os_linux.cpp revision 13486:b9f8d262202d
11541Srgrimes/*
21541Srgrimes * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
31541Srgrimes * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
41541Srgrimes *
51541Srgrimes * This code is free software; you can redistribute it and/or modify it
61541Srgrimes * under the terms of the GNU General Public License version 2 only, as
71541Srgrimes * published by the Free Software Foundation.
81541Srgrimes *
91541Srgrimes * This code is distributed in the hope that it will be useful, but WITHOUT
101541Srgrimes * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
111541Srgrimes * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
121541Srgrimes * version 2 for more details (a copy is included in the LICENSE file that
131541Srgrimes * accompanied this code).
141541Srgrimes *
151541Srgrimes * You should have received a copy of the GNU General Public License version
161541Srgrimes * 2 along with this work; if not, write to the Free Software Foundation,
171541Srgrimes * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
181541Srgrimes *
191541Srgrimes * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
201541Srgrimes * or visit www.oracle.com if you need additional information or have any
211541Srgrimes * questions.
221541Srgrimes *
231541Srgrimes */
241541Srgrimes
251541Srgrimes// no precompiled headers
261541Srgrimes#include "classfile/classLoader.hpp"
271541Srgrimes#include "classfile/systemDictionary.hpp"
281541Srgrimes#include "classfile/vmSymbols.hpp"
291541Srgrimes#include "code/icBuffer.hpp"
301541Srgrimes#include "code/vtableStubs.hpp"
311541Srgrimes#include "compiler/compileBroker.hpp"
321541Srgrimes#include "compiler/disassembler.hpp"
331541Srgrimes#include "interpreter/interpreter.hpp"
341541Srgrimes#include "jvm_linux.h"
351541Srgrimes#include "logging/log.hpp"
361541Srgrimes#include "memory/allocation.inline.hpp"
371541Srgrimes#include "memory/filemap.hpp"
3814508Shsu#include "oops/oop.inline.hpp"
3927585Sbde#include "os_linux.inline.hpp"
401541Srgrimes#include "os_share_linux.hpp"
411541Srgrimes#include "prims/jniFastGetField.hpp"
422165Spaul#include "prims/jvm.h"
432865Sbde#include "prims/jvm_misc.hpp"
442165Spaul#include "runtime/arguments.hpp"
451549Srgrimes#include "runtime/atomic.hpp"
461549Srgrimes#include "runtime/extendedPC.hpp"
4718883Sbde#include "runtime/globals.hpp"
487090Sbde#include "runtime/interfaceSupport.hpp"
497090Sbde#include "runtime/init.hpp"
501541Srgrimes#include "runtime/java.hpp"
511541Srgrimes#include "runtime/javaCalls.hpp"
521541Srgrimes#include "runtime/mutexLocker.hpp"
531541Srgrimes#include "runtime/objectMonitor.hpp"
541541Srgrimes#include "runtime/orderAccess.inline.hpp"
551541Srgrimes#include "runtime/osThread.hpp"
568504Sdg#include "runtime/perfMemory.hpp"
571541Srgrimes#include "runtime/sharedRuntime.hpp"
581541Srgrimes#include "runtime/statSampler.hpp"
591541Srgrimes#include "runtime/stubRoutines.hpp"
601541Srgrimes#include "runtime/thread.inline.hpp"
611541Srgrimes#include "runtime/threadCritical.hpp"
621541Srgrimes#include "runtime/timer.hpp"
631541Srgrimes#include "semaphore_posix.hpp"
641541Srgrimes#include "services/attachListener.hpp"
651541Srgrimes#include "services/memTracker.hpp"
661541Srgrimes#include "services/runtimeService.hpp"
671541Srgrimes#include "utilities/align.hpp"
681541Srgrimes#include "utilities/decoder.hpp"
691541Srgrimes#include "utilities/defaultStream.hpp"
701541Srgrimes#include "utilities/events.hpp"
711541Srgrimes#include "utilities/elfFile.hpp"
721541Srgrimes#include "utilities/growableArray.hpp"
731541Srgrimes#include "utilities/macros.hpp"
741541Srgrimes#include "utilities/vmError.hpp"
751541Srgrimes
7615113Sbde// put OS-includes here
771541Srgrimes# include <sys/types.h>
781541Srgrimes# include <sys/mman.h>
791541Srgrimes# include <sys/stat.h>
801541Srgrimes# include <sys/select.h>
8116875Sbde# include <pthread.h>
821541Srgrimes# include <signal.h>
831541Srgrimes# include <errno.h>
8414508Shsu# include <dlfcn.h>
851541Srgrimes# include <stdio.h>
863304Sphk# include <unistd.h>
871541Srgrimes# include <sys/resource.h>
887612Sdg# include <pthread.h>
891541Srgrimes# include <sys/stat.h>
9018277Sbde# include <sys/time.h>
9118277Sbde# include <sys/times.h>
9217975Sbde# include <sys/utsname.h>
931541Srgrimes# include <sys/socket.h>
9415680Sgpalmer# include <sys/wait.h>
9518556Sbde# include <pwd.h>
9618556Sbde# include <poll.h>
971541Srgrimes# include <semaphore.h>
9813697Sgibbs# include <fcntl.h>
9913446Sphk# include <string.h>
1002112Swollman# include <syscall.h>
10118556Sbde# include <sys/sysinfo.h>
1021541Srgrimes# include <gnu/libc-version.h>
1031541Srgrimes# include <sys/ipc.h>
1048215Sdg# include <sys/shm.h>
1058215Sdg# include <link.h>
10613414Sphk# include <stdint.h>
1071541Srgrimes# include <inttypes.h>
1088215Sdg# include <sys/ioctl.h>
1098215Sdg
11013456Sbde#ifndef _GNU_SOURCE
11113456Sbde  #define _GNU_SOURCE
11213456Sbde  #include <sched.h>
11313456Sbde  #undef _GNU_SOURCE
11413456Sbde#else
11513456Sbde  #include <sched.h>
1161541Srgrimes#endif
11713456Sbde
11813456Sbde// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
1191541Srgrimes// getrusage() is prepared to handle the associated failure.
1201541Srgrimes#ifndef RUSAGE_THREAD
12113456Sbde  #define RUSAGE_THREAD   (1)               /* only the calling thread */
1221541Srgrimes#endif
1236358Sphk
1241541Srgrimes#define MAX_PATH    (2 * K)
12526259Speter
1261541Srgrimes#define MAX_SECS 100000000
1271541Srgrimes
1281541Srgrimes// for timer info max values which include all bits
1291541Srgrimes#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
1301541Srgrimes
1311541Srgrimes#define LARGEPAGES_BIT (1 << 6)
1321541Srgrimes////////////////////////////////////////////////////////////////////////////////
1331541Srgrimes// global variables
1341541Srgrimesjulong os::Linux::_physical_memory = 0;
1351541Srgrimes
1361541Srgrimesaddress   os::Linux::_initial_thread_stack_bottom = NULL;
1371541Srgrimesuintptr_t os::Linux::_initial_thread_stack_size   = 0;
1383484Sphk
13921101Sjhayint (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
14021101Sjhayint (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
1417109Sphkint (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
1422112SwollmanMutex* os::Linux::_createThread_lock = NULL;
1432112Swollmanpthread_t os::Linux::_main_thread;
1442112Swollmanint os::Linux::_page_size = -1;
1452112Swollmanbool os::Linux::_supports_fast_thread_cpu_time = false;
1462112Swollmanuint32_t os::Linux::_os_version = 0;
1472112Swollmanconst char * os::Linux::_glibc_version = NULL;
1482112Swollmanconst char * os::Linux::_libpthread_version = NULL;
1492112Swollman
1507090Sbdestatic jlong initial_time_count=0;
1517090Sbde
1527090Sbdestatic int clock_tics_per_sec = 100;
1537090Sbde
1547090Sbde// For diagnostics to print a message once. see run_periodic_checks
1557090Sbdestatic sigset_t check_signal_done;
1567090Sbdestatic bool check_signals = true;
1577090Sbde
1587090Sbde// Signal number used to suspend/resume a thread
1597090Sbde
1602112Swollman// do not use any signal number less than SIGSEGV, see 4355769
1612112Swollmanstatic int SR_signum = SIGUSR2;
1622112Swollmansigset_t SR_sigset;
1632112Swollman
1642112Swollman// utility functions
1652112Swollman
1663484Sphkstatic int SR_initialize();
1672165Spaul
16826312Speterjulong os::available_memory() {
16926312Speter  return Linux::available_memory();
17026312Speter}
17126312Speter
17226312Speterjulong os::Linux::available_memory() {
17326312Speter  // values in struct sysinfo are "unsigned long"
17426312Speter  struct sysinfo si;
17526312Speter  sysinfo(&si);
17626312Speter
17726312Speter  return (julong)si.freeram * si.mem_unit;
17826312Speter}
17926312Speter
18026312Speterjulong os::physical_memory() {
18126312Speter  return Linux::physical_memory();
18226312Speter}
18326312Speter
18426312Speter// Return true if user is running as root.
18526312Speter
18626312Speterbool os::have_special_privileges() {
18726312Speter  static bool init = false;
18826312Speter  static bool privileges = false;
18926312Speter  if (!init) {
19026312Speter    privileges = (getuid() != geteuid()) || (getgid() != getegid());
19126312Speter    init = true;
19226312Speter  }
19326312Speter  return privileges;
19426312Speter}
19526312Speter
19626312Speter
19726312Speter#ifndef SYS_gettid
19826312Speter// i386: 224, ia64: 1105, amd64: 186, sparc 143
19926312Speter  #ifdef __ia64__
20026312Speter    #define SYS_gettid 1105
20126312Speter  #else
20226312Speter    #ifdef __i386__
20327585Sbde      #define SYS_gettid 224
20426312Speter    #else
20526312Speter      #ifdef __amd64__
20626312Speter        #define SYS_gettid 186
20717658Sjulian      #else
20817768Sjulian        #ifdef __sparc__
20917658Sjulian          #define SYS_gettid 143
21017768Sjulian        #else
21117658Sjulian          #error define gettid for the arch
21217768Sjulian        #endif
21317768Sjulian      #endif
21417658Sjulian    #endif
21517658Sjulian  #endif
21617658Sjulian#endif
21717658Sjulian
21817658Sjulian
21917658Sjulian// pid_t gettid()
22017658Sjulian//
22117658Sjulian// Returns the kernel thread id of the currently running thread. Kernel
22217658Sjulian// thread id is used to access /proc.
22317658Sjulianpid_t os::Linux::gettid() {
22417658Sjulian  int rslt = syscall(SYS_gettid);
22518884Sbde  assert(rslt != -1, "must be."); // old linuxthreads implementation?
22618884Sbde  return (pid_t)rslt;
22718884Sbde}
22818884Sbde
22918884Sbde// Most versions of linux have a bug where the number of processors are
23018884Sbde// determined by looking at the /proc file system.  In a chroot environment,
23118884Sbde// the system call returns 1.  This causes the VM to act as if it is
2322865Sbde// a single processor and elide locking (see is_MP() call).
233static bool unsafe_chroot_detected = false;
234static const char *unstable_chroot_error = "/proc file system not found.\n"
235                     "Java may be unstable running multithreaded in a chroot "
236                     "environment on Linux when /proc filesystem is not mounted.";
237
238void os::Linux::initialize_system_info() {
239  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
240  if (processor_count() == 1) {
241    pid_t pid = os::Linux::gettid();
242    char fname[32];
243    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
244    FILE *fp = fopen(fname, "r");
245    if (fp == NULL) {
246      unsafe_chroot_detected = true;
247    } else {
248      fclose(fp);
249    }
250  }
251  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
252  assert(processor_count() > 0, "linux error");
253}
254
255void os::init_system_properties_values() {
256  // The next steps are taken in the product version:
257  //
258  // Obtain the JAVA_HOME value from the location of libjvm.so.
259  // This library should be located at:
260  // <JAVA_HOME>/lib/{client|server}/libjvm.so.
261  //
262  // If "/jre/lib/" appears at the right place in the path, then we
263  // assume libjvm.so is installed in a JDK and we use this path.
264  //
265  // Otherwise exit with message: "Could not create the Java virtual machine."
266  //
267  // The following extra steps are taken in the debugging version:
268  //
269  // If "/jre/lib/" does NOT appear at the right place in the path
270  // instead of exit check for $JAVA_HOME environment variable.
271  //
272  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
273  // then we append a fake suffix "hotspot/libjvm.so" to this path so
274  // it looks like libjvm.so is installed there
275  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
276  //
277  // Otherwise exit.
278  //
279  // Important note: if the location of libjvm.so changes this
280  // code needs to be changed accordingly.
281
282  // See ld(1):
283  //      The linker uses the following search paths to locate required
284  //      shared libraries:
285  //        1: ...
286  //        ...
287  //        7: The default directories, normally /lib and /usr/lib.
288#if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
289  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
290#else
291  #define DEFAULT_LIBPATH "/lib:/usr/lib"
292#endif
293
294// Base path of extensions installed on the system.
295#define SYS_EXT_DIR     "/usr/java/packages"
296#define EXTENSIONS_DIR  "/lib/ext"
297
298  // Buffer that fits several sprintfs.
299  // Note that the space for the colon and the trailing null are provided
300  // by the nulls included by the sizeof operator.
301  const size_t bufsize =
302    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
303         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
304  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
305
306  // sysclasspath, java_home, dll_dir
307  {
308    char *pslash;
309    os::jvm_path(buf, bufsize);
310
311    // Found the full path to libjvm.so.
312    // Now cut the path to <java_home>/jre if we can.
313    pslash = strrchr(buf, '/');
314    if (pslash != NULL) {
315      *pslash = '\0';            // Get rid of /libjvm.so.
316    }
317    pslash = strrchr(buf, '/');
318    if (pslash != NULL) {
319      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
320    }
321    Arguments::set_dll_dir(buf);
322
323    if (pslash != NULL) {
324      pslash = strrchr(buf, '/');
325      if (pslash != NULL) {
326        *pslash = '\0';        // Get rid of /lib.
327      }
328    }
329    Arguments::set_java_home(buf);
330    set_boot_path('/', ':');
331  }
332
333  // Where to look for native libraries.
334  //
335  // Note: Due to a legacy implementation, most of the library path
336  // is set in the launcher. This was to accomodate linking restrictions
337  // on legacy Linux implementations (which are no longer supported).
338  // Eventually, all the library path setting will be done here.
339  //
340  // However, to prevent the proliferation of improperly built native
341  // libraries, the new path component /usr/java/packages is added here.
342  // Eventually, all the library path setting will be done here.
343  {
344    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
345    // should always exist (until the legacy problem cited above is
346    // addressed).
347    const char *v = ::getenv("LD_LIBRARY_PATH");
348    const char *v_colon = ":";
349    if (v == NULL) { v = ""; v_colon = ""; }
350    // That's +1 for the colon and +1 for the trailing '\0'.
351    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
352                                                     strlen(v) + 1 +
353                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
354                                                     mtInternal);
355    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
356    Arguments::set_library_path(ld_library_path);
357    FREE_C_HEAP_ARRAY(char, ld_library_path);
358  }
359
360  // Extensions directories.
361  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
362  Arguments::set_ext_dirs(buf);
363
364  FREE_C_HEAP_ARRAY(char, buf);
365
366#undef DEFAULT_LIBPATH
367#undef SYS_EXT_DIR
368#undef EXTENSIONS_DIR
369}
370
371////////////////////////////////////////////////////////////////////////////////
372// breakpoint support
373
374void os::breakpoint() {
375  BREAKPOINT;
376}
377
378extern "C" void breakpoint() {
379  // use debugger to set breakpoint here
380}
381
382////////////////////////////////////////////////////////////////////////////////
383// signal support
384
385debug_only(static bool signal_sets_initialized = false);
386static sigset_t unblocked_sigs, vm_sigs;
387
388bool os::Linux::is_sig_ignored(int sig) {
389  struct sigaction oact;
390  sigaction(sig, (struct sigaction*)NULL, &oact);
391  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
392                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
393  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
394    return true;
395  } else {
396    return false;
397  }
398}
399
400void os::Linux::signal_sets_init() {
401  // Should also have an assertion stating we are still single-threaded.
402  assert(!signal_sets_initialized, "Already initialized");
403  // Fill in signals that are necessarily unblocked for all threads in
404  // the VM. Currently, we unblock the following signals:
405  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
406  //                         by -Xrs (=ReduceSignalUsage));
407  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
408  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
409  // the dispositions or masks wrt these signals.
410  // Programs embedding the VM that want to use the above signals for their
411  // own purposes must, at this time, use the "-Xrs" option to prevent
412  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
413  // (See bug 4345157, and other related bugs).
414  // In reality, though, unblocking these signals is really a nop, since
415  // these signals are not blocked by default.
416  sigemptyset(&unblocked_sigs);
417  sigaddset(&unblocked_sigs, SIGILL);
418  sigaddset(&unblocked_sigs, SIGSEGV);
419  sigaddset(&unblocked_sigs, SIGBUS);
420  sigaddset(&unblocked_sigs, SIGFPE);
421#if defined(PPC64)
422  sigaddset(&unblocked_sigs, SIGTRAP);
423#endif
424  sigaddset(&unblocked_sigs, SR_signum);
425
426  if (!ReduceSignalUsage) {
427    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
428      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
429    }
430    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
431      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
432    }
433    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
434      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
435    }
436  }
437  // Fill in signals that are blocked by all but the VM thread.
438  sigemptyset(&vm_sigs);
439  if (!ReduceSignalUsage) {
440    sigaddset(&vm_sigs, BREAK_SIGNAL);
441  }
442  debug_only(signal_sets_initialized = true);
443
444}
445
446// These are signals that are unblocked while a thread is running Java.
447// (For some reason, they get blocked by default.)
448sigset_t* os::Linux::unblocked_signals() {
449  assert(signal_sets_initialized, "Not initialized");
450  return &unblocked_sigs;
451}
452
453// These are the signals that are blocked while a (non-VM) thread is
454// running Java. Only the VM thread handles these signals.
455sigset_t* os::Linux::vm_signals() {
456  assert(signal_sets_initialized, "Not initialized");
457  return &vm_sigs;
458}
459
460void os::Linux::hotspot_sigmask(Thread* thread) {
461
462  //Save caller's signal mask before setting VM signal mask
463  sigset_t caller_sigmask;
464  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
465
466  OSThread* osthread = thread->osthread();
467  osthread->set_caller_sigmask(caller_sigmask);
468
469  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
470
471  if (!ReduceSignalUsage) {
472    if (thread->is_VM_thread()) {
473      // Only the VM thread handles BREAK_SIGNAL ...
474      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
475    } else {
476      // ... all other threads block BREAK_SIGNAL
477      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
478    }
479  }
480}
481
482//////////////////////////////////////////////////////////////////////////////
483// detecting pthread library
484
485void os::Linux::libpthread_init() {
486  // Save glibc and pthread version strings.
487#if !defined(_CS_GNU_LIBC_VERSION) || \
488    !defined(_CS_GNU_LIBPTHREAD_VERSION)
489  #error "glibc too old (< 2.3.2)"
490#endif
491
492  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
493  assert(n > 0, "cannot retrieve glibc version");
494  char *str = (char *)malloc(n, mtInternal);
495  confstr(_CS_GNU_LIBC_VERSION, str, n);
496  os::Linux::set_glibc_version(str);
497
498  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
499  assert(n > 0, "cannot retrieve pthread version");
500  str = (char *)malloc(n, mtInternal);
501  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
502  os::Linux::set_libpthread_version(str);
503}
504
505/////////////////////////////////////////////////////////////////////////////
506// thread stack expansion
507
508// os::Linux::manually_expand_stack() takes care of expanding the thread
509// stack. Note that this is normally not needed: pthread stacks allocate
510// thread stack using mmap() without MAP_NORESERVE, so the stack is already
511// committed. Therefore it is not necessary to expand the stack manually.
512//
513// Manually expanding the stack was historically needed on LinuxThreads
514// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
515// it is kept to deal with very rare corner cases:
516//
517// For one, user may run the VM on an own implementation of threads
518// whose stacks are - like the old LinuxThreads - implemented using
519// mmap(MAP_GROWSDOWN).
520//
521// Also, this coding may be needed if the VM is running on the primordial
522// thread. Normally we avoid running on the primordial thread; however,
523// user may still invoke the VM on the primordial thread.
524//
525// The following historical comment describes the details about running
526// on a thread stack allocated with mmap(MAP_GROWSDOWN):
527
528
529// Force Linux kernel to expand current thread stack. If "bottom" is close
530// to the stack guard, caller should block all signals.
531//
532// MAP_GROWSDOWN:
533//   A special mmap() flag that is used to implement thread stacks. It tells
534//   kernel that the memory region should extend downwards when needed. This
535//   allows early versions of LinuxThreads to only mmap the first few pages
536//   when creating a new thread. Linux kernel will automatically expand thread
537//   stack as needed (on page faults).
538//
539//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
540//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
541//   region, it's hard to tell if the fault is due to a legitimate stack
542//   access or because of reading/writing non-exist memory (e.g. buffer
543//   overrun). As a rule, if the fault happens below current stack pointer,
544//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
545//   application (see Linux kernel fault.c).
546//
547//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
548//   stack overflow detection.
549//
550//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
551//   not use MAP_GROWSDOWN.
552//
553// To get around the problem and allow stack banging on Linux, we need to
554// manually expand thread stack after receiving the SIGSEGV.
555//
556// There are two ways to expand thread stack to address "bottom", we used
557// both of them in JVM before 1.5:
558//   1. adjust stack pointer first so that it is below "bottom", and then
559//      touch "bottom"
560//   2. mmap() the page in question
561//
562// Now alternate signal stack is gone, it's harder to use 2. For instance,
563// if current sp is already near the lower end of page 101, and we need to
564// call mmap() to map page 100, it is possible that part of the mmap() frame
565// will be placed in page 100. When page 100 is mapped, it is zero-filled.
566// That will destroy the mmap() frame and cause VM to crash.
567//
568// The following code works by adjusting sp first, then accessing the "bottom"
569// page to force a page fault. Linux kernel will then automatically expand the
570// stack mapping.
571//
572// _expand_stack_to() assumes its frame size is less than page size, which
573// should always be true if the function is not inlined.
574
575static void NOINLINE _expand_stack_to(address bottom) {
576  address sp;
577  size_t size;
578  volatile char *p;
579
580  // Adjust bottom to point to the largest address within the same page, it
581  // gives us a one-page buffer if alloca() allocates slightly more memory.
582  bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
583  bottom += os::Linux::page_size() - 1;
584
585  // sp might be slightly above current stack pointer; if that's the case, we
586  // will alloca() a little more space than necessary, which is OK. Don't use
587  // os::current_stack_pointer(), as its result can be slightly below current
588  // stack pointer, causing us to not alloca enough to reach "bottom".
589  sp = (address)&sp;
590
591  if (sp > bottom) {
592    size = sp - bottom;
593    p = (volatile char *)alloca(size);
594    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
595    p[0] = '\0';
596  }
597}
598
599bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
600  assert(t!=NULL, "just checking");
601  assert(t->osthread()->expanding_stack(), "expand should be set");
602  assert(t->stack_base() != NULL, "stack_base was not initialized");
603
604  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
605    sigset_t mask_all, old_sigset;
606    sigfillset(&mask_all);
607    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
608    _expand_stack_to(addr);
609    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
610    return true;
611  }
612  return false;
613}
614
615//////////////////////////////////////////////////////////////////////////////
616// create new thread
617
618// Thread start routine for all newly created threads
619static void *thread_native_entry(Thread *thread) {
620  // Try to randomize the cache line index of hot stack frames.
621  // This helps when threads of the same stack traces evict each other's
622  // cache lines. The threads can be either from the same JVM instance, or
623  // from different JVM instances. The benefit is especially true for
624  // processors with hyperthreading technology.
625  static int counter = 0;
626  int pid = os::current_process_id();
627  alloca(((pid ^ counter++) & 7) * 128);
628
629  thread->initialize_thread_current();
630
631  OSThread* osthread = thread->osthread();
632  Monitor* sync = osthread->startThread_lock();
633
634  osthread->set_thread_id(os::current_thread_id());
635
636  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
637    os::current_thread_id(), (uintx) pthread_self());
638
639  if (UseNUMA) {
640    int lgrp_id = os::numa_get_group_id();
641    if (lgrp_id != -1) {
642      thread->set_lgrp_id(lgrp_id);
643    }
644  }
645  // initialize signal mask for this thread
646  os::Linux::hotspot_sigmask(thread);
647
648  // initialize floating point control register
649  os::Linux::init_thread_fpu_state();
650
651  // handshaking with parent thread
652  {
653    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
654
655    // notify parent thread
656    osthread->set_state(INITIALIZED);
657    sync->notify_all();
658
659    // wait until os::start_thread()
660    while (osthread->get_state() == INITIALIZED) {
661      sync->wait(Mutex::_no_safepoint_check_flag);
662    }
663  }
664
665  // call one more level start routine
666  thread->run();
667
668  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
669    os::current_thread_id(), (uintx) pthread_self());
670
671  // If a thread has not deleted itself ("delete this") as part of its
672  // termination sequence, we have to ensure thread-local-storage is
673  // cleared before we actually terminate. No threads should ever be
674  // deleted asynchronously with respect to their termination.
675  if (Thread::current_or_null_safe() != NULL) {
676    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
677    thread->clear_thread_current();
678  }
679
680  return 0;
681}
682
683bool os::create_thread(Thread* thread, ThreadType thr_type,
684                       size_t req_stack_size) {
685  assert(thread->osthread() == NULL, "caller responsible");
686
687  // Allocate the OSThread object
688  OSThread* osthread = new OSThread(NULL, NULL);
689  if (osthread == NULL) {
690    return false;
691  }
692
693  // set the correct thread state
694  osthread->set_thread_type(thr_type);
695
696  // Initial state is ALLOCATED but not INITIALIZED
697  osthread->set_state(ALLOCATED);
698
699  thread->set_osthread(osthread);
700
701  // init thread attributes
702  pthread_attr_t attr;
703  pthread_attr_init(&attr);
704  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
705
706  // Calculate stack size if it's not specified by caller.
707  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
708  // In the Linux NPTL pthread implementation the guard size mechanism
709  // is not implemented properly. The posix standard requires adding
710  // the size of the guard pages to the stack size, instead Linux
711  // takes the space out of 'stacksize'. Thus we adapt the requested
712  // stack_size by the size of the guard pages to mimick proper
713  // behaviour. However, be careful not to end up with a size
714  // of zero due to overflow. Don't add the guard page in that case.
715  size_t guard_size = os::Linux::default_guard_size(thr_type);
716  if (stack_size <= SIZE_MAX - guard_size) {
717    stack_size += guard_size;
718  }
719  assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
720
721  int status = pthread_attr_setstacksize(&attr, stack_size);
722  assert_status(status == 0, status, "pthread_attr_setstacksize");
723
724  // Configure glibc guard page.
725  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
726
727  ThreadState state;
728
729  {
730    pthread_t tid;
731    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
732
733    char buf[64];
734    if (ret == 0) {
735      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
736        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
737    } else {
738      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
739        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
740    }
741
742    pthread_attr_destroy(&attr);
743
744    if (ret != 0) {
745      // Need to clean up stuff we've allocated so far
746      thread->set_osthread(NULL);
747      delete osthread;
748      return false;
749    }
750
751    // Store pthread info into the OSThread
752    osthread->set_pthread_id(tid);
753
754    // Wait until child thread is either initialized or aborted
755    {
756      Monitor* sync_with_child = osthread->startThread_lock();
757      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
758      while ((state = osthread->get_state()) == ALLOCATED) {
759        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
760      }
761    }
762  }
763
764  // Aborted due to thread limit being reached
765  if (state == ZOMBIE) {
766    thread->set_osthread(NULL);
767    delete osthread;
768    return false;
769  }
770
771  // The thread is returned suspended (in state INITIALIZED),
772  // and is started higher up in the call chain
773  assert(state == INITIALIZED, "race condition");
774  return true;
775}
776
777/////////////////////////////////////////////////////////////////////////////
778// attach existing thread
779
780// bootstrap the main thread
781bool os::create_main_thread(JavaThread* thread) {
782  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
783  return create_attached_thread(thread);
784}
785
786bool os::create_attached_thread(JavaThread* thread) {
787#ifdef ASSERT
788  thread->verify_not_published();
789#endif
790
791  // Allocate the OSThread object
792  OSThread* osthread = new OSThread(NULL, NULL);
793
794  if (osthread == NULL) {
795    return false;
796  }
797
798  // Store pthread info into the OSThread
799  osthread->set_thread_id(os::Linux::gettid());
800  osthread->set_pthread_id(::pthread_self());
801
802  // initialize floating point control register
803  os::Linux::init_thread_fpu_state();
804
805  // Initial thread state is RUNNABLE
806  osthread->set_state(RUNNABLE);
807
808  thread->set_osthread(osthread);
809
810  if (UseNUMA) {
811    int lgrp_id = os::numa_get_group_id();
812    if (lgrp_id != -1) {
813      thread->set_lgrp_id(lgrp_id);
814    }
815  }
816
817  if (os::Linux::is_initial_thread()) {
818    // If current thread is initial thread, its stack is mapped on demand,
819    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
820    // the entire stack region to avoid SEGV in stack banging.
821    // It is also useful to get around the heap-stack-gap problem on SuSE
822    // kernel (see 4821821 for details). We first expand stack to the top
823    // of yellow zone, then enable stack yellow zone (order is significant,
824    // enabling yellow zone first will crash JVM on SuSE Linux), so there
825    // is no gap between the last two virtual memory regions.
826
827    JavaThread *jt = (JavaThread *)thread;
828    address addr = jt->stack_reserved_zone_base();
829    assert(addr != NULL, "initialization problem?");
830    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
831
832    osthread->set_expanding_stack();
833    os::Linux::manually_expand_stack(jt, addr);
834    osthread->clear_expanding_stack();
835  }
836
837  // initialize signal mask for this thread
838  // and save the caller's signal mask
839  os::Linux::hotspot_sigmask(thread);
840
841  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
842    os::current_thread_id(), (uintx) pthread_self());
843
844  return true;
845}
846
847void os::pd_start_thread(Thread* thread) {
848  OSThread * osthread = thread->osthread();
849  assert(osthread->get_state() != INITIALIZED, "just checking");
850  Monitor* sync_with_child = osthread->startThread_lock();
851  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
852  sync_with_child->notify();
853}
854
855// Free Linux resources related to the OSThread
856void os::free_thread(OSThread* osthread) {
857  assert(osthread != NULL, "osthread not set");
858
859  // We are told to free resources of the argument thread,
860  // but we can only really operate on the current thread.
861  assert(Thread::current()->osthread() == osthread,
862         "os::free_thread but not current thread");
863
864#ifdef ASSERT
865  sigset_t current;
866  sigemptyset(&current);
867  pthread_sigmask(SIG_SETMASK, NULL, &current);
868  assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
869#endif
870
871  // Restore caller's signal mask
872  sigset_t sigmask = osthread->caller_sigmask();
873  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
874
875  delete osthread;
876}
877
878//////////////////////////////////////////////////////////////////////////////
879// initial thread
880
881// Check if current thread is the initial thread, similar to Solaris thr_main.
882bool os::Linux::is_initial_thread(void) {
883  char dummy;
884  // If called before init complete, thread stack bottom will be null.
885  // Can be called if fatal error occurs before initialization.
886  if (initial_thread_stack_bottom() == NULL) return false;
887  assert(initial_thread_stack_bottom() != NULL &&
888         initial_thread_stack_size()   != 0,
889         "os::init did not locate initial thread's stack region");
890  if ((address)&dummy >= initial_thread_stack_bottom() &&
891      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
892    return true;
893  } else {
894    return false;
895  }
896}
897
898// Find the virtual memory area that contains addr
899static bool find_vma(address addr, address* vma_low, address* vma_high) {
900  FILE *fp = fopen("/proc/self/maps", "r");
901  if (fp) {
902    address low, high;
903    while (!feof(fp)) {
904      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
905        if (low <= addr && addr < high) {
906          if (vma_low)  *vma_low  = low;
907          if (vma_high) *vma_high = high;
908          fclose(fp);
909          return true;
910        }
911      }
912      for (;;) {
913        int ch = fgetc(fp);
914        if (ch == EOF || ch == (int)'\n') break;
915      }
916    }
917    fclose(fp);
918  }
919  return false;
920}
921
922// Locate initial thread stack. This special handling of initial thread stack
923// is needed because pthread_getattr_np() on most (all?) Linux distros returns
924// bogus value for the primordial process thread. While the launcher has created
925// the VM in a new thread since JDK 6, we still have to allow for the use of the
926// JNI invocation API from a primordial thread.
927void os::Linux::capture_initial_stack(size_t max_size) {
928
929  // max_size is either 0 (which means accept OS default for thread stacks) or
930  // a user-specified value known to be at least the minimum needed. If we
931  // are actually on the primordial thread we can make it appear that we have a
932  // smaller max_size stack by inserting the guard pages at that location. But we
933  // cannot do anything to emulate a larger stack than what has been provided by
934  // the OS or threading library. In fact if we try to use a stack greater than
935  // what is set by rlimit then we will crash the hosting process.
936
937  // Maximum stack size is the easy part, get it from RLIMIT_STACK.
938  // If this is "unlimited" then it will be a huge value.
939  struct rlimit rlim;
940  getrlimit(RLIMIT_STACK, &rlim);
941  size_t stack_size = rlim.rlim_cur;
942
943  // 6308388: a bug in ld.so will relocate its own .data section to the
944  //   lower end of primordial stack; reduce ulimit -s value a little bit
945  //   so we won't install guard page on ld.so's data section.
946  stack_size -= 2 * page_size();
947
948  // Try to figure out where the stack base (top) is. This is harder.
949  //
950  // When an application is started, glibc saves the initial stack pointer in
951  // a global variable "__libc_stack_end", which is then used by system
952  // libraries. __libc_stack_end should be pretty close to stack top. The
953  // variable is available since the very early days. However, because it is
954  // a private interface, it could disappear in the future.
955  //
956  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
957  // to __libc_stack_end, it is very close to stack top, but isn't the real
958  // stack top. Note that /proc may not exist if VM is running as a chroot
959  // program, so reading /proc/<pid>/stat could fail. Also the contents of
960  // /proc/<pid>/stat could change in the future (though unlikely).
961  //
962  // We try __libc_stack_end first. If that doesn't work, look for
963  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
964  // as a hint, which should work well in most cases.
965
966  uintptr_t stack_start;
967
968  // try __libc_stack_end first
969  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
970  if (p && *p) {
971    stack_start = *p;
972  } else {
973    // see if we can get the start_stack field from /proc/self/stat
974    FILE *fp;
975    int pid;
976    char state;
977    int ppid;
978    int pgrp;
979    int session;
980    int nr;
981    int tpgrp;
982    unsigned long flags;
983    unsigned long minflt;
984    unsigned long cminflt;
985    unsigned long majflt;
986    unsigned long cmajflt;
987    unsigned long utime;
988    unsigned long stime;
989    long cutime;
990    long cstime;
991    long prio;
992    long nice;
993    long junk;
994    long it_real;
995    uintptr_t start;
996    uintptr_t vsize;
997    intptr_t rss;
998    uintptr_t rsslim;
999    uintptr_t scodes;
1000    uintptr_t ecode;
1001    int i;
1002
1003    // Figure what the primordial thread stack base is. Code is inspired
1004    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1005    // followed by command name surrounded by parentheses, state, etc.
1006    char stat[2048];
1007    int statlen;
1008
1009    fp = fopen("/proc/self/stat", "r");
1010    if (fp) {
1011      statlen = fread(stat, 1, 2047, fp);
1012      stat[statlen] = '\0';
1013      fclose(fp);
1014
1015      // Skip pid and the command string. Note that we could be dealing with
1016      // weird command names, e.g. user could decide to rename java launcher
1017      // to "java 1.4.2 :)", then the stat file would look like
1018      //                1234 (java 1.4.2 :)) R ... ...
1019      // We don't really need to know the command string, just find the last
1020      // occurrence of ")" and then start parsing from there. See bug 4726580.
1021      char * s = strrchr(stat, ')');
1022
1023      i = 0;
1024      if (s) {
1025        // Skip blank chars
1026        do { s++; } while (s && isspace(*s));
1027
1028#define _UFM UINTX_FORMAT
1029#define _DFM INTX_FORMAT
1030
1031        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1032        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1033        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1034                   &state,          // 3  %c
1035                   &ppid,           // 4  %d
1036                   &pgrp,           // 5  %d
1037                   &session,        // 6  %d
1038                   &nr,             // 7  %d
1039                   &tpgrp,          // 8  %d
1040                   &flags,          // 9  %lu
1041                   &minflt,         // 10 %lu
1042                   &cminflt,        // 11 %lu
1043                   &majflt,         // 12 %lu
1044                   &cmajflt,        // 13 %lu
1045                   &utime,          // 14 %lu
1046                   &stime,          // 15 %lu
1047                   &cutime,         // 16 %ld
1048                   &cstime,         // 17 %ld
1049                   &prio,           // 18 %ld
1050                   &nice,           // 19 %ld
1051                   &junk,           // 20 %ld
1052                   &it_real,        // 21 %ld
1053                   &start,          // 22 UINTX_FORMAT
1054                   &vsize,          // 23 UINTX_FORMAT
1055                   &rss,            // 24 INTX_FORMAT
1056                   &rsslim,         // 25 UINTX_FORMAT
1057                   &scodes,         // 26 UINTX_FORMAT
1058                   &ecode,          // 27 UINTX_FORMAT
1059                   &stack_start);   // 28 UINTX_FORMAT
1060      }
1061
1062#undef _UFM
1063#undef _DFM
1064
1065      if (i != 28 - 2) {
1066        assert(false, "Bad conversion from /proc/self/stat");
1067        // product mode - assume we are the initial thread, good luck in the
1068        // embedded case.
1069        warning("Can't detect initial thread stack location - bad conversion");
1070        stack_start = (uintptr_t) &rlim;
1071      }
1072    } else {
1073      // For some reason we can't open /proc/self/stat (for example, running on
1074      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1075      // most cases, so don't abort:
1076      warning("Can't detect initial thread stack location - no /proc/self/stat");
1077      stack_start = (uintptr_t) &rlim;
1078    }
1079  }
1080
1081  // Now we have a pointer (stack_start) very close to the stack top, the
1082  // next thing to do is to figure out the exact location of stack top. We
1083  // can find out the virtual memory area that contains stack_start by
1084  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1085  // and its upper limit is the real stack top. (again, this would fail if
1086  // running inside chroot, because /proc may not exist.)
1087
1088  uintptr_t stack_top;
1089  address low, high;
1090  if (find_vma((address)stack_start, &low, &high)) {
1091    // success, "high" is the true stack top. (ignore "low", because initial
1092    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1093    stack_top = (uintptr_t)high;
1094  } else {
1095    // failed, likely because /proc/self/maps does not exist
1096    warning("Can't detect initial thread stack location - find_vma failed");
1097    // best effort: stack_start is normally within a few pages below the real
1098    // stack top, use it as stack top, and reduce stack size so we won't put
1099    // guard page outside stack.
1100    stack_top = stack_start;
1101    stack_size -= 16 * page_size();
1102  }
1103
1104  // stack_top could be partially down the page so align it
1105  stack_top = align_up(stack_top, page_size());
1106
1107  // Allowed stack value is minimum of max_size and what we derived from rlimit
1108  if (max_size > 0) {
1109    _initial_thread_stack_size = MIN2(max_size, stack_size);
1110  } else {
1111    // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1112    // clamp it at 8MB as we do on Solaris
1113    _initial_thread_stack_size = MIN2(stack_size, 8*M);
1114  }
1115  _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1116  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1117
1118  assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1119
1120  if (log_is_enabled(Info, os, thread)) {
1121    // See if we seem to be on primordial process thread
1122    bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1123                      uintptr_t(&rlim) < stack_top;
1124
1125    log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1126                         SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1127                         primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1128                         stack_top, intptr_t(_initial_thread_stack_bottom));
1129  }
1130}
1131
1132////////////////////////////////////////////////////////////////////////////////
1133// time support
1134
1135// Time since start-up in seconds to a fine granularity.
1136// Used by VMSelfDestructTimer and the MemProfiler.
1137double os::elapsedTime() {
1138
1139  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1140}
1141
1142jlong os::elapsed_counter() {
1143  return javaTimeNanos() - initial_time_count;
1144}
1145
1146jlong os::elapsed_frequency() {
1147  return NANOSECS_PER_SEC; // nanosecond resolution
1148}
1149
1150bool os::supports_vtime() { return true; }
1151bool os::enable_vtime()   { return false; }
1152bool os::vtime_enabled()  { return false; }
1153
1154double os::elapsedVTime() {
1155  struct rusage usage;
1156  int retval = getrusage(RUSAGE_THREAD, &usage);
1157  if (retval == 0) {
1158    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1159  } else {
1160    // better than nothing, but not much
1161    return elapsedTime();
1162  }
1163}
1164
1165jlong os::javaTimeMillis() {
1166  timeval time;
1167  int status = gettimeofday(&time, NULL);
1168  assert(status != -1, "linux error");
1169  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1170}
1171
1172void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1173  timeval time;
1174  int status = gettimeofday(&time, NULL);
1175  assert(status != -1, "linux error");
1176  seconds = jlong(time.tv_sec);
1177  nanos = jlong(time.tv_usec) * 1000;
1178}
1179
1180
1181#ifndef CLOCK_MONOTONIC
1182  #define CLOCK_MONOTONIC (1)
1183#endif
1184
1185void os::Linux::clock_init() {
1186  // we do dlopen's in this particular order due to bug in linux
1187  // dynamical loader (see 6348968) leading to crash on exit
1188  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1189  if (handle == NULL) {
1190    handle = dlopen("librt.so", RTLD_LAZY);
1191  }
1192
1193  if (handle) {
1194    int (*clock_getres_func)(clockid_t, struct timespec*) =
1195           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1196    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1197           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1198    if (clock_getres_func && clock_gettime_func) {
1199      // See if monotonic clock is supported by the kernel. Note that some
1200      // early implementations simply return kernel jiffies (updated every
1201      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1202      // for nano time (though the monotonic property is still nice to have).
1203      // It's fixed in newer kernels, however clock_getres() still returns
1204      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1205      // resolution for now. Hopefully as people move to new kernels, this
1206      // won't be a problem.
1207      struct timespec res;
1208      struct timespec tp;
1209      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1210          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1211        // yes, monotonic clock is supported
1212        _clock_gettime = clock_gettime_func;
1213        return;
1214      } else {
1215        // close librt if there is no monotonic clock
1216        dlclose(handle);
1217      }
1218    }
1219  }
1220  warning("No monotonic clock was available - timed services may " \
1221          "be adversely affected if the time-of-day clock changes");
1222}
1223
1224#ifndef SYS_clock_getres
1225  #if defined(X86) || defined(PPC64) || defined(S390)
1226    #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1227    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1228  #else
1229    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1230    #define sys_clock_getres(x,y)  -1
1231  #endif
1232#else
1233  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1234#endif
1235
1236void os::Linux::fast_thread_clock_init() {
1237  if (!UseLinuxPosixThreadCPUClocks) {
1238    return;
1239  }
1240  clockid_t clockid;
1241  struct timespec tp;
1242  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1243      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1244
1245  // Switch to using fast clocks for thread cpu time if
1246  // the sys_clock_getres() returns 0 error code.
1247  // Note, that some kernels may support the current thread
1248  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1249  // returned by the pthread_getcpuclockid().
1250  // If the fast Posix clocks are supported then the sys_clock_getres()
1251  // must return at least tp.tv_sec == 0 which means a resolution
1252  // better than 1 sec. This is extra check for reliability.
1253
1254  if (pthread_getcpuclockid_func &&
1255      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1256      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1257    _supports_fast_thread_cpu_time = true;
1258    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1259  }
1260}
1261
1262jlong os::javaTimeNanos() {
1263  if (os::supports_monotonic_clock()) {
1264    struct timespec tp;
1265    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1266    assert(status == 0, "gettime error");
1267    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1268    return result;
1269  } else {
1270    timeval time;
1271    int status = gettimeofday(&time, NULL);
1272    assert(status != -1, "linux error");
1273    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1274    return 1000 * usecs;
1275  }
1276}
1277
1278void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1279  if (os::supports_monotonic_clock()) {
1280    info_ptr->max_value = ALL_64_BITS;
1281
1282    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1283    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1284    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1285  } else {
1286    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1287    info_ptr->max_value = ALL_64_BITS;
1288
1289    // gettimeofday is a real time clock so it skips
1290    info_ptr->may_skip_backward = true;
1291    info_ptr->may_skip_forward = true;
1292  }
1293
1294  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1295}
1296
1297// Return the real, user, and system times in seconds from an
1298// arbitrary fixed point in the past.
1299bool os::getTimesSecs(double* process_real_time,
1300                      double* process_user_time,
1301                      double* process_system_time) {
1302  struct tms ticks;
1303  clock_t real_ticks = times(&ticks);
1304
1305  if (real_ticks == (clock_t) (-1)) {
1306    return false;
1307  } else {
1308    double ticks_per_second = (double) clock_tics_per_sec;
1309    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1310    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1311    *process_real_time = ((double) real_ticks) / ticks_per_second;
1312
1313    return true;
1314  }
1315}
1316
1317
1318char * os::local_time_string(char *buf, size_t buflen) {
1319  struct tm t;
1320  time_t long_time;
1321  time(&long_time);
1322  localtime_r(&long_time, &t);
1323  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1324               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1325               t.tm_hour, t.tm_min, t.tm_sec);
1326  return buf;
1327}
1328
1329struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1330  return localtime_r(clock, res);
1331}
1332
1333////////////////////////////////////////////////////////////////////////////////
1334// runtime exit support
1335
1336// Note: os::shutdown() might be called very early during initialization, or
1337// called from signal handler. Before adding something to os::shutdown(), make
1338// sure it is async-safe and can handle partially initialized VM.
1339void os::shutdown() {
1340
1341  // allow PerfMemory to attempt cleanup of any persistent resources
1342  perfMemory_exit();
1343
1344  // needs to remove object in file system
1345  AttachListener::abort();
1346
1347  // flush buffered output, finish log files
1348  ostream_abort();
1349
1350  // Check for abort hook
1351  abort_hook_t abort_hook = Arguments::abort_hook();
1352  if (abort_hook != NULL) {
1353    abort_hook();
1354  }
1355
1356}
1357
1358// Note: os::abort() might be called very early during initialization, or
1359// called from signal handler. Before adding something to os::abort(), make
1360// sure it is async-safe and can handle partially initialized VM.
1361void os::abort(bool dump_core, void* siginfo, const void* context) {
1362  os::shutdown();
1363  if (dump_core) {
1364#ifndef PRODUCT
1365    fdStream out(defaultStream::output_fd());
1366    out.print_raw("Current thread is ");
1367    char buf[16];
1368    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1369    out.print_raw_cr(buf);
1370    out.print_raw_cr("Dumping core ...");
1371#endif
1372    ::abort(); // dump core
1373  }
1374
1375  ::exit(1);
1376}
1377
1378// Die immediately, no exit hook, no abort hook, no cleanup.
1379void os::die() {
1380  ::abort();
1381}
1382
1383
1384// This method is a copy of JDK's sysGetLastErrorString
1385// from src/solaris/hpi/src/system_md.c
1386
1387size_t os::lasterror(char *buf, size_t len) {
1388  if (errno == 0)  return 0;
1389
1390  const char *s = os::strerror(errno);
1391  size_t n = ::strlen(s);
1392  if (n >= len) {
1393    n = len - 1;
1394  }
1395  ::strncpy(buf, s, n);
1396  buf[n] = '\0';
1397  return n;
1398}
1399
1400// thread_id is kernel thread id (similar to Solaris LWP id)
1401intx os::current_thread_id() { return os::Linux::gettid(); }
1402int os::current_process_id() {
1403  return ::getpid();
1404}
1405
1406// DLL functions
1407
1408const char* os::dll_file_extension() { return ".so"; }
1409
1410// This must be hard coded because it's the system's temporary
1411// directory not the java application's temp directory, ala java.io.tmpdir.
1412const char* os::get_temp_directory() { return "/tmp"; }
1413
1414static bool file_exists(const char* filename) {
1415  struct stat statbuf;
1416  if (filename == NULL || strlen(filename) == 0) {
1417    return false;
1418  }
1419  return os::stat(filename, &statbuf) == 0;
1420}
1421
1422bool os::dll_build_name(char* buffer, size_t buflen,
1423                        const char* pname, const char* fname) {
1424  bool retval = false;
1425  // Copied from libhpi
1426  const size_t pnamelen = pname ? strlen(pname) : 0;
1427
1428  // Return error on buffer overflow.
1429  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1430    return retval;
1431  }
1432
1433  if (pnamelen == 0) {
1434    snprintf(buffer, buflen, "lib%s.so", fname);
1435    retval = true;
1436  } else if (strchr(pname, *os::path_separator()) != NULL) {
1437    int n;
1438    char** pelements = split_path(pname, &n);
1439    if (pelements == NULL) {
1440      return false;
1441    }
1442    for (int i = 0; i < n; i++) {
1443      // Really shouldn't be NULL, but check can't hurt
1444      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1445        continue; // skip the empty path values
1446      }
1447      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1448      if (file_exists(buffer)) {
1449        retval = true;
1450        break;
1451      }
1452    }
1453    // release the storage
1454    for (int i = 0; i < n; i++) {
1455      if (pelements[i] != NULL) {
1456        FREE_C_HEAP_ARRAY(char, pelements[i]);
1457      }
1458    }
1459    if (pelements != NULL) {
1460      FREE_C_HEAP_ARRAY(char*, pelements);
1461    }
1462  } else {
1463    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1464    retval = true;
1465  }
1466  return retval;
1467}
1468
1469// check if addr is inside libjvm.so
1470bool os::address_is_in_vm(address addr) {
1471  static address libjvm_base_addr;
1472  Dl_info dlinfo;
1473
1474  if (libjvm_base_addr == NULL) {
1475    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1476      libjvm_base_addr = (address)dlinfo.dli_fbase;
1477    }
1478    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1479  }
1480
1481  if (dladdr((void *)addr, &dlinfo) != 0) {
1482    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1483  }
1484
1485  return false;
1486}
1487
1488bool os::dll_address_to_function_name(address addr, char *buf,
1489                                      int buflen, int *offset,
1490                                      bool demangle) {
1491  // buf is not optional, but offset is optional
1492  assert(buf != NULL, "sanity check");
1493
1494  Dl_info dlinfo;
1495
1496  if (dladdr((void*)addr, &dlinfo) != 0) {
1497    // see if we have a matching symbol
1498    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1499      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1500        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1501      }
1502      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1503      return true;
1504    }
1505    // no matching symbol so try for just file info
1506    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1507      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1508                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1509        return true;
1510      }
1511    }
1512  }
1513
1514  buf[0] = '\0';
1515  if (offset != NULL) *offset = -1;
1516  return false;
1517}
1518
1519struct _address_to_library_name {
1520  address addr;          // input : memory address
1521  size_t  buflen;        //         size of fname
1522  char*   fname;         // output: library name
1523  address base;          //         library base addr
1524};
1525
1526static int address_to_library_name_callback(struct dl_phdr_info *info,
1527                                            size_t size, void *data) {
1528  int i;
1529  bool found = false;
1530  address libbase = NULL;
1531  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1532
1533  // iterate through all loadable segments
1534  for (i = 0; i < info->dlpi_phnum; i++) {
1535    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1536    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1537      // base address of a library is the lowest address of its loaded
1538      // segments.
1539      if (libbase == NULL || libbase > segbase) {
1540        libbase = segbase;
1541      }
1542      // see if 'addr' is within current segment
1543      if (segbase <= d->addr &&
1544          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1545        found = true;
1546      }
1547    }
1548  }
1549
1550  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1551  // so dll_address_to_library_name() can fall through to use dladdr() which
1552  // can figure out executable name from argv[0].
1553  if (found && info->dlpi_name && info->dlpi_name[0]) {
1554    d->base = libbase;
1555    if (d->fname) {
1556      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1557    }
1558    return 1;
1559  }
1560  return 0;
1561}
1562
1563bool os::dll_address_to_library_name(address addr, char* buf,
1564                                     int buflen, int* offset) {
1565  // buf is not optional, but offset is optional
1566  assert(buf != NULL, "sanity check");
1567
1568  Dl_info dlinfo;
1569  struct _address_to_library_name data;
1570
1571  // There is a bug in old glibc dladdr() implementation that it could resolve
1572  // to wrong library name if the .so file has a base address != NULL. Here
1573  // we iterate through the program headers of all loaded libraries to find
1574  // out which library 'addr' really belongs to. This workaround can be
1575  // removed once the minimum requirement for glibc is moved to 2.3.x.
1576  data.addr = addr;
1577  data.fname = buf;
1578  data.buflen = buflen;
1579  data.base = NULL;
1580  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1581
1582  if (rslt) {
1583    // buf already contains library name
1584    if (offset) *offset = addr - data.base;
1585    return true;
1586  }
1587  if (dladdr((void*)addr, &dlinfo) != 0) {
1588    if (dlinfo.dli_fname != NULL) {
1589      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1590    }
1591    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1592      *offset = addr - (address)dlinfo.dli_fbase;
1593    }
1594    return true;
1595  }
1596
1597  buf[0] = '\0';
1598  if (offset) *offset = -1;
1599  return false;
1600}
1601
1602// Loads .dll/.so and
1603// in case of error it checks if .dll/.so was built for the
1604// same architecture as Hotspot is running on
1605
1606
1607// Remember the stack's state. The Linux dynamic linker will change
1608// the stack to 'executable' at most once, so we must safepoint only once.
1609bool os::Linux::_stack_is_executable = false;
1610
1611// VM operation that loads a library.  This is necessary if stack protection
1612// of the Java stacks can be lost during loading the library.  If we
1613// do not stop the Java threads, they can stack overflow before the stacks
1614// are protected again.
1615class VM_LinuxDllLoad: public VM_Operation {
1616 private:
1617  const char *_filename;
1618  char *_ebuf;
1619  int _ebuflen;
1620  void *_lib;
1621 public:
1622  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1623    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1624  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1625  void doit() {
1626    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1627    os::Linux::_stack_is_executable = true;
1628  }
1629  void* loaded_library() { return _lib; }
1630};
1631
1632void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1633  void * result = NULL;
1634  bool load_attempted = false;
1635
1636  // Check whether the library to load might change execution rights
1637  // of the stack. If they are changed, the protection of the stack
1638  // guard pages will be lost. We need a safepoint to fix this.
1639  //
1640  // See Linux man page execstack(8) for more info.
1641  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1642    if (!ElfFile::specifies_noexecstack(filename)) {
1643      if (!is_init_completed()) {
1644        os::Linux::_stack_is_executable = true;
1645        // This is OK - No Java threads have been created yet, and hence no
1646        // stack guard pages to fix.
1647        //
1648        // This should happen only when you are building JDK7 using a very
1649        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1650        //
1651        // Dynamic loader will make all stacks executable after
1652        // this function returns, and will not do that again.
1653        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1654      } else {
1655        warning("You have loaded library %s which might have disabled stack guard. "
1656                "The VM will try to fix the stack guard now.\n"
1657                "It's highly recommended that you fix the library with "
1658                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1659                filename);
1660
1661        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1662        JavaThread *jt = JavaThread::current();
1663        if (jt->thread_state() != _thread_in_native) {
1664          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1665          // that requires ExecStack. Cannot enter safe point. Let's give up.
1666          warning("Unable to fix stack guard. Giving up.");
1667        } else {
1668          if (!LoadExecStackDllInVMThread) {
1669            // This is for the case where the DLL has an static
1670            // constructor function that executes JNI code. We cannot
1671            // load such DLLs in the VMThread.
1672            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1673          }
1674
1675          ThreadInVMfromNative tiv(jt);
1676          debug_only(VMNativeEntryWrapper vew;)
1677
1678          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1679          VMThread::execute(&op);
1680          if (LoadExecStackDllInVMThread) {
1681            result = op.loaded_library();
1682          }
1683          load_attempted = true;
1684        }
1685      }
1686    }
1687  }
1688
1689  if (!load_attempted) {
1690    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1691  }
1692
1693  if (result != NULL) {
1694    // Successful loading
1695    return result;
1696  }
1697
1698  Elf32_Ehdr elf_head;
1699  int diag_msg_max_length=ebuflen-strlen(ebuf);
1700  char* diag_msg_buf=ebuf+strlen(ebuf);
1701
1702  if (diag_msg_max_length==0) {
1703    // No more space in ebuf for additional diagnostics message
1704    return NULL;
1705  }
1706
1707
1708  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1709
1710  if (file_descriptor < 0) {
1711    // Can't open library, report dlerror() message
1712    return NULL;
1713  }
1714
1715  bool failed_to_read_elf_head=
1716    (sizeof(elf_head)!=
1717     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1718
1719  ::close(file_descriptor);
1720  if (failed_to_read_elf_head) {
1721    // file i/o error - report dlerror() msg
1722    return NULL;
1723  }
1724
1725  typedef struct {
1726    Elf32_Half    code;         // Actual value as defined in elf.h
1727    Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1728    unsigned char elf_class;    // 32 or 64 bit
1729    unsigned char endianess;    // MSB or LSB
1730    char*         name;         // String representation
1731  } arch_t;
1732
1733#ifndef EM_486
1734  #define EM_486          6               /* Intel 80486 */
1735#endif
1736#ifndef EM_AARCH64
1737  #define EM_AARCH64    183               /* ARM AARCH64 */
1738#endif
1739
1740  static const arch_t arch_array[]={
1741    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1742    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1743    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1744    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1745    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1746    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1747    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1748    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1749#if defined(VM_LITTLE_ENDIAN)
1750    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1751#else
1752    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1753#endif
1754    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1755    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1756    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1757    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1758    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1759    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1760    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1761    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1762  };
1763
1764#if  (defined IA32)
1765  static  Elf32_Half running_arch_code=EM_386;
1766#elif   (defined AMD64)
1767  static  Elf32_Half running_arch_code=EM_X86_64;
1768#elif  (defined IA64)
1769  static  Elf32_Half running_arch_code=EM_IA_64;
1770#elif  (defined __sparc) && (defined _LP64)
1771  static  Elf32_Half running_arch_code=EM_SPARCV9;
1772#elif  (defined __sparc) && (!defined _LP64)
1773  static  Elf32_Half running_arch_code=EM_SPARC;
1774#elif  (defined __powerpc64__)
1775  static  Elf32_Half running_arch_code=EM_PPC64;
1776#elif  (defined __powerpc__)
1777  static  Elf32_Half running_arch_code=EM_PPC;
1778#elif  (defined AARCH64)
1779  static  Elf32_Half running_arch_code=EM_AARCH64;
1780#elif  (defined ARM)
1781  static  Elf32_Half running_arch_code=EM_ARM;
1782#elif  (defined S390)
1783  static  Elf32_Half running_arch_code=EM_S390;
1784#elif  (defined ALPHA)
1785  static  Elf32_Half running_arch_code=EM_ALPHA;
1786#elif  (defined MIPSEL)
1787  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1788#elif  (defined PARISC)
1789  static  Elf32_Half running_arch_code=EM_PARISC;
1790#elif  (defined MIPS)
1791  static  Elf32_Half running_arch_code=EM_MIPS;
1792#elif  (defined M68K)
1793  static  Elf32_Half running_arch_code=EM_68K;
1794#else
1795    #error Method os::dll_load requires that one of following is defined:\
1796        AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1797#endif
1798
1799  // Identify compatability class for VM's architecture and library's architecture
1800  // Obtain string descriptions for architectures
1801
1802  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1803  int running_arch_index=-1;
1804
1805  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1806    if (running_arch_code == arch_array[i].code) {
1807      running_arch_index    = i;
1808    }
1809    if (lib_arch.code == arch_array[i].code) {
1810      lib_arch.compat_class = arch_array[i].compat_class;
1811      lib_arch.name         = arch_array[i].name;
1812    }
1813  }
1814
1815  assert(running_arch_index != -1,
1816         "Didn't find running architecture code (running_arch_code) in arch_array");
1817  if (running_arch_index == -1) {
1818    // Even though running architecture detection failed
1819    // we may still continue with reporting dlerror() message
1820    return NULL;
1821  }
1822
1823  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1824    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1825    return NULL;
1826  }
1827
1828#ifndef S390
1829  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1830    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1831    return NULL;
1832  }
1833#endif // !S390
1834
1835  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1836    if (lib_arch.name!=NULL) {
1837      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1838                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1839                 lib_arch.name, arch_array[running_arch_index].name);
1840    } else {
1841      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1842                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1843                 lib_arch.code,
1844                 arch_array[running_arch_index].name);
1845    }
1846  }
1847
1848  return NULL;
1849}
1850
1851void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1852                                int ebuflen) {
1853  void * result = ::dlopen(filename, RTLD_LAZY);
1854  if (result == NULL) {
1855    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1856    ebuf[ebuflen-1] = '\0';
1857  }
1858  return result;
1859}
1860
1861void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1862                                       int ebuflen) {
1863  void * result = NULL;
1864  if (LoadExecStackDllInVMThread) {
1865    result = dlopen_helper(filename, ebuf, ebuflen);
1866  }
1867
1868  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1869  // library that requires an executable stack, or which does not have this
1870  // stack attribute set, dlopen changes the stack attribute to executable. The
1871  // read protection of the guard pages gets lost.
1872  //
1873  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1874  // may have been queued at the same time.
1875
1876  if (!_stack_is_executable) {
1877    JavaThread *jt = Threads::first();
1878
1879    while (jt) {
1880      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1881          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1882        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1883          warning("Attempt to reguard stack yellow zone failed.");
1884        }
1885      }
1886      jt = jt->next();
1887    }
1888  }
1889
1890  return result;
1891}
1892
1893void* os::dll_lookup(void* handle, const char* name) {
1894  void* res = dlsym(handle, name);
1895  return res;
1896}
1897
1898void* os::get_default_process_handle() {
1899  return (void*)::dlopen(NULL, RTLD_LAZY);
1900}
1901
1902static bool _print_ascii_file(const char* filename, outputStream* st) {
1903  int fd = ::open(filename, O_RDONLY);
1904  if (fd == -1) {
1905    return false;
1906  }
1907
1908  char buf[33];
1909  int bytes;
1910  buf[32] = '\0';
1911  while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1912    st->print_raw(buf, bytes);
1913  }
1914
1915  ::close(fd);
1916
1917  return true;
1918}
1919
1920void os::print_dll_info(outputStream *st) {
1921  st->print_cr("Dynamic libraries:");
1922
1923  char fname[32];
1924  pid_t pid = os::Linux::gettid();
1925
1926  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1927
1928  if (!_print_ascii_file(fname, st)) {
1929    st->print("Can not get library information for pid = %d\n", pid);
1930  }
1931}
1932
1933int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1934  FILE *procmapsFile = NULL;
1935
1936  // Open the procfs maps file for the current process
1937  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1938    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1939    char line[PATH_MAX + 100];
1940
1941    // Read line by line from 'file'
1942    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1943      u8 base, top, offset, inode;
1944      char permissions[5];
1945      char device[6];
1946      char name[PATH_MAX + 1];
1947
1948      // Parse fields from line
1949      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1950             &base, &top, permissions, &offset, device, &inode, name);
1951
1952      // Filter by device id '00:00' so that we only get file system mapped files.
1953      if (strcmp(device, "00:00") != 0) {
1954
1955        // Call callback with the fields of interest
1956        if(callback(name, (address)base, (address)top, param)) {
1957          // Oops abort, callback aborted
1958          fclose(procmapsFile);
1959          return 1;
1960        }
1961      }
1962    }
1963    fclose(procmapsFile);
1964  }
1965  return 0;
1966}
1967
1968void os::print_os_info_brief(outputStream* st) {
1969  os::Linux::print_distro_info(st);
1970
1971  os::Posix::print_uname_info(st);
1972
1973  os::Linux::print_libversion_info(st);
1974
1975}
1976
1977void os::print_os_info(outputStream* st) {
1978  st->print("OS:");
1979
1980  os::Linux::print_distro_info(st);
1981
1982  os::Posix::print_uname_info(st);
1983
1984  // Print warning if unsafe chroot environment detected
1985  if (unsafe_chroot_detected) {
1986    st->print("WARNING!! ");
1987    st->print_cr("%s", unstable_chroot_error);
1988  }
1989
1990  os::Linux::print_libversion_info(st);
1991
1992  os::Posix::print_rlimit_info(st);
1993
1994  os::Posix::print_load_average(st);
1995
1996  os::Linux::print_full_memory_info(st);
1997}
1998
1999// Try to identify popular distros.
2000// Most Linux distributions have a /etc/XXX-release file, which contains
2001// the OS version string. Newer Linux distributions have a /etc/lsb-release
2002// file that also contains the OS version string. Some have more than one
2003// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2004// /etc/redhat-release.), so the order is important.
2005// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2006// their own specific XXX-release file as well as a redhat-release file.
2007// Because of this the XXX-release file needs to be searched for before the
2008// redhat-release file.
2009// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2010// search for redhat-release / SuSE-release needs to be before lsb-release.
2011// Since the lsb-release file is the new standard it needs to be searched
2012// before the older style release files.
2013// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2014// next to last resort.  The os-release file is a new standard that contains
2015// distribution information and the system-release file seems to be an old
2016// standard that has been replaced by the lsb-release and os-release files.
2017// Searching for the debian_version file is the last resort.  It contains
2018// an informative string like "6.0.6" or "wheezy/sid". Because of this
2019// "Debian " is printed before the contents of the debian_version file.
2020
2021const char* distro_files[] = {
2022  "/etc/oracle-release",
2023  "/etc/mandriva-release",
2024  "/etc/mandrake-release",
2025  "/etc/sun-release",
2026  "/etc/redhat-release",
2027  "/etc/SuSE-release",
2028  "/etc/lsb-release",
2029  "/etc/turbolinux-release",
2030  "/etc/gentoo-release",
2031  "/etc/ltib-release",
2032  "/etc/angstrom-version",
2033  "/etc/system-release",
2034  "/etc/os-release",
2035  NULL };
2036
2037void os::Linux::print_distro_info(outputStream* st) {
2038  for (int i = 0;; i++) {
2039    const char* file = distro_files[i];
2040    if (file == NULL) {
2041      break;  // done
2042    }
2043    // If file prints, we found it.
2044    if (_print_ascii_file(file, st)) {
2045      return;
2046    }
2047  }
2048
2049  if (file_exists("/etc/debian_version")) {
2050    st->print("Debian ");
2051    _print_ascii_file("/etc/debian_version", st);
2052  } else {
2053    st->print("Linux");
2054  }
2055  st->cr();
2056}
2057
2058static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2059  char buf[256];
2060  while (fgets(buf, sizeof(buf), fp)) {
2061    // Edit out extra stuff in expected format
2062    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2063      char* ptr = strstr(buf, "\"");  // the name is in quotes
2064      if (ptr != NULL) {
2065        ptr++; // go beyond first quote
2066        char* nl = strchr(ptr, '\"');
2067        if (nl != NULL) *nl = '\0';
2068        strncpy(distro, ptr, length);
2069      } else {
2070        ptr = strstr(buf, "=");
2071        ptr++; // go beyond equals then
2072        char* nl = strchr(ptr, '\n');
2073        if (nl != NULL) *nl = '\0';
2074        strncpy(distro, ptr, length);
2075      }
2076      return;
2077    } else if (get_first_line) {
2078      char* nl = strchr(buf, '\n');
2079      if (nl != NULL) *nl = '\0';
2080      strncpy(distro, buf, length);
2081      return;
2082    }
2083  }
2084  // print last line and close
2085  char* nl = strchr(buf, '\n');
2086  if (nl != NULL) *nl = '\0';
2087  strncpy(distro, buf, length);
2088}
2089
2090static void parse_os_info(char* distro, size_t length, const char* file) {
2091  FILE* fp = fopen(file, "r");
2092  if (fp != NULL) {
2093    // if suse format, print out first line
2094    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2095    parse_os_info_helper(fp, distro, length, get_first_line);
2096    fclose(fp);
2097  }
2098}
2099
2100void os::get_summary_os_info(char* buf, size_t buflen) {
2101  for (int i = 0;; i++) {
2102    const char* file = distro_files[i];
2103    if (file == NULL) {
2104      break; // ran out of distro_files
2105    }
2106    if (file_exists(file)) {
2107      parse_os_info(buf, buflen, file);
2108      return;
2109    }
2110  }
2111  // special case for debian
2112  if (file_exists("/etc/debian_version")) {
2113    strncpy(buf, "Debian ", buflen);
2114    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2115  } else {
2116    strncpy(buf, "Linux", buflen);
2117  }
2118}
2119
2120void os::Linux::print_libversion_info(outputStream* st) {
2121  // libc, pthread
2122  st->print("libc:");
2123  st->print("%s ", os::Linux::glibc_version());
2124  st->print("%s ", os::Linux::libpthread_version());
2125  st->cr();
2126}
2127
2128void os::Linux::print_full_memory_info(outputStream* st) {
2129  st->print("\n/proc/meminfo:\n");
2130  _print_ascii_file("/proc/meminfo", st);
2131  st->cr();
2132}
2133
2134void os::print_memory_info(outputStream* st) {
2135
2136  st->print("Memory:");
2137  st->print(" %dk page", os::vm_page_size()>>10);
2138
2139  // values in struct sysinfo are "unsigned long"
2140  struct sysinfo si;
2141  sysinfo(&si);
2142
2143  st->print(", physical " UINT64_FORMAT "k",
2144            os::physical_memory() >> 10);
2145  st->print("(" UINT64_FORMAT "k free)",
2146            os::available_memory() >> 10);
2147  st->print(", swap " UINT64_FORMAT "k",
2148            ((jlong)si.totalswap * si.mem_unit) >> 10);
2149  st->print("(" UINT64_FORMAT "k free)",
2150            ((jlong)si.freeswap * si.mem_unit) >> 10);
2151  st->cr();
2152}
2153
2154// Print the first "model name" line and the first "flags" line
2155// that we find and nothing more. We assume "model name" comes
2156// before "flags" so if we find a second "model name", then the
2157// "flags" field is considered missing.
2158static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2159#if defined(IA32) || defined(AMD64)
2160  // Other platforms have less repetitive cpuinfo files
2161  FILE *fp = fopen("/proc/cpuinfo", "r");
2162  if (fp) {
2163    while (!feof(fp)) {
2164      if (fgets(buf, buflen, fp)) {
2165        // Assume model name comes before flags
2166        bool model_name_printed = false;
2167        if (strstr(buf, "model name") != NULL) {
2168          if (!model_name_printed) {
2169            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2170            st->print_raw(buf);
2171            model_name_printed = true;
2172          } else {
2173            // model name printed but not flags?  Odd, just return
2174            fclose(fp);
2175            return true;
2176          }
2177        }
2178        // print the flags line too
2179        if (strstr(buf, "flags") != NULL) {
2180          st->print_raw(buf);
2181          fclose(fp);
2182          return true;
2183        }
2184      }
2185    }
2186    fclose(fp);
2187  }
2188#endif // x86 platforms
2189  return false;
2190}
2191
2192void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2193  // Only print the model name if the platform provides this as a summary
2194  if (!print_model_name_and_flags(st, buf, buflen)) {
2195    st->print("\n/proc/cpuinfo:\n");
2196    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2197      st->print_cr("  <Not Available>");
2198    }
2199  }
2200}
2201
2202#if defined(AMD64) || defined(IA32) || defined(X32)
2203const char* search_string = "model name";
2204#elif defined(M68K)
2205const char* search_string = "CPU";
2206#elif defined(PPC64)
2207const char* search_string = "cpu";
2208#elif defined(S390)
2209const char* search_string = "processor";
2210#elif defined(SPARC)
2211const char* search_string = "cpu";
2212#else
2213const char* search_string = "Processor";
2214#endif
2215
2216// Parses the cpuinfo file for string representing the model name.
2217void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2218  FILE* fp = fopen("/proc/cpuinfo", "r");
2219  if (fp != NULL) {
2220    while (!feof(fp)) {
2221      char buf[256];
2222      if (fgets(buf, sizeof(buf), fp)) {
2223        char* start = strstr(buf, search_string);
2224        if (start != NULL) {
2225          char *ptr = start + strlen(search_string);
2226          char *end = buf + strlen(buf);
2227          while (ptr != end) {
2228             // skip whitespace and colon for the rest of the name.
2229             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2230               break;
2231             }
2232             ptr++;
2233          }
2234          if (ptr != end) {
2235            // reasonable string, get rid of newline and keep the rest
2236            char* nl = strchr(buf, '\n');
2237            if (nl != NULL) *nl = '\0';
2238            strncpy(cpuinfo, ptr, length);
2239            fclose(fp);
2240            return;
2241          }
2242        }
2243      }
2244    }
2245    fclose(fp);
2246  }
2247  // cpuinfo not found or parsing failed, just print generic string.  The entire
2248  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2249#if   defined(AARCH64)
2250  strncpy(cpuinfo, "AArch64", length);
2251#elif defined(AMD64)
2252  strncpy(cpuinfo, "x86_64", length);
2253#elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2254  strncpy(cpuinfo, "ARM", length);
2255#elif defined(IA32)
2256  strncpy(cpuinfo, "x86_32", length);
2257#elif defined(IA64)
2258  strncpy(cpuinfo, "IA64", length);
2259#elif defined(PPC)
2260  strncpy(cpuinfo, "PPC64", length);
2261#elif defined(S390)
2262  strncpy(cpuinfo, "S390", length);
2263#elif defined(SPARC)
2264  strncpy(cpuinfo, "sparcv9", length);
2265#elif defined(ZERO_LIBARCH)
2266  strncpy(cpuinfo, ZERO_LIBARCH, length);
2267#else
2268  strncpy(cpuinfo, "unknown", length);
2269#endif
2270}
2271
2272static void print_signal_handler(outputStream* st, int sig,
2273                                 char* buf, size_t buflen);
2274
2275void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2276  st->print_cr("Signal Handlers:");
2277  print_signal_handler(st, SIGSEGV, buf, buflen);
2278  print_signal_handler(st, SIGBUS , buf, buflen);
2279  print_signal_handler(st, SIGFPE , buf, buflen);
2280  print_signal_handler(st, SIGPIPE, buf, buflen);
2281  print_signal_handler(st, SIGXFSZ, buf, buflen);
2282  print_signal_handler(st, SIGILL , buf, buflen);
2283  print_signal_handler(st, SR_signum, buf, buflen);
2284  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2285  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2286  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2287  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2288#if defined(PPC64)
2289  print_signal_handler(st, SIGTRAP, buf, buflen);
2290#endif
2291}
2292
2293static char saved_jvm_path[MAXPATHLEN] = {0};
2294
2295// Find the full path to the current module, libjvm.so
2296void os::jvm_path(char *buf, jint buflen) {
2297  // Error checking.
2298  if (buflen < MAXPATHLEN) {
2299    assert(false, "must use a large-enough buffer");
2300    buf[0] = '\0';
2301    return;
2302  }
2303  // Lazy resolve the path to current module.
2304  if (saved_jvm_path[0] != 0) {
2305    strcpy(buf, saved_jvm_path);
2306    return;
2307  }
2308
2309  char dli_fname[MAXPATHLEN];
2310  bool ret = dll_address_to_library_name(
2311                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2312                                         dli_fname, sizeof(dli_fname), NULL);
2313  assert(ret, "cannot locate libjvm");
2314  char *rp = NULL;
2315  if (ret && dli_fname[0] != '\0') {
2316    rp = os::Posix::realpath(dli_fname, buf, buflen);
2317  }
2318  if (rp == NULL) {
2319    return;
2320  }
2321
2322  if (Arguments::sun_java_launcher_is_altjvm()) {
2323    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2324    // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2325    // If "/jre/lib/" appears at the right place in the string, then
2326    // assume we are installed in a JDK and we're done. Otherwise, check
2327    // for a JAVA_HOME environment variable and fix up the path so it
2328    // looks like libjvm.so is installed there (append a fake suffix
2329    // hotspot/libjvm.so).
2330    const char *p = buf + strlen(buf) - 1;
2331    for (int count = 0; p > buf && count < 5; ++count) {
2332      for (--p; p > buf && *p != '/'; --p)
2333        /* empty */ ;
2334    }
2335
2336    if (strncmp(p, "/jre/lib/", 9) != 0) {
2337      // Look for JAVA_HOME in the environment.
2338      char* java_home_var = ::getenv("JAVA_HOME");
2339      if (java_home_var != NULL && java_home_var[0] != 0) {
2340        char* jrelib_p;
2341        int len;
2342
2343        // Check the current module name "libjvm.so".
2344        p = strrchr(buf, '/');
2345        if (p == NULL) {
2346          return;
2347        }
2348        assert(strstr(p, "/libjvm") == p, "invalid library name");
2349
2350        rp = os::Posix::realpath(java_home_var, buf, buflen);
2351        if (rp == NULL) {
2352          return;
2353        }
2354
2355        // determine if this is a legacy image or modules image
2356        // modules image doesn't have "jre" subdirectory
2357        len = strlen(buf);
2358        assert(len < buflen, "Ran out of buffer room");
2359        jrelib_p = buf + len;
2360        snprintf(jrelib_p, buflen-len, "/jre/lib");
2361        if (0 != access(buf, F_OK)) {
2362          snprintf(jrelib_p, buflen-len, "/lib");
2363        }
2364
2365        if (0 == access(buf, F_OK)) {
2366          // Use current module name "libjvm.so"
2367          len = strlen(buf);
2368          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2369        } else {
2370          // Go back to path of .so
2371          rp = os::Posix::realpath(dli_fname, buf, buflen);
2372          if (rp == NULL) {
2373            return;
2374          }
2375        }
2376      }
2377    }
2378  }
2379
2380  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2381  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2382}
2383
2384void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2385  // no prefix required, not even "_"
2386}
2387
2388void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2389  // no suffix required
2390}
2391
2392////////////////////////////////////////////////////////////////////////////////
2393// sun.misc.Signal support
2394
2395static volatile jint sigint_count = 0;
2396
2397static void UserHandler(int sig, void *siginfo, void *context) {
2398  // 4511530 - sem_post is serialized and handled by the manager thread. When
2399  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2400  // don't want to flood the manager thread with sem_post requests.
2401  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2402    return;
2403  }
2404
2405  // Ctrl-C is pressed during error reporting, likely because the error
2406  // handler fails to abort. Let VM die immediately.
2407  if (sig == SIGINT && VMError::is_error_reported()) {
2408    os::die();
2409  }
2410
2411  os::signal_notify(sig);
2412}
2413
2414void* os::user_handler() {
2415  return CAST_FROM_FN_PTR(void*, UserHandler);
2416}
2417
2418struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2419  struct timespec ts;
2420  // Semaphore's are always associated with CLOCK_REALTIME
2421  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2422  // see unpackTime for discussion on overflow checking
2423  if (sec >= MAX_SECS) {
2424    ts.tv_sec += MAX_SECS;
2425    ts.tv_nsec = 0;
2426  } else {
2427    ts.tv_sec += sec;
2428    ts.tv_nsec += nsec;
2429    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2430      ts.tv_nsec -= NANOSECS_PER_SEC;
2431      ++ts.tv_sec; // note: this must be <= max_secs
2432    }
2433  }
2434
2435  return ts;
2436}
2437
2438extern "C" {
2439  typedef void (*sa_handler_t)(int);
2440  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2441}
2442
2443void* os::signal(int signal_number, void* handler) {
2444  struct sigaction sigAct, oldSigAct;
2445
2446  sigfillset(&(sigAct.sa_mask));
2447  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2448  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2449
2450  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2451    // -1 means registration failed
2452    return (void *)-1;
2453  }
2454
2455  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2456}
2457
2458void os::signal_raise(int signal_number) {
2459  ::raise(signal_number);
2460}
2461
2462// The following code is moved from os.cpp for making this
2463// code platform specific, which it is by its very nature.
2464
2465// Will be modified when max signal is changed to be dynamic
2466int os::sigexitnum_pd() {
2467  return NSIG;
2468}
2469
2470// a counter for each possible signal value
2471static volatile jint pending_signals[NSIG+1] = { 0 };
2472
2473// Linux(POSIX) specific hand shaking semaphore.
2474static sem_t sig_sem;
2475static PosixSemaphore sr_semaphore;
2476
2477void os::signal_init_pd() {
2478  // Initialize signal structures
2479  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2480
2481  // Initialize signal semaphore
2482  ::sem_init(&sig_sem, 0, 0);
2483}
2484
2485void os::signal_notify(int sig) {
2486  Atomic::inc(&pending_signals[sig]);
2487  ::sem_post(&sig_sem);
2488}
2489
2490static int check_pending_signals(bool wait) {
2491  Atomic::store(0, &sigint_count);
2492  for (;;) {
2493    for (int i = 0; i < NSIG + 1; i++) {
2494      jint n = pending_signals[i];
2495      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2496        return i;
2497      }
2498    }
2499    if (!wait) {
2500      return -1;
2501    }
2502    JavaThread *thread = JavaThread::current();
2503    ThreadBlockInVM tbivm(thread);
2504
2505    bool threadIsSuspended;
2506    do {
2507      thread->set_suspend_equivalent();
2508      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2509      ::sem_wait(&sig_sem);
2510
2511      // were we externally suspended while we were waiting?
2512      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2513      if (threadIsSuspended) {
2514        // The semaphore has been incremented, but while we were waiting
2515        // another thread suspended us. We don't want to continue running
2516        // while suspended because that would surprise the thread that
2517        // suspended us.
2518        ::sem_post(&sig_sem);
2519
2520        thread->java_suspend_self();
2521      }
2522    } while (threadIsSuspended);
2523  }
2524}
2525
2526int os::signal_lookup() {
2527  return check_pending_signals(false);
2528}
2529
2530int os::signal_wait() {
2531  return check_pending_signals(true);
2532}
2533
2534////////////////////////////////////////////////////////////////////////////////
2535// Virtual Memory
2536
2537int os::vm_page_size() {
2538  // Seems redundant as all get out
2539  assert(os::Linux::page_size() != -1, "must call os::init");
2540  return os::Linux::page_size();
2541}
2542
2543// Solaris allocates memory by pages.
2544int os::vm_allocation_granularity() {
2545  assert(os::Linux::page_size() != -1, "must call os::init");
2546  return os::Linux::page_size();
2547}
2548
2549// Rationale behind this function:
2550//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2551//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2552//  samples for JITted code. Here we create private executable mapping over the code cache
2553//  and then we can use standard (well, almost, as mapping can change) way to provide
2554//  info for the reporting script by storing timestamp and location of symbol
2555void linux_wrap_code(char* base, size_t size) {
2556  static volatile jint cnt = 0;
2557
2558  if (!UseOprofile) {
2559    return;
2560  }
2561
2562  char buf[PATH_MAX+1];
2563  int num = Atomic::add(1, &cnt);
2564
2565  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2566           os::get_temp_directory(), os::current_process_id(), num);
2567  unlink(buf);
2568
2569  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2570
2571  if (fd != -1) {
2572    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2573    if (rv != (off_t)-1) {
2574      if (::write(fd, "", 1) == 1) {
2575        mmap(base, size,
2576             PROT_READ|PROT_WRITE|PROT_EXEC,
2577             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2578      }
2579    }
2580    ::close(fd);
2581    unlink(buf);
2582  }
2583}
2584
2585static bool recoverable_mmap_error(int err) {
2586  // See if the error is one we can let the caller handle. This
2587  // list of errno values comes from JBS-6843484. I can't find a
2588  // Linux man page that documents this specific set of errno
2589  // values so while this list currently matches Solaris, it may
2590  // change as we gain experience with this failure mode.
2591  switch (err) {
2592  case EBADF:
2593  case EINVAL:
2594  case ENOTSUP:
2595    // let the caller deal with these errors
2596    return true;
2597
2598  default:
2599    // Any remaining errors on this OS can cause our reserved mapping
2600    // to be lost. That can cause confusion where different data
2601    // structures think they have the same memory mapped. The worst
2602    // scenario is if both the VM and a library think they have the
2603    // same memory mapped.
2604    return false;
2605  }
2606}
2607
2608static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2609                                    int err) {
2610  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2611          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2612          os::strerror(err), err);
2613}
2614
2615static void warn_fail_commit_memory(char* addr, size_t size,
2616                                    size_t alignment_hint, bool exec,
2617                                    int err) {
2618  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2619          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2620          alignment_hint, exec, os::strerror(err), err);
2621}
2622
2623// NOTE: Linux kernel does not really reserve the pages for us.
2624//       All it does is to check if there are enough free pages
2625//       left at the time of mmap(). This could be a potential
2626//       problem.
2627int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2628  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2629  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2630                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2631  if (res != (uintptr_t) MAP_FAILED) {
2632    if (UseNUMAInterleaving) {
2633      numa_make_global(addr, size);
2634    }
2635    return 0;
2636  }
2637
2638  int err = errno;  // save errno from mmap() call above
2639
2640  if (!recoverable_mmap_error(err)) {
2641    warn_fail_commit_memory(addr, size, exec, err);
2642    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2643  }
2644
2645  return err;
2646}
2647
2648bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2649  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2650}
2651
2652void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2653                                  const char* mesg) {
2654  assert(mesg != NULL, "mesg must be specified");
2655  int err = os::Linux::commit_memory_impl(addr, size, exec);
2656  if (err != 0) {
2657    // the caller wants all commit errors to exit with the specified mesg:
2658    warn_fail_commit_memory(addr, size, exec, err);
2659    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2660  }
2661}
2662
2663// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2664#ifndef MAP_HUGETLB
2665  #define MAP_HUGETLB 0x40000
2666#endif
2667
2668// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2669#ifndef MADV_HUGEPAGE
2670  #define MADV_HUGEPAGE 14
2671#endif
2672
2673int os::Linux::commit_memory_impl(char* addr, size_t size,
2674                                  size_t alignment_hint, bool exec) {
2675  int err = os::Linux::commit_memory_impl(addr, size, exec);
2676  if (err == 0) {
2677    realign_memory(addr, size, alignment_hint);
2678  }
2679  return err;
2680}
2681
2682bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2683                          bool exec) {
2684  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2685}
2686
2687void os::pd_commit_memory_or_exit(char* addr, size_t size,
2688                                  size_t alignment_hint, bool exec,
2689                                  const char* mesg) {
2690  assert(mesg != NULL, "mesg must be specified");
2691  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2692  if (err != 0) {
2693    // the caller wants all commit errors to exit with the specified mesg:
2694    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2695    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2696  }
2697}
2698
2699void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2700  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2701    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2702    // be supported or the memory may already be backed by huge pages.
2703    ::madvise(addr, bytes, MADV_HUGEPAGE);
2704  }
2705}
2706
2707void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2708  // This method works by doing an mmap over an existing mmaping and effectively discarding
2709  // the existing pages. However it won't work for SHM-based large pages that cannot be
2710  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2711  // small pages on top of the SHM segment. This method always works for small pages, so we
2712  // allow that in any case.
2713  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2714    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2715  }
2716}
2717
2718void os::numa_make_global(char *addr, size_t bytes) {
2719  Linux::numa_interleave_memory(addr, bytes);
2720}
2721
2722// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2723// bind policy to MPOL_PREFERRED for the current thread.
2724#define USE_MPOL_PREFERRED 0
2725
2726void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2727  // To make NUMA and large pages more robust when both enabled, we need to ease
2728  // the requirements on where the memory should be allocated. MPOL_BIND is the
2729  // default policy and it will force memory to be allocated on the specified
2730  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2731  // the specified node, but will not force it. Using this policy will prevent
2732  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2733  // free large pages.
2734  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2735  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2736}
2737
2738bool os::numa_topology_changed() { return false; }
2739
2740size_t os::numa_get_groups_num() {
2741  // Return just the number of nodes in which it's possible to allocate memory
2742  // (in numa terminology, configured nodes).
2743  return Linux::numa_num_configured_nodes();
2744}
2745
2746int os::numa_get_group_id() {
2747  int cpu_id = Linux::sched_getcpu();
2748  if (cpu_id != -1) {
2749    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2750    if (lgrp_id != -1) {
2751      return lgrp_id;
2752    }
2753  }
2754  return 0;
2755}
2756
2757int os::Linux::get_existing_num_nodes() {
2758  size_t node;
2759  size_t highest_node_number = Linux::numa_max_node();
2760  int num_nodes = 0;
2761
2762  // Get the total number of nodes in the system including nodes without memory.
2763  for (node = 0; node <= highest_node_number; node++) {
2764    if (isnode_in_existing_nodes(node)) {
2765      num_nodes++;
2766    }
2767  }
2768  return num_nodes;
2769}
2770
2771size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2772  size_t highest_node_number = Linux::numa_max_node();
2773  size_t i = 0;
2774
2775  // Map all node ids in which is possible to allocate memory. Also nodes are
2776  // not always consecutively available, i.e. available from 0 to the highest
2777  // node number.
2778  for (size_t node = 0; node <= highest_node_number; node++) {
2779    if (Linux::isnode_in_configured_nodes(node)) {
2780      ids[i++] = node;
2781    }
2782  }
2783  return i;
2784}
2785
2786bool os::get_page_info(char *start, page_info* info) {
2787  return false;
2788}
2789
2790char *os::scan_pages(char *start, char* end, page_info* page_expected,
2791                     page_info* page_found) {
2792  return end;
2793}
2794
2795
2796int os::Linux::sched_getcpu_syscall(void) {
2797  unsigned int cpu = 0;
2798  int retval = -1;
2799
2800#if defined(IA32)
2801  #ifndef SYS_getcpu
2802    #define SYS_getcpu 318
2803  #endif
2804  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2805#elif defined(AMD64)
2806// Unfortunately we have to bring all these macros here from vsyscall.h
2807// to be able to compile on old linuxes.
2808  #define __NR_vgetcpu 2
2809  #define VSYSCALL_START (-10UL << 20)
2810  #define VSYSCALL_SIZE 1024
2811  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2812  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2813  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2814  retval = vgetcpu(&cpu, NULL, NULL);
2815#endif
2816
2817  return (retval == -1) ? retval : cpu;
2818}
2819
2820void os::Linux::sched_getcpu_init() {
2821  // sched_getcpu() should be in libc.
2822  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2823                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2824
2825  // If it's not, try a direct syscall.
2826  if (sched_getcpu() == -1) {
2827    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2828                                    (void*)&sched_getcpu_syscall));
2829  }
2830}
2831
2832// Something to do with the numa-aware allocator needs these symbols
2833extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2834extern "C" JNIEXPORT void numa_error(char *where) { }
2835
2836// Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2837// load symbol from base version instead.
2838void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2839  void *f = dlvsym(handle, name, "libnuma_1.1");
2840  if (f == NULL) {
2841    f = dlsym(handle, name);
2842  }
2843  return f;
2844}
2845
2846// Handle request to load libnuma symbol version 1.2 (API v2) only.
2847// Return NULL if the symbol is not defined in this particular version.
2848void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2849  return dlvsym(handle, name, "libnuma_1.2");
2850}
2851
2852bool os::Linux::libnuma_init() {
2853  if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2854    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2855    if (handle != NULL) {
2856      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2857                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2858      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2859                                       libnuma_dlsym(handle, "numa_max_node")));
2860      set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2861                                                   libnuma_dlsym(handle, "numa_num_configured_nodes")));
2862      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2863                                        libnuma_dlsym(handle, "numa_available")));
2864      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2865                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2866      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2867                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2868      set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2869                                                libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2870      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2871                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2872      set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2873                                               libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2874      set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2875                                       libnuma_dlsym(handle, "numa_distance")));
2876
2877      if (numa_available() != -1) {
2878        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2879        set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2880        set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2881        // Create an index -> node mapping, since nodes are not always consecutive
2882        _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2883        rebuild_nindex_to_node_map();
2884        // Create a cpu -> node mapping
2885        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2886        rebuild_cpu_to_node_map();
2887        return true;
2888      }
2889    }
2890  }
2891  return false;
2892}
2893
2894size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2895  // Creating guard page is very expensive. Java thread has HotSpot
2896  // guard pages, only enable glibc guard page for non-Java threads.
2897  // (Remember: compiler thread is a Java thread, too!)
2898  return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2899}
2900
2901void os::Linux::rebuild_nindex_to_node_map() {
2902  int highest_node_number = Linux::numa_max_node();
2903
2904  nindex_to_node()->clear();
2905  for (int node = 0; node <= highest_node_number; node++) {
2906    if (Linux::isnode_in_existing_nodes(node)) {
2907      nindex_to_node()->append(node);
2908    }
2909  }
2910}
2911
2912// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2913// The table is later used in get_node_by_cpu().
2914void os::Linux::rebuild_cpu_to_node_map() {
2915  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2916                              // in libnuma (possible values are starting from 16,
2917                              // and continuing up with every other power of 2, but less
2918                              // than the maximum number of CPUs supported by kernel), and
2919                              // is a subject to change (in libnuma version 2 the requirements
2920                              // are more reasonable) we'll just hardcode the number they use
2921                              // in the library.
2922  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2923
2924  size_t cpu_num = processor_count();
2925  size_t cpu_map_size = NCPUS / BitsPerCLong;
2926  size_t cpu_map_valid_size =
2927    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2928
2929  cpu_to_node()->clear();
2930  cpu_to_node()->at_grow(cpu_num - 1);
2931
2932  size_t node_num = get_existing_num_nodes();
2933
2934  int distance = 0;
2935  int closest_distance = INT_MAX;
2936  int closest_node = 0;
2937  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2938  for (size_t i = 0; i < node_num; i++) {
2939    // Check if node is configured (not a memory-less node). If it is not, find
2940    // the closest configured node.
2941    if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2942      closest_distance = INT_MAX;
2943      // Check distance from all remaining nodes in the system. Ignore distance
2944      // from itself and from another non-configured node.
2945      for (size_t m = 0; m < node_num; m++) {
2946        if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2947          distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2948          // If a closest node is found, update. There is always at least one
2949          // configured node in the system so there is always at least one node
2950          // close.
2951          if (distance != 0 && distance < closest_distance) {
2952            closest_distance = distance;
2953            closest_node = nindex_to_node()->at(m);
2954          }
2955        }
2956      }
2957     } else {
2958       // Current node is already a configured node.
2959       closest_node = nindex_to_node()->at(i);
2960     }
2961
2962    // Get cpus from the original node and map them to the closest node. If node
2963    // is a configured node (not a memory-less node), then original node and
2964    // closest node are the same.
2965    if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2966      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2967        if (cpu_map[j] != 0) {
2968          for (size_t k = 0; k < BitsPerCLong; k++) {
2969            if (cpu_map[j] & (1UL << k)) {
2970              cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2971            }
2972          }
2973        }
2974      }
2975    }
2976  }
2977  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2978}
2979
2980int os::Linux::get_node_by_cpu(int cpu_id) {
2981  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2982    return cpu_to_node()->at(cpu_id);
2983  }
2984  return -1;
2985}
2986
2987GrowableArray<int>* os::Linux::_cpu_to_node;
2988GrowableArray<int>* os::Linux::_nindex_to_node;
2989os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2990os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2991os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2992os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2993os::Linux::numa_available_func_t os::Linux::_numa_available;
2994os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2995os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2996os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2997os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2998os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2999os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3000unsigned long* os::Linux::_numa_all_nodes;
3001struct bitmask* os::Linux::_numa_all_nodes_ptr;
3002struct bitmask* os::Linux::_numa_nodes_ptr;
3003
3004bool os::pd_uncommit_memory(char* addr, size_t size) {
3005  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3006                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3007  return res  != (uintptr_t) MAP_FAILED;
3008}
3009
3010static address get_stack_commited_bottom(address bottom, size_t size) {
3011  address nbot = bottom;
3012  address ntop = bottom + size;
3013
3014  size_t page_sz = os::vm_page_size();
3015  unsigned pages = size / page_sz;
3016
3017  unsigned char vec[1];
3018  unsigned imin = 1, imax = pages + 1, imid;
3019  int mincore_return_value = 0;
3020
3021  assert(imin <= imax, "Unexpected page size");
3022
3023  while (imin < imax) {
3024    imid = (imax + imin) / 2;
3025    nbot = ntop - (imid * page_sz);
3026
3027    // Use a trick with mincore to check whether the page is mapped or not.
3028    // mincore sets vec to 1 if page resides in memory and to 0 if page
3029    // is swapped output but if page we are asking for is unmapped
3030    // it returns -1,ENOMEM
3031    mincore_return_value = mincore(nbot, page_sz, vec);
3032
3033    if (mincore_return_value == -1) {
3034      // Page is not mapped go up
3035      // to find first mapped page
3036      if (errno != EAGAIN) {
3037        assert(errno == ENOMEM, "Unexpected mincore errno");
3038        imax = imid;
3039      }
3040    } else {
3041      // Page is mapped go down
3042      // to find first not mapped page
3043      imin = imid + 1;
3044    }
3045  }
3046
3047  nbot = nbot + page_sz;
3048
3049  // Adjust stack bottom one page up if last checked page is not mapped
3050  if (mincore_return_value == -1) {
3051    nbot = nbot + page_sz;
3052  }
3053
3054  return nbot;
3055}
3056
3057
3058// Linux uses a growable mapping for the stack, and if the mapping for
3059// the stack guard pages is not removed when we detach a thread the
3060// stack cannot grow beyond the pages where the stack guard was
3061// mapped.  If at some point later in the process the stack expands to
3062// that point, the Linux kernel cannot expand the stack any further
3063// because the guard pages are in the way, and a segfault occurs.
3064//
3065// However, it's essential not to split the stack region by unmapping
3066// a region (leaving a hole) that's already part of the stack mapping,
3067// so if the stack mapping has already grown beyond the guard pages at
3068// the time we create them, we have to truncate the stack mapping.
3069// So, we need to know the extent of the stack mapping when
3070// create_stack_guard_pages() is called.
3071
3072// We only need this for stacks that are growable: at the time of
3073// writing thread stacks don't use growable mappings (i.e. those
3074// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3075// only applies to the main thread.
3076
3077// If the (growable) stack mapping already extends beyond the point
3078// where we're going to put our guard pages, truncate the mapping at
3079// that point by munmap()ping it.  This ensures that when we later
3080// munmap() the guard pages we don't leave a hole in the stack
3081// mapping. This only affects the main/initial thread
3082
3083bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3084  if (os::Linux::is_initial_thread()) {
3085    // As we manually grow stack up to bottom inside create_attached_thread(),
3086    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3087    // we don't need to do anything special.
3088    // Check it first, before calling heavy function.
3089    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3090    unsigned char vec[1];
3091
3092    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3093      // Fallback to slow path on all errors, including EAGAIN
3094      stack_extent = (uintptr_t) get_stack_commited_bottom(
3095                                                           os::Linux::initial_thread_stack_bottom(),
3096                                                           (size_t)addr - stack_extent);
3097    }
3098
3099    if (stack_extent < (uintptr_t)addr) {
3100      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3101    }
3102  }
3103
3104  return os::commit_memory(addr, size, !ExecMem);
3105}
3106
3107// If this is a growable mapping, remove the guard pages entirely by
3108// munmap()ping them.  If not, just call uncommit_memory(). This only
3109// affects the main/initial thread, but guard against future OS changes
3110// It's safe to always unmap guard pages for initial thread because we
3111// always place it right after end of the mapped region
3112
3113bool os::remove_stack_guard_pages(char* addr, size_t size) {
3114  uintptr_t stack_extent, stack_base;
3115
3116  if (os::Linux::is_initial_thread()) {
3117    return ::munmap(addr, size) == 0;
3118  }
3119
3120  return os::uncommit_memory(addr, size);
3121}
3122
3123// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3124// at 'requested_addr'. If there are existing memory mappings at the same
3125// location, however, they will be overwritten. If 'fixed' is false,
3126// 'requested_addr' is only treated as a hint, the return value may or
3127// may not start from the requested address. Unlike Linux mmap(), this
3128// function returns NULL to indicate failure.
3129static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3130  char * addr;
3131  int flags;
3132
3133  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3134  if (fixed) {
3135    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3136    flags |= MAP_FIXED;
3137  }
3138
3139  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3140  // touch an uncommitted page. Otherwise, the read/write might
3141  // succeed if we have enough swap space to back the physical page.
3142  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3143                       flags, -1, 0);
3144
3145  return addr == MAP_FAILED ? NULL : addr;
3146}
3147
3148// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3149//   (req_addr != NULL) or with a given alignment.
3150//  - bytes shall be a multiple of alignment.
3151//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3152//  - alignment sets the alignment at which memory shall be allocated.
3153//     It must be a multiple of allocation granularity.
3154// Returns address of memory or NULL. If req_addr was not NULL, will only return
3155//  req_addr or NULL.
3156static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3157
3158  size_t extra_size = bytes;
3159  if (req_addr == NULL && alignment > 0) {
3160    extra_size += alignment;
3161  }
3162
3163  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3164    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3165    -1, 0);
3166  if (start == MAP_FAILED) {
3167    start = NULL;
3168  } else {
3169    if (req_addr != NULL) {
3170      if (start != req_addr) {
3171        ::munmap(start, extra_size);
3172        start = NULL;
3173      }
3174    } else {
3175      char* const start_aligned = align_up(start, alignment);
3176      char* const end_aligned = start_aligned + bytes;
3177      char* const end = start + extra_size;
3178      if (start_aligned > start) {
3179        ::munmap(start, start_aligned - start);
3180      }
3181      if (end_aligned < end) {
3182        ::munmap(end_aligned, end - end_aligned);
3183      }
3184      start = start_aligned;
3185    }
3186  }
3187  return start;
3188}
3189
3190static int anon_munmap(char * addr, size_t size) {
3191  return ::munmap(addr, size) == 0;
3192}
3193
3194char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3195                            size_t alignment_hint) {
3196  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3197}
3198
3199bool os::pd_release_memory(char* addr, size_t size) {
3200  return anon_munmap(addr, size);
3201}
3202
3203static bool linux_mprotect(char* addr, size_t size, int prot) {
3204  // Linux wants the mprotect address argument to be page aligned.
3205  char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3206
3207  // According to SUSv3, mprotect() should only be used with mappings
3208  // established by mmap(), and mmap() always maps whole pages. Unaligned
3209  // 'addr' likely indicates problem in the VM (e.g. trying to change
3210  // protection of malloc'ed or statically allocated memory). Check the
3211  // caller if you hit this assert.
3212  assert(addr == bottom, "sanity check");
3213
3214  size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3215  return ::mprotect(bottom, size, prot) == 0;
3216}
3217
3218// Set protections specified
3219bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3220                        bool is_committed) {
3221  unsigned int p = 0;
3222  switch (prot) {
3223  case MEM_PROT_NONE: p = PROT_NONE; break;
3224  case MEM_PROT_READ: p = PROT_READ; break;
3225  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3226  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3227  default:
3228    ShouldNotReachHere();
3229  }
3230  // is_committed is unused.
3231  return linux_mprotect(addr, bytes, p);
3232}
3233
3234bool os::guard_memory(char* addr, size_t size) {
3235  return linux_mprotect(addr, size, PROT_NONE);
3236}
3237
3238bool os::unguard_memory(char* addr, size_t size) {
3239  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3240}
3241
3242bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3243                                                    size_t page_size) {
3244  bool result = false;
3245  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3246                 MAP_ANONYMOUS|MAP_PRIVATE,
3247                 -1, 0);
3248  if (p != MAP_FAILED) {
3249    void *aligned_p = align_up(p, page_size);
3250
3251    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3252
3253    munmap(p, page_size * 2);
3254  }
3255
3256  if (warn && !result) {
3257    warning("TransparentHugePages is not supported by the operating system.");
3258  }
3259
3260  return result;
3261}
3262
3263bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3264  bool result = false;
3265  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3266                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3267                 -1, 0);
3268
3269  if (p != MAP_FAILED) {
3270    // We don't know if this really is a huge page or not.
3271    FILE *fp = fopen("/proc/self/maps", "r");
3272    if (fp) {
3273      while (!feof(fp)) {
3274        char chars[257];
3275        long x = 0;
3276        if (fgets(chars, sizeof(chars), fp)) {
3277          if (sscanf(chars, "%lx-%*x", &x) == 1
3278              && x == (long)p) {
3279            if (strstr (chars, "hugepage")) {
3280              result = true;
3281              break;
3282            }
3283          }
3284        }
3285      }
3286      fclose(fp);
3287    }
3288    munmap(p, page_size);
3289  }
3290
3291  if (warn && !result) {
3292    warning("HugeTLBFS is not supported by the operating system.");
3293  }
3294
3295  return result;
3296}
3297
3298// Set the coredump_filter bits to include largepages in core dump (bit 6)
3299//
3300// From the coredump_filter documentation:
3301//
3302// - (bit 0) anonymous private memory
3303// - (bit 1) anonymous shared memory
3304// - (bit 2) file-backed private memory
3305// - (bit 3) file-backed shared memory
3306// - (bit 4) ELF header pages in file-backed private memory areas (it is
3307//           effective only if the bit 2 is cleared)
3308// - (bit 5) hugetlb private memory
3309// - (bit 6) hugetlb shared memory
3310//
3311static void set_coredump_filter(void) {
3312  FILE *f;
3313  long cdm;
3314
3315  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3316    return;
3317  }
3318
3319  if (fscanf(f, "%lx", &cdm) != 1) {
3320    fclose(f);
3321    return;
3322  }
3323
3324  rewind(f);
3325
3326  if ((cdm & LARGEPAGES_BIT) == 0) {
3327    cdm |= LARGEPAGES_BIT;
3328    fprintf(f, "%#lx", cdm);
3329  }
3330
3331  fclose(f);
3332}
3333
3334// Large page support
3335
3336static size_t _large_page_size = 0;
3337
3338size_t os::Linux::find_large_page_size() {
3339  size_t large_page_size = 0;
3340
3341  // large_page_size on Linux is used to round up heap size. x86 uses either
3342  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3343  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3344  // page as large as 256M.
3345  //
3346  // Here we try to figure out page size by parsing /proc/meminfo and looking
3347  // for a line with the following format:
3348  //    Hugepagesize:     2048 kB
3349  //
3350  // If we can't determine the value (e.g. /proc is not mounted, or the text
3351  // format has been changed), we'll use the largest page size supported by
3352  // the processor.
3353
3354#ifndef ZERO
3355  large_page_size =
3356    AARCH64_ONLY(2 * M)
3357    AMD64_ONLY(2 * M)
3358    ARM32_ONLY(2 * M)
3359    IA32_ONLY(4 * M)
3360    IA64_ONLY(256 * M)
3361    PPC_ONLY(4 * M)
3362    S390_ONLY(1 * M)
3363    SPARC_ONLY(4 * M);
3364#endif // ZERO
3365
3366  FILE *fp = fopen("/proc/meminfo", "r");
3367  if (fp) {
3368    while (!feof(fp)) {
3369      int x = 0;
3370      char buf[16];
3371      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3372        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3373          large_page_size = x * K;
3374          break;
3375        }
3376      } else {
3377        // skip to next line
3378        for (;;) {
3379          int ch = fgetc(fp);
3380          if (ch == EOF || ch == (int)'\n') break;
3381        }
3382      }
3383    }
3384    fclose(fp);
3385  }
3386
3387  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3388    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3389            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3390            proper_unit_for_byte_size(large_page_size));
3391  }
3392
3393  return large_page_size;
3394}
3395
3396size_t os::Linux::setup_large_page_size() {
3397  _large_page_size = Linux::find_large_page_size();
3398  const size_t default_page_size = (size_t)Linux::page_size();
3399  if (_large_page_size > default_page_size) {
3400    _page_sizes[0] = _large_page_size;
3401    _page_sizes[1] = default_page_size;
3402    _page_sizes[2] = 0;
3403  }
3404
3405  return _large_page_size;
3406}
3407
3408bool os::Linux::setup_large_page_type(size_t page_size) {
3409  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3410      FLAG_IS_DEFAULT(UseSHM) &&
3411      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3412
3413    // The type of large pages has not been specified by the user.
3414
3415    // Try UseHugeTLBFS and then UseSHM.
3416    UseHugeTLBFS = UseSHM = true;
3417
3418    // Don't try UseTransparentHugePages since there are known
3419    // performance issues with it turned on. This might change in the future.
3420    UseTransparentHugePages = false;
3421  }
3422
3423  if (UseTransparentHugePages) {
3424    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3425    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3426      UseHugeTLBFS = false;
3427      UseSHM = false;
3428      return true;
3429    }
3430    UseTransparentHugePages = false;
3431  }
3432
3433  if (UseHugeTLBFS) {
3434    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3435    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3436      UseSHM = false;
3437      return true;
3438    }
3439    UseHugeTLBFS = false;
3440  }
3441
3442  return UseSHM;
3443}
3444
3445void os::large_page_init() {
3446  if (!UseLargePages &&
3447      !UseTransparentHugePages &&
3448      !UseHugeTLBFS &&
3449      !UseSHM) {
3450    // Not using large pages.
3451    return;
3452  }
3453
3454  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3455    // The user explicitly turned off large pages.
3456    // Ignore the rest of the large pages flags.
3457    UseTransparentHugePages = false;
3458    UseHugeTLBFS = false;
3459    UseSHM = false;
3460    return;
3461  }
3462
3463  size_t large_page_size = Linux::setup_large_page_size();
3464  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3465
3466  set_coredump_filter();
3467}
3468
3469#ifndef SHM_HUGETLB
3470  #define SHM_HUGETLB 04000
3471#endif
3472
3473#define shm_warning_format(format, ...)              \
3474  do {                                               \
3475    if (UseLargePages &&                             \
3476        (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3477         !FLAG_IS_DEFAULT(UseSHM) ||                 \
3478         !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3479      warning(format, __VA_ARGS__);                  \
3480    }                                                \
3481  } while (0)
3482
3483#define shm_warning(str) shm_warning_format("%s", str)
3484
3485#define shm_warning_with_errno(str)                \
3486  do {                                             \
3487    int err = errno;                               \
3488    shm_warning_format(str " (error = %d)", err);  \
3489  } while (0)
3490
3491static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3492  assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3493
3494  if (!is_aligned(alignment, SHMLBA)) {
3495    assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3496    return NULL;
3497  }
3498
3499  // To ensure that we get 'alignment' aligned memory from shmat,
3500  // we pre-reserve aligned virtual memory and then attach to that.
3501
3502  char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3503  if (pre_reserved_addr == NULL) {
3504    // Couldn't pre-reserve aligned memory.
3505    shm_warning("Failed to pre-reserve aligned memory for shmat.");
3506    return NULL;
3507  }
3508
3509  // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3510  char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3511
3512  if ((intptr_t)addr == -1) {
3513    int err = errno;
3514    shm_warning_with_errno("Failed to attach shared memory.");
3515
3516    assert(err != EACCES, "Unexpected error");
3517    assert(err != EIDRM,  "Unexpected error");
3518    assert(err != EINVAL, "Unexpected error");
3519
3520    // Since we don't know if the kernel unmapped the pre-reserved memory area
3521    // we can't unmap it, since that would potentially unmap memory that was
3522    // mapped from other threads.
3523    return NULL;
3524  }
3525
3526  return addr;
3527}
3528
3529static char* shmat_at_address(int shmid, char* req_addr) {
3530  if (!is_aligned(req_addr, SHMLBA)) {
3531    assert(false, "Requested address needs to be SHMLBA aligned");
3532    return NULL;
3533  }
3534
3535  char* addr = (char*)shmat(shmid, req_addr, 0);
3536
3537  if ((intptr_t)addr == -1) {
3538    shm_warning_with_errno("Failed to attach shared memory.");
3539    return NULL;
3540  }
3541
3542  return addr;
3543}
3544
3545static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3546  // If a req_addr has been provided, we assume that the caller has already aligned the address.
3547  if (req_addr != NULL) {
3548    assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3549    assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3550    return shmat_at_address(shmid, req_addr);
3551  }
3552
3553  // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3554  // return large page size aligned memory addresses when req_addr == NULL.
3555  // However, if the alignment is larger than the large page size, we have
3556  // to manually ensure that the memory returned is 'alignment' aligned.
3557  if (alignment > os::large_page_size()) {
3558    assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3559    return shmat_with_alignment(shmid, bytes, alignment);
3560  } else {
3561    return shmat_at_address(shmid, NULL);
3562  }
3563}
3564
3565char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3566                                            char* req_addr, bool exec) {
3567  // "exec" is passed in but not used.  Creating the shared image for
3568  // the code cache doesn't have an SHM_X executable permission to check.
3569  assert(UseLargePages && UseSHM, "only for SHM large pages");
3570  assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3571  assert(is_aligned(req_addr, alignment), "Unaligned address");
3572
3573  if (!is_aligned(bytes, os::large_page_size())) {
3574    return NULL; // Fallback to small pages.
3575  }
3576
3577  // Create a large shared memory region to attach to based on size.
3578  // Currently, size is the total size of the heap.
3579  int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3580  if (shmid == -1) {
3581    // Possible reasons for shmget failure:
3582    // 1. shmmax is too small for Java heap.
3583    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3584    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3585    // 2. not enough large page memory.
3586    //    > check available large pages: cat /proc/meminfo
3587    //    > increase amount of large pages:
3588    //          echo new_value > /proc/sys/vm/nr_hugepages
3589    //      Note 1: different Linux may use different name for this property,
3590    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3591    //      Note 2: it's possible there's enough physical memory available but
3592    //            they are so fragmented after a long run that they can't
3593    //            coalesce into large pages. Try to reserve large pages when
3594    //            the system is still "fresh".
3595    shm_warning_with_errno("Failed to reserve shared memory.");
3596    return NULL;
3597  }
3598
3599  // Attach to the region.
3600  char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3601
3602  // Remove shmid. If shmat() is successful, the actual shared memory segment
3603  // will be deleted when it's detached by shmdt() or when the process
3604  // terminates. If shmat() is not successful this will remove the shared
3605  // segment immediately.
3606  shmctl(shmid, IPC_RMID, NULL);
3607
3608  return addr;
3609}
3610
3611static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3612                                        int error) {
3613  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3614
3615  bool warn_on_failure = UseLargePages &&
3616      (!FLAG_IS_DEFAULT(UseLargePages) ||
3617       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3618       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3619
3620  if (warn_on_failure) {
3621    char msg[128];
3622    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3623                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3624    warning("%s", msg);
3625  }
3626}
3627
3628char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3629                                                        char* req_addr,
3630                                                        bool exec) {
3631  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3632  assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3633  assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3634
3635  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3636  char* addr = (char*)::mmap(req_addr, bytes, prot,
3637                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3638                             -1, 0);
3639
3640  if (addr == MAP_FAILED) {
3641    warn_on_large_pages_failure(req_addr, bytes, errno);
3642    return NULL;
3643  }
3644
3645  assert(is_aligned(addr, os::large_page_size()), "Must be");
3646
3647  return addr;
3648}
3649
3650// Reserve memory using mmap(MAP_HUGETLB).
3651//  - bytes shall be a multiple of alignment.
3652//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3653//  - alignment sets the alignment at which memory shall be allocated.
3654//     It must be a multiple of allocation granularity.
3655// Returns address of memory or NULL. If req_addr was not NULL, will only return
3656//  req_addr or NULL.
3657char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3658                                                         size_t alignment,
3659                                                         char* req_addr,
3660                                                         bool exec) {
3661  size_t large_page_size = os::large_page_size();
3662  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3663
3664  assert(is_aligned(req_addr, alignment), "Must be");
3665  assert(is_aligned(bytes, alignment), "Must be");
3666
3667  // First reserve - but not commit - the address range in small pages.
3668  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3669
3670  if (start == NULL) {
3671    return NULL;
3672  }
3673
3674  assert(is_aligned(start, alignment), "Must be");
3675
3676  char* end = start + bytes;
3677
3678  // Find the regions of the allocated chunk that can be promoted to large pages.
3679  char* lp_start = align_up(start, large_page_size);
3680  char* lp_end   = align_down(end, large_page_size);
3681
3682  size_t lp_bytes = lp_end - lp_start;
3683
3684  assert(is_aligned(lp_bytes, large_page_size), "Must be");
3685
3686  if (lp_bytes == 0) {
3687    // The mapped region doesn't even span the start and the end of a large page.
3688    // Fall back to allocate a non-special area.
3689    ::munmap(start, end - start);
3690    return NULL;
3691  }
3692
3693  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3694
3695  void* result;
3696
3697  // Commit small-paged leading area.
3698  if (start != lp_start) {
3699    result = ::mmap(start, lp_start - start, prot,
3700                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3701                    -1, 0);
3702    if (result == MAP_FAILED) {
3703      ::munmap(lp_start, end - lp_start);
3704      return NULL;
3705    }
3706  }
3707
3708  // Commit large-paged area.
3709  result = ::mmap(lp_start, lp_bytes, prot,
3710                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3711                  -1, 0);
3712  if (result == MAP_FAILED) {
3713    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3714    // If the mmap above fails, the large pages region will be unmapped and we
3715    // have regions before and after with small pages. Release these regions.
3716    //
3717    // |  mapped  |  unmapped  |  mapped  |
3718    // ^          ^            ^          ^
3719    // start      lp_start     lp_end     end
3720    //
3721    ::munmap(start, lp_start - start);
3722    ::munmap(lp_end, end - lp_end);
3723    return NULL;
3724  }
3725
3726  // Commit small-paged trailing area.
3727  if (lp_end != end) {
3728    result = ::mmap(lp_end, end - lp_end, prot,
3729                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3730                    -1, 0);
3731    if (result == MAP_FAILED) {
3732      ::munmap(start, lp_end - start);
3733      return NULL;
3734    }
3735  }
3736
3737  return start;
3738}
3739
3740char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3741                                                   size_t alignment,
3742                                                   char* req_addr,
3743                                                   bool exec) {
3744  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3745  assert(is_aligned(req_addr, alignment), "Must be");
3746  assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3747  assert(is_power_of_2(os::large_page_size()), "Must be");
3748  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3749
3750  if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3751    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3752  } else {
3753    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3754  }
3755}
3756
3757char* os::reserve_memory_special(size_t bytes, size_t alignment,
3758                                 char* req_addr, bool exec) {
3759  assert(UseLargePages, "only for large pages");
3760
3761  char* addr;
3762  if (UseSHM) {
3763    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3764  } else {
3765    assert(UseHugeTLBFS, "must be");
3766    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3767  }
3768
3769  if (addr != NULL) {
3770    if (UseNUMAInterleaving) {
3771      numa_make_global(addr, bytes);
3772    }
3773
3774    // The memory is committed
3775    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3776  }
3777
3778  return addr;
3779}
3780
3781bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3782  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3783  return shmdt(base) == 0;
3784}
3785
3786bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3787  return pd_release_memory(base, bytes);
3788}
3789
3790bool os::release_memory_special(char* base, size_t bytes) {
3791  bool res;
3792  if (MemTracker::tracking_level() > NMT_minimal) {
3793    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3794    res = os::Linux::release_memory_special_impl(base, bytes);
3795    if (res) {
3796      tkr.record((address)base, bytes);
3797    }
3798
3799  } else {
3800    res = os::Linux::release_memory_special_impl(base, bytes);
3801  }
3802  return res;
3803}
3804
3805bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3806  assert(UseLargePages, "only for large pages");
3807  bool res;
3808
3809  if (UseSHM) {
3810    res = os::Linux::release_memory_special_shm(base, bytes);
3811  } else {
3812    assert(UseHugeTLBFS, "must be");
3813    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3814  }
3815  return res;
3816}
3817
3818size_t os::large_page_size() {
3819  return _large_page_size;
3820}
3821
3822// With SysV SHM the entire memory region must be allocated as shared
3823// memory.
3824// HugeTLBFS allows application to commit large page memory on demand.
3825// However, when committing memory with HugeTLBFS fails, the region
3826// that was supposed to be committed will lose the old reservation
3827// and allow other threads to steal that memory region. Because of this
3828// behavior we can't commit HugeTLBFS memory.
3829bool os::can_commit_large_page_memory() {
3830  return UseTransparentHugePages;
3831}
3832
3833bool os::can_execute_large_page_memory() {
3834  return UseTransparentHugePages || UseHugeTLBFS;
3835}
3836
3837// Reserve memory at an arbitrary address, only if that area is
3838// available (and not reserved for something else).
3839
3840char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3841  const int max_tries = 10;
3842  char* base[max_tries];
3843  size_t size[max_tries];
3844  const size_t gap = 0x000000;
3845
3846  // Assert only that the size is a multiple of the page size, since
3847  // that's all that mmap requires, and since that's all we really know
3848  // about at this low abstraction level.  If we need higher alignment,
3849  // we can either pass an alignment to this method or verify alignment
3850  // in one of the methods further up the call chain.  See bug 5044738.
3851  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3852
3853  // Repeatedly allocate blocks until the block is allocated at the
3854  // right spot.
3855
3856  // Linux mmap allows caller to pass an address as hint; give it a try first,
3857  // if kernel honors the hint then we can return immediately.
3858  char * addr = anon_mmap(requested_addr, bytes, false);
3859  if (addr == requested_addr) {
3860    return requested_addr;
3861  }
3862
3863  if (addr != NULL) {
3864    // mmap() is successful but it fails to reserve at the requested address
3865    anon_munmap(addr, bytes);
3866  }
3867
3868  int i;
3869  for (i = 0; i < max_tries; ++i) {
3870    base[i] = reserve_memory(bytes);
3871
3872    if (base[i] != NULL) {
3873      // Is this the block we wanted?
3874      if (base[i] == requested_addr) {
3875        size[i] = bytes;
3876        break;
3877      }
3878
3879      // Does this overlap the block we wanted? Give back the overlapped
3880      // parts and try again.
3881
3882      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3883      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3884        unmap_memory(base[i], top_overlap);
3885        base[i] += top_overlap;
3886        size[i] = bytes - top_overlap;
3887      } else {
3888        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3889        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3890          unmap_memory(requested_addr, bottom_overlap);
3891          size[i] = bytes - bottom_overlap;
3892        } else {
3893          size[i] = bytes;
3894        }
3895      }
3896    }
3897  }
3898
3899  // Give back the unused reserved pieces.
3900
3901  for (int j = 0; j < i; ++j) {
3902    if (base[j] != NULL) {
3903      unmap_memory(base[j], size[j]);
3904    }
3905  }
3906
3907  if (i < max_tries) {
3908    return requested_addr;
3909  } else {
3910    return NULL;
3911  }
3912}
3913
3914size_t os::read(int fd, void *buf, unsigned int nBytes) {
3915  return ::read(fd, buf, nBytes);
3916}
3917
3918size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3919  return ::pread(fd, buf, nBytes, offset);
3920}
3921
3922// Short sleep, direct OS call.
3923//
3924// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3925// sched_yield(2) will actually give up the CPU:
3926//
3927//   * Alone on this pariticular CPU, keeps running.
3928//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3929//     (pre 2.6.39).
3930//
3931// So calling this with 0 is an alternative.
3932//
3933void os::naked_short_sleep(jlong ms) {
3934  struct timespec req;
3935
3936  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3937  req.tv_sec = 0;
3938  if (ms > 0) {
3939    req.tv_nsec = (ms % 1000) * 1000000;
3940  } else {
3941    req.tv_nsec = 1;
3942  }
3943
3944  nanosleep(&req, NULL);
3945
3946  return;
3947}
3948
3949// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3950void os::infinite_sleep() {
3951  while (true) {    // sleep forever ...
3952    ::sleep(100);   // ... 100 seconds at a time
3953  }
3954}
3955
3956// Used to convert frequent JVM_Yield() to nops
3957bool os::dont_yield() {
3958  return DontYieldALot;
3959}
3960
3961void os::naked_yield() {
3962  sched_yield();
3963}
3964
3965////////////////////////////////////////////////////////////////////////////////
3966// thread priority support
3967
3968// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3969// only supports dynamic priority, static priority must be zero. For real-time
3970// applications, Linux supports SCHED_RR which allows static priority (1-99).
3971// However, for large multi-threaded applications, SCHED_RR is not only slower
3972// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3973// of 5 runs - Sep 2005).
3974//
3975// The following code actually changes the niceness of kernel-thread/LWP. It
3976// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3977// not the entire user process, and user level threads are 1:1 mapped to kernel
3978// threads. It has always been the case, but could change in the future. For
3979// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3980// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3981
3982int os::java_to_os_priority[CriticalPriority + 1] = {
3983  19,              // 0 Entry should never be used
3984
3985   4,              // 1 MinPriority
3986   3,              // 2
3987   2,              // 3
3988
3989   1,              // 4
3990   0,              // 5 NormPriority
3991  -1,              // 6
3992
3993  -2,              // 7
3994  -3,              // 8
3995  -4,              // 9 NearMaxPriority
3996
3997  -5,              // 10 MaxPriority
3998
3999  -5               // 11 CriticalPriority
4000};
4001
4002static int prio_init() {
4003  if (ThreadPriorityPolicy == 1) {
4004    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4005    // if effective uid is not root. Perhaps, a more elegant way of doing
4006    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4007    if (geteuid() != 0) {
4008      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4009        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4010      }
4011      ThreadPriorityPolicy = 0;
4012    }
4013  }
4014  if (UseCriticalJavaThreadPriority) {
4015    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4016  }
4017  return 0;
4018}
4019
4020OSReturn os::set_native_priority(Thread* thread, int newpri) {
4021  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4022
4023  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4024  return (ret == 0) ? OS_OK : OS_ERR;
4025}
4026
4027OSReturn os::get_native_priority(const Thread* const thread,
4028                                 int *priority_ptr) {
4029  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4030    *priority_ptr = java_to_os_priority[NormPriority];
4031    return OS_OK;
4032  }
4033
4034  errno = 0;
4035  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4036  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4037}
4038
4039// Hint to the underlying OS that a task switch would not be good.
4040// Void return because it's a hint and can fail.
4041void os::hint_no_preempt() {}
4042
4043////////////////////////////////////////////////////////////////////////////////
4044// suspend/resume support
4045
4046//  the low-level signal-based suspend/resume support is a remnant from the
4047//  old VM-suspension that used to be for java-suspension, safepoints etc,
4048//  within hotspot. Now there is a single use-case for this:
4049//    - calling get_thread_pc() on the VMThread by the flat-profiler task
4050//      that runs in the watcher thread.
4051//  The remaining code is greatly simplified from the more general suspension
4052//  code that used to be used.
4053//
4054//  The protocol is quite simple:
4055//  - suspend:
4056//      - sends a signal to the target thread
4057//      - polls the suspend state of the osthread using a yield loop
4058//      - target thread signal handler (SR_handler) sets suspend state
4059//        and blocks in sigsuspend until continued
4060//  - resume:
4061//      - sets target osthread state to continue
4062//      - sends signal to end the sigsuspend loop in the SR_handler
4063//
4064//  Note that the SR_lock plays no role in this suspend/resume protocol,
4065//  but is checked for NULL in SR_handler as a thread termination indicator.
4066
4067static void resume_clear_context(OSThread *osthread) {
4068  osthread->set_ucontext(NULL);
4069  osthread->set_siginfo(NULL);
4070}
4071
4072static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4073                                 ucontext_t* context) {
4074  osthread->set_ucontext(context);
4075  osthread->set_siginfo(siginfo);
4076}
4077
4078// Handler function invoked when a thread's execution is suspended or
4079// resumed. We have to be careful that only async-safe functions are
4080// called here (Note: most pthread functions are not async safe and
4081// should be avoided.)
4082//
4083// Note: sigwait() is a more natural fit than sigsuspend() from an
4084// interface point of view, but sigwait() prevents the signal hander
4085// from being run. libpthread would get very confused by not having
4086// its signal handlers run and prevents sigwait()'s use with the
4087// mutex granting granting signal.
4088//
4089// Currently only ever called on the VMThread and JavaThreads (PC sampling)
4090//
4091static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4092  // Save and restore errno to avoid confusing native code with EINTR
4093  // after sigsuspend.
4094  int old_errno = errno;
4095
4096  Thread* thread = Thread::current_or_null_safe();
4097  assert(thread != NULL, "Missing current thread in SR_handler");
4098
4099  // On some systems we have seen signal delivery get "stuck" until the signal
4100  // mask is changed as part of thread termination. Check that the current thread
4101  // has not already terminated (via SR_lock()) - else the following assertion
4102  // will fail because the thread is no longer a JavaThread as the ~JavaThread
4103  // destructor has completed.
4104
4105  if (thread->SR_lock() == NULL) {
4106    return;
4107  }
4108
4109  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4110
4111  OSThread* osthread = thread->osthread();
4112
4113  os::SuspendResume::State current = osthread->sr.state();
4114  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4115    suspend_save_context(osthread, siginfo, context);
4116
4117    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4118    os::SuspendResume::State state = osthread->sr.suspended();
4119    if (state == os::SuspendResume::SR_SUSPENDED) {
4120      sigset_t suspend_set;  // signals for sigsuspend()
4121      sigemptyset(&suspend_set);
4122      // get current set of blocked signals and unblock resume signal
4123      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4124      sigdelset(&suspend_set, SR_signum);
4125
4126      sr_semaphore.signal();
4127      // wait here until we are resumed
4128      while (1) {
4129        sigsuspend(&suspend_set);
4130
4131        os::SuspendResume::State result = osthread->sr.running();
4132        if (result == os::SuspendResume::SR_RUNNING) {
4133          sr_semaphore.signal();
4134          break;
4135        }
4136      }
4137
4138    } else if (state == os::SuspendResume::SR_RUNNING) {
4139      // request was cancelled, continue
4140    } else {
4141      ShouldNotReachHere();
4142    }
4143
4144    resume_clear_context(osthread);
4145  } else if (current == os::SuspendResume::SR_RUNNING) {
4146    // request was cancelled, continue
4147  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4148    // ignore
4149  } else {
4150    // ignore
4151  }
4152
4153  errno = old_errno;
4154}
4155
4156static int SR_initialize() {
4157  struct sigaction act;
4158  char *s;
4159
4160  // Get signal number to use for suspend/resume
4161  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4162    int sig = ::strtol(s, 0, 10);
4163    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4164        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4165      SR_signum = sig;
4166    } else {
4167      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4168              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4169    }
4170  }
4171
4172  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4173         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4174
4175  sigemptyset(&SR_sigset);
4176  sigaddset(&SR_sigset, SR_signum);
4177
4178  // Set up signal handler for suspend/resume
4179  act.sa_flags = SA_RESTART|SA_SIGINFO;
4180  act.sa_handler = (void (*)(int)) SR_handler;
4181
4182  // SR_signum is blocked by default.
4183  // 4528190 - We also need to block pthread restart signal (32 on all
4184  // supported Linux platforms). Note that LinuxThreads need to block
4185  // this signal for all threads to work properly. So we don't have
4186  // to use hard-coded signal number when setting up the mask.
4187  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4188
4189  if (sigaction(SR_signum, &act, 0) == -1) {
4190    return -1;
4191  }
4192
4193  // Save signal flag
4194  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4195  return 0;
4196}
4197
4198static int sr_notify(OSThread* osthread) {
4199  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4200  assert_status(status == 0, status, "pthread_kill");
4201  return status;
4202}
4203
4204// "Randomly" selected value for how long we want to spin
4205// before bailing out on suspending a thread, also how often
4206// we send a signal to a thread we want to resume
4207static const int RANDOMLY_LARGE_INTEGER = 1000000;
4208static const int RANDOMLY_LARGE_INTEGER2 = 100;
4209
4210// returns true on success and false on error - really an error is fatal
4211// but this seems the normal response to library errors
4212static bool do_suspend(OSThread* osthread) {
4213  assert(osthread->sr.is_running(), "thread should be running");
4214  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4215
4216  // mark as suspended and send signal
4217  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4218    // failed to switch, state wasn't running?
4219    ShouldNotReachHere();
4220    return false;
4221  }
4222
4223  if (sr_notify(osthread) != 0) {
4224    ShouldNotReachHere();
4225  }
4226
4227  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4228  while (true) {
4229    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4230      break;
4231    } else {
4232      // timeout
4233      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4234      if (cancelled == os::SuspendResume::SR_RUNNING) {
4235        return false;
4236      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4237        // make sure that we consume the signal on the semaphore as well
4238        sr_semaphore.wait();
4239        break;
4240      } else {
4241        ShouldNotReachHere();
4242        return false;
4243      }
4244    }
4245  }
4246
4247  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4248  return true;
4249}
4250
4251static void do_resume(OSThread* osthread) {
4252  assert(osthread->sr.is_suspended(), "thread should be suspended");
4253  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4254
4255  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4256    // failed to switch to WAKEUP_REQUEST
4257    ShouldNotReachHere();
4258    return;
4259  }
4260
4261  while (true) {
4262    if (sr_notify(osthread) == 0) {
4263      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4264        if (osthread->sr.is_running()) {
4265          return;
4266        }
4267      }
4268    } else {
4269      ShouldNotReachHere();
4270    }
4271  }
4272
4273  guarantee(osthread->sr.is_running(), "Must be running!");
4274}
4275
4276///////////////////////////////////////////////////////////////////////////////////
4277// signal handling (except suspend/resume)
4278
4279// This routine may be used by user applications as a "hook" to catch signals.
4280// The user-defined signal handler must pass unrecognized signals to this
4281// routine, and if it returns true (non-zero), then the signal handler must
4282// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4283// routine will never retun false (zero), but instead will execute a VM panic
4284// routine kill the process.
4285//
4286// If this routine returns false, it is OK to call it again.  This allows
4287// the user-defined signal handler to perform checks either before or after
4288// the VM performs its own checks.  Naturally, the user code would be making
4289// a serious error if it tried to handle an exception (such as a null check
4290// or breakpoint) that the VM was generating for its own correct operation.
4291//
4292// This routine may recognize any of the following kinds of signals:
4293//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4294// It should be consulted by handlers for any of those signals.
4295//
4296// The caller of this routine must pass in the three arguments supplied
4297// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4298// field of the structure passed to sigaction().  This routine assumes that
4299// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4300//
4301// Note that the VM will print warnings if it detects conflicting signal
4302// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4303//
4304extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4305                                                 siginfo_t* siginfo,
4306                                                 void* ucontext,
4307                                                 int abort_if_unrecognized);
4308
4309void signalHandler(int sig, siginfo_t* info, void* uc) {
4310  assert(info != NULL && uc != NULL, "it must be old kernel");
4311  int orig_errno = errno;  // Preserve errno value over signal handler.
4312  JVM_handle_linux_signal(sig, info, uc, true);
4313  errno = orig_errno;
4314}
4315
4316
4317// This boolean allows users to forward their own non-matching signals
4318// to JVM_handle_linux_signal, harmlessly.
4319bool os::Linux::signal_handlers_are_installed = false;
4320
4321// For signal-chaining
4322struct sigaction sigact[NSIG];
4323uint64_t sigs = 0;
4324#if (64 < NSIG-1)
4325#error "Not all signals can be encoded in sigs. Adapt its type!"
4326#endif
4327bool os::Linux::libjsig_is_loaded = false;
4328typedef struct sigaction *(*get_signal_t)(int);
4329get_signal_t os::Linux::get_signal_action = NULL;
4330
4331struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4332  struct sigaction *actp = NULL;
4333
4334  if (libjsig_is_loaded) {
4335    // Retrieve the old signal handler from libjsig
4336    actp = (*get_signal_action)(sig);
4337  }
4338  if (actp == NULL) {
4339    // Retrieve the preinstalled signal handler from jvm
4340    actp = get_preinstalled_handler(sig);
4341  }
4342
4343  return actp;
4344}
4345
4346static bool call_chained_handler(struct sigaction *actp, int sig,
4347                                 siginfo_t *siginfo, void *context) {
4348  // Call the old signal handler
4349  if (actp->sa_handler == SIG_DFL) {
4350    // It's more reasonable to let jvm treat it as an unexpected exception
4351    // instead of taking the default action.
4352    return false;
4353  } else if (actp->sa_handler != SIG_IGN) {
4354    if ((actp->sa_flags & SA_NODEFER) == 0) {
4355      // automaticlly block the signal
4356      sigaddset(&(actp->sa_mask), sig);
4357    }
4358
4359    sa_handler_t hand = NULL;
4360    sa_sigaction_t sa = NULL;
4361    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4362    // retrieve the chained handler
4363    if (siginfo_flag_set) {
4364      sa = actp->sa_sigaction;
4365    } else {
4366      hand = actp->sa_handler;
4367    }
4368
4369    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4370      actp->sa_handler = SIG_DFL;
4371    }
4372
4373    // try to honor the signal mask
4374    sigset_t oset;
4375    sigemptyset(&oset);
4376    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4377
4378    // call into the chained handler
4379    if (siginfo_flag_set) {
4380      (*sa)(sig, siginfo, context);
4381    } else {
4382      (*hand)(sig);
4383    }
4384
4385    // restore the signal mask
4386    pthread_sigmask(SIG_SETMASK, &oset, NULL);
4387  }
4388  // Tell jvm's signal handler the signal is taken care of.
4389  return true;
4390}
4391
4392bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4393  bool chained = false;
4394  // signal-chaining
4395  if (UseSignalChaining) {
4396    struct sigaction *actp = get_chained_signal_action(sig);
4397    if (actp != NULL) {
4398      chained = call_chained_handler(actp, sig, siginfo, context);
4399    }
4400  }
4401  return chained;
4402}
4403
4404struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4405  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4406    return &sigact[sig];
4407  }
4408  return NULL;
4409}
4410
4411void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4412  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4413  sigact[sig] = oldAct;
4414  sigs |= (uint64_t)1 << (sig-1);
4415}
4416
4417// for diagnostic
4418int sigflags[NSIG];
4419
4420int os::Linux::get_our_sigflags(int sig) {
4421  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4422  return sigflags[sig];
4423}
4424
4425void os::Linux::set_our_sigflags(int sig, int flags) {
4426  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4427  if (sig > 0 && sig < NSIG) {
4428    sigflags[sig] = flags;
4429  }
4430}
4431
4432void os::Linux::set_signal_handler(int sig, bool set_installed) {
4433  // Check for overwrite.
4434  struct sigaction oldAct;
4435  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4436
4437  void* oldhand = oldAct.sa_sigaction
4438                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4439                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4440  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4441      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4442      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4443    if (AllowUserSignalHandlers || !set_installed) {
4444      // Do not overwrite; user takes responsibility to forward to us.
4445      return;
4446    } else if (UseSignalChaining) {
4447      // save the old handler in jvm
4448      save_preinstalled_handler(sig, oldAct);
4449      // libjsig also interposes the sigaction() call below and saves the
4450      // old sigaction on it own.
4451    } else {
4452      fatal("Encountered unexpected pre-existing sigaction handler "
4453            "%#lx for signal %d.", (long)oldhand, sig);
4454    }
4455  }
4456
4457  struct sigaction sigAct;
4458  sigfillset(&(sigAct.sa_mask));
4459  sigAct.sa_handler = SIG_DFL;
4460  if (!set_installed) {
4461    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4462  } else {
4463    sigAct.sa_sigaction = signalHandler;
4464    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4465  }
4466  // Save flags, which are set by ours
4467  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4468  sigflags[sig] = sigAct.sa_flags;
4469
4470  int ret = sigaction(sig, &sigAct, &oldAct);
4471  assert(ret == 0, "check");
4472
4473  void* oldhand2  = oldAct.sa_sigaction
4474                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4475                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4476  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4477}
4478
4479// install signal handlers for signals that HotSpot needs to
4480// handle in order to support Java-level exception handling.
4481
4482void os::Linux::install_signal_handlers() {
4483  if (!signal_handlers_are_installed) {
4484    signal_handlers_are_installed = true;
4485
4486    // signal-chaining
4487    typedef void (*signal_setting_t)();
4488    signal_setting_t begin_signal_setting = NULL;
4489    signal_setting_t end_signal_setting = NULL;
4490    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4491                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4492    if (begin_signal_setting != NULL) {
4493      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4494                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4495      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4496                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4497      libjsig_is_loaded = true;
4498      assert(UseSignalChaining, "should enable signal-chaining");
4499    }
4500    if (libjsig_is_loaded) {
4501      // Tell libjsig jvm is setting signal handlers
4502      (*begin_signal_setting)();
4503    }
4504
4505    set_signal_handler(SIGSEGV, true);
4506    set_signal_handler(SIGPIPE, true);
4507    set_signal_handler(SIGBUS, true);
4508    set_signal_handler(SIGILL, true);
4509    set_signal_handler(SIGFPE, true);
4510#if defined(PPC64)
4511    set_signal_handler(SIGTRAP, true);
4512#endif
4513    set_signal_handler(SIGXFSZ, true);
4514
4515    if (libjsig_is_loaded) {
4516      // Tell libjsig jvm finishes setting signal handlers
4517      (*end_signal_setting)();
4518    }
4519
4520    // We don't activate signal checker if libjsig is in place, we trust ourselves
4521    // and if UserSignalHandler is installed all bets are off.
4522    // Log that signal checking is off only if -verbose:jni is specified.
4523    if (CheckJNICalls) {
4524      if (libjsig_is_loaded) {
4525        if (PrintJNIResolving) {
4526          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4527        }
4528        check_signals = false;
4529      }
4530      if (AllowUserSignalHandlers) {
4531        if (PrintJNIResolving) {
4532          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4533        }
4534        check_signals = false;
4535      }
4536    }
4537  }
4538}
4539
4540// This is the fastest way to get thread cpu time on Linux.
4541// Returns cpu time (user+sys) for any thread, not only for current.
4542// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4543// It might work on 2.6.10+ with a special kernel/glibc patch.
4544// For reference, please, see IEEE Std 1003.1-2004:
4545//   http://www.unix.org/single_unix_specification
4546
4547jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4548  struct timespec tp;
4549  int rc = os::Linux::clock_gettime(clockid, &tp);
4550  assert(rc == 0, "clock_gettime is expected to return 0 code");
4551
4552  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4553}
4554
4555void os::Linux::initialize_os_info() {
4556  assert(_os_version == 0, "OS info already initialized");
4557
4558  struct utsname _uname;
4559
4560  uint32_t major;
4561  uint32_t minor;
4562  uint32_t fix;
4563
4564  int rc;
4565
4566  // Kernel version is unknown if
4567  // verification below fails.
4568  _os_version = 0x01000000;
4569
4570  rc = uname(&_uname);
4571  if (rc != -1) {
4572
4573    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4574    if (rc == 3) {
4575
4576      if (major < 256 && minor < 256 && fix < 256) {
4577        // Kernel version format is as expected,
4578        // set it overriding unknown state.
4579        _os_version = (major << 16) |
4580                      (minor << 8 ) |
4581                      (fix   << 0 ) ;
4582      }
4583    }
4584  }
4585}
4586
4587uint32_t os::Linux::os_version() {
4588  assert(_os_version != 0, "not initialized");
4589  return _os_version & 0x00FFFFFF;
4590}
4591
4592bool os::Linux::os_version_is_known() {
4593  assert(_os_version != 0, "not initialized");
4594  return _os_version & 0x01000000 ? false : true;
4595}
4596
4597/////
4598// glibc on Linux platform uses non-documented flag
4599// to indicate, that some special sort of signal
4600// trampoline is used.
4601// We will never set this flag, and we should
4602// ignore this flag in our diagnostic
4603#ifdef SIGNIFICANT_SIGNAL_MASK
4604  #undef SIGNIFICANT_SIGNAL_MASK
4605#endif
4606#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4607
4608static const char* get_signal_handler_name(address handler,
4609                                           char* buf, int buflen) {
4610  int offset = 0;
4611  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4612  if (found) {
4613    // skip directory names
4614    const char *p1, *p2;
4615    p1 = buf;
4616    size_t len = strlen(os::file_separator());
4617    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4618    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4619  } else {
4620    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4621  }
4622  return buf;
4623}
4624
4625static void print_signal_handler(outputStream* st, int sig,
4626                                 char* buf, size_t buflen) {
4627  struct sigaction sa;
4628
4629  sigaction(sig, NULL, &sa);
4630
4631  // See comment for SIGNIFICANT_SIGNAL_MASK define
4632  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4633
4634  st->print("%s: ", os::exception_name(sig, buf, buflen));
4635
4636  address handler = (sa.sa_flags & SA_SIGINFO)
4637    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4638    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4639
4640  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4641    st->print("SIG_DFL");
4642  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4643    st->print("SIG_IGN");
4644  } else {
4645    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4646  }
4647
4648  st->print(", sa_mask[0]=");
4649  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4650
4651  address rh = VMError::get_resetted_sighandler(sig);
4652  // May be, handler was resetted by VMError?
4653  if (rh != NULL) {
4654    handler = rh;
4655    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4656  }
4657
4658  st->print(", sa_flags=");
4659  os::Posix::print_sa_flags(st, sa.sa_flags);
4660
4661  // Check: is it our handler?
4662  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4663      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4664    // It is our signal handler
4665    // check for flags, reset system-used one!
4666    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4667      st->print(
4668                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4669                os::Linux::get_our_sigflags(sig));
4670    }
4671  }
4672  st->cr();
4673}
4674
4675
4676#define DO_SIGNAL_CHECK(sig)                      \
4677  do {                                            \
4678    if (!sigismember(&check_signal_done, sig)) {  \
4679      os::Linux::check_signal_handler(sig);       \
4680    }                                             \
4681  } while (0)
4682
4683// This method is a periodic task to check for misbehaving JNI applications
4684// under CheckJNI, we can add any periodic checks here
4685
4686void os::run_periodic_checks() {
4687  if (check_signals == false) return;
4688
4689  // SEGV and BUS if overridden could potentially prevent
4690  // generation of hs*.log in the event of a crash, debugging
4691  // such a case can be very challenging, so we absolutely
4692  // check the following for a good measure:
4693  DO_SIGNAL_CHECK(SIGSEGV);
4694  DO_SIGNAL_CHECK(SIGILL);
4695  DO_SIGNAL_CHECK(SIGFPE);
4696  DO_SIGNAL_CHECK(SIGBUS);
4697  DO_SIGNAL_CHECK(SIGPIPE);
4698  DO_SIGNAL_CHECK(SIGXFSZ);
4699#if defined(PPC64)
4700  DO_SIGNAL_CHECK(SIGTRAP);
4701#endif
4702
4703  // ReduceSignalUsage allows the user to override these handlers
4704  // see comments at the very top and jvm_solaris.h
4705  if (!ReduceSignalUsage) {
4706    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4707    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4708    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4709    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4710  }
4711
4712  DO_SIGNAL_CHECK(SR_signum);
4713}
4714
4715typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4716
4717static os_sigaction_t os_sigaction = NULL;
4718
4719void os::Linux::check_signal_handler(int sig) {
4720  char buf[O_BUFLEN];
4721  address jvmHandler = NULL;
4722
4723
4724  struct sigaction act;
4725  if (os_sigaction == NULL) {
4726    // only trust the default sigaction, in case it has been interposed
4727    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4728    if (os_sigaction == NULL) return;
4729  }
4730
4731  os_sigaction(sig, (struct sigaction*)NULL, &act);
4732
4733
4734  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4735
4736  address thisHandler = (act.sa_flags & SA_SIGINFO)
4737    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4738    : CAST_FROM_FN_PTR(address, act.sa_handler);
4739
4740
4741  switch (sig) {
4742  case SIGSEGV:
4743  case SIGBUS:
4744  case SIGFPE:
4745  case SIGPIPE:
4746  case SIGILL:
4747  case SIGXFSZ:
4748    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4749    break;
4750
4751  case SHUTDOWN1_SIGNAL:
4752  case SHUTDOWN2_SIGNAL:
4753  case SHUTDOWN3_SIGNAL:
4754  case BREAK_SIGNAL:
4755    jvmHandler = (address)user_handler();
4756    break;
4757
4758  default:
4759    if (sig == SR_signum) {
4760      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4761    } else {
4762      return;
4763    }
4764    break;
4765  }
4766
4767  if (thisHandler != jvmHandler) {
4768    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4769    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4770    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4771    // No need to check this sig any longer
4772    sigaddset(&check_signal_done, sig);
4773    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4774    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4775      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4776                    exception_name(sig, buf, O_BUFLEN));
4777    }
4778  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4779    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4780    tty->print("expected:");
4781    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4782    tty->cr();
4783    tty->print("  found:");
4784    os::Posix::print_sa_flags(tty, act.sa_flags);
4785    tty->cr();
4786    // No need to check this sig any longer
4787    sigaddset(&check_signal_done, sig);
4788  }
4789
4790  // Dump all the signal
4791  if (sigismember(&check_signal_done, sig)) {
4792    print_signal_handlers(tty, buf, O_BUFLEN);
4793  }
4794}
4795
4796extern void report_error(char* file_name, int line_no, char* title,
4797                         char* format, ...);
4798
4799// this is called _before_ the most of global arguments have been parsed
4800void os::init(void) {
4801  char dummy;   // used to get a guess on initial stack address
4802//  first_hrtime = gethrtime();
4803
4804  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4805
4806  init_random(1234567);
4807
4808  ThreadCritical::initialize();
4809
4810  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4811  if (Linux::page_size() == -1) {
4812    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4813          os::strerror(errno));
4814  }
4815  init_page_sizes((size_t) Linux::page_size());
4816
4817  Linux::initialize_system_info();
4818
4819  Linux::initialize_os_info();
4820
4821  // main_thread points to the aboriginal thread
4822  Linux::_main_thread = pthread_self();
4823
4824  Linux::clock_init();
4825  initial_time_count = javaTimeNanos();
4826
4827  // retrieve entry point for pthread_setname_np
4828  Linux::_pthread_setname_np =
4829    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4830
4831  os::Posix::init();
4832}
4833
4834// To install functions for atexit system call
4835extern "C" {
4836  static void perfMemory_exit_helper() {
4837    perfMemory_exit();
4838  }
4839}
4840
4841// this is called _after_ the global arguments have been parsed
4842jint os::init_2(void) {
4843
4844  os::Posix::init_2();
4845
4846  Linux::fast_thread_clock_init();
4847
4848  // Allocate a single page and mark it as readable for safepoint polling
4849  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4850  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4851
4852  os::set_polling_page(polling_page);
4853  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4854
4855  if (!UseMembar) {
4856    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4857    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4858    os::set_memory_serialize_page(mem_serialize_page);
4859    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4860  }
4861
4862  // initialize suspend/resume support - must do this before signal_sets_init()
4863  if (SR_initialize() != 0) {
4864    perror("SR_initialize failed");
4865    return JNI_ERR;
4866  }
4867
4868  Linux::signal_sets_init();
4869  Linux::install_signal_handlers();
4870
4871  // Check and sets minimum stack sizes against command line options
4872  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4873    return JNI_ERR;
4874  }
4875  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4876
4877#if defined(IA32)
4878  workaround_expand_exec_shield_cs_limit();
4879#endif
4880
4881  Linux::libpthread_init();
4882  Linux::sched_getcpu_init();
4883  log_info(os)("HotSpot is running with %s, %s",
4884               Linux::glibc_version(), Linux::libpthread_version());
4885
4886  if (UseNUMA) {
4887    if (!Linux::libnuma_init()) {
4888      UseNUMA = false;
4889    } else {
4890      if ((Linux::numa_max_node() < 1)) {
4891        // There's only one node(they start from 0), disable NUMA.
4892        UseNUMA = false;
4893      }
4894    }
4895    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4896    // we can make the adaptive lgrp chunk resizing work. If the user specified
4897    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4898    // disable adaptive resizing.
4899    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4900      if (FLAG_IS_DEFAULT(UseNUMA)) {
4901        UseNUMA = false;
4902      } else {
4903        if (FLAG_IS_DEFAULT(UseLargePages) &&
4904            FLAG_IS_DEFAULT(UseSHM) &&
4905            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4906          UseLargePages = false;
4907        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4908          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4909          UseAdaptiveSizePolicy = false;
4910          UseAdaptiveNUMAChunkSizing = false;
4911        }
4912      }
4913    }
4914    if (!UseNUMA && ForceNUMA) {
4915      UseNUMA = true;
4916    }
4917  }
4918
4919  if (MaxFDLimit) {
4920    // set the number of file descriptors to max. print out error
4921    // if getrlimit/setrlimit fails but continue regardless.
4922    struct rlimit nbr_files;
4923    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4924    if (status != 0) {
4925      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4926    } else {
4927      nbr_files.rlim_cur = nbr_files.rlim_max;
4928      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4929      if (status != 0) {
4930        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4931      }
4932    }
4933  }
4934
4935  // Initialize lock used to serialize thread creation (see os::create_thread)
4936  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4937
4938  // at-exit methods are called in the reverse order of their registration.
4939  // atexit functions are called on return from main or as a result of a
4940  // call to exit(3C). There can be only 32 of these functions registered
4941  // and atexit() does not set errno.
4942
4943  if (PerfAllowAtExitRegistration) {
4944    // only register atexit functions if PerfAllowAtExitRegistration is set.
4945    // atexit functions can be delayed until process exit time, which
4946    // can be problematic for embedded VM situations. Embedded VMs should
4947    // call DestroyJavaVM() to assure that VM resources are released.
4948
4949    // note: perfMemory_exit_helper atexit function may be removed in
4950    // the future if the appropriate cleanup code can be added to the
4951    // VM_Exit VMOperation's doit method.
4952    if (atexit(perfMemory_exit_helper) != 0) {
4953      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4954    }
4955  }
4956
4957  // initialize thread priority policy
4958  prio_init();
4959
4960  return JNI_OK;
4961}
4962
4963// Mark the polling page as unreadable
4964void os::make_polling_page_unreadable(void) {
4965  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4966    fatal("Could not disable polling page");
4967  }
4968}
4969
4970// Mark the polling page as readable
4971void os::make_polling_page_readable(void) {
4972  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4973    fatal("Could not enable polling page");
4974  }
4975}
4976
4977// older glibc versions don't have this macro (which expands to
4978// an optimized bit-counting function) so we have to roll our own
4979#ifndef CPU_COUNT
4980
4981static int _cpu_count(const cpu_set_t* cpus) {
4982  int count = 0;
4983  // only look up to the number of configured processors
4984  for (int i = 0; i < os::processor_count(); i++) {
4985    if (CPU_ISSET(i, cpus)) {
4986      count++;
4987    }
4988  }
4989  return count;
4990}
4991
4992#define CPU_COUNT(cpus) _cpu_count(cpus)
4993
4994#endif // CPU_COUNT
4995
4996// Get the current number of available processors for this process.
4997// This value can change at any time during a process's lifetime.
4998// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4999// If it appears there may be more than 1024 processors then we do a
5000// dynamic check - see 6515172 for details.
5001// If anything goes wrong we fallback to returning the number of online
5002// processors - which can be greater than the number available to the process.
5003int os::active_processor_count() {
5004  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5005  cpu_set_t* cpus_p = &cpus;
5006  int cpus_size = sizeof(cpu_set_t);
5007
5008  int configured_cpus = processor_count();  // upper bound on available cpus
5009  int cpu_count = 0;
5010
5011// old build platforms may not support dynamic cpu sets
5012#ifdef CPU_ALLOC
5013
5014  // To enable easy testing of the dynamic path on different platforms we
5015  // introduce a diagnostic flag: UseCpuAllocPath
5016  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5017    // kernel may use a mask bigger than cpu_set_t
5018    log_trace(os)("active_processor_count: using dynamic path %s"
5019                  "- configured processors: %d",
5020                  UseCpuAllocPath ? "(forced) " : "",
5021                  configured_cpus);
5022    cpus_p = CPU_ALLOC(configured_cpus);
5023    if (cpus_p != NULL) {
5024      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5025      // zero it just to be safe
5026      CPU_ZERO_S(cpus_size, cpus_p);
5027    }
5028    else {
5029       // failed to allocate so fallback to online cpus
5030       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5031       log_trace(os)("active_processor_count: "
5032                     "CPU_ALLOC failed (%s) - using "
5033                     "online processor count: %d",
5034                     os::strerror(errno), online_cpus);
5035       return online_cpus;
5036    }
5037  }
5038  else {
5039    log_trace(os)("active_processor_count: using static path - configured processors: %d",
5040                  configured_cpus);
5041  }
5042#else // CPU_ALLOC
5043// these stubs won't be executed
5044#define CPU_COUNT_S(size, cpus) -1
5045#define CPU_FREE(cpus)
5046
5047  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5048                configured_cpus);
5049#endif // CPU_ALLOC
5050
5051  // pid 0 means the current thread - which we have to assume represents the process
5052  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5053    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5054      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5055    }
5056    else {
5057      cpu_count = CPU_COUNT(cpus_p);
5058    }
5059    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5060  }
5061  else {
5062    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5063    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5064            "which may exceed available processors", os::strerror(errno), cpu_count);
5065  }
5066
5067  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5068    CPU_FREE(cpus_p);
5069  }
5070
5071  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5072  return cpu_count;
5073}
5074
5075void os::set_native_thread_name(const char *name) {
5076  if (Linux::_pthread_setname_np) {
5077    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5078    snprintf(buf, sizeof(buf), "%s", name);
5079    buf[sizeof(buf) - 1] = '\0';
5080    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5081    // ERANGE should not happen; all other errors should just be ignored.
5082    assert(rc != ERANGE, "pthread_setname_np failed");
5083  }
5084}
5085
5086bool os::distribute_processes(uint length, uint* distribution) {
5087  // Not yet implemented.
5088  return false;
5089}
5090
5091bool os::bind_to_processor(uint processor_id) {
5092  // Not yet implemented.
5093  return false;
5094}
5095
5096///
5097
5098void os::SuspendedThreadTask::internal_do_task() {
5099  if (do_suspend(_thread->osthread())) {
5100    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5101    do_task(context);
5102    do_resume(_thread->osthread());
5103  }
5104}
5105
5106class PcFetcher : public os::SuspendedThreadTask {
5107 public:
5108  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5109  ExtendedPC result();
5110 protected:
5111  void do_task(const os::SuspendedThreadTaskContext& context);
5112 private:
5113  ExtendedPC _epc;
5114};
5115
5116ExtendedPC PcFetcher::result() {
5117  guarantee(is_done(), "task is not done yet.");
5118  return _epc;
5119}
5120
5121void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5122  Thread* thread = context.thread();
5123  OSThread* osthread = thread->osthread();
5124  if (osthread->ucontext() != NULL) {
5125    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5126  } else {
5127    // NULL context is unexpected, double-check this is the VMThread
5128    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5129  }
5130}
5131
5132// Suspends the target using the signal mechanism and then grabs the PC before
5133// resuming the target. Used by the flat-profiler only
5134ExtendedPC os::get_thread_pc(Thread* thread) {
5135  // Make sure that it is called by the watcher for the VMThread
5136  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5137  assert(thread->is_VM_thread(), "Can only be called for VMThread");
5138
5139  PcFetcher fetcher(thread);
5140  fetcher.run();
5141  return fetcher.result();
5142}
5143
5144////////////////////////////////////////////////////////////////////////////////
5145// debug support
5146
5147bool os::find(address addr, outputStream* st) {
5148  Dl_info dlinfo;
5149  memset(&dlinfo, 0, sizeof(dlinfo));
5150  if (dladdr(addr, &dlinfo) != 0) {
5151    st->print(PTR_FORMAT ": ", p2i(addr));
5152    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5153      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5154                p2i(addr) - p2i(dlinfo.dli_saddr));
5155    } else if (dlinfo.dli_fbase != NULL) {
5156      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5157    } else {
5158      st->print("<absolute address>");
5159    }
5160    if (dlinfo.dli_fname != NULL) {
5161      st->print(" in %s", dlinfo.dli_fname);
5162    }
5163    if (dlinfo.dli_fbase != NULL) {
5164      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5165    }
5166    st->cr();
5167
5168    if (Verbose) {
5169      // decode some bytes around the PC
5170      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5171      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5172      address       lowest = (address) dlinfo.dli_sname;
5173      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5174      if (begin < lowest)  begin = lowest;
5175      Dl_info dlinfo2;
5176      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5177          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5178        end = (address) dlinfo2.dli_saddr;
5179      }
5180      Disassembler::decode(begin, end, st);
5181    }
5182    return true;
5183  }
5184  return false;
5185}
5186
5187////////////////////////////////////////////////////////////////////////////////
5188// misc
5189
5190// This does not do anything on Linux. This is basically a hook for being
5191// able to use structured exception handling (thread-local exception filters)
5192// on, e.g., Win32.
5193void
5194os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5195                         JavaCallArguments* args, Thread* thread) {
5196  f(value, method, args, thread);
5197}
5198
5199void os::print_statistics() {
5200}
5201
5202bool os::message_box(const char* title, const char* message) {
5203  int i;
5204  fdStream err(defaultStream::error_fd());
5205  for (i = 0; i < 78; i++) err.print_raw("=");
5206  err.cr();
5207  err.print_raw_cr(title);
5208  for (i = 0; i < 78; i++) err.print_raw("-");
5209  err.cr();
5210  err.print_raw_cr(message);
5211  for (i = 0; i < 78; i++) err.print_raw("=");
5212  err.cr();
5213
5214  char buf[16];
5215  // Prevent process from exiting upon "read error" without consuming all CPU
5216  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5217
5218  return buf[0] == 'y' || buf[0] == 'Y';
5219}
5220
5221int os::stat(const char *path, struct stat *sbuf) {
5222  char pathbuf[MAX_PATH];
5223  if (strlen(path) > MAX_PATH - 1) {
5224    errno = ENAMETOOLONG;
5225    return -1;
5226  }
5227  os::native_path(strcpy(pathbuf, path));
5228  return ::stat(pathbuf, sbuf);
5229}
5230
5231// Is a (classpath) directory empty?
5232bool os::dir_is_empty(const char* path) {
5233  DIR *dir = NULL;
5234  struct dirent *ptr;
5235
5236  dir = opendir(path);
5237  if (dir == NULL) return true;
5238
5239  // Scan the directory
5240  bool result = true;
5241  char buf[sizeof(struct dirent) + MAX_PATH];
5242  while (result && (ptr = ::readdir(dir)) != NULL) {
5243    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5244      result = false;
5245    }
5246  }
5247  closedir(dir);
5248  return result;
5249}
5250
5251// This code originates from JDK's sysOpen and open64_w
5252// from src/solaris/hpi/src/system_md.c
5253
5254int os::open(const char *path, int oflag, int mode) {
5255  if (strlen(path) > MAX_PATH - 1) {
5256    errno = ENAMETOOLONG;
5257    return -1;
5258  }
5259
5260  // All file descriptors that are opened in the Java process and not
5261  // specifically destined for a subprocess should have the close-on-exec
5262  // flag set.  If we don't set it, then careless 3rd party native code
5263  // might fork and exec without closing all appropriate file descriptors
5264  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5265  // turn might:
5266  //
5267  // - cause end-of-file to fail to be detected on some file
5268  //   descriptors, resulting in mysterious hangs, or
5269  //
5270  // - might cause an fopen in the subprocess to fail on a system
5271  //   suffering from bug 1085341.
5272  //
5273  // (Yes, the default setting of the close-on-exec flag is a Unix
5274  // design flaw)
5275  //
5276  // See:
5277  // 1085341: 32-bit stdio routines should support file descriptors >255
5278  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5279  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5280  //
5281  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5282  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5283  // because it saves a system call and removes a small window where the flag
5284  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5285  // and we fall back to using FD_CLOEXEC (see below).
5286#ifdef O_CLOEXEC
5287  oflag |= O_CLOEXEC;
5288#endif
5289
5290  int fd = ::open64(path, oflag, mode);
5291  if (fd == -1) return -1;
5292
5293  //If the open succeeded, the file might still be a directory
5294  {
5295    struct stat64 buf64;
5296    int ret = ::fstat64(fd, &buf64);
5297    int st_mode = buf64.st_mode;
5298
5299    if (ret != -1) {
5300      if ((st_mode & S_IFMT) == S_IFDIR) {
5301        errno = EISDIR;
5302        ::close(fd);
5303        return -1;
5304      }
5305    } else {
5306      ::close(fd);
5307      return -1;
5308    }
5309  }
5310
5311#ifdef FD_CLOEXEC
5312  // Validate that the use of the O_CLOEXEC flag on open above worked.
5313  // With recent kernels, we will perform this check exactly once.
5314  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5315  if (!O_CLOEXEC_is_known_to_work) {
5316    int flags = ::fcntl(fd, F_GETFD);
5317    if (flags != -1) {
5318      if ((flags & FD_CLOEXEC) != 0)
5319        O_CLOEXEC_is_known_to_work = 1;
5320      else
5321        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5322    }
5323  }
5324#endif
5325
5326  return fd;
5327}
5328
5329
5330// create binary file, rewriting existing file if required
5331int os::create_binary_file(const char* path, bool rewrite_existing) {
5332  int oflags = O_WRONLY | O_CREAT;
5333  if (!rewrite_existing) {
5334    oflags |= O_EXCL;
5335  }
5336  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5337}
5338
5339// return current position of file pointer
5340jlong os::current_file_offset(int fd) {
5341  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5342}
5343
5344// move file pointer to the specified offset
5345jlong os::seek_to_file_offset(int fd, jlong offset) {
5346  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5347}
5348
5349// This code originates from JDK's sysAvailable
5350// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5351
5352int os::available(int fd, jlong *bytes) {
5353  jlong cur, end;
5354  int mode;
5355  struct stat64 buf64;
5356
5357  if (::fstat64(fd, &buf64) >= 0) {
5358    mode = buf64.st_mode;
5359    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5360      int n;
5361      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5362        *bytes = n;
5363        return 1;
5364      }
5365    }
5366  }
5367  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5368    return 0;
5369  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5370    return 0;
5371  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5372    return 0;
5373  }
5374  *bytes = end - cur;
5375  return 1;
5376}
5377
5378// Map a block of memory.
5379char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5380                        char *addr, size_t bytes, bool read_only,
5381                        bool allow_exec) {
5382  int prot;
5383  int flags = MAP_PRIVATE;
5384
5385  if (read_only) {
5386    prot = PROT_READ;
5387  } else {
5388    prot = PROT_READ | PROT_WRITE;
5389  }
5390
5391  if (allow_exec) {
5392    prot |= PROT_EXEC;
5393  }
5394
5395  if (addr != NULL) {
5396    flags |= MAP_FIXED;
5397  }
5398
5399  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5400                                     fd, file_offset);
5401  if (mapped_address == MAP_FAILED) {
5402    return NULL;
5403  }
5404  return mapped_address;
5405}
5406
5407
5408// Remap a block of memory.
5409char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5410                          char *addr, size_t bytes, bool read_only,
5411                          bool allow_exec) {
5412  // same as map_memory() on this OS
5413  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5414                        allow_exec);
5415}
5416
5417
5418// Unmap a block of memory.
5419bool os::pd_unmap_memory(char* addr, size_t bytes) {
5420  return munmap(addr, bytes) == 0;
5421}
5422
5423static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5424
5425static clockid_t thread_cpu_clockid(Thread* thread) {
5426  pthread_t tid = thread->osthread()->pthread_id();
5427  clockid_t clockid;
5428
5429  // Get thread clockid
5430  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5431  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5432  return clockid;
5433}
5434
5435// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5436// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5437// of a thread.
5438//
5439// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5440// the fast estimate available on the platform.
5441
5442jlong os::current_thread_cpu_time() {
5443  if (os::Linux::supports_fast_thread_cpu_time()) {
5444    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5445  } else {
5446    // return user + sys since the cost is the same
5447    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5448  }
5449}
5450
5451jlong os::thread_cpu_time(Thread* thread) {
5452  // consistent with what current_thread_cpu_time() returns
5453  if (os::Linux::supports_fast_thread_cpu_time()) {
5454    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5455  } else {
5456    return slow_thread_cpu_time(thread, true /* user + sys */);
5457  }
5458}
5459
5460jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5461  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5462    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5463  } else {
5464    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5465  }
5466}
5467
5468jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5469  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5470    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5471  } else {
5472    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5473  }
5474}
5475
5476//  -1 on error.
5477static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5478  pid_t  tid = thread->osthread()->thread_id();
5479  char *s;
5480  char stat[2048];
5481  int statlen;
5482  char proc_name[64];
5483  int count;
5484  long sys_time, user_time;
5485  char cdummy;
5486  int idummy;
5487  long ldummy;
5488  FILE *fp;
5489
5490  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5491  fp = fopen(proc_name, "r");
5492  if (fp == NULL) return -1;
5493  statlen = fread(stat, 1, 2047, fp);
5494  stat[statlen] = '\0';
5495  fclose(fp);
5496
5497  // Skip pid and the command string. Note that we could be dealing with
5498  // weird command names, e.g. user could decide to rename java launcher
5499  // to "java 1.4.2 :)", then the stat file would look like
5500  //                1234 (java 1.4.2 :)) R ... ...
5501  // We don't really need to know the command string, just find the last
5502  // occurrence of ")" and then start parsing from there. See bug 4726580.
5503  s = strrchr(stat, ')');
5504  if (s == NULL) return -1;
5505
5506  // Skip blank chars
5507  do { s++; } while (s && isspace(*s));
5508
5509  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5510                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5511                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5512                 &user_time, &sys_time);
5513  if (count != 13) return -1;
5514  if (user_sys_cpu_time) {
5515    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5516  } else {
5517    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5518  }
5519}
5520
5521void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5522  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5523  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5524  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5525  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5526}
5527
5528void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5529  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5530  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5531  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5532  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5533}
5534
5535bool os::is_thread_cpu_time_supported() {
5536  return true;
5537}
5538
5539// System loadavg support.  Returns -1 if load average cannot be obtained.
5540// Linux doesn't yet have a (official) notion of processor sets,
5541// so just return the system wide load average.
5542int os::loadavg(double loadavg[], int nelem) {
5543  return ::getloadavg(loadavg, nelem);
5544}
5545
5546void os::pause() {
5547  char filename[MAX_PATH];
5548  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5549    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5550  } else {
5551    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5552  }
5553
5554  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5555  if (fd != -1) {
5556    struct stat buf;
5557    ::close(fd);
5558    while (::stat(filename, &buf) == 0) {
5559      (void)::poll(NULL, 0, 100);
5560    }
5561  } else {
5562    jio_fprintf(stderr,
5563                "Could not open pause file '%s', continuing immediately.\n", filename);
5564  }
5565}
5566
5567extern char** environ;
5568
5569// Run the specified command in a separate process. Return its exit value,
5570// or -1 on failure (e.g. can't fork a new process).
5571// Unlike system(), this function can be called from signal handler. It
5572// doesn't block SIGINT et al.
5573int os::fork_and_exec(char* cmd) {
5574  const char * argv[4] = {"sh", "-c", cmd, NULL};
5575
5576  pid_t pid = fork();
5577
5578  if (pid < 0) {
5579    // fork failed
5580    return -1;
5581
5582  } else if (pid == 0) {
5583    // child process
5584
5585    execve("/bin/sh", (char* const*)argv, environ);
5586
5587    // execve failed
5588    _exit(-1);
5589
5590  } else  {
5591    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5592    // care about the actual exit code, for now.
5593
5594    int status;
5595
5596    // Wait for the child process to exit.  This returns immediately if
5597    // the child has already exited. */
5598    while (waitpid(pid, &status, 0) < 0) {
5599      switch (errno) {
5600      case ECHILD: return 0;
5601      case EINTR: break;
5602      default: return -1;
5603      }
5604    }
5605
5606    if (WIFEXITED(status)) {
5607      // The child exited normally; get its exit code.
5608      return WEXITSTATUS(status);
5609    } else if (WIFSIGNALED(status)) {
5610      // The child exited because of a signal
5611      // The best value to return is 0x80 + signal number,
5612      // because that is what all Unix shells do, and because
5613      // it allows callers to distinguish between process exit and
5614      // process death by signal.
5615      return 0x80 + WTERMSIG(status);
5616    } else {
5617      // Unknown exit code; pass it through
5618      return status;
5619    }
5620  }
5621}
5622
5623// is_headless_jre()
5624//
5625// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5626// in order to report if we are running in a headless jre
5627//
5628// Since JDK8 xawt/libmawt.so was moved into the same directory
5629// as libawt.so, and renamed libawt_xawt.so
5630//
5631bool os::is_headless_jre() {
5632  struct stat statbuf;
5633  char buf[MAXPATHLEN];
5634  char libmawtpath[MAXPATHLEN];
5635  const char *xawtstr  = "/xawt/libmawt.so";
5636  const char *new_xawtstr = "/libawt_xawt.so";
5637  char *p;
5638
5639  // Get path to libjvm.so
5640  os::jvm_path(buf, sizeof(buf));
5641
5642  // Get rid of libjvm.so
5643  p = strrchr(buf, '/');
5644  if (p == NULL) {
5645    return false;
5646  } else {
5647    *p = '\0';
5648  }
5649
5650  // Get rid of client or server
5651  p = strrchr(buf, '/');
5652  if (p == NULL) {
5653    return false;
5654  } else {
5655    *p = '\0';
5656  }
5657
5658  // check xawt/libmawt.so
5659  strcpy(libmawtpath, buf);
5660  strcat(libmawtpath, xawtstr);
5661  if (::stat(libmawtpath, &statbuf) == 0) return false;
5662
5663  // check libawt_xawt.so
5664  strcpy(libmawtpath, buf);
5665  strcat(libmawtpath, new_xawtstr);
5666  if (::stat(libmawtpath, &statbuf) == 0) return false;
5667
5668  return true;
5669}
5670
5671// Get the default path to the core file
5672// Returns the length of the string
5673int os::get_core_path(char* buffer, size_t bufferSize) {
5674  /*
5675   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5676   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5677   */
5678  const int core_pattern_len = 129;
5679  char core_pattern[core_pattern_len] = {0};
5680
5681  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5682  if (core_pattern_file == -1) {
5683    return -1;
5684  }
5685
5686  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5687  ::close(core_pattern_file);
5688  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5689    return -1;
5690  }
5691  if (core_pattern[ret-1] == '\n') {
5692    core_pattern[ret-1] = '\0';
5693  } else {
5694    core_pattern[ret] = '\0';
5695  }
5696
5697  char *pid_pos = strstr(core_pattern, "%p");
5698  int written;
5699
5700  if (core_pattern[0] == '/') {
5701    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5702  } else {
5703    char cwd[PATH_MAX];
5704
5705    const char* p = get_current_directory(cwd, PATH_MAX);
5706    if (p == NULL) {
5707      return -1;
5708    }
5709
5710    if (core_pattern[0] == '|') {
5711      written = jio_snprintf(buffer, bufferSize,
5712                             "\"%s\" (or dumping to %s/core.%d)",
5713                             &core_pattern[1], p, current_process_id());
5714    } else {
5715      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5716    }
5717  }
5718
5719  if (written < 0) {
5720    return -1;
5721  }
5722
5723  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5724    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5725
5726    if (core_uses_pid_file != -1) {
5727      char core_uses_pid = 0;
5728      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5729      ::close(core_uses_pid_file);
5730
5731      if (core_uses_pid == '1') {
5732        jio_snprintf(buffer + written, bufferSize - written,
5733                                          ".%d", current_process_id());
5734      }
5735    }
5736  }
5737
5738  return strlen(buffer);
5739}
5740
5741bool os::start_debugging(char *buf, int buflen) {
5742  int len = (int)strlen(buf);
5743  char *p = &buf[len];
5744
5745  jio_snprintf(p, buflen-len,
5746               "\n\n"
5747               "Do you want to debug the problem?\n\n"
5748               "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5749               "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5750               "Otherwise, press RETURN to abort...",
5751               os::current_process_id(), os::current_process_id(),
5752               os::current_thread_id(), os::current_thread_id());
5753
5754  bool yes = os::message_box("Unexpected Error", buf);
5755
5756  if (yes) {
5757    // yes, user asked VM to launch debugger
5758    jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5759                 os::current_process_id(), os::current_process_id());
5760
5761    os::fork_and_exec(buf);
5762    yes = false;
5763  }
5764  return yes;
5765}
5766
5767
5768// Java/Compiler thread:
5769//
5770//   Low memory addresses
5771// P0 +------------------------+
5772//    |                        |\  Java thread created by VM does not have glibc
5773//    |    glibc guard page    | - guard page, attached Java thread usually has
5774//    |                        |/  1 glibc guard page.
5775// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5776//    |                        |\
5777//    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5778//    |                        |/
5779//    +------------------------+ JavaThread::stack_reserved_zone_base()
5780//    |                        |\
5781//    |      Normal Stack      | -
5782//    |                        |/
5783// P2 +------------------------+ Thread::stack_base()
5784//
5785// Non-Java thread:
5786//
5787//   Low memory addresses
5788// P0 +------------------------+
5789//    |                        |\
5790//    |  glibc guard page      | - usually 1 page
5791//    |                        |/
5792// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5793//    |                        |\
5794//    |      Normal Stack      | -
5795//    |                        |/
5796// P2 +------------------------+ Thread::stack_base()
5797//
5798// ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5799//    returned from pthread_attr_getstack().
5800// ** Due to NPTL implementation error, linux takes the glibc guard page out
5801//    of the stack size given in pthread_attr. We work around this for
5802//    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5803//
5804#ifndef ZERO
5805static void current_stack_region(address * bottom, size_t * size) {
5806  if (os::Linux::is_initial_thread()) {
5807    // initial thread needs special handling because pthread_getattr_np()
5808    // may return bogus value.
5809    *bottom = os::Linux::initial_thread_stack_bottom();
5810    *size   = os::Linux::initial_thread_stack_size();
5811  } else {
5812    pthread_attr_t attr;
5813
5814    int rslt = pthread_getattr_np(pthread_self(), &attr);
5815
5816    // JVM needs to know exact stack location, abort if it fails
5817    if (rslt != 0) {
5818      if (rslt == ENOMEM) {
5819        vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5820      } else {
5821        fatal("pthread_getattr_np failed with error = %d", rslt);
5822      }
5823    }
5824
5825    if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5826      fatal("Cannot locate current stack attributes!");
5827    }
5828
5829    // Work around NPTL stack guard error.
5830    size_t guard_size = 0;
5831    rslt = pthread_attr_getguardsize(&attr, &guard_size);
5832    if (rslt != 0) {
5833      fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5834    }
5835    *bottom += guard_size;
5836    *size   -= guard_size;
5837
5838    pthread_attr_destroy(&attr);
5839
5840  }
5841  assert(os::current_stack_pointer() >= *bottom &&
5842         os::current_stack_pointer() < *bottom + *size, "just checking");
5843}
5844
5845address os::current_stack_base() {
5846  address bottom;
5847  size_t size;
5848  current_stack_region(&bottom, &size);
5849  return (bottom + size);
5850}
5851
5852size_t os::current_stack_size() {
5853  // This stack size includes the usable stack and HotSpot guard pages
5854  // (for the threads that have Hotspot guard pages).
5855  address bottom;
5856  size_t size;
5857  current_stack_region(&bottom, &size);
5858  return size;
5859}
5860#endif
5861
5862static inline struct timespec get_mtime(const char* filename) {
5863  struct stat st;
5864  int ret = os::stat(filename, &st);
5865  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5866  return st.st_mtim;
5867}
5868
5869int os::compare_file_modified_times(const char* file1, const char* file2) {
5870  struct timespec filetime1 = get_mtime(file1);
5871  struct timespec filetime2 = get_mtime(file2);
5872  int diff = filetime1.tv_sec - filetime2.tv_sec;
5873  if (diff == 0) {
5874    return filetime1.tv_nsec - filetime2.tv_nsec;
5875  }
5876  return diff;
5877}
5878
5879/////////////// Unit tests ///////////////
5880
5881#ifndef PRODUCT
5882
5883#define test_log(...)              \
5884  do {                             \
5885    if (VerboseInternalVMTests) {  \
5886      tty->print_cr(__VA_ARGS__);  \
5887      tty->flush();                \
5888    }                              \
5889  } while (false)
5890
5891class TestReserveMemorySpecial : AllStatic {
5892 public:
5893  static void small_page_write(void* addr, size_t size) {
5894    size_t page_size = os::vm_page_size();
5895
5896    char* end = (char*)addr + size;
5897    for (char* p = (char*)addr; p < end; p += page_size) {
5898      *p = 1;
5899    }
5900  }
5901
5902  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5903    if (!UseHugeTLBFS) {
5904      return;
5905    }
5906
5907    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5908
5909    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5910
5911    if (addr != NULL) {
5912      small_page_write(addr, size);
5913
5914      os::Linux::release_memory_special_huge_tlbfs(addr, size);
5915    }
5916  }
5917
5918  static void test_reserve_memory_special_huge_tlbfs_only() {
5919    if (!UseHugeTLBFS) {
5920      return;
5921    }
5922
5923    size_t lp = os::large_page_size();
5924
5925    for (size_t size = lp; size <= lp * 10; size += lp) {
5926      test_reserve_memory_special_huge_tlbfs_only(size);
5927    }
5928  }
5929
5930  static void test_reserve_memory_special_huge_tlbfs_mixed() {
5931    size_t lp = os::large_page_size();
5932    size_t ag = os::vm_allocation_granularity();
5933
5934    // sizes to test
5935    const size_t sizes[] = {
5936      lp, lp + ag, lp + lp / 2, lp * 2,
5937      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5938      lp * 10, lp * 10 + lp / 2
5939    };
5940    const int num_sizes = sizeof(sizes) / sizeof(size_t);
5941
5942    // For each size/alignment combination, we test three scenarios:
5943    // 1) with req_addr == NULL
5944    // 2) with a non-null req_addr at which we expect to successfully allocate
5945    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5946    //    expect the allocation to either fail or to ignore req_addr
5947
5948    // Pre-allocate two areas; they shall be as large as the largest allocation
5949    //  and aligned to the largest alignment we will be testing.
5950    const size_t mapping_size = sizes[num_sizes - 1] * 2;
5951    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5952      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5953      -1, 0);
5954    assert(mapping1 != MAP_FAILED, "should work");
5955
5956    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5957      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5958      -1, 0);
5959    assert(mapping2 != MAP_FAILED, "should work");
5960
5961    // Unmap the first mapping, but leave the second mapping intact: the first
5962    // mapping will serve as a value for a "good" req_addr (case 2). The second
5963    // mapping, still intact, as "bad" req_addr (case 3).
5964    ::munmap(mapping1, mapping_size);
5965
5966    // Case 1
5967    test_log("%s, req_addr NULL:", __FUNCTION__);
5968    test_log("size            align           result");
5969
5970    for (int i = 0; i < num_sizes; i++) {
5971      const size_t size = sizes[i];
5972      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5973        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5974        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5975                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5976        if (p != NULL) {
5977          assert(is_aligned(p, alignment), "must be");
5978          small_page_write(p, size);
5979          os::Linux::release_memory_special_huge_tlbfs(p, size);
5980        }
5981      }
5982    }
5983
5984    // Case 2
5985    test_log("%s, req_addr non-NULL:", __FUNCTION__);
5986    test_log("size            align           req_addr         result");
5987
5988    for (int i = 0; i < num_sizes; i++) {
5989      const size_t size = sizes[i];
5990      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5991        char* const req_addr = align_up(mapping1, alignment);
5992        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5993        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5994                 size, alignment, p2i(req_addr), p2i(p),
5995                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5996        if (p != NULL) {
5997          assert(p == req_addr, "must be");
5998          small_page_write(p, size);
5999          os::Linux::release_memory_special_huge_tlbfs(p, size);
6000        }
6001      }
6002    }
6003
6004    // Case 3
6005    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6006    test_log("size            align           req_addr         result");
6007
6008    for (int i = 0; i < num_sizes; i++) {
6009      const size_t size = sizes[i];
6010      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6011        char* const req_addr = align_up(mapping2, alignment);
6012        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6013        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6014                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6015        // as the area around req_addr contains already existing mappings, the API should always
6016        // return NULL (as per contract, it cannot return another address)
6017        assert(p == NULL, "must be");
6018      }
6019    }
6020
6021    ::munmap(mapping2, mapping_size);
6022
6023  }
6024
6025  static void test_reserve_memory_special_huge_tlbfs() {
6026    if (!UseHugeTLBFS) {
6027      return;
6028    }
6029
6030    test_reserve_memory_special_huge_tlbfs_only();
6031    test_reserve_memory_special_huge_tlbfs_mixed();
6032  }
6033
6034  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6035    if (!UseSHM) {
6036      return;
6037    }
6038
6039    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6040
6041    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6042
6043    if (addr != NULL) {
6044      assert(is_aligned(addr, alignment), "Check");
6045      assert(is_aligned(addr, os::large_page_size()), "Check");
6046
6047      small_page_write(addr, size);
6048
6049      os::Linux::release_memory_special_shm(addr, size);
6050    }
6051  }
6052
6053  static void test_reserve_memory_special_shm() {
6054    size_t lp = os::large_page_size();
6055    size_t ag = os::vm_allocation_granularity();
6056
6057    for (size_t size = ag; size < lp * 3; size += ag) {
6058      for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6059        test_reserve_memory_special_shm(size, alignment);
6060      }
6061    }
6062  }
6063
6064  static void test() {
6065    test_reserve_memory_special_huge_tlbfs();
6066    test_reserve_memory_special_shm();
6067  }
6068};
6069
6070void TestReserveMemorySpecial_test() {
6071  TestReserveMemorySpecial::test();
6072}
6073
6074#endif
6075