os_linux.cpp revision 2589:7c2653aefc46
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# define __STDC_FORMAT_MACROS
26
27// no precompiled headers
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "compiler/compileBroker.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_linux.h"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/extendedPC.hpp"
46#include "runtime/globals.hpp"
47#include "runtime/interfaceSupport.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/runtimeService.hpp"
61#include "thread_linux.inline.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67#ifdef TARGET_ARCH_x86
68# include "assembler_x86.inline.hpp"
69# include "nativeInst_x86.hpp"
70#endif
71#ifdef TARGET_ARCH_sparc
72# include "assembler_sparc.inline.hpp"
73# include "nativeInst_sparc.hpp"
74#endif
75#ifdef TARGET_ARCH_zero
76# include "assembler_zero.inline.hpp"
77# include "nativeInst_zero.hpp"
78#endif
79#ifdef TARGET_ARCH_arm
80# include "assembler_arm.inline.hpp"
81# include "nativeInst_arm.hpp"
82#endif
83#ifdef TARGET_ARCH_ppc
84# include "assembler_ppc.inline.hpp"
85# include "nativeInst_ppc.hpp"
86#endif
87#ifdef COMPILER1
88#include "c1/c1_Runtime1.hpp"
89#endif
90#ifdef COMPILER2
91#include "opto/runtime.hpp"
92#endif
93
94// put OS-includes here
95# include <sys/types.h>
96# include <sys/mman.h>
97# include <sys/stat.h>
98# include <sys/select.h>
99# include <pthread.h>
100# include <signal.h>
101# include <errno.h>
102# include <dlfcn.h>
103# include <stdio.h>
104# include <unistd.h>
105# include <sys/resource.h>
106# include <pthread.h>
107# include <sys/stat.h>
108# include <sys/time.h>
109# include <sys/times.h>
110# include <sys/utsname.h>
111# include <sys/socket.h>
112# include <sys/wait.h>
113# include <pwd.h>
114# include <poll.h>
115# include <semaphore.h>
116# include <fcntl.h>
117# include <string.h>
118# include <syscall.h>
119# include <sys/sysinfo.h>
120# include <gnu/libc-version.h>
121# include <sys/ipc.h>
122# include <sys/shm.h>
123# include <link.h>
124# include <stdint.h>
125# include <inttypes.h>
126# include <sys/ioctl.h>
127
128#ifdef AMD64
129#include <asm/vsyscall.h>
130#endif
131
132#define MAX_PATH    (2 * K)
133
134// for timer info max values which include all bits
135#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
136#define SEC_IN_NANOSECS  1000000000LL
137
138#define LARGEPAGES_BIT (1 << 6)
139////////////////////////////////////////////////////////////////////////////////
140// global variables
141julong os::Linux::_physical_memory = 0;
142
143address   os::Linux::_initial_thread_stack_bottom = NULL;
144uintptr_t os::Linux::_initial_thread_stack_size   = 0;
145
146int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
147int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
148Mutex* os::Linux::_createThread_lock = NULL;
149pthread_t os::Linux::_main_thread;
150int os::Linux::_page_size = -1;
151bool os::Linux::_is_floating_stack = false;
152bool os::Linux::_is_NPTL = false;
153bool os::Linux::_supports_fast_thread_cpu_time = false;
154const char * os::Linux::_glibc_version = NULL;
155const char * os::Linux::_libpthread_version = NULL;
156
157static jlong initial_time_count=0;
158
159static int clock_tics_per_sec = 100;
160
161// For diagnostics to print a message once. see run_periodic_checks
162static sigset_t check_signal_done;
163static bool check_signals = true;;
164
165static pid_t _initial_pid = 0;
166
167/* Signal number used to suspend/resume a thread */
168
169/* do not use any signal number less than SIGSEGV, see 4355769 */
170static int SR_signum = SIGUSR2;
171sigset_t SR_sigset;
172
173/* Used to protect dlsym() calls */
174static pthread_mutex_t dl_mutex;
175
176#ifdef JAVASE_EMBEDDED
177class MemNotifyThread: public Thread {
178  friend class VMStructs;
179 public:
180  virtual void run();
181
182 private:
183  static MemNotifyThread* _memnotify_thread;
184  int _fd;
185
186 public:
187
188  // Constructor
189  MemNotifyThread(int fd);
190
191  // Tester
192  bool is_memnotify_thread() const { return true; }
193
194  // Printing
195  char* name() const { return (char*)"Linux MemNotify Thread"; }
196
197  // Returns the single instance of the MemNotifyThread
198  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
199
200  // Create and start the single instance of MemNotifyThread
201  static void start();
202};
203#endif // JAVASE_EMBEDDED
204
205// utility functions
206
207static int SR_initialize();
208static int SR_finalize();
209
210julong os::available_memory() {
211  return Linux::available_memory();
212}
213
214julong os::Linux::available_memory() {
215  // values in struct sysinfo are "unsigned long"
216  struct sysinfo si;
217  sysinfo(&si);
218
219  return (julong)si.freeram * si.mem_unit;
220}
221
222julong os::physical_memory() {
223  return Linux::physical_memory();
224}
225
226julong os::allocatable_physical_memory(julong size) {
227#ifdef _LP64
228  return size;
229#else
230  julong result = MIN2(size, (julong)3800*M);
231   if (!is_allocatable(result)) {
232     // See comments under solaris for alignment considerations
233     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
234     result =  MIN2(size, reasonable_size);
235   }
236   return result;
237#endif // _LP64
238}
239
240////////////////////////////////////////////////////////////////////////////////
241// environment support
242
243bool os::getenv(const char* name, char* buf, int len) {
244  const char* val = ::getenv(name);
245  if (val != NULL && strlen(val) < (size_t)len) {
246    strcpy(buf, val);
247    return true;
248  }
249  if (len > 0) buf[0] = 0;  // return a null string
250  return false;
251}
252
253
254// Return true if user is running as root.
255
256bool os::have_special_privileges() {
257  static bool init = false;
258  static bool privileges = false;
259  if (!init) {
260    privileges = (getuid() != geteuid()) || (getgid() != getegid());
261    init = true;
262  }
263  return privileges;
264}
265
266
267#ifndef SYS_gettid
268// i386: 224, ia64: 1105, amd64: 186, sparc 143
269#ifdef __ia64__
270#define SYS_gettid 1105
271#elif __i386__
272#define SYS_gettid 224
273#elif __amd64__
274#define SYS_gettid 186
275#elif __sparc__
276#define SYS_gettid 143
277#else
278#error define gettid for the arch
279#endif
280#endif
281
282// Cpu architecture string
283#if   defined(ZERO)
284static char cpu_arch[] = ZERO_LIBARCH;
285#elif defined(IA64)
286static char cpu_arch[] = "ia64";
287#elif defined(IA32)
288static char cpu_arch[] = "i386";
289#elif defined(AMD64)
290static char cpu_arch[] = "amd64";
291#elif defined(ARM)
292static char cpu_arch[] = "arm";
293#elif defined(PPC)
294static char cpu_arch[] = "ppc";
295#elif defined(SPARC)
296#  ifdef _LP64
297static char cpu_arch[] = "sparcv9";
298#  else
299static char cpu_arch[] = "sparc";
300#  endif
301#else
302#error Add appropriate cpu_arch setting
303#endif
304
305
306// pid_t gettid()
307//
308// Returns the kernel thread id of the currently running thread. Kernel
309// thread id is used to access /proc.
310//
311// (Note that getpid() on LinuxThreads returns kernel thread id too; but
312// on NPTL, it returns the same pid for all threads, as required by POSIX.)
313//
314pid_t os::Linux::gettid() {
315  int rslt = syscall(SYS_gettid);
316  if (rslt == -1) {
317     // old kernel, no NPTL support
318     return getpid();
319  } else {
320     return (pid_t)rslt;
321  }
322}
323
324// Most versions of linux have a bug where the number of processors are
325// determined by looking at the /proc file system.  In a chroot environment,
326// the system call returns 1.  This causes the VM to act as if it is
327// a single processor and elide locking (see is_MP() call).
328static bool unsafe_chroot_detected = false;
329static const char *unstable_chroot_error = "/proc file system not found.\n"
330                     "Java may be unstable running multithreaded in a chroot "
331                     "environment on Linux when /proc filesystem is not mounted.";
332
333void os::Linux::initialize_system_info() {
334  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
335  if (processor_count() == 1) {
336    pid_t pid = os::Linux::gettid();
337    char fname[32];
338    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
339    FILE *fp = fopen(fname, "r");
340    if (fp == NULL) {
341      unsafe_chroot_detected = true;
342    } else {
343      fclose(fp);
344    }
345  }
346  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
347  assert(processor_count() > 0, "linux error");
348}
349
350void os::init_system_properties_values() {
351//  char arch[12];
352//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
353
354  // The next steps are taken in the product version:
355  //
356  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
357  // This library should be located at:
358  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
359  //
360  // If "/jre/lib/" appears at the right place in the path, then we
361  // assume libjvm[_g].so is installed in a JDK and we use this path.
362  //
363  // Otherwise exit with message: "Could not create the Java virtual machine."
364  //
365  // The following extra steps are taken in the debugging version:
366  //
367  // If "/jre/lib/" does NOT appear at the right place in the path
368  // instead of exit check for $JAVA_HOME environment variable.
369  //
370  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
371  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
372  // it looks like libjvm[_g].so is installed there
373  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
374  //
375  // Otherwise exit.
376  //
377  // Important note: if the location of libjvm.so changes this
378  // code needs to be changed accordingly.
379
380  // The next few definitions allow the code to be verbatim:
381#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
382#define getenv(n) ::getenv(n)
383
384/*
385 * See ld(1):
386 *      The linker uses the following search paths to locate required
387 *      shared libraries:
388 *        1: ...
389 *        ...
390 *        7: The default directories, normally /lib and /usr/lib.
391 */
392#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
393#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
394#else
395#define DEFAULT_LIBPATH "/lib:/usr/lib"
396#endif
397
398#define EXTENSIONS_DIR  "/lib/ext"
399#define ENDORSED_DIR    "/lib/endorsed"
400#define REG_DIR         "/usr/java/packages"
401
402  {
403    /* sysclasspath, java_home, dll_dir */
404    {
405        char *home_path;
406        char *dll_path;
407        char *pslash;
408        char buf[MAXPATHLEN];
409        os::jvm_path(buf, sizeof(buf));
410
411        // Found the full path to libjvm.so.
412        // Now cut the path to <java_home>/jre if we can.
413        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
414        pslash = strrchr(buf, '/');
415        if (pslash != NULL)
416            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
417        dll_path = malloc(strlen(buf) + 1);
418        if (dll_path == NULL)
419            return;
420        strcpy(dll_path, buf);
421        Arguments::set_dll_dir(dll_path);
422
423        if (pslash != NULL) {
424            pslash = strrchr(buf, '/');
425            if (pslash != NULL) {
426                *pslash = '\0';       /* get rid of /<arch> */
427                pslash = strrchr(buf, '/');
428                if (pslash != NULL)
429                    *pslash = '\0';   /* get rid of /lib */
430            }
431        }
432
433        home_path = malloc(strlen(buf) + 1);
434        if (home_path == NULL)
435            return;
436        strcpy(home_path, buf);
437        Arguments::set_java_home(home_path);
438
439        if (!set_boot_path('/', ':'))
440            return;
441    }
442
443    /*
444     * Where to look for native libraries
445     *
446     * Note: Due to a legacy implementation, most of the library path
447     * is set in the launcher.  This was to accomodate linking restrictions
448     * on legacy Linux implementations (which are no longer supported).
449     * Eventually, all the library path setting will be done here.
450     *
451     * However, to prevent the proliferation of improperly built native
452     * libraries, the new path component /usr/java/packages is added here.
453     * Eventually, all the library path setting will be done here.
454     */
455    {
456        char *ld_library_path;
457
458        /*
459         * Construct the invariant part of ld_library_path. Note that the
460         * space for the colon and the trailing null are provided by the
461         * nulls included by the sizeof operator (so actually we allocate
462         * a byte more than necessary).
463         */
464        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
465            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
466        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
467
468        /*
469         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
470         * should always exist (until the legacy problem cited above is
471         * addressed).
472         */
473        char *v = getenv("LD_LIBRARY_PATH");
474        if (v != NULL) {
475            char *t = ld_library_path;
476            /* That's +1 for the colon and +1 for the trailing '\0' */
477            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
478            sprintf(ld_library_path, "%s:%s", v, t);
479        }
480        Arguments::set_library_path(ld_library_path);
481    }
482
483    /*
484     * Extensions directories.
485     *
486     * Note that the space for the colon and the trailing null are provided
487     * by the nulls included by the sizeof operator (so actually one byte more
488     * than necessary is allocated).
489     */
490    {
491        char *buf = malloc(strlen(Arguments::get_java_home()) +
492            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
493        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
494            Arguments::get_java_home());
495        Arguments::set_ext_dirs(buf);
496    }
497
498    /* Endorsed standards default directory. */
499    {
500        char * buf;
501        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
502        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
503        Arguments::set_endorsed_dirs(buf);
504    }
505  }
506
507#undef malloc
508#undef getenv
509#undef EXTENSIONS_DIR
510#undef ENDORSED_DIR
511
512  // Done
513  return;
514}
515
516////////////////////////////////////////////////////////////////////////////////
517// breakpoint support
518
519void os::breakpoint() {
520  BREAKPOINT;
521}
522
523extern "C" void breakpoint() {
524  // use debugger to set breakpoint here
525}
526
527////////////////////////////////////////////////////////////////////////////////
528// signal support
529
530debug_only(static bool signal_sets_initialized = false);
531static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
532
533bool os::Linux::is_sig_ignored(int sig) {
534      struct sigaction oact;
535      sigaction(sig, (struct sigaction*)NULL, &oact);
536      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
537                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
538      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
539           return true;
540      else
541           return false;
542}
543
544void os::Linux::signal_sets_init() {
545  // Should also have an assertion stating we are still single-threaded.
546  assert(!signal_sets_initialized, "Already initialized");
547  // Fill in signals that are necessarily unblocked for all threads in
548  // the VM. Currently, we unblock the following signals:
549  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
550  //                         by -Xrs (=ReduceSignalUsage));
551  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
552  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
553  // the dispositions or masks wrt these signals.
554  // Programs embedding the VM that want to use the above signals for their
555  // own purposes must, at this time, use the "-Xrs" option to prevent
556  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
557  // (See bug 4345157, and other related bugs).
558  // In reality, though, unblocking these signals is really a nop, since
559  // these signals are not blocked by default.
560  sigemptyset(&unblocked_sigs);
561  sigemptyset(&allowdebug_blocked_sigs);
562  sigaddset(&unblocked_sigs, SIGILL);
563  sigaddset(&unblocked_sigs, SIGSEGV);
564  sigaddset(&unblocked_sigs, SIGBUS);
565  sigaddset(&unblocked_sigs, SIGFPE);
566  sigaddset(&unblocked_sigs, SR_signum);
567
568  if (!ReduceSignalUsage) {
569   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
570      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
571      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
572   }
573   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
574      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
575      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
576   }
577   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
578      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
579      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
580   }
581  }
582  // Fill in signals that are blocked by all but the VM thread.
583  sigemptyset(&vm_sigs);
584  if (!ReduceSignalUsage)
585    sigaddset(&vm_sigs, BREAK_SIGNAL);
586  debug_only(signal_sets_initialized = true);
587
588}
589
590// These are signals that are unblocked while a thread is running Java.
591// (For some reason, they get blocked by default.)
592sigset_t* os::Linux::unblocked_signals() {
593  assert(signal_sets_initialized, "Not initialized");
594  return &unblocked_sigs;
595}
596
597// These are the signals that are blocked while a (non-VM) thread is
598// running Java. Only the VM thread handles these signals.
599sigset_t* os::Linux::vm_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &vm_sigs;
602}
603
604// These are signals that are blocked during cond_wait to allow debugger in
605sigset_t* os::Linux::allowdebug_blocked_signals() {
606  assert(signal_sets_initialized, "Not initialized");
607  return &allowdebug_blocked_sigs;
608}
609
610void os::Linux::hotspot_sigmask(Thread* thread) {
611
612  //Save caller's signal mask before setting VM signal mask
613  sigset_t caller_sigmask;
614  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
615
616  OSThread* osthread = thread->osthread();
617  osthread->set_caller_sigmask(caller_sigmask);
618
619  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
620
621  if (!ReduceSignalUsage) {
622    if (thread->is_VM_thread()) {
623      // Only the VM thread handles BREAK_SIGNAL ...
624      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
625    } else {
626      // ... all other threads block BREAK_SIGNAL
627      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
628    }
629  }
630}
631
632//////////////////////////////////////////////////////////////////////////////
633// detecting pthread library
634
635void os::Linux::libpthread_init() {
636  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
637  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
638  // generic name for earlier versions.
639  // Define macros here so we can build HotSpot on old systems.
640# ifndef _CS_GNU_LIBC_VERSION
641# define _CS_GNU_LIBC_VERSION 2
642# endif
643# ifndef _CS_GNU_LIBPTHREAD_VERSION
644# define _CS_GNU_LIBPTHREAD_VERSION 3
645# endif
646
647  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
648  if (n > 0) {
649     char *str = (char *)malloc(n);
650     confstr(_CS_GNU_LIBC_VERSION, str, n);
651     os::Linux::set_glibc_version(str);
652  } else {
653     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
654     static char _gnu_libc_version[32];
655     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
656              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
657     os::Linux::set_glibc_version(_gnu_libc_version);
658  }
659
660  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
661  if (n > 0) {
662     char *str = (char *)malloc(n);
663     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
664     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
665     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
666     // is the case. LinuxThreads has a hard limit on max number of threads.
667     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
668     // On the other hand, NPTL does not have such a limit, sysconf()
669     // will return -1 and errno is not changed. Check if it is really NPTL.
670     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
671         strstr(str, "NPTL") &&
672         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
673       free(str);
674       os::Linux::set_libpthread_version("linuxthreads");
675     } else {
676       os::Linux::set_libpthread_version(str);
677     }
678  } else {
679    // glibc before 2.3.2 only has LinuxThreads.
680    os::Linux::set_libpthread_version("linuxthreads");
681  }
682
683  if (strstr(libpthread_version(), "NPTL")) {
684     os::Linux::set_is_NPTL();
685  } else {
686     os::Linux::set_is_LinuxThreads();
687  }
688
689  // LinuxThreads have two flavors: floating-stack mode, which allows variable
690  // stack size; and fixed-stack mode. NPTL is always floating-stack.
691  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
692     os::Linux::set_is_floating_stack();
693  }
694}
695
696/////////////////////////////////////////////////////////////////////////////
697// thread stack
698
699// Force Linux kernel to expand current thread stack. If "bottom" is close
700// to the stack guard, caller should block all signals.
701//
702// MAP_GROWSDOWN:
703//   A special mmap() flag that is used to implement thread stacks. It tells
704//   kernel that the memory region should extend downwards when needed. This
705//   allows early versions of LinuxThreads to only mmap the first few pages
706//   when creating a new thread. Linux kernel will automatically expand thread
707//   stack as needed (on page faults).
708//
709//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
710//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
711//   region, it's hard to tell if the fault is due to a legitimate stack
712//   access or because of reading/writing non-exist memory (e.g. buffer
713//   overrun). As a rule, if the fault happens below current stack pointer,
714//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
715//   application (see Linux kernel fault.c).
716//
717//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
718//   stack overflow detection.
719//
720//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
721//   not use this flag. However, the stack of initial thread is not created
722//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
723//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
724//   and then attach the thread to JVM.
725//
726// To get around the problem and allow stack banging on Linux, we need to
727// manually expand thread stack after receiving the SIGSEGV.
728//
729// There are two ways to expand thread stack to address "bottom", we used
730// both of them in JVM before 1.5:
731//   1. adjust stack pointer first so that it is below "bottom", and then
732//      touch "bottom"
733//   2. mmap() the page in question
734//
735// Now alternate signal stack is gone, it's harder to use 2. For instance,
736// if current sp is already near the lower end of page 101, and we need to
737// call mmap() to map page 100, it is possible that part of the mmap() frame
738// will be placed in page 100. When page 100 is mapped, it is zero-filled.
739// That will destroy the mmap() frame and cause VM to crash.
740//
741// The following code works by adjusting sp first, then accessing the "bottom"
742// page to force a page fault. Linux kernel will then automatically expand the
743// stack mapping.
744//
745// _expand_stack_to() assumes its frame size is less than page size, which
746// should always be true if the function is not inlined.
747
748#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
749#define NOINLINE
750#else
751#define NOINLINE __attribute__ ((noinline))
752#endif
753
754static void _expand_stack_to(address bottom) NOINLINE;
755
756static void _expand_stack_to(address bottom) {
757  address sp;
758  size_t size;
759  volatile char *p;
760
761  // Adjust bottom to point to the largest address within the same page, it
762  // gives us a one-page buffer if alloca() allocates slightly more memory.
763  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
764  bottom += os::Linux::page_size() - 1;
765
766  // sp might be slightly above current stack pointer; if that's the case, we
767  // will alloca() a little more space than necessary, which is OK. Don't use
768  // os::current_stack_pointer(), as its result can be slightly below current
769  // stack pointer, causing us to not alloca enough to reach "bottom".
770  sp = (address)&sp;
771
772  if (sp > bottom) {
773    size = sp - bottom;
774    p = (volatile char *)alloca(size);
775    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
776    p[0] = '\0';
777  }
778}
779
780bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
781  assert(t!=NULL, "just checking");
782  assert(t->osthread()->expanding_stack(), "expand should be set");
783  assert(t->stack_base() != NULL, "stack_base was not initialized");
784
785  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
786    sigset_t mask_all, old_sigset;
787    sigfillset(&mask_all);
788    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
789    _expand_stack_to(addr);
790    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
791    return true;
792  }
793  return false;
794}
795
796//////////////////////////////////////////////////////////////////////////////
797// create new thread
798
799static address highest_vm_reserved_address();
800
801// check if it's safe to start a new thread
802static bool _thread_safety_check(Thread* thread) {
803  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
804    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
805    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
806    //   allocated (MAP_FIXED) from high address space. Every thread stack
807    //   occupies a fixed size slot (usually 2Mbytes, but user can change
808    //   it to other values if they rebuild LinuxThreads).
809    //
810    // Problem with MAP_FIXED is that mmap() can still succeed even part of
811    // the memory region has already been mmap'ed. That means if we have too
812    // many threads and/or very large heap, eventually thread stack will
813    // collide with heap.
814    //
815    // Here we try to prevent heap/stack collision by comparing current
816    // stack bottom with the highest address that has been mmap'ed by JVM
817    // plus a safety margin for memory maps created by native code.
818    //
819    // This feature can be disabled by setting ThreadSafetyMargin to 0
820    //
821    if (ThreadSafetyMargin > 0) {
822      address stack_bottom = os::current_stack_base() - os::current_stack_size();
823
824      // not safe if our stack extends below the safety margin
825      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
826    } else {
827      return true;
828    }
829  } else {
830    // Floating stack LinuxThreads or NPTL:
831    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
832    //   there's not enough space left, pthread_create() will fail. If we come
833    //   here, that means enough space has been reserved for stack.
834    return true;
835  }
836}
837
838// Thread start routine for all newly created threads
839static void *java_start(Thread *thread) {
840  // Try to randomize the cache line index of hot stack frames.
841  // This helps when threads of the same stack traces evict each other's
842  // cache lines. The threads can be either from the same JVM instance, or
843  // from different JVM instances. The benefit is especially true for
844  // processors with hyperthreading technology.
845  static int counter = 0;
846  int pid = os::current_process_id();
847  alloca(((pid ^ counter++) & 7) * 128);
848
849  ThreadLocalStorage::set_thread(thread);
850
851  OSThread* osthread = thread->osthread();
852  Monitor* sync = osthread->startThread_lock();
853
854  // non floating stack LinuxThreads needs extra check, see above
855  if (!_thread_safety_check(thread)) {
856    // notify parent thread
857    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
858    osthread->set_state(ZOMBIE);
859    sync->notify_all();
860    return NULL;
861  }
862
863  // thread_id is kernel thread id (similar to Solaris LWP id)
864  osthread->set_thread_id(os::Linux::gettid());
865
866  if (UseNUMA) {
867    int lgrp_id = os::numa_get_group_id();
868    if (lgrp_id != -1) {
869      thread->set_lgrp_id(lgrp_id);
870    }
871  }
872  // initialize signal mask for this thread
873  os::Linux::hotspot_sigmask(thread);
874
875  // initialize floating point control register
876  os::Linux::init_thread_fpu_state();
877
878  // handshaking with parent thread
879  {
880    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
881
882    // notify parent thread
883    osthread->set_state(INITIALIZED);
884    sync->notify_all();
885
886    // wait until os::start_thread()
887    while (osthread->get_state() == INITIALIZED) {
888      sync->wait(Mutex::_no_safepoint_check_flag);
889    }
890  }
891
892  // call one more level start routine
893  thread->run();
894
895  return 0;
896}
897
898bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
899  assert(thread->osthread() == NULL, "caller responsible");
900
901  // Allocate the OSThread object
902  OSThread* osthread = new OSThread(NULL, NULL);
903  if (osthread == NULL) {
904    return false;
905  }
906
907  // set the correct thread state
908  osthread->set_thread_type(thr_type);
909
910  // Initial state is ALLOCATED but not INITIALIZED
911  osthread->set_state(ALLOCATED);
912
913  thread->set_osthread(osthread);
914
915  // init thread attributes
916  pthread_attr_t attr;
917  pthread_attr_init(&attr);
918  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
919
920  // stack size
921  if (os::Linux::supports_variable_stack_size()) {
922    // calculate stack size if it's not specified by caller
923    if (stack_size == 0) {
924      stack_size = os::Linux::default_stack_size(thr_type);
925
926      switch (thr_type) {
927      case os::java_thread:
928        // Java threads use ThreadStackSize which default value can be
929        // changed with the flag -Xss
930        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
931        stack_size = JavaThread::stack_size_at_create();
932        break;
933      case os::compiler_thread:
934        if (CompilerThreadStackSize > 0) {
935          stack_size = (size_t)(CompilerThreadStackSize * K);
936          break;
937        } // else fall through:
938          // use VMThreadStackSize if CompilerThreadStackSize is not defined
939      case os::vm_thread:
940      case os::pgc_thread:
941      case os::cgc_thread:
942      case os::watcher_thread:
943        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
944        break;
945      }
946    }
947
948    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
949    pthread_attr_setstacksize(&attr, stack_size);
950  } else {
951    // let pthread_create() pick the default value.
952  }
953
954  // glibc guard page
955  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
956
957  ThreadState state;
958
959  {
960    // Serialize thread creation if we are running with fixed stack LinuxThreads
961    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
962    if (lock) {
963      os::Linux::createThread_lock()->lock_without_safepoint_check();
964    }
965
966    pthread_t tid;
967    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
968
969    pthread_attr_destroy(&attr);
970
971    if (ret != 0) {
972      if (PrintMiscellaneous && (Verbose || WizardMode)) {
973        perror("pthread_create()");
974      }
975      // Need to clean up stuff we've allocated so far
976      thread->set_osthread(NULL);
977      delete osthread;
978      if (lock) os::Linux::createThread_lock()->unlock();
979      return false;
980    }
981
982    // Store pthread info into the OSThread
983    osthread->set_pthread_id(tid);
984
985    // Wait until child thread is either initialized or aborted
986    {
987      Monitor* sync_with_child = osthread->startThread_lock();
988      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
989      while ((state = osthread->get_state()) == ALLOCATED) {
990        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
991      }
992    }
993
994    if (lock) {
995      os::Linux::createThread_lock()->unlock();
996    }
997  }
998
999  // Aborted due to thread limit being reached
1000  if (state == ZOMBIE) {
1001      thread->set_osthread(NULL);
1002      delete osthread;
1003      return false;
1004  }
1005
1006  // The thread is returned suspended (in state INITIALIZED),
1007  // and is started higher up in the call chain
1008  assert(state == INITIALIZED, "race condition");
1009  return true;
1010}
1011
1012/////////////////////////////////////////////////////////////////////////////
1013// attach existing thread
1014
1015// bootstrap the main thread
1016bool os::create_main_thread(JavaThread* thread) {
1017  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1018  return create_attached_thread(thread);
1019}
1020
1021bool os::create_attached_thread(JavaThread* thread) {
1022#ifdef ASSERT
1023    thread->verify_not_published();
1024#endif
1025
1026  // Allocate the OSThread object
1027  OSThread* osthread = new OSThread(NULL, NULL);
1028
1029  if (osthread == NULL) {
1030    return false;
1031  }
1032
1033  // Store pthread info into the OSThread
1034  osthread->set_thread_id(os::Linux::gettid());
1035  osthread->set_pthread_id(::pthread_self());
1036
1037  // initialize floating point control register
1038  os::Linux::init_thread_fpu_state();
1039
1040  // Initial thread state is RUNNABLE
1041  osthread->set_state(RUNNABLE);
1042
1043  thread->set_osthread(osthread);
1044
1045  if (UseNUMA) {
1046    int lgrp_id = os::numa_get_group_id();
1047    if (lgrp_id != -1) {
1048      thread->set_lgrp_id(lgrp_id);
1049    }
1050  }
1051
1052  if (os::Linux::is_initial_thread()) {
1053    // If current thread is initial thread, its stack is mapped on demand,
1054    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1055    // the entire stack region to avoid SEGV in stack banging.
1056    // It is also useful to get around the heap-stack-gap problem on SuSE
1057    // kernel (see 4821821 for details). We first expand stack to the top
1058    // of yellow zone, then enable stack yellow zone (order is significant,
1059    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1060    // is no gap between the last two virtual memory regions.
1061
1062    JavaThread *jt = (JavaThread *)thread;
1063    address addr = jt->stack_yellow_zone_base();
1064    assert(addr != NULL, "initialization problem?");
1065    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1066
1067    osthread->set_expanding_stack();
1068    os::Linux::manually_expand_stack(jt, addr);
1069    osthread->clear_expanding_stack();
1070  }
1071
1072  // initialize signal mask for this thread
1073  // and save the caller's signal mask
1074  os::Linux::hotspot_sigmask(thread);
1075
1076  return true;
1077}
1078
1079void os::pd_start_thread(Thread* thread) {
1080  OSThread * osthread = thread->osthread();
1081  assert(osthread->get_state() != INITIALIZED, "just checking");
1082  Monitor* sync_with_child = osthread->startThread_lock();
1083  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1084  sync_with_child->notify();
1085}
1086
1087// Free Linux resources related to the OSThread
1088void os::free_thread(OSThread* osthread) {
1089  assert(osthread != NULL, "osthread not set");
1090
1091  if (Thread::current()->osthread() == osthread) {
1092    // Restore caller's signal mask
1093    sigset_t sigmask = osthread->caller_sigmask();
1094    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1095   }
1096
1097  delete osthread;
1098}
1099
1100//////////////////////////////////////////////////////////////////////////////
1101// thread local storage
1102
1103int os::allocate_thread_local_storage() {
1104  pthread_key_t key;
1105  int rslt = pthread_key_create(&key, NULL);
1106  assert(rslt == 0, "cannot allocate thread local storage");
1107  return (int)key;
1108}
1109
1110// Note: This is currently not used by VM, as we don't destroy TLS key
1111// on VM exit.
1112void os::free_thread_local_storage(int index) {
1113  int rslt = pthread_key_delete((pthread_key_t)index);
1114  assert(rslt == 0, "invalid index");
1115}
1116
1117void os::thread_local_storage_at_put(int index, void* value) {
1118  int rslt = pthread_setspecific((pthread_key_t)index, value);
1119  assert(rslt == 0, "pthread_setspecific failed");
1120}
1121
1122extern "C" Thread* get_thread() {
1123  return ThreadLocalStorage::thread();
1124}
1125
1126//////////////////////////////////////////////////////////////////////////////
1127// initial thread
1128
1129// Check if current thread is the initial thread, similar to Solaris thr_main.
1130bool os::Linux::is_initial_thread(void) {
1131  char dummy;
1132  // If called before init complete, thread stack bottom will be null.
1133  // Can be called if fatal error occurs before initialization.
1134  if (initial_thread_stack_bottom() == NULL) return false;
1135  assert(initial_thread_stack_bottom() != NULL &&
1136         initial_thread_stack_size()   != 0,
1137         "os::init did not locate initial thread's stack region");
1138  if ((address)&dummy >= initial_thread_stack_bottom() &&
1139      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1140       return true;
1141  else return false;
1142}
1143
1144// Find the virtual memory area that contains addr
1145static bool find_vma(address addr, address* vma_low, address* vma_high) {
1146  FILE *fp = fopen("/proc/self/maps", "r");
1147  if (fp) {
1148    address low, high;
1149    while (!feof(fp)) {
1150      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1151        if (low <= addr && addr < high) {
1152           if (vma_low)  *vma_low  = low;
1153           if (vma_high) *vma_high = high;
1154           fclose (fp);
1155           return true;
1156        }
1157      }
1158      for (;;) {
1159        int ch = fgetc(fp);
1160        if (ch == EOF || ch == (int)'\n') break;
1161      }
1162    }
1163    fclose(fp);
1164  }
1165  return false;
1166}
1167
1168// Locate initial thread stack. This special handling of initial thread stack
1169// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1170// bogus value for initial thread.
1171void os::Linux::capture_initial_stack(size_t max_size) {
1172  // stack size is the easy part, get it from RLIMIT_STACK
1173  size_t stack_size;
1174  struct rlimit rlim;
1175  getrlimit(RLIMIT_STACK, &rlim);
1176  stack_size = rlim.rlim_cur;
1177
1178  // 6308388: a bug in ld.so will relocate its own .data section to the
1179  //   lower end of primordial stack; reduce ulimit -s value a little bit
1180  //   so we won't install guard page on ld.so's data section.
1181  stack_size -= 2 * page_size();
1182
1183  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1184  //   7.1, in both cases we will get 2G in return value.
1185  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1186  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1187  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1188  //   in case other parts in glibc still assumes 2M max stack size.
1189  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1190#ifndef IA64
1191  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1192#else
1193  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1194  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1195#endif
1196
1197  // Try to figure out where the stack base (top) is. This is harder.
1198  //
1199  // When an application is started, glibc saves the initial stack pointer in
1200  // a global variable "__libc_stack_end", which is then used by system
1201  // libraries. __libc_stack_end should be pretty close to stack top. The
1202  // variable is available since the very early days. However, because it is
1203  // a private interface, it could disappear in the future.
1204  //
1205  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1206  // to __libc_stack_end, it is very close to stack top, but isn't the real
1207  // stack top. Note that /proc may not exist if VM is running as a chroot
1208  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1209  // /proc/<pid>/stat could change in the future (though unlikely).
1210  //
1211  // We try __libc_stack_end first. If that doesn't work, look for
1212  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1213  // as a hint, which should work well in most cases.
1214
1215  uintptr_t stack_start;
1216
1217  // try __libc_stack_end first
1218  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1219  if (p && *p) {
1220    stack_start = *p;
1221  } else {
1222    // see if we can get the start_stack field from /proc/self/stat
1223    FILE *fp;
1224    int pid;
1225    char state;
1226    int ppid;
1227    int pgrp;
1228    int session;
1229    int nr;
1230    int tpgrp;
1231    unsigned long flags;
1232    unsigned long minflt;
1233    unsigned long cminflt;
1234    unsigned long majflt;
1235    unsigned long cmajflt;
1236    unsigned long utime;
1237    unsigned long stime;
1238    long cutime;
1239    long cstime;
1240    long prio;
1241    long nice;
1242    long junk;
1243    long it_real;
1244    uintptr_t start;
1245    uintptr_t vsize;
1246    intptr_t rss;
1247    uintptr_t rsslim;
1248    uintptr_t scodes;
1249    uintptr_t ecode;
1250    int i;
1251
1252    // Figure what the primordial thread stack base is. Code is inspired
1253    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1254    // followed by command name surrounded by parentheses, state, etc.
1255    char stat[2048];
1256    int statlen;
1257
1258    fp = fopen("/proc/self/stat", "r");
1259    if (fp) {
1260      statlen = fread(stat, 1, 2047, fp);
1261      stat[statlen] = '\0';
1262      fclose(fp);
1263
1264      // Skip pid and the command string. Note that we could be dealing with
1265      // weird command names, e.g. user could decide to rename java launcher
1266      // to "java 1.4.2 :)", then the stat file would look like
1267      //                1234 (java 1.4.2 :)) R ... ...
1268      // We don't really need to know the command string, just find the last
1269      // occurrence of ")" and then start parsing from there. See bug 4726580.
1270      char * s = strrchr(stat, ')');
1271
1272      i = 0;
1273      if (s) {
1274        // Skip blank chars
1275        do s++; while (isspace(*s));
1276
1277#define _UFM UINTX_FORMAT
1278#define _DFM INTX_FORMAT
1279
1280        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1281        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1282        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1283             &state,          /* 3  %c  */
1284             &ppid,           /* 4  %d  */
1285             &pgrp,           /* 5  %d  */
1286             &session,        /* 6  %d  */
1287             &nr,             /* 7  %d  */
1288             &tpgrp,          /* 8  %d  */
1289             &flags,          /* 9  %lu  */
1290             &minflt,         /* 10 %lu  */
1291             &cminflt,        /* 11 %lu  */
1292             &majflt,         /* 12 %lu  */
1293             &cmajflt,        /* 13 %lu  */
1294             &utime,          /* 14 %lu  */
1295             &stime,          /* 15 %lu  */
1296             &cutime,         /* 16 %ld  */
1297             &cstime,         /* 17 %ld  */
1298             &prio,           /* 18 %ld  */
1299             &nice,           /* 19 %ld  */
1300             &junk,           /* 20 %ld  */
1301             &it_real,        /* 21 %ld  */
1302             &start,          /* 22 UINTX_FORMAT */
1303             &vsize,          /* 23 UINTX_FORMAT */
1304             &rss,            /* 24 INTX_FORMAT  */
1305             &rsslim,         /* 25 UINTX_FORMAT */
1306             &scodes,         /* 26 UINTX_FORMAT */
1307             &ecode,          /* 27 UINTX_FORMAT */
1308             &stack_start);   /* 28 UINTX_FORMAT */
1309      }
1310
1311#undef _UFM
1312#undef _DFM
1313
1314      if (i != 28 - 2) {
1315         assert(false, "Bad conversion from /proc/self/stat");
1316         // product mode - assume we are the initial thread, good luck in the
1317         // embedded case.
1318         warning("Can't detect initial thread stack location - bad conversion");
1319         stack_start = (uintptr_t) &rlim;
1320      }
1321    } else {
1322      // For some reason we can't open /proc/self/stat (for example, running on
1323      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1324      // most cases, so don't abort:
1325      warning("Can't detect initial thread stack location - no /proc/self/stat");
1326      stack_start = (uintptr_t) &rlim;
1327    }
1328  }
1329
1330  // Now we have a pointer (stack_start) very close to the stack top, the
1331  // next thing to do is to figure out the exact location of stack top. We
1332  // can find out the virtual memory area that contains stack_start by
1333  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1334  // and its upper limit is the real stack top. (again, this would fail if
1335  // running inside chroot, because /proc may not exist.)
1336
1337  uintptr_t stack_top;
1338  address low, high;
1339  if (find_vma((address)stack_start, &low, &high)) {
1340    // success, "high" is the true stack top. (ignore "low", because initial
1341    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1342    stack_top = (uintptr_t)high;
1343  } else {
1344    // failed, likely because /proc/self/maps does not exist
1345    warning("Can't detect initial thread stack location - find_vma failed");
1346    // best effort: stack_start is normally within a few pages below the real
1347    // stack top, use it as stack top, and reduce stack size so we won't put
1348    // guard page outside stack.
1349    stack_top = stack_start;
1350    stack_size -= 16 * page_size();
1351  }
1352
1353  // stack_top could be partially down the page so align it
1354  stack_top = align_size_up(stack_top, page_size());
1355
1356  if (max_size && stack_size > max_size) {
1357     _initial_thread_stack_size = max_size;
1358  } else {
1359     _initial_thread_stack_size = stack_size;
1360  }
1361
1362  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1363  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1364}
1365
1366////////////////////////////////////////////////////////////////////////////////
1367// time support
1368
1369// Time since start-up in seconds to a fine granularity.
1370// Used by VMSelfDestructTimer and the MemProfiler.
1371double os::elapsedTime() {
1372
1373  return (double)(os::elapsed_counter()) * 0.000001;
1374}
1375
1376jlong os::elapsed_counter() {
1377  timeval time;
1378  int status = gettimeofday(&time, NULL);
1379  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1380}
1381
1382jlong os::elapsed_frequency() {
1383  return (1000 * 1000);
1384}
1385
1386// For now, we say that linux does not support vtime.  I have no idea
1387// whether it can actually be made to (DLD, 9/13/05).
1388
1389bool os::supports_vtime() { return false; }
1390bool os::enable_vtime()   { return false; }
1391bool os::vtime_enabled()  { return false; }
1392double os::elapsedVTime() {
1393  // better than nothing, but not much
1394  return elapsedTime();
1395}
1396
1397jlong os::javaTimeMillis() {
1398  timeval time;
1399  int status = gettimeofday(&time, NULL);
1400  assert(status != -1, "linux error");
1401  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1402}
1403
1404#ifndef CLOCK_MONOTONIC
1405#define CLOCK_MONOTONIC (1)
1406#endif
1407
1408void os::Linux::clock_init() {
1409  // we do dlopen's in this particular order due to bug in linux
1410  // dynamical loader (see 6348968) leading to crash on exit
1411  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1412  if (handle == NULL) {
1413    handle = dlopen("librt.so", RTLD_LAZY);
1414  }
1415
1416  if (handle) {
1417    int (*clock_getres_func)(clockid_t, struct timespec*) =
1418           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1419    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1420           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1421    if (clock_getres_func && clock_gettime_func) {
1422      // See if monotonic clock is supported by the kernel. Note that some
1423      // early implementations simply return kernel jiffies (updated every
1424      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1425      // for nano time (though the monotonic property is still nice to have).
1426      // It's fixed in newer kernels, however clock_getres() still returns
1427      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1428      // resolution for now. Hopefully as people move to new kernels, this
1429      // won't be a problem.
1430      struct timespec res;
1431      struct timespec tp;
1432      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1433          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1434        // yes, monotonic clock is supported
1435        _clock_gettime = clock_gettime_func;
1436      } else {
1437        // close librt if there is no monotonic clock
1438        dlclose(handle);
1439      }
1440    }
1441  }
1442}
1443
1444#ifndef SYS_clock_getres
1445
1446#if defined(IA32) || defined(AMD64)
1447#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1448#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1449#else
1450#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1451#define sys_clock_getres(x,y)  -1
1452#endif
1453
1454#else
1455#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1456#endif
1457
1458void os::Linux::fast_thread_clock_init() {
1459  if (!UseLinuxPosixThreadCPUClocks) {
1460    return;
1461  }
1462  clockid_t clockid;
1463  struct timespec tp;
1464  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1465      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1466
1467  // Switch to using fast clocks for thread cpu time if
1468  // the sys_clock_getres() returns 0 error code.
1469  // Note, that some kernels may support the current thread
1470  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1471  // returned by the pthread_getcpuclockid().
1472  // If the fast Posix clocks are supported then the sys_clock_getres()
1473  // must return at least tp.tv_sec == 0 which means a resolution
1474  // better than 1 sec. This is extra check for reliability.
1475
1476  if(pthread_getcpuclockid_func &&
1477     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1478     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1479
1480    _supports_fast_thread_cpu_time = true;
1481    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1482  }
1483}
1484
1485jlong os::javaTimeNanos() {
1486  if (Linux::supports_monotonic_clock()) {
1487    struct timespec tp;
1488    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1489    assert(status == 0, "gettime error");
1490    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1491    return result;
1492  } else {
1493    timeval time;
1494    int status = gettimeofday(&time, NULL);
1495    assert(status != -1, "linux error");
1496    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1497    return 1000 * usecs;
1498  }
1499}
1500
1501void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1502  if (Linux::supports_monotonic_clock()) {
1503    info_ptr->max_value = ALL_64_BITS;
1504
1505    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1506    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1507    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1508  } else {
1509    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1510    info_ptr->max_value = ALL_64_BITS;
1511
1512    // gettimeofday is a real time clock so it skips
1513    info_ptr->may_skip_backward = true;
1514    info_ptr->may_skip_forward = true;
1515  }
1516
1517  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1518}
1519
1520// Return the real, user, and system times in seconds from an
1521// arbitrary fixed point in the past.
1522bool os::getTimesSecs(double* process_real_time,
1523                      double* process_user_time,
1524                      double* process_system_time) {
1525  struct tms ticks;
1526  clock_t real_ticks = times(&ticks);
1527
1528  if (real_ticks == (clock_t) (-1)) {
1529    return false;
1530  } else {
1531    double ticks_per_second = (double) clock_tics_per_sec;
1532    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1533    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1534    *process_real_time = ((double) real_ticks) / ticks_per_second;
1535
1536    return true;
1537  }
1538}
1539
1540
1541char * os::local_time_string(char *buf, size_t buflen) {
1542  struct tm t;
1543  time_t long_time;
1544  time(&long_time);
1545  localtime_r(&long_time, &t);
1546  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1547               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1548               t.tm_hour, t.tm_min, t.tm_sec);
1549  return buf;
1550}
1551
1552struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1553  return localtime_r(clock, res);
1554}
1555
1556////////////////////////////////////////////////////////////////////////////////
1557// runtime exit support
1558
1559// Note: os::shutdown() might be called very early during initialization, or
1560// called from signal handler. Before adding something to os::shutdown(), make
1561// sure it is async-safe and can handle partially initialized VM.
1562void os::shutdown() {
1563
1564  // allow PerfMemory to attempt cleanup of any persistent resources
1565  perfMemory_exit();
1566
1567  // needs to remove object in file system
1568  AttachListener::abort();
1569
1570  // flush buffered output, finish log files
1571  ostream_abort();
1572
1573  // Check for abort hook
1574  abort_hook_t abort_hook = Arguments::abort_hook();
1575  if (abort_hook != NULL) {
1576    abort_hook();
1577  }
1578
1579}
1580
1581// Note: os::abort() might be called very early during initialization, or
1582// called from signal handler. Before adding something to os::abort(), make
1583// sure it is async-safe and can handle partially initialized VM.
1584void os::abort(bool dump_core) {
1585  os::shutdown();
1586  if (dump_core) {
1587#ifndef PRODUCT
1588    fdStream out(defaultStream::output_fd());
1589    out.print_raw("Current thread is ");
1590    char buf[16];
1591    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1592    out.print_raw_cr(buf);
1593    out.print_raw_cr("Dumping core ...");
1594#endif
1595    ::abort(); // dump core
1596  }
1597
1598  ::exit(1);
1599}
1600
1601// Die immediately, no exit hook, no abort hook, no cleanup.
1602void os::die() {
1603  // _exit() on LinuxThreads only kills current thread
1604  ::abort();
1605}
1606
1607// unused on linux for now.
1608void os::set_error_file(const char *logfile) {}
1609
1610
1611// This method is a copy of JDK's sysGetLastErrorString
1612// from src/solaris/hpi/src/system_md.c
1613
1614size_t os::lasterror(char *buf, size_t len) {
1615
1616  if (errno == 0)  return 0;
1617
1618  const char *s = ::strerror(errno);
1619  size_t n = ::strlen(s);
1620  if (n >= len) {
1621    n = len - 1;
1622  }
1623  ::strncpy(buf, s, n);
1624  buf[n] = '\0';
1625  return n;
1626}
1627
1628intx os::current_thread_id() { return (intx)pthread_self(); }
1629int os::current_process_id() {
1630
1631  // Under the old linux thread library, linux gives each thread
1632  // its own process id. Because of this each thread will return
1633  // a different pid if this method were to return the result
1634  // of getpid(2). Linux provides no api that returns the pid
1635  // of the launcher thread for the vm. This implementation
1636  // returns a unique pid, the pid of the launcher thread
1637  // that starts the vm 'process'.
1638
1639  // Under the NPTL, getpid() returns the same pid as the
1640  // launcher thread rather than a unique pid per thread.
1641  // Use gettid() if you want the old pre NPTL behaviour.
1642
1643  // if you are looking for the result of a call to getpid() that
1644  // returns a unique pid for the calling thread, then look at the
1645  // OSThread::thread_id() method in osThread_linux.hpp file
1646
1647  return (int)(_initial_pid ? _initial_pid : getpid());
1648}
1649
1650// DLL functions
1651
1652const char* os::dll_file_extension() { return ".so"; }
1653
1654// This must be hard coded because it's the system's temporary
1655// directory not the java application's temp directory, ala java.io.tmpdir.
1656const char* os::get_temp_directory() { return "/tmp"; }
1657
1658static bool file_exists(const char* filename) {
1659  struct stat statbuf;
1660  if (filename == NULL || strlen(filename) == 0) {
1661    return false;
1662  }
1663  return os::stat(filename, &statbuf) == 0;
1664}
1665
1666void os::dll_build_name(char* buffer, size_t buflen,
1667                        const char* pname, const char* fname) {
1668  // Copied from libhpi
1669  const size_t pnamelen = pname ? strlen(pname) : 0;
1670
1671  // Quietly truncate on buffer overflow.  Should be an error.
1672  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1673      *buffer = '\0';
1674      return;
1675  }
1676
1677  if (pnamelen == 0) {
1678    snprintf(buffer, buflen, "lib%s.so", fname);
1679  } else if (strchr(pname, *os::path_separator()) != NULL) {
1680    int n;
1681    char** pelements = split_path(pname, &n);
1682    for (int i = 0 ; i < n ; i++) {
1683      // Really shouldn't be NULL, but check can't hurt
1684      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1685        continue; // skip the empty path values
1686      }
1687      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1688      if (file_exists(buffer)) {
1689        break;
1690      }
1691    }
1692    // release the storage
1693    for (int i = 0 ; i < n ; i++) {
1694      if (pelements[i] != NULL) {
1695        FREE_C_HEAP_ARRAY(char, pelements[i]);
1696      }
1697    }
1698    if (pelements != NULL) {
1699      FREE_C_HEAP_ARRAY(char*, pelements);
1700    }
1701  } else {
1702    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1703  }
1704}
1705
1706const char* os::get_current_directory(char *buf, int buflen) {
1707  return getcwd(buf, buflen);
1708}
1709
1710// check if addr is inside libjvm[_g].so
1711bool os::address_is_in_vm(address addr) {
1712  static address libjvm_base_addr;
1713  Dl_info dlinfo;
1714
1715  if (libjvm_base_addr == NULL) {
1716    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1717    libjvm_base_addr = (address)dlinfo.dli_fbase;
1718    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1719  }
1720
1721  if (dladdr((void *)addr, &dlinfo)) {
1722    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1723  }
1724
1725  return false;
1726}
1727
1728bool os::dll_address_to_function_name(address addr, char *buf,
1729                                      int buflen, int *offset) {
1730  Dl_info dlinfo;
1731
1732  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1733    if (buf != NULL) {
1734      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1735        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1736      }
1737    }
1738    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1739    return true;
1740  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1741    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1742       dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1743       return true;
1744    }
1745  }
1746
1747  if (buf != NULL) buf[0] = '\0';
1748  if (offset != NULL) *offset = -1;
1749  return false;
1750}
1751
1752struct _address_to_library_name {
1753  address addr;          // input : memory address
1754  size_t  buflen;        //         size of fname
1755  char*   fname;         // output: library name
1756  address base;          //         library base addr
1757};
1758
1759static int address_to_library_name_callback(struct dl_phdr_info *info,
1760                                            size_t size, void *data) {
1761  int i;
1762  bool found = false;
1763  address libbase = NULL;
1764  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1765
1766  // iterate through all loadable segments
1767  for (i = 0; i < info->dlpi_phnum; i++) {
1768    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1769    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1770      // base address of a library is the lowest address of its loaded
1771      // segments.
1772      if (libbase == NULL || libbase > segbase) {
1773        libbase = segbase;
1774      }
1775      // see if 'addr' is within current segment
1776      if (segbase <= d->addr &&
1777          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1778        found = true;
1779      }
1780    }
1781  }
1782
1783  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1784  // so dll_address_to_library_name() can fall through to use dladdr() which
1785  // can figure out executable name from argv[0].
1786  if (found && info->dlpi_name && info->dlpi_name[0]) {
1787    d->base = libbase;
1788    if (d->fname) {
1789      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1790    }
1791    return 1;
1792  }
1793  return 0;
1794}
1795
1796bool os::dll_address_to_library_name(address addr, char* buf,
1797                                     int buflen, int* offset) {
1798  Dl_info dlinfo;
1799  struct _address_to_library_name data;
1800
1801  // There is a bug in old glibc dladdr() implementation that it could resolve
1802  // to wrong library name if the .so file has a base address != NULL. Here
1803  // we iterate through the program headers of all loaded libraries to find
1804  // out which library 'addr' really belongs to. This workaround can be
1805  // removed once the minimum requirement for glibc is moved to 2.3.x.
1806  data.addr = addr;
1807  data.fname = buf;
1808  data.buflen = buflen;
1809  data.base = NULL;
1810  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1811
1812  if (rslt) {
1813     // buf already contains library name
1814     if (offset) *offset = addr - data.base;
1815     return true;
1816  } else if (dladdr((void*)addr, &dlinfo)){
1817     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1818     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1819     return true;
1820  } else {
1821     if (buf) buf[0] = '\0';
1822     if (offset) *offset = -1;
1823     return false;
1824  }
1825}
1826
1827  // Loads .dll/.so and
1828  // in case of error it checks if .dll/.so was built for the
1829  // same architecture as Hotspot is running on
1830
1831void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1832{
1833  void * result= ::dlopen(filename, RTLD_LAZY);
1834  if (result != NULL) {
1835    // Successful loading
1836    return result;
1837  }
1838
1839  Elf32_Ehdr elf_head;
1840
1841  // Read system error message into ebuf
1842  // It may or may not be overwritten below
1843  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1844  ebuf[ebuflen-1]='\0';
1845  int diag_msg_max_length=ebuflen-strlen(ebuf);
1846  char* diag_msg_buf=ebuf+strlen(ebuf);
1847
1848  if (diag_msg_max_length==0) {
1849    // No more space in ebuf for additional diagnostics message
1850    return NULL;
1851  }
1852
1853
1854  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1855
1856  if (file_descriptor < 0) {
1857    // Can't open library, report dlerror() message
1858    return NULL;
1859  }
1860
1861  bool failed_to_read_elf_head=
1862    (sizeof(elf_head)!=
1863        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1864
1865  ::close(file_descriptor);
1866  if (failed_to_read_elf_head) {
1867    // file i/o error - report dlerror() msg
1868    return NULL;
1869  }
1870
1871  typedef struct {
1872    Elf32_Half  code;         // Actual value as defined in elf.h
1873    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1874    char        elf_class;    // 32 or 64 bit
1875    char        endianess;    // MSB or LSB
1876    char*       name;         // String representation
1877  } arch_t;
1878
1879  #ifndef EM_486
1880  #define EM_486          6               /* Intel 80486 */
1881  #endif
1882
1883  static const arch_t arch_array[]={
1884    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1885    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1886    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1887    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1888    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1889    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1890    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1891    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1892    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1893    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1894    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1895    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1896    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1897    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1898    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1899    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1900  };
1901
1902  #if  (defined IA32)
1903    static  Elf32_Half running_arch_code=EM_386;
1904  #elif   (defined AMD64)
1905    static  Elf32_Half running_arch_code=EM_X86_64;
1906  #elif  (defined IA64)
1907    static  Elf32_Half running_arch_code=EM_IA_64;
1908  #elif  (defined __sparc) && (defined _LP64)
1909    static  Elf32_Half running_arch_code=EM_SPARCV9;
1910  #elif  (defined __sparc) && (!defined _LP64)
1911    static  Elf32_Half running_arch_code=EM_SPARC;
1912  #elif  (defined __powerpc64__)
1913    static  Elf32_Half running_arch_code=EM_PPC64;
1914  #elif  (defined __powerpc__)
1915    static  Elf32_Half running_arch_code=EM_PPC;
1916  #elif  (defined ARM)
1917    static  Elf32_Half running_arch_code=EM_ARM;
1918  #elif  (defined S390)
1919    static  Elf32_Half running_arch_code=EM_S390;
1920  #elif  (defined ALPHA)
1921    static  Elf32_Half running_arch_code=EM_ALPHA;
1922  #elif  (defined MIPSEL)
1923    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1924  #elif  (defined PARISC)
1925    static  Elf32_Half running_arch_code=EM_PARISC;
1926  #elif  (defined MIPS)
1927    static  Elf32_Half running_arch_code=EM_MIPS;
1928  #elif  (defined M68K)
1929    static  Elf32_Half running_arch_code=EM_68K;
1930  #else
1931    #error Method os::dll_load requires that one of following is defined:\
1932         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1933  #endif
1934
1935  // Identify compatability class for VM's architecture and library's architecture
1936  // Obtain string descriptions for architectures
1937
1938  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1939  int running_arch_index=-1;
1940
1941  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1942    if (running_arch_code == arch_array[i].code) {
1943      running_arch_index    = i;
1944    }
1945    if (lib_arch.code == arch_array[i].code) {
1946      lib_arch.compat_class = arch_array[i].compat_class;
1947      lib_arch.name         = arch_array[i].name;
1948    }
1949  }
1950
1951  assert(running_arch_index != -1,
1952    "Didn't find running architecture code (running_arch_code) in arch_array");
1953  if (running_arch_index == -1) {
1954    // Even though running architecture detection failed
1955    // we may still continue with reporting dlerror() message
1956    return NULL;
1957  }
1958
1959  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1960    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1961    return NULL;
1962  }
1963
1964#ifndef S390
1965  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1966    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1967    return NULL;
1968  }
1969#endif // !S390
1970
1971  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1972    if ( lib_arch.name!=NULL ) {
1973      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1974        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1975        lib_arch.name, arch_array[running_arch_index].name);
1976    } else {
1977      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1978      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1979        lib_arch.code,
1980        arch_array[running_arch_index].name);
1981    }
1982  }
1983
1984  return NULL;
1985}
1986
1987/*
1988 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1989 * chances are you might want to run the generated bits against glibc-2.0
1990 * libdl.so, so always use locking for any version of glibc.
1991 */
1992void* os::dll_lookup(void* handle, const char* name) {
1993  pthread_mutex_lock(&dl_mutex);
1994  void* res = dlsym(handle, name);
1995  pthread_mutex_unlock(&dl_mutex);
1996  return res;
1997}
1998
1999
2000static bool _print_ascii_file(const char* filename, outputStream* st) {
2001  int fd = ::open(filename, O_RDONLY);
2002  if (fd == -1) {
2003     return false;
2004  }
2005
2006  char buf[32];
2007  int bytes;
2008  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2009    st->print_raw(buf, bytes);
2010  }
2011
2012  ::close(fd);
2013
2014  return true;
2015}
2016
2017void os::print_dll_info(outputStream *st) {
2018   st->print_cr("Dynamic libraries:");
2019
2020   char fname[32];
2021   pid_t pid = os::Linux::gettid();
2022
2023   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2024
2025   if (!_print_ascii_file(fname, st)) {
2026     st->print("Can not get library information for pid = %d\n", pid);
2027   }
2028}
2029
2030
2031void os::print_os_info(outputStream* st) {
2032  st->print("OS:");
2033
2034  // Try to identify popular distros.
2035  // Most Linux distributions have /etc/XXX-release file, which contains
2036  // the OS version string. Some have more than one /etc/XXX-release file
2037  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2038  // so the order is important.
2039  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2040      !_print_ascii_file("/etc/sun-release", st) &&
2041      !_print_ascii_file("/etc/redhat-release", st) &&
2042      !_print_ascii_file("/etc/SuSE-release", st) &&
2043      !_print_ascii_file("/etc/turbolinux-release", st) &&
2044      !_print_ascii_file("/etc/gentoo-release", st) &&
2045      !_print_ascii_file("/etc/debian_version", st) &&
2046      !_print_ascii_file("/etc/ltib-release", st) &&
2047      !_print_ascii_file("/etc/angstrom-version", st)) {
2048      st->print("Linux");
2049  }
2050  st->cr();
2051
2052  // kernel
2053  st->print("uname:");
2054  struct utsname name;
2055  uname(&name);
2056  st->print(name.sysname); st->print(" ");
2057  st->print(name.release); st->print(" ");
2058  st->print(name.version); st->print(" ");
2059  st->print(name.machine);
2060  st->cr();
2061
2062  // Print warning if unsafe chroot environment detected
2063  if (unsafe_chroot_detected) {
2064    st->print("WARNING!! ");
2065    st->print_cr(unstable_chroot_error);
2066  }
2067
2068  // libc, pthread
2069  st->print("libc:");
2070  st->print(os::Linux::glibc_version()); st->print(" ");
2071  st->print(os::Linux::libpthread_version()); st->print(" ");
2072  if (os::Linux::is_LinuxThreads()) {
2073     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2074  }
2075  st->cr();
2076
2077  // rlimit
2078  st->print("rlimit:");
2079  struct rlimit rlim;
2080
2081  st->print(" STACK ");
2082  getrlimit(RLIMIT_STACK, &rlim);
2083  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2084  else st->print("%uk", rlim.rlim_cur >> 10);
2085
2086  st->print(", CORE ");
2087  getrlimit(RLIMIT_CORE, &rlim);
2088  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2089  else st->print("%uk", rlim.rlim_cur >> 10);
2090
2091  st->print(", NPROC ");
2092  getrlimit(RLIMIT_NPROC, &rlim);
2093  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2094  else st->print("%d", rlim.rlim_cur);
2095
2096  st->print(", NOFILE ");
2097  getrlimit(RLIMIT_NOFILE, &rlim);
2098  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2099  else st->print("%d", rlim.rlim_cur);
2100
2101  st->print(", AS ");
2102  getrlimit(RLIMIT_AS, &rlim);
2103  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2104  else st->print("%uk", rlim.rlim_cur >> 10);
2105  st->cr();
2106
2107  // load average
2108  st->print("load average:");
2109  double loadavg[3];
2110  os::loadavg(loadavg, 3);
2111  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2112  st->cr();
2113
2114  // meminfo
2115  st->print("\n/proc/meminfo:\n");
2116  _print_ascii_file("/proc/meminfo", st);
2117  st->cr();
2118}
2119
2120void os::pd_print_cpu_info(outputStream* st) {
2121  st->print("\n/proc/cpuinfo:\n");
2122  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2123    st->print("  <Not Available>");
2124  }
2125  st->cr();
2126}
2127
2128void os::print_memory_info(outputStream* st) {
2129
2130  st->print("Memory:");
2131  st->print(" %dk page", os::vm_page_size()>>10);
2132
2133  // values in struct sysinfo are "unsigned long"
2134  struct sysinfo si;
2135  sysinfo(&si);
2136
2137  st->print(", physical " UINT64_FORMAT "k",
2138            os::physical_memory() >> 10);
2139  st->print("(" UINT64_FORMAT "k free)",
2140            os::available_memory() >> 10);
2141  st->print(", swap " UINT64_FORMAT "k",
2142            ((jlong)si.totalswap * si.mem_unit) >> 10);
2143  st->print("(" UINT64_FORMAT "k free)",
2144            ((jlong)si.freeswap * si.mem_unit) >> 10);
2145  st->cr();
2146}
2147
2148// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2149// but they're the same for all the linux arch that we support
2150// and they're the same for solaris but there's no common place to put this.
2151const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2152                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2153                          "ILL_COPROC", "ILL_BADSTK" };
2154
2155const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2156                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2157                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2158
2159const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2160
2161const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2162
2163void os::print_siginfo(outputStream* st, void* siginfo) {
2164  st->print("siginfo:");
2165
2166  const int buflen = 100;
2167  char buf[buflen];
2168  siginfo_t *si = (siginfo_t*)siginfo;
2169  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2170  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2171    st->print("si_errno=%s", buf);
2172  } else {
2173    st->print("si_errno=%d", si->si_errno);
2174  }
2175  const int c = si->si_code;
2176  assert(c > 0, "unexpected si_code");
2177  switch (si->si_signo) {
2178  case SIGILL:
2179    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2180    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2181    break;
2182  case SIGFPE:
2183    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2184    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2185    break;
2186  case SIGSEGV:
2187    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2188    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2189    break;
2190  case SIGBUS:
2191    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2192    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2193    break;
2194  default:
2195    st->print(", si_code=%d", si->si_code);
2196    // no si_addr
2197  }
2198
2199  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2200      UseSharedSpaces) {
2201    FileMapInfo* mapinfo = FileMapInfo::current_info();
2202    if (mapinfo->is_in_shared_space(si->si_addr)) {
2203      st->print("\n\nError accessing class data sharing archive."   \
2204                " Mapped file inaccessible during execution, "      \
2205                " possible disk/network problem.");
2206    }
2207  }
2208  st->cr();
2209}
2210
2211
2212static void print_signal_handler(outputStream* st, int sig,
2213                                 char* buf, size_t buflen);
2214
2215void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2216  st->print_cr("Signal Handlers:");
2217  print_signal_handler(st, SIGSEGV, buf, buflen);
2218  print_signal_handler(st, SIGBUS , buf, buflen);
2219  print_signal_handler(st, SIGFPE , buf, buflen);
2220  print_signal_handler(st, SIGPIPE, buf, buflen);
2221  print_signal_handler(st, SIGXFSZ, buf, buflen);
2222  print_signal_handler(st, SIGILL , buf, buflen);
2223  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2224  print_signal_handler(st, SR_signum, buf, buflen);
2225  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2226  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2227  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2228  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2229}
2230
2231static char saved_jvm_path[MAXPATHLEN] = {0};
2232
2233// Find the full path to the current module, libjvm.so or libjvm_g.so
2234void os::jvm_path(char *buf, jint buflen) {
2235  // Error checking.
2236  if (buflen < MAXPATHLEN) {
2237    assert(false, "must use a large-enough buffer");
2238    buf[0] = '\0';
2239    return;
2240  }
2241  // Lazy resolve the path to current module.
2242  if (saved_jvm_path[0] != 0) {
2243    strcpy(buf, saved_jvm_path);
2244    return;
2245  }
2246
2247  char dli_fname[MAXPATHLEN];
2248  bool ret = dll_address_to_library_name(
2249                CAST_FROM_FN_PTR(address, os::jvm_path),
2250                dli_fname, sizeof(dli_fname), NULL);
2251  assert(ret != 0, "cannot locate libjvm");
2252  char *rp = realpath(dli_fname, buf);
2253  if (rp == NULL)
2254    return;
2255
2256  if (Arguments::created_by_gamma_launcher()) {
2257    // Support for the gamma launcher.  Typical value for buf is
2258    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2259    // the right place in the string, then assume we are installed in a JDK and
2260    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2261    // up the path so it looks like libjvm.so is installed there (append a
2262    // fake suffix hotspot/libjvm.so).
2263    const char *p = buf + strlen(buf) - 1;
2264    for (int count = 0; p > buf && count < 5; ++count) {
2265      for (--p; p > buf && *p != '/'; --p)
2266        /* empty */ ;
2267    }
2268
2269    if (strncmp(p, "/jre/lib/", 9) != 0) {
2270      // Look for JAVA_HOME in the environment.
2271      char* java_home_var = ::getenv("JAVA_HOME");
2272      if (java_home_var != NULL && java_home_var[0] != 0) {
2273        char* jrelib_p;
2274        int len;
2275
2276        // Check the current module name "libjvm.so" or "libjvm_g.so".
2277        p = strrchr(buf, '/');
2278        assert(strstr(p, "/libjvm") == p, "invalid library name");
2279        p = strstr(p, "_g") ? "_g" : "";
2280
2281        rp = realpath(java_home_var, buf);
2282        if (rp == NULL)
2283          return;
2284
2285        // determine if this is a legacy image or modules image
2286        // modules image doesn't have "jre" subdirectory
2287        len = strlen(buf);
2288        jrelib_p = buf + len;
2289        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2290        if (0 != access(buf, F_OK)) {
2291          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2292        }
2293
2294        if (0 == access(buf, F_OK)) {
2295          // Use current module name "libjvm[_g].so" instead of
2296          // "libjvm"debug_only("_g")".so" since for fastdebug version
2297          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2298          len = strlen(buf);
2299          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2300        } else {
2301          // Go back to path of .so
2302          rp = realpath(dli_fname, buf);
2303          if (rp == NULL)
2304            return;
2305        }
2306      }
2307    }
2308  }
2309
2310  strcpy(saved_jvm_path, buf);
2311}
2312
2313void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2314  // no prefix required, not even "_"
2315}
2316
2317void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2318  // no suffix required
2319}
2320
2321////////////////////////////////////////////////////////////////////////////////
2322// sun.misc.Signal support
2323
2324static volatile jint sigint_count = 0;
2325
2326static void
2327UserHandler(int sig, void *siginfo, void *context) {
2328  // 4511530 - sem_post is serialized and handled by the manager thread. When
2329  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2330  // don't want to flood the manager thread with sem_post requests.
2331  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2332      return;
2333
2334  // Ctrl-C is pressed during error reporting, likely because the error
2335  // handler fails to abort. Let VM die immediately.
2336  if (sig == SIGINT && is_error_reported()) {
2337     os::die();
2338  }
2339
2340  os::signal_notify(sig);
2341}
2342
2343void* os::user_handler() {
2344  return CAST_FROM_FN_PTR(void*, UserHandler);
2345}
2346
2347extern "C" {
2348  typedef void (*sa_handler_t)(int);
2349  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2350}
2351
2352void* os::signal(int signal_number, void* handler) {
2353  struct sigaction sigAct, oldSigAct;
2354
2355  sigfillset(&(sigAct.sa_mask));
2356  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2357  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2358
2359  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2360    // -1 means registration failed
2361    return (void *)-1;
2362  }
2363
2364  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2365}
2366
2367void os::signal_raise(int signal_number) {
2368  ::raise(signal_number);
2369}
2370
2371/*
2372 * The following code is moved from os.cpp for making this
2373 * code platform specific, which it is by its very nature.
2374 */
2375
2376// Will be modified when max signal is changed to be dynamic
2377int os::sigexitnum_pd() {
2378  return NSIG;
2379}
2380
2381// a counter for each possible signal value
2382static volatile jint pending_signals[NSIG+1] = { 0 };
2383
2384// Linux(POSIX) specific hand shaking semaphore.
2385static sem_t sig_sem;
2386
2387void os::signal_init_pd() {
2388  // Initialize signal structures
2389  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2390
2391  // Initialize signal semaphore
2392  ::sem_init(&sig_sem, 0, 0);
2393}
2394
2395void os::signal_notify(int sig) {
2396  Atomic::inc(&pending_signals[sig]);
2397  ::sem_post(&sig_sem);
2398}
2399
2400static int check_pending_signals(bool wait) {
2401  Atomic::store(0, &sigint_count);
2402  for (;;) {
2403    for (int i = 0; i < NSIG + 1; i++) {
2404      jint n = pending_signals[i];
2405      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2406        return i;
2407      }
2408    }
2409    if (!wait) {
2410      return -1;
2411    }
2412    JavaThread *thread = JavaThread::current();
2413    ThreadBlockInVM tbivm(thread);
2414
2415    bool threadIsSuspended;
2416    do {
2417      thread->set_suspend_equivalent();
2418      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2419      ::sem_wait(&sig_sem);
2420
2421      // were we externally suspended while we were waiting?
2422      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2423      if (threadIsSuspended) {
2424        //
2425        // The semaphore has been incremented, but while we were waiting
2426        // another thread suspended us. We don't want to continue running
2427        // while suspended because that would surprise the thread that
2428        // suspended us.
2429        //
2430        ::sem_post(&sig_sem);
2431
2432        thread->java_suspend_self();
2433      }
2434    } while (threadIsSuspended);
2435  }
2436}
2437
2438int os::signal_lookup() {
2439  return check_pending_signals(false);
2440}
2441
2442int os::signal_wait() {
2443  return check_pending_signals(true);
2444}
2445
2446////////////////////////////////////////////////////////////////////////////////
2447// Virtual Memory
2448
2449int os::vm_page_size() {
2450  // Seems redundant as all get out
2451  assert(os::Linux::page_size() != -1, "must call os::init");
2452  return os::Linux::page_size();
2453}
2454
2455// Solaris allocates memory by pages.
2456int os::vm_allocation_granularity() {
2457  assert(os::Linux::page_size() != -1, "must call os::init");
2458  return os::Linux::page_size();
2459}
2460
2461// Rationale behind this function:
2462//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2463//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2464//  samples for JITted code. Here we create private executable mapping over the code cache
2465//  and then we can use standard (well, almost, as mapping can change) way to provide
2466//  info for the reporting script by storing timestamp and location of symbol
2467void linux_wrap_code(char* base, size_t size) {
2468  static volatile jint cnt = 0;
2469
2470  if (!UseOprofile) {
2471    return;
2472  }
2473
2474  char buf[PATH_MAX+1];
2475  int num = Atomic::add(1, &cnt);
2476
2477  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2478           os::get_temp_directory(), os::current_process_id(), num);
2479  unlink(buf);
2480
2481  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2482
2483  if (fd != -1) {
2484    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2485    if (rv != (off_t)-1) {
2486      if (::write(fd, "", 1) == 1) {
2487        mmap(base, size,
2488             PROT_READ|PROT_WRITE|PROT_EXEC,
2489             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2490      }
2491    }
2492    ::close(fd);
2493    unlink(buf);
2494  }
2495}
2496
2497// NOTE: Linux kernel does not really reserve the pages for us.
2498//       All it does is to check if there are enough free pages
2499//       left at the time of mmap(). This could be a potential
2500//       problem.
2501bool os::commit_memory(char* addr, size_t size, bool exec) {
2502  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2503  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2504                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2505  return res != (uintptr_t) MAP_FAILED;
2506}
2507
2508// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2509#ifndef MAP_HUGETLB
2510#define MAP_HUGETLB 0x40000
2511#endif
2512
2513// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2514#ifndef MADV_HUGEPAGE
2515#define MADV_HUGEPAGE 14
2516#endif
2517
2518bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2519                       bool exec) {
2520  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2521    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2522    uintptr_t res =
2523      (uintptr_t) ::mmap(addr, size, prot,
2524                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2525                         -1, 0);
2526    return res != (uintptr_t) MAP_FAILED;
2527  }
2528
2529  return commit_memory(addr, size, exec);
2530}
2531
2532void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2533  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2534    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2535    // be supported or the memory may already be backed by huge pages.
2536    ::madvise(addr, bytes, MADV_HUGEPAGE);
2537  }
2538}
2539
2540void os::free_memory(char *addr, size_t bytes) {
2541  commit_memory(addr, bytes, false);
2542}
2543
2544void os::numa_make_global(char *addr, size_t bytes) {
2545  Linux::numa_interleave_memory(addr, bytes);
2546}
2547
2548void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2549  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2550}
2551
2552bool os::numa_topology_changed()   { return false; }
2553
2554size_t os::numa_get_groups_num() {
2555  int max_node = Linux::numa_max_node();
2556  return max_node > 0 ? max_node + 1 : 1;
2557}
2558
2559int os::numa_get_group_id() {
2560  int cpu_id = Linux::sched_getcpu();
2561  if (cpu_id != -1) {
2562    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2563    if (lgrp_id != -1) {
2564      return lgrp_id;
2565    }
2566  }
2567  return 0;
2568}
2569
2570size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2571  for (size_t i = 0; i < size; i++) {
2572    ids[i] = i;
2573  }
2574  return size;
2575}
2576
2577bool os::get_page_info(char *start, page_info* info) {
2578  return false;
2579}
2580
2581char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2582  return end;
2583}
2584
2585
2586int os::Linux::sched_getcpu_syscall(void) {
2587  unsigned int cpu;
2588  int retval = -1;
2589
2590#if defined(IA32)
2591  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2592#elif defined(AMD64)
2593  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2594  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2595  retval = vgetcpu(&cpu, NULL, NULL);
2596#endif
2597
2598  return (retval == -1) ? retval : cpu;
2599}
2600
2601// Something to do with the numa-aware allocator needs these symbols
2602extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2603extern "C" JNIEXPORT void numa_error(char *where) { }
2604extern "C" JNIEXPORT int fork1() { return fork(); }
2605
2606
2607// If we are running with libnuma version > 2, then we should
2608// be trying to use symbols with versions 1.1
2609// If we are running with earlier version, which did not have symbol versions,
2610// we should use the base version.
2611void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2612  void *f = dlvsym(handle, name, "libnuma_1.1");
2613  if (f == NULL) {
2614    f = dlsym(handle, name);
2615  }
2616  return f;
2617}
2618
2619bool os::Linux::libnuma_init() {
2620  // sched_getcpu() should be in libc.
2621  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2622                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2623
2624  // If it's not, try a direct syscall.
2625  if (sched_getcpu() == -1)
2626    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2627
2628  if (sched_getcpu() != -1) { // Does it work?
2629    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2630    if (handle != NULL) {
2631      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2632                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2633      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2634                                       libnuma_dlsym(handle, "numa_max_node")));
2635      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2636                                        libnuma_dlsym(handle, "numa_available")));
2637      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2638                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2639      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2640                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2641
2642
2643      if (numa_available() != -1) {
2644        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2645        // Create a cpu -> node mapping
2646        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2647        rebuild_cpu_to_node_map();
2648        return true;
2649      }
2650    }
2651  }
2652  return false;
2653}
2654
2655// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2656// The table is later used in get_node_by_cpu().
2657void os::Linux::rebuild_cpu_to_node_map() {
2658  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2659                              // in libnuma (possible values are starting from 16,
2660                              // and continuing up with every other power of 2, but less
2661                              // than the maximum number of CPUs supported by kernel), and
2662                              // is a subject to change (in libnuma version 2 the requirements
2663                              // are more reasonable) we'll just hardcode the number they use
2664                              // in the library.
2665  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2666
2667  size_t cpu_num = os::active_processor_count();
2668  size_t cpu_map_size = NCPUS / BitsPerCLong;
2669  size_t cpu_map_valid_size =
2670    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2671
2672  cpu_to_node()->clear();
2673  cpu_to_node()->at_grow(cpu_num - 1);
2674  size_t node_num = numa_get_groups_num();
2675
2676  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2677  for (size_t i = 0; i < node_num; i++) {
2678    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2679      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2680        if (cpu_map[j] != 0) {
2681          for (size_t k = 0; k < BitsPerCLong; k++) {
2682            if (cpu_map[j] & (1UL << k)) {
2683              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2684            }
2685          }
2686        }
2687      }
2688    }
2689  }
2690  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2691}
2692
2693int os::Linux::get_node_by_cpu(int cpu_id) {
2694  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2695    return cpu_to_node()->at(cpu_id);
2696  }
2697  return -1;
2698}
2699
2700GrowableArray<int>* os::Linux::_cpu_to_node;
2701os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2702os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2703os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2704os::Linux::numa_available_func_t os::Linux::_numa_available;
2705os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2706os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2707unsigned long* os::Linux::_numa_all_nodes;
2708
2709bool os::uncommit_memory(char* addr, size_t size) {
2710  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2711                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2712  return res  != (uintptr_t) MAP_FAILED;
2713}
2714
2715// Linux uses a growable mapping for the stack, and if the mapping for
2716// the stack guard pages is not removed when we detach a thread the
2717// stack cannot grow beyond the pages where the stack guard was
2718// mapped.  If at some point later in the process the stack expands to
2719// that point, the Linux kernel cannot expand the stack any further
2720// because the guard pages are in the way, and a segfault occurs.
2721//
2722// However, it's essential not to split the stack region by unmapping
2723// a region (leaving a hole) that's already part of the stack mapping,
2724// so if the stack mapping has already grown beyond the guard pages at
2725// the time we create them, we have to truncate the stack mapping.
2726// So, we need to know the extent of the stack mapping when
2727// create_stack_guard_pages() is called.
2728
2729// Find the bounds of the stack mapping.  Return true for success.
2730//
2731// We only need this for stacks that are growable: at the time of
2732// writing thread stacks don't use growable mappings (i.e. those
2733// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2734// only applies to the main thread.
2735
2736static
2737bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2738
2739  char buf[128];
2740  int fd, sz;
2741
2742  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2743    return false;
2744  }
2745
2746  const char kw[] = "[stack]";
2747  const int kwlen = sizeof(kw)-1;
2748
2749  // Address part of /proc/self/maps couldn't be more than 128 bytes
2750  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2751     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2752        // Extract addresses
2753        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2754           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2755           if (sp >= *bottom && sp <= *top) {
2756              ::close(fd);
2757              return true;
2758           }
2759        }
2760     }
2761  }
2762
2763 ::close(fd);
2764  return false;
2765}
2766
2767
2768// If the (growable) stack mapping already extends beyond the point
2769// where we're going to put our guard pages, truncate the mapping at
2770// that point by munmap()ping it.  This ensures that when we later
2771// munmap() the guard pages we don't leave a hole in the stack
2772// mapping. This only affects the main/initial thread, but guard
2773// against future OS changes
2774bool os::create_stack_guard_pages(char* addr, size_t size) {
2775  uintptr_t stack_extent, stack_base;
2776  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2777  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2778      assert(os::Linux::is_initial_thread(),
2779           "growable stack in non-initial thread");
2780    if (stack_extent < (uintptr_t)addr)
2781      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2782  }
2783
2784  return os::commit_memory(addr, size);
2785}
2786
2787// If this is a growable mapping, remove the guard pages entirely by
2788// munmap()ping them.  If not, just call uncommit_memory(). This only
2789// affects the main/initial thread, but guard against future OS changes
2790bool os::remove_stack_guard_pages(char* addr, size_t size) {
2791  uintptr_t stack_extent, stack_base;
2792  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2793  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2794      assert(os::Linux::is_initial_thread(),
2795           "growable stack in non-initial thread");
2796
2797    return ::munmap(addr, size) == 0;
2798  }
2799
2800  return os::uncommit_memory(addr, size);
2801}
2802
2803static address _highest_vm_reserved_address = NULL;
2804
2805// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2806// at 'requested_addr'. If there are existing memory mappings at the same
2807// location, however, they will be overwritten. If 'fixed' is false,
2808// 'requested_addr' is only treated as a hint, the return value may or
2809// may not start from the requested address. Unlike Linux mmap(), this
2810// function returns NULL to indicate failure.
2811static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2812  char * addr;
2813  int flags;
2814
2815  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2816  if (fixed) {
2817    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2818    flags |= MAP_FIXED;
2819  }
2820
2821  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2822  // to PROT_EXEC if executable when we commit the page.
2823  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2824                       flags, -1, 0);
2825
2826  if (addr != MAP_FAILED) {
2827    // anon_mmap() should only get called during VM initialization,
2828    // don't need lock (actually we can skip locking even it can be called
2829    // from multiple threads, because _highest_vm_reserved_address is just a
2830    // hint about the upper limit of non-stack memory regions.)
2831    if ((address)addr + bytes > _highest_vm_reserved_address) {
2832      _highest_vm_reserved_address = (address)addr + bytes;
2833    }
2834  }
2835
2836  return addr == MAP_FAILED ? NULL : addr;
2837}
2838
2839// Don't update _highest_vm_reserved_address, because there might be memory
2840// regions above addr + size. If so, releasing a memory region only creates
2841// a hole in the address space, it doesn't help prevent heap-stack collision.
2842//
2843static int anon_munmap(char * addr, size_t size) {
2844  return ::munmap(addr, size) == 0;
2845}
2846
2847char* os::reserve_memory(size_t bytes, char* requested_addr,
2848                         size_t alignment_hint) {
2849  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2850}
2851
2852bool os::release_memory(char* addr, size_t size) {
2853  return anon_munmap(addr, size);
2854}
2855
2856static address highest_vm_reserved_address() {
2857  return _highest_vm_reserved_address;
2858}
2859
2860static bool linux_mprotect(char* addr, size_t size, int prot) {
2861  // Linux wants the mprotect address argument to be page aligned.
2862  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2863
2864  // According to SUSv3, mprotect() should only be used with mappings
2865  // established by mmap(), and mmap() always maps whole pages. Unaligned
2866  // 'addr' likely indicates problem in the VM (e.g. trying to change
2867  // protection of malloc'ed or statically allocated memory). Check the
2868  // caller if you hit this assert.
2869  assert(addr == bottom, "sanity check");
2870
2871  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2872  return ::mprotect(bottom, size, prot) == 0;
2873}
2874
2875// Set protections specified
2876bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2877                        bool is_committed) {
2878  unsigned int p = 0;
2879  switch (prot) {
2880  case MEM_PROT_NONE: p = PROT_NONE; break;
2881  case MEM_PROT_READ: p = PROT_READ; break;
2882  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2883  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2884  default:
2885    ShouldNotReachHere();
2886  }
2887  // is_committed is unused.
2888  return linux_mprotect(addr, bytes, p);
2889}
2890
2891bool os::guard_memory(char* addr, size_t size) {
2892  return linux_mprotect(addr, size, PROT_NONE);
2893}
2894
2895bool os::unguard_memory(char* addr, size_t size) {
2896  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2897}
2898
2899bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2900  bool result = false;
2901  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2902                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2903                  -1, 0);
2904
2905  if (p != (void *) -1) {
2906    // We don't know if this really is a huge page or not.
2907    FILE *fp = fopen("/proc/self/maps", "r");
2908    if (fp) {
2909      while (!feof(fp)) {
2910        char chars[257];
2911        long x = 0;
2912        if (fgets(chars, sizeof(chars), fp)) {
2913          if (sscanf(chars, "%lx-%*x", &x) == 1
2914              && x == (long)p) {
2915            if (strstr (chars, "hugepage")) {
2916              result = true;
2917              break;
2918            }
2919          }
2920        }
2921      }
2922      fclose(fp);
2923    }
2924    munmap (p, page_size);
2925    if (result)
2926      return true;
2927  }
2928
2929  if (warn) {
2930    warning("HugeTLBFS is not supported by the operating system.");
2931  }
2932
2933  return result;
2934}
2935
2936/*
2937* Set the coredump_filter bits to include largepages in core dump (bit 6)
2938*
2939* From the coredump_filter documentation:
2940*
2941* - (bit 0) anonymous private memory
2942* - (bit 1) anonymous shared memory
2943* - (bit 2) file-backed private memory
2944* - (bit 3) file-backed shared memory
2945* - (bit 4) ELF header pages in file-backed private memory areas (it is
2946*           effective only if the bit 2 is cleared)
2947* - (bit 5) hugetlb private memory
2948* - (bit 6) hugetlb shared memory
2949*/
2950static void set_coredump_filter(void) {
2951  FILE *f;
2952  long cdm;
2953
2954  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2955    return;
2956  }
2957
2958  if (fscanf(f, "%lx", &cdm) != 1) {
2959    fclose(f);
2960    return;
2961  }
2962
2963  rewind(f);
2964
2965  if ((cdm & LARGEPAGES_BIT) == 0) {
2966    cdm |= LARGEPAGES_BIT;
2967    fprintf(f, "%#lx", cdm);
2968  }
2969
2970  fclose(f);
2971}
2972
2973// Large page support
2974
2975static size_t _large_page_size = 0;
2976
2977void os::large_page_init() {
2978  if (!UseLargePages) {
2979    UseHugeTLBFS = false;
2980    UseSHM = false;
2981    return;
2982  }
2983
2984  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2985    // If UseLargePages is specified on the command line try both methods,
2986    // if it's default, then try only HugeTLBFS.
2987    if (FLAG_IS_DEFAULT(UseLargePages)) {
2988      UseHugeTLBFS = true;
2989    } else {
2990      UseHugeTLBFS = UseSHM = true;
2991    }
2992  }
2993
2994  if (LargePageSizeInBytes) {
2995    _large_page_size = LargePageSizeInBytes;
2996  } else {
2997    // large_page_size on Linux is used to round up heap size. x86 uses either
2998    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2999    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3000    // page as large as 256M.
3001    //
3002    // Here we try to figure out page size by parsing /proc/meminfo and looking
3003    // for a line with the following format:
3004    //    Hugepagesize:     2048 kB
3005    //
3006    // If we can't determine the value (e.g. /proc is not mounted, or the text
3007    // format has been changed), we'll use the largest page size supported by
3008    // the processor.
3009
3010#ifndef ZERO
3011    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3012                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3013#endif // ZERO
3014
3015    FILE *fp = fopen("/proc/meminfo", "r");
3016    if (fp) {
3017      while (!feof(fp)) {
3018        int x = 0;
3019        char buf[16];
3020        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3021          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3022            _large_page_size = x * K;
3023            break;
3024          }
3025        } else {
3026          // skip to next line
3027          for (;;) {
3028            int ch = fgetc(fp);
3029            if (ch == EOF || ch == (int)'\n') break;
3030          }
3031        }
3032      }
3033      fclose(fp);
3034    }
3035  }
3036
3037  // print a warning if any large page related flag is specified on command line
3038  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3039
3040  const size_t default_page_size = (size_t)Linux::page_size();
3041  if (_large_page_size > default_page_size) {
3042    _page_sizes[0] = _large_page_size;
3043    _page_sizes[1] = default_page_size;
3044    _page_sizes[2] = 0;
3045  }
3046  UseHugeTLBFS = UseHugeTLBFS &&
3047                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3048
3049  if (UseHugeTLBFS)
3050    UseSHM = false;
3051
3052  UseLargePages = UseHugeTLBFS || UseSHM;
3053
3054  set_coredump_filter();
3055}
3056
3057#ifndef SHM_HUGETLB
3058#define SHM_HUGETLB 04000
3059#endif
3060
3061char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3062  // "exec" is passed in but not used.  Creating the shared image for
3063  // the code cache doesn't have an SHM_X executable permission to check.
3064  assert(UseLargePages && UseSHM, "only for SHM large pages");
3065
3066  key_t key = IPC_PRIVATE;
3067  char *addr;
3068
3069  bool warn_on_failure = UseLargePages &&
3070                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3071                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3072                        );
3073  char msg[128];
3074
3075  // Create a large shared memory region to attach to based on size.
3076  // Currently, size is the total size of the heap
3077  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3078  if (shmid == -1) {
3079     // Possible reasons for shmget failure:
3080     // 1. shmmax is too small for Java heap.
3081     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3082     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3083     // 2. not enough large page memory.
3084     //    > check available large pages: cat /proc/meminfo
3085     //    > increase amount of large pages:
3086     //          echo new_value > /proc/sys/vm/nr_hugepages
3087     //      Note 1: different Linux may use different name for this property,
3088     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3089     //      Note 2: it's possible there's enough physical memory available but
3090     //            they are so fragmented after a long run that they can't
3091     //            coalesce into large pages. Try to reserve large pages when
3092     //            the system is still "fresh".
3093     if (warn_on_failure) {
3094       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3095       warning(msg);
3096     }
3097     return NULL;
3098  }
3099
3100  // attach to the region
3101  addr = (char*)shmat(shmid, req_addr, 0);
3102  int err = errno;
3103
3104  // Remove shmid. If shmat() is successful, the actual shared memory segment
3105  // will be deleted when it's detached by shmdt() or when the process
3106  // terminates. If shmat() is not successful this will remove the shared
3107  // segment immediately.
3108  shmctl(shmid, IPC_RMID, NULL);
3109
3110  if ((intptr_t)addr == -1) {
3111     if (warn_on_failure) {
3112       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3113       warning(msg);
3114     }
3115     return NULL;
3116  }
3117
3118  return addr;
3119}
3120
3121bool os::release_memory_special(char* base, size_t bytes) {
3122  // detaching the SHM segment will also delete it, see reserve_memory_special()
3123  int rslt = shmdt(base);
3124  return rslt == 0;
3125}
3126
3127size_t os::large_page_size() {
3128  return _large_page_size;
3129}
3130
3131// HugeTLBFS allows application to commit large page memory on demand;
3132// with SysV SHM the entire memory region must be allocated as shared
3133// memory.
3134bool os::can_commit_large_page_memory() {
3135  return UseHugeTLBFS;
3136}
3137
3138bool os::can_execute_large_page_memory() {
3139  return UseHugeTLBFS;
3140}
3141
3142// Reserve memory at an arbitrary address, only if that area is
3143// available (and not reserved for something else).
3144
3145char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3146  const int max_tries = 10;
3147  char* base[max_tries];
3148  size_t size[max_tries];
3149  const size_t gap = 0x000000;
3150
3151  // Assert only that the size is a multiple of the page size, since
3152  // that's all that mmap requires, and since that's all we really know
3153  // about at this low abstraction level.  If we need higher alignment,
3154  // we can either pass an alignment to this method or verify alignment
3155  // in one of the methods further up the call chain.  See bug 5044738.
3156  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3157
3158  // Repeatedly allocate blocks until the block is allocated at the
3159  // right spot. Give up after max_tries. Note that reserve_memory() will
3160  // automatically update _highest_vm_reserved_address if the call is
3161  // successful. The variable tracks the highest memory address every reserved
3162  // by JVM. It is used to detect heap-stack collision if running with
3163  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3164  // space than needed, it could confuse the collision detecting code. To
3165  // solve the problem, save current _highest_vm_reserved_address and
3166  // calculate the correct value before return.
3167  address old_highest = _highest_vm_reserved_address;
3168
3169  // Linux mmap allows caller to pass an address as hint; give it a try first,
3170  // if kernel honors the hint then we can return immediately.
3171  char * addr = anon_mmap(requested_addr, bytes, false);
3172  if (addr == requested_addr) {
3173     return requested_addr;
3174  }
3175
3176  if (addr != NULL) {
3177     // mmap() is successful but it fails to reserve at the requested address
3178     anon_munmap(addr, bytes);
3179  }
3180
3181  int i;
3182  for (i = 0; i < max_tries; ++i) {
3183    base[i] = reserve_memory(bytes);
3184
3185    if (base[i] != NULL) {
3186      // Is this the block we wanted?
3187      if (base[i] == requested_addr) {
3188        size[i] = bytes;
3189        break;
3190      }
3191
3192      // Does this overlap the block we wanted? Give back the overlapped
3193      // parts and try again.
3194
3195      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3196      if (top_overlap >= 0 && top_overlap < bytes) {
3197        unmap_memory(base[i], top_overlap);
3198        base[i] += top_overlap;
3199        size[i] = bytes - top_overlap;
3200      } else {
3201        size_t bottom_overlap = base[i] + bytes - requested_addr;
3202        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3203          unmap_memory(requested_addr, bottom_overlap);
3204          size[i] = bytes - bottom_overlap;
3205        } else {
3206          size[i] = bytes;
3207        }
3208      }
3209    }
3210  }
3211
3212  // Give back the unused reserved pieces.
3213
3214  for (int j = 0; j < i; ++j) {
3215    if (base[j] != NULL) {
3216      unmap_memory(base[j], size[j]);
3217    }
3218  }
3219
3220  if (i < max_tries) {
3221    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3222    return requested_addr;
3223  } else {
3224    _highest_vm_reserved_address = old_highest;
3225    return NULL;
3226  }
3227}
3228
3229size_t os::read(int fd, void *buf, unsigned int nBytes) {
3230  return ::read(fd, buf, nBytes);
3231}
3232
3233// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3234// Solaris uses poll(), linux uses park().
3235// Poll() is likely a better choice, assuming that Thread.interrupt()
3236// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3237// SIGSEGV, see 4355769.
3238
3239const int NANOSECS_PER_MILLISECS = 1000000;
3240
3241int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3242  assert(thread == Thread::current(),  "thread consistency check");
3243
3244  ParkEvent * const slp = thread->_SleepEvent ;
3245  slp->reset() ;
3246  OrderAccess::fence() ;
3247
3248  if (interruptible) {
3249    jlong prevtime = javaTimeNanos();
3250
3251    for (;;) {
3252      if (os::is_interrupted(thread, true)) {
3253        return OS_INTRPT;
3254      }
3255
3256      jlong newtime = javaTimeNanos();
3257
3258      if (newtime - prevtime < 0) {
3259        // time moving backwards, should only happen if no monotonic clock
3260        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3261        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3262      } else {
3263        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3264      }
3265
3266      if(millis <= 0) {
3267        return OS_OK;
3268      }
3269
3270      prevtime = newtime;
3271
3272      {
3273        assert(thread->is_Java_thread(), "sanity check");
3274        JavaThread *jt = (JavaThread *) thread;
3275        ThreadBlockInVM tbivm(jt);
3276        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3277
3278        jt->set_suspend_equivalent();
3279        // cleared by handle_special_suspend_equivalent_condition() or
3280        // java_suspend_self() via check_and_wait_while_suspended()
3281
3282        slp->park(millis);
3283
3284        // were we externally suspended while we were waiting?
3285        jt->check_and_wait_while_suspended();
3286      }
3287    }
3288  } else {
3289    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3290    jlong prevtime = javaTimeNanos();
3291
3292    for (;;) {
3293      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3294      // the 1st iteration ...
3295      jlong newtime = javaTimeNanos();
3296
3297      if (newtime - prevtime < 0) {
3298        // time moving backwards, should only happen if no monotonic clock
3299        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3300        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3301      } else {
3302        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3303      }
3304
3305      if(millis <= 0) break ;
3306
3307      prevtime = newtime;
3308      slp->park(millis);
3309    }
3310    return OS_OK ;
3311  }
3312}
3313
3314int os::naked_sleep() {
3315  // %% make the sleep time an integer flag. for now use 1 millisec.
3316  return os::sleep(Thread::current(), 1, false);
3317}
3318
3319// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3320void os::infinite_sleep() {
3321  while (true) {    // sleep forever ...
3322    ::sleep(100);   // ... 100 seconds at a time
3323  }
3324}
3325
3326// Used to convert frequent JVM_Yield() to nops
3327bool os::dont_yield() {
3328  return DontYieldALot;
3329}
3330
3331void os::yield() {
3332  sched_yield();
3333}
3334
3335os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3336
3337void os::yield_all(int attempts) {
3338  // Yields to all threads, including threads with lower priorities
3339  // Threads on Linux are all with same priority. The Solaris style
3340  // os::yield_all() with nanosleep(1ms) is not necessary.
3341  sched_yield();
3342}
3343
3344// Called from the tight loops to possibly influence time-sharing heuristics
3345void os::loop_breaker(int attempts) {
3346  os::yield_all(attempts);
3347}
3348
3349////////////////////////////////////////////////////////////////////////////////
3350// thread priority support
3351
3352// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3353// only supports dynamic priority, static priority must be zero. For real-time
3354// applications, Linux supports SCHED_RR which allows static priority (1-99).
3355// However, for large multi-threaded applications, SCHED_RR is not only slower
3356// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3357// of 5 runs - Sep 2005).
3358//
3359// The following code actually changes the niceness of kernel-thread/LWP. It
3360// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3361// not the entire user process, and user level threads are 1:1 mapped to kernel
3362// threads. It has always been the case, but could change in the future. For
3363// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3364// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3365
3366int os::java_to_os_priority[MaxPriority + 1] = {
3367  19,              // 0 Entry should never be used
3368
3369   4,              // 1 MinPriority
3370   3,              // 2
3371   2,              // 3
3372
3373   1,              // 4
3374   0,              // 5 NormPriority
3375  -1,              // 6
3376
3377  -2,              // 7
3378  -3,              // 8
3379  -4,              // 9 NearMaxPriority
3380
3381  -5               // 10 MaxPriority
3382};
3383
3384static int prio_init() {
3385  if (ThreadPriorityPolicy == 1) {
3386    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3387    // if effective uid is not root. Perhaps, a more elegant way of doing
3388    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3389    if (geteuid() != 0) {
3390      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3391        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3392      }
3393      ThreadPriorityPolicy = 0;
3394    }
3395  }
3396  return 0;
3397}
3398
3399OSReturn os::set_native_priority(Thread* thread, int newpri) {
3400  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3401
3402  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3403  return (ret == 0) ? OS_OK : OS_ERR;
3404}
3405
3406OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3407  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3408    *priority_ptr = java_to_os_priority[NormPriority];
3409    return OS_OK;
3410  }
3411
3412  errno = 0;
3413  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3414  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3415}
3416
3417// Hint to the underlying OS that a task switch would not be good.
3418// Void return because it's a hint and can fail.
3419void os::hint_no_preempt() {}
3420
3421////////////////////////////////////////////////////////////////////////////////
3422// suspend/resume support
3423
3424//  the low-level signal-based suspend/resume support is a remnant from the
3425//  old VM-suspension that used to be for java-suspension, safepoints etc,
3426//  within hotspot. Now there is a single use-case for this:
3427//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3428//      that runs in the watcher thread.
3429//  The remaining code is greatly simplified from the more general suspension
3430//  code that used to be used.
3431//
3432//  The protocol is quite simple:
3433//  - suspend:
3434//      - sends a signal to the target thread
3435//      - polls the suspend state of the osthread using a yield loop
3436//      - target thread signal handler (SR_handler) sets suspend state
3437//        and blocks in sigsuspend until continued
3438//  - resume:
3439//      - sets target osthread state to continue
3440//      - sends signal to end the sigsuspend loop in the SR_handler
3441//
3442//  Note that the SR_lock plays no role in this suspend/resume protocol.
3443//
3444
3445static void resume_clear_context(OSThread *osthread) {
3446  osthread->set_ucontext(NULL);
3447  osthread->set_siginfo(NULL);
3448
3449  // notify the suspend action is completed, we have now resumed
3450  osthread->sr.clear_suspended();
3451}
3452
3453static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3454  osthread->set_ucontext(context);
3455  osthread->set_siginfo(siginfo);
3456}
3457
3458//
3459// Handler function invoked when a thread's execution is suspended or
3460// resumed. We have to be careful that only async-safe functions are
3461// called here (Note: most pthread functions are not async safe and
3462// should be avoided.)
3463//
3464// Note: sigwait() is a more natural fit than sigsuspend() from an
3465// interface point of view, but sigwait() prevents the signal hander
3466// from being run. libpthread would get very confused by not having
3467// its signal handlers run and prevents sigwait()'s use with the
3468// mutex granting granting signal.
3469//
3470// Currently only ever called on the VMThread
3471//
3472static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3473  // Save and restore errno to avoid confusing native code with EINTR
3474  // after sigsuspend.
3475  int old_errno = errno;
3476
3477  Thread* thread = Thread::current();
3478  OSThread* osthread = thread->osthread();
3479  assert(thread->is_VM_thread(), "Must be VMThread");
3480  // read current suspend action
3481  int action = osthread->sr.suspend_action();
3482  if (action == SR_SUSPEND) {
3483    suspend_save_context(osthread, siginfo, context);
3484
3485    // Notify the suspend action is about to be completed. do_suspend()
3486    // waits until SR_SUSPENDED is set and then returns. We will wait
3487    // here for a resume signal and that completes the suspend-other
3488    // action. do_suspend/do_resume is always called as a pair from
3489    // the same thread - so there are no races
3490
3491    // notify the caller
3492    osthread->sr.set_suspended();
3493
3494    sigset_t suspend_set;  // signals for sigsuspend()
3495
3496    // get current set of blocked signals and unblock resume signal
3497    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3498    sigdelset(&suspend_set, SR_signum);
3499
3500    // wait here until we are resumed
3501    do {
3502      sigsuspend(&suspend_set);
3503      // ignore all returns until we get a resume signal
3504    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3505
3506    resume_clear_context(osthread);
3507
3508  } else {
3509    assert(action == SR_CONTINUE, "unexpected sr action");
3510    // nothing special to do - just leave the handler
3511  }
3512
3513  errno = old_errno;
3514}
3515
3516
3517static int SR_initialize() {
3518  struct sigaction act;
3519  char *s;
3520  /* Get signal number to use for suspend/resume */
3521  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3522    int sig = ::strtol(s, 0, 10);
3523    if (sig > 0 || sig < _NSIG) {
3524        SR_signum = sig;
3525    }
3526  }
3527
3528  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3529        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3530
3531  sigemptyset(&SR_sigset);
3532  sigaddset(&SR_sigset, SR_signum);
3533
3534  /* Set up signal handler for suspend/resume */
3535  act.sa_flags = SA_RESTART|SA_SIGINFO;
3536  act.sa_handler = (void (*)(int)) SR_handler;
3537
3538  // SR_signum is blocked by default.
3539  // 4528190 - We also need to block pthread restart signal (32 on all
3540  // supported Linux platforms). Note that LinuxThreads need to block
3541  // this signal for all threads to work properly. So we don't have
3542  // to use hard-coded signal number when setting up the mask.
3543  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3544
3545  if (sigaction(SR_signum, &act, 0) == -1) {
3546    return -1;
3547  }
3548
3549  // Save signal flag
3550  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3551  return 0;
3552}
3553
3554static int SR_finalize() {
3555  return 0;
3556}
3557
3558
3559// returns true on success and false on error - really an error is fatal
3560// but this seems the normal response to library errors
3561static bool do_suspend(OSThread* osthread) {
3562  // mark as suspended and send signal
3563  osthread->sr.set_suspend_action(SR_SUSPEND);
3564  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3565  assert_status(status == 0, status, "pthread_kill");
3566
3567  // check status and wait until notified of suspension
3568  if (status == 0) {
3569    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3570      os::yield_all(i);
3571    }
3572    osthread->sr.set_suspend_action(SR_NONE);
3573    return true;
3574  }
3575  else {
3576    osthread->sr.set_suspend_action(SR_NONE);
3577    return false;
3578  }
3579}
3580
3581static void do_resume(OSThread* osthread) {
3582  assert(osthread->sr.is_suspended(), "thread should be suspended");
3583  osthread->sr.set_suspend_action(SR_CONTINUE);
3584
3585  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3586  assert_status(status == 0, status, "pthread_kill");
3587  // check status and wait unit notified of resumption
3588  if (status == 0) {
3589    for (int i = 0; osthread->sr.is_suspended(); i++) {
3590      os::yield_all(i);
3591    }
3592  }
3593  osthread->sr.set_suspend_action(SR_NONE);
3594}
3595
3596////////////////////////////////////////////////////////////////////////////////
3597// interrupt support
3598
3599void os::interrupt(Thread* thread) {
3600  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3601    "possibility of dangling Thread pointer");
3602
3603  OSThread* osthread = thread->osthread();
3604
3605  if (!osthread->interrupted()) {
3606    osthread->set_interrupted(true);
3607    // More than one thread can get here with the same value of osthread,
3608    // resulting in multiple notifications.  We do, however, want the store
3609    // to interrupted() to be visible to other threads before we execute unpark().
3610    OrderAccess::fence();
3611    ParkEvent * const slp = thread->_SleepEvent ;
3612    if (slp != NULL) slp->unpark() ;
3613  }
3614
3615  // For JSR166. Unpark even if interrupt status already was set
3616  if (thread->is_Java_thread())
3617    ((JavaThread*)thread)->parker()->unpark();
3618
3619  ParkEvent * ev = thread->_ParkEvent ;
3620  if (ev != NULL) ev->unpark() ;
3621
3622}
3623
3624bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3625  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3626    "possibility of dangling Thread pointer");
3627
3628  OSThread* osthread = thread->osthread();
3629
3630  bool interrupted = osthread->interrupted();
3631
3632  if (interrupted && clear_interrupted) {
3633    osthread->set_interrupted(false);
3634    // consider thread->_SleepEvent->reset() ... optional optimization
3635  }
3636
3637  return interrupted;
3638}
3639
3640///////////////////////////////////////////////////////////////////////////////////
3641// signal handling (except suspend/resume)
3642
3643// This routine may be used by user applications as a "hook" to catch signals.
3644// The user-defined signal handler must pass unrecognized signals to this
3645// routine, and if it returns true (non-zero), then the signal handler must
3646// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3647// routine will never retun false (zero), but instead will execute a VM panic
3648// routine kill the process.
3649//
3650// If this routine returns false, it is OK to call it again.  This allows
3651// the user-defined signal handler to perform checks either before or after
3652// the VM performs its own checks.  Naturally, the user code would be making
3653// a serious error if it tried to handle an exception (such as a null check
3654// or breakpoint) that the VM was generating for its own correct operation.
3655//
3656// This routine may recognize any of the following kinds of signals:
3657//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3658// It should be consulted by handlers for any of those signals.
3659//
3660// The caller of this routine must pass in the three arguments supplied
3661// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3662// field of the structure passed to sigaction().  This routine assumes that
3663// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3664//
3665// Note that the VM will print warnings if it detects conflicting signal
3666// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3667//
3668extern "C" JNIEXPORT int
3669JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3670                        void* ucontext, int abort_if_unrecognized);
3671
3672void signalHandler(int sig, siginfo_t* info, void* uc) {
3673  assert(info != NULL && uc != NULL, "it must be old kernel");
3674  JVM_handle_linux_signal(sig, info, uc, true);
3675}
3676
3677
3678// This boolean allows users to forward their own non-matching signals
3679// to JVM_handle_linux_signal, harmlessly.
3680bool os::Linux::signal_handlers_are_installed = false;
3681
3682// For signal-chaining
3683struct sigaction os::Linux::sigact[MAXSIGNUM];
3684unsigned int os::Linux::sigs = 0;
3685bool os::Linux::libjsig_is_loaded = false;
3686typedef struct sigaction *(*get_signal_t)(int);
3687get_signal_t os::Linux::get_signal_action = NULL;
3688
3689struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3690  struct sigaction *actp = NULL;
3691
3692  if (libjsig_is_loaded) {
3693    // Retrieve the old signal handler from libjsig
3694    actp = (*get_signal_action)(sig);
3695  }
3696  if (actp == NULL) {
3697    // Retrieve the preinstalled signal handler from jvm
3698    actp = get_preinstalled_handler(sig);
3699  }
3700
3701  return actp;
3702}
3703
3704static bool call_chained_handler(struct sigaction *actp, int sig,
3705                                 siginfo_t *siginfo, void *context) {
3706  // Call the old signal handler
3707  if (actp->sa_handler == SIG_DFL) {
3708    // It's more reasonable to let jvm treat it as an unexpected exception
3709    // instead of taking the default action.
3710    return false;
3711  } else if (actp->sa_handler != SIG_IGN) {
3712    if ((actp->sa_flags & SA_NODEFER) == 0) {
3713      // automaticlly block the signal
3714      sigaddset(&(actp->sa_mask), sig);
3715    }
3716
3717    sa_handler_t hand;
3718    sa_sigaction_t sa;
3719    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3720    // retrieve the chained handler
3721    if (siginfo_flag_set) {
3722      sa = actp->sa_sigaction;
3723    } else {
3724      hand = actp->sa_handler;
3725    }
3726
3727    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3728      actp->sa_handler = SIG_DFL;
3729    }
3730
3731    // try to honor the signal mask
3732    sigset_t oset;
3733    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3734
3735    // call into the chained handler
3736    if (siginfo_flag_set) {
3737      (*sa)(sig, siginfo, context);
3738    } else {
3739      (*hand)(sig);
3740    }
3741
3742    // restore the signal mask
3743    pthread_sigmask(SIG_SETMASK, &oset, 0);
3744  }
3745  // Tell jvm's signal handler the signal is taken care of.
3746  return true;
3747}
3748
3749bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3750  bool chained = false;
3751  // signal-chaining
3752  if (UseSignalChaining) {
3753    struct sigaction *actp = get_chained_signal_action(sig);
3754    if (actp != NULL) {
3755      chained = call_chained_handler(actp, sig, siginfo, context);
3756    }
3757  }
3758  return chained;
3759}
3760
3761struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3762  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3763    return &sigact[sig];
3764  }
3765  return NULL;
3766}
3767
3768void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3769  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3770  sigact[sig] = oldAct;
3771  sigs |= (unsigned int)1 << sig;
3772}
3773
3774// for diagnostic
3775int os::Linux::sigflags[MAXSIGNUM];
3776
3777int os::Linux::get_our_sigflags(int sig) {
3778  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3779  return sigflags[sig];
3780}
3781
3782void os::Linux::set_our_sigflags(int sig, int flags) {
3783  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3784  sigflags[sig] = flags;
3785}
3786
3787void os::Linux::set_signal_handler(int sig, bool set_installed) {
3788  // Check for overwrite.
3789  struct sigaction oldAct;
3790  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3791
3792  void* oldhand = oldAct.sa_sigaction
3793                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3794                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3795  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3796      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3797      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3798    if (AllowUserSignalHandlers || !set_installed) {
3799      // Do not overwrite; user takes responsibility to forward to us.
3800      return;
3801    } else if (UseSignalChaining) {
3802      // save the old handler in jvm
3803      save_preinstalled_handler(sig, oldAct);
3804      // libjsig also interposes the sigaction() call below and saves the
3805      // old sigaction on it own.
3806    } else {
3807      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3808                    "%#lx for signal %d.", (long)oldhand, sig));
3809    }
3810  }
3811
3812  struct sigaction sigAct;
3813  sigfillset(&(sigAct.sa_mask));
3814  sigAct.sa_handler = SIG_DFL;
3815  if (!set_installed) {
3816    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3817  } else {
3818    sigAct.sa_sigaction = signalHandler;
3819    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3820  }
3821  // Save flags, which are set by ours
3822  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3823  sigflags[sig] = sigAct.sa_flags;
3824
3825  int ret = sigaction(sig, &sigAct, &oldAct);
3826  assert(ret == 0, "check");
3827
3828  void* oldhand2  = oldAct.sa_sigaction
3829                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3830                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3831  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3832}
3833
3834// install signal handlers for signals that HotSpot needs to
3835// handle in order to support Java-level exception handling.
3836
3837void os::Linux::install_signal_handlers() {
3838  if (!signal_handlers_are_installed) {
3839    signal_handlers_are_installed = true;
3840
3841    // signal-chaining
3842    typedef void (*signal_setting_t)();
3843    signal_setting_t begin_signal_setting = NULL;
3844    signal_setting_t end_signal_setting = NULL;
3845    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3846                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3847    if (begin_signal_setting != NULL) {
3848      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3849                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3850      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3851                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3852      libjsig_is_loaded = true;
3853      assert(UseSignalChaining, "should enable signal-chaining");
3854    }
3855    if (libjsig_is_loaded) {
3856      // Tell libjsig jvm is setting signal handlers
3857      (*begin_signal_setting)();
3858    }
3859
3860    set_signal_handler(SIGSEGV, true);
3861    set_signal_handler(SIGPIPE, true);
3862    set_signal_handler(SIGBUS, true);
3863    set_signal_handler(SIGILL, true);
3864    set_signal_handler(SIGFPE, true);
3865    set_signal_handler(SIGXFSZ, true);
3866
3867    if (libjsig_is_loaded) {
3868      // Tell libjsig jvm finishes setting signal handlers
3869      (*end_signal_setting)();
3870    }
3871
3872    // We don't activate signal checker if libjsig is in place, we trust ourselves
3873    // and if UserSignalHandler is installed all bets are off
3874    if (CheckJNICalls) {
3875      if (libjsig_is_loaded) {
3876        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3877        check_signals = false;
3878      }
3879      if (AllowUserSignalHandlers) {
3880        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3881        check_signals = false;
3882      }
3883    }
3884  }
3885}
3886
3887// This is the fastest way to get thread cpu time on Linux.
3888// Returns cpu time (user+sys) for any thread, not only for current.
3889// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3890// It might work on 2.6.10+ with a special kernel/glibc patch.
3891// For reference, please, see IEEE Std 1003.1-2004:
3892//   http://www.unix.org/single_unix_specification
3893
3894jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3895  struct timespec tp;
3896  int rc = os::Linux::clock_gettime(clockid, &tp);
3897  assert(rc == 0, "clock_gettime is expected to return 0 code");
3898
3899  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3900}
3901
3902/////
3903// glibc on Linux platform uses non-documented flag
3904// to indicate, that some special sort of signal
3905// trampoline is used.
3906// We will never set this flag, and we should
3907// ignore this flag in our diagnostic
3908#ifdef SIGNIFICANT_SIGNAL_MASK
3909#undef SIGNIFICANT_SIGNAL_MASK
3910#endif
3911#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3912
3913static const char* get_signal_handler_name(address handler,
3914                                           char* buf, int buflen) {
3915  int offset;
3916  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3917  if (found) {
3918    // skip directory names
3919    const char *p1, *p2;
3920    p1 = buf;
3921    size_t len = strlen(os::file_separator());
3922    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3923    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3924  } else {
3925    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3926  }
3927  return buf;
3928}
3929
3930static void print_signal_handler(outputStream* st, int sig,
3931                                 char* buf, size_t buflen) {
3932  struct sigaction sa;
3933
3934  sigaction(sig, NULL, &sa);
3935
3936  // See comment for SIGNIFICANT_SIGNAL_MASK define
3937  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3938
3939  st->print("%s: ", os::exception_name(sig, buf, buflen));
3940
3941  address handler = (sa.sa_flags & SA_SIGINFO)
3942    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3943    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3944
3945  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3946    st->print("SIG_DFL");
3947  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3948    st->print("SIG_IGN");
3949  } else {
3950    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3951  }
3952
3953  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3954
3955  address rh = VMError::get_resetted_sighandler(sig);
3956  // May be, handler was resetted by VMError?
3957  if(rh != NULL) {
3958    handler = rh;
3959    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3960  }
3961
3962  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3963
3964  // Check: is it our handler?
3965  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3966     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3967    // It is our signal handler
3968    // check for flags, reset system-used one!
3969    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3970      st->print(
3971                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3972                os::Linux::get_our_sigflags(sig));
3973    }
3974  }
3975  st->cr();
3976}
3977
3978
3979#define DO_SIGNAL_CHECK(sig) \
3980  if (!sigismember(&check_signal_done, sig)) \
3981    os::Linux::check_signal_handler(sig)
3982
3983// This method is a periodic task to check for misbehaving JNI applications
3984// under CheckJNI, we can add any periodic checks here
3985
3986void os::run_periodic_checks() {
3987
3988  if (check_signals == false) return;
3989
3990  // SEGV and BUS if overridden could potentially prevent
3991  // generation of hs*.log in the event of a crash, debugging
3992  // such a case can be very challenging, so we absolutely
3993  // check the following for a good measure:
3994  DO_SIGNAL_CHECK(SIGSEGV);
3995  DO_SIGNAL_CHECK(SIGILL);
3996  DO_SIGNAL_CHECK(SIGFPE);
3997  DO_SIGNAL_CHECK(SIGBUS);
3998  DO_SIGNAL_CHECK(SIGPIPE);
3999  DO_SIGNAL_CHECK(SIGXFSZ);
4000
4001
4002  // ReduceSignalUsage allows the user to override these handlers
4003  // see comments at the very top and jvm_solaris.h
4004  if (!ReduceSignalUsage) {
4005    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4006    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4007    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4008    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4009  }
4010
4011  DO_SIGNAL_CHECK(SR_signum);
4012  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4013}
4014
4015typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4016
4017static os_sigaction_t os_sigaction = NULL;
4018
4019void os::Linux::check_signal_handler(int sig) {
4020  char buf[O_BUFLEN];
4021  address jvmHandler = NULL;
4022
4023
4024  struct sigaction act;
4025  if (os_sigaction == NULL) {
4026    // only trust the default sigaction, in case it has been interposed
4027    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4028    if (os_sigaction == NULL) return;
4029  }
4030
4031  os_sigaction(sig, (struct sigaction*)NULL, &act);
4032
4033
4034  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4035
4036  address thisHandler = (act.sa_flags & SA_SIGINFO)
4037    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4038    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4039
4040
4041  switch(sig) {
4042  case SIGSEGV:
4043  case SIGBUS:
4044  case SIGFPE:
4045  case SIGPIPE:
4046  case SIGILL:
4047  case SIGXFSZ:
4048    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4049    break;
4050
4051  case SHUTDOWN1_SIGNAL:
4052  case SHUTDOWN2_SIGNAL:
4053  case SHUTDOWN3_SIGNAL:
4054  case BREAK_SIGNAL:
4055    jvmHandler = (address)user_handler();
4056    break;
4057
4058  case INTERRUPT_SIGNAL:
4059    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4060    break;
4061
4062  default:
4063    if (sig == SR_signum) {
4064      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4065    } else {
4066      return;
4067    }
4068    break;
4069  }
4070
4071  if (thisHandler != jvmHandler) {
4072    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4073    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4074    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4075    // No need to check this sig any longer
4076    sigaddset(&check_signal_done, sig);
4077  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4078    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4079    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4080    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4081    // No need to check this sig any longer
4082    sigaddset(&check_signal_done, sig);
4083  }
4084
4085  // Dump all the signal
4086  if (sigismember(&check_signal_done, sig)) {
4087    print_signal_handlers(tty, buf, O_BUFLEN);
4088  }
4089}
4090
4091extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4092
4093extern bool signal_name(int signo, char* buf, size_t len);
4094
4095const char* os::exception_name(int exception_code, char* buf, size_t size) {
4096  if (0 < exception_code && exception_code <= SIGRTMAX) {
4097    // signal
4098    if (!signal_name(exception_code, buf, size)) {
4099      jio_snprintf(buf, size, "SIG%d", exception_code);
4100    }
4101    return buf;
4102  } else {
4103    return NULL;
4104  }
4105}
4106
4107// this is called _before_ the most of global arguments have been parsed
4108void os::init(void) {
4109  char dummy;   /* used to get a guess on initial stack address */
4110//  first_hrtime = gethrtime();
4111
4112  // With LinuxThreads the JavaMain thread pid (primordial thread)
4113  // is different than the pid of the java launcher thread.
4114  // So, on Linux, the launcher thread pid is passed to the VM
4115  // via the sun.java.launcher.pid property.
4116  // Use this property instead of getpid() if it was correctly passed.
4117  // See bug 6351349.
4118  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4119
4120  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4121
4122  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4123
4124  init_random(1234567);
4125
4126  ThreadCritical::initialize();
4127
4128  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4129  if (Linux::page_size() == -1) {
4130    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4131                  strerror(errno)));
4132  }
4133  init_page_sizes((size_t) Linux::page_size());
4134
4135  Linux::initialize_system_info();
4136
4137  // main_thread points to the aboriginal thread
4138  Linux::_main_thread = pthread_self();
4139
4140  Linux::clock_init();
4141  initial_time_count = os::elapsed_counter();
4142  pthread_mutex_init(&dl_mutex, NULL);
4143}
4144
4145// To install functions for atexit system call
4146extern "C" {
4147  static void perfMemory_exit_helper() {
4148    perfMemory_exit();
4149  }
4150}
4151
4152// this is called _after_ the global arguments have been parsed
4153jint os::init_2(void)
4154{
4155  Linux::fast_thread_clock_init();
4156
4157  // Allocate a single page and mark it as readable for safepoint polling
4158  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4159  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4160
4161  os::set_polling_page( polling_page );
4162
4163#ifndef PRODUCT
4164  if(Verbose && PrintMiscellaneous)
4165    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4166#endif
4167
4168  if (!UseMembar) {
4169    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4170    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4171    os::set_memory_serialize_page( mem_serialize_page );
4172
4173#ifndef PRODUCT
4174    if(Verbose && PrintMiscellaneous)
4175      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4176#endif
4177  }
4178
4179  os::large_page_init();
4180
4181  // initialize suspend/resume support - must do this before signal_sets_init()
4182  if (SR_initialize() != 0) {
4183    perror("SR_initialize failed");
4184    return JNI_ERR;
4185  }
4186
4187  Linux::signal_sets_init();
4188  Linux::install_signal_handlers();
4189
4190  // Check minimum allowable stack size for thread creation and to initialize
4191  // the java system classes, including StackOverflowError - depends on page
4192  // size.  Add a page for compiler2 recursion in main thread.
4193  // Add in 2*BytesPerWord times page size to account for VM stack during
4194  // class initialization depending on 32 or 64 bit VM.
4195  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4196            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4197                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4198
4199  size_t threadStackSizeInBytes = ThreadStackSize * K;
4200  if (threadStackSizeInBytes != 0 &&
4201      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4202        tty->print_cr("\nThe stack size specified is too small, "
4203                      "Specify at least %dk",
4204                      os::Linux::min_stack_allowed/ K);
4205        return JNI_ERR;
4206  }
4207
4208  // Make the stack size a multiple of the page size so that
4209  // the yellow/red zones can be guarded.
4210  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4211        vm_page_size()));
4212
4213  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4214
4215  Linux::libpthread_init();
4216  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4217     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4218          Linux::glibc_version(), Linux::libpthread_version(),
4219          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4220  }
4221
4222  if (UseNUMA) {
4223    if (!Linux::libnuma_init()) {
4224      UseNUMA = false;
4225    } else {
4226      if ((Linux::numa_max_node() < 1)) {
4227        // There's only one node(they start from 0), disable NUMA.
4228        UseNUMA = false;
4229      }
4230    }
4231    // With SHM large pages we cannot uncommit a page, so there's not way
4232    // we can make the adaptive lgrp chunk resizing work. If the user specified
4233    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4234    // disable adaptive resizing.
4235    if (UseNUMA && UseLargePages && UseSHM) {
4236      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4237        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4238          UseLargePages = false;
4239        } else {
4240          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4241          UseAdaptiveSizePolicy = false;
4242          UseAdaptiveNUMAChunkSizing = false;
4243        }
4244      } else {
4245        UseNUMA = false;
4246      }
4247    }
4248    if (!UseNUMA && ForceNUMA) {
4249      UseNUMA = true;
4250    }
4251  }
4252
4253  if (MaxFDLimit) {
4254    // set the number of file descriptors to max. print out error
4255    // if getrlimit/setrlimit fails but continue regardless.
4256    struct rlimit nbr_files;
4257    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4258    if (status != 0) {
4259      if (PrintMiscellaneous && (Verbose || WizardMode))
4260        perror("os::init_2 getrlimit failed");
4261    } else {
4262      nbr_files.rlim_cur = nbr_files.rlim_max;
4263      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4264      if (status != 0) {
4265        if (PrintMiscellaneous && (Verbose || WizardMode))
4266          perror("os::init_2 setrlimit failed");
4267      }
4268    }
4269  }
4270
4271  // Initialize lock used to serialize thread creation (see os::create_thread)
4272  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4273
4274  // at-exit methods are called in the reverse order of their registration.
4275  // atexit functions are called on return from main or as a result of a
4276  // call to exit(3C). There can be only 32 of these functions registered
4277  // and atexit() does not set errno.
4278
4279  if (PerfAllowAtExitRegistration) {
4280    // only register atexit functions if PerfAllowAtExitRegistration is set.
4281    // atexit functions can be delayed until process exit time, which
4282    // can be problematic for embedded VM situations. Embedded VMs should
4283    // call DestroyJavaVM() to assure that VM resources are released.
4284
4285    // note: perfMemory_exit_helper atexit function may be removed in
4286    // the future if the appropriate cleanup code can be added to the
4287    // VM_Exit VMOperation's doit method.
4288    if (atexit(perfMemory_exit_helper) != 0) {
4289      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4290    }
4291  }
4292
4293  // initialize thread priority policy
4294  prio_init();
4295
4296  return JNI_OK;
4297}
4298
4299// this is called at the end of vm_initialization
4300void os::init_3(void)
4301{
4302#ifdef JAVASE_EMBEDDED
4303  // Start the MemNotifyThread
4304  if (LowMemoryProtection) {
4305    MemNotifyThread::start();
4306  }
4307  return;
4308#endif
4309}
4310
4311// Mark the polling page as unreadable
4312void os::make_polling_page_unreadable(void) {
4313  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4314    fatal("Could not disable polling page");
4315};
4316
4317// Mark the polling page as readable
4318void os::make_polling_page_readable(void) {
4319  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4320    fatal("Could not enable polling page");
4321  }
4322};
4323
4324int os::active_processor_count() {
4325  // Linux doesn't yet have a (official) notion of processor sets,
4326  // so just return the number of online processors.
4327  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4328  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4329  return online_cpus;
4330}
4331
4332bool os::distribute_processes(uint length, uint* distribution) {
4333  // Not yet implemented.
4334  return false;
4335}
4336
4337bool os::bind_to_processor(uint processor_id) {
4338  // Not yet implemented.
4339  return false;
4340}
4341
4342///
4343
4344// Suspends the target using the signal mechanism and then grabs the PC before
4345// resuming the target. Used by the flat-profiler only
4346ExtendedPC os::get_thread_pc(Thread* thread) {
4347  // Make sure that it is called by the watcher for the VMThread
4348  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4349  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4350
4351  ExtendedPC epc;
4352
4353  OSThread* osthread = thread->osthread();
4354  if (do_suspend(osthread)) {
4355    if (osthread->ucontext() != NULL) {
4356      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4357    } else {
4358      // NULL context is unexpected, double-check this is the VMThread
4359      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4360    }
4361    do_resume(osthread);
4362  }
4363  // failure means pthread_kill failed for some reason - arguably this is
4364  // a fatal problem, but such problems are ignored elsewhere
4365
4366  return epc;
4367}
4368
4369int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4370{
4371   if (is_NPTL()) {
4372      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4373   } else {
4374#ifndef IA64
4375      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4376      // word back to default 64bit precision if condvar is signaled. Java
4377      // wants 53bit precision.  Save and restore current value.
4378      int fpu = get_fpu_control_word();
4379#endif // IA64
4380      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4381#ifndef IA64
4382      set_fpu_control_word(fpu);
4383#endif // IA64
4384      return status;
4385   }
4386}
4387
4388////////////////////////////////////////////////////////////////////////////////
4389// debug support
4390
4391static address same_page(address x, address y) {
4392  int page_bits = -os::vm_page_size();
4393  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4394    return x;
4395  else if (x > y)
4396    return (address)(intptr_t(y) | ~page_bits) + 1;
4397  else
4398    return (address)(intptr_t(y) & page_bits);
4399}
4400
4401bool os::find(address addr, outputStream* st) {
4402  Dl_info dlinfo;
4403  memset(&dlinfo, 0, sizeof(dlinfo));
4404  if (dladdr(addr, &dlinfo)) {
4405    st->print(PTR_FORMAT ": ", addr);
4406    if (dlinfo.dli_sname != NULL) {
4407      st->print("%s+%#x", dlinfo.dli_sname,
4408                 addr - (intptr_t)dlinfo.dli_saddr);
4409    } else if (dlinfo.dli_fname) {
4410      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4411    } else {
4412      st->print("<absolute address>");
4413    }
4414    if (dlinfo.dli_fname) {
4415      st->print(" in %s", dlinfo.dli_fname);
4416    }
4417    if (dlinfo.dli_fbase) {
4418      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4419    }
4420    st->cr();
4421
4422    if (Verbose) {
4423      // decode some bytes around the PC
4424      address begin = same_page(addr-40, addr);
4425      address end   = same_page(addr+40, addr);
4426      address       lowest = (address) dlinfo.dli_sname;
4427      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4428      if (begin < lowest)  begin = lowest;
4429      Dl_info dlinfo2;
4430      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4431          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4432        end = (address) dlinfo2.dli_saddr;
4433      Disassembler::decode(begin, end, st);
4434    }
4435    return true;
4436  }
4437  return false;
4438}
4439
4440////////////////////////////////////////////////////////////////////////////////
4441// misc
4442
4443// This does not do anything on Linux. This is basically a hook for being
4444// able to use structured exception handling (thread-local exception filters)
4445// on, e.g., Win32.
4446void
4447os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4448                         JavaCallArguments* args, Thread* thread) {
4449  f(value, method, args, thread);
4450}
4451
4452void os::print_statistics() {
4453}
4454
4455int os::message_box(const char* title, const char* message) {
4456  int i;
4457  fdStream err(defaultStream::error_fd());
4458  for (i = 0; i < 78; i++) err.print_raw("=");
4459  err.cr();
4460  err.print_raw_cr(title);
4461  for (i = 0; i < 78; i++) err.print_raw("-");
4462  err.cr();
4463  err.print_raw_cr(message);
4464  for (i = 0; i < 78; i++) err.print_raw("=");
4465  err.cr();
4466
4467  char buf[16];
4468  // Prevent process from exiting upon "read error" without consuming all CPU
4469  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4470
4471  return buf[0] == 'y' || buf[0] == 'Y';
4472}
4473
4474int os::stat(const char *path, struct stat *sbuf) {
4475  char pathbuf[MAX_PATH];
4476  if (strlen(path) > MAX_PATH - 1) {
4477    errno = ENAMETOOLONG;
4478    return -1;
4479  }
4480  os::native_path(strcpy(pathbuf, path));
4481  return ::stat(pathbuf, sbuf);
4482}
4483
4484bool os::check_heap(bool force) {
4485  return true;
4486}
4487
4488int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4489  return ::vsnprintf(buf, count, format, args);
4490}
4491
4492// Is a (classpath) directory empty?
4493bool os::dir_is_empty(const char* path) {
4494  DIR *dir = NULL;
4495  struct dirent *ptr;
4496
4497  dir = opendir(path);
4498  if (dir == NULL) return true;
4499
4500  /* Scan the directory */
4501  bool result = true;
4502  char buf[sizeof(struct dirent) + MAX_PATH];
4503  while (result && (ptr = ::readdir(dir)) != NULL) {
4504    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4505      result = false;
4506    }
4507  }
4508  closedir(dir);
4509  return result;
4510}
4511
4512// This code originates from JDK's sysOpen and open64_w
4513// from src/solaris/hpi/src/system_md.c
4514
4515#ifndef O_DELETE
4516#define O_DELETE 0x10000
4517#endif
4518
4519// Open a file. Unlink the file immediately after open returns
4520// if the specified oflag has the O_DELETE flag set.
4521// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4522
4523int os::open(const char *path, int oflag, int mode) {
4524
4525  if (strlen(path) > MAX_PATH - 1) {
4526    errno = ENAMETOOLONG;
4527    return -1;
4528  }
4529  int fd;
4530  int o_delete = (oflag & O_DELETE);
4531  oflag = oflag & ~O_DELETE;
4532
4533  fd = ::open64(path, oflag, mode);
4534  if (fd == -1) return -1;
4535
4536  //If the open succeeded, the file might still be a directory
4537  {
4538    struct stat64 buf64;
4539    int ret = ::fstat64(fd, &buf64);
4540    int st_mode = buf64.st_mode;
4541
4542    if (ret != -1) {
4543      if ((st_mode & S_IFMT) == S_IFDIR) {
4544        errno = EISDIR;
4545        ::close(fd);
4546        return -1;
4547      }
4548    } else {
4549      ::close(fd);
4550      return -1;
4551    }
4552  }
4553
4554    /*
4555     * All file descriptors that are opened in the JVM and not
4556     * specifically destined for a subprocess should have the
4557     * close-on-exec flag set.  If we don't set it, then careless 3rd
4558     * party native code might fork and exec without closing all
4559     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4560     * UNIXProcess.c), and this in turn might:
4561     *
4562     * - cause end-of-file to fail to be detected on some file
4563     *   descriptors, resulting in mysterious hangs, or
4564     *
4565     * - might cause an fopen in the subprocess to fail on a system
4566     *   suffering from bug 1085341.
4567     *
4568     * (Yes, the default setting of the close-on-exec flag is a Unix
4569     * design flaw)
4570     *
4571     * See:
4572     * 1085341: 32-bit stdio routines should support file descriptors >255
4573     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4574     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4575     */
4576#ifdef FD_CLOEXEC
4577    {
4578        int flags = ::fcntl(fd, F_GETFD);
4579        if (flags != -1)
4580            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4581    }
4582#endif
4583
4584  if (o_delete != 0) {
4585    ::unlink(path);
4586  }
4587  return fd;
4588}
4589
4590
4591// create binary file, rewriting existing file if required
4592int os::create_binary_file(const char* path, bool rewrite_existing) {
4593  int oflags = O_WRONLY | O_CREAT;
4594  if (!rewrite_existing) {
4595    oflags |= O_EXCL;
4596  }
4597  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4598}
4599
4600// return current position of file pointer
4601jlong os::current_file_offset(int fd) {
4602  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4603}
4604
4605// move file pointer to the specified offset
4606jlong os::seek_to_file_offset(int fd, jlong offset) {
4607  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4608}
4609
4610// This code originates from JDK's sysAvailable
4611// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4612
4613int os::available(int fd, jlong *bytes) {
4614  jlong cur, end;
4615  int mode;
4616  struct stat64 buf64;
4617
4618  if (::fstat64(fd, &buf64) >= 0) {
4619    mode = buf64.st_mode;
4620    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4621      /*
4622      * XXX: is the following call interruptible? If so, this might
4623      * need to go through the INTERRUPT_IO() wrapper as for other
4624      * blocking, interruptible calls in this file.
4625      */
4626      int n;
4627      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4628        *bytes = n;
4629        return 1;
4630      }
4631    }
4632  }
4633  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4634    return 0;
4635  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4636    return 0;
4637  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4638    return 0;
4639  }
4640  *bytes = end - cur;
4641  return 1;
4642}
4643
4644int os::socket_available(int fd, jint *pbytes) {
4645  // Linux doc says EINTR not returned, unlike Solaris
4646  int ret = ::ioctl(fd, FIONREAD, pbytes);
4647
4648  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4649  // is expected to return 0 on failure and 1 on success to the jdk.
4650  return (ret < 0) ? 0 : 1;
4651}
4652
4653// Map a block of memory.
4654char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4655                     char *addr, size_t bytes, bool read_only,
4656                     bool allow_exec) {
4657  int prot;
4658  int flags;
4659
4660  if (read_only) {
4661    prot = PROT_READ;
4662    flags = MAP_SHARED;
4663  } else {
4664    prot = PROT_READ | PROT_WRITE;
4665    flags = MAP_PRIVATE;
4666  }
4667
4668  if (allow_exec) {
4669    prot |= PROT_EXEC;
4670  }
4671
4672  if (addr != NULL) {
4673    flags |= MAP_FIXED;
4674  }
4675
4676  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4677                                     fd, file_offset);
4678  if (mapped_address == MAP_FAILED) {
4679    return NULL;
4680  }
4681  return mapped_address;
4682}
4683
4684
4685// Remap a block of memory.
4686char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4687                       char *addr, size_t bytes, bool read_only,
4688                       bool allow_exec) {
4689  // same as map_memory() on this OS
4690  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4691                        allow_exec);
4692}
4693
4694
4695// Unmap a block of memory.
4696bool os::unmap_memory(char* addr, size_t bytes) {
4697  return munmap(addr, bytes) == 0;
4698}
4699
4700static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4701
4702static clockid_t thread_cpu_clockid(Thread* thread) {
4703  pthread_t tid = thread->osthread()->pthread_id();
4704  clockid_t clockid;
4705
4706  // Get thread clockid
4707  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4708  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4709  return clockid;
4710}
4711
4712// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4713// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4714// of a thread.
4715//
4716// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4717// the fast estimate available on the platform.
4718
4719jlong os::current_thread_cpu_time() {
4720  if (os::Linux::supports_fast_thread_cpu_time()) {
4721    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4722  } else {
4723    // return user + sys since the cost is the same
4724    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4725  }
4726}
4727
4728jlong os::thread_cpu_time(Thread* thread) {
4729  // consistent with what current_thread_cpu_time() returns
4730  if (os::Linux::supports_fast_thread_cpu_time()) {
4731    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4732  } else {
4733    return slow_thread_cpu_time(thread, true /* user + sys */);
4734  }
4735}
4736
4737jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4738  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4739    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4740  } else {
4741    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4742  }
4743}
4744
4745jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4746  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4747    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4748  } else {
4749    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4750  }
4751}
4752
4753//
4754//  -1 on error.
4755//
4756
4757static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4758  static bool proc_pid_cpu_avail = true;
4759  static bool proc_task_unchecked = true;
4760  static const char *proc_stat_path = "/proc/%d/stat";
4761  pid_t  tid = thread->osthread()->thread_id();
4762  int i;
4763  char *s;
4764  char stat[2048];
4765  int statlen;
4766  char proc_name[64];
4767  int count;
4768  long sys_time, user_time;
4769  char string[64];
4770  char cdummy;
4771  int idummy;
4772  long ldummy;
4773  FILE *fp;
4774
4775  // We first try accessing /proc/<pid>/cpu since this is faster to
4776  // process.  If this file is not present (linux kernels 2.5 and above)
4777  // then we open /proc/<pid>/stat.
4778  if ( proc_pid_cpu_avail ) {
4779    sprintf(proc_name, "/proc/%d/cpu", tid);
4780    fp =  fopen(proc_name, "r");
4781    if ( fp != NULL ) {
4782      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4783      fclose(fp);
4784      if ( count != 3 ) return -1;
4785
4786      if (user_sys_cpu_time) {
4787        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4788      } else {
4789        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4790      }
4791    }
4792    else proc_pid_cpu_avail = false;
4793  }
4794
4795  // The /proc/<tid>/stat aggregates per-process usage on
4796  // new Linux kernels 2.6+ where NPTL is supported.
4797  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4798  // See bug 6328462.
4799  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4800  // and possibly in some other cases, so we check its availability.
4801  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4802    // This is executed only once
4803    proc_task_unchecked = false;
4804    fp = fopen("/proc/self/task", "r");
4805    if (fp != NULL) {
4806      proc_stat_path = "/proc/self/task/%d/stat";
4807      fclose(fp);
4808    }
4809  }
4810
4811  sprintf(proc_name, proc_stat_path, tid);
4812  fp = fopen(proc_name, "r");
4813  if ( fp == NULL ) return -1;
4814  statlen = fread(stat, 1, 2047, fp);
4815  stat[statlen] = '\0';
4816  fclose(fp);
4817
4818  // Skip pid and the command string. Note that we could be dealing with
4819  // weird command names, e.g. user could decide to rename java launcher
4820  // to "java 1.4.2 :)", then the stat file would look like
4821  //                1234 (java 1.4.2 :)) R ... ...
4822  // We don't really need to know the command string, just find the last
4823  // occurrence of ")" and then start parsing from there. See bug 4726580.
4824  s = strrchr(stat, ')');
4825  i = 0;
4826  if (s == NULL ) return -1;
4827
4828  // Skip blank chars
4829  do s++; while (isspace(*s));
4830
4831  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4832                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4833                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4834                 &user_time, &sys_time);
4835  if ( count != 13 ) return -1;
4836  if (user_sys_cpu_time) {
4837    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4838  } else {
4839    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4840  }
4841}
4842
4843void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4844  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4845  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4846  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4847  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4848}
4849
4850void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4851  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4852  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4853  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4854  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4855}
4856
4857bool os::is_thread_cpu_time_supported() {
4858  return true;
4859}
4860
4861// System loadavg support.  Returns -1 if load average cannot be obtained.
4862// Linux doesn't yet have a (official) notion of processor sets,
4863// so just return the system wide load average.
4864int os::loadavg(double loadavg[], int nelem) {
4865  return ::getloadavg(loadavg, nelem);
4866}
4867
4868void os::pause() {
4869  char filename[MAX_PATH];
4870  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4871    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4872  } else {
4873    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4874  }
4875
4876  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4877  if (fd != -1) {
4878    struct stat buf;
4879    ::close(fd);
4880    while (::stat(filename, &buf) == 0) {
4881      (void)::poll(NULL, 0, 100);
4882    }
4883  } else {
4884    jio_fprintf(stderr,
4885      "Could not open pause file '%s', continuing immediately.\n", filename);
4886  }
4887}
4888
4889
4890// Refer to the comments in os_solaris.cpp park-unpark.
4891//
4892// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4893// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4894// For specifics regarding the bug see GLIBC BUGID 261237 :
4895//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4896// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4897// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4898// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4899// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4900// and monitorenter when we're using 1-0 locking.  All those operations may result in
4901// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4902// of libpthread avoids the problem, but isn't practical.
4903//
4904// Possible remedies:
4905//
4906// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4907//      This is palliative and probabilistic, however.  If the thread is preempted
4908//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4909//      than the minimum period may have passed, and the abstime may be stale (in the
4910//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4911//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4912//
4913// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4914//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4915//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4916//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4917//      thread.
4918//
4919// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4920//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4921//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4922//      This also works well.  In fact it avoids kernel-level scalability impediments
4923//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4924//      timers in a graceful fashion.
4925//
4926// 4.   When the abstime value is in the past it appears that control returns
4927//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4928//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4929//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4930//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4931//      It may be possible to avoid reinitialization by checking the return
4932//      value from pthread_cond_timedwait().  In addition to reinitializing the
4933//      condvar we must establish the invariant that cond_signal() is only called
4934//      within critical sections protected by the adjunct mutex.  This prevents
4935//      cond_signal() from "seeing" a condvar that's in the midst of being
4936//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4937//      desirable signal-after-unlock optimization that avoids futile context switching.
4938//
4939//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4940//      structure when a condvar is used or initialized.  cond_destroy()  would
4941//      release the helper structure.  Our reinitialize-after-timedwait fix
4942//      put excessive stress on malloc/free and locks protecting the c-heap.
4943//
4944// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4945// It may be possible to refine (4) by checking the kernel and NTPL verisons
4946// and only enabling the work-around for vulnerable environments.
4947
4948// utility to compute the abstime argument to timedwait:
4949// millis is the relative timeout time
4950// abstime will be the absolute timeout time
4951// TODO: replace compute_abstime() with unpackTime()
4952
4953static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4954  if (millis < 0)  millis = 0;
4955  struct timeval now;
4956  int status = gettimeofday(&now, NULL);
4957  assert(status == 0, "gettimeofday");
4958  jlong seconds = millis / 1000;
4959  millis %= 1000;
4960  if (seconds > 50000000) { // see man cond_timedwait(3T)
4961    seconds = 50000000;
4962  }
4963  abstime->tv_sec = now.tv_sec  + seconds;
4964  long       usec = now.tv_usec + millis * 1000;
4965  if (usec >= 1000000) {
4966    abstime->tv_sec += 1;
4967    usec -= 1000000;
4968  }
4969  abstime->tv_nsec = usec * 1000;
4970  return abstime;
4971}
4972
4973
4974// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4975// Conceptually TryPark() should be equivalent to park(0).
4976
4977int os::PlatformEvent::TryPark() {
4978  for (;;) {
4979    const int v = _Event ;
4980    guarantee ((v == 0) || (v == 1), "invariant") ;
4981    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4982  }
4983}
4984
4985void os::PlatformEvent::park() {       // AKA "down()"
4986  // Invariant: Only the thread associated with the Event/PlatformEvent
4987  // may call park().
4988  // TODO: assert that _Assoc != NULL or _Assoc == Self
4989  int v ;
4990  for (;;) {
4991      v = _Event ;
4992      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4993  }
4994  guarantee (v >= 0, "invariant") ;
4995  if (v == 0) {
4996     // Do this the hard way by blocking ...
4997     int status = pthread_mutex_lock(_mutex);
4998     assert_status(status == 0, status, "mutex_lock");
4999     guarantee (_nParked == 0, "invariant") ;
5000     ++ _nParked ;
5001     while (_Event < 0) {
5002        status = pthread_cond_wait(_cond, _mutex);
5003        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5004        // Treat this the same as if the wait was interrupted
5005        if (status == ETIME) { status = EINTR; }
5006        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5007     }
5008     -- _nParked ;
5009
5010    // In theory we could move the ST of 0 into _Event past the unlock(),
5011    // but then we'd need a MEMBAR after the ST.
5012    _Event = 0 ;
5013     status = pthread_mutex_unlock(_mutex);
5014     assert_status(status == 0, status, "mutex_unlock");
5015  }
5016  guarantee (_Event >= 0, "invariant") ;
5017}
5018
5019int os::PlatformEvent::park(jlong millis) {
5020  guarantee (_nParked == 0, "invariant") ;
5021
5022  int v ;
5023  for (;;) {
5024      v = _Event ;
5025      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5026  }
5027  guarantee (v >= 0, "invariant") ;
5028  if (v != 0) return OS_OK ;
5029
5030  // We do this the hard way, by blocking the thread.
5031  // Consider enforcing a minimum timeout value.
5032  struct timespec abst;
5033  compute_abstime(&abst, millis);
5034
5035  int ret = OS_TIMEOUT;
5036  int status = pthread_mutex_lock(_mutex);
5037  assert_status(status == 0, status, "mutex_lock");
5038  guarantee (_nParked == 0, "invariant") ;
5039  ++_nParked ;
5040
5041  // Object.wait(timo) will return because of
5042  // (a) notification
5043  // (b) timeout
5044  // (c) thread.interrupt
5045  //
5046  // Thread.interrupt and object.notify{All} both call Event::set.
5047  // That is, we treat thread.interrupt as a special case of notification.
5048  // The underlying Solaris implementation, cond_timedwait, admits
5049  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5050  // JVM from making those visible to Java code.  As such, we must
5051  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5052  //
5053  // TODO: properly differentiate simultaneous notify+interrupt.
5054  // In that case, we should propagate the notify to another waiter.
5055
5056  while (_Event < 0) {
5057    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5058    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5059      pthread_cond_destroy (_cond);
5060      pthread_cond_init (_cond, NULL) ;
5061    }
5062    assert_status(status == 0 || status == EINTR ||
5063                  status == ETIME || status == ETIMEDOUT,
5064                  status, "cond_timedwait");
5065    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5066    if (status == ETIME || status == ETIMEDOUT) break ;
5067    // We consume and ignore EINTR and spurious wakeups.
5068  }
5069  --_nParked ;
5070  if (_Event >= 0) {
5071     ret = OS_OK;
5072  }
5073  _Event = 0 ;
5074  status = pthread_mutex_unlock(_mutex);
5075  assert_status(status == 0, status, "mutex_unlock");
5076  assert (_nParked == 0, "invariant") ;
5077  return ret;
5078}
5079
5080void os::PlatformEvent::unpark() {
5081  int v, AnyWaiters ;
5082  for (;;) {
5083      v = _Event ;
5084      if (v > 0) {
5085         // The LD of _Event could have reordered or be satisfied
5086         // by a read-aside from this processor's write buffer.
5087         // To avoid problems execute a barrier and then
5088         // ratify the value.
5089         OrderAccess::fence() ;
5090         if (_Event == v) return ;
5091         continue ;
5092      }
5093      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5094  }
5095  if (v < 0) {
5096     // Wait for the thread associated with the event to vacate
5097     int status = pthread_mutex_lock(_mutex);
5098     assert_status(status == 0, status, "mutex_lock");
5099     AnyWaiters = _nParked ;
5100     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5101     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5102        AnyWaiters = 0 ;
5103        pthread_cond_signal (_cond);
5104     }
5105     status = pthread_mutex_unlock(_mutex);
5106     assert_status(status == 0, status, "mutex_unlock");
5107     if (AnyWaiters != 0) {
5108        status = pthread_cond_signal(_cond);
5109        assert_status(status == 0, status, "cond_signal");
5110     }
5111  }
5112
5113  // Note that we signal() _after dropping the lock for "immortal" Events.
5114  // This is safe and avoids a common class of  futile wakeups.  In rare
5115  // circumstances this can cause a thread to return prematurely from
5116  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5117  // simply re-test the condition and re-park itself.
5118}
5119
5120
5121// JSR166
5122// -------------------------------------------------------
5123
5124/*
5125 * The solaris and linux implementations of park/unpark are fairly
5126 * conservative for now, but can be improved. They currently use a
5127 * mutex/condvar pair, plus a a count.
5128 * Park decrements count if > 0, else does a condvar wait.  Unpark
5129 * sets count to 1 and signals condvar.  Only one thread ever waits
5130 * on the condvar. Contention seen when trying to park implies that someone
5131 * is unparking you, so don't wait. And spurious returns are fine, so there
5132 * is no need to track notifications.
5133 */
5134
5135
5136#define NANOSECS_PER_SEC 1000000000
5137#define NANOSECS_PER_MILLISEC 1000000
5138#define MAX_SECS 100000000
5139/*
5140 * This code is common to linux and solaris and will be moved to a
5141 * common place in dolphin.
5142 *
5143 * The passed in time value is either a relative time in nanoseconds
5144 * or an absolute time in milliseconds. Either way it has to be unpacked
5145 * into suitable seconds and nanoseconds components and stored in the
5146 * given timespec structure.
5147 * Given time is a 64-bit value and the time_t used in the timespec is only
5148 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5149 * overflow if times way in the future are given. Further on Solaris versions
5150 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5151 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5152 * As it will be 28 years before "now + 100000000" will overflow we can
5153 * ignore overflow and just impose a hard-limit on seconds using the value
5154 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5155 * years from "now".
5156 */
5157
5158static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5159  assert (time > 0, "convertTime");
5160
5161  struct timeval now;
5162  int status = gettimeofday(&now, NULL);
5163  assert(status == 0, "gettimeofday");
5164
5165  time_t max_secs = now.tv_sec + MAX_SECS;
5166
5167  if (isAbsolute) {
5168    jlong secs = time / 1000;
5169    if (secs > max_secs) {
5170      absTime->tv_sec = max_secs;
5171    }
5172    else {
5173      absTime->tv_sec = secs;
5174    }
5175    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5176  }
5177  else {
5178    jlong secs = time / NANOSECS_PER_SEC;
5179    if (secs >= MAX_SECS) {
5180      absTime->tv_sec = max_secs;
5181      absTime->tv_nsec = 0;
5182    }
5183    else {
5184      absTime->tv_sec = now.tv_sec + secs;
5185      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5186      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5187        absTime->tv_nsec -= NANOSECS_PER_SEC;
5188        ++absTime->tv_sec; // note: this must be <= max_secs
5189      }
5190    }
5191  }
5192  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5193  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5194  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5195  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5196}
5197
5198void Parker::park(bool isAbsolute, jlong time) {
5199  // Optional fast-path check:
5200  // Return immediately if a permit is available.
5201  if (_counter > 0) {
5202      _counter = 0 ;
5203      OrderAccess::fence();
5204      return ;
5205  }
5206
5207  Thread* thread = Thread::current();
5208  assert(thread->is_Java_thread(), "Must be JavaThread");
5209  JavaThread *jt = (JavaThread *)thread;
5210
5211  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5212  // Check interrupt before trying to wait
5213  if (Thread::is_interrupted(thread, false)) {
5214    return;
5215  }
5216
5217  // Next, demultiplex/decode time arguments
5218  timespec absTime;
5219  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5220    return;
5221  }
5222  if (time > 0) {
5223    unpackTime(&absTime, isAbsolute, time);
5224  }
5225
5226
5227  // Enter safepoint region
5228  // Beware of deadlocks such as 6317397.
5229  // The per-thread Parker:: mutex is a classic leaf-lock.
5230  // In particular a thread must never block on the Threads_lock while
5231  // holding the Parker:: mutex.  If safepoints are pending both the
5232  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5233  ThreadBlockInVM tbivm(jt);
5234
5235  // Don't wait if cannot get lock since interference arises from
5236  // unblocking.  Also. check interrupt before trying wait
5237  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5238    return;
5239  }
5240
5241  int status ;
5242  if (_counter > 0)  { // no wait needed
5243    _counter = 0;
5244    status = pthread_mutex_unlock(_mutex);
5245    assert (status == 0, "invariant") ;
5246    OrderAccess::fence();
5247    return;
5248  }
5249
5250#ifdef ASSERT
5251  // Don't catch signals while blocked; let the running threads have the signals.
5252  // (This allows a debugger to break into the running thread.)
5253  sigset_t oldsigs;
5254  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5255  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5256#endif
5257
5258  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5259  jt->set_suspend_equivalent();
5260  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5261
5262  if (time == 0) {
5263    status = pthread_cond_wait (_cond, _mutex) ;
5264  } else {
5265    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5266    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5267      pthread_cond_destroy (_cond) ;
5268      pthread_cond_init    (_cond, NULL);
5269    }
5270  }
5271  assert_status(status == 0 || status == EINTR ||
5272                status == ETIME || status == ETIMEDOUT,
5273                status, "cond_timedwait");
5274
5275#ifdef ASSERT
5276  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5277#endif
5278
5279  _counter = 0 ;
5280  status = pthread_mutex_unlock(_mutex) ;
5281  assert_status(status == 0, status, "invariant") ;
5282  // If externally suspended while waiting, re-suspend
5283  if (jt->handle_special_suspend_equivalent_condition()) {
5284    jt->java_suspend_self();
5285  }
5286
5287  OrderAccess::fence();
5288}
5289
5290void Parker::unpark() {
5291  int s, status ;
5292  status = pthread_mutex_lock(_mutex);
5293  assert (status == 0, "invariant") ;
5294  s = _counter;
5295  _counter = 1;
5296  if (s < 1) {
5297     if (WorkAroundNPTLTimedWaitHang) {
5298        status = pthread_cond_signal (_cond) ;
5299        assert (status == 0, "invariant") ;
5300        status = pthread_mutex_unlock(_mutex);
5301        assert (status == 0, "invariant") ;
5302     } else {
5303        status = pthread_mutex_unlock(_mutex);
5304        assert (status == 0, "invariant") ;
5305        status = pthread_cond_signal (_cond) ;
5306        assert (status == 0, "invariant") ;
5307     }
5308  } else {
5309    pthread_mutex_unlock(_mutex);
5310    assert (status == 0, "invariant") ;
5311  }
5312}
5313
5314
5315extern char** environ;
5316
5317#ifndef __NR_fork
5318#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5319#endif
5320
5321#ifndef __NR_execve
5322#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5323#endif
5324
5325// Run the specified command in a separate process. Return its exit value,
5326// or -1 on failure (e.g. can't fork a new process).
5327// Unlike system(), this function can be called from signal handler. It
5328// doesn't block SIGINT et al.
5329int os::fork_and_exec(char* cmd) {
5330  const char * argv[4] = {"sh", "-c", cmd, NULL};
5331
5332  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5333  // pthread_atfork handlers and reset pthread library. All we need is a
5334  // separate process to execve. Make a direct syscall to fork process.
5335  // On IA64 there's no fork syscall, we have to use fork() and hope for
5336  // the best...
5337  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5338              IA64_ONLY(fork();)
5339
5340  if (pid < 0) {
5341    // fork failed
5342    return -1;
5343
5344  } else if (pid == 0) {
5345    // child process
5346
5347    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5348    // first to kill every thread on the thread list. Because this list is
5349    // not reset by fork() (see notes above), execve() will instead kill
5350    // every thread in the parent process. We know this is the only thread
5351    // in the new process, so make a system call directly.
5352    // IA64 should use normal execve() from glibc to match the glibc fork()
5353    // above.
5354    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5355    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5356
5357    // execve failed
5358    _exit(-1);
5359
5360  } else  {
5361    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5362    // care about the actual exit code, for now.
5363
5364    int status;
5365
5366    // Wait for the child process to exit.  This returns immediately if
5367    // the child has already exited. */
5368    while (waitpid(pid, &status, 0) < 0) {
5369        switch (errno) {
5370        case ECHILD: return 0;
5371        case EINTR: break;
5372        default: return -1;
5373        }
5374    }
5375
5376    if (WIFEXITED(status)) {
5377       // The child exited normally; get its exit code.
5378       return WEXITSTATUS(status);
5379    } else if (WIFSIGNALED(status)) {
5380       // The child exited because of a signal
5381       // The best value to return is 0x80 + signal number,
5382       // because that is what all Unix shells do, and because
5383       // it allows callers to distinguish between process exit and
5384       // process death by signal.
5385       return 0x80 + WTERMSIG(status);
5386    } else {
5387       // Unknown exit code; pass it through
5388       return status;
5389    }
5390  }
5391}
5392
5393// is_headless_jre()
5394//
5395// Test for the existence of libmawt in motif21 or xawt directories
5396// in order to report if we are running in a headless jre
5397//
5398bool os::is_headless_jre() {
5399    struct stat statbuf;
5400    char buf[MAXPATHLEN];
5401    char libmawtpath[MAXPATHLEN];
5402    const char *xawtstr  = "/xawt/libmawt.so";
5403    const char *motifstr = "/motif21/libmawt.so";
5404    char *p;
5405
5406    // Get path to libjvm.so
5407    os::jvm_path(buf, sizeof(buf));
5408
5409    // Get rid of libjvm.so
5410    p = strrchr(buf, '/');
5411    if (p == NULL) return false;
5412    else *p = '\0';
5413
5414    // Get rid of client or server
5415    p = strrchr(buf, '/');
5416    if (p == NULL) return false;
5417    else *p = '\0';
5418
5419    // check xawt/libmawt.so
5420    strcpy(libmawtpath, buf);
5421    strcat(libmawtpath, xawtstr);
5422    if (::stat(libmawtpath, &statbuf) == 0) return false;
5423
5424    // check motif21/libmawt.so
5425    strcpy(libmawtpath, buf);
5426    strcat(libmawtpath, motifstr);
5427    if (::stat(libmawtpath, &statbuf) == 0) return false;
5428
5429    return true;
5430}
5431
5432
5433#ifdef JAVASE_EMBEDDED
5434//
5435// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5436//
5437MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5438
5439// ctor
5440//
5441MemNotifyThread::MemNotifyThread(int fd): Thread() {
5442  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5443  _fd = fd;
5444
5445  if (os::create_thread(this, os::os_thread)) {
5446    _memnotify_thread = this;
5447    os::set_priority(this, NearMaxPriority);
5448    os::start_thread(this);
5449  }
5450}
5451
5452// Where all the work gets done
5453//
5454void MemNotifyThread::run() {
5455  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5456
5457  // Set up the select arguments
5458  fd_set rfds;
5459  if (_fd != -1) {
5460    FD_ZERO(&rfds);
5461    FD_SET(_fd, &rfds);
5462  }
5463
5464  // Now wait for the mem_notify device to wake up
5465  while (1) {
5466    // Wait for the mem_notify device to signal us..
5467    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5468    if (rc == -1) {
5469      perror("select!\n");
5470      break;
5471    } else if (rc) {
5472      //ssize_t free_before = os::available_memory();
5473      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5474
5475      // The kernel is telling us there is not much memory left...
5476      // try to do something about that
5477
5478      // If we are not already in a GC, try one.
5479      if (!Universe::heap()->is_gc_active()) {
5480        Universe::heap()->collect(GCCause::_allocation_failure);
5481
5482        //ssize_t free_after = os::available_memory();
5483        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5484        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5485      }
5486      // We might want to do something like the following if we find the GC's are not helping...
5487      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5488    }
5489  }
5490}
5491
5492//
5493// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5494//
5495void MemNotifyThread::start() {
5496  int    fd;
5497  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5498  if (fd < 0) {
5499      return;
5500  }
5501
5502  if (memnotify_thread() == NULL) {
5503    new MemNotifyThread(fd);
5504  }
5505}
5506#endif // JAVASE_EMBEDDED
5507