os_linux.cpp revision 13066:842ba4a88947
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109#ifndef _GNU_SOURCE
110  #define _GNU_SOURCE
111  #include <sched.h>
112  #undef _GNU_SOURCE
113#else
114  #include <sched.h>
115#endif
116
117// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
118// getrusage() is prepared to handle the associated failure.
119#ifndef RUSAGE_THREAD
120  #define RUSAGE_THREAD   (1)               /* only the calling thread */
121#endif
122
123#define MAX_PATH    (2 * K)
124
125#define MAX_SECS 100000000
126
127// for timer info max values which include all bits
128#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
129
130#define LARGEPAGES_BIT (1 << 6)
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Linux::_physical_memory = 0;
134
135address   os::Linux::_initial_thread_stack_bottom = NULL;
136uintptr_t os::Linux::_initial_thread_stack_size   = 0;
137
138int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
139int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
140int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
141Mutex* os::Linux::_createThread_lock = NULL;
142pthread_t os::Linux::_main_thread;
143int os::Linux::_page_size = -1;
144bool os::Linux::_supports_fast_thread_cpu_time = false;
145uint32_t os::Linux::_os_version = 0;
146const char * os::Linux::_glibc_version = NULL;
147const char * os::Linux::_libpthread_version = NULL;
148pthread_condattr_t os::Linux::_condattr[1];
149
150static jlong initial_time_count=0;
151
152static int clock_tics_per_sec = 100;
153
154// For diagnostics to print a message once. see run_periodic_checks
155static sigset_t check_signal_done;
156static bool check_signals = true;
157
158// Signal number used to suspend/resume a thread
159
160// do not use any signal number less than SIGSEGV, see 4355769
161static int SR_signum = SIGUSR2;
162sigset_t SR_sigset;
163
164// Declarations
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167// utility functions
168
169static int SR_initialize();
170
171julong os::available_memory() {
172  return Linux::available_memory();
173}
174
175julong os::Linux::available_memory() {
176  // values in struct sysinfo are "unsigned long"
177  struct sysinfo si;
178  sysinfo(&si);
179
180  return (julong)si.freeram * si.mem_unit;
181}
182
183julong os::physical_memory() {
184  return Linux::physical_memory();
185}
186
187// Return true if user is running as root.
188
189bool os::have_special_privileges() {
190  static bool init = false;
191  static bool privileges = false;
192  if (!init) {
193    privileges = (getuid() != geteuid()) || (getgid() != getegid());
194    init = true;
195  }
196  return privileges;
197}
198
199
200#ifndef SYS_gettid
201// i386: 224, ia64: 1105, amd64: 186, sparc 143
202  #ifdef __ia64__
203    #define SYS_gettid 1105
204  #else
205    #ifdef __i386__
206      #define SYS_gettid 224
207    #else
208      #ifdef __amd64__
209        #define SYS_gettid 186
210      #else
211        #ifdef __sparc__
212          #define SYS_gettid 143
213        #else
214          #error define gettid for the arch
215        #endif
216      #endif
217    #endif
218  #endif
219#endif
220
221
222// pid_t gettid()
223//
224// Returns the kernel thread id of the currently running thread. Kernel
225// thread id is used to access /proc.
226pid_t os::Linux::gettid() {
227  int rslt = syscall(SYS_gettid);
228  assert(rslt != -1, "must be."); // old linuxthreads implementation?
229  return (pid_t)rslt;
230}
231
232// Most versions of linux have a bug where the number of processors are
233// determined by looking at the /proc file system.  In a chroot environment,
234// the system call returns 1.  This causes the VM to act as if it is
235// a single processor and elide locking (see is_MP() call).
236static bool unsafe_chroot_detected = false;
237static const char *unstable_chroot_error = "/proc file system not found.\n"
238                     "Java may be unstable running multithreaded in a chroot "
239                     "environment on Linux when /proc filesystem is not mounted.";
240
241void os::Linux::initialize_system_info() {
242  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
243  if (processor_count() == 1) {
244    pid_t pid = os::Linux::gettid();
245    char fname[32];
246    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
247    FILE *fp = fopen(fname, "r");
248    if (fp == NULL) {
249      unsafe_chroot_detected = true;
250    } else {
251      fclose(fp);
252    }
253  }
254  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
255  assert(processor_count() > 0, "linux error");
256}
257
258void os::init_system_properties_values() {
259  // The next steps are taken in the product version:
260  //
261  // Obtain the JAVA_HOME value from the location of libjvm.so.
262  // This library should be located at:
263  // <JAVA_HOME>/lib/{client|server}/libjvm.so.
264  //
265  // If "/jre/lib/" appears at the right place in the path, then we
266  // assume libjvm.so is installed in a JDK and we use this path.
267  //
268  // Otherwise exit with message: "Could not create the Java virtual machine."
269  //
270  // The following extra steps are taken in the debugging version:
271  //
272  // If "/jre/lib/" does NOT appear at the right place in the path
273  // instead of exit check for $JAVA_HOME environment variable.
274  //
275  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
276  // then we append a fake suffix "hotspot/libjvm.so" to this path so
277  // it looks like libjvm.so is installed there
278  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
279  //
280  // Otherwise exit.
281  //
282  // Important note: if the location of libjvm.so changes this
283  // code needs to be changed accordingly.
284
285  // See ld(1):
286  //      The linker uses the following search paths to locate required
287  //      shared libraries:
288  //        1: ...
289  //        ...
290  //        7: The default directories, normally /lib and /usr/lib.
291#if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
292  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
293#else
294  #define DEFAULT_LIBPATH "/lib:/usr/lib"
295#endif
296
297// Base path of extensions installed on the system.
298#define SYS_EXT_DIR     "/usr/java/packages"
299#define EXTENSIONS_DIR  "/lib/ext"
300
301  // Buffer that fits several sprintfs.
302  // Note that the space for the colon and the trailing null are provided
303  // by the nulls included by the sizeof operator.
304  const size_t bufsize =
305    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
306         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
307  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
308
309  // sysclasspath, java_home, dll_dir
310  {
311    char *pslash;
312    os::jvm_path(buf, bufsize);
313
314    // Found the full path to libjvm.so.
315    // Now cut the path to <java_home>/jre if we can.
316    pslash = strrchr(buf, '/');
317    if (pslash != NULL) {
318      *pslash = '\0';            // Get rid of /libjvm.so.
319    }
320    pslash = strrchr(buf, '/');
321    if (pslash != NULL) {
322      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
323    }
324    Arguments::set_dll_dir(buf);
325
326    if (pslash != NULL) {
327      pslash = strrchr(buf, '/');
328      if (pslash != NULL) {
329        *pslash = '\0';        // Get rid of /lib.
330      }
331    }
332    Arguments::set_java_home(buf);
333    set_boot_path('/', ':');
334  }
335
336  // Where to look for native libraries.
337  //
338  // Note: Due to a legacy implementation, most of the library path
339  // is set in the launcher. This was to accomodate linking restrictions
340  // on legacy Linux implementations (which are no longer supported).
341  // Eventually, all the library path setting will be done here.
342  //
343  // However, to prevent the proliferation of improperly built native
344  // libraries, the new path component /usr/java/packages is added here.
345  // Eventually, all the library path setting will be done here.
346  {
347    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
348    // should always exist (until the legacy problem cited above is
349    // addressed).
350    const char *v = ::getenv("LD_LIBRARY_PATH");
351    const char *v_colon = ":";
352    if (v == NULL) { v = ""; v_colon = ""; }
353    // That's +1 for the colon and +1 for the trailing '\0'.
354    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
355                                                     strlen(v) + 1 +
356                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
357                                                     mtInternal);
358    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
359    Arguments::set_library_path(ld_library_path);
360    FREE_C_HEAP_ARRAY(char, ld_library_path);
361  }
362
363  // Extensions directories.
364  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
365  Arguments::set_ext_dirs(buf);
366
367  FREE_C_HEAP_ARRAY(char, buf);
368
369#undef DEFAULT_LIBPATH
370#undef SYS_EXT_DIR
371#undef EXTENSIONS_DIR
372}
373
374////////////////////////////////////////////////////////////////////////////////
375// breakpoint support
376
377void os::breakpoint() {
378  BREAKPOINT;
379}
380
381extern "C" void breakpoint() {
382  // use debugger to set breakpoint here
383}
384
385////////////////////////////////////////////////////////////////////////////////
386// signal support
387
388debug_only(static bool signal_sets_initialized = false);
389static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
390
391bool os::Linux::is_sig_ignored(int sig) {
392  struct sigaction oact;
393  sigaction(sig, (struct sigaction*)NULL, &oact);
394  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
395                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
396  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
397    return true;
398  } else {
399    return false;
400  }
401}
402
403void os::Linux::signal_sets_init() {
404  // Should also have an assertion stating we are still single-threaded.
405  assert(!signal_sets_initialized, "Already initialized");
406  // Fill in signals that are necessarily unblocked for all threads in
407  // the VM. Currently, we unblock the following signals:
408  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
409  //                         by -Xrs (=ReduceSignalUsage));
410  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
411  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
412  // the dispositions or masks wrt these signals.
413  // Programs embedding the VM that want to use the above signals for their
414  // own purposes must, at this time, use the "-Xrs" option to prevent
415  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
416  // (See bug 4345157, and other related bugs).
417  // In reality, though, unblocking these signals is really a nop, since
418  // these signals are not blocked by default.
419  sigemptyset(&unblocked_sigs);
420  sigemptyset(&allowdebug_blocked_sigs);
421  sigaddset(&unblocked_sigs, SIGILL);
422  sigaddset(&unblocked_sigs, SIGSEGV);
423  sigaddset(&unblocked_sigs, SIGBUS);
424  sigaddset(&unblocked_sigs, SIGFPE);
425#if defined(PPC64)
426  sigaddset(&unblocked_sigs, SIGTRAP);
427#endif
428  sigaddset(&unblocked_sigs, SR_signum);
429
430  if (!ReduceSignalUsage) {
431    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
432      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
433      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
434    }
435    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
436      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
437      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
438    }
439    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
440      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
441      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
442    }
443  }
444  // Fill in signals that are blocked by all but the VM thread.
445  sigemptyset(&vm_sigs);
446  if (!ReduceSignalUsage) {
447    sigaddset(&vm_sigs, BREAK_SIGNAL);
448  }
449  debug_only(signal_sets_initialized = true);
450
451}
452
453// These are signals that are unblocked while a thread is running Java.
454// (For some reason, they get blocked by default.)
455sigset_t* os::Linux::unblocked_signals() {
456  assert(signal_sets_initialized, "Not initialized");
457  return &unblocked_sigs;
458}
459
460// These are the signals that are blocked while a (non-VM) thread is
461// running Java. Only the VM thread handles these signals.
462sigset_t* os::Linux::vm_signals() {
463  assert(signal_sets_initialized, "Not initialized");
464  return &vm_sigs;
465}
466
467// These are signals that are blocked during cond_wait to allow debugger in
468sigset_t* os::Linux::allowdebug_blocked_signals() {
469  assert(signal_sets_initialized, "Not initialized");
470  return &allowdebug_blocked_sigs;
471}
472
473void os::Linux::hotspot_sigmask(Thread* thread) {
474
475  //Save caller's signal mask before setting VM signal mask
476  sigset_t caller_sigmask;
477  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
478
479  OSThread* osthread = thread->osthread();
480  osthread->set_caller_sigmask(caller_sigmask);
481
482  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
483
484  if (!ReduceSignalUsage) {
485    if (thread->is_VM_thread()) {
486      // Only the VM thread handles BREAK_SIGNAL ...
487      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
488    } else {
489      // ... all other threads block BREAK_SIGNAL
490      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
491    }
492  }
493}
494
495//////////////////////////////////////////////////////////////////////////////
496// detecting pthread library
497
498void os::Linux::libpthread_init() {
499  // Save glibc and pthread version strings.
500#if !defined(_CS_GNU_LIBC_VERSION) || \
501    !defined(_CS_GNU_LIBPTHREAD_VERSION)
502  #error "glibc too old (< 2.3.2)"
503#endif
504
505  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
506  assert(n > 0, "cannot retrieve glibc version");
507  char *str = (char *)malloc(n, mtInternal);
508  confstr(_CS_GNU_LIBC_VERSION, str, n);
509  os::Linux::set_glibc_version(str);
510
511  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
512  assert(n > 0, "cannot retrieve pthread version");
513  str = (char *)malloc(n, mtInternal);
514  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
515  os::Linux::set_libpthread_version(str);
516}
517
518/////////////////////////////////////////////////////////////////////////////
519// thread stack expansion
520
521// os::Linux::manually_expand_stack() takes care of expanding the thread
522// stack. Note that this is normally not needed: pthread stacks allocate
523// thread stack using mmap() without MAP_NORESERVE, so the stack is already
524// committed. Therefore it is not necessary to expand the stack manually.
525//
526// Manually expanding the stack was historically needed on LinuxThreads
527// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
528// it is kept to deal with very rare corner cases:
529//
530// For one, user may run the VM on an own implementation of threads
531// whose stacks are - like the old LinuxThreads - implemented using
532// mmap(MAP_GROWSDOWN).
533//
534// Also, this coding may be needed if the VM is running on the primordial
535// thread. Normally we avoid running on the primordial thread; however,
536// user may still invoke the VM on the primordial thread.
537//
538// The following historical comment describes the details about running
539// on a thread stack allocated with mmap(MAP_GROWSDOWN):
540
541
542// Force Linux kernel to expand current thread stack. If "bottom" is close
543// to the stack guard, caller should block all signals.
544//
545// MAP_GROWSDOWN:
546//   A special mmap() flag that is used to implement thread stacks. It tells
547//   kernel that the memory region should extend downwards when needed. This
548//   allows early versions of LinuxThreads to only mmap the first few pages
549//   when creating a new thread. Linux kernel will automatically expand thread
550//   stack as needed (on page faults).
551//
552//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
553//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
554//   region, it's hard to tell if the fault is due to a legitimate stack
555//   access or because of reading/writing non-exist memory (e.g. buffer
556//   overrun). As a rule, if the fault happens below current stack pointer,
557//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
558//   application (see Linux kernel fault.c).
559//
560//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
561//   stack overflow detection.
562//
563//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
564//   not use MAP_GROWSDOWN.
565//
566// To get around the problem and allow stack banging on Linux, we need to
567// manually expand thread stack after receiving the SIGSEGV.
568//
569// There are two ways to expand thread stack to address "bottom", we used
570// both of them in JVM before 1.5:
571//   1. adjust stack pointer first so that it is below "bottom", and then
572//      touch "bottom"
573//   2. mmap() the page in question
574//
575// Now alternate signal stack is gone, it's harder to use 2. For instance,
576// if current sp is already near the lower end of page 101, and we need to
577// call mmap() to map page 100, it is possible that part of the mmap() frame
578// will be placed in page 100. When page 100 is mapped, it is zero-filled.
579// That will destroy the mmap() frame and cause VM to crash.
580//
581// The following code works by adjusting sp first, then accessing the "bottom"
582// page to force a page fault. Linux kernel will then automatically expand the
583// stack mapping.
584//
585// _expand_stack_to() assumes its frame size is less than page size, which
586// should always be true if the function is not inlined.
587
588static void NOINLINE _expand_stack_to(address bottom) {
589  address sp;
590  size_t size;
591  volatile char *p;
592
593  // Adjust bottom to point to the largest address within the same page, it
594  // gives us a one-page buffer if alloca() allocates slightly more memory.
595  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
596  bottom += os::Linux::page_size() - 1;
597
598  // sp might be slightly above current stack pointer; if that's the case, we
599  // will alloca() a little more space than necessary, which is OK. Don't use
600  // os::current_stack_pointer(), as its result can be slightly below current
601  // stack pointer, causing us to not alloca enough to reach "bottom".
602  sp = (address)&sp;
603
604  if (sp > bottom) {
605    size = sp - bottom;
606    p = (volatile char *)alloca(size);
607    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
608    p[0] = '\0';
609  }
610}
611
612bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
613  assert(t!=NULL, "just checking");
614  assert(t->osthread()->expanding_stack(), "expand should be set");
615  assert(t->stack_base() != NULL, "stack_base was not initialized");
616
617  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
618    sigset_t mask_all, old_sigset;
619    sigfillset(&mask_all);
620    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
621    _expand_stack_to(addr);
622    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
623    return true;
624  }
625  return false;
626}
627
628//////////////////////////////////////////////////////////////////////////////
629// create new thread
630
631// Thread start routine for all newly created threads
632static void *thread_native_entry(Thread *thread) {
633  // Try to randomize the cache line index of hot stack frames.
634  // This helps when threads of the same stack traces evict each other's
635  // cache lines. The threads can be either from the same JVM instance, or
636  // from different JVM instances. The benefit is especially true for
637  // processors with hyperthreading technology.
638  static int counter = 0;
639  int pid = os::current_process_id();
640  alloca(((pid ^ counter++) & 7) * 128);
641
642  thread->initialize_thread_current();
643
644  OSThread* osthread = thread->osthread();
645  Monitor* sync = osthread->startThread_lock();
646
647  osthread->set_thread_id(os::current_thread_id());
648
649  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
650    os::current_thread_id(), (uintx) pthread_self());
651
652  if (UseNUMA) {
653    int lgrp_id = os::numa_get_group_id();
654    if (lgrp_id != -1) {
655      thread->set_lgrp_id(lgrp_id);
656    }
657  }
658  // initialize signal mask for this thread
659  os::Linux::hotspot_sigmask(thread);
660
661  // initialize floating point control register
662  os::Linux::init_thread_fpu_state();
663
664  // handshaking with parent thread
665  {
666    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
667
668    // notify parent thread
669    osthread->set_state(INITIALIZED);
670    sync->notify_all();
671
672    // wait until os::start_thread()
673    while (osthread->get_state() == INITIALIZED) {
674      sync->wait(Mutex::_no_safepoint_check_flag);
675    }
676  }
677
678  // call one more level start routine
679  thread->run();
680
681  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
682    os::current_thread_id(), (uintx) pthread_self());
683
684  // If a thread has not deleted itself ("delete this") as part of its
685  // termination sequence, we have to ensure thread-local-storage is
686  // cleared before we actually terminate. No threads should ever be
687  // deleted asynchronously with respect to their termination.
688  if (Thread::current_or_null_safe() != NULL) {
689    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
690    thread->clear_thread_current();
691  }
692
693  return 0;
694}
695
696bool os::create_thread(Thread* thread, ThreadType thr_type,
697                       size_t req_stack_size) {
698  assert(thread->osthread() == NULL, "caller responsible");
699
700  // Allocate the OSThread object
701  OSThread* osthread = new OSThread(NULL, NULL);
702  if (osthread == NULL) {
703    return false;
704  }
705
706  // set the correct thread state
707  osthread->set_thread_type(thr_type);
708
709  // Initial state is ALLOCATED but not INITIALIZED
710  osthread->set_state(ALLOCATED);
711
712  thread->set_osthread(osthread);
713
714  // init thread attributes
715  pthread_attr_t attr;
716  pthread_attr_init(&attr);
717  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
718
719  // Calculate stack size if it's not specified by caller.
720  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
721  // In the Linux NPTL pthread implementation the guard size mechanism
722  // is not implemented properly. The posix standard requires adding
723  // the size of the guard pages to the stack size, instead Linux
724  // takes the space out of 'stacksize'. Thus we adapt the requested
725  // stack_size by the size of the guard pages to mimick proper
726  // behaviour. However, be careful not to end up with a size
727  // of zero due to overflow. Don't add the guard page in that case.
728  size_t guard_size = os::Linux::default_guard_size(thr_type);
729  if (stack_size <= SIZE_MAX - guard_size) {
730    stack_size += guard_size;
731  }
732  assert(is_size_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
733
734  int status = pthread_attr_setstacksize(&attr, stack_size);
735  assert_status(status == 0, status, "pthread_attr_setstacksize");
736
737  // Configure glibc guard page.
738  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
739
740  ThreadState state;
741
742  {
743    pthread_t tid;
744    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
745
746    char buf[64];
747    if (ret == 0) {
748      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
749        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
750    } else {
751      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
752        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
753    }
754
755    pthread_attr_destroy(&attr);
756
757    if (ret != 0) {
758      // Need to clean up stuff we've allocated so far
759      thread->set_osthread(NULL);
760      delete osthread;
761      return false;
762    }
763
764    // Store pthread info into the OSThread
765    osthread->set_pthread_id(tid);
766
767    // Wait until child thread is either initialized or aborted
768    {
769      Monitor* sync_with_child = osthread->startThread_lock();
770      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
771      while ((state = osthread->get_state()) == ALLOCATED) {
772        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
773      }
774    }
775  }
776
777  // Aborted due to thread limit being reached
778  if (state == ZOMBIE) {
779    thread->set_osthread(NULL);
780    delete osthread;
781    return false;
782  }
783
784  // The thread is returned suspended (in state INITIALIZED),
785  // and is started higher up in the call chain
786  assert(state == INITIALIZED, "race condition");
787  return true;
788}
789
790/////////////////////////////////////////////////////////////////////////////
791// attach existing thread
792
793// bootstrap the main thread
794bool os::create_main_thread(JavaThread* thread) {
795  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
796  return create_attached_thread(thread);
797}
798
799bool os::create_attached_thread(JavaThread* thread) {
800#ifdef ASSERT
801  thread->verify_not_published();
802#endif
803
804  // Allocate the OSThread object
805  OSThread* osthread = new OSThread(NULL, NULL);
806
807  if (osthread == NULL) {
808    return false;
809  }
810
811  // Store pthread info into the OSThread
812  osthread->set_thread_id(os::Linux::gettid());
813  osthread->set_pthread_id(::pthread_self());
814
815  // initialize floating point control register
816  os::Linux::init_thread_fpu_state();
817
818  // Initial thread state is RUNNABLE
819  osthread->set_state(RUNNABLE);
820
821  thread->set_osthread(osthread);
822
823  if (UseNUMA) {
824    int lgrp_id = os::numa_get_group_id();
825    if (lgrp_id != -1) {
826      thread->set_lgrp_id(lgrp_id);
827    }
828  }
829
830  if (os::Linux::is_initial_thread()) {
831    // If current thread is initial thread, its stack is mapped on demand,
832    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
833    // the entire stack region to avoid SEGV in stack banging.
834    // It is also useful to get around the heap-stack-gap problem on SuSE
835    // kernel (see 4821821 for details). We first expand stack to the top
836    // of yellow zone, then enable stack yellow zone (order is significant,
837    // enabling yellow zone first will crash JVM on SuSE Linux), so there
838    // is no gap between the last two virtual memory regions.
839
840    JavaThread *jt = (JavaThread *)thread;
841    address addr = jt->stack_reserved_zone_base();
842    assert(addr != NULL, "initialization problem?");
843    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
844
845    osthread->set_expanding_stack();
846    os::Linux::manually_expand_stack(jt, addr);
847    osthread->clear_expanding_stack();
848  }
849
850  // initialize signal mask for this thread
851  // and save the caller's signal mask
852  os::Linux::hotspot_sigmask(thread);
853
854  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
855    os::current_thread_id(), (uintx) pthread_self());
856
857  return true;
858}
859
860void os::pd_start_thread(Thread* thread) {
861  OSThread * osthread = thread->osthread();
862  assert(osthread->get_state() != INITIALIZED, "just checking");
863  Monitor* sync_with_child = osthread->startThread_lock();
864  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
865  sync_with_child->notify();
866}
867
868// Free Linux resources related to the OSThread
869void os::free_thread(OSThread* osthread) {
870  assert(osthread != NULL, "osthread not set");
871
872  // We are told to free resources of the argument thread,
873  // but we can only really operate on the current thread.
874  assert(Thread::current()->osthread() == osthread,
875         "os::free_thread but not current thread");
876
877#ifdef ASSERT
878  sigset_t current;
879  sigemptyset(&current);
880  pthread_sigmask(SIG_SETMASK, NULL, &current);
881  assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
882#endif
883
884  // Restore caller's signal mask
885  sigset_t sigmask = osthread->caller_sigmask();
886  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
887
888  delete osthread;
889}
890
891//////////////////////////////////////////////////////////////////////////////
892// initial thread
893
894// Check if current thread is the initial thread, similar to Solaris thr_main.
895bool os::Linux::is_initial_thread(void) {
896  char dummy;
897  // If called before init complete, thread stack bottom will be null.
898  // Can be called if fatal error occurs before initialization.
899  if (initial_thread_stack_bottom() == NULL) return false;
900  assert(initial_thread_stack_bottom() != NULL &&
901         initial_thread_stack_size()   != 0,
902         "os::init did not locate initial thread's stack region");
903  if ((address)&dummy >= initial_thread_stack_bottom() &&
904      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
905    return true;
906  } else {
907    return false;
908  }
909}
910
911// Find the virtual memory area that contains addr
912static bool find_vma(address addr, address* vma_low, address* vma_high) {
913  FILE *fp = fopen("/proc/self/maps", "r");
914  if (fp) {
915    address low, high;
916    while (!feof(fp)) {
917      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
918        if (low <= addr && addr < high) {
919          if (vma_low)  *vma_low  = low;
920          if (vma_high) *vma_high = high;
921          fclose(fp);
922          return true;
923        }
924      }
925      for (;;) {
926        int ch = fgetc(fp);
927        if (ch == EOF || ch == (int)'\n') break;
928      }
929    }
930    fclose(fp);
931  }
932  return false;
933}
934
935// Locate initial thread stack. This special handling of initial thread stack
936// is needed because pthread_getattr_np() on most (all?) Linux distros returns
937// bogus value for the primordial process thread. While the launcher has created
938// the VM in a new thread since JDK 6, we still have to allow for the use of the
939// JNI invocation API from a primordial thread.
940void os::Linux::capture_initial_stack(size_t max_size) {
941
942  // max_size is either 0 (which means accept OS default for thread stacks) or
943  // a user-specified value known to be at least the minimum needed. If we
944  // are actually on the primordial thread we can make it appear that we have a
945  // smaller max_size stack by inserting the guard pages at that location. But we
946  // cannot do anything to emulate a larger stack than what has been provided by
947  // the OS or threading library. In fact if we try to use a stack greater than
948  // what is set by rlimit then we will crash the hosting process.
949
950  // Maximum stack size is the easy part, get it from RLIMIT_STACK.
951  // If this is "unlimited" then it will be a huge value.
952  struct rlimit rlim;
953  getrlimit(RLIMIT_STACK, &rlim);
954  size_t stack_size = rlim.rlim_cur;
955
956  // 6308388: a bug in ld.so will relocate its own .data section to the
957  //   lower end of primordial stack; reduce ulimit -s value a little bit
958  //   so we won't install guard page on ld.so's data section.
959  stack_size -= 2 * page_size();
960
961  // Try to figure out where the stack base (top) is. This is harder.
962  //
963  // When an application is started, glibc saves the initial stack pointer in
964  // a global variable "__libc_stack_end", which is then used by system
965  // libraries. __libc_stack_end should be pretty close to stack top. The
966  // variable is available since the very early days. However, because it is
967  // a private interface, it could disappear in the future.
968  //
969  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
970  // to __libc_stack_end, it is very close to stack top, but isn't the real
971  // stack top. Note that /proc may not exist if VM is running as a chroot
972  // program, so reading /proc/<pid>/stat could fail. Also the contents of
973  // /proc/<pid>/stat could change in the future (though unlikely).
974  //
975  // We try __libc_stack_end first. If that doesn't work, look for
976  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
977  // as a hint, which should work well in most cases.
978
979  uintptr_t stack_start;
980
981  // try __libc_stack_end first
982  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
983  if (p && *p) {
984    stack_start = *p;
985  } else {
986    // see if we can get the start_stack field from /proc/self/stat
987    FILE *fp;
988    int pid;
989    char state;
990    int ppid;
991    int pgrp;
992    int session;
993    int nr;
994    int tpgrp;
995    unsigned long flags;
996    unsigned long minflt;
997    unsigned long cminflt;
998    unsigned long majflt;
999    unsigned long cmajflt;
1000    unsigned long utime;
1001    unsigned long stime;
1002    long cutime;
1003    long cstime;
1004    long prio;
1005    long nice;
1006    long junk;
1007    long it_real;
1008    uintptr_t start;
1009    uintptr_t vsize;
1010    intptr_t rss;
1011    uintptr_t rsslim;
1012    uintptr_t scodes;
1013    uintptr_t ecode;
1014    int i;
1015
1016    // Figure what the primordial thread stack base is. Code is inspired
1017    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1018    // followed by command name surrounded by parentheses, state, etc.
1019    char stat[2048];
1020    int statlen;
1021
1022    fp = fopen("/proc/self/stat", "r");
1023    if (fp) {
1024      statlen = fread(stat, 1, 2047, fp);
1025      stat[statlen] = '\0';
1026      fclose(fp);
1027
1028      // Skip pid and the command string. Note that we could be dealing with
1029      // weird command names, e.g. user could decide to rename java launcher
1030      // to "java 1.4.2 :)", then the stat file would look like
1031      //                1234 (java 1.4.2 :)) R ... ...
1032      // We don't really need to know the command string, just find the last
1033      // occurrence of ")" and then start parsing from there. See bug 4726580.
1034      char * s = strrchr(stat, ')');
1035
1036      i = 0;
1037      if (s) {
1038        // Skip blank chars
1039        do { s++; } while (s && isspace(*s));
1040
1041#define _UFM UINTX_FORMAT
1042#define _DFM INTX_FORMAT
1043
1044        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1045        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1046        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1047                   &state,          // 3  %c
1048                   &ppid,           // 4  %d
1049                   &pgrp,           // 5  %d
1050                   &session,        // 6  %d
1051                   &nr,             // 7  %d
1052                   &tpgrp,          // 8  %d
1053                   &flags,          // 9  %lu
1054                   &minflt,         // 10 %lu
1055                   &cminflt,        // 11 %lu
1056                   &majflt,         // 12 %lu
1057                   &cmajflt,        // 13 %lu
1058                   &utime,          // 14 %lu
1059                   &stime,          // 15 %lu
1060                   &cutime,         // 16 %ld
1061                   &cstime,         // 17 %ld
1062                   &prio,           // 18 %ld
1063                   &nice,           // 19 %ld
1064                   &junk,           // 20 %ld
1065                   &it_real,        // 21 %ld
1066                   &start,          // 22 UINTX_FORMAT
1067                   &vsize,          // 23 UINTX_FORMAT
1068                   &rss,            // 24 INTX_FORMAT
1069                   &rsslim,         // 25 UINTX_FORMAT
1070                   &scodes,         // 26 UINTX_FORMAT
1071                   &ecode,          // 27 UINTX_FORMAT
1072                   &stack_start);   // 28 UINTX_FORMAT
1073      }
1074
1075#undef _UFM
1076#undef _DFM
1077
1078      if (i != 28 - 2) {
1079        assert(false, "Bad conversion from /proc/self/stat");
1080        // product mode - assume we are the initial thread, good luck in the
1081        // embedded case.
1082        warning("Can't detect initial thread stack location - bad conversion");
1083        stack_start = (uintptr_t) &rlim;
1084      }
1085    } else {
1086      // For some reason we can't open /proc/self/stat (for example, running on
1087      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1088      // most cases, so don't abort:
1089      warning("Can't detect initial thread stack location - no /proc/self/stat");
1090      stack_start = (uintptr_t) &rlim;
1091    }
1092  }
1093
1094  // Now we have a pointer (stack_start) very close to the stack top, the
1095  // next thing to do is to figure out the exact location of stack top. We
1096  // can find out the virtual memory area that contains stack_start by
1097  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1098  // and its upper limit is the real stack top. (again, this would fail if
1099  // running inside chroot, because /proc may not exist.)
1100
1101  uintptr_t stack_top;
1102  address low, high;
1103  if (find_vma((address)stack_start, &low, &high)) {
1104    // success, "high" is the true stack top. (ignore "low", because initial
1105    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1106    stack_top = (uintptr_t)high;
1107  } else {
1108    // failed, likely because /proc/self/maps does not exist
1109    warning("Can't detect initial thread stack location - find_vma failed");
1110    // best effort: stack_start is normally within a few pages below the real
1111    // stack top, use it as stack top, and reduce stack size so we won't put
1112    // guard page outside stack.
1113    stack_top = stack_start;
1114    stack_size -= 16 * page_size();
1115  }
1116
1117  // stack_top could be partially down the page so align it
1118  stack_top = align_size_up(stack_top, page_size());
1119
1120  // Allowed stack value is minimum of max_size and what we derived from rlimit
1121  if (max_size > 0) {
1122    _initial_thread_stack_size = MIN2(max_size, stack_size);
1123  } else {
1124    // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1125    // clamp it at 8MB as we do on Solaris
1126    _initial_thread_stack_size = MIN2(stack_size, 8*M);
1127  }
1128  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1129  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1130
1131  assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1132
1133  if (log_is_enabled(Info, os, thread)) {
1134    // See if we seem to be on primordial process thread
1135    bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1136                      uintptr_t(&rlim) < stack_top;
1137
1138    log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1139                         SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1140                         primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1141                         stack_top, intptr_t(_initial_thread_stack_bottom));
1142  }
1143}
1144
1145////////////////////////////////////////////////////////////////////////////////
1146// time support
1147
1148// Time since start-up in seconds to a fine granularity.
1149// Used by VMSelfDestructTimer and the MemProfiler.
1150double os::elapsedTime() {
1151
1152  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1153}
1154
1155jlong os::elapsed_counter() {
1156  return javaTimeNanos() - initial_time_count;
1157}
1158
1159jlong os::elapsed_frequency() {
1160  return NANOSECS_PER_SEC; // nanosecond resolution
1161}
1162
1163bool os::supports_vtime() { return true; }
1164bool os::enable_vtime()   { return false; }
1165bool os::vtime_enabled()  { return false; }
1166
1167double os::elapsedVTime() {
1168  struct rusage usage;
1169  int retval = getrusage(RUSAGE_THREAD, &usage);
1170  if (retval == 0) {
1171    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1172  } else {
1173    // better than nothing, but not much
1174    return elapsedTime();
1175  }
1176}
1177
1178jlong os::javaTimeMillis() {
1179  timeval time;
1180  int status = gettimeofday(&time, NULL);
1181  assert(status != -1, "linux error");
1182  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1183}
1184
1185void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1186  timeval time;
1187  int status = gettimeofday(&time, NULL);
1188  assert(status != -1, "linux error");
1189  seconds = jlong(time.tv_sec);
1190  nanos = jlong(time.tv_usec) * 1000;
1191}
1192
1193
1194#ifndef CLOCK_MONOTONIC
1195  #define CLOCK_MONOTONIC (1)
1196#endif
1197
1198void os::Linux::clock_init() {
1199  // we do dlopen's in this particular order due to bug in linux
1200  // dynamical loader (see 6348968) leading to crash on exit
1201  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1202  if (handle == NULL) {
1203    handle = dlopen("librt.so", RTLD_LAZY);
1204  }
1205
1206  if (handle) {
1207    int (*clock_getres_func)(clockid_t, struct timespec*) =
1208           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1209    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1210           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1211    if (clock_getres_func && clock_gettime_func) {
1212      // See if monotonic clock is supported by the kernel. Note that some
1213      // early implementations simply return kernel jiffies (updated every
1214      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1215      // for nano time (though the monotonic property is still nice to have).
1216      // It's fixed in newer kernels, however clock_getres() still returns
1217      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1218      // resolution for now. Hopefully as people move to new kernels, this
1219      // won't be a problem.
1220      struct timespec res;
1221      struct timespec tp;
1222      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1223          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1224        // yes, monotonic clock is supported
1225        _clock_gettime = clock_gettime_func;
1226        return;
1227      } else {
1228        // close librt if there is no monotonic clock
1229        dlclose(handle);
1230      }
1231    }
1232  }
1233  warning("No monotonic clock was available - timed services may " \
1234          "be adversely affected if the time-of-day clock changes");
1235}
1236
1237#ifndef SYS_clock_getres
1238  #if defined(X86) || defined(PPC64) || defined(S390)
1239    #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1240    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1241  #else
1242    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1243    #define sys_clock_getres(x,y)  -1
1244  #endif
1245#else
1246  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1247#endif
1248
1249void os::Linux::fast_thread_clock_init() {
1250  if (!UseLinuxPosixThreadCPUClocks) {
1251    return;
1252  }
1253  clockid_t clockid;
1254  struct timespec tp;
1255  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1256      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1257
1258  // Switch to using fast clocks for thread cpu time if
1259  // the sys_clock_getres() returns 0 error code.
1260  // Note, that some kernels may support the current thread
1261  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1262  // returned by the pthread_getcpuclockid().
1263  // If the fast Posix clocks are supported then the sys_clock_getres()
1264  // must return at least tp.tv_sec == 0 which means a resolution
1265  // better than 1 sec. This is extra check for reliability.
1266
1267  if (pthread_getcpuclockid_func &&
1268      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1269      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1270    _supports_fast_thread_cpu_time = true;
1271    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1272  }
1273}
1274
1275jlong os::javaTimeNanos() {
1276  if (os::supports_monotonic_clock()) {
1277    struct timespec tp;
1278    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1279    assert(status == 0, "gettime error");
1280    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1281    return result;
1282  } else {
1283    timeval time;
1284    int status = gettimeofday(&time, NULL);
1285    assert(status != -1, "linux error");
1286    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1287    return 1000 * usecs;
1288  }
1289}
1290
1291void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1292  if (os::supports_monotonic_clock()) {
1293    info_ptr->max_value = ALL_64_BITS;
1294
1295    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1296    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1297    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1298  } else {
1299    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1300    info_ptr->max_value = ALL_64_BITS;
1301
1302    // gettimeofday is a real time clock so it skips
1303    info_ptr->may_skip_backward = true;
1304    info_ptr->may_skip_forward = true;
1305  }
1306
1307  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1308}
1309
1310// Return the real, user, and system times in seconds from an
1311// arbitrary fixed point in the past.
1312bool os::getTimesSecs(double* process_real_time,
1313                      double* process_user_time,
1314                      double* process_system_time) {
1315  struct tms ticks;
1316  clock_t real_ticks = times(&ticks);
1317
1318  if (real_ticks == (clock_t) (-1)) {
1319    return false;
1320  } else {
1321    double ticks_per_second = (double) clock_tics_per_sec;
1322    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1323    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1324    *process_real_time = ((double) real_ticks) / ticks_per_second;
1325
1326    return true;
1327  }
1328}
1329
1330
1331char * os::local_time_string(char *buf, size_t buflen) {
1332  struct tm t;
1333  time_t long_time;
1334  time(&long_time);
1335  localtime_r(&long_time, &t);
1336  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1337               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1338               t.tm_hour, t.tm_min, t.tm_sec);
1339  return buf;
1340}
1341
1342struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1343  return localtime_r(clock, res);
1344}
1345
1346////////////////////////////////////////////////////////////////////////////////
1347// runtime exit support
1348
1349// Note: os::shutdown() might be called very early during initialization, or
1350// called from signal handler. Before adding something to os::shutdown(), make
1351// sure it is async-safe and can handle partially initialized VM.
1352void os::shutdown() {
1353
1354  // allow PerfMemory to attempt cleanup of any persistent resources
1355  perfMemory_exit();
1356
1357  // needs to remove object in file system
1358  AttachListener::abort();
1359
1360  // flush buffered output, finish log files
1361  ostream_abort();
1362
1363  // Check for abort hook
1364  abort_hook_t abort_hook = Arguments::abort_hook();
1365  if (abort_hook != NULL) {
1366    abort_hook();
1367  }
1368
1369}
1370
1371// Note: os::abort() might be called very early during initialization, or
1372// called from signal handler. Before adding something to os::abort(), make
1373// sure it is async-safe and can handle partially initialized VM.
1374void os::abort(bool dump_core, void* siginfo, const void* context) {
1375  os::shutdown();
1376  if (dump_core) {
1377#ifndef PRODUCT
1378    fdStream out(defaultStream::output_fd());
1379    out.print_raw("Current thread is ");
1380    char buf[16];
1381    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1382    out.print_raw_cr(buf);
1383    out.print_raw_cr("Dumping core ...");
1384#endif
1385    ::abort(); // dump core
1386  }
1387
1388  ::exit(1);
1389}
1390
1391// Die immediately, no exit hook, no abort hook, no cleanup.
1392void os::die() {
1393  ::abort();
1394}
1395
1396
1397// This method is a copy of JDK's sysGetLastErrorString
1398// from src/solaris/hpi/src/system_md.c
1399
1400size_t os::lasterror(char *buf, size_t len) {
1401  if (errno == 0)  return 0;
1402
1403  const char *s = os::strerror(errno);
1404  size_t n = ::strlen(s);
1405  if (n >= len) {
1406    n = len - 1;
1407  }
1408  ::strncpy(buf, s, n);
1409  buf[n] = '\0';
1410  return n;
1411}
1412
1413// thread_id is kernel thread id (similar to Solaris LWP id)
1414intx os::current_thread_id() { return os::Linux::gettid(); }
1415int os::current_process_id() {
1416  return ::getpid();
1417}
1418
1419// DLL functions
1420
1421const char* os::dll_file_extension() { return ".so"; }
1422
1423// This must be hard coded because it's the system's temporary
1424// directory not the java application's temp directory, ala java.io.tmpdir.
1425const char* os::get_temp_directory() { return "/tmp"; }
1426
1427static bool file_exists(const char* filename) {
1428  struct stat statbuf;
1429  if (filename == NULL || strlen(filename) == 0) {
1430    return false;
1431  }
1432  return os::stat(filename, &statbuf) == 0;
1433}
1434
1435bool os::dll_build_name(char* buffer, size_t buflen,
1436                        const char* pname, const char* fname) {
1437  bool retval = false;
1438  // Copied from libhpi
1439  const size_t pnamelen = pname ? strlen(pname) : 0;
1440
1441  // Return error on buffer overflow.
1442  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1443    return retval;
1444  }
1445
1446  if (pnamelen == 0) {
1447    snprintf(buffer, buflen, "lib%s.so", fname);
1448    retval = true;
1449  } else if (strchr(pname, *os::path_separator()) != NULL) {
1450    int n;
1451    char** pelements = split_path(pname, &n);
1452    if (pelements == NULL) {
1453      return false;
1454    }
1455    for (int i = 0; i < n; i++) {
1456      // Really shouldn't be NULL, but check can't hurt
1457      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1458        continue; // skip the empty path values
1459      }
1460      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1461      if (file_exists(buffer)) {
1462        retval = true;
1463        break;
1464      }
1465    }
1466    // release the storage
1467    for (int i = 0; i < n; i++) {
1468      if (pelements[i] != NULL) {
1469        FREE_C_HEAP_ARRAY(char, pelements[i]);
1470      }
1471    }
1472    if (pelements != NULL) {
1473      FREE_C_HEAP_ARRAY(char*, pelements);
1474    }
1475  } else {
1476    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1477    retval = true;
1478  }
1479  return retval;
1480}
1481
1482// check if addr is inside libjvm.so
1483bool os::address_is_in_vm(address addr) {
1484  static address libjvm_base_addr;
1485  Dl_info dlinfo;
1486
1487  if (libjvm_base_addr == NULL) {
1488    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1489      libjvm_base_addr = (address)dlinfo.dli_fbase;
1490    }
1491    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1492  }
1493
1494  if (dladdr((void *)addr, &dlinfo) != 0) {
1495    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1496  }
1497
1498  return false;
1499}
1500
1501bool os::dll_address_to_function_name(address addr, char *buf,
1502                                      int buflen, int *offset,
1503                                      bool demangle) {
1504  // buf is not optional, but offset is optional
1505  assert(buf != NULL, "sanity check");
1506
1507  Dl_info dlinfo;
1508
1509  if (dladdr((void*)addr, &dlinfo) != 0) {
1510    // see if we have a matching symbol
1511    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1512      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1513        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1514      }
1515      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1516      return true;
1517    }
1518    // no matching symbol so try for just file info
1519    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1520      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1521                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1522        return true;
1523      }
1524    }
1525  }
1526
1527  buf[0] = '\0';
1528  if (offset != NULL) *offset = -1;
1529  return false;
1530}
1531
1532struct _address_to_library_name {
1533  address addr;          // input : memory address
1534  size_t  buflen;        //         size of fname
1535  char*   fname;         // output: library name
1536  address base;          //         library base addr
1537};
1538
1539static int address_to_library_name_callback(struct dl_phdr_info *info,
1540                                            size_t size, void *data) {
1541  int i;
1542  bool found = false;
1543  address libbase = NULL;
1544  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1545
1546  // iterate through all loadable segments
1547  for (i = 0; i < info->dlpi_phnum; i++) {
1548    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1549    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1550      // base address of a library is the lowest address of its loaded
1551      // segments.
1552      if (libbase == NULL || libbase > segbase) {
1553        libbase = segbase;
1554      }
1555      // see if 'addr' is within current segment
1556      if (segbase <= d->addr &&
1557          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1558        found = true;
1559      }
1560    }
1561  }
1562
1563  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1564  // so dll_address_to_library_name() can fall through to use dladdr() which
1565  // can figure out executable name from argv[0].
1566  if (found && info->dlpi_name && info->dlpi_name[0]) {
1567    d->base = libbase;
1568    if (d->fname) {
1569      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1570    }
1571    return 1;
1572  }
1573  return 0;
1574}
1575
1576bool os::dll_address_to_library_name(address addr, char* buf,
1577                                     int buflen, int* offset) {
1578  // buf is not optional, but offset is optional
1579  assert(buf != NULL, "sanity check");
1580
1581  Dl_info dlinfo;
1582  struct _address_to_library_name data;
1583
1584  // There is a bug in old glibc dladdr() implementation that it could resolve
1585  // to wrong library name if the .so file has a base address != NULL. Here
1586  // we iterate through the program headers of all loaded libraries to find
1587  // out which library 'addr' really belongs to. This workaround can be
1588  // removed once the minimum requirement for glibc is moved to 2.3.x.
1589  data.addr = addr;
1590  data.fname = buf;
1591  data.buflen = buflen;
1592  data.base = NULL;
1593  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1594
1595  if (rslt) {
1596    // buf already contains library name
1597    if (offset) *offset = addr - data.base;
1598    return true;
1599  }
1600  if (dladdr((void*)addr, &dlinfo) != 0) {
1601    if (dlinfo.dli_fname != NULL) {
1602      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1603    }
1604    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1605      *offset = addr - (address)dlinfo.dli_fbase;
1606    }
1607    return true;
1608  }
1609
1610  buf[0] = '\0';
1611  if (offset) *offset = -1;
1612  return false;
1613}
1614
1615// Loads .dll/.so and
1616// in case of error it checks if .dll/.so was built for the
1617// same architecture as Hotspot is running on
1618
1619
1620// Remember the stack's state. The Linux dynamic linker will change
1621// the stack to 'executable' at most once, so we must safepoint only once.
1622bool os::Linux::_stack_is_executable = false;
1623
1624// VM operation that loads a library.  This is necessary if stack protection
1625// of the Java stacks can be lost during loading the library.  If we
1626// do not stop the Java threads, they can stack overflow before the stacks
1627// are protected again.
1628class VM_LinuxDllLoad: public VM_Operation {
1629 private:
1630  const char *_filename;
1631  char *_ebuf;
1632  int _ebuflen;
1633  void *_lib;
1634 public:
1635  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1636    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1637  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1638  void doit() {
1639    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1640    os::Linux::_stack_is_executable = true;
1641  }
1642  void* loaded_library() { return _lib; }
1643};
1644
1645void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1646  void * result = NULL;
1647  bool load_attempted = false;
1648
1649  // Check whether the library to load might change execution rights
1650  // of the stack. If they are changed, the protection of the stack
1651  // guard pages will be lost. We need a safepoint to fix this.
1652  //
1653  // See Linux man page execstack(8) for more info.
1654  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1655    ElfFile ef(filename);
1656    if (!ef.specifies_noexecstack()) {
1657      if (!is_init_completed()) {
1658        os::Linux::_stack_is_executable = true;
1659        // This is OK - No Java threads have been created yet, and hence no
1660        // stack guard pages to fix.
1661        //
1662        // This should happen only when you are building JDK7 using a very
1663        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1664        //
1665        // Dynamic loader will make all stacks executable after
1666        // this function returns, and will not do that again.
1667        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1668      } else {
1669        warning("You have loaded library %s which might have disabled stack guard. "
1670                "The VM will try to fix the stack guard now.\n"
1671                "It's highly recommended that you fix the library with "
1672                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1673                filename);
1674
1675        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1676        JavaThread *jt = JavaThread::current();
1677        if (jt->thread_state() != _thread_in_native) {
1678          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1679          // that requires ExecStack. Cannot enter safe point. Let's give up.
1680          warning("Unable to fix stack guard. Giving up.");
1681        } else {
1682          if (!LoadExecStackDllInVMThread) {
1683            // This is for the case where the DLL has an static
1684            // constructor function that executes JNI code. We cannot
1685            // load such DLLs in the VMThread.
1686            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1687          }
1688
1689          ThreadInVMfromNative tiv(jt);
1690          debug_only(VMNativeEntryWrapper vew;)
1691
1692          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1693          VMThread::execute(&op);
1694          if (LoadExecStackDllInVMThread) {
1695            result = op.loaded_library();
1696          }
1697          load_attempted = true;
1698        }
1699      }
1700    }
1701  }
1702
1703  if (!load_attempted) {
1704    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1705  }
1706
1707  if (result != NULL) {
1708    // Successful loading
1709    return result;
1710  }
1711
1712  Elf32_Ehdr elf_head;
1713  int diag_msg_max_length=ebuflen-strlen(ebuf);
1714  char* diag_msg_buf=ebuf+strlen(ebuf);
1715
1716  if (diag_msg_max_length==0) {
1717    // No more space in ebuf for additional diagnostics message
1718    return NULL;
1719  }
1720
1721
1722  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1723
1724  if (file_descriptor < 0) {
1725    // Can't open library, report dlerror() message
1726    return NULL;
1727  }
1728
1729  bool failed_to_read_elf_head=
1730    (sizeof(elf_head)!=
1731     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1732
1733  ::close(file_descriptor);
1734  if (failed_to_read_elf_head) {
1735    // file i/o error - report dlerror() msg
1736    return NULL;
1737  }
1738
1739  typedef struct {
1740    Elf32_Half    code;         // Actual value as defined in elf.h
1741    Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1742    unsigned char elf_class;    // 32 or 64 bit
1743    unsigned char endianess;    // MSB or LSB
1744    char*         name;         // String representation
1745  } arch_t;
1746
1747#ifndef EM_486
1748  #define EM_486          6               /* Intel 80486 */
1749#endif
1750#ifndef EM_AARCH64
1751  #define EM_AARCH64    183               /* ARM AARCH64 */
1752#endif
1753
1754  static const arch_t arch_array[]={
1755    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1756    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1757    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1758    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1759    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1760    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1761    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1762    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1763#if defined(VM_LITTLE_ENDIAN)
1764    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1765#else
1766    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1767#endif
1768    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1769    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1770    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1771    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1772    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1773    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1774    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1775    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1776  };
1777
1778#if  (defined IA32)
1779  static  Elf32_Half running_arch_code=EM_386;
1780#elif   (defined AMD64)
1781  static  Elf32_Half running_arch_code=EM_X86_64;
1782#elif  (defined IA64)
1783  static  Elf32_Half running_arch_code=EM_IA_64;
1784#elif  (defined __sparc) && (defined _LP64)
1785  static  Elf32_Half running_arch_code=EM_SPARCV9;
1786#elif  (defined __sparc) && (!defined _LP64)
1787  static  Elf32_Half running_arch_code=EM_SPARC;
1788#elif  (defined __powerpc64__)
1789  static  Elf32_Half running_arch_code=EM_PPC64;
1790#elif  (defined __powerpc__)
1791  static  Elf32_Half running_arch_code=EM_PPC;
1792#elif  (defined AARCH64)
1793  static  Elf32_Half running_arch_code=EM_AARCH64;
1794#elif  (defined ARM)
1795  static  Elf32_Half running_arch_code=EM_ARM;
1796#elif  (defined S390)
1797  static  Elf32_Half running_arch_code=EM_S390;
1798#elif  (defined ALPHA)
1799  static  Elf32_Half running_arch_code=EM_ALPHA;
1800#elif  (defined MIPSEL)
1801  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1802#elif  (defined PARISC)
1803  static  Elf32_Half running_arch_code=EM_PARISC;
1804#elif  (defined MIPS)
1805  static  Elf32_Half running_arch_code=EM_MIPS;
1806#elif  (defined M68K)
1807  static  Elf32_Half running_arch_code=EM_68K;
1808#else
1809    #error Method os::dll_load requires that one of following is defined:\
1810        AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1811#endif
1812
1813  // Identify compatability class for VM's architecture and library's architecture
1814  // Obtain string descriptions for architectures
1815
1816  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1817  int running_arch_index=-1;
1818
1819  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1820    if (running_arch_code == arch_array[i].code) {
1821      running_arch_index    = i;
1822    }
1823    if (lib_arch.code == arch_array[i].code) {
1824      lib_arch.compat_class = arch_array[i].compat_class;
1825      lib_arch.name         = arch_array[i].name;
1826    }
1827  }
1828
1829  assert(running_arch_index != -1,
1830         "Didn't find running architecture code (running_arch_code) in arch_array");
1831  if (running_arch_index == -1) {
1832    // Even though running architecture detection failed
1833    // we may still continue with reporting dlerror() message
1834    return NULL;
1835  }
1836
1837  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1838    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1839    return NULL;
1840  }
1841
1842#ifndef S390
1843  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1844    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1845    return NULL;
1846  }
1847#endif // !S390
1848
1849  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1850    if (lib_arch.name!=NULL) {
1851      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1852                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1853                 lib_arch.name, arch_array[running_arch_index].name);
1854    } else {
1855      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1856                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1857                 lib_arch.code,
1858                 arch_array[running_arch_index].name);
1859    }
1860  }
1861
1862  return NULL;
1863}
1864
1865void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1866                                int ebuflen) {
1867  void * result = ::dlopen(filename, RTLD_LAZY);
1868  if (result == NULL) {
1869    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1870    ebuf[ebuflen-1] = '\0';
1871  }
1872  return result;
1873}
1874
1875void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1876                                       int ebuflen) {
1877  void * result = NULL;
1878  if (LoadExecStackDllInVMThread) {
1879    result = dlopen_helper(filename, ebuf, ebuflen);
1880  }
1881
1882  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1883  // library that requires an executable stack, or which does not have this
1884  // stack attribute set, dlopen changes the stack attribute to executable. The
1885  // read protection of the guard pages gets lost.
1886  //
1887  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1888  // may have been queued at the same time.
1889
1890  if (!_stack_is_executable) {
1891    JavaThread *jt = Threads::first();
1892
1893    while (jt) {
1894      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1895          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1896        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1897          warning("Attempt to reguard stack yellow zone failed.");
1898        }
1899      }
1900      jt = jt->next();
1901    }
1902  }
1903
1904  return result;
1905}
1906
1907void* os::dll_lookup(void* handle, const char* name) {
1908  void* res = dlsym(handle, name);
1909  return res;
1910}
1911
1912void* os::get_default_process_handle() {
1913  return (void*)::dlopen(NULL, RTLD_LAZY);
1914}
1915
1916static bool _print_ascii_file(const char* filename, outputStream* st) {
1917  int fd = ::open(filename, O_RDONLY);
1918  if (fd == -1) {
1919    return false;
1920  }
1921
1922  char buf[33];
1923  int bytes;
1924  buf[32] = '\0';
1925  while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1926    st->print_raw(buf, bytes);
1927  }
1928
1929  ::close(fd);
1930
1931  return true;
1932}
1933
1934void os::print_dll_info(outputStream *st) {
1935  st->print_cr("Dynamic libraries:");
1936
1937  char fname[32];
1938  pid_t pid = os::Linux::gettid();
1939
1940  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1941
1942  if (!_print_ascii_file(fname, st)) {
1943    st->print("Can not get library information for pid = %d\n", pid);
1944  }
1945}
1946
1947int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1948  FILE *procmapsFile = NULL;
1949
1950  // Open the procfs maps file for the current process
1951  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1952    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1953    char line[PATH_MAX + 100];
1954
1955    // Read line by line from 'file'
1956    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1957      u8 base, top, offset, inode;
1958      char permissions[5];
1959      char device[6];
1960      char name[PATH_MAX + 1];
1961
1962      // Parse fields from line
1963      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1964             &base, &top, permissions, &offset, device, &inode, name);
1965
1966      // Filter by device id '00:00' so that we only get file system mapped files.
1967      if (strcmp(device, "00:00") != 0) {
1968
1969        // Call callback with the fields of interest
1970        if(callback(name, (address)base, (address)top, param)) {
1971          // Oops abort, callback aborted
1972          fclose(procmapsFile);
1973          return 1;
1974        }
1975      }
1976    }
1977    fclose(procmapsFile);
1978  }
1979  return 0;
1980}
1981
1982void os::print_os_info_brief(outputStream* st) {
1983  os::Linux::print_distro_info(st);
1984
1985  os::Posix::print_uname_info(st);
1986
1987  os::Linux::print_libversion_info(st);
1988
1989}
1990
1991void os::print_os_info(outputStream* st) {
1992  st->print("OS:");
1993
1994  os::Linux::print_distro_info(st);
1995
1996  os::Posix::print_uname_info(st);
1997
1998  // Print warning if unsafe chroot environment detected
1999  if (unsafe_chroot_detected) {
2000    st->print("WARNING!! ");
2001    st->print_cr("%s", unstable_chroot_error);
2002  }
2003
2004  os::Linux::print_libversion_info(st);
2005
2006  os::Posix::print_rlimit_info(st);
2007
2008  os::Posix::print_load_average(st);
2009
2010  os::Linux::print_full_memory_info(st);
2011}
2012
2013// Try to identify popular distros.
2014// Most Linux distributions have a /etc/XXX-release file, which contains
2015// the OS version string. Newer Linux distributions have a /etc/lsb-release
2016// file that also contains the OS version string. Some have more than one
2017// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2018// /etc/redhat-release.), so the order is important.
2019// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2020// their own specific XXX-release file as well as a redhat-release file.
2021// Because of this the XXX-release file needs to be searched for before the
2022// redhat-release file.
2023// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2024// search for redhat-release / SuSE-release needs to be before lsb-release.
2025// Since the lsb-release file is the new standard it needs to be searched
2026// before the older style release files.
2027// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2028// next to last resort.  The os-release file is a new standard that contains
2029// distribution information and the system-release file seems to be an old
2030// standard that has been replaced by the lsb-release and os-release files.
2031// Searching for the debian_version file is the last resort.  It contains
2032// an informative string like "6.0.6" or "wheezy/sid". Because of this
2033// "Debian " is printed before the contents of the debian_version file.
2034
2035const char* distro_files[] = {
2036  "/etc/oracle-release",
2037  "/etc/mandriva-release",
2038  "/etc/mandrake-release",
2039  "/etc/sun-release",
2040  "/etc/redhat-release",
2041  "/etc/SuSE-release",
2042  "/etc/lsb-release",
2043  "/etc/turbolinux-release",
2044  "/etc/gentoo-release",
2045  "/etc/ltib-release",
2046  "/etc/angstrom-version",
2047  "/etc/system-release",
2048  "/etc/os-release",
2049  NULL };
2050
2051void os::Linux::print_distro_info(outputStream* st) {
2052  for (int i = 0;; i++) {
2053    const char* file = distro_files[i];
2054    if (file == NULL) {
2055      break;  // done
2056    }
2057    // If file prints, we found it.
2058    if (_print_ascii_file(file, st)) {
2059      return;
2060    }
2061  }
2062
2063  if (file_exists("/etc/debian_version")) {
2064    st->print("Debian ");
2065    _print_ascii_file("/etc/debian_version", st);
2066  } else {
2067    st->print("Linux");
2068  }
2069  st->cr();
2070}
2071
2072static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2073  char buf[256];
2074  while (fgets(buf, sizeof(buf), fp)) {
2075    // Edit out extra stuff in expected format
2076    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2077      char* ptr = strstr(buf, "\"");  // the name is in quotes
2078      if (ptr != NULL) {
2079        ptr++; // go beyond first quote
2080        char* nl = strchr(ptr, '\"');
2081        if (nl != NULL) *nl = '\0';
2082        strncpy(distro, ptr, length);
2083      } else {
2084        ptr = strstr(buf, "=");
2085        ptr++; // go beyond equals then
2086        char* nl = strchr(ptr, '\n');
2087        if (nl != NULL) *nl = '\0';
2088        strncpy(distro, ptr, length);
2089      }
2090      return;
2091    } else if (get_first_line) {
2092      char* nl = strchr(buf, '\n');
2093      if (nl != NULL) *nl = '\0';
2094      strncpy(distro, buf, length);
2095      return;
2096    }
2097  }
2098  // print last line and close
2099  char* nl = strchr(buf, '\n');
2100  if (nl != NULL) *nl = '\0';
2101  strncpy(distro, buf, length);
2102}
2103
2104static void parse_os_info(char* distro, size_t length, const char* file) {
2105  FILE* fp = fopen(file, "r");
2106  if (fp != NULL) {
2107    // if suse format, print out first line
2108    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2109    parse_os_info_helper(fp, distro, length, get_first_line);
2110    fclose(fp);
2111  }
2112}
2113
2114void os::get_summary_os_info(char* buf, size_t buflen) {
2115  for (int i = 0;; i++) {
2116    const char* file = distro_files[i];
2117    if (file == NULL) {
2118      break; // ran out of distro_files
2119    }
2120    if (file_exists(file)) {
2121      parse_os_info(buf, buflen, file);
2122      return;
2123    }
2124  }
2125  // special case for debian
2126  if (file_exists("/etc/debian_version")) {
2127    strncpy(buf, "Debian ", buflen);
2128    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2129  } else {
2130    strncpy(buf, "Linux", buflen);
2131  }
2132}
2133
2134void os::Linux::print_libversion_info(outputStream* st) {
2135  // libc, pthread
2136  st->print("libc:");
2137  st->print("%s ", os::Linux::glibc_version());
2138  st->print("%s ", os::Linux::libpthread_version());
2139  st->cr();
2140}
2141
2142void os::Linux::print_full_memory_info(outputStream* st) {
2143  st->print("\n/proc/meminfo:\n");
2144  _print_ascii_file("/proc/meminfo", st);
2145  st->cr();
2146}
2147
2148void os::print_memory_info(outputStream* st) {
2149
2150  st->print("Memory:");
2151  st->print(" %dk page", os::vm_page_size()>>10);
2152
2153  // values in struct sysinfo are "unsigned long"
2154  struct sysinfo si;
2155  sysinfo(&si);
2156
2157  st->print(", physical " UINT64_FORMAT "k",
2158            os::physical_memory() >> 10);
2159  st->print("(" UINT64_FORMAT "k free)",
2160            os::available_memory() >> 10);
2161  st->print(", swap " UINT64_FORMAT "k",
2162            ((jlong)si.totalswap * si.mem_unit) >> 10);
2163  st->print("(" UINT64_FORMAT "k free)",
2164            ((jlong)si.freeswap * si.mem_unit) >> 10);
2165  st->cr();
2166}
2167
2168// Print the first "model name" line and the first "flags" line
2169// that we find and nothing more. We assume "model name" comes
2170// before "flags" so if we find a second "model name", then the
2171// "flags" field is considered missing.
2172static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2173#if defined(IA32) || defined(AMD64)
2174  // Other platforms have less repetitive cpuinfo files
2175  FILE *fp = fopen("/proc/cpuinfo", "r");
2176  if (fp) {
2177    while (!feof(fp)) {
2178      if (fgets(buf, buflen, fp)) {
2179        // Assume model name comes before flags
2180        bool model_name_printed = false;
2181        if (strstr(buf, "model name") != NULL) {
2182          if (!model_name_printed) {
2183            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2184            st->print_raw(buf);
2185            model_name_printed = true;
2186          } else {
2187            // model name printed but not flags?  Odd, just return
2188            fclose(fp);
2189            return true;
2190          }
2191        }
2192        // print the flags line too
2193        if (strstr(buf, "flags") != NULL) {
2194          st->print_raw(buf);
2195          fclose(fp);
2196          return true;
2197        }
2198      }
2199    }
2200    fclose(fp);
2201  }
2202#endif // x86 platforms
2203  return false;
2204}
2205
2206void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2207  // Only print the model name if the platform provides this as a summary
2208  if (!print_model_name_and_flags(st, buf, buflen)) {
2209    st->print("\n/proc/cpuinfo:\n");
2210    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2211      st->print_cr("  <Not Available>");
2212    }
2213  }
2214}
2215
2216#if defined(AMD64) || defined(IA32) || defined(X32)
2217const char* search_string = "model name";
2218#elif defined(PPC64)
2219const char* search_string = "cpu";
2220#elif defined(S390)
2221const char* search_string = "processor";
2222#elif defined(SPARC)
2223const char* search_string = "cpu";
2224#else
2225const char* search_string = "Processor";
2226#endif
2227
2228// Parses the cpuinfo file for string representing the model name.
2229void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2230  FILE* fp = fopen("/proc/cpuinfo", "r");
2231  if (fp != NULL) {
2232    while (!feof(fp)) {
2233      char buf[256];
2234      if (fgets(buf, sizeof(buf), fp)) {
2235        char* start = strstr(buf, search_string);
2236        if (start != NULL) {
2237          char *ptr = start + strlen(search_string);
2238          char *end = buf + strlen(buf);
2239          while (ptr != end) {
2240             // skip whitespace and colon for the rest of the name.
2241             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2242               break;
2243             }
2244             ptr++;
2245          }
2246          if (ptr != end) {
2247            // reasonable string, get rid of newline and keep the rest
2248            char* nl = strchr(buf, '\n');
2249            if (nl != NULL) *nl = '\0';
2250            strncpy(cpuinfo, ptr, length);
2251            fclose(fp);
2252            return;
2253          }
2254        }
2255      }
2256    }
2257    fclose(fp);
2258  }
2259  // cpuinfo not found or parsing failed, just print generic string.  The entire
2260  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2261#if   defined(AARCH64)
2262  strncpy(cpuinfo, "AArch64", length);
2263#elif defined(AMD64)
2264  strncpy(cpuinfo, "x86_64", length);
2265#elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2266  strncpy(cpuinfo, "ARM", length);
2267#elif defined(IA32)
2268  strncpy(cpuinfo, "x86_32", length);
2269#elif defined(IA64)
2270  strncpy(cpuinfo, "IA64", length);
2271#elif defined(PPC)
2272  strncpy(cpuinfo, "PPC64", length);
2273#elif defined(S390)
2274  strncpy(cpuinfo, "S390", length);
2275#elif defined(SPARC)
2276  strncpy(cpuinfo, "sparcv9", length);
2277#elif defined(ZERO_LIBARCH)
2278  strncpy(cpuinfo, ZERO_LIBARCH, length);
2279#else
2280  strncpy(cpuinfo, "unknown", length);
2281#endif
2282}
2283
2284static void print_signal_handler(outputStream* st, int sig,
2285                                 char* buf, size_t buflen);
2286
2287void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2288  st->print_cr("Signal Handlers:");
2289  print_signal_handler(st, SIGSEGV, buf, buflen);
2290  print_signal_handler(st, SIGBUS , buf, buflen);
2291  print_signal_handler(st, SIGFPE , buf, buflen);
2292  print_signal_handler(st, SIGPIPE, buf, buflen);
2293  print_signal_handler(st, SIGXFSZ, buf, buflen);
2294  print_signal_handler(st, SIGILL , buf, buflen);
2295  print_signal_handler(st, SR_signum, buf, buflen);
2296  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2297  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2298  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2299  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2300#if defined(PPC64)
2301  print_signal_handler(st, SIGTRAP, buf, buflen);
2302#endif
2303}
2304
2305static char saved_jvm_path[MAXPATHLEN] = {0};
2306
2307// Find the full path to the current module, libjvm.so
2308void os::jvm_path(char *buf, jint buflen) {
2309  // Error checking.
2310  if (buflen < MAXPATHLEN) {
2311    assert(false, "must use a large-enough buffer");
2312    buf[0] = '\0';
2313    return;
2314  }
2315  // Lazy resolve the path to current module.
2316  if (saved_jvm_path[0] != 0) {
2317    strcpy(buf, saved_jvm_path);
2318    return;
2319  }
2320
2321  char dli_fname[MAXPATHLEN];
2322  bool ret = dll_address_to_library_name(
2323                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2324                                         dli_fname, sizeof(dli_fname), NULL);
2325  assert(ret, "cannot locate libjvm");
2326  char *rp = NULL;
2327  if (ret && dli_fname[0] != '\0') {
2328    rp = os::Posix::realpath(dli_fname, buf, buflen);
2329  }
2330  if (rp == NULL) {
2331    return;
2332  }
2333
2334  if (Arguments::sun_java_launcher_is_altjvm()) {
2335    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2336    // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2337    // If "/jre/lib/" appears at the right place in the string, then
2338    // assume we are installed in a JDK and we're done. Otherwise, check
2339    // for a JAVA_HOME environment variable and fix up the path so it
2340    // looks like libjvm.so is installed there (append a fake suffix
2341    // hotspot/libjvm.so).
2342    const char *p = buf + strlen(buf) - 1;
2343    for (int count = 0; p > buf && count < 5; ++count) {
2344      for (--p; p > buf && *p != '/'; --p)
2345        /* empty */ ;
2346    }
2347
2348    if (strncmp(p, "/jre/lib/", 9) != 0) {
2349      // Look for JAVA_HOME in the environment.
2350      char* java_home_var = ::getenv("JAVA_HOME");
2351      if (java_home_var != NULL && java_home_var[0] != 0) {
2352        char* jrelib_p;
2353        int len;
2354
2355        // Check the current module name "libjvm.so".
2356        p = strrchr(buf, '/');
2357        if (p == NULL) {
2358          return;
2359        }
2360        assert(strstr(p, "/libjvm") == p, "invalid library name");
2361
2362        rp = os::Posix::realpath(java_home_var, buf, buflen);
2363        if (rp == NULL) {
2364          return;
2365        }
2366
2367        // determine if this is a legacy image or modules image
2368        // modules image doesn't have "jre" subdirectory
2369        len = strlen(buf);
2370        assert(len < buflen, "Ran out of buffer room");
2371        jrelib_p = buf + len;
2372        snprintf(jrelib_p, buflen-len, "/jre/lib");
2373        if (0 != access(buf, F_OK)) {
2374          snprintf(jrelib_p, buflen-len, "/lib");
2375        }
2376
2377        if (0 == access(buf, F_OK)) {
2378          // Use current module name "libjvm.so"
2379          len = strlen(buf);
2380          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2381        } else {
2382          // Go back to path of .so
2383          rp = os::Posix::realpath(dli_fname, buf, buflen);
2384          if (rp == NULL) {
2385            return;
2386          }
2387        }
2388      }
2389    }
2390  }
2391
2392  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2393  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2394}
2395
2396void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2397  // no prefix required, not even "_"
2398}
2399
2400void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2401  // no suffix required
2402}
2403
2404////////////////////////////////////////////////////////////////////////////////
2405// sun.misc.Signal support
2406
2407static volatile jint sigint_count = 0;
2408
2409static void UserHandler(int sig, void *siginfo, void *context) {
2410  // 4511530 - sem_post is serialized and handled by the manager thread. When
2411  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2412  // don't want to flood the manager thread with sem_post requests.
2413  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2414    return;
2415  }
2416
2417  // Ctrl-C is pressed during error reporting, likely because the error
2418  // handler fails to abort. Let VM die immediately.
2419  if (sig == SIGINT && is_error_reported()) {
2420    os::die();
2421  }
2422
2423  os::signal_notify(sig);
2424}
2425
2426void* os::user_handler() {
2427  return CAST_FROM_FN_PTR(void*, UserHandler);
2428}
2429
2430struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2431  struct timespec ts;
2432  // Semaphore's are always associated with CLOCK_REALTIME
2433  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2434  // see unpackTime for discussion on overflow checking
2435  if (sec >= MAX_SECS) {
2436    ts.tv_sec += MAX_SECS;
2437    ts.tv_nsec = 0;
2438  } else {
2439    ts.tv_sec += sec;
2440    ts.tv_nsec += nsec;
2441    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2442      ts.tv_nsec -= NANOSECS_PER_SEC;
2443      ++ts.tv_sec; // note: this must be <= max_secs
2444    }
2445  }
2446
2447  return ts;
2448}
2449
2450extern "C" {
2451  typedef void (*sa_handler_t)(int);
2452  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2453}
2454
2455void* os::signal(int signal_number, void* handler) {
2456  struct sigaction sigAct, oldSigAct;
2457
2458  sigfillset(&(sigAct.sa_mask));
2459  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2460  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2461
2462  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2463    // -1 means registration failed
2464    return (void *)-1;
2465  }
2466
2467  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2468}
2469
2470void os::signal_raise(int signal_number) {
2471  ::raise(signal_number);
2472}
2473
2474// The following code is moved from os.cpp for making this
2475// code platform specific, which it is by its very nature.
2476
2477// Will be modified when max signal is changed to be dynamic
2478int os::sigexitnum_pd() {
2479  return NSIG;
2480}
2481
2482// a counter for each possible signal value
2483static volatile jint pending_signals[NSIG+1] = { 0 };
2484
2485// Linux(POSIX) specific hand shaking semaphore.
2486static sem_t sig_sem;
2487static PosixSemaphore sr_semaphore;
2488
2489void os::signal_init_pd() {
2490  // Initialize signal structures
2491  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2492
2493  // Initialize signal semaphore
2494  ::sem_init(&sig_sem, 0, 0);
2495}
2496
2497void os::signal_notify(int sig) {
2498  Atomic::inc(&pending_signals[sig]);
2499  ::sem_post(&sig_sem);
2500}
2501
2502static int check_pending_signals(bool wait) {
2503  Atomic::store(0, &sigint_count);
2504  for (;;) {
2505    for (int i = 0; i < NSIG + 1; i++) {
2506      jint n = pending_signals[i];
2507      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2508        return i;
2509      }
2510    }
2511    if (!wait) {
2512      return -1;
2513    }
2514    JavaThread *thread = JavaThread::current();
2515    ThreadBlockInVM tbivm(thread);
2516
2517    bool threadIsSuspended;
2518    do {
2519      thread->set_suspend_equivalent();
2520      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2521      ::sem_wait(&sig_sem);
2522
2523      // were we externally suspended while we were waiting?
2524      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2525      if (threadIsSuspended) {
2526        // The semaphore has been incremented, but while we were waiting
2527        // another thread suspended us. We don't want to continue running
2528        // while suspended because that would surprise the thread that
2529        // suspended us.
2530        ::sem_post(&sig_sem);
2531
2532        thread->java_suspend_self();
2533      }
2534    } while (threadIsSuspended);
2535  }
2536}
2537
2538int os::signal_lookup() {
2539  return check_pending_signals(false);
2540}
2541
2542int os::signal_wait() {
2543  return check_pending_signals(true);
2544}
2545
2546////////////////////////////////////////////////////////////////////////////////
2547// Virtual Memory
2548
2549int os::vm_page_size() {
2550  // Seems redundant as all get out
2551  assert(os::Linux::page_size() != -1, "must call os::init");
2552  return os::Linux::page_size();
2553}
2554
2555// Solaris allocates memory by pages.
2556int os::vm_allocation_granularity() {
2557  assert(os::Linux::page_size() != -1, "must call os::init");
2558  return os::Linux::page_size();
2559}
2560
2561// Rationale behind this function:
2562//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2563//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2564//  samples for JITted code. Here we create private executable mapping over the code cache
2565//  and then we can use standard (well, almost, as mapping can change) way to provide
2566//  info for the reporting script by storing timestamp and location of symbol
2567void linux_wrap_code(char* base, size_t size) {
2568  static volatile jint cnt = 0;
2569
2570  if (!UseOprofile) {
2571    return;
2572  }
2573
2574  char buf[PATH_MAX+1];
2575  int num = Atomic::add(1, &cnt);
2576
2577  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2578           os::get_temp_directory(), os::current_process_id(), num);
2579  unlink(buf);
2580
2581  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2582
2583  if (fd != -1) {
2584    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2585    if (rv != (off_t)-1) {
2586      if (::write(fd, "", 1) == 1) {
2587        mmap(base, size,
2588             PROT_READ|PROT_WRITE|PROT_EXEC,
2589             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2590      }
2591    }
2592    ::close(fd);
2593    unlink(buf);
2594  }
2595}
2596
2597static bool recoverable_mmap_error(int err) {
2598  // See if the error is one we can let the caller handle. This
2599  // list of errno values comes from JBS-6843484. I can't find a
2600  // Linux man page that documents this specific set of errno
2601  // values so while this list currently matches Solaris, it may
2602  // change as we gain experience with this failure mode.
2603  switch (err) {
2604  case EBADF:
2605  case EINVAL:
2606  case ENOTSUP:
2607    // let the caller deal with these errors
2608    return true;
2609
2610  default:
2611    // Any remaining errors on this OS can cause our reserved mapping
2612    // to be lost. That can cause confusion where different data
2613    // structures think they have the same memory mapped. The worst
2614    // scenario is if both the VM and a library think they have the
2615    // same memory mapped.
2616    return false;
2617  }
2618}
2619
2620static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2621                                    int err) {
2622  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2623          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2624          os::strerror(err), err);
2625}
2626
2627static void warn_fail_commit_memory(char* addr, size_t size,
2628                                    size_t alignment_hint, bool exec,
2629                                    int err) {
2630  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2631          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2632          alignment_hint, exec, os::strerror(err), err);
2633}
2634
2635// NOTE: Linux kernel does not really reserve the pages for us.
2636//       All it does is to check if there are enough free pages
2637//       left at the time of mmap(). This could be a potential
2638//       problem.
2639int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2640  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2641  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2642                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2643  if (res != (uintptr_t) MAP_FAILED) {
2644    if (UseNUMAInterleaving) {
2645      numa_make_global(addr, size);
2646    }
2647    return 0;
2648  }
2649
2650  int err = errno;  // save errno from mmap() call above
2651
2652  if (!recoverable_mmap_error(err)) {
2653    warn_fail_commit_memory(addr, size, exec, err);
2654    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2655  }
2656
2657  return err;
2658}
2659
2660bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2661  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2662}
2663
2664void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2665                                  const char* mesg) {
2666  assert(mesg != NULL, "mesg must be specified");
2667  int err = os::Linux::commit_memory_impl(addr, size, exec);
2668  if (err != 0) {
2669    // the caller wants all commit errors to exit with the specified mesg:
2670    warn_fail_commit_memory(addr, size, exec, err);
2671    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2672  }
2673}
2674
2675// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2676#ifndef MAP_HUGETLB
2677  #define MAP_HUGETLB 0x40000
2678#endif
2679
2680// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2681#ifndef MADV_HUGEPAGE
2682  #define MADV_HUGEPAGE 14
2683#endif
2684
2685int os::Linux::commit_memory_impl(char* addr, size_t size,
2686                                  size_t alignment_hint, bool exec) {
2687  int err = os::Linux::commit_memory_impl(addr, size, exec);
2688  if (err == 0) {
2689    realign_memory(addr, size, alignment_hint);
2690  }
2691  return err;
2692}
2693
2694bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2695                          bool exec) {
2696  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2697}
2698
2699void os::pd_commit_memory_or_exit(char* addr, size_t size,
2700                                  size_t alignment_hint, bool exec,
2701                                  const char* mesg) {
2702  assert(mesg != NULL, "mesg must be specified");
2703  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2704  if (err != 0) {
2705    // the caller wants all commit errors to exit with the specified mesg:
2706    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2707    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2708  }
2709}
2710
2711void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2712  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2713    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2714    // be supported or the memory may already be backed by huge pages.
2715    ::madvise(addr, bytes, MADV_HUGEPAGE);
2716  }
2717}
2718
2719void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2720  // This method works by doing an mmap over an existing mmaping and effectively discarding
2721  // the existing pages. However it won't work for SHM-based large pages that cannot be
2722  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2723  // small pages on top of the SHM segment. This method always works for small pages, so we
2724  // allow that in any case.
2725  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2726    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2727  }
2728}
2729
2730void os::numa_make_global(char *addr, size_t bytes) {
2731  Linux::numa_interleave_memory(addr, bytes);
2732}
2733
2734// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2735// bind policy to MPOL_PREFERRED for the current thread.
2736#define USE_MPOL_PREFERRED 0
2737
2738void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2739  // To make NUMA and large pages more robust when both enabled, we need to ease
2740  // the requirements on where the memory should be allocated. MPOL_BIND is the
2741  // default policy and it will force memory to be allocated on the specified
2742  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2743  // the specified node, but will not force it. Using this policy will prevent
2744  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2745  // free large pages.
2746  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2747  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2748}
2749
2750bool os::numa_topology_changed() { return false; }
2751
2752size_t os::numa_get_groups_num() {
2753  // Return just the number of nodes in which it's possible to allocate memory
2754  // (in numa terminology, configured nodes).
2755  return Linux::numa_num_configured_nodes();
2756}
2757
2758int os::numa_get_group_id() {
2759  int cpu_id = Linux::sched_getcpu();
2760  if (cpu_id != -1) {
2761    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2762    if (lgrp_id != -1) {
2763      return lgrp_id;
2764    }
2765  }
2766  return 0;
2767}
2768
2769int os::Linux::get_existing_num_nodes() {
2770  size_t node;
2771  size_t highest_node_number = Linux::numa_max_node();
2772  int num_nodes = 0;
2773
2774  // Get the total number of nodes in the system including nodes without memory.
2775  for (node = 0; node <= highest_node_number; node++) {
2776    if (isnode_in_existing_nodes(node)) {
2777      num_nodes++;
2778    }
2779  }
2780  return num_nodes;
2781}
2782
2783size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2784  size_t highest_node_number = Linux::numa_max_node();
2785  size_t i = 0;
2786
2787  // Map all node ids in which is possible to allocate memory. Also nodes are
2788  // not always consecutively available, i.e. available from 0 to the highest
2789  // node number.
2790  for (size_t node = 0; node <= highest_node_number; node++) {
2791    if (Linux::isnode_in_configured_nodes(node)) {
2792      ids[i++] = node;
2793    }
2794  }
2795  return i;
2796}
2797
2798bool os::get_page_info(char *start, page_info* info) {
2799  return false;
2800}
2801
2802char *os::scan_pages(char *start, char* end, page_info* page_expected,
2803                     page_info* page_found) {
2804  return end;
2805}
2806
2807
2808int os::Linux::sched_getcpu_syscall(void) {
2809  unsigned int cpu = 0;
2810  int retval = -1;
2811
2812#if defined(IA32)
2813  #ifndef SYS_getcpu
2814    #define SYS_getcpu 318
2815  #endif
2816  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2817#elif defined(AMD64)
2818// Unfortunately we have to bring all these macros here from vsyscall.h
2819// to be able to compile on old linuxes.
2820  #define __NR_vgetcpu 2
2821  #define VSYSCALL_START (-10UL << 20)
2822  #define VSYSCALL_SIZE 1024
2823  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2824  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2825  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2826  retval = vgetcpu(&cpu, NULL, NULL);
2827#endif
2828
2829  return (retval == -1) ? retval : cpu;
2830}
2831
2832// Something to do with the numa-aware allocator needs these symbols
2833extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2834extern "C" JNIEXPORT void numa_error(char *where) { }
2835
2836
2837// If we are running with libnuma version > 2, then we should
2838// be trying to use symbols with versions 1.1
2839// If we are running with earlier version, which did not have symbol versions,
2840// we should use the base version.
2841void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2842  void *f = dlvsym(handle, name, "libnuma_1.1");
2843  if (f == NULL) {
2844    f = dlsym(handle, name);
2845  }
2846  return f;
2847}
2848
2849bool os::Linux::libnuma_init() {
2850  // sched_getcpu() should be in libc.
2851  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2852                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2853
2854  // If it's not, try a direct syscall.
2855  if (sched_getcpu() == -1) {
2856    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2857                                    (void*)&sched_getcpu_syscall));
2858  }
2859
2860  if (sched_getcpu() != -1) { // Does it work?
2861    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2862    if (handle != NULL) {
2863      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2864                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2865      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2866                                       libnuma_dlsym(handle, "numa_max_node")));
2867      set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2868                                                   libnuma_dlsym(handle, "numa_num_configured_nodes")));
2869      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2870                                        libnuma_dlsym(handle, "numa_available")));
2871      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2872                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2873      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2874                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2875      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2876                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2877      set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2878                                               libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2879      set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2880                                       libnuma_dlsym(handle, "numa_distance")));
2881
2882      if (numa_available() != -1) {
2883        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2884        set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2885        set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2886        // Create an index -> node mapping, since nodes are not always consecutive
2887        _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2888        rebuild_nindex_to_node_map();
2889        // Create a cpu -> node mapping
2890        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2891        rebuild_cpu_to_node_map();
2892        return true;
2893      }
2894    }
2895  }
2896  return false;
2897}
2898
2899size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2900  // Creating guard page is very expensive. Java thread has HotSpot
2901  // guard pages, only enable glibc guard page for non-Java threads.
2902  // (Remember: compiler thread is a Java thread, too!)
2903  return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2904}
2905
2906void os::Linux::rebuild_nindex_to_node_map() {
2907  int highest_node_number = Linux::numa_max_node();
2908
2909  nindex_to_node()->clear();
2910  for (int node = 0; node <= highest_node_number; node++) {
2911    if (Linux::isnode_in_existing_nodes(node)) {
2912      nindex_to_node()->append(node);
2913    }
2914  }
2915}
2916
2917// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2918// The table is later used in get_node_by_cpu().
2919void os::Linux::rebuild_cpu_to_node_map() {
2920  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2921                              // in libnuma (possible values are starting from 16,
2922                              // and continuing up with every other power of 2, but less
2923                              // than the maximum number of CPUs supported by kernel), and
2924                              // is a subject to change (in libnuma version 2 the requirements
2925                              // are more reasonable) we'll just hardcode the number they use
2926                              // in the library.
2927  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2928
2929  size_t cpu_num = processor_count();
2930  size_t cpu_map_size = NCPUS / BitsPerCLong;
2931  size_t cpu_map_valid_size =
2932    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2933
2934  cpu_to_node()->clear();
2935  cpu_to_node()->at_grow(cpu_num - 1);
2936
2937  size_t node_num = get_existing_num_nodes();
2938
2939  int distance = 0;
2940  int closest_distance = INT_MAX;
2941  int closest_node = 0;
2942  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2943  for (size_t i = 0; i < node_num; i++) {
2944    // Check if node is configured (not a memory-less node). If it is not, find
2945    // the closest configured node.
2946    if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2947      closest_distance = INT_MAX;
2948      // Check distance from all remaining nodes in the system. Ignore distance
2949      // from itself and from another non-configured node.
2950      for (size_t m = 0; m < node_num; m++) {
2951        if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2952          distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2953          // If a closest node is found, update. There is always at least one
2954          // configured node in the system so there is always at least one node
2955          // close.
2956          if (distance != 0 && distance < closest_distance) {
2957            closest_distance = distance;
2958            closest_node = nindex_to_node()->at(m);
2959          }
2960        }
2961      }
2962     } else {
2963       // Current node is already a configured node.
2964       closest_node = nindex_to_node()->at(i);
2965     }
2966
2967    // Get cpus from the original node and map them to the closest node. If node
2968    // is a configured node (not a memory-less node), then original node and
2969    // closest node are the same.
2970    if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2971      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2972        if (cpu_map[j] != 0) {
2973          for (size_t k = 0; k < BitsPerCLong; k++) {
2974            if (cpu_map[j] & (1UL << k)) {
2975              cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2976            }
2977          }
2978        }
2979      }
2980    }
2981  }
2982  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2983}
2984
2985int os::Linux::get_node_by_cpu(int cpu_id) {
2986  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2987    return cpu_to_node()->at(cpu_id);
2988  }
2989  return -1;
2990}
2991
2992GrowableArray<int>* os::Linux::_cpu_to_node;
2993GrowableArray<int>* os::Linux::_nindex_to_node;
2994os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2995os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2996os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2997os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2998os::Linux::numa_available_func_t os::Linux::_numa_available;
2999os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3000os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3001os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3002os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3003os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3004unsigned long* os::Linux::_numa_all_nodes;
3005struct bitmask* os::Linux::_numa_all_nodes_ptr;
3006struct bitmask* os::Linux::_numa_nodes_ptr;
3007
3008bool os::pd_uncommit_memory(char* addr, size_t size) {
3009  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3010                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3011  return res  != (uintptr_t) MAP_FAILED;
3012}
3013
3014static address get_stack_commited_bottom(address bottom, size_t size) {
3015  address nbot = bottom;
3016  address ntop = bottom + size;
3017
3018  size_t page_sz = os::vm_page_size();
3019  unsigned pages = size / page_sz;
3020
3021  unsigned char vec[1];
3022  unsigned imin = 1, imax = pages + 1, imid;
3023  int mincore_return_value = 0;
3024
3025  assert(imin <= imax, "Unexpected page size");
3026
3027  while (imin < imax) {
3028    imid = (imax + imin) / 2;
3029    nbot = ntop - (imid * page_sz);
3030
3031    // Use a trick with mincore to check whether the page is mapped or not.
3032    // mincore sets vec to 1 if page resides in memory and to 0 if page
3033    // is swapped output but if page we are asking for is unmapped
3034    // it returns -1,ENOMEM
3035    mincore_return_value = mincore(nbot, page_sz, vec);
3036
3037    if (mincore_return_value == -1) {
3038      // Page is not mapped go up
3039      // to find first mapped page
3040      if (errno != EAGAIN) {
3041        assert(errno == ENOMEM, "Unexpected mincore errno");
3042        imax = imid;
3043      }
3044    } else {
3045      // Page is mapped go down
3046      // to find first not mapped page
3047      imin = imid + 1;
3048    }
3049  }
3050
3051  nbot = nbot + page_sz;
3052
3053  // Adjust stack bottom one page up if last checked page is not mapped
3054  if (mincore_return_value == -1) {
3055    nbot = nbot + page_sz;
3056  }
3057
3058  return nbot;
3059}
3060
3061
3062// Linux uses a growable mapping for the stack, and if the mapping for
3063// the stack guard pages is not removed when we detach a thread the
3064// stack cannot grow beyond the pages where the stack guard was
3065// mapped.  If at some point later in the process the stack expands to
3066// that point, the Linux kernel cannot expand the stack any further
3067// because the guard pages are in the way, and a segfault occurs.
3068//
3069// However, it's essential not to split the stack region by unmapping
3070// a region (leaving a hole) that's already part of the stack mapping,
3071// so if the stack mapping has already grown beyond the guard pages at
3072// the time we create them, we have to truncate the stack mapping.
3073// So, we need to know the extent of the stack mapping when
3074// create_stack_guard_pages() is called.
3075
3076// We only need this for stacks that are growable: at the time of
3077// writing thread stacks don't use growable mappings (i.e. those
3078// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3079// only applies to the main thread.
3080
3081// If the (growable) stack mapping already extends beyond the point
3082// where we're going to put our guard pages, truncate the mapping at
3083// that point by munmap()ping it.  This ensures that when we later
3084// munmap() the guard pages we don't leave a hole in the stack
3085// mapping. This only affects the main/initial thread
3086
3087bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3088  if (os::Linux::is_initial_thread()) {
3089    // As we manually grow stack up to bottom inside create_attached_thread(),
3090    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3091    // we don't need to do anything special.
3092    // Check it first, before calling heavy function.
3093    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3094    unsigned char vec[1];
3095
3096    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3097      // Fallback to slow path on all errors, including EAGAIN
3098      stack_extent = (uintptr_t) get_stack_commited_bottom(
3099                                                           os::Linux::initial_thread_stack_bottom(),
3100                                                           (size_t)addr - stack_extent);
3101    }
3102
3103    if (stack_extent < (uintptr_t)addr) {
3104      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3105    }
3106  }
3107
3108  return os::commit_memory(addr, size, !ExecMem);
3109}
3110
3111// If this is a growable mapping, remove the guard pages entirely by
3112// munmap()ping them.  If not, just call uncommit_memory(). This only
3113// affects the main/initial thread, but guard against future OS changes
3114// It's safe to always unmap guard pages for initial thread because we
3115// always place it right after end of the mapped region
3116
3117bool os::remove_stack_guard_pages(char* addr, size_t size) {
3118  uintptr_t stack_extent, stack_base;
3119
3120  if (os::Linux::is_initial_thread()) {
3121    return ::munmap(addr, size) == 0;
3122  }
3123
3124  return os::uncommit_memory(addr, size);
3125}
3126
3127// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3128// at 'requested_addr'. If there are existing memory mappings at the same
3129// location, however, they will be overwritten. If 'fixed' is false,
3130// 'requested_addr' is only treated as a hint, the return value may or
3131// may not start from the requested address. Unlike Linux mmap(), this
3132// function returns NULL to indicate failure.
3133static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3134  char * addr;
3135  int flags;
3136
3137  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3138  if (fixed) {
3139    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3140    flags |= MAP_FIXED;
3141  }
3142
3143  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3144  // touch an uncommitted page. Otherwise, the read/write might
3145  // succeed if we have enough swap space to back the physical page.
3146  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3147                       flags, -1, 0);
3148
3149  return addr == MAP_FAILED ? NULL : addr;
3150}
3151
3152// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3153//   (req_addr != NULL) or with a given alignment.
3154//  - bytes shall be a multiple of alignment.
3155//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3156//  - alignment sets the alignment at which memory shall be allocated.
3157//     It must be a multiple of allocation granularity.
3158// Returns address of memory or NULL. If req_addr was not NULL, will only return
3159//  req_addr or NULL.
3160static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3161
3162  size_t extra_size = bytes;
3163  if (req_addr == NULL && alignment > 0) {
3164    extra_size += alignment;
3165  }
3166
3167  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3168    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3169    -1, 0);
3170  if (start == MAP_FAILED) {
3171    start = NULL;
3172  } else {
3173    if (req_addr != NULL) {
3174      if (start != req_addr) {
3175        ::munmap(start, extra_size);
3176        start = NULL;
3177      }
3178    } else {
3179      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3180      char* const end_aligned = start_aligned + bytes;
3181      char* const end = start + extra_size;
3182      if (start_aligned > start) {
3183        ::munmap(start, start_aligned - start);
3184      }
3185      if (end_aligned < end) {
3186        ::munmap(end_aligned, end - end_aligned);
3187      }
3188      start = start_aligned;
3189    }
3190  }
3191  return start;
3192}
3193
3194static int anon_munmap(char * addr, size_t size) {
3195  return ::munmap(addr, size) == 0;
3196}
3197
3198char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3199                            size_t alignment_hint) {
3200  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3201}
3202
3203bool os::pd_release_memory(char* addr, size_t size) {
3204  return anon_munmap(addr, size);
3205}
3206
3207static bool linux_mprotect(char* addr, size_t size, int prot) {
3208  // Linux wants the mprotect address argument to be page aligned.
3209  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3210
3211  // According to SUSv3, mprotect() should only be used with mappings
3212  // established by mmap(), and mmap() always maps whole pages. Unaligned
3213  // 'addr' likely indicates problem in the VM (e.g. trying to change
3214  // protection of malloc'ed or statically allocated memory). Check the
3215  // caller if you hit this assert.
3216  assert(addr == bottom, "sanity check");
3217
3218  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3219  return ::mprotect(bottom, size, prot) == 0;
3220}
3221
3222// Set protections specified
3223bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3224                        bool is_committed) {
3225  unsigned int p = 0;
3226  switch (prot) {
3227  case MEM_PROT_NONE: p = PROT_NONE; break;
3228  case MEM_PROT_READ: p = PROT_READ; break;
3229  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3230  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3231  default:
3232    ShouldNotReachHere();
3233  }
3234  // is_committed is unused.
3235  return linux_mprotect(addr, bytes, p);
3236}
3237
3238bool os::guard_memory(char* addr, size_t size) {
3239  return linux_mprotect(addr, size, PROT_NONE);
3240}
3241
3242bool os::unguard_memory(char* addr, size_t size) {
3243  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3244}
3245
3246bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3247                                                    size_t page_size) {
3248  bool result = false;
3249  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3250                 MAP_ANONYMOUS|MAP_PRIVATE,
3251                 -1, 0);
3252  if (p != MAP_FAILED) {
3253    void *aligned_p = align_ptr_up(p, page_size);
3254
3255    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3256
3257    munmap(p, page_size * 2);
3258  }
3259
3260  if (warn && !result) {
3261    warning("TransparentHugePages is not supported by the operating system.");
3262  }
3263
3264  return result;
3265}
3266
3267bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3268  bool result = false;
3269  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3270                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3271                 -1, 0);
3272
3273  if (p != MAP_FAILED) {
3274    // We don't know if this really is a huge page or not.
3275    FILE *fp = fopen("/proc/self/maps", "r");
3276    if (fp) {
3277      while (!feof(fp)) {
3278        char chars[257];
3279        long x = 0;
3280        if (fgets(chars, sizeof(chars), fp)) {
3281          if (sscanf(chars, "%lx-%*x", &x) == 1
3282              && x == (long)p) {
3283            if (strstr (chars, "hugepage")) {
3284              result = true;
3285              break;
3286            }
3287          }
3288        }
3289      }
3290      fclose(fp);
3291    }
3292    munmap(p, page_size);
3293  }
3294
3295  if (warn && !result) {
3296    warning("HugeTLBFS is not supported by the operating system.");
3297  }
3298
3299  return result;
3300}
3301
3302// Set the coredump_filter bits to include largepages in core dump (bit 6)
3303//
3304// From the coredump_filter documentation:
3305//
3306// - (bit 0) anonymous private memory
3307// - (bit 1) anonymous shared memory
3308// - (bit 2) file-backed private memory
3309// - (bit 3) file-backed shared memory
3310// - (bit 4) ELF header pages in file-backed private memory areas (it is
3311//           effective only if the bit 2 is cleared)
3312// - (bit 5) hugetlb private memory
3313// - (bit 6) hugetlb shared memory
3314//
3315static void set_coredump_filter(void) {
3316  FILE *f;
3317  long cdm;
3318
3319  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3320    return;
3321  }
3322
3323  if (fscanf(f, "%lx", &cdm) != 1) {
3324    fclose(f);
3325    return;
3326  }
3327
3328  rewind(f);
3329
3330  if ((cdm & LARGEPAGES_BIT) == 0) {
3331    cdm |= LARGEPAGES_BIT;
3332    fprintf(f, "%#lx", cdm);
3333  }
3334
3335  fclose(f);
3336}
3337
3338// Large page support
3339
3340static size_t _large_page_size = 0;
3341
3342size_t os::Linux::find_large_page_size() {
3343  size_t large_page_size = 0;
3344
3345  // large_page_size on Linux is used to round up heap size. x86 uses either
3346  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3347  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3348  // page as large as 256M.
3349  //
3350  // Here we try to figure out page size by parsing /proc/meminfo and looking
3351  // for a line with the following format:
3352  //    Hugepagesize:     2048 kB
3353  //
3354  // If we can't determine the value (e.g. /proc is not mounted, or the text
3355  // format has been changed), we'll use the largest page size supported by
3356  // the processor.
3357
3358#ifndef ZERO
3359  large_page_size =
3360    AARCH64_ONLY(2 * M)
3361    AMD64_ONLY(2 * M)
3362    ARM32_ONLY(2 * M)
3363    IA32_ONLY(4 * M)
3364    IA64_ONLY(256 * M)
3365    PPC_ONLY(4 * M)
3366    S390_ONLY(1 * M)
3367    SPARC_ONLY(4 * M);
3368#endif // ZERO
3369
3370  FILE *fp = fopen("/proc/meminfo", "r");
3371  if (fp) {
3372    while (!feof(fp)) {
3373      int x = 0;
3374      char buf[16];
3375      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3376        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3377          large_page_size = x * K;
3378          break;
3379        }
3380      } else {
3381        // skip to next line
3382        for (;;) {
3383          int ch = fgetc(fp);
3384          if (ch == EOF || ch == (int)'\n') break;
3385        }
3386      }
3387    }
3388    fclose(fp);
3389  }
3390
3391  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3392    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3393            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3394            proper_unit_for_byte_size(large_page_size));
3395  }
3396
3397  return large_page_size;
3398}
3399
3400size_t os::Linux::setup_large_page_size() {
3401  _large_page_size = Linux::find_large_page_size();
3402  const size_t default_page_size = (size_t)Linux::page_size();
3403  if (_large_page_size > default_page_size) {
3404    _page_sizes[0] = _large_page_size;
3405    _page_sizes[1] = default_page_size;
3406    _page_sizes[2] = 0;
3407  }
3408
3409  return _large_page_size;
3410}
3411
3412bool os::Linux::setup_large_page_type(size_t page_size) {
3413  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3414      FLAG_IS_DEFAULT(UseSHM) &&
3415      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3416
3417    // The type of large pages has not been specified by the user.
3418
3419    // Try UseHugeTLBFS and then UseSHM.
3420    UseHugeTLBFS = UseSHM = true;
3421
3422    // Don't try UseTransparentHugePages since there are known
3423    // performance issues with it turned on. This might change in the future.
3424    UseTransparentHugePages = false;
3425  }
3426
3427  if (UseTransparentHugePages) {
3428    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3429    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3430      UseHugeTLBFS = false;
3431      UseSHM = false;
3432      return true;
3433    }
3434    UseTransparentHugePages = false;
3435  }
3436
3437  if (UseHugeTLBFS) {
3438    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3439    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3440      UseSHM = false;
3441      return true;
3442    }
3443    UseHugeTLBFS = false;
3444  }
3445
3446  return UseSHM;
3447}
3448
3449void os::large_page_init() {
3450  if (!UseLargePages &&
3451      !UseTransparentHugePages &&
3452      !UseHugeTLBFS &&
3453      !UseSHM) {
3454    // Not using large pages.
3455    return;
3456  }
3457
3458  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3459    // The user explicitly turned off large pages.
3460    // Ignore the rest of the large pages flags.
3461    UseTransparentHugePages = false;
3462    UseHugeTLBFS = false;
3463    UseSHM = false;
3464    return;
3465  }
3466
3467  size_t large_page_size = Linux::setup_large_page_size();
3468  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3469
3470  set_coredump_filter();
3471}
3472
3473#ifndef SHM_HUGETLB
3474  #define SHM_HUGETLB 04000
3475#endif
3476
3477#define shm_warning_format(format, ...)              \
3478  do {                                               \
3479    if (UseLargePages &&                             \
3480        (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3481         !FLAG_IS_DEFAULT(UseSHM) ||                 \
3482         !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3483      warning(format, __VA_ARGS__);                  \
3484    }                                                \
3485  } while (0)
3486
3487#define shm_warning(str) shm_warning_format("%s", str)
3488
3489#define shm_warning_with_errno(str)                \
3490  do {                                             \
3491    int err = errno;                               \
3492    shm_warning_format(str " (error = %d)", err);  \
3493  } while (0)
3494
3495static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3496  assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3497
3498  if (!is_size_aligned(alignment, SHMLBA)) {
3499    assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3500    return NULL;
3501  }
3502
3503  // To ensure that we get 'alignment' aligned memory from shmat,
3504  // we pre-reserve aligned virtual memory and then attach to that.
3505
3506  char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3507  if (pre_reserved_addr == NULL) {
3508    // Couldn't pre-reserve aligned memory.
3509    shm_warning("Failed to pre-reserve aligned memory for shmat.");
3510    return NULL;
3511  }
3512
3513  // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3514  char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3515
3516  if ((intptr_t)addr == -1) {
3517    int err = errno;
3518    shm_warning_with_errno("Failed to attach shared memory.");
3519
3520    assert(err != EACCES, "Unexpected error");
3521    assert(err != EIDRM,  "Unexpected error");
3522    assert(err != EINVAL, "Unexpected error");
3523
3524    // Since we don't know if the kernel unmapped the pre-reserved memory area
3525    // we can't unmap it, since that would potentially unmap memory that was
3526    // mapped from other threads.
3527    return NULL;
3528  }
3529
3530  return addr;
3531}
3532
3533static char* shmat_at_address(int shmid, char* req_addr) {
3534  if (!is_ptr_aligned(req_addr, SHMLBA)) {
3535    assert(false, "Requested address needs to be SHMLBA aligned");
3536    return NULL;
3537  }
3538
3539  char* addr = (char*)shmat(shmid, req_addr, 0);
3540
3541  if ((intptr_t)addr == -1) {
3542    shm_warning_with_errno("Failed to attach shared memory.");
3543    return NULL;
3544  }
3545
3546  return addr;
3547}
3548
3549static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3550  // If a req_addr has been provided, we assume that the caller has already aligned the address.
3551  if (req_addr != NULL) {
3552    assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3553    assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3554    return shmat_at_address(shmid, req_addr);
3555  }
3556
3557  // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3558  // return large page size aligned memory addresses when req_addr == NULL.
3559  // However, if the alignment is larger than the large page size, we have
3560  // to manually ensure that the memory returned is 'alignment' aligned.
3561  if (alignment > os::large_page_size()) {
3562    assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3563    return shmat_with_alignment(shmid, bytes, alignment);
3564  } else {
3565    return shmat_at_address(shmid, NULL);
3566  }
3567}
3568
3569char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3570                                            char* req_addr, bool exec) {
3571  // "exec" is passed in but not used.  Creating the shared image for
3572  // the code cache doesn't have an SHM_X executable permission to check.
3573  assert(UseLargePages && UseSHM, "only for SHM large pages");
3574  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3575  assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3576
3577  if (!is_size_aligned(bytes, os::large_page_size())) {
3578    return NULL; // Fallback to small pages.
3579  }
3580
3581  // Create a large shared memory region to attach to based on size.
3582  // Currently, size is the total size of the heap.
3583  int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3584  if (shmid == -1) {
3585    // Possible reasons for shmget failure:
3586    // 1. shmmax is too small for Java heap.
3587    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3588    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3589    // 2. not enough large page memory.
3590    //    > check available large pages: cat /proc/meminfo
3591    //    > increase amount of large pages:
3592    //          echo new_value > /proc/sys/vm/nr_hugepages
3593    //      Note 1: different Linux may use different name for this property,
3594    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3595    //      Note 2: it's possible there's enough physical memory available but
3596    //            they are so fragmented after a long run that they can't
3597    //            coalesce into large pages. Try to reserve large pages when
3598    //            the system is still "fresh".
3599    shm_warning_with_errno("Failed to reserve shared memory.");
3600    return NULL;
3601  }
3602
3603  // Attach to the region.
3604  char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3605
3606  // Remove shmid. If shmat() is successful, the actual shared memory segment
3607  // will be deleted when it's detached by shmdt() or when the process
3608  // terminates. If shmat() is not successful this will remove the shared
3609  // segment immediately.
3610  shmctl(shmid, IPC_RMID, NULL);
3611
3612  return addr;
3613}
3614
3615static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3616                                        int error) {
3617  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3618
3619  bool warn_on_failure = UseLargePages &&
3620      (!FLAG_IS_DEFAULT(UseLargePages) ||
3621       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3622       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3623
3624  if (warn_on_failure) {
3625    char msg[128];
3626    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3627                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3628    warning("%s", msg);
3629  }
3630}
3631
3632char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3633                                                        char* req_addr,
3634                                                        bool exec) {
3635  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3636  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3637  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3638
3639  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3640  char* addr = (char*)::mmap(req_addr, bytes, prot,
3641                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3642                             -1, 0);
3643
3644  if (addr == MAP_FAILED) {
3645    warn_on_large_pages_failure(req_addr, bytes, errno);
3646    return NULL;
3647  }
3648
3649  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3650
3651  return addr;
3652}
3653
3654// Reserve memory using mmap(MAP_HUGETLB).
3655//  - bytes shall be a multiple of alignment.
3656//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3657//  - alignment sets the alignment at which memory shall be allocated.
3658//     It must be a multiple of allocation granularity.
3659// Returns address of memory or NULL. If req_addr was not NULL, will only return
3660//  req_addr or NULL.
3661char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3662                                                         size_t alignment,
3663                                                         char* req_addr,
3664                                                         bool exec) {
3665  size_t large_page_size = os::large_page_size();
3666  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3667
3668  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3669  assert(is_size_aligned(bytes, alignment), "Must be");
3670
3671  // First reserve - but not commit - the address range in small pages.
3672  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3673
3674  if (start == NULL) {
3675    return NULL;
3676  }
3677
3678  assert(is_ptr_aligned(start, alignment), "Must be");
3679
3680  char* end = start + bytes;
3681
3682  // Find the regions of the allocated chunk that can be promoted to large pages.
3683  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3684  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3685
3686  size_t lp_bytes = lp_end - lp_start;
3687
3688  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3689
3690  if (lp_bytes == 0) {
3691    // The mapped region doesn't even span the start and the end of a large page.
3692    // Fall back to allocate a non-special area.
3693    ::munmap(start, end - start);
3694    return NULL;
3695  }
3696
3697  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3698
3699  void* result;
3700
3701  // Commit small-paged leading area.
3702  if (start != lp_start) {
3703    result = ::mmap(start, lp_start - start, prot,
3704                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3705                    -1, 0);
3706    if (result == MAP_FAILED) {
3707      ::munmap(lp_start, end - lp_start);
3708      return NULL;
3709    }
3710  }
3711
3712  // Commit large-paged area.
3713  result = ::mmap(lp_start, lp_bytes, prot,
3714                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3715                  -1, 0);
3716  if (result == MAP_FAILED) {
3717    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3718    // If the mmap above fails, the large pages region will be unmapped and we
3719    // have regions before and after with small pages. Release these regions.
3720    //
3721    // |  mapped  |  unmapped  |  mapped  |
3722    // ^          ^            ^          ^
3723    // start      lp_start     lp_end     end
3724    //
3725    ::munmap(start, lp_start - start);
3726    ::munmap(lp_end, end - lp_end);
3727    return NULL;
3728  }
3729
3730  // Commit small-paged trailing area.
3731  if (lp_end != end) {
3732    result = ::mmap(lp_end, end - lp_end, prot,
3733                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3734                    -1, 0);
3735    if (result == MAP_FAILED) {
3736      ::munmap(start, lp_end - start);
3737      return NULL;
3738    }
3739  }
3740
3741  return start;
3742}
3743
3744char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3745                                                   size_t alignment,
3746                                                   char* req_addr,
3747                                                   bool exec) {
3748  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3749  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3750  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3751  assert(is_power_of_2(os::large_page_size()), "Must be");
3752  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3753
3754  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3755    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3756  } else {
3757    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3758  }
3759}
3760
3761char* os::reserve_memory_special(size_t bytes, size_t alignment,
3762                                 char* req_addr, bool exec) {
3763  assert(UseLargePages, "only for large pages");
3764
3765  char* addr;
3766  if (UseSHM) {
3767    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3768  } else {
3769    assert(UseHugeTLBFS, "must be");
3770    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3771  }
3772
3773  if (addr != NULL) {
3774    if (UseNUMAInterleaving) {
3775      numa_make_global(addr, bytes);
3776    }
3777
3778    // The memory is committed
3779    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3780  }
3781
3782  return addr;
3783}
3784
3785bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3786  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3787  return shmdt(base) == 0;
3788}
3789
3790bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3791  return pd_release_memory(base, bytes);
3792}
3793
3794bool os::release_memory_special(char* base, size_t bytes) {
3795  bool res;
3796  if (MemTracker::tracking_level() > NMT_minimal) {
3797    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3798    res = os::Linux::release_memory_special_impl(base, bytes);
3799    if (res) {
3800      tkr.record((address)base, bytes);
3801    }
3802
3803  } else {
3804    res = os::Linux::release_memory_special_impl(base, bytes);
3805  }
3806  return res;
3807}
3808
3809bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3810  assert(UseLargePages, "only for large pages");
3811  bool res;
3812
3813  if (UseSHM) {
3814    res = os::Linux::release_memory_special_shm(base, bytes);
3815  } else {
3816    assert(UseHugeTLBFS, "must be");
3817    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3818  }
3819  return res;
3820}
3821
3822size_t os::large_page_size() {
3823  return _large_page_size;
3824}
3825
3826// With SysV SHM the entire memory region must be allocated as shared
3827// memory.
3828// HugeTLBFS allows application to commit large page memory on demand.
3829// However, when committing memory with HugeTLBFS fails, the region
3830// that was supposed to be committed will lose the old reservation
3831// and allow other threads to steal that memory region. Because of this
3832// behavior we can't commit HugeTLBFS memory.
3833bool os::can_commit_large_page_memory() {
3834  return UseTransparentHugePages;
3835}
3836
3837bool os::can_execute_large_page_memory() {
3838  return UseTransparentHugePages || UseHugeTLBFS;
3839}
3840
3841// Reserve memory at an arbitrary address, only if that area is
3842// available (and not reserved for something else).
3843
3844char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3845  const int max_tries = 10;
3846  char* base[max_tries];
3847  size_t size[max_tries];
3848  const size_t gap = 0x000000;
3849
3850  // Assert only that the size is a multiple of the page size, since
3851  // that's all that mmap requires, and since that's all we really know
3852  // about at this low abstraction level.  If we need higher alignment,
3853  // we can either pass an alignment to this method or verify alignment
3854  // in one of the methods further up the call chain.  See bug 5044738.
3855  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3856
3857  // Repeatedly allocate blocks until the block is allocated at the
3858  // right spot.
3859
3860  // Linux mmap allows caller to pass an address as hint; give it a try first,
3861  // if kernel honors the hint then we can return immediately.
3862  char * addr = anon_mmap(requested_addr, bytes, false);
3863  if (addr == requested_addr) {
3864    return requested_addr;
3865  }
3866
3867  if (addr != NULL) {
3868    // mmap() is successful but it fails to reserve at the requested address
3869    anon_munmap(addr, bytes);
3870  }
3871
3872  int i;
3873  for (i = 0; i < max_tries; ++i) {
3874    base[i] = reserve_memory(bytes);
3875
3876    if (base[i] != NULL) {
3877      // Is this the block we wanted?
3878      if (base[i] == requested_addr) {
3879        size[i] = bytes;
3880        break;
3881      }
3882
3883      // Does this overlap the block we wanted? Give back the overlapped
3884      // parts and try again.
3885
3886      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3887      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3888        unmap_memory(base[i], top_overlap);
3889        base[i] += top_overlap;
3890        size[i] = bytes - top_overlap;
3891      } else {
3892        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3893        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3894          unmap_memory(requested_addr, bottom_overlap);
3895          size[i] = bytes - bottom_overlap;
3896        } else {
3897          size[i] = bytes;
3898        }
3899      }
3900    }
3901  }
3902
3903  // Give back the unused reserved pieces.
3904
3905  for (int j = 0; j < i; ++j) {
3906    if (base[j] != NULL) {
3907      unmap_memory(base[j], size[j]);
3908    }
3909  }
3910
3911  if (i < max_tries) {
3912    return requested_addr;
3913  } else {
3914    return NULL;
3915  }
3916}
3917
3918size_t os::read(int fd, void *buf, unsigned int nBytes) {
3919  return ::read(fd, buf, nBytes);
3920}
3921
3922size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3923  return ::pread(fd, buf, nBytes, offset);
3924}
3925
3926// Short sleep, direct OS call.
3927//
3928// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3929// sched_yield(2) will actually give up the CPU:
3930//
3931//   * Alone on this pariticular CPU, keeps running.
3932//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3933//     (pre 2.6.39).
3934//
3935// So calling this with 0 is an alternative.
3936//
3937void os::naked_short_sleep(jlong ms) {
3938  struct timespec req;
3939
3940  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3941  req.tv_sec = 0;
3942  if (ms > 0) {
3943    req.tv_nsec = (ms % 1000) * 1000000;
3944  } else {
3945    req.tv_nsec = 1;
3946  }
3947
3948  nanosleep(&req, NULL);
3949
3950  return;
3951}
3952
3953// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3954void os::infinite_sleep() {
3955  while (true) {    // sleep forever ...
3956    ::sleep(100);   // ... 100 seconds at a time
3957  }
3958}
3959
3960// Used to convert frequent JVM_Yield() to nops
3961bool os::dont_yield() {
3962  return DontYieldALot;
3963}
3964
3965void os::naked_yield() {
3966  sched_yield();
3967}
3968
3969////////////////////////////////////////////////////////////////////////////////
3970// thread priority support
3971
3972// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3973// only supports dynamic priority, static priority must be zero. For real-time
3974// applications, Linux supports SCHED_RR which allows static priority (1-99).
3975// However, for large multi-threaded applications, SCHED_RR is not only slower
3976// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3977// of 5 runs - Sep 2005).
3978//
3979// The following code actually changes the niceness of kernel-thread/LWP. It
3980// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3981// not the entire user process, and user level threads are 1:1 mapped to kernel
3982// threads. It has always been the case, but could change in the future. For
3983// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3984// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3985
3986int os::java_to_os_priority[CriticalPriority + 1] = {
3987  19,              // 0 Entry should never be used
3988
3989   4,              // 1 MinPriority
3990   3,              // 2
3991   2,              // 3
3992
3993   1,              // 4
3994   0,              // 5 NormPriority
3995  -1,              // 6
3996
3997  -2,              // 7
3998  -3,              // 8
3999  -4,              // 9 NearMaxPriority
4000
4001  -5,              // 10 MaxPriority
4002
4003  -5               // 11 CriticalPriority
4004};
4005
4006static int prio_init() {
4007  if (ThreadPriorityPolicy == 1) {
4008    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4009    // if effective uid is not root. Perhaps, a more elegant way of doing
4010    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4011    if (geteuid() != 0) {
4012      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4013        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4014      }
4015      ThreadPriorityPolicy = 0;
4016    }
4017  }
4018  if (UseCriticalJavaThreadPriority) {
4019    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4020  }
4021  return 0;
4022}
4023
4024OSReturn os::set_native_priority(Thread* thread, int newpri) {
4025  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4026
4027  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4028  return (ret == 0) ? OS_OK : OS_ERR;
4029}
4030
4031OSReturn os::get_native_priority(const Thread* const thread,
4032                                 int *priority_ptr) {
4033  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4034    *priority_ptr = java_to_os_priority[NormPriority];
4035    return OS_OK;
4036  }
4037
4038  errno = 0;
4039  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4040  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4041}
4042
4043// Hint to the underlying OS that a task switch would not be good.
4044// Void return because it's a hint and can fail.
4045void os::hint_no_preempt() {}
4046
4047////////////////////////////////////////////////////////////////////////////////
4048// suspend/resume support
4049
4050//  the low-level signal-based suspend/resume support is a remnant from the
4051//  old VM-suspension that used to be for java-suspension, safepoints etc,
4052//  within hotspot. Now there is a single use-case for this:
4053//    - calling get_thread_pc() on the VMThread by the flat-profiler task
4054//      that runs in the watcher thread.
4055//  The remaining code is greatly simplified from the more general suspension
4056//  code that used to be used.
4057//
4058//  The protocol is quite simple:
4059//  - suspend:
4060//      - sends a signal to the target thread
4061//      - polls the suspend state of the osthread using a yield loop
4062//      - target thread signal handler (SR_handler) sets suspend state
4063//        and blocks in sigsuspend until continued
4064//  - resume:
4065//      - sets target osthread state to continue
4066//      - sends signal to end the sigsuspend loop in the SR_handler
4067//
4068//  Note that the SR_lock plays no role in this suspend/resume protocol,
4069//  but is checked for NULL in SR_handler as a thread termination indicator.
4070
4071static void resume_clear_context(OSThread *osthread) {
4072  osthread->set_ucontext(NULL);
4073  osthread->set_siginfo(NULL);
4074}
4075
4076static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4077                                 ucontext_t* context) {
4078  osthread->set_ucontext(context);
4079  osthread->set_siginfo(siginfo);
4080}
4081
4082// Handler function invoked when a thread's execution is suspended or
4083// resumed. We have to be careful that only async-safe functions are
4084// called here (Note: most pthread functions are not async safe and
4085// should be avoided.)
4086//
4087// Note: sigwait() is a more natural fit than sigsuspend() from an
4088// interface point of view, but sigwait() prevents the signal hander
4089// from being run. libpthread would get very confused by not having
4090// its signal handlers run and prevents sigwait()'s use with the
4091// mutex granting granting signal.
4092//
4093// Currently only ever called on the VMThread and JavaThreads (PC sampling)
4094//
4095static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4096  // Save and restore errno to avoid confusing native code with EINTR
4097  // after sigsuspend.
4098  int old_errno = errno;
4099
4100  Thread* thread = Thread::current_or_null_safe();
4101  assert(thread != NULL, "Missing current thread in SR_handler");
4102
4103  // On some systems we have seen signal delivery get "stuck" until the signal
4104  // mask is changed as part of thread termination. Check that the current thread
4105  // has not already terminated (via SR_lock()) - else the following assertion
4106  // will fail because the thread is no longer a JavaThread as the ~JavaThread
4107  // destructor has completed.
4108
4109  if (thread->SR_lock() == NULL) {
4110    return;
4111  }
4112
4113  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4114
4115  OSThread* osthread = thread->osthread();
4116
4117  os::SuspendResume::State current = osthread->sr.state();
4118  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4119    suspend_save_context(osthread, siginfo, context);
4120
4121    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4122    os::SuspendResume::State state = osthread->sr.suspended();
4123    if (state == os::SuspendResume::SR_SUSPENDED) {
4124      sigset_t suspend_set;  // signals for sigsuspend()
4125      sigemptyset(&suspend_set);
4126      // get current set of blocked signals and unblock resume signal
4127      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4128      sigdelset(&suspend_set, SR_signum);
4129
4130      sr_semaphore.signal();
4131      // wait here until we are resumed
4132      while (1) {
4133        sigsuspend(&suspend_set);
4134
4135        os::SuspendResume::State result = osthread->sr.running();
4136        if (result == os::SuspendResume::SR_RUNNING) {
4137          sr_semaphore.signal();
4138          break;
4139        }
4140      }
4141
4142    } else if (state == os::SuspendResume::SR_RUNNING) {
4143      // request was cancelled, continue
4144    } else {
4145      ShouldNotReachHere();
4146    }
4147
4148    resume_clear_context(osthread);
4149  } else if (current == os::SuspendResume::SR_RUNNING) {
4150    // request was cancelled, continue
4151  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4152    // ignore
4153  } else {
4154    // ignore
4155  }
4156
4157  errno = old_errno;
4158}
4159
4160static int SR_initialize() {
4161  struct sigaction act;
4162  char *s;
4163
4164  // Get signal number to use for suspend/resume
4165  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4166    int sig = ::strtol(s, 0, 10);
4167    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4168        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4169      SR_signum = sig;
4170    } else {
4171      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4172              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4173    }
4174  }
4175
4176  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4177         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4178
4179  sigemptyset(&SR_sigset);
4180  sigaddset(&SR_sigset, SR_signum);
4181
4182  // Set up signal handler for suspend/resume
4183  act.sa_flags = SA_RESTART|SA_SIGINFO;
4184  act.sa_handler = (void (*)(int)) SR_handler;
4185
4186  // SR_signum is blocked by default.
4187  // 4528190 - We also need to block pthread restart signal (32 on all
4188  // supported Linux platforms). Note that LinuxThreads need to block
4189  // this signal for all threads to work properly. So we don't have
4190  // to use hard-coded signal number when setting up the mask.
4191  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4192
4193  if (sigaction(SR_signum, &act, 0) == -1) {
4194    return -1;
4195  }
4196
4197  // Save signal flag
4198  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4199  return 0;
4200}
4201
4202static int sr_notify(OSThread* osthread) {
4203  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4204  assert_status(status == 0, status, "pthread_kill");
4205  return status;
4206}
4207
4208// "Randomly" selected value for how long we want to spin
4209// before bailing out on suspending a thread, also how often
4210// we send a signal to a thread we want to resume
4211static const int RANDOMLY_LARGE_INTEGER = 1000000;
4212static const int RANDOMLY_LARGE_INTEGER2 = 100;
4213
4214// returns true on success and false on error - really an error is fatal
4215// but this seems the normal response to library errors
4216static bool do_suspend(OSThread* osthread) {
4217  assert(osthread->sr.is_running(), "thread should be running");
4218  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4219
4220  // mark as suspended and send signal
4221  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4222    // failed to switch, state wasn't running?
4223    ShouldNotReachHere();
4224    return false;
4225  }
4226
4227  if (sr_notify(osthread) != 0) {
4228    ShouldNotReachHere();
4229  }
4230
4231  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4232  while (true) {
4233    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4234      break;
4235    } else {
4236      // timeout
4237      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4238      if (cancelled == os::SuspendResume::SR_RUNNING) {
4239        return false;
4240      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4241        // make sure that we consume the signal on the semaphore as well
4242        sr_semaphore.wait();
4243        break;
4244      } else {
4245        ShouldNotReachHere();
4246        return false;
4247      }
4248    }
4249  }
4250
4251  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4252  return true;
4253}
4254
4255static void do_resume(OSThread* osthread) {
4256  assert(osthread->sr.is_suspended(), "thread should be suspended");
4257  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4258
4259  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4260    // failed to switch to WAKEUP_REQUEST
4261    ShouldNotReachHere();
4262    return;
4263  }
4264
4265  while (true) {
4266    if (sr_notify(osthread) == 0) {
4267      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4268        if (osthread->sr.is_running()) {
4269          return;
4270        }
4271      }
4272    } else {
4273      ShouldNotReachHere();
4274    }
4275  }
4276
4277  guarantee(osthread->sr.is_running(), "Must be running!");
4278}
4279
4280///////////////////////////////////////////////////////////////////////////////////
4281// signal handling (except suspend/resume)
4282
4283// This routine may be used by user applications as a "hook" to catch signals.
4284// The user-defined signal handler must pass unrecognized signals to this
4285// routine, and if it returns true (non-zero), then the signal handler must
4286// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4287// routine will never retun false (zero), but instead will execute a VM panic
4288// routine kill the process.
4289//
4290// If this routine returns false, it is OK to call it again.  This allows
4291// the user-defined signal handler to perform checks either before or after
4292// the VM performs its own checks.  Naturally, the user code would be making
4293// a serious error if it tried to handle an exception (such as a null check
4294// or breakpoint) that the VM was generating for its own correct operation.
4295//
4296// This routine may recognize any of the following kinds of signals:
4297//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4298// It should be consulted by handlers for any of those signals.
4299//
4300// The caller of this routine must pass in the three arguments supplied
4301// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4302// field of the structure passed to sigaction().  This routine assumes that
4303// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4304//
4305// Note that the VM will print warnings if it detects conflicting signal
4306// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4307//
4308extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4309                                                 siginfo_t* siginfo,
4310                                                 void* ucontext,
4311                                                 int abort_if_unrecognized);
4312
4313void signalHandler(int sig, siginfo_t* info, void* uc) {
4314  assert(info != NULL && uc != NULL, "it must be old kernel");
4315  int orig_errno = errno;  // Preserve errno value over signal handler.
4316  JVM_handle_linux_signal(sig, info, uc, true);
4317  errno = orig_errno;
4318}
4319
4320
4321// This boolean allows users to forward their own non-matching signals
4322// to JVM_handle_linux_signal, harmlessly.
4323bool os::Linux::signal_handlers_are_installed = false;
4324
4325// For signal-chaining
4326struct sigaction sigact[NSIG];
4327uint64_t sigs = 0;
4328#if (64 < NSIG-1)
4329#error "Not all signals can be encoded in sigs. Adapt its type!"
4330#endif
4331bool os::Linux::libjsig_is_loaded = false;
4332typedef struct sigaction *(*get_signal_t)(int);
4333get_signal_t os::Linux::get_signal_action = NULL;
4334
4335struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4336  struct sigaction *actp = NULL;
4337
4338  if (libjsig_is_loaded) {
4339    // Retrieve the old signal handler from libjsig
4340    actp = (*get_signal_action)(sig);
4341  }
4342  if (actp == NULL) {
4343    // Retrieve the preinstalled signal handler from jvm
4344    actp = get_preinstalled_handler(sig);
4345  }
4346
4347  return actp;
4348}
4349
4350static bool call_chained_handler(struct sigaction *actp, int sig,
4351                                 siginfo_t *siginfo, void *context) {
4352  // Call the old signal handler
4353  if (actp->sa_handler == SIG_DFL) {
4354    // It's more reasonable to let jvm treat it as an unexpected exception
4355    // instead of taking the default action.
4356    return false;
4357  } else if (actp->sa_handler != SIG_IGN) {
4358    if ((actp->sa_flags & SA_NODEFER) == 0) {
4359      // automaticlly block the signal
4360      sigaddset(&(actp->sa_mask), sig);
4361    }
4362
4363    sa_handler_t hand = NULL;
4364    sa_sigaction_t sa = NULL;
4365    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4366    // retrieve the chained handler
4367    if (siginfo_flag_set) {
4368      sa = actp->sa_sigaction;
4369    } else {
4370      hand = actp->sa_handler;
4371    }
4372
4373    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4374      actp->sa_handler = SIG_DFL;
4375    }
4376
4377    // try to honor the signal mask
4378    sigset_t oset;
4379    sigemptyset(&oset);
4380    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4381
4382    // call into the chained handler
4383    if (siginfo_flag_set) {
4384      (*sa)(sig, siginfo, context);
4385    } else {
4386      (*hand)(sig);
4387    }
4388
4389    // restore the signal mask
4390    pthread_sigmask(SIG_SETMASK, &oset, NULL);
4391  }
4392  // Tell jvm's signal handler the signal is taken care of.
4393  return true;
4394}
4395
4396bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4397  bool chained = false;
4398  // signal-chaining
4399  if (UseSignalChaining) {
4400    struct sigaction *actp = get_chained_signal_action(sig);
4401    if (actp != NULL) {
4402      chained = call_chained_handler(actp, sig, siginfo, context);
4403    }
4404  }
4405  return chained;
4406}
4407
4408struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4409  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4410    return &sigact[sig];
4411  }
4412  return NULL;
4413}
4414
4415void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4416  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4417  sigact[sig] = oldAct;
4418  sigs |= (uint64_t)1 << (sig-1);
4419}
4420
4421// for diagnostic
4422int sigflags[NSIG];
4423
4424int os::Linux::get_our_sigflags(int sig) {
4425  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4426  return sigflags[sig];
4427}
4428
4429void os::Linux::set_our_sigflags(int sig, int flags) {
4430  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4431  if (sig > 0 && sig < NSIG) {
4432    sigflags[sig] = flags;
4433  }
4434}
4435
4436void os::Linux::set_signal_handler(int sig, bool set_installed) {
4437  // Check for overwrite.
4438  struct sigaction oldAct;
4439  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4440
4441  void* oldhand = oldAct.sa_sigaction
4442                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4443                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4444  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4445      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4446      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4447    if (AllowUserSignalHandlers || !set_installed) {
4448      // Do not overwrite; user takes responsibility to forward to us.
4449      return;
4450    } else if (UseSignalChaining) {
4451      // save the old handler in jvm
4452      save_preinstalled_handler(sig, oldAct);
4453      // libjsig also interposes the sigaction() call below and saves the
4454      // old sigaction on it own.
4455    } else {
4456      fatal("Encountered unexpected pre-existing sigaction handler "
4457            "%#lx for signal %d.", (long)oldhand, sig);
4458    }
4459  }
4460
4461  struct sigaction sigAct;
4462  sigfillset(&(sigAct.sa_mask));
4463  sigAct.sa_handler = SIG_DFL;
4464  if (!set_installed) {
4465    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4466  } else {
4467    sigAct.sa_sigaction = signalHandler;
4468    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4469  }
4470  // Save flags, which are set by ours
4471  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4472  sigflags[sig] = sigAct.sa_flags;
4473
4474  int ret = sigaction(sig, &sigAct, &oldAct);
4475  assert(ret == 0, "check");
4476
4477  void* oldhand2  = oldAct.sa_sigaction
4478                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4479                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4480  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4481}
4482
4483// install signal handlers for signals that HotSpot needs to
4484// handle in order to support Java-level exception handling.
4485
4486void os::Linux::install_signal_handlers() {
4487  if (!signal_handlers_are_installed) {
4488    signal_handlers_are_installed = true;
4489
4490    // signal-chaining
4491    typedef void (*signal_setting_t)();
4492    signal_setting_t begin_signal_setting = NULL;
4493    signal_setting_t end_signal_setting = NULL;
4494    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4495                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4496    if (begin_signal_setting != NULL) {
4497      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4498                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4499      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4500                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4501      libjsig_is_loaded = true;
4502      assert(UseSignalChaining, "should enable signal-chaining");
4503    }
4504    if (libjsig_is_loaded) {
4505      // Tell libjsig jvm is setting signal handlers
4506      (*begin_signal_setting)();
4507    }
4508
4509    set_signal_handler(SIGSEGV, true);
4510    set_signal_handler(SIGPIPE, true);
4511    set_signal_handler(SIGBUS, true);
4512    set_signal_handler(SIGILL, true);
4513    set_signal_handler(SIGFPE, true);
4514#if defined(PPC64)
4515    set_signal_handler(SIGTRAP, true);
4516#endif
4517    set_signal_handler(SIGXFSZ, true);
4518
4519    if (libjsig_is_loaded) {
4520      // Tell libjsig jvm finishes setting signal handlers
4521      (*end_signal_setting)();
4522    }
4523
4524    // We don't activate signal checker if libjsig is in place, we trust ourselves
4525    // and if UserSignalHandler is installed all bets are off.
4526    // Log that signal checking is off only if -verbose:jni is specified.
4527    if (CheckJNICalls) {
4528      if (libjsig_is_loaded) {
4529        if (PrintJNIResolving) {
4530          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4531        }
4532        check_signals = false;
4533      }
4534      if (AllowUserSignalHandlers) {
4535        if (PrintJNIResolving) {
4536          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4537        }
4538        check_signals = false;
4539      }
4540    }
4541  }
4542}
4543
4544// This is the fastest way to get thread cpu time on Linux.
4545// Returns cpu time (user+sys) for any thread, not only for current.
4546// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4547// It might work on 2.6.10+ with a special kernel/glibc patch.
4548// For reference, please, see IEEE Std 1003.1-2004:
4549//   http://www.unix.org/single_unix_specification
4550
4551jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4552  struct timespec tp;
4553  int rc = os::Linux::clock_gettime(clockid, &tp);
4554  assert(rc == 0, "clock_gettime is expected to return 0 code");
4555
4556  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4557}
4558
4559void os::Linux::initialize_os_info() {
4560  assert(_os_version == 0, "OS info already initialized");
4561
4562  struct utsname _uname;
4563
4564  uint32_t major;
4565  uint32_t minor;
4566  uint32_t fix;
4567
4568  int rc;
4569
4570  // Kernel version is unknown if
4571  // verification below fails.
4572  _os_version = 0x01000000;
4573
4574  rc = uname(&_uname);
4575  if (rc != -1) {
4576
4577    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4578    if (rc == 3) {
4579
4580      if (major < 256 && minor < 256 && fix < 256) {
4581        // Kernel version format is as expected,
4582        // set it overriding unknown state.
4583        _os_version = (major << 16) |
4584                      (minor << 8 ) |
4585                      (fix   << 0 ) ;
4586      }
4587    }
4588  }
4589}
4590
4591uint32_t os::Linux::os_version() {
4592  assert(_os_version != 0, "not initialized");
4593  return _os_version & 0x00FFFFFF;
4594}
4595
4596bool os::Linux::os_version_is_known() {
4597  assert(_os_version != 0, "not initialized");
4598  return _os_version & 0x01000000 ? false : true;
4599}
4600
4601/////
4602// glibc on Linux platform uses non-documented flag
4603// to indicate, that some special sort of signal
4604// trampoline is used.
4605// We will never set this flag, and we should
4606// ignore this flag in our diagnostic
4607#ifdef SIGNIFICANT_SIGNAL_MASK
4608  #undef SIGNIFICANT_SIGNAL_MASK
4609#endif
4610#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4611
4612static const char* get_signal_handler_name(address handler,
4613                                           char* buf, int buflen) {
4614  int offset = 0;
4615  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4616  if (found) {
4617    // skip directory names
4618    const char *p1, *p2;
4619    p1 = buf;
4620    size_t len = strlen(os::file_separator());
4621    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4622    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4623  } else {
4624    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4625  }
4626  return buf;
4627}
4628
4629static void print_signal_handler(outputStream* st, int sig,
4630                                 char* buf, size_t buflen) {
4631  struct sigaction sa;
4632
4633  sigaction(sig, NULL, &sa);
4634
4635  // See comment for SIGNIFICANT_SIGNAL_MASK define
4636  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4637
4638  st->print("%s: ", os::exception_name(sig, buf, buflen));
4639
4640  address handler = (sa.sa_flags & SA_SIGINFO)
4641    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4642    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4643
4644  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4645    st->print("SIG_DFL");
4646  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4647    st->print("SIG_IGN");
4648  } else {
4649    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4650  }
4651
4652  st->print(", sa_mask[0]=");
4653  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4654
4655  address rh = VMError::get_resetted_sighandler(sig);
4656  // May be, handler was resetted by VMError?
4657  if (rh != NULL) {
4658    handler = rh;
4659    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4660  }
4661
4662  st->print(", sa_flags=");
4663  os::Posix::print_sa_flags(st, sa.sa_flags);
4664
4665  // Check: is it our handler?
4666  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4667      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4668    // It is our signal handler
4669    // check for flags, reset system-used one!
4670    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4671      st->print(
4672                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4673                os::Linux::get_our_sigflags(sig));
4674    }
4675  }
4676  st->cr();
4677}
4678
4679
4680#define DO_SIGNAL_CHECK(sig)                      \
4681  do {                                            \
4682    if (!sigismember(&check_signal_done, sig)) {  \
4683      os::Linux::check_signal_handler(sig);       \
4684    }                                             \
4685  } while (0)
4686
4687// This method is a periodic task to check for misbehaving JNI applications
4688// under CheckJNI, we can add any periodic checks here
4689
4690void os::run_periodic_checks() {
4691  if (check_signals == false) return;
4692
4693  // SEGV and BUS if overridden could potentially prevent
4694  // generation of hs*.log in the event of a crash, debugging
4695  // such a case can be very challenging, so we absolutely
4696  // check the following for a good measure:
4697  DO_SIGNAL_CHECK(SIGSEGV);
4698  DO_SIGNAL_CHECK(SIGILL);
4699  DO_SIGNAL_CHECK(SIGFPE);
4700  DO_SIGNAL_CHECK(SIGBUS);
4701  DO_SIGNAL_CHECK(SIGPIPE);
4702  DO_SIGNAL_CHECK(SIGXFSZ);
4703#if defined(PPC64)
4704  DO_SIGNAL_CHECK(SIGTRAP);
4705#endif
4706
4707  // ReduceSignalUsage allows the user to override these handlers
4708  // see comments at the very top and jvm_solaris.h
4709  if (!ReduceSignalUsage) {
4710    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4711    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4712    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4713    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4714  }
4715
4716  DO_SIGNAL_CHECK(SR_signum);
4717}
4718
4719typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4720
4721static os_sigaction_t os_sigaction = NULL;
4722
4723void os::Linux::check_signal_handler(int sig) {
4724  char buf[O_BUFLEN];
4725  address jvmHandler = NULL;
4726
4727
4728  struct sigaction act;
4729  if (os_sigaction == NULL) {
4730    // only trust the default sigaction, in case it has been interposed
4731    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4732    if (os_sigaction == NULL) return;
4733  }
4734
4735  os_sigaction(sig, (struct sigaction*)NULL, &act);
4736
4737
4738  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4739
4740  address thisHandler = (act.sa_flags & SA_SIGINFO)
4741    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4742    : CAST_FROM_FN_PTR(address, act.sa_handler);
4743
4744
4745  switch (sig) {
4746  case SIGSEGV:
4747  case SIGBUS:
4748  case SIGFPE:
4749  case SIGPIPE:
4750  case SIGILL:
4751  case SIGXFSZ:
4752    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4753    break;
4754
4755  case SHUTDOWN1_SIGNAL:
4756  case SHUTDOWN2_SIGNAL:
4757  case SHUTDOWN3_SIGNAL:
4758  case BREAK_SIGNAL:
4759    jvmHandler = (address)user_handler();
4760    break;
4761
4762  default:
4763    if (sig == SR_signum) {
4764      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4765    } else {
4766      return;
4767    }
4768    break;
4769  }
4770
4771  if (thisHandler != jvmHandler) {
4772    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4773    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4774    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4775    // No need to check this sig any longer
4776    sigaddset(&check_signal_done, sig);
4777    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4778    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4779      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4780                    exception_name(sig, buf, O_BUFLEN));
4781    }
4782  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4783    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4784    tty->print("expected:");
4785    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4786    tty->cr();
4787    tty->print("  found:");
4788    os::Posix::print_sa_flags(tty, act.sa_flags);
4789    tty->cr();
4790    // No need to check this sig any longer
4791    sigaddset(&check_signal_done, sig);
4792  }
4793
4794  // Dump all the signal
4795  if (sigismember(&check_signal_done, sig)) {
4796    print_signal_handlers(tty, buf, O_BUFLEN);
4797  }
4798}
4799
4800extern void report_error(char* file_name, int line_no, char* title,
4801                         char* format, ...);
4802
4803// this is called _before_ the most of global arguments have been parsed
4804void os::init(void) {
4805  char dummy;   // used to get a guess on initial stack address
4806//  first_hrtime = gethrtime();
4807
4808  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4809
4810  init_random(1234567);
4811
4812  ThreadCritical::initialize();
4813
4814  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4815  if (Linux::page_size() == -1) {
4816    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4817          os::strerror(errno));
4818  }
4819  init_page_sizes((size_t) Linux::page_size());
4820
4821  Linux::initialize_system_info();
4822
4823  Linux::initialize_os_info();
4824
4825  // main_thread points to the aboriginal thread
4826  Linux::_main_thread = pthread_self();
4827
4828  Linux::clock_init();
4829  initial_time_count = javaTimeNanos();
4830
4831  // pthread_condattr initialization for monotonic clock
4832  int status;
4833  pthread_condattr_t* _condattr = os::Linux::condAttr();
4834  if ((status = pthread_condattr_init(_condattr)) != 0) {
4835    fatal("pthread_condattr_init: %s", os::strerror(status));
4836  }
4837  // Only set the clock if CLOCK_MONOTONIC is available
4838  if (os::supports_monotonic_clock()) {
4839    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4840      if (status == EINVAL) {
4841        warning("Unable to use monotonic clock with relative timed-waits" \
4842                " - changes to the time-of-day clock may have adverse affects");
4843      } else {
4844        fatal("pthread_condattr_setclock: %s", os::strerror(status));
4845      }
4846    }
4847  }
4848  // else it defaults to CLOCK_REALTIME
4849
4850  // retrieve entry point for pthread_setname_np
4851  Linux::_pthread_setname_np =
4852    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4853
4854}
4855
4856// To install functions for atexit system call
4857extern "C" {
4858  static void perfMemory_exit_helper() {
4859    perfMemory_exit();
4860  }
4861}
4862
4863// this is called _after_ the global arguments have been parsed
4864jint os::init_2(void) {
4865  Linux::fast_thread_clock_init();
4866
4867  // Allocate a single page and mark it as readable for safepoint polling
4868  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4869  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4870
4871  os::set_polling_page(polling_page);
4872  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4873
4874  if (!UseMembar) {
4875    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4876    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4877    os::set_memory_serialize_page(mem_serialize_page);
4878    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4879  }
4880
4881  // initialize suspend/resume support - must do this before signal_sets_init()
4882  if (SR_initialize() != 0) {
4883    perror("SR_initialize failed");
4884    return JNI_ERR;
4885  }
4886
4887  Linux::signal_sets_init();
4888  Linux::install_signal_handlers();
4889
4890  // Check and sets minimum stack sizes against command line options
4891  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4892    return JNI_ERR;
4893  }
4894  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4895
4896#if defined(IA32)
4897  workaround_expand_exec_shield_cs_limit();
4898#endif
4899
4900  Linux::libpthread_init();
4901  log_info(os)("HotSpot is running with %s, %s",
4902               Linux::glibc_version(), Linux::libpthread_version());
4903
4904  if (UseNUMA) {
4905    if (!Linux::libnuma_init()) {
4906      UseNUMA = false;
4907    } else {
4908      if ((Linux::numa_max_node() < 1)) {
4909        // There's only one node(they start from 0), disable NUMA.
4910        UseNUMA = false;
4911      }
4912    }
4913    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4914    // we can make the adaptive lgrp chunk resizing work. If the user specified
4915    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4916    // disable adaptive resizing.
4917    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4918      if (FLAG_IS_DEFAULT(UseNUMA)) {
4919        UseNUMA = false;
4920      } else {
4921        if (FLAG_IS_DEFAULT(UseLargePages) &&
4922            FLAG_IS_DEFAULT(UseSHM) &&
4923            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4924          UseLargePages = false;
4925        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4926          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4927          UseAdaptiveSizePolicy = false;
4928          UseAdaptiveNUMAChunkSizing = false;
4929        }
4930      }
4931    }
4932    if (!UseNUMA && ForceNUMA) {
4933      UseNUMA = true;
4934    }
4935  }
4936
4937  if (MaxFDLimit) {
4938    // set the number of file descriptors to max. print out error
4939    // if getrlimit/setrlimit fails but continue regardless.
4940    struct rlimit nbr_files;
4941    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4942    if (status != 0) {
4943      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4944    } else {
4945      nbr_files.rlim_cur = nbr_files.rlim_max;
4946      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4947      if (status != 0) {
4948        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4949      }
4950    }
4951  }
4952
4953  // Initialize lock used to serialize thread creation (see os::create_thread)
4954  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4955
4956  // at-exit methods are called in the reverse order of their registration.
4957  // atexit functions are called on return from main or as a result of a
4958  // call to exit(3C). There can be only 32 of these functions registered
4959  // and atexit() does not set errno.
4960
4961  if (PerfAllowAtExitRegistration) {
4962    // only register atexit functions if PerfAllowAtExitRegistration is set.
4963    // atexit functions can be delayed until process exit time, which
4964    // can be problematic for embedded VM situations. Embedded VMs should
4965    // call DestroyJavaVM() to assure that VM resources are released.
4966
4967    // note: perfMemory_exit_helper atexit function may be removed in
4968    // the future if the appropriate cleanup code can be added to the
4969    // VM_Exit VMOperation's doit method.
4970    if (atexit(perfMemory_exit_helper) != 0) {
4971      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4972    }
4973  }
4974
4975  // initialize thread priority policy
4976  prio_init();
4977
4978  return JNI_OK;
4979}
4980
4981// Mark the polling page as unreadable
4982void os::make_polling_page_unreadable(void) {
4983  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4984    fatal("Could not disable polling page");
4985  }
4986}
4987
4988// Mark the polling page as readable
4989void os::make_polling_page_readable(void) {
4990  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4991    fatal("Could not enable polling page");
4992  }
4993}
4994
4995// older glibc versions don't have this macro (which expands to
4996// an optimized bit-counting function) so we have to roll our own
4997#ifndef CPU_COUNT
4998
4999static int _cpu_count(const cpu_set_t* cpus) {
5000  int count = 0;
5001  // only look up to the number of configured processors
5002  for (int i = 0; i < os::processor_count(); i++) {
5003    if (CPU_ISSET(i, cpus)) {
5004      count++;
5005    }
5006  }
5007  return count;
5008}
5009
5010#define CPU_COUNT(cpus) _cpu_count(cpus)
5011
5012#endif // CPU_COUNT
5013
5014// Get the current number of available processors for this process.
5015// This value can change at any time during a process's lifetime.
5016// sched_getaffinity gives an accurate answer as it accounts for cpusets.
5017// If it appears there may be more than 1024 processors then we do a
5018// dynamic check - see 6515172 for details.
5019// If anything goes wrong we fallback to returning the number of online
5020// processors - which can be greater than the number available to the process.
5021int os::active_processor_count() {
5022  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5023  cpu_set_t* cpus_p = &cpus;
5024  int cpus_size = sizeof(cpu_set_t);
5025
5026  int configured_cpus = processor_count();  // upper bound on available cpus
5027  int cpu_count = 0;
5028
5029// old build platforms may not support dynamic cpu sets
5030#ifdef CPU_ALLOC
5031
5032  // To enable easy testing of the dynamic path on different platforms we
5033  // introduce a diagnostic flag: UseCpuAllocPath
5034  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5035    // kernel may use a mask bigger than cpu_set_t
5036    log_trace(os)("active_processor_count: using dynamic path %s"
5037                  "- configured processors: %d",
5038                  UseCpuAllocPath ? "(forced) " : "",
5039                  configured_cpus);
5040    cpus_p = CPU_ALLOC(configured_cpus);
5041    if (cpus_p != NULL) {
5042      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5043      // zero it just to be safe
5044      CPU_ZERO_S(cpus_size, cpus_p);
5045    }
5046    else {
5047       // failed to allocate so fallback to online cpus
5048       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5049       log_trace(os)("active_processor_count: "
5050                     "CPU_ALLOC failed (%s) - using "
5051                     "online processor count: %d",
5052                     os::strerror(errno), online_cpus);
5053       return online_cpus;
5054    }
5055  }
5056  else {
5057    log_trace(os)("active_processor_count: using static path - configured processors: %d",
5058                  configured_cpus);
5059  }
5060#else // CPU_ALLOC
5061// these stubs won't be executed
5062#define CPU_COUNT_S(size, cpus) -1
5063#define CPU_FREE(cpus)
5064
5065  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5066                configured_cpus);
5067#endif // CPU_ALLOC
5068
5069  // pid 0 means the current thread - which we have to assume represents the process
5070  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5071    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5072      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5073    }
5074    else {
5075      cpu_count = CPU_COUNT(cpus_p);
5076    }
5077    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5078  }
5079  else {
5080    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5081    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5082            "which may exceed available processors", os::strerror(errno), cpu_count);
5083  }
5084
5085  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5086    CPU_FREE(cpus_p);
5087  }
5088
5089  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5090  return cpu_count;
5091}
5092
5093void os::set_native_thread_name(const char *name) {
5094  if (Linux::_pthread_setname_np) {
5095    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5096    snprintf(buf, sizeof(buf), "%s", name);
5097    buf[sizeof(buf) - 1] = '\0';
5098    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5099    // ERANGE should not happen; all other errors should just be ignored.
5100    assert(rc != ERANGE, "pthread_setname_np failed");
5101  }
5102}
5103
5104bool os::distribute_processes(uint length, uint* distribution) {
5105  // Not yet implemented.
5106  return false;
5107}
5108
5109bool os::bind_to_processor(uint processor_id) {
5110  // Not yet implemented.
5111  return false;
5112}
5113
5114///
5115
5116void os::SuspendedThreadTask::internal_do_task() {
5117  if (do_suspend(_thread->osthread())) {
5118    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5119    do_task(context);
5120    do_resume(_thread->osthread());
5121  }
5122}
5123
5124class PcFetcher : public os::SuspendedThreadTask {
5125 public:
5126  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5127  ExtendedPC result();
5128 protected:
5129  void do_task(const os::SuspendedThreadTaskContext& context);
5130 private:
5131  ExtendedPC _epc;
5132};
5133
5134ExtendedPC PcFetcher::result() {
5135  guarantee(is_done(), "task is not done yet.");
5136  return _epc;
5137}
5138
5139void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5140  Thread* thread = context.thread();
5141  OSThread* osthread = thread->osthread();
5142  if (osthread->ucontext() != NULL) {
5143    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5144  } else {
5145    // NULL context is unexpected, double-check this is the VMThread
5146    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5147  }
5148}
5149
5150// Suspends the target using the signal mechanism and then grabs the PC before
5151// resuming the target. Used by the flat-profiler only
5152ExtendedPC os::get_thread_pc(Thread* thread) {
5153  // Make sure that it is called by the watcher for the VMThread
5154  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5155  assert(thread->is_VM_thread(), "Can only be called for VMThread");
5156
5157  PcFetcher fetcher(thread);
5158  fetcher.run();
5159  return fetcher.result();
5160}
5161
5162////////////////////////////////////////////////////////////////////////////////
5163// debug support
5164
5165bool os::find(address addr, outputStream* st) {
5166  Dl_info dlinfo;
5167  memset(&dlinfo, 0, sizeof(dlinfo));
5168  if (dladdr(addr, &dlinfo) != 0) {
5169    st->print(PTR_FORMAT ": ", p2i(addr));
5170    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5171      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5172                p2i(addr) - p2i(dlinfo.dli_saddr));
5173    } else if (dlinfo.dli_fbase != NULL) {
5174      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5175    } else {
5176      st->print("<absolute address>");
5177    }
5178    if (dlinfo.dli_fname != NULL) {
5179      st->print(" in %s", dlinfo.dli_fname);
5180    }
5181    if (dlinfo.dli_fbase != NULL) {
5182      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5183    }
5184    st->cr();
5185
5186    if (Verbose) {
5187      // decode some bytes around the PC
5188      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5189      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5190      address       lowest = (address) dlinfo.dli_sname;
5191      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5192      if (begin < lowest)  begin = lowest;
5193      Dl_info dlinfo2;
5194      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5195          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5196        end = (address) dlinfo2.dli_saddr;
5197      }
5198      Disassembler::decode(begin, end, st);
5199    }
5200    return true;
5201  }
5202  return false;
5203}
5204
5205////////////////////////////////////////////////////////////////////////////////
5206// misc
5207
5208// This does not do anything on Linux. This is basically a hook for being
5209// able to use structured exception handling (thread-local exception filters)
5210// on, e.g., Win32.
5211void
5212os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5213                         JavaCallArguments* args, Thread* thread) {
5214  f(value, method, args, thread);
5215}
5216
5217void os::print_statistics() {
5218}
5219
5220bool os::message_box(const char* title, const char* message) {
5221  int i;
5222  fdStream err(defaultStream::error_fd());
5223  for (i = 0; i < 78; i++) err.print_raw("=");
5224  err.cr();
5225  err.print_raw_cr(title);
5226  for (i = 0; i < 78; i++) err.print_raw("-");
5227  err.cr();
5228  err.print_raw_cr(message);
5229  for (i = 0; i < 78; i++) err.print_raw("=");
5230  err.cr();
5231
5232  char buf[16];
5233  // Prevent process from exiting upon "read error" without consuming all CPU
5234  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5235
5236  return buf[0] == 'y' || buf[0] == 'Y';
5237}
5238
5239int os::stat(const char *path, struct stat *sbuf) {
5240  char pathbuf[MAX_PATH];
5241  if (strlen(path) > MAX_PATH - 1) {
5242    errno = ENAMETOOLONG;
5243    return -1;
5244  }
5245  os::native_path(strcpy(pathbuf, path));
5246  return ::stat(pathbuf, sbuf);
5247}
5248
5249// Is a (classpath) directory empty?
5250bool os::dir_is_empty(const char* path) {
5251  DIR *dir = NULL;
5252  struct dirent *ptr;
5253
5254  dir = opendir(path);
5255  if (dir == NULL) return true;
5256
5257  // Scan the directory
5258  bool result = true;
5259  char buf[sizeof(struct dirent) + MAX_PATH];
5260  while (result && (ptr = ::readdir(dir)) != NULL) {
5261    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5262      result = false;
5263    }
5264  }
5265  closedir(dir);
5266  return result;
5267}
5268
5269// This code originates from JDK's sysOpen and open64_w
5270// from src/solaris/hpi/src/system_md.c
5271
5272int os::open(const char *path, int oflag, int mode) {
5273  if (strlen(path) > MAX_PATH - 1) {
5274    errno = ENAMETOOLONG;
5275    return -1;
5276  }
5277
5278  // All file descriptors that are opened in the Java process and not
5279  // specifically destined for a subprocess should have the close-on-exec
5280  // flag set.  If we don't set it, then careless 3rd party native code
5281  // might fork and exec without closing all appropriate file descriptors
5282  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5283  // turn might:
5284  //
5285  // - cause end-of-file to fail to be detected on some file
5286  //   descriptors, resulting in mysterious hangs, or
5287  //
5288  // - might cause an fopen in the subprocess to fail on a system
5289  //   suffering from bug 1085341.
5290  //
5291  // (Yes, the default setting of the close-on-exec flag is a Unix
5292  // design flaw)
5293  //
5294  // See:
5295  // 1085341: 32-bit stdio routines should support file descriptors >255
5296  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5297  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5298  //
5299  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5300  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5301  // because it saves a system call and removes a small window where the flag
5302  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5303  // and we fall back to using FD_CLOEXEC (see below).
5304#ifdef O_CLOEXEC
5305  oflag |= O_CLOEXEC;
5306#endif
5307
5308  int fd = ::open64(path, oflag, mode);
5309  if (fd == -1) return -1;
5310
5311  //If the open succeeded, the file might still be a directory
5312  {
5313    struct stat64 buf64;
5314    int ret = ::fstat64(fd, &buf64);
5315    int st_mode = buf64.st_mode;
5316
5317    if (ret != -1) {
5318      if ((st_mode & S_IFMT) == S_IFDIR) {
5319        errno = EISDIR;
5320        ::close(fd);
5321        return -1;
5322      }
5323    } else {
5324      ::close(fd);
5325      return -1;
5326    }
5327  }
5328
5329#ifdef FD_CLOEXEC
5330  // Validate that the use of the O_CLOEXEC flag on open above worked.
5331  // With recent kernels, we will perform this check exactly once.
5332  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5333  if (!O_CLOEXEC_is_known_to_work) {
5334    int flags = ::fcntl(fd, F_GETFD);
5335    if (flags != -1) {
5336      if ((flags & FD_CLOEXEC) != 0)
5337        O_CLOEXEC_is_known_to_work = 1;
5338      else
5339        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5340    }
5341  }
5342#endif
5343
5344  return fd;
5345}
5346
5347
5348// create binary file, rewriting existing file if required
5349int os::create_binary_file(const char* path, bool rewrite_existing) {
5350  int oflags = O_WRONLY | O_CREAT;
5351  if (!rewrite_existing) {
5352    oflags |= O_EXCL;
5353  }
5354  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5355}
5356
5357// return current position of file pointer
5358jlong os::current_file_offset(int fd) {
5359  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5360}
5361
5362// move file pointer to the specified offset
5363jlong os::seek_to_file_offset(int fd, jlong offset) {
5364  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5365}
5366
5367// This code originates from JDK's sysAvailable
5368// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5369
5370int os::available(int fd, jlong *bytes) {
5371  jlong cur, end;
5372  int mode;
5373  struct stat64 buf64;
5374
5375  if (::fstat64(fd, &buf64) >= 0) {
5376    mode = buf64.st_mode;
5377    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5378      int n;
5379      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5380        *bytes = n;
5381        return 1;
5382      }
5383    }
5384  }
5385  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5386    return 0;
5387  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5388    return 0;
5389  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5390    return 0;
5391  }
5392  *bytes = end - cur;
5393  return 1;
5394}
5395
5396// Map a block of memory.
5397char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5398                        char *addr, size_t bytes, bool read_only,
5399                        bool allow_exec) {
5400  int prot;
5401  int flags = MAP_PRIVATE;
5402
5403  if (read_only) {
5404    prot = PROT_READ;
5405  } else {
5406    prot = PROT_READ | PROT_WRITE;
5407  }
5408
5409  if (allow_exec) {
5410    prot |= PROT_EXEC;
5411  }
5412
5413  if (addr != NULL) {
5414    flags |= MAP_FIXED;
5415  }
5416
5417  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5418                                     fd, file_offset);
5419  if (mapped_address == MAP_FAILED) {
5420    return NULL;
5421  }
5422  return mapped_address;
5423}
5424
5425
5426// Remap a block of memory.
5427char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5428                          char *addr, size_t bytes, bool read_only,
5429                          bool allow_exec) {
5430  // same as map_memory() on this OS
5431  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5432                        allow_exec);
5433}
5434
5435
5436// Unmap a block of memory.
5437bool os::pd_unmap_memory(char* addr, size_t bytes) {
5438  return munmap(addr, bytes) == 0;
5439}
5440
5441static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5442
5443static clockid_t thread_cpu_clockid(Thread* thread) {
5444  pthread_t tid = thread->osthread()->pthread_id();
5445  clockid_t clockid;
5446
5447  // Get thread clockid
5448  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5449  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5450  return clockid;
5451}
5452
5453// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5454// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5455// of a thread.
5456//
5457// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5458// the fast estimate available on the platform.
5459
5460jlong os::current_thread_cpu_time() {
5461  if (os::Linux::supports_fast_thread_cpu_time()) {
5462    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5463  } else {
5464    // return user + sys since the cost is the same
5465    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5466  }
5467}
5468
5469jlong os::thread_cpu_time(Thread* thread) {
5470  // consistent with what current_thread_cpu_time() returns
5471  if (os::Linux::supports_fast_thread_cpu_time()) {
5472    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5473  } else {
5474    return slow_thread_cpu_time(thread, true /* user + sys */);
5475  }
5476}
5477
5478jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5479  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5480    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5481  } else {
5482    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5483  }
5484}
5485
5486jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5487  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5488    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5489  } else {
5490    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5491  }
5492}
5493
5494//  -1 on error.
5495static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5496  pid_t  tid = thread->osthread()->thread_id();
5497  char *s;
5498  char stat[2048];
5499  int statlen;
5500  char proc_name[64];
5501  int count;
5502  long sys_time, user_time;
5503  char cdummy;
5504  int idummy;
5505  long ldummy;
5506  FILE *fp;
5507
5508  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5509  fp = fopen(proc_name, "r");
5510  if (fp == NULL) return -1;
5511  statlen = fread(stat, 1, 2047, fp);
5512  stat[statlen] = '\0';
5513  fclose(fp);
5514
5515  // Skip pid and the command string. Note that we could be dealing with
5516  // weird command names, e.g. user could decide to rename java launcher
5517  // to "java 1.4.2 :)", then the stat file would look like
5518  //                1234 (java 1.4.2 :)) R ... ...
5519  // We don't really need to know the command string, just find the last
5520  // occurrence of ")" and then start parsing from there. See bug 4726580.
5521  s = strrchr(stat, ')');
5522  if (s == NULL) return -1;
5523
5524  // Skip blank chars
5525  do { s++; } while (s && isspace(*s));
5526
5527  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5528                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5529                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5530                 &user_time, &sys_time);
5531  if (count != 13) return -1;
5532  if (user_sys_cpu_time) {
5533    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5534  } else {
5535    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5536  }
5537}
5538
5539void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5540  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5541  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5542  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5543  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5544}
5545
5546void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5547  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5548  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5549  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5550  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5551}
5552
5553bool os::is_thread_cpu_time_supported() {
5554  return true;
5555}
5556
5557// System loadavg support.  Returns -1 if load average cannot be obtained.
5558// Linux doesn't yet have a (official) notion of processor sets,
5559// so just return the system wide load average.
5560int os::loadavg(double loadavg[], int nelem) {
5561  return ::getloadavg(loadavg, nelem);
5562}
5563
5564void os::pause() {
5565  char filename[MAX_PATH];
5566  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5567    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5568  } else {
5569    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5570  }
5571
5572  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5573  if (fd != -1) {
5574    struct stat buf;
5575    ::close(fd);
5576    while (::stat(filename, &buf) == 0) {
5577      (void)::poll(NULL, 0, 100);
5578    }
5579  } else {
5580    jio_fprintf(stderr,
5581                "Could not open pause file '%s', continuing immediately.\n", filename);
5582  }
5583}
5584
5585
5586// Refer to the comments in os_solaris.cpp park-unpark. The next two
5587// comment paragraphs are worth repeating here:
5588//
5589// Assumption:
5590//    Only one parker can exist on an event, which is why we allocate
5591//    them per-thread. Multiple unparkers can coexist.
5592//
5593// _Event serves as a restricted-range semaphore.
5594//   -1 : thread is blocked, i.e. there is a waiter
5595//    0 : neutral: thread is running or ready,
5596//        could have been signaled after a wait started
5597//    1 : signaled - thread is running or ready
5598//
5599
5600// utility to compute the abstime argument to timedwait:
5601// millis is the relative timeout time
5602// abstime will be the absolute timeout time
5603// TODO: replace compute_abstime() with unpackTime()
5604
5605static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5606  if (millis < 0)  millis = 0;
5607
5608  jlong seconds = millis / 1000;
5609  millis %= 1000;
5610  if (seconds > 50000000) { // see man cond_timedwait(3T)
5611    seconds = 50000000;
5612  }
5613
5614  if (os::supports_monotonic_clock()) {
5615    struct timespec now;
5616    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5617    assert_status(status == 0, status, "clock_gettime");
5618    abstime->tv_sec = now.tv_sec  + seconds;
5619    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5620    if (nanos >= NANOSECS_PER_SEC) {
5621      abstime->tv_sec += 1;
5622      nanos -= NANOSECS_PER_SEC;
5623    }
5624    abstime->tv_nsec = nanos;
5625  } else {
5626    struct timeval now;
5627    int status = gettimeofday(&now, NULL);
5628    assert(status == 0, "gettimeofday");
5629    abstime->tv_sec = now.tv_sec  + seconds;
5630    long usec = now.tv_usec + millis * 1000;
5631    if (usec >= 1000000) {
5632      abstime->tv_sec += 1;
5633      usec -= 1000000;
5634    }
5635    abstime->tv_nsec = usec * 1000;
5636  }
5637  return abstime;
5638}
5639
5640void os::PlatformEvent::park() {       // AKA "down()"
5641  // Transitions for _Event:
5642  //   -1 => -1 : illegal
5643  //    1 =>  0 : pass - return immediately
5644  //    0 => -1 : block; then set _Event to 0 before returning
5645
5646  // Invariant: Only the thread associated with the Event/PlatformEvent
5647  // may call park().
5648  // TODO: assert that _Assoc != NULL or _Assoc == Self
5649  assert(_nParked == 0, "invariant");
5650
5651  int v;
5652  for (;;) {
5653    v = _Event;
5654    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5655  }
5656  guarantee(v >= 0, "invariant");
5657  if (v == 0) {
5658    // Do this the hard way by blocking ...
5659    int status = pthread_mutex_lock(_mutex);
5660    assert_status(status == 0, status, "mutex_lock");
5661    guarantee(_nParked == 0, "invariant");
5662    ++_nParked;
5663    while (_Event < 0) {
5664      status = pthread_cond_wait(_cond, _mutex);
5665      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5666      // Treat this the same as if the wait was interrupted
5667      if (status == ETIME) { status = EINTR; }
5668      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5669    }
5670    --_nParked;
5671
5672    _Event = 0;
5673    status = pthread_mutex_unlock(_mutex);
5674    assert_status(status == 0, status, "mutex_unlock");
5675    // Paranoia to ensure our locked and lock-free paths interact
5676    // correctly with each other.
5677    OrderAccess::fence();
5678  }
5679  guarantee(_Event >= 0, "invariant");
5680}
5681
5682int os::PlatformEvent::park(jlong millis) {
5683  // Transitions for _Event:
5684  //   -1 => -1 : illegal
5685  //    1 =>  0 : pass - return immediately
5686  //    0 => -1 : block; then set _Event to 0 before returning
5687
5688  guarantee(_nParked == 0, "invariant");
5689
5690  int v;
5691  for (;;) {
5692    v = _Event;
5693    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5694  }
5695  guarantee(v >= 0, "invariant");
5696  if (v != 0) return OS_OK;
5697
5698  // We do this the hard way, by blocking the thread.
5699  // Consider enforcing a minimum timeout value.
5700  struct timespec abst;
5701  compute_abstime(&abst, millis);
5702
5703  int ret = OS_TIMEOUT;
5704  int status = pthread_mutex_lock(_mutex);
5705  assert_status(status == 0, status, "mutex_lock");
5706  guarantee(_nParked == 0, "invariant");
5707  ++_nParked;
5708
5709  // Object.wait(timo) will return because of
5710  // (a) notification
5711  // (b) timeout
5712  // (c) thread.interrupt
5713  //
5714  // Thread.interrupt and object.notify{All} both call Event::set.
5715  // That is, we treat thread.interrupt as a special case of notification.
5716  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5717  // We assume all ETIME returns are valid.
5718  //
5719  // TODO: properly differentiate simultaneous notify+interrupt.
5720  // In that case, we should propagate the notify to another waiter.
5721
5722  while (_Event < 0) {
5723    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5724    assert_status(status == 0 || status == EINTR ||
5725                  status == ETIME || status == ETIMEDOUT,
5726                  status, "cond_timedwait");
5727    if (!FilterSpuriousWakeups) break;                 // previous semantics
5728    if (status == ETIME || status == ETIMEDOUT) break;
5729    // We consume and ignore EINTR and spurious wakeups.
5730  }
5731  --_nParked;
5732  if (_Event >= 0) {
5733    ret = OS_OK;
5734  }
5735  _Event = 0;
5736  status = pthread_mutex_unlock(_mutex);
5737  assert_status(status == 0, status, "mutex_unlock");
5738  assert(_nParked == 0, "invariant");
5739  // Paranoia to ensure our locked and lock-free paths interact
5740  // correctly with each other.
5741  OrderAccess::fence();
5742  return ret;
5743}
5744
5745void os::PlatformEvent::unpark() {
5746  // Transitions for _Event:
5747  //    0 => 1 : just return
5748  //    1 => 1 : just return
5749  //   -1 => either 0 or 1; must signal target thread
5750  //         That is, we can safely transition _Event from -1 to either
5751  //         0 or 1.
5752  // See also: "Semaphores in Plan 9" by Mullender & Cox
5753  //
5754  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5755  // that it will take two back-to-back park() calls for the owning
5756  // thread to block. This has the benefit of forcing a spurious return
5757  // from the first park() call after an unpark() call which will help
5758  // shake out uses of park() and unpark() without condition variables.
5759
5760  if (Atomic::xchg(1, &_Event) >= 0) return;
5761
5762  // Wait for the thread associated with the event to vacate
5763  int status = pthread_mutex_lock(_mutex);
5764  assert_status(status == 0, status, "mutex_lock");
5765  int AnyWaiters = _nParked;
5766  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5767  status = pthread_mutex_unlock(_mutex);
5768  assert_status(status == 0, status, "mutex_unlock");
5769  if (AnyWaiters != 0) {
5770    // Note that we signal() *after* dropping the lock for "immortal" Events.
5771    // This is safe and avoids a common class of  futile wakeups.  In rare
5772    // circumstances this can cause a thread to return prematurely from
5773    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5774    // will simply re-test the condition and re-park itself.
5775    // This provides particular benefit if the underlying platform does not
5776    // provide wait morphing.
5777    status = pthread_cond_signal(_cond);
5778    assert_status(status == 0, status, "cond_signal");
5779  }
5780}
5781
5782
5783// JSR166
5784// -------------------------------------------------------
5785
5786// The solaris and linux implementations of park/unpark are fairly
5787// conservative for now, but can be improved. They currently use a
5788// mutex/condvar pair, plus a a count.
5789// Park decrements count if > 0, else does a condvar wait.  Unpark
5790// sets count to 1 and signals condvar.  Only one thread ever waits
5791// on the condvar. Contention seen when trying to park implies that someone
5792// is unparking you, so don't wait. And spurious returns are fine, so there
5793// is no need to track notifications.
5794
5795// This code is common to linux and solaris and will be moved to a
5796// common place in dolphin.
5797//
5798// The passed in time value is either a relative time in nanoseconds
5799// or an absolute time in milliseconds. Either way it has to be unpacked
5800// into suitable seconds and nanoseconds components and stored in the
5801// given timespec structure.
5802// Given time is a 64-bit value and the time_t used in the timespec is only
5803// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5804// overflow if times way in the future are given. Further on Solaris versions
5805// prior to 10 there is a restriction (see cond_timedwait) that the specified
5806// number of seconds, in abstime, is less than current_time  + 100,000,000.
5807// As it will be 28 years before "now + 100000000" will overflow we can
5808// ignore overflow and just impose a hard-limit on seconds using the value
5809// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5810// years from "now".
5811
5812static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5813  assert(time > 0, "convertTime");
5814  time_t max_secs = 0;
5815
5816  if (!os::supports_monotonic_clock() || isAbsolute) {
5817    struct timeval now;
5818    int status = gettimeofday(&now, NULL);
5819    assert(status == 0, "gettimeofday");
5820
5821    max_secs = now.tv_sec + MAX_SECS;
5822
5823    if (isAbsolute) {
5824      jlong secs = time / 1000;
5825      if (secs > max_secs) {
5826        absTime->tv_sec = max_secs;
5827      } else {
5828        absTime->tv_sec = secs;
5829      }
5830      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5831    } else {
5832      jlong secs = time / NANOSECS_PER_SEC;
5833      if (secs >= MAX_SECS) {
5834        absTime->tv_sec = max_secs;
5835        absTime->tv_nsec = 0;
5836      } else {
5837        absTime->tv_sec = now.tv_sec + secs;
5838        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5839        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5840          absTime->tv_nsec -= NANOSECS_PER_SEC;
5841          ++absTime->tv_sec; // note: this must be <= max_secs
5842        }
5843      }
5844    }
5845  } else {
5846    // must be relative using monotonic clock
5847    struct timespec now;
5848    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5849    assert_status(status == 0, status, "clock_gettime");
5850    max_secs = now.tv_sec + MAX_SECS;
5851    jlong secs = time / NANOSECS_PER_SEC;
5852    if (secs >= MAX_SECS) {
5853      absTime->tv_sec = max_secs;
5854      absTime->tv_nsec = 0;
5855    } else {
5856      absTime->tv_sec = now.tv_sec + secs;
5857      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5858      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5859        absTime->tv_nsec -= NANOSECS_PER_SEC;
5860        ++absTime->tv_sec; // note: this must be <= max_secs
5861      }
5862    }
5863  }
5864  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5865  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5866  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5867  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5868}
5869
5870void Parker::park(bool isAbsolute, jlong time) {
5871  // Ideally we'd do something useful while spinning, such
5872  // as calling unpackTime().
5873
5874  // Optional fast-path check:
5875  // Return immediately if a permit is available.
5876  // We depend on Atomic::xchg() having full barrier semantics
5877  // since we are doing a lock-free update to _counter.
5878  if (Atomic::xchg(0, &_counter) > 0) return;
5879
5880  Thread* thread = Thread::current();
5881  assert(thread->is_Java_thread(), "Must be JavaThread");
5882  JavaThread *jt = (JavaThread *)thread;
5883
5884  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5885  // Check interrupt before trying to wait
5886  if (Thread::is_interrupted(thread, false)) {
5887    return;
5888  }
5889
5890  // Next, demultiplex/decode time arguments
5891  timespec absTime;
5892  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5893    return;
5894  }
5895  if (time > 0) {
5896    unpackTime(&absTime, isAbsolute, time);
5897  }
5898
5899
5900  // Enter safepoint region
5901  // Beware of deadlocks such as 6317397.
5902  // The per-thread Parker:: mutex is a classic leaf-lock.
5903  // In particular a thread must never block on the Threads_lock while
5904  // holding the Parker:: mutex.  If safepoints are pending both the
5905  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5906  ThreadBlockInVM tbivm(jt);
5907
5908  // Don't wait if cannot get lock since interference arises from
5909  // unblocking.  Also. check interrupt before trying wait
5910  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5911    return;
5912  }
5913
5914  int status;
5915  if (_counter > 0)  { // no wait needed
5916    _counter = 0;
5917    status = pthread_mutex_unlock(_mutex);
5918    assert_status(status == 0, status, "invariant");
5919    // Paranoia to ensure our locked and lock-free paths interact
5920    // correctly with each other and Java-level accesses.
5921    OrderAccess::fence();
5922    return;
5923  }
5924
5925#ifdef ASSERT
5926  // Don't catch signals while blocked; let the running threads have the signals.
5927  // (This allows a debugger to break into the running thread.)
5928  sigset_t oldsigs;
5929  sigemptyset(&oldsigs);
5930  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5931  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5932#endif
5933
5934  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5935  jt->set_suspend_equivalent();
5936  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5937
5938  assert(_cur_index == -1, "invariant");
5939  if (time == 0) {
5940    _cur_index = REL_INDEX; // arbitrary choice when not timed
5941    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5942  } else {
5943    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5944    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5945  }
5946  _cur_index = -1;
5947  assert_status(status == 0 || status == EINTR ||
5948                status == ETIME || status == ETIMEDOUT,
5949                status, "cond_timedwait");
5950
5951#ifdef ASSERT
5952  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5953#endif
5954
5955  _counter = 0;
5956  status = pthread_mutex_unlock(_mutex);
5957  assert_status(status == 0, status, "invariant");
5958  // Paranoia to ensure our locked and lock-free paths interact
5959  // correctly with each other and Java-level accesses.
5960  OrderAccess::fence();
5961
5962  // If externally suspended while waiting, re-suspend
5963  if (jt->handle_special_suspend_equivalent_condition()) {
5964    jt->java_suspend_self();
5965  }
5966}
5967
5968void Parker::unpark() {
5969  int status = pthread_mutex_lock(_mutex);
5970  assert_status(status == 0, status, "invariant");
5971  const int s = _counter;
5972  _counter = 1;
5973  // must capture correct index before unlocking
5974  int index = _cur_index;
5975  status = pthread_mutex_unlock(_mutex);
5976  assert_status(status == 0, status, "invariant");
5977  if (s < 1 && index != -1) {
5978    // thread is definitely parked
5979    status = pthread_cond_signal(&_cond[index]);
5980    assert_status(status == 0, status, "invariant");
5981  }
5982}
5983
5984
5985extern char** environ;
5986
5987// Run the specified command in a separate process. Return its exit value,
5988// or -1 on failure (e.g. can't fork a new process).
5989// Unlike system(), this function can be called from signal handler. It
5990// doesn't block SIGINT et al.
5991int os::fork_and_exec(char* cmd) {
5992  const char * argv[4] = {"sh", "-c", cmd, NULL};
5993
5994  pid_t pid = fork();
5995
5996  if (pid < 0) {
5997    // fork failed
5998    return -1;
5999
6000  } else if (pid == 0) {
6001    // child process
6002
6003    execve("/bin/sh", (char* const*)argv, environ);
6004
6005    // execve failed
6006    _exit(-1);
6007
6008  } else  {
6009    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6010    // care about the actual exit code, for now.
6011
6012    int status;
6013
6014    // Wait for the child process to exit.  This returns immediately if
6015    // the child has already exited. */
6016    while (waitpid(pid, &status, 0) < 0) {
6017      switch (errno) {
6018      case ECHILD: return 0;
6019      case EINTR: break;
6020      default: return -1;
6021      }
6022    }
6023
6024    if (WIFEXITED(status)) {
6025      // The child exited normally; get its exit code.
6026      return WEXITSTATUS(status);
6027    } else if (WIFSIGNALED(status)) {
6028      // The child exited because of a signal
6029      // The best value to return is 0x80 + signal number,
6030      // because that is what all Unix shells do, and because
6031      // it allows callers to distinguish between process exit and
6032      // process death by signal.
6033      return 0x80 + WTERMSIG(status);
6034    } else {
6035      // Unknown exit code; pass it through
6036      return status;
6037    }
6038  }
6039}
6040
6041// is_headless_jre()
6042//
6043// Test for the existence of xawt/libmawt.so or libawt_xawt.so
6044// in order to report if we are running in a headless jre
6045//
6046// Since JDK8 xawt/libmawt.so was moved into the same directory
6047// as libawt.so, and renamed libawt_xawt.so
6048//
6049bool os::is_headless_jre() {
6050  struct stat statbuf;
6051  char buf[MAXPATHLEN];
6052  char libmawtpath[MAXPATHLEN];
6053  const char *xawtstr  = "/xawt/libmawt.so";
6054  const char *new_xawtstr = "/libawt_xawt.so";
6055  char *p;
6056
6057  // Get path to libjvm.so
6058  os::jvm_path(buf, sizeof(buf));
6059
6060  // Get rid of libjvm.so
6061  p = strrchr(buf, '/');
6062  if (p == NULL) {
6063    return false;
6064  } else {
6065    *p = '\0';
6066  }
6067
6068  // Get rid of client or server
6069  p = strrchr(buf, '/');
6070  if (p == NULL) {
6071    return false;
6072  } else {
6073    *p = '\0';
6074  }
6075
6076  // check xawt/libmawt.so
6077  strcpy(libmawtpath, buf);
6078  strcat(libmawtpath, xawtstr);
6079  if (::stat(libmawtpath, &statbuf) == 0) return false;
6080
6081  // check libawt_xawt.so
6082  strcpy(libmawtpath, buf);
6083  strcat(libmawtpath, new_xawtstr);
6084  if (::stat(libmawtpath, &statbuf) == 0) return false;
6085
6086  return true;
6087}
6088
6089// Get the default path to the core file
6090// Returns the length of the string
6091int os::get_core_path(char* buffer, size_t bufferSize) {
6092  /*
6093   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6094   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6095   */
6096  const int core_pattern_len = 129;
6097  char core_pattern[core_pattern_len] = {0};
6098
6099  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6100  if (core_pattern_file == -1) {
6101    return -1;
6102  }
6103
6104  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6105  ::close(core_pattern_file);
6106  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6107    return -1;
6108  }
6109  if (core_pattern[ret-1] == '\n') {
6110    core_pattern[ret-1] = '\0';
6111  } else {
6112    core_pattern[ret] = '\0';
6113  }
6114
6115  char *pid_pos = strstr(core_pattern, "%p");
6116  int written;
6117
6118  if (core_pattern[0] == '/') {
6119    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6120  } else {
6121    char cwd[PATH_MAX];
6122
6123    const char* p = get_current_directory(cwd, PATH_MAX);
6124    if (p == NULL) {
6125      return -1;
6126    }
6127
6128    if (core_pattern[0] == '|') {
6129      written = jio_snprintf(buffer, bufferSize,
6130                             "\"%s\" (or dumping to %s/core.%d)",
6131                             &core_pattern[1], p, current_process_id());
6132    } else {
6133      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6134    }
6135  }
6136
6137  if (written < 0) {
6138    return -1;
6139  }
6140
6141  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6142    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6143
6144    if (core_uses_pid_file != -1) {
6145      char core_uses_pid = 0;
6146      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6147      ::close(core_uses_pid_file);
6148
6149      if (core_uses_pid == '1') {
6150        jio_snprintf(buffer + written, bufferSize - written,
6151                                          ".%d", current_process_id());
6152      }
6153    }
6154  }
6155
6156  return strlen(buffer);
6157}
6158
6159bool os::start_debugging(char *buf, int buflen) {
6160  int len = (int)strlen(buf);
6161  char *p = &buf[len];
6162
6163  jio_snprintf(p, buflen-len,
6164               "\n\n"
6165               "Do you want to debug the problem?\n\n"
6166               "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6167               "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6168               "Otherwise, press RETURN to abort...",
6169               os::current_process_id(), os::current_process_id(),
6170               os::current_thread_id(), os::current_thread_id());
6171
6172  bool yes = os::message_box("Unexpected Error", buf);
6173
6174  if (yes) {
6175    // yes, user asked VM to launch debugger
6176    jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6177                 os::current_process_id(), os::current_process_id());
6178
6179    os::fork_and_exec(buf);
6180    yes = false;
6181  }
6182  return yes;
6183}
6184
6185
6186// Java/Compiler thread:
6187//
6188//   Low memory addresses
6189// P0 +------------------------+
6190//    |                        |\  Java thread created by VM does not have glibc
6191//    |    glibc guard page    | - guard page, attached Java thread usually has
6192//    |                        |/  1 glibc guard page.
6193// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6194//    |                        |\
6195//    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6196//    |                        |/
6197//    +------------------------+ JavaThread::stack_reserved_zone_base()
6198//    |                        |\
6199//    |      Normal Stack      | -
6200//    |                        |/
6201// P2 +------------------------+ Thread::stack_base()
6202//
6203// Non-Java thread:
6204//
6205//   Low memory addresses
6206// P0 +------------------------+
6207//    |                        |\
6208//    |  glibc guard page      | - usually 1 page
6209//    |                        |/
6210// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6211//    |                        |\
6212//    |      Normal Stack      | -
6213//    |                        |/
6214// P2 +------------------------+ Thread::stack_base()
6215//
6216// ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6217//    returned from pthread_attr_getstack().
6218// ** Due to NPTL implementation error, linux takes the glibc guard page out
6219//    of the stack size given in pthread_attr. We work around this for
6220//    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6221//
6222#ifndef ZERO
6223static void current_stack_region(address * bottom, size_t * size) {
6224  if (os::Linux::is_initial_thread()) {
6225    // initial thread needs special handling because pthread_getattr_np()
6226    // may return bogus value.
6227    *bottom = os::Linux::initial_thread_stack_bottom();
6228    *size   = os::Linux::initial_thread_stack_size();
6229  } else {
6230    pthread_attr_t attr;
6231
6232    int rslt = pthread_getattr_np(pthread_self(), &attr);
6233
6234    // JVM needs to know exact stack location, abort if it fails
6235    if (rslt != 0) {
6236      if (rslt == ENOMEM) {
6237        vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6238      } else {
6239        fatal("pthread_getattr_np failed with error = %d", rslt);
6240      }
6241    }
6242
6243    if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6244      fatal("Cannot locate current stack attributes!");
6245    }
6246
6247    // Work around NPTL stack guard error.
6248    size_t guard_size = 0;
6249    rslt = pthread_attr_getguardsize(&attr, &guard_size);
6250    if (rslt != 0) {
6251      fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6252    }
6253    *bottom += guard_size;
6254    *size   -= guard_size;
6255
6256    pthread_attr_destroy(&attr);
6257
6258  }
6259  assert(os::current_stack_pointer() >= *bottom &&
6260         os::current_stack_pointer() < *bottom + *size, "just checking");
6261}
6262
6263address os::current_stack_base() {
6264  address bottom;
6265  size_t size;
6266  current_stack_region(&bottom, &size);
6267  return (bottom + size);
6268}
6269
6270size_t os::current_stack_size() {
6271  // This stack size includes the usable stack and HotSpot guard pages
6272  // (for the threads that have Hotspot guard pages).
6273  address bottom;
6274  size_t size;
6275  current_stack_region(&bottom, &size);
6276  return size;
6277}
6278#endif
6279
6280static inline struct timespec get_mtime(const char* filename) {
6281  struct stat st;
6282  int ret = os::stat(filename, &st);
6283  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6284  return st.st_mtim;
6285}
6286
6287int os::compare_file_modified_times(const char* file1, const char* file2) {
6288  struct timespec filetime1 = get_mtime(file1);
6289  struct timespec filetime2 = get_mtime(file2);
6290  int diff = filetime1.tv_sec - filetime2.tv_sec;
6291  if (diff == 0) {
6292    return filetime1.tv_nsec - filetime2.tv_nsec;
6293  }
6294  return diff;
6295}
6296
6297/////////////// Unit tests ///////////////
6298
6299#ifndef PRODUCT
6300
6301#define test_log(...)              \
6302  do {                             \
6303    if (VerboseInternalVMTests) {  \
6304      tty->print_cr(__VA_ARGS__);  \
6305      tty->flush();                \
6306    }                              \
6307  } while (false)
6308
6309class TestReserveMemorySpecial : AllStatic {
6310 public:
6311  static void small_page_write(void* addr, size_t size) {
6312    size_t page_size = os::vm_page_size();
6313
6314    char* end = (char*)addr + size;
6315    for (char* p = (char*)addr; p < end; p += page_size) {
6316      *p = 1;
6317    }
6318  }
6319
6320  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6321    if (!UseHugeTLBFS) {
6322      return;
6323    }
6324
6325    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6326
6327    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6328
6329    if (addr != NULL) {
6330      small_page_write(addr, size);
6331
6332      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6333    }
6334  }
6335
6336  static void test_reserve_memory_special_huge_tlbfs_only() {
6337    if (!UseHugeTLBFS) {
6338      return;
6339    }
6340
6341    size_t lp = os::large_page_size();
6342
6343    for (size_t size = lp; size <= lp * 10; size += lp) {
6344      test_reserve_memory_special_huge_tlbfs_only(size);
6345    }
6346  }
6347
6348  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6349    size_t lp = os::large_page_size();
6350    size_t ag = os::vm_allocation_granularity();
6351
6352    // sizes to test
6353    const size_t sizes[] = {
6354      lp, lp + ag, lp + lp / 2, lp * 2,
6355      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6356      lp * 10, lp * 10 + lp / 2
6357    };
6358    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6359
6360    // For each size/alignment combination, we test three scenarios:
6361    // 1) with req_addr == NULL
6362    // 2) with a non-null req_addr at which we expect to successfully allocate
6363    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6364    //    expect the allocation to either fail or to ignore req_addr
6365
6366    // Pre-allocate two areas; they shall be as large as the largest allocation
6367    //  and aligned to the largest alignment we will be testing.
6368    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6369    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6370      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6371      -1, 0);
6372    assert(mapping1 != MAP_FAILED, "should work");
6373
6374    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6375      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6376      -1, 0);
6377    assert(mapping2 != MAP_FAILED, "should work");
6378
6379    // Unmap the first mapping, but leave the second mapping intact: the first
6380    // mapping will serve as a value for a "good" req_addr (case 2). The second
6381    // mapping, still intact, as "bad" req_addr (case 3).
6382    ::munmap(mapping1, mapping_size);
6383
6384    // Case 1
6385    test_log("%s, req_addr NULL:", __FUNCTION__);
6386    test_log("size            align           result");
6387
6388    for (int i = 0; i < num_sizes; i++) {
6389      const size_t size = sizes[i];
6390      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6391        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6392        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6393                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6394        if (p != NULL) {
6395          assert(is_ptr_aligned(p, alignment), "must be");
6396          small_page_write(p, size);
6397          os::Linux::release_memory_special_huge_tlbfs(p, size);
6398        }
6399      }
6400    }
6401
6402    // Case 2
6403    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6404    test_log("size            align           req_addr         result");
6405
6406    for (int i = 0; i < num_sizes; i++) {
6407      const size_t size = sizes[i];
6408      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6409        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6410        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6411        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6412                 size, alignment, p2i(req_addr), p2i(p),
6413                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6414        if (p != NULL) {
6415          assert(p == req_addr, "must be");
6416          small_page_write(p, size);
6417          os::Linux::release_memory_special_huge_tlbfs(p, size);
6418        }
6419      }
6420    }
6421
6422    // Case 3
6423    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6424    test_log("size            align           req_addr         result");
6425
6426    for (int i = 0; i < num_sizes; i++) {
6427      const size_t size = sizes[i];
6428      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6429        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6430        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6431        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6432                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6433        // as the area around req_addr contains already existing mappings, the API should always
6434        // return NULL (as per contract, it cannot return another address)
6435        assert(p == NULL, "must be");
6436      }
6437    }
6438
6439    ::munmap(mapping2, mapping_size);
6440
6441  }
6442
6443  static void test_reserve_memory_special_huge_tlbfs() {
6444    if (!UseHugeTLBFS) {
6445      return;
6446    }
6447
6448    test_reserve_memory_special_huge_tlbfs_only();
6449    test_reserve_memory_special_huge_tlbfs_mixed();
6450  }
6451
6452  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6453    if (!UseSHM) {
6454      return;
6455    }
6456
6457    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6458
6459    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6460
6461    if (addr != NULL) {
6462      assert(is_ptr_aligned(addr, alignment), "Check");
6463      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6464
6465      small_page_write(addr, size);
6466
6467      os::Linux::release_memory_special_shm(addr, size);
6468    }
6469  }
6470
6471  static void test_reserve_memory_special_shm() {
6472    size_t lp = os::large_page_size();
6473    size_t ag = os::vm_allocation_granularity();
6474
6475    for (size_t size = ag; size < lp * 3; size += ag) {
6476      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6477        test_reserve_memory_special_shm(size, alignment);
6478      }
6479    }
6480  }
6481
6482  static void test() {
6483    test_reserve_memory_special_huge_tlbfs();
6484    test_reserve_memory_special_shm();
6485  }
6486};
6487
6488void TestReserveMemorySpecial_test() {
6489  TestReserveMemorySpecial::test();
6490}
6491
6492#endif
6493