os_linux.cpp revision 13544:61c0ae8bee4e
179543Sru/*
2151497Sru * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
375584Sru * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
475584Sru *
575584Sru * This code is free software; you can redistribute it and/or modify it
675584Sru * under the terms of the GNU General Public License version 2 only, as
775584Sru * published by the Free Software Foundation.
875584Sru *
975584Sru * This code is distributed in the hope that it will be useful, but WITHOUT
1075584Sru * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1175584Sru * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1275584Sru * version 2 for more details (a copy is included in the LICENSE file that
1375584Sru * accompanied this code).
1475584Sru *
1575584Sru * You should have received a copy of the GNU General Public License version
1675584Sru * 2 along with this work; if not, write to the Free Software Foundation,
1775584Sru * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1875584Sru *
19151497Sru * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20151497Sru * or visit www.oracle.com if you need additional information or have any
2175584Sru * questions.
2275584Sru *
2375584Sru */
24151497Sru
25151497Sru// no precompiled headers
2675584Sru#include "classfile/classLoader.hpp"
27151497Sru#include "classfile/systemDictionary.hpp"
28151497Sru#include "classfile/vmSymbols.hpp"
2975584Sru#include "code/icBuffer.hpp"
30104862Sru#include "code/vtableStubs.hpp"
31151497Sru#include "compiler/compileBroker.hpp"
3275584Sru#include "compiler/disassembler.hpp"
3375584Sru#include "interpreter/interpreter.hpp"
34104862Sru#include "jvm_linux.h"
35151497Sru#include "logging/log.hpp"
3675584Sru#include "memory/allocation.inline.hpp"
3775584Sru#include "memory/filemap.hpp"
3875584Sru#include "oops/oop.inline.hpp"
3975584Sru#include "os_linux.inline.hpp"
4075584Sru#include "os_share_linux.hpp"
4175584Sru#include "prims/jniFastGetField.hpp"
4275584Sru#include "prims/jvm.h"
43151497Sru#include "prims/jvm_misc.hpp"
4475584Sru#include "runtime/arguments.hpp"
45151497Sru#include "runtime/atomic.hpp"
46151497Sru#include "runtime/extendedPC.hpp"
4775584Sru#include "runtime/globals.hpp"
48151497Sru#include "runtime/interfaceSupport.hpp"
49151497Sru#include "runtime/init.hpp"
50151497Sru#include "runtime/java.hpp"
5179543Sru#include "runtime/javaCalls.hpp"
5275584Sru#include "runtime/mutexLocker.hpp"
53151497Sru#include "runtime/objectMonitor.hpp"
54151497Sru#include "runtime/orderAccess.inline.hpp"
55104862Sru#include "runtime/osThread.hpp"
56151497Sru#include "runtime/perfMemory.hpp"
57104862Sru#include "runtime/sharedRuntime.hpp"
58151497Sru#include "runtime/statSampler.hpp"
59151497Sru#include "runtime/stubRoutines.hpp"
6075584Sru#include "runtime/thread.inline.hpp"
6175584Sru#include "runtime/threadCritical.hpp"
6275584Sru#include "runtime/timer.hpp"
63104862Sru#include "semaphore_posix.hpp"
64151497Sru#include "services/attachListener.hpp"
6575584Sru#include "services/memTracker.hpp"
66104862Sru#include "services/runtimeService.hpp"
6775584Sru#include "utilities/align.hpp"
68104862Sru#include "utilities/decoder.hpp"
69104862Sru#include "utilities/defaultStream.hpp"
70104862Sru#include "utilities/events.hpp"
71104862Sru#include "utilities/elfFile.hpp"
7275584Sru#include "utilities/growableArray.hpp"
7375584Sru#include "utilities/macros.hpp"
7475584Sru#include "utilities/vmError.hpp"
7575584Sru
7675584Sru// put OS-includes here
7775584Sru# include <sys/types.h>
7875584Sru# include <sys/mman.h>
7975584Sru# include <sys/stat.h>
8075584Sru# include <sys/select.h>
8175584Sru# include <pthread.h>
8275584Sru# include <signal.h>
8375584Sru# include <errno.h>
8475584Sru# include <dlfcn.h>
8575584Sru# include <stdio.h>
8675584Sru# include <unistd.h>
8775584Sru# include <sys/resource.h>
8875584Sru# include <pthread.h>
8975584Sru# include <sys/stat.h>
9075584Sru# include <sys/time.h>
9175584Sru# include <sys/times.h>
9275584Sru# include <sys/utsname.h>
9375584Sru# include <sys/socket.h>
9475584Sru# include <sys/wait.h>
9575584Sru# include <pwd.h>
9675584Sru# include <poll.h>
9775584Sru# include <semaphore.h>
9875584Sru# include <fcntl.h>
99151497Sru# include <string.h>
100151497Sru# include <syscall.h>
10175584Sru# include <sys/sysinfo.h>
10275584Sru# include <gnu/libc-version.h>
103104862Sru# include <sys/ipc.h>
104104862Sru# include <sys/shm.h>
105104862Sru# include <link.h>
106104862Sru# include <stdint.h>
107151497Sru# include <inttypes.h>
108104862Sru# include <sys/ioctl.h>
109104862Sru
110104862Sru#ifndef _GNU_SOURCE
111104862Sru  #define _GNU_SOURCE
112104862Sru  #include <sched.h>
113104862Sru  #undef _GNU_SOURCE
114104862Sru#else
115104862Sru  #include <sched.h>
116104862Sru#endif
117104862Sru
118104862Sru// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
119151497Sru// getrusage() is prepared to handle the associated failure.
12075584Sru#ifndef RUSAGE_THREAD
121151497Sru  #define RUSAGE_THREAD   (1)               /* only the calling thread */
122151497Sru#endif
123151497Sru
124151497Sru#define MAX_PATH    (2 * K)
125151497Sru
126151497Sru#define MAX_SECS 100000000
127151497Sru
128151497Sru// for timer info max values which include all bits
129151497Sru#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
130151497Sru
131151497Sru#define LARGEPAGES_BIT (1 << 6)
132151497Sru////////////////////////////////////////////////////////////////////////////////
133151497Sru// global variables
134151497Srujulong os::Linux::_physical_memory = 0;
135151497Sru
136151497Sruaddress   os::Linux::_initial_thread_stack_bottom = NULL;
137151497Sruuintptr_t os::Linux::_initial_thread_stack_size   = 0;
138151497Sru
139151497Sruint (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140151497Sruint (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
141104862Sruint (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
142104862SruMutex* os::Linux::_createThread_lock = NULL;
143104862Srupthread_t os::Linux::_main_thread;
144104862Sruint os::Linux::_page_size = -1;
145151497Srubool os::Linux::_supports_fast_thread_cpu_time = false;
146104862Sruuint32_t os::Linux::_os_version = 0;
147104862Sruconst char * os::Linux::_glibc_version = NULL;
148104862Sruconst char * os::Linux::_libpthread_version = NULL;
149104862Sru
150104862Srustatic jlong initial_time_count=0;
151104862Sru
152104862Srustatic int clock_tics_per_sec = 100;
153104862Sru
154104862Sru// For diagnostics to print a message once. see run_periodic_checks
155104862Srustatic sigset_t check_signal_done;
156104862Srustatic bool check_signals = true;
157151497Sru
15875584Sru// Signal number used to suspend/resume a thread
159151497Sru
160151497Sru// do not use any signal number less than SIGSEGV, see 4355769
161104862Srustatic int SR_signum = SIGUSR2;
162104862Srusigset_t SR_sigset;
163104862Sru
164104862Sru// utility functions
165104862Sru
166104862Srustatic int SR_initialize();
167151497Sru
168104862Srujulong os::available_memory() {
16975584Sru  return Linux::available_memory();
17079543Sru}
171104862Sru
172151497Srujulong os::Linux::available_memory() {
173151497Sru  // values in struct sysinfo are "unsigned long"
174151497Sru  struct sysinfo si;
175151497Sru  sysinfo(&si);
17675584Sru
17779543Sru  return (julong)si.freeram * si.mem_unit;
17879543Sru}
17979543Sru
180151497Srujulong os::physical_memory() {
18179543Sru  return Linux::physical_memory();
18279543Sru}
183151497Sru
18479543Sru// Return true if user is running as root.
185151497Sru
186151497Srubool os::have_special_privileges() {
187151497Sru  static bool init = false;
188151497Sru  static bool privileges = false;
189151497Sru  if (!init) {
190151497Sru    privileges = (getuid() != geteuid()) || (getgid() != getegid());
191151497Sru    init = true;
192151497Sru  }
193151497Sru  return privileges;
194151497Sru}
195151497Sru
196151497Sru
197151497Sru#ifndef SYS_gettid
198151497Sru// i386: 224, ia64: 1105, amd64: 186, sparc 143
199151497Sru  #ifdef __ia64__
200151497Sru    #define SYS_gettid 1105
201151497Sru  #else
202151497Sru    #ifdef __i386__
203151497Sru      #define SYS_gettid 224
204151497Sru    #else
205151497Sru      #ifdef __amd64__
206151497Sru        #define SYS_gettid 186
207151497Sru      #else
208151497Sru        #ifdef __sparc__
209104862Sru          #define SYS_gettid 143
210104862Sru        #else
211151497Sru          #error define gettid for the arch
212104862Sru        #endif
213151497Sru      #endif
214151497Sru    #endif
21579543Sru  #endif
216151497Sru#endif
217151497Sru
21879543Sru
219151497Sru// pid_t gettid()
220151497Sru//
221151497Sru// Returns the kernel thread id of the currently running thread. Kernel
222151497Sru// thread id is used to access /proc.
223151497Srupid_t os::Linux::gettid() {
224151497Sru  int rslt = syscall(SYS_gettid);
225151497Sru  assert(rslt != -1, "must be."); // old linuxthreads implementation?
226151497Sru  return (pid_t)rslt;
227151497Sru}
228151497Sru
229151497Sru// Most versions of linux have a bug where the number of processors are
230151497Sru// determined by looking at the /proc file system.  In a chroot environment,
231151497Sru// the system call returns 1.  This causes the VM to act as if it is
232151497Sru// a single processor and elide locking (see is_MP() call).
233151497Srustatic bool unsafe_chroot_detected = false;
234151497Srustatic const char *unstable_chroot_error = "/proc file system not found.\n"
235151497Sru                     "Java may be unstable running multithreaded in a chroot "
236151497Sru                     "environment on Linux when /proc filesystem is not mounted.";
237151497Sru
238151497Sruvoid os::Linux::initialize_system_info() {
239151497Sru  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
24075584Sru  if (processor_count() == 1) {
24175584Sru    pid_t pid = os::Linux::gettid();
242104862Sru    char fname[32];
243151497Sru    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
24475584Sru    FILE *fp = fopen(fname, "r");
24575584Sru    if (fp == NULL) {
24675584Sru      unsafe_chroot_detected = true;
24775584Sru    } else {
24875584Sru      fclose(fp);
24975584Sru    }
25075584Sru  }
251151497Sru  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
252151497Sru  assert(processor_count() > 0, "linux error");
253151497Sru}
25475584Sru
25575584Sruvoid os::init_system_properties_values() {
25679543Sru  // The next steps are taken in the product version:
257151497Sru  //
258151497Sru  // Obtain the JAVA_HOME value from the location of libjvm.so.
259151497Sru  // This library should be located at:
26079543Sru  // <JAVA_HOME>/lib/{client|server}/libjvm.so.
26179543Sru  //
262104862Sru  // If "/jre/lib/" appears at the right place in the path, then we
263104862Sru  // assume libjvm.so is installed in a JDK and we use this path.
264104862Sru  //
265104862Sru  // Otherwise exit with message: "Could not create the Java virtual machine."
266104862Sru  //
267104862Sru  // The following extra steps are taken in the debugging version:
268104862Sru  //
269104862Sru  // If "/jre/lib/" does NOT appear at the right place in the path
270104862Sru  // instead of exit check for $JAVA_HOME environment variable.
271104862Sru  //
27275584Sru  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
27375584Sru  // then we append a fake suffix "hotspot/libjvm.so" to this path so
274151497Sru  // it looks like libjvm.so is installed there
275151497Sru  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
27675584Sru  //
27775584Sru  // Otherwise exit.
27875584Sru  //
279151497Sru  // Important note: if the location of libjvm.so changes this
280151497Sru  // code needs to be changed accordingly.
281151497Sru
28275584Sru  // See ld(1):
28375584Sru  //      The linker uses the following search paths to locate required
28475584Sru  //      shared libraries:
28575584Sru  //        1: ...
28675584Sru  //        ...
28775584Sru  //        7: The default directories, normally /lib and /usr/lib.
28875584Sru#if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
28975584Sru  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
29079543Sru#else
29179543Sru  #define DEFAULT_LIBPATH "/lib:/usr/lib"
29279543Sru#endif
29379543Sru
294// Base path of extensions installed on the system.
295#define SYS_EXT_DIR     "/usr/java/packages"
296#define EXTENSIONS_DIR  "/lib/ext"
297
298  // Buffer that fits several sprintfs.
299  // Note that the space for the colon and the trailing null are provided
300  // by the nulls included by the sizeof operator.
301  const size_t bufsize =
302    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
303         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
304  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
305
306  // sysclasspath, java_home, dll_dir
307  {
308    char *pslash;
309    os::jvm_path(buf, bufsize);
310
311    // Found the full path to libjvm.so.
312    // Now cut the path to <java_home>/jre if we can.
313    pslash = strrchr(buf, '/');
314    if (pslash != NULL) {
315      *pslash = '\0';            // Get rid of /libjvm.so.
316    }
317    pslash = strrchr(buf, '/');
318    if (pslash != NULL) {
319      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
320    }
321    Arguments::set_dll_dir(buf);
322
323    if (pslash != NULL) {
324      pslash = strrchr(buf, '/');
325      if (pslash != NULL) {
326        *pslash = '\0';        // Get rid of /lib.
327      }
328    }
329    Arguments::set_java_home(buf);
330    set_boot_path('/', ':');
331  }
332
333  // Where to look for native libraries.
334  //
335  // Note: Due to a legacy implementation, most of the library path
336  // is set in the launcher. This was to accomodate linking restrictions
337  // on legacy Linux implementations (which are no longer supported).
338  // Eventually, all the library path setting will be done here.
339  //
340  // However, to prevent the proliferation of improperly built native
341  // libraries, the new path component /usr/java/packages is added here.
342  // Eventually, all the library path setting will be done here.
343  {
344    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
345    // should always exist (until the legacy problem cited above is
346    // addressed).
347    const char *v = ::getenv("LD_LIBRARY_PATH");
348    const char *v_colon = ":";
349    if (v == NULL) { v = ""; v_colon = ""; }
350    // That's +1 for the colon and +1 for the trailing '\0'.
351    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
352                                                     strlen(v) + 1 +
353                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
354                                                     mtInternal);
355    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
356    Arguments::set_library_path(ld_library_path);
357    FREE_C_HEAP_ARRAY(char, ld_library_path);
358  }
359
360  // Extensions directories.
361  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
362  Arguments::set_ext_dirs(buf);
363
364  FREE_C_HEAP_ARRAY(char, buf);
365
366#undef DEFAULT_LIBPATH
367#undef SYS_EXT_DIR
368#undef EXTENSIONS_DIR
369}
370
371////////////////////////////////////////////////////////////////////////////////
372// breakpoint support
373
374void os::breakpoint() {
375  BREAKPOINT;
376}
377
378extern "C" void breakpoint() {
379  // use debugger to set breakpoint here
380}
381
382////////////////////////////////////////////////////////////////////////////////
383// signal support
384
385debug_only(static bool signal_sets_initialized = false);
386static sigset_t unblocked_sigs, vm_sigs;
387
388bool os::Linux::is_sig_ignored(int sig) {
389  struct sigaction oact;
390  sigaction(sig, (struct sigaction*)NULL, &oact);
391  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
392                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
393  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
394    return true;
395  } else {
396    return false;
397  }
398}
399
400void os::Linux::signal_sets_init() {
401  // Should also have an assertion stating we are still single-threaded.
402  assert(!signal_sets_initialized, "Already initialized");
403  // Fill in signals that are necessarily unblocked for all threads in
404  // the VM. Currently, we unblock the following signals:
405  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
406  //                         by -Xrs (=ReduceSignalUsage));
407  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
408  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
409  // the dispositions or masks wrt these signals.
410  // Programs embedding the VM that want to use the above signals for their
411  // own purposes must, at this time, use the "-Xrs" option to prevent
412  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
413  // (See bug 4345157, and other related bugs).
414  // In reality, though, unblocking these signals is really a nop, since
415  // these signals are not blocked by default.
416  sigemptyset(&unblocked_sigs);
417  sigaddset(&unblocked_sigs, SIGILL);
418  sigaddset(&unblocked_sigs, SIGSEGV);
419  sigaddset(&unblocked_sigs, SIGBUS);
420  sigaddset(&unblocked_sigs, SIGFPE);
421#if defined(PPC64)
422  sigaddset(&unblocked_sigs, SIGTRAP);
423#endif
424  sigaddset(&unblocked_sigs, SR_signum);
425
426  if (!ReduceSignalUsage) {
427    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
428      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
429    }
430    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
431      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
432    }
433    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
434      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
435    }
436  }
437  // Fill in signals that are blocked by all but the VM thread.
438  sigemptyset(&vm_sigs);
439  if (!ReduceSignalUsage) {
440    sigaddset(&vm_sigs, BREAK_SIGNAL);
441  }
442  debug_only(signal_sets_initialized = true);
443
444}
445
446// These are signals that are unblocked while a thread is running Java.
447// (For some reason, they get blocked by default.)
448sigset_t* os::Linux::unblocked_signals() {
449  assert(signal_sets_initialized, "Not initialized");
450  return &unblocked_sigs;
451}
452
453// These are the signals that are blocked while a (non-VM) thread is
454// running Java. Only the VM thread handles these signals.
455sigset_t* os::Linux::vm_signals() {
456  assert(signal_sets_initialized, "Not initialized");
457  return &vm_sigs;
458}
459
460void os::Linux::hotspot_sigmask(Thread* thread) {
461
462  //Save caller's signal mask before setting VM signal mask
463  sigset_t caller_sigmask;
464  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
465
466  OSThread* osthread = thread->osthread();
467  osthread->set_caller_sigmask(caller_sigmask);
468
469  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
470
471  if (!ReduceSignalUsage) {
472    if (thread->is_VM_thread()) {
473      // Only the VM thread handles BREAK_SIGNAL ...
474      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
475    } else {
476      // ... all other threads block BREAK_SIGNAL
477      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
478    }
479  }
480}
481
482//////////////////////////////////////////////////////////////////////////////
483// detecting pthread library
484
485void os::Linux::libpthread_init() {
486  // Save glibc and pthread version strings.
487#if !defined(_CS_GNU_LIBC_VERSION) || \
488    !defined(_CS_GNU_LIBPTHREAD_VERSION)
489  #error "glibc too old (< 2.3.2)"
490#endif
491
492  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
493  assert(n > 0, "cannot retrieve glibc version");
494  char *str = (char *)malloc(n, mtInternal);
495  confstr(_CS_GNU_LIBC_VERSION, str, n);
496  os::Linux::set_glibc_version(str);
497
498  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
499  assert(n > 0, "cannot retrieve pthread version");
500  str = (char *)malloc(n, mtInternal);
501  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
502  os::Linux::set_libpthread_version(str);
503}
504
505/////////////////////////////////////////////////////////////////////////////
506// thread stack expansion
507
508// os::Linux::manually_expand_stack() takes care of expanding the thread
509// stack. Note that this is normally not needed: pthread stacks allocate
510// thread stack using mmap() without MAP_NORESERVE, so the stack is already
511// committed. Therefore it is not necessary to expand the stack manually.
512//
513// Manually expanding the stack was historically needed on LinuxThreads
514// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
515// it is kept to deal with very rare corner cases:
516//
517// For one, user may run the VM on an own implementation of threads
518// whose stacks are - like the old LinuxThreads - implemented using
519// mmap(MAP_GROWSDOWN).
520//
521// Also, this coding may be needed if the VM is running on the primordial
522// thread. Normally we avoid running on the primordial thread; however,
523// user may still invoke the VM on the primordial thread.
524//
525// The following historical comment describes the details about running
526// on a thread stack allocated with mmap(MAP_GROWSDOWN):
527
528
529// Force Linux kernel to expand current thread stack. If "bottom" is close
530// to the stack guard, caller should block all signals.
531//
532// MAP_GROWSDOWN:
533//   A special mmap() flag that is used to implement thread stacks. It tells
534//   kernel that the memory region should extend downwards when needed. This
535//   allows early versions of LinuxThreads to only mmap the first few pages
536//   when creating a new thread. Linux kernel will automatically expand thread
537//   stack as needed (on page faults).
538//
539//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
540//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
541//   region, it's hard to tell if the fault is due to a legitimate stack
542//   access or because of reading/writing non-exist memory (e.g. buffer
543//   overrun). As a rule, if the fault happens below current stack pointer,
544//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
545//   application (see Linux kernel fault.c).
546//
547//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
548//   stack overflow detection.
549//
550//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
551//   not use MAP_GROWSDOWN.
552//
553// To get around the problem and allow stack banging on Linux, we need to
554// manually expand thread stack after receiving the SIGSEGV.
555//
556// There are two ways to expand thread stack to address "bottom", we used
557// both of them in JVM before 1.5:
558//   1. adjust stack pointer first so that it is below "bottom", and then
559//      touch "bottom"
560//   2. mmap() the page in question
561//
562// Now alternate signal stack is gone, it's harder to use 2. For instance,
563// if current sp is already near the lower end of page 101, and we need to
564// call mmap() to map page 100, it is possible that part of the mmap() frame
565// will be placed in page 100. When page 100 is mapped, it is zero-filled.
566// That will destroy the mmap() frame and cause VM to crash.
567//
568// The following code works by adjusting sp first, then accessing the "bottom"
569// page to force a page fault. Linux kernel will then automatically expand the
570// stack mapping.
571//
572// _expand_stack_to() assumes its frame size is less than page size, which
573// should always be true if the function is not inlined.
574
575static void NOINLINE _expand_stack_to(address bottom) {
576  address sp;
577  size_t size;
578  volatile char *p;
579
580  // Adjust bottom to point to the largest address within the same page, it
581  // gives us a one-page buffer if alloca() allocates slightly more memory.
582  bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
583  bottom += os::Linux::page_size() - 1;
584
585  // sp might be slightly above current stack pointer; if that's the case, we
586  // will alloca() a little more space than necessary, which is OK. Don't use
587  // os::current_stack_pointer(), as its result can be slightly below current
588  // stack pointer, causing us to not alloca enough to reach "bottom".
589  sp = (address)&sp;
590
591  if (sp > bottom) {
592    size = sp - bottom;
593    p = (volatile char *)alloca(size);
594    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
595    p[0] = '\0';
596  }
597}
598
599bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
600  assert(t!=NULL, "just checking");
601  assert(t->osthread()->expanding_stack(), "expand should be set");
602  assert(t->stack_base() != NULL, "stack_base was not initialized");
603
604  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
605    sigset_t mask_all, old_sigset;
606    sigfillset(&mask_all);
607    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
608    _expand_stack_to(addr);
609    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
610    return true;
611  }
612  return false;
613}
614
615//////////////////////////////////////////////////////////////////////////////
616// create new thread
617
618// Thread start routine for all newly created threads
619static void *thread_native_entry(Thread *thread) {
620  // Try to randomize the cache line index of hot stack frames.
621  // This helps when threads of the same stack traces evict each other's
622  // cache lines. The threads can be either from the same JVM instance, or
623  // from different JVM instances. The benefit is especially true for
624  // processors with hyperthreading technology.
625  static int counter = 0;
626  int pid = os::current_process_id();
627  alloca(((pid ^ counter++) & 7) * 128);
628
629  thread->initialize_thread_current();
630
631  OSThread* osthread = thread->osthread();
632  Monitor* sync = osthread->startThread_lock();
633
634  osthread->set_thread_id(os::current_thread_id());
635
636  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
637    os::current_thread_id(), (uintx) pthread_self());
638
639  if (UseNUMA) {
640    int lgrp_id = os::numa_get_group_id();
641    if (lgrp_id != -1) {
642      thread->set_lgrp_id(lgrp_id);
643    }
644  }
645  // initialize signal mask for this thread
646  os::Linux::hotspot_sigmask(thread);
647
648  // initialize floating point control register
649  os::Linux::init_thread_fpu_state();
650
651  // handshaking with parent thread
652  {
653    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
654
655    // notify parent thread
656    osthread->set_state(INITIALIZED);
657    sync->notify_all();
658
659    // wait until os::start_thread()
660    while (osthread->get_state() == INITIALIZED) {
661      sync->wait(Mutex::_no_safepoint_check_flag);
662    }
663  }
664
665  // call one more level start routine
666  thread->run();
667
668  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
669    os::current_thread_id(), (uintx) pthread_self());
670
671  // If a thread has not deleted itself ("delete this") as part of its
672  // termination sequence, we have to ensure thread-local-storage is
673  // cleared before we actually terminate. No threads should ever be
674  // deleted asynchronously with respect to their termination.
675  if (Thread::current_or_null_safe() != NULL) {
676    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
677    thread->clear_thread_current();
678  }
679
680  return 0;
681}
682
683bool os::create_thread(Thread* thread, ThreadType thr_type,
684                       size_t req_stack_size) {
685  assert(thread->osthread() == NULL, "caller responsible");
686
687  // Allocate the OSThread object
688  OSThread* osthread = new OSThread(NULL, NULL);
689  if (osthread == NULL) {
690    return false;
691  }
692
693  // set the correct thread state
694  osthread->set_thread_type(thr_type);
695
696  // Initial state is ALLOCATED but not INITIALIZED
697  osthread->set_state(ALLOCATED);
698
699  thread->set_osthread(osthread);
700
701  // init thread attributes
702  pthread_attr_t attr;
703  pthread_attr_init(&attr);
704  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
705
706  // Calculate stack size if it's not specified by caller.
707  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
708  // In the Linux NPTL pthread implementation the guard size mechanism
709  // is not implemented properly. The posix standard requires adding
710  // the size of the guard pages to the stack size, instead Linux
711  // takes the space out of 'stacksize'. Thus we adapt the requested
712  // stack_size by the size of the guard pages to mimick proper
713  // behaviour. However, be careful not to end up with a size
714  // of zero due to overflow. Don't add the guard page in that case.
715  size_t guard_size = os::Linux::default_guard_size(thr_type);
716  if (stack_size <= SIZE_MAX - guard_size) {
717    stack_size += guard_size;
718  }
719  assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
720
721  int status = pthread_attr_setstacksize(&attr, stack_size);
722  assert_status(status == 0, status, "pthread_attr_setstacksize");
723
724  // Configure glibc guard page.
725  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
726
727  ThreadState state;
728
729  {
730    pthread_t tid;
731    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
732
733    char buf[64];
734    if (ret == 0) {
735      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
736        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
737    } else {
738      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
739        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
740    }
741
742    pthread_attr_destroy(&attr);
743
744    if (ret != 0) {
745      // Need to clean up stuff we've allocated so far
746      thread->set_osthread(NULL);
747      delete osthread;
748      return false;
749    }
750
751    // Store pthread info into the OSThread
752    osthread->set_pthread_id(tid);
753
754    // Wait until child thread is either initialized or aborted
755    {
756      Monitor* sync_with_child = osthread->startThread_lock();
757      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
758      while ((state = osthread->get_state()) == ALLOCATED) {
759        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
760      }
761    }
762  }
763
764  // Aborted due to thread limit being reached
765  if (state == ZOMBIE) {
766    thread->set_osthread(NULL);
767    delete osthread;
768    return false;
769  }
770
771  // The thread is returned suspended (in state INITIALIZED),
772  // and is started higher up in the call chain
773  assert(state == INITIALIZED, "race condition");
774  return true;
775}
776
777/////////////////////////////////////////////////////////////////////////////
778// attach existing thread
779
780// bootstrap the main thread
781bool os::create_main_thread(JavaThread* thread) {
782  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
783  return create_attached_thread(thread);
784}
785
786bool os::create_attached_thread(JavaThread* thread) {
787#ifdef ASSERT
788  thread->verify_not_published();
789#endif
790
791  // Allocate the OSThread object
792  OSThread* osthread = new OSThread(NULL, NULL);
793
794  if (osthread == NULL) {
795    return false;
796  }
797
798  // Store pthread info into the OSThread
799  osthread->set_thread_id(os::Linux::gettid());
800  osthread->set_pthread_id(::pthread_self());
801
802  // initialize floating point control register
803  os::Linux::init_thread_fpu_state();
804
805  // Initial thread state is RUNNABLE
806  osthread->set_state(RUNNABLE);
807
808  thread->set_osthread(osthread);
809
810  if (UseNUMA) {
811    int lgrp_id = os::numa_get_group_id();
812    if (lgrp_id != -1) {
813      thread->set_lgrp_id(lgrp_id);
814    }
815  }
816
817  if (os::Linux::is_initial_thread()) {
818    // If current thread is initial thread, its stack is mapped on demand,
819    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
820    // the entire stack region to avoid SEGV in stack banging.
821    // It is also useful to get around the heap-stack-gap problem on SuSE
822    // kernel (see 4821821 for details). We first expand stack to the top
823    // of yellow zone, then enable stack yellow zone (order is significant,
824    // enabling yellow zone first will crash JVM on SuSE Linux), so there
825    // is no gap between the last two virtual memory regions.
826
827    JavaThread *jt = (JavaThread *)thread;
828    address addr = jt->stack_reserved_zone_base();
829    assert(addr != NULL, "initialization problem?");
830    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
831
832    osthread->set_expanding_stack();
833    os::Linux::manually_expand_stack(jt, addr);
834    osthread->clear_expanding_stack();
835  }
836
837  // initialize signal mask for this thread
838  // and save the caller's signal mask
839  os::Linux::hotspot_sigmask(thread);
840
841  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
842    os::current_thread_id(), (uintx) pthread_self());
843
844  return true;
845}
846
847void os::pd_start_thread(Thread* thread) {
848  OSThread * osthread = thread->osthread();
849  assert(osthread->get_state() != INITIALIZED, "just checking");
850  Monitor* sync_with_child = osthread->startThread_lock();
851  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
852  sync_with_child->notify();
853}
854
855// Free Linux resources related to the OSThread
856void os::free_thread(OSThread* osthread) {
857  assert(osthread != NULL, "osthread not set");
858
859  // We are told to free resources of the argument thread,
860  // but we can only really operate on the current thread.
861  assert(Thread::current()->osthread() == osthread,
862         "os::free_thread but not current thread");
863
864#ifdef ASSERT
865  sigset_t current;
866  sigemptyset(&current);
867  pthread_sigmask(SIG_SETMASK, NULL, &current);
868  assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
869#endif
870
871  // Restore caller's signal mask
872  sigset_t sigmask = osthread->caller_sigmask();
873  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
874
875  delete osthread;
876}
877
878//////////////////////////////////////////////////////////////////////////////
879// initial thread
880
881// Check if current thread is the initial thread, similar to Solaris thr_main.
882bool os::Linux::is_initial_thread(void) {
883  char dummy;
884  // If called before init complete, thread stack bottom will be null.
885  // Can be called if fatal error occurs before initialization.
886  if (initial_thread_stack_bottom() == NULL) return false;
887  assert(initial_thread_stack_bottom() != NULL &&
888         initial_thread_stack_size()   != 0,
889         "os::init did not locate initial thread's stack region");
890  if ((address)&dummy >= initial_thread_stack_bottom() &&
891      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
892    return true;
893  } else {
894    return false;
895  }
896}
897
898// Find the virtual memory area that contains addr
899static bool find_vma(address addr, address* vma_low, address* vma_high) {
900  FILE *fp = fopen("/proc/self/maps", "r");
901  if (fp) {
902    address low, high;
903    while (!feof(fp)) {
904      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
905        if (low <= addr && addr < high) {
906          if (vma_low)  *vma_low  = low;
907          if (vma_high) *vma_high = high;
908          fclose(fp);
909          return true;
910        }
911      }
912      for (;;) {
913        int ch = fgetc(fp);
914        if (ch == EOF || ch == (int)'\n') break;
915      }
916    }
917    fclose(fp);
918  }
919  return false;
920}
921
922// Locate initial thread stack. This special handling of initial thread stack
923// is needed because pthread_getattr_np() on most (all?) Linux distros returns
924// bogus value for the primordial process thread. While the launcher has created
925// the VM in a new thread since JDK 6, we still have to allow for the use of the
926// JNI invocation API from a primordial thread.
927void os::Linux::capture_initial_stack(size_t max_size) {
928
929  // max_size is either 0 (which means accept OS default for thread stacks) or
930  // a user-specified value known to be at least the minimum needed. If we
931  // are actually on the primordial thread we can make it appear that we have a
932  // smaller max_size stack by inserting the guard pages at that location. But we
933  // cannot do anything to emulate a larger stack than what has been provided by
934  // the OS or threading library. In fact if we try to use a stack greater than
935  // what is set by rlimit then we will crash the hosting process.
936
937  // Maximum stack size is the easy part, get it from RLIMIT_STACK.
938  // If this is "unlimited" then it will be a huge value.
939  struct rlimit rlim;
940  getrlimit(RLIMIT_STACK, &rlim);
941  size_t stack_size = rlim.rlim_cur;
942
943  // 6308388: a bug in ld.so will relocate its own .data section to the
944  //   lower end of primordial stack; reduce ulimit -s value a little bit
945  //   so we won't install guard page on ld.so's data section.
946  stack_size -= 2 * page_size();
947
948  // Try to figure out where the stack base (top) is. This is harder.
949  //
950  // When an application is started, glibc saves the initial stack pointer in
951  // a global variable "__libc_stack_end", which is then used by system
952  // libraries. __libc_stack_end should be pretty close to stack top. The
953  // variable is available since the very early days. However, because it is
954  // a private interface, it could disappear in the future.
955  //
956  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
957  // to __libc_stack_end, it is very close to stack top, but isn't the real
958  // stack top. Note that /proc may not exist if VM is running as a chroot
959  // program, so reading /proc/<pid>/stat could fail. Also the contents of
960  // /proc/<pid>/stat could change in the future (though unlikely).
961  //
962  // We try __libc_stack_end first. If that doesn't work, look for
963  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
964  // as a hint, which should work well in most cases.
965
966  uintptr_t stack_start;
967
968  // try __libc_stack_end first
969  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
970  if (p && *p) {
971    stack_start = *p;
972  } else {
973    // see if we can get the start_stack field from /proc/self/stat
974    FILE *fp;
975    int pid;
976    char state;
977    int ppid;
978    int pgrp;
979    int session;
980    int nr;
981    int tpgrp;
982    unsigned long flags;
983    unsigned long minflt;
984    unsigned long cminflt;
985    unsigned long majflt;
986    unsigned long cmajflt;
987    unsigned long utime;
988    unsigned long stime;
989    long cutime;
990    long cstime;
991    long prio;
992    long nice;
993    long junk;
994    long it_real;
995    uintptr_t start;
996    uintptr_t vsize;
997    intptr_t rss;
998    uintptr_t rsslim;
999    uintptr_t scodes;
1000    uintptr_t ecode;
1001    int i;
1002
1003    // Figure what the primordial thread stack base is. Code is inspired
1004    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1005    // followed by command name surrounded by parentheses, state, etc.
1006    char stat[2048];
1007    int statlen;
1008
1009    fp = fopen("/proc/self/stat", "r");
1010    if (fp) {
1011      statlen = fread(stat, 1, 2047, fp);
1012      stat[statlen] = '\0';
1013      fclose(fp);
1014
1015      // Skip pid and the command string. Note that we could be dealing with
1016      // weird command names, e.g. user could decide to rename java launcher
1017      // to "java 1.4.2 :)", then the stat file would look like
1018      //                1234 (java 1.4.2 :)) R ... ...
1019      // We don't really need to know the command string, just find the last
1020      // occurrence of ")" and then start parsing from there. See bug 4726580.
1021      char * s = strrchr(stat, ')');
1022
1023      i = 0;
1024      if (s) {
1025        // Skip blank chars
1026        do { s++; } while (s && isspace(*s));
1027
1028#define _UFM UINTX_FORMAT
1029#define _DFM INTX_FORMAT
1030
1031        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1032        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1033        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1034                   &state,          // 3  %c
1035                   &ppid,           // 4  %d
1036                   &pgrp,           // 5  %d
1037                   &session,        // 6  %d
1038                   &nr,             // 7  %d
1039                   &tpgrp,          // 8  %d
1040                   &flags,          // 9  %lu
1041                   &minflt,         // 10 %lu
1042                   &cminflt,        // 11 %lu
1043                   &majflt,         // 12 %lu
1044                   &cmajflt,        // 13 %lu
1045                   &utime,          // 14 %lu
1046                   &stime,          // 15 %lu
1047                   &cutime,         // 16 %ld
1048                   &cstime,         // 17 %ld
1049                   &prio,           // 18 %ld
1050                   &nice,           // 19 %ld
1051                   &junk,           // 20 %ld
1052                   &it_real,        // 21 %ld
1053                   &start,          // 22 UINTX_FORMAT
1054                   &vsize,          // 23 UINTX_FORMAT
1055                   &rss,            // 24 INTX_FORMAT
1056                   &rsslim,         // 25 UINTX_FORMAT
1057                   &scodes,         // 26 UINTX_FORMAT
1058                   &ecode,          // 27 UINTX_FORMAT
1059                   &stack_start);   // 28 UINTX_FORMAT
1060      }
1061
1062#undef _UFM
1063#undef _DFM
1064
1065      if (i != 28 - 2) {
1066        assert(false, "Bad conversion from /proc/self/stat");
1067        // product mode - assume we are the initial thread, good luck in the
1068        // embedded case.
1069        warning("Can't detect initial thread stack location - bad conversion");
1070        stack_start = (uintptr_t) &rlim;
1071      }
1072    } else {
1073      // For some reason we can't open /proc/self/stat (for example, running on
1074      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1075      // most cases, so don't abort:
1076      warning("Can't detect initial thread stack location - no /proc/self/stat");
1077      stack_start = (uintptr_t) &rlim;
1078    }
1079  }
1080
1081  // Now we have a pointer (stack_start) very close to the stack top, the
1082  // next thing to do is to figure out the exact location of stack top. We
1083  // can find out the virtual memory area that contains stack_start by
1084  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1085  // and its upper limit is the real stack top. (again, this would fail if
1086  // running inside chroot, because /proc may not exist.)
1087
1088  uintptr_t stack_top;
1089  address low, high;
1090  if (find_vma((address)stack_start, &low, &high)) {
1091    // success, "high" is the true stack top. (ignore "low", because initial
1092    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1093    stack_top = (uintptr_t)high;
1094  } else {
1095    // failed, likely because /proc/self/maps does not exist
1096    warning("Can't detect initial thread stack location - find_vma failed");
1097    // best effort: stack_start is normally within a few pages below the real
1098    // stack top, use it as stack top, and reduce stack size so we won't put
1099    // guard page outside stack.
1100    stack_top = stack_start;
1101    stack_size -= 16 * page_size();
1102  }
1103
1104  // stack_top could be partially down the page so align it
1105  stack_top = align_up(stack_top, page_size());
1106
1107  // Allowed stack value is minimum of max_size and what we derived from rlimit
1108  if (max_size > 0) {
1109    _initial_thread_stack_size = MIN2(max_size, stack_size);
1110  } else {
1111    // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1112    // clamp it at 8MB as we do on Solaris
1113    _initial_thread_stack_size = MIN2(stack_size, 8*M);
1114  }
1115  _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1116  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1117
1118  assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1119
1120  if (log_is_enabled(Info, os, thread)) {
1121    // See if we seem to be on primordial process thread
1122    bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1123                      uintptr_t(&rlim) < stack_top;
1124
1125    log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1126                         SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1127                         primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1128                         stack_top, intptr_t(_initial_thread_stack_bottom));
1129  }
1130}
1131
1132////////////////////////////////////////////////////////////////////////////////
1133// time support
1134
1135// Time since start-up in seconds to a fine granularity.
1136// Used by VMSelfDestructTimer and the MemProfiler.
1137double os::elapsedTime() {
1138
1139  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1140}
1141
1142jlong os::elapsed_counter() {
1143  return javaTimeNanos() - initial_time_count;
1144}
1145
1146jlong os::elapsed_frequency() {
1147  return NANOSECS_PER_SEC; // nanosecond resolution
1148}
1149
1150bool os::supports_vtime() { return true; }
1151bool os::enable_vtime()   { return false; }
1152bool os::vtime_enabled()  { return false; }
1153
1154double os::elapsedVTime() {
1155  struct rusage usage;
1156  int retval = getrusage(RUSAGE_THREAD, &usage);
1157  if (retval == 0) {
1158    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1159  } else {
1160    // better than nothing, but not much
1161    return elapsedTime();
1162  }
1163}
1164
1165jlong os::javaTimeMillis() {
1166  timeval time;
1167  int status = gettimeofday(&time, NULL);
1168  assert(status != -1, "linux error");
1169  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1170}
1171
1172void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1173  timeval time;
1174  int status = gettimeofday(&time, NULL);
1175  assert(status != -1, "linux error");
1176  seconds = jlong(time.tv_sec);
1177  nanos = jlong(time.tv_usec) * 1000;
1178}
1179
1180
1181#ifndef CLOCK_MONOTONIC
1182  #define CLOCK_MONOTONIC (1)
1183#endif
1184
1185void os::Linux::clock_init() {
1186  // we do dlopen's in this particular order due to bug in linux
1187  // dynamical loader (see 6348968) leading to crash on exit
1188  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1189  if (handle == NULL) {
1190    handle = dlopen("librt.so", RTLD_LAZY);
1191  }
1192
1193  if (handle) {
1194    int (*clock_getres_func)(clockid_t, struct timespec*) =
1195           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1196    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1197           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1198    if (clock_getres_func && clock_gettime_func) {
1199      // See if monotonic clock is supported by the kernel. Note that some
1200      // early implementations simply return kernel jiffies (updated every
1201      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1202      // for nano time (though the monotonic property is still nice to have).
1203      // It's fixed in newer kernels, however clock_getres() still returns
1204      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1205      // resolution for now. Hopefully as people move to new kernels, this
1206      // won't be a problem.
1207      struct timespec res;
1208      struct timespec tp;
1209      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1210          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1211        // yes, monotonic clock is supported
1212        _clock_gettime = clock_gettime_func;
1213        return;
1214      } else {
1215        // close librt if there is no monotonic clock
1216        dlclose(handle);
1217      }
1218    }
1219  }
1220  warning("No monotonic clock was available - timed services may " \
1221          "be adversely affected if the time-of-day clock changes");
1222}
1223
1224#ifndef SYS_clock_getres
1225  #if defined(X86) || defined(PPC64) || defined(S390)
1226    #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1227    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1228  #else
1229    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1230    #define sys_clock_getres(x,y)  -1
1231  #endif
1232#else
1233  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1234#endif
1235
1236void os::Linux::fast_thread_clock_init() {
1237  if (!UseLinuxPosixThreadCPUClocks) {
1238    return;
1239  }
1240  clockid_t clockid;
1241  struct timespec tp;
1242  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1243      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1244
1245  // Switch to using fast clocks for thread cpu time if
1246  // the sys_clock_getres() returns 0 error code.
1247  // Note, that some kernels may support the current thread
1248  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1249  // returned by the pthread_getcpuclockid().
1250  // If the fast Posix clocks are supported then the sys_clock_getres()
1251  // must return at least tp.tv_sec == 0 which means a resolution
1252  // better than 1 sec. This is extra check for reliability.
1253
1254  if (pthread_getcpuclockid_func &&
1255      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1256      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1257    _supports_fast_thread_cpu_time = true;
1258    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1259  }
1260}
1261
1262jlong os::javaTimeNanos() {
1263  if (os::supports_monotonic_clock()) {
1264    struct timespec tp;
1265    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1266    assert(status == 0, "gettime error");
1267    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1268    return result;
1269  } else {
1270    timeval time;
1271    int status = gettimeofday(&time, NULL);
1272    assert(status != -1, "linux error");
1273    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1274    return 1000 * usecs;
1275  }
1276}
1277
1278void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1279  if (os::supports_monotonic_clock()) {
1280    info_ptr->max_value = ALL_64_BITS;
1281
1282    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1283    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1284    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1285  } else {
1286    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1287    info_ptr->max_value = ALL_64_BITS;
1288
1289    // gettimeofday is a real time clock so it skips
1290    info_ptr->may_skip_backward = true;
1291    info_ptr->may_skip_forward = true;
1292  }
1293
1294  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1295}
1296
1297// Return the real, user, and system times in seconds from an
1298// arbitrary fixed point in the past.
1299bool os::getTimesSecs(double* process_real_time,
1300                      double* process_user_time,
1301                      double* process_system_time) {
1302  struct tms ticks;
1303  clock_t real_ticks = times(&ticks);
1304
1305  if (real_ticks == (clock_t) (-1)) {
1306    return false;
1307  } else {
1308    double ticks_per_second = (double) clock_tics_per_sec;
1309    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1310    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1311    *process_real_time = ((double) real_ticks) / ticks_per_second;
1312
1313    return true;
1314  }
1315}
1316
1317
1318char * os::local_time_string(char *buf, size_t buflen) {
1319  struct tm t;
1320  time_t long_time;
1321  time(&long_time);
1322  localtime_r(&long_time, &t);
1323  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1324               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1325               t.tm_hour, t.tm_min, t.tm_sec);
1326  return buf;
1327}
1328
1329struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1330  return localtime_r(clock, res);
1331}
1332
1333////////////////////////////////////////////////////////////////////////////////
1334// runtime exit support
1335
1336// Note: os::shutdown() might be called very early during initialization, or
1337// called from signal handler. Before adding something to os::shutdown(), make
1338// sure it is async-safe and can handle partially initialized VM.
1339void os::shutdown() {
1340
1341  // allow PerfMemory to attempt cleanup of any persistent resources
1342  perfMemory_exit();
1343
1344  // needs to remove object in file system
1345  AttachListener::abort();
1346
1347  // flush buffered output, finish log files
1348  ostream_abort();
1349
1350  // Check for abort hook
1351  abort_hook_t abort_hook = Arguments::abort_hook();
1352  if (abort_hook != NULL) {
1353    abort_hook();
1354  }
1355
1356}
1357
1358// Note: os::abort() might be called very early during initialization, or
1359// called from signal handler. Before adding something to os::abort(), make
1360// sure it is async-safe and can handle partially initialized VM.
1361void os::abort(bool dump_core, void* siginfo, const void* context) {
1362  os::shutdown();
1363  if (dump_core) {
1364#ifndef PRODUCT
1365    fdStream out(defaultStream::output_fd());
1366    out.print_raw("Current thread is ");
1367    char buf[16];
1368    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1369    out.print_raw_cr(buf);
1370    out.print_raw_cr("Dumping core ...");
1371#endif
1372    ::abort(); // dump core
1373  }
1374
1375  ::exit(1);
1376}
1377
1378// Die immediately, no exit hook, no abort hook, no cleanup.
1379void os::die() {
1380  ::abort();
1381}
1382
1383
1384// This method is a copy of JDK's sysGetLastErrorString
1385// from src/solaris/hpi/src/system_md.c
1386
1387size_t os::lasterror(char *buf, size_t len) {
1388  if (errno == 0)  return 0;
1389
1390  const char *s = os::strerror(errno);
1391  size_t n = ::strlen(s);
1392  if (n >= len) {
1393    n = len - 1;
1394  }
1395  ::strncpy(buf, s, n);
1396  buf[n] = '\0';
1397  return n;
1398}
1399
1400// thread_id is kernel thread id (similar to Solaris LWP id)
1401intx os::current_thread_id() { return os::Linux::gettid(); }
1402int os::current_process_id() {
1403  return ::getpid();
1404}
1405
1406// DLL functions
1407
1408const char* os::dll_file_extension() { return ".so"; }
1409
1410// This must be hard coded because it's the system's temporary
1411// directory not the java application's temp directory, ala java.io.tmpdir.
1412const char* os::get_temp_directory() { return "/tmp"; }
1413
1414static bool file_exists(const char* filename) {
1415  struct stat statbuf;
1416  if (filename == NULL || strlen(filename) == 0) {
1417    return false;
1418  }
1419  return os::stat(filename, &statbuf) == 0;
1420}
1421
1422// check if addr is inside libjvm.so
1423bool os::address_is_in_vm(address addr) {
1424  static address libjvm_base_addr;
1425  Dl_info dlinfo;
1426
1427  if (libjvm_base_addr == NULL) {
1428    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1429      libjvm_base_addr = (address)dlinfo.dli_fbase;
1430    }
1431    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1432  }
1433
1434  if (dladdr((void *)addr, &dlinfo) != 0) {
1435    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1436  }
1437
1438  return false;
1439}
1440
1441bool os::dll_address_to_function_name(address addr, char *buf,
1442                                      int buflen, int *offset,
1443                                      bool demangle) {
1444  // buf is not optional, but offset is optional
1445  assert(buf != NULL, "sanity check");
1446
1447  Dl_info dlinfo;
1448
1449  if (dladdr((void*)addr, &dlinfo) != 0) {
1450    // see if we have a matching symbol
1451    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1452      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1453        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1454      }
1455      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1456      return true;
1457    }
1458    // no matching symbol so try for just file info
1459    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1460      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1461                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1462        return true;
1463      }
1464    }
1465  }
1466
1467  buf[0] = '\0';
1468  if (offset != NULL) *offset = -1;
1469  return false;
1470}
1471
1472struct _address_to_library_name {
1473  address addr;          // input : memory address
1474  size_t  buflen;        //         size of fname
1475  char*   fname;         // output: library name
1476  address base;          //         library base addr
1477};
1478
1479static int address_to_library_name_callback(struct dl_phdr_info *info,
1480                                            size_t size, void *data) {
1481  int i;
1482  bool found = false;
1483  address libbase = NULL;
1484  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1485
1486  // iterate through all loadable segments
1487  for (i = 0; i < info->dlpi_phnum; i++) {
1488    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1489    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1490      // base address of a library is the lowest address of its loaded
1491      // segments.
1492      if (libbase == NULL || libbase > segbase) {
1493        libbase = segbase;
1494      }
1495      // see if 'addr' is within current segment
1496      if (segbase <= d->addr &&
1497          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1498        found = true;
1499      }
1500    }
1501  }
1502
1503  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1504  // so dll_address_to_library_name() can fall through to use dladdr() which
1505  // can figure out executable name from argv[0].
1506  if (found && info->dlpi_name && info->dlpi_name[0]) {
1507    d->base = libbase;
1508    if (d->fname) {
1509      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1510    }
1511    return 1;
1512  }
1513  return 0;
1514}
1515
1516bool os::dll_address_to_library_name(address addr, char* buf,
1517                                     int buflen, int* offset) {
1518  // buf is not optional, but offset is optional
1519  assert(buf != NULL, "sanity check");
1520
1521  Dl_info dlinfo;
1522  struct _address_to_library_name data;
1523
1524  // There is a bug in old glibc dladdr() implementation that it could resolve
1525  // to wrong library name if the .so file has a base address != NULL. Here
1526  // we iterate through the program headers of all loaded libraries to find
1527  // out which library 'addr' really belongs to. This workaround can be
1528  // removed once the minimum requirement for glibc is moved to 2.3.x.
1529  data.addr = addr;
1530  data.fname = buf;
1531  data.buflen = buflen;
1532  data.base = NULL;
1533  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1534
1535  if (rslt) {
1536    // buf already contains library name
1537    if (offset) *offset = addr - data.base;
1538    return true;
1539  }
1540  if (dladdr((void*)addr, &dlinfo) != 0) {
1541    if (dlinfo.dli_fname != NULL) {
1542      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1543    }
1544    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1545      *offset = addr - (address)dlinfo.dli_fbase;
1546    }
1547    return true;
1548  }
1549
1550  buf[0] = '\0';
1551  if (offset) *offset = -1;
1552  return false;
1553}
1554
1555// Loads .dll/.so and
1556// in case of error it checks if .dll/.so was built for the
1557// same architecture as Hotspot is running on
1558
1559
1560// Remember the stack's state. The Linux dynamic linker will change
1561// the stack to 'executable' at most once, so we must safepoint only once.
1562bool os::Linux::_stack_is_executable = false;
1563
1564// VM operation that loads a library.  This is necessary if stack protection
1565// of the Java stacks can be lost during loading the library.  If we
1566// do not stop the Java threads, they can stack overflow before the stacks
1567// are protected again.
1568class VM_LinuxDllLoad: public VM_Operation {
1569 private:
1570  const char *_filename;
1571  char *_ebuf;
1572  int _ebuflen;
1573  void *_lib;
1574 public:
1575  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1576    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1577  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1578  void doit() {
1579    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1580    os::Linux::_stack_is_executable = true;
1581  }
1582  void* loaded_library() { return _lib; }
1583};
1584
1585void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1586  void * result = NULL;
1587  bool load_attempted = false;
1588
1589  // Check whether the library to load might change execution rights
1590  // of the stack. If they are changed, the protection of the stack
1591  // guard pages will be lost. We need a safepoint to fix this.
1592  //
1593  // See Linux man page execstack(8) for more info.
1594  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1595    if (!ElfFile::specifies_noexecstack(filename)) {
1596      if (!is_init_completed()) {
1597        os::Linux::_stack_is_executable = true;
1598        // This is OK - No Java threads have been created yet, and hence no
1599        // stack guard pages to fix.
1600        //
1601        // This should happen only when you are building JDK7 using a very
1602        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1603        //
1604        // Dynamic loader will make all stacks executable after
1605        // this function returns, and will not do that again.
1606        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1607      } else {
1608        warning("You have loaded library %s which might have disabled stack guard. "
1609                "The VM will try to fix the stack guard now.\n"
1610                "It's highly recommended that you fix the library with "
1611                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1612                filename);
1613
1614        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1615        JavaThread *jt = JavaThread::current();
1616        if (jt->thread_state() != _thread_in_native) {
1617          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1618          // that requires ExecStack. Cannot enter safe point. Let's give up.
1619          warning("Unable to fix stack guard. Giving up.");
1620        } else {
1621          if (!LoadExecStackDllInVMThread) {
1622            // This is for the case where the DLL has an static
1623            // constructor function that executes JNI code. We cannot
1624            // load such DLLs in the VMThread.
1625            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1626          }
1627
1628          ThreadInVMfromNative tiv(jt);
1629          debug_only(VMNativeEntryWrapper vew;)
1630
1631          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1632          VMThread::execute(&op);
1633          if (LoadExecStackDllInVMThread) {
1634            result = op.loaded_library();
1635          }
1636          load_attempted = true;
1637        }
1638      }
1639    }
1640  }
1641
1642  if (!load_attempted) {
1643    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1644  }
1645
1646  if (result != NULL) {
1647    // Successful loading
1648    return result;
1649  }
1650
1651  Elf32_Ehdr elf_head;
1652  int diag_msg_max_length=ebuflen-strlen(ebuf);
1653  char* diag_msg_buf=ebuf+strlen(ebuf);
1654
1655  if (diag_msg_max_length==0) {
1656    // No more space in ebuf for additional diagnostics message
1657    return NULL;
1658  }
1659
1660
1661  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1662
1663  if (file_descriptor < 0) {
1664    // Can't open library, report dlerror() message
1665    return NULL;
1666  }
1667
1668  bool failed_to_read_elf_head=
1669    (sizeof(elf_head)!=
1670     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1671
1672  ::close(file_descriptor);
1673  if (failed_to_read_elf_head) {
1674    // file i/o error - report dlerror() msg
1675    return NULL;
1676  }
1677
1678  typedef struct {
1679    Elf32_Half    code;         // Actual value as defined in elf.h
1680    Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1681    unsigned char elf_class;    // 32 or 64 bit
1682    unsigned char endianess;    // MSB or LSB
1683    char*         name;         // String representation
1684  } arch_t;
1685
1686#ifndef EM_486
1687  #define EM_486          6               /* Intel 80486 */
1688#endif
1689#ifndef EM_AARCH64
1690  #define EM_AARCH64    183               /* ARM AARCH64 */
1691#endif
1692
1693  static const arch_t arch_array[]={
1694    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1695    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1696    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1697    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1698    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1699    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1700    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1701    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1702#if defined(VM_LITTLE_ENDIAN)
1703    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1704    {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1705#else
1706    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1707    {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1708#endif
1709    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1710    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1711    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1712    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1713    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1714    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1715    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1716    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1717  };
1718
1719#if  (defined IA32)
1720  static  Elf32_Half running_arch_code=EM_386;
1721#elif   (defined AMD64)
1722  static  Elf32_Half running_arch_code=EM_X86_64;
1723#elif  (defined IA64)
1724  static  Elf32_Half running_arch_code=EM_IA_64;
1725#elif  (defined __sparc) && (defined _LP64)
1726  static  Elf32_Half running_arch_code=EM_SPARCV9;
1727#elif  (defined __sparc) && (!defined _LP64)
1728  static  Elf32_Half running_arch_code=EM_SPARC;
1729#elif  (defined __powerpc64__)
1730  static  Elf32_Half running_arch_code=EM_PPC64;
1731#elif  (defined __powerpc__)
1732  static  Elf32_Half running_arch_code=EM_PPC;
1733#elif  (defined AARCH64)
1734  static  Elf32_Half running_arch_code=EM_AARCH64;
1735#elif  (defined ARM)
1736  static  Elf32_Half running_arch_code=EM_ARM;
1737#elif  (defined S390)
1738  static  Elf32_Half running_arch_code=EM_S390;
1739#elif  (defined ALPHA)
1740  static  Elf32_Half running_arch_code=EM_ALPHA;
1741#elif  (defined MIPSEL)
1742  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1743#elif  (defined PARISC)
1744  static  Elf32_Half running_arch_code=EM_PARISC;
1745#elif  (defined MIPS)
1746  static  Elf32_Half running_arch_code=EM_MIPS;
1747#elif  (defined M68K)
1748  static  Elf32_Half running_arch_code=EM_68K;
1749#elif  (defined SH)
1750  static  Elf32_Half running_arch_code=EM_SH;
1751#else
1752    #error Method os::dll_load requires that one of following is defined:\
1753        AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1754#endif
1755
1756  // Identify compatability class for VM's architecture and library's architecture
1757  // Obtain string descriptions for architectures
1758
1759  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1760  int running_arch_index=-1;
1761
1762  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1763    if (running_arch_code == arch_array[i].code) {
1764      running_arch_index    = i;
1765    }
1766    if (lib_arch.code == arch_array[i].code) {
1767      lib_arch.compat_class = arch_array[i].compat_class;
1768      lib_arch.name         = arch_array[i].name;
1769    }
1770  }
1771
1772  assert(running_arch_index != -1,
1773         "Didn't find running architecture code (running_arch_code) in arch_array");
1774  if (running_arch_index == -1) {
1775    // Even though running architecture detection failed
1776    // we may still continue with reporting dlerror() message
1777    return NULL;
1778  }
1779
1780  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1781    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1782    return NULL;
1783  }
1784
1785#ifndef S390
1786  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1787    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1788    return NULL;
1789  }
1790#endif // !S390
1791
1792  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1793    if (lib_arch.name!=NULL) {
1794      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1795                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1796                 lib_arch.name, arch_array[running_arch_index].name);
1797    } else {
1798      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1799                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1800                 lib_arch.code,
1801                 arch_array[running_arch_index].name);
1802    }
1803  }
1804
1805  return NULL;
1806}
1807
1808void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1809                                int ebuflen) {
1810  void * result = ::dlopen(filename, RTLD_LAZY);
1811  if (result == NULL) {
1812    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1813    ebuf[ebuflen-1] = '\0';
1814  }
1815  return result;
1816}
1817
1818void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1819                                       int ebuflen) {
1820  void * result = NULL;
1821  if (LoadExecStackDllInVMThread) {
1822    result = dlopen_helper(filename, ebuf, ebuflen);
1823  }
1824
1825  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1826  // library that requires an executable stack, or which does not have this
1827  // stack attribute set, dlopen changes the stack attribute to executable. The
1828  // read protection of the guard pages gets lost.
1829  //
1830  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1831  // may have been queued at the same time.
1832
1833  if (!_stack_is_executable) {
1834    JavaThread *jt = Threads::first();
1835
1836    while (jt) {
1837      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1838          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1839        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1840          warning("Attempt to reguard stack yellow zone failed.");
1841        }
1842      }
1843      jt = jt->next();
1844    }
1845  }
1846
1847  return result;
1848}
1849
1850void* os::dll_lookup(void* handle, const char* name) {
1851  void* res = dlsym(handle, name);
1852  return res;
1853}
1854
1855void* os::get_default_process_handle() {
1856  return (void*)::dlopen(NULL, RTLD_LAZY);
1857}
1858
1859static bool _print_ascii_file(const char* filename, outputStream* st) {
1860  int fd = ::open(filename, O_RDONLY);
1861  if (fd == -1) {
1862    return false;
1863  }
1864
1865  char buf[33];
1866  int bytes;
1867  buf[32] = '\0';
1868  while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1869    st->print_raw(buf, bytes);
1870  }
1871
1872  ::close(fd);
1873
1874  return true;
1875}
1876
1877void os::print_dll_info(outputStream *st) {
1878  st->print_cr("Dynamic libraries:");
1879
1880  char fname[32];
1881  pid_t pid = os::Linux::gettid();
1882
1883  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1884
1885  if (!_print_ascii_file(fname, st)) {
1886    st->print("Can not get library information for pid = %d\n", pid);
1887  }
1888}
1889
1890int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1891  FILE *procmapsFile = NULL;
1892
1893  // Open the procfs maps file for the current process
1894  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1895    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1896    char line[PATH_MAX + 100];
1897
1898    // Read line by line from 'file'
1899    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1900      u8 base, top, offset, inode;
1901      char permissions[5];
1902      char device[6];
1903      char name[PATH_MAX + 1];
1904
1905      // Parse fields from line
1906      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1907             &base, &top, permissions, &offset, device, &inode, name);
1908
1909      // Filter by device id '00:00' so that we only get file system mapped files.
1910      if (strcmp(device, "00:00") != 0) {
1911
1912        // Call callback with the fields of interest
1913        if(callback(name, (address)base, (address)top, param)) {
1914          // Oops abort, callback aborted
1915          fclose(procmapsFile);
1916          return 1;
1917        }
1918      }
1919    }
1920    fclose(procmapsFile);
1921  }
1922  return 0;
1923}
1924
1925void os::print_os_info_brief(outputStream* st) {
1926  os::Linux::print_distro_info(st);
1927
1928  os::Posix::print_uname_info(st);
1929
1930  os::Linux::print_libversion_info(st);
1931
1932}
1933
1934void os::print_os_info(outputStream* st) {
1935  st->print("OS:");
1936
1937  os::Linux::print_distro_info(st);
1938
1939  os::Posix::print_uname_info(st);
1940
1941  // Print warning if unsafe chroot environment detected
1942  if (unsafe_chroot_detected) {
1943    st->print("WARNING!! ");
1944    st->print_cr("%s", unstable_chroot_error);
1945  }
1946
1947  os::Linux::print_libversion_info(st);
1948
1949  os::Posix::print_rlimit_info(st);
1950
1951  os::Posix::print_load_average(st);
1952
1953  os::Linux::print_full_memory_info(st);
1954}
1955
1956// Try to identify popular distros.
1957// Most Linux distributions have a /etc/XXX-release file, which contains
1958// the OS version string. Newer Linux distributions have a /etc/lsb-release
1959// file that also contains the OS version string. Some have more than one
1960// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1961// /etc/redhat-release.), so the order is important.
1962// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1963// their own specific XXX-release file as well as a redhat-release file.
1964// Because of this the XXX-release file needs to be searched for before the
1965// redhat-release file.
1966// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1967// search for redhat-release / SuSE-release needs to be before lsb-release.
1968// Since the lsb-release file is the new standard it needs to be searched
1969// before the older style release files.
1970// Searching system-release (Red Hat) and os-release (other Linuxes) are a
1971// next to last resort.  The os-release file is a new standard that contains
1972// distribution information and the system-release file seems to be an old
1973// standard that has been replaced by the lsb-release and os-release files.
1974// Searching for the debian_version file is the last resort.  It contains
1975// an informative string like "6.0.6" or "wheezy/sid". Because of this
1976// "Debian " is printed before the contents of the debian_version file.
1977
1978const char* distro_files[] = {
1979  "/etc/oracle-release",
1980  "/etc/mandriva-release",
1981  "/etc/mandrake-release",
1982  "/etc/sun-release",
1983  "/etc/redhat-release",
1984  "/etc/SuSE-release",
1985  "/etc/lsb-release",
1986  "/etc/turbolinux-release",
1987  "/etc/gentoo-release",
1988  "/etc/ltib-release",
1989  "/etc/angstrom-version",
1990  "/etc/system-release",
1991  "/etc/os-release",
1992  NULL };
1993
1994void os::Linux::print_distro_info(outputStream* st) {
1995  for (int i = 0;; i++) {
1996    const char* file = distro_files[i];
1997    if (file == NULL) {
1998      break;  // done
1999    }
2000    // If file prints, we found it.
2001    if (_print_ascii_file(file, st)) {
2002      return;
2003    }
2004  }
2005
2006  if (file_exists("/etc/debian_version")) {
2007    st->print("Debian ");
2008    _print_ascii_file("/etc/debian_version", st);
2009  } else {
2010    st->print("Linux");
2011  }
2012  st->cr();
2013}
2014
2015static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2016  char buf[256];
2017  while (fgets(buf, sizeof(buf), fp)) {
2018    // Edit out extra stuff in expected format
2019    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2020      char* ptr = strstr(buf, "\"");  // the name is in quotes
2021      if (ptr != NULL) {
2022        ptr++; // go beyond first quote
2023        char* nl = strchr(ptr, '\"');
2024        if (nl != NULL) *nl = '\0';
2025        strncpy(distro, ptr, length);
2026      } else {
2027        ptr = strstr(buf, "=");
2028        ptr++; // go beyond equals then
2029        char* nl = strchr(ptr, '\n');
2030        if (nl != NULL) *nl = '\0';
2031        strncpy(distro, ptr, length);
2032      }
2033      return;
2034    } else if (get_first_line) {
2035      char* nl = strchr(buf, '\n');
2036      if (nl != NULL) *nl = '\0';
2037      strncpy(distro, buf, length);
2038      return;
2039    }
2040  }
2041  // print last line and close
2042  char* nl = strchr(buf, '\n');
2043  if (nl != NULL) *nl = '\0';
2044  strncpy(distro, buf, length);
2045}
2046
2047static void parse_os_info(char* distro, size_t length, const char* file) {
2048  FILE* fp = fopen(file, "r");
2049  if (fp != NULL) {
2050    // if suse format, print out first line
2051    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2052    parse_os_info_helper(fp, distro, length, get_first_line);
2053    fclose(fp);
2054  }
2055}
2056
2057void os::get_summary_os_info(char* buf, size_t buflen) {
2058  for (int i = 0;; i++) {
2059    const char* file = distro_files[i];
2060    if (file == NULL) {
2061      break; // ran out of distro_files
2062    }
2063    if (file_exists(file)) {
2064      parse_os_info(buf, buflen, file);
2065      return;
2066    }
2067  }
2068  // special case for debian
2069  if (file_exists("/etc/debian_version")) {
2070    strncpy(buf, "Debian ", buflen);
2071    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2072  } else {
2073    strncpy(buf, "Linux", buflen);
2074  }
2075}
2076
2077void os::Linux::print_libversion_info(outputStream* st) {
2078  // libc, pthread
2079  st->print("libc:");
2080  st->print("%s ", os::Linux::glibc_version());
2081  st->print("%s ", os::Linux::libpthread_version());
2082  st->cr();
2083}
2084
2085void os::Linux::print_full_memory_info(outputStream* st) {
2086  st->print("\n/proc/meminfo:\n");
2087  _print_ascii_file("/proc/meminfo", st);
2088  st->cr();
2089}
2090
2091void os::print_memory_info(outputStream* st) {
2092
2093  st->print("Memory:");
2094  st->print(" %dk page", os::vm_page_size()>>10);
2095
2096  // values in struct sysinfo are "unsigned long"
2097  struct sysinfo si;
2098  sysinfo(&si);
2099
2100  st->print(", physical " UINT64_FORMAT "k",
2101            os::physical_memory() >> 10);
2102  st->print("(" UINT64_FORMAT "k free)",
2103            os::available_memory() >> 10);
2104  st->print(", swap " UINT64_FORMAT "k",
2105            ((jlong)si.totalswap * si.mem_unit) >> 10);
2106  st->print("(" UINT64_FORMAT "k free)",
2107            ((jlong)si.freeswap * si.mem_unit) >> 10);
2108  st->cr();
2109}
2110
2111// Print the first "model name" line and the first "flags" line
2112// that we find and nothing more. We assume "model name" comes
2113// before "flags" so if we find a second "model name", then the
2114// "flags" field is considered missing.
2115static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2116#if defined(IA32) || defined(AMD64)
2117  // Other platforms have less repetitive cpuinfo files
2118  FILE *fp = fopen("/proc/cpuinfo", "r");
2119  if (fp) {
2120    while (!feof(fp)) {
2121      if (fgets(buf, buflen, fp)) {
2122        // Assume model name comes before flags
2123        bool model_name_printed = false;
2124        if (strstr(buf, "model name") != NULL) {
2125          if (!model_name_printed) {
2126            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2127            st->print_raw(buf);
2128            model_name_printed = true;
2129          } else {
2130            // model name printed but not flags?  Odd, just return
2131            fclose(fp);
2132            return true;
2133          }
2134        }
2135        // print the flags line too
2136        if (strstr(buf, "flags") != NULL) {
2137          st->print_raw(buf);
2138          fclose(fp);
2139          return true;
2140        }
2141      }
2142    }
2143    fclose(fp);
2144  }
2145#endif // x86 platforms
2146  return false;
2147}
2148
2149void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2150  // Only print the model name if the platform provides this as a summary
2151  if (!print_model_name_and_flags(st, buf, buflen)) {
2152    st->print("\n/proc/cpuinfo:\n");
2153    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2154      st->print_cr("  <Not Available>");
2155    }
2156  }
2157}
2158
2159#if defined(AMD64) || defined(IA32) || defined(X32)
2160const char* search_string = "model name";
2161#elif defined(M68K)
2162const char* search_string = "CPU";
2163#elif defined(PPC64)
2164const char* search_string = "cpu";
2165#elif defined(S390)
2166const char* search_string = "processor";
2167#elif defined(SPARC)
2168const char* search_string = "cpu";
2169#else
2170const char* search_string = "Processor";
2171#endif
2172
2173// Parses the cpuinfo file for string representing the model name.
2174void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2175  FILE* fp = fopen("/proc/cpuinfo", "r");
2176  if (fp != NULL) {
2177    while (!feof(fp)) {
2178      char buf[256];
2179      if (fgets(buf, sizeof(buf), fp)) {
2180        char* start = strstr(buf, search_string);
2181        if (start != NULL) {
2182          char *ptr = start + strlen(search_string);
2183          char *end = buf + strlen(buf);
2184          while (ptr != end) {
2185             // skip whitespace and colon for the rest of the name.
2186             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2187               break;
2188             }
2189             ptr++;
2190          }
2191          if (ptr != end) {
2192            // reasonable string, get rid of newline and keep the rest
2193            char* nl = strchr(buf, '\n');
2194            if (nl != NULL) *nl = '\0';
2195            strncpy(cpuinfo, ptr, length);
2196            fclose(fp);
2197            return;
2198          }
2199        }
2200      }
2201    }
2202    fclose(fp);
2203  }
2204  // cpuinfo not found or parsing failed, just print generic string.  The entire
2205  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2206#if   defined(AARCH64)
2207  strncpy(cpuinfo, "AArch64", length);
2208#elif defined(AMD64)
2209  strncpy(cpuinfo, "x86_64", length);
2210#elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2211  strncpy(cpuinfo, "ARM", length);
2212#elif defined(IA32)
2213  strncpy(cpuinfo, "x86_32", length);
2214#elif defined(IA64)
2215  strncpy(cpuinfo, "IA64", length);
2216#elif defined(PPC)
2217  strncpy(cpuinfo, "PPC64", length);
2218#elif defined(S390)
2219  strncpy(cpuinfo, "S390", length);
2220#elif defined(SPARC)
2221  strncpy(cpuinfo, "sparcv9", length);
2222#elif defined(ZERO_LIBARCH)
2223  strncpy(cpuinfo, ZERO_LIBARCH, length);
2224#else
2225  strncpy(cpuinfo, "unknown", length);
2226#endif
2227}
2228
2229static void print_signal_handler(outputStream* st, int sig,
2230                                 char* buf, size_t buflen);
2231
2232void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2233  st->print_cr("Signal Handlers:");
2234  print_signal_handler(st, SIGSEGV, buf, buflen);
2235  print_signal_handler(st, SIGBUS , buf, buflen);
2236  print_signal_handler(st, SIGFPE , buf, buflen);
2237  print_signal_handler(st, SIGPIPE, buf, buflen);
2238  print_signal_handler(st, SIGXFSZ, buf, buflen);
2239  print_signal_handler(st, SIGILL , buf, buflen);
2240  print_signal_handler(st, SR_signum, buf, buflen);
2241  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2242  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2243  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2244  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2245#if defined(PPC64)
2246  print_signal_handler(st, SIGTRAP, buf, buflen);
2247#endif
2248}
2249
2250static char saved_jvm_path[MAXPATHLEN] = {0};
2251
2252// Find the full path to the current module, libjvm.so
2253void os::jvm_path(char *buf, jint buflen) {
2254  // Error checking.
2255  if (buflen < MAXPATHLEN) {
2256    assert(false, "must use a large-enough buffer");
2257    buf[0] = '\0';
2258    return;
2259  }
2260  // Lazy resolve the path to current module.
2261  if (saved_jvm_path[0] != 0) {
2262    strcpy(buf, saved_jvm_path);
2263    return;
2264  }
2265
2266  char dli_fname[MAXPATHLEN];
2267  bool ret = dll_address_to_library_name(
2268                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2269                                         dli_fname, sizeof(dli_fname), NULL);
2270  assert(ret, "cannot locate libjvm");
2271  char *rp = NULL;
2272  if (ret && dli_fname[0] != '\0') {
2273    rp = os::Posix::realpath(dli_fname, buf, buflen);
2274  }
2275  if (rp == NULL) {
2276    return;
2277  }
2278
2279  if (Arguments::sun_java_launcher_is_altjvm()) {
2280    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2281    // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2282    // If "/jre/lib/" appears at the right place in the string, then
2283    // assume we are installed in a JDK and we're done. Otherwise, check
2284    // for a JAVA_HOME environment variable and fix up the path so it
2285    // looks like libjvm.so is installed there (append a fake suffix
2286    // hotspot/libjvm.so).
2287    const char *p = buf + strlen(buf) - 1;
2288    for (int count = 0; p > buf && count < 5; ++count) {
2289      for (--p; p > buf && *p != '/'; --p)
2290        /* empty */ ;
2291    }
2292
2293    if (strncmp(p, "/jre/lib/", 9) != 0) {
2294      // Look for JAVA_HOME in the environment.
2295      char* java_home_var = ::getenv("JAVA_HOME");
2296      if (java_home_var != NULL && java_home_var[0] != 0) {
2297        char* jrelib_p;
2298        int len;
2299
2300        // Check the current module name "libjvm.so".
2301        p = strrchr(buf, '/');
2302        if (p == NULL) {
2303          return;
2304        }
2305        assert(strstr(p, "/libjvm") == p, "invalid library name");
2306
2307        rp = os::Posix::realpath(java_home_var, buf, buflen);
2308        if (rp == NULL) {
2309          return;
2310        }
2311
2312        // determine if this is a legacy image or modules image
2313        // modules image doesn't have "jre" subdirectory
2314        len = strlen(buf);
2315        assert(len < buflen, "Ran out of buffer room");
2316        jrelib_p = buf + len;
2317        snprintf(jrelib_p, buflen-len, "/jre/lib");
2318        if (0 != access(buf, F_OK)) {
2319          snprintf(jrelib_p, buflen-len, "/lib");
2320        }
2321
2322        if (0 == access(buf, F_OK)) {
2323          // Use current module name "libjvm.so"
2324          len = strlen(buf);
2325          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2326        } else {
2327          // Go back to path of .so
2328          rp = os::Posix::realpath(dli_fname, buf, buflen);
2329          if (rp == NULL) {
2330            return;
2331          }
2332        }
2333      }
2334    }
2335  }
2336
2337  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2338  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2339}
2340
2341void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2342  // no prefix required, not even "_"
2343}
2344
2345void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2346  // no suffix required
2347}
2348
2349////////////////////////////////////////////////////////////////////////////////
2350// sun.misc.Signal support
2351
2352static volatile jint sigint_count = 0;
2353
2354static void UserHandler(int sig, void *siginfo, void *context) {
2355  // 4511530 - sem_post is serialized and handled by the manager thread. When
2356  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2357  // don't want to flood the manager thread with sem_post requests.
2358  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2359    return;
2360  }
2361
2362  // Ctrl-C is pressed during error reporting, likely because the error
2363  // handler fails to abort. Let VM die immediately.
2364  if (sig == SIGINT && VMError::is_error_reported()) {
2365    os::die();
2366  }
2367
2368  os::signal_notify(sig);
2369}
2370
2371void* os::user_handler() {
2372  return CAST_FROM_FN_PTR(void*, UserHandler);
2373}
2374
2375struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2376  struct timespec ts;
2377  // Semaphore's are always associated with CLOCK_REALTIME
2378  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2379  // see unpackTime for discussion on overflow checking
2380  if (sec >= MAX_SECS) {
2381    ts.tv_sec += MAX_SECS;
2382    ts.tv_nsec = 0;
2383  } else {
2384    ts.tv_sec += sec;
2385    ts.tv_nsec += nsec;
2386    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2387      ts.tv_nsec -= NANOSECS_PER_SEC;
2388      ++ts.tv_sec; // note: this must be <= max_secs
2389    }
2390  }
2391
2392  return ts;
2393}
2394
2395extern "C" {
2396  typedef void (*sa_handler_t)(int);
2397  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2398}
2399
2400void* os::signal(int signal_number, void* handler) {
2401  struct sigaction sigAct, oldSigAct;
2402
2403  sigfillset(&(sigAct.sa_mask));
2404  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2405  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2406
2407  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2408    // -1 means registration failed
2409    return (void *)-1;
2410  }
2411
2412  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2413}
2414
2415void os::signal_raise(int signal_number) {
2416  ::raise(signal_number);
2417}
2418
2419// The following code is moved from os.cpp for making this
2420// code platform specific, which it is by its very nature.
2421
2422// Will be modified when max signal is changed to be dynamic
2423int os::sigexitnum_pd() {
2424  return NSIG;
2425}
2426
2427// a counter for each possible signal value
2428static volatile jint pending_signals[NSIG+1] = { 0 };
2429
2430// Linux(POSIX) specific hand shaking semaphore.
2431static sem_t sig_sem;
2432static PosixSemaphore sr_semaphore;
2433
2434void os::signal_init_pd() {
2435  // Initialize signal structures
2436  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2437
2438  // Initialize signal semaphore
2439  ::sem_init(&sig_sem, 0, 0);
2440}
2441
2442void os::signal_notify(int sig) {
2443  Atomic::inc(&pending_signals[sig]);
2444  ::sem_post(&sig_sem);
2445}
2446
2447static int check_pending_signals(bool wait) {
2448  Atomic::store(0, &sigint_count);
2449  for (;;) {
2450    for (int i = 0; i < NSIG + 1; i++) {
2451      jint n = pending_signals[i];
2452      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2453        return i;
2454      }
2455    }
2456    if (!wait) {
2457      return -1;
2458    }
2459    JavaThread *thread = JavaThread::current();
2460    ThreadBlockInVM tbivm(thread);
2461
2462    bool threadIsSuspended;
2463    do {
2464      thread->set_suspend_equivalent();
2465      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2466      ::sem_wait(&sig_sem);
2467
2468      // were we externally suspended while we were waiting?
2469      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2470      if (threadIsSuspended) {
2471        // The semaphore has been incremented, but while we were waiting
2472        // another thread suspended us. We don't want to continue running
2473        // while suspended because that would surprise the thread that
2474        // suspended us.
2475        ::sem_post(&sig_sem);
2476
2477        thread->java_suspend_self();
2478      }
2479    } while (threadIsSuspended);
2480  }
2481}
2482
2483int os::signal_lookup() {
2484  return check_pending_signals(false);
2485}
2486
2487int os::signal_wait() {
2488  return check_pending_signals(true);
2489}
2490
2491////////////////////////////////////////////////////////////////////////////////
2492// Virtual Memory
2493
2494int os::vm_page_size() {
2495  // Seems redundant as all get out
2496  assert(os::Linux::page_size() != -1, "must call os::init");
2497  return os::Linux::page_size();
2498}
2499
2500// Solaris allocates memory by pages.
2501int os::vm_allocation_granularity() {
2502  assert(os::Linux::page_size() != -1, "must call os::init");
2503  return os::Linux::page_size();
2504}
2505
2506// Rationale behind this function:
2507//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2508//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2509//  samples for JITted code. Here we create private executable mapping over the code cache
2510//  and then we can use standard (well, almost, as mapping can change) way to provide
2511//  info for the reporting script by storing timestamp and location of symbol
2512void linux_wrap_code(char* base, size_t size) {
2513  static volatile jint cnt = 0;
2514
2515  if (!UseOprofile) {
2516    return;
2517  }
2518
2519  char buf[PATH_MAX+1];
2520  int num = Atomic::add(1, &cnt);
2521
2522  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2523           os::get_temp_directory(), os::current_process_id(), num);
2524  unlink(buf);
2525
2526  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2527
2528  if (fd != -1) {
2529    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2530    if (rv != (off_t)-1) {
2531      if (::write(fd, "", 1) == 1) {
2532        mmap(base, size,
2533             PROT_READ|PROT_WRITE|PROT_EXEC,
2534             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2535      }
2536    }
2537    ::close(fd);
2538    unlink(buf);
2539  }
2540}
2541
2542static bool recoverable_mmap_error(int err) {
2543  // See if the error is one we can let the caller handle. This
2544  // list of errno values comes from JBS-6843484. I can't find a
2545  // Linux man page that documents this specific set of errno
2546  // values so while this list currently matches Solaris, it may
2547  // change as we gain experience with this failure mode.
2548  switch (err) {
2549  case EBADF:
2550  case EINVAL:
2551  case ENOTSUP:
2552    // let the caller deal with these errors
2553    return true;
2554
2555  default:
2556    // Any remaining errors on this OS can cause our reserved mapping
2557    // to be lost. That can cause confusion where different data
2558    // structures think they have the same memory mapped. The worst
2559    // scenario is if both the VM and a library think they have the
2560    // same memory mapped.
2561    return false;
2562  }
2563}
2564
2565static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2566                                    int err) {
2567  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2568          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2569          os::strerror(err), err);
2570}
2571
2572static void warn_fail_commit_memory(char* addr, size_t size,
2573                                    size_t alignment_hint, bool exec,
2574                                    int err) {
2575  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2576          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2577          alignment_hint, exec, os::strerror(err), err);
2578}
2579
2580// NOTE: Linux kernel does not really reserve the pages for us.
2581//       All it does is to check if there are enough free pages
2582//       left at the time of mmap(). This could be a potential
2583//       problem.
2584int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2585  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2586  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2587                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2588  if (res != (uintptr_t) MAP_FAILED) {
2589    if (UseNUMAInterleaving) {
2590      numa_make_global(addr, size);
2591    }
2592    return 0;
2593  }
2594
2595  int err = errno;  // save errno from mmap() call above
2596
2597  if (!recoverable_mmap_error(err)) {
2598    warn_fail_commit_memory(addr, size, exec, err);
2599    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2600  }
2601
2602  return err;
2603}
2604
2605bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2606  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2607}
2608
2609void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2610                                  const char* mesg) {
2611  assert(mesg != NULL, "mesg must be specified");
2612  int err = os::Linux::commit_memory_impl(addr, size, exec);
2613  if (err != 0) {
2614    // the caller wants all commit errors to exit with the specified mesg:
2615    warn_fail_commit_memory(addr, size, exec, err);
2616    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2617  }
2618}
2619
2620// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2621#ifndef MAP_HUGETLB
2622  #define MAP_HUGETLB 0x40000
2623#endif
2624
2625// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2626#ifndef MADV_HUGEPAGE
2627  #define MADV_HUGEPAGE 14
2628#endif
2629
2630int os::Linux::commit_memory_impl(char* addr, size_t size,
2631                                  size_t alignment_hint, bool exec) {
2632  int err = os::Linux::commit_memory_impl(addr, size, exec);
2633  if (err == 0) {
2634    realign_memory(addr, size, alignment_hint);
2635  }
2636  return err;
2637}
2638
2639bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2640                          bool exec) {
2641  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2642}
2643
2644void os::pd_commit_memory_or_exit(char* addr, size_t size,
2645                                  size_t alignment_hint, bool exec,
2646                                  const char* mesg) {
2647  assert(mesg != NULL, "mesg must be specified");
2648  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2649  if (err != 0) {
2650    // the caller wants all commit errors to exit with the specified mesg:
2651    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2652    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2653  }
2654}
2655
2656void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2657  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2658    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2659    // be supported or the memory may already be backed by huge pages.
2660    ::madvise(addr, bytes, MADV_HUGEPAGE);
2661  }
2662}
2663
2664void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2665  // This method works by doing an mmap over an existing mmaping and effectively discarding
2666  // the existing pages. However it won't work for SHM-based large pages that cannot be
2667  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2668  // small pages on top of the SHM segment. This method always works for small pages, so we
2669  // allow that in any case.
2670  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2671    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2672  }
2673}
2674
2675void os::numa_make_global(char *addr, size_t bytes) {
2676  Linux::numa_interleave_memory(addr, bytes);
2677}
2678
2679// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2680// bind policy to MPOL_PREFERRED for the current thread.
2681#define USE_MPOL_PREFERRED 0
2682
2683void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2684  // To make NUMA and large pages more robust when both enabled, we need to ease
2685  // the requirements on where the memory should be allocated. MPOL_BIND is the
2686  // default policy and it will force memory to be allocated on the specified
2687  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2688  // the specified node, but will not force it. Using this policy will prevent
2689  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2690  // free large pages.
2691  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2692  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2693}
2694
2695bool os::numa_topology_changed() { return false; }
2696
2697size_t os::numa_get_groups_num() {
2698  // Return just the number of nodes in which it's possible to allocate memory
2699  // (in numa terminology, configured nodes).
2700  return Linux::numa_num_configured_nodes();
2701}
2702
2703int os::numa_get_group_id() {
2704  int cpu_id = Linux::sched_getcpu();
2705  if (cpu_id != -1) {
2706    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2707    if (lgrp_id != -1) {
2708      return lgrp_id;
2709    }
2710  }
2711  return 0;
2712}
2713
2714int os::Linux::get_existing_num_nodes() {
2715  size_t node;
2716  size_t highest_node_number = Linux::numa_max_node();
2717  int num_nodes = 0;
2718
2719  // Get the total number of nodes in the system including nodes without memory.
2720  for (node = 0; node <= highest_node_number; node++) {
2721    if (isnode_in_existing_nodes(node)) {
2722      num_nodes++;
2723    }
2724  }
2725  return num_nodes;
2726}
2727
2728size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2729  size_t highest_node_number = Linux::numa_max_node();
2730  size_t i = 0;
2731
2732  // Map all node ids in which is possible to allocate memory. Also nodes are
2733  // not always consecutively available, i.e. available from 0 to the highest
2734  // node number.
2735  for (size_t node = 0; node <= highest_node_number; node++) {
2736    if (Linux::isnode_in_configured_nodes(node)) {
2737      ids[i++] = node;
2738    }
2739  }
2740  return i;
2741}
2742
2743bool os::get_page_info(char *start, page_info* info) {
2744  return false;
2745}
2746
2747char *os::scan_pages(char *start, char* end, page_info* page_expected,
2748                     page_info* page_found) {
2749  return end;
2750}
2751
2752
2753int os::Linux::sched_getcpu_syscall(void) {
2754  unsigned int cpu = 0;
2755  int retval = -1;
2756
2757#if defined(IA32)
2758  #ifndef SYS_getcpu
2759    #define SYS_getcpu 318
2760  #endif
2761  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2762#elif defined(AMD64)
2763// Unfortunately we have to bring all these macros here from vsyscall.h
2764// to be able to compile on old linuxes.
2765  #define __NR_vgetcpu 2
2766  #define VSYSCALL_START (-10UL << 20)
2767  #define VSYSCALL_SIZE 1024
2768  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2769  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2770  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2771  retval = vgetcpu(&cpu, NULL, NULL);
2772#endif
2773
2774  return (retval == -1) ? retval : cpu;
2775}
2776
2777void os::Linux::sched_getcpu_init() {
2778  // sched_getcpu() should be in libc.
2779  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2780                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2781
2782  // If it's not, try a direct syscall.
2783  if (sched_getcpu() == -1) {
2784    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2785                                    (void*)&sched_getcpu_syscall));
2786  }
2787}
2788
2789// Something to do with the numa-aware allocator needs these symbols
2790extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2791extern "C" JNIEXPORT void numa_error(char *where) { }
2792
2793// Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2794// load symbol from base version instead.
2795void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2796  void *f = dlvsym(handle, name, "libnuma_1.1");
2797  if (f == NULL) {
2798    f = dlsym(handle, name);
2799  }
2800  return f;
2801}
2802
2803// Handle request to load libnuma symbol version 1.2 (API v2) only.
2804// Return NULL if the symbol is not defined in this particular version.
2805void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2806  return dlvsym(handle, name, "libnuma_1.2");
2807}
2808
2809bool os::Linux::libnuma_init() {
2810  if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2811    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2812    if (handle != NULL) {
2813      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2814                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2815      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2816                                       libnuma_dlsym(handle, "numa_max_node")));
2817      set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2818                                                   libnuma_dlsym(handle, "numa_num_configured_nodes")));
2819      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2820                                        libnuma_dlsym(handle, "numa_available")));
2821      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2822                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2823      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2824                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2825      set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2826                                                libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2827      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2828                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2829      set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2830                                               libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2831      set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2832                                       libnuma_dlsym(handle, "numa_distance")));
2833
2834      if (numa_available() != -1) {
2835        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2836        set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2837        set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2838        // Create an index -> node mapping, since nodes are not always consecutive
2839        _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2840        rebuild_nindex_to_node_map();
2841        // Create a cpu -> node mapping
2842        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2843        rebuild_cpu_to_node_map();
2844        return true;
2845      }
2846    }
2847  }
2848  return false;
2849}
2850
2851size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2852  // Creating guard page is very expensive. Java thread has HotSpot
2853  // guard pages, only enable glibc guard page for non-Java threads.
2854  // (Remember: compiler thread is a Java thread, too!)
2855  return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2856}
2857
2858void os::Linux::rebuild_nindex_to_node_map() {
2859  int highest_node_number = Linux::numa_max_node();
2860
2861  nindex_to_node()->clear();
2862  for (int node = 0; node <= highest_node_number; node++) {
2863    if (Linux::isnode_in_existing_nodes(node)) {
2864      nindex_to_node()->append(node);
2865    }
2866  }
2867}
2868
2869// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2870// The table is later used in get_node_by_cpu().
2871void os::Linux::rebuild_cpu_to_node_map() {
2872  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2873                              // in libnuma (possible values are starting from 16,
2874                              // and continuing up with every other power of 2, but less
2875                              // than the maximum number of CPUs supported by kernel), and
2876                              // is a subject to change (in libnuma version 2 the requirements
2877                              // are more reasonable) we'll just hardcode the number they use
2878                              // in the library.
2879  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2880
2881  size_t cpu_num = processor_count();
2882  size_t cpu_map_size = NCPUS / BitsPerCLong;
2883  size_t cpu_map_valid_size =
2884    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2885
2886  cpu_to_node()->clear();
2887  cpu_to_node()->at_grow(cpu_num - 1);
2888
2889  size_t node_num = get_existing_num_nodes();
2890
2891  int distance = 0;
2892  int closest_distance = INT_MAX;
2893  int closest_node = 0;
2894  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2895  for (size_t i = 0; i < node_num; i++) {
2896    // Check if node is configured (not a memory-less node). If it is not, find
2897    // the closest configured node.
2898    if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2899      closest_distance = INT_MAX;
2900      // Check distance from all remaining nodes in the system. Ignore distance
2901      // from itself and from another non-configured node.
2902      for (size_t m = 0; m < node_num; m++) {
2903        if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2904          distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2905          // If a closest node is found, update. There is always at least one
2906          // configured node in the system so there is always at least one node
2907          // close.
2908          if (distance != 0 && distance < closest_distance) {
2909            closest_distance = distance;
2910            closest_node = nindex_to_node()->at(m);
2911          }
2912        }
2913      }
2914     } else {
2915       // Current node is already a configured node.
2916       closest_node = nindex_to_node()->at(i);
2917     }
2918
2919    // Get cpus from the original node and map them to the closest node. If node
2920    // is a configured node (not a memory-less node), then original node and
2921    // closest node are the same.
2922    if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2923      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2924        if (cpu_map[j] != 0) {
2925          for (size_t k = 0; k < BitsPerCLong; k++) {
2926            if (cpu_map[j] & (1UL << k)) {
2927              cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2928            }
2929          }
2930        }
2931      }
2932    }
2933  }
2934  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2935}
2936
2937int os::Linux::get_node_by_cpu(int cpu_id) {
2938  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2939    return cpu_to_node()->at(cpu_id);
2940  }
2941  return -1;
2942}
2943
2944GrowableArray<int>* os::Linux::_cpu_to_node;
2945GrowableArray<int>* os::Linux::_nindex_to_node;
2946os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2947os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2948os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2949os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2950os::Linux::numa_available_func_t os::Linux::_numa_available;
2951os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2952os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2953os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2954os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2955os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2956os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2957unsigned long* os::Linux::_numa_all_nodes;
2958struct bitmask* os::Linux::_numa_all_nodes_ptr;
2959struct bitmask* os::Linux::_numa_nodes_ptr;
2960
2961bool os::pd_uncommit_memory(char* addr, size_t size) {
2962  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2963                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2964  return res  != (uintptr_t) MAP_FAILED;
2965}
2966
2967static address get_stack_commited_bottom(address bottom, size_t size) {
2968  address nbot = bottom;
2969  address ntop = bottom + size;
2970
2971  size_t page_sz = os::vm_page_size();
2972  unsigned pages = size / page_sz;
2973
2974  unsigned char vec[1];
2975  unsigned imin = 1, imax = pages + 1, imid;
2976  int mincore_return_value = 0;
2977
2978  assert(imin <= imax, "Unexpected page size");
2979
2980  while (imin < imax) {
2981    imid = (imax + imin) / 2;
2982    nbot = ntop - (imid * page_sz);
2983
2984    // Use a trick with mincore to check whether the page is mapped or not.
2985    // mincore sets vec to 1 if page resides in memory and to 0 if page
2986    // is swapped output but if page we are asking for is unmapped
2987    // it returns -1,ENOMEM
2988    mincore_return_value = mincore(nbot, page_sz, vec);
2989
2990    if (mincore_return_value == -1) {
2991      // Page is not mapped go up
2992      // to find first mapped page
2993      if (errno != EAGAIN) {
2994        assert(errno == ENOMEM, "Unexpected mincore errno");
2995        imax = imid;
2996      }
2997    } else {
2998      // Page is mapped go down
2999      // to find first not mapped page
3000      imin = imid + 1;
3001    }
3002  }
3003
3004  nbot = nbot + page_sz;
3005
3006  // Adjust stack bottom one page up if last checked page is not mapped
3007  if (mincore_return_value == -1) {
3008    nbot = nbot + page_sz;
3009  }
3010
3011  return nbot;
3012}
3013
3014
3015// Linux uses a growable mapping for the stack, and if the mapping for
3016// the stack guard pages is not removed when we detach a thread the
3017// stack cannot grow beyond the pages where the stack guard was
3018// mapped.  If at some point later in the process the stack expands to
3019// that point, the Linux kernel cannot expand the stack any further
3020// because the guard pages are in the way, and a segfault occurs.
3021//
3022// However, it's essential not to split the stack region by unmapping
3023// a region (leaving a hole) that's already part of the stack mapping,
3024// so if the stack mapping has already grown beyond the guard pages at
3025// the time we create them, we have to truncate the stack mapping.
3026// So, we need to know the extent of the stack mapping when
3027// create_stack_guard_pages() is called.
3028
3029// We only need this for stacks that are growable: at the time of
3030// writing thread stacks don't use growable mappings (i.e. those
3031// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3032// only applies to the main thread.
3033
3034// If the (growable) stack mapping already extends beyond the point
3035// where we're going to put our guard pages, truncate the mapping at
3036// that point by munmap()ping it.  This ensures that when we later
3037// munmap() the guard pages we don't leave a hole in the stack
3038// mapping. This only affects the main/initial thread
3039
3040bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3041  if (os::Linux::is_initial_thread()) {
3042    // As we manually grow stack up to bottom inside create_attached_thread(),
3043    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3044    // we don't need to do anything special.
3045    // Check it first, before calling heavy function.
3046    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3047    unsigned char vec[1];
3048
3049    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3050      // Fallback to slow path on all errors, including EAGAIN
3051      stack_extent = (uintptr_t) get_stack_commited_bottom(
3052                                                           os::Linux::initial_thread_stack_bottom(),
3053                                                           (size_t)addr - stack_extent);
3054    }
3055
3056    if (stack_extent < (uintptr_t)addr) {
3057      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3058    }
3059  }
3060
3061  return os::commit_memory(addr, size, !ExecMem);
3062}
3063
3064// If this is a growable mapping, remove the guard pages entirely by
3065// munmap()ping them.  If not, just call uncommit_memory(). This only
3066// affects the main/initial thread, but guard against future OS changes
3067// It's safe to always unmap guard pages for initial thread because we
3068// always place it right after end of the mapped region
3069
3070bool os::remove_stack_guard_pages(char* addr, size_t size) {
3071  uintptr_t stack_extent, stack_base;
3072
3073  if (os::Linux::is_initial_thread()) {
3074    return ::munmap(addr, size) == 0;
3075  }
3076
3077  return os::uncommit_memory(addr, size);
3078}
3079
3080// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3081// at 'requested_addr'. If there are existing memory mappings at the same
3082// location, however, they will be overwritten. If 'fixed' is false,
3083// 'requested_addr' is only treated as a hint, the return value may or
3084// may not start from the requested address. Unlike Linux mmap(), this
3085// function returns NULL to indicate failure.
3086static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3087  char * addr;
3088  int flags;
3089
3090  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3091  if (fixed) {
3092    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3093    flags |= MAP_FIXED;
3094  }
3095
3096  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3097  // touch an uncommitted page. Otherwise, the read/write might
3098  // succeed if we have enough swap space to back the physical page.
3099  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3100                       flags, -1, 0);
3101
3102  return addr == MAP_FAILED ? NULL : addr;
3103}
3104
3105// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3106//   (req_addr != NULL) or with a given alignment.
3107//  - bytes shall be a multiple of alignment.
3108//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3109//  - alignment sets the alignment at which memory shall be allocated.
3110//     It must be a multiple of allocation granularity.
3111// Returns address of memory or NULL. If req_addr was not NULL, will only return
3112//  req_addr or NULL.
3113static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3114
3115  size_t extra_size = bytes;
3116  if (req_addr == NULL && alignment > 0) {
3117    extra_size += alignment;
3118  }
3119
3120  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3121    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3122    -1, 0);
3123  if (start == MAP_FAILED) {
3124    start = NULL;
3125  } else {
3126    if (req_addr != NULL) {
3127      if (start != req_addr) {
3128        ::munmap(start, extra_size);
3129        start = NULL;
3130      }
3131    } else {
3132      char* const start_aligned = align_up(start, alignment);
3133      char* const end_aligned = start_aligned + bytes;
3134      char* const end = start + extra_size;
3135      if (start_aligned > start) {
3136        ::munmap(start, start_aligned - start);
3137      }
3138      if (end_aligned < end) {
3139        ::munmap(end_aligned, end - end_aligned);
3140      }
3141      start = start_aligned;
3142    }
3143  }
3144  return start;
3145}
3146
3147static int anon_munmap(char * addr, size_t size) {
3148  return ::munmap(addr, size) == 0;
3149}
3150
3151char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3152                            size_t alignment_hint) {
3153  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3154}
3155
3156bool os::pd_release_memory(char* addr, size_t size) {
3157  return anon_munmap(addr, size);
3158}
3159
3160static bool linux_mprotect(char* addr, size_t size, int prot) {
3161  // Linux wants the mprotect address argument to be page aligned.
3162  char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3163
3164  // According to SUSv3, mprotect() should only be used with mappings
3165  // established by mmap(), and mmap() always maps whole pages. Unaligned
3166  // 'addr' likely indicates problem in the VM (e.g. trying to change
3167  // protection of malloc'ed or statically allocated memory). Check the
3168  // caller if you hit this assert.
3169  assert(addr == bottom, "sanity check");
3170
3171  size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3172  return ::mprotect(bottom, size, prot) == 0;
3173}
3174
3175// Set protections specified
3176bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3177                        bool is_committed) {
3178  unsigned int p = 0;
3179  switch (prot) {
3180  case MEM_PROT_NONE: p = PROT_NONE; break;
3181  case MEM_PROT_READ: p = PROT_READ; break;
3182  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3183  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3184  default:
3185    ShouldNotReachHere();
3186  }
3187  // is_committed is unused.
3188  return linux_mprotect(addr, bytes, p);
3189}
3190
3191bool os::guard_memory(char* addr, size_t size) {
3192  return linux_mprotect(addr, size, PROT_NONE);
3193}
3194
3195bool os::unguard_memory(char* addr, size_t size) {
3196  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3197}
3198
3199bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3200                                                    size_t page_size) {
3201  bool result = false;
3202  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3203                 MAP_ANONYMOUS|MAP_PRIVATE,
3204                 -1, 0);
3205  if (p != MAP_FAILED) {
3206    void *aligned_p = align_up(p, page_size);
3207
3208    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3209
3210    munmap(p, page_size * 2);
3211  }
3212
3213  if (warn && !result) {
3214    warning("TransparentHugePages is not supported by the operating system.");
3215  }
3216
3217  return result;
3218}
3219
3220bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3221  bool result = false;
3222  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3223                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3224                 -1, 0);
3225
3226  if (p != MAP_FAILED) {
3227    // We don't know if this really is a huge page or not.
3228    FILE *fp = fopen("/proc/self/maps", "r");
3229    if (fp) {
3230      while (!feof(fp)) {
3231        char chars[257];
3232        long x = 0;
3233        if (fgets(chars, sizeof(chars), fp)) {
3234          if (sscanf(chars, "%lx-%*x", &x) == 1
3235              && x == (long)p) {
3236            if (strstr (chars, "hugepage")) {
3237              result = true;
3238              break;
3239            }
3240          }
3241        }
3242      }
3243      fclose(fp);
3244    }
3245    munmap(p, page_size);
3246  }
3247
3248  if (warn && !result) {
3249    warning("HugeTLBFS is not supported by the operating system.");
3250  }
3251
3252  return result;
3253}
3254
3255// Set the coredump_filter bits to include largepages in core dump (bit 6)
3256//
3257// From the coredump_filter documentation:
3258//
3259// - (bit 0) anonymous private memory
3260// - (bit 1) anonymous shared memory
3261// - (bit 2) file-backed private memory
3262// - (bit 3) file-backed shared memory
3263// - (bit 4) ELF header pages in file-backed private memory areas (it is
3264//           effective only if the bit 2 is cleared)
3265// - (bit 5) hugetlb private memory
3266// - (bit 6) hugetlb shared memory
3267//
3268static void set_coredump_filter(void) {
3269  FILE *f;
3270  long cdm;
3271
3272  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3273    return;
3274  }
3275
3276  if (fscanf(f, "%lx", &cdm) != 1) {
3277    fclose(f);
3278    return;
3279  }
3280
3281  rewind(f);
3282
3283  if ((cdm & LARGEPAGES_BIT) == 0) {
3284    cdm |= LARGEPAGES_BIT;
3285    fprintf(f, "%#lx", cdm);
3286  }
3287
3288  fclose(f);
3289}
3290
3291// Large page support
3292
3293static size_t _large_page_size = 0;
3294
3295size_t os::Linux::find_large_page_size() {
3296  size_t large_page_size = 0;
3297
3298  // large_page_size on Linux is used to round up heap size. x86 uses either
3299  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3300  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3301  // page as large as 256M.
3302  //
3303  // Here we try to figure out page size by parsing /proc/meminfo and looking
3304  // for a line with the following format:
3305  //    Hugepagesize:     2048 kB
3306  //
3307  // If we can't determine the value (e.g. /proc is not mounted, or the text
3308  // format has been changed), we'll use the largest page size supported by
3309  // the processor.
3310
3311#ifndef ZERO
3312  large_page_size =
3313    AARCH64_ONLY(2 * M)
3314    AMD64_ONLY(2 * M)
3315    ARM32_ONLY(2 * M)
3316    IA32_ONLY(4 * M)
3317    IA64_ONLY(256 * M)
3318    PPC_ONLY(4 * M)
3319    S390_ONLY(1 * M)
3320    SPARC_ONLY(4 * M);
3321#endif // ZERO
3322
3323  FILE *fp = fopen("/proc/meminfo", "r");
3324  if (fp) {
3325    while (!feof(fp)) {
3326      int x = 0;
3327      char buf[16];
3328      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3329        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3330          large_page_size = x * K;
3331          break;
3332        }
3333      } else {
3334        // skip to next line
3335        for (;;) {
3336          int ch = fgetc(fp);
3337          if (ch == EOF || ch == (int)'\n') break;
3338        }
3339      }
3340    }
3341    fclose(fp);
3342  }
3343
3344  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3345    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3346            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3347            proper_unit_for_byte_size(large_page_size));
3348  }
3349
3350  return large_page_size;
3351}
3352
3353size_t os::Linux::setup_large_page_size() {
3354  _large_page_size = Linux::find_large_page_size();
3355  const size_t default_page_size = (size_t)Linux::page_size();
3356  if (_large_page_size > default_page_size) {
3357    _page_sizes[0] = _large_page_size;
3358    _page_sizes[1] = default_page_size;
3359    _page_sizes[2] = 0;
3360  }
3361
3362  return _large_page_size;
3363}
3364
3365bool os::Linux::setup_large_page_type(size_t page_size) {
3366  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3367      FLAG_IS_DEFAULT(UseSHM) &&
3368      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3369
3370    // The type of large pages has not been specified by the user.
3371
3372    // Try UseHugeTLBFS and then UseSHM.
3373    UseHugeTLBFS = UseSHM = true;
3374
3375    // Don't try UseTransparentHugePages since there are known
3376    // performance issues with it turned on. This might change in the future.
3377    UseTransparentHugePages = false;
3378  }
3379
3380  if (UseTransparentHugePages) {
3381    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3382    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3383      UseHugeTLBFS = false;
3384      UseSHM = false;
3385      return true;
3386    }
3387    UseTransparentHugePages = false;
3388  }
3389
3390  if (UseHugeTLBFS) {
3391    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3392    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3393      UseSHM = false;
3394      return true;
3395    }
3396    UseHugeTLBFS = false;
3397  }
3398
3399  return UseSHM;
3400}
3401
3402void os::large_page_init() {
3403  if (!UseLargePages &&
3404      !UseTransparentHugePages &&
3405      !UseHugeTLBFS &&
3406      !UseSHM) {
3407    // Not using large pages.
3408    return;
3409  }
3410
3411  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3412    // The user explicitly turned off large pages.
3413    // Ignore the rest of the large pages flags.
3414    UseTransparentHugePages = false;
3415    UseHugeTLBFS = false;
3416    UseSHM = false;
3417    return;
3418  }
3419
3420  size_t large_page_size = Linux::setup_large_page_size();
3421  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3422
3423  set_coredump_filter();
3424}
3425
3426#ifndef SHM_HUGETLB
3427  #define SHM_HUGETLB 04000
3428#endif
3429
3430#define shm_warning_format(format, ...)              \
3431  do {                                               \
3432    if (UseLargePages &&                             \
3433        (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3434         !FLAG_IS_DEFAULT(UseSHM) ||                 \
3435         !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3436      warning(format, __VA_ARGS__);                  \
3437    }                                                \
3438  } while (0)
3439
3440#define shm_warning(str) shm_warning_format("%s", str)
3441
3442#define shm_warning_with_errno(str)                \
3443  do {                                             \
3444    int err = errno;                               \
3445    shm_warning_format(str " (error = %d)", err);  \
3446  } while (0)
3447
3448static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3449  assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3450
3451  if (!is_aligned(alignment, SHMLBA)) {
3452    assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3453    return NULL;
3454  }
3455
3456  // To ensure that we get 'alignment' aligned memory from shmat,
3457  // we pre-reserve aligned virtual memory and then attach to that.
3458
3459  char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3460  if (pre_reserved_addr == NULL) {
3461    // Couldn't pre-reserve aligned memory.
3462    shm_warning("Failed to pre-reserve aligned memory for shmat.");
3463    return NULL;
3464  }
3465
3466  // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3467  char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3468
3469  if ((intptr_t)addr == -1) {
3470    int err = errno;
3471    shm_warning_with_errno("Failed to attach shared memory.");
3472
3473    assert(err != EACCES, "Unexpected error");
3474    assert(err != EIDRM,  "Unexpected error");
3475    assert(err != EINVAL, "Unexpected error");
3476
3477    // Since we don't know if the kernel unmapped the pre-reserved memory area
3478    // we can't unmap it, since that would potentially unmap memory that was
3479    // mapped from other threads.
3480    return NULL;
3481  }
3482
3483  return addr;
3484}
3485
3486static char* shmat_at_address(int shmid, char* req_addr) {
3487  if (!is_aligned(req_addr, SHMLBA)) {
3488    assert(false, "Requested address needs to be SHMLBA aligned");
3489    return NULL;
3490  }
3491
3492  char* addr = (char*)shmat(shmid, req_addr, 0);
3493
3494  if ((intptr_t)addr == -1) {
3495    shm_warning_with_errno("Failed to attach shared memory.");
3496    return NULL;
3497  }
3498
3499  return addr;
3500}
3501
3502static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3503  // If a req_addr has been provided, we assume that the caller has already aligned the address.
3504  if (req_addr != NULL) {
3505    assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3506    assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3507    return shmat_at_address(shmid, req_addr);
3508  }
3509
3510  // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3511  // return large page size aligned memory addresses when req_addr == NULL.
3512  // However, if the alignment is larger than the large page size, we have
3513  // to manually ensure that the memory returned is 'alignment' aligned.
3514  if (alignment > os::large_page_size()) {
3515    assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3516    return shmat_with_alignment(shmid, bytes, alignment);
3517  } else {
3518    return shmat_at_address(shmid, NULL);
3519  }
3520}
3521
3522char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3523                                            char* req_addr, bool exec) {
3524  // "exec" is passed in but not used.  Creating the shared image for
3525  // the code cache doesn't have an SHM_X executable permission to check.
3526  assert(UseLargePages && UseSHM, "only for SHM large pages");
3527  assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3528  assert(is_aligned(req_addr, alignment), "Unaligned address");
3529
3530  if (!is_aligned(bytes, os::large_page_size())) {
3531    return NULL; // Fallback to small pages.
3532  }
3533
3534  // Create a large shared memory region to attach to based on size.
3535  // Currently, size is the total size of the heap.
3536  int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3537  if (shmid == -1) {
3538    // Possible reasons for shmget failure:
3539    // 1. shmmax is too small for Java heap.
3540    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3541    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3542    // 2. not enough large page memory.
3543    //    > check available large pages: cat /proc/meminfo
3544    //    > increase amount of large pages:
3545    //          echo new_value > /proc/sys/vm/nr_hugepages
3546    //      Note 1: different Linux may use different name for this property,
3547    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3548    //      Note 2: it's possible there's enough physical memory available but
3549    //            they are so fragmented after a long run that they can't
3550    //            coalesce into large pages. Try to reserve large pages when
3551    //            the system is still "fresh".
3552    shm_warning_with_errno("Failed to reserve shared memory.");
3553    return NULL;
3554  }
3555
3556  // Attach to the region.
3557  char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3558
3559  // Remove shmid. If shmat() is successful, the actual shared memory segment
3560  // will be deleted when it's detached by shmdt() or when the process
3561  // terminates. If shmat() is not successful this will remove the shared
3562  // segment immediately.
3563  shmctl(shmid, IPC_RMID, NULL);
3564
3565  return addr;
3566}
3567
3568static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3569                                        int error) {
3570  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3571
3572  bool warn_on_failure = UseLargePages &&
3573      (!FLAG_IS_DEFAULT(UseLargePages) ||
3574       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3575       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3576
3577  if (warn_on_failure) {
3578    char msg[128];
3579    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3580                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3581    warning("%s", msg);
3582  }
3583}
3584
3585char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3586                                                        char* req_addr,
3587                                                        bool exec) {
3588  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3589  assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3590  assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3591
3592  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3593  char* addr = (char*)::mmap(req_addr, bytes, prot,
3594                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3595                             -1, 0);
3596
3597  if (addr == MAP_FAILED) {
3598    warn_on_large_pages_failure(req_addr, bytes, errno);
3599    return NULL;
3600  }
3601
3602  assert(is_aligned(addr, os::large_page_size()), "Must be");
3603
3604  return addr;
3605}
3606
3607// Reserve memory using mmap(MAP_HUGETLB).
3608//  - bytes shall be a multiple of alignment.
3609//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3610//  - alignment sets the alignment at which memory shall be allocated.
3611//     It must be a multiple of allocation granularity.
3612// Returns address of memory or NULL. If req_addr was not NULL, will only return
3613//  req_addr or NULL.
3614char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3615                                                         size_t alignment,
3616                                                         char* req_addr,
3617                                                         bool exec) {
3618  size_t large_page_size = os::large_page_size();
3619  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3620
3621  assert(is_aligned(req_addr, alignment), "Must be");
3622  assert(is_aligned(bytes, alignment), "Must be");
3623
3624  // First reserve - but not commit - the address range in small pages.
3625  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3626
3627  if (start == NULL) {
3628    return NULL;
3629  }
3630
3631  assert(is_aligned(start, alignment), "Must be");
3632
3633  char* end = start + bytes;
3634
3635  // Find the regions of the allocated chunk that can be promoted to large pages.
3636  char* lp_start = align_up(start, large_page_size);
3637  char* lp_end   = align_down(end, large_page_size);
3638
3639  size_t lp_bytes = lp_end - lp_start;
3640
3641  assert(is_aligned(lp_bytes, large_page_size), "Must be");
3642
3643  if (lp_bytes == 0) {
3644    // The mapped region doesn't even span the start and the end of a large page.
3645    // Fall back to allocate a non-special area.
3646    ::munmap(start, end - start);
3647    return NULL;
3648  }
3649
3650  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3651
3652  void* result;
3653
3654  // Commit small-paged leading area.
3655  if (start != lp_start) {
3656    result = ::mmap(start, lp_start - start, prot,
3657                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3658                    -1, 0);
3659    if (result == MAP_FAILED) {
3660      ::munmap(lp_start, end - lp_start);
3661      return NULL;
3662    }
3663  }
3664
3665  // Commit large-paged area.
3666  result = ::mmap(lp_start, lp_bytes, prot,
3667                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3668                  -1, 0);
3669  if (result == MAP_FAILED) {
3670    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3671    // If the mmap above fails, the large pages region will be unmapped and we
3672    // have regions before and after with small pages. Release these regions.
3673    //
3674    // |  mapped  |  unmapped  |  mapped  |
3675    // ^          ^            ^          ^
3676    // start      lp_start     lp_end     end
3677    //
3678    ::munmap(start, lp_start - start);
3679    ::munmap(lp_end, end - lp_end);
3680    return NULL;
3681  }
3682
3683  // Commit small-paged trailing area.
3684  if (lp_end != end) {
3685    result = ::mmap(lp_end, end - lp_end, prot,
3686                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3687                    -1, 0);
3688    if (result == MAP_FAILED) {
3689      ::munmap(start, lp_end - start);
3690      return NULL;
3691    }
3692  }
3693
3694  return start;
3695}
3696
3697char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3698                                                   size_t alignment,
3699                                                   char* req_addr,
3700                                                   bool exec) {
3701  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3702  assert(is_aligned(req_addr, alignment), "Must be");
3703  assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3704  assert(is_power_of_2(os::large_page_size()), "Must be");
3705  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3706
3707  if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3708    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3709  } else {
3710    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3711  }
3712}
3713
3714char* os::reserve_memory_special(size_t bytes, size_t alignment,
3715                                 char* req_addr, bool exec) {
3716  assert(UseLargePages, "only for large pages");
3717
3718  char* addr;
3719  if (UseSHM) {
3720    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3721  } else {
3722    assert(UseHugeTLBFS, "must be");
3723    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3724  }
3725
3726  if (addr != NULL) {
3727    if (UseNUMAInterleaving) {
3728      numa_make_global(addr, bytes);
3729    }
3730
3731    // The memory is committed
3732    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3733  }
3734
3735  return addr;
3736}
3737
3738bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3739  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3740  return shmdt(base) == 0;
3741}
3742
3743bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3744  return pd_release_memory(base, bytes);
3745}
3746
3747bool os::release_memory_special(char* base, size_t bytes) {
3748  bool res;
3749  if (MemTracker::tracking_level() > NMT_minimal) {
3750    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3751    res = os::Linux::release_memory_special_impl(base, bytes);
3752    if (res) {
3753      tkr.record((address)base, bytes);
3754    }
3755
3756  } else {
3757    res = os::Linux::release_memory_special_impl(base, bytes);
3758  }
3759  return res;
3760}
3761
3762bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3763  assert(UseLargePages, "only for large pages");
3764  bool res;
3765
3766  if (UseSHM) {
3767    res = os::Linux::release_memory_special_shm(base, bytes);
3768  } else {
3769    assert(UseHugeTLBFS, "must be");
3770    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3771  }
3772  return res;
3773}
3774
3775size_t os::large_page_size() {
3776  return _large_page_size;
3777}
3778
3779// With SysV SHM the entire memory region must be allocated as shared
3780// memory.
3781// HugeTLBFS allows application to commit large page memory on demand.
3782// However, when committing memory with HugeTLBFS fails, the region
3783// that was supposed to be committed will lose the old reservation
3784// and allow other threads to steal that memory region. Because of this
3785// behavior we can't commit HugeTLBFS memory.
3786bool os::can_commit_large_page_memory() {
3787  return UseTransparentHugePages;
3788}
3789
3790bool os::can_execute_large_page_memory() {
3791  return UseTransparentHugePages || UseHugeTLBFS;
3792}
3793
3794// Reserve memory at an arbitrary address, only if that area is
3795// available (and not reserved for something else).
3796
3797char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3798  const int max_tries = 10;
3799  char* base[max_tries];
3800  size_t size[max_tries];
3801  const size_t gap = 0x000000;
3802
3803  // Assert only that the size is a multiple of the page size, since
3804  // that's all that mmap requires, and since that's all we really know
3805  // about at this low abstraction level.  If we need higher alignment,
3806  // we can either pass an alignment to this method or verify alignment
3807  // in one of the methods further up the call chain.  See bug 5044738.
3808  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3809
3810  // Repeatedly allocate blocks until the block is allocated at the
3811  // right spot.
3812
3813  // Linux mmap allows caller to pass an address as hint; give it a try first,
3814  // if kernel honors the hint then we can return immediately.
3815  char * addr = anon_mmap(requested_addr, bytes, false);
3816  if (addr == requested_addr) {
3817    return requested_addr;
3818  }
3819
3820  if (addr != NULL) {
3821    // mmap() is successful but it fails to reserve at the requested address
3822    anon_munmap(addr, bytes);
3823  }
3824
3825  int i;
3826  for (i = 0; i < max_tries; ++i) {
3827    base[i] = reserve_memory(bytes);
3828
3829    if (base[i] != NULL) {
3830      // Is this the block we wanted?
3831      if (base[i] == requested_addr) {
3832        size[i] = bytes;
3833        break;
3834      }
3835
3836      // Does this overlap the block we wanted? Give back the overlapped
3837      // parts and try again.
3838
3839      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3840      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3841        unmap_memory(base[i], top_overlap);
3842        base[i] += top_overlap;
3843        size[i] = bytes - top_overlap;
3844      } else {
3845        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3846        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3847          unmap_memory(requested_addr, bottom_overlap);
3848          size[i] = bytes - bottom_overlap;
3849        } else {
3850          size[i] = bytes;
3851        }
3852      }
3853    }
3854  }
3855
3856  // Give back the unused reserved pieces.
3857
3858  for (int j = 0; j < i; ++j) {
3859    if (base[j] != NULL) {
3860      unmap_memory(base[j], size[j]);
3861    }
3862  }
3863
3864  if (i < max_tries) {
3865    return requested_addr;
3866  } else {
3867    return NULL;
3868  }
3869}
3870
3871size_t os::read(int fd, void *buf, unsigned int nBytes) {
3872  return ::read(fd, buf, nBytes);
3873}
3874
3875size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3876  return ::pread(fd, buf, nBytes, offset);
3877}
3878
3879// Short sleep, direct OS call.
3880//
3881// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3882// sched_yield(2) will actually give up the CPU:
3883//
3884//   * Alone on this pariticular CPU, keeps running.
3885//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3886//     (pre 2.6.39).
3887//
3888// So calling this with 0 is an alternative.
3889//
3890void os::naked_short_sleep(jlong ms) {
3891  struct timespec req;
3892
3893  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3894  req.tv_sec = 0;
3895  if (ms > 0) {
3896    req.tv_nsec = (ms % 1000) * 1000000;
3897  } else {
3898    req.tv_nsec = 1;
3899  }
3900
3901  nanosleep(&req, NULL);
3902
3903  return;
3904}
3905
3906// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3907void os::infinite_sleep() {
3908  while (true) {    // sleep forever ...
3909    ::sleep(100);   // ... 100 seconds at a time
3910  }
3911}
3912
3913// Used to convert frequent JVM_Yield() to nops
3914bool os::dont_yield() {
3915  return DontYieldALot;
3916}
3917
3918void os::naked_yield() {
3919  sched_yield();
3920}
3921
3922////////////////////////////////////////////////////////////////////////////////
3923// thread priority support
3924
3925// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3926// only supports dynamic priority, static priority must be zero. For real-time
3927// applications, Linux supports SCHED_RR which allows static priority (1-99).
3928// However, for large multi-threaded applications, SCHED_RR is not only slower
3929// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3930// of 5 runs - Sep 2005).
3931//
3932// The following code actually changes the niceness of kernel-thread/LWP. It
3933// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3934// not the entire user process, and user level threads are 1:1 mapped to kernel
3935// threads. It has always been the case, but could change in the future. For
3936// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3937// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3938
3939int os::java_to_os_priority[CriticalPriority + 1] = {
3940  19,              // 0 Entry should never be used
3941
3942   4,              // 1 MinPriority
3943   3,              // 2
3944   2,              // 3
3945
3946   1,              // 4
3947   0,              // 5 NormPriority
3948  -1,              // 6
3949
3950  -2,              // 7
3951  -3,              // 8
3952  -4,              // 9 NearMaxPriority
3953
3954  -5,              // 10 MaxPriority
3955
3956  -5               // 11 CriticalPriority
3957};
3958
3959static int prio_init() {
3960  if (ThreadPriorityPolicy == 1) {
3961    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3962    // if effective uid is not root. Perhaps, a more elegant way of doing
3963    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3964    if (geteuid() != 0) {
3965      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3966        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3967      }
3968      ThreadPriorityPolicy = 0;
3969    }
3970  }
3971  if (UseCriticalJavaThreadPriority) {
3972    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3973  }
3974  return 0;
3975}
3976
3977OSReturn os::set_native_priority(Thread* thread, int newpri) {
3978  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3979
3980  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3981  return (ret == 0) ? OS_OK : OS_ERR;
3982}
3983
3984OSReturn os::get_native_priority(const Thread* const thread,
3985                                 int *priority_ptr) {
3986  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3987    *priority_ptr = java_to_os_priority[NormPriority];
3988    return OS_OK;
3989  }
3990
3991  errno = 0;
3992  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3993  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3994}
3995
3996// Hint to the underlying OS that a task switch would not be good.
3997// Void return because it's a hint and can fail.
3998void os::hint_no_preempt() {}
3999
4000////////////////////////////////////////////////////////////////////////////////
4001// suspend/resume support
4002
4003//  The low-level signal-based suspend/resume support is a remnant from the
4004//  old VM-suspension that used to be for java-suspension, safepoints etc,
4005//  within hotspot. Currently used by JFR's OSThreadSampler
4006//
4007//  The remaining code is greatly simplified from the more general suspension
4008//  code that used to be used.
4009//
4010//  The protocol is quite simple:
4011//  - suspend:
4012//      - sends a signal to the target thread
4013//      - polls the suspend state of the osthread using a yield loop
4014//      - target thread signal handler (SR_handler) sets suspend state
4015//        and blocks in sigsuspend until continued
4016//  - resume:
4017//      - sets target osthread state to continue
4018//      - sends signal to end the sigsuspend loop in the SR_handler
4019//
4020//  Note that the SR_lock plays no role in this suspend/resume protocol,
4021//  but is checked for NULL in SR_handler as a thread termination indicator.
4022//  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4023//
4024//  Note that resume_clear_context() and suspend_save_context() are needed
4025//  by SR_handler(), so that fetch_frame_from_ucontext() works,
4026//  which in part is used by:
4027//    - Forte Analyzer: AsyncGetCallTrace()
4028//    - StackBanging: get_frame_at_stack_banging_point()
4029
4030static void resume_clear_context(OSThread *osthread) {
4031  osthread->set_ucontext(NULL);
4032  osthread->set_siginfo(NULL);
4033}
4034
4035static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4036                                 ucontext_t* context) {
4037  osthread->set_ucontext(context);
4038  osthread->set_siginfo(siginfo);
4039}
4040
4041// Handler function invoked when a thread's execution is suspended or
4042// resumed. We have to be careful that only async-safe functions are
4043// called here (Note: most pthread functions are not async safe and
4044// should be avoided.)
4045//
4046// Note: sigwait() is a more natural fit than sigsuspend() from an
4047// interface point of view, but sigwait() prevents the signal hander
4048// from being run. libpthread would get very confused by not having
4049// its signal handlers run and prevents sigwait()'s use with the
4050// mutex granting granting signal.
4051//
4052// Currently only ever called on the VMThread and JavaThreads (PC sampling)
4053//
4054static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4055  // Save and restore errno to avoid confusing native code with EINTR
4056  // after sigsuspend.
4057  int old_errno = errno;
4058
4059  Thread* thread = Thread::current_or_null_safe();
4060  assert(thread != NULL, "Missing current thread in SR_handler");
4061
4062  // On some systems we have seen signal delivery get "stuck" until the signal
4063  // mask is changed as part of thread termination. Check that the current thread
4064  // has not already terminated (via SR_lock()) - else the following assertion
4065  // will fail because the thread is no longer a JavaThread as the ~JavaThread
4066  // destructor has completed.
4067
4068  if (thread->SR_lock() == NULL) {
4069    return;
4070  }
4071
4072  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4073
4074  OSThread* osthread = thread->osthread();
4075
4076  os::SuspendResume::State current = osthread->sr.state();
4077  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4078    suspend_save_context(osthread, siginfo, context);
4079
4080    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4081    os::SuspendResume::State state = osthread->sr.suspended();
4082    if (state == os::SuspendResume::SR_SUSPENDED) {
4083      sigset_t suspend_set;  // signals for sigsuspend()
4084      sigemptyset(&suspend_set);
4085      // get current set of blocked signals and unblock resume signal
4086      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4087      sigdelset(&suspend_set, SR_signum);
4088
4089      sr_semaphore.signal();
4090      // wait here until we are resumed
4091      while (1) {
4092        sigsuspend(&suspend_set);
4093
4094        os::SuspendResume::State result = osthread->sr.running();
4095        if (result == os::SuspendResume::SR_RUNNING) {
4096          sr_semaphore.signal();
4097          break;
4098        }
4099      }
4100
4101    } else if (state == os::SuspendResume::SR_RUNNING) {
4102      // request was cancelled, continue
4103    } else {
4104      ShouldNotReachHere();
4105    }
4106
4107    resume_clear_context(osthread);
4108  } else if (current == os::SuspendResume::SR_RUNNING) {
4109    // request was cancelled, continue
4110  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4111    // ignore
4112  } else {
4113    // ignore
4114  }
4115
4116  errno = old_errno;
4117}
4118
4119static int SR_initialize() {
4120  struct sigaction act;
4121  char *s;
4122
4123  // Get signal number to use for suspend/resume
4124  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4125    int sig = ::strtol(s, 0, 10);
4126    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4127        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4128      SR_signum = sig;
4129    } else {
4130      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4131              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4132    }
4133  }
4134
4135  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4136         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4137
4138  sigemptyset(&SR_sigset);
4139  sigaddset(&SR_sigset, SR_signum);
4140
4141  // Set up signal handler for suspend/resume
4142  act.sa_flags = SA_RESTART|SA_SIGINFO;
4143  act.sa_handler = (void (*)(int)) SR_handler;
4144
4145  // SR_signum is blocked by default.
4146  // 4528190 - We also need to block pthread restart signal (32 on all
4147  // supported Linux platforms). Note that LinuxThreads need to block
4148  // this signal for all threads to work properly. So we don't have
4149  // to use hard-coded signal number when setting up the mask.
4150  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4151
4152  if (sigaction(SR_signum, &act, 0) == -1) {
4153    return -1;
4154  }
4155
4156  // Save signal flag
4157  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4158  return 0;
4159}
4160
4161static int sr_notify(OSThread* osthread) {
4162  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4163  assert_status(status == 0, status, "pthread_kill");
4164  return status;
4165}
4166
4167// "Randomly" selected value for how long we want to spin
4168// before bailing out on suspending a thread, also how often
4169// we send a signal to a thread we want to resume
4170static const int RANDOMLY_LARGE_INTEGER = 1000000;
4171static const int RANDOMLY_LARGE_INTEGER2 = 100;
4172
4173// returns true on success and false on error - really an error is fatal
4174// but this seems the normal response to library errors
4175static bool do_suspend(OSThread* osthread) {
4176  assert(osthread->sr.is_running(), "thread should be running");
4177  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4178
4179  // mark as suspended and send signal
4180  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4181    // failed to switch, state wasn't running?
4182    ShouldNotReachHere();
4183    return false;
4184  }
4185
4186  if (sr_notify(osthread) != 0) {
4187    ShouldNotReachHere();
4188  }
4189
4190  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4191  while (true) {
4192    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4193      break;
4194    } else {
4195      // timeout
4196      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4197      if (cancelled == os::SuspendResume::SR_RUNNING) {
4198        return false;
4199      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4200        // make sure that we consume the signal on the semaphore as well
4201        sr_semaphore.wait();
4202        break;
4203      } else {
4204        ShouldNotReachHere();
4205        return false;
4206      }
4207    }
4208  }
4209
4210  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4211  return true;
4212}
4213
4214static void do_resume(OSThread* osthread) {
4215  assert(osthread->sr.is_suspended(), "thread should be suspended");
4216  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4217
4218  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4219    // failed to switch to WAKEUP_REQUEST
4220    ShouldNotReachHere();
4221    return;
4222  }
4223
4224  while (true) {
4225    if (sr_notify(osthread) == 0) {
4226      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4227        if (osthread->sr.is_running()) {
4228          return;
4229        }
4230      }
4231    } else {
4232      ShouldNotReachHere();
4233    }
4234  }
4235
4236  guarantee(osthread->sr.is_running(), "Must be running!");
4237}
4238
4239///////////////////////////////////////////////////////////////////////////////////
4240// signal handling (except suspend/resume)
4241
4242// This routine may be used by user applications as a "hook" to catch signals.
4243// The user-defined signal handler must pass unrecognized signals to this
4244// routine, and if it returns true (non-zero), then the signal handler must
4245// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4246// routine will never retun false (zero), but instead will execute a VM panic
4247// routine kill the process.
4248//
4249// If this routine returns false, it is OK to call it again.  This allows
4250// the user-defined signal handler to perform checks either before or after
4251// the VM performs its own checks.  Naturally, the user code would be making
4252// a serious error if it tried to handle an exception (such as a null check
4253// or breakpoint) that the VM was generating for its own correct operation.
4254//
4255// This routine may recognize any of the following kinds of signals:
4256//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4257// It should be consulted by handlers for any of those signals.
4258//
4259// The caller of this routine must pass in the three arguments supplied
4260// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4261// field of the structure passed to sigaction().  This routine assumes that
4262// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4263//
4264// Note that the VM will print warnings if it detects conflicting signal
4265// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4266//
4267extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4268                                                 siginfo_t* siginfo,
4269                                                 void* ucontext,
4270                                                 int abort_if_unrecognized);
4271
4272void signalHandler(int sig, siginfo_t* info, void* uc) {
4273  assert(info != NULL && uc != NULL, "it must be old kernel");
4274  int orig_errno = errno;  // Preserve errno value over signal handler.
4275  JVM_handle_linux_signal(sig, info, uc, true);
4276  errno = orig_errno;
4277}
4278
4279
4280// This boolean allows users to forward their own non-matching signals
4281// to JVM_handle_linux_signal, harmlessly.
4282bool os::Linux::signal_handlers_are_installed = false;
4283
4284// For signal-chaining
4285struct sigaction sigact[NSIG];
4286uint64_t sigs = 0;
4287#if (64 < NSIG-1)
4288#error "Not all signals can be encoded in sigs. Adapt its type!"
4289#endif
4290bool os::Linux::libjsig_is_loaded = false;
4291typedef struct sigaction *(*get_signal_t)(int);
4292get_signal_t os::Linux::get_signal_action = NULL;
4293
4294struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4295  struct sigaction *actp = NULL;
4296
4297  if (libjsig_is_loaded) {
4298    // Retrieve the old signal handler from libjsig
4299    actp = (*get_signal_action)(sig);
4300  }
4301  if (actp == NULL) {
4302    // Retrieve the preinstalled signal handler from jvm
4303    actp = get_preinstalled_handler(sig);
4304  }
4305
4306  return actp;
4307}
4308
4309static bool call_chained_handler(struct sigaction *actp, int sig,
4310                                 siginfo_t *siginfo, void *context) {
4311  // Call the old signal handler
4312  if (actp->sa_handler == SIG_DFL) {
4313    // It's more reasonable to let jvm treat it as an unexpected exception
4314    // instead of taking the default action.
4315    return false;
4316  } else if (actp->sa_handler != SIG_IGN) {
4317    if ((actp->sa_flags & SA_NODEFER) == 0) {
4318      // automaticlly block the signal
4319      sigaddset(&(actp->sa_mask), sig);
4320    }
4321
4322    sa_handler_t hand = NULL;
4323    sa_sigaction_t sa = NULL;
4324    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4325    // retrieve the chained handler
4326    if (siginfo_flag_set) {
4327      sa = actp->sa_sigaction;
4328    } else {
4329      hand = actp->sa_handler;
4330    }
4331
4332    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4333      actp->sa_handler = SIG_DFL;
4334    }
4335
4336    // try to honor the signal mask
4337    sigset_t oset;
4338    sigemptyset(&oset);
4339    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4340
4341    // call into the chained handler
4342    if (siginfo_flag_set) {
4343      (*sa)(sig, siginfo, context);
4344    } else {
4345      (*hand)(sig);
4346    }
4347
4348    // restore the signal mask
4349    pthread_sigmask(SIG_SETMASK, &oset, NULL);
4350  }
4351  // Tell jvm's signal handler the signal is taken care of.
4352  return true;
4353}
4354
4355bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4356  bool chained = false;
4357  // signal-chaining
4358  if (UseSignalChaining) {
4359    struct sigaction *actp = get_chained_signal_action(sig);
4360    if (actp != NULL) {
4361      chained = call_chained_handler(actp, sig, siginfo, context);
4362    }
4363  }
4364  return chained;
4365}
4366
4367struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4368  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4369    return &sigact[sig];
4370  }
4371  return NULL;
4372}
4373
4374void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4375  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4376  sigact[sig] = oldAct;
4377  sigs |= (uint64_t)1 << (sig-1);
4378}
4379
4380// for diagnostic
4381int sigflags[NSIG];
4382
4383int os::Linux::get_our_sigflags(int sig) {
4384  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4385  return sigflags[sig];
4386}
4387
4388void os::Linux::set_our_sigflags(int sig, int flags) {
4389  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4390  if (sig > 0 && sig < NSIG) {
4391    sigflags[sig] = flags;
4392  }
4393}
4394
4395void os::Linux::set_signal_handler(int sig, bool set_installed) {
4396  // Check for overwrite.
4397  struct sigaction oldAct;
4398  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4399
4400  void* oldhand = oldAct.sa_sigaction
4401                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4402                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4403  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4404      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4405      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4406    if (AllowUserSignalHandlers || !set_installed) {
4407      // Do not overwrite; user takes responsibility to forward to us.
4408      return;
4409    } else if (UseSignalChaining) {
4410      // save the old handler in jvm
4411      save_preinstalled_handler(sig, oldAct);
4412      // libjsig also interposes the sigaction() call below and saves the
4413      // old sigaction on it own.
4414    } else {
4415      fatal("Encountered unexpected pre-existing sigaction handler "
4416            "%#lx for signal %d.", (long)oldhand, sig);
4417    }
4418  }
4419
4420  struct sigaction sigAct;
4421  sigfillset(&(sigAct.sa_mask));
4422  sigAct.sa_handler = SIG_DFL;
4423  if (!set_installed) {
4424    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4425  } else {
4426    sigAct.sa_sigaction = signalHandler;
4427    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4428  }
4429  // Save flags, which are set by ours
4430  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4431  sigflags[sig] = sigAct.sa_flags;
4432
4433  int ret = sigaction(sig, &sigAct, &oldAct);
4434  assert(ret == 0, "check");
4435
4436  void* oldhand2  = oldAct.sa_sigaction
4437                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4438                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4439  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4440}
4441
4442// install signal handlers for signals that HotSpot needs to
4443// handle in order to support Java-level exception handling.
4444
4445void os::Linux::install_signal_handlers() {
4446  if (!signal_handlers_are_installed) {
4447    signal_handlers_are_installed = true;
4448
4449    // signal-chaining
4450    typedef void (*signal_setting_t)();
4451    signal_setting_t begin_signal_setting = NULL;
4452    signal_setting_t end_signal_setting = NULL;
4453    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4454                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4455    if (begin_signal_setting != NULL) {
4456      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4457                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4458      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4459                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4460      libjsig_is_loaded = true;
4461      assert(UseSignalChaining, "should enable signal-chaining");
4462    }
4463    if (libjsig_is_loaded) {
4464      // Tell libjsig jvm is setting signal handlers
4465      (*begin_signal_setting)();
4466    }
4467
4468    set_signal_handler(SIGSEGV, true);
4469    set_signal_handler(SIGPIPE, true);
4470    set_signal_handler(SIGBUS, true);
4471    set_signal_handler(SIGILL, true);
4472    set_signal_handler(SIGFPE, true);
4473#if defined(PPC64)
4474    set_signal_handler(SIGTRAP, true);
4475#endif
4476    set_signal_handler(SIGXFSZ, true);
4477
4478    if (libjsig_is_loaded) {
4479      // Tell libjsig jvm finishes setting signal handlers
4480      (*end_signal_setting)();
4481    }
4482
4483    // We don't activate signal checker if libjsig is in place, we trust ourselves
4484    // and if UserSignalHandler is installed all bets are off.
4485    // Log that signal checking is off only if -verbose:jni is specified.
4486    if (CheckJNICalls) {
4487      if (libjsig_is_loaded) {
4488        if (PrintJNIResolving) {
4489          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4490        }
4491        check_signals = false;
4492      }
4493      if (AllowUserSignalHandlers) {
4494        if (PrintJNIResolving) {
4495          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4496        }
4497        check_signals = false;
4498      }
4499    }
4500  }
4501}
4502
4503// This is the fastest way to get thread cpu time on Linux.
4504// Returns cpu time (user+sys) for any thread, not only for current.
4505// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4506// It might work on 2.6.10+ with a special kernel/glibc patch.
4507// For reference, please, see IEEE Std 1003.1-2004:
4508//   http://www.unix.org/single_unix_specification
4509
4510jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4511  struct timespec tp;
4512  int rc = os::Linux::clock_gettime(clockid, &tp);
4513  assert(rc == 0, "clock_gettime is expected to return 0 code");
4514
4515  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4516}
4517
4518void os::Linux::initialize_os_info() {
4519  assert(_os_version == 0, "OS info already initialized");
4520
4521  struct utsname _uname;
4522
4523  uint32_t major;
4524  uint32_t minor;
4525  uint32_t fix;
4526
4527  int rc;
4528
4529  // Kernel version is unknown if
4530  // verification below fails.
4531  _os_version = 0x01000000;
4532
4533  rc = uname(&_uname);
4534  if (rc != -1) {
4535
4536    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4537    if (rc == 3) {
4538
4539      if (major < 256 && minor < 256 && fix < 256) {
4540        // Kernel version format is as expected,
4541        // set it overriding unknown state.
4542        _os_version = (major << 16) |
4543                      (minor << 8 ) |
4544                      (fix   << 0 ) ;
4545      }
4546    }
4547  }
4548}
4549
4550uint32_t os::Linux::os_version() {
4551  assert(_os_version != 0, "not initialized");
4552  return _os_version & 0x00FFFFFF;
4553}
4554
4555bool os::Linux::os_version_is_known() {
4556  assert(_os_version != 0, "not initialized");
4557  return _os_version & 0x01000000 ? false : true;
4558}
4559
4560/////
4561// glibc on Linux platform uses non-documented flag
4562// to indicate, that some special sort of signal
4563// trampoline is used.
4564// We will never set this flag, and we should
4565// ignore this flag in our diagnostic
4566#ifdef SIGNIFICANT_SIGNAL_MASK
4567  #undef SIGNIFICANT_SIGNAL_MASK
4568#endif
4569#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4570
4571static const char* get_signal_handler_name(address handler,
4572                                           char* buf, int buflen) {
4573  int offset = 0;
4574  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4575  if (found) {
4576    // skip directory names
4577    const char *p1, *p2;
4578    p1 = buf;
4579    size_t len = strlen(os::file_separator());
4580    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4581    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4582  } else {
4583    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4584  }
4585  return buf;
4586}
4587
4588static void print_signal_handler(outputStream* st, int sig,
4589                                 char* buf, size_t buflen) {
4590  struct sigaction sa;
4591
4592  sigaction(sig, NULL, &sa);
4593
4594  // See comment for SIGNIFICANT_SIGNAL_MASK define
4595  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4596
4597  st->print("%s: ", os::exception_name(sig, buf, buflen));
4598
4599  address handler = (sa.sa_flags & SA_SIGINFO)
4600    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4601    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4602
4603  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4604    st->print("SIG_DFL");
4605  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4606    st->print("SIG_IGN");
4607  } else {
4608    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4609  }
4610
4611  st->print(", sa_mask[0]=");
4612  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4613
4614  address rh = VMError::get_resetted_sighandler(sig);
4615  // May be, handler was resetted by VMError?
4616  if (rh != NULL) {
4617    handler = rh;
4618    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4619  }
4620
4621  st->print(", sa_flags=");
4622  os::Posix::print_sa_flags(st, sa.sa_flags);
4623
4624  // Check: is it our handler?
4625  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4626      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4627    // It is our signal handler
4628    // check for flags, reset system-used one!
4629    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4630      st->print(
4631                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4632                os::Linux::get_our_sigflags(sig));
4633    }
4634  }
4635  st->cr();
4636}
4637
4638
4639#define DO_SIGNAL_CHECK(sig)                      \
4640  do {                                            \
4641    if (!sigismember(&check_signal_done, sig)) {  \
4642      os::Linux::check_signal_handler(sig);       \
4643    }                                             \
4644  } while (0)
4645
4646// This method is a periodic task to check for misbehaving JNI applications
4647// under CheckJNI, we can add any periodic checks here
4648
4649void os::run_periodic_checks() {
4650  if (check_signals == false) return;
4651
4652  // SEGV and BUS if overridden could potentially prevent
4653  // generation of hs*.log in the event of a crash, debugging
4654  // such a case can be very challenging, so we absolutely
4655  // check the following for a good measure:
4656  DO_SIGNAL_CHECK(SIGSEGV);
4657  DO_SIGNAL_CHECK(SIGILL);
4658  DO_SIGNAL_CHECK(SIGFPE);
4659  DO_SIGNAL_CHECK(SIGBUS);
4660  DO_SIGNAL_CHECK(SIGPIPE);
4661  DO_SIGNAL_CHECK(SIGXFSZ);
4662#if defined(PPC64)
4663  DO_SIGNAL_CHECK(SIGTRAP);
4664#endif
4665
4666  // ReduceSignalUsage allows the user to override these handlers
4667  // see comments at the very top and jvm_solaris.h
4668  if (!ReduceSignalUsage) {
4669    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4670    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4671    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4672    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4673  }
4674
4675  DO_SIGNAL_CHECK(SR_signum);
4676}
4677
4678typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4679
4680static os_sigaction_t os_sigaction = NULL;
4681
4682void os::Linux::check_signal_handler(int sig) {
4683  char buf[O_BUFLEN];
4684  address jvmHandler = NULL;
4685
4686
4687  struct sigaction act;
4688  if (os_sigaction == NULL) {
4689    // only trust the default sigaction, in case it has been interposed
4690    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4691    if (os_sigaction == NULL) return;
4692  }
4693
4694  os_sigaction(sig, (struct sigaction*)NULL, &act);
4695
4696
4697  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4698
4699  address thisHandler = (act.sa_flags & SA_SIGINFO)
4700    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4701    : CAST_FROM_FN_PTR(address, act.sa_handler);
4702
4703
4704  switch (sig) {
4705  case SIGSEGV:
4706  case SIGBUS:
4707  case SIGFPE:
4708  case SIGPIPE:
4709  case SIGILL:
4710  case SIGXFSZ:
4711    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4712    break;
4713
4714  case SHUTDOWN1_SIGNAL:
4715  case SHUTDOWN2_SIGNAL:
4716  case SHUTDOWN3_SIGNAL:
4717  case BREAK_SIGNAL:
4718    jvmHandler = (address)user_handler();
4719    break;
4720
4721  default:
4722    if (sig == SR_signum) {
4723      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4724    } else {
4725      return;
4726    }
4727    break;
4728  }
4729
4730  if (thisHandler != jvmHandler) {
4731    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4732    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4733    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4734    // No need to check this sig any longer
4735    sigaddset(&check_signal_done, sig);
4736    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4737    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4738      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4739                    exception_name(sig, buf, O_BUFLEN));
4740    }
4741  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4742    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4743    tty->print("expected:");
4744    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4745    tty->cr();
4746    tty->print("  found:");
4747    os::Posix::print_sa_flags(tty, act.sa_flags);
4748    tty->cr();
4749    // No need to check this sig any longer
4750    sigaddset(&check_signal_done, sig);
4751  }
4752
4753  // Dump all the signal
4754  if (sigismember(&check_signal_done, sig)) {
4755    print_signal_handlers(tty, buf, O_BUFLEN);
4756  }
4757}
4758
4759extern void report_error(char* file_name, int line_no, char* title,
4760                         char* format, ...);
4761
4762// this is called _before_ the most of global arguments have been parsed
4763void os::init(void) {
4764  char dummy;   // used to get a guess on initial stack address
4765//  first_hrtime = gethrtime();
4766
4767  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4768
4769  init_random(1234567);
4770
4771  ThreadCritical::initialize();
4772
4773  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4774  if (Linux::page_size() == -1) {
4775    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4776          os::strerror(errno));
4777  }
4778  init_page_sizes((size_t) Linux::page_size());
4779
4780  Linux::initialize_system_info();
4781
4782  Linux::initialize_os_info();
4783
4784  // main_thread points to the aboriginal thread
4785  Linux::_main_thread = pthread_self();
4786
4787  Linux::clock_init();
4788  initial_time_count = javaTimeNanos();
4789
4790  // retrieve entry point for pthread_setname_np
4791  Linux::_pthread_setname_np =
4792    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4793
4794  os::Posix::init();
4795}
4796
4797// To install functions for atexit system call
4798extern "C" {
4799  static void perfMemory_exit_helper() {
4800    perfMemory_exit();
4801  }
4802}
4803
4804// this is called _after_ the global arguments have been parsed
4805jint os::init_2(void) {
4806
4807  os::Posix::init_2();
4808
4809  Linux::fast_thread_clock_init();
4810
4811  // Allocate a single page and mark it as readable for safepoint polling
4812  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4813  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4814
4815  os::set_polling_page(polling_page);
4816  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4817
4818  if (!UseMembar) {
4819    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4820    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4821    os::set_memory_serialize_page(mem_serialize_page);
4822    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4823  }
4824
4825  // initialize suspend/resume support - must do this before signal_sets_init()
4826  if (SR_initialize() != 0) {
4827    perror("SR_initialize failed");
4828    return JNI_ERR;
4829  }
4830
4831  Linux::signal_sets_init();
4832  Linux::install_signal_handlers();
4833
4834  // Check and sets minimum stack sizes against command line options
4835  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4836    return JNI_ERR;
4837  }
4838  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4839
4840#if defined(IA32)
4841  workaround_expand_exec_shield_cs_limit();
4842#endif
4843
4844  Linux::libpthread_init();
4845  Linux::sched_getcpu_init();
4846  log_info(os)("HotSpot is running with %s, %s",
4847               Linux::glibc_version(), Linux::libpthread_version());
4848
4849  if (UseNUMA) {
4850    if (!Linux::libnuma_init()) {
4851      UseNUMA = false;
4852    } else {
4853      if ((Linux::numa_max_node() < 1)) {
4854        // There's only one node(they start from 0), disable NUMA.
4855        UseNUMA = false;
4856      }
4857    }
4858    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4859    // we can make the adaptive lgrp chunk resizing work. If the user specified
4860    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4861    // disable adaptive resizing.
4862    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4863      if (FLAG_IS_DEFAULT(UseNUMA)) {
4864        UseNUMA = false;
4865      } else {
4866        if (FLAG_IS_DEFAULT(UseLargePages) &&
4867            FLAG_IS_DEFAULT(UseSHM) &&
4868            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4869          UseLargePages = false;
4870        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4871          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4872          UseAdaptiveSizePolicy = false;
4873          UseAdaptiveNUMAChunkSizing = false;
4874        }
4875      }
4876    }
4877    if (!UseNUMA && ForceNUMA) {
4878      UseNUMA = true;
4879    }
4880  }
4881
4882  if (MaxFDLimit) {
4883    // set the number of file descriptors to max. print out error
4884    // if getrlimit/setrlimit fails but continue regardless.
4885    struct rlimit nbr_files;
4886    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4887    if (status != 0) {
4888      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4889    } else {
4890      nbr_files.rlim_cur = nbr_files.rlim_max;
4891      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4892      if (status != 0) {
4893        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4894      }
4895    }
4896  }
4897
4898  // Initialize lock used to serialize thread creation (see os::create_thread)
4899  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4900
4901  // at-exit methods are called in the reverse order of their registration.
4902  // atexit functions are called on return from main or as a result of a
4903  // call to exit(3C). There can be only 32 of these functions registered
4904  // and atexit() does not set errno.
4905
4906  if (PerfAllowAtExitRegistration) {
4907    // only register atexit functions if PerfAllowAtExitRegistration is set.
4908    // atexit functions can be delayed until process exit time, which
4909    // can be problematic for embedded VM situations. Embedded VMs should
4910    // call DestroyJavaVM() to assure that VM resources are released.
4911
4912    // note: perfMemory_exit_helper atexit function may be removed in
4913    // the future if the appropriate cleanup code can be added to the
4914    // VM_Exit VMOperation's doit method.
4915    if (atexit(perfMemory_exit_helper) != 0) {
4916      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4917    }
4918  }
4919
4920  // initialize thread priority policy
4921  prio_init();
4922
4923  return JNI_OK;
4924}
4925
4926// Mark the polling page as unreadable
4927void os::make_polling_page_unreadable(void) {
4928  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4929    fatal("Could not disable polling page");
4930  }
4931}
4932
4933// Mark the polling page as readable
4934void os::make_polling_page_readable(void) {
4935  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4936    fatal("Could not enable polling page");
4937  }
4938}
4939
4940// older glibc versions don't have this macro (which expands to
4941// an optimized bit-counting function) so we have to roll our own
4942#ifndef CPU_COUNT
4943
4944static int _cpu_count(const cpu_set_t* cpus) {
4945  int count = 0;
4946  // only look up to the number of configured processors
4947  for (int i = 0; i < os::processor_count(); i++) {
4948    if (CPU_ISSET(i, cpus)) {
4949      count++;
4950    }
4951  }
4952  return count;
4953}
4954
4955#define CPU_COUNT(cpus) _cpu_count(cpus)
4956
4957#endif // CPU_COUNT
4958
4959// Get the current number of available processors for this process.
4960// This value can change at any time during a process's lifetime.
4961// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4962// If it appears there may be more than 1024 processors then we do a
4963// dynamic check - see 6515172 for details.
4964// If anything goes wrong we fallback to returning the number of online
4965// processors - which can be greater than the number available to the process.
4966int os::active_processor_count() {
4967  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4968  cpu_set_t* cpus_p = &cpus;
4969  int cpus_size = sizeof(cpu_set_t);
4970
4971  int configured_cpus = processor_count();  // upper bound on available cpus
4972  int cpu_count = 0;
4973
4974// old build platforms may not support dynamic cpu sets
4975#ifdef CPU_ALLOC
4976
4977  // To enable easy testing of the dynamic path on different platforms we
4978  // introduce a diagnostic flag: UseCpuAllocPath
4979  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4980    // kernel may use a mask bigger than cpu_set_t
4981    log_trace(os)("active_processor_count: using dynamic path %s"
4982                  "- configured processors: %d",
4983                  UseCpuAllocPath ? "(forced) " : "",
4984                  configured_cpus);
4985    cpus_p = CPU_ALLOC(configured_cpus);
4986    if (cpus_p != NULL) {
4987      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4988      // zero it just to be safe
4989      CPU_ZERO_S(cpus_size, cpus_p);
4990    }
4991    else {
4992       // failed to allocate so fallback to online cpus
4993       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4994       log_trace(os)("active_processor_count: "
4995                     "CPU_ALLOC failed (%s) - using "
4996                     "online processor count: %d",
4997                     os::strerror(errno), online_cpus);
4998       return online_cpus;
4999    }
5000  }
5001  else {
5002    log_trace(os)("active_processor_count: using static path - configured processors: %d",
5003                  configured_cpus);
5004  }
5005#else // CPU_ALLOC
5006// these stubs won't be executed
5007#define CPU_COUNT_S(size, cpus) -1
5008#define CPU_FREE(cpus)
5009
5010  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5011                configured_cpus);
5012#endif // CPU_ALLOC
5013
5014  // pid 0 means the current thread - which we have to assume represents the process
5015  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5016    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5017      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5018    }
5019    else {
5020      cpu_count = CPU_COUNT(cpus_p);
5021    }
5022    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5023  }
5024  else {
5025    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5026    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5027            "which may exceed available processors", os::strerror(errno), cpu_count);
5028  }
5029
5030  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5031    CPU_FREE(cpus_p);
5032  }
5033
5034  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5035  return cpu_count;
5036}
5037
5038void os::set_native_thread_name(const char *name) {
5039  if (Linux::_pthread_setname_np) {
5040    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5041    snprintf(buf, sizeof(buf), "%s", name);
5042    buf[sizeof(buf) - 1] = '\0';
5043    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5044    // ERANGE should not happen; all other errors should just be ignored.
5045    assert(rc != ERANGE, "pthread_setname_np failed");
5046  }
5047}
5048
5049bool os::distribute_processes(uint length, uint* distribution) {
5050  // Not yet implemented.
5051  return false;
5052}
5053
5054bool os::bind_to_processor(uint processor_id) {
5055  // Not yet implemented.
5056  return false;
5057}
5058
5059///
5060
5061void os::SuspendedThreadTask::internal_do_task() {
5062  if (do_suspend(_thread->osthread())) {
5063    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5064    do_task(context);
5065    do_resume(_thread->osthread());
5066  }
5067}
5068
5069////////////////////////////////////////////////////////////////////////////////
5070// debug support
5071
5072bool os::find(address addr, outputStream* st) {
5073  Dl_info dlinfo;
5074  memset(&dlinfo, 0, sizeof(dlinfo));
5075  if (dladdr(addr, &dlinfo) != 0) {
5076    st->print(PTR_FORMAT ": ", p2i(addr));
5077    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5078      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5079                p2i(addr) - p2i(dlinfo.dli_saddr));
5080    } else if (dlinfo.dli_fbase != NULL) {
5081      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5082    } else {
5083      st->print("<absolute address>");
5084    }
5085    if (dlinfo.dli_fname != NULL) {
5086      st->print(" in %s", dlinfo.dli_fname);
5087    }
5088    if (dlinfo.dli_fbase != NULL) {
5089      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5090    }
5091    st->cr();
5092
5093    if (Verbose) {
5094      // decode some bytes around the PC
5095      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5096      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5097      address       lowest = (address) dlinfo.dli_sname;
5098      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5099      if (begin < lowest)  begin = lowest;
5100      Dl_info dlinfo2;
5101      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5102          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5103        end = (address) dlinfo2.dli_saddr;
5104      }
5105      Disassembler::decode(begin, end, st);
5106    }
5107    return true;
5108  }
5109  return false;
5110}
5111
5112////////////////////////////////////////////////////////////////////////////////
5113// misc
5114
5115// This does not do anything on Linux. This is basically a hook for being
5116// able to use structured exception handling (thread-local exception filters)
5117// on, e.g., Win32.
5118void
5119os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5120                         JavaCallArguments* args, Thread* thread) {
5121  f(value, method, args, thread);
5122}
5123
5124void os::print_statistics() {
5125}
5126
5127bool os::message_box(const char* title, const char* message) {
5128  int i;
5129  fdStream err(defaultStream::error_fd());
5130  for (i = 0; i < 78; i++) err.print_raw("=");
5131  err.cr();
5132  err.print_raw_cr(title);
5133  for (i = 0; i < 78; i++) err.print_raw("-");
5134  err.cr();
5135  err.print_raw_cr(message);
5136  for (i = 0; i < 78; i++) err.print_raw("=");
5137  err.cr();
5138
5139  char buf[16];
5140  // Prevent process from exiting upon "read error" without consuming all CPU
5141  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5142
5143  return buf[0] == 'y' || buf[0] == 'Y';
5144}
5145
5146int os::stat(const char *path, struct stat *sbuf) {
5147  char pathbuf[MAX_PATH];
5148  if (strlen(path) > MAX_PATH - 1) {
5149    errno = ENAMETOOLONG;
5150    return -1;
5151  }
5152  os::native_path(strcpy(pathbuf, path));
5153  return ::stat(pathbuf, sbuf);
5154}
5155
5156// Is a (classpath) directory empty?
5157bool os::dir_is_empty(const char* path) {
5158  DIR *dir = NULL;
5159  struct dirent *ptr;
5160
5161  dir = opendir(path);
5162  if (dir == NULL) return true;
5163
5164  // Scan the directory
5165  bool result = true;
5166  char buf[sizeof(struct dirent) + MAX_PATH];
5167  while (result && (ptr = ::readdir(dir)) != NULL) {
5168    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5169      result = false;
5170    }
5171  }
5172  closedir(dir);
5173  return result;
5174}
5175
5176// This code originates from JDK's sysOpen and open64_w
5177// from src/solaris/hpi/src/system_md.c
5178
5179int os::open(const char *path, int oflag, int mode) {
5180  if (strlen(path) > MAX_PATH - 1) {
5181    errno = ENAMETOOLONG;
5182    return -1;
5183  }
5184
5185  // All file descriptors that are opened in the Java process and not
5186  // specifically destined for a subprocess should have the close-on-exec
5187  // flag set.  If we don't set it, then careless 3rd party native code
5188  // might fork and exec without closing all appropriate file descriptors
5189  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5190  // turn might:
5191  //
5192  // - cause end-of-file to fail to be detected on some file
5193  //   descriptors, resulting in mysterious hangs, or
5194  //
5195  // - might cause an fopen in the subprocess to fail on a system
5196  //   suffering from bug 1085341.
5197  //
5198  // (Yes, the default setting of the close-on-exec flag is a Unix
5199  // design flaw)
5200  //
5201  // See:
5202  // 1085341: 32-bit stdio routines should support file descriptors >255
5203  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5204  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5205  //
5206  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5207  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5208  // because it saves a system call and removes a small window where the flag
5209  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5210  // and we fall back to using FD_CLOEXEC (see below).
5211#ifdef O_CLOEXEC
5212  oflag |= O_CLOEXEC;
5213#endif
5214
5215  int fd = ::open64(path, oflag, mode);
5216  if (fd == -1) return -1;
5217
5218  //If the open succeeded, the file might still be a directory
5219  {
5220    struct stat64 buf64;
5221    int ret = ::fstat64(fd, &buf64);
5222    int st_mode = buf64.st_mode;
5223
5224    if (ret != -1) {
5225      if ((st_mode & S_IFMT) == S_IFDIR) {
5226        errno = EISDIR;
5227        ::close(fd);
5228        return -1;
5229      }
5230    } else {
5231      ::close(fd);
5232      return -1;
5233    }
5234  }
5235
5236#ifdef FD_CLOEXEC
5237  // Validate that the use of the O_CLOEXEC flag on open above worked.
5238  // With recent kernels, we will perform this check exactly once.
5239  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5240  if (!O_CLOEXEC_is_known_to_work) {
5241    int flags = ::fcntl(fd, F_GETFD);
5242    if (flags != -1) {
5243      if ((flags & FD_CLOEXEC) != 0)
5244        O_CLOEXEC_is_known_to_work = 1;
5245      else
5246        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5247    }
5248  }
5249#endif
5250
5251  return fd;
5252}
5253
5254
5255// create binary file, rewriting existing file if required
5256int os::create_binary_file(const char* path, bool rewrite_existing) {
5257  int oflags = O_WRONLY | O_CREAT;
5258  if (!rewrite_existing) {
5259    oflags |= O_EXCL;
5260  }
5261  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5262}
5263
5264// return current position of file pointer
5265jlong os::current_file_offset(int fd) {
5266  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5267}
5268
5269// move file pointer to the specified offset
5270jlong os::seek_to_file_offset(int fd, jlong offset) {
5271  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5272}
5273
5274// This code originates from JDK's sysAvailable
5275// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5276
5277int os::available(int fd, jlong *bytes) {
5278  jlong cur, end;
5279  int mode;
5280  struct stat64 buf64;
5281
5282  if (::fstat64(fd, &buf64) >= 0) {
5283    mode = buf64.st_mode;
5284    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5285      int n;
5286      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5287        *bytes = n;
5288        return 1;
5289      }
5290    }
5291  }
5292  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5293    return 0;
5294  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5295    return 0;
5296  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5297    return 0;
5298  }
5299  *bytes = end - cur;
5300  return 1;
5301}
5302
5303// Map a block of memory.
5304char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5305                        char *addr, size_t bytes, bool read_only,
5306                        bool allow_exec) {
5307  int prot;
5308  int flags = MAP_PRIVATE;
5309
5310  if (read_only) {
5311    prot = PROT_READ;
5312  } else {
5313    prot = PROT_READ | PROT_WRITE;
5314  }
5315
5316  if (allow_exec) {
5317    prot |= PROT_EXEC;
5318  }
5319
5320  if (addr != NULL) {
5321    flags |= MAP_FIXED;
5322  }
5323
5324  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5325                                     fd, file_offset);
5326  if (mapped_address == MAP_FAILED) {
5327    return NULL;
5328  }
5329  return mapped_address;
5330}
5331
5332
5333// Remap a block of memory.
5334char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5335                          char *addr, size_t bytes, bool read_only,
5336                          bool allow_exec) {
5337  // same as map_memory() on this OS
5338  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5339                        allow_exec);
5340}
5341
5342
5343// Unmap a block of memory.
5344bool os::pd_unmap_memory(char* addr, size_t bytes) {
5345  return munmap(addr, bytes) == 0;
5346}
5347
5348static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5349
5350static clockid_t thread_cpu_clockid(Thread* thread) {
5351  pthread_t tid = thread->osthread()->pthread_id();
5352  clockid_t clockid;
5353
5354  // Get thread clockid
5355  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5356  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5357  return clockid;
5358}
5359
5360// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5361// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5362// of a thread.
5363//
5364// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5365// the fast estimate available on the platform.
5366
5367jlong os::current_thread_cpu_time() {
5368  if (os::Linux::supports_fast_thread_cpu_time()) {
5369    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5370  } else {
5371    // return user + sys since the cost is the same
5372    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5373  }
5374}
5375
5376jlong os::thread_cpu_time(Thread* thread) {
5377  // consistent with what current_thread_cpu_time() returns
5378  if (os::Linux::supports_fast_thread_cpu_time()) {
5379    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5380  } else {
5381    return slow_thread_cpu_time(thread, true /* user + sys */);
5382  }
5383}
5384
5385jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5386  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5387    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5388  } else {
5389    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5390  }
5391}
5392
5393jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5394  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5395    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5396  } else {
5397    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5398  }
5399}
5400
5401//  -1 on error.
5402static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5403  pid_t  tid = thread->osthread()->thread_id();
5404  char *s;
5405  char stat[2048];
5406  int statlen;
5407  char proc_name[64];
5408  int count;
5409  long sys_time, user_time;
5410  char cdummy;
5411  int idummy;
5412  long ldummy;
5413  FILE *fp;
5414
5415  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5416  fp = fopen(proc_name, "r");
5417  if (fp == NULL) return -1;
5418  statlen = fread(stat, 1, 2047, fp);
5419  stat[statlen] = '\0';
5420  fclose(fp);
5421
5422  // Skip pid and the command string. Note that we could be dealing with
5423  // weird command names, e.g. user could decide to rename java launcher
5424  // to "java 1.4.2 :)", then the stat file would look like
5425  //                1234 (java 1.4.2 :)) R ... ...
5426  // We don't really need to know the command string, just find the last
5427  // occurrence of ")" and then start parsing from there. See bug 4726580.
5428  s = strrchr(stat, ')');
5429  if (s == NULL) return -1;
5430
5431  // Skip blank chars
5432  do { s++; } while (s && isspace(*s));
5433
5434  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5435                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5436                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5437                 &user_time, &sys_time);
5438  if (count != 13) return -1;
5439  if (user_sys_cpu_time) {
5440    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5441  } else {
5442    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5443  }
5444}
5445
5446void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5447  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5448  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5449  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5450  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5451}
5452
5453void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5454  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5455  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5456  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5457  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5458}
5459
5460bool os::is_thread_cpu_time_supported() {
5461  return true;
5462}
5463
5464// System loadavg support.  Returns -1 if load average cannot be obtained.
5465// Linux doesn't yet have a (official) notion of processor sets,
5466// so just return the system wide load average.
5467int os::loadavg(double loadavg[], int nelem) {
5468  return ::getloadavg(loadavg, nelem);
5469}
5470
5471void os::pause() {
5472  char filename[MAX_PATH];
5473  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5474    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5475  } else {
5476    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5477  }
5478
5479  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5480  if (fd != -1) {
5481    struct stat buf;
5482    ::close(fd);
5483    while (::stat(filename, &buf) == 0) {
5484      (void)::poll(NULL, 0, 100);
5485    }
5486  } else {
5487    jio_fprintf(stderr,
5488                "Could not open pause file '%s', continuing immediately.\n", filename);
5489  }
5490}
5491
5492extern char** environ;
5493
5494// Run the specified command in a separate process. Return its exit value,
5495// or -1 on failure (e.g. can't fork a new process).
5496// Unlike system(), this function can be called from signal handler. It
5497// doesn't block SIGINT et al.
5498int os::fork_and_exec(char* cmd) {
5499  const char * argv[4] = {"sh", "-c", cmd, NULL};
5500
5501  pid_t pid = fork();
5502
5503  if (pid < 0) {
5504    // fork failed
5505    return -1;
5506
5507  } else if (pid == 0) {
5508    // child process
5509
5510    execve("/bin/sh", (char* const*)argv, environ);
5511
5512    // execve failed
5513    _exit(-1);
5514
5515  } else  {
5516    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5517    // care about the actual exit code, for now.
5518
5519    int status;
5520
5521    // Wait for the child process to exit.  This returns immediately if
5522    // the child has already exited. */
5523    while (waitpid(pid, &status, 0) < 0) {
5524      switch (errno) {
5525      case ECHILD: return 0;
5526      case EINTR: break;
5527      default: return -1;
5528      }
5529    }
5530
5531    if (WIFEXITED(status)) {
5532      // The child exited normally; get its exit code.
5533      return WEXITSTATUS(status);
5534    } else if (WIFSIGNALED(status)) {
5535      // The child exited because of a signal
5536      // The best value to return is 0x80 + signal number,
5537      // because that is what all Unix shells do, and because
5538      // it allows callers to distinguish between process exit and
5539      // process death by signal.
5540      return 0x80 + WTERMSIG(status);
5541    } else {
5542      // Unknown exit code; pass it through
5543      return status;
5544    }
5545  }
5546}
5547
5548// is_headless_jre()
5549//
5550// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5551// in order to report if we are running in a headless jre
5552//
5553// Since JDK8 xawt/libmawt.so was moved into the same directory
5554// as libawt.so, and renamed libawt_xawt.so
5555//
5556bool os::is_headless_jre() {
5557  struct stat statbuf;
5558  char buf[MAXPATHLEN];
5559  char libmawtpath[MAXPATHLEN];
5560  const char *xawtstr  = "/xawt/libmawt.so";
5561  const char *new_xawtstr = "/libawt_xawt.so";
5562  char *p;
5563
5564  // Get path to libjvm.so
5565  os::jvm_path(buf, sizeof(buf));
5566
5567  // Get rid of libjvm.so
5568  p = strrchr(buf, '/');
5569  if (p == NULL) {
5570    return false;
5571  } else {
5572    *p = '\0';
5573  }
5574
5575  // Get rid of client or server
5576  p = strrchr(buf, '/');
5577  if (p == NULL) {
5578    return false;
5579  } else {
5580    *p = '\0';
5581  }
5582
5583  // check xawt/libmawt.so
5584  strcpy(libmawtpath, buf);
5585  strcat(libmawtpath, xawtstr);
5586  if (::stat(libmawtpath, &statbuf) == 0) return false;
5587
5588  // check libawt_xawt.so
5589  strcpy(libmawtpath, buf);
5590  strcat(libmawtpath, new_xawtstr);
5591  if (::stat(libmawtpath, &statbuf) == 0) return false;
5592
5593  return true;
5594}
5595
5596// Get the default path to the core file
5597// Returns the length of the string
5598int os::get_core_path(char* buffer, size_t bufferSize) {
5599  /*
5600   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5601   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5602   */
5603  const int core_pattern_len = 129;
5604  char core_pattern[core_pattern_len] = {0};
5605
5606  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5607  if (core_pattern_file == -1) {
5608    return -1;
5609  }
5610
5611  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5612  ::close(core_pattern_file);
5613  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5614    return -1;
5615  }
5616  if (core_pattern[ret-1] == '\n') {
5617    core_pattern[ret-1] = '\0';
5618  } else {
5619    core_pattern[ret] = '\0';
5620  }
5621
5622  char *pid_pos = strstr(core_pattern, "%p");
5623  int written;
5624
5625  if (core_pattern[0] == '/') {
5626    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5627  } else {
5628    char cwd[PATH_MAX];
5629
5630    const char* p = get_current_directory(cwd, PATH_MAX);
5631    if (p == NULL) {
5632      return -1;
5633    }
5634
5635    if (core_pattern[0] == '|') {
5636      written = jio_snprintf(buffer, bufferSize,
5637                             "\"%s\" (or dumping to %s/core.%d)",
5638                             &core_pattern[1], p, current_process_id());
5639    } else {
5640      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5641    }
5642  }
5643
5644  if (written < 0) {
5645    return -1;
5646  }
5647
5648  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5649    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5650
5651    if (core_uses_pid_file != -1) {
5652      char core_uses_pid = 0;
5653      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5654      ::close(core_uses_pid_file);
5655
5656      if (core_uses_pid == '1') {
5657        jio_snprintf(buffer + written, bufferSize - written,
5658                                          ".%d", current_process_id());
5659      }
5660    }
5661  }
5662
5663  return strlen(buffer);
5664}
5665
5666bool os::start_debugging(char *buf, int buflen) {
5667  int len = (int)strlen(buf);
5668  char *p = &buf[len];
5669
5670  jio_snprintf(p, buflen-len,
5671               "\n\n"
5672               "Do you want to debug the problem?\n\n"
5673               "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5674               "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5675               "Otherwise, press RETURN to abort...",
5676               os::current_process_id(), os::current_process_id(),
5677               os::current_thread_id(), os::current_thread_id());
5678
5679  bool yes = os::message_box("Unexpected Error", buf);
5680
5681  if (yes) {
5682    // yes, user asked VM to launch debugger
5683    jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5684                 os::current_process_id(), os::current_process_id());
5685
5686    os::fork_and_exec(buf);
5687    yes = false;
5688  }
5689  return yes;
5690}
5691
5692
5693// Java/Compiler thread:
5694//
5695//   Low memory addresses
5696// P0 +------------------------+
5697//    |                        |\  Java thread created by VM does not have glibc
5698//    |    glibc guard page    | - guard page, attached Java thread usually has
5699//    |                        |/  1 glibc guard page.
5700// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5701//    |                        |\
5702//    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5703//    |                        |/
5704//    +------------------------+ JavaThread::stack_reserved_zone_base()
5705//    |                        |\
5706//    |      Normal Stack      | -
5707//    |                        |/
5708// P2 +------------------------+ Thread::stack_base()
5709//
5710// Non-Java thread:
5711//
5712//   Low memory addresses
5713// P0 +------------------------+
5714//    |                        |\
5715//    |  glibc guard page      | - usually 1 page
5716//    |                        |/
5717// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5718//    |                        |\
5719//    |      Normal Stack      | -
5720//    |                        |/
5721// P2 +------------------------+ Thread::stack_base()
5722//
5723// ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5724//    returned from pthread_attr_getstack().
5725// ** Due to NPTL implementation error, linux takes the glibc guard page out
5726//    of the stack size given in pthread_attr. We work around this for
5727//    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5728//
5729#ifndef ZERO
5730static void current_stack_region(address * bottom, size_t * size) {
5731  if (os::Linux::is_initial_thread()) {
5732    // initial thread needs special handling because pthread_getattr_np()
5733    // may return bogus value.
5734    *bottom = os::Linux::initial_thread_stack_bottom();
5735    *size   = os::Linux::initial_thread_stack_size();
5736  } else {
5737    pthread_attr_t attr;
5738
5739    int rslt = pthread_getattr_np(pthread_self(), &attr);
5740
5741    // JVM needs to know exact stack location, abort if it fails
5742    if (rslt != 0) {
5743      if (rslt == ENOMEM) {
5744        vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5745      } else {
5746        fatal("pthread_getattr_np failed with error = %d", rslt);
5747      }
5748    }
5749
5750    if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5751      fatal("Cannot locate current stack attributes!");
5752    }
5753
5754    // Work around NPTL stack guard error.
5755    size_t guard_size = 0;
5756    rslt = pthread_attr_getguardsize(&attr, &guard_size);
5757    if (rslt != 0) {
5758      fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5759    }
5760    *bottom += guard_size;
5761    *size   -= guard_size;
5762
5763    pthread_attr_destroy(&attr);
5764
5765  }
5766  assert(os::current_stack_pointer() >= *bottom &&
5767         os::current_stack_pointer() < *bottom + *size, "just checking");
5768}
5769
5770address os::current_stack_base() {
5771  address bottom;
5772  size_t size;
5773  current_stack_region(&bottom, &size);
5774  return (bottom + size);
5775}
5776
5777size_t os::current_stack_size() {
5778  // This stack size includes the usable stack and HotSpot guard pages
5779  // (for the threads that have Hotspot guard pages).
5780  address bottom;
5781  size_t size;
5782  current_stack_region(&bottom, &size);
5783  return size;
5784}
5785#endif
5786
5787static inline struct timespec get_mtime(const char* filename) {
5788  struct stat st;
5789  int ret = os::stat(filename, &st);
5790  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5791  return st.st_mtim;
5792}
5793
5794int os::compare_file_modified_times(const char* file1, const char* file2) {
5795  struct timespec filetime1 = get_mtime(file1);
5796  struct timespec filetime2 = get_mtime(file2);
5797  int diff = filetime1.tv_sec - filetime2.tv_sec;
5798  if (diff == 0) {
5799    return filetime1.tv_nsec - filetime2.tv_nsec;
5800  }
5801  return diff;
5802}
5803
5804/////////////// Unit tests ///////////////
5805
5806#ifndef PRODUCT
5807
5808#define test_log(...)              \
5809  do {                             \
5810    if (VerboseInternalVMTests) {  \
5811      tty->print_cr(__VA_ARGS__);  \
5812      tty->flush();                \
5813    }                              \
5814  } while (false)
5815
5816class TestReserveMemorySpecial : AllStatic {
5817 public:
5818  static void small_page_write(void* addr, size_t size) {
5819    size_t page_size = os::vm_page_size();
5820
5821    char* end = (char*)addr + size;
5822    for (char* p = (char*)addr; p < end; p += page_size) {
5823      *p = 1;
5824    }
5825  }
5826
5827  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5828    if (!UseHugeTLBFS) {
5829      return;
5830    }
5831
5832    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5833
5834    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5835
5836    if (addr != NULL) {
5837      small_page_write(addr, size);
5838
5839      os::Linux::release_memory_special_huge_tlbfs(addr, size);
5840    }
5841  }
5842
5843  static void test_reserve_memory_special_huge_tlbfs_only() {
5844    if (!UseHugeTLBFS) {
5845      return;
5846    }
5847
5848    size_t lp = os::large_page_size();
5849
5850    for (size_t size = lp; size <= lp * 10; size += lp) {
5851      test_reserve_memory_special_huge_tlbfs_only(size);
5852    }
5853  }
5854
5855  static void test_reserve_memory_special_huge_tlbfs_mixed() {
5856    size_t lp = os::large_page_size();
5857    size_t ag = os::vm_allocation_granularity();
5858
5859    // sizes to test
5860    const size_t sizes[] = {
5861      lp, lp + ag, lp + lp / 2, lp * 2,
5862      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5863      lp * 10, lp * 10 + lp / 2
5864    };
5865    const int num_sizes = sizeof(sizes) / sizeof(size_t);
5866
5867    // For each size/alignment combination, we test three scenarios:
5868    // 1) with req_addr == NULL
5869    // 2) with a non-null req_addr at which we expect to successfully allocate
5870    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5871    //    expect the allocation to either fail or to ignore req_addr
5872
5873    // Pre-allocate two areas; they shall be as large as the largest allocation
5874    //  and aligned to the largest alignment we will be testing.
5875    const size_t mapping_size = sizes[num_sizes - 1] * 2;
5876    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5877      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5878      -1, 0);
5879    assert(mapping1 != MAP_FAILED, "should work");
5880
5881    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5882      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5883      -1, 0);
5884    assert(mapping2 != MAP_FAILED, "should work");
5885
5886    // Unmap the first mapping, but leave the second mapping intact: the first
5887    // mapping will serve as a value for a "good" req_addr (case 2). The second
5888    // mapping, still intact, as "bad" req_addr (case 3).
5889    ::munmap(mapping1, mapping_size);
5890
5891    // Case 1
5892    test_log("%s, req_addr NULL:", __FUNCTION__);
5893    test_log("size            align           result");
5894
5895    for (int i = 0; i < num_sizes; i++) {
5896      const size_t size = sizes[i];
5897      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5898        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5899        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5900                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5901        if (p != NULL) {
5902          assert(is_aligned(p, alignment), "must be");
5903          small_page_write(p, size);
5904          os::Linux::release_memory_special_huge_tlbfs(p, size);
5905        }
5906      }
5907    }
5908
5909    // Case 2
5910    test_log("%s, req_addr non-NULL:", __FUNCTION__);
5911    test_log("size            align           req_addr         result");
5912
5913    for (int i = 0; i < num_sizes; i++) {
5914      const size_t size = sizes[i];
5915      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5916        char* const req_addr = align_up(mapping1, alignment);
5917        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5918        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5919                 size, alignment, p2i(req_addr), p2i(p),
5920                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5921        if (p != NULL) {
5922          assert(p == req_addr, "must be");
5923          small_page_write(p, size);
5924          os::Linux::release_memory_special_huge_tlbfs(p, size);
5925        }
5926      }
5927    }
5928
5929    // Case 3
5930    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5931    test_log("size            align           req_addr         result");
5932
5933    for (int i = 0; i < num_sizes; i++) {
5934      const size_t size = sizes[i];
5935      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5936        char* const req_addr = align_up(mapping2, alignment);
5937        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5938        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5939                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
5940        // as the area around req_addr contains already existing mappings, the API should always
5941        // return NULL (as per contract, it cannot return another address)
5942        assert(p == NULL, "must be");
5943      }
5944    }
5945
5946    ::munmap(mapping2, mapping_size);
5947
5948  }
5949
5950  static void test_reserve_memory_special_huge_tlbfs() {
5951    if (!UseHugeTLBFS) {
5952      return;
5953    }
5954
5955    test_reserve_memory_special_huge_tlbfs_only();
5956    test_reserve_memory_special_huge_tlbfs_mixed();
5957  }
5958
5959  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
5960    if (!UseSHM) {
5961      return;
5962    }
5963
5964    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
5965
5966    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
5967
5968    if (addr != NULL) {
5969      assert(is_aligned(addr, alignment), "Check");
5970      assert(is_aligned(addr, os::large_page_size()), "Check");
5971
5972      small_page_write(addr, size);
5973
5974      os::Linux::release_memory_special_shm(addr, size);
5975    }
5976  }
5977
5978  static void test_reserve_memory_special_shm() {
5979    size_t lp = os::large_page_size();
5980    size_t ag = os::vm_allocation_granularity();
5981
5982    for (size_t size = ag; size < lp * 3; size += ag) {
5983      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5984        test_reserve_memory_special_shm(size, alignment);
5985      }
5986    }
5987  }
5988
5989  static void test() {
5990    test_reserve_memory_special_huge_tlbfs();
5991    test_reserve_memory_special_shm();
5992  }
5993};
5994
5995void TestReserveMemorySpecial_test() {
5996  TestReserveMemorySpecial::test();
5997}
5998
5999#endif
6000