os_linux.cpp revision 270:b7f01ad69d30
1/*
2 * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// do not include  precompiled  header file
26# include "incls/_os_linux.cpp.incl"
27
28// put OS-includes here
29# include <sys/types.h>
30# include <sys/mman.h>
31# include <pthread.h>
32# include <signal.h>
33# include <errno.h>
34# include <dlfcn.h>
35# include <stdio.h>
36# include <unistd.h>
37# include <sys/resource.h>
38# include <pthread.h>
39# include <sys/stat.h>
40# include <sys/time.h>
41# include <sys/times.h>
42# include <sys/utsname.h>
43# include <sys/socket.h>
44# include <sys/wait.h>
45# include <pwd.h>
46# include <poll.h>
47# include <semaphore.h>
48# include <fcntl.h>
49# include <string.h>
50# include <syscall.h>
51# include <sys/sysinfo.h>
52# include <gnu/libc-version.h>
53# include <sys/ipc.h>
54# include <sys/shm.h>
55# include <link.h>
56
57#define MAX_PATH    (2 * K)
58
59// for timer info max values which include all bits
60#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
61#define SEC_IN_NANOSECS  1000000000LL
62
63////////////////////////////////////////////////////////////////////////////////
64// global variables
65julong os::Linux::_physical_memory = 0;
66
67address   os::Linux::_initial_thread_stack_bottom = NULL;
68uintptr_t os::Linux::_initial_thread_stack_size   = 0;
69
70int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
71int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
72Mutex* os::Linux::_createThread_lock = NULL;
73pthread_t os::Linux::_main_thread;
74int os::Linux::_page_size = -1;
75bool os::Linux::_is_floating_stack = false;
76bool os::Linux::_is_NPTL = false;
77bool os::Linux::_supports_fast_thread_cpu_time = false;
78const char * os::Linux::_glibc_version = NULL;
79const char * os::Linux::_libpthread_version = NULL;
80
81static jlong initial_time_count=0;
82
83static int clock_tics_per_sec = 100;
84
85// For diagnostics to print a message once. see run_periodic_checks
86static sigset_t check_signal_done;
87static bool check_signals = true;;
88
89static pid_t _initial_pid = 0;
90
91/* Signal number used to suspend/resume a thread */
92
93/* do not use any signal number less than SIGSEGV, see 4355769 */
94static int SR_signum = SIGUSR2;
95sigset_t SR_sigset;
96
97/* Used to protect dlsym() calls */
98static pthread_mutex_t dl_mutex;
99
100////////////////////////////////////////////////////////////////////////////////
101// utility functions
102
103static int SR_initialize();
104static int SR_finalize();
105
106julong os::available_memory() {
107  return Linux::available_memory();
108}
109
110julong os::Linux::available_memory() {
111  // values in struct sysinfo are "unsigned long"
112  struct sysinfo si;
113  sysinfo(&si);
114
115  return (julong)si.freeram * si.mem_unit;
116}
117
118julong os::physical_memory() {
119  return Linux::physical_memory();
120}
121
122julong os::allocatable_physical_memory(julong size) {
123#ifdef _LP64
124  return size;
125#else
126  julong result = MIN2(size, (julong)3800*M);
127   if (!is_allocatable(result)) {
128     // See comments under solaris for alignment considerations
129     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
130     result =  MIN2(size, reasonable_size);
131   }
132   return result;
133#endif // _LP64
134}
135
136////////////////////////////////////////////////////////////////////////////////
137// environment support
138
139bool os::getenv(const char* name, char* buf, int len) {
140  const char* val = ::getenv(name);
141  if (val != NULL && strlen(val) < (size_t)len) {
142    strcpy(buf, val);
143    return true;
144  }
145  if (len > 0) buf[0] = 0;  // return a null string
146  return false;
147}
148
149
150// Return true if user is running as root.
151
152bool os::have_special_privileges() {
153  static bool init = false;
154  static bool privileges = false;
155  if (!init) {
156    privileges = (getuid() != geteuid()) || (getgid() != getegid());
157    init = true;
158  }
159  return privileges;
160}
161
162
163#ifndef SYS_gettid
164// i386: 224, ia64: 1105, amd64: 186, sparc 143
165#ifdef __ia64__
166#define SYS_gettid 1105
167#elif __i386__
168#define SYS_gettid 224
169#elif __amd64__
170#define SYS_gettid 186
171#elif __sparc__
172#define SYS_gettid 143
173#else
174#error define gettid for the arch
175#endif
176#endif
177
178// Cpu architecture string
179#if   defined(IA64)
180static char cpu_arch[] = "ia64";
181#elif defined(IA32)
182static char cpu_arch[] = "i386";
183#elif defined(AMD64)
184static char cpu_arch[] = "amd64";
185#elif defined(SPARC)
186#  ifdef _LP64
187static char cpu_arch[] = "sparcv9";
188#  else
189static char cpu_arch[] = "sparc";
190#  endif
191#else
192#error Add appropriate cpu_arch setting
193#endif
194
195
196// pid_t gettid()
197//
198// Returns the kernel thread id of the currently running thread. Kernel
199// thread id is used to access /proc.
200//
201// (Note that getpid() on LinuxThreads returns kernel thread id too; but
202// on NPTL, it returns the same pid for all threads, as required by POSIX.)
203//
204pid_t os::Linux::gettid() {
205  int rslt = syscall(SYS_gettid);
206  if (rslt == -1) {
207     // old kernel, no NPTL support
208     return getpid();
209  } else {
210     return (pid_t)rslt;
211  }
212}
213
214// Most versions of linux have a bug where the number of processors are
215// determined by looking at the /proc file system.  In a chroot environment,
216// the system call returns 1.  This causes the VM to act as if it is
217// a single processor and elide locking (see is_MP() call).
218static bool unsafe_chroot_detected = false;
219static const char *unstable_chroot_error = "/proc file system not found.\n"
220                     "Java may be unstable running multithreaded in a chroot "
221                     "environment on Linux when /proc filesystem is not mounted.";
222
223void os::Linux::initialize_system_info() {
224  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
225  if (_processor_count == 1) {
226    pid_t pid = os::Linux::gettid();
227    char fname[32];
228    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
229    FILE *fp = fopen(fname, "r");
230    if (fp == NULL) {
231      unsafe_chroot_detected = true;
232    } else {
233      fclose(fp);
234    }
235  }
236  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
237  assert(_processor_count > 0, "linux error");
238}
239
240void os::init_system_properties_values() {
241//  char arch[12];
242//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
243
244  // The next steps are taken in the product version:
245  //
246  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
247  // This library should be located at:
248  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
249  //
250  // If "/jre/lib/" appears at the right place in the path, then we
251  // assume libjvm[_g].so is installed in a JDK and we use this path.
252  //
253  // Otherwise exit with message: "Could not create the Java virtual machine."
254  //
255  // The following extra steps are taken in the debugging version:
256  //
257  // If "/jre/lib/" does NOT appear at the right place in the path
258  // instead of exit check for $JAVA_HOME environment variable.
259  //
260  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
261  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
262  // it looks like libjvm[_g].so is installed there
263  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
264  //
265  // Otherwise exit.
266  //
267  // Important note: if the location of libjvm.so changes this
268  // code needs to be changed accordingly.
269
270  // The next few definitions allow the code to be verbatim:
271#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
272#define getenv(n) ::getenv(n)
273
274/*
275 * See ld(1):
276 *      The linker uses the following search paths to locate required
277 *      shared libraries:
278 *        1: ...
279 *        ...
280 *        7: The default directories, normally /lib and /usr/lib.
281 */
282#define DEFAULT_LIBPATH "/lib:/usr/lib"
283
284#define EXTENSIONS_DIR  "/lib/ext"
285#define ENDORSED_DIR    "/lib/endorsed"
286#define REG_DIR         "/usr/java/packages"
287
288  {
289    /* sysclasspath, java_home, dll_dir */
290    {
291        char *home_path;
292        char *dll_path;
293        char *pslash;
294        char buf[MAXPATHLEN];
295        os::jvm_path(buf, sizeof(buf));
296
297        // Found the full path to libjvm.so.
298        // Now cut the path to <java_home>/jre if we can.
299        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
300        pslash = strrchr(buf, '/');
301        if (pslash != NULL)
302            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
303        dll_path = malloc(strlen(buf) + 1);
304        if (dll_path == NULL)
305            return;
306        strcpy(dll_path, buf);
307        Arguments::set_dll_dir(dll_path);
308
309        if (pslash != NULL) {
310            pslash = strrchr(buf, '/');
311            if (pslash != NULL) {
312                *pslash = '\0';       /* get rid of /<arch> */
313                pslash = strrchr(buf, '/');
314                if (pslash != NULL)
315                    *pslash = '\0';   /* get rid of /lib */
316            }
317        }
318
319        home_path = malloc(strlen(buf) + 1);
320        if (home_path == NULL)
321            return;
322        strcpy(home_path, buf);
323        Arguments::set_java_home(home_path);
324
325        if (!set_boot_path('/', ':'))
326            return;
327    }
328
329    /*
330     * Where to look for native libraries
331     *
332     * Note: Due to a legacy implementation, most of the library path
333     * is set in the launcher.  This was to accomodate linking restrictions
334     * on legacy Linux implementations (which are no longer supported).
335     * Eventually, all the library path setting will be done here.
336     *
337     * However, to prevent the proliferation of improperly built native
338     * libraries, the new path component /usr/java/packages is added here.
339     * Eventually, all the library path setting will be done here.
340     */
341    {
342        char *ld_library_path;
343
344        /*
345         * Construct the invariant part of ld_library_path. Note that the
346         * space for the colon and the trailing null are provided by the
347         * nulls included by the sizeof operator (so actually we allocate
348         * a byte more than necessary).
349         */
350        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
351            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
352        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
353
354        /*
355         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
356         * should always exist (until the legacy problem cited above is
357         * addressed).
358         */
359        char *v = getenv("LD_LIBRARY_PATH");
360        if (v != NULL) {
361            char *t = ld_library_path;
362            /* That's +1 for the colon and +1 for the trailing '\0' */
363            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
364            sprintf(ld_library_path, "%s:%s", v, t);
365        }
366        Arguments::set_library_path(ld_library_path);
367    }
368
369    /*
370     * Extensions directories.
371     *
372     * Note that the space for the colon and the trailing null are provided
373     * by the nulls included by the sizeof operator (so actually one byte more
374     * than necessary is allocated).
375     */
376    {
377        char *buf = malloc(strlen(Arguments::get_java_home()) +
378            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
379        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
380            Arguments::get_java_home());
381        Arguments::set_ext_dirs(buf);
382    }
383
384    /* Endorsed standards default directory. */
385    {
386        char * buf;
387        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
388        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
389        Arguments::set_endorsed_dirs(buf);
390    }
391  }
392
393#undef malloc
394#undef getenv
395#undef EXTENSIONS_DIR
396#undef ENDORSED_DIR
397
398  // Done
399  return;
400}
401
402////////////////////////////////////////////////////////////////////////////////
403// breakpoint support
404
405void os::breakpoint() {
406  BREAKPOINT;
407}
408
409extern "C" void breakpoint() {
410  // use debugger to set breakpoint here
411}
412
413////////////////////////////////////////////////////////////////////////////////
414// signal support
415
416debug_only(static bool signal_sets_initialized = false);
417static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
418
419bool os::Linux::is_sig_ignored(int sig) {
420      struct sigaction oact;
421      sigaction(sig, (struct sigaction*)NULL, &oact);
422      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
423                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
424      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
425           return true;
426      else
427           return false;
428}
429
430void os::Linux::signal_sets_init() {
431  // Should also have an assertion stating we are still single-threaded.
432  assert(!signal_sets_initialized, "Already initialized");
433  // Fill in signals that are necessarily unblocked for all threads in
434  // the VM. Currently, we unblock the following signals:
435  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
436  //                         by -Xrs (=ReduceSignalUsage));
437  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
438  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
439  // the dispositions or masks wrt these signals.
440  // Programs embedding the VM that want to use the above signals for their
441  // own purposes must, at this time, use the "-Xrs" option to prevent
442  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
443  // (See bug 4345157, and other related bugs).
444  // In reality, though, unblocking these signals is really a nop, since
445  // these signals are not blocked by default.
446  sigemptyset(&unblocked_sigs);
447  sigemptyset(&allowdebug_blocked_sigs);
448  sigaddset(&unblocked_sigs, SIGILL);
449  sigaddset(&unblocked_sigs, SIGSEGV);
450  sigaddset(&unblocked_sigs, SIGBUS);
451  sigaddset(&unblocked_sigs, SIGFPE);
452  sigaddset(&unblocked_sigs, SR_signum);
453
454  if (!ReduceSignalUsage) {
455   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
456      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
457      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
458   }
459   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
460      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
461      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
462   }
463   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
464      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
465      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
466   }
467  }
468  // Fill in signals that are blocked by all but the VM thread.
469  sigemptyset(&vm_sigs);
470  if (!ReduceSignalUsage)
471    sigaddset(&vm_sigs, BREAK_SIGNAL);
472  debug_only(signal_sets_initialized = true);
473
474}
475
476// These are signals that are unblocked while a thread is running Java.
477// (For some reason, they get blocked by default.)
478sigset_t* os::Linux::unblocked_signals() {
479  assert(signal_sets_initialized, "Not initialized");
480  return &unblocked_sigs;
481}
482
483// These are the signals that are blocked while a (non-VM) thread is
484// running Java. Only the VM thread handles these signals.
485sigset_t* os::Linux::vm_signals() {
486  assert(signal_sets_initialized, "Not initialized");
487  return &vm_sigs;
488}
489
490// These are signals that are blocked during cond_wait to allow debugger in
491sigset_t* os::Linux::allowdebug_blocked_signals() {
492  assert(signal_sets_initialized, "Not initialized");
493  return &allowdebug_blocked_sigs;
494}
495
496void os::Linux::hotspot_sigmask(Thread* thread) {
497
498  //Save caller's signal mask before setting VM signal mask
499  sigset_t caller_sigmask;
500  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
501
502  OSThread* osthread = thread->osthread();
503  osthread->set_caller_sigmask(caller_sigmask);
504
505  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
506
507  if (!ReduceSignalUsage) {
508    if (thread->is_VM_thread()) {
509      // Only the VM thread handles BREAK_SIGNAL ...
510      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
511    } else {
512      // ... all other threads block BREAK_SIGNAL
513      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
514    }
515  }
516}
517
518//////////////////////////////////////////////////////////////////////////////
519// detecting pthread library
520
521void os::Linux::libpthread_init() {
522  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
523  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
524  // generic name for earlier versions.
525  // Define macros here so we can build HotSpot on old systems.
526# ifndef _CS_GNU_LIBC_VERSION
527# define _CS_GNU_LIBC_VERSION 2
528# endif
529# ifndef _CS_GNU_LIBPTHREAD_VERSION
530# define _CS_GNU_LIBPTHREAD_VERSION 3
531# endif
532
533  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
534  if (n > 0) {
535     char *str = (char *)malloc(n);
536     confstr(_CS_GNU_LIBC_VERSION, str, n);
537     os::Linux::set_glibc_version(str);
538  } else {
539     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
540     static char _gnu_libc_version[32];
541     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
542              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
543     os::Linux::set_glibc_version(_gnu_libc_version);
544  }
545
546  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
547  if (n > 0) {
548     char *str = (char *)malloc(n);
549     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
550     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
551     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
552     // is the case. LinuxThreads has a hard limit on max number of threads.
553     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
554     // On the other hand, NPTL does not have such a limit, sysconf()
555     // will return -1 and errno is not changed. Check if it is really NPTL.
556     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
557         strstr(str, "NPTL") &&
558         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
559       free(str);
560       os::Linux::set_libpthread_version("linuxthreads");
561     } else {
562       os::Linux::set_libpthread_version(str);
563     }
564  } else {
565    // glibc before 2.3.2 only has LinuxThreads.
566    os::Linux::set_libpthread_version("linuxthreads");
567  }
568
569  if (strstr(libpthread_version(), "NPTL")) {
570     os::Linux::set_is_NPTL();
571  } else {
572     os::Linux::set_is_LinuxThreads();
573  }
574
575  // LinuxThreads have two flavors: floating-stack mode, which allows variable
576  // stack size; and fixed-stack mode. NPTL is always floating-stack.
577  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
578     os::Linux::set_is_floating_stack();
579  }
580}
581
582/////////////////////////////////////////////////////////////////////////////
583// thread stack
584
585// Force Linux kernel to expand current thread stack. If "bottom" is close
586// to the stack guard, caller should block all signals.
587//
588// MAP_GROWSDOWN:
589//   A special mmap() flag that is used to implement thread stacks. It tells
590//   kernel that the memory region should extend downwards when needed. This
591//   allows early versions of LinuxThreads to only mmap the first few pages
592//   when creating a new thread. Linux kernel will automatically expand thread
593//   stack as needed (on page faults).
594//
595//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
596//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
597//   region, it's hard to tell if the fault is due to a legitimate stack
598//   access or because of reading/writing non-exist memory (e.g. buffer
599//   overrun). As a rule, if the fault happens below current stack pointer,
600//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
601//   application (see Linux kernel fault.c).
602//
603//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
604//   stack overflow detection.
605//
606//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
607//   not use this flag. However, the stack of initial thread is not created
608//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
609//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
610//   and then attach the thread to JVM.
611//
612// To get around the problem and allow stack banging on Linux, we need to
613// manually expand thread stack after receiving the SIGSEGV.
614//
615// There are two ways to expand thread stack to address "bottom", we used
616// both of them in JVM before 1.5:
617//   1. adjust stack pointer first so that it is below "bottom", and then
618//      touch "bottom"
619//   2. mmap() the page in question
620//
621// Now alternate signal stack is gone, it's harder to use 2. For instance,
622// if current sp is already near the lower end of page 101, and we need to
623// call mmap() to map page 100, it is possible that part of the mmap() frame
624// will be placed in page 100. When page 100 is mapped, it is zero-filled.
625// That will destroy the mmap() frame and cause VM to crash.
626//
627// The following code works by adjusting sp first, then accessing the "bottom"
628// page to force a page fault. Linux kernel will then automatically expand the
629// stack mapping.
630//
631// _expand_stack_to() assumes its frame size is less than page size, which
632// should always be true if the function is not inlined.
633
634#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
635#define NOINLINE
636#else
637#define NOINLINE __attribute__ ((noinline))
638#endif
639
640static void _expand_stack_to(address bottom) NOINLINE;
641
642static void _expand_stack_to(address bottom) {
643  address sp;
644  size_t size;
645  volatile char *p;
646
647  // Adjust bottom to point to the largest address within the same page, it
648  // gives us a one-page buffer if alloca() allocates slightly more memory.
649  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
650  bottom += os::Linux::page_size() - 1;
651
652  // sp might be slightly above current stack pointer; if that's the case, we
653  // will alloca() a little more space than necessary, which is OK. Don't use
654  // os::current_stack_pointer(), as its result can be slightly below current
655  // stack pointer, causing us to not alloca enough to reach "bottom".
656  sp = (address)&sp;
657
658  if (sp > bottom) {
659    size = sp - bottom;
660    p = (volatile char *)alloca(size);
661    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
662    p[0] = '\0';
663  }
664}
665
666bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
667  assert(t!=NULL, "just checking");
668  assert(t->osthread()->expanding_stack(), "expand should be set");
669  assert(t->stack_base() != NULL, "stack_base was not initialized");
670
671  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
672    sigset_t mask_all, old_sigset;
673    sigfillset(&mask_all);
674    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
675    _expand_stack_to(addr);
676    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
677    return true;
678  }
679  return false;
680}
681
682//////////////////////////////////////////////////////////////////////////////
683// create new thread
684
685static address highest_vm_reserved_address();
686
687// check if it's safe to start a new thread
688static bool _thread_safety_check(Thread* thread) {
689  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
690    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
691    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
692    //   allocated (MAP_FIXED) from high address space. Every thread stack
693    //   occupies a fixed size slot (usually 2Mbytes, but user can change
694    //   it to other values if they rebuild LinuxThreads).
695    //
696    // Problem with MAP_FIXED is that mmap() can still succeed even part of
697    // the memory region has already been mmap'ed. That means if we have too
698    // many threads and/or very large heap, eventually thread stack will
699    // collide with heap.
700    //
701    // Here we try to prevent heap/stack collision by comparing current
702    // stack bottom with the highest address that has been mmap'ed by JVM
703    // plus a safety margin for memory maps created by native code.
704    //
705    // This feature can be disabled by setting ThreadSafetyMargin to 0
706    //
707    if (ThreadSafetyMargin > 0) {
708      address stack_bottom = os::current_stack_base() - os::current_stack_size();
709
710      // not safe if our stack extends below the safety margin
711      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
712    } else {
713      return true;
714    }
715  } else {
716    // Floating stack LinuxThreads or NPTL:
717    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
718    //   there's not enough space left, pthread_create() will fail. If we come
719    //   here, that means enough space has been reserved for stack.
720    return true;
721  }
722}
723
724// Thread start routine for all newly created threads
725static void *java_start(Thread *thread) {
726  // Try to randomize the cache line index of hot stack frames.
727  // This helps when threads of the same stack traces evict each other's
728  // cache lines. The threads can be either from the same JVM instance, or
729  // from different JVM instances. The benefit is especially true for
730  // processors with hyperthreading technology.
731  static int counter = 0;
732  int pid = os::current_process_id();
733  alloca(((pid ^ counter++) & 7) * 128);
734
735  ThreadLocalStorage::set_thread(thread);
736
737  OSThread* osthread = thread->osthread();
738  Monitor* sync = osthread->startThread_lock();
739
740  // non floating stack LinuxThreads needs extra check, see above
741  if (!_thread_safety_check(thread)) {
742    // notify parent thread
743    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
744    osthread->set_state(ZOMBIE);
745    sync->notify_all();
746    return NULL;
747  }
748
749  // thread_id is kernel thread id (similar to Solaris LWP id)
750  osthread->set_thread_id(os::Linux::gettid());
751
752  if (UseNUMA) {
753    int lgrp_id = os::numa_get_group_id();
754    if (lgrp_id != -1) {
755      thread->set_lgrp_id(lgrp_id);
756    }
757  }
758  // initialize signal mask for this thread
759  os::Linux::hotspot_sigmask(thread);
760
761  // initialize floating point control register
762  os::Linux::init_thread_fpu_state();
763
764  // handshaking with parent thread
765  {
766    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
767
768    // notify parent thread
769    osthread->set_state(INITIALIZED);
770    sync->notify_all();
771
772    // wait until os::start_thread()
773    while (osthread->get_state() == INITIALIZED) {
774      sync->wait(Mutex::_no_safepoint_check_flag);
775    }
776  }
777
778  // call one more level start routine
779  thread->run();
780
781  return 0;
782}
783
784bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
785  assert(thread->osthread() == NULL, "caller responsible");
786
787  // Allocate the OSThread object
788  OSThread* osthread = new OSThread(NULL, NULL);
789  if (osthread == NULL) {
790    return false;
791  }
792
793  // set the correct thread state
794  osthread->set_thread_type(thr_type);
795
796  // Initial state is ALLOCATED but not INITIALIZED
797  osthread->set_state(ALLOCATED);
798
799  thread->set_osthread(osthread);
800
801  // init thread attributes
802  pthread_attr_t attr;
803  pthread_attr_init(&attr);
804  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
805
806  // stack size
807  if (os::Linux::supports_variable_stack_size()) {
808    // calculate stack size if it's not specified by caller
809    if (stack_size == 0) {
810      stack_size = os::Linux::default_stack_size(thr_type);
811
812      switch (thr_type) {
813      case os::java_thread:
814        // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
815        if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
816        break;
817      case os::compiler_thread:
818        if (CompilerThreadStackSize > 0) {
819          stack_size = (size_t)(CompilerThreadStackSize * K);
820          break;
821        } // else fall through:
822          // use VMThreadStackSize if CompilerThreadStackSize is not defined
823      case os::vm_thread:
824      case os::pgc_thread:
825      case os::cgc_thread:
826      case os::watcher_thread:
827        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
828        break;
829      }
830    }
831
832    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
833    pthread_attr_setstacksize(&attr, stack_size);
834  } else {
835    // let pthread_create() pick the default value.
836  }
837
838  // glibc guard page
839  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
840
841  ThreadState state;
842
843  {
844    // Serialize thread creation if we are running with fixed stack LinuxThreads
845    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
846    if (lock) {
847      os::Linux::createThread_lock()->lock_without_safepoint_check();
848    }
849
850    pthread_t tid;
851    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
852
853    pthread_attr_destroy(&attr);
854
855    if (ret != 0) {
856      if (PrintMiscellaneous && (Verbose || WizardMode)) {
857        perror("pthread_create()");
858      }
859      // Need to clean up stuff we've allocated so far
860      thread->set_osthread(NULL);
861      delete osthread;
862      if (lock) os::Linux::createThread_lock()->unlock();
863      return false;
864    }
865
866    // Store pthread info into the OSThread
867    osthread->set_pthread_id(tid);
868
869    // Wait until child thread is either initialized or aborted
870    {
871      Monitor* sync_with_child = osthread->startThread_lock();
872      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
873      while ((state = osthread->get_state()) == ALLOCATED) {
874        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
875      }
876    }
877
878    if (lock) {
879      os::Linux::createThread_lock()->unlock();
880    }
881  }
882
883  // Aborted due to thread limit being reached
884  if (state == ZOMBIE) {
885      thread->set_osthread(NULL);
886      delete osthread;
887      return false;
888  }
889
890  // The thread is returned suspended (in state INITIALIZED),
891  // and is started higher up in the call chain
892  assert(state == INITIALIZED, "race condition");
893  return true;
894}
895
896/////////////////////////////////////////////////////////////////////////////
897// attach existing thread
898
899// bootstrap the main thread
900bool os::create_main_thread(JavaThread* thread) {
901  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
902  return create_attached_thread(thread);
903}
904
905bool os::create_attached_thread(JavaThread* thread) {
906#ifdef ASSERT
907    thread->verify_not_published();
908#endif
909
910  // Allocate the OSThread object
911  OSThread* osthread = new OSThread(NULL, NULL);
912
913  if (osthread == NULL) {
914    return false;
915  }
916
917  // Store pthread info into the OSThread
918  osthread->set_thread_id(os::Linux::gettid());
919  osthread->set_pthread_id(::pthread_self());
920
921  // initialize floating point control register
922  os::Linux::init_thread_fpu_state();
923
924  // Initial thread state is RUNNABLE
925  osthread->set_state(RUNNABLE);
926
927  thread->set_osthread(osthread);
928
929  if (UseNUMA) {
930    int lgrp_id = os::numa_get_group_id();
931    if (lgrp_id != -1) {
932      thread->set_lgrp_id(lgrp_id);
933    }
934  }
935
936  if (os::Linux::is_initial_thread()) {
937    // If current thread is initial thread, its stack is mapped on demand,
938    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
939    // the entire stack region to avoid SEGV in stack banging.
940    // It is also useful to get around the heap-stack-gap problem on SuSE
941    // kernel (see 4821821 for details). We first expand stack to the top
942    // of yellow zone, then enable stack yellow zone (order is significant,
943    // enabling yellow zone first will crash JVM on SuSE Linux), so there
944    // is no gap between the last two virtual memory regions.
945
946    JavaThread *jt = (JavaThread *)thread;
947    address addr = jt->stack_yellow_zone_base();
948    assert(addr != NULL, "initialization problem?");
949    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
950
951    osthread->set_expanding_stack();
952    os::Linux::manually_expand_stack(jt, addr);
953    osthread->clear_expanding_stack();
954  }
955
956  // initialize signal mask for this thread
957  // and save the caller's signal mask
958  os::Linux::hotspot_sigmask(thread);
959
960  return true;
961}
962
963void os::pd_start_thread(Thread* thread) {
964  OSThread * osthread = thread->osthread();
965  assert(osthread->get_state() != INITIALIZED, "just checking");
966  Monitor* sync_with_child = osthread->startThread_lock();
967  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
968  sync_with_child->notify();
969}
970
971// Free Linux resources related to the OSThread
972void os::free_thread(OSThread* osthread) {
973  assert(osthread != NULL, "osthread not set");
974
975  if (Thread::current()->osthread() == osthread) {
976    // Restore caller's signal mask
977    sigset_t sigmask = osthread->caller_sigmask();
978    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
979   }
980
981  delete osthread;
982}
983
984//////////////////////////////////////////////////////////////////////////////
985// thread local storage
986
987int os::allocate_thread_local_storage() {
988  pthread_key_t key;
989  int rslt = pthread_key_create(&key, NULL);
990  assert(rslt == 0, "cannot allocate thread local storage");
991  return (int)key;
992}
993
994// Note: This is currently not used by VM, as we don't destroy TLS key
995// on VM exit.
996void os::free_thread_local_storage(int index) {
997  int rslt = pthread_key_delete((pthread_key_t)index);
998  assert(rslt == 0, "invalid index");
999}
1000
1001void os::thread_local_storage_at_put(int index, void* value) {
1002  int rslt = pthread_setspecific((pthread_key_t)index, value);
1003  assert(rslt == 0, "pthread_setspecific failed");
1004}
1005
1006extern "C" Thread* get_thread() {
1007  return ThreadLocalStorage::thread();
1008}
1009
1010//////////////////////////////////////////////////////////////////////////////
1011// initial thread
1012
1013// Check if current thread is the initial thread, similar to Solaris thr_main.
1014bool os::Linux::is_initial_thread(void) {
1015  char dummy;
1016  // If called before init complete, thread stack bottom will be null.
1017  // Can be called if fatal error occurs before initialization.
1018  if (initial_thread_stack_bottom() == NULL) return false;
1019  assert(initial_thread_stack_bottom() != NULL &&
1020         initial_thread_stack_size()   != 0,
1021         "os::init did not locate initial thread's stack region");
1022  if ((address)&dummy >= initial_thread_stack_bottom() &&
1023      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1024       return true;
1025  else return false;
1026}
1027
1028// Find the virtual memory area that contains addr
1029static bool find_vma(address addr, address* vma_low, address* vma_high) {
1030  FILE *fp = fopen("/proc/self/maps", "r");
1031  if (fp) {
1032    address low, high;
1033    while (!feof(fp)) {
1034      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1035        if (low <= addr && addr < high) {
1036           if (vma_low)  *vma_low  = low;
1037           if (vma_high) *vma_high = high;
1038           fclose (fp);
1039           return true;
1040        }
1041      }
1042      for (;;) {
1043        int ch = fgetc(fp);
1044        if (ch == EOF || ch == (int)'\n') break;
1045      }
1046    }
1047    fclose(fp);
1048  }
1049  return false;
1050}
1051
1052// Locate initial thread stack. This special handling of initial thread stack
1053// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1054// bogus value for initial thread.
1055void os::Linux::capture_initial_stack(size_t max_size) {
1056  // stack size is the easy part, get it from RLIMIT_STACK
1057  size_t stack_size;
1058  struct rlimit rlim;
1059  getrlimit(RLIMIT_STACK, &rlim);
1060  stack_size = rlim.rlim_cur;
1061
1062  // 6308388: a bug in ld.so will relocate its own .data section to the
1063  //   lower end of primordial stack; reduce ulimit -s value a little bit
1064  //   so we won't install guard page on ld.so's data section.
1065  stack_size -= 2 * page_size();
1066
1067  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1068  //   7.1, in both cases we will get 2G in return value.
1069  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1070  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1071  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1072  //   in case other parts in glibc still assumes 2M max stack size.
1073  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1074#ifndef IA64
1075  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1076#else
1077  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1078  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1079#endif
1080
1081  // Try to figure out where the stack base (top) is. This is harder.
1082  //
1083  // When an application is started, glibc saves the initial stack pointer in
1084  // a global variable "__libc_stack_end", which is then used by system
1085  // libraries. __libc_stack_end should be pretty close to stack top. The
1086  // variable is available since the very early days. However, because it is
1087  // a private interface, it could disappear in the future.
1088  //
1089  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1090  // to __libc_stack_end, it is very close to stack top, but isn't the real
1091  // stack top. Note that /proc may not exist if VM is running as a chroot
1092  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1093  // /proc/<pid>/stat could change in the future (though unlikely).
1094  //
1095  // We try __libc_stack_end first. If that doesn't work, look for
1096  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1097  // as a hint, which should work well in most cases.
1098
1099  uintptr_t stack_start;
1100
1101  // try __libc_stack_end first
1102  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1103  if (p && *p) {
1104    stack_start = *p;
1105  } else {
1106    // see if we can get the start_stack field from /proc/self/stat
1107    FILE *fp;
1108    int pid;
1109    char state;
1110    int ppid;
1111    int pgrp;
1112    int session;
1113    int nr;
1114    int tpgrp;
1115    unsigned long flags;
1116    unsigned long minflt;
1117    unsigned long cminflt;
1118    unsigned long majflt;
1119    unsigned long cmajflt;
1120    unsigned long utime;
1121    unsigned long stime;
1122    long cutime;
1123    long cstime;
1124    long prio;
1125    long nice;
1126    long junk;
1127    long it_real;
1128    uintptr_t start;
1129    uintptr_t vsize;
1130    uintptr_t rss;
1131    unsigned long rsslim;
1132    uintptr_t scodes;
1133    uintptr_t ecode;
1134    int i;
1135
1136    // Figure what the primordial thread stack base is. Code is inspired
1137    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1138    // followed by command name surrounded by parentheses, state, etc.
1139    char stat[2048];
1140    int statlen;
1141
1142    fp = fopen("/proc/self/stat", "r");
1143    if (fp) {
1144      statlen = fread(stat, 1, 2047, fp);
1145      stat[statlen] = '\0';
1146      fclose(fp);
1147
1148      // Skip pid and the command string. Note that we could be dealing with
1149      // weird command names, e.g. user could decide to rename java launcher
1150      // to "java 1.4.2 :)", then the stat file would look like
1151      //                1234 (java 1.4.2 :)) R ... ...
1152      // We don't really need to know the command string, just find the last
1153      // occurrence of ")" and then start parsing from there. See bug 4726580.
1154      char * s = strrchr(stat, ')');
1155
1156      i = 0;
1157      if (s) {
1158        // Skip blank chars
1159        do s++; while (isspace(*s));
1160
1161        /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
1162        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
1163        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu",
1164             &state,          /* 3  %c  */
1165             &ppid,           /* 4  %d  */
1166             &pgrp,           /* 5  %d  */
1167             &session,        /* 6  %d  */
1168             &nr,             /* 7  %d  */
1169             &tpgrp,          /* 8  %d  */
1170             &flags,          /* 9  %lu  */
1171             &minflt,         /* 10 %lu  */
1172             &cminflt,        /* 11 %lu  */
1173             &majflt,         /* 12 %lu  */
1174             &cmajflt,        /* 13 %lu  */
1175             &utime,          /* 14 %lu  */
1176             &stime,          /* 15 %lu  */
1177             &cutime,         /* 16 %ld  */
1178             &cstime,         /* 17 %ld  */
1179             &prio,           /* 18 %ld  */
1180             &nice,           /* 19 %ld  */
1181             &junk,           /* 20 %ld  */
1182             &it_real,        /* 21 %ld  */
1183             &start,          /* 22 %lu  */
1184             &vsize,          /* 23 %lu  */
1185             &rss,            /* 24 %ld  */
1186             &rsslim,         /* 25 %lu  */
1187             &scodes,         /* 26 %lu  */
1188             &ecode,          /* 27 %lu  */
1189             &stack_start);   /* 28 %lu  */
1190      }
1191
1192      if (i != 28 - 2) {
1193         assert(false, "Bad conversion from /proc/self/stat");
1194         // product mode - assume we are the initial thread, good luck in the
1195         // embedded case.
1196         warning("Can't detect initial thread stack location - bad conversion");
1197         stack_start = (uintptr_t) &rlim;
1198      }
1199    } else {
1200      // For some reason we can't open /proc/self/stat (for example, running on
1201      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1202      // most cases, so don't abort:
1203      warning("Can't detect initial thread stack location - no /proc/self/stat");
1204      stack_start = (uintptr_t) &rlim;
1205    }
1206  }
1207
1208  // Now we have a pointer (stack_start) very close to the stack top, the
1209  // next thing to do is to figure out the exact location of stack top. We
1210  // can find out the virtual memory area that contains stack_start by
1211  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1212  // and its upper limit is the real stack top. (again, this would fail if
1213  // running inside chroot, because /proc may not exist.)
1214
1215  uintptr_t stack_top;
1216  address low, high;
1217  if (find_vma((address)stack_start, &low, &high)) {
1218    // success, "high" is the true stack top. (ignore "low", because initial
1219    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1220    stack_top = (uintptr_t)high;
1221  } else {
1222    // failed, likely because /proc/self/maps does not exist
1223    warning("Can't detect initial thread stack location - find_vma failed");
1224    // best effort: stack_start is normally within a few pages below the real
1225    // stack top, use it as stack top, and reduce stack size so we won't put
1226    // guard page outside stack.
1227    stack_top = stack_start;
1228    stack_size -= 16 * page_size();
1229  }
1230
1231  // stack_top could be partially down the page so align it
1232  stack_top = align_size_up(stack_top, page_size());
1233
1234  if (max_size && stack_size > max_size) {
1235     _initial_thread_stack_size = max_size;
1236  } else {
1237     _initial_thread_stack_size = stack_size;
1238  }
1239
1240  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1241  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1242}
1243
1244////////////////////////////////////////////////////////////////////////////////
1245// time support
1246
1247// Time since start-up in seconds to a fine granularity.
1248// Used by VMSelfDestructTimer and the MemProfiler.
1249double os::elapsedTime() {
1250
1251  return (double)(os::elapsed_counter()) * 0.000001;
1252}
1253
1254jlong os::elapsed_counter() {
1255  timeval time;
1256  int status = gettimeofday(&time, NULL);
1257  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1258}
1259
1260jlong os::elapsed_frequency() {
1261  return (1000 * 1000);
1262}
1263
1264jlong os::javaTimeMillis() {
1265  timeval time;
1266  int status = gettimeofday(&time, NULL);
1267  assert(status != -1, "linux error");
1268  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1269}
1270
1271#ifndef CLOCK_MONOTONIC
1272#define CLOCK_MONOTONIC (1)
1273#endif
1274
1275void os::Linux::clock_init() {
1276  // we do dlopen's in this particular order due to bug in linux
1277  // dynamical loader (see 6348968) leading to crash on exit
1278  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1279  if (handle == NULL) {
1280    handle = dlopen("librt.so", RTLD_LAZY);
1281  }
1282
1283  if (handle) {
1284    int (*clock_getres_func)(clockid_t, struct timespec*) =
1285           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1286    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1287           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1288    if (clock_getres_func && clock_gettime_func) {
1289      // See if monotonic clock is supported by the kernel. Note that some
1290      // early implementations simply return kernel jiffies (updated every
1291      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1292      // for nano time (though the monotonic property is still nice to have).
1293      // It's fixed in newer kernels, however clock_getres() still returns
1294      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1295      // resolution for now. Hopefully as people move to new kernels, this
1296      // won't be a problem.
1297      struct timespec res;
1298      struct timespec tp;
1299      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1300          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1301        // yes, monotonic clock is supported
1302        _clock_gettime = clock_gettime_func;
1303      } else {
1304        // close librt if there is no monotonic clock
1305        dlclose(handle);
1306      }
1307    }
1308  }
1309}
1310
1311#ifndef SYS_clock_getres
1312
1313#if defined(IA32) || defined(AMD64)
1314#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1315#else
1316#error Value of SYS_clock_getres not known on this platform
1317#endif
1318
1319#endif
1320
1321#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1322
1323void os::Linux::fast_thread_clock_init() {
1324  if (!UseLinuxPosixThreadCPUClocks) {
1325    return;
1326  }
1327  clockid_t clockid;
1328  struct timespec tp;
1329  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1330      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1331
1332  // Switch to using fast clocks for thread cpu time if
1333  // the sys_clock_getres() returns 0 error code.
1334  // Note, that some kernels may support the current thread
1335  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1336  // returned by the pthread_getcpuclockid().
1337  // If the fast Posix clocks are supported then the sys_clock_getres()
1338  // must return at least tp.tv_sec == 0 which means a resolution
1339  // better than 1 sec. This is extra check for reliability.
1340
1341  if(pthread_getcpuclockid_func &&
1342     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1343     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1344
1345    _supports_fast_thread_cpu_time = true;
1346    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1347  }
1348}
1349
1350jlong os::javaTimeNanos() {
1351  if (Linux::supports_monotonic_clock()) {
1352    struct timespec tp;
1353    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1354    assert(status == 0, "gettime error");
1355    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1356    return result;
1357  } else {
1358    timeval time;
1359    int status = gettimeofday(&time, NULL);
1360    assert(status != -1, "linux error");
1361    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1362    return 1000 * usecs;
1363  }
1364}
1365
1366void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1367  if (Linux::supports_monotonic_clock()) {
1368    info_ptr->max_value = ALL_64_BITS;
1369
1370    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1371    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1372    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1373  } else {
1374    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1375    info_ptr->max_value = ALL_64_BITS;
1376
1377    // gettimeofday is a real time clock so it skips
1378    info_ptr->may_skip_backward = true;
1379    info_ptr->may_skip_forward = true;
1380  }
1381
1382  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1383}
1384
1385// Return the real, user, and system times in seconds from an
1386// arbitrary fixed point in the past.
1387bool os::getTimesSecs(double* process_real_time,
1388                      double* process_user_time,
1389                      double* process_system_time) {
1390  struct tms ticks;
1391  clock_t real_ticks = times(&ticks);
1392
1393  if (real_ticks == (clock_t) (-1)) {
1394    return false;
1395  } else {
1396    double ticks_per_second = (double) clock_tics_per_sec;
1397    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1398    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1399    *process_real_time = ((double) real_ticks) / ticks_per_second;
1400
1401    return true;
1402  }
1403}
1404
1405
1406char * os::local_time_string(char *buf, size_t buflen) {
1407  struct tm t;
1408  time_t long_time;
1409  time(&long_time);
1410  localtime_r(&long_time, &t);
1411  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1412               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1413               t.tm_hour, t.tm_min, t.tm_sec);
1414  return buf;
1415}
1416
1417////////////////////////////////////////////////////////////////////////////////
1418// runtime exit support
1419
1420// Note: os::shutdown() might be called very early during initialization, or
1421// called from signal handler. Before adding something to os::shutdown(), make
1422// sure it is async-safe and can handle partially initialized VM.
1423void os::shutdown() {
1424
1425  // allow PerfMemory to attempt cleanup of any persistent resources
1426  perfMemory_exit();
1427
1428  // needs to remove object in file system
1429  AttachListener::abort();
1430
1431  // flush buffered output, finish log files
1432  ostream_abort();
1433
1434  // Check for abort hook
1435  abort_hook_t abort_hook = Arguments::abort_hook();
1436  if (abort_hook != NULL) {
1437    abort_hook();
1438  }
1439
1440}
1441
1442// Note: os::abort() might be called very early during initialization, or
1443// called from signal handler. Before adding something to os::abort(), make
1444// sure it is async-safe and can handle partially initialized VM.
1445void os::abort(bool dump_core) {
1446  os::shutdown();
1447  if (dump_core) {
1448#ifndef PRODUCT
1449    fdStream out(defaultStream::output_fd());
1450    out.print_raw("Current thread is ");
1451    char buf[16];
1452    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1453    out.print_raw_cr(buf);
1454    out.print_raw_cr("Dumping core ...");
1455#endif
1456    ::abort(); // dump core
1457  }
1458
1459  ::exit(1);
1460}
1461
1462// Die immediately, no exit hook, no abort hook, no cleanup.
1463void os::die() {
1464  // _exit() on LinuxThreads only kills current thread
1465  ::abort();
1466}
1467
1468// unused on linux for now.
1469void os::set_error_file(const char *logfile) {}
1470
1471intx os::current_thread_id() { return (intx)pthread_self(); }
1472int os::current_process_id() {
1473
1474  // Under the old linux thread library, linux gives each thread
1475  // its own process id. Because of this each thread will return
1476  // a different pid if this method were to return the result
1477  // of getpid(2). Linux provides no api that returns the pid
1478  // of the launcher thread for the vm. This implementation
1479  // returns a unique pid, the pid of the launcher thread
1480  // that starts the vm 'process'.
1481
1482  // Under the NPTL, getpid() returns the same pid as the
1483  // launcher thread rather than a unique pid per thread.
1484  // Use gettid() if you want the old pre NPTL behaviour.
1485
1486  // if you are looking for the result of a call to getpid() that
1487  // returns a unique pid for the calling thread, then look at the
1488  // OSThread::thread_id() method in osThread_linux.hpp file
1489
1490  return (int)(_initial_pid ? _initial_pid : getpid());
1491}
1492
1493// DLL functions
1494
1495const char* os::dll_file_extension() { return ".so"; }
1496
1497const char* os::get_temp_directory() { return "/tmp/"; }
1498
1499void os::dll_build_name(
1500    char* buffer, size_t buflen, const char* pname, const char* fname) {
1501  // copied from libhpi
1502  const size_t pnamelen = pname ? strlen(pname) : 0;
1503
1504  /* Quietly truncate on buffer overflow.  Should be an error. */
1505  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1506      *buffer = '\0';
1507      return;
1508  }
1509
1510  if (pnamelen == 0) {
1511      sprintf(buffer, "lib%s.so", fname);
1512  } else {
1513      sprintf(buffer, "%s/lib%s.so", pname, fname);
1514  }
1515}
1516
1517const char* os::get_current_directory(char *buf, int buflen) {
1518  return getcwd(buf, buflen);
1519}
1520
1521// check if addr is inside libjvm[_g].so
1522bool os::address_is_in_vm(address addr) {
1523  static address libjvm_base_addr;
1524  Dl_info dlinfo;
1525
1526  if (libjvm_base_addr == NULL) {
1527    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1528    libjvm_base_addr = (address)dlinfo.dli_fbase;
1529    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1530  }
1531
1532  if (dladdr((void *)addr, &dlinfo)) {
1533    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1534  }
1535
1536  return false;
1537}
1538
1539bool os::dll_address_to_function_name(address addr, char *buf,
1540                                      int buflen, int *offset) {
1541  Dl_info dlinfo;
1542
1543  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1544    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1545    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1546    return true;
1547  } else {
1548    if (buf) buf[0] = '\0';
1549    if (offset) *offset = -1;
1550    return false;
1551  }
1552}
1553
1554struct _address_to_library_name {
1555  address addr;          // input : memory address
1556  size_t  buflen;        //         size of fname
1557  char*   fname;         // output: library name
1558  address base;          //         library base addr
1559};
1560
1561static int address_to_library_name_callback(struct dl_phdr_info *info,
1562                                            size_t size, void *data) {
1563  int i;
1564  bool found = false;
1565  address libbase = NULL;
1566  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1567
1568  // iterate through all loadable segments
1569  for (i = 0; i < info->dlpi_phnum; i++) {
1570    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1571    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1572      // base address of a library is the lowest address of its loaded
1573      // segments.
1574      if (libbase == NULL || libbase > segbase) {
1575        libbase = segbase;
1576      }
1577      // see if 'addr' is within current segment
1578      if (segbase <= d->addr &&
1579          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1580        found = true;
1581      }
1582    }
1583  }
1584
1585  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1586  // so dll_address_to_library_name() can fall through to use dladdr() which
1587  // can figure out executable name from argv[0].
1588  if (found && info->dlpi_name && info->dlpi_name[0]) {
1589    d->base = libbase;
1590    if (d->fname) {
1591      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1592    }
1593    return 1;
1594  }
1595  return 0;
1596}
1597
1598bool os::dll_address_to_library_name(address addr, char* buf,
1599                                     int buflen, int* offset) {
1600  Dl_info dlinfo;
1601  struct _address_to_library_name data;
1602
1603  // There is a bug in old glibc dladdr() implementation that it could resolve
1604  // to wrong library name if the .so file has a base address != NULL. Here
1605  // we iterate through the program headers of all loaded libraries to find
1606  // out which library 'addr' really belongs to. This workaround can be
1607  // removed once the minimum requirement for glibc is moved to 2.3.x.
1608  data.addr = addr;
1609  data.fname = buf;
1610  data.buflen = buflen;
1611  data.base = NULL;
1612  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1613
1614  if (rslt) {
1615     // buf already contains library name
1616     if (offset) *offset = addr - data.base;
1617     return true;
1618  } else if (dladdr((void*)addr, &dlinfo)){
1619     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1620     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1621     return true;
1622  } else {
1623     if (buf) buf[0] = '\0';
1624     if (offset) *offset = -1;
1625     return false;
1626  }
1627}
1628
1629  // Loads .dll/.so and
1630  // in case of error it checks if .dll/.so was built for the
1631  // same architecture as Hotspot is running on
1632
1633void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1634{
1635  void * result= ::dlopen(filename, RTLD_LAZY);
1636  if (result != NULL) {
1637    // Successful loading
1638    return result;
1639  }
1640
1641  Elf32_Ehdr elf_head;
1642
1643  // Read system error message into ebuf
1644  // It may or may not be overwritten below
1645  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1646  ebuf[ebuflen-1]='\0';
1647  int diag_msg_max_length=ebuflen-strlen(ebuf);
1648  char* diag_msg_buf=ebuf+strlen(ebuf);
1649
1650  if (diag_msg_max_length==0) {
1651    // No more space in ebuf for additional diagnostics message
1652    return NULL;
1653  }
1654
1655
1656  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1657
1658  if (file_descriptor < 0) {
1659    // Can't open library, report dlerror() message
1660    return NULL;
1661  }
1662
1663  bool failed_to_read_elf_head=
1664    (sizeof(elf_head)!=
1665        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1666
1667  ::close(file_descriptor);
1668  if (failed_to_read_elf_head) {
1669    // file i/o error - report dlerror() msg
1670    return NULL;
1671  }
1672
1673  typedef struct {
1674    Elf32_Half  code;         // Actual value as defined in elf.h
1675    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1676    char        elf_class;    // 32 or 64 bit
1677    char        endianess;    // MSB or LSB
1678    char*       name;         // String representation
1679  } arch_t;
1680
1681  #ifndef EM_486
1682  #define EM_486          6               /* Intel 80486 */
1683  #endif
1684
1685  static const arch_t arch_array[]={
1686    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1687    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1688    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1689    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1690    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1691    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1692    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1693    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1694    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1695  };
1696
1697  #if  (defined IA32)
1698    static  Elf32_Half running_arch_code=EM_386;
1699  #elif   (defined AMD64)
1700    static  Elf32_Half running_arch_code=EM_X86_64;
1701  #elif  (defined IA64)
1702    static  Elf32_Half running_arch_code=EM_IA_64;
1703  #elif  (defined __sparc) && (defined _LP64)
1704    static  Elf32_Half running_arch_code=EM_SPARCV9;
1705  #elif  (defined __sparc) && (!defined _LP64)
1706    static  Elf32_Half running_arch_code=EM_SPARC;
1707  #elif  (defined __powerpc64__)
1708    static  Elf32_Half running_arch_code=EM_PPC64;
1709  #elif  (defined __powerpc__)
1710    static  Elf32_Half running_arch_code=EM_PPC;
1711  #else
1712    #error Method os::dll_load requires that one of following is defined:\
1713         IA32, AMD64, IA64, __sparc, __powerpc__
1714  #endif
1715
1716  // Identify compatability class for VM's architecture and library's architecture
1717  // Obtain string descriptions for architectures
1718
1719  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1720  int running_arch_index=-1;
1721
1722  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1723    if (running_arch_code == arch_array[i].code) {
1724      running_arch_index    = i;
1725    }
1726    if (lib_arch.code == arch_array[i].code) {
1727      lib_arch.compat_class = arch_array[i].compat_class;
1728      lib_arch.name         = arch_array[i].name;
1729    }
1730  }
1731
1732  assert(running_arch_index != -1,
1733    "Didn't find running architecture code (running_arch_code) in arch_array");
1734  if (running_arch_index == -1) {
1735    // Even though running architecture detection failed
1736    // we may still continue with reporting dlerror() message
1737    return NULL;
1738  }
1739
1740  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1741    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1742    return NULL;
1743  }
1744
1745  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1746    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1747    return NULL;
1748  }
1749
1750  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1751    if ( lib_arch.name!=NULL ) {
1752      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1753        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1754        lib_arch.name, arch_array[running_arch_index].name);
1755    } else {
1756      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1757      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1758        lib_arch.code,
1759        arch_array[running_arch_index].name);
1760    }
1761  }
1762
1763  return NULL;
1764}
1765
1766/*
1767 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1768 * chances are you might want to run the generated bits against glibc-2.0
1769 * libdl.so, so always use locking for any version of glibc.
1770 */
1771void* os::dll_lookup(void* handle, const char* name) {
1772  pthread_mutex_lock(&dl_mutex);
1773  void* res = dlsym(handle, name);
1774  pthread_mutex_unlock(&dl_mutex);
1775  return res;
1776}
1777
1778
1779bool _print_ascii_file(const char* filename, outputStream* st) {
1780  int fd = open(filename, O_RDONLY);
1781  if (fd == -1) {
1782     return false;
1783  }
1784
1785  char buf[32];
1786  int bytes;
1787  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1788    st->print_raw(buf, bytes);
1789  }
1790
1791  close(fd);
1792
1793  return true;
1794}
1795
1796void os::print_dll_info(outputStream *st) {
1797   st->print_cr("Dynamic libraries:");
1798
1799   char fname[32];
1800   pid_t pid = os::Linux::gettid();
1801
1802   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1803
1804   if (!_print_ascii_file(fname, st)) {
1805     st->print("Can not get library information for pid = %d\n", pid);
1806   }
1807}
1808
1809
1810void os::print_os_info(outputStream* st) {
1811  st->print("OS:");
1812
1813  // Try to identify popular distros.
1814  // Most Linux distributions have /etc/XXX-release file, which contains
1815  // the OS version string. Some have more than one /etc/XXX-release file
1816  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1817  // so the order is important.
1818  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1819      !_print_ascii_file("/etc/sun-release", st) &&
1820      !_print_ascii_file("/etc/redhat-release", st) &&
1821      !_print_ascii_file("/etc/SuSE-release", st) &&
1822      !_print_ascii_file("/etc/turbolinux-release", st) &&
1823      !_print_ascii_file("/etc/gentoo-release", st) &&
1824      !_print_ascii_file("/etc/debian_version", st)) {
1825      st->print("Linux");
1826  }
1827  st->cr();
1828
1829  // kernel
1830  st->print("uname:");
1831  struct utsname name;
1832  uname(&name);
1833  st->print(name.sysname); st->print(" ");
1834  st->print(name.release); st->print(" ");
1835  st->print(name.version); st->print(" ");
1836  st->print(name.machine);
1837  st->cr();
1838
1839  // Print warning if unsafe chroot environment detected
1840  if (unsafe_chroot_detected) {
1841    st->print("WARNING!! ");
1842    st->print_cr(unstable_chroot_error);
1843  }
1844
1845  // libc, pthread
1846  st->print("libc:");
1847  st->print(os::Linux::glibc_version()); st->print(" ");
1848  st->print(os::Linux::libpthread_version()); st->print(" ");
1849  if (os::Linux::is_LinuxThreads()) {
1850     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1851  }
1852  st->cr();
1853
1854  // rlimit
1855  st->print("rlimit:");
1856  struct rlimit rlim;
1857
1858  st->print(" STACK ");
1859  getrlimit(RLIMIT_STACK, &rlim);
1860  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1861  else st->print("%uk", rlim.rlim_cur >> 10);
1862
1863  st->print(", CORE ");
1864  getrlimit(RLIMIT_CORE, &rlim);
1865  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1866  else st->print("%uk", rlim.rlim_cur >> 10);
1867
1868  st->print(", NPROC ");
1869  getrlimit(RLIMIT_NPROC, &rlim);
1870  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1871  else st->print("%d", rlim.rlim_cur);
1872
1873  st->print(", NOFILE ");
1874  getrlimit(RLIMIT_NOFILE, &rlim);
1875  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1876  else st->print("%d", rlim.rlim_cur);
1877
1878  st->print(", AS ");
1879  getrlimit(RLIMIT_AS, &rlim);
1880  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1881  else st->print("%uk", rlim.rlim_cur >> 10);
1882  st->cr();
1883
1884  // load average
1885  st->print("load average:");
1886  double loadavg[3];
1887  os::loadavg(loadavg, 3);
1888  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1889  st->cr();
1890}
1891
1892void os::print_memory_info(outputStream* st) {
1893
1894  st->print("Memory:");
1895  st->print(" %dk page", os::vm_page_size()>>10);
1896
1897  // values in struct sysinfo are "unsigned long"
1898  struct sysinfo si;
1899  sysinfo(&si);
1900
1901  st->print(", physical " UINT64_FORMAT "k",
1902            os::physical_memory() >> 10);
1903  st->print("(" UINT64_FORMAT "k free)",
1904            os::available_memory() >> 10);
1905  st->print(", swap " UINT64_FORMAT "k",
1906            ((jlong)si.totalswap * si.mem_unit) >> 10);
1907  st->print("(" UINT64_FORMAT "k free)",
1908            ((jlong)si.freeswap * si.mem_unit) >> 10);
1909  st->cr();
1910}
1911
1912// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1913// but they're the same for all the linux arch that we support
1914// and they're the same for solaris but there's no common place to put this.
1915const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1916                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1917                          "ILL_COPROC", "ILL_BADSTK" };
1918
1919const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1920                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1921                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1922
1923const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1924
1925const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1926
1927void os::print_siginfo(outputStream* st, void* siginfo) {
1928  st->print("siginfo:");
1929
1930  const int buflen = 100;
1931  char buf[buflen];
1932  siginfo_t *si = (siginfo_t*)siginfo;
1933  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1934  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1935    st->print("si_errno=%s", buf);
1936  } else {
1937    st->print("si_errno=%d", si->si_errno);
1938  }
1939  const int c = si->si_code;
1940  assert(c > 0, "unexpected si_code");
1941  switch (si->si_signo) {
1942  case SIGILL:
1943    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1944    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1945    break;
1946  case SIGFPE:
1947    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1948    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1949    break;
1950  case SIGSEGV:
1951    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1952    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1953    break;
1954  case SIGBUS:
1955    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1956    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1957    break;
1958  default:
1959    st->print(", si_code=%d", si->si_code);
1960    // no si_addr
1961  }
1962
1963  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1964      UseSharedSpaces) {
1965    FileMapInfo* mapinfo = FileMapInfo::current_info();
1966    if (mapinfo->is_in_shared_space(si->si_addr)) {
1967      st->print("\n\nError accessing class data sharing archive."   \
1968                " Mapped file inaccessible during execution, "      \
1969                " possible disk/network problem.");
1970    }
1971  }
1972  st->cr();
1973}
1974
1975
1976static void print_signal_handler(outputStream* st, int sig,
1977                                 char* buf, size_t buflen);
1978
1979void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1980  st->print_cr("Signal Handlers:");
1981  print_signal_handler(st, SIGSEGV, buf, buflen);
1982  print_signal_handler(st, SIGBUS , buf, buflen);
1983  print_signal_handler(st, SIGFPE , buf, buflen);
1984  print_signal_handler(st, SIGPIPE, buf, buflen);
1985  print_signal_handler(st, SIGXFSZ, buf, buflen);
1986  print_signal_handler(st, SIGILL , buf, buflen);
1987  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1988  print_signal_handler(st, SR_signum, buf, buflen);
1989  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1990  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1991  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1992  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1993}
1994
1995static char saved_jvm_path[MAXPATHLEN] = {0};
1996
1997// Find the full path to the current module, libjvm.so or libjvm_g.so
1998void os::jvm_path(char *buf, jint len) {
1999  // Error checking.
2000  if (len < MAXPATHLEN) {
2001    assert(false, "must use a large-enough buffer");
2002    buf[0] = '\0';
2003    return;
2004  }
2005  // Lazy resolve the path to current module.
2006  if (saved_jvm_path[0] != 0) {
2007    strcpy(buf, saved_jvm_path);
2008    return;
2009  }
2010
2011  char dli_fname[MAXPATHLEN];
2012  bool ret = dll_address_to_library_name(
2013                CAST_FROM_FN_PTR(address, os::jvm_path),
2014                dli_fname, sizeof(dli_fname), NULL);
2015  assert(ret != 0, "cannot locate libjvm");
2016  realpath(dli_fname, buf);
2017
2018  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2019    // Support for the gamma launcher.  Typical value for buf is
2020    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2021    // the right place in the string, then assume we are installed in a JDK and
2022    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2023    // up the path so it looks like libjvm.so is installed there (append a
2024    // fake suffix hotspot/libjvm.so).
2025    const char *p = buf + strlen(buf) - 1;
2026    for (int count = 0; p > buf && count < 5; ++count) {
2027      for (--p; p > buf && *p != '/'; --p)
2028        /* empty */ ;
2029    }
2030
2031    if (strncmp(p, "/jre/lib/", 9) != 0) {
2032      // Look for JAVA_HOME in the environment.
2033      char* java_home_var = ::getenv("JAVA_HOME");
2034      if (java_home_var != NULL && java_home_var[0] != 0) {
2035        // Check the current module name "libjvm.so" or "libjvm_g.so".
2036        p = strrchr(buf, '/');
2037        assert(strstr(p, "/libjvm") == p, "invalid library name");
2038        p = strstr(p, "_g") ? "_g" : "";
2039
2040        realpath(java_home_var, buf);
2041        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2042        if (0 == access(buf, F_OK)) {
2043          // Use current module name "libjvm[_g].so" instead of
2044          // "libjvm"debug_only("_g")".so" since for fastdebug version
2045          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2046          // It is used when we are choosing the HPI library's name
2047          // "libhpi[_g].so" in hpi::initialize_get_interface().
2048          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2049        } else {
2050          // Go back to path of .so
2051          realpath(dli_fname, buf);
2052        }
2053      }
2054    }
2055  }
2056
2057  strcpy(saved_jvm_path, buf);
2058}
2059
2060void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2061  // no prefix required, not even "_"
2062}
2063
2064void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2065  // no suffix required
2066}
2067
2068////////////////////////////////////////////////////////////////////////////////
2069// sun.misc.Signal support
2070
2071static volatile jint sigint_count = 0;
2072
2073static void
2074UserHandler(int sig, void *siginfo, void *context) {
2075  // 4511530 - sem_post is serialized and handled by the manager thread. When
2076  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2077  // don't want to flood the manager thread with sem_post requests.
2078  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2079      return;
2080
2081  // Ctrl-C is pressed during error reporting, likely because the error
2082  // handler fails to abort. Let VM die immediately.
2083  if (sig == SIGINT && is_error_reported()) {
2084     os::die();
2085  }
2086
2087  os::signal_notify(sig);
2088}
2089
2090void* os::user_handler() {
2091  return CAST_FROM_FN_PTR(void*, UserHandler);
2092}
2093
2094extern "C" {
2095  typedef void (*sa_handler_t)(int);
2096  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2097}
2098
2099void* os::signal(int signal_number, void* handler) {
2100  struct sigaction sigAct, oldSigAct;
2101
2102  sigfillset(&(sigAct.sa_mask));
2103  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2104  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2105
2106  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2107    // -1 means registration failed
2108    return (void *)-1;
2109  }
2110
2111  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2112}
2113
2114void os::signal_raise(int signal_number) {
2115  ::raise(signal_number);
2116}
2117
2118/*
2119 * The following code is moved from os.cpp for making this
2120 * code platform specific, which it is by its very nature.
2121 */
2122
2123// Will be modified when max signal is changed to be dynamic
2124int os::sigexitnum_pd() {
2125  return NSIG;
2126}
2127
2128// a counter for each possible signal value
2129static volatile jint pending_signals[NSIG+1] = { 0 };
2130
2131// Linux(POSIX) specific hand shaking semaphore.
2132static sem_t sig_sem;
2133
2134void os::signal_init_pd() {
2135  // Initialize signal structures
2136  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2137
2138  // Initialize signal semaphore
2139  ::sem_init(&sig_sem, 0, 0);
2140}
2141
2142void os::signal_notify(int sig) {
2143  Atomic::inc(&pending_signals[sig]);
2144  ::sem_post(&sig_sem);
2145}
2146
2147static int check_pending_signals(bool wait) {
2148  Atomic::store(0, &sigint_count);
2149  for (;;) {
2150    for (int i = 0; i < NSIG + 1; i++) {
2151      jint n = pending_signals[i];
2152      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2153        return i;
2154      }
2155    }
2156    if (!wait) {
2157      return -1;
2158    }
2159    JavaThread *thread = JavaThread::current();
2160    ThreadBlockInVM tbivm(thread);
2161
2162    bool threadIsSuspended;
2163    do {
2164      thread->set_suspend_equivalent();
2165      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2166      ::sem_wait(&sig_sem);
2167
2168      // were we externally suspended while we were waiting?
2169      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2170      if (threadIsSuspended) {
2171        //
2172        // The semaphore has been incremented, but while we were waiting
2173        // another thread suspended us. We don't want to continue running
2174        // while suspended because that would surprise the thread that
2175        // suspended us.
2176        //
2177        ::sem_post(&sig_sem);
2178
2179        thread->java_suspend_self();
2180      }
2181    } while (threadIsSuspended);
2182  }
2183}
2184
2185int os::signal_lookup() {
2186  return check_pending_signals(false);
2187}
2188
2189int os::signal_wait() {
2190  return check_pending_signals(true);
2191}
2192
2193////////////////////////////////////////////////////////////////////////////////
2194// Virtual Memory
2195
2196int os::vm_page_size() {
2197  // Seems redundant as all get out
2198  assert(os::Linux::page_size() != -1, "must call os::init");
2199  return os::Linux::page_size();
2200}
2201
2202// Solaris allocates memory by pages.
2203int os::vm_allocation_granularity() {
2204  assert(os::Linux::page_size() != -1, "must call os::init");
2205  return os::Linux::page_size();
2206}
2207
2208// Rationale behind this function:
2209//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2210//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2211//  samples for JITted code. Here we create private executable mapping over the code cache
2212//  and then we can use standard (well, almost, as mapping can change) way to provide
2213//  info for the reporting script by storing timestamp and location of symbol
2214void linux_wrap_code(char* base, size_t size) {
2215  static volatile jint cnt = 0;
2216
2217  if (!UseOprofile) {
2218    return;
2219  }
2220
2221  char buf[40];
2222  int num = Atomic::add(1, &cnt);
2223
2224  sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
2225  unlink(buf);
2226
2227  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2228
2229  if (fd != -1) {
2230    off_t rv = lseek(fd, size-2, SEEK_SET);
2231    if (rv != (off_t)-1) {
2232      if (write(fd, "", 1) == 1) {
2233        mmap(base, size,
2234             PROT_READ|PROT_WRITE|PROT_EXEC,
2235             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2236      }
2237    }
2238    close(fd);
2239    unlink(buf);
2240  }
2241}
2242
2243// NOTE: Linux kernel does not really reserve the pages for us.
2244//       All it does is to check if there are enough free pages
2245//       left at the time of mmap(). This could be a potential
2246//       problem.
2247bool os::commit_memory(char* addr, size_t size) {
2248  uintptr_t res = (uintptr_t) ::mmap(addr, size,
2249                                   PROT_READ|PROT_WRITE|PROT_EXEC,
2250                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2251  return res != (uintptr_t) MAP_FAILED;
2252}
2253
2254bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
2255  return commit_memory(addr, size);
2256}
2257
2258void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2259
2260void os::free_memory(char *addr, size_t bytes) {
2261  uncommit_memory(addr, bytes);
2262}
2263
2264void os::numa_make_global(char *addr, size_t bytes)    { }
2265
2266void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2267  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2268}
2269
2270bool os::numa_topology_changed()   { return false; }
2271
2272size_t os::numa_get_groups_num() {
2273  int max_node = Linux::numa_max_node();
2274  return max_node > 0 ? max_node + 1 : 1;
2275}
2276
2277int os::numa_get_group_id() {
2278  int cpu_id = Linux::sched_getcpu();
2279  if (cpu_id != -1) {
2280    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2281    if (lgrp_id != -1) {
2282      return lgrp_id;
2283    }
2284  }
2285  return 0;
2286}
2287
2288size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2289  for (size_t i = 0; i < size; i++) {
2290    ids[i] = i;
2291  }
2292  return size;
2293}
2294
2295bool os::get_page_info(char *start, page_info* info) {
2296  return false;
2297}
2298
2299char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2300  return end;
2301}
2302
2303extern "C" void numa_warn(int number, char *where, ...) { }
2304extern "C" void numa_error(char *where) { }
2305
2306void os::Linux::libnuma_init() {
2307  // sched_getcpu() should be in libc.
2308  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2309                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2310
2311  if (sched_getcpu() != -1) { // Does it work?
2312    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2313    if (handle != NULL) {
2314      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2315                                           dlsym(handle, "numa_node_to_cpus")));
2316      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2317                                       dlsym(handle, "numa_max_node")));
2318      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2319                                        dlsym(handle, "numa_available")));
2320      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2321                                            dlsym(handle, "numa_tonode_memory")));
2322      if (numa_available() != -1) {
2323        // Create a cpu -> node mapping
2324        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2325        rebuild_cpu_to_node_map();
2326      }
2327    }
2328  }
2329}
2330
2331// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2332// The table is later used in get_node_by_cpu().
2333void os::Linux::rebuild_cpu_to_node_map() {
2334  int cpu_num = os::active_processor_count();
2335  cpu_to_node()->clear();
2336  cpu_to_node()->at_grow(cpu_num - 1);
2337  int node_num = numa_get_groups_num();
2338  int cpu_map_size = (cpu_num + BitsPerLong - 1) / BitsPerLong;
2339  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2340  for (int i = 0; i < node_num; i++) {
2341    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2342      for (int j = 0; j < cpu_map_size; j++) {
2343        if (cpu_map[j] != 0) {
2344          for (int k = 0; k < BitsPerLong; k++) {
2345            if (cpu_map[j] & (1UL << k)) {
2346              cpu_to_node()->at_put(j * BitsPerLong + k, i);
2347            }
2348          }
2349        }
2350      }
2351    }
2352  }
2353  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2354}
2355
2356int os::Linux::get_node_by_cpu(int cpu_id) {
2357  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2358    return cpu_to_node()->at(cpu_id);
2359  }
2360  return -1;
2361}
2362
2363GrowableArray<int>* os::Linux::_cpu_to_node;
2364os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2365os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2366os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2367os::Linux::numa_available_func_t os::Linux::_numa_available;
2368os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2369
2370
2371bool os::uncommit_memory(char* addr, size_t size) {
2372  return ::mmap(addr, size,
2373                PROT_READ|PROT_WRITE|PROT_EXEC,
2374                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
2375    != MAP_FAILED;
2376}
2377
2378static address _highest_vm_reserved_address = NULL;
2379
2380// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2381// at 'requested_addr'. If there are existing memory mappings at the same
2382// location, however, they will be overwritten. If 'fixed' is false,
2383// 'requested_addr' is only treated as a hint, the return value may or
2384// may not start from the requested address. Unlike Linux mmap(), this
2385// function returns NULL to indicate failure.
2386static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2387  char * addr;
2388  int flags;
2389
2390  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2391  if (fixed) {
2392    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2393    flags |= MAP_FIXED;
2394  }
2395
2396  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
2397                       flags, -1, 0);
2398
2399  if (addr != MAP_FAILED) {
2400    // anon_mmap() should only get called during VM initialization,
2401    // don't need lock (actually we can skip locking even it can be called
2402    // from multiple threads, because _highest_vm_reserved_address is just a
2403    // hint about the upper limit of non-stack memory regions.)
2404    if ((address)addr + bytes > _highest_vm_reserved_address) {
2405      _highest_vm_reserved_address = (address)addr + bytes;
2406    }
2407  }
2408
2409  return addr == MAP_FAILED ? NULL : addr;
2410}
2411
2412// Don't update _highest_vm_reserved_address, because there might be memory
2413// regions above addr + size. If so, releasing a memory region only creates
2414// a hole in the address space, it doesn't help prevent heap-stack collision.
2415//
2416static int anon_munmap(char * addr, size_t size) {
2417  return ::munmap(addr, size) == 0;
2418}
2419
2420char* os::reserve_memory(size_t bytes, char* requested_addr,
2421                         size_t alignment_hint) {
2422  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2423}
2424
2425bool os::release_memory(char* addr, size_t size) {
2426  return anon_munmap(addr, size);
2427}
2428
2429static address highest_vm_reserved_address() {
2430  return _highest_vm_reserved_address;
2431}
2432
2433static bool linux_mprotect(char* addr, size_t size, int prot) {
2434  // Linux wants the mprotect address argument to be page aligned.
2435  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2436
2437  // According to SUSv3, mprotect() should only be used with mappings
2438  // established by mmap(), and mmap() always maps whole pages. Unaligned
2439  // 'addr' likely indicates problem in the VM (e.g. trying to change
2440  // protection of malloc'ed or statically allocated memory). Check the
2441  // caller if you hit this assert.
2442  assert(addr == bottom, "sanity check");
2443
2444  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2445  return ::mprotect(bottom, size, prot) == 0;
2446}
2447
2448// Set protections specified
2449bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2450                        bool is_committed) {
2451  unsigned int p = 0;
2452  switch (prot) {
2453  case MEM_PROT_NONE: p = PROT_NONE; break;
2454  case MEM_PROT_READ: p = PROT_READ; break;
2455  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2456  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2457  default:
2458    ShouldNotReachHere();
2459  }
2460  // is_committed is unused.
2461  return linux_mprotect(addr, bytes, p);
2462}
2463
2464bool os::guard_memory(char* addr, size_t size) {
2465  return linux_mprotect(addr, size, PROT_NONE);
2466}
2467
2468bool os::unguard_memory(char* addr, size_t size) {
2469  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2470}
2471
2472// Large page support
2473
2474static size_t _large_page_size = 0;
2475
2476bool os::large_page_init() {
2477  if (!UseLargePages) return false;
2478
2479  if (LargePageSizeInBytes) {
2480    _large_page_size = LargePageSizeInBytes;
2481  } else {
2482    // large_page_size on Linux is used to round up heap size. x86 uses either
2483    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2484    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2485    // page as large as 256M.
2486    //
2487    // Here we try to figure out page size by parsing /proc/meminfo and looking
2488    // for a line with the following format:
2489    //    Hugepagesize:     2048 kB
2490    //
2491    // If we can't determine the value (e.g. /proc is not mounted, or the text
2492    // format has been changed), we'll use the largest page size supported by
2493    // the processor.
2494
2495    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
2496
2497    FILE *fp = fopen("/proc/meminfo", "r");
2498    if (fp) {
2499      while (!feof(fp)) {
2500        int x = 0;
2501        char buf[16];
2502        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2503          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2504            _large_page_size = x * K;
2505            break;
2506          }
2507        } else {
2508          // skip to next line
2509          for (;;) {
2510            int ch = fgetc(fp);
2511            if (ch == EOF || ch == (int)'\n') break;
2512          }
2513        }
2514      }
2515      fclose(fp);
2516    }
2517  }
2518
2519  const size_t default_page_size = (size_t)Linux::page_size();
2520  if (_large_page_size > default_page_size) {
2521    _page_sizes[0] = _large_page_size;
2522    _page_sizes[1] = default_page_size;
2523    _page_sizes[2] = 0;
2524  }
2525
2526  // Large page support is available on 2.6 or newer kernel, some vendors
2527  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2528  // We optimistically assume the support is available. If later it turns out
2529  // not true, VM will automatically switch to use regular page size.
2530  return true;
2531}
2532
2533#ifndef SHM_HUGETLB
2534#define SHM_HUGETLB 04000
2535#endif
2536
2537char* os::reserve_memory_special(size_t bytes) {
2538  assert(UseLargePages, "only for large pages");
2539
2540  key_t key = IPC_PRIVATE;
2541  char *addr;
2542
2543  bool warn_on_failure = UseLargePages &&
2544                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2545                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2546                        );
2547  char msg[128];
2548
2549  // Create a large shared memory region to attach to based on size.
2550  // Currently, size is the total size of the heap
2551  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2552  if (shmid == -1) {
2553     // Possible reasons for shmget failure:
2554     // 1. shmmax is too small for Java heap.
2555     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2556     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2557     // 2. not enough large page memory.
2558     //    > check available large pages: cat /proc/meminfo
2559     //    > increase amount of large pages:
2560     //          echo new_value > /proc/sys/vm/nr_hugepages
2561     //      Note 1: different Linux may use different name for this property,
2562     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2563     //      Note 2: it's possible there's enough physical memory available but
2564     //            they are so fragmented after a long run that they can't
2565     //            coalesce into large pages. Try to reserve large pages when
2566     //            the system is still "fresh".
2567     if (warn_on_failure) {
2568       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2569       warning(msg);
2570     }
2571     return NULL;
2572  }
2573
2574  // attach to the region
2575  addr = (char*)shmat(shmid, NULL, 0);
2576  int err = errno;
2577
2578  // Remove shmid. If shmat() is successful, the actual shared memory segment
2579  // will be deleted when it's detached by shmdt() or when the process
2580  // terminates. If shmat() is not successful this will remove the shared
2581  // segment immediately.
2582  shmctl(shmid, IPC_RMID, NULL);
2583
2584  if ((intptr_t)addr == -1) {
2585     if (warn_on_failure) {
2586       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2587       warning(msg);
2588     }
2589     return NULL;
2590  }
2591
2592  return addr;
2593}
2594
2595bool os::release_memory_special(char* base, size_t bytes) {
2596  // detaching the SHM segment will also delete it, see reserve_memory_special()
2597  int rslt = shmdt(base);
2598  return rslt == 0;
2599}
2600
2601size_t os::large_page_size() {
2602  return _large_page_size;
2603}
2604
2605// Linux does not support anonymous mmap with large page memory. The only way
2606// to reserve large page memory without file backing is through SysV shared
2607// memory API. The entire memory region is committed and pinned upfront.
2608// Hopefully this will change in the future...
2609bool os::can_commit_large_page_memory() {
2610  return false;
2611}
2612
2613bool os::can_execute_large_page_memory() {
2614  return false;
2615}
2616
2617// Reserve memory at an arbitrary address, only if that area is
2618// available (and not reserved for something else).
2619
2620char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2621  const int max_tries = 10;
2622  char* base[max_tries];
2623  size_t size[max_tries];
2624  const size_t gap = 0x000000;
2625
2626  // Assert only that the size is a multiple of the page size, since
2627  // that's all that mmap requires, and since that's all we really know
2628  // about at this low abstraction level.  If we need higher alignment,
2629  // we can either pass an alignment to this method or verify alignment
2630  // in one of the methods further up the call chain.  See bug 5044738.
2631  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2632
2633  // Repeatedly allocate blocks until the block is allocated at the
2634  // right spot. Give up after max_tries. Note that reserve_memory() will
2635  // automatically update _highest_vm_reserved_address if the call is
2636  // successful. The variable tracks the highest memory address every reserved
2637  // by JVM. It is used to detect heap-stack collision if running with
2638  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2639  // space than needed, it could confuse the collision detecting code. To
2640  // solve the problem, save current _highest_vm_reserved_address and
2641  // calculate the correct value before return.
2642  address old_highest = _highest_vm_reserved_address;
2643
2644  // Linux mmap allows caller to pass an address as hint; give it a try first,
2645  // if kernel honors the hint then we can return immediately.
2646  char * addr = anon_mmap(requested_addr, bytes, false);
2647  if (addr == requested_addr) {
2648     return requested_addr;
2649  }
2650
2651  if (addr != NULL) {
2652     // mmap() is successful but it fails to reserve at the requested address
2653     anon_munmap(addr, bytes);
2654  }
2655
2656  int i;
2657  for (i = 0; i < max_tries; ++i) {
2658    base[i] = reserve_memory(bytes);
2659
2660    if (base[i] != NULL) {
2661      // Is this the block we wanted?
2662      if (base[i] == requested_addr) {
2663        size[i] = bytes;
2664        break;
2665      }
2666
2667      // Does this overlap the block we wanted? Give back the overlapped
2668      // parts and try again.
2669
2670      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2671      if (top_overlap >= 0 && top_overlap < bytes) {
2672        unmap_memory(base[i], top_overlap);
2673        base[i] += top_overlap;
2674        size[i] = bytes - top_overlap;
2675      } else {
2676        size_t bottom_overlap = base[i] + bytes - requested_addr;
2677        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2678          unmap_memory(requested_addr, bottom_overlap);
2679          size[i] = bytes - bottom_overlap;
2680        } else {
2681          size[i] = bytes;
2682        }
2683      }
2684    }
2685  }
2686
2687  // Give back the unused reserved pieces.
2688
2689  for (int j = 0; j < i; ++j) {
2690    if (base[j] != NULL) {
2691      unmap_memory(base[j], size[j]);
2692    }
2693  }
2694
2695  if (i < max_tries) {
2696    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2697    return requested_addr;
2698  } else {
2699    _highest_vm_reserved_address = old_highest;
2700    return NULL;
2701  }
2702}
2703
2704size_t os::read(int fd, void *buf, unsigned int nBytes) {
2705  return ::read(fd, buf, nBytes);
2706}
2707
2708// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2709// Solaris uses poll(), linux uses park().
2710// Poll() is likely a better choice, assuming that Thread.interrupt()
2711// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2712// SIGSEGV, see 4355769.
2713
2714const int NANOSECS_PER_MILLISECS = 1000000;
2715
2716int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2717  assert(thread == Thread::current(),  "thread consistency check");
2718
2719  ParkEvent * const slp = thread->_SleepEvent ;
2720  slp->reset() ;
2721  OrderAccess::fence() ;
2722
2723  if (interruptible) {
2724    jlong prevtime = javaTimeNanos();
2725
2726    for (;;) {
2727      if (os::is_interrupted(thread, true)) {
2728        return OS_INTRPT;
2729      }
2730
2731      jlong newtime = javaTimeNanos();
2732
2733      if (newtime - prevtime < 0) {
2734        // time moving backwards, should only happen if no monotonic clock
2735        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2736        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2737      } else {
2738        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2739      }
2740
2741      if(millis <= 0) {
2742        return OS_OK;
2743      }
2744
2745      prevtime = newtime;
2746
2747      {
2748        assert(thread->is_Java_thread(), "sanity check");
2749        JavaThread *jt = (JavaThread *) thread;
2750        ThreadBlockInVM tbivm(jt);
2751        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2752
2753        jt->set_suspend_equivalent();
2754        // cleared by handle_special_suspend_equivalent_condition() or
2755        // java_suspend_self() via check_and_wait_while_suspended()
2756
2757        slp->park(millis);
2758
2759        // were we externally suspended while we were waiting?
2760        jt->check_and_wait_while_suspended();
2761      }
2762    }
2763  } else {
2764    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2765    jlong prevtime = javaTimeNanos();
2766
2767    for (;;) {
2768      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2769      // the 1st iteration ...
2770      jlong newtime = javaTimeNanos();
2771
2772      if (newtime - prevtime < 0) {
2773        // time moving backwards, should only happen if no monotonic clock
2774        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2775        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2776      } else {
2777        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2778      }
2779
2780      if(millis <= 0) break ;
2781
2782      prevtime = newtime;
2783      slp->park(millis);
2784    }
2785    return OS_OK ;
2786  }
2787}
2788
2789int os::naked_sleep() {
2790  // %% make the sleep time an integer flag. for now use 1 millisec.
2791  return os::sleep(Thread::current(), 1, false);
2792}
2793
2794// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2795void os::infinite_sleep() {
2796  while (true) {    // sleep forever ...
2797    ::sleep(100);   // ... 100 seconds at a time
2798  }
2799}
2800
2801// Used to convert frequent JVM_Yield() to nops
2802bool os::dont_yield() {
2803  return DontYieldALot;
2804}
2805
2806void os::yield() {
2807  sched_yield();
2808}
2809
2810os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2811
2812void os::yield_all(int attempts) {
2813  // Yields to all threads, including threads with lower priorities
2814  // Threads on Linux are all with same priority. The Solaris style
2815  // os::yield_all() with nanosleep(1ms) is not necessary.
2816  sched_yield();
2817}
2818
2819// Called from the tight loops to possibly influence time-sharing heuristics
2820void os::loop_breaker(int attempts) {
2821  os::yield_all(attempts);
2822}
2823
2824////////////////////////////////////////////////////////////////////////////////
2825// thread priority support
2826
2827// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
2828// only supports dynamic priority, static priority must be zero. For real-time
2829// applications, Linux supports SCHED_RR which allows static priority (1-99).
2830// However, for large multi-threaded applications, SCHED_RR is not only slower
2831// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2832// of 5 runs - Sep 2005).
2833//
2834// The following code actually changes the niceness of kernel-thread/LWP. It
2835// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2836// not the entire user process, and user level threads are 1:1 mapped to kernel
2837// threads. It has always been the case, but could change in the future. For
2838// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2839// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2840
2841int os::java_to_os_priority[MaxPriority + 1] = {
2842  19,              // 0 Entry should never be used
2843
2844   4,              // 1 MinPriority
2845   3,              // 2
2846   2,              // 3
2847
2848   1,              // 4
2849   0,              // 5 NormPriority
2850  -1,              // 6
2851
2852  -2,              // 7
2853  -3,              // 8
2854  -4,              // 9 NearMaxPriority
2855
2856  -5               // 10 MaxPriority
2857};
2858
2859static int prio_init() {
2860  if (ThreadPriorityPolicy == 1) {
2861    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2862    // if effective uid is not root. Perhaps, a more elegant way of doing
2863    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2864    if (geteuid() != 0) {
2865      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2866        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
2867      }
2868      ThreadPriorityPolicy = 0;
2869    }
2870  }
2871  return 0;
2872}
2873
2874OSReturn os::set_native_priority(Thread* thread, int newpri) {
2875  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2876
2877  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2878  return (ret == 0) ? OS_OK : OS_ERR;
2879}
2880
2881OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2882  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2883    *priority_ptr = java_to_os_priority[NormPriority];
2884    return OS_OK;
2885  }
2886
2887  errno = 0;
2888  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2889  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2890}
2891
2892// Hint to the underlying OS that a task switch would not be good.
2893// Void return because it's a hint and can fail.
2894void os::hint_no_preempt() {}
2895
2896////////////////////////////////////////////////////////////////////////////////
2897// suspend/resume support
2898
2899//  the low-level signal-based suspend/resume support is a remnant from the
2900//  old VM-suspension that used to be for java-suspension, safepoints etc,
2901//  within hotspot. Now there is a single use-case for this:
2902//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2903//      that runs in the watcher thread.
2904//  The remaining code is greatly simplified from the more general suspension
2905//  code that used to be used.
2906//
2907//  The protocol is quite simple:
2908//  - suspend:
2909//      - sends a signal to the target thread
2910//      - polls the suspend state of the osthread using a yield loop
2911//      - target thread signal handler (SR_handler) sets suspend state
2912//        and blocks in sigsuspend until continued
2913//  - resume:
2914//      - sets target osthread state to continue
2915//      - sends signal to end the sigsuspend loop in the SR_handler
2916//
2917//  Note that the SR_lock plays no role in this suspend/resume protocol.
2918//
2919
2920static void resume_clear_context(OSThread *osthread) {
2921  osthread->set_ucontext(NULL);
2922  osthread->set_siginfo(NULL);
2923
2924  // notify the suspend action is completed, we have now resumed
2925  osthread->sr.clear_suspended();
2926}
2927
2928static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2929  osthread->set_ucontext(context);
2930  osthread->set_siginfo(siginfo);
2931}
2932
2933//
2934// Handler function invoked when a thread's execution is suspended or
2935// resumed. We have to be careful that only async-safe functions are
2936// called here (Note: most pthread functions are not async safe and
2937// should be avoided.)
2938//
2939// Note: sigwait() is a more natural fit than sigsuspend() from an
2940// interface point of view, but sigwait() prevents the signal hander
2941// from being run. libpthread would get very confused by not having
2942// its signal handlers run and prevents sigwait()'s use with the
2943// mutex granting granting signal.
2944//
2945// Currently only ever called on the VMThread
2946//
2947static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2948  // Save and restore errno to avoid confusing native code with EINTR
2949  // after sigsuspend.
2950  int old_errno = errno;
2951
2952  Thread* thread = Thread::current();
2953  OSThread* osthread = thread->osthread();
2954  assert(thread->is_VM_thread(), "Must be VMThread");
2955  // read current suspend action
2956  int action = osthread->sr.suspend_action();
2957  if (action == SR_SUSPEND) {
2958    suspend_save_context(osthread, siginfo, context);
2959
2960    // Notify the suspend action is about to be completed. do_suspend()
2961    // waits until SR_SUSPENDED is set and then returns. We will wait
2962    // here for a resume signal and that completes the suspend-other
2963    // action. do_suspend/do_resume is always called as a pair from
2964    // the same thread - so there are no races
2965
2966    // notify the caller
2967    osthread->sr.set_suspended();
2968
2969    sigset_t suspend_set;  // signals for sigsuspend()
2970
2971    // get current set of blocked signals and unblock resume signal
2972    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2973    sigdelset(&suspend_set, SR_signum);
2974
2975    // wait here until we are resumed
2976    do {
2977      sigsuspend(&suspend_set);
2978      // ignore all returns until we get a resume signal
2979    } while (osthread->sr.suspend_action() != SR_CONTINUE);
2980
2981    resume_clear_context(osthread);
2982
2983  } else {
2984    assert(action == SR_CONTINUE, "unexpected sr action");
2985    // nothing special to do - just leave the handler
2986  }
2987
2988  errno = old_errno;
2989}
2990
2991
2992static int SR_initialize() {
2993  struct sigaction act;
2994  char *s;
2995  /* Get signal number to use for suspend/resume */
2996  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2997    int sig = ::strtol(s, 0, 10);
2998    if (sig > 0 || sig < _NSIG) {
2999        SR_signum = sig;
3000    }
3001  }
3002
3003  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3004        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3005
3006  sigemptyset(&SR_sigset);
3007  sigaddset(&SR_sigset, SR_signum);
3008
3009  /* Set up signal handler for suspend/resume */
3010  act.sa_flags = SA_RESTART|SA_SIGINFO;
3011  act.sa_handler = (void (*)(int)) SR_handler;
3012
3013  // SR_signum is blocked by default.
3014  // 4528190 - We also need to block pthread restart signal (32 on all
3015  // supported Linux platforms). Note that LinuxThreads need to block
3016  // this signal for all threads to work properly. So we don't have
3017  // to use hard-coded signal number when setting up the mask.
3018  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3019
3020  if (sigaction(SR_signum, &act, 0) == -1) {
3021    return -1;
3022  }
3023
3024  // Save signal flag
3025  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3026  return 0;
3027}
3028
3029static int SR_finalize() {
3030  return 0;
3031}
3032
3033
3034// returns true on success and false on error - really an error is fatal
3035// but this seems the normal response to library errors
3036static bool do_suspend(OSThread* osthread) {
3037  // mark as suspended and send signal
3038  osthread->sr.set_suspend_action(SR_SUSPEND);
3039  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3040  assert_status(status == 0, status, "pthread_kill");
3041
3042  // check status and wait until notified of suspension
3043  if (status == 0) {
3044    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3045      os::yield_all(i);
3046    }
3047    osthread->sr.set_suspend_action(SR_NONE);
3048    return true;
3049  }
3050  else {
3051    osthread->sr.set_suspend_action(SR_NONE);
3052    return false;
3053  }
3054}
3055
3056static void do_resume(OSThread* osthread) {
3057  assert(osthread->sr.is_suspended(), "thread should be suspended");
3058  osthread->sr.set_suspend_action(SR_CONTINUE);
3059
3060  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3061  assert_status(status == 0, status, "pthread_kill");
3062  // check status and wait unit notified of resumption
3063  if (status == 0) {
3064    for (int i = 0; osthread->sr.is_suspended(); i++) {
3065      os::yield_all(i);
3066    }
3067  }
3068  osthread->sr.set_suspend_action(SR_NONE);
3069}
3070
3071////////////////////////////////////////////////////////////////////////////////
3072// interrupt support
3073
3074void os::interrupt(Thread* thread) {
3075  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3076    "possibility of dangling Thread pointer");
3077
3078  OSThread* osthread = thread->osthread();
3079
3080  if (!osthread->interrupted()) {
3081    osthread->set_interrupted(true);
3082    // More than one thread can get here with the same value of osthread,
3083    // resulting in multiple notifications.  We do, however, want the store
3084    // to interrupted() to be visible to other threads before we execute unpark().
3085    OrderAccess::fence();
3086    ParkEvent * const slp = thread->_SleepEvent ;
3087    if (slp != NULL) slp->unpark() ;
3088  }
3089
3090  // For JSR166. Unpark even if interrupt status already was set
3091  if (thread->is_Java_thread())
3092    ((JavaThread*)thread)->parker()->unpark();
3093
3094  ParkEvent * ev = thread->_ParkEvent ;
3095  if (ev != NULL) ev->unpark() ;
3096
3097}
3098
3099bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3100  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3101    "possibility of dangling Thread pointer");
3102
3103  OSThread* osthread = thread->osthread();
3104
3105  bool interrupted = osthread->interrupted();
3106
3107  if (interrupted && clear_interrupted) {
3108    osthread->set_interrupted(false);
3109    // consider thread->_SleepEvent->reset() ... optional optimization
3110  }
3111
3112  return interrupted;
3113}
3114
3115///////////////////////////////////////////////////////////////////////////////////
3116// signal handling (except suspend/resume)
3117
3118// This routine may be used by user applications as a "hook" to catch signals.
3119// The user-defined signal handler must pass unrecognized signals to this
3120// routine, and if it returns true (non-zero), then the signal handler must
3121// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3122// routine will never retun false (zero), but instead will execute a VM panic
3123// routine kill the process.
3124//
3125// If this routine returns false, it is OK to call it again.  This allows
3126// the user-defined signal handler to perform checks either before or after
3127// the VM performs its own checks.  Naturally, the user code would be making
3128// a serious error if it tried to handle an exception (such as a null check
3129// or breakpoint) that the VM was generating for its own correct operation.
3130//
3131// This routine may recognize any of the following kinds of signals:
3132//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3133// It should be consulted by handlers for any of those signals.
3134//
3135// The caller of this routine must pass in the three arguments supplied
3136// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3137// field of the structure passed to sigaction().  This routine assumes that
3138// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3139//
3140// Note that the VM will print warnings if it detects conflicting signal
3141// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3142//
3143extern "C" int
3144JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3145                        void* ucontext, int abort_if_unrecognized);
3146
3147void signalHandler(int sig, siginfo_t* info, void* uc) {
3148  assert(info != NULL && uc != NULL, "it must be old kernel");
3149  JVM_handle_linux_signal(sig, info, uc, true);
3150}
3151
3152
3153// This boolean allows users to forward their own non-matching signals
3154// to JVM_handle_linux_signal, harmlessly.
3155bool os::Linux::signal_handlers_are_installed = false;
3156
3157// For signal-chaining
3158struct sigaction os::Linux::sigact[MAXSIGNUM];
3159unsigned int os::Linux::sigs = 0;
3160bool os::Linux::libjsig_is_loaded = false;
3161typedef struct sigaction *(*get_signal_t)(int);
3162get_signal_t os::Linux::get_signal_action = NULL;
3163
3164struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3165  struct sigaction *actp = NULL;
3166
3167  if (libjsig_is_loaded) {
3168    // Retrieve the old signal handler from libjsig
3169    actp = (*get_signal_action)(sig);
3170  }
3171  if (actp == NULL) {
3172    // Retrieve the preinstalled signal handler from jvm
3173    actp = get_preinstalled_handler(sig);
3174  }
3175
3176  return actp;
3177}
3178
3179static bool call_chained_handler(struct sigaction *actp, int sig,
3180                                 siginfo_t *siginfo, void *context) {
3181  // Call the old signal handler
3182  if (actp->sa_handler == SIG_DFL) {
3183    // It's more reasonable to let jvm treat it as an unexpected exception
3184    // instead of taking the default action.
3185    return false;
3186  } else if (actp->sa_handler != SIG_IGN) {
3187    if ((actp->sa_flags & SA_NODEFER) == 0) {
3188      // automaticlly block the signal
3189      sigaddset(&(actp->sa_mask), sig);
3190    }
3191
3192    sa_handler_t hand;
3193    sa_sigaction_t sa;
3194    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3195    // retrieve the chained handler
3196    if (siginfo_flag_set) {
3197      sa = actp->sa_sigaction;
3198    } else {
3199      hand = actp->sa_handler;
3200    }
3201
3202    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3203      actp->sa_handler = SIG_DFL;
3204    }
3205
3206    // try to honor the signal mask
3207    sigset_t oset;
3208    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3209
3210    // call into the chained handler
3211    if (siginfo_flag_set) {
3212      (*sa)(sig, siginfo, context);
3213    } else {
3214      (*hand)(sig);
3215    }
3216
3217    // restore the signal mask
3218    pthread_sigmask(SIG_SETMASK, &oset, 0);
3219  }
3220  // Tell jvm's signal handler the signal is taken care of.
3221  return true;
3222}
3223
3224bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3225  bool chained = false;
3226  // signal-chaining
3227  if (UseSignalChaining) {
3228    struct sigaction *actp = get_chained_signal_action(sig);
3229    if (actp != NULL) {
3230      chained = call_chained_handler(actp, sig, siginfo, context);
3231    }
3232  }
3233  return chained;
3234}
3235
3236struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3237  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3238    return &sigact[sig];
3239  }
3240  return NULL;
3241}
3242
3243void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3244  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3245  sigact[sig] = oldAct;
3246  sigs |= (unsigned int)1 << sig;
3247}
3248
3249// for diagnostic
3250int os::Linux::sigflags[MAXSIGNUM];
3251
3252int os::Linux::get_our_sigflags(int sig) {
3253  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3254  return sigflags[sig];
3255}
3256
3257void os::Linux::set_our_sigflags(int sig, int flags) {
3258  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3259  sigflags[sig] = flags;
3260}
3261
3262void os::Linux::set_signal_handler(int sig, bool set_installed) {
3263  // Check for overwrite.
3264  struct sigaction oldAct;
3265  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3266
3267  void* oldhand = oldAct.sa_sigaction
3268                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3269                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3270  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3271      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3272      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3273    if (AllowUserSignalHandlers || !set_installed) {
3274      // Do not overwrite; user takes responsibility to forward to us.
3275      return;
3276    } else if (UseSignalChaining) {
3277      // save the old handler in jvm
3278      save_preinstalled_handler(sig, oldAct);
3279      // libjsig also interposes the sigaction() call below and saves the
3280      // old sigaction on it own.
3281    } else {
3282      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
3283    }
3284  }
3285
3286  struct sigaction sigAct;
3287  sigfillset(&(sigAct.sa_mask));
3288  sigAct.sa_handler = SIG_DFL;
3289  if (!set_installed) {
3290    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3291  } else {
3292    sigAct.sa_sigaction = signalHandler;
3293    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3294  }
3295  // Save flags, which are set by ours
3296  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3297  sigflags[sig] = sigAct.sa_flags;
3298
3299  int ret = sigaction(sig, &sigAct, &oldAct);
3300  assert(ret == 0, "check");
3301
3302  void* oldhand2  = oldAct.sa_sigaction
3303                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3304                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3305  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3306}
3307
3308// install signal handlers for signals that HotSpot needs to
3309// handle in order to support Java-level exception handling.
3310
3311void os::Linux::install_signal_handlers() {
3312  if (!signal_handlers_are_installed) {
3313    signal_handlers_are_installed = true;
3314
3315    // signal-chaining
3316    typedef void (*signal_setting_t)();
3317    signal_setting_t begin_signal_setting = NULL;
3318    signal_setting_t end_signal_setting = NULL;
3319    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3320                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3321    if (begin_signal_setting != NULL) {
3322      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3323                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3324      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3325                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3326      libjsig_is_loaded = true;
3327      assert(UseSignalChaining, "should enable signal-chaining");
3328    }
3329    if (libjsig_is_loaded) {
3330      // Tell libjsig jvm is setting signal handlers
3331      (*begin_signal_setting)();
3332    }
3333
3334    set_signal_handler(SIGSEGV, true);
3335    set_signal_handler(SIGPIPE, true);
3336    set_signal_handler(SIGBUS, true);
3337    set_signal_handler(SIGILL, true);
3338    set_signal_handler(SIGFPE, true);
3339    set_signal_handler(SIGXFSZ, true);
3340
3341    if (libjsig_is_loaded) {
3342      // Tell libjsig jvm finishes setting signal handlers
3343      (*end_signal_setting)();
3344    }
3345
3346    // We don't activate signal checker if libjsig is in place, we trust ourselves
3347    // and if UserSignalHandler is installed all bets are off
3348    if (CheckJNICalls) {
3349      if (libjsig_is_loaded) {
3350        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3351        check_signals = false;
3352      }
3353      if (AllowUserSignalHandlers) {
3354        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3355        check_signals = false;
3356      }
3357    }
3358  }
3359}
3360
3361// This is the fastest way to get thread cpu time on Linux.
3362// Returns cpu time (user+sys) for any thread, not only for current.
3363// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3364// It might work on 2.6.10+ with a special kernel/glibc patch.
3365// For reference, please, see IEEE Std 1003.1-2004:
3366//   http://www.unix.org/single_unix_specification
3367
3368jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3369  struct timespec tp;
3370  int rc = os::Linux::clock_gettime(clockid, &tp);
3371  assert(rc == 0, "clock_gettime is expected to return 0 code");
3372
3373  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3374}
3375
3376/////
3377// glibc on Linux platform uses non-documented flag
3378// to indicate, that some special sort of signal
3379// trampoline is used.
3380// We will never set this flag, and we should
3381// ignore this flag in our diagnostic
3382#ifdef SIGNIFICANT_SIGNAL_MASK
3383#undef SIGNIFICANT_SIGNAL_MASK
3384#endif
3385#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3386
3387static const char* get_signal_handler_name(address handler,
3388                                           char* buf, int buflen) {
3389  int offset;
3390  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3391  if (found) {
3392    // skip directory names
3393    const char *p1, *p2;
3394    p1 = buf;
3395    size_t len = strlen(os::file_separator());
3396    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3397    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3398  } else {
3399    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3400  }
3401  return buf;
3402}
3403
3404static void print_signal_handler(outputStream* st, int sig,
3405                                 char* buf, size_t buflen) {
3406  struct sigaction sa;
3407
3408  sigaction(sig, NULL, &sa);
3409
3410  // See comment for SIGNIFICANT_SIGNAL_MASK define
3411  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3412
3413  st->print("%s: ", os::exception_name(sig, buf, buflen));
3414
3415  address handler = (sa.sa_flags & SA_SIGINFO)
3416    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3417    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3418
3419  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3420    st->print("SIG_DFL");
3421  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3422    st->print("SIG_IGN");
3423  } else {
3424    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3425  }
3426
3427  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3428
3429  address rh = VMError::get_resetted_sighandler(sig);
3430  // May be, handler was resetted by VMError?
3431  if(rh != NULL) {
3432    handler = rh;
3433    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3434  }
3435
3436  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3437
3438  // Check: is it our handler?
3439  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3440     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3441    // It is our signal handler
3442    // check for flags, reset system-used one!
3443    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3444      st->print(
3445                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3446                os::Linux::get_our_sigflags(sig));
3447    }
3448  }
3449  st->cr();
3450}
3451
3452
3453#define DO_SIGNAL_CHECK(sig) \
3454  if (!sigismember(&check_signal_done, sig)) \
3455    os::Linux::check_signal_handler(sig)
3456
3457// This method is a periodic task to check for misbehaving JNI applications
3458// under CheckJNI, we can add any periodic checks here
3459
3460void os::run_periodic_checks() {
3461
3462  if (check_signals == false) return;
3463
3464  // SEGV and BUS if overridden could potentially prevent
3465  // generation of hs*.log in the event of a crash, debugging
3466  // such a case can be very challenging, so we absolutely
3467  // check the following for a good measure:
3468  DO_SIGNAL_CHECK(SIGSEGV);
3469  DO_SIGNAL_CHECK(SIGILL);
3470  DO_SIGNAL_CHECK(SIGFPE);
3471  DO_SIGNAL_CHECK(SIGBUS);
3472  DO_SIGNAL_CHECK(SIGPIPE);
3473  DO_SIGNAL_CHECK(SIGXFSZ);
3474
3475
3476  // ReduceSignalUsage allows the user to override these handlers
3477  // see comments at the very top and jvm_solaris.h
3478  if (!ReduceSignalUsage) {
3479    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3480    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3481    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3482    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3483  }
3484
3485  DO_SIGNAL_CHECK(SR_signum);
3486  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3487}
3488
3489typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3490
3491static os_sigaction_t os_sigaction = NULL;
3492
3493void os::Linux::check_signal_handler(int sig) {
3494  char buf[O_BUFLEN];
3495  address jvmHandler = NULL;
3496
3497
3498  struct sigaction act;
3499  if (os_sigaction == NULL) {
3500    // only trust the default sigaction, in case it has been interposed
3501    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3502    if (os_sigaction == NULL) return;
3503  }
3504
3505  os_sigaction(sig, (struct sigaction*)NULL, &act);
3506
3507
3508  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3509
3510  address thisHandler = (act.sa_flags & SA_SIGINFO)
3511    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3512    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3513
3514
3515  switch(sig) {
3516  case SIGSEGV:
3517  case SIGBUS:
3518  case SIGFPE:
3519  case SIGPIPE:
3520  case SIGILL:
3521  case SIGXFSZ:
3522    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3523    break;
3524
3525  case SHUTDOWN1_SIGNAL:
3526  case SHUTDOWN2_SIGNAL:
3527  case SHUTDOWN3_SIGNAL:
3528  case BREAK_SIGNAL:
3529    jvmHandler = (address)user_handler();
3530    break;
3531
3532  case INTERRUPT_SIGNAL:
3533    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3534    break;
3535
3536  default:
3537    if (sig == SR_signum) {
3538      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3539    } else {
3540      return;
3541    }
3542    break;
3543  }
3544
3545  if (thisHandler != jvmHandler) {
3546    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3547    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3548    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3549    // No need to check this sig any longer
3550    sigaddset(&check_signal_done, sig);
3551  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3552    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3553    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3554    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3555    // No need to check this sig any longer
3556    sigaddset(&check_signal_done, sig);
3557  }
3558
3559  // Dump all the signal
3560  if (sigismember(&check_signal_done, sig)) {
3561    print_signal_handlers(tty, buf, O_BUFLEN);
3562  }
3563}
3564
3565extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3566
3567extern bool signal_name(int signo, char* buf, size_t len);
3568
3569const char* os::exception_name(int exception_code, char* buf, size_t size) {
3570  if (0 < exception_code && exception_code <= SIGRTMAX) {
3571    // signal
3572    if (!signal_name(exception_code, buf, size)) {
3573      jio_snprintf(buf, size, "SIG%d", exception_code);
3574    }
3575    return buf;
3576  } else {
3577    return NULL;
3578  }
3579}
3580
3581// this is called _before_ the most of global arguments have been parsed
3582void os::init(void) {
3583  char dummy;   /* used to get a guess on initial stack address */
3584//  first_hrtime = gethrtime();
3585
3586  // With LinuxThreads the JavaMain thread pid (primordial thread)
3587  // is different than the pid of the java launcher thread.
3588  // So, on Linux, the launcher thread pid is passed to the VM
3589  // via the sun.java.launcher.pid property.
3590  // Use this property instead of getpid() if it was correctly passed.
3591  // See bug 6351349.
3592  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3593
3594  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3595
3596  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3597
3598  init_random(1234567);
3599
3600  ThreadCritical::initialize();
3601
3602  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3603  if (Linux::page_size() == -1) {
3604    fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
3605  }
3606  init_page_sizes((size_t) Linux::page_size());
3607
3608  Linux::initialize_system_info();
3609
3610  // main_thread points to the aboriginal thread
3611  Linux::_main_thread = pthread_self();
3612
3613  Linux::clock_init();
3614  initial_time_count = os::elapsed_counter();
3615  pthread_mutex_init(&dl_mutex, NULL);
3616}
3617
3618// To install functions for atexit system call
3619extern "C" {
3620  static void perfMemory_exit_helper() {
3621    perfMemory_exit();
3622  }
3623}
3624
3625// this is called _after_ the global arguments have been parsed
3626jint os::init_2(void)
3627{
3628  Linux::fast_thread_clock_init();
3629
3630  // Allocate a single page and mark it as readable for safepoint polling
3631  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3632  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3633
3634  os::set_polling_page( polling_page );
3635
3636#ifndef PRODUCT
3637  if(Verbose && PrintMiscellaneous)
3638    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3639#endif
3640
3641  if (!UseMembar) {
3642    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3643    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3644    os::set_memory_serialize_page( mem_serialize_page );
3645
3646#ifndef PRODUCT
3647    if(Verbose && PrintMiscellaneous)
3648      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3649#endif
3650  }
3651
3652  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3653
3654  // initialize suspend/resume support - must do this before signal_sets_init()
3655  if (SR_initialize() != 0) {
3656    perror("SR_initialize failed");
3657    return JNI_ERR;
3658  }
3659
3660  Linux::signal_sets_init();
3661  Linux::install_signal_handlers();
3662
3663  size_t threadStackSizeInBytes = ThreadStackSize * K;
3664  if (threadStackSizeInBytes != 0 &&
3665      threadStackSizeInBytes < Linux::min_stack_allowed) {
3666        tty->print_cr("\nThe stack size specified is too small, "
3667                      "Specify at least %dk",
3668                      Linux::min_stack_allowed / K);
3669        return JNI_ERR;
3670  }
3671
3672  // Make the stack size a multiple of the page size so that
3673  // the yellow/red zones can be guarded.
3674  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3675        vm_page_size()));
3676
3677  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3678
3679  Linux::libpthread_init();
3680  if (PrintMiscellaneous && (Verbose || WizardMode)) {
3681     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3682          Linux::glibc_version(), Linux::libpthread_version(),
3683          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3684  }
3685
3686  if (UseNUMA) {
3687    Linux::libnuma_init();
3688  }
3689
3690  if (MaxFDLimit) {
3691    // set the number of file descriptors to max. print out error
3692    // if getrlimit/setrlimit fails but continue regardless.
3693    struct rlimit nbr_files;
3694    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3695    if (status != 0) {
3696      if (PrintMiscellaneous && (Verbose || WizardMode))
3697        perror("os::init_2 getrlimit failed");
3698    } else {
3699      nbr_files.rlim_cur = nbr_files.rlim_max;
3700      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3701      if (status != 0) {
3702        if (PrintMiscellaneous && (Verbose || WizardMode))
3703          perror("os::init_2 setrlimit failed");
3704      }
3705    }
3706  }
3707
3708  // Initialize lock used to serialize thread creation (see os::create_thread)
3709  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3710
3711  // Initialize HPI.
3712  jint hpi_result = hpi::initialize();
3713  if (hpi_result != JNI_OK) {
3714    tty->print_cr("There was an error trying to initialize the HPI library.");
3715    return hpi_result;
3716  }
3717
3718  // at-exit methods are called in the reverse order of their registration.
3719  // atexit functions are called on return from main or as a result of a
3720  // call to exit(3C). There can be only 32 of these functions registered
3721  // and atexit() does not set errno.
3722
3723  if (PerfAllowAtExitRegistration) {
3724    // only register atexit functions if PerfAllowAtExitRegistration is set.
3725    // atexit functions can be delayed until process exit time, which
3726    // can be problematic for embedded VM situations. Embedded VMs should
3727    // call DestroyJavaVM() to assure that VM resources are released.
3728
3729    // note: perfMemory_exit_helper atexit function may be removed in
3730    // the future if the appropriate cleanup code can be added to the
3731    // VM_Exit VMOperation's doit method.
3732    if (atexit(perfMemory_exit_helper) != 0) {
3733      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3734    }
3735  }
3736
3737  // initialize thread priority policy
3738  prio_init();
3739
3740  return JNI_OK;
3741}
3742
3743// Mark the polling page as unreadable
3744void os::make_polling_page_unreadable(void) {
3745  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
3746    fatal("Could not disable polling page");
3747};
3748
3749// Mark the polling page as readable
3750void os::make_polling_page_readable(void) {
3751  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
3752    fatal("Could not enable polling page");
3753  }
3754};
3755
3756int os::active_processor_count() {
3757  // Linux doesn't yet have a (official) notion of processor sets,
3758  // so just return the number of online processors.
3759  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3760  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3761  return online_cpus;
3762}
3763
3764bool os::distribute_processes(uint length, uint* distribution) {
3765  // Not yet implemented.
3766  return false;
3767}
3768
3769bool os::bind_to_processor(uint processor_id) {
3770  // Not yet implemented.
3771  return false;
3772}
3773
3774///
3775
3776// Suspends the target using the signal mechanism and then grabs the PC before
3777// resuming the target. Used by the flat-profiler only
3778ExtendedPC os::get_thread_pc(Thread* thread) {
3779  // Make sure that it is called by the watcher for the VMThread
3780  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3781  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3782
3783  ExtendedPC epc;
3784
3785  OSThread* osthread = thread->osthread();
3786  if (do_suspend(osthread)) {
3787    if (osthread->ucontext() != NULL) {
3788      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
3789    } else {
3790      // NULL context is unexpected, double-check this is the VMThread
3791      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3792    }
3793    do_resume(osthread);
3794  }
3795  // failure means pthread_kill failed for some reason - arguably this is
3796  // a fatal problem, but such problems are ignored elsewhere
3797
3798  return epc;
3799}
3800
3801int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3802{
3803   if (is_NPTL()) {
3804      return pthread_cond_timedwait(_cond, _mutex, _abstime);
3805   } else {
3806#ifndef IA64
3807      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
3808      // word back to default 64bit precision if condvar is signaled. Java
3809      // wants 53bit precision.  Save and restore current value.
3810      int fpu = get_fpu_control_word();
3811#endif // IA64
3812      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
3813#ifndef IA64
3814      set_fpu_control_word(fpu);
3815#endif // IA64
3816      return status;
3817   }
3818}
3819
3820////////////////////////////////////////////////////////////////////////////////
3821// debug support
3822
3823#ifndef PRODUCT
3824static address same_page(address x, address y) {
3825  int page_bits = -os::vm_page_size();
3826  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3827    return x;
3828  else if (x > y)
3829    return (address)(intptr_t(y) | ~page_bits) + 1;
3830  else
3831    return (address)(intptr_t(y) & page_bits);
3832}
3833
3834bool os::find(address addr) {
3835  Dl_info dlinfo;
3836  memset(&dlinfo, 0, sizeof(dlinfo));
3837  if (dladdr(addr, &dlinfo)) {
3838    tty->print(PTR_FORMAT ": ", addr);
3839    if (dlinfo.dli_sname != NULL) {
3840      tty->print("%s+%#x", dlinfo.dli_sname,
3841                 addr - (intptr_t)dlinfo.dli_saddr);
3842    } else if (dlinfo.dli_fname) {
3843      tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3844    } else {
3845      tty->print("<absolute address>");
3846    }
3847    if (dlinfo.dli_fname) {
3848      tty->print(" in %s", dlinfo.dli_fname);
3849    }
3850    if (dlinfo.dli_fbase) {
3851      tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3852    }
3853    tty->cr();
3854
3855    if (Verbose) {
3856      // decode some bytes around the PC
3857      address begin = same_page(addr-40, addr);
3858      address end   = same_page(addr+40, addr);
3859      address       lowest = (address) dlinfo.dli_sname;
3860      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3861      if (begin < lowest)  begin = lowest;
3862      Dl_info dlinfo2;
3863      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3864          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3865        end = (address) dlinfo2.dli_saddr;
3866      Disassembler::decode(begin, end);
3867    }
3868    return true;
3869  }
3870  return false;
3871}
3872
3873#endif
3874
3875////////////////////////////////////////////////////////////////////////////////
3876// misc
3877
3878// This does not do anything on Linux. This is basically a hook for being
3879// able to use structured exception handling (thread-local exception filters)
3880// on, e.g., Win32.
3881void
3882os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3883                         JavaCallArguments* args, Thread* thread) {
3884  f(value, method, args, thread);
3885}
3886
3887void os::print_statistics() {
3888}
3889
3890int os::message_box(const char* title, const char* message) {
3891  int i;
3892  fdStream err(defaultStream::error_fd());
3893  for (i = 0; i < 78; i++) err.print_raw("=");
3894  err.cr();
3895  err.print_raw_cr(title);
3896  for (i = 0; i < 78; i++) err.print_raw("-");
3897  err.cr();
3898  err.print_raw_cr(message);
3899  for (i = 0; i < 78; i++) err.print_raw("=");
3900  err.cr();
3901
3902  char buf[16];
3903  // Prevent process from exiting upon "read error" without consuming all CPU
3904  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3905
3906  return buf[0] == 'y' || buf[0] == 'Y';
3907}
3908
3909int os::stat(const char *path, struct stat *sbuf) {
3910  char pathbuf[MAX_PATH];
3911  if (strlen(path) > MAX_PATH - 1) {
3912    errno = ENAMETOOLONG;
3913    return -1;
3914  }
3915  hpi::native_path(strcpy(pathbuf, path));
3916  return ::stat(pathbuf, sbuf);
3917}
3918
3919bool os::check_heap(bool force) {
3920  return true;
3921}
3922
3923int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3924  return ::vsnprintf(buf, count, format, args);
3925}
3926
3927// Is a (classpath) directory empty?
3928bool os::dir_is_empty(const char* path) {
3929  DIR *dir = NULL;
3930  struct dirent *ptr;
3931
3932  dir = opendir(path);
3933  if (dir == NULL) return true;
3934
3935  /* Scan the directory */
3936  bool result = true;
3937  char buf[sizeof(struct dirent) + MAX_PATH];
3938  while (result && (ptr = ::readdir(dir)) != NULL) {
3939    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3940      result = false;
3941    }
3942  }
3943  closedir(dir);
3944  return result;
3945}
3946
3947// create binary file, rewriting existing file if required
3948int os::create_binary_file(const char* path, bool rewrite_existing) {
3949  int oflags = O_WRONLY | O_CREAT;
3950  if (!rewrite_existing) {
3951    oflags |= O_EXCL;
3952  }
3953  return ::open64(path, oflags, S_IREAD | S_IWRITE);
3954}
3955
3956// return current position of file pointer
3957jlong os::current_file_offset(int fd) {
3958  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3959}
3960
3961// move file pointer to the specified offset
3962jlong os::seek_to_file_offset(int fd, jlong offset) {
3963  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3964}
3965
3966// Map a block of memory.
3967char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3968                     char *addr, size_t bytes, bool read_only,
3969                     bool allow_exec) {
3970  int prot;
3971  int flags;
3972
3973  if (read_only) {
3974    prot = PROT_READ;
3975    flags = MAP_SHARED;
3976  } else {
3977    prot = PROT_READ | PROT_WRITE;
3978    flags = MAP_PRIVATE;
3979  }
3980
3981  if (allow_exec) {
3982    prot |= PROT_EXEC;
3983  }
3984
3985  if (addr != NULL) {
3986    flags |= MAP_FIXED;
3987  }
3988
3989  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3990                                     fd, file_offset);
3991  if (mapped_address == MAP_FAILED) {
3992    return NULL;
3993  }
3994  return mapped_address;
3995}
3996
3997
3998// Remap a block of memory.
3999char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4000                       char *addr, size_t bytes, bool read_only,
4001                       bool allow_exec) {
4002  // same as map_memory() on this OS
4003  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4004                        allow_exec);
4005}
4006
4007
4008// Unmap a block of memory.
4009bool os::unmap_memory(char* addr, size_t bytes) {
4010  return munmap(addr, bytes) == 0;
4011}
4012
4013static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4014
4015static clockid_t thread_cpu_clockid(Thread* thread) {
4016  pthread_t tid = thread->osthread()->pthread_id();
4017  clockid_t clockid;
4018
4019  // Get thread clockid
4020  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4021  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4022  return clockid;
4023}
4024
4025// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4026// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4027// of a thread.
4028//
4029// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4030// the fast estimate available on the platform.
4031
4032jlong os::current_thread_cpu_time() {
4033  if (os::Linux::supports_fast_thread_cpu_time()) {
4034    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4035  } else {
4036    // return user + sys since the cost is the same
4037    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4038  }
4039}
4040
4041jlong os::thread_cpu_time(Thread* thread) {
4042  // consistent with what current_thread_cpu_time() returns
4043  if (os::Linux::supports_fast_thread_cpu_time()) {
4044    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4045  } else {
4046    return slow_thread_cpu_time(thread, true /* user + sys */);
4047  }
4048}
4049
4050jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4051  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4052    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4053  } else {
4054    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4055  }
4056}
4057
4058jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4059  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4060    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4061  } else {
4062    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4063  }
4064}
4065
4066//
4067//  -1 on error.
4068//
4069
4070static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4071  static bool proc_pid_cpu_avail = true;
4072  static bool proc_task_unchecked = true;
4073  static const char *proc_stat_path = "/proc/%d/stat";
4074  pid_t  tid = thread->osthread()->thread_id();
4075  int i;
4076  char *s;
4077  char stat[2048];
4078  int statlen;
4079  char proc_name[64];
4080  int count;
4081  long sys_time, user_time;
4082  char string[64];
4083  int idummy;
4084  long ldummy;
4085  FILE *fp;
4086
4087  // We first try accessing /proc/<pid>/cpu since this is faster to
4088  // process.  If this file is not present (linux kernels 2.5 and above)
4089  // then we open /proc/<pid>/stat.
4090  if ( proc_pid_cpu_avail ) {
4091    sprintf(proc_name, "/proc/%d/cpu", tid);
4092    fp =  fopen(proc_name, "r");
4093    if ( fp != NULL ) {
4094      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4095      fclose(fp);
4096      if ( count != 3 ) return -1;
4097
4098      if (user_sys_cpu_time) {
4099        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4100      } else {
4101        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4102      }
4103    }
4104    else proc_pid_cpu_avail = false;
4105  }
4106
4107  // The /proc/<tid>/stat aggregates per-process usage on
4108  // new Linux kernels 2.6+ where NPTL is supported.
4109  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4110  // See bug 6328462.
4111  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4112  // and possibly in some other cases, so we check its availability.
4113  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4114    // This is executed only once
4115    proc_task_unchecked = false;
4116    fp = fopen("/proc/self/task", "r");
4117    if (fp != NULL) {
4118      proc_stat_path = "/proc/self/task/%d/stat";
4119      fclose(fp);
4120    }
4121  }
4122
4123  sprintf(proc_name, proc_stat_path, tid);
4124  fp = fopen(proc_name, "r");
4125  if ( fp == NULL ) return -1;
4126  statlen = fread(stat, 1, 2047, fp);
4127  stat[statlen] = '\0';
4128  fclose(fp);
4129
4130  // Skip pid and the command string. Note that we could be dealing with
4131  // weird command names, e.g. user could decide to rename java launcher
4132  // to "java 1.4.2 :)", then the stat file would look like
4133  //                1234 (java 1.4.2 :)) R ... ...
4134  // We don't really need to know the command string, just find the last
4135  // occurrence of ")" and then start parsing from there. See bug 4726580.
4136  s = strrchr(stat, ')');
4137  i = 0;
4138  if (s == NULL ) return -1;
4139
4140  // Skip blank chars
4141  do s++; while (isspace(*s));
4142
4143  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4144                 &idummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4145                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4146                 &user_time, &sys_time);
4147  if ( count != 13 ) return -1;
4148  if (user_sys_cpu_time) {
4149    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4150  } else {
4151    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4152  }
4153}
4154
4155void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4156  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4157  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4158  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4159  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4160}
4161
4162void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4163  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4164  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4165  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4166  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4167}
4168
4169bool os::is_thread_cpu_time_supported() {
4170  return true;
4171}
4172
4173// System loadavg support.  Returns -1 if load average cannot be obtained.
4174// Linux doesn't yet have a (official) notion of processor sets,
4175// so just return the system wide load average.
4176int os::loadavg(double loadavg[], int nelem) {
4177  return ::getloadavg(loadavg, nelem);
4178}
4179
4180void os::pause() {
4181  char filename[MAX_PATH];
4182  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4183    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4184  } else {
4185    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4186  }
4187
4188  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4189  if (fd != -1) {
4190    struct stat buf;
4191    close(fd);
4192    while (::stat(filename, &buf) == 0) {
4193      (void)::poll(NULL, 0, 100);
4194    }
4195  } else {
4196    jio_fprintf(stderr,
4197      "Could not open pause file '%s', continuing immediately.\n", filename);
4198  }
4199}
4200
4201extern "C" {
4202
4203/**
4204 * NOTE: the following code is to keep the green threads code
4205 * in the libjava.so happy. Once the green threads is removed,
4206 * these code will no longer be needed.
4207 */
4208int
4209jdk_waitpid(pid_t pid, int* status, int options) {
4210    return waitpid(pid, status, options);
4211}
4212
4213int
4214fork1() {
4215    return fork();
4216}
4217
4218int
4219jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4220    return sem_init(sem, pshared, value);
4221}
4222
4223int
4224jdk_sem_post(sem_t *sem) {
4225    return sem_post(sem);
4226}
4227
4228int
4229jdk_sem_wait(sem_t *sem) {
4230    return sem_wait(sem);
4231}
4232
4233int
4234jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4235    return pthread_sigmask(how , newmask, oldmask);
4236}
4237
4238}
4239
4240// Refer to the comments in os_solaris.cpp park-unpark.
4241//
4242// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4243// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4244// For specifics regarding the bug see GLIBC BUGID 261237 :
4245//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4246// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4247// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4248// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4249// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4250// and monitorenter when we're using 1-0 locking.  All those operations may result in
4251// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4252// of libpthread avoids the problem, but isn't practical.
4253//
4254// Possible remedies:
4255//
4256// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4257//      This is palliative and probabilistic, however.  If the thread is preempted
4258//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4259//      than the minimum period may have passed, and the abstime may be stale (in the
4260//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4261//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4262//
4263// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4264//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4265//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4266//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4267//      thread.
4268//
4269// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4270//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4271//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4272//      This also works well.  In fact it avoids kernel-level scalability impediments
4273//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4274//      timers in a graceful fashion.
4275//
4276// 4.   When the abstime value is in the past it appears that control returns
4277//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4278//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4279//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4280//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4281//      It may be possible to avoid reinitialization by checking the return
4282//      value from pthread_cond_timedwait().  In addition to reinitializing the
4283//      condvar we must establish the invariant that cond_signal() is only called
4284//      within critical sections protected by the adjunct mutex.  This prevents
4285//      cond_signal() from "seeing" a condvar that's in the midst of being
4286//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4287//      desirable signal-after-unlock optimization that avoids futile context switching.
4288//
4289//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4290//      structure when a condvar is used or initialized.  cond_destroy()  would
4291//      release the helper structure.  Our reinitialize-after-timedwait fix
4292//      put excessive stress on malloc/free and locks protecting the c-heap.
4293//
4294// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4295// It may be possible to refine (4) by checking the kernel and NTPL verisons
4296// and only enabling the work-around for vulnerable environments.
4297
4298// utility to compute the abstime argument to timedwait:
4299// millis is the relative timeout time
4300// abstime will be the absolute timeout time
4301// TODO: replace compute_abstime() with unpackTime()
4302
4303static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4304  if (millis < 0)  millis = 0;
4305  struct timeval now;
4306  int status = gettimeofday(&now, NULL);
4307  assert(status == 0, "gettimeofday");
4308  jlong seconds = millis / 1000;
4309  millis %= 1000;
4310  if (seconds > 50000000) { // see man cond_timedwait(3T)
4311    seconds = 50000000;
4312  }
4313  abstime->tv_sec = now.tv_sec  + seconds;
4314  long       usec = now.tv_usec + millis * 1000;
4315  if (usec >= 1000000) {
4316    abstime->tv_sec += 1;
4317    usec -= 1000000;
4318  }
4319  abstime->tv_nsec = usec * 1000;
4320  return abstime;
4321}
4322
4323
4324// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4325// Conceptually TryPark() should be equivalent to park(0).
4326
4327int os::PlatformEvent::TryPark() {
4328  for (;;) {
4329    const int v = _Event ;
4330    guarantee ((v == 0) || (v == 1), "invariant") ;
4331    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4332  }
4333}
4334
4335void os::PlatformEvent::park() {       // AKA "down()"
4336  // Invariant: Only the thread associated with the Event/PlatformEvent
4337  // may call park().
4338  // TODO: assert that _Assoc != NULL or _Assoc == Self
4339  int v ;
4340  for (;;) {
4341      v = _Event ;
4342      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4343  }
4344  guarantee (v >= 0, "invariant") ;
4345  if (v == 0) {
4346     // Do this the hard way by blocking ...
4347     int status = pthread_mutex_lock(_mutex);
4348     assert_status(status == 0, status, "mutex_lock");
4349     guarantee (_nParked == 0, "invariant") ;
4350     ++ _nParked ;
4351     while (_Event < 0) {
4352        status = pthread_cond_wait(_cond, _mutex);
4353        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4354        // Treat this the same as if the wait was interrupted
4355        if (status == ETIME) { status = EINTR; }
4356        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4357     }
4358     -- _nParked ;
4359
4360    // In theory we could move the ST of 0 into _Event past the unlock(),
4361    // but then we'd need a MEMBAR after the ST.
4362    _Event = 0 ;
4363     status = pthread_mutex_unlock(_mutex);
4364     assert_status(status == 0, status, "mutex_unlock");
4365  }
4366  guarantee (_Event >= 0, "invariant") ;
4367}
4368
4369int os::PlatformEvent::park(jlong millis) {
4370  guarantee (_nParked == 0, "invariant") ;
4371
4372  int v ;
4373  for (;;) {
4374      v = _Event ;
4375      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4376  }
4377  guarantee (v >= 0, "invariant") ;
4378  if (v != 0) return OS_OK ;
4379
4380  // We do this the hard way, by blocking the thread.
4381  // Consider enforcing a minimum timeout value.
4382  struct timespec abst;
4383  compute_abstime(&abst, millis);
4384
4385  int ret = OS_TIMEOUT;
4386  int status = pthread_mutex_lock(_mutex);
4387  assert_status(status == 0, status, "mutex_lock");
4388  guarantee (_nParked == 0, "invariant") ;
4389  ++_nParked ;
4390
4391  // Object.wait(timo) will return because of
4392  // (a) notification
4393  // (b) timeout
4394  // (c) thread.interrupt
4395  //
4396  // Thread.interrupt and object.notify{All} both call Event::set.
4397  // That is, we treat thread.interrupt as a special case of notification.
4398  // The underlying Solaris implementation, cond_timedwait, admits
4399  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4400  // JVM from making those visible to Java code.  As such, we must
4401  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4402  //
4403  // TODO: properly differentiate simultaneous notify+interrupt.
4404  // In that case, we should propagate the notify to another waiter.
4405
4406  while (_Event < 0) {
4407    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4408    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4409      pthread_cond_destroy (_cond);
4410      pthread_cond_init (_cond, NULL) ;
4411    }
4412    assert_status(status == 0 || status == EINTR ||
4413                  status == ETIME || status == ETIMEDOUT,
4414                  status, "cond_timedwait");
4415    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4416    if (status == ETIME || status == ETIMEDOUT) break ;
4417    // We consume and ignore EINTR and spurious wakeups.
4418  }
4419  --_nParked ;
4420  if (_Event >= 0) {
4421     ret = OS_OK;
4422  }
4423  _Event = 0 ;
4424  status = pthread_mutex_unlock(_mutex);
4425  assert_status(status == 0, status, "mutex_unlock");
4426  assert (_nParked == 0, "invariant") ;
4427  return ret;
4428}
4429
4430void os::PlatformEvent::unpark() {
4431  int v, AnyWaiters ;
4432  for (;;) {
4433      v = _Event ;
4434      if (v > 0) {
4435         // The LD of _Event could have reordered or be satisfied
4436         // by a read-aside from this processor's write buffer.
4437         // To avoid problems execute a barrier and then
4438         // ratify the value.
4439         OrderAccess::fence() ;
4440         if (_Event == v) return ;
4441         continue ;
4442      }
4443      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4444  }
4445  if (v < 0) {
4446     // Wait for the thread associated with the event to vacate
4447     int status = pthread_mutex_lock(_mutex);
4448     assert_status(status == 0, status, "mutex_lock");
4449     AnyWaiters = _nParked ;
4450     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4451     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4452        AnyWaiters = 0 ;
4453        pthread_cond_signal (_cond);
4454     }
4455     status = pthread_mutex_unlock(_mutex);
4456     assert_status(status == 0, status, "mutex_unlock");
4457     if (AnyWaiters != 0) {
4458        status = pthread_cond_signal(_cond);
4459        assert_status(status == 0, status, "cond_signal");
4460     }
4461  }
4462
4463  // Note that we signal() _after dropping the lock for "immortal" Events.
4464  // This is safe and avoids a common class of  futile wakeups.  In rare
4465  // circumstances this can cause a thread to return prematurely from
4466  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4467  // simply re-test the condition and re-park itself.
4468}
4469
4470
4471// JSR166
4472// -------------------------------------------------------
4473
4474/*
4475 * The solaris and linux implementations of park/unpark are fairly
4476 * conservative for now, but can be improved. They currently use a
4477 * mutex/condvar pair, plus a a count.
4478 * Park decrements count if > 0, else does a condvar wait.  Unpark
4479 * sets count to 1 and signals condvar.  Only one thread ever waits
4480 * on the condvar. Contention seen when trying to park implies that someone
4481 * is unparking you, so don't wait. And spurious returns are fine, so there
4482 * is no need to track notifications.
4483 */
4484
4485
4486#define NANOSECS_PER_SEC 1000000000
4487#define NANOSECS_PER_MILLISEC 1000000
4488#define MAX_SECS 100000000
4489/*
4490 * This code is common to linux and solaris and will be moved to a
4491 * common place in dolphin.
4492 *
4493 * The passed in time value is either a relative time in nanoseconds
4494 * or an absolute time in milliseconds. Either way it has to be unpacked
4495 * into suitable seconds and nanoseconds components and stored in the
4496 * given timespec structure.
4497 * Given time is a 64-bit value and the time_t used in the timespec is only
4498 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4499 * overflow if times way in the future are given. Further on Solaris versions
4500 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4501 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4502 * As it will be 28 years before "now + 100000000" will overflow we can
4503 * ignore overflow and just impose a hard-limit on seconds using the value
4504 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4505 * years from "now".
4506 */
4507
4508static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4509  assert (time > 0, "convertTime");
4510
4511  struct timeval now;
4512  int status = gettimeofday(&now, NULL);
4513  assert(status == 0, "gettimeofday");
4514
4515  time_t max_secs = now.tv_sec + MAX_SECS;
4516
4517  if (isAbsolute) {
4518    jlong secs = time / 1000;
4519    if (secs > max_secs) {
4520      absTime->tv_sec = max_secs;
4521    }
4522    else {
4523      absTime->tv_sec = secs;
4524    }
4525    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4526  }
4527  else {
4528    jlong secs = time / NANOSECS_PER_SEC;
4529    if (secs >= MAX_SECS) {
4530      absTime->tv_sec = max_secs;
4531      absTime->tv_nsec = 0;
4532    }
4533    else {
4534      absTime->tv_sec = now.tv_sec + secs;
4535      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4536      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4537        absTime->tv_nsec -= NANOSECS_PER_SEC;
4538        ++absTime->tv_sec; // note: this must be <= max_secs
4539      }
4540    }
4541  }
4542  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4543  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4544  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4545  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4546}
4547
4548void Parker::park(bool isAbsolute, jlong time) {
4549  // Optional fast-path check:
4550  // Return immediately if a permit is available.
4551  if (_counter > 0) {
4552      _counter = 0 ;
4553      return ;
4554  }
4555
4556  Thread* thread = Thread::current();
4557  assert(thread->is_Java_thread(), "Must be JavaThread");
4558  JavaThread *jt = (JavaThread *)thread;
4559
4560  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4561  // Check interrupt before trying to wait
4562  if (Thread::is_interrupted(thread, false)) {
4563    return;
4564  }
4565
4566  // Next, demultiplex/decode time arguments
4567  timespec absTime;
4568  if (time < 0) { // don't wait at all
4569    return;
4570  }
4571  if (time > 0) {
4572    unpackTime(&absTime, isAbsolute, time);
4573  }
4574
4575
4576  // Enter safepoint region
4577  // Beware of deadlocks such as 6317397.
4578  // The per-thread Parker:: mutex is a classic leaf-lock.
4579  // In particular a thread must never block on the Threads_lock while
4580  // holding the Parker:: mutex.  If safepoints are pending both the
4581  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4582  ThreadBlockInVM tbivm(jt);
4583
4584  // Don't wait if cannot get lock since interference arises from
4585  // unblocking.  Also. check interrupt before trying wait
4586  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4587    return;
4588  }
4589
4590  int status ;
4591  if (_counter > 0)  { // no wait needed
4592    _counter = 0;
4593    status = pthread_mutex_unlock(_mutex);
4594    assert (status == 0, "invariant") ;
4595    return;
4596  }
4597
4598#ifdef ASSERT
4599  // Don't catch signals while blocked; let the running threads have the signals.
4600  // (This allows a debugger to break into the running thread.)
4601  sigset_t oldsigs;
4602  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4603  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4604#endif
4605
4606  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4607  jt->set_suspend_equivalent();
4608  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4609
4610  if (time == 0) {
4611    status = pthread_cond_wait (_cond, _mutex) ;
4612  } else {
4613    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4614    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4615      pthread_cond_destroy (_cond) ;
4616      pthread_cond_init    (_cond, NULL);
4617    }
4618  }
4619  assert_status(status == 0 || status == EINTR ||
4620                status == ETIME || status == ETIMEDOUT,
4621                status, "cond_timedwait");
4622
4623#ifdef ASSERT
4624  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4625#endif
4626
4627  _counter = 0 ;
4628  status = pthread_mutex_unlock(_mutex) ;
4629  assert_status(status == 0, status, "invariant") ;
4630  // If externally suspended while waiting, re-suspend
4631  if (jt->handle_special_suspend_equivalent_condition()) {
4632    jt->java_suspend_self();
4633  }
4634
4635}
4636
4637void Parker::unpark() {
4638  int s, status ;
4639  status = pthread_mutex_lock(_mutex);
4640  assert (status == 0, "invariant") ;
4641  s = _counter;
4642  _counter = 1;
4643  if (s < 1) {
4644     if (WorkAroundNPTLTimedWaitHang) {
4645        status = pthread_cond_signal (_cond) ;
4646        assert (status == 0, "invariant") ;
4647        status = pthread_mutex_unlock(_mutex);
4648        assert (status == 0, "invariant") ;
4649     } else {
4650        status = pthread_mutex_unlock(_mutex);
4651        assert (status == 0, "invariant") ;
4652        status = pthread_cond_signal (_cond) ;
4653        assert (status == 0, "invariant") ;
4654     }
4655  } else {
4656    pthread_mutex_unlock(_mutex);
4657    assert (status == 0, "invariant") ;
4658  }
4659}
4660
4661
4662extern char** environ;
4663
4664#ifndef __NR_fork
4665#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4666#endif
4667
4668#ifndef __NR_execve
4669#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4670#endif
4671
4672// Run the specified command in a separate process. Return its exit value,
4673// or -1 on failure (e.g. can't fork a new process).
4674// Unlike system(), this function can be called from signal handler. It
4675// doesn't block SIGINT et al.
4676int os::fork_and_exec(char* cmd) {
4677  const char * argv[4] = {"sh", "-c", cmd, NULL};
4678
4679  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4680  // pthread_atfork handlers and reset pthread library. All we need is a
4681  // separate process to execve. Make a direct syscall to fork process.
4682  // On IA64 there's no fork syscall, we have to use fork() and hope for
4683  // the best...
4684  pid_t pid = NOT_IA64(syscall(__NR_fork);)
4685              IA64_ONLY(fork();)
4686
4687  if (pid < 0) {
4688    // fork failed
4689    return -1;
4690
4691  } else if (pid == 0) {
4692    // child process
4693
4694    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4695    // first to kill every thread on the thread list. Because this list is
4696    // not reset by fork() (see notes above), execve() will instead kill
4697    // every thread in the parent process. We know this is the only thread
4698    // in the new process, so make a system call directly.
4699    // IA64 should use normal execve() from glibc to match the glibc fork()
4700    // above.
4701    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4702    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4703
4704    // execve failed
4705    _exit(-1);
4706
4707  } else  {
4708    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4709    // care about the actual exit code, for now.
4710
4711    int status;
4712
4713    // Wait for the child process to exit.  This returns immediately if
4714    // the child has already exited. */
4715    while (waitpid(pid, &status, 0) < 0) {
4716        switch (errno) {
4717        case ECHILD: return 0;
4718        case EINTR: break;
4719        default: return -1;
4720        }
4721    }
4722
4723    if (WIFEXITED(status)) {
4724       // The child exited normally; get its exit code.
4725       return WEXITSTATUS(status);
4726    } else if (WIFSIGNALED(status)) {
4727       // The child exited because of a signal
4728       // The best value to return is 0x80 + signal number,
4729       // because that is what all Unix shells do, and because
4730       // it allows callers to distinguish between process exit and
4731       // process death by signal.
4732       return 0x80 + WTERMSIG(status);
4733    } else {
4734       // Unknown exit code; pass it through
4735       return status;
4736    }
4737  }
4738}
4739