os_linux.cpp revision 1887:828eafbd85cc
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# define __STDC_FORMAT_MACROS
26
27// no precompiled headers
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "compiler/compileBroker.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_linux.h"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/extendedPC.hpp"
46#include "runtime/globals.hpp"
47#include "runtime/interfaceSupport.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/runtimeService.hpp"
61#include "thread_linux.inline.hpp"
62#include "utilities/defaultStream.hpp"
63#include "utilities/events.hpp"
64#include "utilities/growableArray.hpp"
65#include "utilities/vmError.hpp"
66#ifdef TARGET_ARCH_x86
67# include "assembler_x86.inline.hpp"
68# include "nativeInst_x86.hpp"
69#endif
70#ifdef TARGET_ARCH_sparc
71# include "assembler_sparc.inline.hpp"
72# include "nativeInst_sparc.hpp"
73#endif
74#ifdef TARGET_ARCH_zero
75# include "assembler_zero.inline.hpp"
76# include "nativeInst_zero.hpp"
77#endif
78#ifdef COMPILER1
79#include "c1/c1_Runtime1.hpp"
80#endif
81#ifdef COMPILER2
82#include "opto/runtime.hpp"
83#endif
84
85// put OS-includes here
86# include <sys/types.h>
87# include <sys/mman.h>
88# include <sys/stat.h>
89# include <sys/select.h>
90# include <pthread.h>
91# include <signal.h>
92# include <errno.h>
93# include <dlfcn.h>
94# include <stdio.h>
95# include <unistd.h>
96# include <sys/resource.h>
97# include <pthread.h>
98# include <sys/stat.h>
99# include <sys/time.h>
100# include <sys/times.h>
101# include <sys/utsname.h>
102# include <sys/socket.h>
103# include <sys/wait.h>
104# include <pwd.h>
105# include <poll.h>
106# include <semaphore.h>
107# include <fcntl.h>
108# include <string.h>
109# include <syscall.h>
110# include <sys/sysinfo.h>
111# include <gnu/libc-version.h>
112# include <sys/ipc.h>
113# include <sys/shm.h>
114# include <link.h>
115# include <stdint.h>
116# include <inttypes.h>
117
118#define MAX_PATH    (2 * K)
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122#define SEC_IN_NANOSECS  1000000000LL
123
124////////////////////////////////////////////////////////////////////////////////
125// global variables
126julong os::Linux::_physical_memory = 0;
127
128address   os::Linux::_initial_thread_stack_bottom = NULL;
129uintptr_t os::Linux::_initial_thread_stack_size   = 0;
130
131int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
133Mutex* os::Linux::_createThread_lock = NULL;
134pthread_t os::Linux::_main_thread;
135int os::Linux::_page_size = -1;
136bool os::Linux::_is_floating_stack = false;
137bool os::Linux::_is_NPTL = false;
138bool os::Linux::_supports_fast_thread_cpu_time = false;
139const char * os::Linux::_glibc_version = NULL;
140const char * os::Linux::_libpthread_version = NULL;
141
142static jlong initial_time_count=0;
143
144static int clock_tics_per_sec = 100;
145
146// For diagnostics to print a message once. see run_periodic_checks
147static sigset_t check_signal_done;
148static bool check_signals = true;;
149
150static pid_t _initial_pid = 0;
151
152/* Signal number used to suspend/resume a thread */
153
154/* do not use any signal number less than SIGSEGV, see 4355769 */
155static int SR_signum = SIGUSR2;
156sigset_t SR_sigset;
157
158/* Used to protect dlsym() calls */
159static pthread_mutex_t dl_mutex;
160
161////////////////////////////////////////////////////////////////////////////////
162// utility functions
163
164static int SR_initialize();
165static int SR_finalize();
166
167julong os::available_memory() {
168  return Linux::available_memory();
169}
170
171julong os::Linux::available_memory() {
172  // values in struct sysinfo are "unsigned long"
173  struct sysinfo si;
174  sysinfo(&si);
175
176  return (julong)si.freeram * si.mem_unit;
177}
178
179julong os::physical_memory() {
180  return Linux::physical_memory();
181}
182
183julong os::allocatable_physical_memory(julong size) {
184#ifdef _LP64
185  return size;
186#else
187  julong result = MIN2(size, (julong)3800*M);
188   if (!is_allocatable(result)) {
189     // See comments under solaris for alignment considerations
190     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
191     result =  MIN2(size, reasonable_size);
192   }
193   return result;
194#endif // _LP64
195}
196
197////////////////////////////////////////////////////////////////////////////////
198// environment support
199
200bool os::getenv(const char* name, char* buf, int len) {
201  const char* val = ::getenv(name);
202  if (val != NULL && strlen(val) < (size_t)len) {
203    strcpy(buf, val);
204    return true;
205  }
206  if (len > 0) buf[0] = 0;  // return a null string
207  return false;
208}
209
210
211// Return true if user is running as root.
212
213bool os::have_special_privileges() {
214  static bool init = false;
215  static bool privileges = false;
216  if (!init) {
217    privileges = (getuid() != geteuid()) || (getgid() != getegid());
218    init = true;
219  }
220  return privileges;
221}
222
223
224#ifndef SYS_gettid
225// i386: 224, ia64: 1105, amd64: 186, sparc 143
226#ifdef __ia64__
227#define SYS_gettid 1105
228#elif __i386__
229#define SYS_gettid 224
230#elif __amd64__
231#define SYS_gettid 186
232#elif __sparc__
233#define SYS_gettid 143
234#else
235#error define gettid for the arch
236#endif
237#endif
238
239// Cpu architecture string
240#if   defined(ZERO)
241static char cpu_arch[] = ZERO_LIBARCH;
242#elif defined(IA64)
243static char cpu_arch[] = "ia64";
244#elif defined(IA32)
245static char cpu_arch[] = "i386";
246#elif defined(AMD64)
247static char cpu_arch[] = "amd64";
248#elif defined(ARM)
249static char cpu_arch[] = "arm";
250#elif defined(PPC)
251static char cpu_arch[] = "ppc";
252#elif defined(SPARC)
253#  ifdef _LP64
254static char cpu_arch[] = "sparcv9";
255#  else
256static char cpu_arch[] = "sparc";
257#  endif
258#else
259#error Add appropriate cpu_arch setting
260#endif
261
262
263// pid_t gettid()
264//
265// Returns the kernel thread id of the currently running thread. Kernel
266// thread id is used to access /proc.
267//
268// (Note that getpid() on LinuxThreads returns kernel thread id too; but
269// on NPTL, it returns the same pid for all threads, as required by POSIX.)
270//
271pid_t os::Linux::gettid() {
272  int rslt = syscall(SYS_gettid);
273  if (rslt == -1) {
274     // old kernel, no NPTL support
275     return getpid();
276  } else {
277     return (pid_t)rslt;
278  }
279}
280
281// Most versions of linux have a bug where the number of processors are
282// determined by looking at the /proc file system.  In a chroot environment,
283// the system call returns 1.  This causes the VM to act as if it is
284// a single processor and elide locking (see is_MP() call).
285static bool unsafe_chroot_detected = false;
286static const char *unstable_chroot_error = "/proc file system not found.\n"
287                     "Java may be unstable running multithreaded in a chroot "
288                     "environment on Linux when /proc filesystem is not mounted.";
289
290void os::Linux::initialize_system_info() {
291  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
292  if (processor_count() == 1) {
293    pid_t pid = os::Linux::gettid();
294    char fname[32];
295    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
296    FILE *fp = fopen(fname, "r");
297    if (fp == NULL) {
298      unsafe_chroot_detected = true;
299    } else {
300      fclose(fp);
301    }
302  }
303  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
304  assert(processor_count() > 0, "linux error");
305}
306
307void os::init_system_properties_values() {
308//  char arch[12];
309//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
310
311  // The next steps are taken in the product version:
312  //
313  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
314  // This library should be located at:
315  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
316  //
317  // If "/jre/lib/" appears at the right place in the path, then we
318  // assume libjvm[_g].so is installed in a JDK and we use this path.
319  //
320  // Otherwise exit with message: "Could not create the Java virtual machine."
321  //
322  // The following extra steps are taken in the debugging version:
323  //
324  // If "/jre/lib/" does NOT appear at the right place in the path
325  // instead of exit check for $JAVA_HOME environment variable.
326  //
327  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
328  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
329  // it looks like libjvm[_g].so is installed there
330  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
331  //
332  // Otherwise exit.
333  //
334  // Important note: if the location of libjvm.so changes this
335  // code needs to be changed accordingly.
336
337  // The next few definitions allow the code to be verbatim:
338#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
339#define getenv(n) ::getenv(n)
340
341/*
342 * See ld(1):
343 *      The linker uses the following search paths to locate required
344 *      shared libraries:
345 *        1: ...
346 *        ...
347 *        7: The default directories, normally /lib and /usr/lib.
348 */
349#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
350#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
351#else
352#define DEFAULT_LIBPATH "/lib:/usr/lib"
353#endif
354
355#define EXTENSIONS_DIR  "/lib/ext"
356#define ENDORSED_DIR    "/lib/endorsed"
357#define REG_DIR         "/usr/java/packages"
358
359  {
360    /* sysclasspath, java_home, dll_dir */
361    {
362        char *home_path;
363        char *dll_path;
364        char *pslash;
365        char buf[MAXPATHLEN];
366        os::jvm_path(buf, sizeof(buf));
367
368        // Found the full path to libjvm.so.
369        // Now cut the path to <java_home>/jre if we can.
370        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
371        pslash = strrchr(buf, '/');
372        if (pslash != NULL)
373            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
374        dll_path = malloc(strlen(buf) + 1);
375        if (dll_path == NULL)
376            return;
377        strcpy(dll_path, buf);
378        Arguments::set_dll_dir(dll_path);
379
380        if (pslash != NULL) {
381            pslash = strrchr(buf, '/');
382            if (pslash != NULL) {
383                *pslash = '\0';       /* get rid of /<arch> */
384                pslash = strrchr(buf, '/');
385                if (pslash != NULL)
386                    *pslash = '\0';   /* get rid of /lib */
387            }
388        }
389
390        home_path = malloc(strlen(buf) + 1);
391        if (home_path == NULL)
392            return;
393        strcpy(home_path, buf);
394        Arguments::set_java_home(home_path);
395
396        if (!set_boot_path('/', ':'))
397            return;
398    }
399
400    /*
401     * Where to look for native libraries
402     *
403     * Note: Due to a legacy implementation, most of the library path
404     * is set in the launcher.  This was to accomodate linking restrictions
405     * on legacy Linux implementations (which are no longer supported).
406     * Eventually, all the library path setting will be done here.
407     *
408     * However, to prevent the proliferation of improperly built native
409     * libraries, the new path component /usr/java/packages is added here.
410     * Eventually, all the library path setting will be done here.
411     */
412    {
413        char *ld_library_path;
414
415        /*
416         * Construct the invariant part of ld_library_path. Note that the
417         * space for the colon and the trailing null are provided by the
418         * nulls included by the sizeof operator (so actually we allocate
419         * a byte more than necessary).
420         */
421        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
422            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
423        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
424
425        /*
426         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
427         * should always exist (until the legacy problem cited above is
428         * addressed).
429         */
430        char *v = getenv("LD_LIBRARY_PATH");
431        if (v != NULL) {
432            char *t = ld_library_path;
433            /* That's +1 for the colon and +1 for the trailing '\0' */
434            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
435            sprintf(ld_library_path, "%s:%s", v, t);
436        }
437        Arguments::set_library_path(ld_library_path);
438    }
439
440    /*
441     * Extensions directories.
442     *
443     * Note that the space for the colon and the trailing null are provided
444     * by the nulls included by the sizeof operator (so actually one byte more
445     * than necessary is allocated).
446     */
447    {
448        char *buf = malloc(strlen(Arguments::get_java_home()) +
449            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
450        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
451            Arguments::get_java_home());
452        Arguments::set_ext_dirs(buf);
453    }
454
455    /* Endorsed standards default directory. */
456    {
457        char * buf;
458        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
459        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
460        Arguments::set_endorsed_dirs(buf);
461    }
462  }
463
464#undef malloc
465#undef getenv
466#undef EXTENSIONS_DIR
467#undef ENDORSED_DIR
468
469  // Done
470  return;
471}
472
473////////////////////////////////////////////////////////////////////////////////
474// breakpoint support
475
476void os::breakpoint() {
477  BREAKPOINT;
478}
479
480extern "C" void breakpoint() {
481  // use debugger to set breakpoint here
482}
483
484////////////////////////////////////////////////////////////////////////////////
485// signal support
486
487debug_only(static bool signal_sets_initialized = false);
488static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
489
490bool os::Linux::is_sig_ignored(int sig) {
491      struct sigaction oact;
492      sigaction(sig, (struct sigaction*)NULL, &oact);
493      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
494                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
495      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
496           return true;
497      else
498           return false;
499}
500
501void os::Linux::signal_sets_init() {
502  // Should also have an assertion stating we are still single-threaded.
503  assert(!signal_sets_initialized, "Already initialized");
504  // Fill in signals that are necessarily unblocked for all threads in
505  // the VM. Currently, we unblock the following signals:
506  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
507  //                         by -Xrs (=ReduceSignalUsage));
508  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
509  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
510  // the dispositions or masks wrt these signals.
511  // Programs embedding the VM that want to use the above signals for their
512  // own purposes must, at this time, use the "-Xrs" option to prevent
513  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
514  // (See bug 4345157, and other related bugs).
515  // In reality, though, unblocking these signals is really a nop, since
516  // these signals are not blocked by default.
517  sigemptyset(&unblocked_sigs);
518  sigemptyset(&allowdebug_blocked_sigs);
519  sigaddset(&unblocked_sigs, SIGILL);
520  sigaddset(&unblocked_sigs, SIGSEGV);
521  sigaddset(&unblocked_sigs, SIGBUS);
522  sigaddset(&unblocked_sigs, SIGFPE);
523  sigaddset(&unblocked_sigs, SR_signum);
524
525  if (!ReduceSignalUsage) {
526   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
527      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
528      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
529   }
530   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
531      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
532      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
533   }
534   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
535      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
536      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
537   }
538  }
539  // Fill in signals that are blocked by all but the VM thread.
540  sigemptyset(&vm_sigs);
541  if (!ReduceSignalUsage)
542    sigaddset(&vm_sigs, BREAK_SIGNAL);
543  debug_only(signal_sets_initialized = true);
544
545}
546
547// These are signals that are unblocked while a thread is running Java.
548// (For some reason, they get blocked by default.)
549sigset_t* os::Linux::unblocked_signals() {
550  assert(signal_sets_initialized, "Not initialized");
551  return &unblocked_sigs;
552}
553
554// These are the signals that are blocked while a (non-VM) thread is
555// running Java. Only the VM thread handles these signals.
556sigset_t* os::Linux::vm_signals() {
557  assert(signal_sets_initialized, "Not initialized");
558  return &vm_sigs;
559}
560
561// These are signals that are blocked during cond_wait to allow debugger in
562sigset_t* os::Linux::allowdebug_blocked_signals() {
563  assert(signal_sets_initialized, "Not initialized");
564  return &allowdebug_blocked_sigs;
565}
566
567void os::Linux::hotspot_sigmask(Thread* thread) {
568
569  //Save caller's signal mask before setting VM signal mask
570  sigset_t caller_sigmask;
571  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
572
573  OSThread* osthread = thread->osthread();
574  osthread->set_caller_sigmask(caller_sigmask);
575
576  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
577
578  if (!ReduceSignalUsage) {
579    if (thread->is_VM_thread()) {
580      // Only the VM thread handles BREAK_SIGNAL ...
581      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
582    } else {
583      // ... all other threads block BREAK_SIGNAL
584      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
585    }
586  }
587}
588
589//////////////////////////////////////////////////////////////////////////////
590// detecting pthread library
591
592void os::Linux::libpthread_init() {
593  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
594  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
595  // generic name for earlier versions.
596  // Define macros here so we can build HotSpot on old systems.
597# ifndef _CS_GNU_LIBC_VERSION
598# define _CS_GNU_LIBC_VERSION 2
599# endif
600# ifndef _CS_GNU_LIBPTHREAD_VERSION
601# define _CS_GNU_LIBPTHREAD_VERSION 3
602# endif
603
604  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
605  if (n > 0) {
606     char *str = (char *)malloc(n);
607     confstr(_CS_GNU_LIBC_VERSION, str, n);
608     os::Linux::set_glibc_version(str);
609  } else {
610     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
611     static char _gnu_libc_version[32];
612     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
613              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
614     os::Linux::set_glibc_version(_gnu_libc_version);
615  }
616
617  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
618  if (n > 0) {
619     char *str = (char *)malloc(n);
620     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
621     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
622     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
623     // is the case. LinuxThreads has a hard limit on max number of threads.
624     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
625     // On the other hand, NPTL does not have such a limit, sysconf()
626     // will return -1 and errno is not changed. Check if it is really NPTL.
627     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
628         strstr(str, "NPTL") &&
629         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
630       free(str);
631       os::Linux::set_libpthread_version("linuxthreads");
632     } else {
633       os::Linux::set_libpthread_version(str);
634     }
635  } else {
636    // glibc before 2.3.2 only has LinuxThreads.
637    os::Linux::set_libpthread_version("linuxthreads");
638  }
639
640  if (strstr(libpthread_version(), "NPTL")) {
641     os::Linux::set_is_NPTL();
642  } else {
643     os::Linux::set_is_LinuxThreads();
644  }
645
646  // LinuxThreads have two flavors: floating-stack mode, which allows variable
647  // stack size; and fixed-stack mode. NPTL is always floating-stack.
648  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
649     os::Linux::set_is_floating_stack();
650  }
651}
652
653/////////////////////////////////////////////////////////////////////////////
654// thread stack
655
656// Force Linux kernel to expand current thread stack. If "bottom" is close
657// to the stack guard, caller should block all signals.
658//
659// MAP_GROWSDOWN:
660//   A special mmap() flag that is used to implement thread stacks. It tells
661//   kernel that the memory region should extend downwards when needed. This
662//   allows early versions of LinuxThreads to only mmap the first few pages
663//   when creating a new thread. Linux kernel will automatically expand thread
664//   stack as needed (on page faults).
665//
666//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
667//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
668//   region, it's hard to tell if the fault is due to a legitimate stack
669//   access or because of reading/writing non-exist memory (e.g. buffer
670//   overrun). As a rule, if the fault happens below current stack pointer,
671//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
672//   application (see Linux kernel fault.c).
673//
674//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
675//   stack overflow detection.
676//
677//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
678//   not use this flag. However, the stack of initial thread is not created
679//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
680//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
681//   and then attach the thread to JVM.
682//
683// To get around the problem and allow stack banging on Linux, we need to
684// manually expand thread stack after receiving the SIGSEGV.
685//
686// There are two ways to expand thread stack to address "bottom", we used
687// both of them in JVM before 1.5:
688//   1. adjust stack pointer first so that it is below "bottom", and then
689//      touch "bottom"
690//   2. mmap() the page in question
691//
692// Now alternate signal stack is gone, it's harder to use 2. For instance,
693// if current sp is already near the lower end of page 101, and we need to
694// call mmap() to map page 100, it is possible that part of the mmap() frame
695// will be placed in page 100. When page 100 is mapped, it is zero-filled.
696// That will destroy the mmap() frame and cause VM to crash.
697//
698// The following code works by adjusting sp first, then accessing the "bottom"
699// page to force a page fault. Linux kernel will then automatically expand the
700// stack mapping.
701//
702// _expand_stack_to() assumes its frame size is less than page size, which
703// should always be true if the function is not inlined.
704
705#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
706#define NOINLINE
707#else
708#define NOINLINE __attribute__ ((noinline))
709#endif
710
711static void _expand_stack_to(address bottom) NOINLINE;
712
713static void _expand_stack_to(address bottom) {
714  address sp;
715  size_t size;
716  volatile char *p;
717
718  // Adjust bottom to point to the largest address within the same page, it
719  // gives us a one-page buffer if alloca() allocates slightly more memory.
720  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
721  bottom += os::Linux::page_size() - 1;
722
723  // sp might be slightly above current stack pointer; if that's the case, we
724  // will alloca() a little more space than necessary, which is OK. Don't use
725  // os::current_stack_pointer(), as its result can be slightly below current
726  // stack pointer, causing us to not alloca enough to reach "bottom".
727  sp = (address)&sp;
728
729  if (sp > bottom) {
730    size = sp - bottom;
731    p = (volatile char *)alloca(size);
732    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
733    p[0] = '\0';
734  }
735}
736
737bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
738  assert(t!=NULL, "just checking");
739  assert(t->osthread()->expanding_stack(), "expand should be set");
740  assert(t->stack_base() != NULL, "stack_base was not initialized");
741
742  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
743    sigset_t mask_all, old_sigset;
744    sigfillset(&mask_all);
745    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
746    _expand_stack_to(addr);
747    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
748    return true;
749  }
750  return false;
751}
752
753//////////////////////////////////////////////////////////////////////////////
754// create new thread
755
756static address highest_vm_reserved_address();
757
758// check if it's safe to start a new thread
759static bool _thread_safety_check(Thread* thread) {
760  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
761    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
762    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
763    //   allocated (MAP_FIXED) from high address space. Every thread stack
764    //   occupies a fixed size slot (usually 2Mbytes, but user can change
765    //   it to other values if they rebuild LinuxThreads).
766    //
767    // Problem with MAP_FIXED is that mmap() can still succeed even part of
768    // the memory region has already been mmap'ed. That means if we have too
769    // many threads and/or very large heap, eventually thread stack will
770    // collide with heap.
771    //
772    // Here we try to prevent heap/stack collision by comparing current
773    // stack bottom with the highest address that has been mmap'ed by JVM
774    // plus a safety margin for memory maps created by native code.
775    //
776    // This feature can be disabled by setting ThreadSafetyMargin to 0
777    //
778    if (ThreadSafetyMargin > 0) {
779      address stack_bottom = os::current_stack_base() - os::current_stack_size();
780
781      // not safe if our stack extends below the safety margin
782      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
783    } else {
784      return true;
785    }
786  } else {
787    // Floating stack LinuxThreads or NPTL:
788    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
789    //   there's not enough space left, pthread_create() will fail. If we come
790    //   here, that means enough space has been reserved for stack.
791    return true;
792  }
793}
794
795// Thread start routine for all newly created threads
796static void *java_start(Thread *thread) {
797  // Try to randomize the cache line index of hot stack frames.
798  // This helps when threads of the same stack traces evict each other's
799  // cache lines. The threads can be either from the same JVM instance, or
800  // from different JVM instances. The benefit is especially true for
801  // processors with hyperthreading technology.
802  static int counter = 0;
803  int pid = os::current_process_id();
804  alloca(((pid ^ counter++) & 7) * 128);
805
806  ThreadLocalStorage::set_thread(thread);
807
808  OSThread* osthread = thread->osthread();
809  Monitor* sync = osthread->startThread_lock();
810
811  // non floating stack LinuxThreads needs extra check, see above
812  if (!_thread_safety_check(thread)) {
813    // notify parent thread
814    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
815    osthread->set_state(ZOMBIE);
816    sync->notify_all();
817    return NULL;
818  }
819
820  // thread_id is kernel thread id (similar to Solaris LWP id)
821  osthread->set_thread_id(os::Linux::gettid());
822
823  if (UseNUMA) {
824    int lgrp_id = os::numa_get_group_id();
825    if (lgrp_id != -1) {
826      thread->set_lgrp_id(lgrp_id);
827    }
828  }
829  // initialize signal mask for this thread
830  os::Linux::hotspot_sigmask(thread);
831
832  // initialize floating point control register
833  os::Linux::init_thread_fpu_state();
834
835  // handshaking with parent thread
836  {
837    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
838
839    // notify parent thread
840    osthread->set_state(INITIALIZED);
841    sync->notify_all();
842
843    // wait until os::start_thread()
844    while (osthread->get_state() == INITIALIZED) {
845      sync->wait(Mutex::_no_safepoint_check_flag);
846    }
847  }
848
849  // call one more level start routine
850  thread->run();
851
852  return 0;
853}
854
855bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
856  assert(thread->osthread() == NULL, "caller responsible");
857
858  // Allocate the OSThread object
859  OSThread* osthread = new OSThread(NULL, NULL);
860  if (osthread == NULL) {
861    return false;
862  }
863
864  // set the correct thread state
865  osthread->set_thread_type(thr_type);
866
867  // Initial state is ALLOCATED but not INITIALIZED
868  osthread->set_state(ALLOCATED);
869
870  thread->set_osthread(osthread);
871
872  // init thread attributes
873  pthread_attr_t attr;
874  pthread_attr_init(&attr);
875  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
876
877  // stack size
878  if (os::Linux::supports_variable_stack_size()) {
879    // calculate stack size if it's not specified by caller
880    if (stack_size == 0) {
881      stack_size = os::Linux::default_stack_size(thr_type);
882
883      switch (thr_type) {
884      case os::java_thread:
885        // Java threads use ThreadStackSize which default value can be
886        // changed with the flag -Xss
887        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
888        stack_size = JavaThread::stack_size_at_create();
889        break;
890      case os::compiler_thread:
891        if (CompilerThreadStackSize > 0) {
892          stack_size = (size_t)(CompilerThreadStackSize * K);
893          break;
894        } // else fall through:
895          // use VMThreadStackSize if CompilerThreadStackSize is not defined
896      case os::vm_thread:
897      case os::pgc_thread:
898      case os::cgc_thread:
899      case os::watcher_thread:
900        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
901        break;
902      }
903    }
904
905    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
906    pthread_attr_setstacksize(&attr, stack_size);
907  } else {
908    // let pthread_create() pick the default value.
909  }
910
911  // glibc guard page
912  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
913
914  ThreadState state;
915
916  {
917    // Serialize thread creation if we are running with fixed stack LinuxThreads
918    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
919    if (lock) {
920      os::Linux::createThread_lock()->lock_without_safepoint_check();
921    }
922
923    pthread_t tid;
924    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
925
926    pthread_attr_destroy(&attr);
927
928    if (ret != 0) {
929      if (PrintMiscellaneous && (Verbose || WizardMode)) {
930        perror("pthread_create()");
931      }
932      // Need to clean up stuff we've allocated so far
933      thread->set_osthread(NULL);
934      delete osthread;
935      if (lock) os::Linux::createThread_lock()->unlock();
936      return false;
937    }
938
939    // Store pthread info into the OSThread
940    osthread->set_pthread_id(tid);
941
942    // Wait until child thread is either initialized or aborted
943    {
944      Monitor* sync_with_child = osthread->startThread_lock();
945      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
946      while ((state = osthread->get_state()) == ALLOCATED) {
947        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
948      }
949    }
950
951    if (lock) {
952      os::Linux::createThread_lock()->unlock();
953    }
954  }
955
956  // Aborted due to thread limit being reached
957  if (state == ZOMBIE) {
958      thread->set_osthread(NULL);
959      delete osthread;
960      return false;
961  }
962
963  // The thread is returned suspended (in state INITIALIZED),
964  // and is started higher up in the call chain
965  assert(state == INITIALIZED, "race condition");
966  return true;
967}
968
969/////////////////////////////////////////////////////////////////////////////
970// attach existing thread
971
972// bootstrap the main thread
973bool os::create_main_thread(JavaThread* thread) {
974  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
975  return create_attached_thread(thread);
976}
977
978bool os::create_attached_thread(JavaThread* thread) {
979#ifdef ASSERT
980    thread->verify_not_published();
981#endif
982
983  // Allocate the OSThread object
984  OSThread* osthread = new OSThread(NULL, NULL);
985
986  if (osthread == NULL) {
987    return false;
988  }
989
990  // Store pthread info into the OSThread
991  osthread->set_thread_id(os::Linux::gettid());
992  osthread->set_pthread_id(::pthread_self());
993
994  // initialize floating point control register
995  os::Linux::init_thread_fpu_state();
996
997  // Initial thread state is RUNNABLE
998  osthread->set_state(RUNNABLE);
999
1000  thread->set_osthread(osthread);
1001
1002  if (UseNUMA) {
1003    int lgrp_id = os::numa_get_group_id();
1004    if (lgrp_id != -1) {
1005      thread->set_lgrp_id(lgrp_id);
1006    }
1007  }
1008
1009  if (os::Linux::is_initial_thread()) {
1010    // If current thread is initial thread, its stack is mapped on demand,
1011    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1012    // the entire stack region to avoid SEGV in stack banging.
1013    // It is also useful to get around the heap-stack-gap problem on SuSE
1014    // kernel (see 4821821 for details). We first expand stack to the top
1015    // of yellow zone, then enable stack yellow zone (order is significant,
1016    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1017    // is no gap between the last two virtual memory regions.
1018
1019    JavaThread *jt = (JavaThread *)thread;
1020    address addr = jt->stack_yellow_zone_base();
1021    assert(addr != NULL, "initialization problem?");
1022    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1023
1024    osthread->set_expanding_stack();
1025    os::Linux::manually_expand_stack(jt, addr);
1026    osthread->clear_expanding_stack();
1027  }
1028
1029  // initialize signal mask for this thread
1030  // and save the caller's signal mask
1031  os::Linux::hotspot_sigmask(thread);
1032
1033  return true;
1034}
1035
1036void os::pd_start_thread(Thread* thread) {
1037  OSThread * osthread = thread->osthread();
1038  assert(osthread->get_state() != INITIALIZED, "just checking");
1039  Monitor* sync_with_child = osthread->startThread_lock();
1040  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1041  sync_with_child->notify();
1042}
1043
1044// Free Linux resources related to the OSThread
1045void os::free_thread(OSThread* osthread) {
1046  assert(osthread != NULL, "osthread not set");
1047
1048  if (Thread::current()->osthread() == osthread) {
1049    // Restore caller's signal mask
1050    sigset_t sigmask = osthread->caller_sigmask();
1051    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1052   }
1053
1054  delete osthread;
1055}
1056
1057//////////////////////////////////////////////////////////////////////////////
1058// thread local storage
1059
1060int os::allocate_thread_local_storage() {
1061  pthread_key_t key;
1062  int rslt = pthread_key_create(&key, NULL);
1063  assert(rslt == 0, "cannot allocate thread local storage");
1064  return (int)key;
1065}
1066
1067// Note: This is currently not used by VM, as we don't destroy TLS key
1068// on VM exit.
1069void os::free_thread_local_storage(int index) {
1070  int rslt = pthread_key_delete((pthread_key_t)index);
1071  assert(rslt == 0, "invalid index");
1072}
1073
1074void os::thread_local_storage_at_put(int index, void* value) {
1075  int rslt = pthread_setspecific((pthread_key_t)index, value);
1076  assert(rslt == 0, "pthread_setspecific failed");
1077}
1078
1079extern "C" Thread* get_thread() {
1080  return ThreadLocalStorage::thread();
1081}
1082
1083//////////////////////////////////////////////////////////////////////////////
1084// initial thread
1085
1086// Check if current thread is the initial thread, similar to Solaris thr_main.
1087bool os::Linux::is_initial_thread(void) {
1088  char dummy;
1089  // If called before init complete, thread stack bottom will be null.
1090  // Can be called if fatal error occurs before initialization.
1091  if (initial_thread_stack_bottom() == NULL) return false;
1092  assert(initial_thread_stack_bottom() != NULL &&
1093         initial_thread_stack_size()   != 0,
1094         "os::init did not locate initial thread's stack region");
1095  if ((address)&dummy >= initial_thread_stack_bottom() &&
1096      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1097       return true;
1098  else return false;
1099}
1100
1101// Find the virtual memory area that contains addr
1102static bool find_vma(address addr, address* vma_low, address* vma_high) {
1103  FILE *fp = fopen("/proc/self/maps", "r");
1104  if (fp) {
1105    address low, high;
1106    while (!feof(fp)) {
1107      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1108        if (low <= addr && addr < high) {
1109           if (vma_low)  *vma_low  = low;
1110           if (vma_high) *vma_high = high;
1111           fclose (fp);
1112           return true;
1113        }
1114      }
1115      for (;;) {
1116        int ch = fgetc(fp);
1117        if (ch == EOF || ch == (int)'\n') break;
1118      }
1119    }
1120    fclose(fp);
1121  }
1122  return false;
1123}
1124
1125// Locate initial thread stack. This special handling of initial thread stack
1126// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1127// bogus value for initial thread.
1128void os::Linux::capture_initial_stack(size_t max_size) {
1129  // stack size is the easy part, get it from RLIMIT_STACK
1130  size_t stack_size;
1131  struct rlimit rlim;
1132  getrlimit(RLIMIT_STACK, &rlim);
1133  stack_size = rlim.rlim_cur;
1134
1135  // 6308388: a bug in ld.so will relocate its own .data section to the
1136  //   lower end of primordial stack; reduce ulimit -s value a little bit
1137  //   so we won't install guard page on ld.so's data section.
1138  stack_size -= 2 * page_size();
1139
1140  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1141  //   7.1, in both cases we will get 2G in return value.
1142  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1143  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1144  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1145  //   in case other parts in glibc still assumes 2M max stack size.
1146  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1147#ifndef IA64
1148  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1149#else
1150  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1151  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1152#endif
1153
1154  // Try to figure out where the stack base (top) is. This is harder.
1155  //
1156  // When an application is started, glibc saves the initial stack pointer in
1157  // a global variable "__libc_stack_end", which is then used by system
1158  // libraries. __libc_stack_end should be pretty close to stack top. The
1159  // variable is available since the very early days. However, because it is
1160  // a private interface, it could disappear in the future.
1161  //
1162  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1163  // to __libc_stack_end, it is very close to stack top, but isn't the real
1164  // stack top. Note that /proc may not exist if VM is running as a chroot
1165  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1166  // /proc/<pid>/stat could change in the future (though unlikely).
1167  //
1168  // We try __libc_stack_end first. If that doesn't work, look for
1169  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1170  // as a hint, which should work well in most cases.
1171
1172  uintptr_t stack_start;
1173
1174  // try __libc_stack_end first
1175  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1176  if (p && *p) {
1177    stack_start = *p;
1178  } else {
1179    // see if we can get the start_stack field from /proc/self/stat
1180    FILE *fp;
1181    int pid;
1182    char state;
1183    int ppid;
1184    int pgrp;
1185    int session;
1186    int nr;
1187    int tpgrp;
1188    unsigned long flags;
1189    unsigned long minflt;
1190    unsigned long cminflt;
1191    unsigned long majflt;
1192    unsigned long cmajflt;
1193    unsigned long utime;
1194    unsigned long stime;
1195    long cutime;
1196    long cstime;
1197    long prio;
1198    long nice;
1199    long junk;
1200    long it_real;
1201    uintptr_t start;
1202    uintptr_t vsize;
1203    intptr_t rss;
1204    uintptr_t rsslim;
1205    uintptr_t scodes;
1206    uintptr_t ecode;
1207    int i;
1208
1209    // Figure what the primordial thread stack base is. Code is inspired
1210    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1211    // followed by command name surrounded by parentheses, state, etc.
1212    char stat[2048];
1213    int statlen;
1214
1215    fp = fopen("/proc/self/stat", "r");
1216    if (fp) {
1217      statlen = fread(stat, 1, 2047, fp);
1218      stat[statlen] = '\0';
1219      fclose(fp);
1220
1221      // Skip pid and the command string. Note that we could be dealing with
1222      // weird command names, e.g. user could decide to rename java launcher
1223      // to "java 1.4.2 :)", then the stat file would look like
1224      //                1234 (java 1.4.2 :)) R ... ...
1225      // We don't really need to know the command string, just find the last
1226      // occurrence of ")" and then start parsing from there. See bug 4726580.
1227      char * s = strrchr(stat, ')');
1228
1229      i = 0;
1230      if (s) {
1231        // Skip blank chars
1232        do s++; while (isspace(*s));
1233
1234#define _UFM UINTX_FORMAT
1235#define _DFM INTX_FORMAT
1236
1237        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1238        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1239        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1240             &state,          /* 3  %c  */
1241             &ppid,           /* 4  %d  */
1242             &pgrp,           /* 5  %d  */
1243             &session,        /* 6  %d  */
1244             &nr,             /* 7  %d  */
1245             &tpgrp,          /* 8  %d  */
1246             &flags,          /* 9  %lu  */
1247             &minflt,         /* 10 %lu  */
1248             &cminflt,        /* 11 %lu  */
1249             &majflt,         /* 12 %lu  */
1250             &cmajflt,        /* 13 %lu  */
1251             &utime,          /* 14 %lu  */
1252             &stime,          /* 15 %lu  */
1253             &cutime,         /* 16 %ld  */
1254             &cstime,         /* 17 %ld  */
1255             &prio,           /* 18 %ld  */
1256             &nice,           /* 19 %ld  */
1257             &junk,           /* 20 %ld  */
1258             &it_real,        /* 21 %ld  */
1259             &start,          /* 22 UINTX_FORMAT */
1260             &vsize,          /* 23 UINTX_FORMAT */
1261             &rss,            /* 24 INTX_FORMAT  */
1262             &rsslim,         /* 25 UINTX_FORMAT */
1263             &scodes,         /* 26 UINTX_FORMAT */
1264             &ecode,          /* 27 UINTX_FORMAT */
1265             &stack_start);   /* 28 UINTX_FORMAT */
1266      }
1267
1268#undef _UFM
1269#undef _DFM
1270
1271      if (i != 28 - 2) {
1272         assert(false, "Bad conversion from /proc/self/stat");
1273         // product mode - assume we are the initial thread, good luck in the
1274         // embedded case.
1275         warning("Can't detect initial thread stack location - bad conversion");
1276         stack_start = (uintptr_t) &rlim;
1277      }
1278    } else {
1279      // For some reason we can't open /proc/self/stat (for example, running on
1280      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1281      // most cases, so don't abort:
1282      warning("Can't detect initial thread stack location - no /proc/self/stat");
1283      stack_start = (uintptr_t) &rlim;
1284    }
1285  }
1286
1287  // Now we have a pointer (stack_start) very close to the stack top, the
1288  // next thing to do is to figure out the exact location of stack top. We
1289  // can find out the virtual memory area that contains stack_start by
1290  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1291  // and its upper limit is the real stack top. (again, this would fail if
1292  // running inside chroot, because /proc may not exist.)
1293
1294  uintptr_t stack_top;
1295  address low, high;
1296  if (find_vma((address)stack_start, &low, &high)) {
1297    // success, "high" is the true stack top. (ignore "low", because initial
1298    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1299    stack_top = (uintptr_t)high;
1300  } else {
1301    // failed, likely because /proc/self/maps does not exist
1302    warning("Can't detect initial thread stack location - find_vma failed");
1303    // best effort: stack_start is normally within a few pages below the real
1304    // stack top, use it as stack top, and reduce stack size so we won't put
1305    // guard page outside stack.
1306    stack_top = stack_start;
1307    stack_size -= 16 * page_size();
1308  }
1309
1310  // stack_top could be partially down the page so align it
1311  stack_top = align_size_up(stack_top, page_size());
1312
1313  if (max_size && stack_size > max_size) {
1314     _initial_thread_stack_size = max_size;
1315  } else {
1316     _initial_thread_stack_size = stack_size;
1317  }
1318
1319  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1320  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1321}
1322
1323////////////////////////////////////////////////////////////////////////////////
1324// time support
1325
1326// Time since start-up in seconds to a fine granularity.
1327// Used by VMSelfDestructTimer and the MemProfiler.
1328double os::elapsedTime() {
1329
1330  return (double)(os::elapsed_counter()) * 0.000001;
1331}
1332
1333jlong os::elapsed_counter() {
1334  timeval time;
1335  int status = gettimeofday(&time, NULL);
1336  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1337}
1338
1339jlong os::elapsed_frequency() {
1340  return (1000 * 1000);
1341}
1342
1343// For now, we say that linux does not support vtime.  I have no idea
1344// whether it can actually be made to (DLD, 9/13/05).
1345
1346bool os::supports_vtime() { return false; }
1347bool os::enable_vtime()   { return false; }
1348bool os::vtime_enabled()  { return false; }
1349double os::elapsedVTime() {
1350  // better than nothing, but not much
1351  return elapsedTime();
1352}
1353
1354jlong os::javaTimeMillis() {
1355  timeval time;
1356  int status = gettimeofday(&time, NULL);
1357  assert(status != -1, "linux error");
1358  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1359}
1360
1361#ifndef CLOCK_MONOTONIC
1362#define CLOCK_MONOTONIC (1)
1363#endif
1364
1365void os::Linux::clock_init() {
1366  // we do dlopen's in this particular order due to bug in linux
1367  // dynamical loader (see 6348968) leading to crash on exit
1368  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1369  if (handle == NULL) {
1370    handle = dlopen("librt.so", RTLD_LAZY);
1371  }
1372
1373  if (handle) {
1374    int (*clock_getres_func)(clockid_t, struct timespec*) =
1375           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1376    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1377           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1378    if (clock_getres_func && clock_gettime_func) {
1379      // See if monotonic clock is supported by the kernel. Note that some
1380      // early implementations simply return kernel jiffies (updated every
1381      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1382      // for nano time (though the monotonic property is still nice to have).
1383      // It's fixed in newer kernels, however clock_getres() still returns
1384      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1385      // resolution for now. Hopefully as people move to new kernels, this
1386      // won't be a problem.
1387      struct timespec res;
1388      struct timespec tp;
1389      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1390          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1391        // yes, monotonic clock is supported
1392        _clock_gettime = clock_gettime_func;
1393      } else {
1394        // close librt if there is no monotonic clock
1395        dlclose(handle);
1396      }
1397    }
1398  }
1399}
1400
1401#ifndef SYS_clock_getres
1402
1403#if defined(IA32) || defined(AMD64)
1404#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1405#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1406#else
1407#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1408#define sys_clock_getres(x,y)  -1
1409#endif
1410
1411#else
1412#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1413#endif
1414
1415void os::Linux::fast_thread_clock_init() {
1416  if (!UseLinuxPosixThreadCPUClocks) {
1417    return;
1418  }
1419  clockid_t clockid;
1420  struct timespec tp;
1421  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1422      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1423
1424  // Switch to using fast clocks for thread cpu time if
1425  // the sys_clock_getres() returns 0 error code.
1426  // Note, that some kernels may support the current thread
1427  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1428  // returned by the pthread_getcpuclockid().
1429  // If the fast Posix clocks are supported then the sys_clock_getres()
1430  // must return at least tp.tv_sec == 0 which means a resolution
1431  // better than 1 sec. This is extra check for reliability.
1432
1433  if(pthread_getcpuclockid_func &&
1434     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1435     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1436
1437    _supports_fast_thread_cpu_time = true;
1438    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1439  }
1440}
1441
1442jlong os::javaTimeNanos() {
1443  if (Linux::supports_monotonic_clock()) {
1444    struct timespec tp;
1445    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1446    assert(status == 0, "gettime error");
1447    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1448    return result;
1449  } else {
1450    timeval time;
1451    int status = gettimeofday(&time, NULL);
1452    assert(status != -1, "linux error");
1453    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1454    return 1000 * usecs;
1455  }
1456}
1457
1458void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1459  if (Linux::supports_monotonic_clock()) {
1460    info_ptr->max_value = ALL_64_BITS;
1461
1462    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1463    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1464    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1465  } else {
1466    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1467    info_ptr->max_value = ALL_64_BITS;
1468
1469    // gettimeofday is a real time clock so it skips
1470    info_ptr->may_skip_backward = true;
1471    info_ptr->may_skip_forward = true;
1472  }
1473
1474  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1475}
1476
1477// Return the real, user, and system times in seconds from an
1478// arbitrary fixed point in the past.
1479bool os::getTimesSecs(double* process_real_time,
1480                      double* process_user_time,
1481                      double* process_system_time) {
1482  struct tms ticks;
1483  clock_t real_ticks = times(&ticks);
1484
1485  if (real_ticks == (clock_t) (-1)) {
1486    return false;
1487  } else {
1488    double ticks_per_second = (double) clock_tics_per_sec;
1489    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1490    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1491    *process_real_time = ((double) real_ticks) / ticks_per_second;
1492
1493    return true;
1494  }
1495}
1496
1497
1498char * os::local_time_string(char *buf, size_t buflen) {
1499  struct tm t;
1500  time_t long_time;
1501  time(&long_time);
1502  localtime_r(&long_time, &t);
1503  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1504               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1505               t.tm_hour, t.tm_min, t.tm_sec);
1506  return buf;
1507}
1508
1509struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1510  return localtime_r(clock, res);
1511}
1512
1513////////////////////////////////////////////////////////////////////////////////
1514// runtime exit support
1515
1516// Note: os::shutdown() might be called very early during initialization, or
1517// called from signal handler. Before adding something to os::shutdown(), make
1518// sure it is async-safe and can handle partially initialized VM.
1519void os::shutdown() {
1520
1521  // allow PerfMemory to attempt cleanup of any persistent resources
1522  perfMemory_exit();
1523
1524  // needs to remove object in file system
1525  AttachListener::abort();
1526
1527  // flush buffered output, finish log files
1528  ostream_abort();
1529
1530  // Check for abort hook
1531  abort_hook_t abort_hook = Arguments::abort_hook();
1532  if (abort_hook != NULL) {
1533    abort_hook();
1534  }
1535
1536}
1537
1538// Note: os::abort() might be called very early during initialization, or
1539// called from signal handler. Before adding something to os::abort(), make
1540// sure it is async-safe and can handle partially initialized VM.
1541void os::abort(bool dump_core) {
1542  os::shutdown();
1543  if (dump_core) {
1544#ifndef PRODUCT
1545    fdStream out(defaultStream::output_fd());
1546    out.print_raw("Current thread is ");
1547    char buf[16];
1548    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1549    out.print_raw_cr(buf);
1550    out.print_raw_cr("Dumping core ...");
1551#endif
1552    ::abort(); // dump core
1553  }
1554
1555  ::exit(1);
1556}
1557
1558// Die immediately, no exit hook, no abort hook, no cleanup.
1559void os::die() {
1560  // _exit() on LinuxThreads only kills current thread
1561  ::abort();
1562}
1563
1564// unused on linux for now.
1565void os::set_error_file(const char *logfile) {}
1566
1567
1568// This method is a copy of JDK's sysGetLastErrorString
1569// from src/solaris/hpi/src/system_md.c
1570
1571size_t os::lasterror(char *buf, size_t len) {
1572
1573  if (errno == 0)  return 0;
1574
1575  const char *s = ::strerror(errno);
1576  size_t n = ::strlen(s);
1577  if (n >= len) {
1578    n = len - 1;
1579  }
1580  ::strncpy(buf, s, n);
1581  buf[n] = '\0';
1582  return n;
1583}
1584
1585intx os::current_thread_id() { return (intx)pthread_self(); }
1586int os::current_process_id() {
1587
1588  // Under the old linux thread library, linux gives each thread
1589  // its own process id. Because of this each thread will return
1590  // a different pid if this method were to return the result
1591  // of getpid(2). Linux provides no api that returns the pid
1592  // of the launcher thread for the vm. This implementation
1593  // returns a unique pid, the pid of the launcher thread
1594  // that starts the vm 'process'.
1595
1596  // Under the NPTL, getpid() returns the same pid as the
1597  // launcher thread rather than a unique pid per thread.
1598  // Use gettid() if you want the old pre NPTL behaviour.
1599
1600  // if you are looking for the result of a call to getpid() that
1601  // returns a unique pid for the calling thread, then look at the
1602  // OSThread::thread_id() method in osThread_linux.hpp file
1603
1604  return (int)(_initial_pid ? _initial_pid : getpid());
1605}
1606
1607// DLL functions
1608
1609const char* os::dll_file_extension() { return ".so"; }
1610
1611const char* os::get_temp_directory() {
1612  const char *prop = Arguments::get_property("java.io.tmpdir");
1613  return prop == NULL ? "/tmp" : prop;
1614}
1615
1616static bool file_exists(const char* filename) {
1617  struct stat statbuf;
1618  if (filename == NULL || strlen(filename) == 0) {
1619    return false;
1620  }
1621  return os::stat(filename, &statbuf) == 0;
1622}
1623
1624void os::dll_build_name(char* buffer, size_t buflen,
1625                        const char* pname, const char* fname) {
1626  // Copied from libhpi
1627  const size_t pnamelen = pname ? strlen(pname) : 0;
1628
1629  // Quietly truncate on buffer overflow.  Should be an error.
1630  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1631      *buffer = '\0';
1632      return;
1633  }
1634
1635  if (pnamelen == 0) {
1636    snprintf(buffer, buflen, "lib%s.so", fname);
1637  } else if (strchr(pname, *os::path_separator()) != NULL) {
1638    int n;
1639    char** pelements = split_path(pname, &n);
1640    for (int i = 0 ; i < n ; i++) {
1641      // Really shouldn't be NULL, but check can't hurt
1642      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1643        continue; // skip the empty path values
1644      }
1645      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1646      if (file_exists(buffer)) {
1647        break;
1648      }
1649    }
1650    // release the storage
1651    for (int i = 0 ; i < n ; i++) {
1652      if (pelements[i] != NULL) {
1653        FREE_C_HEAP_ARRAY(char, pelements[i]);
1654      }
1655    }
1656    if (pelements != NULL) {
1657      FREE_C_HEAP_ARRAY(char*, pelements);
1658    }
1659  } else {
1660    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1661  }
1662}
1663
1664const char* os::get_current_directory(char *buf, int buflen) {
1665  return getcwd(buf, buflen);
1666}
1667
1668// check if addr is inside libjvm[_g].so
1669bool os::address_is_in_vm(address addr) {
1670  static address libjvm_base_addr;
1671  Dl_info dlinfo;
1672
1673  if (libjvm_base_addr == NULL) {
1674    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1675    libjvm_base_addr = (address)dlinfo.dli_fbase;
1676    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1677  }
1678
1679  if (dladdr((void *)addr, &dlinfo)) {
1680    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1681  }
1682
1683  return false;
1684}
1685
1686bool os::dll_address_to_function_name(address addr, char *buf,
1687                                      int buflen, int *offset) {
1688  Dl_info dlinfo;
1689
1690  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1691    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1692    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1693    return true;
1694  } else {
1695    if (buf) buf[0] = '\0';
1696    if (offset) *offset = -1;
1697    return false;
1698  }
1699}
1700
1701struct _address_to_library_name {
1702  address addr;          // input : memory address
1703  size_t  buflen;        //         size of fname
1704  char*   fname;         // output: library name
1705  address base;          //         library base addr
1706};
1707
1708static int address_to_library_name_callback(struct dl_phdr_info *info,
1709                                            size_t size, void *data) {
1710  int i;
1711  bool found = false;
1712  address libbase = NULL;
1713  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1714
1715  // iterate through all loadable segments
1716  for (i = 0; i < info->dlpi_phnum; i++) {
1717    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1718    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1719      // base address of a library is the lowest address of its loaded
1720      // segments.
1721      if (libbase == NULL || libbase > segbase) {
1722        libbase = segbase;
1723      }
1724      // see if 'addr' is within current segment
1725      if (segbase <= d->addr &&
1726          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1727        found = true;
1728      }
1729    }
1730  }
1731
1732  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1733  // so dll_address_to_library_name() can fall through to use dladdr() which
1734  // can figure out executable name from argv[0].
1735  if (found && info->dlpi_name && info->dlpi_name[0]) {
1736    d->base = libbase;
1737    if (d->fname) {
1738      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1739    }
1740    return 1;
1741  }
1742  return 0;
1743}
1744
1745bool os::dll_address_to_library_name(address addr, char* buf,
1746                                     int buflen, int* offset) {
1747  Dl_info dlinfo;
1748  struct _address_to_library_name data;
1749
1750  // There is a bug in old glibc dladdr() implementation that it could resolve
1751  // to wrong library name if the .so file has a base address != NULL. Here
1752  // we iterate through the program headers of all loaded libraries to find
1753  // out which library 'addr' really belongs to. This workaround can be
1754  // removed once the minimum requirement for glibc is moved to 2.3.x.
1755  data.addr = addr;
1756  data.fname = buf;
1757  data.buflen = buflen;
1758  data.base = NULL;
1759  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1760
1761  if (rslt) {
1762     // buf already contains library name
1763     if (offset) *offset = addr - data.base;
1764     return true;
1765  } else if (dladdr((void*)addr, &dlinfo)){
1766     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1767     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1768     return true;
1769  } else {
1770     if (buf) buf[0] = '\0';
1771     if (offset) *offset = -1;
1772     return false;
1773  }
1774}
1775
1776  // Loads .dll/.so and
1777  // in case of error it checks if .dll/.so was built for the
1778  // same architecture as Hotspot is running on
1779
1780void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1781{
1782  void * result= ::dlopen(filename, RTLD_LAZY);
1783  if (result != NULL) {
1784    // Successful loading
1785    return result;
1786  }
1787
1788  Elf32_Ehdr elf_head;
1789
1790  // Read system error message into ebuf
1791  // It may or may not be overwritten below
1792  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1793  ebuf[ebuflen-1]='\0';
1794  int diag_msg_max_length=ebuflen-strlen(ebuf);
1795  char* diag_msg_buf=ebuf+strlen(ebuf);
1796
1797  if (diag_msg_max_length==0) {
1798    // No more space in ebuf for additional diagnostics message
1799    return NULL;
1800  }
1801
1802
1803  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1804
1805  if (file_descriptor < 0) {
1806    // Can't open library, report dlerror() message
1807    return NULL;
1808  }
1809
1810  bool failed_to_read_elf_head=
1811    (sizeof(elf_head)!=
1812        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1813
1814  ::close(file_descriptor);
1815  if (failed_to_read_elf_head) {
1816    // file i/o error - report dlerror() msg
1817    return NULL;
1818  }
1819
1820  typedef struct {
1821    Elf32_Half  code;         // Actual value as defined in elf.h
1822    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1823    char        elf_class;    // 32 or 64 bit
1824    char        endianess;    // MSB or LSB
1825    char*       name;         // String representation
1826  } arch_t;
1827
1828  #ifndef EM_486
1829  #define EM_486          6               /* Intel 80486 */
1830  #endif
1831
1832  static const arch_t arch_array[]={
1833    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1834    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1835    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1836    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1837    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1838    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1839    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1840    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1841    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1842    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1843    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1844    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1845    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1846    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1847    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1848    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1849  };
1850
1851  #if  (defined IA32)
1852    static  Elf32_Half running_arch_code=EM_386;
1853  #elif   (defined AMD64)
1854    static  Elf32_Half running_arch_code=EM_X86_64;
1855  #elif  (defined IA64)
1856    static  Elf32_Half running_arch_code=EM_IA_64;
1857  #elif  (defined __sparc) && (defined _LP64)
1858    static  Elf32_Half running_arch_code=EM_SPARCV9;
1859  #elif  (defined __sparc) && (!defined _LP64)
1860    static  Elf32_Half running_arch_code=EM_SPARC;
1861  #elif  (defined __powerpc64__)
1862    static  Elf32_Half running_arch_code=EM_PPC64;
1863  #elif  (defined __powerpc__)
1864    static  Elf32_Half running_arch_code=EM_PPC;
1865  #elif  (defined ARM)
1866    static  Elf32_Half running_arch_code=EM_ARM;
1867  #elif  (defined S390)
1868    static  Elf32_Half running_arch_code=EM_S390;
1869  #elif  (defined ALPHA)
1870    static  Elf32_Half running_arch_code=EM_ALPHA;
1871  #elif  (defined MIPSEL)
1872    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1873  #elif  (defined PARISC)
1874    static  Elf32_Half running_arch_code=EM_PARISC;
1875  #elif  (defined MIPS)
1876    static  Elf32_Half running_arch_code=EM_MIPS;
1877  #elif  (defined M68K)
1878    static  Elf32_Half running_arch_code=EM_68K;
1879  #else
1880    #error Method os::dll_load requires that one of following is defined:\
1881         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1882  #endif
1883
1884  // Identify compatability class for VM's architecture and library's architecture
1885  // Obtain string descriptions for architectures
1886
1887  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1888  int running_arch_index=-1;
1889
1890  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1891    if (running_arch_code == arch_array[i].code) {
1892      running_arch_index    = i;
1893    }
1894    if (lib_arch.code == arch_array[i].code) {
1895      lib_arch.compat_class = arch_array[i].compat_class;
1896      lib_arch.name         = arch_array[i].name;
1897    }
1898  }
1899
1900  assert(running_arch_index != -1,
1901    "Didn't find running architecture code (running_arch_code) in arch_array");
1902  if (running_arch_index == -1) {
1903    // Even though running architecture detection failed
1904    // we may still continue with reporting dlerror() message
1905    return NULL;
1906  }
1907
1908  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1909    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1910    return NULL;
1911  }
1912
1913#ifndef S390
1914  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1915    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1916    return NULL;
1917  }
1918#endif // !S390
1919
1920  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1921    if ( lib_arch.name!=NULL ) {
1922      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1923        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1924        lib_arch.name, arch_array[running_arch_index].name);
1925    } else {
1926      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1927      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1928        lib_arch.code,
1929        arch_array[running_arch_index].name);
1930    }
1931  }
1932
1933  return NULL;
1934}
1935
1936/*
1937 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1938 * chances are you might want to run the generated bits against glibc-2.0
1939 * libdl.so, so always use locking for any version of glibc.
1940 */
1941void* os::dll_lookup(void* handle, const char* name) {
1942  pthread_mutex_lock(&dl_mutex);
1943  void* res = dlsym(handle, name);
1944  pthread_mutex_unlock(&dl_mutex);
1945  return res;
1946}
1947
1948
1949static bool _print_ascii_file(const char* filename, outputStream* st) {
1950  int fd = ::open(filename, O_RDONLY);
1951  if (fd == -1) {
1952     return false;
1953  }
1954
1955  char buf[32];
1956  int bytes;
1957  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1958    st->print_raw(buf, bytes);
1959  }
1960
1961  ::close(fd);
1962
1963  return true;
1964}
1965
1966void os::print_dll_info(outputStream *st) {
1967   st->print_cr("Dynamic libraries:");
1968
1969   char fname[32];
1970   pid_t pid = os::Linux::gettid();
1971
1972   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1973
1974   if (!_print_ascii_file(fname, st)) {
1975     st->print("Can not get library information for pid = %d\n", pid);
1976   }
1977}
1978
1979
1980void os::print_os_info(outputStream* st) {
1981  st->print("OS:");
1982
1983  // Try to identify popular distros.
1984  // Most Linux distributions have /etc/XXX-release file, which contains
1985  // the OS version string. Some have more than one /etc/XXX-release file
1986  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1987  // so the order is important.
1988  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1989      !_print_ascii_file("/etc/sun-release", st) &&
1990      !_print_ascii_file("/etc/redhat-release", st) &&
1991      !_print_ascii_file("/etc/SuSE-release", st) &&
1992      !_print_ascii_file("/etc/turbolinux-release", st) &&
1993      !_print_ascii_file("/etc/gentoo-release", st) &&
1994      !_print_ascii_file("/etc/debian_version", st) &&
1995      !_print_ascii_file("/etc/ltib-release", st) &&
1996      !_print_ascii_file("/etc/angstrom-version", st)) {
1997      st->print("Linux");
1998  }
1999  st->cr();
2000
2001  // kernel
2002  st->print("uname:");
2003  struct utsname name;
2004  uname(&name);
2005  st->print(name.sysname); st->print(" ");
2006  st->print(name.release); st->print(" ");
2007  st->print(name.version); st->print(" ");
2008  st->print(name.machine);
2009  st->cr();
2010
2011  // Print warning if unsafe chroot environment detected
2012  if (unsafe_chroot_detected) {
2013    st->print("WARNING!! ");
2014    st->print_cr(unstable_chroot_error);
2015  }
2016
2017  // libc, pthread
2018  st->print("libc:");
2019  st->print(os::Linux::glibc_version()); st->print(" ");
2020  st->print(os::Linux::libpthread_version()); st->print(" ");
2021  if (os::Linux::is_LinuxThreads()) {
2022     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2023  }
2024  st->cr();
2025
2026  // rlimit
2027  st->print("rlimit:");
2028  struct rlimit rlim;
2029
2030  st->print(" STACK ");
2031  getrlimit(RLIMIT_STACK, &rlim);
2032  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2033  else st->print("%uk", rlim.rlim_cur >> 10);
2034
2035  st->print(", CORE ");
2036  getrlimit(RLIMIT_CORE, &rlim);
2037  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2038  else st->print("%uk", rlim.rlim_cur >> 10);
2039
2040  st->print(", NPROC ");
2041  getrlimit(RLIMIT_NPROC, &rlim);
2042  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2043  else st->print("%d", rlim.rlim_cur);
2044
2045  st->print(", NOFILE ");
2046  getrlimit(RLIMIT_NOFILE, &rlim);
2047  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2048  else st->print("%d", rlim.rlim_cur);
2049
2050  st->print(", AS ");
2051  getrlimit(RLIMIT_AS, &rlim);
2052  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2053  else st->print("%uk", rlim.rlim_cur >> 10);
2054  st->cr();
2055
2056  // load average
2057  st->print("load average:");
2058  double loadavg[3];
2059  os::loadavg(loadavg, 3);
2060  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2061  st->cr();
2062
2063  // meminfo
2064  st->print("\n/proc/meminfo:\n");
2065  _print_ascii_file("/proc/meminfo", st);
2066  st->cr();
2067}
2068
2069void os::print_memory_info(outputStream* st) {
2070
2071  st->print("Memory:");
2072  st->print(" %dk page", os::vm_page_size()>>10);
2073
2074  // values in struct sysinfo are "unsigned long"
2075  struct sysinfo si;
2076  sysinfo(&si);
2077
2078  st->print(", physical " UINT64_FORMAT "k",
2079            os::physical_memory() >> 10);
2080  st->print("(" UINT64_FORMAT "k free)",
2081            os::available_memory() >> 10);
2082  st->print(", swap " UINT64_FORMAT "k",
2083            ((jlong)si.totalswap * si.mem_unit) >> 10);
2084  st->print("(" UINT64_FORMAT "k free)",
2085            ((jlong)si.freeswap * si.mem_unit) >> 10);
2086  st->cr();
2087}
2088
2089// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2090// but they're the same for all the linux arch that we support
2091// and they're the same for solaris but there's no common place to put this.
2092const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2093                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2094                          "ILL_COPROC", "ILL_BADSTK" };
2095
2096const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2097                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2098                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2099
2100const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2101
2102const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2103
2104void os::print_siginfo(outputStream* st, void* siginfo) {
2105  st->print("siginfo:");
2106
2107  const int buflen = 100;
2108  char buf[buflen];
2109  siginfo_t *si = (siginfo_t*)siginfo;
2110  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2111  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2112    st->print("si_errno=%s", buf);
2113  } else {
2114    st->print("si_errno=%d", si->si_errno);
2115  }
2116  const int c = si->si_code;
2117  assert(c > 0, "unexpected si_code");
2118  switch (si->si_signo) {
2119  case SIGILL:
2120    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2121    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2122    break;
2123  case SIGFPE:
2124    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2125    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2126    break;
2127  case SIGSEGV:
2128    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2129    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2130    break;
2131  case SIGBUS:
2132    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2133    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2134    break;
2135  default:
2136    st->print(", si_code=%d", si->si_code);
2137    // no si_addr
2138  }
2139
2140  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2141      UseSharedSpaces) {
2142    FileMapInfo* mapinfo = FileMapInfo::current_info();
2143    if (mapinfo->is_in_shared_space(si->si_addr)) {
2144      st->print("\n\nError accessing class data sharing archive."   \
2145                " Mapped file inaccessible during execution, "      \
2146                " possible disk/network problem.");
2147    }
2148  }
2149  st->cr();
2150}
2151
2152
2153static void print_signal_handler(outputStream* st, int sig,
2154                                 char* buf, size_t buflen);
2155
2156void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2157  st->print_cr("Signal Handlers:");
2158  print_signal_handler(st, SIGSEGV, buf, buflen);
2159  print_signal_handler(st, SIGBUS , buf, buflen);
2160  print_signal_handler(st, SIGFPE , buf, buflen);
2161  print_signal_handler(st, SIGPIPE, buf, buflen);
2162  print_signal_handler(st, SIGXFSZ, buf, buflen);
2163  print_signal_handler(st, SIGILL , buf, buflen);
2164  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2165  print_signal_handler(st, SR_signum, buf, buflen);
2166  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2167  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2168  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2169  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2170}
2171
2172static char saved_jvm_path[MAXPATHLEN] = {0};
2173
2174// Find the full path to the current module, libjvm.so or libjvm_g.so
2175void os::jvm_path(char *buf, jint buflen) {
2176  // Error checking.
2177  if (buflen < MAXPATHLEN) {
2178    assert(false, "must use a large-enough buffer");
2179    buf[0] = '\0';
2180    return;
2181  }
2182  // Lazy resolve the path to current module.
2183  if (saved_jvm_path[0] != 0) {
2184    strcpy(buf, saved_jvm_path);
2185    return;
2186  }
2187
2188  char dli_fname[MAXPATHLEN];
2189  bool ret = dll_address_to_library_name(
2190                CAST_FROM_FN_PTR(address, os::jvm_path),
2191                dli_fname, sizeof(dli_fname), NULL);
2192  assert(ret != 0, "cannot locate libjvm");
2193  char *rp = realpath(dli_fname, buf);
2194  if (rp == NULL)
2195    return;
2196
2197  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2198    // Support for the gamma launcher.  Typical value for buf is
2199    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2200    // the right place in the string, then assume we are installed in a JDK and
2201    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2202    // up the path so it looks like libjvm.so is installed there (append a
2203    // fake suffix hotspot/libjvm.so).
2204    const char *p = buf + strlen(buf) - 1;
2205    for (int count = 0; p > buf && count < 5; ++count) {
2206      for (--p; p > buf && *p != '/'; --p)
2207        /* empty */ ;
2208    }
2209
2210    if (strncmp(p, "/jre/lib/", 9) != 0) {
2211      // Look for JAVA_HOME in the environment.
2212      char* java_home_var = ::getenv("JAVA_HOME");
2213      if (java_home_var != NULL && java_home_var[0] != 0) {
2214        char* jrelib_p;
2215        int len;
2216
2217        // Check the current module name "libjvm.so" or "libjvm_g.so".
2218        p = strrchr(buf, '/');
2219        assert(strstr(p, "/libjvm") == p, "invalid library name");
2220        p = strstr(p, "_g") ? "_g" : "";
2221
2222        rp = realpath(java_home_var, buf);
2223        if (rp == NULL)
2224          return;
2225
2226        // determine if this is a legacy image or modules image
2227        // modules image doesn't have "jre" subdirectory
2228        len = strlen(buf);
2229        jrelib_p = buf + len;
2230        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2231        if (0 != access(buf, F_OK)) {
2232          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2233        }
2234
2235        if (0 == access(buf, F_OK)) {
2236          // Use current module name "libjvm[_g].so" instead of
2237          // "libjvm"debug_only("_g")".so" since for fastdebug version
2238          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2239          len = strlen(buf);
2240          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2241        } else {
2242          // Go back to path of .so
2243          rp = realpath(dli_fname, buf);
2244          if (rp == NULL)
2245            return;
2246        }
2247      }
2248    }
2249  }
2250
2251  strcpy(saved_jvm_path, buf);
2252}
2253
2254void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2255  // no prefix required, not even "_"
2256}
2257
2258void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2259  // no suffix required
2260}
2261
2262////////////////////////////////////////////////////////////////////////////////
2263// sun.misc.Signal support
2264
2265static volatile jint sigint_count = 0;
2266
2267static void
2268UserHandler(int sig, void *siginfo, void *context) {
2269  // 4511530 - sem_post is serialized and handled by the manager thread. When
2270  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2271  // don't want to flood the manager thread with sem_post requests.
2272  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2273      return;
2274
2275  // Ctrl-C is pressed during error reporting, likely because the error
2276  // handler fails to abort. Let VM die immediately.
2277  if (sig == SIGINT && is_error_reported()) {
2278     os::die();
2279  }
2280
2281  os::signal_notify(sig);
2282}
2283
2284void* os::user_handler() {
2285  return CAST_FROM_FN_PTR(void*, UserHandler);
2286}
2287
2288extern "C" {
2289  typedef void (*sa_handler_t)(int);
2290  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2291}
2292
2293void* os::signal(int signal_number, void* handler) {
2294  struct sigaction sigAct, oldSigAct;
2295
2296  sigfillset(&(sigAct.sa_mask));
2297  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2298  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2299
2300  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2301    // -1 means registration failed
2302    return (void *)-1;
2303  }
2304
2305  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2306}
2307
2308void os::signal_raise(int signal_number) {
2309  ::raise(signal_number);
2310}
2311
2312/*
2313 * The following code is moved from os.cpp for making this
2314 * code platform specific, which it is by its very nature.
2315 */
2316
2317// Will be modified when max signal is changed to be dynamic
2318int os::sigexitnum_pd() {
2319  return NSIG;
2320}
2321
2322// a counter for each possible signal value
2323static volatile jint pending_signals[NSIG+1] = { 0 };
2324
2325// Linux(POSIX) specific hand shaking semaphore.
2326static sem_t sig_sem;
2327
2328void os::signal_init_pd() {
2329  // Initialize signal structures
2330  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2331
2332  // Initialize signal semaphore
2333  ::sem_init(&sig_sem, 0, 0);
2334}
2335
2336void os::signal_notify(int sig) {
2337  Atomic::inc(&pending_signals[sig]);
2338  ::sem_post(&sig_sem);
2339}
2340
2341static int check_pending_signals(bool wait) {
2342  Atomic::store(0, &sigint_count);
2343  for (;;) {
2344    for (int i = 0; i < NSIG + 1; i++) {
2345      jint n = pending_signals[i];
2346      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2347        return i;
2348      }
2349    }
2350    if (!wait) {
2351      return -1;
2352    }
2353    JavaThread *thread = JavaThread::current();
2354    ThreadBlockInVM tbivm(thread);
2355
2356    bool threadIsSuspended;
2357    do {
2358      thread->set_suspend_equivalent();
2359      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2360      ::sem_wait(&sig_sem);
2361
2362      // were we externally suspended while we were waiting?
2363      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2364      if (threadIsSuspended) {
2365        //
2366        // The semaphore has been incremented, but while we were waiting
2367        // another thread suspended us. We don't want to continue running
2368        // while suspended because that would surprise the thread that
2369        // suspended us.
2370        //
2371        ::sem_post(&sig_sem);
2372
2373        thread->java_suspend_self();
2374      }
2375    } while (threadIsSuspended);
2376  }
2377}
2378
2379int os::signal_lookup() {
2380  return check_pending_signals(false);
2381}
2382
2383int os::signal_wait() {
2384  return check_pending_signals(true);
2385}
2386
2387////////////////////////////////////////////////////////////////////////////////
2388// Virtual Memory
2389
2390int os::vm_page_size() {
2391  // Seems redundant as all get out
2392  assert(os::Linux::page_size() != -1, "must call os::init");
2393  return os::Linux::page_size();
2394}
2395
2396// Solaris allocates memory by pages.
2397int os::vm_allocation_granularity() {
2398  assert(os::Linux::page_size() != -1, "must call os::init");
2399  return os::Linux::page_size();
2400}
2401
2402// Rationale behind this function:
2403//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2404//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2405//  samples for JITted code. Here we create private executable mapping over the code cache
2406//  and then we can use standard (well, almost, as mapping can change) way to provide
2407//  info for the reporting script by storing timestamp and location of symbol
2408void linux_wrap_code(char* base, size_t size) {
2409  static volatile jint cnt = 0;
2410
2411  if (!UseOprofile) {
2412    return;
2413  }
2414
2415  char buf[PATH_MAX+1];
2416  int num = Atomic::add(1, &cnt);
2417
2418  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2419           os::get_temp_directory(), os::current_process_id(), num);
2420  unlink(buf);
2421
2422  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2423
2424  if (fd != -1) {
2425    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2426    if (rv != (off_t)-1) {
2427      if (::write(fd, "", 1) == 1) {
2428        mmap(base, size,
2429             PROT_READ|PROT_WRITE|PROT_EXEC,
2430             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2431      }
2432    }
2433    ::close(fd);
2434    unlink(buf);
2435  }
2436}
2437
2438// NOTE: Linux kernel does not really reserve the pages for us.
2439//       All it does is to check if there are enough free pages
2440//       left at the time of mmap(). This could be a potential
2441//       problem.
2442bool os::commit_memory(char* addr, size_t size, bool exec) {
2443  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2444  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2445                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2446  return res != (uintptr_t) MAP_FAILED;
2447}
2448
2449bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2450                       bool exec) {
2451  return commit_memory(addr, size, exec);
2452}
2453
2454void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2455
2456void os::free_memory(char *addr, size_t bytes) {
2457  ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2458         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2459}
2460
2461void os::numa_make_global(char *addr, size_t bytes) {
2462  Linux::numa_interleave_memory(addr, bytes);
2463}
2464
2465void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2466  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2467}
2468
2469bool os::numa_topology_changed()   { return false; }
2470
2471size_t os::numa_get_groups_num() {
2472  int max_node = Linux::numa_max_node();
2473  return max_node > 0 ? max_node + 1 : 1;
2474}
2475
2476int os::numa_get_group_id() {
2477  int cpu_id = Linux::sched_getcpu();
2478  if (cpu_id != -1) {
2479    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2480    if (lgrp_id != -1) {
2481      return lgrp_id;
2482    }
2483  }
2484  return 0;
2485}
2486
2487size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2488  for (size_t i = 0; i < size; i++) {
2489    ids[i] = i;
2490  }
2491  return size;
2492}
2493
2494bool os::get_page_info(char *start, page_info* info) {
2495  return false;
2496}
2497
2498char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2499  return end;
2500}
2501
2502extern "C" void numa_warn(int number, char *where, ...) { }
2503extern "C" void numa_error(char *where) { }
2504
2505
2506// If we are running with libnuma version > 2, then we should
2507// be trying to use symbols with versions 1.1
2508// If we are running with earlier version, which did not have symbol versions,
2509// we should use the base version.
2510void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2511  void *f = dlvsym(handle, name, "libnuma_1.1");
2512  if (f == NULL) {
2513    f = dlsym(handle, name);
2514  }
2515  return f;
2516}
2517
2518bool os::Linux::libnuma_init() {
2519  // sched_getcpu() should be in libc.
2520  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2521                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2522
2523  if (sched_getcpu() != -1) { // Does it work?
2524    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2525    if (handle != NULL) {
2526      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2527                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2528      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2529                                       libnuma_dlsym(handle, "numa_max_node")));
2530      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2531                                        libnuma_dlsym(handle, "numa_available")));
2532      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2533                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2534      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2535                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2536
2537
2538      if (numa_available() != -1) {
2539        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2540        // Create a cpu -> node mapping
2541        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2542        rebuild_cpu_to_node_map();
2543        return true;
2544      }
2545    }
2546  }
2547  return false;
2548}
2549
2550// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2551// The table is later used in get_node_by_cpu().
2552void os::Linux::rebuild_cpu_to_node_map() {
2553  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2554                              // in libnuma (possible values are starting from 16,
2555                              // and continuing up with every other power of 2, but less
2556                              // than the maximum number of CPUs supported by kernel), and
2557                              // is a subject to change (in libnuma version 2 the requirements
2558                              // are more reasonable) we'll just hardcode the number they use
2559                              // in the library.
2560  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2561
2562  size_t cpu_num = os::active_processor_count();
2563  size_t cpu_map_size = NCPUS / BitsPerCLong;
2564  size_t cpu_map_valid_size =
2565    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2566
2567  cpu_to_node()->clear();
2568  cpu_to_node()->at_grow(cpu_num - 1);
2569  size_t node_num = numa_get_groups_num();
2570
2571  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2572  for (size_t i = 0; i < node_num; i++) {
2573    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2574      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2575        if (cpu_map[j] != 0) {
2576          for (size_t k = 0; k < BitsPerCLong; k++) {
2577            if (cpu_map[j] & (1UL << k)) {
2578              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2579            }
2580          }
2581        }
2582      }
2583    }
2584  }
2585  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2586}
2587
2588int os::Linux::get_node_by_cpu(int cpu_id) {
2589  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2590    return cpu_to_node()->at(cpu_id);
2591  }
2592  return -1;
2593}
2594
2595GrowableArray<int>* os::Linux::_cpu_to_node;
2596os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2597os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2598os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2599os::Linux::numa_available_func_t os::Linux::_numa_available;
2600os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2601os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2602unsigned long* os::Linux::_numa_all_nodes;
2603
2604bool os::uncommit_memory(char* addr, size_t size) {
2605  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2606                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2607  return res  != (uintptr_t) MAP_FAILED;
2608}
2609
2610// Linux uses a growable mapping for the stack, and if the mapping for
2611// the stack guard pages is not removed when we detach a thread the
2612// stack cannot grow beyond the pages where the stack guard was
2613// mapped.  If at some point later in the process the stack expands to
2614// that point, the Linux kernel cannot expand the stack any further
2615// because the guard pages are in the way, and a segfault occurs.
2616//
2617// However, it's essential not to split the stack region by unmapping
2618// a region (leaving a hole) that's already part of the stack mapping,
2619// so if the stack mapping has already grown beyond the guard pages at
2620// the time we create them, we have to truncate the stack mapping.
2621// So, we need to know the extent of the stack mapping when
2622// create_stack_guard_pages() is called.
2623
2624// Find the bounds of the stack mapping.  Return true for success.
2625//
2626// We only need this for stacks that are growable: at the time of
2627// writing thread stacks don't use growable mappings (i.e. those
2628// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2629// only applies to the main thread.
2630static bool
2631get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2632{
2633  FILE *f = fopen("/proc/self/maps", "r");
2634  if (f == NULL)
2635    return false;
2636
2637  while (!feof(f)) {
2638    size_t dummy;
2639    char *str = NULL;
2640    ssize_t len = getline(&str, &dummy, f);
2641    if (len == -1) {
2642      fclose(f);
2643      return false;
2644    }
2645
2646    if (len > 0 && str[len-1] == '\n') {
2647      str[len-1] = 0;
2648      len--;
2649    }
2650
2651    static const char *stack_str = "[stack]";
2652    if (len > (ssize_t)strlen(stack_str)
2653       && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2654      if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2655        uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2656        if (sp >= *bottom && sp <= *top) {
2657          free(str);
2658          fclose(f);
2659          return true;
2660        }
2661      }
2662    }
2663    free(str);
2664  }
2665  fclose(f);
2666  return false;
2667}
2668
2669// If the (growable) stack mapping already extends beyond the point
2670// where we're going to put our guard pages, truncate the mapping at
2671// that point by munmap()ping it.  This ensures that when we later
2672// munmap() the guard pages we don't leave a hole in the stack
2673// mapping. This only affects the main/initial thread, but guard
2674// against future OS changes
2675bool os::create_stack_guard_pages(char* addr, size_t size) {
2676  uintptr_t stack_extent, stack_base;
2677  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2678  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2679      assert(os::Linux::is_initial_thread(),
2680           "growable stack in non-initial thread");
2681    if (stack_extent < (uintptr_t)addr)
2682      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2683  }
2684
2685  return os::commit_memory(addr, size);
2686}
2687
2688// If this is a growable mapping, remove the guard pages entirely by
2689// munmap()ping them.  If not, just call uncommit_memory(). This only
2690// affects the main/initial thread, but guard against future OS changes
2691bool os::remove_stack_guard_pages(char* addr, size_t size) {
2692  uintptr_t stack_extent, stack_base;
2693  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2694  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2695      assert(os::Linux::is_initial_thread(),
2696           "growable stack in non-initial thread");
2697
2698    return ::munmap(addr, size) == 0;
2699  }
2700
2701  return os::uncommit_memory(addr, size);
2702}
2703
2704static address _highest_vm_reserved_address = NULL;
2705
2706// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2707// at 'requested_addr'. If there are existing memory mappings at the same
2708// location, however, they will be overwritten. If 'fixed' is false,
2709// 'requested_addr' is only treated as a hint, the return value may or
2710// may not start from the requested address. Unlike Linux mmap(), this
2711// function returns NULL to indicate failure.
2712static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2713  char * addr;
2714  int flags;
2715
2716  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2717  if (fixed) {
2718    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2719    flags |= MAP_FIXED;
2720  }
2721
2722  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2723  // to PROT_EXEC if executable when we commit the page.
2724  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2725                       flags, -1, 0);
2726
2727  if (addr != MAP_FAILED) {
2728    // anon_mmap() should only get called during VM initialization,
2729    // don't need lock (actually we can skip locking even it can be called
2730    // from multiple threads, because _highest_vm_reserved_address is just a
2731    // hint about the upper limit of non-stack memory regions.)
2732    if ((address)addr + bytes > _highest_vm_reserved_address) {
2733      _highest_vm_reserved_address = (address)addr + bytes;
2734    }
2735  }
2736
2737  return addr == MAP_FAILED ? NULL : addr;
2738}
2739
2740// Don't update _highest_vm_reserved_address, because there might be memory
2741// regions above addr + size. If so, releasing a memory region only creates
2742// a hole in the address space, it doesn't help prevent heap-stack collision.
2743//
2744static int anon_munmap(char * addr, size_t size) {
2745  return ::munmap(addr, size) == 0;
2746}
2747
2748char* os::reserve_memory(size_t bytes, char* requested_addr,
2749                         size_t alignment_hint) {
2750  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2751}
2752
2753bool os::release_memory(char* addr, size_t size) {
2754  return anon_munmap(addr, size);
2755}
2756
2757static address highest_vm_reserved_address() {
2758  return _highest_vm_reserved_address;
2759}
2760
2761static bool linux_mprotect(char* addr, size_t size, int prot) {
2762  // Linux wants the mprotect address argument to be page aligned.
2763  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2764
2765  // According to SUSv3, mprotect() should only be used with mappings
2766  // established by mmap(), and mmap() always maps whole pages. Unaligned
2767  // 'addr' likely indicates problem in the VM (e.g. trying to change
2768  // protection of malloc'ed or statically allocated memory). Check the
2769  // caller if you hit this assert.
2770  assert(addr == bottom, "sanity check");
2771
2772  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2773  return ::mprotect(bottom, size, prot) == 0;
2774}
2775
2776// Set protections specified
2777bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2778                        bool is_committed) {
2779  unsigned int p = 0;
2780  switch (prot) {
2781  case MEM_PROT_NONE: p = PROT_NONE; break;
2782  case MEM_PROT_READ: p = PROT_READ; break;
2783  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2784  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2785  default:
2786    ShouldNotReachHere();
2787  }
2788  // is_committed is unused.
2789  return linux_mprotect(addr, bytes, p);
2790}
2791
2792bool os::guard_memory(char* addr, size_t size) {
2793  return linux_mprotect(addr, size, PROT_NONE);
2794}
2795
2796bool os::unguard_memory(char* addr, size_t size) {
2797  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2798}
2799
2800// Large page support
2801
2802static size_t _large_page_size = 0;
2803
2804bool os::large_page_init() {
2805  if (!UseLargePages) return false;
2806
2807  if (LargePageSizeInBytes) {
2808    _large_page_size = LargePageSizeInBytes;
2809  } else {
2810    // large_page_size on Linux is used to round up heap size. x86 uses either
2811    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2812    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2813    // page as large as 256M.
2814    //
2815    // Here we try to figure out page size by parsing /proc/meminfo and looking
2816    // for a line with the following format:
2817    //    Hugepagesize:     2048 kB
2818    //
2819    // If we can't determine the value (e.g. /proc is not mounted, or the text
2820    // format has been changed), we'll use the largest page size supported by
2821    // the processor.
2822
2823#ifndef ZERO
2824    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2825                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2826#endif // ZERO
2827
2828    FILE *fp = fopen("/proc/meminfo", "r");
2829    if (fp) {
2830      while (!feof(fp)) {
2831        int x = 0;
2832        char buf[16];
2833        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2834          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2835            _large_page_size = x * K;
2836            break;
2837          }
2838        } else {
2839          // skip to next line
2840          for (;;) {
2841            int ch = fgetc(fp);
2842            if (ch == EOF || ch == (int)'\n') break;
2843          }
2844        }
2845      }
2846      fclose(fp);
2847    }
2848  }
2849
2850  const size_t default_page_size = (size_t)Linux::page_size();
2851  if (_large_page_size > default_page_size) {
2852    _page_sizes[0] = _large_page_size;
2853    _page_sizes[1] = default_page_size;
2854    _page_sizes[2] = 0;
2855  }
2856
2857  // Large page support is available on 2.6 or newer kernel, some vendors
2858  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2859  // We optimistically assume the support is available. If later it turns out
2860  // not true, VM will automatically switch to use regular page size.
2861  return true;
2862}
2863
2864#ifndef SHM_HUGETLB
2865#define SHM_HUGETLB 04000
2866#endif
2867
2868char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2869  // "exec" is passed in but not used.  Creating the shared image for
2870  // the code cache doesn't have an SHM_X executable permission to check.
2871  assert(UseLargePages, "only for large pages");
2872
2873  key_t key = IPC_PRIVATE;
2874  char *addr;
2875
2876  bool warn_on_failure = UseLargePages &&
2877                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2878                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2879                        );
2880  char msg[128];
2881
2882  // Create a large shared memory region to attach to based on size.
2883  // Currently, size is the total size of the heap
2884  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2885  if (shmid == -1) {
2886     // Possible reasons for shmget failure:
2887     // 1. shmmax is too small for Java heap.
2888     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2889     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2890     // 2. not enough large page memory.
2891     //    > check available large pages: cat /proc/meminfo
2892     //    > increase amount of large pages:
2893     //          echo new_value > /proc/sys/vm/nr_hugepages
2894     //      Note 1: different Linux may use different name for this property,
2895     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2896     //      Note 2: it's possible there's enough physical memory available but
2897     //            they are so fragmented after a long run that they can't
2898     //            coalesce into large pages. Try to reserve large pages when
2899     //            the system is still "fresh".
2900     if (warn_on_failure) {
2901       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2902       warning(msg);
2903     }
2904     return NULL;
2905  }
2906
2907  // attach to the region
2908  addr = (char*)shmat(shmid, req_addr, 0);
2909  int err = errno;
2910
2911  // Remove shmid. If shmat() is successful, the actual shared memory segment
2912  // will be deleted when it's detached by shmdt() or when the process
2913  // terminates. If shmat() is not successful this will remove the shared
2914  // segment immediately.
2915  shmctl(shmid, IPC_RMID, NULL);
2916
2917  if ((intptr_t)addr == -1) {
2918     if (warn_on_failure) {
2919       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2920       warning(msg);
2921     }
2922     return NULL;
2923  }
2924
2925  return addr;
2926}
2927
2928bool os::release_memory_special(char* base, size_t bytes) {
2929  // detaching the SHM segment will also delete it, see reserve_memory_special()
2930  int rslt = shmdt(base);
2931  return rslt == 0;
2932}
2933
2934size_t os::large_page_size() {
2935  return _large_page_size;
2936}
2937
2938// Linux does not support anonymous mmap with large page memory. The only way
2939// to reserve large page memory without file backing is through SysV shared
2940// memory API. The entire memory region is committed and pinned upfront.
2941// Hopefully this will change in the future...
2942bool os::can_commit_large_page_memory() {
2943  return false;
2944}
2945
2946bool os::can_execute_large_page_memory() {
2947  return false;
2948}
2949
2950// Reserve memory at an arbitrary address, only if that area is
2951// available (and not reserved for something else).
2952
2953char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2954  const int max_tries = 10;
2955  char* base[max_tries];
2956  size_t size[max_tries];
2957  const size_t gap = 0x000000;
2958
2959  // Assert only that the size is a multiple of the page size, since
2960  // that's all that mmap requires, and since that's all we really know
2961  // about at this low abstraction level.  If we need higher alignment,
2962  // we can either pass an alignment to this method or verify alignment
2963  // in one of the methods further up the call chain.  See bug 5044738.
2964  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2965
2966  // Repeatedly allocate blocks until the block is allocated at the
2967  // right spot. Give up after max_tries. Note that reserve_memory() will
2968  // automatically update _highest_vm_reserved_address if the call is
2969  // successful. The variable tracks the highest memory address every reserved
2970  // by JVM. It is used to detect heap-stack collision if running with
2971  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2972  // space than needed, it could confuse the collision detecting code. To
2973  // solve the problem, save current _highest_vm_reserved_address and
2974  // calculate the correct value before return.
2975  address old_highest = _highest_vm_reserved_address;
2976
2977  // Linux mmap allows caller to pass an address as hint; give it a try first,
2978  // if kernel honors the hint then we can return immediately.
2979  char * addr = anon_mmap(requested_addr, bytes, false);
2980  if (addr == requested_addr) {
2981     return requested_addr;
2982  }
2983
2984  if (addr != NULL) {
2985     // mmap() is successful but it fails to reserve at the requested address
2986     anon_munmap(addr, bytes);
2987  }
2988
2989  int i;
2990  for (i = 0; i < max_tries; ++i) {
2991    base[i] = reserve_memory(bytes);
2992
2993    if (base[i] != NULL) {
2994      // Is this the block we wanted?
2995      if (base[i] == requested_addr) {
2996        size[i] = bytes;
2997        break;
2998      }
2999
3000      // Does this overlap the block we wanted? Give back the overlapped
3001      // parts and try again.
3002
3003      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3004      if (top_overlap >= 0 && top_overlap < bytes) {
3005        unmap_memory(base[i], top_overlap);
3006        base[i] += top_overlap;
3007        size[i] = bytes - top_overlap;
3008      } else {
3009        size_t bottom_overlap = base[i] + bytes - requested_addr;
3010        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3011          unmap_memory(requested_addr, bottom_overlap);
3012          size[i] = bytes - bottom_overlap;
3013        } else {
3014          size[i] = bytes;
3015        }
3016      }
3017    }
3018  }
3019
3020  // Give back the unused reserved pieces.
3021
3022  for (int j = 0; j < i; ++j) {
3023    if (base[j] != NULL) {
3024      unmap_memory(base[j], size[j]);
3025    }
3026  }
3027
3028  if (i < max_tries) {
3029    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3030    return requested_addr;
3031  } else {
3032    _highest_vm_reserved_address = old_highest;
3033    return NULL;
3034  }
3035}
3036
3037size_t os::read(int fd, void *buf, unsigned int nBytes) {
3038  return ::read(fd, buf, nBytes);
3039}
3040
3041// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3042// Solaris uses poll(), linux uses park().
3043// Poll() is likely a better choice, assuming that Thread.interrupt()
3044// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3045// SIGSEGV, see 4355769.
3046
3047const int NANOSECS_PER_MILLISECS = 1000000;
3048
3049int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3050  assert(thread == Thread::current(),  "thread consistency check");
3051
3052  ParkEvent * const slp = thread->_SleepEvent ;
3053  slp->reset() ;
3054  OrderAccess::fence() ;
3055
3056  if (interruptible) {
3057    jlong prevtime = javaTimeNanos();
3058
3059    for (;;) {
3060      if (os::is_interrupted(thread, true)) {
3061        return OS_INTRPT;
3062      }
3063
3064      jlong newtime = javaTimeNanos();
3065
3066      if (newtime - prevtime < 0) {
3067        // time moving backwards, should only happen if no monotonic clock
3068        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3069        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3070      } else {
3071        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3072      }
3073
3074      if(millis <= 0) {
3075        return OS_OK;
3076      }
3077
3078      prevtime = newtime;
3079
3080      {
3081        assert(thread->is_Java_thread(), "sanity check");
3082        JavaThread *jt = (JavaThread *) thread;
3083        ThreadBlockInVM tbivm(jt);
3084        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3085
3086        jt->set_suspend_equivalent();
3087        // cleared by handle_special_suspend_equivalent_condition() or
3088        // java_suspend_self() via check_and_wait_while_suspended()
3089
3090        slp->park(millis);
3091
3092        // were we externally suspended while we were waiting?
3093        jt->check_and_wait_while_suspended();
3094      }
3095    }
3096  } else {
3097    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3098    jlong prevtime = javaTimeNanos();
3099
3100    for (;;) {
3101      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3102      // the 1st iteration ...
3103      jlong newtime = javaTimeNanos();
3104
3105      if (newtime - prevtime < 0) {
3106        // time moving backwards, should only happen if no monotonic clock
3107        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3108        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3109      } else {
3110        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3111      }
3112
3113      if(millis <= 0) break ;
3114
3115      prevtime = newtime;
3116      slp->park(millis);
3117    }
3118    return OS_OK ;
3119  }
3120}
3121
3122int os::naked_sleep() {
3123  // %% make the sleep time an integer flag. for now use 1 millisec.
3124  return os::sleep(Thread::current(), 1, false);
3125}
3126
3127// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3128void os::infinite_sleep() {
3129  while (true) {    // sleep forever ...
3130    ::sleep(100);   // ... 100 seconds at a time
3131  }
3132}
3133
3134// Used to convert frequent JVM_Yield() to nops
3135bool os::dont_yield() {
3136  return DontYieldALot;
3137}
3138
3139void os::yield() {
3140  sched_yield();
3141}
3142
3143os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3144
3145void os::yield_all(int attempts) {
3146  // Yields to all threads, including threads with lower priorities
3147  // Threads on Linux are all with same priority. The Solaris style
3148  // os::yield_all() with nanosleep(1ms) is not necessary.
3149  sched_yield();
3150}
3151
3152// Called from the tight loops to possibly influence time-sharing heuristics
3153void os::loop_breaker(int attempts) {
3154  os::yield_all(attempts);
3155}
3156
3157////////////////////////////////////////////////////////////////////////////////
3158// thread priority support
3159
3160// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3161// only supports dynamic priority, static priority must be zero. For real-time
3162// applications, Linux supports SCHED_RR which allows static priority (1-99).
3163// However, for large multi-threaded applications, SCHED_RR is not only slower
3164// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3165// of 5 runs - Sep 2005).
3166//
3167// The following code actually changes the niceness of kernel-thread/LWP. It
3168// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3169// not the entire user process, and user level threads are 1:1 mapped to kernel
3170// threads. It has always been the case, but could change in the future. For
3171// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3172// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3173
3174int os::java_to_os_priority[MaxPriority + 1] = {
3175  19,              // 0 Entry should never be used
3176
3177   4,              // 1 MinPriority
3178   3,              // 2
3179   2,              // 3
3180
3181   1,              // 4
3182   0,              // 5 NormPriority
3183  -1,              // 6
3184
3185  -2,              // 7
3186  -3,              // 8
3187  -4,              // 9 NearMaxPriority
3188
3189  -5               // 10 MaxPriority
3190};
3191
3192static int prio_init() {
3193  if (ThreadPriorityPolicy == 1) {
3194    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3195    // if effective uid is not root. Perhaps, a more elegant way of doing
3196    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3197    if (geteuid() != 0) {
3198      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3199        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3200      }
3201      ThreadPriorityPolicy = 0;
3202    }
3203  }
3204  return 0;
3205}
3206
3207OSReturn os::set_native_priority(Thread* thread, int newpri) {
3208  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3209
3210  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3211  return (ret == 0) ? OS_OK : OS_ERR;
3212}
3213
3214OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3215  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3216    *priority_ptr = java_to_os_priority[NormPriority];
3217    return OS_OK;
3218  }
3219
3220  errno = 0;
3221  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3222  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3223}
3224
3225// Hint to the underlying OS that a task switch would not be good.
3226// Void return because it's a hint and can fail.
3227void os::hint_no_preempt() {}
3228
3229////////////////////////////////////////////////////////////////////////////////
3230// suspend/resume support
3231
3232//  the low-level signal-based suspend/resume support is a remnant from the
3233//  old VM-suspension that used to be for java-suspension, safepoints etc,
3234//  within hotspot. Now there is a single use-case for this:
3235//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3236//      that runs in the watcher thread.
3237//  The remaining code is greatly simplified from the more general suspension
3238//  code that used to be used.
3239//
3240//  The protocol is quite simple:
3241//  - suspend:
3242//      - sends a signal to the target thread
3243//      - polls the suspend state of the osthread using a yield loop
3244//      - target thread signal handler (SR_handler) sets suspend state
3245//        and blocks in sigsuspend until continued
3246//  - resume:
3247//      - sets target osthread state to continue
3248//      - sends signal to end the sigsuspend loop in the SR_handler
3249//
3250//  Note that the SR_lock plays no role in this suspend/resume protocol.
3251//
3252
3253static void resume_clear_context(OSThread *osthread) {
3254  osthread->set_ucontext(NULL);
3255  osthread->set_siginfo(NULL);
3256
3257  // notify the suspend action is completed, we have now resumed
3258  osthread->sr.clear_suspended();
3259}
3260
3261static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3262  osthread->set_ucontext(context);
3263  osthread->set_siginfo(siginfo);
3264}
3265
3266//
3267// Handler function invoked when a thread's execution is suspended or
3268// resumed. We have to be careful that only async-safe functions are
3269// called here (Note: most pthread functions are not async safe and
3270// should be avoided.)
3271//
3272// Note: sigwait() is a more natural fit than sigsuspend() from an
3273// interface point of view, but sigwait() prevents the signal hander
3274// from being run. libpthread would get very confused by not having
3275// its signal handlers run and prevents sigwait()'s use with the
3276// mutex granting granting signal.
3277//
3278// Currently only ever called on the VMThread
3279//
3280static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3281  // Save and restore errno to avoid confusing native code with EINTR
3282  // after sigsuspend.
3283  int old_errno = errno;
3284
3285  Thread* thread = Thread::current();
3286  OSThread* osthread = thread->osthread();
3287  assert(thread->is_VM_thread(), "Must be VMThread");
3288  // read current suspend action
3289  int action = osthread->sr.suspend_action();
3290  if (action == SR_SUSPEND) {
3291    suspend_save_context(osthread, siginfo, context);
3292
3293    // Notify the suspend action is about to be completed. do_suspend()
3294    // waits until SR_SUSPENDED is set and then returns. We will wait
3295    // here for a resume signal and that completes the suspend-other
3296    // action. do_suspend/do_resume is always called as a pair from
3297    // the same thread - so there are no races
3298
3299    // notify the caller
3300    osthread->sr.set_suspended();
3301
3302    sigset_t suspend_set;  // signals for sigsuspend()
3303
3304    // get current set of blocked signals and unblock resume signal
3305    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3306    sigdelset(&suspend_set, SR_signum);
3307
3308    // wait here until we are resumed
3309    do {
3310      sigsuspend(&suspend_set);
3311      // ignore all returns until we get a resume signal
3312    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3313
3314    resume_clear_context(osthread);
3315
3316  } else {
3317    assert(action == SR_CONTINUE, "unexpected sr action");
3318    // nothing special to do - just leave the handler
3319  }
3320
3321  errno = old_errno;
3322}
3323
3324
3325static int SR_initialize() {
3326  struct sigaction act;
3327  char *s;
3328  /* Get signal number to use for suspend/resume */
3329  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3330    int sig = ::strtol(s, 0, 10);
3331    if (sig > 0 || sig < _NSIG) {
3332        SR_signum = sig;
3333    }
3334  }
3335
3336  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3337        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3338
3339  sigemptyset(&SR_sigset);
3340  sigaddset(&SR_sigset, SR_signum);
3341
3342  /* Set up signal handler for suspend/resume */
3343  act.sa_flags = SA_RESTART|SA_SIGINFO;
3344  act.sa_handler = (void (*)(int)) SR_handler;
3345
3346  // SR_signum is blocked by default.
3347  // 4528190 - We also need to block pthread restart signal (32 on all
3348  // supported Linux platforms). Note that LinuxThreads need to block
3349  // this signal for all threads to work properly. So we don't have
3350  // to use hard-coded signal number when setting up the mask.
3351  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3352
3353  if (sigaction(SR_signum, &act, 0) == -1) {
3354    return -1;
3355  }
3356
3357  // Save signal flag
3358  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3359  return 0;
3360}
3361
3362static int SR_finalize() {
3363  return 0;
3364}
3365
3366
3367// returns true on success and false on error - really an error is fatal
3368// but this seems the normal response to library errors
3369static bool do_suspend(OSThread* osthread) {
3370  // mark as suspended and send signal
3371  osthread->sr.set_suspend_action(SR_SUSPEND);
3372  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3373  assert_status(status == 0, status, "pthread_kill");
3374
3375  // check status and wait until notified of suspension
3376  if (status == 0) {
3377    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3378      os::yield_all(i);
3379    }
3380    osthread->sr.set_suspend_action(SR_NONE);
3381    return true;
3382  }
3383  else {
3384    osthread->sr.set_suspend_action(SR_NONE);
3385    return false;
3386  }
3387}
3388
3389static void do_resume(OSThread* osthread) {
3390  assert(osthread->sr.is_suspended(), "thread should be suspended");
3391  osthread->sr.set_suspend_action(SR_CONTINUE);
3392
3393  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3394  assert_status(status == 0, status, "pthread_kill");
3395  // check status and wait unit notified of resumption
3396  if (status == 0) {
3397    for (int i = 0; osthread->sr.is_suspended(); i++) {
3398      os::yield_all(i);
3399    }
3400  }
3401  osthread->sr.set_suspend_action(SR_NONE);
3402}
3403
3404////////////////////////////////////////////////////////////////////////////////
3405// interrupt support
3406
3407void os::interrupt(Thread* thread) {
3408  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3409    "possibility of dangling Thread pointer");
3410
3411  OSThread* osthread = thread->osthread();
3412
3413  if (!osthread->interrupted()) {
3414    osthread->set_interrupted(true);
3415    // More than one thread can get here with the same value of osthread,
3416    // resulting in multiple notifications.  We do, however, want the store
3417    // to interrupted() to be visible to other threads before we execute unpark().
3418    OrderAccess::fence();
3419    ParkEvent * const slp = thread->_SleepEvent ;
3420    if (slp != NULL) slp->unpark() ;
3421  }
3422
3423  // For JSR166. Unpark even if interrupt status already was set
3424  if (thread->is_Java_thread())
3425    ((JavaThread*)thread)->parker()->unpark();
3426
3427  ParkEvent * ev = thread->_ParkEvent ;
3428  if (ev != NULL) ev->unpark() ;
3429
3430}
3431
3432bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3433  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3434    "possibility of dangling Thread pointer");
3435
3436  OSThread* osthread = thread->osthread();
3437
3438  bool interrupted = osthread->interrupted();
3439
3440  if (interrupted && clear_interrupted) {
3441    osthread->set_interrupted(false);
3442    // consider thread->_SleepEvent->reset() ... optional optimization
3443  }
3444
3445  return interrupted;
3446}
3447
3448///////////////////////////////////////////////////////////////////////////////////
3449// signal handling (except suspend/resume)
3450
3451// This routine may be used by user applications as a "hook" to catch signals.
3452// The user-defined signal handler must pass unrecognized signals to this
3453// routine, and if it returns true (non-zero), then the signal handler must
3454// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3455// routine will never retun false (zero), but instead will execute a VM panic
3456// routine kill the process.
3457//
3458// If this routine returns false, it is OK to call it again.  This allows
3459// the user-defined signal handler to perform checks either before or after
3460// the VM performs its own checks.  Naturally, the user code would be making
3461// a serious error if it tried to handle an exception (such as a null check
3462// or breakpoint) that the VM was generating for its own correct operation.
3463//
3464// This routine may recognize any of the following kinds of signals:
3465//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3466// It should be consulted by handlers for any of those signals.
3467//
3468// The caller of this routine must pass in the three arguments supplied
3469// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3470// field of the structure passed to sigaction().  This routine assumes that
3471// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3472//
3473// Note that the VM will print warnings if it detects conflicting signal
3474// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3475//
3476extern "C" int
3477JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3478                        void* ucontext, int abort_if_unrecognized);
3479
3480void signalHandler(int sig, siginfo_t* info, void* uc) {
3481  assert(info != NULL && uc != NULL, "it must be old kernel");
3482  JVM_handle_linux_signal(sig, info, uc, true);
3483}
3484
3485
3486// This boolean allows users to forward their own non-matching signals
3487// to JVM_handle_linux_signal, harmlessly.
3488bool os::Linux::signal_handlers_are_installed = false;
3489
3490// For signal-chaining
3491struct sigaction os::Linux::sigact[MAXSIGNUM];
3492unsigned int os::Linux::sigs = 0;
3493bool os::Linux::libjsig_is_loaded = false;
3494typedef struct sigaction *(*get_signal_t)(int);
3495get_signal_t os::Linux::get_signal_action = NULL;
3496
3497struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3498  struct sigaction *actp = NULL;
3499
3500  if (libjsig_is_loaded) {
3501    // Retrieve the old signal handler from libjsig
3502    actp = (*get_signal_action)(sig);
3503  }
3504  if (actp == NULL) {
3505    // Retrieve the preinstalled signal handler from jvm
3506    actp = get_preinstalled_handler(sig);
3507  }
3508
3509  return actp;
3510}
3511
3512static bool call_chained_handler(struct sigaction *actp, int sig,
3513                                 siginfo_t *siginfo, void *context) {
3514  // Call the old signal handler
3515  if (actp->sa_handler == SIG_DFL) {
3516    // It's more reasonable to let jvm treat it as an unexpected exception
3517    // instead of taking the default action.
3518    return false;
3519  } else if (actp->sa_handler != SIG_IGN) {
3520    if ((actp->sa_flags & SA_NODEFER) == 0) {
3521      // automaticlly block the signal
3522      sigaddset(&(actp->sa_mask), sig);
3523    }
3524
3525    sa_handler_t hand;
3526    sa_sigaction_t sa;
3527    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3528    // retrieve the chained handler
3529    if (siginfo_flag_set) {
3530      sa = actp->sa_sigaction;
3531    } else {
3532      hand = actp->sa_handler;
3533    }
3534
3535    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3536      actp->sa_handler = SIG_DFL;
3537    }
3538
3539    // try to honor the signal mask
3540    sigset_t oset;
3541    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3542
3543    // call into the chained handler
3544    if (siginfo_flag_set) {
3545      (*sa)(sig, siginfo, context);
3546    } else {
3547      (*hand)(sig);
3548    }
3549
3550    // restore the signal mask
3551    pthread_sigmask(SIG_SETMASK, &oset, 0);
3552  }
3553  // Tell jvm's signal handler the signal is taken care of.
3554  return true;
3555}
3556
3557bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3558  bool chained = false;
3559  // signal-chaining
3560  if (UseSignalChaining) {
3561    struct sigaction *actp = get_chained_signal_action(sig);
3562    if (actp != NULL) {
3563      chained = call_chained_handler(actp, sig, siginfo, context);
3564    }
3565  }
3566  return chained;
3567}
3568
3569struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3570  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3571    return &sigact[sig];
3572  }
3573  return NULL;
3574}
3575
3576void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3577  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3578  sigact[sig] = oldAct;
3579  sigs |= (unsigned int)1 << sig;
3580}
3581
3582// for diagnostic
3583int os::Linux::sigflags[MAXSIGNUM];
3584
3585int os::Linux::get_our_sigflags(int sig) {
3586  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3587  return sigflags[sig];
3588}
3589
3590void os::Linux::set_our_sigflags(int sig, int flags) {
3591  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3592  sigflags[sig] = flags;
3593}
3594
3595void os::Linux::set_signal_handler(int sig, bool set_installed) {
3596  // Check for overwrite.
3597  struct sigaction oldAct;
3598  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3599
3600  void* oldhand = oldAct.sa_sigaction
3601                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3602                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3603  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3604      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3605      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3606    if (AllowUserSignalHandlers || !set_installed) {
3607      // Do not overwrite; user takes responsibility to forward to us.
3608      return;
3609    } else if (UseSignalChaining) {
3610      // save the old handler in jvm
3611      save_preinstalled_handler(sig, oldAct);
3612      // libjsig also interposes the sigaction() call below and saves the
3613      // old sigaction on it own.
3614    } else {
3615      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3616                    "%#lx for signal %d.", (long)oldhand, sig));
3617    }
3618  }
3619
3620  struct sigaction sigAct;
3621  sigfillset(&(sigAct.sa_mask));
3622  sigAct.sa_handler = SIG_DFL;
3623  if (!set_installed) {
3624    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3625  } else {
3626    sigAct.sa_sigaction = signalHandler;
3627    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3628  }
3629  // Save flags, which are set by ours
3630  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3631  sigflags[sig] = sigAct.sa_flags;
3632
3633  int ret = sigaction(sig, &sigAct, &oldAct);
3634  assert(ret == 0, "check");
3635
3636  void* oldhand2  = oldAct.sa_sigaction
3637                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3638                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3639  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3640}
3641
3642// install signal handlers for signals that HotSpot needs to
3643// handle in order to support Java-level exception handling.
3644
3645void os::Linux::install_signal_handlers() {
3646  if (!signal_handlers_are_installed) {
3647    signal_handlers_are_installed = true;
3648
3649    // signal-chaining
3650    typedef void (*signal_setting_t)();
3651    signal_setting_t begin_signal_setting = NULL;
3652    signal_setting_t end_signal_setting = NULL;
3653    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3654                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3655    if (begin_signal_setting != NULL) {
3656      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3657                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3658      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3659                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3660      libjsig_is_loaded = true;
3661      assert(UseSignalChaining, "should enable signal-chaining");
3662    }
3663    if (libjsig_is_loaded) {
3664      // Tell libjsig jvm is setting signal handlers
3665      (*begin_signal_setting)();
3666    }
3667
3668    set_signal_handler(SIGSEGV, true);
3669    set_signal_handler(SIGPIPE, true);
3670    set_signal_handler(SIGBUS, true);
3671    set_signal_handler(SIGILL, true);
3672    set_signal_handler(SIGFPE, true);
3673    set_signal_handler(SIGXFSZ, true);
3674
3675    if (libjsig_is_loaded) {
3676      // Tell libjsig jvm finishes setting signal handlers
3677      (*end_signal_setting)();
3678    }
3679
3680    // We don't activate signal checker if libjsig is in place, we trust ourselves
3681    // and if UserSignalHandler is installed all bets are off
3682    if (CheckJNICalls) {
3683      if (libjsig_is_loaded) {
3684        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3685        check_signals = false;
3686      }
3687      if (AllowUserSignalHandlers) {
3688        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3689        check_signals = false;
3690      }
3691    }
3692  }
3693}
3694
3695// This is the fastest way to get thread cpu time on Linux.
3696// Returns cpu time (user+sys) for any thread, not only for current.
3697// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3698// It might work on 2.6.10+ with a special kernel/glibc patch.
3699// For reference, please, see IEEE Std 1003.1-2004:
3700//   http://www.unix.org/single_unix_specification
3701
3702jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3703  struct timespec tp;
3704  int rc = os::Linux::clock_gettime(clockid, &tp);
3705  assert(rc == 0, "clock_gettime is expected to return 0 code");
3706
3707  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3708}
3709
3710/////
3711// glibc on Linux platform uses non-documented flag
3712// to indicate, that some special sort of signal
3713// trampoline is used.
3714// We will never set this flag, and we should
3715// ignore this flag in our diagnostic
3716#ifdef SIGNIFICANT_SIGNAL_MASK
3717#undef SIGNIFICANT_SIGNAL_MASK
3718#endif
3719#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3720
3721static const char* get_signal_handler_name(address handler,
3722                                           char* buf, int buflen) {
3723  int offset;
3724  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3725  if (found) {
3726    // skip directory names
3727    const char *p1, *p2;
3728    p1 = buf;
3729    size_t len = strlen(os::file_separator());
3730    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3731    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3732  } else {
3733    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3734  }
3735  return buf;
3736}
3737
3738static void print_signal_handler(outputStream* st, int sig,
3739                                 char* buf, size_t buflen) {
3740  struct sigaction sa;
3741
3742  sigaction(sig, NULL, &sa);
3743
3744  // See comment for SIGNIFICANT_SIGNAL_MASK define
3745  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3746
3747  st->print("%s: ", os::exception_name(sig, buf, buflen));
3748
3749  address handler = (sa.sa_flags & SA_SIGINFO)
3750    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3751    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3752
3753  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3754    st->print("SIG_DFL");
3755  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3756    st->print("SIG_IGN");
3757  } else {
3758    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3759  }
3760
3761  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3762
3763  address rh = VMError::get_resetted_sighandler(sig);
3764  // May be, handler was resetted by VMError?
3765  if(rh != NULL) {
3766    handler = rh;
3767    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3768  }
3769
3770  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3771
3772  // Check: is it our handler?
3773  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3774     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3775    // It is our signal handler
3776    // check for flags, reset system-used one!
3777    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3778      st->print(
3779                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3780                os::Linux::get_our_sigflags(sig));
3781    }
3782  }
3783  st->cr();
3784}
3785
3786
3787#define DO_SIGNAL_CHECK(sig) \
3788  if (!sigismember(&check_signal_done, sig)) \
3789    os::Linux::check_signal_handler(sig)
3790
3791// This method is a periodic task to check for misbehaving JNI applications
3792// under CheckJNI, we can add any periodic checks here
3793
3794void os::run_periodic_checks() {
3795
3796  if (check_signals == false) return;
3797
3798  // SEGV and BUS if overridden could potentially prevent
3799  // generation of hs*.log in the event of a crash, debugging
3800  // such a case can be very challenging, so we absolutely
3801  // check the following for a good measure:
3802  DO_SIGNAL_CHECK(SIGSEGV);
3803  DO_SIGNAL_CHECK(SIGILL);
3804  DO_SIGNAL_CHECK(SIGFPE);
3805  DO_SIGNAL_CHECK(SIGBUS);
3806  DO_SIGNAL_CHECK(SIGPIPE);
3807  DO_SIGNAL_CHECK(SIGXFSZ);
3808
3809
3810  // ReduceSignalUsage allows the user to override these handlers
3811  // see comments at the very top and jvm_solaris.h
3812  if (!ReduceSignalUsage) {
3813    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3814    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3815    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3816    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3817  }
3818
3819  DO_SIGNAL_CHECK(SR_signum);
3820  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3821}
3822
3823typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3824
3825static os_sigaction_t os_sigaction = NULL;
3826
3827void os::Linux::check_signal_handler(int sig) {
3828  char buf[O_BUFLEN];
3829  address jvmHandler = NULL;
3830
3831
3832  struct sigaction act;
3833  if (os_sigaction == NULL) {
3834    // only trust the default sigaction, in case it has been interposed
3835    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3836    if (os_sigaction == NULL) return;
3837  }
3838
3839  os_sigaction(sig, (struct sigaction*)NULL, &act);
3840
3841
3842  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3843
3844  address thisHandler = (act.sa_flags & SA_SIGINFO)
3845    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3846    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3847
3848
3849  switch(sig) {
3850  case SIGSEGV:
3851  case SIGBUS:
3852  case SIGFPE:
3853  case SIGPIPE:
3854  case SIGILL:
3855  case SIGXFSZ:
3856    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3857    break;
3858
3859  case SHUTDOWN1_SIGNAL:
3860  case SHUTDOWN2_SIGNAL:
3861  case SHUTDOWN3_SIGNAL:
3862  case BREAK_SIGNAL:
3863    jvmHandler = (address)user_handler();
3864    break;
3865
3866  case INTERRUPT_SIGNAL:
3867    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3868    break;
3869
3870  default:
3871    if (sig == SR_signum) {
3872      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3873    } else {
3874      return;
3875    }
3876    break;
3877  }
3878
3879  if (thisHandler != jvmHandler) {
3880    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3881    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3882    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3883    // No need to check this sig any longer
3884    sigaddset(&check_signal_done, sig);
3885  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3886    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3887    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3888    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3889    // No need to check this sig any longer
3890    sigaddset(&check_signal_done, sig);
3891  }
3892
3893  // Dump all the signal
3894  if (sigismember(&check_signal_done, sig)) {
3895    print_signal_handlers(tty, buf, O_BUFLEN);
3896  }
3897}
3898
3899extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3900
3901extern bool signal_name(int signo, char* buf, size_t len);
3902
3903const char* os::exception_name(int exception_code, char* buf, size_t size) {
3904  if (0 < exception_code && exception_code <= SIGRTMAX) {
3905    // signal
3906    if (!signal_name(exception_code, buf, size)) {
3907      jio_snprintf(buf, size, "SIG%d", exception_code);
3908    }
3909    return buf;
3910  } else {
3911    return NULL;
3912  }
3913}
3914
3915// this is called _before_ the most of global arguments have been parsed
3916void os::init(void) {
3917  char dummy;   /* used to get a guess on initial stack address */
3918//  first_hrtime = gethrtime();
3919
3920  // With LinuxThreads the JavaMain thread pid (primordial thread)
3921  // is different than the pid of the java launcher thread.
3922  // So, on Linux, the launcher thread pid is passed to the VM
3923  // via the sun.java.launcher.pid property.
3924  // Use this property instead of getpid() if it was correctly passed.
3925  // See bug 6351349.
3926  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3927
3928  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3929
3930  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3931
3932  init_random(1234567);
3933
3934  ThreadCritical::initialize();
3935
3936  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3937  if (Linux::page_size() == -1) {
3938    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3939                  strerror(errno)));
3940  }
3941  init_page_sizes((size_t) Linux::page_size());
3942
3943  Linux::initialize_system_info();
3944
3945  // main_thread points to the aboriginal thread
3946  Linux::_main_thread = pthread_self();
3947
3948  Linux::clock_init();
3949  initial_time_count = os::elapsed_counter();
3950  pthread_mutex_init(&dl_mutex, NULL);
3951}
3952
3953// To install functions for atexit system call
3954extern "C" {
3955  static void perfMemory_exit_helper() {
3956    perfMemory_exit();
3957  }
3958}
3959
3960// this is called _after_ the global arguments have been parsed
3961jint os::init_2(void)
3962{
3963  Linux::fast_thread_clock_init();
3964
3965  // Allocate a single page and mark it as readable for safepoint polling
3966  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3967  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3968
3969  os::set_polling_page( polling_page );
3970
3971#ifndef PRODUCT
3972  if(Verbose && PrintMiscellaneous)
3973    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3974#endif
3975
3976  if (!UseMembar) {
3977    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3978    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3979    os::set_memory_serialize_page( mem_serialize_page );
3980
3981#ifndef PRODUCT
3982    if(Verbose && PrintMiscellaneous)
3983      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3984#endif
3985  }
3986
3987  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3988
3989  // initialize suspend/resume support - must do this before signal_sets_init()
3990  if (SR_initialize() != 0) {
3991    perror("SR_initialize failed");
3992    return JNI_ERR;
3993  }
3994
3995  Linux::signal_sets_init();
3996  Linux::install_signal_handlers();
3997
3998  // Check minimum allowable stack size for thread creation and to initialize
3999  // the java system classes, including StackOverflowError - depends on page
4000  // size.  Add a page for compiler2 recursion in main thread.
4001  // Add in 2*BytesPerWord times page size to account for VM stack during
4002  // class initialization depending on 32 or 64 bit VM.
4003  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4004            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4005                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4006
4007  size_t threadStackSizeInBytes = ThreadStackSize * K;
4008  if (threadStackSizeInBytes != 0 &&
4009      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4010        tty->print_cr("\nThe stack size specified is too small, "
4011                      "Specify at least %dk",
4012                      os::Linux::min_stack_allowed/ K);
4013        return JNI_ERR;
4014  }
4015
4016  // Make the stack size a multiple of the page size so that
4017  // the yellow/red zones can be guarded.
4018  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4019        vm_page_size()));
4020
4021  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4022
4023  Linux::libpthread_init();
4024  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4025     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4026          Linux::glibc_version(), Linux::libpthread_version(),
4027          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4028  }
4029
4030  if (UseNUMA) {
4031    if (!Linux::libnuma_init()) {
4032      UseNUMA = false;
4033    } else {
4034      if ((Linux::numa_max_node() < 1)) {
4035        // There's only one node(they start from 0), disable NUMA.
4036        UseNUMA = false;
4037      }
4038    }
4039    if (!UseNUMA && ForceNUMA) {
4040      UseNUMA = true;
4041    }
4042  }
4043
4044  if (MaxFDLimit) {
4045    // set the number of file descriptors to max. print out error
4046    // if getrlimit/setrlimit fails but continue regardless.
4047    struct rlimit nbr_files;
4048    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4049    if (status != 0) {
4050      if (PrintMiscellaneous && (Verbose || WizardMode))
4051        perror("os::init_2 getrlimit failed");
4052    } else {
4053      nbr_files.rlim_cur = nbr_files.rlim_max;
4054      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4055      if (status != 0) {
4056        if (PrintMiscellaneous && (Verbose || WizardMode))
4057          perror("os::init_2 setrlimit failed");
4058      }
4059    }
4060  }
4061
4062  // Initialize lock used to serialize thread creation (see os::create_thread)
4063  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4064
4065  // at-exit methods are called in the reverse order of their registration.
4066  // atexit functions are called on return from main or as a result of a
4067  // call to exit(3C). There can be only 32 of these functions registered
4068  // and atexit() does not set errno.
4069
4070  if (PerfAllowAtExitRegistration) {
4071    // only register atexit functions if PerfAllowAtExitRegistration is set.
4072    // atexit functions can be delayed until process exit time, which
4073    // can be problematic for embedded VM situations. Embedded VMs should
4074    // call DestroyJavaVM() to assure that VM resources are released.
4075
4076    // note: perfMemory_exit_helper atexit function may be removed in
4077    // the future if the appropriate cleanup code can be added to the
4078    // VM_Exit VMOperation's doit method.
4079    if (atexit(perfMemory_exit_helper) != 0) {
4080      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4081    }
4082  }
4083
4084  // initialize thread priority policy
4085  prio_init();
4086
4087  return JNI_OK;
4088}
4089
4090// this is called at the end of vm_initialization
4091void os::init_3(void) { }
4092
4093// Mark the polling page as unreadable
4094void os::make_polling_page_unreadable(void) {
4095  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4096    fatal("Could not disable polling page");
4097};
4098
4099// Mark the polling page as readable
4100void os::make_polling_page_readable(void) {
4101  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4102    fatal("Could not enable polling page");
4103  }
4104};
4105
4106int os::active_processor_count() {
4107  // Linux doesn't yet have a (official) notion of processor sets,
4108  // so just return the number of online processors.
4109  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4110  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4111  return online_cpus;
4112}
4113
4114bool os::distribute_processes(uint length, uint* distribution) {
4115  // Not yet implemented.
4116  return false;
4117}
4118
4119bool os::bind_to_processor(uint processor_id) {
4120  // Not yet implemented.
4121  return false;
4122}
4123
4124///
4125
4126// Suspends the target using the signal mechanism and then grabs the PC before
4127// resuming the target. Used by the flat-profiler only
4128ExtendedPC os::get_thread_pc(Thread* thread) {
4129  // Make sure that it is called by the watcher for the VMThread
4130  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4131  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4132
4133  ExtendedPC epc;
4134
4135  OSThread* osthread = thread->osthread();
4136  if (do_suspend(osthread)) {
4137    if (osthread->ucontext() != NULL) {
4138      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4139    } else {
4140      // NULL context is unexpected, double-check this is the VMThread
4141      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4142    }
4143    do_resume(osthread);
4144  }
4145  // failure means pthread_kill failed for some reason - arguably this is
4146  // a fatal problem, but such problems are ignored elsewhere
4147
4148  return epc;
4149}
4150
4151int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4152{
4153   if (is_NPTL()) {
4154      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4155   } else {
4156#ifndef IA64
4157      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4158      // word back to default 64bit precision if condvar is signaled. Java
4159      // wants 53bit precision.  Save and restore current value.
4160      int fpu = get_fpu_control_word();
4161#endif // IA64
4162      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4163#ifndef IA64
4164      set_fpu_control_word(fpu);
4165#endif // IA64
4166      return status;
4167   }
4168}
4169
4170////////////////////////////////////////////////////////////////////////////////
4171// debug support
4172
4173static address same_page(address x, address y) {
4174  int page_bits = -os::vm_page_size();
4175  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4176    return x;
4177  else if (x > y)
4178    return (address)(intptr_t(y) | ~page_bits) + 1;
4179  else
4180    return (address)(intptr_t(y) & page_bits);
4181}
4182
4183bool os::find(address addr, outputStream* st) {
4184  Dl_info dlinfo;
4185  memset(&dlinfo, 0, sizeof(dlinfo));
4186  if (dladdr(addr, &dlinfo)) {
4187    st->print(PTR_FORMAT ": ", addr);
4188    if (dlinfo.dli_sname != NULL) {
4189      st->print("%s+%#x", dlinfo.dli_sname,
4190                 addr - (intptr_t)dlinfo.dli_saddr);
4191    } else if (dlinfo.dli_fname) {
4192      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4193    } else {
4194      st->print("<absolute address>");
4195    }
4196    if (dlinfo.dli_fname) {
4197      st->print(" in %s", dlinfo.dli_fname);
4198    }
4199    if (dlinfo.dli_fbase) {
4200      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4201    }
4202    st->cr();
4203
4204    if (Verbose) {
4205      // decode some bytes around the PC
4206      address begin = same_page(addr-40, addr);
4207      address end   = same_page(addr+40, addr);
4208      address       lowest = (address) dlinfo.dli_sname;
4209      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4210      if (begin < lowest)  begin = lowest;
4211      Dl_info dlinfo2;
4212      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4213          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4214        end = (address) dlinfo2.dli_saddr;
4215      Disassembler::decode(begin, end, st);
4216    }
4217    return true;
4218  }
4219  return false;
4220}
4221
4222////////////////////////////////////////////////////////////////////////////////
4223// misc
4224
4225// This does not do anything on Linux. This is basically a hook for being
4226// able to use structured exception handling (thread-local exception filters)
4227// on, e.g., Win32.
4228void
4229os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4230                         JavaCallArguments* args, Thread* thread) {
4231  f(value, method, args, thread);
4232}
4233
4234void os::print_statistics() {
4235}
4236
4237int os::message_box(const char* title, const char* message) {
4238  int i;
4239  fdStream err(defaultStream::error_fd());
4240  for (i = 0; i < 78; i++) err.print_raw("=");
4241  err.cr();
4242  err.print_raw_cr(title);
4243  for (i = 0; i < 78; i++) err.print_raw("-");
4244  err.cr();
4245  err.print_raw_cr(message);
4246  for (i = 0; i < 78; i++) err.print_raw("=");
4247  err.cr();
4248
4249  char buf[16];
4250  // Prevent process from exiting upon "read error" without consuming all CPU
4251  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4252
4253  return buf[0] == 'y' || buf[0] == 'Y';
4254}
4255
4256int os::stat(const char *path, struct stat *sbuf) {
4257  char pathbuf[MAX_PATH];
4258  if (strlen(path) > MAX_PATH - 1) {
4259    errno = ENAMETOOLONG;
4260    return -1;
4261  }
4262  os::native_path(strcpy(pathbuf, path));
4263  return ::stat(pathbuf, sbuf);
4264}
4265
4266bool os::check_heap(bool force) {
4267  return true;
4268}
4269
4270int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4271  return ::vsnprintf(buf, count, format, args);
4272}
4273
4274// Is a (classpath) directory empty?
4275bool os::dir_is_empty(const char* path) {
4276  DIR *dir = NULL;
4277  struct dirent *ptr;
4278
4279  dir = opendir(path);
4280  if (dir == NULL) return true;
4281
4282  /* Scan the directory */
4283  bool result = true;
4284  char buf[sizeof(struct dirent) + MAX_PATH];
4285  while (result && (ptr = ::readdir(dir)) != NULL) {
4286    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4287      result = false;
4288    }
4289  }
4290  closedir(dir);
4291  return result;
4292}
4293
4294// This code originates from JDK's sysOpen and open64_w
4295// from src/solaris/hpi/src/system_md.c
4296
4297#ifndef O_DELETE
4298#define O_DELETE 0x10000
4299#endif
4300
4301// Open a file. Unlink the file immediately after open returns
4302// if the specified oflag has the O_DELETE flag set.
4303// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4304
4305int os::open(const char *path, int oflag, int mode) {
4306
4307  if (strlen(path) > MAX_PATH - 1) {
4308    errno = ENAMETOOLONG;
4309    return -1;
4310  }
4311  int fd;
4312  int o_delete = (oflag & O_DELETE);
4313  oflag = oflag & ~O_DELETE;
4314
4315  fd = ::open64(path, oflag, mode);
4316  if (fd == -1) return -1;
4317
4318  //If the open succeeded, the file might still be a directory
4319  {
4320    struct stat64 buf64;
4321    int ret = ::fstat64(fd, &buf64);
4322    int st_mode = buf64.st_mode;
4323
4324    if (ret != -1) {
4325      if ((st_mode & S_IFMT) == S_IFDIR) {
4326        errno = EISDIR;
4327        ::close(fd);
4328        return -1;
4329      }
4330    } else {
4331      ::close(fd);
4332      return -1;
4333    }
4334  }
4335
4336    /*
4337     * All file descriptors that are opened in the JVM and not
4338     * specifically destined for a subprocess should have the
4339     * close-on-exec flag set.  If we don't set it, then careless 3rd
4340     * party native code might fork and exec without closing all
4341     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4342     * UNIXProcess.c), and this in turn might:
4343     *
4344     * - cause end-of-file to fail to be detected on some file
4345     *   descriptors, resulting in mysterious hangs, or
4346     *
4347     * - might cause an fopen in the subprocess to fail on a system
4348     *   suffering from bug 1085341.
4349     *
4350     * (Yes, the default setting of the close-on-exec flag is a Unix
4351     * design flaw)
4352     *
4353     * See:
4354     * 1085341: 32-bit stdio routines should support file descriptors >255
4355     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4356     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4357     */
4358#ifdef FD_CLOEXEC
4359    {
4360        int flags = ::fcntl(fd, F_GETFD);
4361        if (flags != -1)
4362            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4363    }
4364#endif
4365
4366  if (o_delete != 0) {
4367    ::unlink(path);
4368  }
4369  return fd;
4370}
4371
4372
4373// create binary file, rewriting existing file if required
4374int os::create_binary_file(const char* path, bool rewrite_existing) {
4375  int oflags = O_WRONLY | O_CREAT;
4376  if (!rewrite_existing) {
4377    oflags |= O_EXCL;
4378  }
4379  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4380}
4381
4382// return current position of file pointer
4383jlong os::current_file_offset(int fd) {
4384  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4385}
4386
4387// move file pointer to the specified offset
4388jlong os::seek_to_file_offset(int fd, jlong offset) {
4389  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4390}
4391
4392// This code originates from JDK's sysAvailable
4393// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4394
4395int os::available(int fd, jlong *bytes) {
4396  jlong cur, end;
4397  int mode;
4398  struct stat64 buf64;
4399
4400  if (::fstat64(fd, &buf64) >= 0) {
4401    mode = buf64.st_mode;
4402    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4403      /*
4404      * XXX: is the following call interruptible? If so, this might
4405      * need to go through the INTERRUPT_IO() wrapper as for other
4406      * blocking, interruptible calls in this file.
4407      */
4408      int n;
4409      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4410        *bytes = n;
4411        return 1;
4412      }
4413    }
4414  }
4415  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4416    return 0;
4417  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4418    return 0;
4419  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4420    return 0;
4421  }
4422  *bytes = end - cur;
4423  return 1;
4424}
4425
4426// Map a block of memory.
4427char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4428                     char *addr, size_t bytes, bool read_only,
4429                     bool allow_exec) {
4430  int prot;
4431  int flags;
4432
4433  if (read_only) {
4434    prot = PROT_READ;
4435    flags = MAP_SHARED;
4436  } else {
4437    prot = PROT_READ | PROT_WRITE;
4438    flags = MAP_PRIVATE;
4439  }
4440
4441  if (allow_exec) {
4442    prot |= PROT_EXEC;
4443  }
4444
4445  if (addr != NULL) {
4446    flags |= MAP_FIXED;
4447  }
4448
4449  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4450                                     fd, file_offset);
4451  if (mapped_address == MAP_FAILED) {
4452    return NULL;
4453  }
4454  return mapped_address;
4455}
4456
4457
4458// Remap a block of memory.
4459char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4460                       char *addr, size_t bytes, bool read_only,
4461                       bool allow_exec) {
4462  // same as map_memory() on this OS
4463  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4464                        allow_exec);
4465}
4466
4467
4468// Unmap a block of memory.
4469bool os::unmap_memory(char* addr, size_t bytes) {
4470  return munmap(addr, bytes) == 0;
4471}
4472
4473static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4474
4475static clockid_t thread_cpu_clockid(Thread* thread) {
4476  pthread_t tid = thread->osthread()->pthread_id();
4477  clockid_t clockid;
4478
4479  // Get thread clockid
4480  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4481  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4482  return clockid;
4483}
4484
4485// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4486// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4487// of a thread.
4488//
4489// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4490// the fast estimate available on the platform.
4491
4492jlong os::current_thread_cpu_time() {
4493  if (os::Linux::supports_fast_thread_cpu_time()) {
4494    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4495  } else {
4496    // return user + sys since the cost is the same
4497    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4498  }
4499}
4500
4501jlong os::thread_cpu_time(Thread* thread) {
4502  // consistent with what current_thread_cpu_time() returns
4503  if (os::Linux::supports_fast_thread_cpu_time()) {
4504    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4505  } else {
4506    return slow_thread_cpu_time(thread, true /* user + sys */);
4507  }
4508}
4509
4510jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4511  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4512    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4513  } else {
4514    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4515  }
4516}
4517
4518jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4519  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4520    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4521  } else {
4522    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4523  }
4524}
4525
4526//
4527//  -1 on error.
4528//
4529
4530static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4531  static bool proc_pid_cpu_avail = true;
4532  static bool proc_task_unchecked = true;
4533  static const char *proc_stat_path = "/proc/%d/stat";
4534  pid_t  tid = thread->osthread()->thread_id();
4535  int i;
4536  char *s;
4537  char stat[2048];
4538  int statlen;
4539  char proc_name[64];
4540  int count;
4541  long sys_time, user_time;
4542  char string[64];
4543  char cdummy;
4544  int idummy;
4545  long ldummy;
4546  FILE *fp;
4547
4548  // We first try accessing /proc/<pid>/cpu since this is faster to
4549  // process.  If this file is not present (linux kernels 2.5 and above)
4550  // then we open /proc/<pid>/stat.
4551  if ( proc_pid_cpu_avail ) {
4552    sprintf(proc_name, "/proc/%d/cpu", tid);
4553    fp =  fopen(proc_name, "r");
4554    if ( fp != NULL ) {
4555      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4556      fclose(fp);
4557      if ( count != 3 ) return -1;
4558
4559      if (user_sys_cpu_time) {
4560        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4561      } else {
4562        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4563      }
4564    }
4565    else proc_pid_cpu_avail = false;
4566  }
4567
4568  // The /proc/<tid>/stat aggregates per-process usage on
4569  // new Linux kernels 2.6+ where NPTL is supported.
4570  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4571  // See bug 6328462.
4572  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4573  // and possibly in some other cases, so we check its availability.
4574  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4575    // This is executed only once
4576    proc_task_unchecked = false;
4577    fp = fopen("/proc/self/task", "r");
4578    if (fp != NULL) {
4579      proc_stat_path = "/proc/self/task/%d/stat";
4580      fclose(fp);
4581    }
4582  }
4583
4584  sprintf(proc_name, proc_stat_path, tid);
4585  fp = fopen(proc_name, "r");
4586  if ( fp == NULL ) return -1;
4587  statlen = fread(stat, 1, 2047, fp);
4588  stat[statlen] = '\0';
4589  fclose(fp);
4590
4591  // Skip pid and the command string. Note that we could be dealing with
4592  // weird command names, e.g. user could decide to rename java launcher
4593  // to "java 1.4.2 :)", then the stat file would look like
4594  //                1234 (java 1.4.2 :)) R ... ...
4595  // We don't really need to know the command string, just find the last
4596  // occurrence of ")" and then start parsing from there. See bug 4726580.
4597  s = strrchr(stat, ')');
4598  i = 0;
4599  if (s == NULL ) return -1;
4600
4601  // Skip blank chars
4602  do s++; while (isspace(*s));
4603
4604  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4605                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4606                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4607                 &user_time, &sys_time);
4608  if ( count != 13 ) return -1;
4609  if (user_sys_cpu_time) {
4610    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4611  } else {
4612    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4613  }
4614}
4615
4616void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4617  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4618  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4619  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4620  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4621}
4622
4623void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4624  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4625  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4626  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4627  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4628}
4629
4630bool os::is_thread_cpu_time_supported() {
4631  return true;
4632}
4633
4634// System loadavg support.  Returns -1 if load average cannot be obtained.
4635// Linux doesn't yet have a (official) notion of processor sets,
4636// so just return the system wide load average.
4637int os::loadavg(double loadavg[], int nelem) {
4638  return ::getloadavg(loadavg, nelem);
4639}
4640
4641void os::pause() {
4642  char filename[MAX_PATH];
4643  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4644    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4645  } else {
4646    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4647  }
4648
4649  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4650  if (fd != -1) {
4651    struct stat buf;
4652    ::close(fd);
4653    while (::stat(filename, &buf) == 0) {
4654      (void)::poll(NULL, 0, 100);
4655    }
4656  } else {
4657    jio_fprintf(stderr,
4658      "Could not open pause file '%s', continuing immediately.\n", filename);
4659  }
4660}
4661
4662extern "C" {
4663
4664/**
4665 * NOTE: the following code is to keep the green threads code
4666 * in the libjava.so happy. Once the green threads is removed,
4667 * these code will no longer be needed.
4668 */
4669int
4670jdk_waitpid(pid_t pid, int* status, int options) {
4671    return waitpid(pid, status, options);
4672}
4673
4674int
4675fork1() {
4676    return fork();
4677}
4678
4679int
4680jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4681    return sem_init(sem, pshared, value);
4682}
4683
4684int
4685jdk_sem_post(sem_t *sem) {
4686    return sem_post(sem);
4687}
4688
4689int
4690jdk_sem_wait(sem_t *sem) {
4691    return sem_wait(sem);
4692}
4693
4694int
4695jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4696    return pthread_sigmask(how , newmask, oldmask);
4697}
4698
4699}
4700
4701// Refer to the comments in os_solaris.cpp park-unpark.
4702//
4703// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4704// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4705// For specifics regarding the bug see GLIBC BUGID 261237 :
4706//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4707// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4708// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4709// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4710// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4711// and monitorenter when we're using 1-0 locking.  All those operations may result in
4712// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4713// of libpthread avoids the problem, but isn't practical.
4714//
4715// Possible remedies:
4716//
4717// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4718//      This is palliative and probabilistic, however.  If the thread is preempted
4719//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4720//      than the minimum period may have passed, and the abstime may be stale (in the
4721//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4722//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4723//
4724// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4725//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4726//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4727//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4728//      thread.
4729//
4730// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4731//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4732//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4733//      This also works well.  In fact it avoids kernel-level scalability impediments
4734//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4735//      timers in a graceful fashion.
4736//
4737// 4.   When the abstime value is in the past it appears that control returns
4738//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4739//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4740//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4741//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4742//      It may be possible to avoid reinitialization by checking the return
4743//      value from pthread_cond_timedwait().  In addition to reinitializing the
4744//      condvar we must establish the invariant that cond_signal() is only called
4745//      within critical sections protected by the adjunct mutex.  This prevents
4746//      cond_signal() from "seeing" a condvar that's in the midst of being
4747//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4748//      desirable signal-after-unlock optimization that avoids futile context switching.
4749//
4750//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4751//      structure when a condvar is used or initialized.  cond_destroy()  would
4752//      release the helper structure.  Our reinitialize-after-timedwait fix
4753//      put excessive stress on malloc/free and locks protecting the c-heap.
4754//
4755// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4756// It may be possible to refine (4) by checking the kernel and NTPL verisons
4757// and only enabling the work-around for vulnerable environments.
4758
4759// utility to compute the abstime argument to timedwait:
4760// millis is the relative timeout time
4761// abstime will be the absolute timeout time
4762// TODO: replace compute_abstime() with unpackTime()
4763
4764static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4765  if (millis < 0)  millis = 0;
4766  struct timeval now;
4767  int status = gettimeofday(&now, NULL);
4768  assert(status == 0, "gettimeofday");
4769  jlong seconds = millis / 1000;
4770  millis %= 1000;
4771  if (seconds > 50000000) { // see man cond_timedwait(3T)
4772    seconds = 50000000;
4773  }
4774  abstime->tv_sec = now.tv_sec  + seconds;
4775  long       usec = now.tv_usec + millis * 1000;
4776  if (usec >= 1000000) {
4777    abstime->tv_sec += 1;
4778    usec -= 1000000;
4779  }
4780  abstime->tv_nsec = usec * 1000;
4781  return abstime;
4782}
4783
4784
4785// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4786// Conceptually TryPark() should be equivalent to park(0).
4787
4788int os::PlatformEvent::TryPark() {
4789  for (;;) {
4790    const int v = _Event ;
4791    guarantee ((v == 0) || (v == 1), "invariant") ;
4792    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4793  }
4794}
4795
4796void os::PlatformEvent::park() {       // AKA "down()"
4797  // Invariant: Only the thread associated with the Event/PlatformEvent
4798  // may call park().
4799  // TODO: assert that _Assoc != NULL or _Assoc == Self
4800  int v ;
4801  for (;;) {
4802      v = _Event ;
4803      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4804  }
4805  guarantee (v >= 0, "invariant") ;
4806  if (v == 0) {
4807     // Do this the hard way by blocking ...
4808     int status = pthread_mutex_lock(_mutex);
4809     assert_status(status == 0, status, "mutex_lock");
4810     guarantee (_nParked == 0, "invariant") ;
4811     ++ _nParked ;
4812     while (_Event < 0) {
4813        status = pthread_cond_wait(_cond, _mutex);
4814        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4815        // Treat this the same as if the wait was interrupted
4816        if (status == ETIME) { status = EINTR; }
4817        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4818     }
4819     -- _nParked ;
4820
4821    // In theory we could move the ST of 0 into _Event past the unlock(),
4822    // but then we'd need a MEMBAR after the ST.
4823    _Event = 0 ;
4824     status = pthread_mutex_unlock(_mutex);
4825     assert_status(status == 0, status, "mutex_unlock");
4826  }
4827  guarantee (_Event >= 0, "invariant") ;
4828}
4829
4830int os::PlatformEvent::park(jlong millis) {
4831  guarantee (_nParked == 0, "invariant") ;
4832
4833  int v ;
4834  for (;;) {
4835      v = _Event ;
4836      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4837  }
4838  guarantee (v >= 0, "invariant") ;
4839  if (v != 0) return OS_OK ;
4840
4841  // We do this the hard way, by blocking the thread.
4842  // Consider enforcing a minimum timeout value.
4843  struct timespec abst;
4844  compute_abstime(&abst, millis);
4845
4846  int ret = OS_TIMEOUT;
4847  int status = pthread_mutex_lock(_mutex);
4848  assert_status(status == 0, status, "mutex_lock");
4849  guarantee (_nParked == 0, "invariant") ;
4850  ++_nParked ;
4851
4852  // Object.wait(timo) will return because of
4853  // (a) notification
4854  // (b) timeout
4855  // (c) thread.interrupt
4856  //
4857  // Thread.interrupt and object.notify{All} both call Event::set.
4858  // That is, we treat thread.interrupt as a special case of notification.
4859  // The underlying Solaris implementation, cond_timedwait, admits
4860  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4861  // JVM from making those visible to Java code.  As such, we must
4862  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4863  //
4864  // TODO: properly differentiate simultaneous notify+interrupt.
4865  // In that case, we should propagate the notify to another waiter.
4866
4867  while (_Event < 0) {
4868    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4869    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4870      pthread_cond_destroy (_cond);
4871      pthread_cond_init (_cond, NULL) ;
4872    }
4873    assert_status(status == 0 || status == EINTR ||
4874                  status == ETIME || status == ETIMEDOUT,
4875                  status, "cond_timedwait");
4876    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4877    if (status == ETIME || status == ETIMEDOUT) break ;
4878    // We consume and ignore EINTR and spurious wakeups.
4879  }
4880  --_nParked ;
4881  if (_Event >= 0) {
4882     ret = OS_OK;
4883  }
4884  _Event = 0 ;
4885  status = pthread_mutex_unlock(_mutex);
4886  assert_status(status == 0, status, "mutex_unlock");
4887  assert (_nParked == 0, "invariant") ;
4888  return ret;
4889}
4890
4891void os::PlatformEvent::unpark() {
4892  int v, AnyWaiters ;
4893  for (;;) {
4894      v = _Event ;
4895      if (v > 0) {
4896         // The LD of _Event could have reordered or be satisfied
4897         // by a read-aside from this processor's write buffer.
4898         // To avoid problems execute a barrier and then
4899         // ratify the value.
4900         OrderAccess::fence() ;
4901         if (_Event == v) return ;
4902         continue ;
4903      }
4904      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4905  }
4906  if (v < 0) {
4907     // Wait for the thread associated with the event to vacate
4908     int status = pthread_mutex_lock(_mutex);
4909     assert_status(status == 0, status, "mutex_lock");
4910     AnyWaiters = _nParked ;
4911     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4912     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4913        AnyWaiters = 0 ;
4914        pthread_cond_signal (_cond);
4915     }
4916     status = pthread_mutex_unlock(_mutex);
4917     assert_status(status == 0, status, "mutex_unlock");
4918     if (AnyWaiters != 0) {
4919        status = pthread_cond_signal(_cond);
4920        assert_status(status == 0, status, "cond_signal");
4921     }
4922  }
4923
4924  // Note that we signal() _after dropping the lock for "immortal" Events.
4925  // This is safe and avoids a common class of  futile wakeups.  In rare
4926  // circumstances this can cause a thread to return prematurely from
4927  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4928  // simply re-test the condition and re-park itself.
4929}
4930
4931
4932// JSR166
4933// -------------------------------------------------------
4934
4935/*
4936 * The solaris and linux implementations of park/unpark are fairly
4937 * conservative for now, but can be improved. They currently use a
4938 * mutex/condvar pair, plus a a count.
4939 * Park decrements count if > 0, else does a condvar wait.  Unpark
4940 * sets count to 1 and signals condvar.  Only one thread ever waits
4941 * on the condvar. Contention seen when trying to park implies that someone
4942 * is unparking you, so don't wait. And spurious returns are fine, so there
4943 * is no need to track notifications.
4944 */
4945
4946
4947#define NANOSECS_PER_SEC 1000000000
4948#define NANOSECS_PER_MILLISEC 1000000
4949#define MAX_SECS 100000000
4950/*
4951 * This code is common to linux and solaris and will be moved to a
4952 * common place in dolphin.
4953 *
4954 * The passed in time value is either a relative time in nanoseconds
4955 * or an absolute time in milliseconds. Either way it has to be unpacked
4956 * into suitable seconds and nanoseconds components and stored in the
4957 * given timespec structure.
4958 * Given time is a 64-bit value and the time_t used in the timespec is only
4959 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4960 * overflow if times way in the future are given. Further on Solaris versions
4961 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4962 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4963 * As it will be 28 years before "now + 100000000" will overflow we can
4964 * ignore overflow and just impose a hard-limit on seconds using the value
4965 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4966 * years from "now".
4967 */
4968
4969static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4970  assert (time > 0, "convertTime");
4971
4972  struct timeval now;
4973  int status = gettimeofday(&now, NULL);
4974  assert(status == 0, "gettimeofday");
4975
4976  time_t max_secs = now.tv_sec + MAX_SECS;
4977
4978  if (isAbsolute) {
4979    jlong secs = time / 1000;
4980    if (secs > max_secs) {
4981      absTime->tv_sec = max_secs;
4982    }
4983    else {
4984      absTime->tv_sec = secs;
4985    }
4986    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4987  }
4988  else {
4989    jlong secs = time / NANOSECS_PER_SEC;
4990    if (secs >= MAX_SECS) {
4991      absTime->tv_sec = max_secs;
4992      absTime->tv_nsec = 0;
4993    }
4994    else {
4995      absTime->tv_sec = now.tv_sec + secs;
4996      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4997      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4998        absTime->tv_nsec -= NANOSECS_PER_SEC;
4999        ++absTime->tv_sec; // note: this must be <= max_secs
5000      }
5001    }
5002  }
5003  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5004  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5005  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5006  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5007}
5008
5009void Parker::park(bool isAbsolute, jlong time) {
5010  // Optional fast-path check:
5011  // Return immediately if a permit is available.
5012  if (_counter > 0) {
5013      _counter = 0 ;
5014      OrderAccess::fence();
5015      return ;
5016  }
5017
5018  Thread* thread = Thread::current();
5019  assert(thread->is_Java_thread(), "Must be JavaThread");
5020  JavaThread *jt = (JavaThread *)thread;
5021
5022  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5023  // Check interrupt before trying to wait
5024  if (Thread::is_interrupted(thread, false)) {
5025    return;
5026  }
5027
5028  // Next, demultiplex/decode time arguments
5029  timespec absTime;
5030  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5031    return;
5032  }
5033  if (time > 0) {
5034    unpackTime(&absTime, isAbsolute, time);
5035  }
5036
5037
5038  // Enter safepoint region
5039  // Beware of deadlocks such as 6317397.
5040  // The per-thread Parker:: mutex is a classic leaf-lock.
5041  // In particular a thread must never block on the Threads_lock while
5042  // holding the Parker:: mutex.  If safepoints are pending both the
5043  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5044  ThreadBlockInVM tbivm(jt);
5045
5046  // Don't wait if cannot get lock since interference arises from
5047  // unblocking.  Also. check interrupt before trying wait
5048  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5049    return;
5050  }
5051
5052  int status ;
5053  if (_counter > 0)  { // no wait needed
5054    _counter = 0;
5055    status = pthread_mutex_unlock(_mutex);
5056    assert (status == 0, "invariant") ;
5057    OrderAccess::fence();
5058    return;
5059  }
5060
5061#ifdef ASSERT
5062  // Don't catch signals while blocked; let the running threads have the signals.
5063  // (This allows a debugger to break into the running thread.)
5064  sigset_t oldsigs;
5065  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5066  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5067#endif
5068
5069  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5070  jt->set_suspend_equivalent();
5071  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5072
5073  if (time == 0) {
5074    status = pthread_cond_wait (_cond, _mutex) ;
5075  } else {
5076    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5077    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5078      pthread_cond_destroy (_cond) ;
5079      pthread_cond_init    (_cond, NULL);
5080    }
5081  }
5082  assert_status(status == 0 || status == EINTR ||
5083                status == ETIME || status == ETIMEDOUT,
5084                status, "cond_timedwait");
5085
5086#ifdef ASSERT
5087  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5088#endif
5089
5090  _counter = 0 ;
5091  status = pthread_mutex_unlock(_mutex) ;
5092  assert_status(status == 0, status, "invariant") ;
5093  // If externally suspended while waiting, re-suspend
5094  if (jt->handle_special_suspend_equivalent_condition()) {
5095    jt->java_suspend_self();
5096  }
5097
5098  OrderAccess::fence();
5099}
5100
5101void Parker::unpark() {
5102  int s, status ;
5103  status = pthread_mutex_lock(_mutex);
5104  assert (status == 0, "invariant") ;
5105  s = _counter;
5106  _counter = 1;
5107  if (s < 1) {
5108     if (WorkAroundNPTLTimedWaitHang) {
5109        status = pthread_cond_signal (_cond) ;
5110        assert (status == 0, "invariant") ;
5111        status = pthread_mutex_unlock(_mutex);
5112        assert (status == 0, "invariant") ;
5113     } else {
5114        status = pthread_mutex_unlock(_mutex);
5115        assert (status == 0, "invariant") ;
5116        status = pthread_cond_signal (_cond) ;
5117        assert (status == 0, "invariant") ;
5118     }
5119  } else {
5120    pthread_mutex_unlock(_mutex);
5121    assert (status == 0, "invariant") ;
5122  }
5123}
5124
5125
5126extern char** environ;
5127
5128#ifndef __NR_fork
5129#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5130#endif
5131
5132#ifndef __NR_execve
5133#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5134#endif
5135
5136// Run the specified command in a separate process. Return its exit value,
5137// or -1 on failure (e.g. can't fork a new process).
5138// Unlike system(), this function can be called from signal handler. It
5139// doesn't block SIGINT et al.
5140int os::fork_and_exec(char* cmd) {
5141  const char * argv[4] = {"sh", "-c", cmd, NULL};
5142
5143  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5144  // pthread_atfork handlers and reset pthread library. All we need is a
5145  // separate process to execve. Make a direct syscall to fork process.
5146  // On IA64 there's no fork syscall, we have to use fork() and hope for
5147  // the best...
5148  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5149              IA64_ONLY(fork();)
5150
5151  if (pid < 0) {
5152    // fork failed
5153    return -1;
5154
5155  } else if (pid == 0) {
5156    // child process
5157
5158    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5159    // first to kill every thread on the thread list. Because this list is
5160    // not reset by fork() (see notes above), execve() will instead kill
5161    // every thread in the parent process. We know this is the only thread
5162    // in the new process, so make a system call directly.
5163    // IA64 should use normal execve() from glibc to match the glibc fork()
5164    // above.
5165    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5166    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5167
5168    // execve failed
5169    _exit(-1);
5170
5171  } else  {
5172    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5173    // care about the actual exit code, for now.
5174
5175    int status;
5176
5177    // Wait for the child process to exit.  This returns immediately if
5178    // the child has already exited. */
5179    while (waitpid(pid, &status, 0) < 0) {
5180        switch (errno) {
5181        case ECHILD: return 0;
5182        case EINTR: break;
5183        default: return -1;
5184        }
5185    }
5186
5187    if (WIFEXITED(status)) {
5188       // The child exited normally; get its exit code.
5189       return WEXITSTATUS(status);
5190    } else if (WIFSIGNALED(status)) {
5191       // The child exited because of a signal
5192       // The best value to return is 0x80 + signal number,
5193       // because that is what all Unix shells do, and because
5194       // it allows callers to distinguish between process exit and
5195       // process death by signal.
5196       return 0x80 + WTERMSIG(status);
5197    } else {
5198       // Unknown exit code; pass it through
5199       return status;
5200    }
5201  }
5202}
5203
5204// is_headless_jre()
5205//
5206// Test for the existence of libmawt in motif21 or xawt directories
5207// in order to report if we are running in a headless jre
5208//
5209bool os::is_headless_jre() {
5210    struct stat statbuf;
5211    char buf[MAXPATHLEN];
5212    char libmawtpath[MAXPATHLEN];
5213    const char *xawtstr  = "/xawt/libmawt.so";
5214    const char *motifstr = "/motif21/libmawt.so";
5215    char *p;
5216
5217    // Get path to libjvm.so
5218    os::jvm_path(buf, sizeof(buf));
5219
5220    // Get rid of libjvm.so
5221    p = strrchr(buf, '/');
5222    if (p == NULL) return false;
5223    else *p = '\0';
5224
5225    // Get rid of client or server
5226    p = strrchr(buf, '/');
5227    if (p == NULL) return false;
5228    else *p = '\0';
5229
5230    // check xawt/libmawt.so
5231    strcpy(libmawtpath, buf);
5232    strcat(libmawtpath, xawtstr);
5233    if (::stat(libmawtpath, &statbuf) == 0) return false;
5234
5235    // check motif21/libmawt.so
5236    strcpy(libmawtpath, buf);
5237    strcat(libmawtpath, motifstr);
5238    if (::stat(libmawtpath, &statbuf) == 0) return false;
5239
5240    return true;
5241}
5242
5243