is_in_vm(address addr) {
1706  static address libjvm_base_addr;
1707  Dl_info dlinfo;
1708
1709  if (libjvm_base_addr == NULL) {
1710    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1711    libjvm_base_addr = (address)dlinfo.dli_fbase;
1712    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1713  }
1714
1715  if (dladdr((void *)addr, &dlinfo)) {
1716    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1717  }
1718
1719  return false;
1720}
1721
1722bool os::dll_address_to_function_name(address addr, char *buf,
1723                                      int buflen, int *offset) {
1724  Dl_info dlinfo;
1725
1726  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1727    if (buf != NULL) {
1728      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1729        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1730      }
1731    }
1732    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1733    return true;
1734  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1735    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1736       dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1737       return true;
1738    }
1739  }
1740
1741  if (buf != NULL) buf[0] = '\0';
1742  if (offset != NULL) *offset = -1;
1743  return false;
1744}
1745
1746struct _address_to_library_name {
1747  address addr;          // input : memory address
1748  size_t  buflen;        //         size of fname
1749  char*   fname;         // output: library name
1750  address base;          //         library base addr
1751};
1752
1753static int address_to_library_name_callback(struct dl_phdr_info *info,
1754                                            size_t size, void *data) {
1755  int i;
1756  bool found = false;
1757  address libbase = NULL;
1758  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1759
1760  // iterate through all loadable segments
1761  for (i = 0; i < info->dlpi_phnum; i++) {
1762    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1763    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1764      // base address of a library is the lowest address of its loaded
1765      // segments.
1766      if (libbase == NULL || libbase > segbase) {
1767        libbase = segbase;
1768      }
1769      // see if 'addr' is within current segment
1770      if (segbase <= d->addr &&
1771          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1772        found = true;
1773      }
1774    }
1775  }
1776
1777  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1778  // so dll_address_to_library_name() can fall through to use dladdr() which
1779  // can figure out executable name from argv[0].
1780  if (found && info->dlpi_name && info->dlpi_name[0]) {
1781    d->base = libbase;
1782    if (d->fname) {
1783      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1784    }
1785    return 1;
1786  }
1787  return 0;
1788}
1789
1790bool os::dll_address_to_library_name(address addr, char* buf,
1791                                     int buflen, int* offset) {
1792  Dl_info dlinfo;
1793  struct _address_to_library_name data;
1794
1795  // There is a bug in old glibc dladdr() implementation that it could resolve
1796  // to wrong library name if the .so file has a base address != NULL. Here
1797  // we iterate through the program headers of all loaded libraries to find
1798  // out which library 'addr' really belongs to. This workaround can be
1799  // removed once the minimum requirement for glibc is moved to 2.3.x.
1800  data.addr = addr;
1801  data.fname = buf;
1802  data.buflen = buflen;
1803  data.base = NULL;
1804  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1805
1806  if (rslt) {
1807     // buf already contains library name
1808     if (offset) *offset = addr - data.base;
1809     return true;
1810  } else if (dladdr((void*)addr, &dlinfo)){
1811     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1812     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1813     return true;
1814  } else {
1815     if (buf) buf[0] = '\0';
1816     if (offset) *offset = -1;
1817     return false;
1818  }
1819}
1820
1821  // Loads .dll/.so and
1822  // in case of error it checks if .dll/.so was built for the
1823  // same architecture as Hotspot is running on
1824
1825void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1826{
1827  void * result= ::dlopen(filename, RTLD_LAZY);
1828  if (result != NULL) {
1829    // Successful loading
1830    return result;
1831  }
1832
1833  Elf32_Ehdr elf_head;
1834
1835  // Read system error message into ebuf
1836  // It may or may not be overwritten below
1837  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1838  ebuf[ebuflen-1]='\0';
1839  int diag_msg_max_length=ebuflen-strlen(ebuf);
1840  char* diag_msg_buf=ebuf+strlen(ebuf);
1841
1842  if (diag_msg_max_length==0) {
1843    // No more space in ebuf for additional diagnostics message
1844    return NULL;
1845  }
1846
1847
1848  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1849
1850  if (file_descriptor < 0) {
1851    // Can't open library, report dlerror() message
1852    return NULL;
1853  }
1854
1855  bool failed_to_read_elf_head=
1856    (sizeof(elf_head)!=
1857        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1858
1859  ::close(file_descriptor);
1860  if (failed_to_read_elf_head) {
1861    // file i/o error - report dlerror() msg
1862    return NULL;
1863  }
1864
1865  typedef struct {
1866    Elf32_Half  code;         // Actual value as defined in elf.h
1867    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1868    char        elf_class;    // 32 or 64 bit
1869    char        endianess;    // MSB or LSB
1870    char*       name;         // String representation
1871  } arch_t;
1872
1873  #ifndef EM_486
1874  #define EM_486          6               /* Intel 80486 */
1875  #endif
1876
1877  static const arch_t arch_array[]={
1878    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1879    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1880    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1881    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1882    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1883    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1884    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1885    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1886    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1887    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1888    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1889    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1890    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1891    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1892    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1893    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1894  };
1895
1896  #if  (defined IA32)
1897    static  Elf32_Half running_arch_code=EM_386;
1898  #elif   (defined AMD64)
1899    static  Elf32_Half running_arch_code=EM_X86_64;
1900  #elif  (defined IA64)
1901    static  Elf32_Half running_arch_code=EM_IA_64;
1902  #elif  (defined __sparc) && (defined _LP64)
1903    static  Elf32_Half running_arch_code=EM_SPARCV9;
1904  #elif  (defined __sparc) && (!defined _LP64)
1905    static  Elf32_Half running_arch_code=EM_SPARC;
1906  #elif  (defined __powerpc64__)
1907    static  Elf32_Half running_arch_code=EM_PPC64;
1908  #elif  (defined __powerpc__)
1909    static  Elf32_Half running_arch_code=EM_PPC;
1910  #elif  (defined ARM)
1911    static  Elf32_Half running_arch_code=EM_ARM;
1912  #elif  (defined S390)
1913    static  Elf32_Half running_arch_code=EM_S390;
1914  #elif  (defined ALPHA)
1915    static  Elf32_Half running_arch_code=EM_ALPHA;
1916  #elif  (defined MIPSEL)
1917    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1918  #elif  (defined PARISC)
1919    static  Elf32_Half running_arch_code=EM_PARISC;
1920  #elif  (defined MIPS)
1921    static  Elf32_Half running_arch_code=EM_MIPS;
1922  #elif  (defined M68K)
1923    static  Elf32_Half running_arch_code=EM_68K;
1924  #else
1925    #error Method os::dll_load requires that one of following is defined:\
1926         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1927  #endif
1928
1929  // Identify compatability class for VM's architecture and library's architecture
1930  // Obtain string descriptions for architectures
1931
1932  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1933  int running_arch_index=-1;
1934
1935  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1936    if (running_arch_code == arch_array[i].code) {
1937      running_arch_index    = i;
1938    }
1939    if (lib_arch.code == arch_array[i].code) {
1940      lib_arch.compat_class = arch_array[i].compat_class;
1941      lib_arch.name         = arch_array[i].name;
1942    }
1943  }
1944
1945  assert(running_arch_index != -1,
1946    "Didn't find running architecture code (running_arch_code) in arch_array");
1947  if (running_arch_index == -1) {
1948    // Even though running architecture detection failed
1949    // we may still continue with reporting dlerror() message
1950    return NULL;
1951  }
1952
1953  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1954    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1955    return NULL;
1956  }
1957
1958#ifndef S390
1959  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1960    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1961    return NULL;
1962  }
1963#endif // !S390
1964
1965  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1966    if ( lib_arch.name!=NULL ) {
1967      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1968        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1969        lib_arch.name, arch_array[running_arch_index].name);
1970    } else {
1971      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1972      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1973        lib_arch.code,
1974        arch_array[running_arch_index].name);
1975    }
1976  }
1977
1978  return NULL;
1979}
1980
1981/*
1982 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1983 * chances are you might want to run the generated bits against glibc-2.0
1984 * libdl.so, so always use locking for any version of glibc.
1985 */
1986void* os::dll_lookup(void* handle, const char* name) {
1987  pthread_mutex_lock(&dl_mutex);
1988  void* res = dlsym(handle, name);
1989  pthread_mutex_unlock(&dl_mutex);
1990  return res;
1991}
1992
1993
1994static bool _print_ascii_file(const char* filename, outputStream* st) {
1995  int fd = ::open(filename, O_RDONLY);
1996  if (fd == -1) {
1997     return false;
1998  }
1999
2000  char buf[32];
2001  int bytes;
2002  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2003    st->print_raw(buf, bytes);
2004  }
2005
2006  ::close(fd);
2007
2008  return true;
2009}
2010
2011void os::print_dll_info(outputStream *st) {
2012   st->print_cr("Dynamic libraries:");
2013
2014   char fname[32];
2015   pid_t pid = os::Linux::gettid();
2016
2017   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2018
2019   if (!_print_ascii_file(fname, st)) {
2020     st->print("Can not get library information for pid = %d\n", pid);
2021   }
2022}
2023
2024
2025void os::print_os_info(outputStream* st) {
2026  st->print("OS:");
2027
2028  // Try to identify popular distros.
2029  // Most Linux distributions have /etc/XXX-release file, which contains
2030  // the OS version string. Some have more than one /etc/XXX-release file
2031  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2032  // so the order is important.
2033  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2034      !_print_ascii_file("/etc/sun-release", st) &&
2035      !_print_ascii_file("/etc/redhat-release", st) &&
2036      !_print_ascii_file("/etc/SuSE-release", st) &&
2037      !_print_ascii_file("/etc/turbolinux-release", st) &&
2038      !_print_ascii_file("/etc/gentoo-release", st) &&
2039      !_print_ascii_file("/etc/debian_version", st) &&
2040      !_print_ascii_file("/etc/ltib-release", st) &&
2041      !_print_ascii_file("/etc/angstrom-version", st)) {
2042      st->print("Linux");
2043  }
2044  st->cr();
2045
2046  // kernel
2047  st->print("uname:");
2048  struct utsname name;
2049  uname(&name);
2050  st->print(name.sysname); st->print(" ");
2051  st->print(name.release); st->print(" ");
2052  st->print(name.version); st->print(" ");
2053  st->print(name.machine);
2054  st->cr();
2055
2056  // Print warning if unsafe chroot environment detected
2057  if (unsafe_chroot_detected) {
2058    st->print("WARNING!! ");
2059    st->print_cr(unstable_chroot_error);
2060  }
2061
2062  // libc, pthread
2063  st->print("libc:");
2064  st->print(os::Linux::glibc_version()); st->print(" ");
2065  st->print(os::Linux::libpthread_version()); st->print(" ");
2066  if (os::Linux::is_LinuxThreads()) {
2067     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2068  }
2069  st->cr();
2070
2071  // rlimit
2072  st->print("rlimit:");
2073  struct rlimit rlim;
2074
2075  st->print(" STACK ");
2076  getrlimit(RLIMIT_STACK, &rlim);
2077  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2078  else st->print("%uk", rlim.rlim_cur >> 10);
2079
2080  st->print(", CORE ");
2081  getrlimit(RLIMIT_CORE, &rlim);
2082  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2083  else st->print("%uk", rlim.rlim_cur >> 10);
2084
2085  st->print(", NPROC ");
2086  getrlimit(RLIMIT_NPROC, &rlim);
2087  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2088  else st->print("%d", rlim.rlim_cur);
2089
2090  st->print(", NOFILE ");
2091  getrlimit(RLIMIT_NOFILE, &rlim);
2092  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2093  else st->print("%d", rlim.rlim_cur);
2094
2095  st->print(", AS ");
2096  getrlimit(RLIMIT_AS, &rlim);
2097  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2098  else st->print("%uk", rlim.rlim_cur >> 10);
2099  st->cr();
2100
2101  // load average
2102  st->print("load average:");
2103  double loadavg[3];
2104  os::loadavg(loadavg, 3);
2105  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2106  st->cr();
2107
2108  // meminfo
2109  st->print("\n/proc/meminfo:\n");
2110  _print_ascii_file("/proc/meminfo", st);
2111  st->cr();
2112}
2113
2114void os::pd_print_cpu_info(outputStream* st) {
2115  st->print("\n/proc/cpuinfo:\n");
2116  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2117    st->print("  <Not Available>");
2118  }
2119  st->cr();
2120}
2121
2122void os::print_memory_info(outputStream* st) {
2123
2124  st->print("Memory:");
2125  st->print(" %dk page", os::vm_page_size()>>10);
2126
2127  // values in struct sysinfo are "unsigned long"
2128  struct sysinfo si;
2129  sysinfo(&si);
2130
2131  st->print(", physical " UINT64_FORMAT "k",
2132            os::physical_memory() >> 10);
2133  st->print("(" UINT64_FORMAT "k free)",
2134            os::available_memory() >> 10);
2135  st->print(", swap " UINT64_FORMAT "k",
2136            ((jlong)si.totalswap * si.mem_unit) >> 10);
2137  st->print("(" UINT64_FORMAT "k free)",
2138            ((jlong)si.freeswap * si.mem_unit) >> 10);
2139  st->cr();
2140}
2141
2142// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2143// but they're the same for all the linux arch that we support
2144// and they're the same for solaris but there's no common place to put this.
2145const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2146                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2147                          "ILL_COPROC", "ILL_BADSTK" };
2148
2149const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2150                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2151                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2152
2153const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2154
2155const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2156
2157void os::print_siginfo(outputStream* st, void* siginfo) {
2158  st->print("siginfo:");
2159
2160  const int buflen = 100;
2161  char buf[buflen];
2162  siginfo_t *si = (siginfo_t*)siginfo;
2163  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2164  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2165    st->print("si_errno=%s", buf);
2166  } else {
2167    st->print("si_errno=%d", si->si_errno);
2168  }
2169  const int c = si->si_code;
2170  assert(c > 0, "unexpected si_code");
2171  switch (si->si_signo) {
2172  case SIGILL:
2173    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2174    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2175    break;
2176  case SIGFPE:
2177    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2178    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2179    break;
2180  case SIGSEGV:
2181    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2182    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2183    break;
2184  case SIGBUS:
2185    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2186    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2187    break;
2188  default:
2189    st->print(", si_code=%d", si->si_code);
2190    // no si_addr
2191  }
2192
2193  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2194      UseSharedSpaces) {
2195    FileMapInfo* mapinfo = FileMapInfo::current_info();
2196    if (mapinfo->is_in_shared_space(si->si_addr)) {
2197      st->print("\n\nError accessing class data sharing archive."   \
2198                " Mapped file inaccessible during execution, "      \
2199                " possible disk/network problem.");
2200    }
2201  }
2202  st->cr();
2203}
2204
2205
2206static void print_signal_handler(outputStream* st, int sig,
2207                                 char* buf, size_t buflen);
2208
2209void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2210  st->print_cr("Signal Handlers:");
2211  print_signal_handler(st, SIGSEGV, buf, buflen);
2212  print_signal_handler(st, SIGBUS , buf, buflen);
2213  print_signal_handler(st, SIGFPE , buf, buflen);
2214  print_signal_handler(st, SIGPIPE, buf, buflen);
2215  print_signal_handler(st, SIGXFSZ, buf, buflen);
2216  print_signal_handler(st, SIGILL , buf, buflen);
2217  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2218  print_signal_handler(st, SR_signum, buf, buflen);
2219  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2220  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2221  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2222  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2223}
2224
2225static char saved_jvm_path[MAXPATHLEN] = {0};
2226
2227// Find the full path to the current module, libjvm.so or libjvm_g.so
2228void os::jvm_path(char *buf, jint buflen) {
2229  // Error checking.
2230  if (buflen < MAXPATHLEN) {
2231    assert(false, "must use a large-enough buffer");
2232    buf[0] = '\0';
2233    return;
2234  }
2235  // Lazy resolve the path to current module.
2236  if (saved_jvm_path[0] != 0) {
2237    strcpy(buf, saved_jvm_path);
2238    return;
2239  }
2240
2241  char dli_fname[MAXPATHLEN];
2242  bool ret = dll_address_to_library_name(
2243                CAST_FROM_FN_PTR(address, os::jvm_path),
2244                dli_fname, sizeof(dli_fname), NULL);
2245  assert(ret != 0, "cannot locate libjvm");
2246  char *rp = realpath(dli_fname, buf);
2247  if (rp == NULL)
2248    return;
2249
2250  if (Arguments::created_by_gamma_launcher()) {
2251    // Support for the gamma launcher.  Typical value for buf is
2252    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2253    // the right place in the string, then assume we are installed in a JDK and
2254    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2255    // up the path so it looks like libjvm.so is installed there (append a
2256    // fake suffix hotspot/libjvm.so).
2257    const char *p = buf + strlen(buf) - 1;
2258    for (int count = 0; p > buf && count < 5; ++count) {
2259      for (--p; p > buf && *p != '/'; --p)
2260        /* empty */ ;
2261    }
2262
2263    if (strncmp(p, "/jre/lib/", 9) != 0) {
2264      // Look for JAVA_HOME in the environment.
2265      char* java_home_var = ::getenv("JAVA_HOME");
2266      if (java_home_var != NULL && java_home_var[0] != 0) {
2267        char* jrelib_p;
2268        int len;
2269
2270        // Check the current module name "libjvm.so" or "libjvm_g.so".
2271        p = strrchr(buf, '/');
2272        assert(strstr(p, "/libjvm") == p, "invalid library name");
2273        p = strstr(p, "_g") ? "_g" : "";
2274
2275        rp = realpath(java_home_var, buf);
2276        if (rp == NULL)
2277          return;
2278
2279        // determine if this is a legacy image or modules image
2280        // modules image doesn't have "jre" subdirectory
2281        len = strlen(buf);
2282        jrelib_p = buf + len;
2283        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2284        if (0 != access(buf, F_OK)) {
2285          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2286        }
2287
2288        if (0 == access(buf, F_OK)) {
2289          // Use current module name "libjvm[_g].so" instead of
2290          // "libjvm"debug_only("_g")".so" since for fastdebug version
2291          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2292          len = strlen(buf);
2293          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2294        } else {
2295          // Go back to path of .so
2296          rp = realpath(dli_fname, buf);
2297          if (rp == NULL)
2298            return;
2299        }
2300      }
2301    }
2302  }
2303
2304  strcpy(saved_jvm_path, buf);
2305}
2306
2307void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2308  // no prefix required, not even "_"
2309}
2310
2311void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2312  // no suffix required
2313}
2314
2315////////////////////////////////////////////////////////////////////////////////
2316// sun.misc.Signal support
2317
2318static volatile jint sigint_count = 0;
2319
2320static void
2321UserHandler(int sig, void *siginfo, void *context) {
2322  // 4511530 - sem_post is serialized and handled by the manager thread. When
2323  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2324  // don't want to flood the manager thread with sem_post requests.
2325  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2326      return;
2327
2328  // Ctrl-C is pressed during error reporting, likely because the error
2329  // handler fails to abort. Let VM die immediately.
2330  if (sig == SIGINT && is_error_reported()) {
2331     os::die();
2332  }
2333
2334  os::signal_notify(sig);
2335}
2336
2337void* os::user_handler() {
2338  return CAST_FROM_FN_PTR(void*, UserHandler);
2339}
2340
2341extern "C" {
2342  typedef void (*sa_handler_t)(int);
2343  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2344}
2345
2346void* os::signal(int signal_number, void* handler) {
2347  struct sigaction sigAct, oldSigAct;
2348
2349  sigfillset(&(sigAct.sa_mask));
2350  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2351  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2352
2353  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2354    // -1 means registration failed
2355    return (void *)-1;
2356  }
2357
2358  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2359}
2360
2361void os::signal_raise(int signal_number) {
2362  ::raise(signal_number);
2363}
2364
2365/*
2366 * The following code is moved from os.cpp for making this
2367 * code platform specific, which it is by its very nature.
2368 */
2369
2370// Will be modified when max signal is changed to be dynamic
2371int os::sigexitnum_pd() {
2372  return NSIG;
2373}
2374
2375// a counter for each possible signal value
2376static volatile jint pending_signals[NSIG+1] = { 0 };
2377
2378// Linux(POSIX) specific hand shaking semaphore.
2379static sem_t sig_sem;
2380
2381void os::signal_init_pd() {
2382  // Initialize signal structures
2383  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2384
2385  // Initialize signal semaphore
2386  ::sem_init(&sig_sem, 0, 0);
2387}
2388
2389void os::signal_notify(int sig) {
2390  Atomic::inc(&pending_signals[sig]);
2391  ::sem_post(&sig_sem);
2392}
2393
2394static int check_pending_signals(bool wait) {
2395  Atomic::store(0, &sigint_count);
2396  for (;;) {
2397    for (int i = 0; i < NSIG + 1; i++) {
2398      jint n = pending_signals[i];
2399      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2400        return i;
2401      }
2402    }
2403    if (!wait) {
2404      return -1;
2405    }
2406    JavaThread *thread = JavaThread::current();
2407    ThreadBlockInVM tbivm(thread);
2408
2409    bool threadIsSuspended;
2410    do {
2411      thread->set_suspend_equivalent();
2412      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2413      ::sem_wait(&sig_sem);
2414
2415      // were we externally suspended while we were waiting?
2416      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2417      if (threadIsSuspended) {
2418        //
2419        // The semaphore has been incremented, but while we were waiting
2420        // another thread suspended us. We don't want to continue running
2421        // while suspended because that would surprise the thread that
2422        // suspended us.
2423        //
2424        ::sem_post(&sig_sem);
2425
2426        thread->java_suspend_self();
2427      }
2428    } while (threadIsSuspended);
2429  }
2430}
2431
2432int os::signal_lookup() {
2433  return check_pending_signals(false);
2434}
2435
2436int os::signal_wait() {
2437  return check_pending_signals(true);
2438}
2439
2440////////////////////////////////////////////////////////////////////////////////
2441// Virtual Memory
2442
2443int os::vm_page_size() {
2444  // Seems redundant as all get out
2445  assert(os::Linux::page_size() != -1, "must call os::init");
2446  return os::Linux::page_size();
2447}
2448
2449// Solaris allocates memory by pages.
2450int os::vm_allocation_granularity() {
2451  assert(os::Linux::page_size() != -1, "must call os::init");
2452  return os::Linux::page_size();
2453}
2454
2455// Rationale behind this function:
2456//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2457//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2458//  samples for JITted code. Here we create private executable mapping over the code cache
2459//  and then we can use standard (well, almost, as mapping can change) way to provide
2460//  info for the reporting script by storing timestamp and location of symbol
2461void linux_wrap_code(char* base, size_t size) {
2462  static volatile jint cnt = 0;
2463
2464  if (!UseOprofile) {
2465    return;
2466  }
2467
2468  char buf[PATH_MAX+1];
2469  int num = Atomic::add(1, &cnt);
2470
2471  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2472           os::get_temp_directory(), os::current_process_id(), num);
2473  unlink(buf);
2474
2475  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2476
2477  if (fd != -1) {
2478    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2479    if (rv != (off_t)-1) {
2480      if (::write(fd, "", 1) == 1) {
2481        mmap(base, size,
2482             PROT_READ|PROT_WRITE|PROT_EXEC,
2483             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2484      }
2485    }
2486    ::close(fd);
2487    unlink(buf);
2488  }
2489}
2490
2491// NOTE: Linux kernel does not really reserve the pages for us.
2492//       All it does is to check if there are enough free pages
2493//       left at the time of mmap(). This could be a potential
2494//       problem.
2495bool os::commit_memory(char* addr, size_t size, bool exec) {
2496  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2497  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2498                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2499  if (res != (uintptr_t) MAP_FAILED) {
2500    if (UseNUMAInterleaving) {
2501      numa_make_global(addr, size);
2502    }
2503    return true;
2504  }
2505  return false;
2506}
2507
2508// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2509#ifndef MAP_HUGETLB
2510#define MAP_HUGETLB 0x40000
2511#endif
2512
2513// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2514#ifndef MADV_HUGEPAGE
2515#define MADV_HUGEPAGE 14
2516#endif
2517
2518bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2519                       bool exec) {
2520  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2521    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2522    uintptr_t res =
2523      (uintptr_t) ::mmap(addr, size, prot,
2524                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2525                         -1, 0);
2526    if (res != (uintptr_t) MAP_FAILED) {
2527      if (UseNUMAInterleaving) {
2528        numa_make_global(addr, size);
2529      }
2530      return true;
2531    }
2532    // Fall through and try to use small pages
2533  }
2534
2535  if (commit_memory(addr, size, exec)) {
2536    realign_memory(addr, size, alignment_hint);
2537    return true;
2538  }
2539  return false;
2540}
2541
2542void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2543  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2544    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2545    // be supported or the memory may already be backed by huge pages.
2546    ::madvise(addr, bytes, MADV_HUGEPAGE);
2547  }
2548}
2549
2550void os::free_memory(char *addr, size_t bytes) {
2551  commit_memory(addr, bytes, false);
2552}
2553
2554void os::numa_make_global(char *addr, size_t bytes) {
2555  Linux::numa_interleave_memory(addr, bytes);
2556}
2557
2558void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2559  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2560}
2561
2562bool os::numa_topology_changed()   { return false; }
2563
2564size_t os::numa_get_groups_num() {
2565  int max_node = Linux::numa_max_node();
2566  return max_node > 0 ? max_node + 1 : 1;
2567}
2568
2569int os::numa_get_group_id() {
2570  int cpu_id = Linux::sched_getcpu();
2571  if (cpu_id != -1) {
2572    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2573    if (lgrp_id != -1) {
2574      return lgrp_id;
2575    }
2576  }
2577  return 0;
2578}
2579
2580size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2581  for (size_t i = 0; i < size; i++) {
2582    ids[i] = i;
2583  }
2584  return size;
2585}
2586
2587bool os::get_page_info(char *start, page_info* info) {
2588  return false;
2589}
2590
2591char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2592  return end;
2593}
2594
2595
2596int os::Linux::sched_getcpu_syscall(void) {
2597  unsigned int cpu;
2598  int retval = -1;
2599
2600#if defined(IA32)
2601# ifndef SYS_getcpu
2602# define SYS_getcpu 318
2603# endif
2604  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2605#elif defined(AMD64)
2606// Unfortunately we have to bring all these macros here from vsyscall.h
2607// to be able to compile on old linuxes.
2608# define __NR_vgetcpu 2
2609# define VSYSCALL_START (-10UL << 20)
2610# define VSYSCALL_SIZE 1024
2611# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2612  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2613  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2614  retval = vgetcpu(&cpu, NULL, NULL);
2615#endif
2616
2617  return (retval == -1) ? retval : cpu;
2618}
2619
2620// Something to do with the numa-aware allocator needs these symbols
2621extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2622extern "C" JNIEXPORT void numa_error(char *where) { }
2623extern "C" JNIEXPORT int fork1() { return fork(); }
2624
2625
2626// If we are running with libnuma version > 2, then we should
2627// be trying to use symbols with versions 1.1
2628// If we are running with earlier version, which did not have symbol versions,
2629// we should use the base version.
2630void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2631  void *f = dlvsym(handle, name, "libnuma_1.1");
2632  if (f == NULL) {
2633    f = dlsym(handle, name);
2634  }
2635  return f;
2636}
2637
2638bool os::Linux::libnuma_init() {
2639  // sched_getcpu() should be in libc.
2640  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2641                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2642
2643  // If it's not, try a direct syscall.
2644  if (sched_getcpu() == -1)
2645    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2646
2647  if (sched_getcpu() != -1) { // Does it work?
2648    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2649    if (handle != NULL) {
2650      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2651                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2652      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2653                                       libnuma_dlsym(handle, "numa_max_node")));
2654      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2655                                        libnuma_dlsym(handle, "numa_available")));
2656      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2657                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2658      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2659                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2660
2661
2662      if (numa_available() != -1) {
2663        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2664        // Create a cpu -> node mapping
2665        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2666        rebuild_cpu_to_node_map();
2667        return true;
2668      }
2669    }
2670  }
2671  return false;
2672}
2673
2674// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2675// The table is later used in get_node_by_cpu().
2676void os::Linux::rebuild_cpu_to_node_map() {
2677  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2678                              // in libnuma (possible values are starting from 16,
2679                              // and continuing up with every other power of 2, but less
2680                              // than the maximum number of CPUs supported by kernel), and
2681                              // is a subject to change (in libnuma version 2 the requirements
2682                              // are more reasonable) we'll just hardcode the number they use
2683                              // in the library.
2684  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2685
2686  size_t cpu_num = os::active_processor_count();
2687  size_t cpu_map_size = NCPUS / BitsPerCLong;
2688  size_t cpu_map_valid_size =
2689    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2690
2691  cpu_to_node()->clear();
2692  cpu_to_node()->at_grow(cpu_num - 1);
2693  size_t node_num = numa_get_groups_num();
2694
2695  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2696  for (size_t i = 0; i < node_num; i++) {
2697    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2698      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2699        if (cpu_map[j] != 0) {
2700          for (size_t k = 0; k < BitsPerCLong; k++) {
2701            if (cpu_map[j] & (1UL << k)) {
2702              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2703            }
2704          }
2705        }
2706      }
2707    }
2708  }
2709  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2710}
2711
2712int os::Linux::get_node_by_cpu(int cpu_id) {
2713  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2714    return cpu_to_node()->at(cpu_id);
2715  }
2716  return -1;
2717}
2718
2719GrowableArray<int>* os::Linux::_cpu_to_node;
2720os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2721os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2722os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2723os::Linux::numa_available_func_t os::Linux::_numa_available;
2724os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2725os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2726unsigned long* os::Linux::_numa_all_nodes;
2727
2728bool os::uncommit_memory(char* addr, size_t size) {
2729  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2730                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2731  return res  != (uintptr_t) MAP_FAILED;
2732}
2733
2734// Linux uses a growable mapping for the stack, and if the mapping for
2735// the stack guard pages is not removed when we detach a thread the
2736// stack cannot grow beyond the pages where the stack guard was
2737// mapped.  If at some point later in the process the stack expands to
2738// that point, the Linux kernel cannot expand the stack any further
2739// because the guard pages are in the way, and a segfault occurs.
2740//
2741// However, it's essential not to split the stack region by unmapping
2742// a region (leaving a hole) that's already part of the stack mapping,
2743// so if the stack mapping has already grown beyond the guard pages at
2744// the time we create them, we have to truncate the stack mapping.
2745// So, we need to know the extent of the stack mapping when
2746// create_stack_guard_pages() is called.
2747
2748// Find the bounds of the stack mapping.  Return true for success.
2749//
2750// We only need this for stacks that are growable: at the time of
2751// writing thread stacks don't use growable mappings (i.e. those
2752// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2753// only applies to the main thread.
2754
2755static
2756bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2757
2758  char buf[128];
2759  int fd, sz;
2760
2761  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2762    return false;
2763  }
2764
2765  const char kw[] = "[stack]";
2766  const int kwlen = sizeof(kw)-1;
2767
2768  // Address part of /proc/self/maps couldn't be more than 128 bytes
2769  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2770     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2771        // Extract addresses
2772        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2773           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2774           if (sp >= *bottom && sp <= *top) {
2775              ::close(fd);
2776              return true;
2777           }
2778        }
2779     }
2780  }
2781
2782 ::close(fd);
2783  return false;
2784}
2785
2786
2787// If the (growable) stack mapping already extends beyond the point
2788// where we're going to put our guard pages, truncate the mapping at
2789// that point by munmap()ping it.  This ensures that when we later
2790// munmap() the guard pages we don't leave a hole in the stack
2791// mapping. This only affects the main/initial thread, but guard
2792// against future OS changes
2793bool os::create_stack_guard_pages(char* addr, size_t size) {
2794  uintptr_t stack_extent, stack_base;
2795  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2796  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2797      assert(os::Linux::is_initial_thread(),
2798           "growable stack in non-initial thread");
2799    if (stack_extent < (uintptr_t)addr)
2800      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2801  }
2802
2803  return os::commit_memory(addr, size);
2804}
2805
2806// If this is a growable mapping, remove the guard pages entirely by
2807// munmap()ping them.  If not, just call uncommit_memory(). This only
2808// affects the main/initial thread, but guard against future OS changes
2809bool os::remove_stack_guard_pages(char* addr, size_t size) {
2810  uintptr_t stack_extent, stack_base;
2811  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2812  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2813      assert(os::Linux::is_initial_thread(),
2814           "growable stack in non-initial thread");
2815
2816    return ::munmap(addr, size) == 0;
2817  }
2818
2819  return os::uncommit_memory(addr, size);
2820}
2821
2822static address _highest_vm_reserved_address = NULL;
2823
2824// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2825// at 'requested_addr'. If there are existing memory mappings at the same
2826// location, however, they will be overwritten. If 'fixed' is false,
2827// 'requested_addr' is only treated as a hint, the return value may or
2828// may not start from the requested address. Unlike Linux mmap(), this
2829// function returns NULL to indicate failure.
2830static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2831  char * addr;
2832  int flags;
2833
2834  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2835  if (fixed) {
2836    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2837    flags |= MAP_FIXED;
2838  }
2839
2840  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2841  // to PROT_EXEC if executable when we commit the page.
2842  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2843                       flags, -1, 0);
2844
2845  if (addr != MAP_FAILED) {
2846    // anon_mmap() should only get called during VM initialization,
2847    // don't need lock (actually we can skip locking even it can be called
2848    // from multiple threads, because _highest_vm_reserved_address is just a
2849    // hint about the upper limit of non-stack memory regions.)
2850    if ((address)addr + bytes > _highest_vm_reserved_address) {
2851      _highest_vm_reserved_address = (address)addr + bytes;
2852    }
2853  }
2854
2855  return addr == MAP_FAILED ? NULL : addr;
2856}
2857
2858// Don't update _highest_vm_reserved_address, because there might be memory
2859// regions above addr + size. If so, releasing a memory region only creates
2860// a hole in the address space, it doesn't help prevent heap-stack collision.
2861//
2862static int anon_munmap(char * addr, size_t size) {
2863  return ::munmap(addr, size) == 0;
2864}
2865
2866char* os::reserve_memory(size_t bytes, char* requested_addr,
2867                         size_t alignment_hint) {
2868  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2869}
2870
2871bool os::release_memory(char* addr, size_t size) {
2872  return anon_munmap(addr, size);
2873}
2874
2875static address highest_vm_reserved_address() {
2876  return _highest_vm_reserved_address;
2877}
2878
2879static bool linux_mprotect(char* addr, size_t size, int prot) {
2880  // Linux wants the mprotect address argument to be page aligned.
2881  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2882
2883  // According to SUSv3, mprotect() should only be used with mappings
2884  // established by mmap(), and mmap() always maps whole pages. Unaligned
2885  // 'addr' likely indicates problem in the VM (e.g. trying to change
2886  // protection of malloc'ed or statically allocated memory). Check the
2887  // caller if you hit this assert.
2888  assert(addr == bottom, "sanity check");
2889
2890  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2891  return ::mprotect(bottom, size, prot) == 0;
2892}
2893
2894// Set protections specified
2895bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2896                        bool is_committed) {
2897  unsigned int p = 0;
2898  switch (prot) {
2899  case MEM_PROT_NONE: p = PROT_NONE; break;
2900  case MEM_PROT_READ: p = PROT_READ; break;
2901  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2902  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2903  default:
2904    ShouldNotReachHere();
2905  }
2906  // is_committed is unused.
2907  return linux_mprotect(addr, bytes, p);
2908}
2909
2910bool os::guard_memory(char* addr, size_t size) {
2911  return linux_mprotect(addr, size, PROT_NONE);
2912}
2913
2914bool os::unguard_memory(char* addr, size_t size) {
2915  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2916}
2917
2918bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2919  bool result = false;
2920  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2921                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2922                  -1, 0);
2923
2924  if (p != (void *) -1) {
2925    // We don't know if this really is a huge page or not.
2926    FILE *fp = fopen("/proc/self/maps", "r");
2927    if (fp) {
2928      while (!feof(fp)) {
2929        char chars[257];
2930        long x = 0;
2931        if (fgets(chars, sizeof(chars), fp)) {
2932          if (sscanf(chars, "%lx-%*x", &x) == 1
2933              && x == (long)p) {
2934            if (strstr (chars, "hugepage")) {
2935              result = true;
2936              break;
2937            }
2938          }
2939        }
2940      }
2941      fclose(fp);
2942    }
2943    munmap (p, page_size);
2944    if (result)
2945      return true;
2946  }
2947
2948  if (warn) {
2949    warning("HugeTLBFS is not supported by the operating system.");
2950  }
2951
2952  return result;
2953}
2954
2955/*
2956* Set the coredump_filter bits to include largepages in core dump (bit 6)
2957*
2958* From the coredump_filter documentation:
2959*
2960* - (bit 0) anonymous private memory
2961* - (bit 1) anonymous shared memory
2962* - (bit 2) file-backed private memory
2963* - (bit 3) file-backed shared memory
2964* - (bit 4) ELF header pages in file-backed private memory areas (it is
2965*           effective only if the bit 2 is cleared)
2966* - (bit 5) hugetlb private memory
2967* - (bit 6) hugetlb shared memory
2968*/
2969static void set_coredump_filter(void) {
2970  FILE *f;
2971  long cdm;
2972
2973  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2974    return;
2975  }
2976
2977  if (fscanf(f, "%lx", &cdm) != 1) {
2978    fclose(f);
2979    return;
2980  }
2981
2982  rewind(f);
2983
2984  if ((cdm & LARGEPAGES_BIT) == 0) {
2985    cdm |= LARGEPAGES_BIT;
2986    fprintf(f, "%#lx", cdm);
2987  }
2988
2989  fclose(f);
2990}
2991
2992// Large page support
2993
2994static size_t _large_page_size = 0;
2995
2996void os::large_page_init() {
2997  if (!UseLargePages) {
2998    UseHugeTLBFS = false;
2999    UseSHM = false;
3000    return;
3001  }
3002
3003  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3004    // If UseLargePages is specified on the command line try both methods,
3005    // if it's default, then try only HugeTLBFS.
3006    if (FLAG_IS_DEFAULT(UseLargePages)) {
3007      UseHugeTLBFS = true;
3008    } else {
3009      UseHugeTLBFS = UseSHM = true;
3010    }
3011  }
3012
3013  if (LargePageSizeInBytes) {
3014    _large_page_size = LargePageSizeInBytes;
3015  } else {
3016    // large_page_size on Linux is used to round up heap size. x86 uses either
3017    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3018    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3019    // page as large as 256M.
3020    //
3021    // Here we try to figure out page size by parsing /proc/meminfo and looking
3022    // for a line with the following format:
3023    //    Hugepagesize:     2048 kB
3024    //
3025    // If we can't determine the value (e.g. /proc is not mounted, or the text
3026    // format has been changed), we'll use the largest page size supported by
3027    // the processor.
3028
3029#ifndef ZERO
3030    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3031                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3032#endif // ZERO
3033
3034    FILE *fp = fopen("/proc/meminfo", "r");
3035    if (fp) {
3036      while (!feof(fp)) {
3037        int x = 0;
3038        char buf[16];
3039        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3040          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3041            _large_page_size = x * K;
3042            break;
3043          }
3044        } else {
3045          // skip to next line
3046          for (;;) {
3047            int ch = fgetc(fp);
3048            if (ch == EOF || ch == (int)'\n') break;
3049          }
3050        }
3051      }
3052      fclose(fp);
3053    }
3054  }
3055
3056  // print a warning if any large page related flag is specified on command line
3057  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3058
3059  const size_t default_page_size = (size_t)Linux::page_size();
3060  if (_large_page_size > default_page_size) {
3061    _page_sizes[0] = _large_page_size;
3062    _page_sizes[1] = default_page_size;
3063    _page_sizes[2] = 0;
3064  }
3065  UseHugeTLBFS = UseHugeTLBFS &&
3066                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3067
3068  if (UseHugeTLBFS)
3069    UseSHM = false;
3070
3071  UseLargePages = UseHugeTLBFS || UseSHM;
3072
3073  set_coredump_filter();
3074}
3075
3076#ifndef SHM_HUGETLB
3077#define SHM_HUGETLB 04000
3078#endif
3079
3080char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3081  // "exec" is passed in but not used.  Creating the shared image for
3082  // the code cache doesn't have an SHM_X executable permission to check.
3083  assert(UseLargePages && UseSHM, "only for SHM large pages");
3084
3085  key_t key = IPC_PRIVATE;
3086  char *addr;
3087
3088  bool warn_on_failure = UseLargePages &&
3089                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3090                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3091                        );
3092  char msg[128];
3093
3094  // Create a large shared memory region to attach to based on size.
3095  // Currently, size is the total size of the heap
3096  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3097  if (shmid == -1) {
3098     // Possible reasons for shmget failure:
3099     // 1. shmmax is too small for Java heap.
3100     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3101     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3102     // 2. not enough large page memory.
3103     //    > check available large pages: cat /proc/meminfo
3104     //    > increase amount of large pages:
3105     //          echo new_value > /proc/sys/vm/nr_hugepages
3106     //      Note 1: different Linux may use different name for this property,
3107     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3108     //      Note 2: it's possible there's enough physical memory available but
3109     //            they are so fragmented after a long run that they can't
3110     //            coalesce into large pages. Try to reserve large pages when
3111     //            the system is still "fresh".
3112     if (warn_on_failure) {
3113       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3114       warning(msg);
3115     }
3116     return NULL;
3117  }
3118
3119  // attach to the region
3120  addr = (char*)shmat(shmid, req_addr, 0);
3121  int err = errno;
3122
3123  // Remove shmid. If shmat() is successful, the actual shared memory segment
3124  // will be deleted when it's detached by shmdt() or when the process
3125  // terminates. If shmat() is not successful this will remove the shared
3126  // segment immediately.
3127  shmctl(shmid, IPC_RMID, NULL);
3128
3129  if ((intptr_t)addr == -1) {
3130     if (warn_on_failure) {
3131       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3132       warning(msg);
3133     }
3134     return NULL;
3135  }
3136
3137  if ((addr != NULL) && UseNUMAInterleaving) {
3138    numa_make_global(addr, bytes);
3139  }
3140
3141  return addr;
3142}
3143
3144bool os::release_memory_special(char* base, size_t bytes) {
3145  // detaching the SHM segment will also delete it, see reserve_memory_special()
3146  int rslt = shmdt(base);
3147  return rslt == 0;
3148}
3149
3150size_t os::large_page_size() {
3151  return _large_page_size;
3152}
3153
3154// HugeTLBFS allows application to commit large page memory on demand;
3155// with SysV SHM the entire memory region must be allocated as shared
3156// memory.
3157bool os::can_commit_large_page_memory() {
3158  return UseHugeTLBFS;
3159}
3160
3161bool os::can_execute_large_page_memory() {
3162  return UseHugeTLBFS;
3163}
3164
3165// Reserve memory at an arbitrary address, only if that area is
3166// available (and not reserved for something else).
3167
3168char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3169  const int max_tries = 10;
3170  char* base[max_tries];
3171  size_t size[max_tries];
3172  const size_t gap = 0x000000;
3173
3174  // Assert only that the size is a multiple of the page size, since
3175  // that's all that mmap requires, and since that's all we really know
3176  // about at this low abstraction level.  If we need higher alignment,
3177  // we can either pass an alignment to this method or verify alignment
3178  // in one of the methods further up the call chain.  See bug 5044738.
3179  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3180
3181  // Repeatedly allocate blocks until the block is allocated at the
3182  // right spot. Give up after max_tries. Note that reserve_memory() will
3183  // automatically update _highest_vm_reserved_address if the call is
3184  // successful. The variable tracks the highest memory address every reserved
3185  // by JVM. It is used to detect heap-stack collision if running with
3186  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3187  // space than needed, it could confuse the collision detecting code. To
3188  // solve the problem, save current _highest_vm_reserved_address and
3189  // calculate the correct value before return.
3190  address old_highest = _highest_vm_reserved_address;
3191
3192  // Linux mmap allows caller to pass an address as hint; give it a try first,
3193  // if kernel honors the hint then we can return immediately.
3194  char * addr = anon_mmap(requested_addr, bytes, false);
3195  if (addr == requested_addr) {
3196     return requested_addr;
3197  }
3198
3199  if (addr != NULL) {
3200     // mmap() is successful but it fails to reserve at the requested address
3201     anon_munmap(addr, bytes);
3202  }
3203
3204  int i;
3205  for (i = 0; i < max_tries; ++i) {
3206    base[i] = reserve_memory(bytes);
3207
3208    if (base[i] != NULL) {
3209      // Is this the block we wanted?
3210      if (base[i] == requested_addr) {
3211        size[i] = bytes;
3212        break;
3213      }
3214
3215      // Does this overlap the block we wanted? Give back the overlapped
3216      // parts and try again.
3217
3218      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3219      if (top_overlap >= 0 && top_overlap < bytes) {
3220        unmap_memory(base[i], top_overlap);
3221        base[i] += top_overlap;
3222        size[i] = bytes - top_overlap;
3223      } else {
3224        size_t bottom_overlap = base[i] + bytes - requested_addr;
3225        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3226          unmap_memory(requested_addr, bottom_overlap);
3227          size[i] = bytes - bottom_overlap;
3228        } else {
3229          size[i] = bytes;
3230        }
3231      }
3232    }
3233  }
3234
3235  // Give back the unused reserved pieces.
3236
3237  for (int j = 0; j < i; ++j) {
3238    if (base[j] != NULL) {
3239      unmap_memory(base[j], size[j]);
3240    }
3241  }
3242
3243  if (i < max_tries) {
3244    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3245    return requested_addr;
3246  } else {
3247    _highest_vm_reserved_address = old_highest;
3248    return NULL;
3249  }
3250}
3251
3252size_t os::read(int fd, void *buf, unsigned int nBytes) {
3253  return ::read(fd, buf, nBytes);
3254}
3255
3256// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3257// Solaris uses poll(), linux uses park().
3258// Poll() is likely a better choice, assuming that Thread.interrupt()
3259// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3260// SIGSEGV, see 4355769.
3261
3262const int NANOSECS_PER_MILLISECS = 1000000;
3263
3264int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3265  assert(thread == Thread::current(),  "thread consistency check");
3266
3267  ParkEvent * const slp = thread->_SleepEvent ;
3268  slp->reset() ;
3269  OrderAccess::fence() ;
3270
3271  if (interruptible) {
3272    jlong prevtime = javaTimeNanos();
3273
3274    for (;;) {
3275      if (os::is_interrupted(thread, true)) {
3276        return OS_INTRPT;
3277      }
3278
3279      jlong newtime = javaTimeNanos();
3280
3281      if (newtime - prevtime < 0) {
3282        // time moving backwards, should only happen if no monotonic clock
3283        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3284        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3285      } else {
3286        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3287      }
3288
3289      if(millis <= 0) {
3290        return OS_OK;
3291      }
3292
3293      prevtime = newtime;
3294
3295      {
3296        assert(thread->is_Java_thread(), "sanity check");
3297        JavaThread *jt = (JavaThread *) thread;
3298        ThreadBlockInVM tbivm(jt);
3299        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3300
3301        jt->set_suspend_equivalent();
3302        // cleared by handle_special_suspend_equivalent_condition() or
3303        // java_suspend_self() via check_and_wait_while_suspended()
3304
3305        slp->park(millis);
3306
3307        // were we externally suspended while we were waiting?
3308        jt->check_and_wait_while_suspended();
3309      }
3310    }
3311  } else {
3312    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3313    jlong prevtime = javaTimeNanos();
3314
3315    for (;;) {
3316      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3317      // the 1st iteration ...
3318      jlong newtime = javaTimeNanos();
3319
3320      if (newtime - prevtime < 0) {
3321        // time moving backwards, should only happen if no monotonic clock
3322        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3323        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3324      } else {
3325        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3326      }
3327
3328      if(millis <= 0) break ;
3329
3330      prevtime = newtime;
3331      slp->park(millis);
3332    }
3333    return OS_OK ;
3334  }
3335}
3336
3337int os::naked_sleep() {
3338  // %% make the sleep time an integer flag. for now use 1 millisec.
3339  return os::sleep(Thread::current(), 1, false);
3340}
3341
3342// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3343void os::infinite_sleep() {
3344  while (true) {    // sleep forever ...
3345    ::sleep(100);   // ... 100 seconds at a time
3346  }
3347}
3348
3349// Used to convert frequent JVM_Yield() to nops
3350bool os::dont_yield() {
3351  return DontYieldALot;
3352}
3353
3354void os::yield() {
3355  sched_yield();
3356}
3357
3358os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3359
3360void os::yield_all(int attempts) {
3361  // Yields to all threads, including threads with lower priorities
3362  // Threads on Linux are all with same priority. The Solaris style
3363  // os::yield_all() with nanosleep(1ms) is not necessary.
3364  sched_yield();
3365}
3366
3367// Called from the tight loops to possibly influence time-sharing heuristics
3368void os::loop_breaker(int attempts) {
3369  os::yield_all(attempts);
3370}
3371
3372////////////////////////////////////////////////////////////////////////////////
3373// thread priority support
3374
3375// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3376// only supports dynamic priority, static priority must be zero. For real-time
3377// applications, Linux supports SCHED_RR which allows static priority (1-99).
3378// However, for large multi-threaded applications, SCHED_RR is not only slower
3379// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3380// of 5 runs - Sep 2005).
3381//
3382// The following code actually changes the niceness of kernel-thread/LWP. It
3383// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3384// not the entire user process, and user level threads are 1:1 mapped to kernel
3385// threads. It has always been the case, but could change in the future. For
3386// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3387// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3388
3389int os::java_to_os_priority[MaxPriority + 1] = {
3390  19,              // 0 Entry should never be used
3391
3392   4,              // 1 MinPriority
3393   3,              // 2
3394   2,              // 3
3395
3396   1,              // 4
3397   0,              // 5 NormPriority
3398  -1,              // 6
3399
3400  -2,              // 7
3401  -3,              // 8
3402  -4,              // 9 NearMaxPriority
3403
3404  -5               // 10 MaxPriority
3405};
3406
3407static int prio_init() {
3408  if (ThreadPriorityPolicy == 1) {
3409    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3410    // if effective uid is not root. Perhaps, a more elegant way of doing
3411    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3412    if (geteuid() != 0) {
3413      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3414        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3415      }
3416      ThreadPriorityPolicy = 0;
3417    }
3418  }
3419  return 0;
3420}
3421
3422OSReturn os::set_native_priority(Thread* thread, int newpri) {
3423  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3424
3425  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3426  return (ret == 0) ? OS_OK : OS_ERR;
3427}
3428
3429OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3430  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3431    *priority_ptr = java_to_os_priority[NormPriority];
3432    return OS_OK;
3433  }
3434
3435  errno = 0;
3436  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3437  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3438}
3439
3440// Hint to the underlying OS that a task switch would not be good.
3441// Void return because it's a hint and can fail.
3442void os::hint_no_preempt() {}
3443
3444////////////////////////////////////////////////////////////////////////////////
3445// suspend/resume support
3446
3447//  the low-level signal-based suspend/resume support is a remnant from the
3448//  old VM-suspension that used to be for java-suspension, safepoints etc,
3449//  within hotspot. Now there is a single use-case for this:
3450//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3451//      that runs in the watcher thread.
3452//  The remaining code is greatly simplified from the more general suspension
3453//  code that used to be used.
3454//
3455//  The protocol is quite simple:
3456//  - suspend:
3457//      - sends a signal to the target thread
3458//      - polls the suspend state of the osthread using a yield loop
3459//      - target thread signal handler (SR_handler) sets suspend state
3460//        and blocks in sigsuspend until continued
3461//  - resume:
3462//      - sets target osthread state to continue
3463//      - sends signal to end the sigsuspend loop in the SR_handler
3464//
3465//  Note that the SR_lock plays no role in this suspend/resume protocol.
3466//
3467
3468static void resume_clear_context(OSThread *osthread) {
3469  osthread->set_ucontext(NULL);
3470  osthread->set_siginfo(NULL);
3471
3472  // notify the suspend action is completed, we have now resumed
3473  osthread->sr.clear_suspended();
3474}
3475
3476static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3477  osthread->set_ucontext(context);
3478  osthread->set_siginfo(siginfo);
3479}
3480
3481//
3482// Handler function invoked when a thread's execution is suspended or
3483// resumed. We have to be careful that only async-safe functions are
3484// called here (Note: most pthread functions are not async safe and
3485// should be avoided.)
3486//
3487// Note: sigwait() is a more natural fit than sigsuspend() from an
3488// interface point of view, but sigwait() prevents the signal hander
3489// from being run. libpthread would get very confused by not having
3490// its signal handlers run and prevents sigwait()'s use with the
3491// mutex granting granting signal.
3492//
3493// Currently only ever called on the VMThread
3494//
3495static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3496  // Save and restore errno to avoid confusing native code with EINTR
3497  // after sigsuspend.
3498  int old_errno = errno;
3499
3500  Thread* thread = Thread::current();
3501  OSThread* osthread = thread->osthread();
3502  assert(thread->is_VM_thread(), "Must be VMThread");
3503  // read current suspend action
3504  int action = osthread->sr.suspend_action();
3505  if (action == SR_SUSPEND) {
3506    suspend_save_context(osthread, siginfo, context);
3507
3508    // Notify the suspend action is about to be completed. do_suspend()
3509    // waits until SR_SUSPENDED is set and then returns. We will wait
3510    // here for a resume signal and that completes the suspend-other
3511    // action. do_suspend/do_resume is always called as a pair from
3512    // the same thread - so there are no races
3513
3514    // notify the caller
3515    osthread->sr.set_suspended();
3516
3517    sigset_t suspend_set;  // signals for sigsuspend()
3518
3519    // get current set of blocked signals and unblock resume signal
3520    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3521    sigdelset(&suspend_set, SR_signum);
3522
3523    // wait here until we are resumed
3524    do {
3525      sigsuspend(&suspend_set);
3526      // ignore all returns until we get a resume signal
3527    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3528
3529    resume_clear_context(osthread);
3530
3531  } else {
3532    assert(action == SR_CONTINUE, "unexpected sr action");
3533    // nothing special to do - just leave the handler
3534  }
3535
3536  errno = old_errno;
3537}
3538
3539
3540static int SR_initialize() {
3541  struct sigaction act;
3542  char *s;
3543  /* Get signal number to use for suspend/resume */
3544  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3545    int sig = ::strtol(s, 0, 10);
3546    if (sig > 0 || sig < _NSIG) {
3547        SR_signum = sig;
3548    }
3549  }
3550
3551  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3552        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3553
3554  sigemptyset(&SR_sigset);
3555  sigaddset(&SR_sigset, SR_signum);
3556
3557  /* Set up signal handler for suspend/resume */
3558  act.sa_flags = SA_RESTART|SA_SIGINFO;
3559  act.sa_handler = (void (*)(int)) SR_handler;
3560
3561  // SR_signum is blocked by default.
3562  // 4528190 - We also need to block pthread restart signal (32 on all
3563  // supported Linux platforms). Note that LinuxThreads need to block
3564  // this signal for all threads to work properly. So we don't have
3565  // to use hard-coded signal number when setting up the mask.
3566  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3567
3568  if (sigaction(SR_signum, &act, 0) == -1) {
3569    return -1;
3570  }
3571
3572  // Save signal flag
3573  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3574  return 0;
3575}
3576
3577static int SR_finalize() {
3578  return 0;
3579}
3580
3581
3582// returns true on success and false on error - really an error is fatal
3583// but this seems the normal response to library errors
3584static bool do_suspend(OSThread* osthread) {
3585  // mark as suspended and send signal
3586  osthread->sr.set_suspend_action(SR_SUSPEND);
3587  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3588  assert_status(status == 0, status, "pthread_kill");
3589
3590  // check status and wait until notified of suspension
3591  if (status == 0) {
3592    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3593      os::yield_all(i);
3594    }
3595    osthread->sr.set_suspend_action(SR_NONE);
3596    return true;
3597  }
3598  else {
3599    osthread->sr.set_suspend_action(SR_NONE);
3600    return false;
3601  }
3602}
3603
3604static void do_resume(OSThread* osthread) {
3605  assert(osthread->sr.is_suspended(), "thread should be suspended");
3606  osthread->sr.set_suspend_action(SR_CONTINUE);
3607
3608  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3609  assert_status(status == 0, status, "pthread_kill");
3610  // check status and wait unit notified of resumption
3611  if (status == 0) {
3612    for (int i = 0; osthread->sr.is_suspended(); i++) {
3613      os::yield_all(i);
3614    }
3615  }
3616  osthread->sr.set_suspend_action(SR_NONE);
3617}
3618
3619////////////////////////////////////////////////////////////////////////////////
3620// interrupt support
3621
3622void os::interrupt(Thread* thread) {
3623  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3624    "possibility of dangling Thread pointer");
3625
3626  OSThread* osthread = thread->osthread();
3627
3628  if (!osthread->interrupted()) {
3629    osthread->set_interrupted(true);
3630    // More than one thread can get here with the same value of osthread,
3631    // resulting in multiple notifications.  We do, however, want the store
3632    // to interrupted() to be visible to other threads before we execute unpark().
3633    OrderAccess::fence();
3634    ParkEvent * const slp = thread->_SleepEvent ;
3635    if (slp != NULL) slp->unpark() ;
3636  }
3637
3638  // For JSR166. Unpark even if interrupt status already was set
3639  if (thread->is_Java_thread())
3640    ((JavaThread*)thread)->parker()->unpark();
3641
3642  ParkEvent * ev = thread->_ParkEvent ;
3643  if (ev != NULL) ev->unpark() ;
3644
3645}
3646
3647bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3648  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3649    "possibility of dangling Thread pointer");
3650
3651  OSThread* osthread = thread->osthread();
3652
3653  bool interrupted = osthread->interrupted();
3654
3655  if (interrupted && clear_interrupted) {
3656    osthread->set_interrupted(false);
3657    // consider thread->_SleepEvent->reset() ... optional optimization
3658  }
3659
3660  return interrupted;
3661}
3662
3663///////////////////////////////////////////////////////////////////////////////////
3664// signal handling (except suspend/resume)
3665
3666// This routine may be used by user applications as a "hook" to catch signals.
3667// The user-defined signal handler must pass unrecognized signals to this
3668// routine, and if it returns true (non-zero), then the signal handler must
3669// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3670// routine will never retun false (zero), but instead will execute a VM panic
3671// routine kill the process.
3672//
3673// If this routine returns false, it is OK to call it again.  This allows
3674// the user-defined signal handler to perform checks either before or after
3675// the VM performs its own checks.  Naturally, the user code would be making
3676// a serious error if it tried to handle an exception (such as a null check
3677// or breakpoint) that the VM was generating for its own correct operation.
3678//
3679// This routine may recognize any of the following kinds of signals:
3680//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3681// It should be consulted by handlers for any of those signals.
3682//
3683// The caller of this routine must pass in the three arguments supplied
3684// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3685// field of the structure passed to sigaction().  This routine assumes that
3686// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3687//
3688// Note that the VM will print warnings if it detects conflicting signal
3689// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3690//
3691extern "C" JNIEXPORT int
3692JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3693                        void* ucontext, int abort_if_unrecognized);
3694
3695void signalHandler(int sig, siginfo_t* info, void* uc) {
3696  assert(info != NULL && uc != NULL, "it must be old kernel");
3697  JVM_handle_linux_signal(sig, info, uc, true);
3698}
3699
3700
3701// This boolean allows users to forward their own non-matching signals
3702// to JVM_handle_linux_signal, harmlessly.
3703bool os::Linux::signal_handlers_are_installed = false;
3704
3705// For signal-chaining
3706struct sigaction os::Linux::sigact[MAXSIGNUM];
3707unsigned int os::Linux::sigs = 0;
3708bool os::Linux::libjsig_is_loaded = false;
3709typedef struct sigaction *(*get_signal_t)(int);
3710get_signal_t os::Linux::get_signal_action = NULL;
3711
3712struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3713  struct sigaction *actp = NULL;
3714
3715  if (libjsig_is_loaded) {
3716    // Retrieve the old signal handler from libjsig
3717    actp = (*get_signal_action)(sig);
3718  }
3719  if (actp == NULL) {
3720    // Retrieve the preinstalled signal handler from jvm
3721    actp = get_preinstalled_handler(sig);
3722  }
3723
3724  return actp;
3725}
3726
3727static bool call_chained_handler(struct sigaction *actp, int sig,
3728                                 siginfo_t *siginfo, void *context) {
3729  // Call the old signal handler
3730  if (actp->sa_handler == SIG_DFL) {
3731    // It's more reasonable to let jvm treat it as an unexpected exception
3732    // instead of taking the default action.
3733    return false;
3734  } else if (actp->sa_handler != SIG_IGN) {
3735    if ((actp->sa_flags & SA_NODEFER) == 0) {
3736      // automaticlly block the signal
3737      sigaddset(&(actp->sa_mask), sig);
3738    }
3739
3740    sa_handler_t hand;
3741    sa_sigaction_t sa;
3742    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3743    // retrieve the chained handler
3744    if (siginfo_flag_set) {
3745      sa = actp->sa_sigaction;
3746    } else {
3747      hand = actp->sa_handler;
3748    }
3749
3750    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3751      actp->sa_handler = SIG_DFL;
3752    }
3753
3754    // try to honor the signal mask
3755    sigset_t oset;
3756    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3757
3758    // call into the chained handler
3759    if (siginfo_flag_set) {
3760      (*sa)(sig, siginfo, context);
3761    } else {
3762      (*hand)(sig);
3763    }
3764
3765    // restore the signal mask
3766    pthread_sigmask(SIG_SETMASK, &oset, 0);
3767  }
3768  // Tell jvm's signal handler the signal is taken care of.
3769  return true;
3770}
3771
3772bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3773  bool chained = false;
3774  // signal-chaining
3775  if (UseSignalChaining) {
3776    struct sigaction *actp = get_chained_signal_action(sig);
3777    if (actp != NULL) {
3778      chained = call_chained_handler(actp, sig, siginfo, context);
3779    }
3780  }
3781  return chained;
3782}
3783
3784struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3785  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3786    return &sigact[sig];
3787  }
3788  return NULL;
3789}
3790
3791void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3792  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3793  sigact[sig] = oldAct;
3794  sigs |= (unsigned int)1 << sig;
3795}
3796
3797// for diagnostic
3798int os::Linux::sigflags[MAXSIGNUM];
3799
3800int os::Linux::get_our_sigflags(int sig) {
3801  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3802  return sigflags[sig];
3803}
3804
3805void os::Linux::set_our_sigflags(int sig, int flags) {
3806  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3807  sigflags[sig] = flags;
3808}
3809
3810void os::Linux::set_signal_handler(int sig, bool set_installed) {
3811  // Check for overwrite.
3812  struct sigaction oldAct;
3813  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3814
3815  void* oldhand = oldAct.sa_sigaction
3816                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3817                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3818  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3819      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3820      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3821    if (AllowUserSignalHandlers || !set_installed) {
3822      // Do not overwrite; user takes responsibility to forward to us.
3823      return;
3824    } else if (UseSignalChaining) {
3825      // save the old handler in jvm
3826      save_preinstalled_handler(sig, oldAct);
3827      // libjsig also interposes the sigaction() call below and saves the
3828      // old sigaction on it own.
3829    } else {
3830      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3831                    "%#lx for signal %d.", (long)oldhand, sig));
3832    }
3833  }
3834
3835  struct sigaction sigAct;
3836  sigfillset(&(sigAct.sa_mask));
3837  sigAct.sa_handler = SIG_DFL;
3838  if (!set_installed) {
3839    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3840  } else {
3841    sigAct.sa_sigaction = signalHandler;
3842    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3843  }
3844  // Save flags, which are set by ours
3845  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3846  sigflags[sig] = sigAct.sa_flags;
3847
3848  int ret = sigaction(sig, &sigAct, &oldAct);
3849  assert(ret == 0, "check");
3850
3851  void* oldhand2  = oldAct.sa_sigaction
3852                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3853                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3854  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3855}
3856
3857// install signal handlers for signals that HotSpot needs to
3858// handle in order to support Java-level exception handling.
3859
3860void os::Linux::install_signal_handlers() {
3861  if (!signal_handlers_are_installed) {
3862    signal_handlers_are_installed = true;
3863
3864    // signal-chaining
3865    typedef void (*signal_setting_t)();
3866    signal_setting_t begin_signal_setting = NULL;
3867    signal_setting_t end_signal_setting = NULL;
3868    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3869                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3870    if (begin_signal_setting != NULL) {
3871      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3872                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3873      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3874                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3875      libjsig_is_loaded = true;
3876      assert(UseSignalChaining, "should enable signal-chaining");
3877    }
3878    if (libjsig_is_loaded) {
3879      // Tell libjsig jvm is setting signal handlers
3880      (*begin_signal_setting)();
3881    }
3882
3883    set_signal_handler(SIGSEGV, true);
3884    set_signal_handler(SIGPIPE, true);
3885    set_signal_handler(SIGBUS, true);
3886    set_signal_handler(SIGILL, true);
3887    set_signal_handler(SIGFPE, true);
3888    set_signal_handler(SIGXFSZ, true);
3889
3890    if (libjsig_is_loaded) {
3891      // Tell libjsig jvm finishes setting signal handlers
3892      (*end_signal_setting)();
3893    }
3894
3895    // We don't activate signal checker if libjsig is in place, we trust ourselves
3896    // and if UserSignalHandler is installed all bets are off.
3897    // Log that signal checking is off only if -verbose:jni is specified.
3898    if (CheckJNICalls) {
3899      if (libjsig_is_loaded) {
3900        if (PrintJNIResolving) {
3901          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3902        }
3903        check_signals = false;
3904      }
3905      if (AllowUserSignalHandlers) {
3906        if (PrintJNIResolving) {
3907          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3908        }
3909        check_signals = false;
3910      }
3911    }
3912  }
3913}
3914
3915// This is the fastest way to get thread cpu time on Linux.
3916// Returns cpu time (user+sys) for any thread, not only for current.
3917// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3918// It might work on 2.6.10+ with a special kernel/glibc patch.
3919// For reference, please, see IEEE Std 1003.1-2004:
3920//   http://www.unix.org/single_unix_specification
3921
3922jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3923  struct timespec tp;
3924  int rc = os::Linux::clock_gettime(clockid, &tp);
3925  assert(rc == 0, "clock_gettime is expected to return 0 code");
3926
3927  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3928}
3929
3930/////
3931// glibc on Linux platform uses non-documented flag
3932// to indicate, that some special sort of signal
3933// trampoline is used.
3934// We will never set this flag, and we should
3935// ignore this flag in our diagnostic
3936#ifdef SIGNIFICANT_SIGNAL_MASK
3937#undef SIGNIFICANT_SIGNAL_MASK
3938#endif
3939#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3940
3941static const char* get_signal_handler_name(address handler,
3942                                           char* buf, int buflen) {
3943  int offset;
3944  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3945  if (found) {
3946    // skip directory names
3947    const char *p1, *p2;
3948    p1 = buf;
3949    size_t len = strlen(os::file_separator());
3950    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3951    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3952  } else {
3953    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3954  }
3955  return buf;
3956}
3957
3958static void print_signal_handler(outputStream* st, int sig,
3959                                 char* buf, size_t buflen) {
3960  struct sigaction sa;
3961
3962  sigaction(sig, NULL, &sa);
3963
3964  // See comment for SIGNIFICANT_SIGNAL_MASK define
3965  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3966
3967  st->print("%s: ", os::exception_name(sig, buf, buflen));
3968
3969  address handler = (sa.sa_flags & SA_SIGINFO)
3970    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3971    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3972
3973  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3974    st->print("SIG_DFL");
3975  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3976    st->print("SIG_IGN");
3977  } else {
3978    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3979  }
3980
3981  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3982
3983  address rh = VMError::get_resetted_sighandler(sig);
3984  // May be, handler was resetted by VMError?
3985  if(rh != NULL) {
3986    handler = rh;
3987    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3988  }
3989
3990  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3991
3992  // Check: is it our handler?
3993  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3994     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3995    // It is our signal handler
3996    // check for flags, reset system-used one!
3997    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3998      st->print(
3999                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4000                os::Linux::get_our_sigflags(sig));
4001    }
4002  }
4003  st->cr();
4004}
4005
4006
4007#define DO_SIGNAL_CHECK(sig) \
4008  if (!sigismember(&check_signal_done, sig)) \
4009    os::Linux::check_signal_handler(sig)
4010
4011// This method is a periodic task to check for misbehaving JNI applications
4012// under CheckJNI, we can add any periodic checks here
4013
4014void os::run_periodic_checks() {
4015
4016  if (check_signals == false) return;
4017
4018  // SEGV and BUS if overridden could potentially prevent
4019  // generation of hs*.log in the event of a crash, debugging
4020  // such a case can be very challenging, so we absolutely
4021  // check the following for a good measure:
4022  DO_SIGNAL_CHECK(SIGSEGV);
4023  DO_SIGNAL_CHECK(SIGILL);
4024  DO_SIGNAL_CHECK(SIGFPE);
4025  DO_SIGNAL_CHECK(SIGBUS);
4026  DO_SIGNAL_CHECK(SIGPIPE);
4027  DO_SIGNAL_CHECK(SIGXFSZ);
4028
4029
4030  // ReduceSignalUsage allows the user to override these handlers
4031  // see comments at the very top and jvm_solaris.h
4032  if (!ReduceSignalUsage) {
4033    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4034    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4035    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4036    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4037  }
4038
4039  DO_SIGNAL_CHECK(SR_signum);
4040  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4041}
4042
4043typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4044
4045static os_sigaction_t os_sigaction = NULL;
4046
4047void os::Linux::check_signal_handler(int sig) {
4048  char buf[O_BUFLEN];
4049  address jvmHandler = NULL;
4050
4051
4052  struct sigaction act;
4053  if (os_sigaction == NULL) {
4054    // only trust the default sigaction, in case it has been interposed
4055    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4056    if (os_sigaction == NULL) return;
4057  }
4058
4059  os_sigaction(sig, (struct sigaction*)NULL, &act);
4060
4061
4062  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4063
4064  address thisHandler = (act.sa_flags & SA_SIGINFO)
4065    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4066    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4067
4068
4069  switch(sig) {
4070  case SIGSEGV:
4071  case SIGBUS:
4072  case SIGFPE:
4073  case SIGPIPE:
4074  case SIGILL:
4075  case SIGXFSZ:
4076    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4077    break;
4078
4079  case SHUTDOWN1_SIGNAL:
4080  case SHUTDOWN2_SIGNAL:
4081  case SHUTDOWN3_SIGNAL:
4082  case BREAK_SIGNAL:
4083    jvmHandler = (address)user_handler();
4084    break;
4085
4086  case INTERRUPT_SIGNAL:
4087    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4088    break;
4089
4090  default:
4091    if (sig == SR_signum) {
4092      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4093    } else {
4094      return;
4095    }
4096    break;
4097  }
4098
4099  if (thisHandler != jvmHandler) {
4100    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4101    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4102    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4103    // No need to check this sig any longer
4104    sigaddset(&check_signal_done, sig);
4105  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4106    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4107    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4108    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4109    // No need to check this sig any longer
4110    sigaddset(&check_signal_done, sig);
4111  }
4112
4113  // Dump all the signal
4114  if (sigismember(&check_signal_done, sig)) {
4115    print_signal_handlers(tty, buf, O_BUFLEN);
4116  }
4117}
4118
4119extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4120
4121extern bool signal_name(int signo, char* buf, size_t len);
4122
4123const char* os::exception_name(int exception_code, char* buf, size_t size) {
4124  if (0 < exception_code && exception_code <= SIGRTMAX) {
4125    // signal
4126    if (!signal_name(exception_code, buf, size)) {
4127      jio_snprintf(buf, size, "SIG%d", exception_code);
4128    }
4129    return buf;
4130  } else {
4131    return NULL;
4132  }
4133}
4134
4135// this is called _before_ the most of global arguments have been parsed
4136void os::init(void) {
4137  char dummy;   /* used to get a guess on initial stack address */
4138//  first_hrtime = gethrtime();
4139
4140  // With LinuxThreads the JavaMain thread pid (primordial thread)
4141  // is different than the pid of the java launcher thread.
4142  // So, on Linux, the launcher thread pid is passed to the VM
4143  // via the sun.java.launcher.pid property.
4144  // Use this property instead of getpid() if it was correctly passed.
4145  // See bug 6351349.
4146  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4147
4148  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4149
4150  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4151
4152  init_random(1234567);
4153
4154  ThreadCritical::initialize();
4155
4156  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4157  if (Linux::page_size() == -1) {
4158    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4159                  strerror(errno)));
4160  }
4161  init_page_sizes((size_t) Linux::page_size());
4162
4163  Linux::initialize_system_info();
4164
4165  // main_thread points to the aboriginal thread
4166  Linux::_main_thread = pthread_self();
4167
4168  Linux::clock_init();
4169  initial_time_count = os::elapsed_counter();
4170  pthread_mutex_init(&dl_mutex, NULL);
4171}
4172
4173// To install functions for atexit system call
4174extern "C" {
4175  static void perfMemory_exit_helper() {
4176    perfMemory_exit();
4177  }
4178}
4179
4180// this is called _after_ the global arguments have been parsed
4181jint os::init_2(void)
4182{
4183  Linux::fast_thread_clock_init();
4184
4185  // Allocate a single page and mark it as readable for safepoint polling
4186  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4187  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4188
4189  os::set_polling_page( polling_page );
4190
4191#ifndef PRODUCT
4192  if(Verbose && PrintMiscellaneous)
4193    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4194#endif
4195
4196  if (!UseMembar) {
4197    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4198    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4199    os::set_memory_serialize_page( mem_serialize_page );
4200
4201#ifndef PRODUCT
4202    if(Verbose && PrintMiscellaneous)
4203      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4204#endif
4205  }
4206
4207  os::large_page_init();
4208
4209  // initialize suspend/resume support - must do this before signal_sets_init()
4210  if (SR_initialize() != 0) {
4211    perror("SR_initialize failed");
4212    return JNI_ERR;
4213  }
4214
4215  Linux::signal_sets_init();
4216  Linux::install_signal_handlers();
4217
4218  // Check minimum allowable stack size for thread creation and to initialize
4219  // the java system classes, including StackOverflowError - depends on page
4220  // size.  Add a page for compiler2 recursion in main thread.
4221  // Add in 2*BytesPerWord times page size to account for VM stack during
4222  // class initialization depending on 32 or 64 bit VM.
4223  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4224            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4225                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4226
4227  size_t threadStackSizeInBytes = ThreadStackSize * K;
4228  if (threadStackSizeInBytes != 0 &&
4229      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4230        tty->print_cr("\nThe stack size specified is too small, "
4231                      "Specify at least %dk",
4232                      os::Linux::min_stack_allowed/ K);
4233        return JNI_ERR;
4234  }
4235
4236  // Make the stack size a multiple of the page size so that
4237  // the yellow/red zones can be guarded.
4238  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4239        vm_page_size()));
4240
4241  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4242
4243  Linux::libpthread_init();
4244  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4245     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4246          Linux::glibc_version(), Linux::libpthread_version(),
4247          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4248  }
4249
4250  if (UseNUMA) {
4251    if (!Linux::libnuma_init()) {
4252      UseNUMA = false;
4253    } else {
4254      if ((Linux::numa_max_node() < 1)) {
4255        // There's only one node(they start from 0), disable NUMA.
4256        UseNUMA = false;
4257      }
4258    }
4259    // With SHM large pages we cannot uncommit a page, so there's not way
4260    // we can make the adaptive lgrp chunk resizing work. If the user specified
4261    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4262    // disable adaptive resizing.
4263    if (UseNUMA && UseLargePages && UseSHM) {
4264      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4265        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4266          UseLargePages = false;
4267        } else {
4268          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4269          UseAdaptiveSizePolicy = false;
4270          UseAdaptiveNUMAChunkSizing = false;
4271        }
4272      } else {
4273        UseNUMA = false;
4274      }
4275    }
4276    if (!UseNUMA && ForceNUMA) {
4277      UseNUMA = true;
4278    }
4279  }
4280
4281  if (MaxFDLimit) {
4282    // set the number of file descriptors to max. print out error
4283    // if getrlimit/setrlimit fails but continue regardless.
4284    struct rlimit nbr_files;
4285    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4286    if (status != 0) {
4287      if (PrintMiscellaneous && (Verbose || WizardMode))
4288        perror("os::init_2 getrlimit failed");
4289    } else {
4290      nbr_files.rlim_cur = nbr_files.rlim_max;
4291      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4292      if (status != 0) {
4293        if (PrintMiscellaneous && (Verbose || WizardMode))
4294          perror("os::init_2 setrlimit failed");
4295      }
4296    }
4297  }
4298
4299  // Initialize lock used to serialize thread creation (see os::create_thread)
4300  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4301
4302  // at-exit methods are called in the reverse order of their registration.
4303  // atexit functions are called on return from main or as a result of a
4304  // call to exit(3C). There can be only 32 of these functions registered
4305  // and atexit() does not set errno.
4306
4307  if (PerfAllowAtExitRegistration) {
4308    // only register atexit functions if PerfAllowAtExitRegistration is set.
4309    // atexit functions can be delayed until process exit time, which
4310    // can be problematic for embedded VM situations. Embedded VMs should
4311    // call DestroyJavaVM() to assure that VM resources are released.
4312
4313    // note: perfMemory_exit_helper atexit function may be removed in
4314    // the future if the appropriate cleanup code can be added to the
4315    // VM_Exit VMOperation's doit method.
4316    if (atexit(perfMemory_exit_helper) != 0) {
4317      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4318    }
4319  }
4320
4321  // initialize thread priority policy
4322  prio_init();
4323
4324  return JNI_OK;
4325}
4326
4327// this is called at the end of vm_initialization
4328void os::init_3(void)
4329{
4330#ifdef JAVASE_EMBEDDED
4331  // Start the MemNotifyThread
4332  if (LowMemoryProtection) {
4333    MemNotifyThread::start();
4334  }
4335  return;
4336#endif
4337}
4338
4339// Mark the polling page as unreadable
4340void os::make_polling_page_unreadable(void) {
4341  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4342    fatal("Could not disable polling page");
4343};
4344
4345// Mark the polling page as readable
4346void os::make_polling_page_readable(void) {
4347  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4348    fatal("Could not enable polling page");
4349  }
4350};
4351
4352int os::active_processor_count() {
4353  // Linux doesn't yet have a (official) notion of processor sets,
4354  // so just return the number of online processors.
4355  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4356  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4357  return online_cpus;
4358}
4359
4360bool os::distribute_processes(uint length, uint* distribution) {
4361  // Not yet implemented.
4362  return false;
4363}
4364
4365bool os::bind_to_processor(uint processor_id) {
4366  // Not yet implemented.
4367  return false;
4368}
4369
4370///
4371
4372// Suspends the target using the signal mechanism and then grabs the PC before
4373// resuming the target. Used by the flat-profiler only
4374ExtendedPC os::get_thread_pc(Thread* thread) {
4375  // Make sure that it is called by the watcher for the VMThread
4376  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4377  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4378
4379  ExtendedPC epc;
4380
4381  OSThread* osthread = thread->osthread();
4382  if (do_suspend(osthread)) {
4383    if (osthread->ucontext() != NULL) {
4384      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4385    } else {
4386      // NULL context is unexpected, double-check this is the VMThread
4387      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4388    }
4389    do_resume(osthread);
4390  }
4391  // failure means pthread_kill failed for some reason - arguably this is
4392  // a fatal problem, but such problems are ignored elsewhere
4393
4394  return epc;
4395}
4396
4397int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4398{
4399   if (is_NPTL()) {
4400      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4401   } else {
4402#ifndef IA64
4403      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4404      // word back to default 64bit precision if condvar is signaled. Java
4405      // wants 53bit precision.  Save and restore current value.
4406      int fpu = get_fpu_control_word();
4407#endif // IA64
4408      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4409#ifndef IA64
4410      set_fpu_control_word(fpu);
4411#endif // IA64
4412      return status;
4413   }
4414}
4415
4416////////////////////////////////////////////////////////////////////////////////
4417// debug support
4418
4419static address same_page(address x, address y) {
4420  int page_bits = -os::vm_page_size();
4421  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4422    return x;
4423  else if (x > y)
4424    return (address)(intptr_t(y) | ~page_bits) + 1;
4425  else
4426    return (address)(intptr_t(y) & page_bits);
4427}
4428
4429bool os::find(address addr, outputStream* st) {
4430  Dl_info dlinfo;
4431  memset(&dlinfo, 0, sizeof(dlinfo));
4432  if (dladdr(addr, &dlinfo)) {
4433    st->print(PTR_FORMAT ": ", addr);
4434    if (dlinfo.dli_sname != NULL) {
4435      st->print("%s+%#x", dlinfo.dli_sname,
4436                 addr - (intptr_t)dlinfo.dli_saddr);
4437    } else if (dlinfo.dli_fname) {
4438      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4439    } else {
4440      st->print("<absolute address>");
4441    }
4442    if (dlinfo.dli_fname) {
4443      st->print(" in %s", dlinfo.dli_fname);
4444    }
4445    if (dlinfo.dli_fbase) {
4446      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4447    }
4448    st->cr();
4449
4450    if (Verbose) {
4451      // decode some bytes around the PC
4452      address begin = same_page(addr-40, addr);
4453      address end   = same_page(addr+40, addr);
4454      address       lowest = (address) dlinfo.dli_sname;
4455      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4456      if (begin < lowest)  begin = lowest;
4457      Dl_info dlinfo2;
4458      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4459          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4460        end = (address) dlinfo2.dli_saddr;
4461      Disassembler::decode(begin, end, st);
4462    }
4463    return true;
4464  }
4465  return false;
4466}
4467
4468////////////////////////////////////////////////////////////////////////////////
4469// misc
4470
4471// This does not do anything on Linux. This is basically a hook for being
4472// able to use structured exception handling (thread-local exception filters)
4473// on, e.g., Win32.
4474void
4475os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4476                         JavaCallArguments* args, Thread* thread) {
4477  f(value, method, args, thread);
4478}
4479
4480void os::print_statistics() {
4481}
4482
4483int os::message_box(const char* title, const char* message) {
4484  int i;
4485  fdStream err(defaultStream::error_fd());
4486  for (i = 0; i < 78; i++) err.print_raw("=");
4487  err.cr();
4488  err.print_raw_cr(title);
4489  for (i = 0; i < 78; i++) err.print_raw("-");
4490  err.cr();
4491  err.print_raw_cr(message);
4492  for (i = 0; i < 78; i++) err.print_raw("=");
4493  err.cr();
4494
4495  char buf[16];
4496  // Prevent process from exiting upon "read error" without consuming all CPU
4497  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4498
4499  return buf[0] == 'y' || buf[0] == 'Y';
4500}
4501
4502int os::stat(const char *path, struct stat *sbuf) {
4503  char pathbuf[MAX_PATH];
4504  if (strlen(path) > MAX_PATH - 1) {
4505    errno = ENAMETOOLONG;
4506    return -1;
4507  }
4508  os::native_path(strcpy(pathbuf, path));
4509  return ::stat(pathbuf, sbuf);
4510}
4511
4512bool os::check_heap(bool force) {
4513  return true;
4514}
4515
4516int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4517  return ::vsnprintf(buf, count, format, args);
4518}
4519
4520// Is a (classpath) directory empty?
4521bool os::dir_is_empty(const char* path) {
4522  DIR *dir = NULL;
4523  struct dirent *ptr;
4524
4525  dir = opendir(path);
4526  if (dir == NULL) return true;
4527
4528  /* Scan the directory */
4529  bool result = true;
4530  char buf[sizeof(struct dirent) + MAX_PATH];
4531  while (result && (ptr = ::readdir(dir)) != NULL) {
4532    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4533      result = false;
4534    }
4535  }
4536  closedir(dir);
4537  return result;
4538}
4539
4540// This code originates from JDK's sysOpen and open64_w
4541// from src/solaris/hpi/src/system_md.c
4542
4543#ifndef O_DELETE
4544#define O_DELETE 0x10000
4545#endif
4546
4547// Open a file. Unlink the file immediately after open returns
4548// if the specified oflag has the O_DELETE flag set.
4549// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4550
4551int os::open(const char *path, int oflag, int mode) {
4552
4553  if (strlen(path) > MAX_PATH - 1) {
4554    errno = ENAMETOOLONG;
4555    return -1;
4556  }
4557  int fd;
4558  int o_delete = (oflag & O_DELETE);
4559  oflag = oflag & ~O_DELETE;
4560
4561  fd = ::open64(path, oflag, mode);
4562  if (fd == -1) return -1;
4563
4564  //If the open succeeded, the file might still be a directory
4565  {
4566    struct stat64 buf64;
4567    int ret = ::fstat64(fd, &buf64);
4568    int st_mode = buf64.st_mode;
4569
4570    if (ret != -1) {
4571      if ((st_mode & S_IFMT) == S_IFDIR) {
4572        errno = EISDIR;
4573        ::close(fd);
4574        return -1;
4575      }
4576    } else {
4577      ::close(fd);
4578      return -1;
4579    }
4580  }
4581
4582    /*
4583     * All file descriptors that are opened in the JVM and not
4584     * specifically destined for a subprocess should have the
4585     * close-on-exec flag set.  If we don't set it, then careless 3rd
4586     * party native code might fork and exec without closing all
4587     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4588     * UNIXProcess.c), and this in turn might:
4589     *
4590     * - cause end-of-file to fail to be detected on some file
4591     *   descriptors, resulting in mysterious hangs, or
4592     *
4593     * - might cause an fopen in the subprocess to fail on a system
4594     *   suffering from bug 1085341.
4595     *
4596     * (Yes, the default setting of the close-on-exec flag is a Unix
4597     * design flaw)
4598     *
4599     * See:
4600     * 1085341: 32-bit stdio routines should support file descriptors >255
4601     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4602     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4603     */
4604#ifdef FD_CLOEXEC
4605    {
4606        int flags = ::fcntl(fd, F_GETFD);
4607        if (flags != -1)
4608            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4609    }
4610#endif
4611
4612  if (o_delete != 0) {
4613    ::unlink(path);
4614  }
4615  return fd;
4616}
4617
4618
4619// create binary file, rewriting existing file if required
4620int os::create_binary_file(const char* path, bool rewrite_existing) {
4621  int oflags = O_WRONLY | O_CREAT;
4622  if (!rewrite_existing) {
4623    oflags |= O_EXCL;
4624  }
4625  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4626}
4627
4628// return current position of file pointer
4629jlong os::current_file_offset(int fd) {
4630  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4631}
4632
4633// move file pointer to the specified offset
4634jlong os::seek_to_file_offset(int fd, jlong offset) {
4635  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4636}
4637
4638// This code originates from JDK's sysAvailable
4639// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4640
4641int os::available(int fd, jlong *bytes) {
4642  jlong cur, end;
4643  int mode;
4644  struct stat64 buf64;
4645
4646  if (::fstat64(fd, &buf64) >= 0) {
4647    mode = buf64.st_mode;
4648    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4649      /*
4650      * XXX: is the following call interruptible? If so, this might
4651      * need to go through the INTERRUPT_IO() wrapper as for other
4652      * blocking, interruptible calls in this file.
4653      */
4654      int n;
4655      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4656        *bytes = n;
4657        return 1;
4658      }
4659    }
4660  }
4661  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4662    return 0;
4663  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4664    return 0;
4665  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4666    return 0;
4667  }
4668  *bytes = end - cur;
4669  return 1;
4670}
4671
4672int os::socket_available(int fd, jint *pbytes) {
4673  // Linux doc says EINTR not returned, unlike Solaris
4674  int ret = ::ioctl(fd, FIONREAD, pbytes);
4675
4676  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4677  // is expected to return 0 on failure and 1 on success to the jdk.
4678  return (ret < 0) ? 0 : 1;
4679}
4680
4681// Map a block of memory.
4682char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4683                     char *addr, size_t bytes, bool read_only,
4684                     bool allow_exec) {
4685  int prot;
4686  int flags;
4687
4688  if (read_only) {
4689    prot = PROT_READ;
4690    flags = MAP_SHARED;
4691  } else {
4692    prot = PROT_READ | PROT_WRITE;
4693    flags = MAP_PRIVATE;
4694  }
4695
4696  if (allow_exec) {
4697    prot |= PROT_EXEC;
4698  }
4699
4700  if (addr != NULL) {
4701    flags |= MAP_FIXED;
4702  }
4703
4704  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4705                                     fd, file_offset);
4706  if (mapped_address == MAP_FAILED) {
4707    return NULL;
4708  }
4709  return mapped_address;
4710}
4711
4712
4713// Remap a block of memory.
4714char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4715                       char *addr, size_t bytes, bool read_only,
4716                       bool allow_exec) {
4717  // same as map_memory() on this OS
4718  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4719                        allow_exec);
4720}
4721
4722
4723// Unmap a block of memory.
4724bool os::unmap_memory(char* addr, size_t bytes) {
4725  return munmap(addr, bytes) == 0;
4726}
4727
4728static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4729
4730static clockid_t thread_cpu_clockid(Thread* thread) {
4731  pthread_t tid = thread->osthread()->pthread_id();
4732  clockid_t clockid;
4733
4734  // Get thread clockid
4735  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4736  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4737  return clockid;
4738}
4739
4740// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4741// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4742// of a thread.
4743//
4744// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4745// the fast estimate available on the platform.
4746
4747jlong os::current_thread_cpu_time() {
4748  if (os::Linux::supports_fast_thread_cpu_time()) {
4749    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4750  } else {
4751    // return user + sys since the cost is the same
4752    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4753  }
4754}
4755
4756jlong os::thread_cpu_time(Thread* thread) {
4757  // consistent with what current_thread_cpu_time() returns
4758  if (os::Linux::supports_fast_thread_cpu_time()) {
4759    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4760  } else {
4761    return slow_thread_cpu_time(thread, true /* user + sys */);
4762  }
4763}
4764
4765jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4766  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4767    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4768  } else {
4769    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4770  }
4771}
4772
4773jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4774  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4775    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4776  } else {
4777    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4778  }
4779}
4780
4781//
4782//  -1 on error.
4783//
4784
4785static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4786  static bool proc_pid_cpu_avail = true;
4787  static bool proc_task_unchecked = true;
4788  static const char *proc_stat_path = "/proc/%d/stat";
4789  pid_t  tid = thread->osthread()->thread_id();
4790  int i;
4791  char *s;
4792  char stat[2048];
4793  int statlen;
4794  char proc_name[64];
4795  int count;
4796  long sys_time, user_time;
4797  char string[64];
4798  char cdummy;
4799  int idummy;
4800  long ldummy;
4801  FILE *fp;
4802
4803  // We first try accessing /proc/<pid>/cpu since this is faster to
4804  // process.  If this file is not present (linux kernels 2.5 and above)
4805  // then we open /proc/<pid>/stat.
4806  if ( proc_pid_cpu_avail ) {
4807    sprintf(proc_name, "/proc/%d/cpu", tid);
4808    fp =  fopen(proc_name, "r");
4809    if ( fp != NULL ) {
4810      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4811      fclose(fp);
4812      if ( count != 3 ) return -1;
4813
4814      if (user_sys_cpu_time) {
4815        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4816      } else {
4817        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4818      }
4819    }
4820    else proc_pid_cpu_avail = false;
4821  }
4822
4823  // The /proc/<tid>/stat aggregates per-process usage on
4824  // new Linux kernels 2.6+ where NPTL is supported.
4825  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4826  // See bug 6328462.
4827  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4828  // and possibly in some other cases, so we check its availability.
4829  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4830    // This is executed only once
4831    proc_task_unchecked = false;
4832    fp = fopen("/proc/self/task", "r");
4833    if (fp != NULL) {
4834      proc_stat_path = "/proc/self/task/%d/stat";
4835      fclose(fp);
4836    }
4837  }
4838
4839  sprintf(proc_name, proc_stat_path, tid);
4840  fp = fopen(proc_name, "r");
4841  if ( fp == NULL ) return -1;
4842  statlen = fread(stat, 1, 2047, fp);
4843  stat[statlen] = '\0';
4844  fclose(fp);
4845
4846  // Skip pid and the command string. Note that we could be dealing with
4847  // weird command names, e.g. user could decide to rename java launcher
4848  // to "java 1.4.2 :)", then the stat file would look like
4849  //                1234 (java 1.4.2 :)) R ... ...
4850  // We don't really need to know the command string, just find the last
4851  // occurrence of ")" and then start parsing from there. See bug 4726580.
4852  s = strrchr(stat, ')');
4853  i = 0;
4854  if (s == NULL ) return -1;
4855
4856  // Skip blank chars
4857  do s++; while (isspace(*s));
4858
4859  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4860                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4861                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4862                 &user_time, &sys_time);
4863  if ( count != 13 ) return -1;
4864  if (user_sys_cpu_time) {
4865    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4866  } else {
4867    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4868  }
4869}
4870
4871void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4872  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4873  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4874  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4875  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4876}
4877
4878void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4879  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4880  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4881  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4882  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4883}
4884
4885bool os::is_thread_cpu_time_supported() {
4886  return true;
4887}
4888
4889// System loadavg support.  Returns -1 if load average cannot be obtained.
4890// Linux doesn't yet have a (official) notion of processor sets,
4891// so just return the system wide load average.
4892int os::loadavg(double loadavg[], int nelem) {
4893  return ::getloadavg(loadavg, nelem);
4894}
4895
4896void os::pause() {
4897  char filename[MAX_PATH];
4898  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4899    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4900  } else {
4901    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4902  }
4903
4904  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4905  if (fd != -1) {
4906    struct stat buf;
4907    ::close(fd);
4908    while (::stat(filename, &buf) == 0) {
4909      (void)::poll(NULL, 0, 100);
4910    }
4911  } else {
4912    jio_fprintf(stderr,
4913      "Could not open pause file '%s', continuing immediately.\n", filename);
4914  }
4915}
4916
4917
4918// Refer to the comments in os_solaris.cpp park-unpark.
4919//
4920// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4921// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4922// For specifics regarding the bug see GLIBC BUGID 261237 :
4923//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4924// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4925// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4926// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4927// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4928// and monitorenter when we're using 1-0 locking.  All those operations may result in
4929// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4930// of libpthread avoids the problem, but isn't practical.
4931//
4932// Possible remedies:
4933//
4934// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4935//      This is palliative and probabilistic, however.  If the thread is preempted
4936//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4937//      than the minimum period may have passed, and the abstime may be stale (in the
4938//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4939//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4940//
4941// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4942//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4943//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4944//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4945//      thread.
4946//
4947// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4948//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4949//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4950//      This also works well.  In fact it avoids kernel-level scalability impediments
4951//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4952//      timers in a graceful fashion.
4953//
4954// 4.   When the abstime value is in the past it appears that control returns
4955//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4956//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4957//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4958//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4959//      It may be possible to avoid reinitialization by checking the return
4960//      value from pthread_cond_timedwait().  In addition to reinitializing the
4961//      condvar we must establish the invariant that cond_signal() is only called
4962//      within critical sections protected by the adjunct mutex.  This prevents
4963//      cond_signal() from "seeing" a condvar that's in the midst of being
4964//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4965//      desirable signal-after-unlock optimization that avoids futile context switching.
4966//
4967//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4968//      structure when a condvar is used or initialized.  cond_destroy()  would
4969//      release the helper structure.  Our reinitialize-after-timedwait fix
4970//      put excessive stress on malloc/free and locks protecting the c-heap.
4971//
4972// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4973// It may be possible to refine (4) by checking the kernel and NTPL verisons
4974// and only enabling the work-around for vulnerable environments.
4975
4976// utility to compute the abstime argument to timedwait:
4977// millis is the relative timeout time
4978// abstime will be the absolute timeout time
4979// TODO: replace compute_abstime() with unpackTime()
4980
4981static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4982  if (millis < 0)  millis = 0;
4983  struct timeval now;
4984  int status = gettimeofday(&now, NULL);
4985  assert(status == 0, "gettimeofday");
4986  jlong seconds = millis / 1000;
4987  millis %= 1000;
4988  if (seconds > 50000000) { // see man cond_timedwait(3T)
4989    seconds = 50000000;
4990  }
4991  abstime->tv_sec = now.tv_sec  + seconds;
4992  long       usec = now.tv_usec + millis * 1000;
4993  if (usec >= 1000000) {
4994    abstime->tv_sec += 1;
4995    usec -= 1000000;
4996  }
4997  abstime->tv_nsec = usec * 1000;
4998  return abstime;
4999}
5000
5001
5002// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5003// Conceptually TryPark() should be equivalent to park(0).
5004
5005int os::PlatformEvent::TryPark() {
5006  for (;;) {
5007    const int v = _Event ;
5008    guarantee ((v == 0) || (v == 1), "invariant") ;
5009    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5010  }
5011}
5012
5013void os::PlatformEvent::park() {       // AKA "down()"
5014  // Invariant: Only the thread associated with the Event/PlatformEvent
5015  // may call park().
5016  // TODO: assert that _Assoc != NULL or _Assoc == Self
5017  int v ;
5018  for (;;) {
5019      v = _Event ;
5020      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5021  }
5022  guarantee (v >= 0, "invariant") ;
5023  if (v == 0) {
5024     // Do this the hard way by blocking ...
5025     int status = pthread_mutex_lock(_mutex);
5026     assert_status(status == 0, status, "mutex_lock");
5027     guarantee (_nParked == 0, "invariant") ;
5028     ++ _nParked ;
5029     while (_Event < 0) {
5030        status = pthread_cond_wait(_cond, _mutex);
5031        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5032        // Treat this the same as if the wait was interrupted
5033        if (status == ETIME) { status = EINTR; }
5034        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5035     }
5036     -- _nParked ;
5037
5038    // In theory we could move the ST of 0 into _Event past the unlock(),
5039    // but then we'd need a MEMBAR after the ST.
5040    _Event = 0 ;
5041     status = pthread_mutex_unlock(_mutex);
5042     assert_status(status == 0, status, "mutex_unlock");
5043  }
5044  guarantee (_Event >= 0, "invariant") ;
5045}
5046
5047int os::PlatformEvent::park(jlong millis) {
5048  guarantee (_nParked == 0, "invariant") ;
5049
5050  int v ;
5051  for (;;) {
5052      v = _Event ;
5053      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5054  }
5055  guarantee (v >= 0, "invariant") ;
5056  if (v != 0) return OS_OK ;
5057
5058  // We do this the hard way, by blocking the thread.
5059  // Consider enforcing a minimum timeout value.
5060  struct timespec abst;
5061  compute_abstime(&abst, millis);
5062
5063  int ret = OS_TIMEOUT;
5064  int status = pthread_mutex_lock(_mutex);
5065  assert_status(status == 0, status, "mutex_lock");
5066  guarantee (_nParked == 0, "invariant") ;
5067  ++_nParked ;
5068
5069  // Object.wait(timo) will return because of
5070  // (a) notification
5071  // (b) timeout
5072  // (c) thread.interrupt
5073  //
5074  // Thread.interrupt and object.notify{All} both call Event::set.
5075  // That is, we treat thread.interrupt as a special case of notification.
5076  // The underlying Solaris implementation, cond_timedwait, admits
5077  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5078  // JVM from making those visible to Java code.  As such, we must
5079  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5080  //
5081  // TODO: properly differentiate simultaneous notify+interrupt.
5082  // In that case, we should propagate the notify to another waiter.
5083
5084  while (_Event < 0) {
5085    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5086    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5087      pthread_cond_destroy (_cond);
5088      pthread_cond_init (_cond, NULL) ;
5089    }
5090    assert_status(status == 0 || status == EINTR ||
5091                  status == ETIME || status == ETIMEDOUT,
5092                  status, "cond_timedwait");
5093    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5094    if (status == ETIME || status == ETIMEDOUT) break ;
5095    // We consume and ignore EINTR and spurious wakeups.
5096  }
5097  --_nParked ;
5098  if (_Event >= 0) {
5099     ret = OS_OK;
5100  }
5101  _Event = 0 ;
5102  status = pthread_mutex_unlock(_mutex);
5103  assert_status(status == 0, status, "mutex_unlock");
5104  assert (_nParked == 0, "invariant") ;
5105  return ret;
5106}
5107
5108void os::PlatformEvent::unpark() {
5109  int v, AnyWaiters ;
5110  for (;;) {
5111      v = _Event ;
5112      if (v > 0) {
5113         // The LD of _Event could have reordered or be satisfied
5114         // by a read-aside from this processor's write buffer.
5115         // To avoid problems execute a barrier and then
5116         // ratify the value.
5117         OrderAccess::fence() ;
5118         if (_Event == v) return ;
5119         continue ;
5120      }
5121      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5122  }
5123  if (v < 0) {
5124     // Wait for the thread associated with the event to vacate
5125     int status = pthread_mutex_lock(_mutex);
5126     assert_status(status == 0, status, "mutex_lock");
5127     AnyWaiters = _nParked ;
5128     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5129     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5130        AnyWaiters = 0 ;
5131        pthread_cond_signal (_cond);
5132     }
5133     status = pthread_mutex_unlock(_mutex);
5134     assert_status(status == 0, status, "mutex_unlock");
5135     if (AnyWaiters != 0) {
5136        status = pthread_cond_signal(_cond);
5137        assert_status(status == 0, status, "cond_signal");
5138     }
5139  }
5140
5141  // Note that we signal() _after dropping the lock for "immortal" Events.
5142  // This is safe and avoids a common class of  futile wakeups.  In rare
5143  // circumstances this can cause a thread to return prematurely from
5144  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5145  // simply re-test the condition and re-park itself.
5146}
5147
5148
5149// JSR166
5150// -------------------------------------------------------
5151
5152/*
5153 * The solaris and linux implementations of park/unpark are fairly
5154 * conservative for now, but can be improved. They currently use a
5155 * mutex/condvar pair, plus a a count.
5156 * Park decrements count if > 0, else does a condvar wait.  Unpark
5157 * sets count to 1 and signals condvar.  Only one thread ever waits
5158 * on the condvar. Contention seen when trying to park implies that someone
5159 * is unparking you, so don't wait. And spurious returns are fine, so there
5160 * is no need to track notifications.
5161 */
5162
5163
5164#define NANOSECS_PER_SEC 1000000000
5165#define NANOSECS_PER_MILLISEC 1000000
5166#define MAX_SECS 100000000
5167/*
5168 * This code is common to linux and solaris and will be moved to a
5169 * common place in dolphin.
5170 *
5171 * The passed in time value is either a relative time in nanoseconds
5172 * or an absolute time in milliseconds. Either way it has to be unpacked
5173 * into suitable seconds and nanoseconds components and stored in the
5174 * given timespec structure.
5175 * Given time is a 64-bit value and the time_t used in the timespec is only
5176 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5177 * overflow if times way in the future are given. Further on Solaris versions
5178 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5179 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5180 * As it will be 28 years before "now + 100000000" will overflow we can
5181 * ignore overflow and just impose a hard-limit on seconds using the value
5182 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5183 * years from "now".
5184 */
5185
5186static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5187  assert (time > 0, "convertTime");
5188
5189  struct timeval now;
5190  int status = gettimeofday(&now, NULL);
5191  assert(status == 0, "gettimeofday");
5192
5193  time_t max_secs = now.tv_sec + MAX_SECS;
5194
5195  if (isAbsolute) {
5196    jlong secs = time / 1000;
5197    if (secs > max_secs) {
5198      absTime->tv_sec = max_secs;
5199    }
5200    else {
5201      absTime->tv_sec = secs;
5202    }
5203    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5204  }
5205  else {
5206    jlong secs = time / NANOSECS_PER_SEC;
5207    if (secs >= MAX_SECS) {
5208      absTime->tv_sec = max_secs;
5209      absTime->tv_nsec = 0;
5210    }
5211    else {
5212      absTime->tv_sec = now.tv_sec + secs;
5213      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5214      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5215        absTime->tv_nsec -= NANOSECS_PER_SEC;
5216        ++absTime->tv_sec; // note: this must be <= max_secs
5217      }
5218    }
5219  }
5220  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5221  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5222  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5223  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5224}
5225
5226void Parker::park(bool isAbsolute, jlong time) {
5227  // Optional fast-path check:
5228  // Return immediately if a permit is available.
5229  if (_counter > 0) {
5230      _counter = 0 ;
5231      OrderAccess::fence();
5232      return ;
5233  }
5234
5235  Thread* thread = Thread::current();
5236  assert(thread->is_Java_thread(), "Must be JavaThread");
5237  JavaThread *jt = (JavaThread *)thread;
5238
5239  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5240  // Check interrupt before trying to wait
5241  if (Thread::is_interrupted(thread, false)) {
5242    return;
5243  }
5244
5245  // Next, demultiplex/decode time arguments
5246  timespec absTime;
5247  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5248    return;
5249  }
5250  if (time > 0) {
5251    unpackTime(&absTime, isAbsolute, time);
5252  }
5253
5254
5255  // Enter safepoint region
5256  // Beware of deadlocks such as 6317397.
5257  // The per-thread Parker:: mutex is a classic leaf-lock.
5258  // In particular a thread must never block on the Threads_lock while
5259  // holding the Parker:: mutex.  If safepoints are pending both the
5260  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5261  ThreadBlockInVM tbivm(jt);
5262
5263  // Don't wait if cannot get lock since interference arises from
5264  // unblocking.  Also. check interrupt before trying wait
5265  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5266    return;
5267  }
5268
5269  int status ;
5270  if (_counter > 0)  { // no wait needed
5271    _counter = 0;
5272    status = pthread_mutex_unlock(_mutex);
5273    assert (status == 0, "invariant") ;
5274    OrderAccess::fence();
5275    return;
5276  }
5277
5278#ifdef ASSERT
5279  // Don't catch signals while blocked; let the running threads have the signals.
5280  // (This allows a debugger to break into the running thread.)
5281  sigset_t oldsigs;
5282  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5283  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5284#endif
5285
5286  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5287  jt->set_suspend_equivalent();
5288  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5289
5290  if (time == 0) {
5291    status = pthread_cond_wait (_cond, _mutex) ;
5292  } else {
5293    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5294    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5295      pthread_cond_destroy (_cond) ;
5296      pthread_cond_init    (_cond, NULL);
5297    }
5298  }
5299  assert_status(status == 0 || status == EINTR ||
5300                status == ETIME || status == ETIMEDOUT,
5301                status, "cond_timedwait");
5302
5303#ifdef ASSERT
5304  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5305#endif
5306
5307  _counter = 0 ;
5308  status = pthread_mutex_unlock(_mutex) ;
5309  assert_status(status == 0, status, "invariant") ;
5310  // If externally suspended while waiting, re-suspend
5311  if (jt->handle_special_suspend_equivalent_condition()) {
5312    jt->java_suspend_self();
5313  }
5314
5315  OrderAccess::fence();
5316}
5317
5318void Parker::unpark() {
5319  int s, status ;
5320  status = pthread_mutex_lock(_mutex);
5321  assert (status == 0, "invariant") ;
5322  s = _counter;
5323  _counter = 1;
5324  if (s < 1) {
5325     if (WorkAroundNPTLTimedWaitHang) {
5326        status = pthread_cond_signal (_cond) ;
5327        assert (status == 0, "invariant") ;
5328        status = pthread_mutex_unlock(_mutex);
5329        assert (status == 0, "invariant") ;
5330     } else {
5331        status = pthread_mutex_unlock(_mutex);
5332        assert (status == 0, "invariant") ;
5333        status = pthread_cond_signal (_cond) ;
5334        assert (status == 0, "invariant") ;
5335     }
5336  } else {
5337    pthread_mutex_unlock(_mutex);
5338    assert (status == 0, "invariant") ;
5339  }
5340}
5341
5342
5343extern char** environ;
5344
5345#ifndef __NR_fork
5346#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5347#endif
5348
5349#ifndef __NR_execve
5350#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5351#endif
5352
5353// Run the specified command in a separate process. Return its exit value,
5354// or -1 on failure (e.g. can't fork a new process).
5355// Unlike system(), this function can be called from signal handler. It
5356// doesn't block SIGINT et al.
5357int os::fork_and_exec(char* cmd) {
5358  const char * argv[4] = {"sh", "-c", cmd, NULL};
5359
5360  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5361  // pthread_atfork handlers and reset pthread library. All we need is a
5362  // separate process to execve. Make a direct syscall to fork process.
5363  // On IA64 there's no fork syscall, we have to use fork() and hope for
5364  // the best...
5365  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5366              IA64_ONLY(fork();)
5367
5368  if (pid < 0) {
5369    // fork failed
5370    return -1;
5371
5372  } else if (pid == 0) {
5373    // child process
5374
5375    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5376    // first to kill every thread on the thread list. Because this list is
5377    // not reset by fork() (see notes above), execve() will instead kill
5378    // every thread in the parent process. We know this is the only thread
5379    // in the new process, so make a system call directly.
5380    // IA64 should use normal execve() from glibc to match the glibc fork()
5381    // above.
5382    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5383    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5384
5385    // execve failed
5386    _exit(-1);
5387
5388  } else  {
5389    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5390    // care about the actual exit code, for now.
5391
5392    int status;
5393
5394    // Wait for the child process to exit.  This returns immediately if
5395    // the child has already exited. */
5396    while (waitpid(pid, &status, 0) < 0) {
5397        switch (errno) {
5398        case ECHILD: return 0;
5399        case EINTR: break;
5400        default: return -1;
5401        }
5402    }
5403
5404    if (WIFEXITED(status)) {
5405       // The child exited normally; get its exit code.
5406       return WEXITSTATUS(status);
5407    } else if (WIFSIGNALED(status)) {
5408       // The child exited because of a signal
5409       // The best value to return is 0x80 + signal number,
5410       // because that is what all Unix shells do, and because
5411       // it allows callers to distinguish between process exit and
5412       // process death by signal.
5413       return 0x80 + WTERMSIG(status);
5414    } else {
5415       // Unknown exit code; pass it through
5416       return status;
5417    }
5418  }
5419}
5420
5421// is_headless_jre()
5422//
5423// Test for the existence of libmawt in motif21 or xawt directories
5424// in order to report if we are running in a headless jre
5425//
5426bool os::is_headless_jre() {
5427    struct stat statbuf;
5428    char buf[MAXPATHLEN];
5429    char libmawtpath[MAXPATHLEN];
5430    const char *xawtstr  = "/xawt/libmawt.so";
5431    const char *motifstr = "/motif21/libmawt.so";
5432    char *p;
5433
5434    // Get path to libjvm.so
5435    os::jvm_path(buf, sizeof(buf));
5436
5437    // Get rid of libjvm.so
5438    p = strrchr(buf, '/');
5439    if (p == NULL) return false;
5440    else *p = '\0';
5441
5442    // Get rid of client or server
5443    p = strrchr(buf, '/');
5444    if (p == NULL) return false;
5445    else *p = '\0';
5446
5447    // check xawt/libmawt.so
5448    strcpy(libmawtpath, buf);
5449    strcat(libmawtpath, xawtstr);
5450    if (::stat(libmawtpath, &statbuf) == 0) return false;
5451
5452    // check motif21/libmawt.so
5453    strcpy(libmawtpath, buf);
5454    strcat(libmawtpath, motifstr);
5455    if (::stat(libmawtpath, &statbuf) == 0) return false;
5456
5457    return true;
5458}
5459
5460
5461#ifdef JAVASE_EMBEDDED
5462//
5463// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5464//
5465MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5466
5467// ctor
5468//
5469MemNotifyThread::MemNotifyThread(int fd): Thread() {
5470  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5471  _fd = fd;
5472
5473  if (os::create_thread(this, os::os_thread)) {
5474    _memnotify_thread = this;
5475    os::set_priority(this, NearMaxPriority);
5476    os::start_thread(this);
5477  }
5478}
5479
5480// Where all the work gets done
5481//
5482void MemNotifyThread::run() {
5483  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5484
5485  // Set up the select arguments
5486  fd_set rfds;
5487  if (_fd != -1) {
5488    FD_ZERO(&rfds);
5489    FD_SET(_fd, &rfds);
5490  }
5491
5492  // Now wait for the mem_notify device to wake up
5493  while (1) {
5494    // Wait for the mem_notify device to signal us..
5495    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5496    if (rc == -1) {
5497      perror("select!\n");
5498      break;
5499    } else if (rc) {
5500      //ssize_t free_before = os::available_memory();
5501      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5502
5503      // The kernel is telling us there is not much memory left...
5504      // try to do something about that
5505
5506      // If we are not already in a GC, try one.
5507      if (!Universe::heap()->is_gc_active()) {
5508        Universe::heap()->collect(GCCause::_allocation_failure);
5509
5510        //ssize_t free_after = os::available_memory();
5511        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5512        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5513      }
5514      // We might want to do something like the following if we find the GC's are not helping...
5515      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5516    }
5517  }
5518}
5519
5520//
5521// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5522//
5523void MemNotifyThread::start() {
5524  int    fd;
5525  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5526  if (fd < 0) {
5527      return;
5528  }
5529
5530  if (memnotify_thread() == NULL) {
5531    new MemNotifyThread(fd);
5532  }
5533}
5534#endif // JAVASE_EMBEDDED
5535