os_linux.cpp revision 2678:27702f012017
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# define __STDC_FORMAT_MACROS
26
27// no precompiled headers
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "compiler/compileBroker.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_linux.h"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/extendedPC.hpp"
46#include "runtime/globals.hpp"
47#include "runtime/interfaceSupport.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/runtimeService.hpp"
61#include "thread_linux.inline.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67#ifdef TARGET_ARCH_x86
68# include "assembler_x86.inline.hpp"
69# include "nativeInst_x86.hpp"
70#endif
71#ifdef TARGET_ARCH_sparc
72# include "assembler_sparc.inline.hpp"
73# include "nativeInst_sparc.hpp"
74#endif
75#ifdef TARGET_ARCH_zero
76# include "assembler_zero.inline.hpp"
77# include "nativeInst_zero.hpp"
78#endif
79#ifdef TARGET_ARCH_arm
80# include "assembler_arm.inline.hpp"
81# include "nativeInst_arm.hpp"
82#endif
83#ifdef TARGET_ARCH_ppc
84# include "assembler_ppc.inline.hpp"
85# include "nativeInst_ppc.hpp"
86#endif
87#ifdef COMPILER1
88#include "c1/c1_Runtime1.hpp"
89#endif
90#ifdef COMPILER2
91#include "opto/runtime.hpp"
92#endif
93
94// put OS-includes here
95# include <sys/types.h>
96# include <sys/mman.h>
97# include <sys/stat.h>
98# include <sys/select.h>
99# include <pthread.h>
100# include <signal.h>
101# include <errno.h>
102# include <dlfcn.h>
103# include <stdio.h>
104# include <unistd.h>
105# include <sys/resource.h>
106# include <pthread.h>
107# include <sys/stat.h>
108# include <sys/time.h>
109# include <sys/times.h>
110# include <sys/utsname.h>
111# include <sys/socket.h>
112# include <sys/wait.h>
113# include <pwd.h>
114# include <poll.h>
115# include <semaphore.h>
116# include <fcntl.h>
117# include <string.h>
118# include <syscall.h>
119# include <sys/sysinfo.h>
120# include <gnu/libc-version.h>
121# include <sys/ipc.h>
122# include <sys/shm.h>
123# include <link.h>
124# include <stdint.h>
125# include <inttypes.h>
126# include <sys/ioctl.h>
127
128#define MAX_PATH    (2 * K)
129
130// for timer info max values which include all bits
131#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
132#define SEC_IN_NANOSECS  1000000000LL
133
134#define LARGEPAGES_BIT (1 << 6)
135////////////////////////////////////////////////////////////////////////////////
136// global variables
137julong os::Linux::_physical_memory = 0;
138
139address   os::Linux::_initial_thread_stack_bottom = NULL;
140uintptr_t os::Linux::_initial_thread_stack_size   = 0;
141
142int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
143int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
144Mutex* os::Linux::_createThread_lock = NULL;
145pthread_t os::Linux::_main_thread;
146int os::Linux::_page_size = -1;
147bool os::Linux::_is_floating_stack = false;
148bool os::Linux::_is_NPTL = false;
149bool os::Linux::_supports_fast_thread_cpu_time = false;
150const char * os::Linux::_glibc_version = NULL;
151const char * os::Linux::_libpthread_version = NULL;
152
153static jlong initial_time_count=0;
154
155static int clock_tics_per_sec = 100;
156
157// For diagnostics to print a message once. see run_periodic_checks
158static sigset_t check_signal_done;
159static bool check_signals = true;;
160
161static pid_t _initial_pid = 0;
162
163/* Signal number used to suspend/resume a thread */
164
165/* do not use any signal number less than SIGSEGV, see 4355769 */
166static int SR_signum = SIGUSR2;
167sigset_t SR_sigset;
168
169/* Used to protect dlsym() calls */
170static pthread_mutex_t dl_mutex;
171
172#ifdef JAVASE_EMBEDDED
173class MemNotifyThread: public Thread {
174  friend class VMStructs;
175 public:
176  virtual void run();
177
178 private:
179  static MemNotifyThread* _memnotify_thread;
180  int _fd;
181
182 public:
183
184  // Constructor
185  MemNotifyThread(int fd);
186
187  // Tester
188  bool is_memnotify_thread() const { return true; }
189
190  // Printing
191  char* name() const { return (char*)"Linux MemNotify Thread"; }
192
193  // Returns the single instance of the MemNotifyThread
194  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
195
196  // Create and start the single instance of MemNotifyThread
197  static void start();
198};
199#endif // JAVASE_EMBEDDED
200
201// utility functions
202
203static int SR_initialize();
204static int SR_finalize();
205
206julong os::available_memory() {
207  return Linux::available_memory();
208}
209
210julong os::Linux::available_memory() {
211  // values in struct sysinfo are "unsigned long"
212  struct sysinfo si;
213  sysinfo(&si);
214
215  return (julong)si.freeram * si.mem_unit;
216}
217
218julong os::physical_memory() {
219  return Linux::physical_memory();
220}
221
222julong os::allocatable_physical_memory(julong size) {
223#ifdef _LP64
224  return size;
225#else
226  julong result = MIN2(size, (julong)3800*M);
227   if (!is_allocatable(result)) {
228     // See comments under solaris for alignment considerations
229     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
230     result =  MIN2(size, reasonable_size);
231   }
232   return result;
233#endif // _LP64
234}
235
236////////////////////////////////////////////////////////////////////////////////
237// environment support
238
239bool os::getenv(const char* name, char* buf, int len) {
240  const char* val = ::getenv(name);
241  if (val != NULL && strlen(val) < (size_t)len) {
242    strcpy(buf, val);
243    return true;
244  }
245  if (len > 0) buf[0] = 0;  // return a null string
246  return false;
247}
248
249
250// Return true if user is running as root.
251
252bool os::have_special_privileges() {
253  static bool init = false;
254  static bool privileges = false;
255  if (!init) {
256    privileges = (getuid() != geteuid()) || (getgid() != getegid());
257    init = true;
258  }
259  return privileges;
260}
261
262
263#ifndef SYS_gettid
264// i386: 224, ia64: 1105, amd64: 186, sparc 143
265#ifdef __ia64__
266#define SYS_gettid 1105
267#elif __i386__
268#define SYS_gettid 224
269#elif __amd64__
270#define SYS_gettid 186
271#elif __sparc__
272#define SYS_gettid 143
273#else
274#error define gettid for the arch
275#endif
276#endif
277
278// Cpu architecture string
279#if   defined(ZERO)
280static char cpu_arch[] = ZERO_LIBARCH;
281#elif defined(IA64)
282static char cpu_arch[] = "ia64";
283#elif defined(IA32)
284static char cpu_arch[] = "i386";
285#elif defined(AMD64)
286static char cpu_arch[] = "amd64";
287#elif defined(ARM)
288static char cpu_arch[] = "arm";
289#elif defined(PPC)
290static char cpu_arch[] = "ppc";
291#elif defined(SPARC)
292#  ifdef _LP64
293static char cpu_arch[] = "sparcv9";
294#  else
295static char cpu_arch[] = "sparc";
296#  endif
297#else
298#error Add appropriate cpu_arch setting
299#endif
300
301
302// pid_t gettid()
303//
304// Returns the kernel thread id of the currently running thread. Kernel
305// thread id is used to access /proc.
306//
307// (Note that getpid() on LinuxThreads returns kernel thread id too; but
308// on NPTL, it returns the same pid for all threads, as required by POSIX.)
309//
310pid_t os::Linux::gettid() {
311  int rslt = syscall(SYS_gettid);
312  if (rslt == -1) {
313     // old kernel, no NPTL support
314     return getpid();
315  } else {
316     return (pid_t)rslt;
317  }
318}
319
320// Most versions of linux have a bug where the number of processors are
321// determined by looking at the /proc file system.  In a chroot environment,
322// the system call returns 1.  This causes the VM to act as if it is
323// a single processor and elide locking (see is_MP() call).
324static bool unsafe_chroot_detected = false;
325static const char *unstable_chroot_error = "/proc file system not found.\n"
326                     "Java may be unstable running multithreaded in a chroot "
327                     "environment on Linux when /proc filesystem is not mounted.";
328
329void os::Linux::initialize_system_info() {
330  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
331  if (processor_count() == 1) {
332    pid_t pid = os::Linux::gettid();
333    char fname[32];
334    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
335    FILE *fp = fopen(fname, "r");
336    if (fp == NULL) {
337      unsafe_chroot_detected = true;
338    } else {
339      fclose(fp);
340    }
341  }
342  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
343  assert(processor_count() > 0, "linux error");
344}
345
346void os::init_system_properties_values() {
347//  char arch[12];
348//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
349
350  // The next steps are taken in the product version:
351  //
352  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
353  // This library should be located at:
354  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
355  //
356  // If "/jre/lib/" appears at the right place in the path, then we
357  // assume libjvm[_g].so is installed in a JDK and we use this path.
358  //
359  // Otherwise exit with message: "Could not create the Java virtual machine."
360  //
361  // The following extra steps are taken in the debugging version:
362  //
363  // If "/jre/lib/" does NOT appear at the right place in the path
364  // instead of exit check for $JAVA_HOME environment variable.
365  //
366  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
367  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
368  // it looks like libjvm[_g].so is installed there
369  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
370  //
371  // Otherwise exit.
372  //
373  // Important note: if the location of libjvm.so changes this
374  // code needs to be changed accordingly.
375
376  // The next few definitions allow the code to be verbatim:
377#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
378#define getenv(n) ::getenv(n)
379
380/*
381 * See ld(1):
382 *      The linker uses the following search paths to locate required
383 *      shared libraries:
384 *        1: ...
385 *        ...
386 *        7: The default directories, normally /lib and /usr/lib.
387 */
388#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
389#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
390#else
391#define DEFAULT_LIBPATH "/lib:/usr/lib"
392#endif
393
394#define EXTENSIONS_DIR  "/lib/ext"
395#define ENDORSED_DIR    "/lib/endorsed"
396#define REG_DIR         "/usr/java/packages"
397
398  {
399    /* sysclasspath, java_home, dll_dir */
400    {
401        char *home_path;
402        char *dll_path;
403        char *pslash;
404        char buf[MAXPATHLEN];
405        os::jvm_path(buf, sizeof(buf));
406
407        // Found the full path to libjvm.so.
408        // Now cut the path to <java_home>/jre if we can.
409        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
410        pslash = strrchr(buf, '/');
411        if (pslash != NULL)
412            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
413        dll_path = malloc(strlen(buf) + 1);
414        if (dll_path == NULL)
415            return;
416        strcpy(dll_path, buf);
417        Arguments::set_dll_dir(dll_path);
418
419        if (pslash != NULL) {
420            pslash = strrchr(buf, '/');
421            if (pslash != NULL) {
422                *pslash = '\0';       /* get rid of /<arch> */
423                pslash = strrchr(buf, '/');
424                if (pslash != NULL)
425                    *pslash = '\0';   /* get rid of /lib */
426            }
427        }
428
429        home_path = malloc(strlen(buf) + 1);
430        if (home_path == NULL)
431            return;
432        strcpy(home_path, buf);
433        Arguments::set_java_home(home_path);
434
435        if (!set_boot_path('/', ':'))
436            return;
437    }
438
439    /*
440     * Where to look for native libraries
441     *
442     * Note: Due to a legacy implementation, most of the library path
443     * is set in the launcher.  This was to accomodate linking restrictions
444     * on legacy Linux implementations (which are no longer supported).
445     * Eventually, all the library path setting will be done here.
446     *
447     * However, to prevent the proliferation of improperly built native
448     * libraries, the new path component /usr/java/packages is added here.
449     * Eventually, all the library path setting will be done here.
450     */
451    {
452        char *ld_library_path;
453
454        /*
455         * Construct the invariant part of ld_library_path. Note that the
456         * space for the colon and the trailing null are provided by the
457         * nulls included by the sizeof operator (so actually we allocate
458         * a byte more than necessary).
459         */
460        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
461            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
462        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
463
464        /*
465         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
466         * should always exist (until the legacy problem cited above is
467         * addressed).
468         */
469        char *v = getenv("LD_LIBRARY_PATH");
470        if (v != NULL) {
471            char *t = ld_library_path;
472            /* That's +1 for the colon and +1 for the trailing '\0' */
473            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
474            sprintf(ld_library_path, "%s:%s", v, t);
475        }
476        Arguments::set_library_path(ld_library_path);
477    }
478
479    /*
480     * Extensions directories.
481     *
482     * Note that the space for the colon and the trailing null are provided
483     * by the nulls included by the sizeof operator (so actually one byte more
484     * than necessary is allocated).
485     */
486    {
487        char *buf = malloc(strlen(Arguments::get_java_home()) +
488            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
489        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
490            Arguments::get_java_home());
491        Arguments::set_ext_dirs(buf);
492    }
493
494    /* Endorsed standards default directory. */
495    {
496        char * buf;
497        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
498        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
499        Arguments::set_endorsed_dirs(buf);
500    }
501  }
502
503#undef malloc
504#undef getenv
505#undef EXTENSIONS_DIR
506#undef ENDORSED_DIR
507
508  // Done
509  return;
510}
511
512////////////////////////////////////////////////////////////////////////////////
513// breakpoint support
514
515void os::breakpoint() {
516  BREAKPOINT;
517}
518
519extern "C" void breakpoint() {
520  // use debugger to set breakpoint here
521}
522
523////////////////////////////////////////////////////////////////////////////////
524// signal support
525
526debug_only(static bool signal_sets_initialized = false);
527static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
528
529bool os::Linux::is_sig_ignored(int sig) {
530      struct sigaction oact;
531      sigaction(sig, (struct sigaction*)NULL, &oact);
532      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
533                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
534      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
535           return true;
536      else
537           return false;
538}
539
540void os::Linux::signal_sets_init() {
541  // Should also have an assertion stating we are still single-threaded.
542  assert(!signal_sets_initialized, "Already initialized");
543  // Fill in signals that are necessarily unblocked for all threads in
544  // the VM. Currently, we unblock the following signals:
545  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
546  //                         by -Xrs (=ReduceSignalUsage));
547  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
548  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
549  // the dispositions or masks wrt these signals.
550  // Programs embedding the VM that want to use the above signals for their
551  // own purposes must, at this time, use the "-Xrs" option to prevent
552  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
553  // (See bug 4345157, and other related bugs).
554  // In reality, though, unblocking these signals is really a nop, since
555  // these signals are not blocked by default.
556  sigemptyset(&unblocked_sigs);
557  sigemptyset(&allowdebug_blocked_sigs);
558  sigaddset(&unblocked_sigs, SIGILL);
559  sigaddset(&unblocked_sigs, SIGSEGV);
560  sigaddset(&unblocked_sigs, SIGBUS);
561  sigaddset(&unblocked_sigs, SIGFPE);
562  sigaddset(&unblocked_sigs, SR_signum);
563
564  if (!ReduceSignalUsage) {
565   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
566      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
567      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
568   }
569   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
570      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
571      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
572   }
573   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
574      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
575      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
576   }
577  }
578  // Fill in signals that are blocked by all but the VM thread.
579  sigemptyset(&vm_sigs);
580  if (!ReduceSignalUsage)
581    sigaddset(&vm_sigs, BREAK_SIGNAL);
582  debug_only(signal_sets_initialized = true);
583
584}
585
586// These are signals that are unblocked while a thread is running Java.
587// (For some reason, they get blocked by default.)
588sigset_t* os::Linux::unblocked_signals() {
589  assert(signal_sets_initialized, "Not initialized");
590  return &unblocked_sigs;
591}
592
593// These are the signals that are blocked while a (non-VM) thread is
594// running Java. Only the VM thread handles these signals.
595sigset_t* os::Linux::vm_signals() {
596  assert(signal_sets_initialized, "Not initialized");
597  return &vm_sigs;
598}
599
600// These are signals that are blocked during cond_wait to allow debugger in
601sigset_t* os::Linux::allowdebug_blocked_signals() {
602  assert(signal_sets_initialized, "Not initialized");
603  return &allowdebug_blocked_sigs;
604}
605
606void os::Linux::hotspot_sigmask(Thread* thread) {
607
608  //Save caller's signal mask before setting VM signal mask
609  sigset_t caller_sigmask;
610  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
611
612  OSThread* osthread = thread->osthread();
613  osthread->set_caller_sigmask(caller_sigmask);
614
615  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
616
617  if (!ReduceSignalUsage) {
618    if (thread->is_VM_thread()) {
619      // Only the VM thread handles BREAK_SIGNAL ...
620      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
621    } else {
622      // ... all other threads block BREAK_SIGNAL
623      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
624    }
625  }
626}
627
628//////////////////////////////////////////////////////////////////////////////
629// detecting pthread library
630
631void os::Linux::libpthread_init() {
632  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
633  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
634  // generic name for earlier versions.
635  // Define macros here so we can build HotSpot on old systems.
636# ifndef _CS_GNU_LIBC_VERSION
637# define _CS_GNU_LIBC_VERSION 2
638# endif
639# ifndef _CS_GNU_LIBPTHREAD_VERSION
640# define _CS_GNU_LIBPTHREAD_VERSION 3
641# endif
642
643  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
644  if (n > 0) {
645     char *str = (char *)malloc(n);
646     confstr(_CS_GNU_LIBC_VERSION, str, n);
647     os::Linux::set_glibc_version(str);
648  } else {
649     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
650     static char _gnu_libc_version[32];
651     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
652              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
653     os::Linux::set_glibc_version(_gnu_libc_version);
654  }
655
656  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
657  if (n > 0) {
658     char *str = (char *)malloc(n);
659     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
660     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
661     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
662     // is the case. LinuxThreads has a hard limit on max number of threads.
663     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
664     // On the other hand, NPTL does not have such a limit, sysconf()
665     // will return -1 and errno is not changed. Check if it is really NPTL.
666     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
667         strstr(str, "NPTL") &&
668         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
669       free(str);
670       os::Linux::set_libpthread_version("linuxthreads");
671     } else {
672       os::Linux::set_libpthread_version(str);
673     }
674  } else {
675    // glibc before 2.3.2 only has LinuxThreads.
676    os::Linux::set_libpthread_version("linuxthreads");
677  }
678
679  if (strstr(libpthread_version(), "NPTL")) {
680     os::Linux::set_is_NPTL();
681  } else {
682     os::Linux::set_is_LinuxThreads();
683  }
684
685  // LinuxThreads have two flavors: floating-stack mode, which allows variable
686  // stack size; and fixed-stack mode. NPTL is always floating-stack.
687  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
688     os::Linux::set_is_floating_stack();
689  }
690}
691
692/////////////////////////////////////////////////////////////////////////////
693// thread stack
694
695// Force Linux kernel to expand current thread stack. If "bottom" is close
696// to the stack guard, caller should block all signals.
697//
698// MAP_GROWSDOWN:
699//   A special mmap() flag that is used to implement thread stacks. It tells
700//   kernel that the memory region should extend downwards when needed. This
701//   allows early versions of LinuxThreads to only mmap the first few pages
702//   when creating a new thread. Linux kernel will automatically expand thread
703//   stack as needed (on page faults).
704//
705//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
706//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
707//   region, it's hard to tell if the fault is due to a legitimate stack
708//   access or because of reading/writing non-exist memory (e.g. buffer
709//   overrun). As a rule, if the fault happens below current stack pointer,
710//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
711//   application (see Linux kernel fault.c).
712//
713//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
714//   stack overflow detection.
715//
716//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
717//   not use this flag. However, the stack of initial thread is not created
718//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
719//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
720//   and then attach the thread to JVM.
721//
722// To get around the problem and allow stack banging on Linux, we need to
723// manually expand thread stack after receiving the SIGSEGV.
724//
725// There are two ways to expand thread stack to address "bottom", we used
726// both of them in JVM before 1.5:
727//   1. adjust stack pointer first so that it is below "bottom", and then
728//      touch "bottom"
729//   2. mmap() the page in question
730//
731// Now alternate signal stack is gone, it's harder to use 2. For instance,
732// if current sp is already near the lower end of page 101, and we need to
733// call mmap() to map page 100, it is possible that part of the mmap() frame
734// will be placed in page 100. When page 100 is mapped, it is zero-filled.
735// That will destroy the mmap() frame and cause VM to crash.
736//
737// The following code works by adjusting sp first, then accessing the "bottom"
738// page to force a page fault. Linux kernel will then automatically expand the
739// stack mapping.
740//
741// _expand_stack_to() assumes its frame size is less than page size, which
742// should always be true if the function is not inlined.
743
744#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
745#define NOINLINE
746#else
747#define NOINLINE __attribute__ ((noinline))
748#endif
749
750static void _expand_stack_to(address bottom) NOINLINE;
751
752static void _expand_stack_to(address bottom) {
753  address sp;
754  size_t size;
755  volatile char *p;
756
757  // Adjust bottom to point to the largest address within the same page, it
758  // gives us a one-page buffer if alloca() allocates slightly more memory.
759  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
760  bottom += os::Linux::page_size() - 1;
761
762  // sp might be slightly above current stack pointer; if that's the case, we
763  // will alloca() a little more space than necessary, which is OK. Don't use
764  // os::current_stack_pointer(), as its result can be slightly below current
765  // stack pointer, causing us to not alloca enough to reach "bottom".
766  sp = (address)&sp;
767
768  if (sp > bottom) {
769    size = sp - bottom;
770    p = (volatile char *)alloca(size);
771    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
772    p[0] = '\0';
773  }
774}
775
776bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
777  assert(t!=NULL, "just checking");
778  assert(t->osthread()->expanding_stack(), "expand should be set");
779  assert(t->stack_base() != NULL, "stack_base was not initialized");
780
781  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
782    sigset_t mask_all, old_sigset;
783    sigfillset(&mask_all);
784    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
785    _expand_stack_to(addr);
786    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
787    return true;
788  }
789  return false;
790}
791
792//////////////////////////////////////////////////////////////////////////////
793// create new thread
794
795static address highest_vm_reserved_address();
796
797// check if it's safe to start a new thread
798static bool _thread_safety_check(Thread* thread) {
799  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
800    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
801    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
802    //   allocated (MAP_FIXED) from high address space. Every thread stack
803    //   occupies a fixed size slot (usually 2Mbytes, but user can change
804    //   it to other values if they rebuild LinuxThreads).
805    //
806    // Problem with MAP_FIXED is that mmap() can still succeed even part of
807    // the memory region has already been mmap'ed. That means if we have too
808    // many threads and/or very large heap, eventually thread stack will
809    // collide with heap.
810    //
811    // Here we try to prevent heap/stack collision by comparing current
812    // stack bottom with the highest address that has been mmap'ed by JVM
813    // plus a safety margin for memory maps created by native code.
814    //
815    // This feature can be disabled by setting ThreadSafetyMargin to 0
816    //
817    if (ThreadSafetyMargin > 0) {
818      address stack_bottom = os::current_stack_base() - os::current_stack_size();
819
820      // not safe if our stack extends below the safety margin
821      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
822    } else {
823      return true;
824    }
825  } else {
826    // Floating stack LinuxThreads or NPTL:
827    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
828    //   there's not enough space left, pthread_create() will fail. If we come
829    //   here, that means enough space has been reserved for stack.
830    return true;
831  }
832}
833
834// Thread start routine for all newly created threads
835static void *java_start(Thread *thread) {
836  // Try to randomize the cache line index of hot stack frames.
837  // This helps when threads of the same stack traces evict each other's
838  // cache lines. The threads can be either from the same JVM instance, or
839  // from different JVM instances. The benefit is especially true for
840  // processors with hyperthreading technology.
841  static int counter = 0;
842  int pid = os::current_process_id();
843  alloca(((pid ^ counter++) & 7) * 128);
844
845  ThreadLocalStorage::set_thread(thread);
846
847  OSThread* osthread = thread->osthread();
848  Monitor* sync = osthread->startThread_lock();
849
850  // non floating stack LinuxThreads needs extra check, see above
851  if (!_thread_safety_check(thread)) {
852    // notify parent thread
853    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
854    osthread->set_state(ZOMBIE);
855    sync->notify_all();
856    return NULL;
857  }
858
859  // thread_id is kernel thread id (similar to Solaris LWP id)
860  osthread->set_thread_id(os::Linux::gettid());
861
862  if (UseNUMA) {
863    int lgrp_id = os::numa_get_group_id();
864    if (lgrp_id != -1) {
865      thread->set_lgrp_id(lgrp_id);
866    }
867  }
868  // initialize signal mask for this thread
869  os::Linux::hotspot_sigmask(thread);
870
871  // initialize floating point control register
872  os::Linux::init_thread_fpu_state();
873
874  // handshaking with parent thread
875  {
876    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
877
878    // notify parent thread
879    osthread->set_state(INITIALIZED);
880    sync->notify_all();
881
882    // wait until os::start_thread()
883    while (osthread->get_state() == INITIALIZED) {
884      sync->wait(Mutex::_no_safepoint_check_flag);
885    }
886  }
887
888  // call one more level start routine
889  thread->run();
890
891  return 0;
892}
893
894bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
895  assert(thread->osthread() == NULL, "caller responsible");
896
897  // Allocate the OSThread object
898  OSThread* osthread = new OSThread(NULL, NULL);
899  if (osthread == NULL) {
900    return false;
901  }
902
903  // set the correct thread state
904  osthread->set_thread_type(thr_type);
905
906  // Initial state is ALLOCATED but not INITIALIZED
907  osthread->set_state(ALLOCATED);
908
909  thread->set_osthread(osthread);
910
911  // init thread attributes
912  pthread_attr_t attr;
913  pthread_attr_init(&attr);
914  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
915
916  // stack size
917  if (os::Linux::supports_variable_stack_size()) {
918    // calculate stack size if it's not specified by caller
919    if (stack_size == 0) {
920      stack_size = os::Linux::default_stack_size(thr_type);
921
922      switch (thr_type) {
923      case os::java_thread:
924        // Java threads use ThreadStackSize which default value can be
925        // changed with the flag -Xss
926        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
927        stack_size = JavaThread::stack_size_at_create();
928        break;
929      case os::compiler_thread:
930        if (CompilerThreadStackSize > 0) {
931          stack_size = (size_t)(CompilerThreadStackSize * K);
932          break;
933        } // else fall through:
934          // use VMThreadStackSize if CompilerThreadStackSize is not defined
935      case os::vm_thread:
936      case os::pgc_thread:
937      case os::cgc_thread:
938      case os::watcher_thread:
939        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
940        break;
941      }
942    }
943
944    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
945    pthread_attr_setstacksize(&attr, stack_size);
946  } else {
947    // let pthread_create() pick the default value.
948  }
949
950  // glibc guard page
951  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
952
953  ThreadState state;
954
955  {
956    // Serialize thread creation if we are running with fixed stack LinuxThreads
957    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
958    if (lock) {
959      os::Linux::createThread_lock()->lock_without_safepoint_check();
960    }
961
962    pthread_t tid;
963    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
964
965    pthread_attr_destroy(&attr);
966
967    if (ret != 0) {
968      if (PrintMiscellaneous && (Verbose || WizardMode)) {
969        perror("pthread_create()");
970      }
971      // Need to clean up stuff we've allocated so far
972      thread->set_osthread(NULL);
973      delete osthread;
974      if (lock) os::Linux::createThread_lock()->unlock();
975      return false;
976    }
977
978    // Store pthread info into the OSThread
979    osthread->set_pthread_id(tid);
980
981    // Wait until child thread is either initialized or aborted
982    {
983      Monitor* sync_with_child = osthread->startThread_lock();
984      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
985      while ((state = osthread->get_state()) == ALLOCATED) {
986        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
987      }
988    }
989
990    if (lock) {
991      os::Linux::createThread_lock()->unlock();
992    }
993  }
994
995  // Aborted due to thread limit being reached
996  if (state == ZOMBIE) {
997      thread->set_osthread(NULL);
998      delete osthread;
999      return false;
1000  }
1001
1002  // The thread is returned suspended (in state INITIALIZED),
1003  // and is started higher up in the call chain
1004  assert(state == INITIALIZED, "race condition");
1005  return true;
1006}
1007
1008/////////////////////////////////////////////////////////////////////////////
1009// attach existing thread
1010
1011// bootstrap the main thread
1012bool os::create_main_thread(JavaThread* thread) {
1013  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1014  return create_attached_thread(thread);
1015}
1016
1017bool os::create_attached_thread(JavaThread* thread) {
1018#ifdef ASSERT
1019    thread->verify_not_published();
1020#endif
1021
1022  // Allocate the OSThread object
1023  OSThread* osthread = new OSThread(NULL, NULL);
1024
1025  if (osthread == NULL) {
1026    return false;
1027  }
1028
1029  // Store pthread info into the OSThread
1030  osthread->set_thread_id(os::Linux::gettid());
1031  osthread->set_pthread_id(::pthread_self());
1032
1033  // initialize floating point control register
1034  os::Linux::init_thread_fpu_state();
1035
1036  // Initial thread state is RUNNABLE
1037  osthread->set_state(RUNNABLE);
1038
1039  thread->set_osthread(osthread);
1040
1041  if (UseNUMA) {
1042    int lgrp_id = os::numa_get_group_id();
1043    if (lgrp_id != -1) {
1044      thread->set_lgrp_id(lgrp_id);
1045    }
1046  }
1047
1048  if (os::Linux::is_initial_thread()) {
1049    // If current thread is initial thread, its stack is mapped on demand,
1050    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1051    // the entire stack region to avoid SEGV in stack banging.
1052    // It is also useful to get around the heap-stack-gap problem on SuSE
1053    // kernel (see 4821821 for details). We first expand stack to the top
1054    // of yellow zone, then enable stack yellow zone (order is significant,
1055    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1056    // is no gap between the last two virtual memory regions.
1057
1058    JavaThread *jt = (JavaThread *)thread;
1059    address addr = jt->stack_yellow_zone_base();
1060    assert(addr != NULL, "initialization problem?");
1061    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1062
1063    osthread->set_expanding_stack();
1064    os::Linux::manually_expand_stack(jt, addr);
1065    osthread->clear_expanding_stack();
1066  }
1067
1068  // initialize signal mask for this thread
1069  // and save the caller's signal mask
1070  os::Linux::hotspot_sigmask(thread);
1071
1072  return true;
1073}
1074
1075void os::pd_start_thread(Thread* thread) {
1076  OSThread * osthread = thread->osthread();
1077  assert(osthread->get_state() != INITIALIZED, "just checking");
1078  Monitor* sync_with_child = osthread->startThread_lock();
1079  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1080  sync_with_child->notify();
1081}
1082
1083// Free Linux resources related to the OSThread
1084void os::free_thread(OSThread* osthread) {
1085  assert(osthread != NULL, "osthread not set");
1086
1087  if (Thread::current()->osthread() == osthread) {
1088    // Restore caller's signal mask
1089    sigset_t sigmask = osthread->caller_sigmask();
1090    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1091   }
1092
1093  delete osthread;
1094}
1095
1096//////////////////////////////////////////////////////////////////////////////
1097// thread local storage
1098
1099int os::allocate_thread_local_storage() {
1100  pthread_key_t key;
1101  int rslt = pthread_key_create(&key, NULL);
1102  assert(rslt == 0, "cannot allocate thread local storage");
1103  return (int)key;
1104}
1105
1106// Note: This is currently not used by VM, as we don't destroy TLS key
1107// on VM exit.
1108void os::free_thread_local_storage(int index) {
1109  int rslt = pthread_key_delete((pthread_key_t)index);
1110  assert(rslt == 0, "invalid index");
1111}
1112
1113void os::thread_local_storage_at_put(int index, void* value) {
1114  int rslt = pthread_setspecific((pthread_key_t)index, value);
1115  assert(rslt == 0, "pthread_setspecific failed");
1116}
1117
1118extern "C" Thread* get_thread() {
1119  return ThreadLocalStorage::thread();
1120}
1121
1122//////////////////////////////////////////////////////////////////////////////
1123// initial thread
1124
1125// Check if current thread is the initial thread, similar to Solaris thr_main.
1126bool os::Linux::is_initial_thread(void) {
1127  char dummy;
1128  // If called before init complete, thread stack bottom will be null.
1129  // Can be called if fatal error occurs before initialization.
1130  if (initial_thread_stack_bottom() == NULL) return false;
1131  assert(initial_thread_stack_bottom() != NULL &&
1132         initial_thread_stack_size()   != 0,
1133         "os::init did not locate initial thread's stack region");
1134  if ((address)&dummy >= initial_thread_stack_bottom() &&
1135      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1136       return true;
1137  else return false;
1138}
1139
1140// Find the virtual memory area that contains addr
1141static bool find_vma(address addr, address* vma_low, address* vma_high) {
1142  FILE *fp = fopen("/proc/self/maps", "r");
1143  if (fp) {
1144    address low, high;
1145    while (!feof(fp)) {
1146      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1147        if (low <= addr && addr < high) {
1148           if (vma_low)  *vma_low  = low;
1149           if (vma_high) *vma_high = high;
1150           fclose (fp);
1151           return true;
1152        }
1153      }
1154      for (;;) {
1155        int ch = fgetc(fp);
1156        if (ch == EOF || ch == (int)'\n') break;
1157      }
1158    }
1159    fclose(fp);
1160  }
1161  return false;
1162}
1163
1164// Locate initial thread stack. This special handling of initial thread stack
1165// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1166// bogus value for initial thread.
1167void os::Linux::capture_initial_stack(size_t max_size) {
1168  // stack size is the easy part, get it from RLIMIT_STACK
1169  size_t stack_size;
1170  struct rlimit rlim;
1171  getrlimit(RLIMIT_STACK, &rlim);
1172  stack_size = rlim.rlim_cur;
1173
1174  // 6308388: a bug in ld.so will relocate its own .data section to the
1175  //   lower end of primordial stack; reduce ulimit -s value a little bit
1176  //   so we won't install guard page on ld.so's data section.
1177  stack_size -= 2 * page_size();
1178
1179  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1180  //   7.1, in both cases we will get 2G in return value.
1181  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1182  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1183  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1184  //   in case other parts in glibc still assumes 2M max stack size.
1185  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1186#ifndef IA64
1187  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1188#else
1189  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1190  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1191#endif
1192
1193  // Try to figure out where the stack base (top) is. This is harder.
1194  //
1195  // When an application is started, glibc saves the initial stack pointer in
1196  // a global variable "__libc_stack_end", which is then used by system
1197  // libraries. __libc_stack_end should be pretty close to stack top. The
1198  // variable is available since the very early days. However, because it is
1199  // a private interface, it could disappear in the future.
1200  //
1201  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1202  // to __libc_stack_end, it is very close to stack top, but isn't the real
1203  // stack top. Note that /proc may not exist if VM is running as a chroot
1204  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1205  // /proc/<pid>/stat could change in the future (though unlikely).
1206  //
1207  // We try __libc_stack_end first. If that doesn't work, look for
1208  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1209  // as a hint, which should work well in most cases.
1210
1211  uintptr_t stack_start;
1212
1213  // try __libc_stack_end first
1214  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1215  if (p && *p) {
1216    stack_start = *p;
1217  } else {
1218    // see if we can get the start_stack field from /proc/self/stat
1219    FILE *fp;
1220    int pid;
1221    char state;
1222    int ppid;
1223    int pgrp;
1224    int session;
1225    int nr;
1226    int tpgrp;
1227    unsigned long flags;
1228    unsigned long minflt;
1229    unsigned long cminflt;
1230    unsigned long majflt;
1231    unsigned long cmajflt;
1232    unsigned long utime;
1233    unsigned long stime;
1234    long cutime;
1235    long cstime;
1236    long prio;
1237    long nice;
1238    long junk;
1239    long it_real;
1240    uintptr_t start;
1241    uintptr_t vsize;
1242    intptr_t rss;
1243    uintptr_t rsslim;
1244    uintptr_t scodes;
1245    uintptr_t ecode;
1246    int i;
1247
1248    // Figure what the primordial thread stack base is. Code is inspired
1249    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1250    // followed by command name surrounded by parentheses, state, etc.
1251    char stat[2048];
1252    int statlen;
1253
1254    fp = fopen("/proc/self/stat", "r");
1255    if (fp) {
1256      statlen = fread(stat, 1, 2047, fp);
1257      stat[statlen] = '\0';
1258      fclose(fp);
1259
1260      // Skip pid and the command string. Note that we could be dealing with
1261      // weird command names, e.g. user could decide to rename java launcher
1262      // to "java 1.4.2 :)", then the stat file would look like
1263      //                1234 (java 1.4.2 :)) R ... ...
1264      // We don't really need to know the command string, just find the last
1265      // occurrence of ")" and then start parsing from there. See bug 4726580.
1266      char * s = strrchr(stat, ')');
1267
1268      i = 0;
1269      if (s) {
1270        // Skip blank chars
1271        do s++; while (isspace(*s));
1272
1273#define _UFM UINTX_FORMAT
1274#define _DFM INTX_FORMAT
1275
1276        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1277        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1278        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1279             &state,          /* 3  %c  */
1280             &ppid,           /* 4  %d  */
1281             &pgrp,           /* 5  %d  */
1282             &session,        /* 6  %d  */
1283             &nr,             /* 7  %d  */
1284             &tpgrp,          /* 8  %d  */
1285             &flags,          /* 9  %lu  */
1286             &minflt,         /* 10 %lu  */
1287             &cminflt,        /* 11 %lu  */
1288             &majflt,         /* 12 %lu  */
1289             &cmajflt,        /* 13 %lu  */
1290             &utime,          /* 14 %lu  */
1291             &stime,          /* 15 %lu  */
1292             &cutime,         /* 16 %ld  */
1293             &cstime,         /* 17 %ld  */
1294             &prio,           /* 18 %ld  */
1295             &nice,           /* 19 %ld  */
1296             &junk,           /* 20 %ld  */
1297             &it_real,        /* 21 %ld  */
1298             &start,          /* 22 UINTX_FORMAT */
1299             &vsize,          /* 23 UINTX_FORMAT */
1300             &rss,            /* 24 INTX_FORMAT  */
1301             &rsslim,         /* 25 UINTX_FORMAT */
1302             &scodes,         /* 26 UINTX_FORMAT */
1303             &ecode,          /* 27 UINTX_FORMAT */
1304             &stack_start);   /* 28 UINTX_FORMAT */
1305      }
1306
1307#undef _UFM
1308#undef _DFM
1309
1310      if (i != 28 - 2) {
1311         assert(false, "Bad conversion from /proc/self/stat");
1312         // product mode - assume we are the initial thread, good luck in the
1313         // embedded case.
1314         warning("Can't detect initial thread stack location - bad conversion");
1315         stack_start = (uintptr_t) &rlim;
1316      }
1317    } else {
1318      // For some reason we can't open /proc/self/stat (for example, running on
1319      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1320      // most cases, so don't abort:
1321      warning("Can't detect initial thread stack location - no /proc/self/stat");
1322      stack_start = (uintptr_t) &rlim;
1323    }
1324  }
1325
1326  // Now we have a pointer (stack_start) very close to the stack top, the
1327  // next thing to do is to figure out the exact location of stack top. We
1328  // can find out the virtual memory area that contains stack_start by
1329  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1330  // and its upper limit is the real stack top. (again, this would fail if
1331  // running inside chroot, because /proc may not exist.)
1332
1333  uintptr_t stack_top;
1334  address low, high;
1335  if (find_vma((address)stack_start, &low, &high)) {
1336    // success, "high" is the true stack top. (ignore "low", because initial
1337    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1338    stack_top = (uintptr_t)high;
1339  } else {
1340    // failed, likely because /proc/self/maps does not exist
1341    warning("Can't detect initial thread stack location - find_vma failed");
1342    // best effort: stack_start is normally within a few pages below the real
1343    // stack top, use it as stack top, and reduce stack size so we won't put
1344    // guard page outside stack.
1345    stack_top = stack_start;
1346    stack_size -= 16 * page_size();
1347  }
1348
1349  // stack_top could be partially down the page so align it
1350  stack_top = align_size_up(stack_top, page_size());
1351
1352  if (max_size && stack_size > max_size) {
1353     _initial_thread_stack_size = max_size;
1354  } else {
1355     _initial_thread_stack_size = stack_size;
1356  }
1357
1358  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1359  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1360}
1361
1362////////////////////////////////////////////////////////////////////////////////
1363// time support
1364
1365// Time since start-up in seconds to a fine granularity.
1366// Used by VMSelfDestructTimer and the MemProfiler.
1367double os::elapsedTime() {
1368
1369  return (double)(os::elapsed_counter()) * 0.000001;
1370}
1371
1372jlong os::elapsed_counter() {
1373  timeval time;
1374  int status = gettimeofday(&time, NULL);
1375  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1376}
1377
1378jlong os::elapsed_frequency() {
1379  return (1000 * 1000);
1380}
1381
1382// For now, we say that linux does not support vtime.  I have no idea
1383// whether it can actually be made to (DLD, 9/13/05).
1384
1385bool os::supports_vtime() { return false; }
1386bool os::enable_vtime()   { return false; }
1387bool os::vtime_enabled()  { return false; }
1388double os::elapsedVTime() {
1389  // better than nothing, but not much
1390  return elapsedTime();
1391}
1392
1393jlong os::javaTimeMillis() {
1394  timeval time;
1395  int status = gettimeofday(&time, NULL);
1396  assert(status != -1, "linux error");
1397  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1398}
1399
1400#ifndef CLOCK_MONOTONIC
1401#define CLOCK_MONOTONIC (1)
1402#endif
1403
1404void os::Linux::clock_init() {
1405  // we do dlopen's in this particular order due to bug in linux
1406  // dynamical loader (see 6348968) leading to crash on exit
1407  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1408  if (handle == NULL) {
1409    handle = dlopen("librt.so", RTLD_LAZY);
1410  }
1411
1412  if (handle) {
1413    int (*clock_getres_func)(clockid_t, struct timespec*) =
1414           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1415    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1416           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1417    if (clock_getres_func && clock_gettime_func) {
1418      // See if monotonic clock is supported by the kernel. Note that some
1419      // early implementations simply return kernel jiffies (updated every
1420      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1421      // for nano time (though the monotonic property is still nice to have).
1422      // It's fixed in newer kernels, however clock_getres() still returns
1423      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1424      // resolution for now. Hopefully as people move to new kernels, this
1425      // won't be a problem.
1426      struct timespec res;
1427      struct timespec tp;
1428      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1429          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1430        // yes, monotonic clock is supported
1431        _clock_gettime = clock_gettime_func;
1432      } else {
1433        // close librt if there is no monotonic clock
1434        dlclose(handle);
1435      }
1436    }
1437  }
1438}
1439
1440#ifndef SYS_clock_getres
1441
1442#if defined(IA32) || defined(AMD64)
1443#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1444#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1445#else
1446#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1447#define sys_clock_getres(x,y)  -1
1448#endif
1449
1450#else
1451#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1452#endif
1453
1454void os::Linux::fast_thread_clock_init() {
1455  if (!UseLinuxPosixThreadCPUClocks) {
1456    return;
1457  }
1458  clockid_t clockid;
1459  struct timespec tp;
1460  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1461      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1462
1463  // Switch to using fast clocks for thread cpu time if
1464  // the sys_clock_getres() returns 0 error code.
1465  // Note, that some kernels may support the current thread
1466  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1467  // returned by the pthread_getcpuclockid().
1468  // If the fast Posix clocks are supported then the sys_clock_getres()
1469  // must return at least tp.tv_sec == 0 which means a resolution
1470  // better than 1 sec. This is extra check for reliability.
1471
1472  if(pthread_getcpuclockid_func &&
1473     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1474     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1475
1476    _supports_fast_thread_cpu_time = true;
1477    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1478  }
1479}
1480
1481jlong os::javaTimeNanos() {
1482  if (Linux::supports_monotonic_clock()) {
1483    struct timespec tp;
1484    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1485    assert(status == 0, "gettime error");
1486    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1487    return result;
1488  } else {
1489    timeval time;
1490    int status = gettimeofday(&time, NULL);
1491    assert(status != -1, "linux error");
1492    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1493    return 1000 * usecs;
1494  }
1495}
1496
1497void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1498  if (Linux::supports_monotonic_clock()) {
1499    info_ptr->max_value = ALL_64_BITS;
1500
1501    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1502    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1503    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1504  } else {
1505    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1506    info_ptr->max_value = ALL_64_BITS;
1507
1508    // gettimeofday is a real time clock so it skips
1509    info_ptr->may_skip_backward = true;
1510    info_ptr->may_skip_forward = true;
1511  }
1512
1513  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1514}
1515
1516// Return the real, user, and system times in seconds from an
1517// arbitrary fixed point in the past.
1518bool os::getTimesSecs(double* process_real_time,
1519                      double* process_user_time,
1520                      double* process_system_time) {
1521  struct tms ticks;
1522  clock_t real_ticks = times(&ticks);
1523
1524  if (real_ticks == (clock_t) (-1)) {
1525    return false;
1526  } else {
1527    double ticks_per_second = (double) clock_tics_per_sec;
1528    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1529    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1530    *process_real_time = ((double) real_ticks) / ticks_per_second;
1531
1532    return true;
1533  }
1534}
1535
1536
1537char * os::local_time_string(char *buf, size_t buflen) {
1538  struct tm t;
1539  time_t long_time;
1540  time(&long_time);
1541  localtime_r(&long_time, &t);
1542  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1543               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1544               t.tm_hour, t.tm_min, t.tm_sec);
1545  return buf;
1546}
1547
1548struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1549  return localtime_r(clock, res);
1550}
1551
1552////////////////////////////////////////////////////////////////////////////////
1553// runtime exit support
1554
1555// Note: os::shutdown() might be called very early during initialization, or
1556// called from signal handler. Before adding something to os::shutdown(), make
1557// sure it is async-safe and can handle partially initialized VM.
1558void os::shutdown() {
1559
1560  // allow PerfMemory to attempt cleanup of any persistent resources
1561  perfMemory_exit();
1562
1563  // needs to remove object in file system
1564  AttachListener::abort();
1565
1566  // flush buffered output, finish log files
1567  ostream_abort();
1568
1569  // Check for abort hook
1570  abort_hook_t abort_hook = Arguments::abort_hook();
1571  if (abort_hook != NULL) {
1572    abort_hook();
1573  }
1574
1575}
1576
1577// Note: os::abort() might be called very early during initialization, or
1578// called from signal handler. Before adding something to os::abort(), make
1579// sure it is async-safe and can handle partially initialized VM.
1580void os::abort(bool dump_core) {
1581  os::shutdown();
1582  if (dump_core) {
1583#ifndef PRODUCT
1584    fdStream out(defaultStream::output_fd());
1585    out.print_raw("Current thread is ");
1586    char buf[16];
1587    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1588    out.print_raw_cr(buf);
1589    out.print_raw_cr("Dumping core ...");
1590#endif
1591    ::abort(); // dump core
1592  }
1593
1594  ::exit(1);
1595}
1596
1597// Die immediately, no exit hook, no abort hook, no cleanup.
1598void os::die() {
1599  // _exit() on LinuxThreads only kills current thread
1600  ::abort();
1601}
1602
1603// unused on linux for now.
1604void os::set_error_file(const char *logfile) {}
1605
1606
1607// This method is a copy of JDK's sysGetLastErrorString
1608// from src/solaris/hpi/src/system_md.c
1609
1610size_t os::lasterror(char *buf, size_t len) {
1611
1612  if (errno == 0)  return 0;
1613
1614  const char *s = ::strerror(errno);
1615  size_t n = ::strlen(s);
1616  if (n >= len) {
1617    n = len - 1;
1618  }
1619  ::strncpy(buf, s, n);
1620  buf[n] = '\0';
1621  return n;
1622}
1623
1624intx os::current_thread_id() { return (intx)pthread_self(); }
1625int os::current_process_id() {
1626
1627  // Under the old linux thread library, linux gives each thread
1628  // its own process id. Because of this each thread will return
1629  // a different pid if this method were to return the result
1630  // of getpid(2). Linux provides no api that returns the pid
1631  // of the launcher thread for the vm. This implementation
1632  // returns a unique pid, the pid of the launcher thread
1633  // that starts the vm 'process'.
1634
1635  // Under the NPTL, getpid() returns the same pid as the
1636  // launcher thread rather than a unique pid per thread.
1637  // Use gettid() if you want the old pre NPTL behaviour.
1638
1639  // if you are looking for the result of a call to getpid() that
1640  // returns a unique pid for the calling thread, then look at the
1641  // OSThread::thread_id() method in osThread_linux.hpp file
1642
1643  return (int)(_initial_pid ? _initial_pid : getpid());
1644}
1645
1646// DLL functions
1647
1648const char* os::dll_file_extension() { return ".so"; }
1649
1650// This must be hard coded because it's the system's temporary
1651// directory not the java application's temp directory, ala java.io.tmpdir.
1652const char* os::get_temp_directory() { return "/tmp"; }
1653
1654static bool file_exists(const char* filename) {
1655  struct stat statbuf;
1656  if (filename == NULL || strlen(filename) == 0) {
1657    return false;
1658  }
1659  return os::stat(filename, &statbuf) == 0;
1660}
1661
1662void os::dll_build_name(char* buffer, size_t buflen,
1663                        const char* pname, const char* fname) {
1664  // Copied from libhpi
1665  const size_t pnamelen = pname ? strlen(pname) : 0;
1666
1667  // Quietly truncate on buffer overflow.  Should be an error.
1668  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1669      *buffer = '\0';
1670      return;
1671  }
1672
1673  if (pnamelen == 0) {
1674    snprintf(buffer, buflen, "lib%s.so", fname);
1675  } else if (strchr(pname, *os::path_separator()) != NULL) {
1676    int n;
1677    char** pelements = split_path(pname, &n);
1678    for (int i = 0 ; i < n ; i++) {
1679      // Really shouldn't be NULL, but check can't hurt
1680      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1681        continue; // skip the empty path values
1682      }
1683      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1684      if (file_exists(buffer)) {
1685        break;
1686      }
1687    }
1688    // release the storage
1689    for (int i = 0 ; i < n ; i++) {
1690      if (pelements[i] != NULL) {
1691        FREE_C_HEAP_ARRAY(char, pelements[i]);
1692      }
1693    }
1694    if (pelements != NULL) {
1695      FREE_C_HEAP_ARRAY(char*, pelements);
1696    }
1697  } else {
1698    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1699  }
1700}
1701
1702const char* os::get_current_directory(char *buf, int buflen) {
1703  return getcwd(buf, buflen);
1704}
1705
1706// check if addr is inside libjvm[_g].so
1707bool os::address_is_in_vm(address addr) {
1708  static address libjvm_base_addr;
1709  Dl_info dlinfo;
1710
1711  if (libjvm_base_addr == NULL) {
1712    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1713    libjvm_base_addr = (address)dlinfo.dli_fbase;
1714    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1715  }
1716
1717  if (dladdr((void *)addr, &dlinfo)) {
1718    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1719  }
1720
1721  return false;
1722}
1723
1724bool os::dll_address_to_function_name(address addr, char *buf,
1725                                      int buflen, int *offset) {
1726  Dl_info dlinfo;
1727
1728  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1729    if (buf != NULL) {
1730      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1731        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1732      }
1733    }
1734    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1735    return true;
1736  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1737    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1738       dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1739       return true;
1740    }
1741  }
1742
1743  if (buf != NULL) buf[0] = '\0';
1744  if (offset != NULL) *offset = -1;
1745  return false;
1746}
1747
1748struct _address_to_library_name {
1749  address addr;          // input : memory address
1750  size_t  buflen;        //         size of fname
1751  char*   fname;         // output: library name
1752  address base;          //         library base addr
1753};
1754
1755static int address_to_library_name_callback(struct dl_phdr_info *info,
1756                                            size_t size, void *data) {
1757  int i;
1758  bool found = false;
1759  address libbase = NULL;
1760  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1761
1762  // iterate through all loadable segments
1763  for (i = 0; i < info->dlpi_phnum; i++) {
1764    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1765    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1766      // base address of a library is the lowest address of its loaded
1767      // segments.
1768      if (libbase == NULL || libbase > segbase) {
1769        libbase = segbase;
1770      }
1771      // see if 'addr' is within current segment
1772      if (segbase <= d->addr &&
1773          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1774        found = true;
1775      }
1776    }
1777  }
1778
1779  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1780  // so dll_address_to_library_name() can fall through to use dladdr() which
1781  // can figure out executable name from argv[0].
1782  if (found && info->dlpi_name && info->dlpi_name[0]) {
1783    d->base = libbase;
1784    if (d->fname) {
1785      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1786    }
1787    return 1;
1788  }
1789  return 0;
1790}
1791
1792bool os::dll_address_to_library_name(address addr, char* buf,
1793                                     int buflen, int* offset) {
1794  Dl_info dlinfo;
1795  struct _address_to_library_name data;
1796
1797  // There is a bug in old glibc dladdr() implementation that it could resolve
1798  // to wrong library name if the .so file has a base address != NULL. Here
1799  // we iterate through the program headers of all loaded libraries to find
1800  // out which library 'addr' really belongs to. This workaround can be
1801  // removed once the minimum requirement for glibc is moved to 2.3.x.
1802  data.addr = addr;
1803  data.fname = buf;
1804  data.buflen = buflen;
1805  data.base = NULL;
1806  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1807
1808  if (rslt) {
1809     // buf already contains library name
1810     if (offset) *offset = addr - data.base;
1811     return true;
1812  } else if (dladdr((void*)addr, &dlinfo)){
1813     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1814     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1815     return true;
1816  } else {
1817     if (buf) buf[0] = '\0';
1818     if (offset) *offset = -1;
1819     return false;
1820  }
1821}
1822
1823  // Loads .dll/.so and
1824  // in case of error it checks if .dll/.so was built for the
1825  // same architecture as Hotspot is running on
1826
1827void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1828{
1829  void * result= ::dlopen(filename, RTLD_LAZY);
1830  if (result != NULL) {
1831    // Successful loading
1832    return result;
1833  }
1834
1835  Elf32_Ehdr elf_head;
1836
1837  // Read system error message into ebuf
1838  // It may or may not be overwritten below
1839  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1840  ebuf[ebuflen-1]='\0';
1841  int diag_msg_max_length=ebuflen-strlen(ebuf);
1842  char* diag_msg_buf=ebuf+strlen(ebuf);
1843
1844  if (diag_msg_max_length==0) {
1845    // No more space in ebuf for additional diagnostics message
1846    return NULL;
1847  }
1848
1849
1850  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1851
1852  if (file_descriptor < 0) {
1853    // Can't open library, report dlerror() message
1854    return NULL;
1855  }
1856
1857  bool failed_to_read_elf_head=
1858    (sizeof(elf_head)!=
1859        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1860
1861  ::close(file_descriptor);
1862  if (failed_to_read_elf_head) {
1863    // file i/o error - report dlerror() msg
1864    return NULL;
1865  }
1866
1867  typedef struct {
1868    Elf32_Half  code;         // Actual value as defined in elf.h
1869    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1870    char        elf_class;    // 32 or 64 bit
1871    char        endianess;    // MSB or LSB
1872    char*       name;         // String representation
1873  } arch_t;
1874
1875  #ifndef EM_486
1876  #define EM_486          6               /* Intel 80486 */
1877  #endif
1878
1879  static const arch_t arch_array[]={
1880    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1881    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1882    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1883    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1884    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1885    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1886    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1887    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1888    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1889    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1890    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1891    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1892    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1893    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1894    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1895    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1896  };
1897
1898  #if  (defined IA32)
1899    static  Elf32_Half running_arch_code=EM_386;
1900  #elif   (defined AMD64)
1901    static  Elf32_Half running_arch_code=EM_X86_64;
1902  #elif  (defined IA64)
1903    static  Elf32_Half running_arch_code=EM_IA_64;
1904  #elif  (defined __sparc) && (defined _LP64)
1905    static  Elf32_Half running_arch_code=EM_SPARCV9;
1906  #elif  (defined __sparc) && (!defined _LP64)
1907    static  Elf32_Half running_arch_code=EM_SPARC;
1908  #elif  (defined __powerpc64__)
1909    static  Elf32_Half running_arch_code=EM_PPC64;
1910  #elif  (defined __powerpc__)
1911    static  Elf32_Half running_arch_code=EM_PPC;
1912  #elif  (defined ARM)
1913    static  Elf32_Half running_arch_code=EM_ARM;
1914  #elif  (defined S390)
1915    static  Elf32_Half running_arch_code=EM_S390;
1916  #elif  (defined ALPHA)
1917    static  Elf32_Half running_arch_code=EM_ALPHA;
1918  #elif  (defined MIPSEL)
1919    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1920  #elif  (defined PARISC)
1921    static  Elf32_Half running_arch_code=EM_PARISC;
1922  #elif  (defined MIPS)
1923    static  Elf32_Half running_arch_code=EM_MIPS;
1924  #elif  (defined M68K)
1925    static  Elf32_Half running_arch_code=EM_68K;
1926  #else
1927    #error Method os::dll_load requires that one of following is defined:\
1928         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1929  #endif
1930
1931  // Identify compatability class for VM's architecture and library's architecture
1932  // Obtain string descriptions for architectures
1933
1934  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1935  int running_arch_index=-1;
1936
1937  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1938    if (running_arch_code == arch_array[i].code) {
1939      running_arch_index    = i;
1940    }
1941    if (lib_arch.code == arch_array[i].code) {
1942      lib_arch.compat_class = arch_array[i].compat_class;
1943      lib_arch.name         = arch_array[i].name;
1944    }
1945  }
1946
1947  assert(running_arch_index != -1,
1948    "Didn't find running architecture code (running_arch_code) in arch_array");
1949  if (running_arch_index == -1) {
1950    // Even though running architecture detection failed
1951    // we may still continue with reporting dlerror() message
1952    return NULL;
1953  }
1954
1955  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1956    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1957    return NULL;
1958  }
1959
1960#ifndef S390
1961  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1962    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1963    return NULL;
1964  }
1965#endif // !S390
1966
1967  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1968    if ( lib_arch.name!=NULL ) {
1969      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1970        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1971        lib_arch.name, arch_array[running_arch_index].name);
1972    } else {
1973      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1974      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1975        lib_arch.code,
1976        arch_array[running_arch_index].name);
1977    }
1978  }
1979
1980  return NULL;
1981}
1982
1983/*
1984 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1985 * chances are you might want to run the generated bits against glibc-2.0
1986 * libdl.so, so always use locking for any version of glibc.
1987 */
1988void* os::dll_lookup(void* handle, const char* name) {
1989  pthread_mutex_lock(&dl_mutex);
1990  void* res = dlsym(handle, name);
1991  pthread_mutex_unlock(&dl_mutex);
1992  return res;
1993}
1994
1995
1996static bool _print_ascii_file(const char* filename, outputStream* st) {
1997  int fd = ::open(filename, O_RDONLY);
1998  if (fd == -1) {
1999     return false;
2000  }
2001
2002  char buf[32];
2003  int bytes;
2004  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2005    st->print_raw(buf, bytes);
2006  }
2007
2008  ::close(fd);
2009
2010  return true;
2011}
2012
2013void os::print_dll_info(outputStream *st) {
2014   st->print_cr("Dynamic libraries:");
2015
2016   char fname[32];
2017   pid_t pid = os::Linux::gettid();
2018
2019   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2020
2021   if (!_print_ascii_file(fname, st)) {
2022     st->print("Can not get library information for pid = %d\n", pid);
2023   }
2024}
2025
2026
2027void os::print_os_info(outputStream* st) {
2028  st->print("OS:");
2029
2030  // Try to identify popular distros.
2031  // Most Linux distributions have /etc/XXX-release file, which contains
2032  // the OS version string. Some have more than one /etc/XXX-release file
2033  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2034  // so the order is important.
2035  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2036      !_print_ascii_file("/etc/sun-release", st) &&
2037      !_print_ascii_file("/etc/redhat-release", st) &&
2038      !_print_ascii_file("/etc/SuSE-release", st) &&
2039      !_print_ascii_file("/etc/turbolinux-release", st) &&
2040      !_print_ascii_file("/etc/gentoo-release", st) &&
2041      !_print_ascii_file("/etc/debian_version", st) &&
2042      !_print_ascii_file("/etc/ltib-release", st) &&
2043      !_print_ascii_file("/etc/angstrom-version", st)) {
2044      st->print("Linux");
2045  }
2046  st->cr();
2047
2048  // kernel
2049  st->print("uname:");
2050  struct utsname name;
2051  uname(&name);
2052  st->print(name.sysname); st->print(" ");
2053  st->print(name.release); st->print(" ");
2054  st->print(name.version); st->print(" ");
2055  st->print(name.machine);
2056  st->cr();
2057
2058  // Print warning if unsafe chroot environment detected
2059  if (unsafe_chroot_detected) {
2060    st->print("WARNING!! ");
2061    st->print_cr(unstable_chroot_error);
2062  }
2063
2064  // libc, pthread
2065  st->print("libc:");
2066  st->print(os::Linux::glibc_version()); st->print(" ");
2067  st->print(os::Linux::libpthread_version()); st->print(" ");
2068  if (os::Linux::is_LinuxThreads()) {
2069     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2070  }
2071  st->cr();
2072
2073  // rlimit
2074  st->print("rlimit:");
2075  struct rlimit rlim;
2076
2077  st->print(" STACK ");
2078  getrlimit(RLIMIT_STACK, &rlim);
2079  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2080  else st->print("%uk", rlim.rlim_cur >> 10);
2081
2082  st->print(", CORE ");
2083  getrlimit(RLIMIT_CORE, &rlim);
2084  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2085  else st->print("%uk", rlim.rlim_cur >> 10);
2086
2087  st->print(", NPROC ");
2088  getrlimit(RLIMIT_NPROC, &rlim);
2089  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2090  else st->print("%d", rlim.rlim_cur);
2091
2092  st->print(", NOFILE ");
2093  getrlimit(RLIMIT_NOFILE, &rlim);
2094  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2095  else st->print("%d", rlim.rlim_cur);
2096
2097  st->print(", AS ");
2098  getrlimit(RLIMIT_AS, &rlim);
2099  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2100  else st->print("%uk", rlim.rlim_cur >> 10);
2101  st->cr();
2102
2103  // load average
2104  st->print("load average:");
2105  double loadavg[3];
2106  os::loadavg(loadavg, 3);
2107  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2108  st->cr();
2109
2110  // meminfo
2111  st->print("\n/proc/meminfo:\n");
2112  _print_ascii_file("/proc/meminfo", st);
2113  st->cr();
2114}
2115
2116void os::pd_print_cpu_info(outputStream* st) {
2117  st->print("\n/proc/cpuinfo:\n");
2118  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2119    st->print("  <Not Available>");
2120  }
2121  st->cr();
2122}
2123
2124void os::print_memory_info(outputStream* st) {
2125
2126  st->print("Memory:");
2127  st->print(" %dk page", os::vm_page_size()>>10);
2128
2129  // values in struct sysinfo are "unsigned long"
2130  struct sysinfo si;
2131  sysinfo(&si);
2132
2133  st->print(", physical " UINT64_FORMAT "k",
2134            os::physical_memory() >> 10);
2135  st->print("(" UINT64_FORMAT "k free)",
2136            os::available_memory() >> 10);
2137  st->print(", swap " UINT64_FORMAT "k",
2138            ((jlong)si.totalswap * si.mem_unit) >> 10);
2139  st->print("(" UINT64_FORMAT "k free)",
2140            ((jlong)si.freeswap * si.mem_unit) >> 10);
2141  st->cr();
2142}
2143
2144// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2145// but they're the same for all the linux arch that we support
2146// and they're the same for solaris but there's no common place to put this.
2147const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2148                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2149                          "ILL_COPROC", "ILL_BADSTK" };
2150
2151const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2152                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2153                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2154
2155const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2156
2157const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2158
2159void os::print_siginfo(outputStream* st, void* siginfo) {
2160  st->print("siginfo:");
2161
2162  const int buflen = 100;
2163  char buf[buflen];
2164  siginfo_t *si = (siginfo_t*)siginfo;
2165  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2166  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2167    st->print("si_errno=%s", buf);
2168  } else {
2169    st->print("si_errno=%d", si->si_errno);
2170  }
2171  const int c = si->si_code;
2172  assert(c > 0, "unexpected si_code");
2173  switch (si->si_signo) {
2174  case SIGILL:
2175    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2176    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2177    break;
2178  case SIGFPE:
2179    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2180    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2181    break;
2182  case SIGSEGV:
2183    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2184    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2185    break;
2186  case SIGBUS:
2187    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2188    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2189    break;
2190  default:
2191    st->print(", si_code=%d", si->si_code);
2192    // no si_addr
2193  }
2194
2195  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2196      UseSharedSpaces) {
2197    FileMapInfo* mapinfo = FileMapInfo::current_info();
2198    if (mapinfo->is_in_shared_space(si->si_addr)) {
2199      st->print("\n\nError accessing class data sharing archive."   \
2200                " Mapped file inaccessible during execution, "      \
2201                " possible disk/network problem.");
2202    }
2203  }
2204  st->cr();
2205}
2206
2207
2208static void print_signal_handler(outputStream* st, int sig,
2209                                 char* buf, size_t buflen);
2210
2211void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2212  st->print_cr("Signal Handlers:");
2213  print_signal_handler(st, SIGSEGV, buf, buflen);
2214  print_signal_handler(st, SIGBUS , buf, buflen);
2215  print_signal_handler(st, SIGFPE , buf, buflen);
2216  print_signal_handler(st, SIGPIPE, buf, buflen);
2217  print_signal_handler(st, SIGXFSZ, buf, buflen);
2218  print_signal_handler(st, SIGILL , buf, buflen);
2219  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2220  print_signal_handler(st, SR_signum, buf, buflen);
2221  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2222  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2223  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2224  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2225}
2226
2227static char saved_jvm_path[MAXPATHLEN] = {0};
2228
2229// Find the full path to the current module, libjvm.so or libjvm_g.so
2230void os::jvm_path(char *buf, jint buflen) {
2231  // Error checking.
2232  if (buflen < MAXPATHLEN) {
2233    assert(false, "must use a large-enough buffer");
2234    buf[0] = '\0';
2235    return;
2236  }
2237  // Lazy resolve the path to current module.
2238  if (saved_jvm_path[0] != 0) {
2239    strcpy(buf, saved_jvm_path);
2240    return;
2241  }
2242
2243  char dli_fname[MAXPATHLEN];
2244  bool ret = dll_address_to_library_name(
2245                CAST_FROM_FN_PTR(address, os::jvm_path),
2246                dli_fname, sizeof(dli_fname), NULL);
2247  assert(ret != 0, "cannot locate libjvm");
2248  char *rp = realpath(dli_fname, buf);
2249  if (rp == NULL)
2250    return;
2251
2252  if (Arguments::created_by_gamma_launcher()) {
2253    // Support for the gamma launcher.  Typical value for buf is
2254    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2255    // the right place in the string, then assume we are installed in a JDK and
2256    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2257    // up the path so it looks like libjvm.so is installed there (append a
2258    // fake suffix hotspot/libjvm.so).
2259    const char *p = buf + strlen(buf) - 1;
2260    for (int count = 0; p > buf && count < 5; ++count) {
2261      for (--p; p > buf && *p != '/'; --p)
2262        /* empty */ ;
2263    }
2264
2265    if (strncmp(p, "/jre/lib/", 9) != 0) {
2266      // Look for JAVA_HOME in the environment.
2267      char* java_home_var = ::getenv("JAVA_HOME");
2268      if (java_home_var != NULL && java_home_var[0] != 0) {
2269        char* jrelib_p;
2270        int len;
2271
2272        // Check the current module name "libjvm.so" or "libjvm_g.so".
2273        p = strrchr(buf, '/');
2274        assert(strstr(p, "/libjvm") == p, "invalid library name");
2275        p = strstr(p, "_g") ? "_g" : "";
2276
2277        rp = realpath(java_home_var, buf);
2278        if (rp == NULL)
2279          return;
2280
2281        // determine if this is a legacy image or modules image
2282        // modules image doesn't have "jre" subdirectory
2283        len = strlen(buf);
2284        jrelib_p = buf + len;
2285        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2286        if (0 != access(buf, F_OK)) {
2287          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2288        }
2289
2290        if (0 == access(buf, F_OK)) {
2291          // Use current module name "libjvm[_g].so" instead of
2292          // "libjvm"debug_only("_g")".so" since for fastdebug version
2293          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2294          len = strlen(buf);
2295          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2296        } else {
2297          // Go back to path of .so
2298          rp = realpath(dli_fname, buf);
2299          if (rp == NULL)
2300            return;
2301        }
2302      }
2303    }
2304  }
2305
2306  strcpy(saved_jvm_path, buf);
2307}
2308
2309void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2310  // no prefix required, not even "_"
2311}
2312
2313void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2314  // no suffix required
2315}
2316
2317////////////////////////////////////////////////////////////////////////////////
2318// sun.misc.Signal support
2319
2320static volatile jint sigint_count = 0;
2321
2322static void
2323UserHandler(int sig, void *siginfo, void *context) {
2324  // 4511530 - sem_post is serialized and handled by the manager thread. When
2325  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2326  // don't want to flood the manager thread with sem_post requests.
2327  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2328      return;
2329
2330  // Ctrl-C is pressed during error reporting, likely because the error
2331  // handler fails to abort. Let VM die immediately.
2332  if (sig == SIGINT && is_error_reported()) {
2333     os::die();
2334  }
2335
2336  os::signal_notify(sig);
2337}
2338
2339void* os::user_handler() {
2340  return CAST_FROM_FN_PTR(void*, UserHandler);
2341}
2342
2343extern "C" {
2344  typedef void (*sa_handler_t)(int);
2345  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2346}
2347
2348void* os::signal(int signal_number, void* handler) {
2349  struct sigaction sigAct, oldSigAct;
2350
2351  sigfillset(&(sigAct.sa_mask));
2352  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2353  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2354
2355  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2356    // -1 means registration failed
2357    return (void *)-1;
2358  }
2359
2360  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2361}
2362
2363void os::signal_raise(int signal_number) {
2364  ::raise(signal_number);
2365}
2366
2367/*
2368 * The following code is moved from os.cpp for making this
2369 * code platform specific, which it is by its very nature.
2370 */
2371
2372// Will be modified when max signal is changed to be dynamic
2373int os::sigexitnum_pd() {
2374  return NSIG;
2375}
2376
2377// a counter for each possible signal value
2378static volatile jint pending_signals[NSIG+1] = { 0 };
2379
2380// Linux(POSIX) specific hand shaking semaphore.
2381static sem_t sig_sem;
2382
2383void os::signal_init_pd() {
2384  // Initialize signal structures
2385  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2386
2387  // Initialize signal semaphore
2388  ::sem_init(&sig_sem, 0, 0);
2389}
2390
2391void os::signal_notify(int sig) {
2392  Atomic::inc(&pending_signals[sig]);
2393  ::sem_post(&sig_sem);
2394}
2395
2396static int check_pending_signals(bool wait) {
2397  Atomic::store(0, &sigint_count);
2398  for (;;) {
2399    for (int i = 0; i < NSIG + 1; i++) {
2400      jint n = pending_signals[i];
2401      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2402        return i;
2403      }
2404    }
2405    if (!wait) {
2406      return -1;
2407    }
2408    JavaThread *thread = JavaThread::current();
2409    ThreadBlockInVM tbivm(thread);
2410
2411    bool threadIsSuspended;
2412    do {
2413      thread->set_suspend_equivalent();
2414      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2415      ::sem_wait(&sig_sem);
2416
2417      // were we externally suspended while we were waiting?
2418      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2419      if (threadIsSuspended) {
2420        //
2421        // The semaphore has been incremented, but while we were waiting
2422        // another thread suspended us. We don't want to continue running
2423        // while suspended because that would surprise the thread that
2424        // suspended us.
2425        //
2426        ::sem_post(&sig_sem);
2427
2428        thread->java_suspend_self();
2429      }
2430    } while (threadIsSuspended);
2431  }
2432}
2433
2434int os::signal_lookup() {
2435  return check_pending_signals(false);
2436}
2437
2438int os::signal_wait() {
2439  return check_pending_signals(true);
2440}
2441
2442////////////////////////////////////////////////////////////////////////////////
2443// Virtual Memory
2444
2445int os::vm_page_size() {
2446  // Seems redundant as all get out
2447  assert(os::Linux::page_size() != -1, "must call os::init");
2448  return os::Linux::page_size();
2449}
2450
2451// Solaris allocates memory by pages.
2452int os::vm_allocation_granularity() {
2453  assert(os::Linux::page_size() != -1, "must call os::init");
2454  return os::Linux::page_size();
2455}
2456
2457// Rationale behind this function:
2458//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2459//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2460//  samples for JITted code. Here we create private executable mapping over the code cache
2461//  and then we can use standard (well, almost, as mapping can change) way to provide
2462//  info for the reporting script by storing timestamp and location of symbol
2463void linux_wrap_code(char* base, size_t size) {
2464  static volatile jint cnt = 0;
2465
2466  if (!UseOprofile) {
2467    return;
2468  }
2469
2470  char buf[PATH_MAX+1];
2471  int num = Atomic::add(1, &cnt);
2472
2473  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2474           os::get_temp_directory(), os::current_process_id(), num);
2475  unlink(buf);
2476
2477  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2478
2479  if (fd != -1) {
2480    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2481    if (rv != (off_t)-1) {
2482      if (::write(fd, "", 1) == 1) {
2483        mmap(base, size,
2484             PROT_READ|PROT_WRITE|PROT_EXEC,
2485             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2486      }
2487    }
2488    ::close(fd);
2489    unlink(buf);
2490  }
2491}
2492
2493// NOTE: Linux kernel does not really reserve the pages for us.
2494//       All it does is to check if there are enough free pages
2495//       left at the time of mmap(). This could be a potential
2496//       problem.
2497bool os::commit_memory(char* addr, size_t size, bool exec) {
2498  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2499  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2500                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2501  if (res != (uintptr_t) MAP_FAILED) {
2502    if (UseNUMAInterleaving) {
2503      numa_make_global(addr, size);
2504    }
2505    return true;
2506  }
2507  return false;
2508}
2509
2510// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2511#ifndef MAP_HUGETLB
2512#define MAP_HUGETLB 0x40000
2513#endif
2514
2515// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2516#ifndef MADV_HUGEPAGE
2517#define MADV_HUGEPAGE 14
2518#endif
2519
2520bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2521                       bool exec) {
2522  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2523    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2524    uintptr_t res =
2525      (uintptr_t) ::mmap(addr, size, prot,
2526                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2527                         -1, 0);
2528    if (res != (uintptr_t) MAP_FAILED) {
2529      if (UseNUMAInterleaving) {
2530        numa_make_global(addr, size);
2531      }
2532      return true;
2533    }
2534    // Fall through and try to use small pages
2535  }
2536
2537  if (commit_memory(addr, size, exec)) {
2538    realign_memory(addr, size, alignment_hint);
2539    return true;
2540  }
2541  return false;
2542}
2543
2544void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2545  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2546    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2547    // be supported or the memory may already be backed by huge pages.
2548    ::madvise(addr, bytes, MADV_HUGEPAGE);
2549  }
2550}
2551
2552void os::free_memory(char *addr, size_t bytes) {
2553  commit_memory(addr, bytes, false);
2554}
2555
2556void os::numa_make_global(char *addr, size_t bytes) {
2557  Linux::numa_interleave_memory(addr, bytes);
2558}
2559
2560void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2561  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2562}
2563
2564bool os::numa_topology_changed()   { return false; }
2565
2566size_t os::numa_get_groups_num() {
2567  int max_node = Linux::numa_max_node();
2568  return max_node > 0 ? max_node + 1 : 1;
2569}
2570
2571int os::numa_get_group_id() {
2572  int cpu_id = Linux::sched_getcpu();
2573  if (cpu_id != -1) {
2574    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2575    if (lgrp_id != -1) {
2576      return lgrp_id;
2577    }
2578  }
2579  return 0;
2580}
2581
2582size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2583  for (size_t i = 0; i < size; i++) {
2584    ids[i] = i;
2585  }
2586  return size;
2587}
2588
2589bool os::get_page_info(char *start, page_info* info) {
2590  return false;
2591}
2592
2593char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2594  return end;
2595}
2596
2597
2598int os::Linux::sched_getcpu_syscall(void) {
2599  unsigned int cpu;
2600  int retval = -1;
2601
2602#if defined(IA32)
2603# ifndef SYS_getcpu
2604# define SYS_getcpu 318
2605# endif
2606  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2607#elif defined(AMD64)
2608// Unfortunately we have to bring all these macros here from vsyscall.h
2609// to be able to compile on old linuxes.
2610# define __NR_vgetcpu 2
2611# define VSYSCALL_START (-10UL << 20)
2612# define VSYSCALL_SIZE 1024
2613# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2614  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2615  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2616  retval = vgetcpu(&cpu, NULL, NULL);
2617#endif
2618
2619  return (retval == -1) ? retval : cpu;
2620}
2621
2622// Something to do with the numa-aware allocator needs these symbols
2623extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2624extern "C" JNIEXPORT void numa_error(char *where) { }
2625extern "C" JNIEXPORT int fork1() { return fork(); }
2626
2627
2628// If we are running with libnuma version > 2, then we should
2629// be trying to use symbols with versions 1.1
2630// If we are running with earlier version, which did not have symbol versions,
2631// we should use the base version.
2632void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2633  void *f = dlvsym(handle, name, "libnuma_1.1");
2634  if (f == NULL) {
2635    f = dlsym(handle, name);
2636  }
2637  return f;
2638}
2639
2640bool os::Linux::libnuma_init() {
2641  // sched_getcpu() should be in libc.
2642  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2643                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2644
2645  // If it's not, try a direct syscall.
2646  if (sched_getcpu() == -1)
2647    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2648
2649  if (sched_getcpu() != -1) { // Does it work?
2650    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2651    if (handle != NULL) {
2652      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2653                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2654      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2655                                       libnuma_dlsym(handle, "numa_max_node")));
2656      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2657                                        libnuma_dlsym(handle, "numa_available")));
2658      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2659                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2660      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2661                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2662
2663
2664      if (numa_available() != -1) {
2665        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2666        // Create a cpu -> node mapping
2667        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2668        rebuild_cpu_to_node_map();
2669        return true;
2670      }
2671    }
2672  }
2673  return false;
2674}
2675
2676// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2677// The table is later used in get_node_by_cpu().
2678void os::Linux::rebuild_cpu_to_node_map() {
2679  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2680                              // in libnuma (possible values are starting from 16,
2681                              // and continuing up with every other power of 2, but less
2682                              // than the maximum number of CPUs supported by kernel), and
2683                              // is a subject to change (in libnuma version 2 the requirements
2684                              // are more reasonable) we'll just hardcode the number they use
2685                              // in the library.
2686  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2687
2688  size_t cpu_num = os::active_processor_count();
2689  size_t cpu_map_size = NCPUS / BitsPerCLong;
2690  size_t cpu_map_valid_size =
2691    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2692
2693  cpu_to_node()->clear();
2694  cpu_to_node()->at_grow(cpu_num - 1);
2695  size_t node_num = numa_get_groups_num();
2696
2697  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2698  for (size_t i = 0; i < node_num; i++) {
2699    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2700      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2701        if (cpu_map[j] != 0) {
2702          for (size_t k = 0; k < BitsPerCLong; k++) {
2703            if (cpu_map[j] & (1UL << k)) {
2704              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2705            }
2706          }
2707        }
2708      }
2709    }
2710  }
2711  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2712}
2713
2714int os::Linux::get_node_by_cpu(int cpu_id) {
2715  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2716    return cpu_to_node()->at(cpu_id);
2717  }
2718  return -1;
2719}
2720
2721GrowableArray<int>* os::Linux::_cpu_to_node;
2722os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2723os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2724os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2725os::Linux::numa_available_func_t os::Linux::_numa_available;
2726os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2727os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2728unsigned long* os::Linux::_numa_all_nodes;
2729
2730bool os::uncommit_memory(char* addr, size_t size) {
2731  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2732                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2733  return res  != (uintptr_t) MAP_FAILED;
2734}
2735
2736// Linux uses a growable mapping for the stack, and if the mapping for
2737// the stack guard pages is not removed when we detach a thread the
2738// stack cannot grow beyond the pages where the stack guard was
2739// mapped.  If at some point later in the process the stack expands to
2740// that point, the Linux kernel cannot expand the stack any further
2741// because the guard pages are in the way, and a segfault occurs.
2742//
2743// However, it's essential not to split the stack region by unmapping
2744// a region (leaving a hole) that's already part of the stack mapping,
2745// so if the stack mapping has already grown beyond the guard pages at
2746// the time we create them, we have to truncate the stack mapping.
2747// So, we need to know the extent of the stack mapping when
2748// create_stack_guard_pages() is called.
2749
2750// Find the bounds of the stack mapping.  Return true for success.
2751//
2752// We only need this for stacks that are growable: at the time of
2753// writing thread stacks don't use growable mappings (i.e. those
2754// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2755// only applies to the main thread.
2756
2757static
2758bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2759
2760  char buf[128];
2761  int fd, sz;
2762
2763  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2764    return false;
2765  }
2766
2767  const char kw[] = "[stack]";
2768  const int kwlen = sizeof(kw)-1;
2769
2770  // Address part of /proc/self/maps couldn't be more than 128 bytes
2771  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2772     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2773        // Extract addresses
2774        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2775           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2776           if (sp >= *bottom && sp <= *top) {
2777              ::close(fd);
2778              return true;
2779           }
2780        }
2781     }
2782  }
2783
2784 ::close(fd);
2785  return false;
2786}
2787
2788
2789// If the (growable) stack mapping already extends beyond the point
2790// where we're going to put our guard pages, truncate the mapping at
2791// that point by munmap()ping it.  This ensures that when we later
2792// munmap() the guard pages we don't leave a hole in the stack
2793// mapping. This only affects the main/initial thread, but guard
2794// against future OS changes
2795bool os::create_stack_guard_pages(char* addr, size_t size) {
2796  uintptr_t stack_extent, stack_base;
2797  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2798  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2799      assert(os::Linux::is_initial_thread(),
2800           "growable stack in non-initial thread");
2801    if (stack_extent < (uintptr_t)addr)
2802      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2803  }
2804
2805  return os::commit_memory(addr, size);
2806}
2807
2808// If this is a growable mapping, remove the guard pages entirely by
2809// munmap()ping them.  If not, just call uncommit_memory(). This only
2810// affects the main/initial thread, but guard against future OS changes
2811bool os::remove_stack_guard_pages(char* addr, size_t size) {
2812  uintptr_t stack_extent, stack_base;
2813  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2814  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2815      assert(os::Linux::is_initial_thread(),
2816           "growable stack in non-initial thread");
2817
2818    return ::munmap(addr, size) == 0;
2819  }
2820
2821  return os::uncommit_memory(addr, size);
2822}
2823
2824static address _highest_vm_reserved_address = NULL;
2825
2826// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2827// at 'requested_addr'. If there are existing memory mappings at the same
2828// location, however, they will be overwritten. If 'fixed' is false,
2829// 'requested_addr' is only treated as a hint, the return value may or
2830// may not start from the requested address. Unlike Linux mmap(), this
2831// function returns NULL to indicate failure.
2832static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2833  char * addr;
2834  int flags;
2835
2836  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2837  if (fixed) {
2838    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2839    flags |= MAP_FIXED;
2840  }
2841
2842  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2843  // to PROT_EXEC if executable when we commit the page.
2844  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2845                       flags, -1, 0);
2846
2847  if (addr != MAP_FAILED) {
2848    // anon_mmap() should only get called during VM initialization,
2849    // don't need lock (actually we can skip locking even it can be called
2850    // from multiple threads, because _highest_vm_reserved_address is just a
2851    // hint about the upper limit of non-stack memory regions.)
2852    if ((address)addr + bytes > _highest_vm_reserved_address) {
2853      _highest_vm_reserved_address = (address)addr + bytes;
2854    }
2855  }
2856
2857  return addr == MAP_FAILED ? NULL : addr;
2858}
2859
2860// Don't update _highest_vm_reserved_address, because there might be memory
2861// regions above addr + size. If so, releasing a memory region only creates
2862// a hole in the address space, it doesn't help prevent heap-stack collision.
2863//
2864static int anon_munmap(char * addr, size_t size) {
2865  return ::munmap(addr, size) == 0;
2866}
2867
2868char* os::reserve_memory(size_t bytes, char* requested_addr,
2869                         size_t alignment_hint) {
2870  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2871}
2872
2873bool os::release_memory(char* addr, size_t size) {
2874  return anon_munmap(addr, size);
2875}
2876
2877static address highest_vm_reserved_address() {
2878  return _highest_vm_reserved_address;
2879}
2880
2881static bool linux_mprotect(char* addr, size_t size, int prot) {
2882  // Linux wants the mprotect address argument to be page aligned.
2883  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2884
2885  // According to SUSv3, mprotect() should only be used with mappings
2886  // established by mmap(), and mmap() always maps whole pages. Unaligned
2887  // 'addr' likely indicates problem in the VM (e.g. trying to change
2888  // protection of malloc'ed or statically allocated memory). Check the
2889  // caller if you hit this assert.
2890  assert(addr == bottom, "sanity check");
2891
2892  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2893  return ::mprotect(bottom, size, prot) == 0;
2894}
2895
2896// Set protections specified
2897bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2898                        bool is_committed) {
2899  unsigned int p = 0;
2900  switch (prot) {
2901  case MEM_PROT_NONE: p = PROT_NONE; break;
2902  case MEM_PROT_READ: p = PROT_READ; break;
2903  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2904  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2905  default:
2906    ShouldNotReachHere();
2907  }
2908  // is_committed is unused.
2909  return linux_mprotect(addr, bytes, p);
2910}
2911
2912bool os::guard_memory(char* addr, size_t size) {
2913  return linux_mprotect(addr, size, PROT_NONE);
2914}
2915
2916bool os::unguard_memory(char* addr, size_t size) {
2917  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2918}
2919
2920bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2921  bool result = false;
2922  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2923                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2924                  -1, 0);
2925
2926  if (p != (void *) -1) {
2927    // We don't know if this really is a huge page or not.
2928    FILE *fp = fopen("/proc/self/maps", "r");
2929    if (fp) {
2930      while (!feof(fp)) {
2931        char chars[257];
2932        long x = 0;
2933        if (fgets(chars, sizeof(chars), fp)) {
2934          if (sscanf(chars, "%lx-%*x", &x) == 1
2935              && x == (long)p) {
2936            if (strstr (chars, "hugepage")) {
2937              result = true;
2938              break;
2939            }
2940          }
2941        }
2942      }
2943      fclose(fp);
2944    }
2945    munmap (p, page_size);
2946    if (result)
2947      return true;
2948  }
2949
2950  if (warn) {
2951    warning("HugeTLBFS is not supported by the operating system.");
2952  }
2953
2954  return result;
2955}
2956
2957/*
2958* Set the coredump_filter bits to include largepages in core dump (bit 6)
2959*
2960* From the coredump_filter documentation:
2961*
2962* - (bit 0) anonymous private memory
2963* - (bit 1) anonymous shared memory
2964* - (bit 2) file-backed private memory
2965* - (bit 3) file-backed shared memory
2966* - (bit 4) ELF header pages in file-backed private memory areas (it is
2967*           effective only if the bit 2 is cleared)
2968* - (bit 5) hugetlb private memory
2969* - (bit 6) hugetlb shared memory
2970*/
2971static void set_coredump_filter(void) {
2972  FILE *f;
2973  long cdm;
2974
2975  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2976    return;
2977  }
2978
2979  if (fscanf(f, "%lx", &cdm) != 1) {
2980    fclose(f);
2981    return;
2982  }
2983
2984  rewind(f);
2985
2986  if ((cdm & LARGEPAGES_BIT) == 0) {
2987    cdm |= LARGEPAGES_BIT;
2988    fprintf(f, "%#lx", cdm);
2989  }
2990
2991  fclose(f);
2992}
2993
2994// Large page support
2995
2996static size_t _large_page_size = 0;
2997
2998void os::large_page_init() {
2999  if (!UseLargePages) {
3000    UseHugeTLBFS = false;
3001    UseSHM = false;
3002    return;
3003  }
3004
3005  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3006    // If UseLargePages is specified on the command line try both methods,
3007    // if it's default, then try only HugeTLBFS.
3008    if (FLAG_IS_DEFAULT(UseLargePages)) {
3009      UseHugeTLBFS = true;
3010    } else {
3011      UseHugeTLBFS = UseSHM = true;
3012    }
3013  }
3014
3015  if (LargePageSizeInBytes) {
3016    _large_page_size = LargePageSizeInBytes;
3017  } else {
3018    // large_page_size on Linux is used to round up heap size. x86 uses either
3019    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3020    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3021    // page as large as 256M.
3022    //
3023    // Here we try to figure out page size by parsing /proc/meminfo and looking
3024    // for a line with the following format:
3025    //    Hugepagesize:     2048 kB
3026    //
3027    // If we can't determine the value (e.g. /proc is not mounted, or the text
3028    // format has been changed), we'll use the largest page size supported by
3029    // the processor.
3030
3031#ifndef ZERO
3032    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3033                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3034#endif // ZERO
3035
3036    FILE *fp = fopen("/proc/meminfo", "r");
3037    if (fp) {
3038      while (!feof(fp)) {
3039        int x = 0;
3040        char buf[16];
3041        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3042          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3043            _large_page_size = x * K;
3044            break;
3045          }
3046        } else {
3047          // skip to next line
3048          for (;;) {
3049            int ch = fgetc(fp);
3050            if (ch == EOF || ch == (int)'\n') break;
3051          }
3052        }
3053      }
3054      fclose(fp);
3055    }
3056  }
3057
3058  // print a warning if any large page related flag is specified on command line
3059  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3060
3061  const size_t default_page_size = (size_t)Linux::page_size();
3062  if (_large_page_size > default_page_size) {
3063    _page_sizes[0] = _large_page_size;
3064    _page_sizes[1] = default_page_size;
3065    _page_sizes[2] = 0;
3066  }
3067  UseHugeTLBFS = UseHugeTLBFS &&
3068                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3069
3070  if (UseHugeTLBFS)
3071    UseSHM = false;
3072
3073  UseLargePages = UseHugeTLBFS || UseSHM;
3074
3075  set_coredump_filter();
3076}
3077
3078#ifndef SHM_HUGETLB
3079#define SHM_HUGETLB 04000
3080#endif
3081
3082char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3083  // "exec" is passed in but not used.  Creating the shared image for
3084  // the code cache doesn't have an SHM_X executable permission to check.
3085  assert(UseLargePages && UseSHM, "only for SHM large pages");
3086
3087  key_t key = IPC_PRIVATE;
3088  char *addr;
3089
3090  bool warn_on_failure = UseLargePages &&
3091                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3092                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3093                        );
3094  char msg[128];
3095
3096  // Create a large shared memory region to attach to based on size.
3097  // Currently, size is the total size of the heap
3098  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3099  if (shmid == -1) {
3100     // Possible reasons for shmget failure:
3101     // 1. shmmax is too small for Java heap.
3102     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3103     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3104     // 2. not enough large page memory.
3105     //    > check available large pages: cat /proc/meminfo
3106     //    > increase amount of large pages:
3107     //          echo new_value > /proc/sys/vm/nr_hugepages
3108     //      Note 1: different Linux may use different name for this property,
3109     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3110     //      Note 2: it's possible there's enough physical memory available but
3111     //            they are so fragmented after a long run that they can't
3112     //            coalesce into large pages. Try to reserve large pages when
3113     //            the system is still "fresh".
3114     if (warn_on_failure) {
3115       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3116       warning(msg);
3117     }
3118     return NULL;
3119  }
3120
3121  // attach to the region
3122  addr = (char*)shmat(shmid, req_addr, 0);
3123  int err = errno;
3124
3125  // Remove shmid. If shmat() is successful, the actual shared memory segment
3126  // will be deleted when it's detached by shmdt() or when the process
3127  // terminates. If shmat() is not successful this will remove the shared
3128  // segment immediately.
3129  shmctl(shmid, IPC_RMID, NULL);
3130
3131  if ((intptr_t)addr == -1) {
3132     if (warn_on_failure) {
3133       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3134       warning(msg);
3135     }
3136     return NULL;
3137  }
3138
3139  if ((addr != NULL) && UseNUMAInterleaving) {
3140    numa_make_global(addr, bytes);
3141  }
3142
3143  return addr;
3144}
3145
3146bool os::release_memory_special(char* base, size_t bytes) {
3147  // detaching the SHM segment will also delete it, see reserve_memory_special()
3148  int rslt = shmdt(base);
3149  return rslt == 0;
3150}
3151
3152size_t os::large_page_size() {
3153  return _large_page_size;
3154}
3155
3156// HugeTLBFS allows application to commit large page memory on demand;
3157// with SysV SHM the entire memory region must be allocated as shared
3158// memory.
3159bool os::can_commit_large_page_memory() {
3160  return UseHugeTLBFS;
3161}
3162
3163bool os::can_execute_large_page_memory() {
3164  return UseHugeTLBFS;
3165}
3166
3167// Reserve memory at an arbitrary address, only if that area is
3168// available (and not reserved for something else).
3169
3170char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3171  const int max_tries = 10;
3172  char* base[max_tries];
3173  size_t size[max_tries];
3174  const size_t gap = 0x000000;
3175
3176  // Assert only that the size is a multiple of the page size, since
3177  // that's all that mmap requires, and since that's all we really know
3178  // about at this low abstraction level.  If we need higher alignment,
3179  // we can either pass an alignment to this method or verify alignment
3180  // in one of the methods further up the call chain.  See bug 5044738.
3181  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3182
3183  // Repeatedly allocate blocks until the block is allocated at the
3184  // right spot. Give up after max_tries. Note that reserve_memory() will
3185  // automatically update _highest_vm_reserved_address if the call is
3186  // successful. The variable tracks the highest memory address every reserved
3187  // by JVM. It is used to detect heap-stack collision if running with
3188  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3189  // space than needed, it could confuse the collision detecting code. To
3190  // solve the problem, save current _highest_vm_reserved_address and
3191  // calculate the correct value before return.
3192  address old_highest = _highest_vm_reserved_address;
3193
3194  // Linux mmap allows caller to pass an address as hint; give it a try first,
3195  // if kernel honors the hint then we can return immediately.
3196  char * addr = anon_mmap(requested_addr, bytes, false);
3197  if (addr == requested_addr) {
3198     return requested_addr;
3199  }
3200
3201  if (addr != NULL) {
3202     // mmap() is successful but it fails to reserve at the requested address
3203     anon_munmap(addr, bytes);
3204  }
3205
3206  int i;
3207  for (i = 0; i < max_tries; ++i) {
3208    base[i] = reserve_memory(bytes);
3209
3210    if (base[i] != NULL) {
3211      // Is this the block we wanted?
3212      if (base[i] == requested_addr) {
3213        size[i] = bytes;
3214        break;
3215      }
3216
3217      // Does this overlap the block we wanted? Give back the overlapped
3218      // parts and try again.
3219
3220      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3221      if (top_overlap >= 0 && top_overlap < bytes) {
3222        unmap_memory(base[i], top_overlap);
3223        base[i] += top_overlap;
3224        size[i] = bytes - top_overlap;
3225      } else {
3226        size_t bottom_overlap = base[i] + bytes - requested_addr;
3227        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3228          unmap_memory(requested_addr, bottom_overlap);
3229          size[i] = bytes - bottom_overlap;
3230        } else {
3231          size[i] = bytes;
3232        }
3233      }
3234    }
3235  }
3236
3237  // Give back the unused reserved pieces.
3238
3239  for (int j = 0; j < i; ++j) {
3240    if (base[j] != NULL) {
3241      unmap_memory(base[j], size[j]);
3242    }
3243  }
3244
3245  if (i < max_tries) {
3246    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3247    return requested_addr;
3248  } else {
3249    _highest_vm_reserved_address = old_highest;
3250    return NULL;
3251  }
3252}
3253
3254size_t os::read(int fd, void *buf, unsigned int nBytes) {
3255  return ::read(fd, buf, nBytes);
3256}
3257
3258// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3259// Solaris uses poll(), linux uses park().
3260// Poll() is likely a better choice, assuming that Thread.interrupt()
3261// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3262// SIGSEGV, see 4355769.
3263
3264const int NANOSECS_PER_MILLISECS = 1000000;
3265
3266int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3267  assert(thread == Thread::current(),  "thread consistency check");
3268
3269  ParkEvent * const slp = thread->_SleepEvent ;
3270  slp->reset() ;
3271  OrderAccess::fence() ;
3272
3273  if (interruptible) {
3274    jlong prevtime = javaTimeNanos();
3275
3276    for (;;) {
3277      if (os::is_interrupted(thread, true)) {
3278        return OS_INTRPT;
3279      }
3280
3281      jlong newtime = javaTimeNanos();
3282
3283      if (newtime - prevtime < 0) {
3284        // time moving backwards, should only happen if no monotonic clock
3285        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3286        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3287      } else {
3288        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3289      }
3290
3291      if(millis <= 0) {
3292        return OS_OK;
3293      }
3294
3295      prevtime = newtime;
3296
3297      {
3298        assert(thread->is_Java_thread(), "sanity check");
3299        JavaThread *jt = (JavaThread *) thread;
3300        ThreadBlockInVM tbivm(jt);
3301        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3302
3303        jt->set_suspend_equivalent();
3304        // cleared by handle_special_suspend_equivalent_condition() or
3305        // java_suspend_self() via check_and_wait_while_suspended()
3306
3307        slp->park(millis);
3308
3309        // were we externally suspended while we were waiting?
3310        jt->check_and_wait_while_suspended();
3311      }
3312    }
3313  } else {
3314    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3315    jlong prevtime = javaTimeNanos();
3316
3317    for (;;) {
3318      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3319      // the 1st iteration ...
3320      jlong newtime = javaTimeNanos();
3321
3322      if (newtime - prevtime < 0) {
3323        // time moving backwards, should only happen if no monotonic clock
3324        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3325        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3326      } else {
3327        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3328      }
3329
3330      if(millis <= 0) break ;
3331
3332      prevtime = newtime;
3333      slp->park(millis);
3334    }
3335    return OS_OK ;
3336  }
3337}
3338
3339int os::naked_sleep() {
3340  // %% make the sleep time an integer flag. for now use 1 millisec.
3341  return os::sleep(Thread::current(), 1, false);
3342}
3343
3344// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3345void os::infinite_sleep() {
3346  while (true) {    // sleep forever ...
3347    ::sleep(100);   // ... 100 seconds at a time
3348  }
3349}
3350
3351// Used to convert frequent JVM_Yield() to nops
3352bool os::dont_yield() {
3353  return DontYieldALot;
3354}
3355
3356void os::yield() {
3357  sched_yield();
3358}
3359
3360os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3361
3362void os::yield_all(int attempts) {
3363  // Yields to all threads, including threads with lower priorities
3364  // Threads on Linux are all with same priority. The Solaris style
3365  // os::yield_all() with nanosleep(1ms) is not necessary.
3366  sched_yield();
3367}
3368
3369// Called from the tight loops to possibly influence time-sharing heuristics
3370void os::loop_breaker(int attempts) {
3371  os::yield_all(attempts);
3372}
3373
3374////////////////////////////////////////////////////////////////////////////////
3375// thread priority support
3376
3377// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3378// only supports dynamic priority, static priority must be zero. For real-time
3379// applications, Linux supports SCHED_RR which allows static priority (1-99).
3380// However, for large multi-threaded applications, SCHED_RR is not only slower
3381// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3382// of 5 runs - Sep 2005).
3383//
3384// The following code actually changes the niceness of kernel-thread/LWP. It
3385// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3386// not the entire user process, and user level threads are 1:1 mapped to kernel
3387// threads. It has always been the case, but could change in the future. For
3388// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3389// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3390
3391int os::java_to_os_priority[MaxPriority + 1] = {
3392  19,              // 0 Entry should never be used
3393
3394   4,              // 1 MinPriority
3395   3,              // 2
3396   2,              // 3
3397
3398   1,              // 4
3399   0,              // 5 NormPriority
3400  -1,              // 6
3401
3402  -2,              // 7
3403  -3,              // 8
3404  -4,              // 9 NearMaxPriority
3405
3406  -5               // 10 MaxPriority
3407};
3408
3409static int prio_init() {
3410  if (ThreadPriorityPolicy == 1) {
3411    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3412    // if effective uid is not root. Perhaps, a more elegant way of doing
3413    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3414    if (geteuid() != 0) {
3415      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3416        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3417      }
3418      ThreadPriorityPolicy = 0;
3419    }
3420  }
3421  return 0;
3422}
3423
3424OSReturn os::set_native_priority(Thread* thread, int newpri) {
3425  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3426
3427  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3428  return (ret == 0) ? OS_OK : OS_ERR;
3429}
3430
3431OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3432  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3433    *priority_ptr = java_to_os_priority[NormPriority];
3434    return OS_OK;
3435  }
3436
3437  errno = 0;
3438  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3439  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3440}
3441
3442// Hint to the underlying OS that a task switch would not be good.
3443// Void return because it's a hint and can fail.
3444void os::hint_no_preempt() {}
3445
3446////////////////////////////////////////////////////////////////////////////////
3447// suspend/resume support
3448
3449//  the low-level signal-based suspend/resume support is a remnant from the
3450//  old VM-suspension that used to be for java-suspension, safepoints etc,
3451//  within hotspot. Now there is a single use-case for this:
3452//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3453//      that runs in the watcher thread.
3454//  The remaining code is greatly simplified from the more general suspension
3455//  code that used to be used.
3456//
3457//  The protocol is quite simple:
3458//  - suspend:
3459//      - sends a signal to the target thread
3460//      - polls the suspend state of the osthread using a yield loop
3461//      - target thread signal handler (SR_handler) sets suspend state
3462//        and blocks in sigsuspend until continued
3463//  - resume:
3464//      - sets target osthread state to continue
3465//      - sends signal to end the sigsuspend loop in the SR_handler
3466//
3467//  Note that the SR_lock plays no role in this suspend/resume protocol.
3468//
3469
3470static void resume_clear_context(OSThread *osthread) {
3471  osthread->set_ucontext(NULL);
3472  osthread->set_siginfo(NULL);
3473
3474  // notify the suspend action is completed, we have now resumed
3475  osthread->sr.clear_suspended();
3476}
3477
3478static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3479  osthread->set_ucontext(context);
3480  osthread->set_siginfo(siginfo);
3481}
3482
3483//
3484// Handler function invoked when a thread's execution is suspended or
3485// resumed. We have to be careful that only async-safe functions are
3486// called here (Note: most pthread functions are not async safe and
3487// should be avoided.)
3488//
3489// Note: sigwait() is a more natural fit than sigsuspend() from an
3490// interface point of view, but sigwait() prevents the signal hander
3491// from being run. libpthread would get very confused by not having
3492// its signal handlers run and prevents sigwait()'s use with the
3493// mutex granting granting signal.
3494//
3495// Currently only ever called on the VMThread
3496//
3497static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3498  // Save and restore errno to avoid confusing native code with EINTR
3499  // after sigsuspend.
3500  int old_errno = errno;
3501
3502  Thread* thread = Thread::current();
3503  OSThread* osthread = thread->osthread();
3504  assert(thread->is_VM_thread(), "Must be VMThread");
3505  // read current suspend action
3506  int action = osthread->sr.suspend_action();
3507  if (action == SR_SUSPEND) {
3508    suspend_save_context(osthread, siginfo, context);
3509
3510    // Notify the suspend action is about to be completed. do_suspend()
3511    // waits until SR_SUSPENDED is set and then returns. We will wait
3512    // here for a resume signal and that completes the suspend-other
3513    // action. do_suspend/do_resume is always called as a pair from
3514    // the same thread - so there are no races
3515
3516    // notify the caller
3517    osthread->sr.set_suspended();
3518
3519    sigset_t suspend_set;  // signals for sigsuspend()
3520
3521    // get current set of blocked signals and unblock resume signal
3522    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3523    sigdelset(&suspend_set, SR_signum);
3524
3525    // wait here until we are resumed
3526    do {
3527      sigsuspend(&suspend_set);
3528      // ignore all returns until we get a resume signal
3529    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3530
3531    resume_clear_context(osthread);
3532
3533  } else {
3534    assert(action == SR_CONTINUE, "unexpected sr action");
3535    // nothing special to do - just leave the handler
3536  }
3537
3538  errno = old_errno;
3539}
3540
3541
3542static int SR_initialize() {
3543  struct sigaction act;
3544  char *s;
3545  /* Get signal number to use for suspend/resume */
3546  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3547    int sig = ::strtol(s, 0, 10);
3548    if (sig > 0 || sig < _NSIG) {
3549        SR_signum = sig;
3550    }
3551  }
3552
3553  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3554        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3555
3556  sigemptyset(&SR_sigset);
3557  sigaddset(&SR_sigset, SR_signum);
3558
3559  /* Set up signal handler for suspend/resume */
3560  act.sa_flags = SA_RESTART|SA_SIGINFO;
3561  act.sa_handler = (void (*)(int)) SR_handler;
3562
3563  // SR_signum is blocked by default.
3564  // 4528190 - We also need to block pthread restart signal (32 on all
3565  // supported Linux platforms). Note that LinuxThreads need to block
3566  // this signal for all threads to work properly. So we don't have
3567  // to use hard-coded signal number when setting up the mask.
3568  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3569
3570  if (sigaction(SR_signum, &act, 0) == -1) {
3571    return -1;
3572  }
3573
3574  // Save signal flag
3575  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3576  return 0;
3577}
3578
3579static int SR_finalize() {
3580  return 0;
3581}
3582
3583
3584// returns true on success and false on error - really an error is fatal
3585// but this seems the normal response to library errors
3586static bool do_suspend(OSThread* osthread) {
3587  // mark as suspended and send signal
3588  osthread->sr.set_suspend_action(SR_SUSPEND);
3589  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3590  assert_status(status == 0, status, "pthread_kill");
3591
3592  // check status and wait until notified of suspension
3593  if (status == 0) {
3594    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3595      os::yield_all(i);
3596    }
3597    osthread->sr.set_suspend_action(SR_NONE);
3598    return true;
3599  }
3600  else {
3601    osthread->sr.set_suspend_action(SR_NONE);
3602    return false;
3603  }
3604}
3605
3606static void do_resume(OSThread* osthread) {
3607  assert(osthread->sr.is_suspended(), "thread should be suspended");
3608  osthread->sr.set_suspend_action(SR_CONTINUE);
3609
3610  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3611  assert_status(status == 0, status, "pthread_kill");
3612  // check status and wait unit notified of resumption
3613  if (status == 0) {
3614    for (int i = 0; osthread->sr.is_suspended(); i++) {
3615      os::yield_all(i);
3616    }
3617  }
3618  osthread->sr.set_suspend_action(SR_NONE);
3619}
3620
3621////////////////////////////////////////////////////////////////////////////////
3622// interrupt support
3623
3624void os::interrupt(Thread* thread) {
3625  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3626    "possibility of dangling Thread pointer");
3627
3628  OSThread* osthread = thread->osthread();
3629
3630  if (!osthread->interrupted()) {
3631    osthread->set_interrupted(true);
3632    // More than one thread can get here with the same value of osthread,
3633    // resulting in multiple notifications.  We do, however, want the store
3634    // to interrupted() to be visible to other threads before we execute unpark().
3635    OrderAccess::fence();
3636    ParkEvent * const slp = thread->_SleepEvent ;
3637    if (slp != NULL) slp->unpark() ;
3638  }
3639
3640  // For JSR166. Unpark even if interrupt status already was set
3641  if (thread->is_Java_thread())
3642    ((JavaThread*)thread)->parker()->unpark();
3643
3644  ParkEvent * ev = thread->_ParkEvent ;
3645  if (ev != NULL) ev->unpark() ;
3646
3647}
3648
3649bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3650  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3651    "possibility of dangling Thread pointer");
3652
3653  OSThread* osthread = thread->osthread();
3654
3655  bool interrupted = osthread->interrupted();
3656
3657  if (interrupted && clear_interrupted) {
3658    osthread->set_interrupted(false);
3659    // consider thread->_SleepEvent->reset() ... optional optimization
3660  }
3661
3662  return interrupted;
3663}
3664
3665///////////////////////////////////////////////////////////////////////////////////
3666// signal handling (except suspend/resume)
3667
3668// This routine may be used by user applications as a "hook" to catch signals.
3669// The user-defined signal handler must pass unrecognized signals to this
3670// routine, and if it returns true (non-zero), then the signal handler must
3671// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3672// routine will never retun false (zero), but instead will execute a VM panic
3673// routine kill the process.
3674//
3675// If this routine returns false, it is OK to call it again.  This allows
3676// the user-defined signal handler to perform checks either before or after
3677// the VM performs its own checks.  Naturally, the user code would be making
3678// a serious error if it tried to handle an exception (such as a null check
3679// or breakpoint) that the VM was generating for its own correct operation.
3680//
3681// This routine may recognize any of the following kinds of signals:
3682//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3683// It should be consulted by handlers for any of those signals.
3684//
3685// The caller of this routine must pass in the three arguments supplied
3686// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3687// field of the structure passed to sigaction().  This routine assumes that
3688// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3689//
3690// Note that the VM will print warnings if it detects conflicting signal
3691// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3692//
3693extern "C" JNIEXPORT int
3694JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3695                        void* ucontext, int abort_if_unrecognized);
3696
3697void signalHandler(int sig, siginfo_t* info, void* uc) {
3698  assert(info != NULL && uc != NULL, "it must be old kernel");
3699  JVM_handle_linux_signal(sig, info, uc, true);
3700}
3701
3702
3703// This boolean allows users to forward their own non-matching signals
3704// to JVM_handle_linux_signal, harmlessly.
3705bool os::Linux::signal_handlers_are_installed = false;
3706
3707// For signal-chaining
3708struct sigaction os::Linux::sigact[MAXSIGNUM];
3709unsigned int os::Linux::sigs = 0;
3710bool os::Linux::libjsig_is_loaded = false;
3711typedef struct sigaction *(*get_signal_t)(int);
3712get_signal_t os::Linux::get_signal_action = NULL;
3713
3714struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3715  struct sigaction *actp = NULL;
3716
3717  if (libjsig_is_loaded) {
3718    // Retrieve the old signal handler from libjsig
3719    actp = (*get_signal_action)(sig);
3720  }
3721  if (actp == NULL) {
3722    // Retrieve the preinstalled signal handler from jvm
3723    actp = get_preinstalled_handler(sig);
3724  }
3725
3726  return actp;
3727}
3728
3729static bool call_chained_handler(struct sigaction *actp, int sig,
3730                                 siginfo_t *siginfo, void *context) {
3731  // Call the old signal handler
3732  if (actp->sa_handler == SIG_DFL) {
3733    // It's more reasonable to let jvm treat it as an unexpected exception
3734    // instead of taking the default action.
3735    return false;
3736  } else if (actp->sa_handler != SIG_IGN) {
3737    if ((actp->sa_flags & SA_NODEFER) == 0) {
3738      // automaticlly block the signal
3739      sigaddset(&(actp->sa_mask), sig);
3740    }
3741
3742    sa_handler_t hand;
3743    sa_sigaction_t sa;
3744    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3745    // retrieve the chained handler
3746    if (siginfo_flag_set) {
3747      sa = actp->sa_sigaction;
3748    } else {
3749      hand = actp->sa_handler;
3750    }
3751
3752    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3753      actp->sa_handler = SIG_DFL;
3754    }
3755
3756    // try to honor the signal mask
3757    sigset_t oset;
3758    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3759
3760    // call into the chained handler
3761    if (siginfo_flag_set) {
3762      (*sa)(sig, siginfo, context);
3763    } else {
3764      (*hand)(sig);
3765    }
3766
3767    // restore the signal mask
3768    pthread_sigmask(SIG_SETMASK, &oset, 0);
3769  }
3770  // Tell jvm's signal handler the signal is taken care of.
3771  return true;
3772}
3773
3774bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3775  bool chained = false;
3776  // signal-chaining
3777  if (UseSignalChaining) {
3778    struct sigaction *actp = get_chained_signal_action(sig);
3779    if (actp != NULL) {
3780      chained = call_chained_handler(actp, sig, siginfo, context);
3781    }
3782  }
3783  return chained;
3784}
3785
3786struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3787  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3788    return &sigact[sig];
3789  }
3790  return NULL;
3791}
3792
3793void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3794  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3795  sigact[sig] = oldAct;
3796  sigs |= (unsigned int)1 << sig;
3797}
3798
3799// for diagnostic
3800int os::Linux::sigflags[MAXSIGNUM];
3801
3802int os::Linux::get_our_sigflags(int sig) {
3803  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3804  return sigflags[sig];
3805}
3806
3807void os::Linux::set_our_sigflags(int sig, int flags) {
3808  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3809  sigflags[sig] = flags;
3810}
3811
3812void os::Linux::set_signal_handler(int sig, bool set_installed) {
3813  // Check for overwrite.
3814  struct sigaction oldAct;
3815  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3816
3817  void* oldhand = oldAct.sa_sigaction
3818                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3819                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3820  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3821      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3822      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3823    if (AllowUserSignalHandlers || !set_installed) {
3824      // Do not overwrite; user takes responsibility to forward to us.
3825      return;
3826    } else if (UseSignalChaining) {
3827      // save the old handler in jvm
3828      save_preinstalled_handler(sig, oldAct);
3829      // libjsig also interposes the sigaction() call below and saves the
3830      // old sigaction on it own.
3831    } else {
3832      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3833                    "%#lx for signal %d.", (long)oldhand, sig));
3834    }
3835  }
3836
3837  struct sigaction sigAct;
3838  sigfillset(&(sigAct.sa_mask));
3839  sigAct.sa_handler = SIG_DFL;
3840  if (!set_installed) {
3841    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3842  } else {
3843    sigAct.sa_sigaction = signalHandler;
3844    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3845  }
3846  // Save flags, which are set by ours
3847  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3848  sigflags[sig] = sigAct.sa_flags;
3849
3850  int ret = sigaction(sig, &sigAct, &oldAct);
3851  assert(ret == 0, "check");
3852
3853  void* oldhand2  = oldAct.sa_sigaction
3854                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3855                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3856  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3857}
3858
3859// install signal handlers for signals that HotSpot needs to
3860// handle in order to support Java-level exception handling.
3861
3862void os::Linux::install_signal_handlers() {
3863  if (!signal_handlers_are_installed) {
3864    signal_handlers_are_installed = true;
3865
3866    // signal-chaining
3867    typedef void (*signal_setting_t)();
3868    signal_setting_t begin_signal_setting = NULL;
3869    signal_setting_t end_signal_setting = NULL;
3870    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3871                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3872    if (begin_signal_setting != NULL) {
3873      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3874                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3875      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3876                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3877      libjsig_is_loaded = true;
3878      assert(UseSignalChaining, "should enable signal-chaining");
3879    }
3880    if (libjsig_is_loaded) {
3881      // Tell libjsig jvm is setting signal handlers
3882      (*begin_signal_setting)();
3883    }
3884
3885    set_signal_handler(SIGSEGV, true);
3886    set_signal_handler(SIGPIPE, true);
3887    set_signal_handler(SIGBUS, true);
3888    set_signal_handler(SIGILL, true);
3889    set_signal_handler(SIGFPE, true);
3890    set_signal_handler(SIGXFSZ, true);
3891
3892    if (libjsig_is_loaded) {
3893      // Tell libjsig jvm finishes setting signal handlers
3894      (*end_signal_setting)();
3895    }
3896
3897    // We don't activate signal checker if libjsig is in place, we trust ourselves
3898    // and if UserSignalHandler is installed all bets are off
3899    if (CheckJNICalls) {
3900      if (libjsig_is_loaded) {
3901        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3902        check_signals = false;
3903      }
3904      if (AllowUserSignalHandlers) {
3905        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3906        check_signals = false;
3907      }
3908    }
3909  }
3910}
3911
3912// This is the fastest way to get thread cpu time on Linux.
3913// Returns cpu time (user+sys) for any thread, not only for current.
3914// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3915// It might work on 2.6.10+ with a special kernel/glibc patch.
3916// For reference, please, see IEEE Std 1003.1-2004:
3917//   http://www.unix.org/single_unix_specification
3918
3919jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3920  struct timespec tp;
3921  int rc = os::Linux::clock_gettime(clockid, &tp);
3922  assert(rc == 0, "clock_gettime is expected to return 0 code");
3923
3924  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3925}
3926
3927/////
3928// glibc on Linux platform uses non-documented flag
3929// to indicate, that some special sort of signal
3930// trampoline is used.
3931// We will never set this flag, and we should
3932// ignore this flag in our diagnostic
3933#ifdef SIGNIFICANT_SIGNAL_MASK
3934#undef SIGNIFICANT_SIGNAL_MASK
3935#endif
3936#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3937
3938static const char* get_signal_handler_name(address handler,
3939                                           char* buf, int buflen) {
3940  int offset;
3941  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3942  if (found) {
3943    // skip directory names
3944    const char *p1, *p2;
3945    p1 = buf;
3946    size_t len = strlen(os::file_separator());
3947    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3948    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3949  } else {
3950    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3951  }
3952  return buf;
3953}
3954
3955static void print_signal_handler(outputStream* st, int sig,
3956                                 char* buf, size_t buflen) {
3957  struct sigaction sa;
3958
3959  sigaction(sig, NULL, &sa);
3960
3961  // See comment for SIGNIFICANT_SIGNAL_MASK define
3962  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3963
3964  st->print("%s: ", os::exception_name(sig, buf, buflen));
3965
3966  address handler = (sa.sa_flags & SA_SIGINFO)
3967    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3968    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3969
3970  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3971    st->print("SIG_DFL");
3972  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3973    st->print("SIG_IGN");
3974  } else {
3975    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3976  }
3977
3978  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3979
3980  address rh = VMError::get_resetted_sighandler(sig);
3981  // May be, handler was resetted by VMError?
3982  if(rh != NULL) {
3983    handler = rh;
3984    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3985  }
3986
3987  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3988
3989  // Check: is it our handler?
3990  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3991     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3992    // It is our signal handler
3993    // check for flags, reset system-used one!
3994    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3995      st->print(
3996                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3997                os::Linux::get_our_sigflags(sig));
3998    }
3999  }
4000  st->cr();
4001}
4002
4003
4004#define DO_SIGNAL_CHECK(sig) \
4005  if (!sigismember(&check_signal_done, sig)) \
4006    os::Linux::check_signal_handler(sig)
4007
4008// This method is a periodic task to check for misbehaving JNI applications
4009// under CheckJNI, we can add any periodic checks here
4010
4011void os::run_periodic_checks() {
4012
4013  if (check_signals == false) return;
4014
4015  // SEGV and BUS if overridden could potentially prevent
4016  // generation of hs*.log in the event of a crash, debugging
4017  // such a case can be very challenging, so we absolutely
4018  // check the following for a good measure:
4019  DO_SIGNAL_CHECK(SIGSEGV);
4020  DO_SIGNAL_CHECK(SIGILL);
4021  DO_SIGNAL_CHECK(SIGFPE);
4022  DO_SIGNAL_CHECK(SIGBUS);
4023  DO_SIGNAL_CHECK(SIGPIPE);
4024  DO_SIGNAL_CHECK(SIGXFSZ);
4025
4026
4027  // ReduceSignalUsage allows the user to override these handlers
4028  // see comments at the very top and jvm_solaris.h
4029  if (!ReduceSignalUsage) {
4030    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4031    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4032    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4033    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4034  }
4035
4036  DO_SIGNAL_CHECK(SR_signum);
4037  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4038}
4039
4040typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4041
4042static os_sigaction_t os_sigaction = NULL;
4043
4044void os::Linux::check_signal_handler(int sig) {
4045  char buf[O_BUFLEN];
4046  address jvmHandler = NULL;
4047
4048
4049  struct sigaction act;
4050  if (os_sigaction == NULL) {
4051    // only trust the default sigaction, in case it has been interposed
4052    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4053    if (os_sigaction == NULL) return;
4054  }
4055
4056  os_sigaction(sig, (struct sigaction*)NULL, &act);
4057
4058
4059  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4060
4061  address thisHandler = (act.sa_flags & SA_SIGINFO)
4062    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4063    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4064
4065
4066  switch(sig) {
4067  case SIGSEGV:
4068  case SIGBUS:
4069  case SIGFPE:
4070  case SIGPIPE:
4071  case SIGILL:
4072  case SIGXFSZ:
4073    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4074    break;
4075
4076  case SHUTDOWN1_SIGNAL:
4077  case SHUTDOWN2_SIGNAL:
4078  case SHUTDOWN3_SIGNAL:
4079  case BREAK_SIGNAL:
4080    jvmHandler = (address)user_handler();
4081    break;
4082
4083  case INTERRUPT_SIGNAL:
4084    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4085    break;
4086
4087  default:
4088    if (sig == SR_signum) {
4089      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4090    } else {
4091      return;
4092    }
4093    break;
4094  }
4095
4096  if (thisHandler != jvmHandler) {
4097    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4098    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4099    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4100    // No need to check this sig any longer
4101    sigaddset(&check_signal_done, sig);
4102  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4103    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4104    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4105    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4106    // No need to check this sig any longer
4107    sigaddset(&check_signal_done, sig);
4108  }
4109
4110  // Dump all the signal
4111  if (sigismember(&check_signal_done, sig)) {
4112    print_signal_handlers(tty, buf, O_BUFLEN);
4113  }
4114}
4115
4116extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4117
4118extern bool signal_name(int signo, char* buf, size_t len);
4119
4120const char* os::exception_name(int exception_code, char* buf, size_t size) {
4121  if (0 < exception_code && exception_code <= SIGRTMAX) {
4122    // signal
4123    if (!signal_name(exception_code, buf, size)) {
4124      jio_snprintf(buf, size, "SIG%d", exception_code);
4125    }
4126    return buf;
4127  } else {
4128    return NULL;
4129  }
4130}
4131
4132// this is called _before_ the most of global arguments have been parsed
4133void os::init(void) {
4134  char dummy;   /* used to get a guess on initial stack address */
4135//  first_hrtime = gethrtime();
4136
4137  // With LinuxThreads the JavaMain thread pid (primordial thread)
4138  // is different than the pid of the java launcher thread.
4139  // So, on Linux, the launcher thread pid is passed to the VM
4140  // via the sun.java.launcher.pid property.
4141  // Use this property instead of getpid() if it was correctly passed.
4142  // See bug 6351349.
4143  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4144
4145  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4146
4147  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4148
4149  init_random(1234567);
4150
4151  ThreadCritical::initialize();
4152
4153  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4154  if (Linux::page_size() == -1) {
4155    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4156                  strerror(errno)));
4157  }
4158  init_page_sizes((size_t) Linux::page_size());
4159
4160  Linux::initialize_system_info();
4161
4162  // main_thread points to the aboriginal thread
4163  Linux::_main_thread = pthread_self();
4164
4165  Linux::clock_init();
4166  initial_time_count = os::elapsed_counter();
4167  pthread_mutex_init(&dl_mutex, NULL);
4168}
4169
4170// To install functions for atexit system call
4171extern "C" {
4172  static void perfMemory_exit_helper() {
4173    perfMemory_exit();
4174  }
4175}
4176
4177// this is called _after_ the global arguments have been parsed
4178jint os::init_2(void)
4179{
4180  Linux::fast_thread_clock_init();
4181
4182  // Allocate a single page and mark it as readable for safepoint polling
4183  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4184  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4185
4186  os::set_polling_page( polling_page );
4187
4188#ifndef PRODUCT
4189  if(Verbose && PrintMiscellaneous)
4190    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4191#endif
4192
4193  if (!UseMembar) {
4194    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4195    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4196    os::set_memory_serialize_page( mem_serialize_page );
4197
4198#ifndef PRODUCT
4199    if(Verbose && PrintMiscellaneous)
4200      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4201#endif
4202  }
4203
4204  os::large_page_init();
4205
4206  // initialize suspend/resume support - must do this before signal_sets_init()
4207  if (SR_initialize() != 0) {
4208    perror("SR_initialize failed");
4209    return JNI_ERR;
4210  }
4211
4212  Linux::signal_sets_init();
4213  Linux::install_signal_handlers();
4214
4215  // Check minimum allowable stack size for thread creation and to initialize
4216  // the java system classes, including StackOverflowError - depends on page
4217  // size.  Add a page for compiler2 recursion in main thread.
4218  // Add in 2*BytesPerWord times page size to account for VM stack during
4219  // class initialization depending on 32 or 64 bit VM.
4220  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4221            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4222                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4223
4224  size_t threadStackSizeInBytes = ThreadStackSize * K;
4225  if (threadStackSizeInBytes != 0 &&
4226      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4227        tty->print_cr("\nThe stack size specified is too small, "
4228                      "Specify at least %dk",
4229                      os::Linux::min_stack_allowed/ K);
4230        return JNI_ERR;
4231  }
4232
4233  // Make the stack size a multiple of the page size so that
4234  // the yellow/red zones can be guarded.
4235  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4236        vm_page_size()));
4237
4238  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4239
4240  Linux::libpthread_init();
4241  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4242     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4243          Linux::glibc_version(), Linux::libpthread_version(),
4244          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4245  }
4246
4247  if (UseNUMA) {
4248    if (!Linux::libnuma_init()) {
4249      UseNUMA = false;
4250    } else {
4251      if ((Linux::numa_max_node() < 1)) {
4252        // There's only one node(they start from 0), disable NUMA.
4253        UseNUMA = false;
4254      }
4255    }
4256    // With SHM large pages we cannot uncommit a page, so there's not way
4257    // we can make the adaptive lgrp chunk resizing work. If the user specified
4258    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4259    // disable adaptive resizing.
4260    if (UseNUMA && UseLargePages && UseSHM) {
4261      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4262        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4263          UseLargePages = false;
4264        } else {
4265          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4266          UseAdaptiveSizePolicy = false;
4267          UseAdaptiveNUMAChunkSizing = false;
4268        }
4269      } else {
4270        UseNUMA = false;
4271      }
4272    }
4273    if (!UseNUMA && ForceNUMA) {
4274      UseNUMA = true;
4275    }
4276  }
4277
4278  if (MaxFDLimit) {
4279    // set the number of file descriptors to max. print out error
4280    // if getrlimit/setrlimit fails but continue regardless.
4281    struct rlimit nbr_files;
4282    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4283    if (status != 0) {
4284      if (PrintMiscellaneous && (Verbose || WizardMode))
4285        perror("os::init_2 getrlimit failed");
4286    } else {
4287      nbr_files.rlim_cur = nbr_files.rlim_max;
4288      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4289      if (status != 0) {
4290        if (PrintMiscellaneous && (Verbose || WizardMode))
4291          perror("os::init_2 setrlimit failed");
4292      }
4293    }
4294  }
4295
4296  // Initialize lock used to serialize thread creation (see os::create_thread)
4297  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4298
4299  // at-exit methods are called in the reverse order of their registration.
4300  // atexit functions are called on return from main or as a result of a
4301  // call to exit(3C). There can be only 32 of these functions registered
4302  // and atexit() does not set errno.
4303
4304  if (PerfAllowAtExitRegistration) {
4305    // only register atexit functions if PerfAllowAtExitRegistration is set.
4306    // atexit functions can be delayed until process exit time, which
4307    // can be problematic for embedded VM situations. Embedded VMs should
4308    // call DestroyJavaVM() to assure that VM resources are released.
4309
4310    // note: perfMemory_exit_helper atexit function may be removed in
4311    // the future if the appropriate cleanup code can be added to the
4312    // VM_Exit VMOperation's doit method.
4313    if (atexit(perfMemory_exit_helper) != 0) {
4314      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4315    }
4316  }
4317
4318  // initialize thread priority policy
4319  prio_init();
4320
4321  return JNI_OK;
4322}
4323
4324// this is called at the end of vm_initialization
4325void os::init_3(void)
4326{
4327#ifdef JAVASE_EMBEDDED
4328  // Start the MemNotifyThread
4329  if (LowMemoryProtection) {
4330    MemNotifyThread::start();
4331  }
4332  return;
4333#endif
4334}
4335
4336// Mark the polling page as unreadable
4337void os::make_polling_page_unreadable(void) {
4338  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4339    fatal("Could not disable polling page");
4340};
4341
4342// Mark the polling page as readable
4343void os::make_polling_page_readable(void) {
4344  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4345    fatal("Could not enable polling page");
4346  }
4347};
4348
4349int os::active_processor_count() {
4350  // Linux doesn't yet have a (official) notion of processor sets,
4351  // so just return the number of online processors.
4352  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4353  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4354  return online_cpus;
4355}
4356
4357bool os::distribute_processes(uint length, uint* distribution) {
4358  // Not yet implemented.
4359  return false;
4360}
4361
4362bool os::bind_to_processor(uint processor_id) {
4363  // Not yet implemented.
4364  return false;
4365}
4366
4367///
4368
4369// Suspends the target using the signal mechanism and then grabs the PC before
4370// resuming the target. Used by the flat-profiler only
4371ExtendedPC os::get_thread_pc(Thread* thread) {
4372  // Make sure that it is called by the watcher for the VMThread
4373  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4374  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4375
4376  ExtendedPC epc;
4377
4378  OSThread* osthread = thread->osthread();
4379  if (do_suspend(osthread)) {
4380    if (osthread->ucontext() != NULL) {
4381      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4382    } else {
4383      // NULL context is unexpected, double-check this is the VMThread
4384      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4385    }
4386    do_resume(osthread);
4387  }
4388  // failure means pthread_kill failed for some reason - arguably this is
4389  // a fatal problem, but such problems are ignored elsewhere
4390
4391  return epc;
4392}
4393
4394int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4395{
4396   if (is_NPTL()) {
4397      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4398   } else {
4399#ifndef IA64
4400      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4401      // word back to default 64bit precision if condvar is signaled. Java
4402      // wants 53bit precision.  Save and restore current value.
4403      int fpu = get_fpu_control_word();
4404#endif // IA64
4405      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4406#ifndef IA64
4407      set_fpu_control_word(fpu);
4408#endif // IA64
4409      return status;
4410   }
4411}
4412
4413////////////////////////////////////////////////////////////////////////////////
4414// debug support
4415
4416static address same_page(address x, address y) {
4417  int page_bits = -os::vm_page_size();
4418  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4419    return x;
4420  else if (x > y)
4421    return (address)(intptr_t(y) | ~page_bits) + 1;
4422  else
4423    return (address)(intptr_t(y) & page_bits);
4424}
4425
4426bool os::find(address addr, outputStream* st) {
4427  Dl_info dlinfo;
4428  memset(&dlinfo, 0, sizeof(dlinfo));
4429  if (dladdr(addr, &dlinfo)) {
4430    st->print(PTR_FORMAT ": ", addr);
4431    if (dlinfo.dli_sname != NULL) {
4432      st->print("%s+%#x", dlinfo.dli_sname,
4433                 addr - (intptr_t)dlinfo.dli_saddr);
4434    } else if (dlinfo.dli_fname) {
4435      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4436    } else {
4437      st->print("<absolute address>");
4438    }
4439    if (dlinfo.dli_fname) {
4440      st->print(" in %s", dlinfo.dli_fname);
4441    }
4442    if (dlinfo.dli_fbase) {
4443      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4444    }
4445    st->cr();
4446
4447    if (Verbose) {
4448      // decode some bytes around the PC
4449      address begin = same_page(addr-40, addr);
4450      address end   = same_page(addr+40, addr);
4451      address       lowest = (address) dlinfo.dli_sname;
4452      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4453      if (begin < lowest)  begin = lowest;
4454      Dl_info dlinfo2;
4455      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4456          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4457        end = (address) dlinfo2.dli_saddr;
4458      Disassembler::decode(begin, end, st);
4459    }
4460    return true;
4461  }
4462  return false;
4463}
4464
4465////////////////////////////////////////////////////////////////////////////////
4466// misc
4467
4468// This does not do anything on Linux. This is basically a hook for being
4469// able to use structured exception handling (thread-local exception filters)
4470// on, e.g., Win32.
4471void
4472os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4473                         JavaCallArguments* args, Thread* thread) {
4474  f(value, method, args, thread);
4475}
4476
4477void os::print_statistics() {
4478}
4479
4480int os::message_box(const char* title, const char* message) {
4481  int i;
4482  fdStream err(defaultStream::error_fd());
4483  for (i = 0; i < 78; i++) err.print_raw("=");
4484  err.cr();
4485  err.print_raw_cr(title);
4486  for (i = 0; i < 78; i++) err.print_raw("-");
4487  err.cr();
4488  err.print_raw_cr(message);
4489  for (i = 0; i < 78; i++) err.print_raw("=");
4490  err.cr();
4491
4492  char buf[16];
4493  // Prevent process from exiting upon "read error" without consuming all CPU
4494  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4495
4496  return buf[0] == 'y' || buf[0] == 'Y';
4497}
4498
4499int os::stat(const char *path, struct stat *sbuf) {
4500  char pathbuf[MAX_PATH];
4501  if (strlen(path) > MAX_PATH - 1) {
4502    errno = ENAMETOOLONG;
4503    return -1;
4504  }
4505  os::native_path(strcpy(pathbuf, path));
4506  return ::stat(pathbuf, sbuf);
4507}
4508
4509bool os::check_heap(bool force) {
4510  return true;
4511}
4512
4513int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4514  return ::vsnprintf(buf, count, format, args);
4515}
4516
4517// Is a (classpath) directory empty?
4518bool os::dir_is_empty(const char* path) {
4519  DIR *dir = NULL;
4520  struct dirent *ptr;
4521
4522  dir = opendir(path);
4523  if (dir == NULL) return true;
4524
4525  /* Scan the directory */
4526  bool result = true;
4527  char buf[sizeof(struct dirent) + MAX_PATH];
4528  while (result && (ptr = ::readdir(dir)) != NULL) {
4529    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4530      result = false;
4531    }
4532  }
4533  closedir(dir);
4534  return result;
4535}
4536
4537// This code originates from JDK's sysOpen and open64_w
4538// from src/solaris/hpi/src/system_md.c
4539
4540#ifndef O_DELETE
4541#define O_DELETE 0x10000
4542#endif
4543
4544// Open a file. Unlink the file immediately after open returns
4545// if the specified oflag has the O_DELETE flag set.
4546// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4547
4548int os::open(const char *path, int oflag, int mode) {
4549
4550  if (strlen(path) > MAX_PATH - 1) {
4551    errno = ENAMETOOLONG;
4552    return -1;
4553  }
4554  int fd;
4555  int o_delete = (oflag & O_DELETE);
4556  oflag = oflag & ~O_DELETE;
4557
4558  fd = ::open64(path, oflag, mode);
4559  if (fd == -1) return -1;
4560
4561  //If the open succeeded, the file might still be a directory
4562  {
4563    struct stat64 buf64;
4564    int ret = ::fstat64(fd, &buf64);
4565    int st_mode = buf64.st_mode;
4566
4567    if (ret != -1) {
4568      if ((st_mode & S_IFMT) == S_IFDIR) {
4569        errno = EISDIR;
4570        ::close(fd);
4571        return -1;
4572      }
4573    } else {
4574      ::close(fd);
4575      return -1;
4576    }
4577  }
4578
4579    /*
4580     * All file descriptors that are opened in the JVM and not
4581     * specifically destined for a subprocess should have the
4582     * close-on-exec flag set.  If we don't set it, then careless 3rd
4583     * party native code might fork and exec without closing all
4584     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4585     * UNIXProcess.c), and this in turn might:
4586     *
4587     * - cause end-of-file to fail to be detected on some file
4588     *   descriptors, resulting in mysterious hangs, or
4589     *
4590     * - might cause an fopen in the subprocess to fail on a system
4591     *   suffering from bug 1085341.
4592     *
4593     * (Yes, the default setting of the close-on-exec flag is a Unix
4594     * design flaw)
4595     *
4596     * See:
4597     * 1085341: 32-bit stdio routines should support file descriptors >255
4598     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4599     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4600     */
4601#ifdef FD_CLOEXEC
4602    {
4603        int flags = ::fcntl(fd, F_GETFD);
4604        if (flags != -1)
4605            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4606    }
4607#endif
4608
4609  if (o_delete != 0) {
4610    ::unlink(path);
4611  }
4612  return fd;
4613}
4614
4615
4616// create binary file, rewriting existing file if required
4617int os::create_binary_file(const char* path, bool rewrite_existing) {
4618  int oflags = O_WRONLY | O_CREAT;
4619  if (!rewrite_existing) {
4620    oflags |= O_EXCL;
4621  }
4622  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4623}
4624
4625// return current position of file pointer
4626jlong os::current_file_offset(int fd) {
4627  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4628}
4629
4630// move file pointer to the specified offset
4631jlong os::seek_to_file_offset(int fd, jlong offset) {
4632  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4633}
4634
4635// This code originates from JDK's sysAvailable
4636// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4637
4638int os::available(int fd, jlong *bytes) {
4639  jlong cur, end;
4640  int mode;
4641  struct stat64 buf64;
4642
4643  if (::fstat64(fd, &buf64) >= 0) {
4644    mode = buf64.st_mode;
4645    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4646      /*
4647      * XXX: is the following call interruptible? If so, this might
4648      * need to go through the INTERRUPT_IO() wrapper as for other
4649      * blocking, interruptible calls in this file.
4650      */
4651      int n;
4652      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4653        *bytes = n;
4654        return 1;
4655      }
4656    }
4657  }
4658  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4659    return 0;
4660  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4661    return 0;
4662  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4663    return 0;
4664  }
4665  *bytes = end - cur;
4666  return 1;
4667}
4668
4669int os::socket_available(int fd, jint *pbytes) {
4670  // Linux doc says EINTR not returned, unlike Solaris
4671  int ret = ::ioctl(fd, FIONREAD, pbytes);
4672
4673  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4674  // is expected to return 0 on failure and 1 on success to the jdk.
4675  return (ret < 0) ? 0 : 1;
4676}
4677
4678// Map a block of memory.
4679char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4680                     char *addr, size_t bytes, bool read_only,
4681                     bool allow_exec) {
4682  int prot;
4683  int flags;
4684
4685  if (read_only) {
4686    prot = PROT_READ;
4687    flags = MAP_SHARED;
4688  } else {
4689    prot = PROT_READ | PROT_WRITE;
4690    flags = MAP_PRIVATE;
4691  }
4692
4693  if (allow_exec) {
4694    prot |= PROT_EXEC;
4695  }
4696
4697  if (addr != NULL) {
4698    flags |= MAP_FIXED;
4699  }
4700
4701  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4702                                     fd, file_offset);
4703  if (mapped_address == MAP_FAILED) {
4704    return NULL;
4705  }
4706  return mapped_address;
4707}
4708
4709
4710// Remap a block of memory.
4711char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4712                       char *addr, size_t bytes, bool read_only,
4713                       bool allow_exec) {
4714  // same as map_memory() on this OS
4715  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4716                        allow_exec);
4717}
4718
4719
4720// Unmap a block of memory.
4721bool os::unmap_memory(char* addr, size_t bytes) {
4722  return munmap(addr, bytes) == 0;
4723}
4724
4725static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4726
4727static clockid_t thread_cpu_clockid(Thread* thread) {
4728  pthread_t tid = thread->osthread()->pthread_id();
4729  clockid_t clockid;
4730
4731  // Get thread clockid
4732  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4733  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4734  return clockid;
4735}
4736
4737// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4738// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4739// of a thread.
4740//
4741// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4742// the fast estimate available on the platform.
4743
4744jlong os::current_thread_cpu_time() {
4745  if (os::Linux::supports_fast_thread_cpu_time()) {
4746    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4747  } else {
4748    // return user + sys since the cost is the same
4749    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4750  }
4751}
4752
4753jlong os::thread_cpu_time(Thread* thread) {
4754  // consistent with what current_thread_cpu_time() returns
4755  if (os::Linux::supports_fast_thread_cpu_time()) {
4756    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4757  } else {
4758    return slow_thread_cpu_time(thread, true /* user + sys */);
4759  }
4760}
4761
4762jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4763  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4764    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4765  } else {
4766    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4767  }
4768}
4769
4770jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4771  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4772    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4773  } else {
4774    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4775  }
4776}
4777
4778//
4779//  -1 on error.
4780//
4781
4782static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4783  static bool proc_pid_cpu_avail = true;
4784  static bool proc_task_unchecked = true;
4785  static const char *proc_stat_path = "/proc/%d/stat";
4786  pid_t  tid = thread->osthread()->thread_id();
4787  int i;
4788  char *s;
4789  char stat[2048];
4790  int statlen;
4791  char proc_name[64];
4792  int count;
4793  long sys_time, user_time;
4794  char string[64];
4795  char cdummy;
4796  int idummy;
4797  long ldummy;
4798  FILE *fp;
4799
4800  // We first try accessing /proc/<pid>/cpu since this is faster to
4801  // process.  If this file is not present (linux kernels 2.5 and above)
4802  // then we open /proc/<pid>/stat.
4803  if ( proc_pid_cpu_avail ) {
4804    sprintf(proc_name, "/proc/%d/cpu", tid);
4805    fp =  fopen(proc_name, "r");
4806    if ( fp != NULL ) {
4807      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4808      fclose(fp);
4809      if ( count != 3 ) return -1;
4810
4811      if (user_sys_cpu_time) {
4812        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4813      } else {
4814        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4815      }
4816    }
4817    else proc_pid_cpu_avail = false;
4818  }
4819
4820  // The /proc/<tid>/stat aggregates per-process usage on
4821  // new Linux kernels 2.6+ where NPTL is supported.
4822  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4823  // See bug 6328462.
4824  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4825  // and possibly in some other cases, so we check its availability.
4826  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4827    // This is executed only once
4828    proc_task_unchecked = false;
4829    fp = fopen("/proc/self/task", "r");
4830    if (fp != NULL) {
4831      proc_stat_path = "/proc/self/task/%d/stat";
4832      fclose(fp);
4833    }
4834  }
4835
4836  sprintf(proc_name, proc_stat_path, tid);
4837  fp = fopen(proc_name, "r");
4838  if ( fp == NULL ) return -1;
4839  statlen = fread(stat, 1, 2047, fp);
4840  stat[statlen] = '\0';
4841  fclose(fp);
4842
4843  // Skip pid and the command string. Note that we could be dealing with
4844  // weird command names, e.g. user could decide to rename java launcher
4845  // to "java 1.4.2 :)", then the stat file would look like
4846  //                1234 (java 1.4.2 :)) R ... ...
4847  // We don't really need to know the command string, just find the last
4848  // occurrence of ")" and then start parsing from there. See bug 4726580.
4849  s = strrchr(stat, ')');
4850  i = 0;
4851  if (s == NULL ) return -1;
4852
4853  // Skip blank chars
4854  do s++; while (isspace(*s));
4855
4856  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4857                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4858                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4859                 &user_time, &sys_time);
4860  if ( count != 13 ) return -1;
4861  if (user_sys_cpu_time) {
4862    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4863  } else {
4864    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4865  }
4866}
4867
4868void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4869  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4870  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4871  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4872  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4873}
4874
4875void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4876  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4877  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4878  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4879  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4880}
4881
4882bool os::is_thread_cpu_time_supported() {
4883  return true;
4884}
4885
4886// System loadavg support.  Returns -1 if load average cannot be obtained.
4887// Linux doesn't yet have a (official) notion of processor sets,
4888// so just return the system wide load average.
4889int os::loadavg(double loadavg[], int nelem) {
4890  return ::getloadavg(loadavg, nelem);
4891}
4892
4893void os::pause() {
4894  char filename[MAX_PATH];
4895  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4896    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4897  } else {
4898    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4899  }
4900
4901  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4902  if (fd != -1) {
4903    struct stat buf;
4904    ::close(fd);
4905    while (::stat(filename, &buf) == 0) {
4906      (void)::poll(NULL, 0, 100);
4907    }
4908  } else {
4909    jio_fprintf(stderr,
4910      "Could not open pause file '%s', continuing immediately.\n", filename);
4911  }
4912}
4913
4914
4915// Refer to the comments in os_solaris.cpp park-unpark.
4916//
4917// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4918// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4919// For specifics regarding the bug see GLIBC BUGID 261237 :
4920//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4921// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4922// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4923// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4924// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4925// and monitorenter when we're using 1-0 locking.  All those operations may result in
4926// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4927// of libpthread avoids the problem, but isn't practical.
4928//
4929// Possible remedies:
4930//
4931// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4932//      This is palliative and probabilistic, however.  If the thread is preempted
4933//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4934//      than the minimum period may have passed, and the abstime may be stale (in the
4935//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4936//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4937//
4938// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4939//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4940//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4941//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4942//      thread.
4943//
4944// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4945//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4946//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4947//      This also works well.  In fact it avoids kernel-level scalability impediments
4948//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4949//      timers in a graceful fashion.
4950//
4951// 4.   When the abstime value is in the past it appears that control returns
4952//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4953//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4954//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4955//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4956//      It may be possible to avoid reinitialization by checking the return
4957//      value from pthread_cond_timedwait().  In addition to reinitializing the
4958//      condvar we must establish the invariant that cond_signal() is only called
4959//      within critical sections protected by the adjunct mutex.  This prevents
4960//      cond_signal() from "seeing" a condvar that's in the midst of being
4961//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4962//      desirable signal-after-unlock optimization that avoids futile context switching.
4963//
4964//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4965//      structure when a condvar is used or initialized.  cond_destroy()  would
4966//      release the helper structure.  Our reinitialize-after-timedwait fix
4967//      put excessive stress on malloc/free and locks protecting the c-heap.
4968//
4969// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4970// It may be possible to refine (4) by checking the kernel and NTPL verisons
4971// and only enabling the work-around for vulnerable environments.
4972
4973// utility to compute the abstime argument to timedwait:
4974// millis is the relative timeout time
4975// abstime will be the absolute timeout time
4976// TODO: replace compute_abstime() with unpackTime()
4977
4978static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4979  if (millis < 0)  millis = 0;
4980  struct timeval now;
4981  int status = gettimeofday(&now, NULL);
4982  assert(status == 0, "gettimeofday");
4983  jlong seconds = millis / 1000;
4984  millis %= 1000;
4985  if (seconds > 50000000) { // see man cond_timedwait(3T)
4986    seconds = 50000000;
4987  }
4988  abstime->tv_sec = now.tv_sec  + seconds;
4989  long       usec = now.tv_usec + millis * 1000;
4990  if (usec >= 1000000) {
4991    abstime->tv_sec += 1;
4992    usec -= 1000000;
4993  }
4994  abstime->tv_nsec = usec * 1000;
4995  return abstime;
4996}
4997
4998
4999// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5000// Conceptually TryPark() should be equivalent to park(0).
5001
5002int os::PlatformEvent::TryPark() {
5003  for (;;) {
5004    const int v = _Event ;
5005    guarantee ((v == 0) || (v == 1), "invariant") ;
5006    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5007  }
5008}
5009
5010void os::PlatformEvent::park() {       // AKA "down()"
5011  // Invariant: Only the thread associated with the Event/PlatformEvent
5012  // may call park().
5013  // TODO: assert that _Assoc != NULL or _Assoc == Self
5014  int v ;
5015  for (;;) {
5016      v = _Event ;
5017      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5018  }
5019  guarantee (v >= 0, "invariant") ;
5020  if (v == 0) {
5021     // Do this the hard way by blocking ...
5022     int status = pthread_mutex_lock(_mutex);
5023     assert_status(status == 0, status, "mutex_lock");
5024     guarantee (_nParked == 0, "invariant") ;
5025     ++ _nParked ;
5026     while (_Event < 0) {
5027        status = pthread_cond_wait(_cond, _mutex);
5028        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5029        // Treat this the same as if the wait was interrupted
5030        if (status == ETIME) { status = EINTR; }
5031        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5032     }
5033     -- _nParked ;
5034
5035    // In theory we could move the ST of 0 into _Event past the unlock(),
5036    // but then we'd need a MEMBAR after the ST.
5037    _Event = 0 ;
5038     status = pthread_mutex_unlock(_mutex);
5039     assert_status(status == 0, status, "mutex_unlock");
5040  }
5041  guarantee (_Event >= 0, "invariant") ;
5042}
5043
5044int os::PlatformEvent::park(jlong millis) {
5045  guarantee (_nParked == 0, "invariant") ;
5046
5047  int v ;
5048  for (;;) {
5049      v = _Event ;
5050      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5051  }
5052  guarantee (v >= 0, "invariant") ;
5053  if (v != 0) return OS_OK ;
5054
5055  // We do this the hard way, by blocking the thread.
5056  // Consider enforcing a minimum timeout value.
5057  struct timespec abst;
5058  compute_abstime(&abst, millis);
5059
5060  int ret = OS_TIMEOUT;
5061  int status = pthread_mutex_lock(_mutex);
5062  assert_status(status == 0, status, "mutex_lock");
5063  guarantee (_nParked == 0, "invariant") ;
5064  ++_nParked ;
5065
5066  // Object.wait(timo) will return because of
5067  // (a) notification
5068  // (b) timeout
5069  // (c) thread.interrupt
5070  //
5071  // Thread.interrupt and object.notify{All} both call Event::set.
5072  // That is, we treat thread.interrupt as a special case of notification.
5073  // The underlying Solaris implementation, cond_timedwait, admits
5074  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5075  // JVM from making those visible to Java code.  As such, we must
5076  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5077  //
5078  // TODO: properly differentiate simultaneous notify+interrupt.
5079  // In that case, we should propagate the notify to another waiter.
5080
5081  while (_Event < 0) {
5082    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5083    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5084      pthread_cond_destroy (_cond);
5085      pthread_cond_init (_cond, NULL) ;
5086    }
5087    assert_status(status == 0 || status == EINTR ||
5088                  status == ETIME || status == ETIMEDOUT,
5089                  status, "cond_timedwait");
5090    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5091    if (status == ETIME || status == ETIMEDOUT) break ;
5092    // We consume and ignore EINTR and spurious wakeups.
5093  }
5094  --_nParked ;
5095  if (_Event >= 0) {
5096     ret = OS_OK;
5097  }
5098  _Event = 0 ;
5099  status = pthread_mutex_unlock(_mutex);
5100  assert_status(status == 0, status, "mutex_unlock");
5101  assert (_nParked == 0, "invariant") ;
5102  return ret;
5103}
5104
5105void os::PlatformEvent::unpark() {
5106  int v, AnyWaiters ;
5107  for (;;) {
5108      v = _Event ;
5109      if (v > 0) {
5110         // The LD of _Event could have reordered or be satisfied
5111         // by a read-aside from this processor's write buffer.
5112         // To avoid problems execute a barrier and then
5113         // ratify the value.
5114         OrderAccess::fence() ;
5115         if (_Event == v) return ;
5116         continue ;
5117      }
5118      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5119  }
5120  if (v < 0) {
5121     // Wait for the thread associated with the event to vacate
5122     int status = pthread_mutex_lock(_mutex);
5123     assert_status(status == 0, status, "mutex_lock");
5124     AnyWaiters = _nParked ;
5125     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5126     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5127        AnyWaiters = 0 ;
5128        pthread_cond_signal (_cond);
5129     }
5130     status = pthread_mutex_unlock(_mutex);
5131     assert_status(status == 0, status, "mutex_unlock");
5132     if (AnyWaiters != 0) {
5133        status = pthread_cond_signal(_cond);
5134        assert_status(status == 0, status, "cond_signal");
5135     }
5136  }
5137
5138  // Note that we signal() _after dropping the lock for "immortal" Events.
5139  // This is safe and avoids a common class of  futile wakeups.  In rare
5140  // circumstances this can cause a thread to return prematurely from
5141  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5142  // simply re-test the condition and re-park itself.
5143}
5144
5145
5146// JSR166
5147// -------------------------------------------------------
5148
5149/*
5150 * The solaris and linux implementations of park/unpark are fairly
5151 * conservative for now, but can be improved. They currently use a
5152 * mutex/condvar pair, plus a a count.
5153 * Park decrements count if > 0, else does a condvar wait.  Unpark
5154 * sets count to 1 and signals condvar.  Only one thread ever waits
5155 * on the condvar. Contention seen when trying to park implies that someone
5156 * is unparking you, so don't wait. And spurious returns are fine, so there
5157 * is no need to track notifications.
5158 */
5159
5160
5161#define NANOSECS_PER_SEC 1000000000
5162#define NANOSECS_PER_MILLISEC 1000000
5163#define MAX_SECS 100000000
5164/*
5165 * This code is common to linux and solaris and will be moved to a
5166 * common place in dolphin.
5167 *
5168 * The passed in time value is either a relative time in nanoseconds
5169 * or an absolute time in milliseconds. Either way it has to be unpacked
5170 * into suitable seconds and nanoseconds components and stored in the
5171 * given timespec structure.
5172 * Given time is a 64-bit value and the time_t used in the timespec is only
5173 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5174 * overflow if times way in the future are given. Further on Solaris versions
5175 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5176 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5177 * As it will be 28 years before "now + 100000000" will overflow we can
5178 * ignore overflow and just impose a hard-limit on seconds using the value
5179 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5180 * years from "now".
5181 */
5182
5183static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5184  assert (time > 0, "convertTime");
5185
5186  struct timeval now;
5187  int status = gettimeofday(&now, NULL);
5188  assert(status == 0, "gettimeofday");
5189
5190  time_t max_secs = now.tv_sec + MAX_SECS;
5191
5192  if (isAbsolute) {
5193    jlong secs = time / 1000;
5194    if (secs > max_secs) {
5195      absTime->tv_sec = max_secs;
5196    }
5197    else {
5198      absTime->tv_sec = secs;
5199    }
5200    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5201  }
5202  else {
5203    jlong secs = time / NANOSECS_PER_SEC;
5204    if (secs >= MAX_SECS) {
5205      absTime->tv_sec = max_secs;
5206      absTime->tv_nsec = 0;
5207    }
5208    else {
5209      absTime->tv_sec = now.tv_sec + secs;
5210      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5211      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5212        absTime->tv_nsec -= NANOSECS_PER_SEC;
5213        ++absTime->tv_sec; // note: this must be <= max_secs
5214      }
5215    }
5216  }
5217  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5218  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5219  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5220  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5221}
5222
5223void Parker::park(bool isAbsolute, jlong time) {
5224  // Optional fast-path check:
5225  // Return immediately if a permit is available.
5226  if (_counter > 0) {
5227      _counter = 0 ;
5228      OrderAccess::fence();
5229      return ;
5230  }
5231
5232  Thread* thread = Thread::current();
5233  assert(thread->is_Java_thread(), "Must be JavaThread");
5234  JavaThread *jt = (JavaThread *)thread;
5235
5236  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5237  // Check interrupt before trying to wait
5238  if (Thread::is_interrupted(thread, false)) {
5239    return;
5240  }
5241
5242  // Next, demultiplex/decode time arguments
5243  timespec absTime;
5244  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5245    return;
5246  }
5247  if (time > 0) {
5248    unpackTime(&absTime, isAbsolute, time);
5249  }
5250
5251
5252  // Enter safepoint region
5253  // Beware of deadlocks such as 6317397.
5254  // The per-thread Parker:: mutex is a classic leaf-lock.
5255  // In particular a thread must never block on the Threads_lock while
5256  // holding the Parker:: mutex.  If safepoints are pending both the
5257  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5258  ThreadBlockInVM tbivm(jt);
5259
5260  // Don't wait if cannot get lock since interference arises from
5261  // unblocking.  Also. check interrupt before trying wait
5262  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5263    return;
5264  }
5265
5266  int status ;
5267  if (_counter > 0)  { // no wait needed
5268    _counter = 0;
5269    status = pthread_mutex_unlock(_mutex);
5270    assert (status == 0, "invariant") ;
5271    OrderAccess::fence();
5272    return;
5273  }
5274
5275#ifdef ASSERT
5276  // Don't catch signals while blocked; let the running threads have the signals.
5277  // (This allows a debugger to break into the running thread.)
5278  sigset_t oldsigs;
5279  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5280  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5281#endif
5282
5283  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5284  jt->set_suspend_equivalent();
5285  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5286
5287  if (time == 0) {
5288    status = pthread_cond_wait (_cond, _mutex) ;
5289  } else {
5290    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5291    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5292      pthread_cond_destroy (_cond) ;
5293      pthread_cond_init    (_cond, NULL);
5294    }
5295  }
5296  assert_status(status == 0 || status == EINTR ||
5297                status == ETIME || status == ETIMEDOUT,
5298                status, "cond_timedwait");
5299
5300#ifdef ASSERT
5301  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5302#endif
5303
5304  _counter = 0 ;
5305  status = pthread_mutex_unlock(_mutex) ;
5306  assert_status(status == 0, status, "invariant") ;
5307  // If externally suspended while waiting, re-suspend
5308  if (jt->handle_special_suspend_equivalent_condition()) {
5309    jt->java_suspend_self();
5310  }
5311
5312  OrderAccess::fence();
5313}
5314
5315void Parker::unpark() {
5316  int s, status ;
5317  status = pthread_mutex_lock(_mutex);
5318  assert (status == 0, "invariant") ;
5319  s = _counter;
5320  _counter = 1;
5321  if (s < 1) {
5322     if (WorkAroundNPTLTimedWaitHang) {
5323        status = pthread_cond_signal (_cond) ;
5324        assert (status == 0, "invariant") ;
5325        status = pthread_mutex_unlock(_mutex);
5326        assert (status == 0, "invariant") ;
5327     } else {
5328        status = pthread_mutex_unlock(_mutex);
5329        assert (status == 0, "invariant") ;
5330        status = pthread_cond_signal (_cond) ;
5331        assert (status == 0, "invariant") ;
5332     }
5333  } else {
5334    pthread_mutex_unlock(_mutex);
5335    assert (status == 0, "invariant") ;
5336  }
5337}
5338
5339
5340extern char** environ;
5341
5342#ifndef __NR_fork
5343#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5344#endif
5345
5346#ifndef __NR_execve
5347#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5348#endif
5349
5350// Run the specified command in a separate process. Return its exit value,
5351// or -1 on failure (e.g. can't fork a new process).
5352// Unlike system(), this function can be called from signal handler. It
5353// doesn't block SIGINT et al.
5354int os::fork_and_exec(char* cmd) {
5355  const char * argv[4] = {"sh", "-c", cmd, NULL};
5356
5357  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5358  // pthread_atfork handlers and reset pthread library. All we need is a
5359  // separate process to execve. Make a direct syscall to fork process.
5360  // On IA64 there's no fork syscall, we have to use fork() and hope for
5361  // the best...
5362  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5363              IA64_ONLY(fork();)
5364
5365  if (pid < 0) {
5366    // fork failed
5367    return -1;
5368
5369  } else if (pid == 0) {
5370    // child process
5371
5372    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5373    // first to kill every thread on the thread list. Because this list is
5374    // not reset by fork() (see notes above), execve() will instead kill
5375    // every thread in the parent process. We know this is the only thread
5376    // in the new process, so make a system call directly.
5377    // IA64 should use normal execve() from glibc to match the glibc fork()
5378    // above.
5379    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5380    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5381
5382    // execve failed
5383    _exit(-1);
5384
5385  } else  {
5386    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5387    // care about the actual exit code, for now.
5388
5389    int status;
5390
5391    // Wait for the child process to exit.  This returns immediately if
5392    // the child has already exited. */
5393    while (waitpid(pid, &status, 0) < 0) {
5394        switch (errno) {
5395        case ECHILD: return 0;
5396        case EINTR: break;
5397        default: return -1;
5398        }
5399    }
5400
5401    if (WIFEXITED(status)) {
5402       // The child exited normally; get its exit code.
5403       return WEXITSTATUS(status);
5404    } else if (WIFSIGNALED(status)) {
5405       // The child exited because of a signal
5406       // The best value to return is 0x80 + signal number,
5407       // because that is what all Unix shells do, and because
5408       // it allows callers to distinguish between process exit and
5409       // process death by signal.
5410       return 0x80 + WTERMSIG(status);
5411    } else {
5412       // Unknown exit code; pass it through
5413       return status;
5414    }
5415  }
5416}
5417
5418// is_headless_jre()
5419//
5420// Test for the existence of libmawt in motif21 or xawt directories
5421// in order to report if we are running in a headless jre
5422//
5423bool os::is_headless_jre() {
5424    struct stat statbuf;
5425    char buf[MAXPATHLEN];
5426    char libmawtpath[MAXPATHLEN];
5427    const char *xawtstr  = "/xawt/libmawt.so";
5428    const char *motifstr = "/motif21/libmawt.so";
5429    char *p;
5430
5431    // Get path to libjvm.so
5432    os::jvm_path(buf, sizeof(buf));
5433
5434    // Get rid of libjvm.so
5435    p = strrchr(buf, '/');
5436    if (p == NULL) return false;
5437    else *p = '\0';
5438
5439    // Get rid of client or server
5440    p = strrchr(buf, '/');
5441    if (p == NULL) return false;
5442    else *p = '\0';
5443
5444    // check xawt/libmawt.so
5445    strcpy(libmawtpath, buf);
5446    strcat(libmawtpath, xawtstr);
5447    if (::stat(libmawtpath, &statbuf) == 0) return false;
5448
5449    // check motif21/libmawt.so
5450    strcpy(libmawtpath, buf);
5451    strcat(libmawtpath, motifstr);
5452    if (::stat(libmawtpath, &statbuf) == 0) return false;
5453
5454    return true;
5455}
5456
5457
5458#ifdef JAVASE_EMBEDDED
5459//
5460// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5461//
5462MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5463
5464// ctor
5465//
5466MemNotifyThread::MemNotifyThread(int fd): Thread() {
5467  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5468  _fd = fd;
5469
5470  if (os::create_thread(this, os::os_thread)) {
5471    _memnotify_thread = this;
5472    os::set_priority(this, NearMaxPriority);
5473    os::start_thread(this);
5474  }
5475}
5476
5477// Where all the work gets done
5478//
5479void MemNotifyThread::run() {
5480  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5481
5482  // Set up the select arguments
5483  fd_set rfds;
5484  if (_fd != -1) {
5485    FD_ZERO(&rfds);
5486    FD_SET(_fd, &rfds);
5487  }
5488
5489  // Now wait for the mem_notify device to wake up
5490  while (1) {
5491    // Wait for the mem_notify device to signal us..
5492    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5493    if (rc == -1) {
5494      perror("select!\n");
5495      break;
5496    } else if (rc) {
5497      //ssize_t free_before = os::available_memory();
5498      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5499
5500      // The kernel is telling us there is not much memory left...
5501      // try to do something about that
5502
5503      // If we are not already in a GC, try one.
5504      if (!Universe::heap()->is_gc_active()) {
5505        Universe::heap()->collect(GCCause::_allocation_failure);
5506
5507        //ssize_t free_after = os::available_memory();
5508        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5509        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5510      }
5511      // We might want to do something like the following if we find the GC's are not helping...
5512      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5513    }
5514  }
5515}
5516
5517//
5518// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5519//
5520void MemNotifyThread::start() {
5521  int    fd;
5522  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5523  if (fd < 0) {
5524      return;
5525  }
5526
5527  if (memnotify_thread() == NULL) {
5528    new MemNotifyThread(fd);
5529  }
5530}
5531#endif // JAVASE_EMBEDDED
5532