os_linux.cpp revision 1670:c7004d700b49
1/*
2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# define __STDC_FORMAT_MACROS
26
27// do not include  precompiled  header file
28# include "incls/_os_linux.cpp.incl"
29
30// put OS-includes here
31# include <sys/types.h>
32# include <sys/mman.h>
33# include <sys/stat.h>
34# include <sys/select.h>
35# include <pthread.h>
36# include <signal.h>
37# include <errno.h>
38# include <dlfcn.h>
39# include <stdio.h>
40# include <unistd.h>
41# include <sys/resource.h>
42# include <pthread.h>
43# include <sys/stat.h>
44# include <sys/time.h>
45# include <sys/times.h>
46# include <sys/utsname.h>
47# include <sys/socket.h>
48# include <sys/wait.h>
49# include <pwd.h>
50# include <poll.h>
51# include <semaphore.h>
52# include <fcntl.h>
53# include <string.h>
54# include <syscall.h>
55# include <sys/sysinfo.h>
56# include <gnu/libc-version.h>
57# include <sys/ipc.h>
58# include <sys/shm.h>
59# include <link.h>
60# include <stdint.h>
61# include <inttypes.h>
62
63#define MAX_PATH    (2 * K)
64
65// for timer info max values which include all bits
66#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
67#define SEC_IN_NANOSECS  1000000000LL
68
69////////////////////////////////////////////////////////////////////////////////
70// global variables
71julong os::Linux::_physical_memory = 0;
72
73address   os::Linux::_initial_thread_stack_bottom = NULL;
74uintptr_t os::Linux::_initial_thread_stack_size   = 0;
75
76int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
77int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
78Mutex* os::Linux::_createThread_lock = NULL;
79pthread_t os::Linux::_main_thread;
80int os::Linux::_page_size = -1;
81bool os::Linux::_is_floating_stack = false;
82bool os::Linux::_is_NPTL = false;
83bool os::Linux::_supports_fast_thread_cpu_time = false;
84const char * os::Linux::_glibc_version = NULL;
85const char * os::Linux::_libpthread_version = NULL;
86
87static jlong initial_time_count=0;
88
89static int clock_tics_per_sec = 100;
90
91// For diagnostics to print a message once. see run_periodic_checks
92static sigset_t check_signal_done;
93static bool check_signals = true;;
94
95static pid_t _initial_pid = 0;
96
97/* Signal number used to suspend/resume a thread */
98
99/* do not use any signal number less than SIGSEGV, see 4355769 */
100static int SR_signum = SIGUSR2;
101sigset_t SR_sigset;
102
103/* Used to protect dlsym() calls */
104static pthread_mutex_t dl_mutex;
105
106////////////////////////////////////////////////////////////////////////////////
107// utility functions
108
109static int SR_initialize();
110static int SR_finalize();
111
112julong os::available_memory() {
113  return Linux::available_memory();
114}
115
116julong os::Linux::available_memory() {
117  // values in struct sysinfo are "unsigned long"
118  struct sysinfo si;
119  sysinfo(&si);
120
121  return (julong)si.freeram * si.mem_unit;
122}
123
124julong os::physical_memory() {
125  return Linux::physical_memory();
126}
127
128julong os::allocatable_physical_memory(julong size) {
129#ifdef _LP64
130  return size;
131#else
132  julong result = MIN2(size, (julong)3800*M);
133   if (!is_allocatable(result)) {
134     // See comments under solaris for alignment considerations
135     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
136     result =  MIN2(size, reasonable_size);
137   }
138   return result;
139#endif // _LP64
140}
141
142////////////////////////////////////////////////////////////////////////////////
143// environment support
144
145bool os::getenv(const char* name, char* buf, int len) {
146  const char* val = ::getenv(name);
147  if (val != NULL && strlen(val) < (size_t)len) {
148    strcpy(buf, val);
149    return true;
150  }
151  if (len > 0) buf[0] = 0;  // return a null string
152  return false;
153}
154
155
156// Return true if user is running as root.
157
158bool os::have_special_privileges() {
159  static bool init = false;
160  static bool privileges = false;
161  if (!init) {
162    privileges = (getuid() != geteuid()) || (getgid() != getegid());
163    init = true;
164  }
165  return privileges;
166}
167
168
169#ifndef SYS_gettid
170// i386: 224, ia64: 1105, amd64: 186, sparc 143
171#ifdef __ia64__
172#define SYS_gettid 1105
173#elif __i386__
174#define SYS_gettid 224
175#elif __amd64__
176#define SYS_gettid 186
177#elif __sparc__
178#define SYS_gettid 143
179#else
180#error define gettid for the arch
181#endif
182#endif
183
184// Cpu architecture string
185#if   defined(ZERO)
186static char cpu_arch[] = ZERO_LIBARCH;
187#elif defined(IA64)
188static char cpu_arch[] = "ia64";
189#elif defined(IA32)
190static char cpu_arch[] = "i386";
191#elif defined(AMD64)
192static char cpu_arch[] = "amd64";
193#elif defined(ARM)
194static char cpu_arch[] = "arm";
195#elif defined(PPC)
196static char cpu_arch[] = "ppc";
197#elif defined(SPARC)
198#  ifdef _LP64
199static char cpu_arch[] = "sparcv9";
200#  else
201static char cpu_arch[] = "sparc";
202#  endif
203#else
204#error Add appropriate cpu_arch setting
205#endif
206
207
208// pid_t gettid()
209//
210// Returns the kernel thread id of the currently running thread. Kernel
211// thread id is used to access /proc.
212//
213// (Note that getpid() on LinuxThreads returns kernel thread id too; but
214// on NPTL, it returns the same pid for all threads, as required by POSIX.)
215//
216pid_t os::Linux::gettid() {
217  int rslt = syscall(SYS_gettid);
218  if (rslt == -1) {
219     // old kernel, no NPTL support
220     return getpid();
221  } else {
222     return (pid_t)rslt;
223  }
224}
225
226// Most versions of linux have a bug where the number of processors are
227// determined by looking at the /proc file system.  In a chroot environment,
228// the system call returns 1.  This causes the VM to act as if it is
229// a single processor and elide locking (see is_MP() call).
230static bool unsafe_chroot_detected = false;
231static const char *unstable_chroot_error = "/proc file system not found.\n"
232                     "Java may be unstable running multithreaded in a chroot "
233                     "environment on Linux when /proc filesystem is not mounted.";
234
235void os::Linux::initialize_system_info() {
236  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
237  if (processor_count() == 1) {
238    pid_t pid = os::Linux::gettid();
239    char fname[32];
240    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
241    FILE *fp = fopen(fname, "r");
242    if (fp == NULL) {
243      unsafe_chroot_detected = true;
244    } else {
245      fclose(fp);
246    }
247  }
248  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
249  assert(processor_count() > 0, "linux error");
250}
251
252void os::init_system_properties_values() {
253//  char arch[12];
254//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
255
256  // The next steps are taken in the product version:
257  //
258  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
259  // This library should be located at:
260  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
261  //
262  // If "/jre/lib/" appears at the right place in the path, then we
263  // assume libjvm[_g].so is installed in a JDK and we use this path.
264  //
265  // Otherwise exit with message: "Could not create the Java virtual machine."
266  //
267  // The following extra steps are taken in the debugging version:
268  //
269  // If "/jre/lib/" does NOT appear at the right place in the path
270  // instead of exit check for $JAVA_HOME environment variable.
271  //
272  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
273  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
274  // it looks like libjvm[_g].so is installed there
275  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
276  //
277  // Otherwise exit.
278  //
279  // Important note: if the location of libjvm.so changes this
280  // code needs to be changed accordingly.
281
282  // The next few definitions allow the code to be verbatim:
283#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
284#define getenv(n) ::getenv(n)
285
286/*
287 * See ld(1):
288 *      The linker uses the following search paths to locate required
289 *      shared libraries:
290 *        1: ...
291 *        ...
292 *        7: The default directories, normally /lib and /usr/lib.
293 */
294#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
295#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
296#else
297#define DEFAULT_LIBPATH "/lib:/usr/lib"
298#endif
299
300#define EXTENSIONS_DIR  "/lib/ext"
301#define ENDORSED_DIR    "/lib/endorsed"
302#define REG_DIR         "/usr/java/packages"
303
304  {
305    /* sysclasspath, java_home, dll_dir */
306    {
307        char *home_path;
308        char *dll_path;
309        char *pslash;
310        char buf[MAXPATHLEN];
311        os::jvm_path(buf, sizeof(buf));
312
313        // Found the full path to libjvm.so.
314        // Now cut the path to <java_home>/jre if we can.
315        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
316        pslash = strrchr(buf, '/');
317        if (pslash != NULL)
318            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
319        dll_path = malloc(strlen(buf) + 1);
320        if (dll_path == NULL)
321            return;
322        strcpy(dll_path, buf);
323        Arguments::set_dll_dir(dll_path);
324
325        if (pslash != NULL) {
326            pslash = strrchr(buf, '/');
327            if (pslash != NULL) {
328                *pslash = '\0';       /* get rid of /<arch> */
329                pslash = strrchr(buf, '/');
330                if (pslash != NULL)
331                    *pslash = '\0';   /* get rid of /lib */
332            }
333        }
334
335        home_path = malloc(strlen(buf) + 1);
336        if (home_path == NULL)
337            return;
338        strcpy(home_path, buf);
339        Arguments::set_java_home(home_path);
340
341        if (!set_boot_path('/', ':'))
342            return;
343    }
344
345    /*
346     * Where to look for native libraries
347     *
348     * Note: Due to a legacy implementation, most of the library path
349     * is set in the launcher.  This was to accomodate linking restrictions
350     * on legacy Linux implementations (which are no longer supported).
351     * Eventually, all the library path setting will be done here.
352     *
353     * However, to prevent the proliferation of improperly built native
354     * libraries, the new path component /usr/java/packages is added here.
355     * Eventually, all the library path setting will be done here.
356     */
357    {
358        char *ld_library_path;
359
360        /*
361         * Construct the invariant part of ld_library_path. Note that the
362         * space for the colon and the trailing null are provided by the
363         * nulls included by the sizeof operator (so actually we allocate
364         * a byte more than necessary).
365         */
366        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
367            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
368        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
369
370        /*
371         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
372         * should always exist (until the legacy problem cited above is
373         * addressed).
374         */
375        char *v = getenv("LD_LIBRARY_PATH");
376        if (v != NULL) {
377            char *t = ld_library_path;
378            /* That's +1 for the colon and +1 for the trailing '\0' */
379            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
380            sprintf(ld_library_path, "%s:%s", v, t);
381        }
382        Arguments::set_library_path(ld_library_path);
383    }
384
385    /*
386     * Extensions directories.
387     *
388     * Note that the space for the colon and the trailing null are provided
389     * by the nulls included by the sizeof operator (so actually one byte more
390     * than necessary is allocated).
391     */
392    {
393        char *buf = malloc(strlen(Arguments::get_java_home()) +
394            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
395        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
396            Arguments::get_java_home());
397        Arguments::set_ext_dirs(buf);
398    }
399
400    /* Endorsed standards default directory. */
401    {
402        char * buf;
403        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
404        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
405        Arguments::set_endorsed_dirs(buf);
406    }
407  }
408
409#undef malloc
410#undef getenv
411#undef EXTENSIONS_DIR
412#undef ENDORSED_DIR
413
414  // Done
415  return;
416}
417
418////////////////////////////////////////////////////////////////////////////////
419// breakpoint support
420
421void os::breakpoint() {
422  BREAKPOINT;
423}
424
425extern "C" void breakpoint() {
426  // use debugger to set breakpoint here
427}
428
429////////////////////////////////////////////////////////////////////////////////
430// signal support
431
432debug_only(static bool signal_sets_initialized = false);
433static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
434
435bool os::Linux::is_sig_ignored(int sig) {
436      struct sigaction oact;
437      sigaction(sig, (struct sigaction*)NULL, &oact);
438      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
439                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
440      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
441           return true;
442      else
443           return false;
444}
445
446void os::Linux::signal_sets_init() {
447  // Should also have an assertion stating we are still single-threaded.
448  assert(!signal_sets_initialized, "Already initialized");
449  // Fill in signals that are necessarily unblocked for all threads in
450  // the VM. Currently, we unblock the following signals:
451  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
452  //                         by -Xrs (=ReduceSignalUsage));
453  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
454  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
455  // the dispositions or masks wrt these signals.
456  // Programs embedding the VM that want to use the above signals for their
457  // own purposes must, at this time, use the "-Xrs" option to prevent
458  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
459  // (See bug 4345157, and other related bugs).
460  // In reality, though, unblocking these signals is really a nop, since
461  // these signals are not blocked by default.
462  sigemptyset(&unblocked_sigs);
463  sigemptyset(&allowdebug_blocked_sigs);
464  sigaddset(&unblocked_sigs, SIGILL);
465  sigaddset(&unblocked_sigs, SIGSEGV);
466  sigaddset(&unblocked_sigs, SIGBUS);
467  sigaddset(&unblocked_sigs, SIGFPE);
468  sigaddset(&unblocked_sigs, SR_signum);
469
470  if (!ReduceSignalUsage) {
471   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
472      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
473      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
474   }
475   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
476      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
477      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
478   }
479   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
480      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
481      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
482   }
483  }
484  // Fill in signals that are blocked by all but the VM thread.
485  sigemptyset(&vm_sigs);
486  if (!ReduceSignalUsage)
487    sigaddset(&vm_sigs, BREAK_SIGNAL);
488  debug_only(signal_sets_initialized = true);
489
490}
491
492// These are signals that are unblocked while a thread is running Java.
493// (For some reason, they get blocked by default.)
494sigset_t* os::Linux::unblocked_signals() {
495  assert(signal_sets_initialized, "Not initialized");
496  return &unblocked_sigs;
497}
498
499// These are the signals that are blocked while a (non-VM) thread is
500// running Java. Only the VM thread handles these signals.
501sigset_t* os::Linux::vm_signals() {
502  assert(signal_sets_initialized, "Not initialized");
503  return &vm_sigs;
504}
505
506// These are signals that are blocked during cond_wait to allow debugger in
507sigset_t* os::Linux::allowdebug_blocked_signals() {
508  assert(signal_sets_initialized, "Not initialized");
509  return &allowdebug_blocked_sigs;
510}
511
512void os::Linux::hotspot_sigmask(Thread* thread) {
513
514  //Save caller's signal mask before setting VM signal mask
515  sigset_t caller_sigmask;
516  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
517
518  OSThread* osthread = thread->osthread();
519  osthread->set_caller_sigmask(caller_sigmask);
520
521  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
522
523  if (!ReduceSignalUsage) {
524    if (thread->is_VM_thread()) {
525      // Only the VM thread handles BREAK_SIGNAL ...
526      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
527    } else {
528      // ... all other threads block BREAK_SIGNAL
529      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
530    }
531  }
532}
533
534//////////////////////////////////////////////////////////////////////////////
535// detecting pthread library
536
537void os::Linux::libpthread_init() {
538  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
539  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
540  // generic name for earlier versions.
541  // Define macros here so we can build HotSpot on old systems.
542# ifndef _CS_GNU_LIBC_VERSION
543# define _CS_GNU_LIBC_VERSION 2
544# endif
545# ifndef _CS_GNU_LIBPTHREAD_VERSION
546# define _CS_GNU_LIBPTHREAD_VERSION 3
547# endif
548
549  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
550  if (n > 0) {
551     char *str = (char *)malloc(n);
552     confstr(_CS_GNU_LIBC_VERSION, str, n);
553     os::Linux::set_glibc_version(str);
554  } else {
555     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
556     static char _gnu_libc_version[32];
557     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
558              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
559     os::Linux::set_glibc_version(_gnu_libc_version);
560  }
561
562  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
563  if (n > 0) {
564     char *str = (char *)malloc(n);
565     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
566     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
567     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
568     // is the case. LinuxThreads has a hard limit on max number of threads.
569     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
570     // On the other hand, NPTL does not have such a limit, sysconf()
571     // will return -1 and errno is not changed. Check if it is really NPTL.
572     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
573         strstr(str, "NPTL") &&
574         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
575       free(str);
576       os::Linux::set_libpthread_version("linuxthreads");
577     } else {
578       os::Linux::set_libpthread_version(str);
579     }
580  } else {
581    // glibc before 2.3.2 only has LinuxThreads.
582    os::Linux::set_libpthread_version("linuxthreads");
583  }
584
585  if (strstr(libpthread_version(), "NPTL")) {
586     os::Linux::set_is_NPTL();
587  } else {
588     os::Linux::set_is_LinuxThreads();
589  }
590
591  // LinuxThreads have two flavors: floating-stack mode, which allows variable
592  // stack size; and fixed-stack mode. NPTL is always floating-stack.
593  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
594     os::Linux::set_is_floating_stack();
595  }
596}
597
598/////////////////////////////////////////////////////////////////////////////
599// thread stack
600
601// Force Linux kernel to expand current thread stack. If "bottom" is close
602// to the stack guard, caller should block all signals.
603//
604// MAP_GROWSDOWN:
605//   A special mmap() flag that is used to implement thread stacks. It tells
606//   kernel that the memory region should extend downwards when needed. This
607//   allows early versions of LinuxThreads to only mmap the first few pages
608//   when creating a new thread. Linux kernel will automatically expand thread
609//   stack as needed (on page faults).
610//
611//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
612//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
613//   region, it's hard to tell if the fault is due to a legitimate stack
614//   access or because of reading/writing non-exist memory (e.g. buffer
615//   overrun). As a rule, if the fault happens below current stack pointer,
616//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
617//   application (see Linux kernel fault.c).
618//
619//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
620//   stack overflow detection.
621//
622//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
623//   not use this flag. However, the stack of initial thread is not created
624//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
625//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
626//   and then attach the thread to JVM.
627//
628// To get around the problem and allow stack banging on Linux, we need to
629// manually expand thread stack after receiving the SIGSEGV.
630//
631// There are two ways to expand thread stack to address "bottom", we used
632// both of them in JVM before 1.5:
633//   1. adjust stack pointer first so that it is below "bottom", and then
634//      touch "bottom"
635//   2. mmap() the page in question
636//
637// Now alternate signal stack is gone, it's harder to use 2. For instance,
638// if current sp is already near the lower end of page 101, and we need to
639// call mmap() to map page 100, it is possible that part of the mmap() frame
640// will be placed in page 100. When page 100 is mapped, it is zero-filled.
641// That will destroy the mmap() frame and cause VM to crash.
642//
643// The following code works by adjusting sp first, then accessing the "bottom"
644// page to force a page fault. Linux kernel will then automatically expand the
645// stack mapping.
646//
647// _expand_stack_to() assumes its frame size is less than page size, which
648// should always be true if the function is not inlined.
649
650#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
651#define NOINLINE
652#else
653#define NOINLINE __attribute__ ((noinline))
654#endif
655
656static void _expand_stack_to(address bottom) NOINLINE;
657
658static void _expand_stack_to(address bottom) {
659  address sp;
660  size_t size;
661  volatile char *p;
662
663  // Adjust bottom to point to the largest address within the same page, it
664  // gives us a one-page buffer if alloca() allocates slightly more memory.
665  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
666  bottom += os::Linux::page_size() - 1;
667
668  // sp might be slightly above current stack pointer; if that's the case, we
669  // will alloca() a little more space than necessary, which is OK. Don't use
670  // os::current_stack_pointer(), as its result can be slightly below current
671  // stack pointer, causing us to not alloca enough to reach "bottom".
672  sp = (address)&sp;
673
674  if (sp > bottom) {
675    size = sp - bottom;
676    p = (volatile char *)alloca(size);
677    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
678    p[0] = '\0';
679  }
680}
681
682bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
683  assert(t!=NULL, "just checking");
684  assert(t->osthread()->expanding_stack(), "expand should be set");
685  assert(t->stack_base() != NULL, "stack_base was not initialized");
686
687  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
688    sigset_t mask_all, old_sigset;
689    sigfillset(&mask_all);
690    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
691    _expand_stack_to(addr);
692    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
693    return true;
694  }
695  return false;
696}
697
698//////////////////////////////////////////////////////////////////////////////
699// create new thread
700
701static address highest_vm_reserved_address();
702
703// check if it's safe to start a new thread
704static bool _thread_safety_check(Thread* thread) {
705  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
706    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
707    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
708    //   allocated (MAP_FIXED) from high address space. Every thread stack
709    //   occupies a fixed size slot (usually 2Mbytes, but user can change
710    //   it to other values if they rebuild LinuxThreads).
711    //
712    // Problem with MAP_FIXED is that mmap() can still succeed even part of
713    // the memory region has already been mmap'ed. That means if we have too
714    // many threads and/or very large heap, eventually thread stack will
715    // collide with heap.
716    //
717    // Here we try to prevent heap/stack collision by comparing current
718    // stack bottom with the highest address that has been mmap'ed by JVM
719    // plus a safety margin for memory maps created by native code.
720    //
721    // This feature can be disabled by setting ThreadSafetyMargin to 0
722    //
723    if (ThreadSafetyMargin > 0) {
724      address stack_bottom = os::current_stack_base() - os::current_stack_size();
725
726      // not safe if our stack extends below the safety margin
727      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
728    } else {
729      return true;
730    }
731  } else {
732    // Floating stack LinuxThreads or NPTL:
733    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
734    //   there's not enough space left, pthread_create() will fail. If we come
735    //   here, that means enough space has been reserved for stack.
736    return true;
737  }
738}
739
740// Thread start routine for all newly created threads
741static void *java_start(Thread *thread) {
742  // Try to randomize the cache line index of hot stack frames.
743  // This helps when threads of the same stack traces evict each other's
744  // cache lines. The threads can be either from the same JVM instance, or
745  // from different JVM instances. The benefit is especially true for
746  // processors with hyperthreading technology.
747  static int counter = 0;
748  int pid = os::current_process_id();
749  alloca(((pid ^ counter++) & 7) * 128);
750
751  ThreadLocalStorage::set_thread(thread);
752
753  OSThread* osthread = thread->osthread();
754  Monitor* sync = osthread->startThread_lock();
755
756  // non floating stack LinuxThreads needs extra check, see above
757  if (!_thread_safety_check(thread)) {
758    // notify parent thread
759    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
760    osthread->set_state(ZOMBIE);
761    sync->notify_all();
762    return NULL;
763  }
764
765  // thread_id is kernel thread id (similar to Solaris LWP id)
766  osthread->set_thread_id(os::Linux::gettid());
767
768  if (UseNUMA) {
769    int lgrp_id = os::numa_get_group_id();
770    if (lgrp_id != -1) {
771      thread->set_lgrp_id(lgrp_id);
772    }
773  }
774  // initialize signal mask for this thread
775  os::Linux::hotspot_sigmask(thread);
776
777  // initialize floating point control register
778  os::Linux::init_thread_fpu_state();
779
780  // handshaking with parent thread
781  {
782    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
783
784    // notify parent thread
785    osthread->set_state(INITIALIZED);
786    sync->notify_all();
787
788    // wait until os::start_thread()
789    while (osthread->get_state() == INITIALIZED) {
790      sync->wait(Mutex::_no_safepoint_check_flag);
791    }
792  }
793
794  // call one more level start routine
795  thread->run();
796
797  return 0;
798}
799
800bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
801  assert(thread->osthread() == NULL, "caller responsible");
802
803  // Allocate the OSThread object
804  OSThread* osthread = new OSThread(NULL, NULL);
805  if (osthread == NULL) {
806    return false;
807  }
808
809  // set the correct thread state
810  osthread->set_thread_type(thr_type);
811
812  // Initial state is ALLOCATED but not INITIALIZED
813  osthread->set_state(ALLOCATED);
814
815  thread->set_osthread(osthread);
816
817  // init thread attributes
818  pthread_attr_t attr;
819  pthread_attr_init(&attr);
820  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
821
822  // stack size
823  if (os::Linux::supports_variable_stack_size()) {
824    // calculate stack size if it's not specified by caller
825    if (stack_size == 0) {
826      stack_size = os::Linux::default_stack_size(thr_type);
827
828      switch (thr_type) {
829      case os::java_thread:
830        // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
831        if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
832        break;
833      case os::compiler_thread:
834        if (CompilerThreadStackSize > 0) {
835          stack_size = (size_t)(CompilerThreadStackSize * K);
836          break;
837        } // else fall through:
838          // use VMThreadStackSize if CompilerThreadStackSize is not defined
839      case os::vm_thread:
840      case os::pgc_thread:
841      case os::cgc_thread:
842      case os::watcher_thread:
843        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
844        break;
845      }
846    }
847
848    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
849    pthread_attr_setstacksize(&attr, stack_size);
850  } else {
851    // let pthread_create() pick the default value.
852  }
853
854  // glibc guard page
855  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
856
857  ThreadState state;
858
859  {
860    // Serialize thread creation if we are running with fixed stack LinuxThreads
861    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
862    if (lock) {
863      os::Linux::createThread_lock()->lock_without_safepoint_check();
864    }
865
866    pthread_t tid;
867    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
868
869    pthread_attr_destroy(&attr);
870
871    if (ret != 0) {
872      if (PrintMiscellaneous && (Verbose || WizardMode)) {
873        perror("pthread_create()");
874      }
875      // Need to clean up stuff we've allocated so far
876      thread->set_osthread(NULL);
877      delete osthread;
878      if (lock) os::Linux::createThread_lock()->unlock();
879      return false;
880    }
881
882    // Store pthread info into the OSThread
883    osthread->set_pthread_id(tid);
884
885    // Wait until child thread is either initialized or aborted
886    {
887      Monitor* sync_with_child = osthread->startThread_lock();
888      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
889      while ((state = osthread->get_state()) == ALLOCATED) {
890        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
891      }
892    }
893
894    if (lock) {
895      os::Linux::createThread_lock()->unlock();
896    }
897  }
898
899  // Aborted due to thread limit being reached
900  if (state == ZOMBIE) {
901      thread->set_osthread(NULL);
902      delete osthread;
903      return false;
904  }
905
906  // The thread is returned suspended (in state INITIALIZED),
907  // and is started higher up in the call chain
908  assert(state == INITIALIZED, "race condition");
909  return true;
910}
911
912/////////////////////////////////////////////////////////////////////////////
913// attach existing thread
914
915// bootstrap the main thread
916bool os::create_main_thread(JavaThread* thread) {
917  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
918  return create_attached_thread(thread);
919}
920
921bool os::create_attached_thread(JavaThread* thread) {
922#ifdef ASSERT
923    thread->verify_not_published();
924#endif
925
926  // Allocate the OSThread object
927  OSThread* osthread = new OSThread(NULL, NULL);
928
929  if (osthread == NULL) {
930    return false;
931  }
932
933  // Store pthread info into the OSThread
934  osthread->set_thread_id(os::Linux::gettid());
935  osthread->set_pthread_id(::pthread_self());
936
937  // initialize floating point control register
938  os::Linux::init_thread_fpu_state();
939
940  // Initial thread state is RUNNABLE
941  osthread->set_state(RUNNABLE);
942
943  thread->set_osthread(osthread);
944
945  if (UseNUMA) {
946    int lgrp_id = os::numa_get_group_id();
947    if (lgrp_id != -1) {
948      thread->set_lgrp_id(lgrp_id);
949    }
950  }
951
952  if (os::Linux::is_initial_thread()) {
953    // If current thread is initial thread, its stack is mapped on demand,
954    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
955    // the entire stack region to avoid SEGV in stack banging.
956    // It is also useful to get around the heap-stack-gap problem on SuSE
957    // kernel (see 4821821 for details). We first expand stack to the top
958    // of yellow zone, then enable stack yellow zone (order is significant,
959    // enabling yellow zone first will crash JVM on SuSE Linux), so there
960    // is no gap between the last two virtual memory regions.
961
962    JavaThread *jt = (JavaThread *)thread;
963    address addr = jt->stack_yellow_zone_base();
964    assert(addr != NULL, "initialization problem?");
965    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
966
967    osthread->set_expanding_stack();
968    os::Linux::manually_expand_stack(jt, addr);
969    osthread->clear_expanding_stack();
970  }
971
972  // initialize signal mask for this thread
973  // and save the caller's signal mask
974  os::Linux::hotspot_sigmask(thread);
975
976  return true;
977}
978
979void os::pd_start_thread(Thread* thread) {
980  OSThread * osthread = thread->osthread();
981  assert(osthread->get_state() != INITIALIZED, "just checking");
982  Monitor* sync_with_child = osthread->startThread_lock();
983  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
984  sync_with_child->notify();
985}
986
987// Free Linux resources related to the OSThread
988void os::free_thread(OSThread* osthread) {
989  assert(osthread != NULL, "osthread not set");
990
991  if (Thread::current()->osthread() == osthread) {
992    // Restore caller's signal mask
993    sigset_t sigmask = osthread->caller_sigmask();
994    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
995   }
996
997  delete osthread;
998}
999
1000//////////////////////////////////////////////////////////////////////////////
1001// thread local storage
1002
1003int os::allocate_thread_local_storage() {
1004  pthread_key_t key;
1005  int rslt = pthread_key_create(&key, NULL);
1006  assert(rslt == 0, "cannot allocate thread local storage");
1007  return (int)key;
1008}
1009
1010// Note: This is currently not used by VM, as we don't destroy TLS key
1011// on VM exit.
1012void os::free_thread_local_storage(int index) {
1013  int rslt = pthread_key_delete((pthread_key_t)index);
1014  assert(rslt == 0, "invalid index");
1015}
1016
1017void os::thread_local_storage_at_put(int index, void* value) {
1018  int rslt = pthread_setspecific((pthread_key_t)index, value);
1019  assert(rslt == 0, "pthread_setspecific failed");
1020}
1021
1022extern "C" Thread* get_thread() {
1023  return ThreadLocalStorage::thread();
1024}
1025
1026//////////////////////////////////////////////////////////////////////////////
1027// initial thread
1028
1029// Check if current thread is the initial thread, similar to Solaris thr_main.
1030bool os::Linux::is_initial_thread(void) {
1031  char dummy;
1032  // If called before init complete, thread stack bottom will be null.
1033  // Can be called if fatal error occurs before initialization.
1034  if (initial_thread_stack_bottom() == NULL) return false;
1035  assert(initial_thread_stack_bottom() != NULL &&
1036         initial_thread_stack_size()   != 0,
1037         "os::init did not locate initial thread's stack region");
1038  if ((address)&dummy >= initial_thread_stack_bottom() &&
1039      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1040       return true;
1041  else return false;
1042}
1043
1044// Find the virtual memory area that contains addr
1045static bool find_vma(address addr, address* vma_low, address* vma_high) {
1046  FILE *fp = fopen("/proc/self/maps", "r");
1047  if (fp) {
1048    address low, high;
1049    while (!feof(fp)) {
1050      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1051        if (low <= addr && addr < high) {
1052           if (vma_low)  *vma_low  = low;
1053           if (vma_high) *vma_high = high;
1054           fclose (fp);
1055           return true;
1056        }
1057      }
1058      for (;;) {
1059        int ch = fgetc(fp);
1060        if (ch == EOF || ch == (int)'\n') break;
1061      }
1062    }
1063    fclose(fp);
1064  }
1065  return false;
1066}
1067
1068// Locate initial thread stack. This special handling of initial thread stack
1069// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1070// bogus value for initial thread.
1071void os::Linux::capture_initial_stack(size_t max_size) {
1072  // stack size is the easy part, get it from RLIMIT_STACK
1073  size_t stack_size;
1074  struct rlimit rlim;
1075  getrlimit(RLIMIT_STACK, &rlim);
1076  stack_size = rlim.rlim_cur;
1077
1078  // 6308388: a bug in ld.so will relocate its own .data section to the
1079  //   lower end of primordial stack; reduce ulimit -s value a little bit
1080  //   so we won't install guard page on ld.so's data section.
1081  stack_size -= 2 * page_size();
1082
1083  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1084  //   7.1, in both cases we will get 2G in return value.
1085  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1086  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1087  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1088  //   in case other parts in glibc still assumes 2M max stack size.
1089  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1090#ifndef IA64
1091  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1092#else
1093  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1094  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1095#endif
1096
1097  // Try to figure out where the stack base (top) is. This is harder.
1098  //
1099  // When an application is started, glibc saves the initial stack pointer in
1100  // a global variable "__libc_stack_end", which is then used by system
1101  // libraries. __libc_stack_end should be pretty close to stack top. The
1102  // variable is available since the very early days. However, because it is
1103  // a private interface, it could disappear in the future.
1104  //
1105  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1106  // to __libc_stack_end, it is very close to stack top, but isn't the real
1107  // stack top. Note that /proc may not exist if VM is running as a chroot
1108  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1109  // /proc/<pid>/stat could change in the future (though unlikely).
1110  //
1111  // We try __libc_stack_end first. If that doesn't work, look for
1112  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1113  // as a hint, which should work well in most cases.
1114
1115  uintptr_t stack_start;
1116
1117  // try __libc_stack_end first
1118  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1119  if (p && *p) {
1120    stack_start = *p;
1121  } else {
1122    // see if we can get the start_stack field from /proc/self/stat
1123    FILE *fp;
1124    int pid;
1125    char state;
1126    int ppid;
1127    int pgrp;
1128    int session;
1129    int nr;
1130    int tpgrp;
1131    unsigned long flags;
1132    unsigned long minflt;
1133    unsigned long cminflt;
1134    unsigned long majflt;
1135    unsigned long cmajflt;
1136    unsigned long utime;
1137    unsigned long stime;
1138    long cutime;
1139    long cstime;
1140    long prio;
1141    long nice;
1142    long junk;
1143    long it_real;
1144    uintptr_t start;
1145    uintptr_t vsize;
1146    intptr_t rss;
1147    uintptr_t rsslim;
1148    uintptr_t scodes;
1149    uintptr_t ecode;
1150    int i;
1151
1152    // Figure what the primordial thread stack base is. Code is inspired
1153    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1154    // followed by command name surrounded by parentheses, state, etc.
1155    char stat[2048];
1156    int statlen;
1157
1158    fp = fopen("/proc/self/stat", "r");
1159    if (fp) {
1160      statlen = fread(stat, 1, 2047, fp);
1161      stat[statlen] = '\0';
1162      fclose(fp);
1163
1164      // Skip pid and the command string. Note that we could be dealing with
1165      // weird command names, e.g. user could decide to rename java launcher
1166      // to "java 1.4.2 :)", then the stat file would look like
1167      //                1234 (java 1.4.2 :)) R ... ...
1168      // We don't really need to know the command string, just find the last
1169      // occurrence of ")" and then start parsing from there. See bug 4726580.
1170      char * s = strrchr(stat, ')');
1171
1172      i = 0;
1173      if (s) {
1174        // Skip blank chars
1175        do s++; while (isspace(*s));
1176
1177#define _UFM UINTX_FORMAT
1178#define _DFM INTX_FORMAT
1179
1180        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1181        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1182        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1183             &state,          /* 3  %c  */
1184             &ppid,           /* 4  %d  */
1185             &pgrp,           /* 5  %d  */
1186             &session,        /* 6  %d  */
1187             &nr,             /* 7  %d  */
1188             &tpgrp,          /* 8  %d  */
1189             &flags,          /* 9  %lu  */
1190             &minflt,         /* 10 %lu  */
1191             &cminflt,        /* 11 %lu  */
1192             &majflt,         /* 12 %lu  */
1193             &cmajflt,        /* 13 %lu  */
1194             &utime,          /* 14 %lu  */
1195             &stime,          /* 15 %lu  */
1196             &cutime,         /* 16 %ld  */
1197             &cstime,         /* 17 %ld  */
1198             &prio,           /* 18 %ld  */
1199             &nice,           /* 19 %ld  */
1200             &junk,           /* 20 %ld  */
1201             &it_real,        /* 21 %ld  */
1202             &start,          /* 22 UINTX_FORMAT */
1203             &vsize,          /* 23 UINTX_FORMAT */
1204             &rss,            /* 24 INTX_FORMAT  */
1205             &rsslim,         /* 25 UINTX_FORMAT */
1206             &scodes,         /* 26 UINTX_FORMAT */
1207             &ecode,          /* 27 UINTX_FORMAT */
1208             &stack_start);   /* 28 UINTX_FORMAT */
1209      }
1210
1211#undef _UFM
1212#undef _DFM
1213
1214      if (i != 28 - 2) {
1215         assert(false, "Bad conversion from /proc/self/stat");
1216         // product mode - assume we are the initial thread, good luck in the
1217         // embedded case.
1218         warning("Can't detect initial thread stack location - bad conversion");
1219         stack_start = (uintptr_t) &rlim;
1220      }
1221    } else {
1222      // For some reason we can't open /proc/self/stat (for example, running on
1223      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1224      // most cases, so don't abort:
1225      warning("Can't detect initial thread stack location - no /proc/self/stat");
1226      stack_start = (uintptr_t) &rlim;
1227    }
1228  }
1229
1230  // Now we have a pointer (stack_start) very close to the stack top, the
1231  // next thing to do is to figure out the exact location of stack top. We
1232  // can find out the virtual memory area that contains stack_start by
1233  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1234  // and its upper limit is the real stack top. (again, this would fail if
1235  // running inside chroot, because /proc may not exist.)
1236
1237  uintptr_t stack_top;
1238  address low, high;
1239  if (find_vma((address)stack_start, &low, &high)) {
1240    // success, "high" is the true stack top. (ignore "low", because initial
1241    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1242    stack_top = (uintptr_t)high;
1243  } else {
1244    // failed, likely because /proc/self/maps does not exist
1245    warning("Can't detect initial thread stack location - find_vma failed");
1246    // best effort: stack_start is normally within a few pages below the real
1247    // stack top, use it as stack top, and reduce stack size so we won't put
1248    // guard page outside stack.
1249    stack_top = stack_start;
1250    stack_size -= 16 * page_size();
1251  }
1252
1253  // stack_top could be partially down the page so align it
1254  stack_top = align_size_up(stack_top, page_size());
1255
1256  if (max_size && stack_size > max_size) {
1257     _initial_thread_stack_size = max_size;
1258  } else {
1259     _initial_thread_stack_size = stack_size;
1260  }
1261
1262  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1263  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1264}
1265
1266////////////////////////////////////////////////////////////////////////////////
1267// time support
1268
1269// Time since start-up in seconds to a fine granularity.
1270// Used by VMSelfDestructTimer and the MemProfiler.
1271double os::elapsedTime() {
1272
1273  return (double)(os::elapsed_counter()) * 0.000001;
1274}
1275
1276jlong os::elapsed_counter() {
1277  timeval time;
1278  int status = gettimeofday(&time, NULL);
1279  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1280}
1281
1282jlong os::elapsed_frequency() {
1283  return (1000 * 1000);
1284}
1285
1286// For now, we say that linux does not support vtime.  I have no idea
1287// whether it can actually be made to (DLD, 9/13/05).
1288
1289bool os::supports_vtime() { return false; }
1290bool os::enable_vtime()   { return false; }
1291bool os::vtime_enabled()  { return false; }
1292double os::elapsedVTime() {
1293  // better than nothing, but not much
1294  return elapsedTime();
1295}
1296
1297jlong os::javaTimeMillis() {
1298  timeval time;
1299  int status = gettimeofday(&time, NULL);
1300  assert(status != -1, "linux error");
1301  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1302}
1303
1304#ifndef CLOCK_MONOTONIC
1305#define CLOCK_MONOTONIC (1)
1306#endif
1307
1308void os::Linux::clock_init() {
1309  // we do dlopen's in this particular order due to bug in linux
1310  // dynamical loader (see 6348968) leading to crash on exit
1311  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1312  if (handle == NULL) {
1313    handle = dlopen("librt.so", RTLD_LAZY);
1314  }
1315
1316  if (handle) {
1317    int (*clock_getres_func)(clockid_t, struct timespec*) =
1318           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1319    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1320           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1321    if (clock_getres_func && clock_gettime_func) {
1322      // See if monotonic clock is supported by the kernel. Note that some
1323      // early implementations simply return kernel jiffies (updated every
1324      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1325      // for nano time (though the monotonic property is still nice to have).
1326      // It's fixed in newer kernels, however clock_getres() still returns
1327      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1328      // resolution for now. Hopefully as people move to new kernels, this
1329      // won't be a problem.
1330      struct timespec res;
1331      struct timespec tp;
1332      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1333          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1334        // yes, monotonic clock is supported
1335        _clock_gettime = clock_gettime_func;
1336      } else {
1337        // close librt if there is no monotonic clock
1338        dlclose(handle);
1339      }
1340    }
1341  }
1342}
1343
1344#ifndef SYS_clock_getres
1345
1346#if defined(IA32) || defined(AMD64)
1347#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1348#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1349#else
1350#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1351#define sys_clock_getres(x,y)  -1
1352#endif
1353
1354#else
1355#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1356#endif
1357
1358void os::Linux::fast_thread_clock_init() {
1359  if (!UseLinuxPosixThreadCPUClocks) {
1360    return;
1361  }
1362  clockid_t clockid;
1363  struct timespec tp;
1364  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1365      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1366
1367  // Switch to using fast clocks for thread cpu time if
1368  // the sys_clock_getres() returns 0 error code.
1369  // Note, that some kernels may support the current thread
1370  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1371  // returned by the pthread_getcpuclockid().
1372  // If the fast Posix clocks are supported then the sys_clock_getres()
1373  // must return at least tp.tv_sec == 0 which means a resolution
1374  // better than 1 sec. This is extra check for reliability.
1375
1376  if(pthread_getcpuclockid_func &&
1377     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1378     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1379
1380    _supports_fast_thread_cpu_time = true;
1381    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1382  }
1383}
1384
1385jlong os::javaTimeNanos() {
1386  if (Linux::supports_monotonic_clock()) {
1387    struct timespec tp;
1388    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1389    assert(status == 0, "gettime error");
1390    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1391    return result;
1392  } else {
1393    timeval time;
1394    int status = gettimeofday(&time, NULL);
1395    assert(status != -1, "linux error");
1396    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1397    return 1000 * usecs;
1398  }
1399}
1400
1401void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1402  if (Linux::supports_monotonic_clock()) {
1403    info_ptr->max_value = ALL_64_BITS;
1404
1405    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1406    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1407    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1408  } else {
1409    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1410    info_ptr->max_value = ALL_64_BITS;
1411
1412    // gettimeofday is a real time clock so it skips
1413    info_ptr->may_skip_backward = true;
1414    info_ptr->may_skip_forward = true;
1415  }
1416
1417  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1418}
1419
1420// Return the real, user, and system times in seconds from an
1421// arbitrary fixed point in the past.
1422bool os::getTimesSecs(double* process_real_time,
1423                      double* process_user_time,
1424                      double* process_system_time) {
1425  struct tms ticks;
1426  clock_t real_ticks = times(&ticks);
1427
1428  if (real_ticks == (clock_t) (-1)) {
1429    return false;
1430  } else {
1431    double ticks_per_second = (double) clock_tics_per_sec;
1432    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1433    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1434    *process_real_time = ((double) real_ticks) / ticks_per_second;
1435
1436    return true;
1437  }
1438}
1439
1440
1441char * os::local_time_string(char *buf, size_t buflen) {
1442  struct tm t;
1443  time_t long_time;
1444  time(&long_time);
1445  localtime_r(&long_time, &t);
1446  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1447               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1448               t.tm_hour, t.tm_min, t.tm_sec);
1449  return buf;
1450}
1451
1452struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1453  return localtime_r(clock, res);
1454}
1455
1456////////////////////////////////////////////////////////////////////////////////
1457// runtime exit support
1458
1459// Note: os::shutdown() might be called very early during initialization, or
1460// called from signal handler. Before adding something to os::shutdown(), make
1461// sure it is async-safe and can handle partially initialized VM.
1462void os::shutdown() {
1463
1464  // allow PerfMemory to attempt cleanup of any persistent resources
1465  perfMemory_exit();
1466
1467  // needs to remove object in file system
1468  AttachListener::abort();
1469
1470  // flush buffered output, finish log files
1471  ostream_abort();
1472
1473  // Check for abort hook
1474  abort_hook_t abort_hook = Arguments::abort_hook();
1475  if (abort_hook != NULL) {
1476    abort_hook();
1477  }
1478
1479}
1480
1481// Note: os::abort() might be called very early during initialization, or
1482// called from signal handler. Before adding something to os::abort(), make
1483// sure it is async-safe and can handle partially initialized VM.
1484void os::abort(bool dump_core) {
1485  os::shutdown();
1486  if (dump_core) {
1487#ifndef PRODUCT
1488    fdStream out(defaultStream::output_fd());
1489    out.print_raw("Current thread is ");
1490    char buf[16];
1491    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1492    out.print_raw_cr(buf);
1493    out.print_raw_cr("Dumping core ...");
1494#endif
1495    ::abort(); // dump core
1496  }
1497
1498  ::exit(1);
1499}
1500
1501// Die immediately, no exit hook, no abort hook, no cleanup.
1502void os::die() {
1503  // _exit() on LinuxThreads only kills current thread
1504  ::abort();
1505}
1506
1507// unused on linux for now.
1508void os::set_error_file(const char *logfile) {}
1509
1510intx os::current_thread_id() { return (intx)pthread_self(); }
1511int os::current_process_id() {
1512
1513  // Under the old linux thread library, linux gives each thread
1514  // its own process id. Because of this each thread will return
1515  // a different pid if this method were to return the result
1516  // of getpid(2). Linux provides no api that returns the pid
1517  // of the launcher thread for the vm. This implementation
1518  // returns a unique pid, the pid of the launcher thread
1519  // that starts the vm 'process'.
1520
1521  // Under the NPTL, getpid() returns the same pid as the
1522  // launcher thread rather than a unique pid per thread.
1523  // Use gettid() if you want the old pre NPTL behaviour.
1524
1525  // if you are looking for the result of a call to getpid() that
1526  // returns a unique pid for the calling thread, then look at the
1527  // OSThread::thread_id() method in osThread_linux.hpp file
1528
1529  return (int)(_initial_pid ? _initial_pid : getpid());
1530}
1531
1532// DLL functions
1533
1534const char* os::dll_file_extension() { return ".so"; }
1535
1536const char* os::get_temp_directory() {
1537  const char *prop = Arguments::get_property("java.io.tmpdir");
1538  return prop == NULL ? "/tmp" : prop;
1539}
1540
1541static bool file_exists(const char* filename) {
1542  struct stat statbuf;
1543  if (filename == NULL || strlen(filename) == 0) {
1544    return false;
1545  }
1546  return os::stat(filename, &statbuf) == 0;
1547}
1548
1549void os::dll_build_name(char* buffer, size_t buflen,
1550                        const char* pname, const char* fname) {
1551  // Copied from libhpi
1552  const size_t pnamelen = pname ? strlen(pname) : 0;
1553
1554  // Quietly truncate on buffer overflow.  Should be an error.
1555  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1556      *buffer = '\0';
1557      return;
1558  }
1559
1560  if (pnamelen == 0) {
1561    snprintf(buffer, buflen, "lib%s.so", fname);
1562  } else if (strchr(pname, *os::path_separator()) != NULL) {
1563    int n;
1564    char** pelements = split_path(pname, &n);
1565    for (int i = 0 ; i < n ; i++) {
1566      // Really shouldn't be NULL, but check can't hurt
1567      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1568        continue; // skip the empty path values
1569      }
1570      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1571      if (file_exists(buffer)) {
1572        break;
1573      }
1574    }
1575    // release the storage
1576    for (int i = 0 ; i < n ; i++) {
1577      if (pelements[i] != NULL) {
1578        FREE_C_HEAP_ARRAY(char, pelements[i]);
1579      }
1580    }
1581    if (pelements != NULL) {
1582      FREE_C_HEAP_ARRAY(char*, pelements);
1583    }
1584  } else {
1585    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1586  }
1587}
1588
1589const char* os::get_current_directory(char *buf, int buflen) {
1590  return getcwd(buf, buflen);
1591}
1592
1593// check if addr is inside libjvm[_g].so
1594bool os::address_is_in_vm(address addr) {
1595  static address libjvm_base_addr;
1596  Dl_info dlinfo;
1597
1598  if (libjvm_base_addr == NULL) {
1599    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1600    libjvm_base_addr = (address)dlinfo.dli_fbase;
1601    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1602  }
1603
1604  if (dladdr((void *)addr, &dlinfo)) {
1605    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1606  }
1607
1608  return false;
1609}
1610
1611bool os::dll_address_to_function_name(address addr, char *buf,
1612                                      int buflen, int *offset) {
1613  Dl_info dlinfo;
1614
1615  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1616    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1617    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1618    return true;
1619  } else {
1620    if (buf) buf[0] = '\0';
1621    if (offset) *offset = -1;
1622    return false;
1623  }
1624}
1625
1626struct _address_to_library_name {
1627  address addr;          // input : memory address
1628  size_t  buflen;        //         size of fname
1629  char*   fname;         // output: library name
1630  address base;          //         library base addr
1631};
1632
1633static int address_to_library_name_callback(struct dl_phdr_info *info,
1634                                            size_t size, void *data) {
1635  int i;
1636  bool found = false;
1637  address libbase = NULL;
1638  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1639
1640  // iterate through all loadable segments
1641  for (i = 0; i < info->dlpi_phnum; i++) {
1642    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1643    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1644      // base address of a library is the lowest address of its loaded
1645      // segments.
1646      if (libbase == NULL || libbase > segbase) {
1647        libbase = segbase;
1648      }
1649      // see if 'addr' is within current segment
1650      if (segbase <= d->addr &&
1651          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1652        found = true;
1653      }
1654    }
1655  }
1656
1657  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1658  // so dll_address_to_library_name() can fall through to use dladdr() which
1659  // can figure out executable name from argv[0].
1660  if (found && info->dlpi_name && info->dlpi_name[0]) {
1661    d->base = libbase;
1662    if (d->fname) {
1663      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1664    }
1665    return 1;
1666  }
1667  return 0;
1668}
1669
1670bool os::dll_address_to_library_name(address addr, char* buf,
1671                                     int buflen, int* offset) {
1672  Dl_info dlinfo;
1673  struct _address_to_library_name data;
1674
1675  // There is a bug in old glibc dladdr() implementation that it could resolve
1676  // to wrong library name if the .so file has a base address != NULL. Here
1677  // we iterate through the program headers of all loaded libraries to find
1678  // out which library 'addr' really belongs to. This workaround can be
1679  // removed once the minimum requirement for glibc is moved to 2.3.x.
1680  data.addr = addr;
1681  data.fname = buf;
1682  data.buflen = buflen;
1683  data.base = NULL;
1684  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1685
1686  if (rslt) {
1687     // buf already contains library name
1688     if (offset) *offset = addr - data.base;
1689     return true;
1690  } else if (dladdr((void*)addr, &dlinfo)){
1691     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1692     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1693     return true;
1694  } else {
1695     if (buf) buf[0] = '\0';
1696     if (offset) *offset = -1;
1697     return false;
1698  }
1699}
1700
1701  // Loads .dll/.so and
1702  // in case of error it checks if .dll/.so was built for the
1703  // same architecture as Hotspot is running on
1704
1705void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1706{
1707  void * result= ::dlopen(filename, RTLD_LAZY);
1708  if (result != NULL) {
1709    // Successful loading
1710    return result;
1711  }
1712
1713  Elf32_Ehdr elf_head;
1714
1715  // Read system error message into ebuf
1716  // It may or may not be overwritten below
1717  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1718  ebuf[ebuflen-1]='\0';
1719  int diag_msg_max_length=ebuflen-strlen(ebuf);
1720  char* diag_msg_buf=ebuf+strlen(ebuf);
1721
1722  if (diag_msg_max_length==0) {
1723    // No more space in ebuf for additional diagnostics message
1724    return NULL;
1725  }
1726
1727
1728  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1729
1730  if (file_descriptor < 0) {
1731    // Can't open library, report dlerror() message
1732    return NULL;
1733  }
1734
1735  bool failed_to_read_elf_head=
1736    (sizeof(elf_head)!=
1737        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1738
1739  ::close(file_descriptor);
1740  if (failed_to_read_elf_head) {
1741    // file i/o error - report dlerror() msg
1742    return NULL;
1743  }
1744
1745  typedef struct {
1746    Elf32_Half  code;         // Actual value as defined in elf.h
1747    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1748    char        elf_class;    // 32 or 64 bit
1749    char        endianess;    // MSB or LSB
1750    char*       name;         // String representation
1751  } arch_t;
1752
1753  #ifndef EM_486
1754  #define EM_486          6               /* Intel 80486 */
1755  #endif
1756
1757  static const arch_t arch_array[]={
1758    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1759    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1760    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1761    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1762    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1763    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1764    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1765    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1766    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1767    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1768    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1769    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1770    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1771    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1772    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1773    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1774  };
1775
1776  #if  (defined IA32)
1777    static  Elf32_Half running_arch_code=EM_386;
1778  #elif   (defined AMD64)
1779    static  Elf32_Half running_arch_code=EM_X86_64;
1780  #elif  (defined IA64)
1781    static  Elf32_Half running_arch_code=EM_IA_64;
1782  #elif  (defined __sparc) && (defined _LP64)
1783    static  Elf32_Half running_arch_code=EM_SPARCV9;
1784  #elif  (defined __sparc) && (!defined _LP64)
1785    static  Elf32_Half running_arch_code=EM_SPARC;
1786  #elif  (defined __powerpc64__)
1787    static  Elf32_Half running_arch_code=EM_PPC64;
1788  #elif  (defined __powerpc__)
1789    static  Elf32_Half running_arch_code=EM_PPC;
1790  #elif  (defined ARM)
1791    static  Elf32_Half running_arch_code=EM_ARM;
1792  #elif  (defined S390)
1793    static  Elf32_Half running_arch_code=EM_S390;
1794  #elif  (defined ALPHA)
1795    static  Elf32_Half running_arch_code=EM_ALPHA;
1796  #elif  (defined MIPSEL)
1797    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1798  #elif  (defined PARISC)
1799    static  Elf32_Half running_arch_code=EM_PARISC;
1800  #elif  (defined MIPS)
1801    static  Elf32_Half running_arch_code=EM_MIPS;
1802  #elif  (defined M68K)
1803    static  Elf32_Half running_arch_code=EM_68K;
1804  #else
1805    #error Method os::dll_load requires that one of following is defined:\
1806         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1807  #endif
1808
1809  // Identify compatability class for VM's architecture and library's architecture
1810  // Obtain string descriptions for architectures
1811
1812  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1813  int running_arch_index=-1;
1814
1815  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1816    if (running_arch_code == arch_array[i].code) {
1817      running_arch_index    = i;
1818    }
1819    if (lib_arch.code == arch_array[i].code) {
1820      lib_arch.compat_class = arch_array[i].compat_class;
1821      lib_arch.name         = arch_array[i].name;
1822    }
1823  }
1824
1825  assert(running_arch_index != -1,
1826    "Didn't find running architecture code (running_arch_code) in arch_array");
1827  if (running_arch_index == -1) {
1828    // Even though running architecture detection failed
1829    // we may still continue with reporting dlerror() message
1830    return NULL;
1831  }
1832
1833  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1834    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1835    return NULL;
1836  }
1837
1838#ifndef S390
1839  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1840    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1841    return NULL;
1842  }
1843#endif // !S390
1844
1845  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1846    if ( lib_arch.name!=NULL ) {
1847      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1848        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1849        lib_arch.name, arch_array[running_arch_index].name);
1850    } else {
1851      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1852      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1853        lib_arch.code,
1854        arch_array[running_arch_index].name);
1855    }
1856  }
1857
1858  return NULL;
1859}
1860
1861/*
1862 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1863 * chances are you might want to run the generated bits against glibc-2.0
1864 * libdl.so, so always use locking for any version of glibc.
1865 */
1866void* os::dll_lookup(void* handle, const char* name) {
1867  pthread_mutex_lock(&dl_mutex);
1868  void* res = dlsym(handle, name);
1869  pthread_mutex_unlock(&dl_mutex);
1870  return res;
1871}
1872
1873
1874bool _print_ascii_file(const char* filename, outputStream* st) {
1875  int fd = open(filename, O_RDONLY);
1876  if (fd == -1) {
1877     return false;
1878  }
1879
1880  char buf[32];
1881  int bytes;
1882  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1883    st->print_raw(buf, bytes);
1884  }
1885
1886  close(fd);
1887
1888  return true;
1889}
1890
1891void os::print_dll_info(outputStream *st) {
1892   st->print_cr("Dynamic libraries:");
1893
1894   char fname[32];
1895   pid_t pid = os::Linux::gettid();
1896
1897   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1898
1899   if (!_print_ascii_file(fname, st)) {
1900     st->print("Can not get library information for pid = %d\n", pid);
1901   }
1902}
1903
1904
1905void os::print_os_info(outputStream* st) {
1906  st->print("OS:");
1907
1908  // Try to identify popular distros.
1909  // Most Linux distributions have /etc/XXX-release file, which contains
1910  // the OS version string. Some have more than one /etc/XXX-release file
1911  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1912  // so the order is important.
1913  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1914      !_print_ascii_file("/etc/sun-release", st) &&
1915      !_print_ascii_file("/etc/redhat-release", st) &&
1916      !_print_ascii_file("/etc/SuSE-release", st) &&
1917      !_print_ascii_file("/etc/turbolinux-release", st) &&
1918      !_print_ascii_file("/etc/gentoo-release", st) &&
1919      !_print_ascii_file("/etc/debian_version", st) &&
1920      !_print_ascii_file("/etc/ltib-release", st) &&
1921      !_print_ascii_file("/etc/angstrom-version", st)) {
1922      st->print("Linux");
1923  }
1924  st->cr();
1925
1926  // kernel
1927  st->print("uname:");
1928  struct utsname name;
1929  uname(&name);
1930  st->print(name.sysname); st->print(" ");
1931  st->print(name.release); st->print(" ");
1932  st->print(name.version); st->print(" ");
1933  st->print(name.machine);
1934  st->cr();
1935
1936  // Print warning if unsafe chroot environment detected
1937  if (unsafe_chroot_detected) {
1938    st->print("WARNING!! ");
1939    st->print_cr(unstable_chroot_error);
1940  }
1941
1942  // libc, pthread
1943  st->print("libc:");
1944  st->print(os::Linux::glibc_version()); st->print(" ");
1945  st->print(os::Linux::libpthread_version()); st->print(" ");
1946  if (os::Linux::is_LinuxThreads()) {
1947     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1948  }
1949  st->cr();
1950
1951  // rlimit
1952  st->print("rlimit:");
1953  struct rlimit rlim;
1954
1955  st->print(" STACK ");
1956  getrlimit(RLIMIT_STACK, &rlim);
1957  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1958  else st->print("%uk", rlim.rlim_cur >> 10);
1959
1960  st->print(", CORE ");
1961  getrlimit(RLIMIT_CORE, &rlim);
1962  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1963  else st->print("%uk", rlim.rlim_cur >> 10);
1964
1965  st->print(", NPROC ");
1966  getrlimit(RLIMIT_NPROC, &rlim);
1967  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1968  else st->print("%d", rlim.rlim_cur);
1969
1970  st->print(", NOFILE ");
1971  getrlimit(RLIMIT_NOFILE, &rlim);
1972  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1973  else st->print("%d", rlim.rlim_cur);
1974
1975  st->print(", AS ");
1976  getrlimit(RLIMIT_AS, &rlim);
1977  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1978  else st->print("%uk", rlim.rlim_cur >> 10);
1979  st->cr();
1980
1981  // load average
1982  st->print("load average:");
1983  double loadavg[3];
1984  os::loadavg(loadavg, 3);
1985  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1986  st->cr();
1987
1988  // meminfo
1989  st->print("\n/proc/meminfo:\n");
1990  _print_ascii_file("/proc/meminfo", st);
1991  st->cr();
1992}
1993
1994void os::print_memory_info(outputStream* st) {
1995
1996  st->print("Memory:");
1997  st->print(" %dk page", os::vm_page_size()>>10);
1998
1999  // values in struct sysinfo are "unsigned long"
2000  struct sysinfo si;
2001  sysinfo(&si);
2002
2003  st->print(", physical " UINT64_FORMAT "k",
2004            os::physical_memory() >> 10);
2005  st->print("(" UINT64_FORMAT "k free)",
2006            os::available_memory() >> 10);
2007  st->print(", swap " UINT64_FORMAT "k",
2008            ((jlong)si.totalswap * si.mem_unit) >> 10);
2009  st->print("(" UINT64_FORMAT "k free)",
2010            ((jlong)si.freeswap * si.mem_unit) >> 10);
2011  st->cr();
2012}
2013
2014// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2015// but they're the same for all the linux arch that we support
2016// and they're the same for solaris but there's no common place to put this.
2017const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2018                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2019                          "ILL_COPROC", "ILL_BADSTK" };
2020
2021const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2022                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2023                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2024
2025const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2026
2027const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2028
2029void os::print_siginfo(outputStream* st, void* siginfo) {
2030  st->print("siginfo:");
2031
2032  const int buflen = 100;
2033  char buf[buflen];
2034  siginfo_t *si = (siginfo_t*)siginfo;
2035  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2036  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2037    st->print("si_errno=%s", buf);
2038  } else {
2039    st->print("si_errno=%d", si->si_errno);
2040  }
2041  const int c = si->si_code;
2042  assert(c > 0, "unexpected si_code");
2043  switch (si->si_signo) {
2044  case SIGILL:
2045    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2046    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2047    break;
2048  case SIGFPE:
2049    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2050    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2051    break;
2052  case SIGSEGV:
2053    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2054    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2055    break;
2056  case SIGBUS:
2057    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2058    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2059    break;
2060  default:
2061    st->print(", si_code=%d", si->si_code);
2062    // no si_addr
2063  }
2064
2065  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2066      UseSharedSpaces) {
2067    FileMapInfo* mapinfo = FileMapInfo::current_info();
2068    if (mapinfo->is_in_shared_space(si->si_addr)) {
2069      st->print("\n\nError accessing class data sharing archive."   \
2070                " Mapped file inaccessible during execution, "      \
2071                " possible disk/network problem.");
2072    }
2073  }
2074  st->cr();
2075}
2076
2077
2078static void print_signal_handler(outputStream* st, int sig,
2079                                 char* buf, size_t buflen);
2080
2081void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2082  st->print_cr("Signal Handlers:");
2083  print_signal_handler(st, SIGSEGV, buf, buflen);
2084  print_signal_handler(st, SIGBUS , buf, buflen);
2085  print_signal_handler(st, SIGFPE , buf, buflen);
2086  print_signal_handler(st, SIGPIPE, buf, buflen);
2087  print_signal_handler(st, SIGXFSZ, buf, buflen);
2088  print_signal_handler(st, SIGILL , buf, buflen);
2089  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2090  print_signal_handler(st, SR_signum, buf, buflen);
2091  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2092  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2093  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2094  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2095}
2096
2097static char saved_jvm_path[MAXPATHLEN] = {0};
2098
2099// Find the full path to the current module, libjvm.so or libjvm_g.so
2100void os::jvm_path(char *buf, jint buflen) {
2101  // Error checking.
2102  if (buflen < MAXPATHLEN) {
2103    assert(false, "must use a large-enough buffer");
2104    buf[0] = '\0';
2105    return;
2106  }
2107  // Lazy resolve the path to current module.
2108  if (saved_jvm_path[0] != 0) {
2109    strcpy(buf, saved_jvm_path);
2110    return;
2111  }
2112
2113  char dli_fname[MAXPATHLEN];
2114  bool ret = dll_address_to_library_name(
2115                CAST_FROM_FN_PTR(address, os::jvm_path),
2116                dli_fname, sizeof(dli_fname), NULL);
2117  assert(ret != 0, "cannot locate libjvm");
2118  char *rp = realpath(dli_fname, buf);
2119  if (rp == NULL)
2120    return;
2121
2122  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2123    // Support for the gamma launcher.  Typical value for buf is
2124    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2125    // the right place in the string, then assume we are installed in a JDK and
2126    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2127    // up the path so it looks like libjvm.so is installed there (append a
2128    // fake suffix hotspot/libjvm.so).
2129    const char *p = buf + strlen(buf) - 1;
2130    for (int count = 0; p > buf && count < 5; ++count) {
2131      for (--p; p > buf && *p != '/'; --p)
2132        /* empty */ ;
2133    }
2134
2135    if (strncmp(p, "/jre/lib/", 9) != 0) {
2136      // Look for JAVA_HOME in the environment.
2137      char* java_home_var = ::getenv("JAVA_HOME");
2138      if (java_home_var != NULL && java_home_var[0] != 0) {
2139        char* jrelib_p;
2140        int len;
2141
2142        // Check the current module name "libjvm.so" or "libjvm_g.so".
2143        p = strrchr(buf, '/');
2144        assert(strstr(p, "/libjvm") == p, "invalid library name");
2145        p = strstr(p, "_g") ? "_g" : "";
2146
2147        rp = realpath(java_home_var, buf);
2148        if (rp == NULL)
2149          return;
2150
2151        // determine if this is a legacy image or modules image
2152        // modules image doesn't have "jre" subdirectory
2153        len = strlen(buf);
2154        jrelib_p = buf + len;
2155        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2156        if (0 != access(buf, F_OK)) {
2157          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2158        }
2159
2160        if (0 == access(buf, F_OK)) {
2161          // Use current module name "libjvm[_g].so" instead of
2162          // "libjvm"debug_only("_g")".so" since for fastdebug version
2163          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2164          // It is used when we are choosing the HPI library's name
2165          // "libhpi[_g].so" in hpi::initialize_get_interface().
2166          len = strlen(buf);
2167          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2168        } else {
2169          // Go back to path of .so
2170          rp = realpath(dli_fname, buf);
2171          if (rp == NULL)
2172            return;
2173        }
2174      }
2175    }
2176  }
2177
2178  strcpy(saved_jvm_path, buf);
2179}
2180
2181void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2182  // no prefix required, not even "_"
2183}
2184
2185void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2186  // no suffix required
2187}
2188
2189////////////////////////////////////////////////////////////////////////////////
2190// sun.misc.Signal support
2191
2192static volatile jint sigint_count = 0;
2193
2194static void
2195UserHandler(int sig, void *siginfo, void *context) {
2196  // 4511530 - sem_post is serialized and handled by the manager thread. When
2197  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2198  // don't want to flood the manager thread with sem_post requests.
2199  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2200      return;
2201
2202  // Ctrl-C is pressed during error reporting, likely because the error
2203  // handler fails to abort. Let VM die immediately.
2204  if (sig == SIGINT && is_error_reported()) {
2205     os::die();
2206  }
2207
2208  os::signal_notify(sig);
2209}
2210
2211void* os::user_handler() {
2212  return CAST_FROM_FN_PTR(void*, UserHandler);
2213}
2214
2215extern "C" {
2216  typedef void (*sa_handler_t)(int);
2217  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2218}
2219
2220void* os::signal(int signal_number, void* handler) {
2221  struct sigaction sigAct, oldSigAct;
2222
2223  sigfillset(&(sigAct.sa_mask));
2224  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2225  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2226
2227  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2228    // -1 means registration failed
2229    return (void *)-1;
2230  }
2231
2232  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2233}
2234
2235void os::signal_raise(int signal_number) {
2236  ::raise(signal_number);
2237}
2238
2239/*
2240 * The following code is moved from os.cpp for making this
2241 * code platform specific, which it is by its very nature.
2242 */
2243
2244// Will be modified when max signal is changed to be dynamic
2245int os::sigexitnum_pd() {
2246  return NSIG;
2247}
2248
2249// a counter for each possible signal value
2250static volatile jint pending_signals[NSIG+1] = { 0 };
2251
2252// Linux(POSIX) specific hand shaking semaphore.
2253static sem_t sig_sem;
2254
2255void os::signal_init_pd() {
2256  // Initialize signal structures
2257  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2258
2259  // Initialize signal semaphore
2260  ::sem_init(&sig_sem, 0, 0);
2261}
2262
2263void os::signal_notify(int sig) {
2264  Atomic::inc(&pending_signals[sig]);
2265  ::sem_post(&sig_sem);
2266}
2267
2268static int check_pending_signals(bool wait) {
2269  Atomic::store(0, &sigint_count);
2270  for (;;) {
2271    for (int i = 0; i < NSIG + 1; i++) {
2272      jint n = pending_signals[i];
2273      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2274        return i;
2275      }
2276    }
2277    if (!wait) {
2278      return -1;
2279    }
2280    JavaThread *thread = JavaThread::current();
2281    ThreadBlockInVM tbivm(thread);
2282
2283    bool threadIsSuspended;
2284    do {
2285      thread->set_suspend_equivalent();
2286      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2287      ::sem_wait(&sig_sem);
2288
2289      // were we externally suspended while we were waiting?
2290      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2291      if (threadIsSuspended) {
2292        //
2293        // The semaphore has been incremented, but while we were waiting
2294        // another thread suspended us. We don't want to continue running
2295        // while suspended because that would surprise the thread that
2296        // suspended us.
2297        //
2298        ::sem_post(&sig_sem);
2299
2300        thread->java_suspend_self();
2301      }
2302    } while (threadIsSuspended);
2303  }
2304}
2305
2306int os::signal_lookup() {
2307  return check_pending_signals(false);
2308}
2309
2310int os::signal_wait() {
2311  return check_pending_signals(true);
2312}
2313
2314////////////////////////////////////////////////////////////////////////////////
2315// Virtual Memory
2316
2317int os::vm_page_size() {
2318  // Seems redundant as all get out
2319  assert(os::Linux::page_size() != -1, "must call os::init");
2320  return os::Linux::page_size();
2321}
2322
2323// Solaris allocates memory by pages.
2324int os::vm_allocation_granularity() {
2325  assert(os::Linux::page_size() != -1, "must call os::init");
2326  return os::Linux::page_size();
2327}
2328
2329// Rationale behind this function:
2330//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2331//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2332//  samples for JITted code. Here we create private executable mapping over the code cache
2333//  and then we can use standard (well, almost, as mapping can change) way to provide
2334//  info for the reporting script by storing timestamp and location of symbol
2335void linux_wrap_code(char* base, size_t size) {
2336  static volatile jint cnt = 0;
2337
2338  if (!UseOprofile) {
2339    return;
2340  }
2341
2342  char buf[PATH_MAX+1];
2343  int num = Atomic::add(1, &cnt);
2344
2345  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2346           os::get_temp_directory(), os::current_process_id(), num);
2347  unlink(buf);
2348
2349  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2350
2351  if (fd != -1) {
2352    off_t rv = lseek(fd, size-2, SEEK_SET);
2353    if (rv != (off_t)-1) {
2354      if (write(fd, "", 1) == 1) {
2355        mmap(base, size,
2356             PROT_READ|PROT_WRITE|PROT_EXEC,
2357             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2358      }
2359    }
2360    close(fd);
2361    unlink(buf);
2362  }
2363}
2364
2365// NOTE: Linux kernel does not really reserve the pages for us.
2366//       All it does is to check if there are enough free pages
2367//       left at the time of mmap(). This could be a potential
2368//       problem.
2369bool os::commit_memory(char* addr, size_t size, bool exec) {
2370  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2371  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2372                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2373  return res != (uintptr_t) MAP_FAILED;
2374}
2375
2376bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2377                       bool exec) {
2378  return commit_memory(addr, size, exec);
2379}
2380
2381void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2382
2383void os::free_memory(char *addr, size_t bytes) {
2384  ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2385         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2386}
2387
2388void os::numa_make_global(char *addr, size_t bytes) {
2389  Linux::numa_interleave_memory(addr, bytes);
2390}
2391
2392void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2393  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2394}
2395
2396bool os::numa_topology_changed()   { return false; }
2397
2398size_t os::numa_get_groups_num() {
2399  int max_node = Linux::numa_max_node();
2400  return max_node > 0 ? max_node + 1 : 1;
2401}
2402
2403int os::numa_get_group_id() {
2404  int cpu_id = Linux::sched_getcpu();
2405  if (cpu_id != -1) {
2406    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2407    if (lgrp_id != -1) {
2408      return lgrp_id;
2409    }
2410  }
2411  return 0;
2412}
2413
2414size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2415  for (size_t i = 0; i < size; i++) {
2416    ids[i] = i;
2417  }
2418  return size;
2419}
2420
2421bool os::get_page_info(char *start, page_info* info) {
2422  return false;
2423}
2424
2425char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2426  return end;
2427}
2428
2429extern "C" void numa_warn(int number, char *where, ...) { }
2430extern "C" void numa_error(char *where) { }
2431
2432
2433// If we are running with libnuma version > 2, then we should
2434// be trying to use symbols with versions 1.1
2435// If we are running with earlier version, which did not have symbol versions,
2436// we should use the base version.
2437void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2438  void *f = dlvsym(handle, name, "libnuma_1.1");
2439  if (f == NULL) {
2440    f = dlsym(handle, name);
2441  }
2442  return f;
2443}
2444
2445bool os::Linux::libnuma_init() {
2446  // sched_getcpu() should be in libc.
2447  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2448                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2449
2450  if (sched_getcpu() != -1) { // Does it work?
2451    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2452    if (handle != NULL) {
2453      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2454                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2455      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2456                                       libnuma_dlsym(handle, "numa_max_node")));
2457      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2458                                        libnuma_dlsym(handle, "numa_available")));
2459      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2460                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2461      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2462                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2463
2464
2465      if (numa_available() != -1) {
2466        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2467        // Create a cpu -> node mapping
2468        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2469        rebuild_cpu_to_node_map();
2470        return true;
2471      }
2472    }
2473  }
2474  return false;
2475}
2476
2477// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2478// The table is later used in get_node_by_cpu().
2479void os::Linux::rebuild_cpu_to_node_map() {
2480  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2481                              // in libnuma (possible values are starting from 16,
2482                              // and continuing up with every other power of 2, but less
2483                              // than the maximum number of CPUs supported by kernel), and
2484                              // is a subject to change (in libnuma version 2 the requirements
2485                              // are more reasonable) we'll just hardcode the number they use
2486                              // in the library.
2487  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2488
2489  size_t cpu_num = os::active_processor_count();
2490  size_t cpu_map_size = NCPUS / BitsPerCLong;
2491  size_t cpu_map_valid_size =
2492    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2493
2494  cpu_to_node()->clear();
2495  cpu_to_node()->at_grow(cpu_num - 1);
2496  size_t node_num = numa_get_groups_num();
2497
2498  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2499  for (size_t i = 0; i < node_num; i++) {
2500    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2501      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2502        if (cpu_map[j] != 0) {
2503          for (size_t k = 0; k < BitsPerCLong; k++) {
2504            if (cpu_map[j] & (1UL << k)) {
2505              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2506            }
2507          }
2508        }
2509      }
2510    }
2511  }
2512  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2513}
2514
2515int os::Linux::get_node_by_cpu(int cpu_id) {
2516  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2517    return cpu_to_node()->at(cpu_id);
2518  }
2519  return -1;
2520}
2521
2522GrowableArray<int>* os::Linux::_cpu_to_node;
2523os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2524os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2525os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2526os::Linux::numa_available_func_t os::Linux::_numa_available;
2527os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2528os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2529unsigned long* os::Linux::_numa_all_nodes;
2530
2531bool os::uncommit_memory(char* addr, size_t size) {
2532  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2533                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2534  return res  != (uintptr_t) MAP_FAILED;
2535}
2536
2537// Linux uses a growable mapping for the stack, and if the mapping for
2538// the stack guard pages is not removed when we detach a thread the
2539// stack cannot grow beyond the pages where the stack guard was
2540// mapped.  If at some point later in the process the stack expands to
2541// that point, the Linux kernel cannot expand the stack any further
2542// because the guard pages are in the way, and a segfault occurs.
2543//
2544// However, it's essential not to split the stack region by unmapping
2545// a region (leaving a hole) that's already part of the stack mapping,
2546// so if the stack mapping has already grown beyond the guard pages at
2547// the time we create them, we have to truncate the stack mapping.
2548// So, we need to know the extent of the stack mapping when
2549// create_stack_guard_pages() is called.
2550
2551// Find the bounds of the stack mapping.  Return true for success.
2552//
2553// We only need this for stacks that are growable: at the time of
2554// writing thread stacks don't use growable mappings (i.e. those
2555// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2556// only applies to the main thread.
2557static bool
2558get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2559{
2560  FILE *f = fopen("/proc/self/maps", "r");
2561  if (f == NULL)
2562    return false;
2563
2564  while (!feof(f)) {
2565    size_t dummy;
2566    char *str = NULL;
2567    ssize_t len = getline(&str, &dummy, f);
2568    if (len == -1) {
2569      fclose(f);
2570      return false;
2571    }
2572
2573    if (len > 0 && str[len-1] == '\n') {
2574      str[len-1] = 0;
2575      len--;
2576    }
2577
2578    static const char *stack_str = "[stack]";
2579    if (len > (ssize_t)strlen(stack_str)
2580       && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2581      if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2582        uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2583        if (sp >= *bottom && sp <= *top) {
2584          free(str);
2585          fclose(f);
2586          return true;
2587        }
2588      }
2589    }
2590    free(str);
2591  }
2592  fclose(f);
2593  return false;
2594}
2595
2596// If the (growable) stack mapping already extends beyond the point
2597// where we're going to put our guard pages, truncate the mapping at
2598// that point by munmap()ping it.  This ensures that when we later
2599// munmap() the guard pages we don't leave a hole in the stack
2600// mapping. This only affects the main/initial thread, but guard
2601// against future OS changes
2602bool os::create_stack_guard_pages(char* addr, size_t size) {
2603  uintptr_t stack_extent, stack_base;
2604  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2605  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2606      assert(os::Linux::is_initial_thread(),
2607           "growable stack in non-initial thread");
2608    if (stack_extent < (uintptr_t)addr)
2609      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2610  }
2611
2612  return os::commit_memory(addr, size);
2613}
2614
2615// If this is a growable mapping, remove the guard pages entirely by
2616// munmap()ping them.  If not, just call uncommit_memory(). This only
2617// affects the main/initial thread, but guard against future OS changes
2618bool os::remove_stack_guard_pages(char* addr, size_t size) {
2619  uintptr_t stack_extent, stack_base;
2620  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2621  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2622      assert(os::Linux::is_initial_thread(),
2623           "growable stack in non-initial thread");
2624
2625    return ::munmap(addr, size) == 0;
2626  }
2627
2628  return os::uncommit_memory(addr, size);
2629}
2630
2631static address _highest_vm_reserved_address = NULL;
2632
2633// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2634// at 'requested_addr'. If there are existing memory mappings at the same
2635// location, however, they will be overwritten. If 'fixed' is false,
2636// 'requested_addr' is only treated as a hint, the return value may or
2637// may not start from the requested address. Unlike Linux mmap(), this
2638// function returns NULL to indicate failure.
2639static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2640  char * addr;
2641  int flags;
2642
2643  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2644  if (fixed) {
2645    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2646    flags |= MAP_FIXED;
2647  }
2648
2649  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2650  // to PROT_EXEC if executable when we commit the page.
2651  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2652                       flags, -1, 0);
2653
2654  if (addr != MAP_FAILED) {
2655    // anon_mmap() should only get called during VM initialization,
2656    // don't need lock (actually we can skip locking even it can be called
2657    // from multiple threads, because _highest_vm_reserved_address is just a
2658    // hint about the upper limit of non-stack memory regions.)
2659    if ((address)addr + bytes > _highest_vm_reserved_address) {
2660      _highest_vm_reserved_address = (address)addr + bytes;
2661    }
2662  }
2663
2664  return addr == MAP_FAILED ? NULL : addr;
2665}
2666
2667// Don't update _highest_vm_reserved_address, because there might be memory
2668// regions above addr + size. If so, releasing a memory region only creates
2669// a hole in the address space, it doesn't help prevent heap-stack collision.
2670//
2671static int anon_munmap(char * addr, size_t size) {
2672  return ::munmap(addr, size) == 0;
2673}
2674
2675char* os::reserve_memory(size_t bytes, char* requested_addr,
2676                         size_t alignment_hint) {
2677  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2678}
2679
2680bool os::release_memory(char* addr, size_t size) {
2681  return anon_munmap(addr, size);
2682}
2683
2684static address highest_vm_reserved_address() {
2685  return _highest_vm_reserved_address;
2686}
2687
2688static bool linux_mprotect(char* addr, size_t size, int prot) {
2689  // Linux wants the mprotect address argument to be page aligned.
2690  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2691
2692  // According to SUSv3, mprotect() should only be used with mappings
2693  // established by mmap(), and mmap() always maps whole pages. Unaligned
2694  // 'addr' likely indicates problem in the VM (e.g. trying to change
2695  // protection of malloc'ed or statically allocated memory). Check the
2696  // caller if you hit this assert.
2697  assert(addr == bottom, "sanity check");
2698
2699  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2700  return ::mprotect(bottom, size, prot) == 0;
2701}
2702
2703// Set protections specified
2704bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2705                        bool is_committed) {
2706  unsigned int p = 0;
2707  switch (prot) {
2708  case MEM_PROT_NONE: p = PROT_NONE; break;
2709  case MEM_PROT_READ: p = PROT_READ; break;
2710  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2711  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2712  default:
2713    ShouldNotReachHere();
2714  }
2715  // is_committed is unused.
2716  return linux_mprotect(addr, bytes, p);
2717}
2718
2719bool os::guard_memory(char* addr, size_t size) {
2720  return linux_mprotect(addr, size, PROT_NONE);
2721}
2722
2723bool os::unguard_memory(char* addr, size_t size) {
2724  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2725}
2726
2727// Large page support
2728
2729static size_t _large_page_size = 0;
2730
2731bool os::large_page_init() {
2732  if (!UseLargePages) return false;
2733
2734  if (LargePageSizeInBytes) {
2735    _large_page_size = LargePageSizeInBytes;
2736  } else {
2737    // large_page_size on Linux is used to round up heap size. x86 uses either
2738    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2739    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2740    // page as large as 256M.
2741    //
2742    // Here we try to figure out page size by parsing /proc/meminfo and looking
2743    // for a line with the following format:
2744    //    Hugepagesize:     2048 kB
2745    //
2746    // If we can't determine the value (e.g. /proc is not mounted, or the text
2747    // format has been changed), we'll use the largest page size supported by
2748    // the processor.
2749
2750#ifndef ZERO
2751    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2752                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2753#endif // ZERO
2754
2755    FILE *fp = fopen("/proc/meminfo", "r");
2756    if (fp) {
2757      while (!feof(fp)) {
2758        int x = 0;
2759        char buf[16];
2760        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2761          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2762            _large_page_size = x * K;
2763            break;
2764          }
2765        } else {
2766          // skip to next line
2767          for (;;) {
2768            int ch = fgetc(fp);
2769            if (ch == EOF || ch == (int)'\n') break;
2770          }
2771        }
2772      }
2773      fclose(fp);
2774    }
2775  }
2776
2777  const size_t default_page_size = (size_t)Linux::page_size();
2778  if (_large_page_size > default_page_size) {
2779    _page_sizes[0] = _large_page_size;
2780    _page_sizes[1] = default_page_size;
2781    _page_sizes[2] = 0;
2782  }
2783
2784  // Large page support is available on 2.6 or newer kernel, some vendors
2785  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2786  // We optimistically assume the support is available. If later it turns out
2787  // not true, VM will automatically switch to use regular page size.
2788  return true;
2789}
2790
2791#ifndef SHM_HUGETLB
2792#define SHM_HUGETLB 04000
2793#endif
2794
2795char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2796  // "exec" is passed in but not used.  Creating the shared image for
2797  // the code cache doesn't have an SHM_X executable permission to check.
2798  assert(UseLargePages, "only for large pages");
2799
2800  key_t key = IPC_PRIVATE;
2801  char *addr;
2802
2803  bool warn_on_failure = UseLargePages &&
2804                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2805                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2806                        );
2807  char msg[128];
2808
2809  // Create a large shared memory region to attach to based on size.
2810  // Currently, size is the total size of the heap
2811  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2812  if (shmid == -1) {
2813     // Possible reasons for shmget failure:
2814     // 1. shmmax is too small for Java heap.
2815     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2816     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2817     // 2. not enough large page memory.
2818     //    > check available large pages: cat /proc/meminfo
2819     //    > increase amount of large pages:
2820     //          echo new_value > /proc/sys/vm/nr_hugepages
2821     //      Note 1: different Linux may use different name for this property,
2822     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2823     //      Note 2: it's possible there's enough physical memory available but
2824     //            they are so fragmented after a long run that they can't
2825     //            coalesce into large pages. Try to reserve large pages when
2826     //            the system is still "fresh".
2827     if (warn_on_failure) {
2828       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2829       warning(msg);
2830     }
2831     return NULL;
2832  }
2833
2834  // attach to the region
2835  addr = (char*)shmat(shmid, req_addr, 0);
2836  int err = errno;
2837
2838  // Remove shmid. If shmat() is successful, the actual shared memory segment
2839  // will be deleted when it's detached by shmdt() or when the process
2840  // terminates. If shmat() is not successful this will remove the shared
2841  // segment immediately.
2842  shmctl(shmid, IPC_RMID, NULL);
2843
2844  if ((intptr_t)addr == -1) {
2845     if (warn_on_failure) {
2846       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2847       warning(msg);
2848     }
2849     return NULL;
2850  }
2851
2852  return addr;
2853}
2854
2855bool os::release_memory_special(char* base, size_t bytes) {
2856  // detaching the SHM segment will also delete it, see reserve_memory_special()
2857  int rslt = shmdt(base);
2858  return rslt == 0;
2859}
2860
2861size_t os::large_page_size() {
2862  return _large_page_size;
2863}
2864
2865// Linux does not support anonymous mmap with large page memory. The only way
2866// to reserve large page memory without file backing is through SysV shared
2867// memory API. The entire memory region is committed and pinned upfront.
2868// Hopefully this will change in the future...
2869bool os::can_commit_large_page_memory() {
2870  return false;
2871}
2872
2873bool os::can_execute_large_page_memory() {
2874  return false;
2875}
2876
2877// Reserve memory at an arbitrary address, only if that area is
2878// available (and not reserved for something else).
2879
2880char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2881  const int max_tries = 10;
2882  char* base[max_tries];
2883  size_t size[max_tries];
2884  const size_t gap = 0x000000;
2885
2886  // Assert only that the size is a multiple of the page size, since
2887  // that's all that mmap requires, and since that's all we really know
2888  // about at this low abstraction level.  If we need higher alignment,
2889  // we can either pass an alignment to this method or verify alignment
2890  // in one of the methods further up the call chain.  See bug 5044738.
2891  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2892
2893  // Repeatedly allocate blocks until the block is allocated at the
2894  // right spot. Give up after max_tries. Note that reserve_memory() will
2895  // automatically update _highest_vm_reserved_address if the call is
2896  // successful. The variable tracks the highest memory address every reserved
2897  // by JVM. It is used to detect heap-stack collision if running with
2898  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2899  // space than needed, it could confuse the collision detecting code. To
2900  // solve the problem, save current _highest_vm_reserved_address and
2901  // calculate the correct value before return.
2902  address old_highest = _highest_vm_reserved_address;
2903
2904  // Linux mmap allows caller to pass an address as hint; give it a try first,
2905  // if kernel honors the hint then we can return immediately.
2906  char * addr = anon_mmap(requested_addr, bytes, false);
2907  if (addr == requested_addr) {
2908     return requested_addr;
2909  }
2910
2911  if (addr != NULL) {
2912     // mmap() is successful but it fails to reserve at the requested address
2913     anon_munmap(addr, bytes);
2914  }
2915
2916  int i;
2917  for (i = 0; i < max_tries; ++i) {
2918    base[i] = reserve_memory(bytes);
2919
2920    if (base[i] != NULL) {
2921      // Is this the block we wanted?
2922      if (base[i] == requested_addr) {
2923        size[i] = bytes;
2924        break;
2925      }
2926
2927      // Does this overlap the block we wanted? Give back the overlapped
2928      // parts and try again.
2929
2930      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2931      if (top_overlap >= 0 && top_overlap < bytes) {
2932        unmap_memory(base[i], top_overlap);
2933        base[i] += top_overlap;
2934        size[i] = bytes - top_overlap;
2935      } else {
2936        size_t bottom_overlap = base[i] + bytes - requested_addr;
2937        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2938          unmap_memory(requested_addr, bottom_overlap);
2939          size[i] = bytes - bottom_overlap;
2940        } else {
2941          size[i] = bytes;
2942        }
2943      }
2944    }
2945  }
2946
2947  // Give back the unused reserved pieces.
2948
2949  for (int j = 0; j < i; ++j) {
2950    if (base[j] != NULL) {
2951      unmap_memory(base[j], size[j]);
2952    }
2953  }
2954
2955  if (i < max_tries) {
2956    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2957    return requested_addr;
2958  } else {
2959    _highest_vm_reserved_address = old_highest;
2960    return NULL;
2961  }
2962}
2963
2964size_t os::read(int fd, void *buf, unsigned int nBytes) {
2965  return ::read(fd, buf, nBytes);
2966}
2967
2968// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2969// Solaris uses poll(), linux uses park().
2970// Poll() is likely a better choice, assuming that Thread.interrupt()
2971// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2972// SIGSEGV, see 4355769.
2973
2974const int NANOSECS_PER_MILLISECS = 1000000;
2975
2976int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2977  assert(thread == Thread::current(),  "thread consistency check");
2978
2979  ParkEvent * const slp = thread->_SleepEvent ;
2980  slp->reset() ;
2981  OrderAccess::fence() ;
2982
2983  if (interruptible) {
2984    jlong prevtime = javaTimeNanos();
2985
2986    for (;;) {
2987      if (os::is_interrupted(thread, true)) {
2988        return OS_INTRPT;
2989      }
2990
2991      jlong newtime = javaTimeNanos();
2992
2993      if (newtime - prevtime < 0) {
2994        // time moving backwards, should only happen if no monotonic clock
2995        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2996        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2997      } else {
2998        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2999      }
3000
3001      if(millis <= 0) {
3002        return OS_OK;
3003      }
3004
3005      prevtime = newtime;
3006
3007      {
3008        assert(thread->is_Java_thread(), "sanity check");
3009        JavaThread *jt = (JavaThread *) thread;
3010        ThreadBlockInVM tbivm(jt);
3011        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3012
3013        jt->set_suspend_equivalent();
3014        // cleared by handle_special_suspend_equivalent_condition() or
3015        // java_suspend_self() via check_and_wait_while_suspended()
3016
3017        slp->park(millis);
3018
3019        // were we externally suspended while we were waiting?
3020        jt->check_and_wait_while_suspended();
3021      }
3022    }
3023  } else {
3024    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3025    jlong prevtime = javaTimeNanos();
3026
3027    for (;;) {
3028      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3029      // the 1st iteration ...
3030      jlong newtime = javaTimeNanos();
3031
3032      if (newtime - prevtime < 0) {
3033        // time moving backwards, should only happen if no monotonic clock
3034        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3035        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3036      } else {
3037        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3038      }
3039
3040      if(millis <= 0) break ;
3041
3042      prevtime = newtime;
3043      slp->park(millis);
3044    }
3045    return OS_OK ;
3046  }
3047}
3048
3049int os::naked_sleep() {
3050  // %% make the sleep time an integer flag. for now use 1 millisec.
3051  return os::sleep(Thread::current(), 1, false);
3052}
3053
3054// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3055void os::infinite_sleep() {
3056  while (true) {    // sleep forever ...
3057    ::sleep(100);   // ... 100 seconds at a time
3058  }
3059}
3060
3061// Used to convert frequent JVM_Yield() to nops
3062bool os::dont_yield() {
3063  return DontYieldALot;
3064}
3065
3066void os::yield() {
3067  sched_yield();
3068}
3069
3070os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3071
3072void os::yield_all(int attempts) {
3073  // Yields to all threads, including threads with lower priorities
3074  // Threads on Linux are all with same priority. The Solaris style
3075  // os::yield_all() with nanosleep(1ms) is not necessary.
3076  sched_yield();
3077}
3078
3079// Called from the tight loops to possibly influence time-sharing heuristics
3080void os::loop_breaker(int attempts) {
3081  os::yield_all(attempts);
3082}
3083
3084////////////////////////////////////////////////////////////////////////////////
3085// thread priority support
3086
3087// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3088// only supports dynamic priority, static priority must be zero. For real-time
3089// applications, Linux supports SCHED_RR which allows static priority (1-99).
3090// However, for large multi-threaded applications, SCHED_RR is not only slower
3091// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3092// of 5 runs - Sep 2005).
3093//
3094// The following code actually changes the niceness of kernel-thread/LWP. It
3095// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3096// not the entire user process, and user level threads are 1:1 mapped to kernel
3097// threads. It has always been the case, but could change in the future. For
3098// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3099// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3100
3101int os::java_to_os_priority[MaxPriority + 1] = {
3102  19,              // 0 Entry should never be used
3103
3104   4,              // 1 MinPriority
3105   3,              // 2
3106   2,              // 3
3107
3108   1,              // 4
3109   0,              // 5 NormPriority
3110  -1,              // 6
3111
3112  -2,              // 7
3113  -3,              // 8
3114  -4,              // 9 NearMaxPriority
3115
3116  -5               // 10 MaxPriority
3117};
3118
3119static int prio_init() {
3120  if (ThreadPriorityPolicy == 1) {
3121    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3122    // if effective uid is not root. Perhaps, a more elegant way of doing
3123    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3124    if (geteuid() != 0) {
3125      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3126        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3127      }
3128      ThreadPriorityPolicy = 0;
3129    }
3130  }
3131  return 0;
3132}
3133
3134OSReturn os::set_native_priority(Thread* thread, int newpri) {
3135  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3136
3137  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3138  return (ret == 0) ? OS_OK : OS_ERR;
3139}
3140
3141OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3142  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3143    *priority_ptr = java_to_os_priority[NormPriority];
3144    return OS_OK;
3145  }
3146
3147  errno = 0;
3148  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3149  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3150}
3151
3152// Hint to the underlying OS that a task switch would not be good.
3153// Void return because it's a hint and can fail.
3154void os::hint_no_preempt() {}
3155
3156////////////////////////////////////////////////////////////////////////////////
3157// suspend/resume support
3158
3159//  the low-level signal-based suspend/resume support is a remnant from the
3160//  old VM-suspension that used to be for java-suspension, safepoints etc,
3161//  within hotspot. Now there is a single use-case for this:
3162//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3163//      that runs in the watcher thread.
3164//  The remaining code is greatly simplified from the more general suspension
3165//  code that used to be used.
3166//
3167//  The protocol is quite simple:
3168//  - suspend:
3169//      - sends a signal to the target thread
3170//      - polls the suspend state of the osthread using a yield loop
3171//      - target thread signal handler (SR_handler) sets suspend state
3172//        and blocks in sigsuspend until continued
3173//  - resume:
3174//      - sets target osthread state to continue
3175//      - sends signal to end the sigsuspend loop in the SR_handler
3176//
3177//  Note that the SR_lock plays no role in this suspend/resume protocol.
3178//
3179
3180static void resume_clear_context(OSThread *osthread) {
3181  osthread->set_ucontext(NULL);
3182  osthread->set_siginfo(NULL);
3183
3184  // notify the suspend action is completed, we have now resumed
3185  osthread->sr.clear_suspended();
3186}
3187
3188static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3189  osthread->set_ucontext(context);
3190  osthread->set_siginfo(siginfo);
3191}
3192
3193//
3194// Handler function invoked when a thread's execution is suspended or
3195// resumed. We have to be careful that only async-safe functions are
3196// called here (Note: most pthread functions are not async safe and
3197// should be avoided.)
3198//
3199// Note: sigwait() is a more natural fit than sigsuspend() from an
3200// interface point of view, but sigwait() prevents the signal hander
3201// from being run. libpthread would get very confused by not having
3202// its signal handlers run and prevents sigwait()'s use with the
3203// mutex granting granting signal.
3204//
3205// Currently only ever called on the VMThread
3206//
3207static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3208  // Save and restore errno to avoid confusing native code with EINTR
3209  // after sigsuspend.
3210  int old_errno = errno;
3211
3212  Thread* thread = Thread::current();
3213  OSThread* osthread = thread->osthread();
3214  assert(thread->is_VM_thread(), "Must be VMThread");
3215  // read current suspend action
3216  int action = osthread->sr.suspend_action();
3217  if (action == SR_SUSPEND) {
3218    suspend_save_context(osthread, siginfo, context);
3219
3220    // Notify the suspend action is about to be completed. do_suspend()
3221    // waits until SR_SUSPENDED is set and then returns. We will wait
3222    // here for a resume signal and that completes the suspend-other
3223    // action. do_suspend/do_resume is always called as a pair from
3224    // the same thread - so there are no races
3225
3226    // notify the caller
3227    osthread->sr.set_suspended();
3228
3229    sigset_t suspend_set;  // signals for sigsuspend()
3230
3231    // get current set of blocked signals and unblock resume signal
3232    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3233    sigdelset(&suspend_set, SR_signum);
3234
3235    // wait here until we are resumed
3236    do {
3237      sigsuspend(&suspend_set);
3238      // ignore all returns until we get a resume signal
3239    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3240
3241    resume_clear_context(osthread);
3242
3243  } else {
3244    assert(action == SR_CONTINUE, "unexpected sr action");
3245    // nothing special to do - just leave the handler
3246  }
3247
3248  errno = old_errno;
3249}
3250
3251
3252static int SR_initialize() {
3253  struct sigaction act;
3254  char *s;
3255  /* Get signal number to use for suspend/resume */
3256  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3257    int sig = ::strtol(s, 0, 10);
3258    if (sig > 0 || sig < _NSIG) {
3259        SR_signum = sig;
3260    }
3261  }
3262
3263  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3264        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3265
3266  sigemptyset(&SR_sigset);
3267  sigaddset(&SR_sigset, SR_signum);
3268
3269  /* Set up signal handler for suspend/resume */
3270  act.sa_flags = SA_RESTART|SA_SIGINFO;
3271  act.sa_handler = (void (*)(int)) SR_handler;
3272
3273  // SR_signum is blocked by default.
3274  // 4528190 - We also need to block pthread restart signal (32 on all
3275  // supported Linux platforms). Note that LinuxThreads need to block
3276  // this signal for all threads to work properly. So we don't have
3277  // to use hard-coded signal number when setting up the mask.
3278  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3279
3280  if (sigaction(SR_signum, &act, 0) == -1) {
3281    return -1;
3282  }
3283
3284  // Save signal flag
3285  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3286  return 0;
3287}
3288
3289static int SR_finalize() {
3290  return 0;
3291}
3292
3293
3294// returns true on success and false on error - really an error is fatal
3295// but this seems the normal response to library errors
3296static bool do_suspend(OSThread* osthread) {
3297  // mark as suspended and send signal
3298  osthread->sr.set_suspend_action(SR_SUSPEND);
3299  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3300  assert_status(status == 0, status, "pthread_kill");
3301
3302  // check status and wait until notified of suspension
3303  if (status == 0) {
3304    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3305      os::yield_all(i);
3306    }
3307    osthread->sr.set_suspend_action(SR_NONE);
3308    return true;
3309  }
3310  else {
3311    osthread->sr.set_suspend_action(SR_NONE);
3312    return false;
3313  }
3314}
3315
3316static void do_resume(OSThread* osthread) {
3317  assert(osthread->sr.is_suspended(), "thread should be suspended");
3318  osthread->sr.set_suspend_action(SR_CONTINUE);
3319
3320  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3321  assert_status(status == 0, status, "pthread_kill");
3322  // check status and wait unit notified of resumption
3323  if (status == 0) {
3324    for (int i = 0; osthread->sr.is_suspended(); i++) {
3325      os::yield_all(i);
3326    }
3327  }
3328  osthread->sr.set_suspend_action(SR_NONE);
3329}
3330
3331////////////////////////////////////////////////////////////////////////////////
3332// interrupt support
3333
3334void os::interrupt(Thread* thread) {
3335  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3336    "possibility of dangling Thread pointer");
3337
3338  OSThread* osthread = thread->osthread();
3339
3340  if (!osthread->interrupted()) {
3341    osthread->set_interrupted(true);
3342    // More than one thread can get here with the same value of osthread,
3343    // resulting in multiple notifications.  We do, however, want the store
3344    // to interrupted() to be visible to other threads before we execute unpark().
3345    OrderAccess::fence();
3346    ParkEvent * const slp = thread->_SleepEvent ;
3347    if (slp != NULL) slp->unpark() ;
3348  }
3349
3350  // For JSR166. Unpark even if interrupt status already was set
3351  if (thread->is_Java_thread())
3352    ((JavaThread*)thread)->parker()->unpark();
3353
3354  ParkEvent * ev = thread->_ParkEvent ;
3355  if (ev != NULL) ev->unpark() ;
3356
3357}
3358
3359bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3360  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3361    "possibility of dangling Thread pointer");
3362
3363  OSThread* osthread = thread->osthread();
3364
3365  bool interrupted = osthread->interrupted();
3366
3367  if (interrupted && clear_interrupted) {
3368    osthread->set_interrupted(false);
3369    // consider thread->_SleepEvent->reset() ... optional optimization
3370  }
3371
3372  return interrupted;
3373}
3374
3375///////////////////////////////////////////////////////////////////////////////////
3376// signal handling (except suspend/resume)
3377
3378// This routine may be used by user applications as a "hook" to catch signals.
3379// The user-defined signal handler must pass unrecognized signals to this
3380// routine, and if it returns true (non-zero), then the signal handler must
3381// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3382// routine will never retun false (zero), but instead will execute a VM panic
3383// routine kill the process.
3384//
3385// If this routine returns false, it is OK to call it again.  This allows
3386// the user-defined signal handler to perform checks either before or after
3387// the VM performs its own checks.  Naturally, the user code would be making
3388// a serious error if it tried to handle an exception (such as a null check
3389// or breakpoint) that the VM was generating for its own correct operation.
3390//
3391// This routine may recognize any of the following kinds of signals:
3392//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3393// It should be consulted by handlers for any of those signals.
3394//
3395// The caller of this routine must pass in the three arguments supplied
3396// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3397// field of the structure passed to sigaction().  This routine assumes that
3398// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3399//
3400// Note that the VM will print warnings if it detects conflicting signal
3401// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3402//
3403extern "C" int
3404JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3405                        void* ucontext, int abort_if_unrecognized);
3406
3407void signalHandler(int sig, siginfo_t* info, void* uc) {
3408  assert(info != NULL && uc != NULL, "it must be old kernel");
3409  JVM_handle_linux_signal(sig, info, uc, true);
3410}
3411
3412
3413// This boolean allows users to forward their own non-matching signals
3414// to JVM_handle_linux_signal, harmlessly.
3415bool os::Linux::signal_handlers_are_installed = false;
3416
3417// For signal-chaining
3418struct sigaction os::Linux::sigact[MAXSIGNUM];
3419unsigned int os::Linux::sigs = 0;
3420bool os::Linux::libjsig_is_loaded = false;
3421typedef struct sigaction *(*get_signal_t)(int);
3422get_signal_t os::Linux::get_signal_action = NULL;
3423
3424struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3425  struct sigaction *actp = NULL;
3426
3427  if (libjsig_is_loaded) {
3428    // Retrieve the old signal handler from libjsig
3429    actp = (*get_signal_action)(sig);
3430  }
3431  if (actp == NULL) {
3432    // Retrieve the preinstalled signal handler from jvm
3433    actp = get_preinstalled_handler(sig);
3434  }
3435
3436  return actp;
3437}
3438
3439static bool call_chained_handler(struct sigaction *actp, int sig,
3440                                 siginfo_t *siginfo, void *context) {
3441  // Call the old signal handler
3442  if (actp->sa_handler == SIG_DFL) {
3443    // It's more reasonable to let jvm treat it as an unexpected exception
3444    // instead of taking the default action.
3445    return false;
3446  } else if (actp->sa_handler != SIG_IGN) {
3447    if ((actp->sa_flags & SA_NODEFER) == 0) {
3448      // automaticlly block the signal
3449      sigaddset(&(actp->sa_mask), sig);
3450    }
3451
3452    sa_handler_t hand;
3453    sa_sigaction_t sa;
3454    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3455    // retrieve the chained handler
3456    if (siginfo_flag_set) {
3457      sa = actp->sa_sigaction;
3458    } else {
3459      hand = actp->sa_handler;
3460    }
3461
3462    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3463      actp->sa_handler = SIG_DFL;
3464    }
3465
3466    // try to honor the signal mask
3467    sigset_t oset;
3468    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3469
3470    // call into the chained handler
3471    if (siginfo_flag_set) {
3472      (*sa)(sig, siginfo, context);
3473    } else {
3474      (*hand)(sig);
3475    }
3476
3477    // restore the signal mask
3478    pthread_sigmask(SIG_SETMASK, &oset, 0);
3479  }
3480  // Tell jvm's signal handler the signal is taken care of.
3481  return true;
3482}
3483
3484bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3485  bool chained = false;
3486  // signal-chaining
3487  if (UseSignalChaining) {
3488    struct sigaction *actp = get_chained_signal_action(sig);
3489    if (actp != NULL) {
3490      chained = call_chained_handler(actp, sig, siginfo, context);
3491    }
3492  }
3493  return chained;
3494}
3495
3496struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3497  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3498    return &sigact[sig];
3499  }
3500  return NULL;
3501}
3502
3503void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3504  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3505  sigact[sig] = oldAct;
3506  sigs |= (unsigned int)1 << sig;
3507}
3508
3509// for diagnostic
3510int os::Linux::sigflags[MAXSIGNUM];
3511
3512int os::Linux::get_our_sigflags(int sig) {
3513  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3514  return sigflags[sig];
3515}
3516
3517void os::Linux::set_our_sigflags(int sig, int flags) {
3518  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3519  sigflags[sig] = flags;
3520}
3521
3522void os::Linux::set_signal_handler(int sig, bool set_installed) {
3523  // Check for overwrite.
3524  struct sigaction oldAct;
3525  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3526
3527  void* oldhand = oldAct.sa_sigaction
3528                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3529                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3530  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3531      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3532      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3533    if (AllowUserSignalHandlers || !set_installed) {
3534      // Do not overwrite; user takes responsibility to forward to us.
3535      return;
3536    } else if (UseSignalChaining) {
3537      // save the old handler in jvm
3538      save_preinstalled_handler(sig, oldAct);
3539      // libjsig also interposes the sigaction() call below and saves the
3540      // old sigaction on it own.
3541    } else {
3542      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3543                    "%#lx for signal %d.", (long)oldhand, sig));
3544    }
3545  }
3546
3547  struct sigaction sigAct;
3548  sigfillset(&(sigAct.sa_mask));
3549  sigAct.sa_handler = SIG_DFL;
3550  if (!set_installed) {
3551    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3552  } else {
3553    sigAct.sa_sigaction = signalHandler;
3554    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3555  }
3556  // Save flags, which are set by ours
3557  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3558  sigflags[sig] = sigAct.sa_flags;
3559
3560  int ret = sigaction(sig, &sigAct, &oldAct);
3561  assert(ret == 0, "check");
3562
3563  void* oldhand2  = oldAct.sa_sigaction
3564                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3565                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3566  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3567}
3568
3569// install signal handlers for signals that HotSpot needs to
3570// handle in order to support Java-level exception handling.
3571
3572void os::Linux::install_signal_handlers() {
3573  if (!signal_handlers_are_installed) {
3574    signal_handlers_are_installed = true;
3575
3576    // signal-chaining
3577    typedef void (*signal_setting_t)();
3578    signal_setting_t begin_signal_setting = NULL;
3579    signal_setting_t end_signal_setting = NULL;
3580    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3581                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3582    if (begin_signal_setting != NULL) {
3583      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3584                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3585      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3586                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3587      libjsig_is_loaded = true;
3588      assert(UseSignalChaining, "should enable signal-chaining");
3589    }
3590    if (libjsig_is_loaded) {
3591      // Tell libjsig jvm is setting signal handlers
3592      (*begin_signal_setting)();
3593    }
3594
3595    set_signal_handler(SIGSEGV, true);
3596    set_signal_handler(SIGPIPE, true);
3597    set_signal_handler(SIGBUS, true);
3598    set_signal_handler(SIGILL, true);
3599    set_signal_handler(SIGFPE, true);
3600    set_signal_handler(SIGXFSZ, true);
3601
3602    if (libjsig_is_loaded) {
3603      // Tell libjsig jvm finishes setting signal handlers
3604      (*end_signal_setting)();
3605    }
3606
3607    // We don't activate signal checker if libjsig is in place, we trust ourselves
3608    // and if UserSignalHandler is installed all bets are off
3609    if (CheckJNICalls) {
3610      if (libjsig_is_loaded) {
3611        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3612        check_signals = false;
3613      }
3614      if (AllowUserSignalHandlers) {
3615        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3616        check_signals = false;
3617      }
3618    }
3619  }
3620}
3621
3622// This is the fastest way to get thread cpu time on Linux.
3623// Returns cpu time (user+sys) for any thread, not only for current.
3624// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3625// It might work on 2.6.10+ with a special kernel/glibc patch.
3626// For reference, please, see IEEE Std 1003.1-2004:
3627//   http://www.unix.org/single_unix_specification
3628
3629jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3630  struct timespec tp;
3631  int rc = os::Linux::clock_gettime(clockid, &tp);
3632  assert(rc == 0, "clock_gettime is expected to return 0 code");
3633
3634  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3635}
3636
3637/////
3638// glibc on Linux platform uses non-documented flag
3639// to indicate, that some special sort of signal
3640// trampoline is used.
3641// We will never set this flag, and we should
3642// ignore this flag in our diagnostic
3643#ifdef SIGNIFICANT_SIGNAL_MASK
3644#undef SIGNIFICANT_SIGNAL_MASK
3645#endif
3646#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3647
3648static const char* get_signal_handler_name(address handler,
3649                                           char* buf, int buflen) {
3650  int offset;
3651  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3652  if (found) {
3653    // skip directory names
3654    const char *p1, *p2;
3655    p1 = buf;
3656    size_t len = strlen(os::file_separator());
3657    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3658    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3659  } else {
3660    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3661  }
3662  return buf;
3663}
3664
3665static void print_signal_handler(outputStream* st, int sig,
3666                                 char* buf, size_t buflen) {
3667  struct sigaction sa;
3668
3669  sigaction(sig, NULL, &sa);
3670
3671  // See comment for SIGNIFICANT_SIGNAL_MASK define
3672  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3673
3674  st->print("%s: ", os::exception_name(sig, buf, buflen));
3675
3676  address handler = (sa.sa_flags & SA_SIGINFO)
3677    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3678    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3679
3680  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3681    st->print("SIG_DFL");
3682  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3683    st->print("SIG_IGN");
3684  } else {
3685    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3686  }
3687
3688  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3689
3690  address rh = VMError::get_resetted_sighandler(sig);
3691  // May be, handler was resetted by VMError?
3692  if(rh != NULL) {
3693    handler = rh;
3694    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3695  }
3696
3697  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3698
3699  // Check: is it our handler?
3700  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3701     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3702    // It is our signal handler
3703    // check for flags, reset system-used one!
3704    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3705      st->print(
3706                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3707                os::Linux::get_our_sigflags(sig));
3708    }
3709  }
3710  st->cr();
3711}
3712
3713
3714#define DO_SIGNAL_CHECK(sig) \
3715  if (!sigismember(&check_signal_done, sig)) \
3716    os::Linux::check_signal_handler(sig)
3717
3718// This method is a periodic task to check for misbehaving JNI applications
3719// under CheckJNI, we can add any periodic checks here
3720
3721void os::run_periodic_checks() {
3722
3723  if (check_signals == false) return;
3724
3725  // SEGV and BUS if overridden could potentially prevent
3726  // generation of hs*.log in the event of a crash, debugging
3727  // such a case can be very challenging, so we absolutely
3728  // check the following for a good measure:
3729  DO_SIGNAL_CHECK(SIGSEGV);
3730  DO_SIGNAL_CHECK(SIGILL);
3731  DO_SIGNAL_CHECK(SIGFPE);
3732  DO_SIGNAL_CHECK(SIGBUS);
3733  DO_SIGNAL_CHECK(SIGPIPE);
3734  DO_SIGNAL_CHECK(SIGXFSZ);
3735
3736
3737  // ReduceSignalUsage allows the user to override these handlers
3738  // see comments at the very top and jvm_solaris.h
3739  if (!ReduceSignalUsage) {
3740    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3741    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3742    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3743    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3744  }
3745
3746  DO_SIGNAL_CHECK(SR_signum);
3747  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3748}
3749
3750typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3751
3752static os_sigaction_t os_sigaction = NULL;
3753
3754void os::Linux::check_signal_handler(int sig) {
3755  char buf[O_BUFLEN];
3756  address jvmHandler = NULL;
3757
3758
3759  struct sigaction act;
3760  if (os_sigaction == NULL) {
3761    // only trust the default sigaction, in case it has been interposed
3762    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3763    if (os_sigaction == NULL) return;
3764  }
3765
3766  os_sigaction(sig, (struct sigaction*)NULL, &act);
3767
3768
3769  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3770
3771  address thisHandler = (act.sa_flags & SA_SIGINFO)
3772    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3773    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3774
3775
3776  switch(sig) {
3777  case SIGSEGV:
3778  case SIGBUS:
3779  case SIGFPE:
3780  case SIGPIPE:
3781  case SIGILL:
3782  case SIGXFSZ:
3783    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3784    break;
3785
3786  case SHUTDOWN1_SIGNAL:
3787  case SHUTDOWN2_SIGNAL:
3788  case SHUTDOWN3_SIGNAL:
3789  case BREAK_SIGNAL:
3790    jvmHandler = (address)user_handler();
3791    break;
3792
3793  case INTERRUPT_SIGNAL:
3794    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3795    break;
3796
3797  default:
3798    if (sig == SR_signum) {
3799      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3800    } else {
3801      return;
3802    }
3803    break;
3804  }
3805
3806  if (thisHandler != jvmHandler) {
3807    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3808    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3809    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3810    // No need to check this sig any longer
3811    sigaddset(&check_signal_done, sig);
3812  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3813    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3814    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3815    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3816    // No need to check this sig any longer
3817    sigaddset(&check_signal_done, sig);
3818  }
3819
3820  // Dump all the signal
3821  if (sigismember(&check_signal_done, sig)) {
3822    print_signal_handlers(tty, buf, O_BUFLEN);
3823  }
3824}
3825
3826extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3827
3828extern bool signal_name(int signo, char* buf, size_t len);
3829
3830const char* os::exception_name(int exception_code, char* buf, size_t size) {
3831  if (0 < exception_code && exception_code <= SIGRTMAX) {
3832    // signal
3833    if (!signal_name(exception_code, buf, size)) {
3834      jio_snprintf(buf, size, "SIG%d", exception_code);
3835    }
3836    return buf;
3837  } else {
3838    return NULL;
3839  }
3840}
3841
3842// this is called _before_ the most of global arguments have been parsed
3843void os::init(void) {
3844  char dummy;   /* used to get a guess on initial stack address */
3845//  first_hrtime = gethrtime();
3846
3847  // With LinuxThreads the JavaMain thread pid (primordial thread)
3848  // is different than the pid of the java launcher thread.
3849  // So, on Linux, the launcher thread pid is passed to the VM
3850  // via the sun.java.launcher.pid property.
3851  // Use this property instead of getpid() if it was correctly passed.
3852  // See bug 6351349.
3853  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3854
3855  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3856
3857  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3858
3859  init_random(1234567);
3860
3861  ThreadCritical::initialize();
3862
3863  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3864  if (Linux::page_size() == -1) {
3865    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3866                  strerror(errno)));
3867  }
3868  init_page_sizes((size_t) Linux::page_size());
3869
3870  Linux::initialize_system_info();
3871
3872  // main_thread points to the aboriginal thread
3873  Linux::_main_thread = pthread_self();
3874
3875  Linux::clock_init();
3876  initial_time_count = os::elapsed_counter();
3877  pthread_mutex_init(&dl_mutex, NULL);
3878}
3879
3880// To install functions for atexit system call
3881extern "C" {
3882  static void perfMemory_exit_helper() {
3883    perfMemory_exit();
3884  }
3885}
3886
3887// this is called _after_ the global arguments have been parsed
3888jint os::init_2(void)
3889{
3890  Linux::fast_thread_clock_init();
3891
3892  // Allocate a single page and mark it as readable for safepoint polling
3893  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3894  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3895
3896  os::set_polling_page( polling_page );
3897
3898#ifndef PRODUCT
3899  if(Verbose && PrintMiscellaneous)
3900    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3901#endif
3902
3903  if (!UseMembar) {
3904    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3905    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3906    os::set_memory_serialize_page( mem_serialize_page );
3907
3908#ifndef PRODUCT
3909    if(Verbose && PrintMiscellaneous)
3910      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3911#endif
3912  }
3913
3914  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3915
3916  // initialize suspend/resume support - must do this before signal_sets_init()
3917  if (SR_initialize() != 0) {
3918    perror("SR_initialize failed");
3919    return JNI_ERR;
3920  }
3921
3922  Linux::signal_sets_init();
3923  Linux::install_signal_handlers();
3924
3925  size_t threadStackSizeInBytes = ThreadStackSize * K;
3926  if (threadStackSizeInBytes != 0 &&
3927      threadStackSizeInBytes < Linux::min_stack_allowed) {
3928        tty->print_cr("\nThe stack size specified is too small, "
3929                      "Specify at least %dk",
3930                      Linux::min_stack_allowed / K);
3931        return JNI_ERR;
3932  }
3933
3934  // Make the stack size a multiple of the page size so that
3935  // the yellow/red zones can be guarded.
3936  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3937        vm_page_size()));
3938
3939  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3940
3941  Linux::libpthread_init();
3942  if (PrintMiscellaneous && (Verbose || WizardMode)) {
3943     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3944          Linux::glibc_version(), Linux::libpthread_version(),
3945          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3946  }
3947
3948  if (UseNUMA) {
3949    if (!Linux::libnuma_init()) {
3950      UseNUMA = false;
3951    } else {
3952      if ((Linux::numa_max_node() < 1)) {
3953        // There's only one node(they start from 0), disable NUMA.
3954        UseNUMA = false;
3955      }
3956    }
3957    if (!UseNUMA && ForceNUMA) {
3958      UseNUMA = true;
3959    }
3960  }
3961
3962  if (MaxFDLimit) {
3963    // set the number of file descriptors to max. print out error
3964    // if getrlimit/setrlimit fails but continue regardless.
3965    struct rlimit nbr_files;
3966    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3967    if (status != 0) {
3968      if (PrintMiscellaneous && (Verbose || WizardMode))
3969        perror("os::init_2 getrlimit failed");
3970    } else {
3971      nbr_files.rlim_cur = nbr_files.rlim_max;
3972      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3973      if (status != 0) {
3974        if (PrintMiscellaneous && (Verbose || WizardMode))
3975          perror("os::init_2 setrlimit failed");
3976      }
3977    }
3978  }
3979
3980  // Initialize lock used to serialize thread creation (see os::create_thread)
3981  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3982
3983  // Initialize HPI.
3984  jint hpi_result = hpi::initialize();
3985  if (hpi_result != JNI_OK) {
3986    tty->print_cr("There was an error trying to initialize the HPI library.");
3987    return hpi_result;
3988  }
3989
3990  // at-exit methods are called in the reverse order of their registration.
3991  // atexit functions are called on return from main or as a result of a
3992  // call to exit(3C). There can be only 32 of these functions registered
3993  // and atexit() does not set errno.
3994
3995  if (PerfAllowAtExitRegistration) {
3996    // only register atexit functions if PerfAllowAtExitRegistration is set.
3997    // atexit functions can be delayed until process exit time, which
3998    // can be problematic for embedded VM situations. Embedded VMs should
3999    // call DestroyJavaVM() to assure that VM resources are released.
4000
4001    // note: perfMemory_exit_helper atexit function may be removed in
4002    // the future if the appropriate cleanup code can be added to the
4003    // VM_Exit VMOperation's doit method.
4004    if (atexit(perfMemory_exit_helper) != 0) {
4005      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4006    }
4007  }
4008
4009  // initialize thread priority policy
4010  prio_init();
4011
4012  return JNI_OK;
4013}
4014
4015// this is called at the end of vm_initialization
4016void os::init_3(void) { }
4017
4018// Mark the polling page as unreadable
4019void os::make_polling_page_unreadable(void) {
4020  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4021    fatal("Could not disable polling page");
4022};
4023
4024// Mark the polling page as readable
4025void os::make_polling_page_readable(void) {
4026  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4027    fatal("Could not enable polling page");
4028  }
4029};
4030
4031int os::active_processor_count() {
4032  // Linux doesn't yet have a (official) notion of processor sets,
4033  // so just return the number of online processors.
4034  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4035  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4036  return online_cpus;
4037}
4038
4039bool os::distribute_processes(uint length, uint* distribution) {
4040  // Not yet implemented.
4041  return false;
4042}
4043
4044bool os::bind_to_processor(uint processor_id) {
4045  // Not yet implemented.
4046  return false;
4047}
4048
4049///
4050
4051// Suspends the target using the signal mechanism and then grabs the PC before
4052// resuming the target. Used by the flat-profiler only
4053ExtendedPC os::get_thread_pc(Thread* thread) {
4054  // Make sure that it is called by the watcher for the VMThread
4055  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4056  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4057
4058  ExtendedPC epc;
4059
4060  OSThread* osthread = thread->osthread();
4061  if (do_suspend(osthread)) {
4062    if (osthread->ucontext() != NULL) {
4063      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4064    } else {
4065      // NULL context is unexpected, double-check this is the VMThread
4066      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4067    }
4068    do_resume(osthread);
4069  }
4070  // failure means pthread_kill failed for some reason - arguably this is
4071  // a fatal problem, but such problems are ignored elsewhere
4072
4073  return epc;
4074}
4075
4076int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4077{
4078   if (is_NPTL()) {
4079      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4080   } else {
4081#ifndef IA64
4082      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4083      // word back to default 64bit precision if condvar is signaled. Java
4084      // wants 53bit precision.  Save and restore current value.
4085      int fpu = get_fpu_control_word();
4086#endif // IA64
4087      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4088#ifndef IA64
4089      set_fpu_control_word(fpu);
4090#endif // IA64
4091      return status;
4092   }
4093}
4094
4095////////////////////////////////////////////////////////////////////////////////
4096// debug support
4097
4098static address same_page(address x, address y) {
4099  int page_bits = -os::vm_page_size();
4100  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4101    return x;
4102  else if (x > y)
4103    return (address)(intptr_t(y) | ~page_bits) + 1;
4104  else
4105    return (address)(intptr_t(y) & page_bits);
4106}
4107
4108bool os::find(address addr, outputStream* st) {
4109  Dl_info dlinfo;
4110  memset(&dlinfo, 0, sizeof(dlinfo));
4111  if (dladdr(addr, &dlinfo)) {
4112    st->print(PTR_FORMAT ": ", addr);
4113    if (dlinfo.dli_sname != NULL) {
4114      st->print("%s+%#x", dlinfo.dli_sname,
4115                 addr - (intptr_t)dlinfo.dli_saddr);
4116    } else if (dlinfo.dli_fname) {
4117      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4118    } else {
4119      st->print("<absolute address>");
4120    }
4121    if (dlinfo.dli_fname) {
4122      st->print(" in %s", dlinfo.dli_fname);
4123    }
4124    if (dlinfo.dli_fbase) {
4125      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4126    }
4127    st->cr();
4128
4129    if (Verbose) {
4130      // decode some bytes around the PC
4131      address begin = same_page(addr-40, addr);
4132      address end   = same_page(addr+40, addr);
4133      address       lowest = (address) dlinfo.dli_sname;
4134      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4135      if (begin < lowest)  begin = lowest;
4136      Dl_info dlinfo2;
4137      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4138          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4139        end = (address) dlinfo2.dli_saddr;
4140      Disassembler::decode(begin, end, st);
4141    }
4142    return true;
4143  }
4144  return false;
4145}
4146
4147////////////////////////////////////////////////////////////////////////////////
4148// misc
4149
4150// This does not do anything on Linux. This is basically a hook for being
4151// able to use structured exception handling (thread-local exception filters)
4152// on, e.g., Win32.
4153void
4154os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4155                         JavaCallArguments* args, Thread* thread) {
4156  f(value, method, args, thread);
4157}
4158
4159void os::print_statistics() {
4160}
4161
4162int os::message_box(const char* title, const char* message) {
4163  int i;
4164  fdStream err(defaultStream::error_fd());
4165  for (i = 0; i < 78; i++) err.print_raw("=");
4166  err.cr();
4167  err.print_raw_cr(title);
4168  for (i = 0; i < 78; i++) err.print_raw("-");
4169  err.cr();
4170  err.print_raw_cr(message);
4171  for (i = 0; i < 78; i++) err.print_raw("=");
4172  err.cr();
4173
4174  char buf[16];
4175  // Prevent process from exiting upon "read error" without consuming all CPU
4176  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4177
4178  return buf[0] == 'y' || buf[0] == 'Y';
4179}
4180
4181int os::stat(const char *path, struct stat *sbuf) {
4182  char pathbuf[MAX_PATH];
4183  if (strlen(path) > MAX_PATH - 1) {
4184    errno = ENAMETOOLONG;
4185    return -1;
4186  }
4187  hpi::native_path(strcpy(pathbuf, path));
4188  return ::stat(pathbuf, sbuf);
4189}
4190
4191bool os::check_heap(bool force) {
4192  return true;
4193}
4194
4195int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4196  return ::vsnprintf(buf, count, format, args);
4197}
4198
4199// Is a (classpath) directory empty?
4200bool os::dir_is_empty(const char* path) {
4201  DIR *dir = NULL;
4202  struct dirent *ptr;
4203
4204  dir = opendir(path);
4205  if (dir == NULL) return true;
4206
4207  /* Scan the directory */
4208  bool result = true;
4209  char buf[sizeof(struct dirent) + MAX_PATH];
4210  while (result && (ptr = ::readdir(dir)) != NULL) {
4211    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4212      result = false;
4213    }
4214  }
4215  closedir(dir);
4216  return result;
4217}
4218
4219// create binary file, rewriting existing file if required
4220int os::create_binary_file(const char* path, bool rewrite_existing) {
4221  int oflags = O_WRONLY | O_CREAT;
4222  if (!rewrite_existing) {
4223    oflags |= O_EXCL;
4224  }
4225  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4226}
4227
4228// return current position of file pointer
4229jlong os::current_file_offset(int fd) {
4230  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4231}
4232
4233// move file pointer to the specified offset
4234jlong os::seek_to_file_offset(int fd, jlong offset) {
4235  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4236}
4237
4238// Map a block of memory.
4239char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4240                     char *addr, size_t bytes, bool read_only,
4241                     bool allow_exec) {
4242  int prot;
4243  int flags;
4244
4245  if (read_only) {
4246    prot = PROT_READ;
4247    flags = MAP_SHARED;
4248  } else {
4249    prot = PROT_READ | PROT_WRITE;
4250    flags = MAP_PRIVATE;
4251  }
4252
4253  if (allow_exec) {
4254    prot |= PROT_EXEC;
4255  }
4256
4257  if (addr != NULL) {
4258    flags |= MAP_FIXED;
4259  }
4260
4261  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4262                                     fd, file_offset);
4263  if (mapped_address == MAP_FAILED) {
4264    return NULL;
4265  }
4266  return mapped_address;
4267}
4268
4269
4270// Remap a block of memory.
4271char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4272                       char *addr, size_t bytes, bool read_only,
4273                       bool allow_exec) {
4274  // same as map_memory() on this OS
4275  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4276                        allow_exec);
4277}
4278
4279
4280// Unmap a block of memory.
4281bool os::unmap_memory(char* addr, size_t bytes) {
4282  return munmap(addr, bytes) == 0;
4283}
4284
4285static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4286
4287static clockid_t thread_cpu_clockid(Thread* thread) {
4288  pthread_t tid = thread->osthread()->pthread_id();
4289  clockid_t clockid;
4290
4291  // Get thread clockid
4292  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4293  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4294  return clockid;
4295}
4296
4297// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4298// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4299// of a thread.
4300//
4301// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4302// the fast estimate available on the platform.
4303
4304jlong os::current_thread_cpu_time() {
4305  if (os::Linux::supports_fast_thread_cpu_time()) {
4306    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4307  } else {
4308    // return user + sys since the cost is the same
4309    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4310  }
4311}
4312
4313jlong os::thread_cpu_time(Thread* thread) {
4314  // consistent with what current_thread_cpu_time() returns
4315  if (os::Linux::supports_fast_thread_cpu_time()) {
4316    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4317  } else {
4318    return slow_thread_cpu_time(thread, true /* user + sys */);
4319  }
4320}
4321
4322jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4323  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4324    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4325  } else {
4326    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4327  }
4328}
4329
4330jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4331  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4332    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4333  } else {
4334    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4335  }
4336}
4337
4338//
4339//  -1 on error.
4340//
4341
4342static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4343  static bool proc_pid_cpu_avail = true;
4344  static bool proc_task_unchecked = true;
4345  static const char *proc_stat_path = "/proc/%d/stat";
4346  pid_t  tid = thread->osthread()->thread_id();
4347  int i;
4348  char *s;
4349  char stat[2048];
4350  int statlen;
4351  char proc_name[64];
4352  int count;
4353  long sys_time, user_time;
4354  char string[64];
4355  char cdummy;
4356  int idummy;
4357  long ldummy;
4358  FILE *fp;
4359
4360  // We first try accessing /proc/<pid>/cpu since this is faster to
4361  // process.  If this file is not present (linux kernels 2.5 and above)
4362  // then we open /proc/<pid>/stat.
4363  if ( proc_pid_cpu_avail ) {
4364    sprintf(proc_name, "/proc/%d/cpu", tid);
4365    fp =  fopen(proc_name, "r");
4366    if ( fp != NULL ) {
4367      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4368      fclose(fp);
4369      if ( count != 3 ) return -1;
4370
4371      if (user_sys_cpu_time) {
4372        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4373      } else {
4374        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4375      }
4376    }
4377    else proc_pid_cpu_avail = false;
4378  }
4379
4380  // The /proc/<tid>/stat aggregates per-process usage on
4381  // new Linux kernels 2.6+ where NPTL is supported.
4382  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4383  // See bug 6328462.
4384  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4385  // and possibly in some other cases, so we check its availability.
4386  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4387    // This is executed only once
4388    proc_task_unchecked = false;
4389    fp = fopen("/proc/self/task", "r");
4390    if (fp != NULL) {
4391      proc_stat_path = "/proc/self/task/%d/stat";
4392      fclose(fp);
4393    }
4394  }
4395
4396  sprintf(proc_name, proc_stat_path, tid);
4397  fp = fopen(proc_name, "r");
4398  if ( fp == NULL ) return -1;
4399  statlen = fread(stat, 1, 2047, fp);
4400  stat[statlen] = '\0';
4401  fclose(fp);
4402
4403  // Skip pid and the command string. Note that we could be dealing with
4404  // weird command names, e.g. user could decide to rename java launcher
4405  // to "java 1.4.2 :)", then the stat file would look like
4406  //                1234 (java 1.4.2 :)) R ... ...
4407  // We don't really need to know the command string, just find the last
4408  // occurrence of ")" and then start parsing from there. See bug 4726580.
4409  s = strrchr(stat, ')');
4410  i = 0;
4411  if (s == NULL ) return -1;
4412
4413  // Skip blank chars
4414  do s++; while (isspace(*s));
4415
4416  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4417                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4418                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4419                 &user_time, &sys_time);
4420  if ( count != 13 ) return -1;
4421  if (user_sys_cpu_time) {
4422    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4423  } else {
4424    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4425  }
4426}
4427
4428void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4429  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4430  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4431  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4432  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4433}
4434
4435void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4436  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4437  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4438  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4439  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4440}
4441
4442bool os::is_thread_cpu_time_supported() {
4443  return true;
4444}
4445
4446// System loadavg support.  Returns -1 if load average cannot be obtained.
4447// Linux doesn't yet have a (official) notion of processor sets,
4448// so just return the system wide load average.
4449int os::loadavg(double loadavg[], int nelem) {
4450  return ::getloadavg(loadavg, nelem);
4451}
4452
4453void os::pause() {
4454  char filename[MAX_PATH];
4455  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4456    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4457  } else {
4458    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4459  }
4460
4461  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4462  if (fd != -1) {
4463    struct stat buf;
4464    close(fd);
4465    while (::stat(filename, &buf) == 0) {
4466      (void)::poll(NULL, 0, 100);
4467    }
4468  } else {
4469    jio_fprintf(stderr,
4470      "Could not open pause file '%s', continuing immediately.\n", filename);
4471  }
4472}
4473
4474extern "C" {
4475
4476/**
4477 * NOTE: the following code is to keep the green threads code
4478 * in the libjava.so happy. Once the green threads is removed,
4479 * these code will no longer be needed.
4480 */
4481int
4482jdk_waitpid(pid_t pid, int* status, int options) {
4483    return waitpid(pid, status, options);
4484}
4485
4486int
4487fork1() {
4488    return fork();
4489}
4490
4491int
4492jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4493    return sem_init(sem, pshared, value);
4494}
4495
4496int
4497jdk_sem_post(sem_t *sem) {
4498    return sem_post(sem);
4499}
4500
4501int
4502jdk_sem_wait(sem_t *sem) {
4503    return sem_wait(sem);
4504}
4505
4506int
4507jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4508    return pthread_sigmask(how , newmask, oldmask);
4509}
4510
4511}
4512
4513// Refer to the comments in os_solaris.cpp park-unpark.
4514//
4515// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4516// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4517// For specifics regarding the bug see GLIBC BUGID 261237 :
4518//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4519// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4520// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4521// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4522// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4523// and monitorenter when we're using 1-0 locking.  All those operations may result in
4524// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4525// of libpthread avoids the problem, but isn't practical.
4526//
4527// Possible remedies:
4528//
4529// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4530//      This is palliative and probabilistic, however.  If the thread is preempted
4531//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4532//      than the minimum period may have passed, and the abstime may be stale (in the
4533//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4534//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4535//
4536// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4537//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4538//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4539//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4540//      thread.
4541//
4542// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4543//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4544//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4545//      This also works well.  In fact it avoids kernel-level scalability impediments
4546//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4547//      timers in a graceful fashion.
4548//
4549// 4.   When the abstime value is in the past it appears that control returns
4550//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4551//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4552//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4553//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4554//      It may be possible to avoid reinitialization by checking the return
4555//      value from pthread_cond_timedwait().  In addition to reinitializing the
4556//      condvar we must establish the invariant that cond_signal() is only called
4557//      within critical sections protected by the adjunct mutex.  This prevents
4558//      cond_signal() from "seeing" a condvar that's in the midst of being
4559//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4560//      desirable signal-after-unlock optimization that avoids futile context switching.
4561//
4562//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4563//      structure when a condvar is used or initialized.  cond_destroy()  would
4564//      release the helper structure.  Our reinitialize-after-timedwait fix
4565//      put excessive stress on malloc/free and locks protecting the c-heap.
4566//
4567// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4568// It may be possible to refine (4) by checking the kernel and NTPL verisons
4569// and only enabling the work-around for vulnerable environments.
4570
4571// utility to compute the abstime argument to timedwait:
4572// millis is the relative timeout time
4573// abstime will be the absolute timeout time
4574// TODO: replace compute_abstime() with unpackTime()
4575
4576static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4577  if (millis < 0)  millis = 0;
4578  struct timeval now;
4579  int status = gettimeofday(&now, NULL);
4580  assert(status == 0, "gettimeofday");
4581  jlong seconds = millis / 1000;
4582  millis %= 1000;
4583  if (seconds > 50000000) { // see man cond_timedwait(3T)
4584    seconds = 50000000;
4585  }
4586  abstime->tv_sec = now.tv_sec  + seconds;
4587  long       usec = now.tv_usec + millis * 1000;
4588  if (usec >= 1000000) {
4589    abstime->tv_sec += 1;
4590    usec -= 1000000;
4591  }
4592  abstime->tv_nsec = usec * 1000;
4593  return abstime;
4594}
4595
4596
4597// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4598// Conceptually TryPark() should be equivalent to park(0).
4599
4600int os::PlatformEvent::TryPark() {
4601  for (;;) {
4602    const int v = _Event ;
4603    guarantee ((v == 0) || (v == 1), "invariant") ;
4604    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4605  }
4606}
4607
4608void os::PlatformEvent::park() {       // AKA "down()"
4609  // Invariant: Only the thread associated with the Event/PlatformEvent
4610  // may call park().
4611  // TODO: assert that _Assoc != NULL or _Assoc == Self
4612  int v ;
4613  for (;;) {
4614      v = _Event ;
4615      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4616  }
4617  guarantee (v >= 0, "invariant") ;
4618  if (v == 0) {
4619     // Do this the hard way by blocking ...
4620     int status = pthread_mutex_lock(_mutex);
4621     assert_status(status == 0, status, "mutex_lock");
4622     guarantee (_nParked == 0, "invariant") ;
4623     ++ _nParked ;
4624     while (_Event < 0) {
4625        status = pthread_cond_wait(_cond, _mutex);
4626        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4627        // Treat this the same as if the wait was interrupted
4628        if (status == ETIME) { status = EINTR; }
4629        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4630     }
4631     -- _nParked ;
4632
4633    // In theory we could move the ST of 0 into _Event past the unlock(),
4634    // but then we'd need a MEMBAR after the ST.
4635    _Event = 0 ;
4636     status = pthread_mutex_unlock(_mutex);
4637     assert_status(status == 0, status, "mutex_unlock");
4638  }
4639  guarantee (_Event >= 0, "invariant") ;
4640}
4641
4642int os::PlatformEvent::park(jlong millis) {
4643  guarantee (_nParked == 0, "invariant") ;
4644
4645  int v ;
4646  for (;;) {
4647      v = _Event ;
4648      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4649  }
4650  guarantee (v >= 0, "invariant") ;
4651  if (v != 0) return OS_OK ;
4652
4653  // We do this the hard way, by blocking the thread.
4654  // Consider enforcing a minimum timeout value.
4655  struct timespec abst;
4656  compute_abstime(&abst, millis);
4657
4658  int ret = OS_TIMEOUT;
4659  int status = pthread_mutex_lock(_mutex);
4660  assert_status(status == 0, status, "mutex_lock");
4661  guarantee (_nParked == 0, "invariant") ;
4662  ++_nParked ;
4663
4664  // Object.wait(timo) will return because of
4665  // (a) notification
4666  // (b) timeout
4667  // (c) thread.interrupt
4668  //
4669  // Thread.interrupt and object.notify{All} both call Event::set.
4670  // That is, we treat thread.interrupt as a special case of notification.
4671  // The underlying Solaris implementation, cond_timedwait, admits
4672  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4673  // JVM from making those visible to Java code.  As such, we must
4674  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4675  //
4676  // TODO: properly differentiate simultaneous notify+interrupt.
4677  // In that case, we should propagate the notify to another waiter.
4678
4679  while (_Event < 0) {
4680    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4681    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4682      pthread_cond_destroy (_cond);
4683      pthread_cond_init (_cond, NULL) ;
4684    }
4685    assert_status(status == 0 || status == EINTR ||
4686                  status == ETIME || status == ETIMEDOUT,
4687                  status, "cond_timedwait");
4688    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4689    if (status == ETIME || status == ETIMEDOUT) break ;
4690    // We consume and ignore EINTR and spurious wakeups.
4691  }
4692  --_nParked ;
4693  if (_Event >= 0) {
4694     ret = OS_OK;
4695  }
4696  _Event = 0 ;
4697  status = pthread_mutex_unlock(_mutex);
4698  assert_status(status == 0, status, "mutex_unlock");
4699  assert (_nParked == 0, "invariant") ;
4700  return ret;
4701}
4702
4703void os::PlatformEvent::unpark() {
4704  int v, AnyWaiters ;
4705  for (;;) {
4706      v = _Event ;
4707      if (v > 0) {
4708         // The LD of _Event could have reordered or be satisfied
4709         // by a read-aside from this processor's write buffer.
4710         // To avoid problems execute a barrier and then
4711         // ratify the value.
4712         OrderAccess::fence() ;
4713         if (_Event == v) return ;
4714         continue ;
4715      }
4716      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4717  }
4718  if (v < 0) {
4719     // Wait for the thread associated with the event to vacate
4720     int status = pthread_mutex_lock(_mutex);
4721     assert_status(status == 0, status, "mutex_lock");
4722     AnyWaiters = _nParked ;
4723     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4724     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4725        AnyWaiters = 0 ;
4726        pthread_cond_signal (_cond);
4727     }
4728     status = pthread_mutex_unlock(_mutex);
4729     assert_status(status == 0, status, "mutex_unlock");
4730     if (AnyWaiters != 0) {
4731        status = pthread_cond_signal(_cond);
4732        assert_status(status == 0, status, "cond_signal");
4733     }
4734  }
4735
4736  // Note that we signal() _after dropping the lock for "immortal" Events.
4737  // This is safe and avoids a common class of  futile wakeups.  In rare
4738  // circumstances this can cause a thread to return prematurely from
4739  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4740  // simply re-test the condition and re-park itself.
4741}
4742
4743
4744// JSR166
4745// -------------------------------------------------------
4746
4747/*
4748 * The solaris and linux implementations of park/unpark are fairly
4749 * conservative for now, but can be improved. They currently use a
4750 * mutex/condvar pair, plus a a count.
4751 * Park decrements count if > 0, else does a condvar wait.  Unpark
4752 * sets count to 1 and signals condvar.  Only one thread ever waits
4753 * on the condvar. Contention seen when trying to park implies that someone
4754 * is unparking you, so don't wait. And spurious returns are fine, so there
4755 * is no need to track notifications.
4756 */
4757
4758
4759#define NANOSECS_PER_SEC 1000000000
4760#define NANOSECS_PER_MILLISEC 1000000
4761#define MAX_SECS 100000000
4762/*
4763 * This code is common to linux and solaris and will be moved to a
4764 * common place in dolphin.
4765 *
4766 * The passed in time value is either a relative time in nanoseconds
4767 * or an absolute time in milliseconds. Either way it has to be unpacked
4768 * into suitable seconds and nanoseconds components and stored in the
4769 * given timespec structure.
4770 * Given time is a 64-bit value and the time_t used in the timespec is only
4771 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4772 * overflow if times way in the future are given. Further on Solaris versions
4773 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4774 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4775 * As it will be 28 years before "now + 100000000" will overflow we can
4776 * ignore overflow and just impose a hard-limit on seconds using the value
4777 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4778 * years from "now".
4779 */
4780
4781static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4782  assert (time > 0, "convertTime");
4783
4784  struct timeval now;
4785  int status = gettimeofday(&now, NULL);
4786  assert(status == 0, "gettimeofday");
4787
4788  time_t max_secs = now.tv_sec + MAX_SECS;
4789
4790  if (isAbsolute) {
4791    jlong secs = time / 1000;
4792    if (secs > max_secs) {
4793      absTime->tv_sec = max_secs;
4794    }
4795    else {
4796      absTime->tv_sec = secs;
4797    }
4798    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4799  }
4800  else {
4801    jlong secs = time / NANOSECS_PER_SEC;
4802    if (secs >= MAX_SECS) {
4803      absTime->tv_sec = max_secs;
4804      absTime->tv_nsec = 0;
4805    }
4806    else {
4807      absTime->tv_sec = now.tv_sec + secs;
4808      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4809      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4810        absTime->tv_nsec -= NANOSECS_PER_SEC;
4811        ++absTime->tv_sec; // note: this must be <= max_secs
4812      }
4813    }
4814  }
4815  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4816  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4817  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4818  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4819}
4820
4821void Parker::park(bool isAbsolute, jlong time) {
4822  // Optional fast-path check:
4823  // Return immediately if a permit is available.
4824  if (_counter > 0) {
4825      _counter = 0 ;
4826      OrderAccess::fence();
4827      return ;
4828  }
4829
4830  Thread* thread = Thread::current();
4831  assert(thread->is_Java_thread(), "Must be JavaThread");
4832  JavaThread *jt = (JavaThread *)thread;
4833
4834  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4835  // Check interrupt before trying to wait
4836  if (Thread::is_interrupted(thread, false)) {
4837    return;
4838  }
4839
4840  // Next, demultiplex/decode time arguments
4841  timespec absTime;
4842  if (time < 0) { // don't wait at all
4843    return;
4844  }
4845  if (time > 0) {
4846    unpackTime(&absTime, isAbsolute, time);
4847  }
4848
4849
4850  // Enter safepoint region
4851  // Beware of deadlocks such as 6317397.
4852  // The per-thread Parker:: mutex is a classic leaf-lock.
4853  // In particular a thread must never block on the Threads_lock while
4854  // holding the Parker:: mutex.  If safepoints are pending both the
4855  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4856  ThreadBlockInVM tbivm(jt);
4857
4858  // Don't wait if cannot get lock since interference arises from
4859  // unblocking.  Also. check interrupt before trying wait
4860  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4861    return;
4862  }
4863
4864  int status ;
4865  if (_counter > 0)  { // no wait needed
4866    _counter = 0;
4867    status = pthread_mutex_unlock(_mutex);
4868    assert (status == 0, "invariant") ;
4869    OrderAccess::fence();
4870    return;
4871  }
4872
4873#ifdef ASSERT
4874  // Don't catch signals while blocked; let the running threads have the signals.
4875  // (This allows a debugger to break into the running thread.)
4876  sigset_t oldsigs;
4877  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4878  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4879#endif
4880
4881  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4882  jt->set_suspend_equivalent();
4883  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4884
4885  if (time == 0) {
4886    status = pthread_cond_wait (_cond, _mutex) ;
4887  } else {
4888    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4889    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4890      pthread_cond_destroy (_cond) ;
4891      pthread_cond_init    (_cond, NULL);
4892    }
4893  }
4894  assert_status(status == 0 || status == EINTR ||
4895                status == ETIME || status == ETIMEDOUT,
4896                status, "cond_timedwait");
4897
4898#ifdef ASSERT
4899  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4900#endif
4901
4902  _counter = 0 ;
4903  status = pthread_mutex_unlock(_mutex) ;
4904  assert_status(status == 0, status, "invariant") ;
4905  // If externally suspended while waiting, re-suspend
4906  if (jt->handle_special_suspend_equivalent_condition()) {
4907    jt->java_suspend_self();
4908  }
4909
4910  OrderAccess::fence();
4911}
4912
4913void Parker::unpark() {
4914  int s, status ;
4915  status = pthread_mutex_lock(_mutex);
4916  assert (status == 0, "invariant") ;
4917  s = _counter;
4918  _counter = 1;
4919  if (s < 1) {
4920     if (WorkAroundNPTLTimedWaitHang) {
4921        status = pthread_cond_signal (_cond) ;
4922        assert (status == 0, "invariant") ;
4923        status = pthread_mutex_unlock(_mutex);
4924        assert (status == 0, "invariant") ;
4925     } else {
4926        status = pthread_mutex_unlock(_mutex);
4927        assert (status == 0, "invariant") ;
4928        status = pthread_cond_signal (_cond) ;
4929        assert (status == 0, "invariant") ;
4930     }
4931  } else {
4932    pthread_mutex_unlock(_mutex);
4933    assert (status == 0, "invariant") ;
4934  }
4935}
4936
4937
4938extern char** environ;
4939
4940#ifndef __NR_fork
4941#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4942#endif
4943
4944#ifndef __NR_execve
4945#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4946#endif
4947
4948// Run the specified command in a separate process. Return its exit value,
4949// or -1 on failure (e.g. can't fork a new process).
4950// Unlike system(), this function can be called from signal handler. It
4951// doesn't block SIGINT et al.
4952int os::fork_and_exec(char* cmd) {
4953  const char * argv[4] = {"sh", "-c", cmd, NULL};
4954
4955  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4956  // pthread_atfork handlers and reset pthread library. All we need is a
4957  // separate process to execve. Make a direct syscall to fork process.
4958  // On IA64 there's no fork syscall, we have to use fork() and hope for
4959  // the best...
4960  pid_t pid = NOT_IA64(syscall(__NR_fork);)
4961              IA64_ONLY(fork();)
4962
4963  if (pid < 0) {
4964    // fork failed
4965    return -1;
4966
4967  } else if (pid == 0) {
4968    // child process
4969
4970    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4971    // first to kill every thread on the thread list. Because this list is
4972    // not reset by fork() (see notes above), execve() will instead kill
4973    // every thread in the parent process. We know this is the only thread
4974    // in the new process, so make a system call directly.
4975    // IA64 should use normal execve() from glibc to match the glibc fork()
4976    // above.
4977    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4978    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4979
4980    // execve failed
4981    _exit(-1);
4982
4983  } else  {
4984    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4985    // care about the actual exit code, for now.
4986
4987    int status;
4988
4989    // Wait for the child process to exit.  This returns immediately if
4990    // the child has already exited. */
4991    while (waitpid(pid, &status, 0) < 0) {
4992        switch (errno) {
4993        case ECHILD: return 0;
4994        case EINTR: break;
4995        default: return -1;
4996        }
4997    }
4998
4999    if (WIFEXITED(status)) {
5000       // The child exited normally; get its exit code.
5001       return WEXITSTATUS(status);
5002    } else if (WIFSIGNALED(status)) {
5003       // The child exited because of a signal
5004       // The best value to return is 0x80 + signal number,
5005       // because that is what all Unix shells do, and because
5006       // it allows callers to distinguish between process exit and
5007       // process death by signal.
5008       return 0x80 + WTERMSIG(status);
5009    } else {
5010       // Unknown exit code; pass it through
5011       return status;
5012    }
5013  }
5014}
5015
5016// is_headless_jre()
5017//
5018// Test for the existence of libmawt in motif21 or xawt directories
5019// in order to report if we are running in a headless jre
5020//
5021bool os::is_headless_jre() {
5022    struct stat statbuf;
5023    char buf[MAXPATHLEN];
5024    char libmawtpath[MAXPATHLEN];
5025    const char *xawtstr  = "/xawt/libmawt.so";
5026    const char *motifstr = "/motif21/libmawt.so";
5027    char *p;
5028
5029    // Get path to libjvm.so
5030    os::jvm_path(buf, sizeof(buf));
5031
5032    // Get rid of libjvm.so
5033    p = strrchr(buf, '/');
5034    if (p == NULL) return false;
5035    else *p = '\0';
5036
5037    // Get rid of client or server
5038    p = strrchr(buf, '/');
5039    if (p == NULL) return false;
5040    else *p = '\0';
5041
5042    // check xawt/libmawt.so
5043    strcpy(libmawtpath, buf);
5044    strcat(libmawtpath, xawtstr);
5045    if (::stat(libmawtpath, &statbuf) == 0) return false;
5046
5047    // check motif21/libmawt.so
5048    strcpy(libmawtpath, buf);
5049    strcat(libmawtpath, motifstr);
5050    if (::stat(libmawtpath, &statbuf) == 0) return false;
5051
5052    return true;
5053}
5054
5055