os_linux.cpp revision 20:e195fe4c40c7
1/*
2 * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// do not include  precompiled  header file
26# include "incls/_os_linux.cpp.incl"
27
28// put OS-includes here
29# include <sys/types.h>
30# include <sys/mman.h>
31# include <pthread.h>
32# include <signal.h>
33# include <errno.h>
34# include <dlfcn.h>
35# include <stdio.h>
36# include <unistd.h>
37# include <sys/resource.h>
38# include <pthread.h>
39# include <sys/stat.h>
40# include <sys/time.h>
41# include <sys/times.h>
42# include <sys/utsname.h>
43# include <sys/socket.h>
44# include <sys/wait.h>
45# include <pwd.h>
46# include <poll.h>
47# include <semaphore.h>
48# include <fcntl.h>
49# include <string.h>
50# include <syscall.h>
51# include <sys/sysinfo.h>
52# include <gnu/libc-version.h>
53# include <sys/ipc.h>
54# include <sys/shm.h>
55# include <link.h>
56
57#define MAX_PATH    (2 * K)
58
59// for timer info max values which include all bits
60#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
61#define SEC_IN_NANOSECS  1000000000LL
62
63////////////////////////////////////////////////////////////////////////////////
64// global variables
65julong os::Linux::_physical_memory = 0;
66
67address   os::Linux::_initial_thread_stack_bottom = NULL;
68uintptr_t os::Linux::_initial_thread_stack_size   = 0;
69
70int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
71int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
72Mutex* os::Linux::_createThread_lock = NULL;
73pthread_t os::Linux::_main_thread;
74int os::Linux::_page_size = -1;
75bool os::Linux::_is_floating_stack = false;
76bool os::Linux::_is_NPTL = false;
77bool os::Linux::_supports_fast_thread_cpu_time = false;
78char * os::Linux::_glibc_version = NULL;
79char * os::Linux::_libpthread_version = NULL;
80
81static jlong initial_time_count=0;
82
83static int clock_tics_per_sec = 100;
84
85// For diagnostics to print a message once. see run_periodic_checks
86static sigset_t check_signal_done;
87static bool check_signals = true;;
88
89static pid_t _initial_pid = 0;
90
91/* Signal number used to suspend/resume a thread */
92
93/* do not use any signal number less than SIGSEGV, see 4355769 */
94static int SR_signum = SIGUSR2;
95sigset_t SR_sigset;
96
97////////////////////////////////////////////////////////////////////////////////
98// utility functions
99
100static int SR_initialize();
101static int SR_finalize();
102
103julong os::available_memory() {
104  return Linux::available_memory();
105}
106
107julong os::Linux::available_memory() {
108  // values in struct sysinfo are "unsigned long"
109  struct sysinfo si;
110  sysinfo(&si);
111
112  return (julong)si.freeram * si.mem_unit;
113}
114
115julong os::physical_memory() {
116  return Linux::physical_memory();
117}
118
119julong os::allocatable_physical_memory(julong size) {
120#ifdef _LP64
121  return size;
122#else
123  julong result = MIN2(size, (julong)3800*M);
124   if (!is_allocatable(result)) {
125     // See comments under solaris for alignment considerations
126     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
127     result =  MIN2(size, reasonable_size);
128   }
129   return result;
130#endif // _LP64
131}
132
133////////////////////////////////////////////////////////////////////////////////
134// environment support
135
136bool os::getenv(const char* name, char* buf, int len) {
137  const char* val = ::getenv(name);
138  if (val != NULL && strlen(val) < (size_t)len) {
139    strcpy(buf, val);
140    return true;
141  }
142  if (len > 0) buf[0] = 0;  // return a null string
143  return false;
144}
145
146
147// Return true if user is running as root.
148
149bool os::have_special_privileges() {
150  static bool init = false;
151  static bool privileges = false;
152  if (!init) {
153    privileges = (getuid() != geteuid()) || (getgid() != getegid());
154    init = true;
155  }
156  return privileges;
157}
158
159
160#ifndef SYS_gettid
161// i386: 224, ia64: 1105, amd64: 186, sparc 143
162#ifdef __ia64__
163#define SYS_gettid 1105
164#elif __i386__
165#define SYS_gettid 224
166#elif __amd64__
167#define SYS_gettid 186
168#elif __sparc__
169#define SYS_gettid 143
170#else
171#error define gettid for the arch
172#endif
173#endif
174
175// Cpu architecture string
176#if   defined(IA64)
177static char cpu_arch[] = "ia64";
178#elif defined(IA32)
179static char cpu_arch[] = "i386";
180#elif defined(AMD64)
181static char cpu_arch[] = "amd64";
182#elif defined(SPARC)
183#  ifdef _LP64
184static char cpu_arch[] = "sparcv9";
185#  else
186static char cpu_arch[] = "sparc";
187#  endif
188#else
189#error Add appropriate cpu_arch setting
190#endif
191
192
193// pid_t gettid()
194//
195// Returns the kernel thread id of the currently running thread. Kernel
196// thread id is used to access /proc.
197//
198// (Note that getpid() on LinuxThreads returns kernel thread id too; but
199// on NPTL, it returns the same pid for all threads, as required by POSIX.)
200//
201pid_t os::Linux::gettid() {
202  int rslt = syscall(SYS_gettid);
203  if (rslt == -1) {
204     // old kernel, no NPTL support
205     return getpid();
206  } else {
207     return (pid_t)rslt;
208  }
209}
210
211// Most versions of linux have a bug where the number of processors are
212// determined by looking at the /proc file system.  In a chroot environment,
213// the system call returns 1.  This causes the VM to act as if it is
214// a single processor and elide locking (see is_MP() call).
215static bool unsafe_chroot_detected = false;
216static char *unstable_chroot_error = "/proc file system not found.\n"
217              "Java may be unstable running multithreaded in a chroot "
218              "environment on Linux when /proc filesystem is not mounted.";
219
220void os::Linux::initialize_system_info() {
221  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
222  if (_processor_count == 1) {
223    pid_t pid = os::Linux::gettid();
224    char fname[32];
225    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
226    FILE *fp = fopen(fname, "r");
227    if (fp == NULL) {
228      unsafe_chroot_detected = true;
229    } else {
230      fclose(fp);
231    }
232  }
233  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
234  assert(_processor_count > 0, "linux error");
235}
236
237void os::init_system_properties_values() {
238//  char arch[12];
239//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
240
241  // The next steps are taken in the product version:
242  //
243  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
244  // This library should be located at:
245  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
246  //
247  // If "/jre/lib/" appears at the right place in the path, then we
248  // assume libjvm[_g].so is installed in a JDK and we use this path.
249  //
250  // Otherwise exit with message: "Could not create the Java virtual machine."
251  //
252  // The following extra steps are taken in the debugging version:
253  //
254  // If "/jre/lib/" does NOT appear at the right place in the path
255  // instead of exit check for $JAVA_HOME environment variable.
256  //
257  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
258  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
259  // it looks like libjvm[_g].so is installed there
260  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
261  //
262  // Otherwise exit.
263  //
264  // Important note: if the location of libjvm.so changes this
265  // code needs to be changed accordingly.
266
267  // The next few definitions allow the code to be verbatim:
268#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
269#define getenv(n) ::getenv(n)
270
271/*
272 * See ld(1):
273 *      The linker uses the following search paths to locate required
274 *      shared libraries:
275 *        1: ...
276 *        ...
277 *        7: The default directories, normally /lib and /usr/lib.
278 */
279#define DEFAULT_LIBPATH "/lib:/usr/lib"
280
281#define EXTENSIONS_DIR  "/lib/ext"
282#define ENDORSED_DIR    "/lib/endorsed"
283#define REG_DIR         "/usr/java/packages"
284
285  {
286    /* sysclasspath, java_home, dll_dir */
287    {
288        char *home_path;
289        char *dll_path;
290        char *pslash;
291        char buf[MAXPATHLEN];
292        os::jvm_path(buf, sizeof(buf));
293
294        // Found the full path to libjvm.so.
295        // Now cut the path to <java_home>/jre if we can.
296        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
297        pslash = strrchr(buf, '/');
298        if (pslash != NULL)
299            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
300        dll_path = malloc(strlen(buf) + 1);
301        if (dll_path == NULL)
302            return;
303        strcpy(dll_path, buf);
304        Arguments::set_dll_dir(dll_path);
305
306        if (pslash != NULL) {
307            pslash = strrchr(buf, '/');
308            if (pslash != NULL) {
309                *pslash = '\0';       /* get rid of /<arch> */
310                pslash = strrchr(buf, '/');
311                if (pslash != NULL)
312                    *pslash = '\0';   /* get rid of /lib */
313            }
314        }
315
316        home_path = malloc(strlen(buf) + 1);
317        if (home_path == NULL)
318            return;
319        strcpy(home_path, buf);
320        Arguments::set_java_home(home_path);
321
322        if (!set_boot_path('/', ':'))
323            return;
324    }
325
326    /*
327     * Where to look for native libraries
328     *
329     * Note: Due to a legacy implementation, most of the library path
330     * is set in the launcher.  This was to accomodate linking restrictions
331     * on legacy Linux implementations (which are no longer supported).
332     * Eventually, all the library path setting will be done here.
333     *
334     * However, to prevent the proliferation of improperly built native
335     * libraries, the new path component /usr/java/packages is added here.
336     * Eventually, all the library path setting will be done here.
337     */
338    {
339        char *ld_library_path;
340
341        /*
342         * Construct the invariant part of ld_library_path. Note that the
343         * space for the colon and the trailing null are provided by the
344         * nulls included by the sizeof operator (so actually we allocate
345         * a byte more than necessary).
346         */
347        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
348            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
349        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
350
351        /*
352         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
353         * should always exist (until the legacy problem cited above is
354         * addressed).
355         */
356        char *v = getenv("LD_LIBRARY_PATH");
357        if (v != NULL) {
358            char *t = ld_library_path;
359            /* That's +1 for the colon and +1 for the trailing '\0' */
360            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
361            sprintf(ld_library_path, "%s:%s", v, t);
362        }
363        Arguments::set_library_path(ld_library_path);
364    }
365
366    /*
367     * Extensions directories.
368     *
369     * Note that the space for the colon and the trailing null are provided
370     * by the nulls included by the sizeof operator (so actually one byte more
371     * than necessary is allocated).
372     */
373    {
374        char *buf = malloc(strlen(Arguments::get_java_home()) +
375            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
376        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
377            Arguments::get_java_home());
378        Arguments::set_ext_dirs(buf);
379    }
380
381    /* Endorsed standards default directory. */
382    {
383        char * buf;
384        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
385        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
386        Arguments::set_endorsed_dirs(buf);
387    }
388  }
389
390#undef malloc
391#undef getenv
392#undef EXTENSIONS_DIR
393#undef ENDORSED_DIR
394
395  // Done
396  return;
397}
398
399////////////////////////////////////////////////////////////////////////////////
400// breakpoint support
401
402void os::breakpoint() {
403  BREAKPOINT;
404}
405
406extern "C" void breakpoint() {
407  // use debugger to set breakpoint here
408}
409
410////////////////////////////////////////////////////////////////////////////////
411// signal support
412
413debug_only(static bool signal_sets_initialized = false);
414static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
415
416bool os::Linux::is_sig_ignored(int sig) {
417      struct sigaction oact;
418      sigaction(sig, (struct sigaction*)NULL, &oact);
419      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
420                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
421      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
422           return true;
423      else
424           return false;
425}
426
427void os::Linux::signal_sets_init() {
428  // Should also have an assertion stating we are still single-threaded.
429  assert(!signal_sets_initialized, "Already initialized");
430  // Fill in signals that are necessarily unblocked for all threads in
431  // the VM. Currently, we unblock the following signals:
432  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
433  //                         by -Xrs (=ReduceSignalUsage));
434  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
435  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
436  // the dispositions or masks wrt these signals.
437  // Programs embedding the VM that want to use the above signals for their
438  // own purposes must, at this time, use the "-Xrs" option to prevent
439  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
440  // (See bug 4345157, and other related bugs).
441  // In reality, though, unblocking these signals is really a nop, since
442  // these signals are not blocked by default.
443  sigemptyset(&unblocked_sigs);
444  sigemptyset(&allowdebug_blocked_sigs);
445  sigaddset(&unblocked_sigs, SIGILL);
446  sigaddset(&unblocked_sigs, SIGSEGV);
447  sigaddset(&unblocked_sigs, SIGBUS);
448  sigaddset(&unblocked_sigs, SIGFPE);
449  sigaddset(&unblocked_sigs, SR_signum);
450
451  if (!ReduceSignalUsage) {
452   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
453      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
454      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
455   }
456   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
457      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
458      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
459   }
460   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
461      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
462      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
463   }
464  }
465  // Fill in signals that are blocked by all but the VM thread.
466  sigemptyset(&vm_sigs);
467  if (!ReduceSignalUsage)
468    sigaddset(&vm_sigs, BREAK_SIGNAL);
469  debug_only(signal_sets_initialized = true);
470
471}
472
473// These are signals that are unblocked while a thread is running Java.
474// (For some reason, they get blocked by default.)
475sigset_t* os::Linux::unblocked_signals() {
476  assert(signal_sets_initialized, "Not initialized");
477  return &unblocked_sigs;
478}
479
480// These are the signals that are blocked while a (non-VM) thread is
481// running Java. Only the VM thread handles these signals.
482sigset_t* os::Linux::vm_signals() {
483  assert(signal_sets_initialized, "Not initialized");
484  return &vm_sigs;
485}
486
487// These are signals that are blocked during cond_wait to allow debugger in
488sigset_t* os::Linux::allowdebug_blocked_signals() {
489  assert(signal_sets_initialized, "Not initialized");
490  return &allowdebug_blocked_sigs;
491}
492
493void os::Linux::hotspot_sigmask(Thread* thread) {
494
495  //Save caller's signal mask before setting VM signal mask
496  sigset_t caller_sigmask;
497  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
498
499  OSThread* osthread = thread->osthread();
500  osthread->set_caller_sigmask(caller_sigmask);
501
502  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
503
504  if (!ReduceSignalUsage) {
505    if (thread->is_VM_thread()) {
506      // Only the VM thread handles BREAK_SIGNAL ...
507      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
508    } else {
509      // ... all other threads block BREAK_SIGNAL
510      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
511    }
512  }
513}
514
515//////////////////////////////////////////////////////////////////////////////
516// detecting pthread library
517
518void os::Linux::libpthread_init() {
519  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
520  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
521  // generic name for earlier versions.
522  // Define macros here so we can build HotSpot on old systems.
523# ifndef _CS_GNU_LIBC_VERSION
524# define _CS_GNU_LIBC_VERSION 2
525# endif
526# ifndef _CS_GNU_LIBPTHREAD_VERSION
527# define _CS_GNU_LIBPTHREAD_VERSION 3
528# endif
529
530  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
531  if (n > 0) {
532     char *str = (char *)malloc(n);
533     confstr(_CS_GNU_LIBC_VERSION, str, n);
534     os::Linux::set_glibc_version(str);
535  } else {
536     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
537     static char _gnu_libc_version[32];
538     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
539              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
540     os::Linux::set_glibc_version(_gnu_libc_version);
541  }
542
543  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
544  if (n > 0) {
545     char *str = (char *)malloc(n);
546     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
547
548     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
549     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
550     // is the case:
551     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
552         strstr(str, "NPTL")) {
553        // LinuxThreads has a hard limit on max number of threads. So
554        // sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
555        // On the other hand, NPTL does not have such a limit, sysconf()
556        // will return -1 and errno is not changed. Check if it is really
557        // NPTL:
558        if (sysconf(_SC_THREAD_THREADS_MAX) > 0) {
559           free(str);
560           str = "linuxthreads";
561        }
562     }
563     os::Linux::set_libpthread_version(str);
564  } else {
565     // glibc before 2.3.2 only has LinuxThreads.
566     os::Linux::set_libpthread_version("linuxthreads");
567  }
568
569  if (strstr(libpthread_version(), "NPTL")) {
570     os::Linux::set_is_NPTL();
571  } else {
572     os::Linux::set_is_LinuxThreads();
573  }
574
575  // LinuxThreads have two flavors: floating-stack mode, which allows variable
576  // stack size; and fixed-stack mode. NPTL is always floating-stack.
577  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
578     os::Linux::set_is_floating_stack();
579  }
580}
581
582/////////////////////////////////////////////////////////////////////////////
583// thread stack
584
585// Force Linux kernel to expand current thread stack. If "bottom" is close
586// to the stack guard, caller should block all signals.
587//
588// MAP_GROWSDOWN:
589//   A special mmap() flag that is used to implement thread stacks. It tells
590//   kernel that the memory region should extend downwards when needed. This
591//   allows early versions of LinuxThreads to only mmap the first few pages
592//   when creating a new thread. Linux kernel will automatically expand thread
593//   stack as needed (on page faults).
594//
595//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
596//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
597//   region, it's hard to tell if the fault is due to a legitimate stack
598//   access or because of reading/writing non-exist memory (e.g. buffer
599//   overrun). As a rule, if the fault happens below current stack pointer,
600//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
601//   application (see Linux kernel fault.c).
602//
603//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
604//   stack overflow detection.
605//
606//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
607//   not use this flag. However, the stack of initial thread is not created
608//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
609//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
610//   and then attach the thread to JVM.
611//
612// To get around the problem and allow stack banging on Linux, we need to
613// manually expand thread stack after receiving the SIGSEGV.
614//
615// There are two ways to expand thread stack to address "bottom", we used
616// both of them in JVM before 1.5:
617//   1. adjust stack pointer first so that it is below "bottom", and then
618//      touch "bottom"
619//   2. mmap() the page in question
620//
621// Now alternate signal stack is gone, it's harder to use 2. For instance,
622// if current sp is already near the lower end of page 101, and we need to
623// call mmap() to map page 100, it is possible that part of the mmap() frame
624// will be placed in page 100. When page 100 is mapped, it is zero-filled.
625// That will destroy the mmap() frame and cause VM to crash.
626//
627// The following code works by adjusting sp first, then accessing the "bottom"
628// page to force a page fault. Linux kernel will then automatically expand the
629// stack mapping.
630//
631// _expand_stack_to() assumes its frame size is less than page size, which
632// should always be true if the function is not inlined.
633
634#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
635#define NOINLINE
636#else
637#define NOINLINE __attribute__ ((noinline))
638#endif
639
640static void _expand_stack_to(address bottom) NOINLINE;
641
642static void _expand_stack_to(address bottom) {
643  address sp;
644  size_t size;
645  volatile char *p;
646
647  // Adjust bottom to point to the largest address within the same page, it
648  // gives us a one-page buffer if alloca() allocates slightly more memory.
649  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
650  bottom += os::Linux::page_size() - 1;
651
652  // sp might be slightly above current stack pointer; if that's the case, we
653  // will alloca() a little more space than necessary, which is OK. Don't use
654  // os::current_stack_pointer(), as its result can be slightly below current
655  // stack pointer, causing us to not alloca enough to reach "bottom".
656  sp = (address)&sp;
657
658  if (sp > bottom) {
659    size = sp - bottom;
660    p = (volatile char *)alloca(size);
661    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
662    p[0] = '\0';
663  }
664}
665
666bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
667  assert(t!=NULL, "just checking");
668  assert(t->osthread()->expanding_stack(), "expand should be set");
669  assert(t->stack_base() != NULL, "stack_base was not initialized");
670
671  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
672    sigset_t mask_all, old_sigset;
673    sigfillset(&mask_all);
674    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
675    _expand_stack_to(addr);
676    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
677    return true;
678  }
679  return false;
680}
681
682//////////////////////////////////////////////////////////////////////////////
683// create new thread
684
685static address highest_vm_reserved_address();
686
687// check if it's safe to start a new thread
688static bool _thread_safety_check(Thread* thread) {
689  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
690    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
691    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
692    //   allocated (MAP_FIXED) from high address space. Every thread stack
693    //   occupies a fixed size slot (usually 2Mbytes, but user can change
694    //   it to other values if they rebuild LinuxThreads).
695    //
696    // Problem with MAP_FIXED is that mmap() can still succeed even part of
697    // the memory region has already been mmap'ed. That means if we have too
698    // many threads and/or very large heap, eventually thread stack will
699    // collide with heap.
700    //
701    // Here we try to prevent heap/stack collision by comparing current
702    // stack bottom with the highest address that has been mmap'ed by JVM
703    // plus a safety margin for memory maps created by native code.
704    //
705    // This feature can be disabled by setting ThreadSafetyMargin to 0
706    //
707    if (ThreadSafetyMargin > 0) {
708      address stack_bottom = os::current_stack_base() - os::current_stack_size();
709
710      // not safe if our stack extends below the safety margin
711      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
712    } else {
713      return true;
714    }
715  } else {
716    // Floating stack LinuxThreads or NPTL:
717    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
718    //   there's not enough space left, pthread_create() will fail. If we come
719    //   here, that means enough space has been reserved for stack.
720    return true;
721  }
722}
723
724// Thread start routine for all newly created threads
725static void *java_start(Thread *thread) {
726  // Try to randomize the cache line index of hot stack frames.
727  // This helps when threads of the same stack traces evict each other's
728  // cache lines. The threads can be either from the same JVM instance, or
729  // from different JVM instances. The benefit is especially true for
730  // processors with hyperthreading technology.
731  static int counter = 0;
732  int pid = os::current_process_id();
733  alloca(((pid ^ counter++) & 7) * 128);
734
735  ThreadLocalStorage::set_thread(thread);
736
737  OSThread* osthread = thread->osthread();
738  Monitor* sync = osthread->startThread_lock();
739
740  // non floating stack LinuxThreads needs extra check, see above
741  if (!_thread_safety_check(thread)) {
742    // notify parent thread
743    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
744    osthread->set_state(ZOMBIE);
745    sync->notify_all();
746    return NULL;
747  }
748
749  // thread_id is kernel thread id (similar to Solaris LWP id)
750  osthread->set_thread_id(os::Linux::gettid());
751
752  if (UseNUMA) {
753    int lgrp_id = os::numa_get_group_id();
754    if (lgrp_id != -1) {
755      thread->set_lgrp_id(lgrp_id);
756    }
757  }
758  // initialize signal mask for this thread
759  os::Linux::hotspot_sigmask(thread);
760
761  // initialize floating point control register
762  os::Linux::init_thread_fpu_state();
763
764  // handshaking with parent thread
765  {
766    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
767
768    // notify parent thread
769    osthread->set_state(INITIALIZED);
770    sync->notify_all();
771
772    // wait until os::start_thread()
773    while (osthread->get_state() == INITIALIZED) {
774      sync->wait(Mutex::_no_safepoint_check_flag);
775    }
776  }
777
778  // call one more level start routine
779  thread->run();
780
781  return 0;
782}
783
784bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
785  assert(thread->osthread() == NULL, "caller responsible");
786
787  // Allocate the OSThread object
788  OSThread* osthread = new OSThread(NULL, NULL);
789  if (osthread == NULL) {
790    return false;
791  }
792
793  // set the correct thread state
794  osthread->set_thread_type(thr_type);
795
796  // Initial state is ALLOCATED but not INITIALIZED
797  osthread->set_state(ALLOCATED);
798
799  thread->set_osthread(osthread);
800
801  // init thread attributes
802  pthread_attr_t attr;
803  pthread_attr_init(&attr);
804  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
805
806  // stack size
807  if (os::Linux::supports_variable_stack_size()) {
808    // calculate stack size if it's not specified by caller
809    if (stack_size == 0) {
810      stack_size = os::Linux::default_stack_size(thr_type);
811
812      switch (thr_type) {
813      case os::java_thread:
814        // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
815        if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
816        break;
817      case os::compiler_thread:
818        if (CompilerThreadStackSize > 0) {
819          stack_size = (size_t)(CompilerThreadStackSize * K);
820          break;
821        } // else fall through:
822          // use VMThreadStackSize if CompilerThreadStackSize is not defined
823      case os::vm_thread:
824      case os::pgc_thread:
825      case os::cgc_thread:
826      case os::watcher_thread:
827        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
828        break;
829      }
830    }
831
832    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
833    pthread_attr_setstacksize(&attr, stack_size);
834  } else {
835    // let pthread_create() pick the default value.
836  }
837
838  // glibc guard page
839  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
840
841  ThreadState state;
842
843  {
844    // Serialize thread creation if we are running with fixed stack LinuxThreads
845    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
846    if (lock) {
847      os::Linux::createThread_lock()->lock_without_safepoint_check();
848    }
849
850    pthread_t tid;
851    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
852
853    pthread_attr_destroy(&attr);
854
855    if (ret != 0) {
856      if (PrintMiscellaneous && (Verbose || WizardMode)) {
857        perror("pthread_create()");
858      }
859      // Need to clean up stuff we've allocated so far
860      thread->set_osthread(NULL);
861      delete osthread;
862      if (lock) os::Linux::createThread_lock()->unlock();
863      return false;
864    }
865
866    // Store pthread info into the OSThread
867    osthread->set_pthread_id(tid);
868
869    // Wait until child thread is either initialized or aborted
870    {
871      Monitor* sync_with_child = osthread->startThread_lock();
872      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
873      while ((state = osthread->get_state()) == ALLOCATED) {
874        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
875      }
876    }
877
878    if (lock) {
879      os::Linux::createThread_lock()->unlock();
880    }
881  }
882
883  // Aborted due to thread limit being reached
884  if (state == ZOMBIE) {
885      thread->set_osthread(NULL);
886      delete osthread;
887      return false;
888  }
889
890  // The thread is returned suspended (in state INITIALIZED),
891  // and is started higher up in the call chain
892  assert(state == INITIALIZED, "race condition");
893  return true;
894}
895
896/////////////////////////////////////////////////////////////////////////////
897// attach existing thread
898
899// bootstrap the main thread
900bool os::create_main_thread(JavaThread* thread) {
901  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
902  return create_attached_thread(thread);
903}
904
905bool os::create_attached_thread(JavaThread* thread) {
906#ifdef ASSERT
907    thread->verify_not_published();
908#endif
909
910  // Allocate the OSThread object
911  OSThread* osthread = new OSThread(NULL, NULL);
912
913  if (osthread == NULL) {
914    return false;
915  }
916
917  // Store pthread info into the OSThread
918  osthread->set_thread_id(os::Linux::gettid());
919  osthread->set_pthread_id(::pthread_self());
920
921  // initialize floating point control register
922  os::Linux::init_thread_fpu_state();
923
924  // Initial thread state is RUNNABLE
925  osthread->set_state(RUNNABLE);
926
927  thread->set_osthread(osthread);
928
929  if (UseNUMA) {
930    int lgrp_id = os::numa_get_group_id();
931    if (lgrp_id != -1) {
932      thread->set_lgrp_id(lgrp_id);
933    }
934  }
935
936  if (os::Linux::is_initial_thread()) {
937    // If current thread is initial thread, its stack is mapped on demand,
938    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
939    // the entire stack region to avoid SEGV in stack banging.
940    // It is also useful to get around the heap-stack-gap problem on SuSE
941    // kernel (see 4821821 for details). We first expand stack to the top
942    // of yellow zone, then enable stack yellow zone (order is significant,
943    // enabling yellow zone first will crash JVM on SuSE Linux), so there
944    // is no gap between the last two virtual memory regions.
945
946    JavaThread *jt = (JavaThread *)thread;
947    address addr = jt->stack_yellow_zone_base();
948    assert(addr != NULL, "initialization problem?");
949    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
950
951    osthread->set_expanding_stack();
952    os::Linux::manually_expand_stack(jt, addr);
953    osthread->clear_expanding_stack();
954  }
955
956  // initialize signal mask for this thread
957  // and save the caller's signal mask
958  os::Linux::hotspot_sigmask(thread);
959
960  return true;
961}
962
963void os::pd_start_thread(Thread* thread) {
964  OSThread * osthread = thread->osthread();
965  assert(osthread->get_state() != INITIALIZED, "just checking");
966  Monitor* sync_with_child = osthread->startThread_lock();
967  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
968  sync_with_child->notify();
969}
970
971// Free Linux resources related to the OSThread
972void os::free_thread(OSThread* osthread) {
973  assert(osthread != NULL, "osthread not set");
974
975  if (Thread::current()->osthread() == osthread) {
976    // Restore caller's signal mask
977    sigset_t sigmask = osthread->caller_sigmask();
978    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
979   }
980
981  delete osthread;
982}
983
984//////////////////////////////////////////////////////////////////////////////
985// thread local storage
986
987int os::allocate_thread_local_storage() {
988  pthread_key_t key;
989  int rslt = pthread_key_create(&key, NULL);
990  assert(rslt == 0, "cannot allocate thread local storage");
991  return (int)key;
992}
993
994// Note: This is currently not used by VM, as we don't destroy TLS key
995// on VM exit.
996void os::free_thread_local_storage(int index) {
997  int rslt = pthread_key_delete((pthread_key_t)index);
998  assert(rslt == 0, "invalid index");
999}
1000
1001void os::thread_local_storage_at_put(int index, void* value) {
1002  int rslt = pthread_setspecific((pthread_key_t)index, value);
1003  assert(rslt == 0, "pthread_setspecific failed");
1004}
1005
1006extern "C" Thread* get_thread() {
1007  return ThreadLocalStorage::thread();
1008}
1009
1010//////////////////////////////////////////////////////////////////////////////
1011// initial thread
1012
1013// Check if current thread is the initial thread, similar to Solaris thr_main.
1014bool os::Linux::is_initial_thread(void) {
1015  char dummy;
1016  // If called before init complete, thread stack bottom will be null.
1017  // Can be called if fatal error occurs before initialization.
1018  if (initial_thread_stack_bottom() == NULL) return false;
1019  assert(initial_thread_stack_bottom() != NULL &&
1020         initial_thread_stack_size()   != 0,
1021         "os::init did not locate initial thread's stack region");
1022  if ((address)&dummy >= initial_thread_stack_bottom() &&
1023      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1024       return true;
1025  else return false;
1026}
1027
1028// Find the virtual memory area that contains addr
1029static bool find_vma(address addr, address* vma_low, address* vma_high) {
1030  FILE *fp = fopen("/proc/self/maps", "r");
1031  if (fp) {
1032    address low, high;
1033    while (!feof(fp)) {
1034      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1035        if (low <= addr && addr < high) {
1036           if (vma_low)  *vma_low  = low;
1037           if (vma_high) *vma_high = high;
1038           fclose (fp);
1039           return true;
1040        }
1041      }
1042      for (;;) {
1043        int ch = fgetc(fp);
1044        if (ch == EOF || ch == (int)'\n') break;
1045      }
1046    }
1047    fclose(fp);
1048  }
1049  return false;
1050}
1051
1052// Locate initial thread stack. This special handling of initial thread stack
1053// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1054// bogus value for initial thread.
1055void os::Linux::capture_initial_stack(size_t max_size) {
1056  // stack size is the easy part, get it from RLIMIT_STACK
1057  size_t stack_size;
1058  struct rlimit rlim;
1059  getrlimit(RLIMIT_STACK, &rlim);
1060  stack_size = rlim.rlim_cur;
1061
1062  // 6308388: a bug in ld.so will relocate its own .data section to the
1063  //   lower end of primordial stack; reduce ulimit -s value a little bit
1064  //   so we won't install guard page on ld.so's data section.
1065  stack_size -= 2 * page_size();
1066
1067  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1068  //   7.1, in both cases we will get 2G in return value.
1069  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1070  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1071  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1072  //   in case other parts in glibc still assumes 2M max stack size.
1073  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1074#ifndef IA64
1075  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1076#else
1077  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1078  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1079#endif
1080
1081  // Try to figure out where the stack base (top) is. This is harder.
1082  //
1083  // When an application is started, glibc saves the initial stack pointer in
1084  // a global variable "__libc_stack_end", which is then used by system
1085  // libraries. __libc_stack_end should be pretty close to stack top. The
1086  // variable is available since the very early days. However, because it is
1087  // a private interface, it could disappear in the future.
1088  //
1089  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1090  // to __libc_stack_end, it is very close to stack top, but isn't the real
1091  // stack top. Note that /proc may not exist if VM is running as a chroot
1092  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1093  // /proc/<pid>/stat could change in the future (though unlikely).
1094  //
1095  // We try __libc_stack_end first. If that doesn't work, look for
1096  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1097  // as a hint, which should work well in most cases.
1098
1099  uintptr_t stack_start;
1100
1101  // try __libc_stack_end first
1102  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1103  if (p && *p) {
1104    stack_start = *p;
1105  } else {
1106    // see if we can get the start_stack field from /proc/self/stat
1107    FILE *fp;
1108    int pid;
1109    char state;
1110    int ppid;
1111    int pgrp;
1112    int session;
1113    int nr;
1114    int tpgrp;
1115    unsigned long flags;
1116    unsigned long minflt;
1117    unsigned long cminflt;
1118    unsigned long majflt;
1119    unsigned long cmajflt;
1120    unsigned long utime;
1121    unsigned long stime;
1122    long cutime;
1123    long cstime;
1124    long prio;
1125    long nice;
1126    long junk;
1127    long it_real;
1128    uintptr_t start;
1129    uintptr_t vsize;
1130    uintptr_t rss;
1131    unsigned long rsslim;
1132    uintptr_t scodes;
1133    uintptr_t ecode;
1134    int i;
1135
1136    // Figure what the primordial thread stack base is. Code is inspired
1137    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1138    // followed by command name surrounded by parentheses, state, etc.
1139    char stat[2048];
1140    int statlen;
1141
1142    fp = fopen("/proc/self/stat", "r");
1143    if (fp) {
1144      statlen = fread(stat, 1, 2047, fp);
1145      stat[statlen] = '\0';
1146      fclose(fp);
1147
1148      // Skip pid and the command string. Note that we could be dealing with
1149      // weird command names, e.g. user could decide to rename java launcher
1150      // to "java 1.4.2 :)", then the stat file would look like
1151      //                1234 (java 1.4.2 :)) R ... ...
1152      // We don't really need to know the command string, just find the last
1153      // occurrence of ")" and then start parsing from there. See bug 4726580.
1154      char * s = strrchr(stat, ')');
1155
1156      i = 0;
1157      if (s) {
1158        // Skip blank chars
1159        do s++; while (isspace(*s));
1160
1161        /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
1162        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
1163        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu",
1164             &state,          /* 3  %c  */
1165             &ppid,           /* 4  %d  */
1166             &pgrp,           /* 5  %d  */
1167             &session,        /* 6  %d  */
1168             &nr,             /* 7  %d  */
1169             &tpgrp,          /* 8  %d  */
1170             &flags,          /* 9  %lu  */
1171             &minflt,         /* 10 %lu  */
1172             &cminflt,        /* 11 %lu  */
1173             &majflt,         /* 12 %lu  */
1174             &cmajflt,        /* 13 %lu  */
1175             &utime,          /* 14 %lu  */
1176             &stime,          /* 15 %lu  */
1177             &cutime,         /* 16 %ld  */
1178             &cstime,         /* 17 %ld  */
1179             &prio,           /* 18 %ld  */
1180             &nice,           /* 19 %ld  */
1181             &junk,           /* 20 %ld  */
1182             &it_real,        /* 21 %ld  */
1183             &start,          /* 22 %lu  */
1184             &vsize,          /* 23 %lu  */
1185             &rss,            /* 24 %ld  */
1186             &rsslim,         /* 25 %lu  */
1187             &scodes,         /* 26 %lu  */
1188             &ecode,          /* 27 %lu  */
1189             &stack_start);   /* 28 %lu  */
1190      }
1191
1192      if (i != 28 - 2) {
1193         assert(false, "Bad conversion from /proc/self/stat");
1194         // product mode - assume we are the initial thread, good luck in the
1195         // embedded case.
1196         warning("Can't detect initial thread stack location - bad conversion");
1197         stack_start = (uintptr_t) &rlim;
1198      }
1199    } else {
1200      // For some reason we can't open /proc/self/stat (for example, running on
1201      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1202      // most cases, so don't abort:
1203      warning("Can't detect initial thread stack location - no /proc/self/stat");
1204      stack_start = (uintptr_t) &rlim;
1205    }
1206  }
1207
1208  // Now we have a pointer (stack_start) very close to the stack top, the
1209  // next thing to do is to figure out the exact location of stack top. We
1210  // can find out the virtual memory area that contains stack_start by
1211  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1212  // and its upper limit is the real stack top. (again, this would fail if
1213  // running inside chroot, because /proc may not exist.)
1214
1215  uintptr_t stack_top;
1216  address low, high;
1217  if (find_vma((address)stack_start, &low, &high)) {
1218    // success, "high" is the true stack top. (ignore "low", because initial
1219    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1220    stack_top = (uintptr_t)high;
1221  } else {
1222    // failed, likely because /proc/self/maps does not exist
1223    warning("Can't detect initial thread stack location - find_vma failed");
1224    // best effort: stack_start is normally within a few pages below the real
1225    // stack top, use it as stack top, and reduce stack size so we won't put
1226    // guard page outside stack.
1227    stack_top = stack_start;
1228    stack_size -= 16 * page_size();
1229  }
1230
1231  // stack_top could be partially down the page so align it
1232  stack_top = align_size_up(stack_top, page_size());
1233
1234  if (max_size && stack_size > max_size) {
1235     _initial_thread_stack_size = max_size;
1236  } else {
1237     _initial_thread_stack_size = stack_size;
1238  }
1239
1240  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1241  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1242}
1243
1244////////////////////////////////////////////////////////////////////////////////
1245// time support
1246
1247// Time since start-up in seconds to a fine granularity.
1248// Used by VMSelfDestructTimer and the MemProfiler.
1249double os::elapsedTime() {
1250
1251  return (double)(os::elapsed_counter()) * 0.000001;
1252}
1253
1254jlong os::elapsed_counter() {
1255  timeval time;
1256  int status = gettimeofday(&time, NULL);
1257  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1258}
1259
1260jlong os::elapsed_frequency() {
1261  return (1000 * 1000);
1262}
1263
1264jlong os::timeofday() {
1265  timeval time;
1266  int status = gettimeofday(&time, NULL);
1267  assert(status != -1, "linux error");
1268  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1269}
1270
1271// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1272// _use_global_time is only set if CacheTimeMillis is true
1273jlong os::javaTimeMillis() {
1274  return (_use_global_time ? read_global_time() : timeofday());
1275}
1276
1277#ifndef CLOCK_MONOTONIC
1278#define CLOCK_MONOTONIC (1)
1279#endif
1280
1281void os::Linux::clock_init() {
1282  // we do dlopen's in this particular order due to bug in linux
1283  // dynamical loader (see 6348968) leading to crash on exit
1284  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1285  if (handle == NULL) {
1286    handle = dlopen("librt.so", RTLD_LAZY);
1287  }
1288
1289  if (handle) {
1290    int (*clock_getres_func)(clockid_t, struct timespec*) =
1291           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1292    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1293           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1294    if (clock_getres_func && clock_gettime_func) {
1295      // See if monotonic clock is supported by the kernel. Note that some
1296      // early implementations simply return kernel jiffies (updated every
1297      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1298      // for nano time (though the monotonic property is still nice to have).
1299      // It's fixed in newer kernels, however clock_getres() still returns
1300      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1301      // resolution for now. Hopefully as people move to new kernels, this
1302      // won't be a problem.
1303      struct timespec res;
1304      struct timespec tp;
1305      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1306          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1307        // yes, monotonic clock is supported
1308        _clock_gettime = clock_gettime_func;
1309      } else {
1310        // close librt if there is no monotonic clock
1311        dlclose(handle);
1312      }
1313    }
1314  }
1315}
1316
1317#ifndef SYS_clock_getres
1318
1319#if defined(IA32) || defined(AMD64)
1320#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1321#else
1322#error Value of SYS_clock_getres not known on this platform
1323#endif
1324
1325#endif
1326
1327#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1328
1329void os::Linux::fast_thread_clock_init() {
1330  if (!UseLinuxPosixThreadCPUClocks) {
1331    return;
1332  }
1333  clockid_t clockid;
1334  struct timespec tp;
1335  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1336      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1337
1338  // Switch to using fast clocks for thread cpu time if
1339  // the sys_clock_getres() returns 0 error code.
1340  // Note, that some kernels may support the current thread
1341  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1342  // returned by the pthread_getcpuclockid().
1343  // If the fast Posix clocks are supported then the sys_clock_getres()
1344  // must return at least tp.tv_sec == 0 which means a resolution
1345  // better than 1 sec. This is extra check for reliability.
1346
1347  if(pthread_getcpuclockid_func &&
1348     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1349     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1350
1351    _supports_fast_thread_cpu_time = true;
1352    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1353  }
1354}
1355
1356jlong os::javaTimeNanos() {
1357  if (Linux::supports_monotonic_clock()) {
1358    struct timespec tp;
1359    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1360    assert(status == 0, "gettime error");
1361    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1362    return result;
1363  } else {
1364    timeval time;
1365    int status = gettimeofday(&time, NULL);
1366    assert(status != -1, "linux error");
1367    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1368    return 1000 * usecs;
1369  }
1370}
1371
1372void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1373  if (Linux::supports_monotonic_clock()) {
1374    info_ptr->max_value = ALL_64_BITS;
1375
1376    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1377    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1378    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1379  } else {
1380    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1381    info_ptr->max_value = ALL_64_BITS;
1382
1383    // gettimeofday is a real time clock so it skips
1384    info_ptr->may_skip_backward = true;
1385    info_ptr->may_skip_forward = true;
1386  }
1387
1388  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1389}
1390
1391// Return the real, user, and system times in seconds from an
1392// arbitrary fixed point in the past.
1393bool os::getTimesSecs(double* process_real_time,
1394                      double* process_user_time,
1395                      double* process_system_time) {
1396  struct tms ticks;
1397  clock_t real_ticks = times(&ticks);
1398
1399  if (real_ticks == (clock_t) (-1)) {
1400    return false;
1401  } else {
1402    double ticks_per_second = (double) clock_tics_per_sec;
1403    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1404    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1405    *process_real_time = ((double) real_ticks) / ticks_per_second;
1406
1407    return true;
1408  }
1409}
1410
1411
1412char * os::local_time_string(char *buf, size_t buflen) {
1413  struct tm t;
1414  time_t long_time;
1415  time(&long_time);
1416  localtime_r(&long_time, &t);
1417  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1418               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1419               t.tm_hour, t.tm_min, t.tm_sec);
1420  return buf;
1421}
1422
1423////////////////////////////////////////////////////////////////////////////////
1424// runtime exit support
1425
1426// Note: os::shutdown() might be called very early during initialization, or
1427// called from signal handler. Before adding something to os::shutdown(), make
1428// sure it is async-safe and can handle partially initialized VM.
1429void os::shutdown() {
1430
1431  // allow PerfMemory to attempt cleanup of any persistent resources
1432  perfMemory_exit();
1433
1434  // needs to remove object in file system
1435  AttachListener::abort();
1436
1437  // flush buffered output, finish log files
1438  ostream_abort();
1439
1440  // Check for abort hook
1441  abort_hook_t abort_hook = Arguments::abort_hook();
1442  if (abort_hook != NULL) {
1443    abort_hook();
1444  }
1445
1446}
1447
1448// Note: os::abort() might be called very early during initialization, or
1449// called from signal handler. Before adding something to os::abort(), make
1450// sure it is async-safe and can handle partially initialized VM.
1451void os::abort(bool dump_core) {
1452  os::shutdown();
1453  if (dump_core) {
1454#ifndef PRODUCT
1455    fdStream out(defaultStream::output_fd());
1456    out.print_raw("Current thread is ");
1457    char buf[16];
1458    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1459    out.print_raw_cr(buf);
1460    out.print_raw_cr("Dumping core ...");
1461#endif
1462    ::abort(); // dump core
1463  }
1464
1465  ::exit(1);
1466}
1467
1468// Die immediately, no exit hook, no abort hook, no cleanup.
1469void os::die() {
1470  // _exit() on LinuxThreads only kills current thread
1471  ::abort();
1472}
1473
1474// unused on linux for now.
1475void os::set_error_file(const char *logfile) {}
1476
1477intx os::current_thread_id() { return (intx)pthread_self(); }
1478int os::current_process_id() {
1479
1480  // Under the old linux thread library, linux gives each thread
1481  // its own process id. Because of this each thread will return
1482  // a different pid if this method were to return the result
1483  // of getpid(2). Linux provides no api that returns the pid
1484  // of the launcher thread for the vm. This implementation
1485  // returns a unique pid, the pid of the launcher thread
1486  // that starts the vm 'process'.
1487
1488  // Under the NPTL, getpid() returns the same pid as the
1489  // launcher thread rather than a unique pid per thread.
1490  // Use gettid() if you want the old pre NPTL behaviour.
1491
1492  // if you are looking for the result of a call to getpid() that
1493  // returns a unique pid for the calling thread, then look at the
1494  // OSThread::thread_id() method in osThread_linux.hpp file
1495
1496  return (int)(_initial_pid ? _initial_pid : getpid());
1497}
1498
1499// DLL functions
1500
1501const char* os::dll_file_extension() { return ".so"; }
1502
1503const char* os::get_temp_directory() { return "/tmp/"; }
1504
1505const char* os::get_current_directory(char *buf, int buflen) {
1506  return getcwd(buf, buflen);
1507}
1508
1509// check if addr is inside libjvm[_g].so
1510bool os::address_is_in_vm(address addr) {
1511  static address libjvm_base_addr;
1512  Dl_info dlinfo;
1513
1514  if (libjvm_base_addr == NULL) {
1515    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1516    libjvm_base_addr = (address)dlinfo.dli_fbase;
1517    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1518  }
1519
1520  if (dladdr((void *)addr, &dlinfo)) {
1521    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1522  }
1523
1524  return false;
1525}
1526
1527bool os::dll_address_to_function_name(address addr, char *buf,
1528                                      int buflen, int *offset) {
1529  Dl_info dlinfo;
1530
1531  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1532    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1533    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1534    return true;
1535  } else {
1536    if (buf) buf[0] = '\0';
1537    if (offset) *offset = -1;
1538    return false;
1539  }
1540}
1541
1542struct _address_to_library_name {
1543  address addr;          // input : memory address
1544  size_t  buflen;        //         size of fname
1545  char*   fname;         // output: library name
1546  address base;          //         library base addr
1547};
1548
1549static int address_to_library_name_callback(struct dl_phdr_info *info,
1550                                            size_t size, void *data) {
1551  int i;
1552  bool found = false;
1553  address libbase = NULL;
1554  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1555
1556  // iterate through all loadable segments
1557  for (i = 0; i < info->dlpi_phnum; i++) {
1558    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1559    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1560      // base address of a library is the lowest address of its loaded
1561      // segments.
1562      if (libbase == NULL || libbase > segbase) {
1563        libbase = segbase;
1564      }
1565      // see if 'addr' is within current segment
1566      if (segbase <= d->addr &&
1567          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1568        found = true;
1569      }
1570    }
1571  }
1572
1573  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1574  // so dll_address_to_library_name() can fall through to use dladdr() which
1575  // can figure out executable name from argv[0].
1576  if (found && info->dlpi_name && info->dlpi_name[0]) {
1577    d->base = libbase;
1578    if (d->fname) {
1579      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1580    }
1581    return 1;
1582  }
1583  return 0;
1584}
1585
1586bool os::dll_address_to_library_name(address addr, char* buf,
1587                                     int buflen, int* offset) {
1588  Dl_info dlinfo;
1589  struct _address_to_library_name data;
1590
1591  // There is a bug in old glibc dladdr() implementation that it could resolve
1592  // to wrong library name if the .so file has a base address != NULL. Here
1593  // we iterate through the program headers of all loaded libraries to find
1594  // out which library 'addr' really belongs to. This workaround can be
1595  // removed once the minimum requirement for glibc is moved to 2.3.x.
1596  data.addr = addr;
1597  data.fname = buf;
1598  data.buflen = buflen;
1599  data.base = NULL;
1600  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1601
1602  if (rslt) {
1603     // buf already contains library name
1604     if (offset) *offset = addr - data.base;
1605     return true;
1606  } else if (dladdr((void*)addr, &dlinfo)){
1607     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1608     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1609     return true;
1610  } else {
1611     if (buf) buf[0] = '\0';
1612     if (offset) *offset = -1;
1613     return false;
1614  }
1615}
1616
1617  // Loads .dll/.so and
1618  // in case of error it checks if .dll/.so was built for the
1619  // same architecture as Hotspot is running on
1620
1621void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1622{
1623  void * result= ::dlopen(filename, RTLD_LAZY);
1624  if (result != NULL) {
1625    // Successful loading
1626    return result;
1627  }
1628
1629  Elf32_Ehdr elf_head;
1630
1631  // Read system error message into ebuf
1632  // It may or may not be overwritten below
1633  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1634  ebuf[ebuflen-1]='\0';
1635  int diag_msg_max_length=ebuflen-strlen(ebuf);
1636  char* diag_msg_buf=ebuf+strlen(ebuf);
1637
1638  if (diag_msg_max_length==0) {
1639    // No more space in ebuf for additional diagnostics message
1640    return NULL;
1641  }
1642
1643
1644  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1645
1646  if (file_descriptor < 0) {
1647    // Can't open library, report dlerror() message
1648    return NULL;
1649  }
1650
1651  bool failed_to_read_elf_head=
1652    (sizeof(elf_head)!=
1653        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1654
1655  ::close(file_descriptor);
1656  if (failed_to_read_elf_head) {
1657    // file i/o error - report dlerror() msg
1658    return NULL;
1659  }
1660
1661  typedef struct {
1662    Elf32_Half  code;         // Actual value as defined in elf.h
1663    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1664    char        elf_class;    // 32 or 64 bit
1665    char        endianess;    // MSB or LSB
1666    char*       name;         // String representation
1667  } arch_t;
1668
1669  #ifndef EM_486
1670  #define EM_486          6               /* Intel 80486 */
1671  #endif
1672
1673  static const arch_t arch_array[]={
1674    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1675    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1676    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1677    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1678    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1679    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1680    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1681    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1682    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1683  };
1684
1685  #if  (defined IA32)
1686    static  Elf32_Half running_arch_code=EM_386;
1687  #elif   (defined AMD64)
1688    static  Elf32_Half running_arch_code=EM_X86_64;
1689  #elif  (defined IA64)
1690    static  Elf32_Half running_arch_code=EM_IA_64;
1691  #elif  (defined __sparc) && (defined _LP64)
1692    static  Elf32_Half running_arch_code=EM_SPARCV9;
1693  #elif  (defined __sparc) && (!defined _LP64)
1694    static  Elf32_Half running_arch_code=EM_SPARC;
1695  #elif  (defined __powerpc64__)
1696    static  Elf32_Half running_arch_code=EM_PPC64;
1697  #elif  (defined __powerpc__)
1698    static  Elf32_Half running_arch_code=EM_PPC;
1699  #else
1700    #error Method os::dll_load requires that one of following is defined:\
1701         IA32, AMD64, IA64, __sparc, __powerpc__
1702  #endif
1703
1704  // Identify compatability class for VM's architecture and library's architecture
1705  // Obtain string descriptions for architectures
1706
1707  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1708  int running_arch_index=-1;
1709
1710  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1711    if (running_arch_code == arch_array[i].code) {
1712      running_arch_index    = i;
1713    }
1714    if (lib_arch.code == arch_array[i].code) {
1715      lib_arch.compat_class = arch_array[i].compat_class;
1716      lib_arch.name         = arch_array[i].name;
1717    }
1718  }
1719
1720  assert(running_arch_index != -1,
1721    "Didn't find running architecture code (running_arch_code) in arch_array");
1722  if (running_arch_index == -1) {
1723    // Even though running architecture detection failed
1724    // we may still continue with reporting dlerror() message
1725    return NULL;
1726  }
1727
1728  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1729    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1730    return NULL;
1731  }
1732
1733  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1734    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1735    return NULL;
1736  }
1737
1738  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1739    if ( lib_arch.name!=NULL ) {
1740      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1741        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1742        lib_arch.name, arch_array[running_arch_index].name);
1743    } else {
1744      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1745      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1746        lib_arch.code,
1747        arch_array[running_arch_index].name);
1748    }
1749  }
1750
1751  return NULL;
1752}
1753
1754
1755
1756
1757bool _print_ascii_file(const char* filename, outputStream* st) {
1758  int fd = open(filename, O_RDONLY);
1759  if (fd == -1) {
1760     return false;
1761  }
1762
1763  char buf[32];
1764  int bytes;
1765  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1766    st->print_raw(buf, bytes);
1767  }
1768
1769  close(fd);
1770
1771  return true;
1772}
1773
1774void os::print_dll_info(outputStream *st) {
1775   st->print_cr("Dynamic libraries:");
1776
1777   char fname[32];
1778   pid_t pid = os::Linux::gettid();
1779
1780   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1781
1782   if (!_print_ascii_file(fname, st)) {
1783     st->print("Can not get library information for pid = %d\n", pid);
1784   }
1785}
1786
1787
1788void os::print_os_info(outputStream* st) {
1789  st->print("OS:");
1790
1791  // Try to identify popular distros.
1792  // Most Linux distributions have /etc/XXX-release file, which contains
1793  // the OS version string. Some have more than one /etc/XXX-release file
1794  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1795  // so the order is important.
1796  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1797      !_print_ascii_file("/etc/sun-release", st) &&
1798      !_print_ascii_file("/etc/redhat-release", st) &&
1799      !_print_ascii_file("/etc/SuSE-release", st) &&
1800      !_print_ascii_file("/etc/turbolinux-release", st) &&
1801      !_print_ascii_file("/etc/gentoo-release", st) &&
1802      !_print_ascii_file("/etc/debian_version", st)) {
1803      st->print("Linux");
1804  }
1805  st->cr();
1806
1807  // kernel
1808  st->print("uname:");
1809  struct utsname name;
1810  uname(&name);
1811  st->print(name.sysname); st->print(" ");
1812  st->print(name.release); st->print(" ");
1813  st->print(name.version); st->print(" ");
1814  st->print(name.machine);
1815  st->cr();
1816
1817  // Print warning if unsafe chroot environment detected
1818  if (unsafe_chroot_detected) {
1819    st->print("WARNING!! ");
1820    st->print_cr(unstable_chroot_error);
1821  }
1822
1823  // libc, pthread
1824  st->print("libc:");
1825  st->print(os::Linux::glibc_version()); st->print(" ");
1826  st->print(os::Linux::libpthread_version()); st->print(" ");
1827  if (os::Linux::is_LinuxThreads()) {
1828     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1829  }
1830  st->cr();
1831
1832  // rlimit
1833  st->print("rlimit:");
1834  struct rlimit rlim;
1835
1836  st->print(" STACK ");
1837  getrlimit(RLIMIT_STACK, &rlim);
1838  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1839  else st->print("%uk", rlim.rlim_cur >> 10);
1840
1841  st->print(", CORE ");
1842  getrlimit(RLIMIT_CORE, &rlim);
1843  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1844  else st->print("%uk", rlim.rlim_cur >> 10);
1845
1846  st->print(", NPROC ");
1847  getrlimit(RLIMIT_NPROC, &rlim);
1848  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1849  else st->print("%d", rlim.rlim_cur);
1850
1851  st->print(", NOFILE ");
1852  getrlimit(RLIMIT_NOFILE, &rlim);
1853  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1854  else st->print("%d", rlim.rlim_cur);
1855
1856  st->print(", AS ");
1857  getrlimit(RLIMIT_AS, &rlim);
1858  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1859  else st->print("%uk", rlim.rlim_cur >> 10);
1860  st->cr();
1861
1862  // load average
1863  st->print("load average:");
1864  double loadavg[3];
1865  os::loadavg(loadavg, 3);
1866  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1867  st->cr();
1868}
1869
1870void os::print_memory_info(outputStream* st) {
1871
1872  st->print("Memory:");
1873  st->print(" %dk page", os::vm_page_size()>>10);
1874
1875  // values in struct sysinfo are "unsigned long"
1876  struct sysinfo si;
1877  sysinfo(&si);
1878
1879  st->print(", physical " UINT64_FORMAT "k",
1880            os::physical_memory() >> 10);
1881  st->print("(" UINT64_FORMAT "k free)",
1882            os::available_memory() >> 10);
1883  st->print(", swap " UINT64_FORMAT "k",
1884            ((jlong)si.totalswap * si.mem_unit) >> 10);
1885  st->print("(" UINT64_FORMAT "k free)",
1886            ((jlong)si.freeswap * si.mem_unit) >> 10);
1887  st->cr();
1888}
1889
1890// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1891// but they're the same for all the linux arch that we support
1892// and they're the same for solaris but there's no common place to put this.
1893const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1894                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1895                          "ILL_COPROC", "ILL_BADSTK" };
1896
1897const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1898                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1899                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1900
1901const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1902
1903const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1904
1905void os::print_siginfo(outputStream* st, void* siginfo) {
1906  st->print("siginfo:");
1907
1908  const int buflen = 100;
1909  char buf[buflen];
1910  siginfo_t *si = (siginfo_t*)siginfo;
1911  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1912  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1913    st->print("si_errno=%s", buf);
1914  } else {
1915    st->print("si_errno=%d", si->si_errno);
1916  }
1917  const int c = si->si_code;
1918  assert(c > 0, "unexpected si_code");
1919  switch (si->si_signo) {
1920  case SIGILL:
1921    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1922    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1923    break;
1924  case SIGFPE:
1925    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1926    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1927    break;
1928  case SIGSEGV:
1929    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1930    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1931    break;
1932  case SIGBUS:
1933    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1934    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1935    break;
1936  default:
1937    st->print(", si_code=%d", si->si_code);
1938    // no si_addr
1939  }
1940
1941  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1942      UseSharedSpaces) {
1943    FileMapInfo* mapinfo = FileMapInfo::current_info();
1944    if (mapinfo->is_in_shared_space(si->si_addr)) {
1945      st->print("\n\nError accessing class data sharing archive."   \
1946                " Mapped file inaccessible during execution, "      \
1947                " possible disk/network problem.");
1948    }
1949  }
1950  st->cr();
1951}
1952
1953
1954static void print_signal_handler(outputStream* st, int sig,
1955                                 char* buf, size_t buflen);
1956
1957void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1958  st->print_cr("Signal Handlers:");
1959  print_signal_handler(st, SIGSEGV, buf, buflen);
1960  print_signal_handler(st, SIGBUS , buf, buflen);
1961  print_signal_handler(st, SIGFPE , buf, buflen);
1962  print_signal_handler(st, SIGPIPE, buf, buflen);
1963  print_signal_handler(st, SIGXFSZ, buf, buflen);
1964  print_signal_handler(st, SIGILL , buf, buflen);
1965  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1966  print_signal_handler(st, SR_signum, buf, buflen);
1967  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1968  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1969  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1970  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1971}
1972
1973static char saved_jvm_path[MAXPATHLEN] = {0};
1974
1975// Find the full path to the current module, libjvm.so or libjvm_g.so
1976void os::jvm_path(char *buf, jint len) {
1977  // Error checking.
1978  if (len < MAXPATHLEN) {
1979    assert(false, "must use a large-enough buffer");
1980    buf[0] = '\0';
1981    return;
1982  }
1983  // Lazy resolve the path to current module.
1984  if (saved_jvm_path[0] != 0) {
1985    strcpy(buf, saved_jvm_path);
1986    return;
1987  }
1988
1989  char dli_fname[MAXPATHLEN];
1990  bool ret = dll_address_to_library_name(
1991                CAST_FROM_FN_PTR(address, os::jvm_path),
1992                dli_fname, sizeof(dli_fname), NULL);
1993  assert(ret != 0, "cannot locate libjvm");
1994  realpath(dli_fname, buf);
1995
1996  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
1997    // Support for the gamma launcher.  Typical value for buf is
1998    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
1999    // the right place in the string, then assume we are installed in a JDK and
2000    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2001    // up the path so it looks like libjvm.so is installed there (append a
2002    // fake suffix hotspot/libjvm.so).
2003    const char *p = buf + strlen(buf) - 1;
2004    for (int count = 0; p > buf && count < 5; ++count) {
2005      for (--p; p > buf && *p != '/'; --p)
2006        /* empty */ ;
2007    }
2008
2009    if (strncmp(p, "/jre/lib/", 9) != 0) {
2010      // Look for JAVA_HOME in the environment.
2011      char* java_home_var = ::getenv("JAVA_HOME");
2012      if (java_home_var != NULL && java_home_var[0] != 0) {
2013        // Check the current module name "libjvm.so" or "libjvm_g.so".
2014        p = strrchr(buf, '/');
2015        assert(strstr(p, "/libjvm") == p, "invalid library name");
2016        p = strstr(p, "_g") ? "_g" : "";
2017
2018        realpath(java_home_var, buf);
2019        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2020        if (0 == access(buf, F_OK)) {
2021          // Use current module name "libjvm[_g].so" instead of
2022          // "libjvm"debug_only("_g")".so" since for fastdebug version
2023          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2024          // It is used when we are choosing the HPI library's name
2025          // "libhpi[_g].so" in hpi::initialize_get_interface().
2026          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2027        } else {
2028          // Go back to path of .so
2029          realpath(dli_fname, buf);
2030        }
2031      }
2032    }
2033  }
2034
2035  strcpy(saved_jvm_path, buf);
2036}
2037
2038void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2039  // no prefix required, not even "_"
2040}
2041
2042void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2043  // no suffix required
2044}
2045
2046////////////////////////////////////////////////////////////////////////////////
2047// sun.misc.Signal support
2048
2049static volatile jint sigint_count = 0;
2050
2051static void
2052UserHandler(int sig, void *siginfo, void *context) {
2053  // 4511530 - sem_post is serialized and handled by the manager thread. When
2054  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2055  // don't want to flood the manager thread with sem_post requests.
2056  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2057      return;
2058
2059  // Ctrl-C is pressed during error reporting, likely because the error
2060  // handler fails to abort. Let VM die immediately.
2061  if (sig == SIGINT && is_error_reported()) {
2062     os::die();
2063  }
2064
2065  os::signal_notify(sig);
2066}
2067
2068void* os::user_handler() {
2069  return CAST_FROM_FN_PTR(void*, UserHandler);
2070}
2071
2072extern "C" {
2073  typedef void (*sa_handler_t)(int);
2074  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2075}
2076
2077void* os::signal(int signal_number, void* handler) {
2078  struct sigaction sigAct, oldSigAct;
2079
2080  sigfillset(&(sigAct.sa_mask));
2081  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2082  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2083
2084  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2085    // -1 means registration failed
2086    return (void *)-1;
2087  }
2088
2089  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2090}
2091
2092void os::signal_raise(int signal_number) {
2093  ::raise(signal_number);
2094}
2095
2096/*
2097 * The following code is moved from os.cpp for making this
2098 * code platform specific, which it is by its very nature.
2099 */
2100
2101// Will be modified when max signal is changed to be dynamic
2102int os::sigexitnum_pd() {
2103  return NSIG;
2104}
2105
2106// a counter for each possible signal value
2107static volatile jint pending_signals[NSIG+1] = { 0 };
2108
2109// Linux(POSIX) specific hand shaking semaphore.
2110static sem_t sig_sem;
2111
2112void os::signal_init_pd() {
2113  // Initialize signal structures
2114  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2115
2116  // Initialize signal semaphore
2117  ::sem_init(&sig_sem, 0, 0);
2118}
2119
2120void os::signal_notify(int sig) {
2121  Atomic::inc(&pending_signals[sig]);
2122  ::sem_post(&sig_sem);
2123}
2124
2125static int check_pending_signals(bool wait) {
2126  Atomic::store(0, &sigint_count);
2127  for (;;) {
2128    for (int i = 0; i < NSIG + 1; i++) {
2129      jint n = pending_signals[i];
2130      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2131        return i;
2132      }
2133    }
2134    if (!wait) {
2135      return -1;
2136    }
2137    JavaThread *thread = JavaThread::current();
2138    ThreadBlockInVM tbivm(thread);
2139
2140    bool threadIsSuspended;
2141    do {
2142      thread->set_suspend_equivalent();
2143      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2144      ::sem_wait(&sig_sem);
2145
2146      // were we externally suspended while we were waiting?
2147      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2148      if (threadIsSuspended) {
2149        //
2150        // The semaphore has been incremented, but while we were waiting
2151        // another thread suspended us. We don't want to continue running
2152        // while suspended because that would surprise the thread that
2153        // suspended us.
2154        //
2155        ::sem_post(&sig_sem);
2156
2157        thread->java_suspend_self();
2158      }
2159    } while (threadIsSuspended);
2160  }
2161}
2162
2163int os::signal_lookup() {
2164  return check_pending_signals(false);
2165}
2166
2167int os::signal_wait() {
2168  return check_pending_signals(true);
2169}
2170
2171////////////////////////////////////////////////////////////////////////////////
2172// Virtual Memory
2173
2174int os::vm_page_size() {
2175  // Seems redundant as all get out
2176  assert(os::Linux::page_size() != -1, "must call os::init");
2177  return os::Linux::page_size();
2178}
2179
2180// Solaris allocates memory by pages.
2181int os::vm_allocation_granularity() {
2182  assert(os::Linux::page_size() != -1, "must call os::init");
2183  return os::Linux::page_size();
2184}
2185
2186// Rationale behind this function:
2187//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2188//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2189//  samples for JITted code. Here we create private executable mapping over the code cache
2190//  and then we can use standard (well, almost, as mapping can change) way to provide
2191//  info for the reporting script by storing timestamp and location of symbol
2192void linux_wrap_code(char* base, size_t size) {
2193  static volatile jint cnt = 0;
2194
2195  if (!UseOprofile) {
2196    return;
2197  }
2198
2199  char buf[40];
2200  int num = Atomic::add(1, &cnt);
2201
2202  sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
2203  unlink(buf);
2204
2205  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2206
2207  if (fd != -1) {
2208    off_t rv = lseek(fd, size-2, SEEK_SET);
2209    if (rv != (off_t)-1) {
2210      if (write(fd, "", 1) == 1) {
2211        mmap(base, size,
2212             PROT_READ|PROT_WRITE|PROT_EXEC,
2213             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2214      }
2215    }
2216    close(fd);
2217    unlink(buf);
2218  }
2219}
2220
2221// NOTE: Linux kernel does not really reserve the pages for us.
2222//       All it does is to check if there are enough free pages
2223//       left at the time of mmap(). This could be a potential
2224//       problem.
2225bool os::commit_memory(char* addr, size_t size) {
2226  uintptr_t res = (uintptr_t) ::mmap(addr, size,
2227                                   PROT_READ|PROT_WRITE|PROT_EXEC,
2228                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2229  return res != (uintptr_t) MAP_FAILED;
2230}
2231
2232bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
2233  return commit_memory(addr, size);
2234}
2235
2236void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2237void os::free_memory(char *addr, size_t bytes)         { }
2238void os::numa_make_global(char *addr, size_t bytes)    { }
2239void os::numa_make_local(char *addr, size_t bytes)     { }
2240bool os::numa_topology_changed()                       { return false; }
2241size_t os::numa_get_groups_num()                       { return 1; }
2242int os::numa_get_group_id()                            { return 0; }
2243size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2244  if (size > 0) {
2245    ids[0] = 0;
2246    return 1;
2247  }
2248  return 0;
2249}
2250
2251bool os::get_page_info(char *start, page_info* info) {
2252  return false;
2253}
2254
2255char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2256  return end;
2257}
2258
2259bool os::uncommit_memory(char* addr, size_t size) {
2260  return ::mmap(addr, size,
2261                PROT_READ|PROT_WRITE|PROT_EXEC,
2262                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
2263    != MAP_FAILED;
2264}
2265
2266static address _highest_vm_reserved_address = NULL;
2267
2268// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2269// at 'requested_addr'. If there are existing memory mappings at the same
2270// location, however, they will be overwritten. If 'fixed' is false,
2271// 'requested_addr' is only treated as a hint, the return value may or
2272// may not start from the requested address. Unlike Linux mmap(), this
2273// function returns NULL to indicate failure.
2274static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2275  char * addr;
2276  int flags;
2277
2278  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2279  if (fixed) {
2280    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2281    flags |= MAP_FIXED;
2282  }
2283
2284  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
2285                       flags, -1, 0);
2286
2287  if (addr != MAP_FAILED) {
2288    // anon_mmap() should only get called during VM initialization,
2289    // don't need lock (actually we can skip locking even it can be called
2290    // from multiple threads, because _highest_vm_reserved_address is just a
2291    // hint about the upper limit of non-stack memory regions.)
2292    if ((address)addr + bytes > _highest_vm_reserved_address) {
2293      _highest_vm_reserved_address = (address)addr + bytes;
2294    }
2295  }
2296
2297  return addr == MAP_FAILED ? NULL : addr;
2298}
2299
2300// Don't update _highest_vm_reserved_address, because there might be memory
2301// regions above addr + size. If so, releasing a memory region only creates
2302// a hole in the address space, it doesn't help prevent heap-stack collision.
2303//
2304static int anon_munmap(char * addr, size_t size) {
2305  return ::munmap(addr, size) == 0;
2306}
2307
2308char* os::reserve_memory(size_t bytes, char* requested_addr,
2309                         size_t alignment_hint) {
2310  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2311}
2312
2313bool os::release_memory(char* addr, size_t size) {
2314  return anon_munmap(addr, size);
2315}
2316
2317static address highest_vm_reserved_address() {
2318  return _highest_vm_reserved_address;
2319}
2320
2321static bool linux_mprotect(char* addr, size_t size, int prot) {
2322  // Linux wants the mprotect address argument to be page aligned.
2323  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2324
2325  // According to SUSv3, mprotect() should only be used with mappings
2326  // established by mmap(), and mmap() always maps whole pages. Unaligned
2327  // 'addr' likely indicates problem in the VM (e.g. trying to change
2328  // protection of malloc'ed or statically allocated memory). Check the
2329  // caller if you hit this assert.
2330  assert(addr == bottom, "sanity check");
2331
2332  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2333  return ::mprotect(bottom, size, prot) == 0;
2334}
2335
2336bool os::protect_memory(char* addr, size_t size) {
2337  return linux_mprotect(addr, size, PROT_READ);
2338}
2339
2340bool os::guard_memory(char* addr, size_t size) {
2341  return linux_mprotect(addr, size, PROT_NONE);
2342}
2343
2344bool os::unguard_memory(char* addr, size_t size) {
2345  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2346}
2347
2348// Large page support
2349
2350static size_t _large_page_size = 0;
2351
2352bool os::large_page_init() {
2353  if (!UseLargePages) return false;
2354
2355  if (LargePageSizeInBytes) {
2356    _large_page_size = LargePageSizeInBytes;
2357  } else {
2358    // large_page_size on Linux is used to round up heap size. x86 uses either
2359    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2360    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2361    // page as large as 256M.
2362    //
2363    // Here we try to figure out page size by parsing /proc/meminfo and looking
2364    // for a line with the following format:
2365    //    Hugepagesize:     2048 kB
2366    //
2367    // If we can't determine the value (e.g. /proc is not mounted, or the text
2368    // format has been changed), we'll use the largest page size supported by
2369    // the processor.
2370
2371    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
2372
2373    FILE *fp = fopen("/proc/meminfo", "r");
2374    if (fp) {
2375      while (!feof(fp)) {
2376        int x = 0;
2377        char buf[16];
2378        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2379          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2380            _large_page_size = x * K;
2381            break;
2382          }
2383        } else {
2384          // skip to next line
2385          for (;;) {
2386            int ch = fgetc(fp);
2387            if (ch == EOF || ch == (int)'\n') break;
2388          }
2389        }
2390      }
2391      fclose(fp);
2392    }
2393  }
2394
2395  const size_t default_page_size = (size_t)Linux::page_size();
2396  if (_large_page_size > default_page_size) {
2397    _page_sizes[0] = _large_page_size;
2398    _page_sizes[1] = default_page_size;
2399    _page_sizes[2] = 0;
2400  }
2401
2402  // Large page support is available on 2.6 or newer kernel, some vendors
2403  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2404  // We optimistically assume the support is available. If later it turns out
2405  // not true, VM will automatically switch to use regular page size.
2406  return true;
2407}
2408
2409#ifndef SHM_HUGETLB
2410#define SHM_HUGETLB 04000
2411#endif
2412
2413char* os::reserve_memory_special(size_t bytes) {
2414  assert(UseLargePages, "only for large pages");
2415
2416  key_t key = IPC_PRIVATE;
2417  char *addr;
2418
2419  bool warn_on_failure = UseLargePages &&
2420                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2421                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2422                        );
2423  char msg[128];
2424
2425  // Create a large shared memory region to attach to based on size.
2426  // Currently, size is the total size of the heap
2427  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2428  if (shmid == -1) {
2429     // Possible reasons for shmget failure:
2430     // 1. shmmax is too small for Java heap.
2431     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2432     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2433     // 2. not enough large page memory.
2434     //    > check available large pages: cat /proc/meminfo
2435     //    > increase amount of large pages:
2436     //          echo new_value > /proc/sys/vm/nr_hugepages
2437     //      Note 1: different Linux may use different name for this property,
2438     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2439     //      Note 2: it's possible there's enough physical memory available but
2440     //            they are so fragmented after a long run that they can't
2441     //            coalesce into large pages. Try to reserve large pages when
2442     //            the system is still "fresh".
2443     if (warn_on_failure) {
2444       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2445       warning(msg);
2446     }
2447     return NULL;
2448  }
2449
2450  // attach to the region
2451  addr = (char*)shmat(shmid, NULL, 0);
2452  int err = errno;
2453
2454  // Remove shmid. If shmat() is successful, the actual shared memory segment
2455  // will be deleted when it's detached by shmdt() or when the process
2456  // terminates. If shmat() is not successful this will remove the shared
2457  // segment immediately.
2458  shmctl(shmid, IPC_RMID, NULL);
2459
2460  if ((intptr_t)addr == -1) {
2461     if (warn_on_failure) {
2462       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2463       warning(msg);
2464     }
2465     return NULL;
2466  }
2467
2468  return addr;
2469}
2470
2471bool os::release_memory_special(char* base, size_t bytes) {
2472  // detaching the SHM segment will also delete it, see reserve_memory_special()
2473  int rslt = shmdt(base);
2474  return rslt == 0;
2475}
2476
2477size_t os::large_page_size() {
2478  return _large_page_size;
2479}
2480
2481// Linux does not support anonymous mmap with large page memory. The only way
2482// to reserve large page memory without file backing is through SysV shared
2483// memory API. The entire memory region is committed and pinned upfront.
2484// Hopefully this will change in the future...
2485bool os::can_commit_large_page_memory() {
2486  return false;
2487}
2488
2489// Reserve memory at an arbitrary address, only if that area is
2490// available (and not reserved for something else).
2491
2492char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2493  const int max_tries = 10;
2494  char* base[max_tries];
2495  size_t size[max_tries];
2496  const size_t gap = 0x000000;
2497
2498  // Assert only that the size is a multiple of the page size, since
2499  // that's all that mmap requires, and since that's all we really know
2500  // about at this low abstraction level.  If we need higher alignment,
2501  // we can either pass an alignment to this method or verify alignment
2502  // in one of the methods further up the call chain.  See bug 5044738.
2503  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2504
2505  // Repeatedly allocate blocks until the block is allocated at the
2506  // right spot. Give up after max_tries. Note that reserve_memory() will
2507  // automatically update _highest_vm_reserved_address if the call is
2508  // successful. The variable tracks the highest memory address every reserved
2509  // by JVM. It is used to detect heap-stack collision if running with
2510  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2511  // space than needed, it could confuse the collision detecting code. To
2512  // solve the problem, save current _highest_vm_reserved_address and
2513  // calculate the correct value before return.
2514  address old_highest = _highest_vm_reserved_address;
2515
2516  // Linux mmap allows caller to pass an address as hint; give it a try first,
2517  // if kernel honors the hint then we can return immediately.
2518  char * addr = anon_mmap(requested_addr, bytes, false);
2519  if (addr == requested_addr) {
2520     return requested_addr;
2521  }
2522
2523  if (addr != NULL) {
2524     // mmap() is successful but it fails to reserve at the requested address
2525     anon_munmap(addr, bytes);
2526  }
2527
2528  int i;
2529  for (i = 0; i < max_tries; ++i) {
2530    base[i] = reserve_memory(bytes);
2531
2532    if (base[i] != NULL) {
2533      // Is this the block we wanted?
2534      if (base[i] == requested_addr) {
2535        size[i] = bytes;
2536        break;
2537      }
2538
2539      // Does this overlap the block we wanted? Give back the overlapped
2540      // parts and try again.
2541
2542      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2543      if (top_overlap >= 0 && top_overlap < bytes) {
2544        unmap_memory(base[i], top_overlap);
2545        base[i] += top_overlap;
2546        size[i] = bytes - top_overlap;
2547      } else {
2548        size_t bottom_overlap = base[i] + bytes - requested_addr;
2549        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2550          unmap_memory(requested_addr, bottom_overlap);
2551          size[i] = bytes - bottom_overlap;
2552        } else {
2553          size[i] = bytes;
2554        }
2555      }
2556    }
2557  }
2558
2559  // Give back the unused reserved pieces.
2560
2561  for (int j = 0; j < i; ++j) {
2562    if (base[j] != NULL) {
2563      unmap_memory(base[j], size[j]);
2564    }
2565  }
2566
2567  if (i < max_tries) {
2568    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2569    return requested_addr;
2570  } else {
2571    _highest_vm_reserved_address = old_highest;
2572    return NULL;
2573  }
2574}
2575
2576size_t os::read(int fd, void *buf, unsigned int nBytes) {
2577  return ::read(fd, buf, nBytes);
2578}
2579
2580// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2581// Solaris uses poll(), linux uses park().
2582// Poll() is likely a better choice, assuming that Thread.interrupt()
2583// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2584// SIGSEGV, see 4355769.
2585
2586const int NANOSECS_PER_MILLISECS = 1000000;
2587
2588int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2589  assert(thread == Thread::current(),  "thread consistency check");
2590
2591  ParkEvent * const slp = thread->_SleepEvent ;
2592  slp->reset() ;
2593  OrderAccess::fence() ;
2594
2595  if (interruptible) {
2596    jlong prevtime = javaTimeNanos();
2597
2598    for (;;) {
2599      if (os::is_interrupted(thread, true)) {
2600        return OS_INTRPT;
2601      }
2602
2603      jlong newtime = javaTimeNanos();
2604
2605      if (newtime - prevtime < 0) {
2606        // time moving backwards, should only happen if no monotonic clock
2607        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2608        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2609      } else {
2610        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2611      }
2612
2613      if(millis <= 0) {
2614        return OS_OK;
2615      }
2616
2617      prevtime = newtime;
2618
2619      {
2620        assert(thread->is_Java_thread(), "sanity check");
2621        JavaThread *jt = (JavaThread *) thread;
2622        ThreadBlockInVM tbivm(jt);
2623        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2624
2625        jt->set_suspend_equivalent();
2626        // cleared by handle_special_suspend_equivalent_condition() or
2627        // java_suspend_self() via check_and_wait_while_suspended()
2628
2629        slp->park(millis);
2630
2631        // were we externally suspended while we were waiting?
2632        jt->check_and_wait_while_suspended();
2633      }
2634    }
2635  } else {
2636    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2637    jlong prevtime = javaTimeNanos();
2638
2639    for (;;) {
2640      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2641      // the 1st iteration ...
2642      jlong newtime = javaTimeNanos();
2643
2644      if (newtime - prevtime < 0) {
2645        // time moving backwards, should only happen if no monotonic clock
2646        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2647        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2648      } else {
2649        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2650      }
2651
2652      if(millis <= 0) break ;
2653
2654      prevtime = newtime;
2655      slp->park(millis);
2656    }
2657    return OS_OK ;
2658  }
2659}
2660
2661int os::naked_sleep() {
2662  // %% make the sleep time an integer flag. for now use 1 millisec.
2663  return os::sleep(Thread::current(), 1, false);
2664}
2665
2666// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2667void os::infinite_sleep() {
2668  while (true) {    // sleep forever ...
2669    ::sleep(100);   // ... 100 seconds at a time
2670  }
2671}
2672
2673// Used to convert frequent JVM_Yield() to nops
2674bool os::dont_yield() {
2675  return DontYieldALot;
2676}
2677
2678void os::yield() {
2679  sched_yield();
2680}
2681
2682os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2683
2684void os::yield_all(int attempts) {
2685  // Yields to all threads, including threads with lower priorities
2686  // Threads on Linux are all with same priority. The Solaris style
2687  // os::yield_all() with nanosleep(1ms) is not necessary.
2688  sched_yield();
2689}
2690
2691// Called from the tight loops to possibly influence time-sharing heuristics
2692void os::loop_breaker(int attempts) {
2693  os::yield_all(attempts);
2694}
2695
2696////////////////////////////////////////////////////////////////////////////////
2697// thread priority support
2698
2699// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
2700// only supports dynamic priority, static priority must be zero. For real-time
2701// applications, Linux supports SCHED_RR which allows static priority (1-99).
2702// However, for large multi-threaded applications, SCHED_RR is not only slower
2703// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2704// of 5 runs - Sep 2005).
2705//
2706// The following code actually changes the niceness of kernel-thread/LWP. It
2707// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2708// not the entire user process, and user level threads are 1:1 mapped to kernel
2709// threads. It has always been the case, but could change in the future. For
2710// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2711// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2712
2713int os::java_to_os_priority[MaxPriority + 1] = {
2714  19,              // 0 Entry should never be used
2715
2716   4,              // 1 MinPriority
2717   3,              // 2
2718   2,              // 3
2719
2720   1,              // 4
2721   0,              // 5 NormPriority
2722  -1,              // 6
2723
2724  -2,              // 7
2725  -3,              // 8
2726  -4,              // 9 NearMaxPriority
2727
2728  -5               // 10 MaxPriority
2729};
2730
2731static int prio_init() {
2732  if (ThreadPriorityPolicy == 1) {
2733    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2734    // if effective uid is not root. Perhaps, a more elegant way of doing
2735    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2736    if (geteuid() != 0) {
2737      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2738        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
2739      }
2740      ThreadPriorityPolicy = 0;
2741    }
2742  }
2743  return 0;
2744}
2745
2746OSReturn os::set_native_priority(Thread* thread, int newpri) {
2747  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2748
2749  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2750  return (ret == 0) ? OS_OK : OS_ERR;
2751}
2752
2753OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2754  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2755    *priority_ptr = java_to_os_priority[NormPriority];
2756    return OS_OK;
2757  }
2758
2759  errno = 0;
2760  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2761  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2762}
2763
2764// Hint to the underlying OS that a task switch would not be good.
2765// Void return because it's a hint and can fail.
2766void os::hint_no_preempt() {}
2767
2768////////////////////////////////////////////////////////////////////////////////
2769// suspend/resume support
2770
2771//  the low-level signal-based suspend/resume support is a remnant from the
2772//  old VM-suspension that used to be for java-suspension, safepoints etc,
2773//  within hotspot. Now there is a single use-case for this:
2774//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2775//      that runs in the watcher thread.
2776//  The remaining code is greatly simplified from the more general suspension
2777//  code that used to be used.
2778//
2779//  The protocol is quite simple:
2780//  - suspend:
2781//      - sends a signal to the target thread
2782//      - polls the suspend state of the osthread using a yield loop
2783//      - target thread signal handler (SR_handler) sets suspend state
2784//        and blocks in sigsuspend until continued
2785//  - resume:
2786//      - sets target osthread state to continue
2787//      - sends signal to end the sigsuspend loop in the SR_handler
2788//
2789//  Note that the SR_lock plays no role in this suspend/resume protocol.
2790//
2791
2792static void resume_clear_context(OSThread *osthread) {
2793  osthread->set_ucontext(NULL);
2794  osthread->set_siginfo(NULL);
2795
2796  // notify the suspend action is completed, we have now resumed
2797  osthread->sr.clear_suspended();
2798}
2799
2800static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2801  osthread->set_ucontext(context);
2802  osthread->set_siginfo(siginfo);
2803}
2804
2805//
2806// Handler function invoked when a thread's execution is suspended or
2807// resumed. We have to be careful that only async-safe functions are
2808// called here (Note: most pthread functions are not async safe and
2809// should be avoided.)
2810//
2811// Note: sigwait() is a more natural fit than sigsuspend() from an
2812// interface point of view, but sigwait() prevents the signal hander
2813// from being run. libpthread would get very confused by not having
2814// its signal handlers run and prevents sigwait()'s use with the
2815// mutex granting granting signal.
2816//
2817// Currently only ever called on the VMThread
2818//
2819static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2820  // Save and restore errno to avoid confusing native code with EINTR
2821  // after sigsuspend.
2822  int old_errno = errno;
2823
2824  Thread* thread = Thread::current();
2825  OSThread* osthread = thread->osthread();
2826  assert(thread->is_VM_thread(), "Must be VMThread");
2827  // read current suspend action
2828  int action = osthread->sr.suspend_action();
2829  if (action == SR_SUSPEND) {
2830    suspend_save_context(osthread, siginfo, context);
2831
2832    // Notify the suspend action is about to be completed. do_suspend()
2833    // waits until SR_SUSPENDED is set and then returns. We will wait
2834    // here for a resume signal and that completes the suspend-other
2835    // action. do_suspend/do_resume is always called as a pair from
2836    // the same thread - so there are no races
2837
2838    // notify the caller
2839    osthread->sr.set_suspended();
2840
2841    sigset_t suspend_set;  // signals for sigsuspend()
2842
2843    // get current set of blocked signals and unblock resume signal
2844    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2845    sigdelset(&suspend_set, SR_signum);
2846
2847    // wait here until we are resumed
2848    do {
2849      sigsuspend(&suspend_set);
2850      // ignore all returns until we get a resume signal
2851    } while (osthread->sr.suspend_action() != SR_CONTINUE);
2852
2853    resume_clear_context(osthread);
2854
2855  } else {
2856    assert(action == SR_CONTINUE, "unexpected sr action");
2857    // nothing special to do - just leave the handler
2858  }
2859
2860  errno = old_errno;
2861}
2862
2863
2864static int SR_initialize() {
2865  struct sigaction act;
2866  char *s;
2867  /* Get signal number to use for suspend/resume */
2868  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2869    int sig = ::strtol(s, 0, 10);
2870    if (sig > 0 || sig < _NSIG) {
2871        SR_signum = sig;
2872    }
2873  }
2874
2875  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2876        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2877
2878  sigemptyset(&SR_sigset);
2879  sigaddset(&SR_sigset, SR_signum);
2880
2881  /* Set up signal handler for suspend/resume */
2882  act.sa_flags = SA_RESTART|SA_SIGINFO;
2883  act.sa_handler = (void (*)(int)) SR_handler;
2884
2885  // SR_signum is blocked by default.
2886  // 4528190 - We also need to block pthread restart signal (32 on all
2887  // supported Linux platforms). Note that LinuxThreads need to block
2888  // this signal for all threads to work properly. So we don't have
2889  // to use hard-coded signal number when setting up the mask.
2890  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2891
2892  if (sigaction(SR_signum, &act, 0) == -1) {
2893    return -1;
2894  }
2895
2896  // Save signal flag
2897  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
2898  return 0;
2899}
2900
2901static int SR_finalize() {
2902  return 0;
2903}
2904
2905
2906// returns true on success and false on error - really an error is fatal
2907// but this seems the normal response to library errors
2908static bool do_suspend(OSThread* osthread) {
2909  // mark as suspended and send signal
2910  osthread->sr.set_suspend_action(SR_SUSPEND);
2911  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2912  assert_status(status == 0, status, "pthread_kill");
2913
2914  // check status and wait until notified of suspension
2915  if (status == 0) {
2916    for (int i = 0; !osthread->sr.is_suspended(); i++) {
2917      os::yield_all(i);
2918    }
2919    osthread->sr.set_suspend_action(SR_NONE);
2920    return true;
2921  }
2922  else {
2923    osthread->sr.set_suspend_action(SR_NONE);
2924    return false;
2925  }
2926}
2927
2928static void do_resume(OSThread* osthread) {
2929  assert(osthread->sr.is_suspended(), "thread should be suspended");
2930  osthread->sr.set_suspend_action(SR_CONTINUE);
2931
2932  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2933  assert_status(status == 0, status, "pthread_kill");
2934  // check status and wait unit notified of resumption
2935  if (status == 0) {
2936    for (int i = 0; osthread->sr.is_suspended(); i++) {
2937      os::yield_all(i);
2938    }
2939  }
2940  osthread->sr.set_suspend_action(SR_NONE);
2941}
2942
2943////////////////////////////////////////////////////////////////////////////////
2944// interrupt support
2945
2946void os::interrupt(Thread* thread) {
2947  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2948    "possibility of dangling Thread pointer");
2949
2950  OSThread* osthread = thread->osthread();
2951
2952  if (!osthread->interrupted()) {
2953    osthread->set_interrupted(true);
2954    // More than one thread can get here with the same value of osthread,
2955    // resulting in multiple notifications.  We do, however, want the store
2956    // to interrupted() to be visible to other threads before we execute unpark().
2957    OrderAccess::fence();
2958    ParkEvent * const slp = thread->_SleepEvent ;
2959    if (slp != NULL) slp->unpark() ;
2960  }
2961
2962  // For JSR166. Unpark even if interrupt status already was set
2963  if (thread->is_Java_thread())
2964    ((JavaThread*)thread)->parker()->unpark();
2965
2966  ParkEvent * ev = thread->_ParkEvent ;
2967  if (ev != NULL) ev->unpark() ;
2968
2969}
2970
2971bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2972  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2973    "possibility of dangling Thread pointer");
2974
2975  OSThread* osthread = thread->osthread();
2976
2977  bool interrupted = osthread->interrupted();
2978
2979  if (interrupted && clear_interrupted) {
2980    osthread->set_interrupted(false);
2981    // consider thread->_SleepEvent->reset() ... optional optimization
2982  }
2983
2984  return interrupted;
2985}
2986
2987///////////////////////////////////////////////////////////////////////////////////
2988// signal handling (except suspend/resume)
2989
2990// This routine may be used by user applications as a "hook" to catch signals.
2991// The user-defined signal handler must pass unrecognized signals to this
2992// routine, and if it returns true (non-zero), then the signal handler must
2993// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2994// routine will never retun false (zero), but instead will execute a VM panic
2995// routine kill the process.
2996//
2997// If this routine returns false, it is OK to call it again.  This allows
2998// the user-defined signal handler to perform checks either before or after
2999// the VM performs its own checks.  Naturally, the user code would be making
3000// a serious error if it tried to handle an exception (such as a null check
3001// or breakpoint) that the VM was generating for its own correct operation.
3002//
3003// This routine may recognize any of the following kinds of signals:
3004//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3005// It should be consulted by handlers for any of those signals.
3006//
3007// The caller of this routine must pass in the three arguments supplied
3008// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3009// field of the structure passed to sigaction().  This routine assumes that
3010// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3011//
3012// Note that the VM will print warnings if it detects conflicting signal
3013// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3014//
3015extern "C" int
3016JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3017                        void* ucontext, int abort_if_unrecognized);
3018
3019void signalHandler(int sig, siginfo_t* info, void* uc) {
3020  assert(info != NULL && uc != NULL, "it must be old kernel");
3021  JVM_handle_linux_signal(sig, info, uc, true);
3022}
3023
3024
3025// This boolean allows users to forward their own non-matching signals
3026// to JVM_handle_linux_signal, harmlessly.
3027bool os::Linux::signal_handlers_are_installed = false;
3028
3029// For signal-chaining
3030struct sigaction os::Linux::sigact[MAXSIGNUM];
3031unsigned int os::Linux::sigs = 0;
3032bool os::Linux::libjsig_is_loaded = false;
3033typedef struct sigaction *(*get_signal_t)(int);
3034get_signal_t os::Linux::get_signal_action = NULL;
3035
3036struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3037  struct sigaction *actp = NULL;
3038
3039  if (libjsig_is_loaded) {
3040    // Retrieve the old signal handler from libjsig
3041    actp = (*get_signal_action)(sig);
3042  }
3043  if (actp == NULL) {
3044    // Retrieve the preinstalled signal handler from jvm
3045    actp = get_preinstalled_handler(sig);
3046  }
3047
3048  return actp;
3049}
3050
3051static bool call_chained_handler(struct sigaction *actp, int sig,
3052                                 siginfo_t *siginfo, void *context) {
3053  // Call the old signal handler
3054  if (actp->sa_handler == SIG_DFL) {
3055    // It's more reasonable to let jvm treat it as an unexpected exception
3056    // instead of taking the default action.
3057    return false;
3058  } else if (actp->sa_handler != SIG_IGN) {
3059    if ((actp->sa_flags & SA_NODEFER) == 0) {
3060      // automaticlly block the signal
3061      sigaddset(&(actp->sa_mask), sig);
3062    }
3063
3064    sa_handler_t hand;
3065    sa_sigaction_t sa;
3066    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3067    // retrieve the chained handler
3068    if (siginfo_flag_set) {
3069      sa = actp->sa_sigaction;
3070    } else {
3071      hand = actp->sa_handler;
3072    }
3073
3074    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3075      actp->sa_handler = SIG_DFL;
3076    }
3077
3078    // try to honor the signal mask
3079    sigset_t oset;
3080    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3081
3082    // call into the chained handler
3083    if (siginfo_flag_set) {
3084      (*sa)(sig, siginfo, context);
3085    } else {
3086      (*hand)(sig);
3087    }
3088
3089    // restore the signal mask
3090    pthread_sigmask(SIG_SETMASK, &oset, 0);
3091  }
3092  // Tell jvm's signal handler the signal is taken care of.
3093  return true;
3094}
3095
3096bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3097  bool chained = false;
3098  // signal-chaining
3099  if (UseSignalChaining) {
3100    struct sigaction *actp = get_chained_signal_action(sig);
3101    if (actp != NULL) {
3102      chained = call_chained_handler(actp, sig, siginfo, context);
3103    }
3104  }
3105  return chained;
3106}
3107
3108struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3109  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3110    return &sigact[sig];
3111  }
3112  return NULL;
3113}
3114
3115void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3116  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3117  sigact[sig] = oldAct;
3118  sigs |= (unsigned int)1 << sig;
3119}
3120
3121// for diagnostic
3122int os::Linux::sigflags[MAXSIGNUM];
3123
3124int os::Linux::get_our_sigflags(int sig) {
3125  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3126  return sigflags[sig];
3127}
3128
3129void os::Linux::set_our_sigflags(int sig, int flags) {
3130  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3131  sigflags[sig] = flags;
3132}
3133
3134void os::Linux::set_signal_handler(int sig, bool set_installed) {
3135  // Check for overwrite.
3136  struct sigaction oldAct;
3137  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3138
3139  void* oldhand = oldAct.sa_sigaction
3140                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3141                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3142  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3143      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3144      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3145    if (AllowUserSignalHandlers || !set_installed) {
3146      // Do not overwrite; user takes responsibility to forward to us.
3147      return;
3148    } else if (UseSignalChaining) {
3149      // save the old handler in jvm
3150      save_preinstalled_handler(sig, oldAct);
3151      // libjsig also interposes the sigaction() call below and saves the
3152      // old sigaction on it own.
3153    } else {
3154      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
3155    }
3156  }
3157
3158  struct sigaction sigAct;
3159  sigfillset(&(sigAct.sa_mask));
3160  sigAct.sa_handler = SIG_DFL;
3161  if (!set_installed) {
3162    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3163  } else {
3164    sigAct.sa_sigaction = signalHandler;
3165    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3166  }
3167  // Save flags, which are set by ours
3168  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3169  sigflags[sig] = sigAct.sa_flags;
3170
3171  int ret = sigaction(sig, &sigAct, &oldAct);
3172  assert(ret == 0, "check");
3173
3174  void* oldhand2  = oldAct.sa_sigaction
3175                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3176                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3177  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3178}
3179
3180// install signal handlers for signals that HotSpot needs to
3181// handle in order to support Java-level exception handling.
3182
3183void os::Linux::install_signal_handlers() {
3184  if (!signal_handlers_are_installed) {
3185    signal_handlers_are_installed = true;
3186
3187    // signal-chaining
3188    typedef void (*signal_setting_t)();
3189    signal_setting_t begin_signal_setting = NULL;
3190    signal_setting_t end_signal_setting = NULL;
3191    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3192                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3193    if (begin_signal_setting != NULL) {
3194      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3195                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3196      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3197                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3198      libjsig_is_loaded = true;
3199      assert(UseSignalChaining, "should enable signal-chaining");
3200    }
3201    if (libjsig_is_loaded) {
3202      // Tell libjsig jvm is setting signal handlers
3203      (*begin_signal_setting)();
3204    }
3205
3206    set_signal_handler(SIGSEGV, true);
3207    set_signal_handler(SIGPIPE, true);
3208    set_signal_handler(SIGBUS, true);
3209    set_signal_handler(SIGILL, true);
3210    set_signal_handler(SIGFPE, true);
3211    set_signal_handler(SIGXFSZ, true);
3212
3213    if (libjsig_is_loaded) {
3214      // Tell libjsig jvm finishes setting signal handlers
3215      (*end_signal_setting)();
3216    }
3217
3218    // We don't activate signal checker if libjsig is in place, we trust ourselves
3219    // and if UserSignalHandler is installed all bets are off
3220    if (CheckJNICalls) {
3221      if (libjsig_is_loaded) {
3222        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3223        check_signals = false;
3224      }
3225      if (AllowUserSignalHandlers) {
3226        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3227        check_signals = false;
3228      }
3229    }
3230  }
3231}
3232
3233// This is the fastest way to get thread cpu time on Linux.
3234// Returns cpu time (user+sys) for any thread, not only for current.
3235// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3236// It might work on 2.6.10+ with a special kernel/glibc patch.
3237// For reference, please, see IEEE Std 1003.1-2004:
3238//   http://www.unix.org/single_unix_specification
3239
3240jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3241  struct timespec tp;
3242  int rc = os::Linux::clock_gettime(clockid, &tp);
3243  assert(rc == 0, "clock_gettime is expected to return 0 code");
3244
3245  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3246}
3247
3248/////
3249// glibc on Linux platform uses non-documented flag
3250// to indicate, that some special sort of signal
3251// trampoline is used.
3252// We will never set this flag, and we should
3253// ignore this flag in our diagnostic
3254#ifdef SIGNIFICANT_SIGNAL_MASK
3255#undef SIGNIFICANT_SIGNAL_MASK
3256#endif
3257#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3258
3259static const char* get_signal_handler_name(address handler,
3260                                           char* buf, int buflen) {
3261  int offset;
3262  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3263  if (found) {
3264    // skip directory names
3265    const char *p1, *p2;
3266    p1 = buf;
3267    size_t len = strlen(os::file_separator());
3268    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3269    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3270  } else {
3271    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3272  }
3273  return buf;
3274}
3275
3276static void print_signal_handler(outputStream* st, int sig,
3277                                 char* buf, size_t buflen) {
3278  struct sigaction sa;
3279
3280  sigaction(sig, NULL, &sa);
3281
3282  // See comment for SIGNIFICANT_SIGNAL_MASK define
3283  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3284
3285  st->print("%s: ", os::exception_name(sig, buf, buflen));
3286
3287  address handler = (sa.sa_flags & SA_SIGINFO)
3288    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3289    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3290
3291  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3292    st->print("SIG_DFL");
3293  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3294    st->print("SIG_IGN");
3295  } else {
3296    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3297  }
3298
3299  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3300
3301  address rh = VMError::get_resetted_sighandler(sig);
3302  // May be, handler was resetted by VMError?
3303  if(rh != NULL) {
3304    handler = rh;
3305    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3306  }
3307
3308  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3309
3310  // Check: is it our handler?
3311  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3312     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3313    // It is our signal handler
3314    // check for flags, reset system-used one!
3315    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3316      st->print(
3317                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3318                os::Linux::get_our_sigflags(sig));
3319    }
3320  }
3321  st->cr();
3322}
3323
3324
3325#define DO_SIGNAL_CHECK(sig) \
3326  if (!sigismember(&check_signal_done, sig)) \
3327    os::Linux::check_signal_handler(sig)
3328
3329// This method is a periodic task to check for misbehaving JNI applications
3330// under CheckJNI, we can add any periodic checks here
3331
3332void os::run_periodic_checks() {
3333
3334  if (check_signals == false) return;
3335
3336  // SEGV and BUS if overridden could potentially prevent
3337  // generation of hs*.log in the event of a crash, debugging
3338  // such a case can be very challenging, so we absolutely
3339  // check the following for a good measure:
3340  DO_SIGNAL_CHECK(SIGSEGV);
3341  DO_SIGNAL_CHECK(SIGILL);
3342  DO_SIGNAL_CHECK(SIGFPE);
3343  DO_SIGNAL_CHECK(SIGBUS);
3344  DO_SIGNAL_CHECK(SIGPIPE);
3345  DO_SIGNAL_CHECK(SIGXFSZ);
3346
3347
3348  // ReduceSignalUsage allows the user to override these handlers
3349  // see comments at the very top and jvm_solaris.h
3350  if (!ReduceSignalUsage) {
3351    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3352    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3353    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3354    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3355  }
3356
3357  DO_SIGNAL_CHECK(SR_signum);
3358  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3359}
3360
3361typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3362
3363static os_sigaction_t os_sigaction = NULL;
3364
3365void os::Linux::check_signal_handler(int sig) {
3366  char buf[O_BUFLEN];
3367  address jvmHandler = NULL;
3368
3369
3370  struct sigaction act;
3371  if (os_sigaction == NULL) {
3372    // only trust the default sigaction, in case it has been interposed
3373    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3374    if (os_sigaction == NULL) return;
3375  }
3376
3377  os_sigaction(sig, (struct sigaction*)NULL, &act);
3378
3379
3380  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3381
3382  address thisHandler = (act.sa_flags & SA_SIGINFO)
3383    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3384    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3385
3386
3387  switch(sig) {
3388  case SIGSEGV:
3389  case SIGBUS:
3390  case SIGFPE:
3391  case SIGPIPE:
3392  case SIGILL:
3393  case SIGXFSZ:
3394    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3395    break;
3396
3397  case SHUTDOWN1_SIGNAL:
3398  case SHUTDOWN2_SIGNAL:
3399  case SHUTDOWN3_SIGNAL:
3400  case BREAK_SIGNAL:
3401    jvmHandler = (address)user_handler();
3402    break;
3403
3404  case INTERRUPT_SIGNAL:
3405    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3406    break;
3407
3408  default:
3409    if (sig == SR_signum) {
3410      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3411    } else {
3412      return;
3413    }
3414    break;
3415  }
3416
3417  if (thisHandler != jvmHandler) {
3418    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3419    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3420    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3421    // No need to check this sig any longer
3422    sigaddset(&check_signal_done, sig);
3423  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3424    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3425    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3426    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3427    // No need to check this sig any longer
3428    sigaddset(&check_signal_done, sig);
3429  }
3430
3431  // Dump all the signal
3432  if (sigismember(&check_signal_done, sig)) {
3433    print_signal_handlers(tty, buf, O_BUFLEN);
3434  }
3435}
3436
3437extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3438
3439extern bool signal_name(int signo, char* buf, size_t len);
3440
3441const char* os::exception_name(int exception_code, char* buf, size_t size) {
3442  if (0 < exception_code && exception_code <= SIGRTMAX) {
3443    // signal
3444    if (!signal_name(exception_code, buf, size)) {
3445      jio_snprintf(buf, size, "SIG%d", exception_code);
3446    }
3447    return buf;
3448  } else {
3449    return NULL;
3450  }
3451}
3452
3453// this is called _before_ the most of global arguments have been parsed
3454void os::init(void) {
3455  char dummy;   /* used to get a guess on initial stack address */
3456//  first_hrtime = gethrtime();
3457
3458  // With LinuxThreads the JavaMain thread pid (primordial thread)
3459  // is different than the pid of the java launcher thread.
3460  // So, on Linux, the launcher thread pid is passed to the VM
3461  // via the sun.java.launcher.pid property.
3462  // Use this property instead of getpid() if it was correctly passed.
3463  // See bug 6351349.
3464  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3465
3466  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3467
3468  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3469
3470  init_random(1234567);
3471
3472  ThreadCritical::initialize();
3473
3474  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3475  if (Linux::page_size() == -1) {
3476    fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
3477  }
3478  init_page_sizes((size_t) Linux::page_size());
3479
3480  Linux::initialize_system_info();
3481
3482  // main_thread points to the aboriginal thread
3483  Linux::_main_thread = pthread_self();
3484
3485  Linux::clock_init();
3486  initial_time_count = os::elapsed_counter();
3487}
3488
3489// To install functions for atexit system call
3490extern "C" {
3491  static void perfMemory_exit_helper() {
3492    perfMemory_exit();
3493  }
3494}
3495
3496// this is called _after_ the global arguments have been parsed
3497jint os::init_2(void)
3498{
3499  Linux::fast_thread_clock_init();
3500
3501  // Allocate a single page and mark it as readable for safepoint polling
3502  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3503  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3504
3505  os::set_polling_page( polling_page );
3506
3507#ifndef PRODUCT
3508  if(Verbose && PrintMiscellaneous)
3509    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3510#endif
3511
3512  if (!UseMembar) {
3513    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3514    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3515    os::set_memory_serialize_page( mem_serialize_page );
3516
3517#ifndef PRODUCT
3518    if(Verbose && PrintMiscellaneous)
3519      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3520#endif
3521  }
3522
3523  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3524
3525  // initialize suspend/resume support - must do this before signal_sets_init()
3526  if (SR_initialize() != 0) {
3527    perror("SR_initialize failed");
3528    return JNI_ERR;
3529  }
3530
3531  Linux::signal_sets_init();
3532  Linux::install_signal_handlers();
3533
3534  size_t threadStackSizeInBytes = ThreadStackSize * K;
3535  if (threadStackSizeInBytes != 0 &&
3536      threadStackSizeInBytes < Linux::min_stack_allowed) {
3537        tty->print_cr("\nThe stack size specified is too small, "
3538                      "Specify at least %dk",
3539                      Linux::min_stack_allowed / K);
3540        return JNI_ERR;
3541  }
3542
3543  // Make the stack size a multiple of the page size so that
3544  // the yellow/red zones can be guarded.
3545  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3546        vm_page_size()));
3547
3548  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3549
3550  Linux::libpthread_init();
3551  if (PrintMiscellaneous && (Verbose || WizardMode)) {
3552     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3553          Linux::glibc_version(), Linux::libpthread_version(),
3554          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3555  }
3556
3557  if (MaxFDLimit) {
3558    // set the number of file descriptors to max. print out error
3559    // if getrlimit/setrlimit fails but continue regardless.
3560    struct rlimit nbr_files;
3561    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3562    if (status != 0) {
3563      if (PrintMiscellaneous && (Verbose || WizardMode))
3564        perror("os::init_2 getrlimit failed");
3565    } else {
3566      nbr_files.rlim_cur = nbr_files.rlim_max;
3567      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3568      if (status != 0) {
3569        if (PrintMiscellaneous && (Verbose || WizardMode))
3570          perror("os::init_2 setrlimit failed");
3571      }
3572    }
3573  }
3574
3575  // Initialize lock used to serialize thread creation (see os::create_thread)
3576  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3577
3578  // Initialize HPI.
3579  jint hpi_result = hpi::initialize();
3580  if (hpi_result != JNI_OK) {
3581    tty->print_cr("There was an error trying to initialize the HPI library.");
3582    return hpi_result;
3583  }
3584
3585  // at-exit methods are called in the reverse order of their registration.
3586  // atexit functions are called on return from main or as a result of a
3587  // call to exit(3C). There can be only 32 of these functions registered
3588  // and atexit() does not set errno.
3589
3590  if (PerfAllowAtExitRegistration) {
3591    // only register atexit functions if PerfAllowAtExitRegistration is set.
3592    // atexit functions can be delayed until process exit time, which
3593    // can be problematic for embedded VM situations. Embedded VMs should
3594    // call DestroyJavaVM() to assure that VM resources are released.
3595
3596    // note: perfMemory_exit_helper atexit function may be removed in
3597    // the future if the appropriate cleanup code can be added to the
3598    // VM_Exit VMOperation's doit method.
3599    if (atexit(perfMemory_exit_helper) != 0) {
3600      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3601    }
3602  }
3603
3604  // initialize thread priority policy
3605  prio_init();
3606
3607  return JNI_OK;
3608}
3609
3610// Mark the polling page as unreadable
3611void os::make_polling_page_unreadable(void) {
3612  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
3613    fatal("Could not disable polling page");
3614};
3615
3616// Mark the polling page as readable
3617void os::make_polling_page_readable(void) {
3618  if( !protect_memory((char *)_polling_page, Linux::page_size()) )
3619    fatal("Could not enable polling page");
3620};
3621
3622int os::active_processor_count() {
3623  // Linux doesn't yet have a (official) notion of processor sets,
3624  // so just return the number of online processors.
3625  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3626  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3627  return online_cpus;
3628}
3629
3630bool os::distribute_processes(uint length, uint* distribution) {
3631  // Not yet implemented.
3632  return false;
3633}
3634
3635bool os::bind_to_processor(uint processor_id) {
3636  // Not yet implemented.
3637  return false;
3638}
3639
3640///
3641
3642// Suspends the target using the signal mechanism and then grabs the PC before
3643// resuming the target. Used by the flat-profiler only
3644ExtendedPC os::get_thread_pc(Thread* thread) {
3645  // Make sure that it is called by the watcher for the VMThread
3646  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3647  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3648
3649  ExtendedPC epc;
3650
3651  OSThread* osthread = thread->osthread();
3652  if (do_suspend(osthread)) {
3653    if (osthread->ucontext() != NULL) {
3654      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
3655    } else {
3656      // NULL context is unexpected, double-check this is the VMThread
3657      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3658    }
3659    do_resume(osthread);
3660  }
3661  // failure means pthread_kill failed for some reason - arguably this is
3662  // a fatal problem, but such problems are ignored elsewhere
3663
3664  return epc;
3665}
3666
3667int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3668{
3669   if (is_NPTL()) {
3670      return pthread_cond_timedwait(_cond, _mutex, _abstime);
3671   } else {
3672#ifndef IA64
3673      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
3674      // word back to default 64bit precision if condvar is signaled. Java
3675      // wants 53bit precision.  Save and restore current value.
3676      int fpu = get_fpu_control_word();
3677#endif // IA64
3678      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
3679#ifndef IA64
3680      set_fpu_control_word(fpu);
3681#endif // IA64
3682      return status;
3683   }
3684}
3685
3686////////////////////////////////////////////////////////////////////////////////
3687// debug support
3688
3689#ifndef PRODUCT
3690static address same_page(address x, address y) {
3691  int page_bits = -os::vm_page_size();
3692  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3693    return x;
3694  else if (x > y)
3695    return (address)(intptr_t(y) | ~page_bits) + 1;
3696  else
3697    return (address)(intptr_t(y) & page_bits);
3698}
3699
3700bool os::find(address addr) {
3701  Dl_info dlinfo;
3702  memset(&dlinfo, 0, sizeof(dlinfo));
3703  if (dladdr(addr, &dlinfo)) {
3704    tty->print(PTR_FORMAT ": ", addr);
3705    if (dlinfo.dli_sname != NULL) {
3706      tty->print("%s+%#x", dlinfo.dli_sname,
3707                 addr - (intptr_t)dlinfo.dli_saddr);
3708    } else if (dlinfo.dli_fname) {
3709      tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3710    } else {
3711      tty->print("<absolute address>");
3712    }
3713    if (dlinfo.dli_fname) {
3714      tty->print(" in %s", dlinfo.dli_fname);
3715    }
3716    if (dlinfo.dli_fbase) {
3717      tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3718    }
3719    tty->cr();
3720
3721    if (Verbose) {
3722      // decode some bytes around the PC
3723      address begin = same_page(addr-40, addr);
3724      address end   = same_page(addr+40, addr);
3725      address       lowest = (address) dlinfo.dli_sname;
3726      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3727      if (begin < lowest)  begin = lowest;
3728      Dl_info dlinfo2;
3729      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3730          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3731        end = (address) dlinfo2.dli_saddr;
3732      Disassembler::decode(begin, end);
3733    }
3734    return true;
3735  }
3736  return false;
3737}
3738
3739#endif
3740
3741////////////////////////////////////////////////////////////////////////////////
3742// misc
3743
3744// This does not do anything on Linux. This is basically a hook for being
3745// able to use structured exception handling (thread-local exception filters)
3746// on, e.g., Win32.
3747void
3748os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3749                         JavaCallArguments* args, Thread* thread) {
3750  f(value, method, args, thread);
3751}
3752
3753void os::print_statistics() {
3754}
3755
3756int os::message_box(const char* title, const char* message) {
3757  int i;
3758  fdStream err(defaultStream::error_fd());
3759  for (i = 0; i < 78; i++) err.print_raw("=");
3760  err.cr();
3761  err.print_raw_cr(title);
3762  for (i = 0; i < 78; i++) err.print_raw("-");
3763  err.cr();
3764  err.print_raw_cr(message);
3765  for (i = 0; i < 78; i++) err.print_raw("=");
3766  err.cr();
3767
3768  char buf[16];
3769  // Prevent process from exiting upon "read error" without consuming all CPU
3770  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3771
3772  return buf[0] == 'y' || buf[0] == 'Y';
3773}
3774
3775int os::stat(const char *path, struct stat *sbuf) {
3776  char pathbuf[MAX_PATH];
3777  if (strlen(path) > MAX_PATH - 1) {
3778    errno = ENAMETOOLONG;
3779    return -1;
3780  }
3781  hpi::native_path(strcpy(pathbuf, path));
3782  return ::stat(pathbuf, sbuf);
3783}
3784
3785bool os::check_heap(bool force) {
3786  return true;
3787}
3788
3789int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3790  return ::vsnprintf(buf, count, format, args);
3791}
3792
3793// Is a (classpath) directory empty?
3794bool os::dir_is_empty(const char* path) {
3795  DIR *dir = NULL;
3796  struct dirent *ptr;
3797
3798  dir = opendir(path);
3799  if (dir == NULL) return true;
3800
3801  /* Scan the directory */
3802  bool result = true;
3803  char buf[sizeof(struct dirent) + MAX_PATH];
3804  while (result && (ptr = ::readdir(dir)) != NULL) {
3805    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3806      result = false;
3807    }
3808  }
3809  closedir(dir);
3810  return result;
3811}
3812
3813// create binary file, rewriting existing file if required
3814int os::create_binary_file(const char* path, bool rewrite_existing) {
3815  int oflags = O_WRONLY | O_CREAT;
3816  if (!rewrite_existing) {
3817    oflags |= O_EXCL;
3818  }
3819  return ::open64(path, oflags, S_IREAD | S_IWRITE);
3820}
3821
3822// return current position of file pointer
3823jlong os::current_file_offset(int fd) {
3824  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3825}
3826
3827// move file pointer to the specified offset
3828jlong os::seek_to_file_offset(int fd, jlong offset) {
3829  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3830}
3831
3832// Map a block of memory.
3833char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3834                     char *addr, size_t bytes, bool read_only,
3835                     bool allow_exec) {
3836  int prot;
3837  int flags;
3838
3839  if (read_only) {
3840    prot = PROT_READ;
3841    flags = MAP_SHARED;
3842  } else {
3843    prot = PROT_READ | PROT_WRITE;
3844    flags = MAP_PRIVATE;
3845  }
3846
3847  if (allow_exec) {
3848    prot |= PROT_EXEC;
3849  }
3850
3851  if (addr != NULL) {
3852    flags |= MAP_FIXED;
3853  }
3854
3855  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3856                                     fd, file_offset);
3857  if (mapped_address == MAP_FAILED) {
3858    return NULL;
3859  }
3860  return mapped_address;
3861}
3862
3863
3864// Remap a block of memory.
3865char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3866                       char *addr, size_t bytes, bool read_only,
3867                       bool allow_exec) {
3868  // same as map_memory() on this OS
3869  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3870                        allow_exec);
3871}
3872
3873
3874// Unmap a block of memory.
3875bool os::unmap_memory(char* addr, size_t bytes) {
3876  return munmap(addr, bytes) == 0;
3877}
3878
3879static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
3880
3881static clockid_t thread_cpu_clockid(Thread* thread) {
3882  pthread_t tid = thread->osthread()->pthread_id();
3883  clockid_t clockid;
3884
3885  // Get thread clockid
3886  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
3887  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
3888  return clockid;
3889}
3890
3891// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3892// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3893// of a thread.
3894//
3895// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3896// the fast estimate available on the platform.
3897
3898jlong os::current_thread_cpu_time() {
3899  if (os::Linux::supports_fast_thread_cpu_time()) {
3900    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
3901  } else {
3902    // return user + sys since the cost is the same
3903    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
3904  }
3905}
3906
3907jlong os::thread_cpu_time(Thread* thread) {
3908  // consistent with what current_thread_cpu_time() returns
3909  if (os::Linux::supports_fast_thread_cpu_time()) {
3910    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
3911  } else {
3912    return slow_thread_cpu_time(thread, true /* user + sys */);
3913  }
3914}
3915
3916jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3917  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
3918    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
3919  } else {
3920    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
3921  }
3922}
3923
3924jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3925  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
3926    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
3927  } else {
3928    return slow_thread_cpu_time(thread, user_sys_cpu_time);
3929  }
3930}
3931
3932//
3933//  -1 on error.
3934//
3935
3936static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3937  static bool proc_pid_cpu_avail = true;
3938  static bool proc_task_unchecked = true;
3939  static const char *proc_stat_path = "/proc/%d/stat";
3940  pid_t  tid = thread->osthread()->thread_id();
3941  int i;
3942  char *s;
3943  char stat[2048];
3944  int statlen;
3945  char proc_name[64];
3946  int count;
3947  long sys_time, user_time;
3948  char string[64];
3949  int idummy;
3950  long ldummy;
3951  FILE *fp;
3952
3953  // We first try accessing /proc/<pid>/cpu since this is faster to
3954  // process.  If this file is not present (linux kernels 2.5 and above)
3955  // then we open /proc/<pid>/stat.
3956  if ( proc_pid_cpu_avail ) {
3957    sprintf(proc_name, "/proc/%d/cpu", tid);
3958    fp =  fopen(proc_name, "r");
3959    if ( fp != NULL ) {
3960      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
3961      fclose(fp);
3962      if ( count != 3 ) return -1;
3963
3964      if (user_sys_cpu_time) {
3965        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
3966      } else {
3967        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
3968      }
3969    }
3970    else proc_pid_cpu_avail = false;
3971  }
3972
3973  // The /proc/<tid>/stat aggregates per-process usage on
3974  // new Linux kernels 2.6+ where NPTL is supported.
3975  // The /proc/self/task/<tid>/stat still has the per-thread usage.
3976  // See bug 6328462.
3977  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
3978  // and possibly in some other cases, so we check its availability.
3979  if (proc_task_unchecked && os::Linux::is_NPTL()) {
3980    // This is executed only once
3981    proc_task_unchecked = false;
3982    fp = fopen("/proc/self/task", "r");
3983    if (fp != NULL) {
3984      proc_stat_path = "/proc/self/task/%d/stat";
3985      fclose(fp);
3986    }
3987  }
3988
3989  sprintf(proc_name, proc_stat_path, tid);
3990  fp = fopen(proc_name, "r");
3991  if ( fp == NULL ) return -1;
3992  statlen = fread(stat, 1, 2047, fp);
3993  stat[statlen] = '\0';
3994  fclose(fp);
3995
3996  // Skip pid and the command string. Note that we could be dealing with
3997  // weird command names, e.g. user could decide to rename java launcher
3998  // to "java 1.4.2 :)", then the stat file would look like
3999  //                1234 (java 1.4.2 :)) R ... ...
4000  // We don't really need to know the command string, just find the last
4001  // occurrence of ")" and then start parsing from there. See bug 4726580.
4002  s = strrchr(stat, ')');
4003  i = 0;
4004  if (s == NULL ) return -1;
4005
4006  // Skip blank chars
4007  do s++; while (isspace(*s));
4008
4009  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4010                 &idummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4011                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4012                 &user_time, &sys_time);
4013  if ( count != 13 ) return -1;
4014  if (user_sys_cpu_time) {
4015    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4016  } else {
4017    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4018  }
4019}
4020
4021void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4022  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4023  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4024  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4025  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4026}
4027
4028void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4029  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4030  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4031  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4032  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4033}
4034
4035bool os::is_thread_cpu_time_supported() {
4036  return true;
4037}
4038
4039// System loadavg support.  Returns -1 if load average cannot be obtained.
4040// Linux doesn't yet have a (official) notion of processor sets,
4041// so just return the system wide load average.
4042int os::loadavg(double loadavg[], int nelem) {
4043  return ::getloadavg(loadavg, nelem);
4044}
4045
4046void os::pause() {
4047  char filename[MAX_PATH];
4048  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4049    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4050  } else {
4051    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4052  }
4053
4054  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4055  if (fd != -1) {
4056    struct stat buf;
4057    close(fd);
4058    while (::stat(filename, &buf) == 0) {
4059      (void)::poll(NULL, 0, 100);
4060    }
4061  } else {
4062    jio_fprintf(stderr,
4063      "Could not open pause file '%s', continuing immediately.\n", filename);
4064  }
4065}
4066
4067extern "C" {
4068
4069/**
4070 * NOTE: the following code is to keep the green threads code
4071 * in the libjava.so happy. Once the green threads is removed,
4072 * these code will no longer be needed.
4073 */
4074int
4075jdk_waitpid(pid_t pid, int* status, int options) {
4076    return waitpid(pid, status, options);
4077}
4078
4079int
4080fork1() {
4081    return fork();
4082}
4083
4084int
4085jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4086    return sem_init(sem, pshared, value);
4087}
4088
4089int
4090jdk_sem_post(sem_t *sem) {
4091    return sem_post(sem);
4092}
4093
4094int
4095jdk_sem_wait(sem_t *sem) {
4096    return sem_wait(sem);
4097}
4098
4099int
4100jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4101    return pthread_sigmask(how , newmask, oldmask);
4102}
4103
4104}
4105
4106// Refer to the comments in os_solaris.cpp park-unpark.
4107//
4108// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4109// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4110// For specifics regarding the bug see GLIBC BUGID 261237 :
4111//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4112// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4113// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4114// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4115// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4116// and monitorenter when we're using 1-0 locking.  All those operations may result in
4117// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4118// of libpthread avoids the problem, but isn't practical.
4119//
4120// Possible remedies:
4121//
4122// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4123//      This is palliative and probabilistic, however.  If the thread is preempted
4124//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4125//      than the minimum period may have passed, and the abstime may be stale (in the
4126//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4127//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4128//
4129// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4130//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4131//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4132//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4133//      thread.
4134//
4135// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4136//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4137//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4138//      This also works well.  In fact it avoids kernel-level scalability impediments
4139//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4140//      timers in a graceful fashion.
4141//
4142// 4.   When the abstime value is in the past it appears that control returns
4143//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4144//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4145//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4146//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4147//      It may be possible to avoid reinitialization by checking the return
4148//      value from pthread_cond_timedwait().  In addition to reinitializing the
4149//      condvar we must establish the invariant that cond_signal() is only called
4150//      within critical sections protected by the adjunct mutex.  This prevents
4151//      cond_signal() from "seeing" a condvar that's in the midst of being
4152//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4153//      desirable signal-after-unlock optimization that avoids futile context switching.
4154//
4155//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4156//      structure when a condvar is used or initialized.  cond_destroy()  would
4157//      release the helper structure.  Our reinitialize-after-timedwait fix
4158//      put excessive stress on malloc/free and locks protecting the c-heap.
4159//
4160// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4161// It may be possible to refine (4) by checking the kernel and NTPL verisons
4162// and only enabling the work-around for vulnerable environments.
4163
4164// utility to compute the abstime argument to timedwait:
4165// millis is the relative timeout time
4166// abstime will be the absolute timeout time
4167// TODO: replace compute_abstime() with unpackTime()
4168
4169static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4170  if (millis < 0)  millis = 0;
4171  struct timeval now;
4172  int status = gettimeofday(&now, NULL);
4173  assert(status == 0, "gettimeofday");
4174  jlong seconds = millis / 1000;
4175  millis %= 1000;
4176  if (seconds > 50000000) { // see man cond_timedwait(3T)
4177    seconds = 50000000;
4178  }
4179  abstime->tv_sec = now.tv_sec  + seconds;
4180  long       usec = now.tv_usec + millis * 1000;
4181  if (usec >= 1000000) {
4182    abstime->tv_sec += 1;
4183    usec -= 1000000;
4184  }
4185  abstime->tv_nsec = usec * 1000;
4186  return abstime;
4187}
4188
4189
4190// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4191// Conceptually TryPark() should be equivalent to park(0).
4192
4193int os::PlatformEvent::TryPark() {
4194  for (;;) {
4195    const int v = _Event ;
4196    guarantee ((v == 0) || (v == 1), "invariant") ;
4197    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4198  }
4199}
4200
4201void os::PlatformEvent::park() {       // AKA "down()"
4202  // Invariant: Only the thread associated with the Event/PlatformEvent
4203  // may call park().
4204  // TODO: assert that _Assoc != NULL or _Assoc == Self
4205  int v ;
4206  for (;;) {
4207      v = _Event ;
4208      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4209  }
4210  guarantee (v >= 0, "invariant") ;
4211  if (v == 0) {
4212     // Do this the hard way by blocking ...
4213     int status = pthread_mutex_lock(_mutex);
4214     assert_status(status == 0, status, "mutex_lock");
4215     guarantee (_nParked == 0, "invariant") ;
4216     ++ _nParked ;
4217     while (_Event < 0) {
4218        status = pthread_cond_wait(_cond, _mutex);
4219        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4220        // Treat this the same as if the wait was interrupted
4221        if (status == ETIME) { status = EINTR; }
4222        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4223     }
4224     -- _nParked ;
4225
4226    // In theory we could move the ST of 0 into _Event past the unlock(),
4227    // but then we'd need a MEMBAR after the ST.
4228    _Event = 0 ;
4229     status = pthread_mutex_unlock(_mutex);
4230     assert_status(status == 0, status, "mutex_unlock");
4231  }
4232  guarantee (_Event >= 0, "invariant") ;
4233}
4234
4235int os::PlatformEvent::park(jlong millis) {
4236  guarantee (_nParked == 0, "invariant") ;
4237
4238  int v ;
4239  for (;;) {
4240      v = _Event ;
4241      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4242  }
4243  guarantee (v >= 0, "invariant") ;
4244  if (v != 0) return OS_OK ;
4245
4246  // We do this the hard way, by blocking the thread.
4247  // Consider enforcing a minimum timeout value.
4248  struct timespec abst;
4249  compute_abstime(&abst, millis);
4250
4251  int ret = OS_TIMEOUT;
4252  int status = pthread_mutex_lock(_mutex);
4253  assert_status(status == 0, status, "mutex_lock");
4254  guarantee (_nParked == 0, "invariant") ;
4255  ++_nParked ;
4256
4257  // Object.wait(timo) will return because of
4258  // (a) notification
4259  // (b) timeout
4260  // (c) thread.interrupt
4261  //
4262  // Thread.interrupt and object.notify{All} both call Event::set.
4263  // That is, we treat thread.interrupt as a special case of notification.
4264  // The underlying Solaris implementation, cond_timedwait, admits
4265  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4266  // JVM from making those visible to Java code.  As such, we must
4267  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4268  //
4269  // TODO: properly differentiate simultaneous notify+interrupt.
4270  // In that case, we should propagate the notify to another waiter.
4271
4272  while (_Event < 0) {
4273    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4274    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4275      pthread_cond_destroy (_cond);
4276      pthread_cond_init (_cond, NULL) ;
4277    }
4278    assert_status(status == 0 || status == EINTR ||
4279                  status == ETIME || status == ETIMEDOUT,
4280                  status, "cond_timedwait");
4281    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4282    if (status == ETIME || status == ETIMEDOUT) break ;
4283    // We consume and ignore EINTR and spurious wakeups.
4284  }
4285  --_nParked ;
4286  if (_Event >= 0) {
4287     ret = OS_OK;
4288  }
4289  _Event = 0 ;
4290  status = pthread_mutex_unlock(_mutex);
4291  assert_status(status == 0, status, "mutex_unlock");
4292  assert (_nParked == 0, "invariant") ;
4293  return ret;
4294}
4295
4296void os::PlatformEvent::unpark() {
4297  int v, AnyWaiters ;
4298  for (;;) {
4299      v = _Event ;
4300      if (v > 0) {
4301         // The LD of _Event could have reordered or be satisfied
4302         // by a read-aside from this processor's write buffer.
4303         // To avoid problems execute a barrier and then
4304         // ratify the value.
4305         OrderAccess::fence() ;
4306         if (_Event == v) return ;
4307         continue ;
4308      }
4309      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4310  }
4311  if (v < 0) {
4312     // Wait for the thread associated with the event to vacate
4313     int status = pthread_mutex_lock(_mutex);
4314     assert_status(status == 0, status, "mutex_lock");
4315     AnyWaiters = _nParked ;
4316     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4317     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4318        AnyWaiters = 0 ;
4319        pthread_cond_signal (_cond);
4320     }
4321     status = pthread_mutex_unlock(_mutex);
4322     assert_status(status == 0, status, "mutex_unlock");
4323     if (AnyWaiters != 0) {
4324        status = pthread_cond_signal(_cond);
4325        assert_status(status == 0, status, "cond_signal");
4326     }
4327  }
4328
4329  // Note that we signal() _after dropping the lock for "immortal" Events.
4330  // This is safe and avoids a common class of  futile wakeups.  In rare
4331  // circumstances this can cause a thread to return prematurely from
4332  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4333  // simply re-test the condition and re-park itself.
4334}
4335
4336
4337// JSR166
4338// -------------------------------------------------------
4339
4340/*
4341 * The solaris and linux implementations of park/unpark are fairly
4342 * conservative for now, but can be improved. They currently use a
4343 * mutex/condvar pair, plus a a count.
4344 * Park decrements count if > 0, else does a condvar wait.  Unpark
4345 * sets count to 1 and signals condvar.  Only one thread ever waits
4346 * on the condvar. Contention seen when trying to park implies that someone
4347 * is unparking you, so don't wait. And spurious returns are fine, so there
4348 * is no need to track notifications.
4349 */
4350
4351
4352#define NANOSECS_PER_SEC 1000000000
4353#define NANOSECS_PER_MILLISEC 1000000
4354#define MAX_SECS 100000000
4355/*
4356 * This code is common to linux and solaris and will be moved to a
4357 * common place in dolphin.
4358 *
4359 * The passed in time value is either a relative time in nanoseconds
4360 * or an absolute time in milliseconds. Either way it has to be unpacked
4361 * into suitable seconds and nanoseconds components and stored in the
4362 * given timespec structure.
4363 * Given time is a 64-bit value and the time_t used in the timespec is only
4364 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4365 * overflow if times way in the future are given. Further on Solaris versions
4366 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4367 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4368 * As it will be 28 years before "now + 100000000" will overflow we can
4369 * ignore overflow and just impose a hard-limit on seconds using the value
4370 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4371 * years from "now".
4372 */
4373
4374static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4375  assert (time > 0, "convertTime");
4376
4377  struct timeval now;
4378  int status = gettimeofday(&now, NULL);
4379  assert(status == 0, "gettimeofday");
4380
4381  time_t max_secs = now.tv_sec + MAX_SECS;
4382
4383  if (isAbsolute) {
4384    jlong secs = time / 1000;
4385    if (secs > max_secs) {
4386      absTime->tv_sec = max_secs;
4387    }
4388    else {
4389      absTime->tv_sec = secs;
4390    }
4391    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4392  }
4393  else {
4394    jlong secs = time / NANOSECS_PER_SEC;
4395    if (secs >= MAX_SECS) {
4396      absTime->tv_sec = max_secs;
4397      absTime->tv_nsec = 0;
4398    }
4399    else {
4400      absTime->tv_sec = now.tv_sec + secs;
4401      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4402      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4403        absTime->tv_nsec -= NANOSECS_PER_SEC;
4404        ++absTime->tv_sec; // note: this must be <= max_secs
4405      }
4406    }
4407  }
4408  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4409  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4410  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4411  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4412}
4413
4414void Parker::park(bool isAbsolute, jlong time) {
4415  // Optional fast-path check:
4416  // Return immediately if a permit is available.
4417  if (_counter > 0) {
4418      _counter = 0 ;
4419      return ;
4420  }
4421
4422  Thread* thread = Thread::current();
4423  assert(thread->is_Java_thread(), "Must be JavaThread");
4424  JavaThread *jt = (JavaThread *)thread;
4425
4426  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4427  // Check interrupt before trying to wait
4428  if (Thread::is_interrupted(thread, false)) {
4429    return;
4430  }
4431
4432  // Next, demultiplex/decode time arguments
4433  timespec absTime;
4434  if (time < 0) { // don't wait at all
4435    return;
4436  }
4437  if (time > 0) {
4438    unpackTime(&absTime, isAbsolute, time);
4439  }
4440
4441
4442  // Enter safepoint region
4443  // Beware of deadlocks such as 6317397.
4444  // The per-thread Parker:: mutex is a classic leaf-lock.
4445  // In particular a thread must never block on the Threads_lock while
4446  // holding the Parker:: mutex.  If safepoints are pending both the
4447  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4448  ThreadBlockInVM tbivm(jt);
4449
4450  // Don't wait if cannot get lock since interference arises from
4451  // unblocking.  Also. check interrupt before trying wait
4452  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4453    return;
4454  }
4455
4456  int status ;
4457  if (_counter > 0)  { // no wait needed
4458    _counter = 0;
4459    status = pthread_mutex_unlock(_mutex);
4460    assert (status == 0, "invariant") ;
4461    return;
4462  }
4463
4464#ifdef ASSERT
4465  // Don't catch signals while blocked; let the running threads have the signals.
4466  // (This allows a debugger to break into the running thread.)
4467  sigset_t oldsigs;
4468  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4469  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4470#endif
4471
4472  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4473  jt->set_suspend_equivalent();
4474  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4475
4476  if (time == 0) {
4477    status = pthread_cond_wait (_cond, _mutex) ;
4478  } else {
4479    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4480    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4481      pthread_cond_destroy (_cond) ;
4482      pthread_cond_init    (_cond, NULL);
4483    }
4484  }
4485  assert_status(status == 0 || status == EINTR ||
4486                status == ETIME || status == ETIMEDOUT,
4487                status, "cond_timedwait");
4488
4489#ifdef ASSERT
4490  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4491#endif
4492
4493  _counter = 0 ;
4494  status = pthread_mutex_unlock(_mutex) ;
4495  assert_status(status == 0, status, "invariant") ;
4496  // If externally suspended while waiting, re-suspend
4497  if (jt->handle_special_suspend_equivalent_condition()) {
4498    jt->java_suspend_self();
4499  }
4500
4501}
4502
4503void Parker::unpark() {
4504  int s, status ;
4505  status = pthread_mutex_lock(_mutex);
4506  assert (status == 0, "invariant") ;
4507  s = _counter;
4508  _counter = 1;
4509  if (s < 1) {
4510     if (WorkAroundNPTLTimedWaitHang) {
4511        status = pthread_cond_signal (_cond) ;
4512        assert (status == 0, "invariant") ;
4513        status = pthread_mutex_unlock(_mutex);
4514        assert (status == 0, "invariant") ;
4515     } else {
4516        status = pthread_mutex_unlock(_mutex);
4517        assert (status == 0, "invariant") ;
4518        status = pthread_cond_signal (_cond) ;
4519        assert (status == 0, "invariant") ;
4520     }
4521  } else {
4522    pthread_mutex_unlock(_mutex);
4523    assert (status == 0, "invariant") ;
4524  }
4525}
4526
4527
4528extern char** environ;
4529
4530#ifndef __NR_fork
4531#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4532#endif
4533
4534#ifndef __NR_execve
4535#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4536#endif
4537
4538// Run the specified command in a separate process. Return its exit value,
4539// or -1 on failure (e.g. can't fork a new process).
4540// Unlike system(), this function can be called from signal handler. It
4541// doesn't block SIGINT et al.
4542int os::fork_and_exec(char* cmd) {
4543  char * argv[4];
4544  argv[0] = "sh";
4545  argv[1] = "-c";
4546  argv[2] = cmd;
4547  argv[3] = NULL;
4548
4549  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4550  // pthread_atfork handlers and reset pthread library. All we need is a
4551  // separate process to execve. Make a direct syscall to fork process.
4552  // On IA64 there's no fork syscall, we have to use fork() and hope for
4553  // the best...
4554  pid_t pid = NOT_IA64(syscall(__NR_fork);)
4555              IA64_ONLY(fork();)
4556
4557  if (pid < 0) {
4558    // fork failed
4559    return -1;
4560
4561  } else if (pid == 0) {
4562    // child process
4563
4564    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4565    // first to kill every thread on the thread list. Because this list is
4566    // not reset by fork() (see notes above), execve() will instead kill
4567    // every thread in the parent process. We know this is the only thread
4568    // in the new process, so make a system call directly.
4569    // IA64 should use normal execve() from glibc to match the glibc fork()
4570    // above.
4571    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4572    IA64_ONLY(execve("/bin/sh", argv, environ);)
4573
4574    // execve failed
4575    _exit(-1);
4576
4577  } else  {
4578    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4579    // care about the actual exit code, for now.
4580
4581    int status;
4582
4583    // Wait for the child process to exit.  This returns immediately if
4584    // the child has already exited. */
4585    while (waitpid(pid, &status, 0) < 0) {
4586        switch (errno) {
4587        case ECHILD: return 0;
4588        case EINTR: break;
4589        default: return -1;
4590        }
4591    }
4592
4593    if (WIFEXITED(status)) {
4594       // The child exited normally; get its exit code.
4595       return WEXITSTATUS(status);
4596    } else if (WIFSIGNALED(status)) {
4597       // The child exited because of a signal
4598       // The best value to return is 0x80 + signal number,
4599       // because that is what all Unix shells do, and because
4600       // it allows callers to distinguish between process exit and
4601       // process death by signal.
4602       return 0x80 + WTERMSIG(status);
4603    } else {
4604       // Unknown exit code; pass it through
4605       return status;
4606    }
4607  }
4608}
4609