os_linux.cpp revision 2387:7f3faf7159fd
138032Speter/*
238032Speter * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3261363Sgshapiro * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
464562Sgshapiro *
538032Speter * This code is free software; you can redistribute it and/or modify it
638032Speter * under the terms of the GNU General Public License version 2 only, as
738032Speter * published by the Free Software Foundation.
838032Speter *
938032Speter * This code is distributed in the hope that it will be useful, but WITHOUT
1038032Speter * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1138032Speter * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1238032Speter * version 2 for more details (a copy is included in the LICENSE file that
13266692Sgshapiro * accompanied this code).
1438032Speter *
1538032Speter * You should have received a copy of the GNU General Public License version
1638032Speter * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# define __STDC_FORMAT_MACROS
26
27// no precompiled headers
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "compiler/compileBroker.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_linux.h"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/extendedPC.hpp"
46#include "runtime/globals.hpp"
47#include "runtime/interfaceSupport.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/runtimeService.hpp"
61#include "thread_linux.inline.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67#ifdef TARGET_ARCH_x86
68# include "assembler_x86.inline.hpp"
69# include "nativeInst_x86.hpp"
70#endif
71#ifdef TARGET_ARCH_sparc
72# include "assembler_sparc.inline.hpp"
73# include "nativeInst_sparc.hpp"
74#endif
75#ifdef TARGET_ARCH_zero
76# include "assembler_zero.inline.hpp"
77# include "nativeInst_zero.hpp"
78#endif
79#ifdef TARGET_ARCH_arm
80# include "assembler_arm.inline.hpp"
81# include "nativeInst_arm.hpp"
82#endif
83#ifdef TARGET_ARCH_ppc
84# include "assembler_ppc.inline.hpp"
85# include "nativeInst_ppc.hpp"
86#endif
87#ifdef COMPILER1
88#include "c1/c1_Runtime1.hpp"
89#endif
90#ifdef COMPILER2
91#include "opto/runtime.hpp"
92#endif
93
94// put OS-includes here
95# include <sys/types.h>
96# include <sys/mman.h>
97# include <sys/stat.h>
98# include <sys/select.h>
99# include <pthread.h>
100# include <signal.h>
101# include <errno.h>
102# include <dlfcn.h>
103# include <stdio.h>
104# include <unistd.h>
105# include <sys/resource.h>
106# include <pthread.h>
107# include <sys/stat.h>
108# include <sys/time.h>
109# include <sys/times.h>
110# include <sys/utsname.h>
111# include <sys/socket.h>
112# include <sys/wait.h>
113# include <pwd.h>
114# include <poll.h>
115# include <semaphore.h>
116# include <fcntl.h>
117# include <string.h>
118# include <syscall.h>
119# include <sys/sysinfo.h>
120# include <gnu/libc-version.h>
121# include <sys/ipc.h>
122# include <sys/shm.h>
123# include <link.h>
124# include <stdint.h>
125# include <inttypes.h>
126# include <sys/ioctl.h>
127
128#define MAX_PATH    (2 * K)
129
130// for timer info max values which include all bits
131#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
132#define SEC_IN_NANOSECS  1000000000LL
133
134#define LARGEPAGES_BIT (1 << 6)
135////////////////////////////////////////////////////////////////////////////////
136// global variables
137julong os::Linux::_physical_memory = 0;
138
139address   os::Linux::_initial_thread_stack_bottom = NULL;
140uintptr_t os::Linux::_initial_thread_stack_size   = 0;
141
142int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
143int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
144Mutex* os::Linux::_createThread_lock = NULL;
145pthread_t os::Linux::_main_thread;
146int os::Linux::_page_size = -1;
147bool os::Linux::_is_floating_stack = false;
148bool os::Linux::_is_NPTL = false;
149bool os::Linux::_supports_fast_thread_cpu_time = false;
150const char * os::Linux::_glibc_version = NULL;
151const char * os::Linux::_libpthread_version = NULL;
152
153static jlong initial_time_count=0;
154
155static int clock_tics_per_sec = 100;
156
157// For diagnostics to print a message once. see run_periodic_checks
158static sigset_t check_signal_done;
159static bool check_signals = true;;
160
161static pid_t _initial_pid = 0;
162
163/* Signal number used to suspend/resume a thread */
164
165/* do not use any signal number less than SIGSEGV, see 4355769 */
166static int SR_signum = SIGUSR2;
167sigset_t SR_sigset;
168
169/* Used to protect dlsym() calls */
170static pthread_mutex_t dl_mutex;
171
172////////////////////////////////////////////////////////////////////////////////
173// utility functions
174
175static int SR_initialize();
176static int SR_finalize();
177
178julong os::available_memory() {
179  return Linux::available_memory();
180}
181
182julong os::Linux::available_memory() {
183  // values in struct sysinfo are "unsigned long"
184  struct sysinfo si;
185  sysinfo(&si);
186
187  return (julong)si.freeram * si.mem_unit;
188}
189
190julong os::physical_memory() {
191  return Linux::physical_memory();
192}
193
194julong os::allocatable_physical_memory(julong size) {
195#ifdef _LP64
196  return size;
197#else
198  julong result = MIN2(size, (julong)3800*M);
199   if (!is_allocatable(result)) {
200     // See comments under solaris for alignment considerations
201     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
202     result =  MIN2(size, reasonable_size);
203   }
204   return result;
205#endif // _LP64
206}
207
208////////////////////////////////////////////////////////////////////////////////
209// environment support
210
211bool os::getenv(const char* name, char* buf, int len) {
212  const char* val = ::getenv(name);
213  if (val != NULL && strlen(val) < (size_t)len) {
214    strcpy(buf, val);
215    return true;
216  }
217  if (len > 0) buf[0] = 0;  // return a null string
218  return false;
219}
220
221
222// Return true if user is running as root.
223
224bool os::have_special_privileges() {
225  static bool init = false;
226  static bool privileges = false;
227  if (!init) {
228    privileges = (getuid() != geteuid()) || (getgid() != getegid());
229    init = true;
230  }
231  return privileges;
232}
233
234
235#ifndef SYS_gettid
236// i386: 224, ia64: 1105, amd64: 186, sparc 143
237#ifdef __ia64__
238#define SYS_gettid 1105
239#elif __i386__
240#define SYS_gettid 224
241#elif __amd64__
242#define SYS_gettid 186
243#elif __sparc__
244#define SYS_gettid 143
245#else
246#error define gettid for the arch
247#endif
248#endif
249
250// Cpu architecture string
251#if   defined(ZERO)
252static char cpu_arch[] = ZERO_LIBARCH;
253#elif defined(IA64)
254static char cpu_arch[] = "ia64";
255#elif defined(IA32)
256static char cpu_arch[] = "i386";
257#elif defined(AMD64)
258static char cpu_arch[] = "amd64";
259#elif defined(ARM)
260static char cpu_arch[] = "arm";
261#elif defined(PPC)
262static char cpu_arch[] = "ppc";
263#elif defined(SPARC)
264#  ifdef _LP64
265static char cpu_arch[] = "sparcv9";
266#  else
267static char cpu_arch[] = "sparc";
268#  endif
269#else
270#error Add appropriate cpu_arch setting
271#endif
272
273
274// pid_t gettid()
275//
276// Returns the kernel thread id of the currently running thread. Kernel
277// thread id is used to access /proc.
278//
279// (Note that getpid() on LinuxThreads returns kernel thread id too; but
280// on NPTL, it returns the same pid for all threads, as required by POSIX.)
281//
282pid_t os::Linux::gettid() {
283  int rslt = syscall(SYS_gettid);
284  if (rslt == -1) {
285     // old kernel, no NPTL support
286     return getpid();
287  } else {
288     return (pid_t)rslt;
289  }
290}
291
292// Most versions of linux have a bug where the number of processors are
293// determined by looking at the /proc file system.  In a chroot environment,
294// the system call returns 1.  This causes the VM to act as if it is
295// a single processor and elide locking (see is_MP() call).
296static bool unsafe_chroot_detected = false;
297static const char *unstable_chroot_error = "/proc file system not found.\n"
298                     "Java may be unstable running multithreaded in a chroot "
299                     "environment on Linux when /proc filesystem is not mounted.";
300
301void os::Linux::initialize_system_info() {
302  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
303  if (processor_count() == 1) {
304    pid_t pid = os::Linux::gettid();
305    char fname[32];
306    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
307    FILE *fp = fopen(fname, "r");
308    if (fp == NULL) {
309      unsafe_chroot_detected = true;
310    } else {
311      fclose(fp);
312    }
313  }
314  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
315  assert(processor_count() > 0, "linux error");
316}
317
318void os::init_system_properties_values() {
319//  char arch[12];
320//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
321
322  // The next steps are taken in the product version:
323  //
324  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
325  // This library should be located at:
326  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
327  //
328  // If "/jre/lib/" appears at the right place in the path, then we
329  // assume libjvm[_g].so is installed in a JDK and we use this path.
330  //
331  // Otherwise exit with message: "Could not create the Java virtual machine."
332  //
333  // The following extra steps are taken in the debugging version:
334  //
335  // If "/jre/lib/" does NOT appear at the right place in the path
336  // instead of exit check for $JAVA_HOME environment variable.
337  //
338  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
339  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
340  // it looks like libjvm[_g].so is installed there
341  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
342  //
343  // Otherwise exit.
344  //
345  // Important note: if the location of libjvm.so changes this
346  // code needs to be changed accordingly.
347
348  // The next few definitions allow the code to be verbatim:
349#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
350#define getenv(n) ::getenv(n)
351
352/*
353 * See ld(1):
354 *      The linker uses the following search paths to locate required
355 *      shared libraries:
356 *        1: ...
357 *        ...
358 *        7: The default directories, normally /lib and /usr/lib.
359 */
360#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
361#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
362#else
363#define DEFAULT_LIBPATH "/lib:/usr/lib"
364#endif
365
366#define EXTENSIONS_DIR  "/lib/ext"
367#define ENDORSED_DIR    "/lib/endorsed"
368#define REG_DIR         "/usr/java/packages"
369
370  {
371    /* sysclasspath, java_home, dll_dir */
372    {
373        char *home_path;
374        char *dll_path;
375        char *pslash;
376        char buf[MAXPATHLEN];
377        os::jvm_path(buf, sizeof(buf));
378
379        // Found the full path to libjvm.so.
380        // Now cut the path to <java_home>/jre if we can.
381        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
382        pslash = strrchr(buf, '/');
383        if (pslash != NULL)
384            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
385        dll_path = malloc(strlen(buf) + 1);
386        if (dll_path == NULL)
387            return;
388        strcpy(dll_path, buf);
389        Arguments::set_dll_dir(dll_path);
390
391        if (pslash != NULL) {
392            pslash = strrchr(buf, '/');
393            if (pslash != NULL) {
394                *pslash = '\0';       /* get rid of /<arch> */
395                pslash = strrchr(buf, '/');
396                if (pslash != NULL)
397                    *pslash = '\0';   /* get rid of /lib */
398            }
399        }
400
401        home_path = malloc(strlen(buf) + 1);
402        if (home_path == NULL)
403            return;
404        strcpy(home_path, buf);
405        Arguments::set_java_home(home_path);
406
407        if (!set_boot_path('/', ':'))
408            return;
409    }
410
411    /*
412     * Where to look for native libraries
413     *
414     * Note: Due to a legacy implementation, most of the library path
415     * is set in the launcher.  This was to accomodate linking restrictions
416     * on legacy Linux implementations (which are no longer supported).
417     * Eventually, all the library path setting will be done here.
418     *
419     * However, to prevent the proliferation of improperly built native
420     * libraries, the new path component /usr/java/packages is added here.
421     * Eventually, all the library path setting will be done here.
422     */
423    {
424        char *ld_library_path;
425
426        /*
427         * Construct the invariant part of ld_library_path. Note that the
428         * space for the colon and the trailing null are provided by the
429         * nulls included by the sizeof operator (so actually we allocate
430         * a byte more than necessary).
431         */
432        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
433            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
434        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
435
436        /*
437         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
438         * should always exist (until the legacy problem cited above is
439         * addressed).
440         */
441        char *v = getenv("LD_LIBRARY_PATH");
442        if (v != NULL) {
443            char *t = ld_library_path;
444            /* That's +1 for the colon and +1 for the trailing '\0' */
445            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
446            sprintf(ld_library_path, "%s:%s", v, t);
447        }
448        Arguments::set_library_path(ld_library_path);
449    }
450
451    /*
452     * Extensions directories.
453     *
454     * Note that the space for the colon and the trailing null are provided
455     * by the nulls included by the sizeof operator (so actually one byte more
456     * than necessary is allocated).
457     */
458    {
459        char *buf = malloc(strlen(Arguments::get_java_home()) +
460            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
461        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
462            Arguments::get_java_home());
463        Arguments::set_ext_dirs(buf);
464    }
465
466    /* Endorsed standards default directory. */
467    {
468        char * buf;
469        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
470        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
471        Arguments::set_endorsed_dirs(buf);
472    }
473  }
474
475#undef malloc
476#undef getenv
477#undef EXTENSIONS_DIR
478#undef ENDORSED_DIR
479
480  // Done
481  return;
482}
483
484////////////////////////////////////////////////////////////////////////////////
485// breakpoint support
486
487void os::breakpoint() {
488  BREAKPOINT;
489}
490
491extern "C" void breakpoint() {
492  // use debugger to set breakpoint here
493}
494
495////////////////////////////////////////////////////////////////////////////////
496// signal support
497
498debug_only(static bool signal_sets_initialized = false);
499static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
500
501bool os::Linux::is_sig_ignored(int sig) {
502      struct sigaction oact;
503      sigaction(sig, (struct sigaction*)NULL, &oact);
504      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
505                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
506      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
507           return true;
508      else
509           return false;
510}
511
512void os::Linux::signal_sets_init() {
513  // Should also have an assertion stating we are still single-threaded.
514  assert(!signal_sets_initialized, "Already initialized");
515  // Fill in signals that are necessarily unblocked for all threads in
516  // the VM. Currently, we unblock the following signals:
517  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
518  //                         by -Xrs (=ReduceSignalUsage));
519  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
520  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
521  // the dispositions or masks wrt these signals.
522  // Programs embedding the VM that want to use the above signals for their
523  // own purposes must, at this time, use the "-Xrs" option to prevent
524  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
525  // (See bug 4345157, and other related bugs).
526  // In reality, though, unblocking these signals is really a nop, since
527  // these signals are not blocked by default.
528  sigemptyset(&unblocked_sigs);
529  sigemptyset(&allowdebug_blocked_sigs);
530  sigaddset(&unblocked_sigs, SIGILL);
531  sigaddset(&unblocked_sigs, SIGSEGV);
532  sigaddset(&unblocked_sigs, SIGBUS);
533  sigaddset(&unblocked_sigs, SIGFPE);
534  sigaddset(&unblocked_sigs, SR_signum);
535
536  if (!ReduceSignalUsage) {
537   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
538      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
539      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
540   }
541   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
542      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
543      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
544   }
545   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
546      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
547      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
548   }
549  }
550  // Fill in signals that are blocked by all but the VM thread.
551  sigemptyset(&vm_sigs);
552  if (!ReduceSignalUsage)
553    sigaddset(&vm_sigs, BREAK_SIGNAL);
554  debug_only(signal_sets_initialized = true);
555
556}
557
558// These are signals that are unblocked while a thread is running Java.
559// (For some reason, they get blocked by default.)
560sigset_t* os::Linux::unblocked_signals() {
561  assert(signal_sets_initialized, "Not initialized");
562  return &unblocked_sigs;
563}
564
565// These are the signals that are blocked while a (non-VM) thread is
566// running Java. Only the VM thread handles these signals.
567sigset_t* os::Linux::vm_signals() {
568  assert(signal_sets_initialized, "Not initialized");
569  return &vm_sigs;
570}
571
572// These are signals that are blocked during cond_wait to allow debugger in
573sigset_t* os::Linux::allowdebug_blocked_signals() {
574  assert(signal_sets_initialized, "Not initialized");
575  return &allowdebug_blocked_sigs;
576}
577
578void os::Linux::hotspot_sigmask(Thread* thread) {
579
580  //Save caller's signal mask before setting VM signal mask
581  sigset_t caller_sigmask;
582  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
583
584  OSThread* osthread = thread->osthread();
585  osthread->set_caller_sigmask(caller_sigmask);
586
587  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
588
589  if (!ReduceSignalUsage) {
590    if (thread->is_VM_thread()) {
591      // Only the VM thread handles BREAK_SIGNAL ...
592      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
593    } else {
594      // ... all other threads block BREAK_SIGNAL
595      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
596    }
597  }
598}
599
600//////////////////////////////////////////////////////////////////////////////
601// detecting pthread library
602
603void os::Linux::libpthread_init() {
604  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
605  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
606  // generic name for earlier versions.
607  // Define macros here so we can build HotSpot on old systems.
608# ifndef _CS_GNU_LIBC_VERSION
609# define _CS_GNU_LIBC_VERSION 2
610# endif
611# ifndef _CS_GNU_LIBPTHREAD_VERSION
612# define _CS_GNU_LIBPTHREAD_VERSION 3
613# endif
614
615  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
616  if (n > 0) {
617     char *str = (char *)malloc(n);
618     confstr(_CS_GNU_LIBC_VERSION, str, n);
619     os::Linux::set_glibc_version(str);
620  } else {
621     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
622     static char _gnu_libc_version[32];
623     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
624              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
625     os::Linux::set_glibc_version(_gnu_libc_version);
626  }
627
628  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
629  if (n > 0) {
630     char *str = (char *)malloc(n);
631     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
632     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
633     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
634     // is the case. LinuxThreads has a hard limit on max number of threads.
635     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
636     // On the other hand, NPTL does not have such a limit, sysconf()
637     // will return -1 and errno is not changed. Check if it is really NPTL.
638     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
639         strstr(str, "NPTL") &&
640         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
641       free(str);
642       os::Linux::set_libpthread_version("linuxthreads");
643     } else {
644       os::Linux::set_libpthread_version(str);
645     }
646  } else {
647    // glibc before 2.3.2 only has LinuxThreads.
648    os::Linux::set_libpthread_version("linuxthreads");
649  }
650
651  if (strstr(libpthread_version(), "NPTL")) {
652     os::Linux::set_is_NPTL();
653  } else {
654     os::Linux::set_is_LinuxThreads();
655  }
656
657  // LinuxThreads have two flavors: floating-stack mode, which allows variable
658  // stack size; and fixed-stack mode. NPTL is always floating-stack.
659  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
660     os::Linux::set_is_floating_stack();
661  }
662}
663
664/////////////////////////////////////////////////////////////////////////////
665// thread stack
666
667// Force Linux kernel to expand current thread stack. If "bottom" is close
668// to the stack guard, caller should block all signals.
669//
670// MAP_GROWSDOWN:
671//   A special mmap() flag that is used to implement thread stacks. It tells
672//   kernel that the memory region should extend downwards when needed. This
673//   allows early versions of LinuxThreads to only mmap the first few pages
674//   when creating a new thread. Linux kernel will automatically expand thread
675//   stack as needed (on page faults).
676//
677//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
678//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
679//   region, it's hard to tell if the fault is due to a legitimate stack
680//   access or because of reading/writing non-exist memory (e.g. buffer
681//   overrun). As a rule, if the fault happens below current stack pointer,
682//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
683//   application (see Linux kernel fault.c).
684//
685//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
686//   stack overflow detection.
687//
688//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
689//   not use this flag. However, the stack of initial thread is not created
690//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
691//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
692//   and then attach the thread to JVM.
693//
694// To get around the problem and allow stack banging on Linux, we need to
695// manually expand thread stack after receiving the SIGSEGV.
696//
697// There are two ways to expand thread stack to address "bottom", we used
698// both of them in JVM before 1.5:
699//   1. adjust stack pointer first so that it is below "bottom", and then
700//      touch "bottom"
701//   2. mmap() the page in question
702//
703// Now alternate signal stack is gone, it's harder to use 2. For instance,
704// if current sp is already near the lower end of page 101, and we need to
705// call mmap() to map page 100, it is possible that part of the mmap() frame
706// will be placed in page 100. When page 100 is mapped, it is zero-filled.
707// That will destroy the mmap() frame and cause VM to crash.
708//
709// The following code works by adjusting sp first, then accessing the "bottom"
710// page to force a page fault. Linux kernel will then automatically expand the
711// stack mapping.
712//
713// _expand_stack_to() assumes its frame size is less than page size, which
714// should always be true if the function is not inlined.
715
716#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
717#define NOINLINE
718#else
719#define NOINLINE __attribute__ ((noinline))
720#endif
721
722static void _expand_stack_to(address bottom) NOINLINE;
723
724static void _expand_stack_to(address bottom) {
725  address sp;
726  size_t size;
727  volatile char *p;
728
729  // Adjust bottom to point to the largest address within the same page, it
730  // gives us a one-page buffer if alloca() allocates slightly more memory.
731  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
732  bottom += os::Linux::page_size() - 1;
733
734  // sp might be slightly above current stack pointer; if that's the case, we
735  // will alloca() a little more space than necessary, which is OK. Don't use
736  // os::current_stack_pointer(), as its result can be slightly below current
737  // stack pointer, causing us to not alloca enough to reach "bottom".
738  sp = (address)&sp;
739
740  if (sp > bottom) {
741    size = sp - bottom;
742    p = (volatile char *)alloca(size);
743    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
744    p[0] = '\0';
745  }
746}
747
748bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
749  assert(t!=NULL, "just checking");
750  assert(t->osthread()->expanding_stack(), "expand should be set");
751  assert(t->stack_base() != NULL, "stack_base was not initialized");
752
753  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
754    sigset_t mask_all, old_sigset;
755    sigfillset(&mask_all);
756    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
757    _expand_stack_to(addr);
758    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
759    return true;
760  }
761  return false;
762}
763
764//////////////////////////////////////////////////////////////////////////////
765// create new thread
766
767static address highest_vm_reserved_address();
768
769// check if it's safe to start a new thread
770static bool _thread_safety_check(Thread* thread) {
771  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
772    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
773    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
774    //   allocated (MAP_FIXED) from high address space. Every thread stack
775    //   occupies a fixed size slot (usually 2Mbytes, but user can change
776    //   it to other values if they rebuild LinuxThreads).
777    //
778    // Problem with MAP_FIXED is that mmap() can still succeed even part of
779    // the memory region has already been mmap'ed. That means if we have too
780    // many threads and/or very large heap, eventually thread stack will
781    // collide with heap.
782    //
783    // Here we try to prevent heap/stack collision by comparing current
784    // stack bottom with the highest address that has been mmap'ed by JVM
785    // plus a safety margin for memory maps created by native code.
786    //
787    // This feature can be disabled by setting ThreadSafetyMargin to 0
788    //
789    if (ThreadSafetyMargin > 0) {
790      address stack_bottom = os::current_stack_base() - os::current_stack_size();
791
792      // not safe if our stack extends below the safety margin
793      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
794    } else {
795      return true;
796    }
797  } else {
798    // Floating stack LinuxThreads or NPTL:
799    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
800    //   there's not enough space left, pthread_create() will fail. If we come
801    //   here, that means enough space has been reserved for stack.
802    return true;
803  }
804}
805
806// Thread start routine for all newly created threads
807static void *java_start(Thread *thread) {
808  // Try to randomize the cache line index of hot stack frames.
809  // This helps when threads of the same stack traces evict each other's
810  // cache lines. The threads can be either from the same JVM instance, or
811  // from different JVM instances. The benefit is especially true for
812  // processors with hyperthreading technology.
813  static int counter = 0;
814  int pid = os::current_process_id();
815  alloca(((pid ^ counter++) & 7) * 128);
816
817  ThreadLocalStorage::set_thread(thread);
818
819  OSThread* osthread = thread->osthread();
820  Monitor* sync = osthread->startThread_lock();
821
822  // non floating stack LinuxThreads needs extra check, see above
823  if (!_thread_safety_check(thread)) {
824    // notify parent thread
825    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
826    osthread->set_state(ZOMBIE);
827    sync->notify_all();
828    return NULL;
829  }
830
831  // thread_id is kernel thread id (similar to Solaris LWP id)
832  osthread->set_thread_id(os::Linux::gettid());
833
834  if (UseNUMA) {
835    int lgrp_id = os::numa_get_group_id();
836    if (lgrp_id != -1) {
837      thread->set_lgrp_id(lgrp_id);
838    }
839  }
840  // initialize signal mask for this thread
841  os::Linux::hotspot_sigmask(thread);
842
843  // initialize floating point control register
844  os::Linux::init_thread_fpu_state();
845
846  // handshaking with parent thread
847  {
848    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
849
850    // notify parent thread
851    osthread->set_state(INITIALIZED);
852    sync->notify_all();
853
854    // wait until os::start_thread()
855    while (osthread->get_state() == INITIALIZED) {
856      sync->wait(Mutex::_no_safepoint_check_flag);
857    }
858  }
859
860  // call one more level start routine
861  thread->run();
862
863  return 0;
864}
865
866bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
867  assert(thread->osthread() == NULL, "caller responsible");
868
869  // Allocate the OSThread object
870  OSThread* osthread = new OSThread(NULL, NULL);
871  if (osthread == NULL) {
872    return false;
873  }
874
875  // set the correct thread state
876  osthread->set_thread_type(thr_type);
877
878  // Initial state is ALLOCATED but not INITIALIZED
879  osthread->set_state(ALLOCATED);
880
881  thread->set_osthread(osthread);
882
883  // init thread attributes
884  pthread_attr_t attr;
885  pthread_attr_init(&attr);
886  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
887
888  // stack size
889  if (os::Linux::supports_variable_stack_size()) {
890    // calculate stack size if it's not specified by caller
891    if (stack_size == 0) {
892      stack_size = os::Linux::default_stack_size(thr_type);
893
894      switch (thr_type) {
895      case os::java_thread:
896        // Java threads use ThreadStackSize which default value can be
897        // changed with the flag -Xss
898        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
899        stack_size = JavaThread::stack_size_at_create();
900        break;
901      case os::compiler_thread:
902        if (CompilerThreadStackSize > 0) {
903          stack_size = (size_t)(CompilerThreadStackSize * K);
904          break;
905        } // else fall through:
906          // use VMThreadStackSize if CompilerThreadStackSize is not defined
907      case os::vm_thread:
908      case os::pgc_thread:
909      case os::cgc_thread:
910      case os::watcher_thread:
911        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
912        break;
913      }
914    }
915
916    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
917    pthread_attr_setstacksize(&attr, stack_size);
918  } else {
919    // let pthread_create() pick the default value.
920  }
921
922  // glibc guard page
923  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
924
925  ThreadState state;
926
927  {
928    // Serialize thread creation if we are running with fixed stack LinuxThreads
929    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
930    if (lock) {
931      os::Linux::createThread_lock()->lock_without_safepoint_check();
932    }
933
934    pthread_t tid;
935    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
936
937    pthread_attr_destroy(&attr);
938
939    if (ret != 0) {
940      if (PrintMiscellaneous && (Verbose || WizardMode)) {
941        perror("pthread_create()");
942      }
943      // Need to clean up stuff we've allocated so far
944      thread->set_osthread(NULL);
945      delete osthread;
946      if (lock) os::Linux::createThread_lock()->unlock();
947      return false;
948    }
949
950    // Store pthread info into the OSThread
951    osthread->set_pthread_id(tid);
952
953    // Wait until child thread is either initialized or aborted
954    {
955      Monitor* sync_with_child = osthread->startThread_lock();
956      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
957      while ((state = osthread->get_state()) == ALLOCATED) {
958        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
959      }
960    }
961
962    if (lock) {
963      os::Linux::createThread_lock()->unlock();
964    }
965  }
966
967  // Aborted due to thread limit being reached
968  if (state == ZOMBIE) {
969      thread->set_osthread(NULL);
970      delete osthread;
971      return false;
972  }
973
974  // The thread is returned suspended (in state INITIALIZED),
975  // and is started higher up in the call chain
976  assert(state == INITIALIZED, "race condition");
977  return true;
978}
979
980/////////////////////////////////////////////////////////////////////////////
981// attach existing thread
982
983// bootstrap the main thread
984bool os::create_main_thread(JavaThread* thread) {
985  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
986  return create_attached_thread(thread);
987}
988
989bool os::create_attached_thread(JavaThread* thread) {
990#ifdef ASSERT
991    thread->verify_not_published();
992#endif
993
994  // Allocate the OSThread object
995  OSThread* osthread = new OSThread(NULL, NULL);
996
997  if (osthread == NULL) {
998    return false;
999  }
1000
1001  // Store pthread info into the OSThread
1002  osthread->set_thread_id(os::Linux::gettid());
1003  osthread->set_pthread_id(::pthread_self());
1004
1005  // initialize floating point control register
1006  os::Linux::init_thread_fpu_state();
1007
1008  // Initial thread state is RUNNABLE
1009  osthread->set_state(RUNNABLE);
1010
1011  thread->set_osthread(osthread);
1012
1013  if (UseNUMA) {
1014    int lgrp_id = os::numa_get_group_id();
1015    if (lgrp_id != -1) {
1016      thread->set_lgrp_id(lgrp_id);
1017    }
1018  }
1019
1020  if (os::Linux::is_initial_thread()) {
1021    // If current thread is initial thread, its stack is mapped on demand,
1022    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023    // the entire stack region to avoid SEGV in stack banging.
1024    // It is also useful to get around the heap-stack-gap problem on SuSE
1025    // kernel (see 4821821 for details). We first expand stack to the top
1026    // of yellow zone, then enable stack yellow zone (order is significant,
1027    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028    // is no gap between the last two virtual memory regions.
1029
1030    JavaThread *jt = (JavaThread *)thread;
1031    address addr = jt->stack_yellow_zone_base();
1032    assert(addr != NULL, "initialization problem?");
1033    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034
1035    osthread->set_expanding_stack();
1036    os::Linux::manually_expand_stack(jt, addr);
1037    osthread->clear_expanding_stack();
1038  }
1039
1040  // initialize signal mask for this thread
1041  // and save the caller's signal mask
1042  os::Linux::hotspot_sigmask(thread);
1043
1044  return true;
1045}
1046
1047void os::pd_start_thread(Thread* thread) {
1048  OSThread * osthread = thread->osthread();
1049  assert(osthread->get_state() != INITIALIZED, "just checking");
1050  Monitor* sync_with_child = osthread->startThread_lock();
1051  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052  sync_with_child->notify();
1053}
1054
1055// Free Linux resources related to the OSThread
1056void os::free_thread(OSThread* osthread) {
1057  assert(osthread != NULL, "osthread not set");
1058
1059  if (Thread::current()->osthread() == osthread) {
1060    // Restore caller's signal mask
1061    sigset_t sigmask = osthread->caller_sigmask();
1062    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063   }
1064
1065  delete osthread;
1066}
1067
1068//////////////////////////////////////////////////////////////////////////////
1069// thread local storage
1070
1071int os::allocate_thread_local_storage() {
1072  pthread_key_t key;
1073  int rslt = pthread_key_create(&key, NULL);
1074  assert(rslt == 0, "cannot allocate thread local storage");
1075  return (int)key;
1076}
1077
1078// Note: This is currently not used by VM, as we don't destroy TLS key
1079// on VM exit.
1080void os::free_thread_local_storage(int index) {
1081  int rslt = pthread_key_delete((pthread_key_t)index);
1082  assert(rslt == 0, "invalid index");
1083}
1084
1085void os::thread_local_storage_at_put(int index, void* value) {
1086  int rslt = pthread_setspecific((pthread_key_t)index, value);
1087  assert(rslt == 0, "pthread_setspecific failed");
1088}
1089
1090extern "C" Thread* get_thread() {
1091  return ThreadLocalStorage::thread();
1092}
1093
1094//////////////////////////////////////////////////////////////////////////////
1095// initial thread
1096
1097// Check if current thread is the initial thread, similar to Solaris thr_main.
1098bool os::Linux::is_initial_thread(void) {
1099  char dummy;
1100  // If called before init complete, thread stack bottom will be null.
1101  // Can be called if fatal error occurs before initialization.
1102  if (initial_thread_stack_bottom() == NULL) return false;
1103  assert(initial_thread_stack_bottom() != NULL &&
1104         initial_thread_stack_size()   != 0,
1105         "os::init did not locate initial thread's stack region");
1106  if ((address)&dummy >= initial_thread_stack_bottom() &&
1107      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108       return true;
1109  else return false;
1110}
1111
1112// Find the virtual memory area that contains addr
1113static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114  FILE *fp = fopen("/proc/self/maps", "r");
1115  if (fp) {
1116    address low, high;
1117    while (!feof(fp)) {
1118      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119        if (low <= addr && addr < high) {
1120           if (vma_low)  *vma_low  = low;
1121           if (vma_high) *vma_high = high;
1122           fclose (fp);
1123           return true;
1124        }
1125      }
1126      for (;;) {
1127        int ch = fgetc(fp);
1128        if (ch == EOF || ch == (int)'\n') break;
1129      }
1130    }
1131    fclose(fp);
1132  }
1133  return false;
1134}
1135
1136// Locate initial thread stack. This special handling of initial thread stack
1137// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138// bogus value for initial thread.
1139void os::Linux::capture_initial_stack(size_t max_size) {
1140  // stack size is the easy part, get it from RLIMIT_STACK
1141  size_t stack_size;
1142  struct rlimit rlim;
1143  getrlimit(RLIMIT_STACK, &rlim);
1144  stack_size = rlim.rlim_cur;
1145
1146  // 6308388: a bug in ld.so will relocate its own .data section to the
1147  //   lower end of primordial stack; reduce ulimit -s value a little bit
1148  //   so we won't install guard page on ld.so's data section.
1149  stack_size -= 2 * page_size();
1150
1151  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152  //   7.1, in both cases we will get 2G in return value.
1153  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156  //   in case other parts in glibc still assumes 2M max stack size.
1157  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158#ifndef IA64
1159  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1160#else
1161  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1162  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1163#endif
1164
1165  // Try to figure out where the stack base (top) is. This is harder.
1166  //
1167  // When an application is started, glibc saves the initial stack pointer in
1168  // a global variable "__libc_stack_end", which is then used by system
1169  // libraries. __libc_stack_end should be pretty close to stack top. The
1170  // variable is available since the very early days. However, because it is
1171  // a private interface, it could disappear in the future.
1172  //
1173  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1174  // to __libc_stack_end, it is very close to stack top, but isn't the real
1175  // stack top. Note that /proc may not exist if VM is running as a chroot
1176  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1177  // /proc/<pid>/stat could change in the future (though unlikely).
1178  //
1179  // We try __libc_stack_end first. If that doesn't work, look for
1180  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1181  // as a hint, which should work well in most cases.
1182
1183  uintptr_t stack_start;
1184
1185  // try __libc_stack_end first
1186  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1187  if (p && *p) {
1188    stack_start = *p;
1189  } else {
1190    // see if we can get the start_stack field from /proc/self/stat
1191    FILE *fp;
1192    int pid;
1193    char state;
1194    int ppid;
1195    int pgrp;
1196    int session;
1197    int nr;
1198    int tpgrp;
1199    unsigned long flags;
1200    unsigned long minflt;
1201    unsigned long cminflt;
1202    unsigned long majflt;
1203    unsigned long cmajflt;
1204    unsigned long utime;
1205    unsigned long stime;
1206    long cutime;
1207    long cstime;
1208    long prio;
1209    long nice;
1210    long junk;
1211    long it_real;
1212    uintptr_t start;
1213    uintptr_t vsize;
1214    intptr_t rss;
1215    uintptr_t rsslim;
1216    uintptr_t scodes;
1217    uintptr_t ecode;
1218    int i;
1219
1220    // Figure what the primordial thread stack base is. Code is inspired
1221    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1222    // followed by command name surrounded by parentheses, state, etc.
1223    char stat[2048];
1224    int statlen;
1225
1226    fp = fopen("/proc/self/stat", "r");
1227    if (fp) {
1228      statlen = fread(stat, 1, 2047, fp);
1229      stat[statlen] = '\0';
1230      fclose(fp);
1231
1232      // Skip pid and the command string. Note that we could be dealing with
1233      // weird command names, e.g. user could decide to rename java launcher
1234      // to "java 1.4.2 :)", then the stat file would look like
1235      //                1234 (java 1.4.2 :)) R ... ...
1236      // We don't really need to know the command string, just find the last
1237      // occurrence of ")" and then start parsing from there. See bug 4726580.
1238      char * s = strrchr(stat, ')');
1239
1240      i = 0;
1241      if (s) {
1242        // Skip blank chars
1243        do s++; while (isspace(*s));
1244
1245#define _UFM UINTX_FORMAT
1246#define _DFM INTX_FORMAT
1247
1248        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1249        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1250        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1251             &state,          /* 3  %c  */
1252             &ppid,           /* 4  %d  */
1253             &pgrp,           /* 5  %d  */
1254             &session,        /* 6  %d  */
1255             &nr,             /* 7  %d  */
1256             &tpgrp,          /* 8  %d  */
1257             &flags,          /* 9  %lu  */
1258             &minflt,         /* 10 %lu  */
1259             &cminflt,        /* 11 %lu  */
1260             &majflt,         /* 12 %lu  */
1261             &cmajflt,        /* 13 %lu  */
1262             &utime,          /* 14 %lu  */
1263             &stime,          /* 15 %lu  */
1264             &cutime,         /* 16 %ld  */
1265             &cstime,         /* 17 %ld  */
1266             &prio,           /* 18 %ld  */
1267             &nice,           /* 19 %ld  */
1268             &junk,           /* 20 %ld  */
1269             &it_real,        /* 21 %ld  */
1270             &start,          /* 22 UINTX_FORMAT */
1271             &vsize,          /* 23 UINTX_FORMAT */
1272             &rss,            /* 24 INTX_FORMAT  */
1273             &rsslim,         /* 25 UINTX_FORMAT */
1274             &scodes,         /* 26 UINTX_FORMAT */
1275             &ecode,          /* 27 UINTX_FORMAT */
1276             &stack_start);   /* 28 UINTX_FORMAT */
1277      }
1278
1279#undef _UFM
1280#undef _DFM
1281
1282      if (i != 28 - 2) {
1283         assert(false, "Bad conversion from /proc/self/stat");
1284         // product mode - assume we are the initial thread, good luck in the
1285         // embedded case.
1286         warning("Can't detect initial thread stack location - bad conversion");
1287         stack_start = (uintptr_t) &rlim;
1288      }
1289    } else {
1290      // For some reason we can't open /proc/self/stat (for example, running on
1291      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1292      // most cases, so don't abort:
1293      warning("Can't detect initial thread stack location - no /proc/self/stat");
1294      stack_start = (uintptr_t) &rlim;
1295    }
1296  }
1297
1298  // Now we have a pointer (stack_start) very close to the stack top, the
1299  // next thing to do is to figure out the exact location of stack top. We
1300  // can find out the virtual memory area that contains stack_start by
1301  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1302  // and its upper limit is the real stack top. (again, this would fail if
1303  // running inside chroot, because /proc may not exist.)
1304
1305  uintptr_t stack_top;
1306  address low, high;
1307  if (find_vma((address)stack_start, &low, &high)) {
1308    // success, "high" is the true stack top. (ignore "low", because initial
1309    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1310    stack_top = (uintptr_t)high;
1311  } else {
1312    // failed, likely because /proc/self/maps does not exist
1313    warning("Can't detect initial thread stack location - find_vma failed");
1314    // best effort: stack_start is normally within a few pages below the real
1315    // stack top, use it as stack top, and reduce stack size so we won't put
1316    // guard page outside stack.
1317    stack_top = stack_start;
1318    stack_size -= 16 * page_size();
1319  }
1320
1321  // stack_top could be partially down the page so align it
1322  stack_top = align_size_up(stack_top, page_size());
1323
1324  if (max_size && stack_size > max_size) {
1325     _initial_thread_stack_size = max_size;
1326  } else {
1327     _initial_thread_stack_size = stack_size;
1328  }
1329
1330  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1331  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1332}
1333
1334////////////////////////////////////////////////////////////////////////////////
1335// time support
1336
1337// Time since start-up in seconds to a fine granularity.
1338// Used by VMSelfDestructTimer and the MemProfiler.
1339double os::elapsedTime() {
1340
1341  return (double)(os::elapsed_counter()) * 0.000001;
1342}
1343
1344jlong os::elapsed_counter() {
1345  timeval time;
1346  int status = gettimeofday(&time, NULL);
1347  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1348}
1349
1350jlong os::elapsed_frequency() {
1351  return (1000 * 1000);
1352}
1353
1354// For now, we say that linux does not support vtime.  I have no idea
1355// whether it can actually be made to (DLD, 9/13/05).
1356
1357bool os::supports_vtime() { return false; }
1358bool os::enable_vtime()   { return false; }
1359bool os::vtime_enabled()  { return false; }
1360double os::elapsedVTime() {
1361  // better than nothing, but not much
1362  return elapsedTime();
1363}
1364
1365jlong os::javaTimeMillis() {
1366  timeval time;
1367  int status = gettimeofday(&time, NULL);
1368  assert(status != -1, "linux error");
1369  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1370}
1371
1372#ifndef CLOCK_MONOTONIC
1373#define CLOCK_MONOTONIC (1)
1374#endif
1375
1376void os::Linux::clock_init() {
1377  // we do dlopen's in this particular order due to bug in linux
1378  // dynamical loader (see 6348968) leading to crash on exit
1379  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1380  if (handle == NULL) {
1381    handle = dlopen("librt.so", RTLD_LAZY);
1382  }
1383
1384  if (handle) {
1385    int (*clock_getres_func)(clockid_t, struct timespec*) =
1386           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1387    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1388           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1389    if (clock_getres_func && clock_gettime_func) {
1390      // See if monotonic clock is supported by the kernel. Note that some
1391      // early implementations simply return kernel jiffies (updated every
1392      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1393      // for nano time (though the monotonic property is still nice to have).
1394      // It's fixed in newer kernels, however clock_getres() still returns
1395      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1396      // resolution for now. Hopefully as people move to new kernels, this
1397      // won't be a problem.
1398      struct timespec res;
1399      struct timespec tp;
1400      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1401          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1402        // yes, monotonic clock is supported
1403        _clock_gettime = clock_gettime_func;
1404      } else {
1405        // close librt if there is no monotonic clock
1406        dlclose(handle);
1407      }
1408    }
1409  }
1410}
1411
1412#ifndef SYS_clock_getres
1413
1414#if defined(IA32) || defined(AMD64)
1415#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1416#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1417#else
1418#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1419#define sys_clock_getres(x,y)  -1
1420#endif
1421
1422#else
1423#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424#endif
1425
1426void os::Linux::fast_thread_clock_init() {
1427  if (!UseLinuxPosixThreadCPUClocks) {
1428    return;
1429  }
1430  clockid_t clockid;
1431  struct timespec tp;
1432  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1433      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1434
1435  // Switch to using fast clocks for thread cpu time if
1436  // the sys_clock_getres() returns 0 error code.
1437  // Note, that some kernels may support the current thread
1438  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1439  // returned by the pthread_getcpuclockid().
1440  // If the fast Posix clocks are supported then the sys_clock_getres()
1441  // must return at least tp.tv_sec == 0 which means a resolution
1442  // better than 1 sec. This is extra check for reliability.
1443
1444  if(pthread_getcpuclockid_func &&
1445     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1446     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1447
1448    _supports_fast_thread_cpu_time = true;
1449    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1450  }
1451}
1452
1453jlong os::javaTimeNanos() {
1454  if (Linux::supports_monotonic_clock()) {
1455    struct timespec tp;
1456    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1457    assert(status == 0, "gettime error");
1458    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1459    return result;
1460  } else {
1461    timeval time;
1462    int status = gettimeofday(&time, NULL);
1463    assert(status != -1, "linux error");
1464    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1465    return 1000 * usecs;
1466  }
1467}
1468
1469void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1470  if (Linux::supports_monotonic_clock()) {
1471    info_ptr->max_value = ALL_64_BITS;
1472
1473    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1474    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1475    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1476  } else {
1477    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1478    info_ptr->max_value = ALL_64_BITS;
1479
1480    // gettimeofday is a real time clock so it skips
1481    info_ptr->may_skip_backward = true;
1482    info_ptr->may_skip_forward = true;
1483  }
1484
1485  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1486}
1487
1488// Return the real, user, and system times in seconds from an
1489// arbitrary fixed point in the past.
1490bool os::getTimesSecs(double* process_real_time,
1491                      double* process_user_time,
1492                      double* process_system_time) {
1493  struct tms ticks;
1494  clock_t real_ticks = times(&ticks);
1495
1496  if (real_ticks == (clock_t) (-1)) {
1497    return false;
1498  } else {
1499    double ticks_per_second = (double) clock_tics_per_sec;
1500    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1501    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1502    *process_real_time = ((double) real_ticks) / ticks_per_second;
1503
1504    return true;
1505  }
1506}
1507
1508
1509char * os::local_time_string(char *buf, size_t buflen) {
1510  struct tm t;
1511  time_t long_time;
1512  time(&long_time);
1513  localtime_r(&long_time, &t);
1514  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1515               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1516               t.tm_hour, t.tm_min, t.tm_sec);
1517  return buf;
1518}
1519
1520struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1521  return localtime_r(clock, res);
1522}
1523
1524////////////////////////////////////////////////////////////////////////////////
1525// runtime exit support
1526
1527// Note: os::shutdown() might be called very early during initialization, or
1528// called from signal handler. Before adding something to os::shutdown(), make
1529// sure it is async-safe and can handle partially initialized VM.
1530void os::shutdown() {
1531
1532  // allow PerfMemory to attempt cleanup of any persistent resources
1533  perfMemory_exit();
1534
1535  // needs to remove object in file system
1536  AttachListener::abort();
1537
1538  // flush buffered output, finish log files
1539  ostream_abort();
1540
1541  // Check for abort hook
1542  abort_hook_t abort_hook = Arguments::abort_hook();
1543  if (abort_hook != NULL) {
1544    abort_hook();
1545  }
1546
1547}
1548
1549// Note: os::abort() might be called very early during initialization, or
1550// called from signal handler. Before adding something to os::abort(), make
1551// sure it is async-safe and can handle partially initialized VM.
1552void os::abort(bool dump_core) {
1553  os::shutdown();
1554  if (dump_core) {
1555#ifndef PRODUCT
1556    fdStream out(defaultStream::output_fd());
1557    out.print_raw("Current thread is ");
1558    char buf[16];
1559    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1560    out.print_raw_cr(buf);
1561    out.print_raw_cr("Dumping core ...");
1562#endif
1563    ::abort(); // dump core
1564  }
1565
1566  ::exit(1);
1567}
1568
1569// Die immediately, no exit hook, no abort hook, no cleanup.
1570void os::die() {
1571  // _exit() on LinuxThreads only kills current thread
1572  ::abort();
1573}
1574
1575// unused on linux for now.
1576void os::set_error_file(const char *logfile) {}
1577
1578
1579// This method is a copy of JDK's sysGetLastErrorString
1580// from src/solaris/hpi/src/system_md.c
1581
1582size_t os::lasterror(char *buf, size_t len) {
1583
1584  if (errno == 0)  return 0;
1585
1586  const char *s = ::strerror(errno);
1587  size_t n = ::strlen(s);
1588  if (n >= len) {
1589    n = len - 1;
1590  }
1591  ::strncpy(buf, s, n);
1592  buf[n] = '\0';
1593  return n;
1594}
1595
1596intx os::current_thread_id() { return (intx)pthread_self(); }
1597int os::current_process_id() {
1598
1599  // Under the old linux thread library, linux gives each thread
1600  // its own process id. Because of this each thread will return
1601  // a different pid if this method were to return the result
1602  // of getpid(2). Linux provides no api that returns the pid
1603  // of the launcher thread for the vm. This implementation
1604  // returns a unique pid, the pid of the launcher thread
1605  // that starts the vm 'process'.
1606
1607  // Under the NPTL, getpid() returns the same pid as the
1608  // launcher thread rather than a unique pid per thread.
1609  // Use gettid() if you want the old pre NPTL behaviour.
1610
1611  // if you are looking for the result of a call to getpid() that
1612  // returns a unique pid for the calling thread, then look at the
1613  // OSThread::thread_id() method in osThread_linux.hpp file
1614
1615  return (int)(_initial_pid ? _initial_pid : getpid());
1616}
1617
1618// DLL functions
1619
1620const char* os::dll_file_extension() { return ".so"; }
1621
1622// This must be hard coded because it's the system's temporary
1623// directory not the java application's temp directory, ala java.io.tmpdir.
1624const char* os::get_temp_directory() { return "/tmp"; }
1625
1626static bool file_exists(const char* filename) {
1627  struct stat statbuf;
1628  if (filename == NULL || strlen(filename) == 0) {
1629    return false;
1630  }
1631  return os::stat(filename, &statbuf) == 0;
1632}
1633
1634void os::dll_build_name(char* buffer, size_t buflen,
1635                        const char* pname, const char* fname) {
1636  // Copied from libhpi
1637  const size_t pnamelen = pname ? strlen(pname) : 0;
1638
1639  // Quietly truncate on buffer overflow.  Should be an error.
1640  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1641      *buffer = '\0';
1642      return;
1643  }
1644
1645  if (pnamelen == 0) {
1646    snprintf(buffer, buflen, "lib%s.so", fname);
1647  } else if (strchr(pname, *os::path_separator()) != NULL) {
1648    int n;
1649    char** pelements = split_path(pname, &n);
1650    for (int i = 0 ; i < n ; i++) {
1651      // Really shouldn't be NULL, but check can't hurt
1652      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1653        continue; // skip the empty path values
1654      }
1655      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1656      if (file_exists(buffer)) {
1657        break;
1658      }
1659    }
1660    // release the storage
1661    for (int i = 0 ; i < n ; i++) {
1662      if (pelements[i] != NULL) {
1663        FREE_C_HEAP_ARRAY(char, pelements[i]);
1664      }
1665    }
1666    if (pelements != NULL) {
1667      FREE_C_HEAP_ARRAY(char*, pelements);
1668    }
1669  } else {
1670    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1671  }
1672}
1673
1674const char* os::get_current_directory(char *buf, int buflen) {
1675  return getcwd(buf, buflen);
1676}
1677
1678// check if addr is inside libjvm[_g].so
1679bool os::address_is_in_vm(address addr) {
1680  static address libjvm_base_addr;
1681  Dl_info dlinfo;
1682
1683  if (libjvm_base_addr == NULL) {
1684    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1685    libjvm_base_addr = (address)dlinfo.dli_fbase;
1686    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1687  }
1688
1689  if (dladdr((void *)addr, &dlinfo)) {
1690    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1691  }
1692
1693  return false;
1694}
1695
1696bool os::dll_address_to_function_name(address addr, char *buf,
1697                                      int buflen, int *offset) {
1698  Dl_info dlinfo;
1699
1700  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1701    if (buf != NULL) {
1702      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1703        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1704      }
1705    }
1706    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1707    return true;
1708  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1709    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1710       dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1711       return true;
1712    }
1713  }
1714
1715  if (buf != NULL) buf[0] = '\0';
1716  if (offset != NULL) *offset = -1;
1717  return false;
1718}
1719
1720struct _address_to_library_name {
1721  address addr;          // input : memory address
1722  size_t  buflen;        //         size of fname
1723  char*   fname;         // output: library name
1724  address base;          //         library base addr
1725};
1726
1727static int address_to_library_name_callback(struct dl_phdr_info *info,
1728                                            size_t size, void *data) {
1729  int i;
1730  bool found = false;
1731  address libbase = NULL;
1732  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1733
1734  // iterate through all loadable segments
1735  for (i = 0; i < info->dlpi_phnum; i++) {
1736    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1737    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1738      // base address of a library is the lowest address of its loaded
1739      // segments.
1740      if (libbase == NULL || libbase > segbase) {
1741        libbase = segbase;
1742      }
1743      // see if 'addr' is within current segment
1744      if (segbase <= d->addr &&
1745          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1746        found = true;
1747      }
1748    }
1749  }
1750
1751  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1752  // so dll_address_to_library_name() can fall through to use dladdr() which
1753  // can figure out executable name from argv[0].
1754  if (found && info->dlpi_name && info->dlpi_name[0]) {
1755    d->base = libbase;
1756    if (d->fname) {
1757      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1758    }
1759    return 1;
1760  }
1761  return 0;
1762}
1763
1764bool os::dll_address_to_library_name(address addr, char* buf,
1765                                     int buflen, int* offset) {
1766  Dl_info dlinfo;
1767  struct _address_to_library_name data;
1768
1769  // There is a bug in old glibc dladdr() implementation that it could resolve
1770  // to wrong library name if the .so file has a base address != NULL. Here
1771  // we iterate through the program headers of all loaded libraries to find
1772  // out which library 'addr' really belongs to. This workaround can be
1773  // removed once the minimum requirement for glibc is moved to 2.3.x.
1774  data.addr = addr;
1775  data.fname = buf;
1776  data.buflen = buflen;
1777  data.base = NULL;
1778  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1779
1780  if (rslt) {
1781     // buf already contains library name
1782     if (offset) *offset = addr - data.base;
1783     return true;
1784  } else if (dladdr((void*)addr, &dlinfo)){
1785     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1786     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1787     return true;
1788  } else {
1789     if (buf) buf[0] = '\0';
1790     if (offset) *offset = -1;
1791     return false;
1792  }
1793}
1794
1795  // Loads .dll/.so and
1796  // in case of error it checks if .dll/.so was built for the
1797  // same architecture as Hotspot is running on
1798
1799void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1800{
1801  void * result= ::dlopen(filename, RTLD_LAZY);
1802  if (result != NULL) {
1803    // Successful loading
1804    return result;
1805  }
1806
1807  Elf32_Ehdr elf_head;
1808
1809  // Read system error message into ebuf
1810  // It may or may not be overwritten below
1811  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1812  ebuf[ebuflen-1]='\0';
1813  int diag_msg_max_length=ebuflen-strlen(ebuf);
1814  char* diag_msg_buf=ebuf+strlen(ebuf);
1815
1816  if (diag_msg_max_length==0) {
1817    // No more space in ebuf for additional diagnostics message
1818    return NULL;
1819  }
1820
1821
1822  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1823
1824  if (file_descriptor < 0) {
1825    // Can't open library, report dlerror() message
1826    return NULL;
1827  }
1828
1829  bool failed_to_read_elf_head=
1830    (sizeof(elf_head)!=
1831        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1832
1833  ::close(file_descriptor);
1834  if (failed_to_read_elf_head) {
1835    // file i/o error - report dlerror() msg
1836    return NULL;
1837  }
1838
1839  typedef struct {
1840    Elf32_Half  code;         // Actual value as defined in elf.h
1841    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1842    char        elf_class;    // 32 or 64 bit
1843    char        endianess;    // MSB or LSB
1844    char*       name;         // String representation
1845  } arch_t;
1846
1847  #ifndef EM_486
1848  #define EM_486          6               /* Intel 80486 */
1849  #endif
1850
1851  static const arch_t arch_array[]={
1852    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1853    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1854    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1855    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1856    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1857    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1858    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1859    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1860    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1861    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1862    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1863    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1864    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1865    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1866    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1867    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1868  };
1869
1870  #if  (defined IA32)
1871    static  Elf32_Half running_arch_code=EM_386;
1872  #elif   (defined AMD64)
1873    static  Elf32_Half running_arch_code=EM_X86_64;
1874  #elif  (defined IA64)
1875    static  Elf32_Half running_arch_code=EM_IA_64;
1876  #elif  (defined __sparc) && (defined _LP64)
1877    static  Elf32_Half running_arch_code=EM_SPARCV9;
1878  #elif  (defined __sparc) && (!defined _LP64)
1879    static  Elf32_Half running_arch_code=EM_SPARC;
1880  #elif  (defined __powerpc64__)
1881    static  Elf32_Half running_arch_code=EM_PPC64;
1882  #elif  (defined __powerpc__)
1883    static  Elf32_Half running_arch_code=EM_PPC;
1884  #elif  (defined ARM)
1885    static  Elf32_Half running_arch_code=EM_ARM;
1886  #elif  (defined S390)
1887    static  Elf32_Half running_arch_code=EM_S390;
1888  #elif  (defined ALPHA)
1889    static  Elf32_Half running_arch_code=EM_ALPHA;
1890  #elif  (defined MIPSEL)
1891    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1892  #elif  (defined PARISC)
1893    static  Elf32_Half running_arch_code=EM_PARISC;
1894  #elif  (defined MIPS)
1895    static  Elf32_Half running_arch_code=EM_MIPS;
1896  #elif  (defined M68K)
1897    static  Elf32_Half running_arch_code=EM_68K;
1898  #else
1899    #error Method os::dll_load requires that one of following is defined:\
1900         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1901  #endif
1902
1903  // Identify compatability class for VM's architecture and library's architecture
1904  // Obtain string descriptions for architectures
1905
1906  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1907  int running_arch_index=-1;
1908
1909  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1910    if (running_arch_code == arch_array[i].code) {
1911      running_arch_index    = i;
1912    }
1913    if (lib_arch.code == arch_array[i].code) {
1914      lib_arch.compat_class = arch_array[i].compat_class;
1915      lib_arch.name         = arch_array[i].name;
1916    }
1917  }
1918
1919  assert(running_arch_index != -1,
1920    "Didn't find running architecture code (running_arch_code) in arch_array");
1921  if (running_arch_index == -1) {
1922    // Even though running architecture detection failed
1923    // we may still continue with reporting dlerror() message
1924    return NULL;
1925  }
1926
1927  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1928    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1929    return NULL;
1930  }
1931
1932#ifndef S390
1933  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1934    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1935    return NULL;
1936  }
1937#endif // !S390
1938
1939  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1940    if ( lib_arch.name!=NULL ) {
1941      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1942        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1943        lib_arch.name, arch_array[running_arch_index].name);
1944    } else {
1945      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1947        lib_arch.code,
1948        arch_array[running_arch_index].name);
1949    }
1950  }
1951
1952  return NULL;
1953}
1954
1955/*
1956 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1957 * chances are you might want to run the generated bits against glibc-2.0
1958 * libdl.so, so always use locking for any version of glibc.
1959 */
1960void* os::dll_lookup(void* handle, const char* name) {
1961  pthread_mutex_lock(&dl_mutex);
1962  void* res = dlsym(handle, name);
1963  pthread_mutex_unlock(&dl_mutex);
1964  return res;
1965}
1966
1967
1968static bool _print_ascii_file(const char* filename, outputStream* st) {
1969  int fd = ::open(filename, O_RDONLY);
1970  if (fd == -1) {
1971     return false;
1972  }
1973
1974  char buf[32];
1975  int bytes;
1976  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1977    st->print_raw(buf, bytes);
1978  }
1979
1980  ::close(fd);
1981
1982  return true;
1983}
1984
1985void os::print_dll_info(outputStream *st) {
1986   st->print_cr("Dynamic libraries:");
1987
1988   char fname[32];
1989   pid_t pid = os::Linux::gettid();
1990
1991   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1992
1993   if (!_print_ascii_file(fname, st)) {
1994     st->print("Can not get library information for pid = %d\n", pid);
1995   }
1996}
1997
1998
1999void os::print_os_info(outputStream* st) {
2000  st->print("OS:");
2001
2002  // Try to identify popular distros.
2003  // Most Linux distributions have /etc/XXX-release file, which contains
2004  // the OS version string. Some have more than one /etc/XXX-release file
2005  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2006  // so the order is important.
2007  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2008      !_print_ascii_file("/etc/sun-release", st) &&
2009      !_print_ascii_file("/etc/redhat-release", st) &&
2010      !_print_ascii_file("/etc/SuSE-release", st) &&
2011      !_print_ascii_file("/etc/turbolinux-release", st) &&
2012      !_print_ascii_file("/etc/gentoo-release", st) &&
2013      !_print_ascii_file("/etc/debian_version", st) &&
2014      !_print_ascii_file("/etc/ltib-release", st) &&
2015      !_print_ascii_file("/etc/angstrom-version", st)) {
2016      st->print("Linux");
2017  }
2018  st->cr();
2019
2020  // kernel
2021  st->print("uname:");
2022  struct utsname name;
2023  uname(&name);
2024  st->print(name.sysname); st->print(" ");
2025  st->print(name.release); st->print(" ");
2026  st->print(name.version); st->print(" ");
2027  st->print(name.machine);
2028  st->cr();
2029
2030  // Print warning if unsafe chroot environment detected
2031  if (unsafe_chroot_detected) {
2032    st->print("WARNING!! ");
2033    st->print_cr(unstable_chroot_error);
2034  }
2035
2036  // libc, pthread
2037  st->print("libc:");
2038  st->print(os::Linux::glibc_version()); st->print(" ");
2039  st->print(os::Linux::libpthread_version()); st->print(" ");
2040  if (os::Linux::is_LinuxThreads()) {
2041     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2042  }
2043  st->cr();
2044
2045  // rlimit
2046  st->print("rlimit:");
2047  struct rlimit rlim;
2048
2049  st->print(" STACK ");
2050  getrlimit(RLIMIT_STACK, &rlim);
2051  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2052  else st->print("%uk", rlim.rlim_cur >> 10);
2053
2054  st->print(", CORE ");
2055  getrlimit(RLIMIT_CORE, &rlim);
2056  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2057  else st->print("%uk", rlim.rlim_cur >> 10);
2058
2059  st->print(", NPROC ");
2060  getrlimit(RLIMIT_NPROC, &rlim);
2061  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2062  else st->print("%d", rlim.rlim_cur);
2063
2064  st->print(", NOFILE ");
2065  getrlimit(RLIMIT_NOFILE, &rlim);
2066  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2067  else st->print("%d", rlim.rlim_cur);
2068
2069  st->print(", AS ");
2070  getrlimit(RLIMIT_AS, &rlim);
2071  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2072  else st->print("%uk", rlim.rlim_cur >> 10);
2073  st->cr();
2074
2075  // load average
2076  st->print("load average:");
2077  double loadavg[3];
2078  os::loadavg(loadavg, 3);
2079  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2080  st->cr();
2081
2082  // meminfo
2083  st->print("\n/proc/meminfo:\n");
2084  _print_ascii_file("/proc/meminfo", st);
2085  st->cr();
2086}
2087
2088void os::print_memory_info(outputStream* st) {
2089
2090  st->print("Memory:");
2091  st->print(" %dk page", os::vm_page_size()>>10);
2092
2093  // values in struct sysinfo are "unsigned long"
2094  struct sysinfo si;
2095  sysinfo(&si);
2096
2097  st->print(", physical " UINT64_FORMAT "k",
2098            os::physical_memory() >> 10);
2099  st->print("(" UINT64_FORMAT "k free)",
2100            os::available_memory() >> 10);
2101  st->print(", swap " UINT64_FORMAT "k",
2102            ((jlong)si.totalswap * si.mem_unit) >> 10);
2103  st->print("(" UINT64_FORMAT "k free)",
2104            ((jlong)si.freeswap * si.mem_unit) >> 10);
2105  st->cr();
2106}
2107
2108// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2109// but they're the same for all the linux arch that we support
2110// and they're the same for solaris but there's no common place to put this.
2111const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2112                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2113                          "ILL_COPROC", "ILL_BADSTK" };
2114
2115const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2116                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2117                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2118
2119const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2120
2121const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2122
2123void os::print_siginfo(outputStream* st, void* siginfo) {
2124  st->print("siginfo:");
2125
2126  const int buflen = 100;
2127  char buf[buflen];
2128  siginfo_t *si = (siginfo_t*)siginfo;
2129  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2130  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2131    st->print("si_errno=%s", buf);
2132  } else {
2133    st->print("si_errno=%d", si->si_errno);
2134  }
2135  const int c = si->si_code;
2136  assert(c > 0, "unexpected si_code");
2137  switch (si->si_signo) {
2138  case SIGILL:
2139    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2140    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2141    break;
2142  case SIGFPE:
2143    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2144    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2145    break;
2146  case SIGSEGV:
2147    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2148    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2149    break;
2150  case SIGBUS:
2151    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2152    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2153    break;
2154  default:
2155    st->print(", si_code=%d", si->si_code);
2156    // no si_addr
2157  }
2158
2159  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2160      UseSharedSpaces) {
2161    FileMapInfo* mapinfo = FileMapInfo::current_info();
2162    if (mapinfo->is_in_shared_space(si->si_addr)) {
2163      st->print("\n\nError accessing class data sharing archive."   \
2164                " Mapped file inaccessible during execution, "      \
2165                " possible disk/network problem.");
2166    }
2167  }
2168  st->cr();
2169}
2170
2171
2172static void print_signal_handler(outputStream* st, int sig,
2173                                 char* buf, size_t buflen);
2174
2175void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2176  st->print_cr("Signal Handlers:");
2177  print_signal_handler(st, SIGSEGV, buf, buflen);
2178  print_signal_handler(st, SIGBUS , buf, buflen);
2179  print_signal_handler(st, SIGFPE , buf, buflen);
2180  print_signal_handler(st, SIGPIPE, buf, buflen);
2181  print_signal_handler(st, SIGXFSZ, buf, buflen);
2182  print_signal_handler(st, SIGILL , buf, buflen);
2183  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2184  print_signal_handler(st, SR_signum, buf, buflen);
2185  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2186  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2187  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2188  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2189}
2190
2191static char saved_jvm_path[MAXPATHLEN] = {0};
2192
2193// Find the full path to the current module, libjvm.so or libjvm_g.so
2194void os::jvm_path(char *buf, jint buflen) {
2195  // Error checking.
2196  if (buflen < MAXPATHLEN) {
2197    assert(false, "must use a large-enough buffer");
2198    buf[0] = '\0';
2199    return;
2200  }
2201  // Lazy resolve the path to current module.
2202  if (saved_jvm_path[0] != 0) {
2203    strcpy(buf, saved_jvm_path);
2204    return;
2205  }
2206
2207  char dli_fname[MAXPATHLEN];
2208  bool ret = dll_address_to_library_name(
2209                CAST_FROM_FN_PTR(address, os::jvm_path),
2210                dli_fname, sizeof(dli_fname), NULL);
2211  assert(ret != 0, "cannot locate libjvm");
2212  char *rp = realpath(dli_fname, buf);
2213  if (rp == NULL)
2214    return;
2215
2216  if (Arguments::created_by_gamma_launcher()) {
2217    // Support for the gamma launcher.  Typical value for buf is
2218    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2219    // the right place in the string, then assume we are installed in a JDK and
2220    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2221    // up the path so it looks like libjvm.so is installed there (append a
2222    // fake suffix hotspot/libjvm.so).
2223    const char *p = buf + strlen(buf) - 1;
2224    for (int count = 0; p > buf && count < 5; ++count) {
2225      for (--p; p > buf && *p != '/'; --p)
2226        /* empty */ ;
2227    }
2228
2229    if (strncmp(p, "/jre/lib/", 9) != 0) {
2230      // Look for JAVA_HOME in the environment.
2231      char* java_home_var = ::getenv("JAVA_HOME");
2232      if (java_home_var != NULL && java_home_var[0] != 0) {
2233        char* jrelib_p;
2234        int len;
2235
2236        // Check the current module name "libjvm.so" or "libjvm_g.so".
2237        p = strrchr(buf, '/');
2238        assert(strstr(p, "/libjvm") == p, "invalid library name");
2239        p = strstr(p, "_g") ? "_g" : "";
2240
2241        rp = realpath(java_home_var, buf);
2242        if (rp == NULL)
2243          return;
2244
2245        // determine if this is a legacy image or modules image
2246        // modules image doesn't have "jre" subdirectory
2247        len = strlen(buf);
2248        jrelib_p = buf + len;
2249        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2250        if (0 != access(buf, F_OK)) {
2251          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2252        }
2253
2254        if (0 == access(buf, F_OK)) {
2255          // Use current module name "libjvm[_g].so" instead of
2256          // "libjvm"debug_only("_g")".so" since for fastdebug version
2257          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2258          len = strlen(buf);
2259          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2260        } else {
2261          // Go back to path of .so
2262          rp = realpath(dli_fname, buf);
2263          if (rp == NULL)
2264            return;
2265        }
2266      }
2267    }
2268  }
2269
2270  strcpy(saved_jvm_path, buf);
2271}
2272
2273void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2274  // no prefix required, not even "_"
2275}
2276
2277void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2278  // no suffix required
2279}
2280
2281////////////////////////////////////////////////////////////////////////////////
2282// sun.misc.Signal support
2283
2284static volatile jint sigint_count = 0;
2285
2286static void
2287UserHandler(int sig, void *siginfo, void *context) {
2288  // 4511530 - sem_post is serialized and handled by the manager thread. When
2289  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2290  // don't want to flood the manager thread with sem_post requests.
2291  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2292      return;
2293
2294  // Ctrl-C is pressed during error reporting, likely because the error
2295  // handler fails to abort. Let VM die immediately.
2296  if (sig == SIGINT && is_error_reported()) {
2297     os::die();
2298  }
2299
2300  os::signal_notify(sig);
2301}
2302
2303void* os::user_handler() {
2304  return CAST_FROM_FN_PTR(void*, UserHandler);
2305}
2306
2307extern "C" {
2308  typedef void (*sa_handler_t)(int);
2309  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2310}
2311
2312void* os::signal(int signal_number, void* handler) {
2313  struct sigaction sigAct, oldSigAct;
2314
2315  sigfillset(&(sigAct.sa_mask));
2316  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2317  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2318
2319  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2320    // -1 means registration failed
2321    return (void *)-1;
2322  }
2323
2324  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2325}
2326
2327void os::signal_raise(int signal_number) {
2328  ::raise(signal_number);
2329}
2330
2331/*
2332 * The following code is moved from os.cpp for making this
2333 * code platform specific, which it is by its very nature.
2334 */
2335
2336// Will be modified when max signal is changed to be dynamic
2337int os::sigexitnum_pd() {
2338  return NSIG;
2339}
2340
2341// a counter for each possible signal value
2342static volatile jint pending_signals[NSIG+1] = { 0 };
2343
2344// Linux(POSIX) specific hand shaking semaphore.
2345static sem_t sig_sem;
2346
2347void os::signal_init_pd() {
2348  // Initialize signal structures
2349  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2350
2351  // Initialize signal semaphore
2352  ::sem_init(&sig_sem, 0, 0);
2353}
2354
2355void os::signal_notify(int sig) {
2356  Atomic::inc(&pending_signals[sig]);
2357  ::sem_post(&sig_sem);
2358}
2359
2360static int check_pending_signals(bool wait) {
2361  Atomic::store(0, &sigint_count);
2362  for (;;) {
2363    for (int i = 0; i < NSIG + 1; i++) {
2364      jint n = pending_signals[i];
2365      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2366        return i;
2367      }
2368    }
2369    if (!wait) {
2370      return -1;
2371    }
2372    JavaThread *thread = JavaThread::current();
2373    ThreadBlockInVM tbivm(thread);
2374
2375    bool threadIsSuspended;
2376    do {
2377      thread->set_suspend_equivalent();
2378      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2379      ::sem_wait(&sig_sem);
2380
2381      // were we externally suspended while we were waiting?
2382      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2383      if (threadIsSuspended) {
2384        //
2385        // The semaphore has been incremented, but while we were waiting
2386        // another thread suspended us. We don't want to continue running
2387        // while suspended because that would surprise the thread that
2388        // suspended us.
2389        //
2390        ::sem_post(&sig_sem);
2391
2392        thread->java_suspend_self();
2393      }
2394    } while (threadIsSuspended);
2395  }
2396}
2397
2398int os::signal_lookup() {
2399  return check_pending_signals(false);
2400}
2401
2402int os::signal_wait() {
2403  return check_pending_signals(true);
2404}
2405
2406////////////////////////////////////////////////////////////////////////////////
2407// Virtual Memory
2408
2409int os::vm_page_size() {
2410  // Seems redundant as all get out
2411  assert(os::Linux::page_size() != -1, "must call os::init");
2412  return os::Linux::page_size();
2413}
2414
2415// Solaris allocates memory by pages.
2416int os::vm_allocation_granularity() {
2417  assert(os::Linux::page_size() != -1, "must call os::init");
2418  return os::Linux::page_size();
2419}
2420
2421// Rationale behind this function:
2422//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2423//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2424//  samples for JITted code. Here we create private executable mapping over the code cache
2425//  and then we can use standard (well, almost, as mapping can change) way to provide
2426//  info for the reporting script by storing timestamp and location of symbol
2427void linux_wrap_code(char* base, size_t size) {
2428  static volatile jint cnt = 0;
2429
2430  if (!UseOprofile) {
2431    return;
2432  }
2433
2434  char buf[PATH_MAX+1];
2435  int num = Atomic::add(1, &cnt);
2436
2437  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2438           os::get_temp_directory(), os::current_process_id(), num);
2439  unlink(buf);
2440
2441  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2442
2443  if (fd != -1) {
2444    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2445    if (rv != (off_t)-1) {
2446      if (::write(fd, "", 1) == 1) {
2447        mmap(base, size,
2448             PROT_READ|PROT_WRITE|PROT_EXEC,
2449             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2450      }
2451    }
2452    ::close(fd);
2453    unlink(buf);
2454  }
2455}
2456
2457// NOTE: Linux kernel does not really reserve the pages for us.
2458//       All it does is to check if there are enough free pages
2459//       left at the time of mmap(). This could be a potential
2460//       problem.
2461bool os::commit_memory(char* addr, size_t size, bool exec) {
2462  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2463  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2464                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2465  return res != (uintptr_t) MAP_FAILED;
2466}
2467
2468// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2469#ifndef MAP_HUGETLB
2470#define MAP_HUGETLB 0x40000
2471#endif
2472
2473// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2474#ifndef MADV_HUGEPAGE
2475#define MADV_HUGEPAGE 14
2476#endif
2477
2478bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2479                       bool exec) {
2480  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2481    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2482    uintptr_t res =
2483      (uintptr_t) ::mmap(addr, size, prot,
2484                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2485                         -1, 0);
2486    return res != (uintptr_t) MAP_FAILED;
2487  }
2488
2489  return commit_memory(addr, size, exec);
2490}
2491
2492void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2493  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2494    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2495    // be supported or the memory may already be backed by huge pages.
2496    ::madvise(addr, bytes, MADV_HUGEPAGE);
2497  }
2498}
2499
2500void os::free_memory(char *addr, size_t bytes) {
2501  ::madvise(addr, bytes, MADV_DONTNEED);
2502}
2503
2504void os::numa_make_global(char *addr, size_t bytes) {
2505  Linux::numa_interleave_memory(addr, bytes);
2506}
2507
2508void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2509  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2510}
2511
2512bool os::numa_topology_changed()   { return false; }
2513
2514size_t os::numa_get_groups_num() {
2515  int max_node = Linux::numa_max_node();
2516  return max_node > 0 ? max_node + 1 : 1;
2517}
2518
2519int os::numa_get_group_id() {
2520  int cpu_id = Linux::sched_getcpu();
2521  if (cpu_id != -1) {
2522    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2523    if (lgrp_id != -1) {
2524      return lgrp_id;
2525    }
2526  }
2527  return 0;
2528}
2529
2530size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2531  for (size_t i = 0; i < size; i++) {
2532    ids[i] = i;
2533  }
2534  return size;
2535}
2536
2537bool os::get_page_info(char *start, page_info* info) {
2538  return false;
2539}
2540
2541char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2542  return end;
2543}
2544
2545// Something to do with the numa-aware allocator needs these symbols
2546extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2547extern "C" JNIEXPORT void numa_error(char *where) { }
2548extern "C" JNIEXPORT int fork1() { return fork(); }
2549
2550
2551// If we are running with libnuma version > 2, then we should
2552// be trying to use symbols with versions 1.1
2553// If we are running with earlier version, which did not have symbol versions,
2554// we should use the base version.
2555void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2556  void *f = dlvsym(handle, name, "libnuma_1.1");
2557  if (f == NULL) {
2558    f = dlsym(handle, name);
2559  }
2560  return f;
2561}
2562
2563bool os::Linux::libnuma_init() {
2564  // sched_getcpu() should be in libc.
2565  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2566                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2567
2568  if (sched_getcpu() != -1) { // Does it work?
2569    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2570    if (handle != NULL) {
2571      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2572                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2573      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2574                                       libnuma_dlsym(handle, "numa_max_node")));
2575      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2576                                        libnuma_dlsym(handle, "numa_available")));
2577      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2578                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2579      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2580                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2581
2582
2583      if (numa_available() != -1) {
2584        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2585        // Create a cpu -> node mapping
2586        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2587        rebuild_cpu_to_node_map();
2588        return true;
2589      }
2590    }
2591  }
2592  return false;
2593}
2594
2595// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2596// The table is later used in get_node_by_cpu().
2597void os::Linux::rebuild_cpu_to_node_map() {
2598  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2599                              // in libnuma (possible values are starting from 16,
2600                              // and continuing up with every other power of 2, but less
2601                              // than the maximum number of CPUs supported by kernel), and
2602                              // is a subject to change (in libnuma version 2 the requirements
2603                              // are more reasonable) we'll just hardcode the number they use
2604                              // in the library.
2605  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2606
2607  size_t cpu_num = os::active_processor_count();
2608  size_t cpu_map_size = NCPUS / BitsPerCLong;
2609  size_t cpu_map_valid_size =
2610    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2611
2612  cpu_to_node()->clear();
2613  cpu_to_node()->at_grow(cpu_num - 1);
2614  size_t node_num = numa_get_groups_num();
2615
2616  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2617  for (size_t i = 0; i < node_num; i++) {
2618    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2619      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2620        if (cpu_map[j] != 0) {
2621          for (size_t k = 0; k < BitsPerCLong; k++) {
2622            if (cpu_map[j] & (1UL << k)) {
2623              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2624            }
2625          }
2626        }
2627      }
2628    }
2629  }
2630  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2631}
2632
2633int os::Linux::get_node_by_cpu(int cpu_id) {
2634  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2635    return cpu_to_node()->at(cpu_id);
2636  }
2637  return -1;
2638}
2639
2640GrowableArray<int>* os::Linux::_cpu_to_node;
2641os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2642os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2643os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2644os::Linux::numa_available_func_t os::Linux::_numa_available;
2645os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2646os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2647unsigned long* os::Linux::_numa_all_nodes;
2648
2649bool os::uncommit_memory(char* addr, size_t size) {
2650  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2651                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2652  return res  != (uintptr_t) MAP_FAILED;
2653}
2654
2655// Linux uses a growable mapping for the stack, and if the mapping for
2656// the stack guard pages is not removed when we detach a thread the
2657// stack cannot grow beyond the pages where the stack guard was
2658// mapped.  If at some point later in the process the stack expands to
2659// that point, the Linux kernel cannot expand the stack any further
2660// because the guard pages are in the way, and a segfault occurs.
2661//
2662// However, it's essential not to split the stack region by unmapping
2663// a region (leaving a hole) that's already part of the stack mapping,
2664// so if the stack mapping has already grown beyond the guard pages at
2665// the time we create them, we have to truncate the stack mapping.
2666// So, we need to know the extent of the stack mapping when
2667// create_stack_guard_pages() is called.
2668
2669// Find the bounds of the stack mapping.  Return true for success.
2670//
2671// We only need this for stacks that are growable: at the time of
2672// writing thread stacks don't use growable mappings (i.e. those
2673// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2674// only applies to the main thread.
2675
2676static
2677bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2678
2679  char buf[128];
2680  int fd, sz;
2681
2682  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2683    return false;
2684  }
2685
2686  const char kw[] = "[stack]";
2687  const int kwlen = sizeof(kw)-1;
2688
2689  // Address part of /proc/self/maps couldn't be more than 128 bytes
2690  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2691     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2692        // Extract addresses
2693        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2694           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2695           if (sp >= *bottom && sp <= *top) {
2696              ::close(fd);
2697              return true;
2698           }
2699        }
2700     }
2701  }
2702
2703 ::close(fd);
2704  return false;
2705}
2706
2707
2708// If the (growable) stack mapping already extends beyond the point
2709// where we're going to put our guard pages, truncate the mapping at
2710// that point by munmap()ping it.  This ensures that when we later
2711// munmap() the guard pages we don't leave a hole in the stack
2712// mapping. This only affects the main/initial thread, but guard
2713// against future OS changes
2714bool os::create_stack_guard_pages(char* addr, size_t size) {
2715  uintptr_t stack_extent, stack_base;
2716  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2717  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2718      assert(os::Linux::is_initial_thread(),
2719           "growable stack in non-initial thread");
2720    if (stack_extent < (uintptr_t)addr)
2721      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2722  }
2723
2724  return os::commit_memory(addr, size);
2725}
2726
2727// If this is a growable mapping, remove the guard pages entirely by
2728// munmap()ping them.  If not, just call uncommit_memory(). This only
2729// affects the main/initial thread, but guard against future OS changes
2730bool os::remove_stack_guard_pages(char* addr, size_t size) {
2731  uintptr_t stack_extent, stack_base;
2732  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2733  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2734      assert(os::Linux::is_initial_thread(),
2735           "growable stack in non-initial thread");
2736
2737    return ::munmap(addr, size) == 0;
2738  }
2739
2740  return os::uncommit_memory(addr, size);
2741}
2742
2743static address _highest_vm_reserved_address = NULL;
2744
2745// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2746// at 'requested_addr'. If there are existing memory mappings at the same
2747// location, however, they will be overwritten. If 'fixed' is false,
2748// 'requested_addr' is only treated as a hint, the return value may or
2749// may not start from the requested address. Unlike Linux mmap(), this
2750// function returns NULL to indicate failure.
2751static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2752  char * addr;
2753  int flags;
2754
2755  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2756  if (fixed) {
2757    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2758    flags |= MAP_FIXED;
2759  }
2760
2761  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2762  // to PROT_EXEC if executable when we commit the page.
2763  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2764                       flags, -1, 0);
2765
2766  if (addr != MAP_FAILED) {
2767    // anon_mmap() should only get called during VM initialization,
2768    // don't need lock (actually we can skip locking even it can be called
2769    // from multiple threads, because _highest_vm_reserved_address is just a
2770    // hint about the upper limit of non-stack memory regions.)
2771    if ((address)addr + bytes > _highest_vm_reserved_address) {
2772      _highest_vm_reserved_address = (address)addr + bytes;
2773    }
2774  }
2775
2776  return addr == MAP_FAILED ? NULL : addr;
2777}
2778
2779// Don't update _highest_vm_reserved_address, because there might be memory
2780// regions above addr + size. If so, releasing a memory region only creates
2781// a hole in the address space, it doesn't help prevent heap-stack collision.
2782//
2783static int anon_munmap(char * addr, size_t size) {
2784  return ::munmap(addr, size) == 0;
2785}
2786
2787char* os::reserve_memory(size_t bytes, char* requested_addr,
2788                         size_t alignment_hint) {
2789  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2790}
2791
2792bool os::release_memory(char* addr, size_t size) {
2793  return anon_munmap(addr, size);
2794}
2795
2796static address highest_vm_reserved_address() {
2797  return _highest_vm_reserved_address;
2798}
2799
2800static bool linux_mprotect(char* addr, size_t size, int prot) {
2801  // Linux wants the mprotect address argument to be page aligned.
2802  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2803
2804  // According to SUSv3, mprotect() should only be used with mappings
2805  // established by mmap(), and mmap() always maps whole pages. Unaligned
2806  // 'addr' likely indicates problem in the VM (e.g. trying to change
2807  // protection of malloc'ed or statically allocated memory). Check the
2808  // caller if you hit this assert.
2809  assert(addr == bottom, "sanity check");
2810
2811  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2812  return ::mprotect(bottom, size, prot) == 0;
2813}
2814
2815// Set protections specified
2816bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2817                        bool is_committed) {
2818  unsigned int p = 0;
2819  switch (prot) {
2820  case MEM_PROT_NONE: p = PROT_NONE; break;
2821  case MEM_PROT_READ: p = PROT_READ; break;
2822  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2823  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2824  default:
2825    ShouldNotReachHere();
2826  }
2827  // is_committed is unused.
2828  return linux_mprotect(addr, bytes, p);
2829}
2830
2831bool os::guard_memory(char* addr, size_t size) {
2832  return linux_mprotect(addr, size, PROT_NONE);
2833}
2834
2835bool os::unguard_memory(char* addr, size_t size) {
2836  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2837}
2838
2839bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2840  bool result = false;
2841  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2842                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2843                  -1, 0);
2844
2845  if (p != (void *) -1) {
2846    // We don't know if this really is a huge page or not.
2847    FILE *fp = fopen("/proc/self/maps", "r");
2848    if (fp) {
2849      while (!feof(fp)) {
2850        char chars[257];
2851        long x = 0;
2852        if (fgets(chars, sizeof(chars), fp)) {
2853          if (sscanf(chars, "%lx-%*lx", &x) == 1
2854              && x == (long)p) {
2855            if (strstr (chars, "hugepage")) {
2856              result = true;
2857              break;
2858            }
2859          }
2860        }
2861      }
2862      fclose(fp);
2863    }
2864    munmap (p, page_size);
2865    if (result)
2866      return true;
2867  }
2868
2869  if (warn) {
2870    warning("HugeTLBFS is not supported by the operating system.");
2871  }
2872
2873  return result;
2874}
2875
2876/*
2877* Set the coredump_filter bits to include largepages in core dump (bit 6)
2878*
2879* From the coredump_filter documentation:
2880*
2881* - (bit 0) anonymous private memory
2882* - (bit 1) anonymous shared memory
2883* - (bit 2) file-backed private memory
2884* - (bit 3) file-backed shared memory
2885* - (bit 4) ELF header pages in file-backed private memory areas (it is
2886*           effective only if the bit 2 is cleared)
2887* - (bit 5) hugetlb private memory
2888* - (bit 6) hugetlb shared memory
2889*/
2890static void set_coredump_filter(void) {
2891  FILE *f;
2892  long cdm;
2893
2894  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2895    return;
2896  }
2897
2898  if (fscanf(f, "%lx", &cdm) != 1) {
2899    fclose(f);
2900    return;
2901  }
2902
2903  rewind(f);
2904
2905  if ((cdm & LARGEPAGES_BIT) == 0) {
2906    cdm |= LARGEPAGES_BIT;
2907    fprintf(f, "%#lx", cdm);
2908  }
2909
2910  fclose(f);
2911}
2912
2913// Large page support
2914
2915static size_t _large_page_size = 0;
2916
2917bool os::large_page_init() {
2918  if (!UseLargePages) {
2919    UseHugeTLBFS = false;
2920    UseSHM = false;
2921    return false;
2922  }
2923
2924  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2925    // Our user has not expressed a preference, so we'll try both.
2926    UseHugeTLBFS = UseSHM = true;
2927  }
2928
2929  if (LargePageSizeInBytes) {
2930    _large_page_size = LargePageSizeInBytes;
2931  } else {
2932    // large_page_size on Linux is used to round up heap size. x86 uses either
2933    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2934    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2935    // page as large as 256M.
2936    //
2937    // Here we try to figure out page size by parsing /proc/meminfo and looking
2938    // for a line with the following format:
2939    //    Hugepagesize:     2048 kB
2940    //
2941    // If we can't determine the value (e.g. /proc is not mounted, or the text
2942    // format has been changed), we'll use the largest page size supported by
2943    // the processor.
2944
2945#ifndef ZERO
2946    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2947                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2948#endif // ZERO
2949
2950    FILE *fp = fopen("/proc/meminfo", "r");
2951    if (fp) {
2952      while (!feof(fp)) {
2953        int x = 0;
2954        char buf[16];
2955        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2956          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2957            _large_page_size = x * K;
2958            break;
2959          }
2960        } else {
2961          // skip to next line
2962          for (;;) {
2963            int ch = fgetc(fp);
2964            if (ch == EOF || ch == (int)'\n') break;
2965          }
2966        }
2967      }
2968      fclose(fp);
2969    }
2970  }
2971
2972  // print a warning if any large page related flag is specified on command line
2973  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
2974
2975  const size_t default_page_size = (size_t)Linux::page_size();
2976  if (_large_page_size > default_page_size) {
2977    _page_sizes[0] = _large_page_size;
2978    _page_sizes[1] = default_page_size;
2979    _page_sizes[2] = 0;
2980  }
2981
2982  UseHugeTLBFS = UseHugeTLBFS &&
2983                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
2984
2985  if (UseHugeTLBFS)
2986    UseSHM = false;
2987
2988  UseLargePages = UseHugeTLBFS || UseSHM;
2989
2990  set_coredump_filter();
2991
2992  // Large page support is available on 2.6 or newer kernel, some vendors
2993  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2994  // We optimistically assume the support is available. If later it turns out
2995  // not true, VM will automatically switch to use regular page size.
2996  return true;
2997}
2998
2999#ifndef SHM_HUGETLB
3000#define SHM_HUGETLB 04000
3001#endif
3002
3003char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3004  // "exec" is passed in but not used.  Creating the shared image for
3005  // the code cache doesn't have an SHM_X executable permission to check.
3006  assert(UseLargePages && UseSHM, "only for SHM large pages");
3007
3008  key_t key = IPC_PRIVATE;
3009  char *addr;
3010
3011  bool warn_on_failure = UseLargePages &&
3012                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3013                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3014                        );
3015  char msg[128];
3016
3017  // Create a large shared memory region to attach to based on size.
3018  // Currently, size is the total size of the heap
3019  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3020  if (shmid == -1) {
3021     // Possible reasons for shmget failure:
3022     // 1. shmmax is too small for Java heap.
3023     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3024     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3025     // 2. not enough large page memory.
3026     //    > check available large pages: cat /proc/meminfo
3027     //    > increase amount of large pages:
3028     //          echo new_value > /proc/sys/vm/nr_hugepages
3029     //      Note 1: different Linux may use different name for this property,
3030     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3031     //      Note 2: it's possible there's enough physical memory available but
3032     //            they are so fragmented after a long run that they can't
3033     //            coalesce into large pages. Try to reserve large pages when
3034     //            the system is still "fresh".
3035     if (warn_on_failure) {
3036       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3037       warning(msg);
3038     }
3039     return NULL;
3040  }
3041
3042  // attach to the region
3043  addr = (char*)shmat(shmid, req_addr, 0);
3044  int err = errno;
3045
3046  // Remove shmid. If shmat() is successful, the actual shared memory segment
3047  // will be deleted when it's detached by shmdt() or when the process
3048  // terminates. If shmat() is not successful this will remove the shared
3049  // segment immediately.
3050  shmctl(shmid, IPC_RMID, NULL);
3051
3052  if ((intptr_t)addr == -1) {
3053     if (warn_on_failure) {
3054       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3055       warning(msg);
3056     }
3057     return NULL;
3058  }
3059
3060  return addr;
3061}
3062
3063bool os::release_memory_special(char* base, size_t bytes) {
3064  // detaching the SHM segment will also delete it, see reserve_memory_special()
3065  int rslt = shmdt(base);
3066  return rslt == 0;
3067}
3068
3069size_t os::large_page_size() {
3070  return _large_page_size;
3071}
3072
3073// HugeTLBFS allows application to commit large page memory on demand;
3074// with SysV SHM the entire memory region must be allocated as shared
3075// memory.
3076bool os::can_commit_large_page_memory() {
3077  return UseHugeTLBFS;
3078}
3079
3080bool os::can_execute_large_page_memory() {
3081  return UseHugeTLBFS;
3082}
3083
3084// Reserve memory at an arbitrary address, only if that area is
3085// available (and not reserved for something else).
3086
3087char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3088  const int max_tries = 10;
3089  char* base[max_tries];
3090  size_t size[max_tries];
3091  const size_t gap = 0x000000;
3092
3093  // Assert only that the size is a multiple of the page size, since
3094  // that's all that mmap requires, and since that's all we really know
3095  // about at this low abstraction level.  If we need higher alignment,
3096  // we can either pass an alignment to this method or verify alignment
3097  // in one of the methods further up the call chain.  See bug 5044738.
3098  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3099
3100  // Repeatedly allocate blocks until the block is allocated at the
3101  // right spot. Give up after max_tries. Note that reserve_memory() will
3102  // automatically update _highest_vm_reserved_address if the call is
3103  // successful. The variable tracks the highest memory address every reserved
3104  // by JVM. It is used to detect heap-stack collision if running with
3105  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3106  // space than needed, it could confuse the collision detecting code. To
3107  // solve the problem, save current _highest_vm_reserved_address and
3108  // calculate the correct value before return.
3109  address old_highest = _highest_vm_reserved_address;
3110
3111  // Linux mmap allows caller to pass an address as hint; give it a try first,
3112  // if kernel honors the hint then we can return immediately.
3113  char * addr = anon_mmap(requested_addr, bytes, false);
3114  if (addr == requested_addr) {
3115     return requested_addr;
3116  }
3117
3118  if (addr != NULL) {
3119     // mmap() is successful but it fails to reserve at the requested address
3120     anon_munmap(addr, bytes);
3121  }
3122
3123  int i;
3124  for (i = 0; i < max_tries; ++i) {
3125    base[i] = reserve_memory(bytes);
3126
3127    if (base[i] != NULL) {
3128      // Is this the block we wanted?
3129      if (base[i] == requested_addr) {
3130        size[i] = bytes;
3131        break;
3132      }
3133
3134      // Does this overlap the block we wanted? Give back the overlapped
3135      // parts and try again.
3136
3137      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3138      if (top_overlap >= 0 && top_overlap < bytes) {
3139        unmap_memory(base[i], top_overlap);
3140        base[i] += top_overlap;
3141        size[i] = bytes - top_overlap;
3142      } else {
3143        size_t bottom_overlap = base[i] + bytes - requested_addr;
3144        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3145          unmap_memory(requested_addr, bottom_overlap);
3146          size[i] = bytes - bottom_overlap;
3147        } else {
3148          size[i] = bytes;
3149        }
3150      }
3151    }
3152  }
3153
3154  // Give back the unused reserved pieces.
3155
3156  for (int j = 0; j < i; ++j) {
3157    if (base[j] != NULL) {
3158      unmap_memory(base[j], size[j]);
3159    }
3160  }
3161
3162  if (i < max_tries) {
3163    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3164    return requested_addr;
3165  } else {
3166    _highest_vm_reserved_address = old_highest;
3167    return NULL;
3168  }
3169}
3170
3171size_t os::read(int fd, void *buf, unsigned int nBytes) {
3172  return ::read(fd, buf, nBytes);
3173}
3174
3175// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3176// Solaris uses poll(), linux uses park().
3177// Poll() is likely a better choice, assuming that Thread.interrupt()
3178// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3179// SIGSEGV, see 4355769.
3180
3181const int NANOSECS_PER_MILLISECS = 1000000;
3182
3183int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3184  assert(thread == Thread::current(),  "thread consistency check");
3185
3186  ParkEvent * const slp = thread->_SleepEvent ;
3187  slp->reset() ;
3188  OrderAccess::fence() ;
3189
3190  if (interruptible) {
3191    jlong prevtime = javaTimeNanos();
3192
3193    for (;;) {
3194      if (os::is_interrupted(thread, true)) {
3195        return OS_INTRPT;
3196      }
3197
3198      jlong newtime = javaTimeNanos();
3199
3200      if (newtime - prevtime < 0) {
3201        // time moving backwards, should only happen if no monotonic clock
3202        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3203        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3204      } else {
3205        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3206      }
3207
3208      if(millis <= 0) {
3209        return OS_OK;
3210      }
3211
3212      prevtime = newtime;
3213
3214      {
3215        assert(thread->is_Java_thread(), "sanity check");
3216        JavaThread *jt = (JavaThread *) thread;
3217        ThreadBlockInVM tbivm(jt);
3218        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3219
3220        jt->set_suspend_equivalent();
3221        // cleared by handle_special_suspend_equivalent_condition() or
3222        // java_suspend_self() via check_and_wait_while_suspended()
3223
3224        slp->park(millis);
3225
3226        // were we externally suspended while we were waiting?
3227        jt->check_and_wait_while_suspended();
3228      }
3229    }
3230  } else {
3231    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3232    jlong prevtime = javaTimeNanos();
3233
3234    for (;;) {
3235      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3236      // the 1st iteration ...
3237      jlong newtime = javaTimeNanos();
3238
3239      if (newtime - prevtime < 0) {
3240        // time moving backwards, should only happen if no monotonic clock
3241        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3242        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3243      } else {
3244        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3245      }
3246
3247      if(millis <= 0) break ;
3248
3249      prevtime = newtime;
3250      slp->park(millis);
3251    }
3252    return OS_OK ;
3253  }
3254}
3255
3256int os::naked_sleep() {
3257  // %% make the sleep time an integer flag. for now use 1 millisec.
3258  return os::sleep(Thread::current(), 1, false);
3259}
3260
3261// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3262void os::infinite_sleep() {
3263  while (true) {    // sleep forever ...
3264    ::sleep(100);   // ... 100 seconds at a time
3265  }
3266}
3267
3268// Used to convert frequent JVM_Yield() to nops
3269bool os::dont_yield() {
3270  return DontYieldALot;
3271}
3272
3273void os::yield() {
3274  sched_yield();
3275}
3276
3277os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3278
3279void os::yield_all(int attempts) {
3280  // Yields to all threads, including threads with lower priorities
3281  // Threads on Linux are all with same priority. The Solaris style
3282  // os::yield_all() with nanosleep(1ms) is not necessary.
3283  sched_yield();
3284}
3285
3286// Called from the tight loops to possibly influence time-sharing heuristics
3287void os::loop_breaker(int attempts) {
3288  os::yield_all(attempts);
3289}
3290
3291////////////////////////////////////////////////////////////////////////////////
3292// thread priority support
3293
3294// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3295// only supports dynamic priority, static priority must be zero. For real-time
3296// applications, Linux supports SCHED_RR which allows static priority (1-99).
3297// However, for large multi-threaded applications, SCHED_RR is not only slower
3298// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3299// of 5 runs - Sep 2005).
3300//
3301// The following code actually changes the niceness of kernel-thread/LWP. It
3302// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3303// not the entire user process, and user level threads are 1:1 mapped to kernel
3304// threads. It has always been the case, but could change in the future. For
3305// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3306// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3307
3308int os::java_to_os_priority[MaxPriority + 1] = {
3309  19,              // 0 Entry should never be used
3310
3311   4,              // 1 MinPriority
3312   3,              // 2
3313   2,              // 3
3314
3315   1,              // 4
3316   0,              // 5 NormPriority
3317  -1,              // 6
3318
3319  -2,              // 7
3320  -3,              // 8
3321  -4,              // 9 NearMaxPriority
3322
3323  -5               // 10 MaxPriority
3324};
3325
3326static int prio_init() {
3327  if (ThreadPriorityPolicy == 1) {
3328    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3329    // if effective uid is not root. Perhaps, a more elegant way of doing
3330    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3331    if (geteuid() != 0) {
3332      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3333        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3334      }
3335      ThreadPriorityPolicy = 0;
3336    }
3337  }
3338  return 0;
3339}
3340
3341OSReturn os::set_native_priority(Thread* thread, int newpri) {
3342  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3343
3344  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3345  return (ret == 0) ? OS_OK : OS_ERR;
3346}
3347
3348OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3349  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3350    *priority_ptr = java_to_os_priority[NormPriority];
3351    return OS_OK;
3352  }
3353
3354  errno = 0;
3355  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3356  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3357}
3358
3359// Hint to the underlying OS that a task switch would not be good.
3360// Void return because it's a hint and can fail.
3361void os::hint_no_preempt() {}
3362
3363////////////////////////////////////////////////////////////////////////////////
3364// suspend/resume support
3365
3366//  the low-level signal-based suspend/resume support is a remnant from the
3367//  old VM-suspension that used to be for java-suspension, safepoints etc,
3368//  within hotspot. Now there is a single use-case for this:
3369//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3370//      that runs in the watcher thread.
3371//  The remaining code is greatly simplified from the more general suspension
3372//  code that used to be used.
3373//
3374//  The protocol is quite simple:
3375//  - suspend:
3376//      - sends a signal to the target thread
3377//      - polls the suspend state of the osthread using a yield loop
3378//      - target thread signal handler (SR_handler) sets suspend state
3379//        and blocks in sigsuspend until continued
3380//  - resume:
3381//      - sets target osthread state to continue
3382//      - sends signal to end the sigsuspend loop in the SR_handler
3383//
3384//  Note that the SR_lock plays no role in this suspend/resume protocol.
3385//
3386
3387static void resume_clear_context(OSThread *osthread) {
3388  osthread->set_ucontext(NULL);
3389  osthread->set_siginfo(NULL);
3390
3391  // notify the suspend action is completed, we have now resumed
3392  osthread->sr.clear_suspended();
3393}
3394
3395static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3396  osthread->set_ucontext(context);
3397  osthread->set_siginfo(siginfo);
3398}
3399
3400//
3401// Handler function invoked when a thread's execution is suspended or
3402// resumed. We have to be careful that only async-safe functions are
3403// called here (Note: most pthread functions are not async safe and
3404// should be avoided.)
3405//
3406// Note: sigwait() is a more natural fit than sigsuspend() from an
3407// interface point of view, but sigwait() prevents the signal hander
3408// from being run. libpthread would get very confused by not having
3409// its signal handlers run and prevents sigwait()'s use with the
3410// mutex granting granting signal.
3411//
3412// Currently only ever called on the VMThread
3413//
3414static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3415  // Save and restore errno to avoid confusing native code with EINTR
3416  // after sigsuspend.
3417  int old_errno = errno;
3418
3419  Thread* thread = Thread::current();
3420  OSThread* osthread = thread->osthread();
3421  assert(thread->is_VM_thread(), "Must be VMThread");
3422  // read current suspend action
3423  int action = osthread->sr.suspend_action();
3424  if (action == SR_SUSPEND) {
3425    suspend_save_context(osthread, siginfo, context);
3426
3427    // Notify the suspend action is about to be completed. do_suspend()
3428    // waits until SR_SUSPENDED is set and then returns. We will wait
3429    // here for a resume signal and that completes the suspend-other
3430    // action. do_suspend/do_resume is always called as a pair from
3431    // the same thread - so there are no races
3432
3433    // notify the caller
3434    osthread->sr.set_suspended();
3435
3436    sigset_t suspend_set;  // signals for sigsuspend()
3437
3438    // get current set of blocked signals and unblock resume signal
3439    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3440    sigdelset(&suspend_set, SR_signum);
3441
3442    // wait here until we are resumed
3443    do {
3444      sigsuspend(&suspend_set);
3445      // ignore all returns until we get a resume signal
3446    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3447
3448    resume_clear_context(osthread);
3449
3450  } else {
3451    assert(action == SR_CONTINUE, "unexpected sr action");
3452    // nothing special to do - just leave the handler
3453  }
3454
3455  errno = old_errno;
3456}
3457
3458
3459static int SR_initialize() {
3460  struct sigaction act;
3461  char *s;
3462  /* Get signal number to use for suspend/resume */
3463  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3464    int sig = ::strtol(s, 0, 10);
3465    if (sig > 0 || sig < _NSIG) {
3466        SR_signum = sig;
3467    }
3468  }
3469
3470  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3471        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3472
3473  sigemptyset(&SR_sigset);
3474  sigaddset(&SR_sigset, SR_signum);
3475
3476  /* Set up signal handler for suspend/resume */
3477  act.sa_flags = SA_RESTART|SA_SIGINFO;
3478  act.sa_handler = (void (*)(int)) SR_handler;
3479
3480  // SR_signum is blocked by default.
3481  // 4528190 - We also need to block pthread restart signal (32 on all
3482  // supported Linux platforms). Note that LinuxThreads need to block
3483  // this signal for all threads to work properly. So we don't have
3484  // to use hard-coded signal number when setting up the mask.
3485  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3486
3487  if (sigaction(SR_signum, &act, 0) == -1) {
3488    return -1;
3489  }
3490
3491  // Save signal flag
3492  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3493  return 0;
3494}
3495
3496static int SR_finalize() {
3497  return 0;
3498}
3499
3500
3501// returns true on success and false on error - really an error is fatal
3502// but this seems the normal response to library errors
3503static bool do_suspend(OSThread* osthread) {
3504  // mark as suspended and send signal
3505  osthread->sr.set_suspend_action(SR_SUSPEND);
3506  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3507  assert_status(status == 0, status, "pthread_kill");
3508
3509  // check status and wait until notified of suspension
3510  if (status == 0) {
3511    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3512      os::yield_all(i);
3513    }
3514    osthread->sr.set_suspend_action(SR_NONE);
3515    return true;
3516  }
3517  else {
3518    osthread->sr.set_suspend_action(SR_NONE);
3519    return false;
3520  }
3521}
3522
3523static void do_resume(OSThread* osthread) {
3524  assert(osthread->sr.is_suspended(), "thread should be suspended");
3525  osthread->sr.set_suspend_action(SR_CONTINUE);
3526
3527  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3528  assert_status(status == 0, status, "pthread_kill");
3529  // check status and wait unit notified of resumption
3530  if (status == 0) {
3531    for (int i = 0; osthread->sr.is_suspended(); i++) {
3532      os::yield_all(i);
3533    }
3534  }
3535  osthread->sr.set_suspend_action(SR_NONE);
3536}
3537
3538////////////////////////////////////////////////////////////////////////////////
3539// interrupt support
3540
3541void os::interrupt(Thread* thread) {
3542  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3543    "possibility of dangling Thread pointer");
3544
3545  OSThread* osthread = thread->osthread();
3546
3547  if (!osthread->interrupted()) {
3548    osthread->set_interrupted(true);
3549    // More than one thread can get here with the same value of osthread,
3550    // resulting in multiple notifications.  We do, however, want the store
3551    // to interrupted() to be visible to other threads before we execute unpark().
3552    OrderAccess::fence();
3553    ParkEvent * const slp = thread->_SleepEvent ;
3554    if (slp != NULL) slp->unpark() ;
3555  }
3556
3557  // For JSR166. Unpark even if interrupt status already was set
3558  if (thread->is_Java_thread())
3559    ((JavaThread*)thread)->parker()->unpark();
3560
3561  ParkEvent * ev = thread->_ParkEvent ;
3562  if (ev != NULL) ev->unpark() ;
3563
3564}
3565
3566bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3567  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3568    "possibility of dangling Thread pointer");
3569
3570  OSThread* osthread = thread->osthread();
3571
3572  bool interrupted = osthread->interrupted();
3573
3574  if (interrupted && clear_interrupted) {
3575    osthread->set_interrupted(false);
3576    // consider thread->_SleepEvent->reset() ... optional optimization
3577  }
3578
3579  return interrupted;
3580}
3581
3582///////////////////////////////////////////////////////////////////////////////////
3583// signal handling (except suspend/resume)
3584
3585// This routine may be used by user applications as a "hook" to catch signals.
3586// The user-defined signal handler must pass unrecognized signals to this
3587// routine, and if it returns true (non-zero), then the signal handler must
3588// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3589// routine will never retun false (zero), but instead will execute a VM panic
3590// routine kill the process.
3591//
3592// If this routine returns false, it is OK to call it again.  This allows
3593// the user-defined signal handler to perform checks either before or after
3594// the VM performs its own checks.  Naturally, the user code would be making
3595// a serious error if it tried to handle an exception (such as a null check
3596// or breakpoint) that the VM was generating for its own correct operation.
3597//
3598// This routine may recognize any of the following kinds of signals:
3599//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3600// It should be consulted by handlers for any of those signals.
3601//
3602// The caller of this routine must pass in the three arguments supplied
3603// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3604// field of the structure passed to sigaction().  This routine assumes that
3605// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3606//
3607// Note that the VM will print warnings if it detects conflicting signal
3608// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3609//
3610extern "C" JNIEXPORT int
3611JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3612                        void* ucontext, int abort_if_unrecognized);
3613
3614void signalHandler(int sig, siginfo_t* info, void* uc) {
3615  assert(info != NULL && uc != NULL, "it must be old kernel");
3616  JVM_handle_linux_signal(sig, info, uc, true);
3617}
3618
3619
3620// This boolean allows users to forward their own non-matching signals
3621// to JVM_handle_linux_signal, harmlessly.
3622bool os::Linux::signal_handlers_are_installed = false;
3623
3624// For signal-chaining
3625struct sigaction os::Linux::sigact[MAXSIGNUM];
3626unsigned int os::Linux::sigs = 0;
3627bool os::Linux::libjsig_is_loaded = false;
3628typedef struct sigaction *(*get_signal_t)(int);
3629get_signal_t os::Linux::get_signal_action = NULL;
3630
3631struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3632  struct sigaction *actp = NULL;
3633
3634  if (libjsig_is_loaded) {
3635    // Retrieve the old signal handler from libjsig
3636    actp = (*get_signal_action)(sig);
3637  }
3638  if (actp == NULL) {
3639    // Retrieve the preinstalled signal handler from jvm
3640    actp = get_preinstalled_handler(sig);
3641  }
3642
3643  return actp;
3644}
3645
3646static bool call_chained_handler(struct sigaction *actp, int sig,
3647                                 siginfo_t *siginfo, void *context) {
3648  // Call the old signal handler
3649  if (actp->sa_handler == SIG_DFL) {
3650    // It's more reasonable to let jvm treat it as an unexpected exception
3651    // instead of taking the default action.
3652    return false;
3653  } else if (actp->sa_handler != SIG_IGN) {
3654    if ((actp->sa_flags & SA_NODEFER) == 0) {
3655      // automaticlly block the signal
3656      sigaddset(&(actp->sa_mask), sig);
3657    }
3658
3659    sa_handler_t hand;
3660    sa_sigaction_t sa;
3661    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3662    // retrieve the chained handler
3663    if (siginfo_flag_set) {
3664      sa = actp->sa_sigaction;
3665    } else {
3666      hand = actp->sa_handler;
3667    }
3668
3669    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3670      actp->sa_handler = SIG_DFL;
3671    }
3672
3673    // try to honor the signal mask
3674    sigset_t oset;
3675    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3676
3677    // call into the chained handler
3678    if (siginfo_flag_set) {
3679      (*sa)(sig, siginfo, context);
3680    } else {
3681      (*hand)(sig);
3682    }
3683
3684    // restore the signal mask
3685    pthread_sigmask(SIG_SETMASK, &oset, 0);
3686  }
3687  // Tell jvm's signal handler the signal is taken care of.
3688  return true;
3689}
3690
3691bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3692  bool chained = false;
3693  // signal-chaining
3694  if (UseSignalChaining) {
3695    struct sigaction *actp = get_chained_signal_action(sig);
3696    if (actp != NULL) {
3697      chained = call_chained_handler(actp, sig, siginfo, context);
3698    }
3699  }
3700  return chained;
3701}
3702
3703struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3704  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3705    return &sigact[sig];
3706  }
3707  return NULL;
3708}
3709
3710void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3711  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3712  sigact[sig] = oldAct;
3713  sigs |= (unsigned int)1 << sig;
3714}
3715
3716// for diagnostic
3717int os::Linux::sigflags[MAXSIGNUM];
3718
3719int os::Linux::get_our_sigflags(int sig) {
3720  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3721  return sigflags[sig];
3722}
3723
3724void os::Linux::set_our_sigflags(int sig, int flags) {
3725  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3726  sigflags[sig] = flags;
3727}
3728
3729void os::Linux::set_signal_handler(int sig, bool set_installed) {
3730  // Check for overwrite.
3731  struct sigaction oldAct;
3732  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3733
3734  void* oldhand = oldAct.sa_sigaction
3735                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3736                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3737  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3738      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3739      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3740    if (AllowUserSignalHandlers || !set_installed) {
3741      // Do not overwrite; user takes responsibility to forward to us.
3742      return;
3743    } else if (UseSignalChaining) {
3744      // save the old handler in jvm
3745      save_preinstalled_handler(sig, oldAct);
3746      // libjsig also interposes the sigaction() call below and saves the
3747      // old sigaction on it own.
3748    } else {
3749      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3750                    "%#lx for signal %d.", (long)oldhand, sig));
3751    }
3752  }
3753
3754  struct sigaction sigAct;
3755  sigfillset(&(sigAct.sa_mask));
3756  sigAct.sa_handler = SIG_DFL;
3757  if (!set_installed) {
3758    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3759  } else {
3760    sigAct.sa_sigaction = signalHandler;
3761    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3762  }
3763  // Save flags, which are set by ours
3764  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3765  sigflags[sig] = sigAct.sa_flags;
3766
3767  int ret = sigaction(sig, &sigAct, &oldAct);
3768  assert(ret == 0, "check");
3769
3770  void* oldhand2  = oldAct.sa_sigaction
3771                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3772                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3773  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3774}
3775
3776// install signal handlers for signals that HotSpot needs to
3777// handle in order to support Java-level exception handling.
3778
3779void os::Linux::install_signal_handlers() {
3780  if (!signal_handlers_are_installed) {
3781    signal_handlers_are_installed = true;
3782
3783    // signal-chaining
3784    typedef void (*signal_setting_t)();
3785    signal_setting_t begin_signal_setting = NULL;
3786    signal_setting_t end_signal_setting = NULL;
3787    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3788                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3789    if (begin_signal_setting != NULL) {
3790      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3791                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3792      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3793                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3794      libjsig_is_loaded = true;
3795      assert(UseSignalChaining, "should enable signal-chaining");
3796    }
3797    if (libjsig_is_loaded) {
3798      // Tell libjsig jvm is setting signal handlers
3799      (*begin_signal_setting)();
3800    }
3801
3802    set_signal_handler(SIGSEGV, true);
3803    set_signal_handler(SIGPIPE, true);
3804    set_signal_handler(SIGBUS, true);
3805    set_signal_handler(SIGILL, true);
3806    set_signal_handler(SIGFPE, true);
3807    set_signal_handler(SIGXFSZ, true);
3808
3809    if (libjsig_is_loaded) {
3810      // Tell libjsig jvm finishes setting signal handlers
3811      (*end_signal_setting)();
3812    }
3813
3814    // We don't activate signal checker if libjsig is in place, we trust ourselves
3815    // and if UserSignalHandler is installed all bets are off
3816    if (CheckJNICalls) {
3817      if (libjsig_is_loaded) {
3818        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3819        check_signals = false;
3820      }
3821      if (AllowUserSignalHandlers) {
3822        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3823        check_signals = false;
3824      }
3825    }
3826  }
3827}
3828
3829// This is the fastest way to get thread cpu time on Linux.
3830// Returns cpu time (user+sys) for any thread, not only for current.
3831// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3832// It might work on 2.6.10+ with a special kernel/glibc patch.
3833// For reference, please, see IEEE Std 1003.1-2004:
3834//   http://www.unix.org/single_unix_specification
3835
3836jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3837  struct timespec tp;
3838  int rc = os::Linux::clock_gettime(clockid, &tp);
3839  assert(rc == 0, "clock_gettime is expected to return 0 code");
3840
3841  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3842}
3843
3844/////
3845// glibc on Linux platform uses non-documented flag
3846// to indicate, that some special sort of signal
3847// trampoline is used.
3848// We will never set this flag, and we should
3849// ignore this flag in our diagnostic
3850#ifdef SIGNIFICANT_SIGNAL_MASK
3851#undef SIGNIFICANT_SIGNAL_MASK
3852#endif
3853#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3854
3855static const char* get_signal_handler_name(address handler,
3856                                           char* buf, int buflen) {
3857  int offset;
3858  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3859  if (found) {
3860    // skip directory names
3861    const char *p1, *p2;
3862    p1 = buf;
3863    size_t len = strlen(os::file_separator());
3864    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3865    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3866  } else {
3867    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3868  }
3869  return buf;
3870}
3871
3872static void print_signal_handler(outputStream* st, int sig,
3873                                 char* buf, size_t buflen) {
3874  struct sigaction sa;
3875
3876  sigaction(sig, NULL, &sa);
3877
3878  // See comment for SIGNIFICANT_SIGNAL_MASK define
3879  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3880
3881  st->print("%s: ", os::exception_name(sig, buf, buflen));
3882
3883  address handler = (sa.sa_flags & SA_SIGINFO)
3884    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3885    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3886
3887  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3888    st->print("SIG_DFL");
3889  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3890    st->print("SIG_IGN");
3891  } else {
3892    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3893  }
3894
3895  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3896
3897  address rh = VMError::get_resetted_sighandler(sig);
3898  // May be, handler was resetted by VMError?
3899  if(rh != NULL) {
3900    handler = rh;
3901    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3902  }
3903
3904  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3905
3906  // Check: is it our handler?
3907  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3908     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3909    // It is our signal handler
3910    // check for flags, reset system-used one!
3911    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3912      st->print(
3913                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3914                os::Linux::get_our_sigflags(sig));
3915    }
3916  }
3917  st->cr();
3918}
3919
3920
3921#define DO_SIGNAL_CHECK(sig) \
3922  if (!sigismember(&check_signal_done, sig)) \
3923    os::Linux::check_signal_handler(sig)
3924
3925// This method is a periodic task to check for misbehaving JNI applications
3926// under CheckJNI, we can add any periodic checks here
3927
3928void os::run_periodic_checks() {
3929
3930  if (check_signals == false) return;
3931
3932  // SEGV and BUS if overridden could potentially prevent
3933  // generation of hs*.log in the event of a crash, debugging
3934  // such a case can be very challenging, so we absolutely
3935  // check the following for a good measure:
3936  DO_SIGNAL_CHECK(SIGSEGV);
3937  DO_SIGNAL_CHECK(SIGILL);
3938  DO_SIGNAL_CHECK(SIGFPE);
3939  DO_SIGNAL_CHECK(SIGBUS);
3940  DO_SIGNAL_CHECK(SIGPIPE);
3941  DO_SIGNAL_CHECK(SIGXFSZ);
3942
3943
3944  // ReduceSignalUsage allows the user to override these handlers
3945  // see comments at the very top and jvm_solaris.h
3946  if (!ReduceSignalUsage) {
3947    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3948    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3949    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3950    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3951  }
3952
3953  DO_SIGNAL_CHECK(SR_signum);
3954  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3955}
3956
3957typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3958
3959static os_sigaction_t os_sigaction = NULL;
3960
3961void os::Linux::check_signal_handler(int sig) {
3962  char buf[O_BUFLEN];
3963  address jvmHandler = NULL;
3964
3965
3966  struct sigaction act;
3967  if (os_sigaction == NULL) {
3968    // only trust the default sigaction, in case it has been interposed
3969    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3970    if (os_sigaction == NULL) return;
3971  }
3972
3973  os_sigaction(sig, (struct sigaction*)NULL, &act);
3974
3975
3976  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3977
3978  address thisHandler = (act.sa_flags & SA_SIGINFO)
3979    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3980    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3981
3982
3983  switch(sig) {
3984  case SIGSEGV:
3985  case SIGBUS:
3986  case SIGFPE:
3987  case SIGPIPE:
3988  case SIGILL:
3989  case SIGXFSZ:
3990    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3991    break;
3992
3993  case SHUTDOWN1_SIGNAL:
3994  case SHUTDOWN2_SIGNAL:
3995  case SHUTDOWN3_SIGNAL:
3996  case BREAK_SIGNAL:
3997    jvmHandler = (address)user_handler();
3998    break;
3999
4000  case INTERRUPT_SIGNAL:
4001    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4002    break;
4003
4004  default:
4005    if (sig == SR_signum) {
4006      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4007    } else {
4008      return;
4009    }
4010    break;
4011  }
4012
4013  if (thisHandler != jvmHandler) {
4014    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4015    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4016    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4017    // No need to check this sig any longer
4018    sigaddset(&check_signal_done, sig);
4019  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4020    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4021    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4022    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4023    // No need to check this sig any longer
4024    sigaddset(&check_signal_done, sig);
4025  }
4026
4027  // Dump all the signal
4028  if (sigismember(&check_signal_done, sig)) {
4029    print_signal_handlers(tty, buf, O_BUFLEN);
4030  }
4031}
4032
4033extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4034
4035extern bool signal_name(int signo, char* buf, size_t len);
4036
4037const char* os::exception_name(int exception_code, char* buf, size_t size) {
4038  if (0 < exception_code && exception_code <= SIGRTMAX) {
4039    // signal
4040    if (!signal_name(exception_code, buf, size)) {
4041      jio_snprintf(buf, size, "SIG%d", exception_code);
4042    }
4043    return buf;
4044  } else {
4045    return NULL;
4046  }
4047}
4048
4049// this is called _before_ the most of global arguments have been parsed
4050void os::init(void) {
4051  char dummy;   /* used to get a guess on initial stack address */
4052//  first_hrtime = gethrtime();
4053
4054  // With LinuxThreads the JavaMain thread pid (primordial thread)
4055  // is different than the pid of the java launcher thread.
4056  // So, on Linux, the launcher thread pid is passed to the VM
4057  // via the sun.java.launcher.pid property.
4058  // Use this property instead of getpid() if it was correctly passed.
4059  // See bug 6351349.
4060  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4061
4062  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4063
4064  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4065
4066  init_random(1234567);
4067
4068  ThreadCritical::initialize();
4069
4070  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4071  if (Linux::page_size() == -1) {
4072    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4073                  strerror(errno)));
4074  }
4075  init_page_sizes((size_t) Linux::page_size());
4076
4077  Linux::initialize_system_info();
4078
4079  // main_thread points to the aboriginal thread
4080  Linux::_main_thread = pthread_self();
4081
4082  Linux::clock_init();
4083  initial_time_count = os::elapsed_counter();
4084  pthread_mutex_init(&dl_mutex, NULL);
4085}
4086
4087// To install functions for atexit system call
4088extern "C" {
4089  static void perfMemory_exit_helper() {
4090    perfMemory_exit();
4091  }
4092}
4093
4094// this is called _after_ the global arguments have been parsed
4095jint os::init_2(void)
4096{
4097  Linux::fast_thread_clock_init();
4098
4099  // Allocate a single page and mark it as readable for safepoint polling
4100  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4101  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4102
4103  os::set_polling_page( polling_page );
4104
4105#ifndef PRODUCT
4106  if(Verbose && PrintMiscellaneous)
4107    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4108#endif
4109
4110  if (!UseMembar) {
4111    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4112    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4113    os::set_memory_serialize_page( mem_serialize_page );
4114
4115#ifndef PRODUCT
4116    if(Verbose && PrintMiscellaneous)
4117      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4118#endif
4119  }
4120
4121  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
4122
4123  // initialize suspend/resume support - must do this before signal_sets_init()
4124  if (SR_initialize() != 0) {
4125    perror("SR_initialize failed");
4126    return JNI_ERR;
4127  }
4128
4129  Linux::signal_sets_init();
4130  Linux::install_signal_handlers();
4131
4132  // Check minimum allowable stack size for thread creation and to initialize
4133  // the java system classes, including StackOverflowError - depends on page
4134  // size.  Add a page for compiler2 recursion in main thread.
4135  // Add in 2*BytesPerWord times page size to account for VM stack during
4136  // class initialization depending on 32 or 64 bit VM.
4137  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4138            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4139                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4140
4141  size_t threadStackSizeInBytes = ThreadStackSize * K;
4142  if (threadStackSizeInBytes != 0 &&
4143      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4144        tty->print_cr("\nThe stack size specified is too small, "
4145                      "Specify at least %dk",
4146                      os::Linux::min_stack_allowed/ K);
4147        return JNI_ERR;
4148  }
4149
4150  // Make the stack size a multiple of the page size so that
4151  // the yellow/red zones can be guarded.
4152  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4153        vm_page_size()));
4154
4155  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4156
4157  Linux::libpthread_init();
4158  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4159     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4160          Linux::glibc_version(), Linux::libpthread_version(),
4161          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4162  }
4163
4164  if (UseNUMA) {
4165    if (!Linux::libnuma_init()) {
4166      UseNUMA = false;
4167    } else {
4168      if ((Linux::numa_max_node() < 1)) {
4169        // There's only one node(they start from 0), disable NUMA.
4170        UseNUMA = false;
4171      }
4172    }
4173    if (!UseNUMA && ForceNUMA) {
4174      UseNUMA = true;
4175    }
4176  }
4177
4178  if (MaxFDLimit) {
4179    // set the number of file descriptors to max. print out error
4180    // if getrlimit/setrlimit fails but continue regardless.
4181    struct rlimit nbr_files;
4182    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4183    if (status != 0) {
4184      if (PrintMiscellaneous && (Verbose || WizardMode))
4185        perror("os::init_2 getrlimit failed");
4186    } else {
4187      nbr_files.rlim_cur = nbr_files.rlim_max;
4188      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4189      if (status != 0) {
4190        if (PrintMiscellaneous && (Verbose || WizardMode))
4191          perror("os::init_2 setrlimit failed");
4192      }
4193    }
4194  }
4195
4196  // Initialize lock used to serialize thread creation (see os::create_thread)
4197  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4198
4199  // at-exit methods are called in the reverse order of their registration.
4200  // atexit functions are called on return from main or as a result of a
4201  // call to exit(3C). There can be only 32 of these functions registered
4202  // and atexit() does not set errno.
4203
4204  if (PerfAllowAtExitRegistration) {
4205    // only register atexit functions if PerfAllowAtExitRegistration is set.
4206    // atexit functions can be delayed until process exit time, which
4207    // can be problematic for embedded VM situations. Embedded VMs should
4208    // call DestroyJavaVM() to assure that VM resources are released.
4209
4210    // note: perfMemory_exit_helper atexit function may be removed in
4211    // the future if the appropriate cleanup code can be added to the
4212    // VM_Exit VMOperation's doit method.
4213    if (atexit(perfMemory_exit_helper) != 0) {
4214      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4215    }
4216  }
4217
4218  // initialize thread priority policy
4219  prio_init();
4220
4221  return JNI_OK;
4222}
4223
4224// this is called at the end of vm_initialization
4225void os::init_3(void) { }
4226
4227// Mark the polling page as unreadable
4228void os::make_polling_page_unreadable(void) {
4229  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4230    fatal("Could not disable polling page");
4231};
4232
4233// Mark the polling page as readable
4234void os::make_polling_page_readable(void) {
4235  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4236    fatal("Could not enable polling page");
4237  }
4238};
4239
4240int os::active_processor_count() {
4241  // Linux doesn't yet have a (official) notion of processor sets,
4242  // so just return the number of online processors.
4243  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4244  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4245  return online_cpus;
4246}
4247
4248bool os::distribute_processes(uint length, uint* distribution) {
4249  // Not yet implemented.
4250  return false;
4251}
4252
4253bool os::bind_to_processor(uint processor_id) {
4254  // Not yet implemented.
4255  return false;
4256}
4257
4258///
4259
4260// Suspends the target using the signal mechanism and then grabs the PC before
4261// resuming the target. Used by the flat-profiler only
4262ExtendedPC os::get_thread_pc(Thread* thread) {
4263  // Make sure that it is called by the watcher for the VMThread
4264  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4265  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4266
4267  ExtendedPC epc;
4268
4269  OSThread* osthread = thread->osthread();
4270  if (do_suspend(osthread)) {
4271    if (osthread->ucontext() != NULL) {
4272      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4273    } else {
4274      // NULL context is unexpected, double-check this is the VMThread
4275      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4276    }
4277    do_resume(osthread);
4278  }
4279  // failure means pthread_kill failed for some reason - arguably this is
4280  // a fatal problem, but such problems are ignored elsewhere
4281
4282  return epc;
4283}
4284
4285int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4286{
4287   if (is_NPTL()) {
4288      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4289   } else {
4290#ifndef IA64
4291      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4292      // word back to default 64bit precision if condvar is signaled. Java
4293      // wants 53bit precision.  Save and restore current value.
4294      int fpu = get_fpu_control_word();
4295#endif // IA64
4296      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4297#ifndef IA64
4298      set_fpu_control_word(fpu);
4299#endif // IA64
4300      return status;
4301   }
4302}
4303
4304////////////////////////////////////////////////////////////////////////////////
4305// debug support
4306
4307static address same_page(address x, address y) {
4308  int page_bits = -os::vm_page_size();
4309  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4310    return x;
4311  else if (x > y)
4312    return (address)(intptr_t(y) | ~page_bits) + 1;
4313  else
4314    return (address)(intptr_t(y) & page_bits);
4315}
4316
4317bool os::find(address addr, outputStream* st) {
4318  Dl_info dlinfo;
4319  memset(&dlinfo, 0, sizeof(dlinfo));
4320  if (dladdr(addr, &dlinfo)) {
4321    st->print(PTR_FORMAT ": ", addr);
4322    if (dlinfo.dli_sname != NULL) {
4323      st->print("%s+%#x", dlinfo.dli_sname,
4324                 addr - (intptr_t)dlinfo.dli_saddr);
4325    } else if (dlinfo.dli_fname) {
4326      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4327    } else {
4328      st->print("<absolute address>");
4329    }
4330    if (dlinfo.dli_fname) {
4331      st->print(" in %s", dlinfo.dli_fname);
4332    }
4333    if (dlinfo.dli_fbase) {
4334      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4335    }
4336    st->cr();
4337
4338    if (Verbose) {
4339      // decode some bytes around the PC
4340      address begin = same_page(addr-40, addr);
4341      address end   = same_page(addr+40, addr);
4342      address       lowest = (address) dlinfo.dli_sname;
4343      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4344      if (begin < lowest)  begin = lowest;
4345      Dl_info dlinfo2;
4346      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4347          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4348        end = (address) dlinfo2.dli_saddr;
4349      Disassembler::decode(begin, end, st);
4350    }
4351    return true;
4352  }
4353  return false;
4354}
4355
4356////////////////////////////////////////////////////////////////////////////////
4357// misc
4358
4359// This does not do anything on Linux. This is basically a hook for being
4360// able to use structured exception handling (thread-local exception filters)
4361// on, e.g., Win32.
4362void
4363os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4364                         JavaCallArguments* args, Thread* thread) {
4365  f(value, method, args, thread);
4366}
4367
4368void os::print_statistics() {
4369}
4370
4371int os::message_box(const char* title, const char* message) {
4372  int i;
4373  fdStream err(defaultStream::error_fd());
4374  for (i = 0; i < 78; i++) err.print_raw("=");
4375  err.cr();
4376  err.print_raw_cr(title);
4377  for (i = 0; i < 78; i++) err.print_raw("-");
4378  err.cr();
4379  err.print_raw_cr(message);
4380  for (i = 0; i < 78; i++) err.print_raw("=");
4381  err.cr();
4382
4383  char buf[16];
4384  // Prevent process from exiting upon "read error" without consuming all CPU
4385  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4386
4387  return buf[0] == 'y' || buf[0] == 'Y';
4388}
4389
4390int os::stat(const char *path, struct stat *sbuf) {
4391  char pathbuf[MAX_PATH];
4392  if (strlen(path) > MAX_PATH - 1) {
4393    errno = ENAMETOOLONG;
4394    return -1;
4395  }
4396  os::native_path(strcpy(pathbuf, path));
4397  return ::stat(pathbuf, sbuf);
4398}
4399
4400bool os::check_heap(bool force) {
4401  return true;
4402}
4403
4404int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4405  return ::vsnprintf(buf, count, format, args);
4406}
4407
4408// Is a (classpath) directory empty?
4409bool os::dir_is_empty(const char* path) {
4410  DIR *dir = NULL;
4411  struct dirent *ptr;
4412
4413  dir = opendir(path);
4414  if (dir == NULL) return true;
4415
4416  /* Scan the directory */
4417  bool result = true;
4418  char buf[sizeof(struct dirent) + MAX_PATH];
4419  while (result && (ptr = ::readdir(dir)) != NULL) {
4420    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4421      result = false;
4422    }
4423  }
4424  closedir(dir);
4425  return result;
4426}
4427
4428// This code originates from JDK's sysOpen and open64_w
4429// from src/solaris/hpi/src/system_md.c
4430
4431#ifndef O_DELETE
4432#define O_DELETE 0x10000
4433#endif
4434
4435// Open a file. Unlink the file immediately after open returns
4436// if the specified oflag has the O_DELETE flag set.
4437// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4438
4439int os::open(const char *path, int oflag, int mode) {
4440
4441  if (strlen(path) > MAX_PATH - 1) {
4442    errno = ENAMETOOLONG;
4443    return -1;
4444  }
4445  int fd;
4446  int o_delete = (oflag & O_DELETE);
4447  oflag = oflag & ~O_DELETE;
4448
4449  fd = ::open64(path, oflag, mode);
4450  if (fd == -1) return -1;
4451
4452  //If the open succeeded, the file might still be a directory
4453  {
4454    struct stat64 buf64;
4455    int ret = ::fstat64(fd, &buf64);
4456    int st_mode = buf64.st_mode;
4457
4458    if (ret != -1) {
4459      if ((st_mode & S_IFMT) == S_IFDIR) {
4460        errno = EISDIR;
4461        ::close(fd);
4462        return -1;
4463      }
4464    } else {
4465      ::close(fd);
4466      return -1;
4467    }
4468  }
4469
4470    /*
4471     * All file descriptors that are opened in the JVM and not
4472     * specifically destined for a subprocess should have the
4473     * close-on-exec flag set.  If we don't set it, then careless 3rd
4474     * party native code might fork and exec without closing all
4475     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4476     * UNIXProcess.c), and this in turn might:
4477     *
4478     * - cause end-of-file to fail to be detected on some file
4479     *   descriptors, resulting in mysterious hangs, or
4480     *
4481     * - might cause an fopen in the subprocess to fail on a system
4482     *   suffering from bug 1085341.
4483     *
4484     * (Yes, the default setting of the close-on-exec flag is a Unix
4485     * design flaw)
4486     *
4487     * See:
4488     * 1085341: 32-bit stdio routines should support file descriptors >255
4489     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4490     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4491     */
4492#ifdef FD_CLOEXEC
4493    {
4494        int flags = ::fcntl(fd, F_GETFD);
4495        if (flags != -1)
4496            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4497    }
4498#endif
4499
4500  if (o_delete != 0) {
4501    ::unlink(path);
4502  }
4503  return fd;
4504}
4505
4506
4507// create binary file, rewriting existing file if required
4508int os::create_binary_file(const char* path, bool rewrite_existing) {
4509  int oflags = O_WRONLY | O_CREAT;
4510  if (!rewrite_existing) {
4511    oflags |= O_EXCL;
4512  }
4513  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4514}
4515
4516// return current position of file pointer
4517jlong os::current_file_offset(int fd) {
4518  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4519}
4520
4521// move file pointer to the specified offset
4522jlong os::seek_to_file_offset(int fd, jlong offset) {
4523  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4524}
4525
4526// This code originates from JDK's sysAvailable
4527// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4528
4529int os::available(int fd, jlong *bytes) {
4530  jlong cur, end;
4531  int mode;
4532  struct stat64 buf64;
4533
4534  if (::fstat64(fd, &buf64) >= 0) {
4535    mode = buf64.st_mode;
4536    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4537      /*
4538      * XXX: is the following call interruptible? If so, this might
4539      * need to go through the INTERRUPT_IO() wrapper as for other
4540      * blocking, interruptible calls in this file.
4541      */
4542      int n;
4543      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4544        *bytes = n;
4545        return 1;
4546      }
4547    }
4548  }
4549  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4550    return 0;
4551  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4552    return 0;
4553  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4554    return 0;
4555  }
4556  *bytes = end - cur;
4557  return 1;
4558}
4559
4560int os::socket_available(int fd, jint *pbytes) {
4561  // Linux doc says EINTR not returned, unlike Solaris
4562  int ret = ::ioctl(fd, FIONREAD, pbytes);
4563
4564  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4565  // is expected to return 0 on failure and 1 on success to the jdk.
4566  return (ret < 0) ? 0 : 1;
4567}
4568
4569// Map a block of memory.
4570char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4571                     char *addr, size_t bytes, bool read_only,
4572                     bool allow_exec) {
4573  int prot;
4574  int flags;
4575
4576  if (read_only) {
4577    prot = PROT_READ;
4578    flags = MAP_SHARED;
4579  } else {
4580    prot = PROT_READ | PROT_WRITE;
4581    flags = MAP_PRIVATE;
4582  }
4583
4584  if (allow_exec) {
4585    prot |= PROT_EXEC;
4586  }
4587
4588  if (addr != NULL) {
4589    flags |= MAP_FIXED;
4590  }
4591
4592  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4593                                     fd, file_offset);
4594  if (mapped_address == MAP_FAILED) {
4595    return NULL;
4596  }
4597  return mapped_address;
4598}
4599
4600
4601// Remap a block of memory.
4602char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4603                       char *addr, size_t bytes, bool read_only,
4604                       bool allow_exec) {
4605  // same as map_memory() on this OS
4606  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4607                        allow_exec);
4608}
4609
4610
4611// Unmap a block of memory.
4612bool os::unmap_memory(char* addr, size_t bytes) {
4613  return munmap(addr, bytes) == 0;
4614}
4615
4616static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4617
4618static clockid_t thread_cpu_clockid(Thread* thread) {
4619  pthread_t tid = thread->osthread()->pthread_id();
4620  clockid_t clockid;
4621
4622  // Get thread clockid
4623  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4624  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4625  return clockid;
4626}
4627
4628// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4629// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4630// of a thread.
4631//
4632// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4633// the fast estimate available on the platform.
4634
4635jlong os::current_thread_cpu_time() {
4636  if (os::Linux::supports_fast_thread_cpu_time()) {
4637    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4638  } else {
4639    // return user + sys since the cost is the same
4640    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4641  }
4642}
4643
4644jlong os::thread_cpu_time(Thread* thread) {
4645  // consistent with what current_thread_cpu_time() returns
4646  if (os::Linux::supports_fast_thread_cpu_time()) {
4647    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4648  } else {
4649    return slow_thread_cpu_time(thread, true /* user + sys */);
4650  }
4651}
4652
4653jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4654  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4655    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4656  } else {
4657    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4658  }
4659}
4660
4661jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4662  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4663    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4664  } else {
4665    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4666  }
4667}
4668
4669//
4670//  -1 on error.
4671//
4672
4673static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4674  static bool proc_pid_cpu_avail = true;
4675  static bool proc_task_unchecked = true;
4676  static const char *proc_stat_path = "/proc/%d/stat";
4677  pid_t  tid = thread->osthread()->thread_id();
4678  int i;
4679  char *s;
4680  char stat[2048];
4681  int statlen;
4682  char proc_name[64];
4683  int count;
4684  long sys_time, user_time;
4685  char string[64];
4686  char cdummy;
4687  int idummy;
4688  long ldummy;
4689  FILE *fp;
4690
4691  // We first try accessing /proc/<pid>/cpu since this is faster to
4692  // process.  If this file is not present (linux kernels 2.5 and above)
4693  // then we open /proc/<pid>/stat.
4694  if ( proc_pid_cpu_avail ) {
4695    sprintf(proc_name, "/proc/%d/cpu", tid);
4696    fp =  fopen(proc_name, "r");
4697    if ( fp != NULL ) {
4698      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4699      fclose(fp);
4700      if ( count != 3 ) return -1;
4701
4702      if (user_sys_cpu_time) {
4703        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4704      } else {
4705        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4706      }
4707    }
4708    else proc_pid_cpu_avail = false;
4709  }
4710
4711  // The /proc/<tid>/stat aggregates per-process usage on
4712  // new Linux kernels 2.6+ where NPTL is supported.
4713  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4714  // See bug 6328462.
4715  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4716  // and possibly in some other cases, so we check its availability.
4717  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4718    // This is executed only once
4719    proc_task_unchecked = false;
4720    fp = fopen("/proc/self/task", "r");
4721    if (fp != NULL) {
4722      proc_stat_path = "/proc/self/task/%d/stat";
4723      fclose(fp);
4724    }
4725  }
4726
4727  sprintf(proc_name, proc_stat_path, tid);
4728  fp = fopen(proc_name, "r");
4729  if ( fp == NULL ) return -1;
4730  statlen = fread(stat, 1, 2047, fp);
4731  stat[statlen] = '\0';
4732  fclose(fp);
4733
4734  // Skip pid and the command string. Note that we could be dealing with
4735  // weird command names, e.g. user could decide to rename java launcher
4736  // to "java 1.4.2 :)", then the stat file would look like
4737  //                1234 (java 1.4.2 :)) R ... ...
4738  // We don't really need to know the command string, just find the last
4739  // occurrence of ")" and then start parsing from there. See bug 4726580.
4740  s = strrchr(stat, ')');
4741  i = 0;
4742  if (s == NULL ) return -1;
4743
4744  // Skip blank chars
4745  do s++; while (isspace(*s));
4746
4747  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4748                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4749                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4750                 &user_time, &sys_time);
4751  if ( count != 13 ) return -1;
4752  if (user_sys_cpu_time) {
4753    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4754  } else {
4755    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4756  }
4757}
4758
4759void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4760  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4761  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4762  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4763  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4764}
4765
4766void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4767  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4768  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4769  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4770  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4771}
4772
4773bool os::is_thread_cpu_time_supported() {
4774  return true;
4775}
4776
4777// System loadavg support.  Returns -1 if load average cannot be obtained.
4778// Linux doesn't yet have a (official) notion of processor sets,
4779// so just return the system wide load average.
4780int os::loadavg(double loadavg[], int nelem) {
4781  return ::getloadavg(loadavg, nelem);
4782}
4783
4784void os::pause() {
4785  char filename[MAX_PATH];
4786  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4787    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4788  } else {
4789    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4790  }
4791
4792  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4793  if (fd != -1) {
4794    struct stat buf;
4795    ::close(fd);
4796    while (::stat(filename, &buf) == 0) {
4797      (void)::poll(NULL, 0, 100);
4798    }
4799  } else {
4800    jio_fprintf(stderr,
4801      "Could not open pause file '%s', continuing immediately.\n", filename);
4802  }
4803}
4804
4805
4806// Refer to the comments in os_solaris.cpp park-unpark.
4807//
4808// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4809// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4810// For specifics regarding the bug see GLIBC BUGID 261237 :
4811//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4812// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4813// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4814// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4815// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4816// and monitorenter when we're using 1-0 locking.  All those operations may result in
4817// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4818// of libpthread avoids the problem, but isn't practical.
4819//
4820// Possible remedies:
4821//
4822// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4823//      This is palliative and probabilistic, however.  If the thread is preempted
4824//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4825//      than the minimum period may have passed, and the abstime may be stale (in the
4826//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4827//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4828//
4829// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4830//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4831//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4832//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4833//      thread.
4834//
4835// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4836//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4837//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4838//      This also works well.  In fact it avoids kernel-level scalability impediments
4839//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4840//      timers in a graceful fashion.
4841//
4842// 4.   When the abstime value is in the past it appears that control returns
4843//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4844//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4845//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4846//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4847//      It may be possible to avoid reinitialization by checking the return
4848//      value from pthread_cond_timedwait().  In addition to reinitializing the
4849//      condvar we must establish the invariant that cond_signal() is only called
4850//      within critical sections protected by the adjunct mutex.  This prevents
4851//      cond_signal() from "seeing" a condvar that's in the midst of being
4852//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4853//      desirable signal-after-unlock optimization that avoids futile context switching.
4854//
4855//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4856//      structure when a condvar is used or initialized.  cond_destroy()  would
4857//      release the helper structure.  Our reinitialize-after-timedwait fix
4858//      put excessive stress on malloc/free and locks protecting the c-heap.
4859//
4860// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4861// It may be possible to refine (4) by checking the kernel and NTPL verisons
4862// and only enabling the work-around for vulnerable environments.
4863
4864// utility to compute the abstime argument to timedwait:
4865// millis is the relative timeout time
4866// abstime will be the absolute timeout time
4867// TODO: replace compute_abstime() with unpackTime()
4868
4869static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4870  if (millis < 0)  millis = 0;
4871  struct timeval now;
4872  int status = gettimeofday(&now, NULL);
4873  assert(status == 0, "gettimeofday");
4874  jlong seconds = millis / 1000;
4875  millis %= 1000;
4876  if (seconds > 50000000) { // see man cond_timedwait(3T)
4877    seconds = 50000000;
4878  }
4879  abstime->tv_sec = now.tv_sec  + seconds;
4880  long       usec = now.tv_usec + millis * 1000;
4881  if (usec >= 1000000) {
4882    abstime->tv_sec += 1;
4883    usec -= 1000000;
4884  }
4885  abstime->tv_nsec = usec * 1000;
4886  return abstime;
4887}
4888
4889
4890// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4891// Conceptually TryPark() should be equivalent to park(0).
4892
4893int os::PlatformEvent::TryPark() {
4894  for (;;) {
4895    const int v = _Event ;
4896    guarantee ((v == 0) || (v == 1), "invariant") ;
4897    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4898  }
4899}
4900
4901void os::PlatformEvent::park() {       // AKA "down()"
4902  // Invariant: Only the thread associated with the Event/PlatformEvent
4903  // may call park().
4904  // TODO: assert that _Assoc != NULL or _Assoc == Self
4905  int v ;
4906  for (;;) {
4907      v = _Event ;
4908      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4909  }
4910  guarantee (v >= 0, "invariant") ;
4911  if (v == 0) {
4912     // Do this the hard way by blocking ...
4913     int status = pthread_mutex_lock(_mutex);
4914     assert_status(status == 0, status, "mutex_lock");
4915     guarantee (_nParked == 0, "invariant") ;
4916     ++ _nParked ;
4917     while (_Event < 0) {
4918        status = pthread_cond_wait(_cond, _mutex);
4919        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4920        // Treat this the same as if the wait was interrupted
4921        if (status == ETIME) { status = EINTR; }
4922        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4923     }
4924     -- _nParked ;
4925
4926    // In theory we could move the ST of 0 into _Event past the unlock(),
4927    // but then we'd need a MEMBAR after the ST.
4928    _Event = 0 ;
4929     status = pthread_mutex_unlock(_mutex);
4930     assert_status(status == 0, status, "mutex_unlock");
4931  }
4932  guarantee (_Event >= 0, "invariant") ;
4933}
4934
4935int os::PlatformEvent::park(jlong millis) {
4936  guarantee (_nParked == 0, "invariant") ;
4937
4938  int v ;
4939  for (;;) {
4940      v = _Event ;
4941      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4942  }
4943  guarantee (v >= 0, "invariant") ;
4944  if (v != 0) return OS_OK ;
4945
4946  // We do this the hard way, by blocking the thread.
4947  // Consider enforcing a minimum timeout value.
4948  struct timespec abst;
4949  compute_abstime(&abst, millis);
4950
4951  int ret = OS_TIMEOUT;
4952  int status = pthread_mutex_lock(_mutex);
4953  assert_status(status == 0, status, "mutex_lock");
4954  guarantee (_nParked == 0, "invariant") ;
4955  ++_nParked ;
4956
4957  // Object.wait(timo) will return because of
4958  // (a) notification
4959  // (b) timeout
4960  // (c) thread.interrupt
4961  //
4962  // Thread.interrupt and object.notify{All} both call Event::set.
4963  // That is, we treat thread.interrupt as a special case of notification.
4964  // The underlying Solaris implementation, cond_timedwait, admits
4965  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4966  // JVM from making those visible to Java code.  As such, we must
4967  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4968  //
4969  // TODO: properly differentiate simultaneous notify+interrupt.
4970  // In that case, we should propagate the notify to another waiter.
4971
4972  while (_Event < 0) {
4973    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4974    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4975      pthread_cond_destroy (_cond);
4976      pthread_cond_init (_cond, NULL) ;
4977    }
4978    assert_status(status == 0 || status == EINTR ||
4979                  status == ETIME || status == ETIMEDOUT,
4980                  status, "cond_timedwait");
4981    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4982    if (status == ETIME || status == ETIMEDOUT) break ;
4983    // We consume and ignore EINTR and spurious wakeups.
4984  }
4985  --_nParked ;
4986  if (_Event >= 0) {
4987     ret = OS_OK;
4988  }
4989  _Event = 0 ;
4990  status = pthread_mutex_unlock(_mutex);
4991  assert_status(status == 0, status, "mutex_unlock");
4992  assert (_nParked == 0, "invariant") ;
4993  return ret;
4994}
4995
4996void os::PlatformEvent::unpark() {
4997  int v, AnyWaiters ;
4998  for (;;) {
4999      v = _Event ;
5000      if (v > 0) {
5001         // The LD of _Event could have reordered or be satisfied
5002         // by a read-aside from this processor's write buffer.
5003         // To avoid problems execute a barrier and then
5004         // ratify the value.
5005         OrderAccess::fence() ;
5006         if (_Event == v) return ;
5007         continue ;
5008      }
5009      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5010  }
5011  if (v < 0) {
5012     // Wait for the thread associated with the event to vacate
5013     int status = pthread_mutex_lock(_mutex);
5014     assert_status(status == 0, status, "mutex_lock");
5015     AnyWaiters = _nParked ;
5016     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5017     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5018        AnyWaiters = 0 ;
5019        pthread_cond_signal (_cond);
5020     }
5021     status = pthread_mutex_unlock(_mutex);
5022     assert_status(status == 0, status, "mutex_unlock");
5023     if (AnyWaiters != 0) {
5024        status = pthread_cond_signal(_cond);
5025        assert_status(status == 0, status, "cond_signal");
5026     }
5027  }
5028
5029  // Note that we signal() _after dropping the lock for "immortal" Events.
5030  // This is safe and avoids a common class of  futile wakeups.  In rare
5031  // circumstances this can cause a thread to return prematurely from
5032  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5033  // simply re-test the condition and re-park itself.
5034}
5035
5036
5037// JSR166
5038// -------------------------------------------------------
5039
5040/*
5041 * The solaris and linux implementations of park/unpark are fairly
5042 * conservative for now, but can be improved. They currently use a
5043 * mutex/condvar pair, plus a a count.
5044 * Park decrements count if > 0, else does a condvar wait.  Unpark
5045 * sets count to 1 and signals condvar.  Only one thread ever waits
5046 * on the condvar. Contention seen when trying to park implies that someone
5047 * is unparking you, so don't wait. And spurious returns are fine, so there
5048 * is no need to track notifications.
5049 */
5050
5051
5052#define NANOSECS_PER_SEC 1000000000
5053#define NANOSECS_PER_MILLISEC 1000000
5054#define MAX_SECS 100000000
5055/*
5056 * This code is common to linux and solaris and will be moved to a
5057 * common place in dolphin.
5058 *
5059 * The passed in time value is either a relative time in nanoseconds
5060 * or an absolute time in milliseconds. Either way it has to be unpacked
5061 * into suitable seconds and nanoseconds components and stored in the
5062 * given timespec structure.
5063 * Given time is a 64-bit value and the time_t used in the timespec is only
5064 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5065 * overflow if times way in the future are given. Further on Solaris versions
5066 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5067 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5068 * As it will be 28 years before "now + 100000000" will overflow we can
5069 * ignore overflow and just impose a hard-limit on seconds using the value
5070 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5071 * years from "now".
5072 */
5073
5074static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5075  assert (time > 0, "convertTime");
5076
5077  struct timeval now;
5078  int status = gettimeofday(&now, NULL);
5079  assert(status == 0, "gettimeofday");
5080
5081  time_t max_secs = now.tv_sec + MAX_SECS;
5082
5083  if (isAbsolute) {
5084    jlong secs = time / 1000;
5085    if (secs > max_secs) {
5086      absTime->tv_sec = max_secs;
5087    }
5088    else {
5089      absTime->tv_sec = secs;
5090    }
5091    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5092  }
5093  else {
5094    jlong secs = time / NANOSECS_PER_SEC;
5095    if (secs >= MAX_SECS) {
5096      absTime->tv_sec = max_secs;
5097      absTime->tv_nsec = 0;
5098    }
5099    else {
5100      absTime->tv_sec = now.tv_sec + secs;
5101      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5102      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5103        absTime->tv_nsec -= NANOSECS_PER_SEC;
5104        ++absTime->tv_sec; // note: this must be <= max_secs
5105      }
5106    }
5107  }
5108  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5109  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5110  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5111  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5112}
5113
5114void Parker::park(bool isAbsolute, jlong time) {
5115  // Optional fast-path check:
5116  // Return immediately if a permit is available.
5117  if (_counter > 0) {
5118      _counter = 0 ;
5119      OrderAccess::fence();
5120      return ;
5121  }
5122
5123  Thread* thread = Thread::current();
5124  assert(thread->is_Java_thread(), "Must be JavaThread");
5125  JavaThread *jt = (JavaThread *)thread;
5126
5127  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5128  // Check interrupt before trying to wait
5129  if (Thread::is_interrupted(thread, false)) {
5130    return;
5131  }
5132
5133  // Next, demultiplex/decode time arguments
5134  timespec absTime;
5135  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5136    return;
5137  }
5138  if (time > 0) {
5139    unpackTime(&absTime, isAbsolute, time);
5140  }
5141
5142
5143  // Enter safepoint region
5144  // Beware of deadlocks such as 6317397.
5145  // The per-thread Parker:: mutex is a classic leaf-lock.
5146  // In particular a thread must never block on the Threads_lock while
5147  // holding the Parker:: mutex.  If safepoints are pending both the
5148  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5149  ThreadBlockInVM tbivm(jt);
5150
5151  // Don't wait if cannot get lock since interference arises from
5152  // unblocking.  Also. check interrupt before trying wait
5153  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5154    return;
5155  }
5156
5157  int status ;
5158  if (_counter > 0)  { // no wait needed
5159    _counter = 0;
5160    status = pthread_mutex_unlock(_mutex);
5161    assert (status == 0, "invariant") ;
5162    OrderAccess::fence();
5163    return;
5164  }
5165
5166#ifdef ASSERT
5167  // Don't catch signals while blocked; let the running threads have the signals.
5168  // (This allows a debugger to break into the running thread.)
5169  sigset_t oldsigs;
5170  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5171  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5172#endif
5173
5174  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5175  jt->set_suspend_equivalent();
5176  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5177
5178  if (time == 0) {
5179    status = pthread_cond_wait (_cond, _mutex) ;
5180  } else {
5181    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5182    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5183      pthread_cond_destroy (_cond) ;
5184      pthread_cond_init    (_cond, NULL);
5185    }
5186  }
5187  assert_status(status == 0 || status == EINTR ||
5188                status == ETIME || status == ETIMEDOUT,
5189                status, "cond_timedwait");
5190
5191#ifdef ASSERT
5192  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5193#endif
5194
5195  _counter = 0 ;
5196  status = pthread_mutex_unlock(_mutex) ;
5197  assert_status(status == 0, status, "invariant") ;
5198  // If externally suspended while waiting, re-suspend
5199  if (jt->handle_special_suspend_equivalent_condition()) {
5200    jt->java_suspend_self();
5201  }
5202
5203  OrderAccess::fence();
5204}
5205
5206void Parker::unpark() {
5207  int s, status ;
5208  status = pthread_mutex_lock(_mutex);
5209  assert (status == 0, "invariant") ;
5210  s = _counter;
5211  _counter = 1;
5212  if (s < 1) {
5213     if (WorkAroundNPTLTimedWaitHang) {
5214        status = pthread_cond_signal (_cond) ;
5215        assert (status == 0, "invariant") ;
5216        status = pthread_mutex_unlock(_mutex);
5217        assert (status == 0, "invariant") ;
5218     } else {
5219        status = pthread_mutex_unlock(_mutex);
5220        assert (status == 0, "invariant") ;
5221        status = pthread_cond_signal (_cond) ;
5222        assert (status == 0, "invariant") ;
5223     }
5224  } else {
5225    pthread_mutex_unlock(_mutex);
5226    assert (status == 0, "invariant") ;
5227  }
5228}
5229
5230
5231extern char** environ;
5232
5233#ifndef __NR_fork
5234#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5235#endif
5236
5237#ifndef __NR_execve
5238#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5239#endif
5240
5241// Run the specified command in a separate process. Return its exit value,
5242// or -1 on failure (e.g. can't fork a new process).
5243// Unlike system(), this function can be called from signal handler. It
5244// doesn't block SIGINT et al.
5245int os::fork_and_exec(char* cmd) {
5246  const char * argv[4] = {"sh", "-c", cmd, NULL};
5247
5248  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5249  // pthread_atfork handlers and reset pthread library. All we need is a
5250  // separate process to execve. Make a direct syscall to fork process.
5251  // On IA64 there's no fork syscall, we have to use fork() and hope for
5252  // the best...
5253  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5254              IA64_ONLY(fork();)
5255
5256  if (pid < 0) {
5257    // fork failed
5258    return -1;
5259
5260  } else if (pid == 0) {
5261    // child process
5262
5263    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5264    // first to kill every thread on the thread list. Because this list is
5265    // not reset by fork() (see notes above), execve() will instead kill
5266    // every thread in the parent process. We know this is the only thread
5267    // in the new process, so make a system call directly.
5268    // IA64 should use normal execve() from glibc to match the glibc fork()
5269    // above.
5270    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5271    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5272
5273    // execve failed
5274    _exit(-1);
5275
5276  } else  {
5277    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5278    // care about the actual exit code, for now.
5279
5280    int status;
5281
5282    // Wait for the child process to exit.  This returns immediately if
5283    // the child has already exited. */
5284    while (waitpid(pid, &status, 0) < 0) {
5285        switch (errno) {
5286        case ECHILD: return 0;
5287        case EINTR: break;
5288        default: return -1;
5289        }
5290    }
5291
5292    if (WIFEXITED(status)) {
5293       // The child exited normally; get its exit code.
5294       return WEXITSTATUS(status);
5295    } else if (WIFSIGNALED(status)) {
5296       // The child exited because of a signal
5297       // The best value to return is 0x80 + signal number,
5298       // because that is what all Unix shells do, and because
5299       // it allows callers to distinguish between process exit and
5300       // process death by signal.
5301       return 0x80 + WTERMSIG(status);
5302    } else {
5303       // Unknown exit code; pass it through
5304       return status;
5305    }
5306  }
5307}
5308
5309// is_headless_jre()
5310//
5311// Test for the existence of libmawt in motif21 or xawt directories
5312// in order to report if we are running in a headless jre
5313//
5314bool os::is_headless_jre() {
5315    struct stat statbuf;
5316    char buf[MAXPATHLEN];
5317    char libmawtpath[MAXPATHLEN];
5318    const char *xawtstr  = "/xawt/libmawt.so";
5319    const char *motifstr = "/motif21/libmawt.so";
5320    char *p;
5321
5322    // Get path to libjvm.so
5323    os::jvm_path(buf, sizeof(buf));
5324
5325    // Get rid of libjvm.so
5326    p = strrchr(buf, '/');
5327    if (p == NULL) return false;
5328    else *p = '\0';
5329
5330    // Get rid of client or server
5331    p = strrchr(buf, '/');
5332    if (p == NULL) return false;
5333    else *p = '\0';
5334
5335    // check xawt/libmawt.so
5336    strcpy(libmawtpath, buf);
5337    strcat(libmawtpath, xawtstr);
5338    if (::stat(libmawtpath, &statbuf) == 0) return false;
5339
5340    // check motif21/libmawt.so
5341    strcpy(libmawtpath, buf);
5342    strcat(libmawtpath, motifstr);
5343    if (::stat(libmawtpath, &statbuf) == 0) return false;
5344
5345    return true;
5346}
5347
5348