os_linux.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# define __STDC_FORMAT_MACROS
26
27// no precompiled headers
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "compiler/compileBroker.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_linux.h"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/extendedPC.hpp"
46#include "runtime/globals.hpp"
47#include "runtime/hpi.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/osThread.hpp"
54#include "runtime/perfMemory.hpp"
55#include "runtime/sharedRuntime.hpp"
56#include "runtime/statSampler.hpp"
57#include "runtime/stubRoutines.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/runtimeService.hpp"
62#include "thread_linux.inline.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67#ifdef TARGET_ARCH_x86
68# include "assembler_x86.inline.hpp"
69# include "nativeInst_x86.hpp"
70#endif
71#ifdef TARGET_ARCH_sparc
72# include "assembler_sparc.inline.hpp"
73# include "nativeInst_sparc.hpp"
74#endif
75#ifdef TARGET_ARCH_zero
76# include "assembler_zero.inline.hpp"
77# include "nativeInst_zero.hpp"
78#endif
79#ifdef COMPILER1
80#include "c1/c1_Runtime1.hpp"
81#endif
82#ifdef COMPILER2
83#include "opto/runtime.hpp"
84#endif
85
86// put OS-includes here
87# include <sys/types.h>
88# include <sys/mman.h>
89# include <sys/stat.h>
90# include <sys/select.h>
91# include <pthread.h>
92# include <signal.h>
93# include <errno.h>
94# include <dlfcn.h>
95# include <stdio.h>
96# include <unistd.h>
97# include <sys/resource.h>
98# include <pthread.h>
99# include <sys/stat.h>
100# include <sys/time.h>
101# include <sys/times.h>
102# include <sys/utsname.h>
103# include <sys/socket.h>
104# include <sys/wait.h>
105# include <pwd.h>
106# include <poll.h>
107# include <semaphore.h>
108# include <fcntl.h>
109# include <string.h>
110# include <syscall.h>
111# include <sys/sysinfo.h>
112# include <gnu/libc-version.h>
113# include <sys/ipc.h>
114# include <sys/shm.h>
115# include <link.h>
116# include <stdint.h>
117# include <inttypes.h>
118
119#define MAX_PATH    (2 * K)
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123#define SEC_IN_NANOSECS  1000000000LL
124
125////////////////////////////////////////////////////////////////////////////////
126// global variables
127julong os::Linux::_physical_memory = 0;
128
129address   os::Linux::_initial_thread_stack_bottom = NULL;
130uintptr_t os::Linux::_initial_thread_stack_size   = 0;
131
132int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
133int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
134Mutex* os::Linux::_createThread_lock = NULL;
135pthread_t os::Linux::_main_thread;
136int os::Linux::_page_size = -1;
137bool os::Linux::_is_floating_stack = false;
138bool os::Linux::_is_NPTL = false;
139bool os::Linux::_supports_fast_thread_cpu_time = false;
140const char * os::Linux::_glibc_version = NULL;
141const char * os::Linux::_libpthread_version = NULL;
142
143static jlong initial_time_count=0;
144
145static int clock_tics_per_sec = 100;
146
147// For diagnostics to print a message once. see run_periodic_checks
148static sigset_t check_signal_done;
149static bool check_signals = true;;
150
151static pid_t _initial_pid = 0;
152
153/* Signal number used to suspend/resume a thread */
154
155/* do not use any signal number less than SIGSEGV, see 4355769 */
156static int SR_signum = SIGUSR2;
157sigset_t SR_sigset;
158
159/* Used to protect dlsym() calls */
160static pthread_mutex_t dl_mutex;
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static int SR_finalize();
167
168julong os::available_memory() {
169  return Linux::available_memory();
170}
171
172julong os::Linux::available_memory() {
173  // values in struct sysinfo are "unsigned long"
174  struct sysinfo si;
175  sysinfo(&si);
176
177  return (julong)si.freeram * si.mem_unit;
178}
179
180julong os::physical_memory() {
181  return Linux::physical_memory();
182}
183
184julong os::allocatable_physical_memory(julong size) {
185#ifdef _LP64
186  return size;
187#else
188  julong result = MIN2(size, (julong)3800*M);
189   if (!is_allocatable(result)) {
190     // See comments under solaris for alignment considerations
191     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
192     result =  MIN2(size, reasonable_size);
193   }
194   return result;
195#endif // _LP64
196}
197
198////////////////////////////////////////////////////////////////////////////////
199// environment support
200
201bool os::getenv(const char* name, char* buf, int len) {
202  const char* val = ::getenv(name);
203  if (val != NULL && strlen(val) < (size_t)len) {
204    strcpy(buf, val);
205    return true;
206  }
207  if (len > 0) buf[0] = 0;  // return a null string
208  return false;
209}
210
211
212// Return true if user is running as root.
213
214bool os::have_special_privileges() {
215  static bool init = false;
216  static bool privileges = false;
217  if (!init) {
218    privileges = (getuid() != geteuid()) || (getgid() != getegid());
219    init = true;
220  }
221  return privileges;
222}
223
224
225#ifndef SYS_gettid
226// i386: 224, ia64: 1105, amd64: 186, sparc 143
227#ifdef __ia64__
228#define SYS_gettid 1105
229#elif __i386__
230#define SYS_gettid 224
231#elif __amd64__
232#define SYS_gettid 186
233#elif __sparc__
234#define SYS_gettid 143
235#else
236#error define gettid for the arch
237#endif
238#endif
239
240// Cpu architecture string
241#if   defined(ZERO)
242static char cpu_arch[] = ZERO_LIBARCH;
243#elif defined(IA64)
244static char cpu_arch[] = "ia64";
245#elif defined(IA32)
246static char cpu_arch[] = "i386";
247#elif defined(AMD64)
248static char cpu_arch[] = "amd64";
249#elif defined(ARM)
250static char cpu_arch[] = "arm";
251#elif defined(PPC)
252static char cpu_arch[] = "ppc";
253#elif defined(SPARC)
254#  ifdef _LP64
255static char cpu_arch[] = "sparcv9";
256#  else
257static char cpu_arch[] = "sparc";
258#  endif
259#else
260#error Add appropriate cpu_arch setting
261#endif
262
263
264// pid_t gettid()
265//
266// Returns the kernel thread id of the currently running thread. Kernel
267// thread id is used to access /proc.
268//
269// (Note that getpid() on LinuxThreads returns kernel thread id too; but
270// on NPTL, it returns the same pid for all threads, as required by POSIX.)
271//
272pid_t os::Linux::gettid() {
273  int rslt = syscall(SYS_gettid);
274  if (rslt == -1) {
275     // old kernel, no NPTL support
276     return getpid();
277  } else {
278     return (pid_t)rslt;
279  }
280}
281
282// Most versions of linux have a bug where the number of processors are
283// determined by looking at the /proc file system.  In a chroot environment,
284// the system call returns 1.  This causes the VM to act as if it is
285// a single processor and elide locking (see is_MP() call).
286static bool unsafe_chroot_detected = false;
287static const char *unstable_chroot_error = "/proc file system not found.\n"
288                     "Java may be unstable running multithreaded in a chroot "
289                     "environment on Linux when /proc filesystem is not mounted.";
290
291void os::Linux::initialize_system_info() {
292  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
293  if (processor_count() == 1) {
294    pid_t pid = os::Linux::gettid();
295    char fname[32];
296    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
297    FILE *fp = fopen(fname, "r");
298    if (fp == NULL) {
299      unsafe_chroot_detected = true;
300    } else {
301      fclose(fp);
302    }
303  }
304  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
305  assert(processor_count() > 0, "linux error");
306}
307
308void os::init_system_properties_values() {
309//  char arch[12];
310//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
311
312  // The next steps are taken in the product version:
313  //
314  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
315  // This library should be located at:
316  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
317  //
318  // If "/jre/lib/" appears at the right place in the path, then we
319  // assume libjvm[_g].so is installed in a JDK and we use this path.
320  //
321  // Otherwise exit with message: "Could not create the Java virtual machine."
322  //
323  // The following extra steps are taken in the debugging version:
324  //
325  // If "/jre/lib/" does NOT appear at the right place in the path
326  // instead of exit check for $JAVA_HOME environment variable.
327  //
328  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
329  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
330  // it looks like libjvm[_g].so is installed there
331  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
332  //
333  // Otherwise exit.
334  //
335  // Important note: if the location of libjvm.so changes this
336  // code needs to be changed accordingly.
337
338  // The next few definitions allow the code to be verbatim:
339#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
340#define getenv(n) ::getenv(n)
341
342/*
343 * See ld(1):
344 *      The linker uses the following search paths to locate required
345 *      shared libraries:
346 *        1: ...
347 *        ...
348 *        7: The default directories, normally /lib and /usr/lib.
349 */
350#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
351#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
352#else
353#define DEFAULT_LIBPATH "/lib:/usr/lib"
354#endif
355
356#define EXTENSIONS_DIR  "/lib/ext"
357#define ENDORSED_DIR    "/lib/endorsed"
358#define REG_DIR         "/usr/java/packages"
359
360  {
361    /* sysclasspath, java_home, dll_dir */
362    {
363        char *home_path;
364        char *dll_path;
365        char *pslash;
366        char buf[MAXPATHLEN];
367        os::jvm_path(buf, sizeof(buf));
368
369        // Found the full path to libjvm.so.
370        // Now cut the path to <java_home>/jre if we can.
371        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
372        pslash = strrchr(buf, '/');
373        if (pslash != NULL)
374            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
375        dll_path = malloc(strlen(buf) + 1);
376        if (dll_path == NULL)
377            return;
378        strcpy(dll_path, buf);
379        Arguments::set_dll_dir(dll_path);
380
381        if (pslash != NULL) {
382            pslash = strrchr(buf, '/');
383            if (pslash != NULL) {
384                *pslash = '\0';       /* get rid of /<arch> */
385                pslash = strrchr(buf, '/');
386                if (pslash != NULL)
387                    *pslash = '\0';   /* get rid of /lib */
388            }
389        }
390
391        home_path = malloc(strlen(buf) + 1);
392        if (home_path == NULL)
393            return;
394        strcpy(home_path, buf);
395        Arguments::set_java_home(home_path);
396
397        if (!set_boot_path('/', ':'))
398            return;
399    }
400
401    /*
402     * Where to look for native libraries
403     *
404     * Note: Due to a legacy implementation, most of the library path
405     * is set in the launcher.  This was to accomodate linking restrictions
406     * on legacy Linux implementations (which are no longer supported).
407     * Eventually, all the library path setting will be done here.
408     *
409     * However, to prevent the proliferation of improperly built native
410     * libraries, the new path component /usr/java/packages is added here.
411     * Eventually, all the library path setting will be done here.
412     */
413    {
414        char *ld_library_path;
415
416        /*
417         * Construct the invariant part of ld_library_path. Note that the
418         * space for the colon and the trailing null are provided by the
419         * nulls included by the sizeof operator (so actually we allocate
420         * a byte more than necessary).
421         */
422        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
423            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
424        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
425
426        /*
427         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
428         * should always exist (until the legacy problem cited above is
429         * addressed).
430         */
431        char *v = getenv("LD_LIBRARY_PATH");
432        if (v != NULL) {
433            char *t = ld_library_path;
434            /* That's +1 for the colon and +1 for the trailing '\0' */
435            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
436            sprintf(ld_library_path, "%s:%s", v, t);
437        }
438        Arguments::set_library_path(ld_library_path);
439    }
440
441    /*
442     * Extensions directories.
443     *
444     * Note that the space for the colon and the trailing null are provided
445     * by the nulls included by the sizeof operator (so actually one byte more
446     * than necessary is allocated).
447     */
448    {
449        char *buf = malloc(strlen(Arguments::get_java_home()) +
450            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
451        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
452            Arguments::get_java_home());
453        Arguments::set_ext_dirs(buf);
454    }
455
456    /* Endorsed standards default directory. */
457    {
458        char * buf;
459        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
460        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
461        Arguments::set_endorsed_dirs(buf);
462    }
463  }
464
465#undef malloc
466#undef getenv
467#undef EXTENSIONS_DIR
468#undef ENDORSED_DIR
469
470  // Done
471  return;
472}
473
474////////////////////////////////////////////////////////////////////////////////
475// breakpoint support
476
477void os::breakpoint() {
478  BREAKPOINT;
479}
480
481extern "C" void breakpoint() {
482  // use debugger to set breakpoint here
483}
484
485////////////////////////////////////////////////////////////////////////////////
486// signal support
487
488debug_only(static bool signal_sets_initialized = false);
489static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
490
491bool os::Linux::is_sig_ignored(int sig) {
492      struct sigaction oact;
493      sigaction(sig, (struct sigaction*)NULL, &oact);
494      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
495                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
496      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
497           return true;
498      else
499           return false;
500}
501
502void os::Linux::signal_sets_init() {
503  // Should also have an assertion stating we are still single-threaded.
504  assert(!signal_sets_initialized, "Already initialized");
505  // Fill in signals that are necessarily unblocked for all threads in
506  // the VM. Currently, we unblock the following signals:
507  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
508  //                         by -Xrs (=ReduceSignalUsage));
509  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
510  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
511  // the dispositions or masks wrt these signals.
512  // Programs embedding the VM that want to use the above signals for their
513  // own purposes must, at this time, use the "-Xrs" option to prevent
514  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
515  // (See bug 4345157, and other related bugs).
516  // In reality, though, unblocking these signals is really a nop, since
517  // these signals are not blocked by default.
518  sigemptyset(&unblocked_sigs);
519  sigemptyset(&allowdebug_blocked_sigs);
520  sigaddset(&unblocked_sigs, SIGILL);
521  sigaddset(&unblocked_sigs, SIGSEGV);
522  sigaddset(&unblocked_sigs, SIGBUS);
523  sigaddset(&unblocked_sigs, SIGFPE);
524  sigaddset(&unblocked_sigs, SR_signum);
525
526  if (!ReduceSignalUsage) {
527   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
528      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
529      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
530   }
531   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
532      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
533      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
534   }
535   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
536      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
537      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
538   }
539  }
540  // Fill in signals that are blocked by all but the VM thread.
541  sigemptyset(&vm_sigs);
542  if (!ReduceSignalUsage)
543    sigaddset(&vm_sigs, BREAK_SIGNAL);
544  debug_only(signal_sets_initialized = true);
545
546}
547
548// These are signals that are unblocked while a thread is running Java.
549// (For some reason, they get blocked by default.)
550sigset_t* os::Linux::unblocked_signals() {
551  assert(signal_sets_initialized, "Not initialized");
552  return &unblocked_sigs;
553}
554
555// These are the signals that are blocked while a (non-VM) thread is
556// running Java. Only the VM thread handles these signals.
557sigset_t* os::Linux::vm_signals() {
558  assert(signal_sets_initialized, "Not initialized");
559  return &vm_sigs;
560}
561
562// These are signals that are blocked during cond_wait to allow debugger in
563sigset_t* os::Linux::allowdebug_blocked_signals() {
564  assert(signal_sets_initialized, "Not initialized");
565  return &allowdebug_blocked_sigs;
566}
567
568void os::Linux::hotspot_sigmask(Thread* thread) {
569
570  //Save caller's signal mask before setting VM signal mask
571  sigset_t caller_sigmask;
572  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
573
574  OSThread* osthread = thread->osthread();
575  osthread->set_caller_sigmask(caller_sigmask);
576
577  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
578
579  if (!ReduceSignalUsage) {
580    if (thread->is_VM_thread()) {
581      // Only the VM thread handles BREAK_SIGNAL ...
582      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
583    } else {
584      // ... all other threads block BREAK_SIGNAL
585      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
586    }
587  }
588}
589
590//////////////////////////////////////////////////////////////////////////////
591// detecting pthread library
592
593void os::Linux::libpthread_init() {
594  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
595  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
596  // generic name for earlier versions.
597  // Define macros here so we can build HotSpot on old systems.
598# ifndef _CS_GNU_LIBC_VERSION
599# define _CS_GNU_LIBC_VERSION 2
600# endif
601# ifndef _CS_GNU_LIBPTHREAD_VERSION
602# define _CS_GNU_LIBPTHREAD_VERSION 3
603# endif
604
605  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
606  if (n > 0) {
607     char *str = (char *)malloc(n);
608     confstr(_CS_GNU_LIBC_VERSION, str, n);
609     os::Linux::set_glibc_version(str);
610  } else {
611     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
612     static char _gnu_libc_version[32];
613     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
614              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
615     os::Linux::set_glibc_version(_gnu_libc_version);
616  }
617
618  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
619  if (n > 0) {
620     char *str = (char *)malloc(n);
621     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
622     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
623     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
624     // is the case. LinuxThreads has a hard limit on max number of threads.
625     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
626     // On the other hand, NPTL does not have such a limit, sysconf()
627     // will return -1 and errno is not changed. Check if it is really NPTL.
628     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
629         strstr(str, "NPTL") &&
630         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
631       free(str);
632       os::Linux::set_libpthread_version("linuxthreads");
633     } else {
634       os::Linux::set_libpthread_version(str);
635     }
636  } else {
637    // glibc before 2.3.2 only has LinuxThreads.
638    os::Linux::set_libpthread_version("linuxthreads");
639  }
640
641  if (strstr(libpthread_version(), "NPTL")) {
642     os::Linux::set_is_NPTL();
643  } else {
644     os::Linux::set_is_LinuxThreads();
645  }
646
647  // LinuxThreads have two flavors: floating-stack mode, which allows variable
648  // stack size; and fixed-stack mode. NPTL is always floating-stack.
649  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
650     os::Linux::set_is_floating_stack();
651  }
652}
653
654/////////////////////////////////////////////////////////////////////////////
655// thread stack
656
657// Force Linux kernel to expand current thread stack. If "bottom" is close
658// to the stack guard, caller should block all signals.
659//
660// MAP_GROWSDOWN:
661//   A special mmap() flag that is used to implement thread stacks. It tells
662//   kernel that the memory region should extend downwards when needed. This
663//   allows early versions of LinuxThreads to only mmap the first few pages
664//   when creating a new thread. Linux kernel will automatically expand thread
665//   stack as needed (on page faults).
666//
667//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
668//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
669//   region, it's hard to tell if the fault is due to a legitimate stack
670//   access or because of reading/writing non-exist memory (e.g. buffer
671//   overrun). As a rule, if the fault happens below current stack pointer,
672//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
673//   application (see Linux kernel fault.c).
674//
675//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
676//   stack overflow detection.
677//
678//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
679//   not use this flag. However, the stack of initial thread is not created
680//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
681//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
682//   and then attach the thread to JVM.
683//
684// To get around the problem and allow stack banging on Linux, we need to
685// manually expand thread stack after receiving the SIGSEGV.
686//
687// There are two ways to expand thread stack to address "bottom", we used
688// both of them in JVM before 1.5:
689//   1. adjust stack pointer first so that it is below "bottom", and then
690//      touch "bottom"
691//   2. mmap() the page in question
692//
693// Now alternate signal stack is gone, it's harder to use 2. For instance,
694// if current sp is already near the lower end of page 101, and we need to
695// call mmap() to map page 100, it is possible that part of the mmap() frame
696// will be placed in page 100. When page 100 is mapped, it is zero-filled.
697// That will destroy the mmap() frame and cause VM to crash.
698//
699// The following code works by adjusting sp first, then accessing the "bottom"
700// page to force a page fault. Linux kernel will then automatically expand the
701// stack mapping.
702//
703// _expand_stack_to() assumes its frame size is less than page size, which
704// should always be true if the function is not inlined.
705
706#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
707#define NOINLINE
708#else
709#define NOINLINE __attribute__ ((noinline))
710#endif
711
712static void _expand_stack_to(address bottom) NOINLINE;
713
714static void _expand_stack_to(address bottom) {
715  address sp;
716  size_t size;
717  volatile char *p;
718
719  // Adjust bottom to point to the largest address within the same page, it
720  // gives us a one-page buffer if alloca() allocates slightly more memory.
721  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
722  bottom += os::Linux::page_size() - 1;
723
724  // sp might be slightly above current stack pointer; if that's the case, we
725  // will alloca() a little more space than necessary, which is OK. Don't use
726  // os::current_stack_pointer(), as its result can be slightly below current
727  // stack pointer, causing us to not alloca enough to reach "bottom".
728  sp = (address)&sp;
729
730  if (sp > bottom) {
731    size = sp - bottom;
732    p = (volatile char *)alloca(size);
733    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
734    p[0] = '\0';
735  }
736}
737
738bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
739  assert(t!=NULL, "just checking");
740  assert(t->osthread()->expanding_stack(), "expand should be set");
741  assert(t->stack_base() != NULL, "stack_base was not initialized");
742
743  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
744    sigset_t mask_all, old_sigset;
745    sigfillset(&mask_all);
746    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
747    _expand_stack_to(addr);
748    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
749    return true;
750  }
751  return false;
752}
753
754//////////////////////////////////////////////////////////////////////////////
755// create new thread
756
757static address highest_vm_reserved_address();
758
759// check if it's safe to start a new thread
760static bool _thread_safety_check(Thread* thread) {
761  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
762    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
763    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
764    //   allocated (MAP_FIXED) from high address space. Every thread stack
765    //   occupies a fixed size slot (usually 2Mbytes, but user can change
766    //   it to other values if they rebuild LinuxThreads).
767    //
768    // Problem with MAP_FIXED is that mmap() can still succeed even part of
769    // the memory region has already been mmap'ed. That means if we have too
770    // many threads and/or very large heap, eventually thread stack will
771    // collide with heap.
772    //
773    // Here we try to prevent heap/stack collision by comparing current
774    // stack bottom with the highest address that has been mmap'ed by JVM
775    // plus a safety margin for memory maps created by native code.
776    //
777    // This feature can be disabled by setting ThreadSafetyMargin to 0
778    //
779    if (ThreadSafetyMargin > 0) {
780      address stack_bottom = os::current_stack_base() - os::current_stack_size();
781
782      // not safe if our stack extends below the safety margin
783      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
784    } else {
785      return true;
786    }
787  } else {
788    // Floating stack LinuxThreads or NPTL:
789    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
790    //   there's not enough space left, pthread_create() will fail. If we come
791    //   here, that means enough space has been reserved for stack.
792    return true;
793  }
794}
795
796// Thread start routine for all newly created threads
797static void *java_start(Thread *thread) {
798  // Try to randomize the cache line index of hot stack frames.
799  // This helps when threads of the same stack traces evict each other's
800  // cache lines. The threads can be either from the same JVM instance, or
801  // from different JVM instances. The benefit is especially true for
802  // processors with hyperthreading technology.
803  static int counter = 0;
804  int pid = os::current_process_id();
805  alloca(((pid ^ counter++) & 7) * 128);
806
807  ThreadLocalStorage::set_thread(thread);
808
809  OSThread* osthread = thread->osthread();
810  Monitor* sync = osthread->startThread_lock();
811
812  // non floating stack LinuxThreads needs extra check, see above
813  if (!_thread_safety_check(thread)) {
814    // notify parent thread
815    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
816    osthread->set_state(ZOMBIE);
817    sync->notify_all();
818    return NULL;
819  }
820
821  // thread_id is kernel thread id (similar to Solaris LWP id)
822  osthread->set_thread_id(os::Linux::gettid());
823
824  if (UseNUMA) {
825    int lgrp_id = os::numa_get_group_id();
826    if (lgrp_id != -1) {
827      thread->set_lgrp_id(lgrp_id);
828    }
829  }
830  // initialize signal mask for this thread
831  os::Linux::hotspot_sigmask(thread);
832
833  // initialize floating point control register
834  os::Linux::init_thread_fpu_state();
835
836  // handshaking with parent thread
837  {
838    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
839
840    // notify parent thread
841    osthread->set_state(INITIALIZED);
842    sync->notify_all();
843
844    // wait until os::start_thread()
845    while (osthread->get_state() == INITIALIZED) {
846      sync->wait(Mutex::_no_safepoint_check_flag);
847    }
848  }
849
850  // call one more level start routine
851  thread->run();
852
853  return 0;
854}
855
856bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
857  assert(thread->osthread() == NULL, "caller responsible");
858
859  // Allocate the OSThread object
860  OSThread* osthread = new OSThread(NULL, NULL);
861  if (osthread == NULL) {
862    return false;
863  }
864
865  // set the correct thread state
866  osthread->set_thread_type(thr_type);
867
868  // Initial state is ALLOCATED but not INITIALIZED
869  osthread->set_state(ALLOCATED);
870
871  thread->set_osthread(osthread);
872
873  // init thread attributes
874  pthread_attr_t attr;
875  pthread_attr_init(&attr);
876  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
877
878  // stack size
879  if (os::Linux::supports_variable_stack_size()) {
880    // calculate stack size if it's not specified by caller
881    if (stack_size == 0) {
882      stack_size = os::Linux::default_stack_size(thr_type);
883
884      switch (thr_type) {
885      case os::java_thread:
886        // Java threads use ThreadStackSize which default value can be
887        // changed with the flag -Xss
888        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
889        stack_size = JavaThread::stack_size_at_create();
890        break;
891      case os::compiler_thread:
892        if (CompilerThreadStackSize > 0) {
893          stack_size = (size_t)(CompilerThreadStackSize * K);
894          break;
895        } // else fall through:
896          // use VMThreadStackSize if CompilerThreadStackSize is not defined
897      case os::vm_thread:
898      case os::pgc_thread:
899      case os::cgc_thread:
900      case os::watcher_thread:
901        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
902        break;
903      }
904    }
905
906    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
907    pthread_attr_setstacksize(&attr, stack_size);
908  } else {
909    // let pthread_create() pick the default value.
910  }
911
912  // glibc guard page
913  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
914
915  ThreadState state;
916
917  {
918    // Serialize thread creation if we are running with fixed stack LinuxThreads
919    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
920    if (lock) {
921      os::Linux::createThread_lock()->lock_without_safepoint_check();
922    }
923
924    pthread_t tid;
925    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
926
927    pthread_attr_destroy(&attr);
928
929    if (ret != 0) {
930      if (PrintMiscellaneous && (Verbose || WizardMode)) {
931        perror("pthread_create()");
932      }
933      // Need to clean up stuff we've allocated so far
934      thread->set_osthread(NULL);
935      delete osthread;
936      if (lock) os::Linux::createThread_lock()->unlock();
937      return false;
938    }
939
940    // Store pthread info into the OSThread
941    osthread->set_pthread_id(tid);
942
943    // Wait until child thread is either initialized or aborted
944    {
945      Monitor* sync_with_child = osthread->startThread_lock();
946      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
947      while ((state = osthread->get_state()) == ALLOCATED) {
948        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
949      }
950    }
951
952    if (lock) {
953      os::Linux::createThread_lock()->unlock();
954    }
955  }
956
957  // Aborted due to thread limit being reached
958  if (state == ZOMBIE) {
959      thread->set_osthread(NULL);
960      delete osthread;
961      return false;
962  }
963
964  // The thread is returned suspended (in state INITIALIZED),
965  // and is started higher up in the call chain
966  assert(state == INITIALIZED, "race condition");
967  return true;
968}
969
970/////////////////////////////////////////////////////////////////////////////
971// attach existing thread
972
973// bootstrap the main thread
974bool os::create_main_thread(JavaThread* thread) {
975  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
976  return create_attached_thread(thread);
977}
978
979bool os::create_attached_thread(JavaThread* thread) {
980#ifdef ASSERT
981    thread->verify_not_published();
982#endif
983
984  // Allocate the OSThread object
985  OSThread* osthread = new OSThread(NULL, NULL);
986
987  if (osthread == NULL) {
988    return false;
989  }
990
991  // Store pthread info into the OSThread
992  osthread->set_thread_id(os::Linux::gettid());
993  osthread->set_pthread_id(::pthread_self());
994
995  // initialize floating point control register
996  os::Linux::init_thread_fpu_state();
997
998  // Initial thread state is RUNNABLE
999  osthread->set_state(RUNNABLE);
1000
1001  thread->set_osthread(osthread);
1002
1003  if (UseNUMA) {
1004    int lgrp_id = os::numa_get_group_id();
1005    if (lgrp_id != -1) {
1006      thread->set_lgrp_id(lgrp_id);
1007    }
1008  }
1009
1010  if (os::Linux::is_initial_thread()) {
1011    // If current thread is initial thread, its stack is mapped on demand,
1012    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1013    // the entire stack region to avoid SEGV in stack banging.
1014    // It is also useful to get around the heap-stack-gap problem on SuSE
1015    // kernel (see 4821821 for details). We first expand stack to the top
1016    // of yellow zone, then enable stack yellow zone (order is significant,
1017    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1018    // is no gap between the last two virtual memory regions.
1019
1020    JavaThread *jt = (JavaThread *)thread;
1021    address addr = jt->stack_yellow_zone_base();
1022    assert(addr != NULL, "initialization problem?");
1023    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1024
1025    osthread->set_expanding_stack();
1026    os::Linux::manually_expand_stack(jt, addr);
1027    osthread->clear_expanding_stack();
1028  }
1029
1030  // initialize signal mask for this thread
1031  // and save the caller's signal mask
1032  os::Linux::hotspot_sigmask(thread);
1033
1034  return true;
1035}
1036
1037void os::pd_start_thread(Thread* thread) {
1038  OSThread * osthread = thread->osthread();
1039  assert(osthread->get_state() != INITIALIZED, "just checking");
1040  Monitor* sync_with_child = osthread->startThread_lock();
1041  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1042  sync_with_child->notify();
1043}
1044
1045// Free Linux resources related to the OSThread
1046void os::free_thread(OSThread* osthread) {
1047  assert(osthread != NULL, "osthread not set");
1048
1049  if (Thread::current()->osthread() == osthread) {
1050    // Restore caller's signal mask
1051    sigset_t sigmask = osthread->caller_sigmask();
1052    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1053   }
1054
1055  delete osthread;
1056}
1057
1058//////////////////////////////////////////////////////////////////////////////
1059// thread local storage
1060
1061int os::allocate_thread_local_storage() {
1062  pthread_key_t key;
1063  int rslt = pthread_key_create(&key, NULL);
1064  assert(rslt == 0, "cannot allocate thread local storage");
1065  return (int)key;
1066}
1067
1068// Note: This is currently not used by VM, as we don't destroy TLS key
1069// on VM exit.
1070void os::free_thread_local_storage(int index) {
1071  int rslt = pthread_key_delete((pthread_key_t)index);
1072  assert(rslt == 0, "invalid index");
1073}
1074
1075void os::thread_local_storage_at_put(int index, void* value) {
1076  int rslt = pthread_setspecific((pthread_key_t)index, value);
1077  assert(rslt == 0, "pthread_setspecific failed");
1078}
1079
1080extern "C" Thread* get_thread() {
1081  return ThreadLocalStorage::thread();
1082}
1083
1084//////////////////////////////////////////////////////////////////////////////
1085// initial thread
1086
1087// Check if current thread is the initial thread, similar to Solaris thr_main.
1088bool os::Linux::is_initial_thread(void) {
1089  char dummy;
1090  // If called before init complete, thread stack bottom will be null.
1091  // Can be called if fatal error occurs before initialization.
1092  if (initial_thread_stack_bottom() == NULL) return false;
1093  assert(initial_thread_stack_bottom() != NULL &&
1094         initial_thread_stack_size()   != 0,
1095         "os::init did not locate initial thread's stack region");
1096  if ((address)&dummy >= initial_thread_stack_bottom() &&
1097      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1098       return true;
1099  else return false;
1100}
1101
1102// Find the virtual memory area that contains addr
1103static bool find_vma(address addr, address* vma_low, address* vma_high) {
1104  FILE *fp = fopen("/proc/self/maps", "r");
1105  if (fp) {
1106    address low, high;
1107    while (!feof(fp)) {
1108      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1109        if (low <= addr && addr < high) {
1110           if (vma_low)  *vma_low  = low;
1111           if (vma_high) *vma_high = high;
1112           fclose (fp);
1113           return true;
1114        }
1115      }
1116      for (;;) {
1117        int ch = fgetc(fp);
1118        if (ch == EOF || ch == (int)'\n') break;
1119      }
1120    }
1121    fclose(fp);
1122  }
1123  return false;
1124}
1125
1126// Locate initial thread stack. This special handling of initial thread stack
1127// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1128// bogus value for initial thread.
1129void os::Linux::capture_initial_stack(size_t max_size) {
1130  // stack size is the easy part, get it from RLIMIT_STACK
1131  size_t stack_size;
1132  struct rlimit rlim;
1133  getrlimit(RLIMIT_STACK, &rlim);
1134  stack_size = rlim.rlim_cur;
1135
1136  // 6308388: a bug in ld.so will relocate its own .data section to the
1137  //   lower end of primordial stack; reduce ulimit -s value a little bit
1138  //   so we won't install guard page on ld.so's data section.
1139  stack_size -= 2 * page_size();
1140
1141  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1142  //   7.1, in both cases we will get 2G in return value.
1143  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1144  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1145  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1146  //   in case other parts in glibc still assumes 2M max stack size.
1147  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1148#ifndef IA64
1149  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1150#else
1151  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1152  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1153#endif
1154
1155  // Try to figure out where the stack base (top) is. This is harder.
1156  //
1157  // When an application is started, glibc saves the initial stack pointer in
1158  // a global variable "__libc_stack_end", which is then used by system
1159  // libraries. __libc_stack_end should be pretty close to stack top. The
1160  // variable is available since the very early days. However, because it is
1161  // a private interface, it could disappear in the future.
1162  //
1163  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1164  // to __libc_stack_end, it is very close to stack top, but isn't the real
1165  // stack top. Note that /proc may not exist if VM is running as a chroot
1166  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1167  // /proc/<pid>/stat could change in the future (though unlikely).
1168  //
1169  // We try __libc_stack_end first. If that doesn't work, look for
1170  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1171  // as a hint, which should work well in most cases.
1172
1173  uintptr_t stack_start;
1174
1175  // try __libc_stack_end first
1176  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1177  if (p && *p) {
1178    stack_start = *p;
1179  } else {
1180    // see if we can get the start_stack field from /proc/self/stat
1181    FILE *fp;
1182    int pid;
1183    char state;
1184    int ppid;
1185    int pgrp;
1186    int session;
1187    int nr;
1188    int tpgrp;
1189    unsigned long flags;
1190    unsigned long minflt;
1191    unsigned long cminflt;
1192    unsigned long majflt;
1193    unsigned long cmajflt;
1194    unsigned long utime;
1195    unsigned long stime;
1196    long cutime;
1197    long cstime;
1198    long prio;
1199    long nice;
1200    long junk;
1201    long it_real;
1202    uintptr_t start;
1203    uintptr_t vsize;
1204    intptr_t rss;
1205    uintptr_t rsslim;
1206    uintptr_t scodes;
1207    uintptr_t ecode;
1208    int i;
1209
1210    // Figure what the primordial thread stack base is. Code is inspired
1211    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1212    // followed by command name surrounded by parentheses, state, etc.
1213    char stat[2048];
1214    int statlen;
1215
1216    fp = fopen("/proc/self/stat", "r");
1217    if (fp) {
1218      statlen = fread(stat, 1, 2047, fp);
1219      stat[statlen] = '\0';
1220      fclose(fp);
1221
1222      // Skip pid and the command string. Note that we could be dealing with
1223      // weird command names, e.g. user could decide to rename java launcher
1224      // to "java 1.4.2 :)", then the stat file would look like
1225      //                1234 (java 1.4.2 :)) R ... ...
1226      // We don't really need to know the command string, just find the last
1227      // occurrence of ")" and then start parsing from there. See bug 4726580.
1228      char * s = strrchr(stat, ')');
1229
1230      i = 0;
1231      if (s) {
1232        // Skip blank chars
1233        do s++; while (isspace(*s));
1234
1235#define _UFM UINTX_FORMAT
1236#define _DFM INTX_FORMAT
1237
1238        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1239        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1240        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1241             &state,          /* 3  %c  */
1242             &ppid,           /* 4  %d  */
1243             &pgrp,           /* 5  %d  */
1244             &session,        /* 6  %d  */
1245             &nr,             /* 7  %d  */
1246             &tpgrp,          /* 8  %d  */
1247             &flags,          /* 9  %lu  */
1248             &minflt,         /* 10 %lu  */
1249             &cminflt,        /* 11 %lu  */
1250             &majflt,         /* 12 %lu  */
1251             &cmajflt,        /* 13 %lu  */
1252             &utime,          /* 14 %lu  */
1253             &stime,          /* 15 %lu  */
1254             &cutime,         /* 16 %ld  */
1255             &cstime,         /* 17 %ld  */
1256             &prio,           /* 18 %ld  */
1257             &nice,           /* 19 %ld  */
1258             &junk,           /* 20 %ld  */
1259             &it_real,        /* 21 %ld  */
1260             &start,          /* 22 UINTX_FORMAT */
1261             &vsize,          /* 23 UINTX_FORMAT */
1262             &rss,            /* 24 INTX_FORMAT  */
1263             &rsslim,         /* 25 UINTX_FORMAT */
1264             &scodes,         /* 26 UINTX_FORMAT */
1265             &ecode,          /* 27 UINTX_FORMAT */
1266             &stack_start);   /* 28 UINTX_FORMAT */
1267      }
1268
1269#undef _UFM
1270#undef _DFM
1271
1272      if (i != 28 - 2) {
1273         assert(false, "Bad conversion from /proc/self/stat");
1274         // product mode - assume we are the initial thread, good luck in the
1275         // embedded case.
1276         warning("Can't detect initial thread stack location - bad conversion");
1277         stack_start = (uintptr_t) &rlim;
1278      }
1279    } else {
1280      // For some reason we can't open /proc/self/stat (for example, running on
1281      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1282      // most cases, so don't abort:
1283      warning("Can't detect initial thread stack location - no /proc/self/stat");
1284      stack_start = (uintptr_t) &rlim;
1285    }
1286  }
1287
1288  // Now we have a pointer (stack_start) very close to the stack top, the
1289  // next thing to do is to figure out the exact location of stack top. We
1290  // can find out the virtual memory area that contains stack_start by
1291  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1292  // and its upper limit is the real stack top. (again, this would fail if
1293  // running inside chroot, because /proc may not exist.)
1294
1295  uintptr_t stack_top;
1296  address low, high;
1297  if (find_vma((address)stack_start, &low, &high)) {
1298    // success, "high" is the true stack top. (ignore "low", because initial
1299    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1300    stack_top = (uintptr_t)high;
1301  } else {
1302    // failed, likely because /proc/self/maps does not exist
1303    warning("Can't detect initial thread stack location - find_vma failed");
1304    // best effort: stack_start is normally within a few pages below the real
1305    // stack top, use it as stack top, and reduce stack size so we won't put
1306    // guard page outside stack.
1307    stack_top = stack_start;
1308    stack_size -= 16 * page_size();
1309  }
1310
1311  // stack_top could be partially down the page so align it
1312  stack_top = align_size_up(stack_top, page_size());
1313
1314  if (max_size && stack_size > max_size) {
1315     _initial_thread_stack_size = max_size;
1316  } else {
1317     _initial_thread_stack_size = stack_size;
1318  }
1319
1320  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1321  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1322}
1323
1324////////////////////////////////////////////////////////////////////////////////
1325// time support
1326
1327// Time since start-up in seconds to a fine granularity.
1328// Used by VMSelfDestructTimer and the MemProfiler.
1329double os::elapsedTime() {
1330
1331  return (double)(os::elapsed_counter()) * 0.000001;
1332}
1333
1334jlong os::elapsed_counter() {
1335  timeval time;
1336  int status = gettimeofday(&time, NULL);
1337  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1338}
1339
1340jlong os::elapsed_frequency() {
1341  return (1000 * 1000);
1342}
1343
1344// For now, we say that linux does not support vtime.  I have no idea
1345// whether it can actually be made to (DLD, 9/13/05).
1346
1347bool os::supports_vtime() { return false; }
1348bool os::enable_vtime()   { return false; }
1349bool os::vtime_enabled()  { return false; }
1350double os::elapsedVTime() {
1351  // better than nothing, but not much
1352  return elapsedTime();
1353}
1354
1355jlong os::javaTimeMillis() {
1356  timeval time;
1357  int status = gettimeofday(&time, NULL);
1358  assert(status != -1, "linux error");
1359  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1360}
1361
1362#ifndef CLOCK_MONOTONIC
1363#define CLOCK_MONOTONIC (1)
1364#endif
1365
1366void os::Linux::clock_init() {
1367  // we do dlopen's in this particular order due to bug in linux
1368  // dynamical loader (see 6348968) leading to crash on exit
1369  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1370  if (handle == NULL) {
1371    handle = dlopen("librt.so", RTLD_LAZY);
1372  }
1373
1374  if (handle) {
1375    int (*clock_getres_func)(clockid_t, struct timespec*) =
1376           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1377    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1378           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1379    if (clock_getres_func && clock_gettime_func) {
1380      // See if monotonic clock is supported by the kernel. Note that some
1381      // early implementations simply return kernel jiffies (updated every
1382      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1383      // for nano time (though the monotonic property is still nice to have).
1384      // It's fixed in newer kernels, however clock_getres() still returns
1385      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1386      // resolution for now. Hopefully as people move to new kernels, this
1387      // won't be a problem.
1388      struct timespec res;
1389      struct timespec tp;
1390      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1391          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1392        // yes, monotonic clock is supported
1393        _clock_gettime = clock_gettime_func;
1394      } else {
1395        // close librt if there is no monotonic clock
1396        dlclose(handle);
1397      }
1398    }
1399  }
1400}
1401
1402#ifndef SYS_clock_getres
1403
1404#if defined(IA32) || defined(AMD64)
1405#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1406#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1407#else
1408#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1409#define sys_clock_getres(x,y)  -1
1410#endif
1411
1412#else
1413#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1414#endif
1415
1416void os::Linux::fast_thread_clock_init() {
1417  if (!UseLinuxPosixThreadCPUClocks) {
1418    return;
1419  }
1420  clockid_t clockid;
1421  struct timespec tp;
1422  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1423      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1424
1425  // Switch to using fast clocks for thread cpu time if
1426  // the sys_clock_getres() returns 0 error code.
1427  // Note, that some kernels may support the current thread
1428  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1429  // returned by the pthread_getcpuclockid().
1430  // If the fast Posix clocks are supported then the sys_clock_getres()
1431  // must return at least tp.tv_sec == 0 which means a resolution
1432  // better than 1 sec. This is extra check for reliability.
1433
1434  if(pthread_getcpuclockid_func &&
1435     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1436     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1437
1438    _supports_fast_thread_cpu_time = true;
1439    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1440  }
1441}
1442
1443jlong os::javaTimeNanos() {
1444  if (Linux::supports_monotonic_clock()) {
1445    struct timespec tp;
1446    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1447    assert(status == 0, "gettime error");
1448    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1449    return result;
1450  } else {
1451    timeval time;
1452    int status = gettimeofday(&time, NULL);
1453    assert(status != -1, "linux error");
1454    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1455    return 1000 * usecs;
1456  }
1457}
1458
1459void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1460  if (Linux::supports_monotonic_clock()) {
1461    info_ptr->max_value = ALL_64_BITS;
1462
1463    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1464    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1465    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1466  } else {
1467    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1468    info_ptr->max_value = ALL_64_BITS;
1469
1470    // gettimeofday is a real time clock so it skips
1471    info_ptr->may_skip_backward = true;
1472    info_ptr->may_skip_forward = true;
1473  }
1474
1475  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1476}
1477
1478// Return the real, user, and system times in seconds from an
1479// arbitrary fixed point in the past.
1480bool os::getTimesSecs(double* process_real_time,
1481                      double* process_user_time,
1482                      double* process_system_time) {
1483  struct tms ticks;
1484  clock_t real_ticks = times(&ticks);
1485
1486  if (real_ticks == (clock_t) (-1)) {
1487    return false;
1488  } else {
1489    double ticks_per_second = (double) clock_tics_per_sec;
1490    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1491    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1492    *process_real_time = ((double) real_ticks) / ticks_per_second;
1493
1494    return true;
1495  }
1496}
1497
1498
1499char * os::local_time_string(char *buf, size_t buflen) {
1500  struct tm t;
1501  time_t long_time;
1502  time(&long_time);
1503  localtime_r(&long_time, &t);
1504  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1505               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1506               t.tm_hour, t.tm_min, t.tm_sec);
1507  return buf;
1508}
1509
1510struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1511  return localtime_r(clock, res);
1512}
1513
1514////////////////////////////////////////////////////////////////////////////////
1515// runtime exit support
1516
1517// Note: os::shutdown() might be called very early during initialization, or
1518// called from signal handler. Before adding something to os::shutdown(), make
1519// sure it is async-safe and can handle partially initialized VM.
1520void os::shutdown() {
1521
1522  // allow PerfMemory to attempt cleanup of any persistent resources
1523  perfMemory_exit();
1524
1525  // needs to remove object in file system
1526  AttachListener::abort();
1527
1528  // flush buffered output, finish log files
1529  ostream_abort();
1530
1531  // Check for abort hook
1532  abort_hook_t abort_hook = Arguments::abort_hook();
1533  if (abort_hook != NULL) {
1534    abort_hook();
1535  }
1536
1537}
1538
1539// Note: os::abort() might be called very early during initialization, or
1540// called from signal handler. Before adding something to os::abort(), make
1541// sure it is async-safe and can handle partially initialized VM.
1542void os::abort(bool dump_core) {
1543  os::shutdown();
1544  if (dump_core) {
1545#ifndef PRODUCT
1546    fdStream out(defaultStream::output_fd());
1547    out.print_raw("Current thread is ");
1548    char buf[16];
1549    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1550    out.print_raw_cr(buf);
1551    out.print_raw_cr("Dumping core ...");
1552#endif
1553    ::abort(); // dump core
1554  }
1555
1556  ::exit(1);
1557}
1558
1559// Die immediately, no exit hook, no abort hook, no cleanup.
1560void os::die() {
1561  // _exit() on LinuxThreads only kills current thread
1562  ::abort();
1563}
1564
1565// unused on linux for now.
1566void os::set_error_file(const char *logfile) {}
1567
1568intx os::current_thread_id() { return (intx)pthread_self(); }
1569int os::current_process_id() {
1570
1571  // Under the old linux thread library, linux gives each thread
1572  // its own process id. Because of this each thread will return
1573  // a different pid if this method were to return the result
1574  // of getpid(2). Linux provides no api that returns the pid
1575  // of the launcher thread for the vm. This implementation
1576  // returns a unique pid, the pid of the launcher thread
1577  // that starts the vm 'process'.
1578
1579  // Under the NPTL, getpid() returns the same pid as the
1580  // launcher thread rather than a unique pid per thread.
1581  // Use gettid() if you want the old pre NPTL behaviour.
1582
1583  // if you are looking for the result of a call to getpid() that
1584  // returns a unique pid for the calling thread, then look at the
1585  // OSThread::thread_id() method in osThread_linux.hpp file
1586
1587  return (int)(_initial_pid ? _initial_pid : getpid());
1588}
1589
1590// DLL functions
1591
1592const char* os::dll_file_extension() { return ".so"; }
1593
1594const char* os::get_temp_directory() {
1595  const char *prop = Arguments::get_property("java.io.tmpdir");
1596  return prop == NULL ? "/tmp" : prop;
1597}
1598
1599static bool file_exists(const char* filename) {
1600  struct stat statbuf;
1601  if (filename == NULL || strlen(filename) == 0) {
1602    return false;
1603  }
1604  return os::stat(filename, &statbuf) == 0;
1605}
1606
1607void os::dll_build_name(char* buffer, size_t buflen,
1608                        const char* pname, const char* fname) {
1609  // Copied from libhpi
1610  const size_t pnamelen = pname ? strlen(pname) : 0;
1611
1612  // Quietly truncate on buffer overflow.  Should be an error.
1613  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1614      *buffer = '\0';
1615      return;
1616  }
1617
1618  if (pnamelen == 0) {
1619    snprintf(buffer, buflen, "lib%s.so", fname);
1620  } else if (strchr(pname, *os::path_separator()) != NULL) {
1621    int n;
1622    char** pelements = split_path(pname, &n);
1623    for (int i = 0 ; i < n ; i++) {
1624      // Really shouldn't be NULL, but check can't hurt
1625      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1626        continue; // skip the empty path values
1627      }
1628      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1629      if (file_exists(buffer)) {
1630        break;
1631      }
1632    }
1633    // release the storage
1634    for (int i = 0 ; i < n ; i++) {
1635      if (pelements[i] != NULL) {
1636        FREE_C_HEAP_ARRAY(char, pelements[i]);
1637      }
1638    }
1639    if (pelements != NULL) {
1640      FREE_C_HEAP_ARRAY(char*, pelements);
1641    }
1642  } else {
1643    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1644  }
1645}
1646
1647const char* os::get_current_directory(char *buf, int buflen) {
1648  return getcwd(buf, buflen);
1649}
1650
1651// check if addr is inside libjvm[_g].so
1652bool os::address_is_in_vm(address addr) {
1653  static address libjvm_base_addr;
1654  Dl_info dlinfo;
1655
1656  if (libjvm_base_addr == NULL) {
1657    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1658    libjvm_base_addr = (address)dlinfo.dli_fbase;
1659    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1660  }
1661
1662  if (dladdr((void *)addr, &dlinfo)) {
1663    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1664  }
1665
1666  return false;
1667}
1668
1669bool os::dll_address_to_function_name(address addr, char *buf,
1670                                      int buflen, int *offset) {
1671  Dl_info dlinfo;
1672
1673  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1674    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1675    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1676    return true;
1677  } else {
1678    if (buf) buf[0] = '\0';
1679    if (offset) *offset = -1;
1680    return false;
1681  }
1682}
1683
1684struct _address_to_library_name {
1685  address addr;          // input : memory address
1686  size_t  buflen;        //         size of fname
1687  char*   fname;         // output: library name
1688  address base;          //         library base addr
1689};
1690
1691static int address_to_library_name_callback(struct dl_phdr_info *info,
1692                                            size_t size, void *data) {
1693  int i;
1694  bool found = false;
1695  address libbase = NULL;
1696  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1697
1698  // iterate through all loadable segments
1699  for (i = 0; i < info->dlpi_phnum; i++) {
1700    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1701    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1702      // base address of a library is the lowest address of its loaded
1703      // segments.
1704      if (libbase == NULL || libbase > segbase) {
1705        libbase = segbase;
1706      }
1707      // see if 'addr' is within current segment
1708      if (segbase <= d->addr &&
1709          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1710        found = true;
1711      }
1712    }
1713  }
1714
1715  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1716  // so dll_address_to_library_name() can fall through to use dladdr() which
1717  // can figure out executable name from argv[0].
1718  if (found && info->dlpi_name && info->dlpi_name[0]) {
1719    d->base = libbase;
1720    if (d->fname) {
1721      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1722    }
1723    return 1;
1724  }
1725  return 0;
1726}
1727
1728bool os::dll_address_to_library_name(address addr, char* buf,
1729                                     int buflen, int* offset) {
1730  Dl_info dlinfo;
1731  struct _address_to_library_name data;
1732
1733  // There is a bug in old glibc dladdr() implementation that it could resolve
1734  // to wrong library name if the .so file has a base address != NULL. Here
1735  // we iterate through the program headers of all loaded libraries to find
1736  // out which library 'addr' really belongs to. This workaround can be
1737  // removed once the minimum requirement for glibc is moved to 2.3.x.
1738  data.addr = addr;
1739  data.fname = buf;
1740  data.buflen = buflen;
1741  data.base = NULL;
1742  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1743
1744  if (rslt) {
1745     // buf already contains library name
1746     if (offset) *offset = addr - data.base;
1747     return true;
1748  } else if (dladdr((void*)addr, &dlinfo)){
1749     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1750     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1751     return true;
1752  } else {
1753     if (buf) buf[0] = '\0';
1754     if (offset) *offset = -1;
1755     return false;
1756  }
1757}
1758
1759  // Loads .dll/.so and
1760  // in case of error it checks if .dll/.so was built for the
1761  // same architecture as Hotspot is running on
1762
1763void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1764{
1765  void * result= ::dlopen(filename, RTLD_LAZY);
1766  if (result != NULL) {
1767    // Successful loading
1768    return result;
1769  }
1770
1771  Elf32_Ehdr elf_head;
1772
1773  // Read system error message into ebuf
1774  // It may or may not be overwritten below
1775  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1776  ebuf[ebuflen-1]='\0';
1777  int diag_msg_max_length=ebuflen-strlen(ebuf);
1778  char* diag_msg_buf=ebuf+strlen(ebuf);
1779
1780  if (diag_msg_max_length==0) {
1781    // No more space in ebuf for additional diagnostics message
1782    return NULL;
1783  }
1784
1785
1786  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1787
1788  if (file_descriptor < 0) {
1789    // Can't open library, report dlerror() message
1790    return NULL;
1791  }
1792
1793  bool failed_to_read_elf_head=
1794    (sizeof(elf_head)!=
1795        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1796
1797  ::close(file_descriptor);
1798  if (failed_to_read_elf_head) {
1799    // file i/o error - report dlerror() msg
1800    return NULL;
1801  }
1802
1803  typedef struct {
1804    Elf32_Half  code;         // Actual value as defined in elf.h
1805    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1806    char        elf_class;    // 32 or 64 bit
1807    char        endianess;    // MSB or LSB
1808    char*       name;         // String representation
1809  } arch_t;
1810
1811  #ifndef EM_486
1812  #define EM_486          6               /* Intel 80486 */
1813  #endif
1814
1815  static const arch_t arch_array[]={
1816    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1817    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1818    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1819    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1820    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1821    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1822    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1823    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1824    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1825    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1826    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1827    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1828    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1829    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1830    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1831    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1832  };
1833
1834  #if  (defined IA32)
1835    static  Elf32_Half running_arch_code=EM_386;
1836  #elif   (defined AMD64)
1837    static  Elf32_Half running_arch_code=EM_X86_64;
1838  #elif  (defined IA64)
1839    static  Elf32_Half running_arch_code=EM_IA_64;
1840  #elif  (defined __sparc) && (defined _LP64)
1841    static  Elf32_Half running_arch_code=EM_SPARCV9;
1842  #elif  (defined __sparc) && (!defined _LP64)
1843    static  Elf32_Half running_arch_code=EM_SPARC;
1844  #elif  (defined __powerpc64__)
1845    static  Elf32_Half running_arch_code=EM_PPC64;
1846  #elif  (defined __powerpc__)
1847    static  Elf32_Half running_arch_code=EM_PPC;
1848  #elif  (defined ARM)
1849    static  Elf32_Half running_arch_code=EM_ARM;
1850  #elif  (defined S390)
1851    static  Elf32_Half running_arch_code=EM_S390;
1852  #elif  (defined ALPHA)
1853    static  Elf32_Half running_arch_code=EM_ALPHA;
1854  #elif  (defined MIPSEL)
1855    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1856  #elif  (defined PARISC)
1857    static  Elf32_Half running_arch_code=EM_PARISC;
1858  #elif  (defined MIPS)
1859    static  Elf32_Half running_arch_code=EM_MIPS;
1860  #elif  (defined M68K)
1861    static  Elf32_Half running_arch_code=EM_68K;
1862  #else
1863    #error Method os::dll_load requires that one of following is defined:\
1864         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1865  #endif
1866
1867  // Identify compatability class for VM's architecture and library's architecture
1868  // Obtain string descriptions for architectures
1869
1870  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1871  int running_arch_index=-1;
1872
1873  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1874    if (running_arch_code == arch_array[i].code) {
1875      running_arch_index    = i;
1876    }
1877    if (lib_arch.code == arch_array[i].code) {
1878      lib_arch.compat_class = arch_array[i].compat_class;
1879      lib_arch.name         = arch_array[i].name;
1880    }
1881  }
1882
1883  assert(running_arch_index != -1,
1884    "Didn't find running architecture code (running_arch_code) in arch_array");
1885  if (running_arch_index == -1) {
1886    // Even though running architecture detection failed
1887    // we may still continue with reporting dlerror() message
1888    return NULL;
1889  }
1890
1891  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1892    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1893    return NULL;
1894  }
1895
1896#ifndef S390
1897  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1898    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1899    return NULL;
1900  }
1901#endif // !S390
1902
1903  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1904    if ( lib_arch.name!=NULL ) {
1905      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1906        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1907        lib_arch.name, arch_array[running_arch_index].name);
1908    } else {
1909      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1910      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1911        lib_arch.code,
1912        arch_array[running_arch_index].name);
1913    }
1914  }
1915
1916  return NULL;
1917}
1918
1919/*
1920 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1921 * chances are you might want to run the generated bits against glibc-2.0
1922 * libdl.so, so always use locking for any version of glibc.
1923 */
1924void* os::dll_lookup(void* handle, const char* name) {
1925  pthread_mutex_lock(&dl_mutex);
1926  void* res = dlsym(handle, name);
1927  pthread_mutex_unlock(&dl_mutex);
1928  return res;
1929}
1930
1931
1932bool _print_ascii_file(const char* filename, outputStream* st) {
1933  int fd = open(filename, O_RDONLY);
1934  if (fd == -1) {
1935     return false;
1936  }
1937
1938  char buf[32];
1939  int bytes;
1940  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1941    st->print_raw(buf, bytes);
1942  }
1943
1944  close(fd);
1945
1946  return true;
1947}
1948
1949void os::print_dll_info(outputStream *st) {
1950   st->print_cr("Dynamic libraries:");
1951
1952   char fname[32];
1953   pid_t pid = os::Linux::gettid();
1954
1955   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1956
1957   if (!_print_ascii_file(fname, st)) {
1958     st->print("Can not get library information for pid = %d\n", pid);
1959   }
1960}
1961
1962
1963void os::print_os_info(outputStream* st) {
1964  st->print("OS:");
1965
1966  // Try to identify popular distros.
1967  // Most Linux distributions have /etc/XXX-release file, which contains
1968  // the OS version string. Some have more than one /etc/XXX-release file
1969  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1970  // so the order is important.
1971  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1972      !_print_ascii_file("/etc/sun-release", st) &&
1973      !_print_ascii_file("/etc/redhat-release", st) &&
1974      !_print_ascii_file("/etc/SuSE-release", st) &&
1975      !_print_ascii_file("/etc/turbolinux-release", st) &&
1976      !_print_ascii_file("/etc/gentoo-release", st) &&
1977      !_print_ascii_file("/etc/debian_version", st) &&
1978      !_print_ascii_file("/etc/ltib-release", st) &&
1979      !_print_ascii_file("/etc/angstrom-version", st)) {
1980      st->print("Linux");
1981  }
1982  st->cr();
1983
1984  // kernel
1985  st->print("uname:");
1986  struct utsname name;
1987  uname(&name);
1988  st->print(name.sysname); st->print(" ");
1989  st->print(name.release); st->print(" ");
1990  st->print(name.version); st->print(" ");
1991  st->print(name.machine);
1992  st->cr();
1993
1994  // Print warning if unsafe chroot environment detected
1995  if (unsafe_chroot_detected) {
1996    st->print("WARNING!! ");
1997    st->print_cr(unstable_chroot_error);
1998  }
1999
2000  // libc, pthread
2001  st->print("libc:");
2002  st->print(os::Linux::glibc_version()); st->print(" ");
2003  st->print(os::Linux::libpthread_version()); st->print(" ");
2004  if (os::Linux::is_LinuxThreads()) {
2005     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2006  }
2007  st->cr();
2008
2009  // rlimit
2010  st->print("rlimit:");
2011  struct rlimit rlim;
2012
2013  st->print(" STACK ");
2014  getrlimit(RLIMIT_STACK, &rlim);
2015  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2016  else st->print("%uk", rlim.rlim_cur >> 10);
2017
2018  st->print(", CORE ");
2019  getrlimit(RLIMIT_CORE, &rlim);
2020  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2021  else st->print("%uk", rlim.rlim_cur >> 10);
2022
2023  st->print(", NPROC ");
2024  getrlimit(RLIMIT_NPROC, &rlim);
2025  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2026  else st->print("%d", rlim.rlim_cur);
2027
2028  st->print(", NOFILE ");
2029  getrlimit(RLIMIT_NOFILE, &rlim);
2030  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2031  else st->print("%d", rlim.rlim_cur);
2032
2033  st->print(", AS ");
2034  getrlimit(RLIMIT_AS, &rlim);
2035  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2036  else st->print("%uk", rlim.rlim_cur >> 10);
2037  st->cr();
2038
2039  // load average
2040  st->print("load average:");
2041  double loadavg[3];
2042  os::loadavg(loadavg, 3);
2043  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2044  st->cr();
2045
2046  // meminfo
2047  st->print("\n/proc/meminfo:\n");
2048  _print_ascii_file("/proc/meminfo", st);
2049  st->cr();
2050}
2051
2052void os::print_memory_info(outputStream* st) {
2053
2054  st->print("Memory:");
2055  st->print(" %dk page", os::vm_page_size()>>10);
2056
2057  // values in struct sysinfo are "unsigned long"
2058  struct sysinfo si;
2059  sysinfo(&si);
2060
2061  st->print(", physical " UINT64_FORMAT "k",
2062            os::physical_memory() >> 10);
2063  st->print("(" UINT64_FORMAT "k free)",
2064            os::available_memory() >> 10);
2065  st->print(", swap " UINT64_FORMAT "k",
2066            ((jlong)si.totalswap * si.mem_unit) >> 10);
2067  st->print("(" UINT64_FORMAT "k free)",
2068            ((jlong)si.freeswap * si.mem_unit) >> 10);
2069  st->cr();
2070}
2071
2072// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2073// but they're the same for all the linux arch that we support
2074// and they're the same for solaris but there's no common place to put this.
2075const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2076                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2077                          "ILL_COPROC", "ILL_BADSTK" };
2078
2079const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2080                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2081                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2082
2083const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2084
2085const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2086
2087void os::print_siginfo(outputStream* st, void* siginfo) {
2088  st->print("siginfo:");
2089
2090  const int buflen = 100;
2091  char buf[buflen];
2092  siginfo_t *si = (siginfo_t*)siginfo;
2093  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2094  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2095    st->print("si_errno=%s", buf);
2096  } else {
2097    st->print("si_errno=%d", si->si_errno);
2098  }
2099  const int c = si->si_code;
2100  assert(c > 0, "unexpected si_code");
2101  switch (si->si_signo) {
2102  case SIGILL:
2103    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2104    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2105    break;
2106  case SIGFPE:
2107    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2108    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2109    break;
2110  case SIGSEGV:
2111    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2112    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2113    break;
2114  case SIGBUS:
2115    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2116    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2117    break;
2118  default:
2119    st->print(", si_code=%d", si->si_code);
2120    // no si_addr
2121  }
2122
2123  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2124      UseSharedSpaces) {
2125    FileMapInfo* mapinfo = FileMapInfo::current_info();
2126    if (mapinfo->is_in_shared_space(si->si_addr)) {
2127      st->print("\n\nError accessing class data sharing archive."   \
2128                " Mapped file inaccessible during execution, "      \
2129                " possible disk/network problem.");
2130    }
2131  }
2132  st->cr();
2133}
2134
2135
2136static void print_signal_handler(outputStream* st, int sig,
2137                                 char* buf, size_t buflen);
2138
2139void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2140  st->print_cr("Signal Handlers:");
2141  print_signal_handler(st, SIGSEGV, buf, buflen);
2142  print_signal_handler(st, SIGBUS , buf, buflen);
2143  print_signal_handler(st, SIGFPE , buf, buflen);
2144  print_signal_handler(st, SIGPIPE, buf, buflen);
2145  print_signal_handler(st, SIGXFSZ, buf, buflen);
2146  print_signal_handler(st, SIGILL , buf, buflen);
2147  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2148  print_signal_handler(st, SR_signum, buf, buflen);
2149  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2150  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2151  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2152  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2153}
2154
2155static char saved_jvm_path[MAXPATHLEN] = {0};
2156
2157// Find the full path to the current module, libjvm.so or libjvm_g.so
2158void os::jvm_path(char *buf, jint buflen) {
2159  // Error checking.
2160  if (buflen < MAXPATHLEN) {
2161    assert(false, "must use a large-enough buffer");
2162    buf[0] = '\0';
2163    return;
2164  }
2165  // Lazy resolve the path to current module.
2166  if (saved_jvm_path[0] != 0) {
2167    strcpy(buf, saved_jvm_path);
2168    return;
2169  }
2170
2171  char dli_fname[MAXPATHLEN];
2172  bool ret = dll_address_to_library_name(
2173                CAST_FROM_FN_PTR(address, os::jvm_path),
2174                dli_fname, sizeof(dli_fname), NULL);
2175  assert(ret != 0, "cannot locate libjvm");
2176  char *rp = realpath(dli_fname, buf);
2177  if (rp == NULL)
2178    return;
2179
2180  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2181    // Support for the gamma launcher.  Typical value for buf is
2182    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2183    // the right place in the string, then assume we are installed in a JDK and
2184    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2185    // up the path so it looks like libjvm.so is installed there (append a
2186    // fake suffix hotspot/libjvm.so).
2187    const char *p = buf + strlen(buf) - 1;
2188    for (int count = 0; p > buf && count < 5; ++count) {
2189      for (--p; p > buf && *p != '/'; --p)
2190        /* empty */ ;
2191    }
2192
2193    if (strncmp(p, "/jre/lib/", 9) != 0) {
2194      // Look for JAVA_HOME in the environment.
2195      char* java_home_var = ::getenv("JAVA_HOME");
2196      if (java_home_var != NULL && java_home_var[0] != 0) {
2197        char* jrelib_p;
2198        int len;
2199
2200        // Check the current module name "libjvm.so" or "libjvm_g.so".
2201        p = strrchr(buf, '/');
2202        assert(strstr(p, "/libjvm") == p, "invalid library name");
2203        p = strstr(p, "_g") ? "_g" : "";
2204
2205        rp = realpath(java_home_var, buf);
2206        if (rp == NULL)
2207          return;
2208
2209        // determine if this is a legacy image or modules image
2210        // modules image doesn't have "jre" subdirectory
2211        len = strlen(buf);
2212        jrelib_p = buf + len;
2213        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2214        if (0 != access(buf, F_OK)) {
2215          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2216        }
2217
2218        if (0 == access(buf, F_OK)) {
2219          // Use current module name "libjvm[_g].so" instead of
2220          // "libjvm"debug_only("_g")".so" since for fastdebug version
2221          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2222          // It is used when we are choosing the HPI library's name
2223          // "libhpi[_g].so" in hpi::initialize_get_interface().
2224          len = strlen(buf);
2225          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2226        } else {
2227          // Go back to path of .so
2228          rp = realpath(dli_fname, buf);
2229          if (rp == NULL)
2230            return;
2231        }
2232      }
2233    }
2234  }
2235
2236  strcpy(saved_jvm_path, buf);
2237}
2238
2239void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2240  // no prefix required, not even "_"
2241}
2242
2243void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2244  // no suffix required
2245}
2246
2247////////////////////////////////////////////////////////////////////////////////
2248// sun.misc.Signal support
2249
2250static volatile jint sigint_count = 0;
2251
2252static void
2253UserHandler(int sig, void *siginfo, void *context) {
2254  // 4511530 - sem_post is serialized and handled by the manager thread. When
2255  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2256  // don't want to flood the manager thread with sem_post requests.
2257  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2258      return;
2259
2260  // Ctrl-C is pressed during error reporting, likely because the error
2261  // handler fails to abort. Let VM die immediately.
2262  if (sig == SIGINT && is_error_reported()) {
2263     os::die();
2264  }
2265
2266  os::signal_notify(sig);
2267}
2268
2269void* os::user_handler() {
2270  return CAST_FROM_FN_PTR(void*, UserHandler);
2271}
2272
2273extern "C" {
2274  typedef void (*sa_handler_t)(int);
2275  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2276}
2277
2278void* os::signal(int signal_number, void* handler) {
2279  struct sigaction sigAct, oldSigAct;
2280
2281  sigfillset(&(sigAct.sa_mask));
2282  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2283  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2284
2285  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2286    // -1 means registration failed
2287    return (void *)-1;
2288  }
2289
2290  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2291}
2292
2293void os::signal_raise(int signal_number) {
2294  ::raise(signal_number);
2295}
2296
2297/*
2298 * The following code is moved from os.cpp for making this
2299 * code platform specific, which it is by its very nature.
2300 */
2301
2302// Will be modified when max signal is changed to be dynamic
2303int os::sigexitnum_pd() {
2304  return NSIG;
2305}
2306
2307// a counter for each possible signal value
2308static volatile jint pending_signals[NSIG+1] = { 0 };
2309
2310// Linux(POSIX) specific hand shaking semaphore.
2311static sem_t sig_sem;
2312
2313void os::signal_init_pd() {
2314  // Initialize signal structures
2315  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2316
2317  // Initialize signal semaphore
2318  ::sem_init(&sig_sem, 0, 0);
2319}
2320
2321void os::signal_notify(int sig) {
2322  Atomic::inc(&pending_signals[sig]);
2323  ::sem_post(&sig_sem);
2324}
2325
2326static int check_pending_signals(bool wait) {
2327  Atomic::store(0, &sigint_count);
2328  for (;;) {
2329    for (int i = 0; i < NSIG + 1; i++) {
2330      jint n = pending_signals[i];
2331      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2332        return i;
2333      }
2334    }
2335    if (!wait) {
2336      return -1;
2337    }
2338    JavaThread *thread = JavaThread::current();
2339    ThreadBlockInVM tbivm(thread);
2340
2341    bool threadIsSuspended;
2342    do {
2343      thread->set_suspend_equivalent();
2344      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2345      ::sem_wait(&sig_sem);
2346
2347      // were we externally suspended while we were waiting?
2348      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2349      if (threadIsSuspended) {
2350        //
2351        // The semaphore has been incremented, but while we were waiting
2352        // another thread suspended us. We don't want to continue running
2353        // while suspended because that would surprise the thread that
2354        // suspended us.
2355        //
2356        ::sem_post(&sig_sem);
2357
2358        thread->java_suspend_self();
2359      }
2360    } while (threadIsSuspended);
2361  }
2362}
2363
2364int os::signal_lookup() {
2365  return check_pending_signals(false);
2366}
2367
2368int os::signal_wait() {
2369  return check_pending_signals(true);
2370}
2371
2372////////////////////////////////////////////////////////////////////////////////
2373// Virtual Memory
2374
2375int os::vm_page_size() {
2376  // Seems redundant as all get out
2377  assert(os::Linux::page_size() != -1, "must call os::init");
2378  return os::Linux::page_size();
2379}
2380
2381// Solaris allocates memory by pages.
2382int os::vm_allocation_granularity() {
2383  assert(os::Linux::page_size() != -1, "must call os::init");
2384  return os::Linux::page_size();
2385}
2386
2387// Rationale behind this function:
2388//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2389//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2390//  samples for JITted code. Here we create private executable mapping over the code cache
2391//  and then we can use standard (well, almost, as mapping can change) way to provide
2392//  info for the reporting script by storing timestamp and location of symbol
2393void linux_wrap_code(char* base, size_t size) {
2394  static volatile jint cnt = 0;
2395
2396  if (!UseOprofile) {
2397    return;
2398  }
2399
2400  char buf[PATH_MAX+1];
2401  int num = Atomic::add(1, &cnt);
2402
2403  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2404           os::get_temp_directory(), os::current_process_id(), num);
2405  unlink(buf);
2406
2407  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2408
2409  if (fd != -1) {
2410    off_t rv = lseek(fd, size-2, SEEK_SET);
2411    if (rv != (off_t)-1) {
2412      if (write(fd, "", 1) == 1) {
2413        mmap(base, size,
2414             PROT_READ|PROT_WRITE|PROT_EXEC,
2415             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2416      }
2417    }
2418    close(fd);
2419    unlink(buf);
2420  }
2421}
2422
2423// NOTE: Linux kernel does not really reserve the pages for us.
2424//       All it does is to check if there are enough free pages
2425//       left at the time of mmap(). This could be a potential
2426//       problem.
2427bool os::commit_memory(char* addr, size_t size, bool exec) {
2428  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2429  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2430                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2431  return res != (uintptr_t) MAP_FAILED;
2432}
2433
2434bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2435                       bool exec) {
2436  return commit_memory(addr, size, exec);
2437}
2438
2439void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2440
2441void os::free_memory(char *addr, size_t bytes) {
2442  ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2443         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2444}
2445
2446void os::numa_make_global(char *addr, size_t bytes) {
2447  Linux::numa_interleave_memory(addr, bytes);
2448}
2449
2450void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2451  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2452}
2453
2454bool os::numa_topology_changed()   { return false; }
2455
2456size_t os::numa_get_groups_num() {
2457  int max_node = Linux::numa_max_node();
2458  return max_node > 0 ? max_node + 1 : 1;
2459}
2460
2461int os::numa_get_group_id() {
2462  int cpu_id = Linux::sched_getcpu();
2463  if (cpu_id != -1) {
2464    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2465    if (lgrp_id != -1) {
2466      return lgrp_id;
2467    }
2468  }
2469  return 0;
2470}
2471
2472size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2473  for (size_t i = 0; i < size; i++) {
2474    ids[i] = i;
2475  }
2476  return size;
2477}
2478
2479bool os::get_page_info(char *start, page_info* info) {
2480  return false;
2481}
2482
2483char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2484  return end;
2485}
2486
2487extern "C" void numa_warn(int number, char *where, ...) { }
2488extern "C" void numa_error(char *where) { }
2489
2490
2491// If we are running with libnuma version > 2, then we should
2492// be trying to use symbols with versions 1.1
2493// If we are running with earlier version, which did not have symbol versions,
2494// we should use the base version.
2495void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2496  void *f = dlvsym(handle, name, "libnuma_1.1");
2497  if (f == NULL) {
2498    f = dlsym(handle, name);
2499  }
2500  return f;
2501}
2502
2503bool os::Linux::libnuma_init() {
2504  // sched_getcpu() should be in libc.
2505  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2506                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2507
2508  if (sched_getcpu() != -1) { // Does it work?
2509    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2510    if (handle != NULL) {
2511      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2512                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2513      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2514                                       libnuma_dlsym(handle, "numa_max_node")));
2515      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2516                                        libnuma_dlsym(handle, "numa_available")));
2517      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2518                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2519      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2520                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2521
2522
2523      if (numa_available() != -1) {
2524        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2525        // Create a cpu -> node mapping
2526        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2527        rebuild_cpu_to_node_map();
2528        return true;
2529      }
2530    }
2531  }
2532  return false;
2533}
2534
2535// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2536// The table is later used in get_node_by_cpu().
2537void os::Linux::rebuild_cpu_to_node_map() {
2538  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2539                              // in libnuma (possible values are starting from 16,
2540                              // and continuing up with every other power of 2, but less
2541                              // than the maximum number of CPUs supported by kernel), and
2542                              // is a subject to change (in libnuma version 2 the requirements
2543                              // are more reasonable) we'll just hardcode the number they use
2544                              // in the library.
2545  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2546
2547  size_t cpu_num = os::active_processor_count();
2548  size_t cpu_map_size = NCPUS / BitsPerCLong;
2549  size_t cpu_map_valid_size =
2550    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2551
2552  cpu_to_node()->clear();
2553  cpu_to_node()->at_grow(cpu_num - 1);
2554  size_t node_num = numa_get_groups_num();
2555
2556  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2557  for (size_t i = 0; i < node_num; i++) {
2558    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2559      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2560        if (cpu_map[j] != 0) {
2561          for (size_t k = 0; k < BitsPerCLong; k++) {
2562            if (cpu_map[j] & (1UL << k)) {
2563              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2564            }
2565          }
2566        }
2567      }
2568    }
2569  }
2570  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2571}
2572
2573int os::Linux::get_node_by_cpu(int cpu_id) {
2574  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2575    return cpu_to_node()->at(cpu_id);
2576  }
2577  return -1;
2578}
2579
2580GrowableArray<int>* os::Linux::_cpu_to_node;
2581os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2582os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2583os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2584os::Linux::numa_available_func_t os::Linux::_numa_available;
2585os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2586os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2587unsigned long* os::Linux::_numa_all_nodes;
2588
2589bool os::uncommit_memory(char* addr, size_t size) {
2590  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2591                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2592  return res  != (uintptr_t) MAP_FAILED;
2593}
2594
2595// Linux uses a growable mapping for the stack, and if the mapping for
2596// the stack guard pages is not removed when we detach a thread the
2597// stack cannot grow beyond the pages where the stack guard was
2598// mapped.  If at some point later in the process the stack expands to
2599// that point, the Linux kernel cannot expand the stack any further
2600// because the guard pages are in the way, and a segfault occurs.
2601//
2602// However, it's essential not to split the stack region by unmapping
2603// a region (leaving a hole) that's already part of the stack mapping,
2604// so if the stack mapping has already grown beyond the guard pages at
2605// the time we create them, we have to truncate the stack mapping.
2606// So, we need to know the extent of the stack mapping when
2607// create_stack_guard_pages() is called.
2608
2609// Find the bounds of the stack mapping.  Return true for success.
2610//
2611// We only need this for stacks that are growable: at the time of
2612// writing thread stacks don't use growable mappings (i.e. those
2613// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2614// only applies to the main thread.
2615static bool
2616get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2617{
2618  FILE *f = fopen("/proc/self/maps", "r");
2619  if (f == NULL)
2620    return false;
2621
2622  while (!feof(f)) {
2623    size_t dummy;
2624    char *str = NULL;
2625    ssize_t len = getline(&str, &dummy, f);
2626    if (len == -1) {
2627      fclose(f);
2628      return false;
2629    }
2630
2631    if (len > 0 && str[len-1] == '\n') {
2632      str[len-1] = 0;
2633      len--;
2634    }
2635
2636    static const char *stack_str = "[stack]";
2637    if (len > (ssize_t)strlen(stack_str)
2638       && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2639      if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2640        uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2641        if (sp >= *bottom && sp <= *top) {
2642          free(str);
2643          fclose(f);
2644          return true;
2645        }
2646      }
2647    }
2648    free(str);
2649  }
2650  fclose(f);
2651  return false;
2652}
2653
2654// If the (growable) stack mapping already extends beyond the point
2655// where we're going to put our guard pages, truncate the mapping at
2656// that point by munmap()ping it.  This ensures that when we later
2657// munmap() the guard pages we don't leave a hole in the stack
2658// mapping. This only affects the main/initial thread, but guard
2659// against future OS changes
2660bool os::create_stack_guard_pages(char* addr, size_t size) {
2661  uintptr_t stack_extent, stack_base;
2662  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2663  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2664      assert(os::Linux::is_initial_thread(),
2665           "growable stack in non-initial thread");
2666    if (stack_extent < (uintptr_t)addr)
2667      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2668  }
2669
2670  return os::commit_memory(addr, size);
2671}
2672
2673// If this is a growable mapping, remove the guard pages entirely by
2674// munmap()ping them.  If not, just call uncommit_memory(). This only
2675// affects the main/initial thread, but guard against future OS changes
2676bool os::remove_stack_guard_pages(char* addr, size_t size) {
2677  uintptr_t stack_extent, stack_base;
2678  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2679  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2680      assert(os::Linux::is_initial_thread(),
2681           "growable stack in non-initial thread");
2682
2683    return ::munmap(addr, size) == 0;
2684  }
2685
2686  return os::uncommit_memory(addr, size);
2687}
2688
2689static address _highest_vm_reserved_address = NULL;
2690
2691// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2692// at 'requested_addr'. If there are existing memory mappings at the same
2693// location, however, they will be overwritten. If 'fixed' is false,
2694// 'requested_addr' is only treated as a hint, the return value may or
2695// may not start from the requested address. Unlike Linux mmap(), this
2696// function returns NULL to indicate failure.
2697static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2698  char * addr;
2699  int flags;
2700
2701  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2702  if (fixed) {
2703    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2704    flags |= MAP_FIXED;
2705  }
2706
2707  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2708  // to PROT_EXEC if executable when we commit the page.
2709  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2710                       flags, -1, 0);
2711
2712  if (addr != MAP_FAILED) {
2713    // anon_mmap() should only get called during VM initialization,
2714    // don't need lock (actually we can skip locking even it can be called
2715    // from multiple threads, because _highest_vm_reserved_address is just a
2716    // hint about the upper limit of non-stack memory regions.)
2717    if ((address)addr + bytes > _highest_vm_reserved_address) {
2718      _highest_vm_reserved_address = (address)addr + bytes;
2719    }
2720  }
2721
2722  return addr == MAP_FAILED ? NULL : addr;
2723}
2724
2725// Don't update _highest_vm_reserved_address, because there might be memory
2726// regions above addr + size. If so, releasing a memory region only creates
2727// a hole in the address space, it doesn't help prevent heap-stack collision.
2728//
2729static int anon_munmap(char * addr, size_t size) {
2730  return ::munmap(addr, size) == 0;
2731}
2732
2733char* os::reserve_memory(size_t bytes, char* requested_addr,
2734                         size_t alignment_hint) {
2735  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2736}
2737
2738bool os::release_memory(char* addr, size_t size) {
2739  return anon_munmap(addr, size);
2740}
2741
2742static address highest_vm_reserved_address() {
2743  return _highest_vm_reserved_address;
2744}
2745
2746static bool linux_mprotect(char* addr, size_t size, int prot) {
2747  // Linux wants the mprotect address argument to be page aligned.
2748  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2749
2750  // According to SUSv3, mprotect() should only be used with mappings
2751  // established by mmap(), and mmap() always maps whole pages. Unaligned
2752  // 'addr' likely indicates problem in the VM (e.g. trying to change
2753  // protection of malloc'ed or statically allocated memory). Check the
2754  // caller if you hit this assert.
2755  assert(addr == bottom, "sanity check");
2756
2757  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2758  return ::mprotect(bottom, size, prot) == 0;
2759}
2760
2761// Set protections specified
2762bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2763                        bool is_committed) {
2764  unsigned int p = 0;
2765  switch (prot) {
2766  case MEM_PROT_NONE: p = PROT_NONE; break;
2767  case MEM_PROT_READ: p = PROT_READ; break;
2768  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2769  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2770  default:
2771    ShouldNotReachHere();
2772  }
2773  // is_committed is unused.
2774  return linux_mprotect(addr, bytes, p);
2775}
2776
2777bool os::guard_memory(char* addr, size_t size) {
2778  return linux_mprotect(addr, size, PROT_NONE);
2779}
2780
2781bool os::unguard_memory(char* addr, size_t size) {
2782  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2783}
2784
2785// Large page support
2786
2787static size_t _large_page_size = 0;
2788
2789bool os::large_page_init() {
2790  if (!UseLargePages) return false;
2791
2792  if (LargePageSizeInBytes) {
2793    _large_page_size = LargePageSizeInBytes;
2794  } else {
2795    // large_page_size on Linux is used to round up heap size. x86 uses either
2796    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2797    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2798    // page as large as 256M.
2799    //
2800    // Here we try to figure out page size by parsing /proc/meminfo and looking
2801    // for a line with the following format:
2802    //    Hugepagesize:     2048 kB
2803    //
2804    // If we can't determine the value (e.g. /proc is not mounted, or the text
2805    // format has been changed), we'll use the largest page size supported by
2806    // the processor.
2807
2808#ifndef ZERO
2809    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2810                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2811#endif // ZERO
2812
2813    FILE *fp = fopen("/proc/meminfo", "r");
2814    if (fp) {
2815      while (!feof(fp)) {
2816        int x = 0;
2817        char buf[16];
2818        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2819          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2820            _large_page_size = x * K;
2821            break;
2822          }
2823        } else {
2824          // skip to next line
2825          for (;;) {
2826            int ch = fgetc(fp);
2827            if (ch == EOF || ch == (int)'\n') break;
2828          }
2829        }
2830      }
2831      fclose(fp);
2832    }
2833  }
2834
2835  const size_t default_page_size = (size_t)Linux::page_size();
2836  if (_large_page_size > default_page_size) {
2837    _page_sizes[0] = _large_page_size;
2838    _page_sizes[1] = default_page_size;
2839    _page_sizes[2] = 0;
2840  }
2841
2842  // Large page support is available on 2.6 or newer kernel, some vendors
2843  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2844  // We optimistically assume the support is available. If later it turns out
2845  // not true, VM will automatically switch to use regular page size.
2846  return true;
2847}
2848
2849#ifndef SHM_HUGETLB
2850#define SHM_HUGETLB 04000
2851#endif
2852
2853char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2854  // "exec" is passed in but not used.  Creating the shared image for
2855  // the code cache doesn't have an SHM_X executable permission to check.
2856  assert(UseLargePages, "only for large pages");
2857
2858  key_t key = IPC_PRIVATE;
2859  char *addr;
2860
2861  bool warn_on_failure = UseLargePages &&
2862                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2863                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2864                        );
2865  char msg[128];
2866
2867  // Create a large shared memory region to attach to based on size.
2868  // Currently, size is the total size of the heap
2869  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2870  if (shmid == -1) {
2871     // Possible reasons for shmget failure:
2872     // 1. shmmax is too small for Java heap.
2873     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2874     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2875     // 2. not enough large page memory.
2876     //    > check available large pages: cat /proc/meminfo
2877     //    > increase amount of large pages:
2878     //          echo new_value > /proc/sys/vm/nr_hugepages
2879     //      Note 1: different Linux may use different name for this property,
2880     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2881     //      Note 2: it's possible there's enough physical memory available but
2882     //            they are so fragmented after a long run that they can't
2883     //            coalesce into large pages. Try to reserve large pages when
2884     //            the system is still "fresh".
2885     if (warn_on_failure) {
2886       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2887       warning(msg);
2888     }
2889     return NULL;
2890  }
2891
2892  // attach to the region
2893  addr = (char*)shmat(shmid, req_addr, 0);
2894  int err = errno;
2895
2896  // Remove shmid. If shmat() is successful, the actual shared memory segment
2897  // will be deleted when it's detached by shmdt() or when the process
2898  // terminates. If shmat() is not successful this will remove the shared
2899  // segment immediately.
2900  shmctl(shmid, IPC_RMID, NULL);
2901
2902  if ((intptr_t)addr == -1) {
2903     if (warn_on_failure) {
2904       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2905       warning(msg);
2906     }
2907     return NULL;
2908  }
2909
2910  return addr;
2911}
2912
2913bool os::release_memory_special(char* base, size_t bytes) {
2914  // detaching the SHM segment will also delete it, see reserve_memory_special()
2915  int rslt = shmdt(base);
2916  return rslt == 0;
2917}
2918
2919size_t os::large_page_size() {
2920  return _large_page_size;
2921}
2922
2923// Linux does not support anonymous mmap with large page memory. The only way
2924// to reserve large page memory without file backing is through SysV shared
2925// memory API. The entire memory region is committed and pinned upfront.
2926// Hopefully this will change in the future...
2927bool os::can_commit_large_page_memory() {
2928  return false;
2929}
2930
2931bool os::can_execute_large_page_memory() {
2932  return false;
2933}
2934
2935// Reserve memory at an arbitrary address, only if that area is
2936// available (and not reserved for something else).
2937
2938char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2939  const int max_tries = 10;
2940  char* base[max_tries];
2941  size_t size[max_tries];
2942  const size_t gap = 0x000000;
2943
2944  // Assert only that the size is a multiple of the page size, since
2945  // that's all that mmap requires, and since that's all we really know
2946  // about at this low abstraction level.  If we need higher alignment,
2947  // we can either pass an alignment to this method or verify alignment
2948  // in one of the methods further up the call chain.  See bug 5044738.
2949  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2950
2951  // Repeatedly allocate blocks until the block is allocated at the
2952  // right spot. Give up after max_tries. Note that reserve_memory() will
2953  // automatically update _highest_vm_reserved_address if the call is
2954  // successful. The variable tracks the highest memory address every reserved
2955  // by JVM. It is used to detect heap-stack collision if running with
2956  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2957  // space than needed, it could confuse the collision detecting code. To
2958  // solve the problem, save current _highest_vm_reserved_address and
2959  // calculate the correct value before return.
2960  address old_highest = _highest_vm_reserved_address;
2961
2962  // Linux mmap allows caller to pass an address as hint; give it a try first,
2963  // if kernel honors the hint then we can return immediately.
2964  char * addr = anon_mmap(requested_addr, bytes, false);
2965  if (addr == requested_addr) {
2966     return requested_addr;
2967  }
2968
2969  if (addr != NULL) {
2970     // mmap() is successful but it fails to reserve at the requested address
2971     anon_munmap(addr, bytes);
2972  }
2973
2974  int i;
2975  for (i = 0; i < max_tries; ++i) {
2976    base[i] = reserve_memory(bytes);
2977
2978    if (base[i] != NULL) {
2979      // Is this the block we wanted?
2980      if (base[i] == requested_addr) {
2981        size[i] = bytes;
2982        break;
2983      }
2984
2985      // Does this overlap the block we wanted? Give back the overlapped
2986      // parts and try again.
2987
2988      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2989      if (top_overlap >= 0 && top_overlap < bytes) {
2990        unmap_memory(base[i], top_overlap);
2991        base[i] += top_overlap;
2992        size[i] = bytes - top_overlap;
2993      } else {
2994        size_t bottom_overlap = base[i] + bytes - requested_addr;
2995        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2996          unmap_memory(requested_addr, bottom_overlap);
2997          size[i] = bytes - bottom_overlap;
2998        } else {
2999          size[i] = bytes;
3000        }
3001      }
3002    }
3003  }
3004
3005  // Give back the unused reserved pieces.
3006
3007  for (int j = 0; j < i; ++j) {
3008    if (base[j] != NULL) {
3009      unmap_memory(base[j], size[j]);
3010    }
3011  }
3012
3013  if (i < max_tries) {
3014    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3015    return requested_addr;
3016  } else {
3017    _highest_vm_reserved_address = old_highest;
3018    return NULL;
3019  }
3020}
3021
3022size_t os::read(int fd, void *buf, unsigned int nBytes) {
3023  return ::read(fd, buf, nBytes);
3024}
3025
3026// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3027// Solaris uses poll(), linux uses park().
3028// Poll() is likely a better choice, assuming that Thread.interrupt()
3029// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3030// SIGSEGV, see 4355769.
3031
3032const int NANOSECS_PER_MILLISECS = 1000000;
3033
3034int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3035  assert(thread == Thread::current(),  "thread consistency check");
3036
3037  ParkEvent * const slp = thread->_SleepEvent ;
3038  slp->reset() ;
3039  OrderAccess::fence() ;
3040
3041  if (interruptible) {
3042    jlong prevtime = javaTimeNanos();
3043
3044    for (;;) {
3045      if (os::is_interrupted(thread, true)) {
3046        return OS_INTRPT;
3047      }
3048
3049      jlong newtime = javaTimeNanos();
3050
3051      if (newtime - prevtime < 0) {
3052        // time moving backwards, should only happen if no monotonic clock
3053        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3054        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3055      } else {
3056        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3057      }
3058
3059      if(millis <= 0) {
3060        return OS_OK;
3061      }
3062
3063      prevtime = newtime;
3064
3065      {
3066        assert(thread->is_Java_thread(), "sanity check");
3067        JavaThread *jt = (JavaThread *) thread;
3068        ThreadBlockInVM tbivm(jt);
3069        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3070
3071        jt->set_suspend_equivalent();
3072        // cleared by handle_special_suspend_equivalent_condition() or
3073        // java_suspend_self() via check_and_wait_while_suspended()
3074
3075        slp->park(millis);
3076
3077        // were we externally suspended while we were waiting?
3078        jt->check_and_wait_while_suspended();
3079      }
3080    }
3081  } else {
3082    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3083    jlong prevtime = javaTimeNanos();
3084
3085    for (;;) {
3086      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3087      // the 1st iteration ...
3088      jlong newtime = javaTimeNanos();
3089
3090      if (newtime - prevtime < 0) {
3091        // time moving backwards, should only happen if no monotonic clock
3092        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3093        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3094      } else {
3095        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3096      }
3097
3098      if(millis <= 0) break ;
3099
3100      prevtime = newtime;
3101      slp->park(millis);
3102    }
3103    return OS_OK ;
3104  }
3105}
3106
3107int os::naked_sleep() {
3108  // %% make the sleep time an integer flag. for now use 1 millisec.
3109  return os::sleep(Thread::current(), 1, false);
3110}
3111
3112// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3113void os::infinite_sleep() {
3114  while (true) {    // sleep forever ...
3115    ::sleep(100);   // ... 100 seconds at a time
3116  }
3117}
3118
3119// Used to convert frequent JVM_Yield() to nops
3120bool os::dont_yield() {
3121  return DontYieldALot;
3122}
3123
3124void os::yield() {
3125  sched_yield();
3126}
3127
3128os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3129
3130void os::yield_all(int attempts) {
3131  // Yields to all threads, including threads with lower priorities
3132  // Threads on Linux are all with same priority. The Solaris style
3133  // os::yield_all() with nanosleep(1ms) is not necessary.
3134  sched_yield();
3135}
3136
3137// Called from the tight loops to possibly influence time-sharing heuristics
3138void os::loop_breaker(int attempts) {
3139  os::yield_all(attempts);
3140}
3141
3142////////////////////////////////////////////////////////////////////////////////
3143// thread priority support
3144
3145// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3146// only supports dynamic priority, static priority must be zero. For real-time
3147// applications, Linux supports SCHED_RR which allows static priority (1-99).
3148// However, for large multi-threaded applications, SCHED_RR is not only slower
3149// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3150// of 5 runs - Sep 2005).
3151//
3152// The following code actually changes the niceness of kernel-thread/LWP. It
3153// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3154// not the entire user process, and user level threads are 1:1 mapped to kernel
3155// threads. It has always been the case, but could change in the future. For
3156// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3157// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3158
3159int os::java_to_os_priority[MaxPriority + 1] = {
3160  19,              // 0 Entry should never be used
3161
3162   4,              // 1 MinPriority
3163   3,              // 2
3164   2,              // 3
3165
3166   1,              // 4
3167   0,              // 5 NormPriority
3168  -1,              // 6
3169
3170  -2,              // 7
3171  -3,              // 8
3172  -4,              // 9 NearMaxPriority
3173
3174  -5               // 10 MaxPriority
3175};
3176
3177static int prio_init() {
3178  if (ThreadPriorityPolicy == 1) {
3179    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3180    // if effective uid is not root. Perhaps, a more elegant way of doing
3181    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3182    if (geteuid() != 0) {
3183      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3184        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3185      }
3186      ThreadPriorityPolicy = 0;
3187    }
3188  }
3189  return 0;
3190}
3191
3192OSReturn os::set_native_priority(Thread* thread, int newpri) {
3193  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3194
3195  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3196  return (ret == 0) ? OS_OK : OS_ERR;
3197}
3198
3199OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3200  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3201    *priority_ptr = java_to_os_priority[NormPriority];
3202    return OS_OK;
3203  }
3204
3205  errno = 0;
3206  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3207  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3208}
3209
3210// Hint to the underlying OS that a task switch would not be good.
3211// Void return because it's a hint and can fail.
3212void os::hint_no_preempt() {}
3213
3214////////////////////////////////////////////////////////////////////////////////
3215// suspend/resume support
3216
3217//  the low-level signal-based suspend/resume support is a remnant from the
3218//  old VM-suspension that used to be for java-suspension, safepoints etc,
3219//  within hotspot. Now there is a single use-case for this:
3220//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3221//      that runs in the watcher thread.
3222//  The remaining code is greatly simplified from the more general suspension
3223//  code that used to be used.
3224//
3225//  The protocol is quite simple:
3226//  - suspend:
3227//      - sends a signal to the target thread
3228//      - polls the suspend state of the osthread using a yield loop
3229//      - target thread signal handler (SR_handler) sets suspend state
3230//        and blocks in sigsuspend until continued
3231//  - resume:
3232//      - sets target osthread state to continue
3233//      - sends signal to end the sigsuspend loop in the SR_handler
3234//
3235//  Note that the SR_lock plays no role in this suspend/resume protocol.
3236//
3237
3238static void resume_clear_context(OSThread *osthread) {
3239  osthread->set_ucontext(NULL);
3240  osthread->set_siginfo(NULL);
3241
3242  // notify the suspend action is completed, we have now resumed
3243  osthread->sr.clear_suspended();
3244}
3245
3246static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3247  osthread->set_ucontext(context);
3248  osthread->set_siginfo(siginfo);
3249}
3250
3251//
3252// Handler function invoked when a thread's execution is suspended or
3253// resumed. We have to be careful that only async-safe functions are
3254// called here (Note: most pthread functions are not async safe and
3255// should be avoided.)
3256//
3257// Note: sigwait() is a more natural fit than sigsuspend() from an
3258// interface point of view, but sigwait() prevents the signal hander
3259// from being run. libpthread would get very confused by not having
3260// its signal handlers run and prevents sigwait()'s use with the
3261// mutex granting granting signal.
3262//
3263// Currently only ever called on the VMThread
3264//
3265static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3266  // Save and restore errno to avoid confusing native code with EINTR
3267  // after sigsuspend.
3268  int old_errno = errno;
3269
3270  Thread* thread = Thread::current();
3271  OSThread* osthread = thread->osthread();
3272  assert(thread->is_VM_thread(), "Must be VMThread");
3273  // read current suspend action
3274  int action = osthread->sr.suspend_action();
3275  if (action == SR_SUSPEND) {
3276    suspend_save_context(osthread, siginfo, context);
3277
3278    // Notify the suspend action is about to be completed. do_suspend()
3279    // waits until SR_SUSPENDED is set and then returns. We will wait
3280    // here for a resume signal and that completes the suspend-other
3281    // action. do_suspend/do_resume is always called as a pair from
3282    // the same thread - so there are no races
3283
3284    // notify the caller
3285    osthread->sr.set_suspended();
3286
3287    sigset_t suspend_set;  // signals for sigsuspend()
3288
3289    // get current set of blocked signals and unblock resume signal
3290    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3291    sigdelset(&suspend_set, SR_signum);
3292
3293    // wait here until we are resumed
3294    do {
3295      sigsuspend(&suspend_set);
3296      // ignore all returns until we get a resume signal
3297    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3298
3299    resume_clear_context(osthread);
3300
3301  } else {
3302    assert(action == SR_CONTINUE, "unexpected sr action");
3303    // nothing special to do - just leave the handler
3304  }
3305
3306  errno = old_errno;
3307}
3308
3309
3310static int SR_initialize() {
3311  struct sigaction act;
3312  char *s;
3313  /* Get signal number to use for suspend/resume */
3314  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3315    int sig = ::strtol(s, 0, 10);
3316    if (sig > 0 || sig < _NSIG) {
3317        SR_signum = sig;
3318    }
3319  }
3320
3321  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3322        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3323
3324  sigemptyset(&SR_sigset);
3325  sigaddset(&SR_sigset, SR_signum);
3326
3327  /* Set up signal handler for suspend/resume */
3328  act.sa_flags = SA_RESTART|SA_SIGINFO;
3329  act.sa_handler = (void (*)(int)) SR_handler;
3330
3331  // SR_signum is blocked by default.
3332  // 4528190 - We also need to block pthread restart signal (32 on all
3333  // supported Linux platforms). Note that LinuxThreads need to block
3334  // this signal for all threads to work properly. So we don't have
3335  // to use hard-coded signal number when setting up the mask.
3336  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3337
3338  if (sigaction(SR_signum, &act, 0) == -1) {
3339    return -1;
3340  }
3341
3342  // Save signal flag
3343  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3344  return 0;
3345}
3346
3347static int SR_finalize() {
3348  return 0;
3349}
3350
3351
3352// returns true on success and false on error - really an error is fatal
3353// but this seems the normal response to library errors
3354static bool do_suspend(OSThread* osthread) {
3355  // mark as suspended and send signal
3356  osthread->sr.set_suspend_action(SR_SUSPEND);
3357  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3358  assert_status(status == 0, status, "pthread_kill");
3359
3360  // check status and wait until notified of suspension
3361  if (status == 0) {
3362    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3363      os::yield_all(i);
3364    }
3365    osthread->sr.set_suspend_action(SR_NONE);
3366    return true;
3367  }
3368  else {
3369    osthread->sr.set_suspend_action(SR_NONE);
3370    return false;
3371  }
3372}
3373
3374static void do_resume(OSThread* osthread) {
3375  assert(osthread->sr.is_suspended(), "thread should be suspended");
3376  osthread->sr.set_suspend_action(SR_CONTINUE);
3377
3378  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3379  assert_status(status == 0, status, "pthread_kill");
3380  // check status and wait unit notified of resumption
3381  if (status == 0) {
3382    for (int i = 0; osthread->sr.is_suspended(); i++) {
3383      os::yield_all(i);
3384    }
3385  }
3386  osthread->sr.set_suspend_action(SR_NONE);
3387}
3388
3389////////////////////////////////////////////////////////////////////////////////
3390// interrupt support
3391
3392void os::interrupt(Thread* thread) {
3393  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3394    "possibility of dangling Thread pointer");
3395
3396  OSThread* osthread = thread->osthread();
3397
3398  if (!osthread->interrupted()) {
3399    osthread->set_interrupted(true);
3400    // More than one thread can get here with the same value of osthread,
3401    // resulting in multiple notifications.  We do, however, want the store
3402    // to interrupted() to be visible to other threads before we execute unpark().
3403    OrderAccess::fence();
3404    ParkEvent * const slp = thread->_SleepEvent ;
3405    if (slp != NULL) slp->unpark() ;
3406  }
3407
3408  // For JSR166. Unpark even if interrupt status already was set
3409  if (thread->is_Java_thread())
3410    ((JavaThread*)thread)->parker()->unpark();
3411
3412  ParkEvent * ev = thread->_ParkEvent ;
3413  if (ev != NULL) ev->unpark() ;
3414
3415}
3416
3417bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3418  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3419    "possibility of dangling Thread pointer");
3420
3421  OSThread* osthread = thread->osthread();
3422
3423  bool interrupted = osthread->interrupted();
3424
3425  if (interrupted && clear_interrupted) {
3426    osthread->set_interrupted(false);
3427    // consider thread->_SleepEvent->reset() ... optional optimization
3428  }
3429
3430  return interrupted;
3431}
3432
3433///////////////////////////////////////////////////////////////////////////////////
3434// signal handling (except suspend/resume)
3435
3436// This routine may be used by user applications as a "hook" to catch signals.
3437// The user-defined signal handler must pass unrecognized signals to this
3438// routine, and if it returns true (non-zero), then the signal handler must
3439// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3440// routine will never retun false (zero), but instead will execute a VM panic
3441// routine kill the process.
3442//
3443// If this routine returns false, it is OK to call it again.  This allows
3444// the user-defined signal handler to perform checks either before or after
3445// the VM performs its own checks.  Naturally, the user code would be making
3446// a serious error if it tried to handle an exception (such as a null check
3447// or breakpoint) that the VM was generating for its own correct operation.
3448//
3449// This routine may recognize any of the following kinds of signals:
3450//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3451// It should be consulted by handlers for any of those signals.
3452//
3453// The caller of this routine must pass in the three arguments supplied
3454// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3455// field of the structure passed to sigaction().  This routine assumes that
3456// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3457//
3458// Note that the VM will print warnings if it detects conflicting signal
3459// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3460//
3461extern "C" int
3462JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3463                        void* ucontext, int abort_if_unrecognized);
3464
3465void signalHandler(int sig, siginfo_t* info, void* uc) {
3466  assert(info != NULL && uc != NULL, "it must be old kernel");
3467  JVM_handle_linux_signal(sig, info, uc, true);
3468}
3469
3470
3471// This boolean allows users to forward their own non-matching signals
3472// to JVM_handle_linux_signal, harmlessly.
3473bool os::Linux::signal_handlers_are_installed = false;
3474
3475// For signal-chaining
3476struct sigaction os::Linux::sigact[MAXSIGNUM];
3477unsigned int os::Linux::sigs = 0;
3478bool os::Linux::libjsig_is_loaded = false;
3479typedef struct sigaction *(*get_signal_t)(int);
3480get_signal_t os::Linux::get_signal_action = NULL;
3481
3482struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3483  struct sigaction *actp = NULL;
3484
3485  if (libjsig_is_loaded) {
3486    // Retrieve the old signal handler from libjsig
3487    actp = (*get_signal_action)(sig);
3488  }
3489  if (actp == NULL) {
3490    // Retrieve the preinstalled signal handler from jvm
3491    actp = get_preinstalled_handler(sig);
3492  }
3493
3494  return actp;
3495}
3496
3497static bool call_chained_handler(struct sigaction *actp, int sig,
3498                                 siginfo_t *siginfo, void *context) {
3499  // Call the old signal handler
3500  if (actp->sa_handler == SIG_DFL) {
3501    // It's more reasonable to let jvm treat it as an unexpected exception
3502    // instead of taking the default action.
3503    return false;
3504  } else if (actp->sa_handler != SIG_IGN) {
3505    if ((actp->sa_flags & SA_NODEFER) == 0) {
3506      // automaticlly block the signal
3507      sigaddset(&(actp->sa_mask), sig);
3508    }
3509
3510    sa_handler_t hand;
3511    sa_sigaction_t sa;
3512    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3513    // retrieve the chained handler
3514    if (siginfo_flag_set) {
3515      sa = actp->sa_sigaction;
3516    } else {
3517      hand = actp->sa_handler;
3518    }
3519
3520    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3521      actp->sa_handler = SIG_DFL;
3522    }
3523
3524    // try to honor the signal mask
3525    sigset_t oset;
3526    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3527
3528    // call into the chained handler
3529    if (siginfo_flag_set) {
3530      (*sa)(sig, siginfo, context);
3531    } else {
3532      (*hand)(sig);
3533    }
3534
3535    // restore the signal mask
3536    pthread_sigmask(SIG_SETMASK, &oset, 0);
3537  }
3538  // Tell jvm's signal handler the signal is taken care of.
3539  return true;
3540}
3541
3542bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3543  bool chained = false;
3544  // signal-chaining
3545  if (UseSignalChaining) {
3546    struct sigaction *actp = get_chained_signal_action(sig);
3547    if (actp != NULL) {
3548      chained = call_chained_handler(actp, sig, siginfo, context);
3549    }
3550  }
3551  return chained;
3552}
3553
3554struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3555  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3556    return &sigact[sig];
3557  }
3558  return NULL;
3559}
3560
3561void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3562  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3563  sigact[sig] = oldAct;
3564  sigs |= (unsigned int)1 << sig;
3565}
3566
3567// for diagnostic
3568int os::Linux::sigflags[MAXSIGNUM];
3569
3570int os::Linux::get_our_sigflags(int sig) {
3571  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3572  return sigflags[sig];
3573}
3574
3575void os::Linux::set_our_sigflags(int sig, int flags) {
3576  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3577  sigflags[sig] = flags;
3578}
3579
3580void os::Linux::set_signal_handler(int sig, bool set_installed) {
3581  // Check for overwrite.
3582  struct sigaction oldAct;
3583  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3584
3585  void* oldhand = oldAct.sa_sigaction
3586                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3587                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3588  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3589      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3590      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3591    if (AllowUserSignalHandlers || !set_installed) {
3592      // Do not overwrite; user takes responsibility to forward to us.
3593      return;
3594    } else if (UseSignalChaining) {
3595      // save the old handler in jvm
3596      save_preinstalled_handler(sig, oldAct);
3597      // libjsig also interposes the sigaction() call below and saves the
3598      // old sigaction on it own.
3599    } else {
3600      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3601                    "%#lx for signal %d.", (long)oldhand, sig));
3602    }
3603  }
3604
3605  struct sigaction sigAct;
3606  sigfillset(&(sigAct.sa_mask));
3607  sigAct.sa_handler = SIG_DFL;
3608  if (!set_installed) {
3609    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3610  } else {
3611    sigAct.sa_sigaction = signalHandler;
3612    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3613  }
3614  // Save flags, which are set by ours
3615  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3616  sigflags[sig] = sigAct.sa_flags;
3617
3618  int ret = sigaction(sig, &sigAct, &oldAct);
3619  assert(ret == 0, "check");
3620
3621  void* oldhand2  = oldAct.sa_sigaction
3622                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3623                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3624  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3625}
3626
3627// install signal handlers for signals that HotSpot needs to
3628// handle in order to support Java-level exception handling.
3629
3630void os::Linux::install_signal_handlers() {
3631  if (!signal_handlers_are_installed) {
3632    signal_handlers_are_installed = true;
3633
3634    // signal-chaining
3635    typedef void (*signal_setting_t)();
3636    signal_setting_t begin_signal_setting = NULL;
3637    signal_setting_t end_signal_setting = NULL;
3638    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3639                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3640    if (begin_signal_setting != NULL) {
3641      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3642                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3643      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3644                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3645      libjsig_is_loaded = true;
3646      assert(UseSignalChaining, "should enable signal-chaining");
3647    }
3648    if (libjsig_is_loaded) {
3649      // Tell libjsig jvm is setting signal handlers
3650      (*begin_signal_setting)();
3651    }
3652
3653    set_signal_handler(SIGSEGV, true);
3654    set_signal_handler(SIGPIPE, true);
3655    set_signal_handler(SIGBUS, true);
3656    set_signal_handler(SIGILL, true);
3657    set_signal_handler(SIGFPE, true);
3658    set_signal_handler(SIGXFSZ, true);
3659
3660    if (libjsig_is_loaded) {
3661      // Tell libjsig jvm finishes setting signal handlers
3662      (*end_signal_setting)();
3663    }
3664
3665    // We don't activate signal checker if libjsig is in place, we trust ourselves
3666    // and if UserSignalHandler is installed all bets are off
3667    if (CheckJNICalls) {
3668      if (libjsig_is_loaded) {
3669        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3670        check_signals = false;
3671      }
3672      if (AllowUserSignalHandlers) {
3673        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3674        check_signals = false;
3675      }
3676    }
3677  }
3678}
3679
3680// This is the fastest way to get thread cpu time on Linux.
3681// Returns cpu time (user+sys) for any thread, not only for current.
3682// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3683// It might work on 2.6.10+ with a special kernel/glibc patch.
3684// For reference, please, see IEEE Std 1003.1-2004:
3685//   http://www.unix.org/single_unix_specification
3686
3687jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3688  struct timespec tp;
3689  int rc = os::Linux::clock_gettime(clockid, &tp);
3690  assert(rc == 0, "clock_gettime is expected to return 0 code");
3691
3692  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3693}
3694
3695/////
3696// glibc on Linux platform uses non-documented flag
3697// to indicate, that some special sort of signal
3698// trampoline is used.
3699// We will never set this flag, and we should
3700// ignore this flag in our diagnostic
3701#ifdef SIGNIFICANT_SIGNAL_MASK
3702#undef SIGNIFICANT_SIGNAL_MASK
3703#endif
3704#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3705
3706static const char* get_signal_handler_name(address handler,
3707                                           char* buf, int buflen) {
3708  int offset;
3709  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3710  if (found) {
3711    // skip directory names
3712    const char *p1, *p2;
3713    p1 = buf;
3714    size_t len = strlen(os::file_separator());
3715    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3716    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3717  } else {
3718    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3719  }
3720  return buf;
3721}
3722
3723static void print_signal_handler(outputStream* st, int sig,
3724                                 char* buf, size_t buflen) {
3725  struct sigaction sa;
3726
3727  sigaction(sig, NULL, &sa);
3728
3729  // See comment for SIGNIFICANT_SIGNAL_MASK define
3730  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3731
3732  st->print("%s: ", os::exception_name(sig, buf, buflen));
3733
3734  address handler = (sa.sa_flags & SA_SIGINFO)
3735    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3736    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3737
3738  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3739    st->print("SIG_DFL");
3740  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3741    st->print("SIG_IGN");
3742  } else {
3743    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3744  }
3745
3746  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3747
3748  address rh = VMError::get_resetted_sighandler(sig);
3749  // May be, handler was resetted by VMError?
3750  if(rh != NULL) {
3751    handler = rh;
3752    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3753  }
3754
3755  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3756
3757  // Check: is it our handler?
3758  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3759     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3760    // It is our signal handler
3761    // check for flags, reset system-used one!
3762    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3763      st->print(
3764                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3765                os::Linux::get_our_sigflags(sig));
3766    }
3767  }
3768  st->cr();
3769}
3770
3771
3772#define DO_SIGNAL_CHECK(sig) \
3773  if (!sigismember(&check_signal_done, sig)) \
3774    os::Linux::check_signal_handler(sig)
3775
3776// This method is a periodic task to check for misbehaving JNI applications
3777// under CheckJNI, we can add any periodic checks here
3778
3779void os::run_periodic_checks() {
3780
3781  if (check_signals == false) return;
3782
3783  // SEGV and BUS if overridden could potentially prevent
3784  // generation of hs*.log in the event of a crash, debugging
3785  // such a case can be very challenging, so we absolutely
3786  // check the following for a good measure:
3787  DO_SIGNAL_CHECK(SIGSEGV);
3788  DO_SIGNAL_CHECK(SIGILL);
3789  DO_SIGNAL_CHECK(SIGFPE);
3790  DO_SIGNAL_CHECK(SIGBUS);
3791  DO_SIGNAL_CHECK(SIGPIPE);
3792  DO_SIGNAL_CHECK(SIGXFSZ);
3793
3794
3795  // ReduceSignalUsage allows the user to override these handlers
3796  // see comments at the very top and jvm_solaris.h
3797  if (!ReduceSignalUsage) {
3798    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3799    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3800    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3801    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3802  }
3803
3804  DO_SIGNAL_CHECK(SR_signum);
3805  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3806}
3807
3808typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3809
3810static os_sigaction_t os_sigaction = NULL;
3811
3812void os::Linux::check_signal_handler(int sig) {
3813  char buf[O_BUFLEN];
3814  address jvmHandler = NULL;
3815
3816
3817  struct sigaction act;
3818  if (os_sigaction == NULL) {
3819    // only trust the default sigaction, in case it has been interposed
3820    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3821    if (os_sigaction == NULL) return;
3822  }
3823
3824  os_sigaction(sig, (struct sigaction*)NULL, &act);
3825
3826
3827  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3828
3829  address thisHandler = (act.sa_flags & SA_SIGINFO)
3830    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3831    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3832
3833
3834  switch(sig) {
3835  case SIGSEGV:
3836  case SIGBUS:
3837  case SIGFPE:
3838  case SIGPIPE:
3839  case SIGILL:
3840  case SIGXFSZ:
3841    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3842    break;
3843
3844  case SHUTDOWN1_SIGNAL:
3845  case SHUTDOWN2_SIGNAL:
3846  case SHUTDOWN3_SIGNAL:
3847  case BREAK_SIGNAL:
3848    jvmHandler = (address)user_handler();
3849    break;
3850
3851  case INTERRUPT_SIGNAL:
3852    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3853    break;
3854
3855  default:
3856    if (sig == SR_signum) {
3857      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3858    } else {
3859      return;
3860    }
3861    break;
3862  }
3863
3864  if (thisHandler != jvmHandler) {
3865    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3866    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3867    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3868    // No need to check this sig any longer
3869    sigaddset(&check_signal_done, sig);
3870  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3871    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3872    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3873    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3874    // No need to check this sig any longer
3875    sigaddset(&check_signal_done, sig);
3876  }
3877
3878  // Dump all the signal
3879  if (sigismember(&check_signal_done, sig)) {
3880    print_signal_handlers(tty, buf, O_BUFLEN);
3881  }
3882}
3883
3884extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3885
3886extern bool signal_name(int signo, char* buf, size_t len);
3887
3888const char* os::exception_name(int exception_code, char* buf, size_t size) {
3889  if (0 < exception_code && exception_code <= SIGRTMAX) {
3890    // signal
3891    if (!signal_name(exception_code, buf, size)) {
3892      jio_snprintf(buf, size, "SIG%d", exception_code);
3893    }
3894    return buf;
3895  } else {
3896    return NULL;
3897  }
3898}
3899
3900// this is called _before_ the most of global arguments have been parsed
3901void os::init(void) {
3902  char dummy;   /* used to get a guess on initial stack address */
3903//  first_hrtime = gethrtime();
3904
3905  // With LinuxThreads the JavaMain thread pid (primordial thread)
3906  // is different than the pid of the java launcher thread.
3907  // So, on Linux, the launcher thread pid is passed to the VM
3908  // via the sun.java.launcher.pid property.
3909  // Use this property instead of getpid() if it was correctly passed.
3910  // See bug 6351349.
3911  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3912
3913  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3914
3915  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3916
3917  init_random(1234567);
3918
3919  ThreadCritical::initialize();
3920
3921  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3922  if (Linux::page_size() == -1) {
3923    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3924                  strerror(errno)));
3925  }
3926  init_page_sizes((size_t) Linux::page_size());
3927
3928  Linux::initialize_system_info();
3929
3930  // main_thread points to the aboriginal thread
3931  Linux::_main_thread = pthread_self();
3932
3933  Linux::clock_init();
3934  initial_time_count = os::elapsed_counter();
3935  pthread_mutex_init(&dl_mutex, NULL);
3936}
3937
3938// To install functions for atexit system call
3939extern "C" {
3940  static void perfMemory_exit_helper() {
3941    perfMemory_exit();
3942  }
3943}
3944
3945// this is called _after_ the global arguments have been parsed
3946jint os::init_2(void)
3947{
3948  Linux::fast_thread_clock_init();
3949
3950  // Allocate a single page and mark it as readable for safepoint polling
3951  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3952  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3953
3954  os::set_polling_page( polling_page );
3955
3956#ifndef PRODUCT
3957  if(Verbose && PrintMiscellaneous)
3958    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3959#endif
3960
3961  if (!UseMembar) {
3962    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3963    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3964    os::set_memory_serialize_page( mem_serialize_page );
3965
3966#ifndef PRODUCT
3967    if(Verbose && PrintMiscellaneous)
3968      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3969#endif
3970  }
3971
3972  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3973
3974  // initialize suspend/resume support - must do this before signal_sets_init()
3975  if (SR_initialize() != 0) {
3976    perror("SR_initialize failed");
3977    return JNI_ERR;
3978  }
3979
3980  Linux::signal_sets_init();
3981  Linux::install_signal_handlers();
3982
3983  // Check minimum allowable stack size for thread creation and to initialize
3984  // the java system classes, including StackOverflowError - depends on page
3985  // size.  Add a page for compiler2 recursion in main thread.
3986  // Add in 2*BytesPerWord times page size to account for VM stack during
3987  // class initialization depending on 32 or 64 bit VM.
3988  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
3989            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3990                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
3991
3992  size_t threadStackSizeInBytes = ThreadStackSize * K;
3993  if (threadStackSizeInBytes != 0 &&
3994      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
3995        tty->print_cr("\nThe stack size specified is too small, "
3996                      "Specify at least %dk",
3997                      os::Linux::min_stack_allowed/ K);
3998        return JNI_ERR;
3999  }
4000
4001  // Make the stack size a multiple of the page size so that
4002  // the yellow/red zones can be guarded.
4003  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4004        vm_page_size()));
4005
4006  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4007
4008  Linux::libpthread_init();
4009  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4010     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4011          Linux::glibc_version(), Linux::libpthread_version(),
4012          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4013  }
4014
4015  if (UseNUMA) {
4016    if (!Linux::libnuma_init()) {
4017      UseNUMA = false;
4018    } else {
4019      if ((Linux::numa_max_node() < 1)) {
4020        // There's only one node(they start from 0), disable NUMA.
4021        UseNUMA = false;
4022      }
4023    }
4024    if (!UseNUMA && ForceNUMA) {
4025      UseNUMA = true;
4026    }
4027  }
4028
4029  if (MaxFDLimit) {
4030    // set the number of file descriptors to max. print out error
4031    // if getrlimit/setrlimit fails but continue regardless.
4032    struct rlimit nbr_files;
4033    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4034    if (status != 0) {
4035      if (PrintMiscellaneous && (Verbose || WizardMode))
4036        perror("os::init_2 getrlimit failed");
4037    } else {
4038      nbr_files.rlim_cur = nbr_files.rlim_max;
4039      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4040      if (status != 0) {
4041        if (PrintMiscellaneous && (Verbose || WizardMode))
4042          perror("os::init_2 setrlimit failed");
4043      }
4044    }
4045  }
4046
4047  // Initialize lock used to serialize thread creation (see os::create_thread)
4048  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4049
4050  // Initialize HPI.
4051  jint hpi_result = hpi::initialize();
4052  if (hpi_result != JNI_OK) {
4053    tty->print_cr("There was an error trying to initialize the HPI library.");
4054    return hpi_result;
4055  }
4056
4057  // at-exit methods are called in the reverse order of their registration.
4058  // atexit functions are called on return from main or as a result of a
4059  // call to exit(3C). There can be only 32 of these functions registered
4060  // and atexit() does not set errno.
4061
4062  if (PerfAllowAtExitRegistration) {
4063    // only register atexit functions if PerfAllowAtExitRegistration is set.
4064    // atexit functions can be delayed until process exit time, which
4065    // can be problematic for embedded VM situations. Embedded VMs should
4066    // call DestroyJavaVM() to assure that VM resources are released.
4067
4068    // note: perfMemory_exit_helper atexit function may be removed in
4069    // the future if the appropriate cleanup code can be added to the
4070    // VM_Exit VMOperation's doit method.
4071    if (atexit(perfMemory_exit_helper) != 0) {
4072      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4073    }
4074  }
4075
4076  // initialize thread priority policy
4077  prio_init();
4078
4079  return JNI_OK;
4080}
4081
4082// this is called at the end of vm_initialization
4083void os::init_3(void) { }
4084
4085// Mark the polling page as unreadable
4086void os::make_polling_page_unreadable(void) {
4087  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4088    fatal("Could not disable polling page");
4089};
4090
4091// Mark the polling page as readable
4092void os::make_polling_page_readable(void) {
4093  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4094    fatal("Could not enable polling page");
4095  }
4096};
4097
4098int os::active_processor_count() {
4099  // Linux doesn't yet have a (official) notion of processor sets,
4100  // so just return the number of online processors.
4101  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4102  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4103  return online_cpus;
4104}
4105
4106bool os::distribute_processes(uint length, uint* distribution) {
4107  // Not yet implemented.
4108  return false;
4109}
4110
4111bool os::bind_to_processor(uint processor_id) {
4112  // Not yet implemented.
4113  return false;
4114}
4115
4116///
4117
4118// Suspends the target using the signal mechanism and then grabs the PC before
4119// resuming the target. Used by the flat-profiler only
4120ExtendedPC os::get_thread_pc(Thread* thread) {
4121  // Make sure that it is called by the watcher for the VMThread
4122  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4123  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4124
4125  ExtendedPC epc;
4126
4127  OSThread* osthread = thread->osthread();
4128  if (do_suspend(osthread)) {
4129    if (osthread->ucontext() != NULL) {
4130      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4131    } else {
4132      // NULL context is unexpected, double-check this is the VMThread
4133      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4134    }
4135    do_resume(osthread);
4136  }
4137  // failure means pthread_kill failed for some reason - arguably this is
4138  // a fatal problem, but such problems are ignored elsewhere
4139
4140  return epc;
4141}
4142
4143int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4144{
4145   if (is_NPTL()) {
4146      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4147   } else {
4148#ifndef IA64
4149      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4150      // word back to default 64bit precision if condvar is signaled. Java
4151      // wants 53bit precision.  Save and restore current value.
4152      int fpu = get_fpu_control_word();
4153#endif // IA64
4154      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4155#ifndef IA64
4156      set_fpu_control_word(fpu);
4157#endif // IA64
4158      return status;
4159   }
4160}
4161
4162////////////////////////////////////////////////////////////////////////////////
4163// debug support
4164
4165static address same_page(address x, address y) {
4166  int page_bits = -os::vm_page_size();
4167  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4168    return x;
4169  else if (x > y)
4170    return (address)(intptr_t(y) | ~page_bits) + 1;
4171  else
4172    return (address)(intptr_t(y) & page_bits);
4173}
4174
4175bool os::find(address addr, outputStream* st) {
4176  Dl_info dlinfo;
4177  memset(&dlinfo, 0, sizeof(dlinfo));
4178  if (dladdr(addr, &dlinfo)) {
4179    st->print(PTR_FORMAT ": ", addr);
4180    if (dlinfo.dli_sname != NULL) {
4181      st->print("%s+%#x", dlinfo.dli_sname,
4182                 addr - (intptr_t)dlinfo.dli_saddr);
4183    } else if (dlinfo.dli_fname) {
4184      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4185    } else {
4186      st->print("<absolute address>");
4187    }
4188    if (dlinfo.dli_fname) {
4189      st->print(" in %s", dlinfo.dli_fname);
4190    }
4191    if (dlinfo.dli_fbase) {
4192      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4193    }
4194    st->cr();
4195
4196    if (Verbose) {
4197      // decode some bytes around the PC
4198      address begin = same_page(addr-40, addr);
4199      address end   = same_page(addr+40, addr);
4200      address       lowest = (address) dlinfo.dli_sname;
4201      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4202      if (begin < lowest)  begin = lowest;
4203      Dl_info dlinfo2;
4204      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4205          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4206        end = (address) dlinfo2.dli_saddr;
4207      Disassembler::decode(begin, end, st);
4208    }
4209    return true;
4210  }
4211  return false;
4212}
4213
4214////////////////////////////////////////////////////////////////////////////////
4215// misc
4216
4217// This does not do anything on Linux. This is basically a hook for being
4218// able to use structured exception handling (thread-local exception filters)
4219// on, e.g., Win32.
4220void
4221os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4222                         JavaCallArguments* args, Thread* thread) {
4223  f(value, method, args, thread);
4224}
4225
4226void os::print_statistics() {
4227}
4228
4229int os::message_box(const char* title, const char* message) {
4230  int i;
4231  fdStream err(defaultStream::error_fd());
4232  for (i = 0; i < 78; i++) err.print_raw("=");
4233  err.cr();
4234  err.print_raw_cr(title);
4235  for (i = 0; i < 78; i++) err.print_raw("-");
4236  err.cr();
4237  err.print_raw_cr(message);
4238  for (i = 0; i < 78; i++) err.print_raw("=");
4239  err.cr();
4240
4241  char buf[16];
4242  // Prevent process from exiting upon "read error" without consuming all CPU
4243  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4244
4245  return buf[0] == 'y' || buf[0] == 'Y';
4246}
4247
4248int os::stat(const char *path, struct stat *sbuf) {
4249  char pathbuf[MAX_PATH];
4250  if (strlen(path) > MAX_PATH - 1) {
4251    errno = ENAMETOOLONG;
4252    return -1;
4253  }
4254  hpi::native_path(strcpy(pathbuf, path));
4255  return ::stat(pathbuf, sbuf);
4256}
4257
4258bool os::check_heap(bool force) {
4259  return true;
4260}
4261
4262int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4263  return ::vsnprintf(buf, count, format, args);
4264}
4265
4266// Is a (classpath) directory empty?
4267bool os::dir_is_empty(const char* path) {
4268  DIR *dir = NULL;
4269  struct dirent *ptr;
4270
4271  dir = opendir(path);
4272  if (dir == NULL) return true;
4273
4274  /* Scan the directory */
4275  bool result = true;
4276  char buf[sizeof(struct dirent) + MAX_PATH];
4277  while (result && (ptr = ::readdir(dir)) != NULL) {
4278    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4279      result = false;
4280    }
4281  }
4282  closedir(dir);
4283  return result;
4284}
4285
4286// create binary file, rewriting existing file if required
4287int os::create_binary_file(const char* path, bool rewrite_existing) {
4288  int oflags = O_WRONLY | O_CREAT;
4289  if (!rewrite_existing) {
4290    oflags |= O_EXCL;
4291  }
4292  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4293}
4294
4295// return current position of file pointer
4296jlong os::current_file_offset(int fd) {
4297  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4298}
4299
4300// move file pointer to the specified offset
4301jlong os::seek_to_file_offset(int fd, jlong offset) {
4302  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4303}
4304
4305// Map a block of memory.
4306char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4307                     char *addr, size_t bytes, bool read_only,
4308                     bool allow_exec) {
4309  int prot;
4310  int flags;
4311
4312  if (read_only) {
4313    prot = PROT_READ;
4314    flags = MAP_SHARED;
4315  } else {
4316    prot = PROT_READ | PROT_WRITE;
4317    flags = MAP_PRIVATE;
4318  }
4319
4320  if (allow_exec) {
4321    prot |= PROT_EXEC;
4322  }
4323
4324  if (addr != NULL) {
4325    flags |= MAP_FIXED;
4326  }
4327
4328  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4329                                     fd, file_offset);
4330  if (mapped_address == MAP_FAILED) {
4331    return NULL;
4332  }
4333  return mapped_address;
4334}
4335
4336
4337// Remap a block of memory.
4338char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4339                       char *addr, size_t bytes, bool read_only,
4340                       bool allow_exec) {
4341  // same as map_memory() on this OS
4342  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4343                        allow_exec);
4344}
4345
4346
4347// Unmap a block of memory.
4348bool os::unmap_memory(char* addr, size_t bytes) {
4349  return munmap(addr, bytes) == 0;
4350}
4351
4352static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4353
4354static clockid_t thread_cpu_clockid(Thread* thread) {
4355  pthread_t tid = thread->osthread()->pthread_id();
4356  clockid_t clockid;
4357
4358  // Get thread clockid
4359  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4360  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4361  return clockid;
4362}
4363
4364// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4365// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4366// of a thread.
4367//
4368// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4369// the fast estimate available on the platform.
4370
4371jlong os::current_thread_cpu_time() {
4372  if (os::Linux::supports_fast_thread_cpu_time()) {
4373    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4374  } else {
4375    // return user + sys since the cost is the same
4376    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4377  }
4378}
4379
4380jlong os::thread_cpu_time(Thread* thread) {
4381  // consistent with what current_thread_cpu_time() returns
4382  if (os::Linux::supports_fast_thread_cpu_time()) {
4383    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4384  } else {
4385    return slow_thread_cpu_time(thread, true /* user + sys */);
4386  }
4387}
4388
4389jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4390  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4391    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4392  } else {
4393    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4394  }
4395}
4396
4397jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4398  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4399    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4400  } else {
4401    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4402  }
4403}
4404
4405//
4406//  -1 on error.
4407//
4408
4409static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4410  static bool proc_pid_cpu_avail = true;
4411  static bool proc_task_unchecked = true;
4412  static const char *proc_stat_path = "/proc/%d/stat";
4413  pid_t  tid = thread->osthread()->thread_id();
4414  int i;
4415  char *s;
4416  char stat[2048];
4417  int statlen;
4418  char proc_name[64];
4419  int count;
4420  long sys_time, user_time;
4421  char string[64];
4422  char cdummy;
4423  int idummy;
4424  long ldummy;
4425  FILE *fp;
4426
4427  // We first try accessing /proc/<pid>/cpu since this is faster to
4428  // process.  If this file is not present (linux kernels 2.5 and above)
4429  // then we open /proc/<pid>/stat.
4430  if ( proc_pid_cpu_avail ) {
4431    sprintf(proc_name, "/proc/%d/cpu", tid);
4432    fp =  fopen(proc_name, "r");
4433    if ( fp != NULL ) {
4434      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4435      fclose(fp);
4436      if ( count != 3 ) return -1;
4437
4438      if (user_sys_cpu_time) {
4439        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4440      } else {
4441        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4442      }
4443    }
4444    else proc_pid_cpu_avail = false;
4445  }
4446
4447  // The /proc/<tid>/stat aggregates per-process usage on
4448  // new Linux kernels 2.6+ where NPTL is supported.
4449  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4450  // See bug 6328462.
4451  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4452  // and possibly in some other cases, so we check its availability.
4453  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4454    // This is executed only once
4455    proc_task_unchecked = false;
4456    fp = fopen("/proc/self/task", "r");
4457    if (fp != NULL) {
4458      proc_stat_path = "/proc/self/task/%d/stat";
4459      fclose(fp);
4460    }
4461  }
4462
4463  sprintf(proc_name, proc_stat_path, tid);
4464  fp = fopen(proc_name, "r");
4465  if ( fp == NULL ) return -1;
4466  statlen = fread(stat, 1, 2047, fp);
4467  stat[statlen] = '\0';
4468  fclose(fp);
4469
4470  // Skip pid and the command string. Note that we could be dealing with
4471  // weird command names, e.g. user could decide to rename java launcher
4472  // to "java 1.4.2 :)", then the stat file would look like
4473  //                1234 (java 1.4.2 :)) R ... ...
4474  // We don't really need to know the command string, just find the last
4475  // occurrence of ")" and then start parsing from there. See bug 4726580.
4476  s = strrchr(stat, ')');
4477  i = 0;
4478  if (s == NULL ) return -1;
4479
4480  // Skip blank chars
4481  do s++; while (isspace(*s));
4482
4483  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4484                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4485                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4486                 &user_time, &sys_time);
4487  if ( count != 13 ) return -1;
4488  if (user_sys_cpu_time) {
4489    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4490  } else {
4491    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4492  }
4493}
4494
4495void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4496  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4497  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4498  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4499  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4500}
4501
4502void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4503  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4504  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4505  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4506  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4507}
4508
4509bool os::is_thread_cpu_time_supported() {
4510  return true;
4511}
4512
4513// System loadavg support.  Returns -1 if load average cannot be obtained.
4514// Linux doesn't yet have a (official) notion of processor sets,
4515// so just return the system wide load average.
4516int os::loadavg(double loadavg[], int nelem) {
4517  return ::getloadavg(loadavg, nelem);
4518}
4519
4520void os::pause() {
4521  char filename[MAX_PATH];
4522  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4523    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4524  } else {
4525    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4526  }
4527
4528  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4529  if (fd != -1) {
4530    struct stat buf;
4531    close(fd);
4532    while (::stat(filename, &buf) == 0) {
4533      (void)::poll(NULL, 0, 100);
4534    }
4535  } else {
4536    jio_fprintf(stderr,
4537      "Could not open pause file '%s', continuing immediately.\n", filename);
4538  }
4539}
4540
4541extern "C" {
4542
4543/**
4544 * NOTE: the following code is to keep the green threads code
4545 * in the libjava.so happy. Once the green threads is removed,
4546 * these code will no longer be needed.
4547 */
4548int
4549jdk_waitpid(pid_t pid, int* status, int options) {
4550    return waitpid(pid, status, options);
4551}
4552
4553int
4554fork1() {
4555    return fork();
4556}
4557
4558int
4559jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4560    return sem_init(sem, pshared, value);
4561}
4562
4563int
4564jdk_sem_post(sem_t *sem) {
4565    return sem_post(sem);
4566}
4567
4568int
4569jdk_sem_wait(sem_t *sem) {
4570    return sem_wait(sem);
4571}
4572
4573int
4574jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4575    return pthread_sigmask(how , newmask, oldmask);
4576}
4577
4578}
4579
4580// Refer to the comments in os_solaris.cpp park-unpark.
4581//
4582// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4583// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4584// For specifics regarding the bug see GLIBC BUGID 261237 :
4585//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4586// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4587// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4588// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4589// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4590// and monitorenter when we're using 1-0 locking.  All those operations may result in
4591// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4592// of libpthread avoids the problem, but isn't practical.
4593//
4594// Possible remedies:
4595//
4596// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4597//      This is palliative and probabilistic, however.  If the thread is preempted
4598//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4599//      than the minimum period may have passed, and the abstime may be stale (in the
4600//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4601//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4602//
4603// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4604//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4605//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4606//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4607//      thread.
4608//
4609// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4610//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4611//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4612//      This also works well.  In fact it avoids kernel-level scalability impediments
4613//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4614//      timers in a graceful fashion.
4615//
4616// 4.   When the abstime value is in the past it appears that control returns
4617//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4618//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4619//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4620//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4621//      It may be possible to avoid reinitialization by checking the return
4622//      value from pthread_cond_timedwait().  In addition to reinitializing the
4623//      condvar we must establish the invariant that cond_signal() is only called
4624//      within critical sections protected by the adjunct mutex.  This prevents
4625//      cond_signal() from "seeing" a condvar that's in the midst of being
4626//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4627//      desirable signal-after-unlock optimization that avoids futile context switching.
4628//
4629//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4630//      structure when a condvar is used or initialized.  cond_destroy()  would
4631//      release the helper structure.  Our reinitialize-after-timedwait fix
4632//      put excessive stress on malloc/free and locks protecting the c-heap.
4633//
4634// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4635// It may be possible to refine (4) by checking the kernel and NTPL verisons
4636// and only enabling the work-around for vulnerable environments.
4637
4638// utility to compute the abstime argument to timedwait:
4639// millis is the relative timeout time
4640// abstime will be the absolute timeout time
4641// TODO: replace compute_abstime() with unpackTime()
4642
4643static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4644  if (millis < 0)  millis = 0;
4645  struct timeval now;
4646  int status = gettimeofday(&now, NULL);
4647  assert(status == 0, "gettimeofday");
4648  jlong seconds = millis / 1000;
4649  millis %= 1000;
4650  if (seconds > 50000000) { // see man cond_timedwait(3T)
4651    seconds = 50000000;
4652  }
4653  abstime->tv_sec = now.tv_sec  + seconds;
4654  long       usec = now.tv_usec + millis * 1000;
4655  if (usec >= 1000000) {
4656    abstime->tv_sec += 1;
4657    usec -= 1000000;
4658  }
4659  abstime->tv_nsec = usec * 1000;
4660  return abstime;
4661}
4662
4663
4664// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4665// Conceptually TryPark() should be equivalent to park(0).
4666
4667int os::PlatformEvent::TryPark() {
4668  for (;;) {
4669    const int v = _Event ;
4670    guarantee ((v == 0) || (v == 1), "invariant") ;
4671    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4672  }
4673}
4674
4675void os::PlatformEvent::park() {       // AKA "down()"
4676  // Invariant: Only the thread associated with the Event/PlatformEvent
4677  // may call park().
4678  // TODO: assert that _Assoc != NULL or _Assoc == Self
4679  int v ;
4680  for (;;) {
4681      v = _Event ;
4682      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4683  }
4684  guarantee (v >= 0, "invariant") ;
4685  if (v == 0) {
4686     // Do this the hard way by blocking ...
4687     int status = pthread_mutex_lock(_mutex);
4688     assert_status(status == 0, status, "mutex_lock");
4689     guarantee (_nParked == 0, "invariant") ;
4690     ++ _nParked ;
4691     while (_Event < 0) {
4692        status = pthread_cond_wait(_cond, _mutex);
4693        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4694        // Treat this the same as if the wait was interrupted
4695        if (status == ETIME) { status = EINTR; }
4696        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4697     }
4698     -- _nParked ;
4699
4700    // In theory we could move the ST of 0 into _Event past the unlock(),
4701    // but then we'd need a MEMBAR after the ST.
4702    _Event = 0 ;
4703     status = pthread_mutex_unlock(_mutex);
4704     assert_status(status == 0, status, "mutex_unlock");
4705  }
4706  guarantee (_Event >= 0, "invariant") ;
4707}
4708
4709int os::PlatformEvent::park(jlong millis) {
4710  guarantee (_nParked == 0, "invariant") ;
4711
4712  int v ;
4713  for (;;) {
4714      v = _Event ;
4715      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4716  }
4717  guarantee (v >= 0, "invariant") ;
4718  if (v != 0) return OS_OK ;
4719
4720  // We do this the hard way, by blocking the thread.
4721  // Consider enforcing a minimum timeout value.
4722  struct timespec abst;
4723  compute_abstime(&abst, millis);
4724
4725  int ret = OS_TIMEOUT;
4726  int status = pthread_mutex_lock(_mutex);
4727  assert_status(status == 0, status, "mutex_lock");
4728  guarantee (_nParked == 0, "invariant") ;
4729  ++_nParked ;
4730
4731  // Object.wait(timo) will return because of
4732  // (a) notification
4733  // (b) timeout
4734  // (c) thread.interrupt
4735  //
4736  // Thread.interrupt and object.notify{All} both call Event::set.
4737  // That is, we treat thread.interrupt as a special case of notification.
4738  // The underlying Solaris implementation, cond_timedwait, admits
4739  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4740  // JVM from making those visible to Java code.  As such, we must
4741  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4742  //
4743  // TODO: properly differentiate simultaneous notify+interrupt.
4744  // In that case, we should propagate the notify to another waiter.
4745
4746  while (_Event < 0) {
4747    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4748    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4749      pthread_cond_destroy (_cond);
4750      pthread_cond_init (_cond, NULL) ;
4751    }
4752    assert_status(status == 0 || status == EINTR ||
4753                  status == ETIME || status == ETIMEDOUT,
4754                  status, "cond_timedwait");
4755    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4756    if (status == ETIME || status == ETIMEDOUT) break ;
4757    // We consume and ignore EINTR and spurious wakeups.
4758  }
4759  --_nParked ;
4760  if (_Event >= 0) {
4761     ret = OS_OK;
4762  }
4763  _Event = 0 ;
4764  status = pthread_mutex_unlock(_mutex);
4765  assert_status(status == 0, status, "mutex_unlock");
4766  assert (_nParked == 0, "invariant") ;
4767  return ret;
4768}
4769
4770void os::PlatformEvent::unpark() {
4771  int v, AnyWaiters ;
4772  for (;;) {
4773      v = _Event ;
4774      if (v > 0) {
4775         // The LD of _Event could have reordered or be satisfied
4776         // by a read-aside from this processor's write buffer.
4777         // To avoid problems execute a barrier and then
4778         // ratify the value.
4779         OrderAccess::fence() ;
4780         if (_Event == v) return ;
4781         continue ;
4782      }
4783      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4784  }
4785  if (v < 0) {
4786     // Wait for the thread associated with the event to vacate
4787     int status = pthread_mutex_lock(_mutex);
4788     assert_status(status == 0, status, "mutex_lock");
4789     AnyWaiters = _nParked ;
4790     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4791     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4792        AnyWaiters = 0 ;
4793        pthread_cond_signal (_cond);
4794     }
4795     status = pthread_mutex_unlock(_mutex);
4796     assert_status(status == 0, status, "mutex_unlock");
4797     if (AnyWaiters != 0) {
4798        status = pthread_cond_signal(_cond);
4799        assert_status(status == 0, status, "cond_signal");
4800     }
4801  }
4802
4803  // Note that we signal() _after dropping the lock for "immortal" Events.
4804  // This is safe and avoids a common class of  futile wakeups.  In rare
4805  // circumstances this can cause a thread to return prematurely from
4806  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4807  // simply re-test the condition and re-park itself.
4808}
4809
4810
4811// JSR166
4812// -------------------------------------------------------
4813
4814/*
4815 * The solaris and linux implementations of park/unpark are fairly
4816 * conservative for now, but can be improved. They currently use a
4817 * mutex/condvar pair, plus a a count.
4818 * Park decrements count if > 0, else does a condvar wait.  Unpark
4819 * sets count to 1 and signals condvar.  Only one thread ever waits
4820 * on the condvar. Contention seen when trying to park implies that someone
4821 * is unparking you, so don't wait. And spurious returns are fine, so there
4822 * is no need to track notifications.
4823 */
4824
4825
4826#define NANOSECS_PER_SEC 1000000000
4827#define NANOSECS_PER_MILLISEC 1000000
4828#define MAX_SECS 100000000
4829/*
4830 * This code is common to linux and solaris and will be moved to a
4831 * common place in dolphin.
4832 *
4833 * The passed in time value is either a relative time in nanoseconds
4834 * or an absolute time in milliseconds. Either way it has to be unpacked
4835 * into suitable seconds and nanoseconds components and stored in the
4836 * given timespec structure.
4837 * Given time is a 64-bit value and the time_t used in the timespec is only
4838 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4839 * overflow if times way in the future are given. Further on Solaris versions
4840 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4841 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4842 * As it will be 28 years before "now + 100000000" will overflow we can
4843 * ignore overflow and just impose a hard-limit on seconds using the value
4844 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4845 * years from "now".
4846 */
4847
4848static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4849  assert (time > 0, "convertTime");
4850
4851  struct timeval now;
4852  int status = gettimeofday(&now, NULL);
4853  assert(status == 0, "gettimeofday");
4854
4855  time_t max_secs = now.tv_sec + MAX_SECS;
4856
4857  if (isAbsolute) {
4858    jlong secs = time / 1000;
4859    if (secs > max_secs) {
4860      absTime->tv_sec = max_secs;
4861    }
4862    else {
4863      absTime->tv_sec = secs;
4864    }
4865    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4866  }
4867  else {
4868    jlong secs = time / NANOSECS_PER_SEC;
4869    if (secs >= MAX_SECS) {
4870      absTime->tv_sec = max_secs;
4871      absTime->tv_nsec = 0;
4872    }
4873    else {
4874      absTime->tv_sec = now.tv_sec + secs;
4875      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4876      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4877        absTime->tv_nsec -= NANOSECS_PER_SEC;
4878        ++absTime->tv_sec; // note: this must be <= max_secs
4879      }
4880    }
4881  }
4882  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4883  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4884  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4885  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4886}
4887
4888void Parker::park(bool isAbsolute, jlong time) {
4889  // Optional fast-path check:
4890  // Return immediately if a permit is available.
4891  if (_counter > 0) {
4892      _counter = 0 ;
4893      OrderAccess::fence();
4894      return ;
4895  }
4896
4897  Thread* thread = Thread::current();
4898  assert(thread->is_Java_thread(), "Must be JavaThread");
4899  JavaThread *jt = (JavaThread *)thread;
4900
4901  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4902  // Check interrupt before trying to wait
4903  if (Thread::is_interrupted(thread, false)) {
4904    return;
4905  }
4906
4907  // Next, demultiplex/decode time arguments
4908  timespec absTime;
4909  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4910    return;
4911  }
4912  if (time > 0) {
4913    unpackTime(&absTime, isAbsolute, time);
4914  }
4915
4916
4917  // Enter safepoint region
4918  // Beware of deadlocks such as 6317397.
4919  // The per-thread Parker:: mutex is a classic leaf-lock.
4920  // In particular a thread must never block on the Threads_lock while
4921  // holding the Parker:: mutex.  If safepoints are pending both the
4922  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4923  ThreadBlockInVM tbivm(jt);
4924
4925  // Don't wait if cannot get lock since interference arises from
4926  // unblocking.  Also. check interrupt before trying wait
4927  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4928    return;
4929  }
4930
4931  int status ;
4932  if (_counter > 0)  { // no wait needed
4933    _counter = 0;
4934    status = pthread_mutex_unlock(_mutex);
4935    assert (status == 0, "invariant") ;
4936    OrderAccess::fence();
4937    return;
4938  }
4939
4940#ifdef ASSERT
4941  // Don't catch signals while blocked; let the running threads have the signals.
4942  // (This allows a debugger to break into the running thread.)
4943  sigset_t oldsigs;
4944  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4945  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4946#endif
4947
4948  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4949  jt->set_suspend_equivalent();
4950  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4951
4952  if (time == 0) {
4953    status = pthread_cond_wait (_cond, _mutex) ;
4954  } else {
4955    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4956    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4957      pthread_cond_destroy (_cond) ;
4958      pthread_cond_init    (_cond, NULL);
4959    }
4960  }
4961  assert_status(status == 0 || status == EINTR ||
4962                status == ETIME || status == ETIMEDOUT,
4963                status, "cond_timedwait");
4964
4965#ifdef ASSERT
4966  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4967#endif
4968
4969  _counter = 0 ;
4970  status = pthread_mutex_unlock(_mutex) ;
4971  assert_status(status == 0, status, "invariant") ;
4972  // If externally suspended while waiting, re-suspend
4973  if (jt->handle_special_suspend_equivalent_condition()) {
4974    jt->java_suspend_self();
4975  }
4976
4977  OrderAccess::fence();
4978}
4979
4980void Parker::unpark() {
4981  int s, status ;
4982  status = pthread_mutex_lock(_mutex);
4983  assert (status == 0, "invariant") ;
4984  s = _counter;
4985  _counter = 1;
4986  if (s < 1) {
4987     if (WorkAroundNPTLTimedWaitHang) {
4988        status = pthread_cond_signal (_cond) ;
4989        assert (status == 0, "invariant") ;
4990        status = pthread_mutex_unlock(_mutex);
4991        assert (status == 0, "invariant") ;
4992     } else {
4993        status = pthread_mutex_unlock(_mutex);
4994        assert (status == 0, "invariant") ;
4995        status = pthread_cond_signal (_cond) ;
4996        assert (status == 0, "invariant") ;
4997     }
4998  } else {
4999    pthread_mutex_unlock(_mutex);
5000    assert (status == 0, "invariant") ;
5001  }
5002}
5003
5004
5005extern char** environ;
5006
5007#ifndef __NR_fork
5008#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5009#endif
5010
5011#ifndef __NR_execve
5012#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5013#endif
5014
5015// Run the specified command in a separate process. Return its exit value,
5016// or -1 on failure (e.g. can't fork a new process).
5017// Unlike system(), this function can be called from signal handler. It
5018// doesn't block SIGINT et al.
5019int os::fork_and_exec(char* cmd) {
5020  const char * argv[4] = {"sh", "-c", cmd, NULL};
5021
5022  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5023  // pthread_atfork handlers and reset pthread library. All we need is a
5024  // separate process to execve. Make a direct syscall to fork process.
5025  // On IA64 there's no fork syscall, we have to use fork() and hope for
5026  // the best...
5027  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5028              IA64_ONLY(fork();)
5029
5030  if (pid < 0) {
5031    // fork failed
5032    return -1;
5033
5034  } else if (pid == 0) {
5035    // child process
5036
5037    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5038    // first to kill every thread on the thread list. Because this list is
5039    // not reset by fork() (see notes above), execve() will instead kill
5040    // every thread in the parent process. We know this is the only thread
5041    // in the new process, so make a system call directly.
5042    // IA64 should use normal execve() from glibc to match the glibc fork()
5043    // above.
5044    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5045    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5046
5047    // execve failed
5048    _exit(-1);
5049
5050  } else  {
5051    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5052    // care about the actual exit code, for now.
5053
5054    int status;
5055
5056    // Wait for the child process to exit.  This returns immediately if
5057    // the child has already exited. */
5058    while (waitpid(pid, &status, 0) < 0) {
5059        switch (errno) {
5060        case ECHILD: return 0;
5061        case EINTR: break;
5062        default: return -1;
5063        }
5064    }
5065
5066    if (WIFEXITED(status)) {
5067       // The child exited normally; get its exit code.
5068       return WEXITSTATUS(status);
5069    } else if (WIFSIGNALED(status)) {
5070       // The child exited because of a signal
5071       // The best value to return is 0x80 + signal number,
5072       // because that is what all Unix shells do, and because
5073       // it allows callers to distinguish between process exit and
5074       // process death by signal.
5075       return 0x80 + WTERMSIG(status);
5076    } else {
5077       // Unknown exit code; pass it through
5078       return status;
5079    }
5080  }
5081}
5082
5083// is_headless_jre()
5084//
5085// Test for the existence of libmawt in motif21 or xawt directories
5086// in order to report if we are running in a headless jre
5087//
5088bool os::is_headless_jre() {
5089    struct stat statbuf;
5090    char buf[MAXPATHLEN];
5091    char libmawtpath[MAXPATHLEN];
5092    const char *xawtstr  = "/xawt/libmawt.so";
5093    const char *motifstr = "/motif21/libmawt.so";
5094    char *p;
5095
5096    // Get path to libjvm.so
5097    os::jvm_path(buf, sizeof(buf));
5098
5099    // Get rid of libjvm.so
5100    p = strrchr(buf, '/');
5101    if (p == NULL) return false;
5102    else *p = '\0';
5103
5104    // Get rid of client or server
5105    p = strrchr(buf, '/');
5106    if (p == NULL) return false;
5107    else *p = '\0';
5108
5109    // check xawt/libmawt.so
5110    strcpy(libmawtpath, buf);
5111    strcat(libmawtpath, xawtstr);
5112    if (::stat(libmawtpath, &statbuf) == 0) return false;
5113
5114    // check motif21/libmawt.so
5115    strcpy(libmawtpath, buf);
5116    strcat(libmawtpath, motifstr);
5117    if (::stat(libmawtpath, &statbuf) == 0) return false;
5118
5119    return true;
5120}
5121
5122